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Abstract. In this paper we consider the most common ABox reasoning
services for the description logic DL〈4LQSR,×〉(D) (DL4,×

D , for short) and
prove their decidability via a reduction to the satisfiability problem for
the set-theoretic fragment 4LQSR. The description logic DL4,×

D is very
expressive, as it admits various concept and role constructs and data
types that allow one to represent rule-based languages such as SWRL.

Decidability results are achieved by defining a generalization of the
conjunctive query answering (CQA) problem that can be instantiated to
the most widespread ABox reasoning tasks. We also present a KE-tableau
based procedure for calculating the answer set from DL4,×

D -knowledge
bases and higher order DL4,×

D -conjunctive queries, thus providing means
for reasoning on several well-known ABox reasoning tasks. Our calculus
extends a previously introduced KE-tableau based decision procedure for
the CQA problem.

1 Introduction

Recently, results from Computable Set Theory have been applied to knowledge
representation for the semantic web in order to define and reason about descrip-
tion logics and rule languages. Such a study is motivated by the fact that Com-
putable Set Theory is a research field full of interesting decidability results and
that there exists a natural translation map between some set-theoretic fragments
and description logics and rule languages.

In particular, the decidable four-level stratified fragment of set theory 4LQSR,
involving variables of four sorts, pair terms, and a restricted form of quantifi-
cation over variables of the first three sorts (cf. [4]), has been used in [3] to
represent the description logic DL〈4LQSR〉(D) (DL4

D, for short). The logic DL4
D

admits concept constructs such as full negation, union and intersection of con-
cepts, concept domain and range, existential quantification and min cardinality
on the left-hand side of inclusion axioms. It also supports role constructs such
as role chains on the left hand side of inclusion axioms, union, intersection, and
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complement of abstract roles, and properties on roles such as transitivity, sym-
metry, reflexivity, and irreflexivity. As briefly shown in [3], DL4

D is particularly
suitable to express a rule language such as the Semantic Web Rule Language
(SWRL), an extension of the Ontology Web Language (OWL). It admits data
types, a simple form of concrete domains that are relevant in real world applica-
tions. In [3], the consistency problem for DL4

D-knowledge bases has been proved
decidable by means of a reduction to the satisfiability problem for 4LQSR, whose
decidability has been established in [4]. It has also been shown that, under not
very restrictive constraints, the consistency problem for DL4

D-knowledge bases
is NP-complete. Such a low complexity result is motivated by the fact that exis-
tential quantification cannot appear on the right-hand side of inclusion axioms.
Nonetheless, DL4

D turns out to be more expressive than other low complexity
logics such as OWL RL and therefore it is suitable for representing real world
ontologies. For example, the restricted version of DL4

D mentioned above allows
one to express several ontologies, such as Ontoceramic [9], for the classification
of ancient pottery.

In [7], the description logic DL〈4LQSR,×〉(D) (DL4,×
D , for short), extending

DL4
D with Boolean operations on concrete roles and with the product of con-

cepts, has been introduced and the Conjunctive Query Answering (CQA) prob-
lem for DL4,×

D has been proved decidable via a reduction to the CQA problem
for 4LQSR, whose decidability follows from that of 4LQSR (see [4]). CQA is a
powerful way to query ABoxes, particularly relevant in the context of description
logics and for real world applications based on semantic web technologies, as it
provides mechanisms for interacting with ontologies and data. The CQA prob-
lem for description logics has been introduced in [1,2] (further references on the
problem can be found in [8]). Finally, we mention also a terminating KE-tableau
based procedure that, given a DL4,×

D -query Q and a DL4,×
D -knowledge base KB

represented in set-theoretic terms, determines the answer set of Q with respect
to KB. KE-tableau systems [10] allow the construction of trees whose distinct
branches define mutually exclusive situations, thus preventing the proliferation
of redundant branches, typical of semantic tableaux.

In this paper we extend the results presented in [7] by considering also the
main ABox reasoning tasks for DL4,×

D , such as instance checking and concept
retrieval, and study their decidability via a reduction to the satisfiability problem
for 4LQSR. Specifically, we define Higher Order (HO) DL4,×

D -conjunctive queries
admitting variables of three sorts: individual and data type variables, concept
variables, and role variables. HO DL4,×

D -conjunctive queries can be instantiated
to any of the ABox reasoning tasks we are considering in the paper. Then, we
define the Higher Order Conjunctive Query Answering (HOCQA) problem for
DL4,×

D and prove its decidability by reducing it to the HOCQA problem for
4LQSR. Decidability of the latter problem follows from that of the satisfiability
problem for 4LQSR. 4LQSR representation of DL4,×

D -knowledge bases is defined
according to [7]. 4LQSR turns out to be naturally suited for the HOCQA problem
since HO DL4,×

D -conjunctive queries are easily translated into 4LQSR-formulae.
In particular, individual and data type variables are mapped into 4LQSR vari-
ables of sort 0, concept variables into 4LQSR variables of sort 1, and role variables
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into 4LQSR variables of sort 3. Finally, we present an extension of the KE-tableau
presented in [7], which provides a decision procedure for the HOCQA task for
DL4,×

D .

2 Preliminaries

2.1 The Set-Theoretic Fragment 4LQSR

It is convenient to first introduce the syntax and semantics of the more general
four-level quantified language 4LQS. Then we provide some restrictions on the
quantified formulae of 4LQS to characterize 4LQSR. The interested reader can
find more details in [4] together with the decision procedure for the satisfiability
problem for 4LQSR.

4LQS involves four collections, Vi, of variables of sort i = 0, 1, 2, 3, respec-
tively. These will be denoted by Xi, Y i, Zi, . . . (in particular, variables of sort 0
will also be denoted by x, y, z, . . .). In addition to variables, 4LQS involves also
pair terms of the form 〈x, y〉, for x, y ∈ V0.
4LQS-quantifier-free atomic formulae are classified as:

– level 0: x = y, x ∈ X1, 〈x, y〉 = X2, 〈x, y〉 ∈ X3;
– level 1: X1 = Y 1, X1 ∈ X2;
– level 2: X2 = Y 2, X2 ∈ X3.

4LQS-purely universal formulae are classified as:

– level 1: (∀z1) . . . (∀zn)ϕ0, where z1, . . . , zn ∈ V0 and ϕ0 is any propositional
combination of quantifier-free atomic formulae of level 0;

– level 2: (∀Z1
1 ) . . . (∀Z1

m)ϕ1, where Z1
1 , . . . , Z1

m ∈ V1 and ϕ1 is any propositional
combination of quantifier-free atomic formulae of levels 0 and 1, and of purely
universal formulae of level 1;

– level 3: (∀Z2
1 ) . . . (∀Z2

p)ϕ2, where Z2
1 , . . . , Z2

p ∈ V2 and ϕ2 is any propositional
combination of quantifier-free atomic formulae and of purely universal formu-
lae of levels 1 and 2.

4LQS-formulae are all the propositional combinations of quantifier-free atomic
formulae of levels 0, 1, 2, and of purely universal formulae of levels 1, 2, 3.

The variables z1, . . . , zn are said to occur quantified in (∀z1) . . . (∀zn)ϕ0. Like-
wise, Z1

1 , . . . , Z1
m and Z2

1 , . . . , Z2
p occur quantified in (∀Z1

1 ) . . . (∀Z1
m)ϕ1 and in

(∀Z2
1 ) . . . (∀Z2

p)ϕ2, respectively. A variable occurs free in a 4LQS-formula ϕ if it
does not occur quantified in any subformula of ϕ. For i = 0, 1, 2, 3, we denote
with Vari(ϕ) the collections of variables of level i occurring free in ϕ and we put
Vars(ϕ) :=

⋃3
i=0 Vari(ϕ).

A substitution σ := {x/y, X1/Y 1, X2/Y 2, X3/Y 3} is the mapping ϕ �→
ϕσ such that, for any given 4LQS-formula ϕ, ϕσ is the 4LQS-formula obtained
from ϕ by replacing the free occurrences of the variables xi in x (for i = 1, . . . , n)
with the corresponding yi in y, of X1

j in X1 (for j = 1, . . . , m) with Y 1
j in Y 1, of
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X2
k in X2 (for k = 1, . . . , p) with Y 2

k in Y 2, and of X3
h in X3 (for h = 1, . . . , q)

with Y 3
h in Y 3, respectively. A substitution σ is free for ϕ if the formulae ϕ

and ϕσ have exactly the same occurrences of quantified variables. The empty
substitution, denoted with ε, satisfies ϕε = ϕ, for every 4LQS-formula ϕ.

A 4LQS-interpretation is a pair M = (D,M), where D is a non-empty
collection of objects (called domain or universe of M) and M is an assignment
over the variables in Vi, for i = 0, 1, 2, 3, such that:

MX0 ∈ D, MX1 ∈ P(D), MX2 ∈ P(P(D)), MX3 ∈ P(P(P(D))),

where Xi ∈ Vi, for i = 0, 1, 2, 3, and P(s) denotes the powerset of s.
Pair terms are interpreted à la Kuratowski, and therefore we put

M〈x, y〉 := {{Mx}, {Mx,My}}.

Quantifier-free atomic formulae and purely universal formulae are evaluated in a
standard way according to the usual meaning of the predicates ‘∈’ and ‘=’. The
interpretation of quantifier-free atomic formulae and of purely universal formulae
is given in [4].

Finally, compound formulae are interpreted according to the standard rules
of propositional logic. If M |= ϕ, then M is said to be a 4LQS-model for ϕ. A
4LQS-formula is said to be satisfiable if it has a 4LQS-model. A 4LQS-formula
is valid if it is satisfied by all 4LQS-interpretations.

We are now ready to present the fragment 4LQSR of 4LQS of our interest.
This is the collection of the formulae ψ of 4LQS fulfilling the restrictions:

1. for every purely universal formula (∀Z1
1 ) . . . (∀Z1

m)ϕ1 of level 2 occurring in
ψ and every purely universal formula (∀z1) . . . (∀zn)ϕ0 of level 1 occurring
negatively in ϕ1, ϕ0 is a propositional combination of quantifier-free atomic
formulae of level 0 and the condition

¬ϕ0 →
n∧

i=1

m∧

j=1

zi ∈ Z1
j

is a valid 4LQS-formula (in this case we say that (∀z1) . . . (∀zn)ϕ0 is linked to
the variables Z1

1 , . . . , Z1
m);

2. for every purely universal formula (∀Z2
1 ) . . . (∀Z2

p)ϕ2 of level 3 in ψ:
– every purely universal formula of level 1 occurring negatively in ϕ2 and

not occurring in a purely universal formula of level 2 is only allowed to
be of the form

(∀z1) . . . (∀zn)¬(
n∧

i=1

n∧

j=1

〈zi, zj〉 = Y 2
ij),



A Set-Theoretic Approach to ABox Reasoning Services 91

with Y 2
ij ∈ V2, for i, j = 1, . . . , n;

– purely universal formulae (∀Z1
1 ) . . . (∀Z1

m)ϕ1 of level 2 may occur only
positively in ϕ2.1

Restriction 1 has been introduced for technical reasons related to the decid-
ability of the satisfiability problem for the fragment, while restriction 2 allows
one to define binary relations and several operations on them (see [4] for details).

The semantics of 4LQSR plainly coincides with that of 4LQS.

2.2 The Logic DL〈4LQSR,×〉(D)

The description logic DL〈4LQSR,×〉(D) (which, as already remarked, will be
more simply referred to as DL4,×

D ) is an extension of the logic DL〈4LQSR〉(D)
presented in [3], where Boolean operations on concrete roles and the product
of concepts are introduced. In addition to other features, DL4,×

D admits also
data types, a simple form of concrete domains that are relevant in real-world
applications. In particular, it treats derived data types by admitting data type
terms constructed from data ranges by means of a finite number of applications of
the Boolean operators. Basic and derived data types can be used inside inclusion
axioms involving concrete roles.

Data types are introduced through the notion of data type map, defined
according to [12] as follows. Let D = (ND, NC , NF , ·D) be a data type map,
where ND is a finite set of data types, NC is a function assigning a set of
constants NC(d) to each data type d ∈ ND, NF is a function assigning a set
of facets NF (d) to each d ∈ ND, and ·D is a function assigning a data type
interpretation dD to each data type d ∈ ND, a facet interpretation fD ⊆ dD to
each facet f ∈ NF (d), and a data value eDd ∈ dD to every constant ed ∈ NC(d).
We shall assume that the interpretations of the data types in ND are non-empty
pairwise disjoint sets.

Let RA, RD, C, I be denumerable pairwise disjoint sets of abstract role
names, concrete role names, concept names, and individual names, respectively.
We assume that the set of abstract role names RA contains a name U denoting
the universal role.

(a) DL4,×
D -data types, (b) DL4,×

D -concepts, (c) DL4,×
D -abstract roles, and

(d) DL4,×
D -concrete role terms are constructed according to the following syntax

rules:

(a) t1, t2 −→ dr | ¬t1 | t1 � t2 | t1 � t2 | {ed} ,

(b) C1, C2 −→ A | � | ⊥ | ¬C1 | C1 � C2 | C1 � C2 | {a} | ∃R.Self |∃R.{a}|∃P.{ed} ,

(c) R1, R2 −→ S | U | R−
1 | ¬R1 | R1 �R2 | R1 �R2 | RC1| | R|C1 | RC1 | C2 | id(C) |

C1 × C2 ,

(d) P1, P2 −→ T | ¬P1 | P1 � P2 | P1 � P2 | PC1| | P|t1 | PC1|t1 ,

1 Definitions of positive and of negative occurrences of a formula within another
formula can be found in [4].
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where dr is a data range for D, t1, t2 are data type terms, ed is a constant in
NC(d), a is an individual name, A is a concept name, C1, C2 are DL4,×

D -concept
terms, S is an abstract role name, R,R1, R2 are DL4,×

D -abstract role terms, T is
a concrete role name, and P, P1, P2 are DL4,×

D -concrete role terms. We remark
that data type terms are introduced in order to represent derived data types.

A DL4,×
D -knowledge base is a triple K = (R, T ,A) such that R is a DL4,×

D -
RBox, T is a DL4,×

D -TBox, and A a DL4,×
D -ABox. These are defined as follows.

A DL4,×
D -RBox is a collection of statements of the following forms: R1 ≡

R2, R1 
 R2, R1 . . . Rn 
 Rn+1, Sym(R1), Asym(R1), Ref(R1), Irref(R1),
Dis(R1, R2), Tra(R1), Fun(R1), R1 ≡ C1 × C2, P1 ≡ P2, P1 
 P2, Dis(P1, P2),
Fun(P1), where R1, R2 are DL4,×

D -abstract role terms, C1, C2 are DL4,×
D -abstract

concept terms, and P1, P2 are DL4,×
D -concrete role terms. Any expression of the

type w 
 R, where w is a finite string of DL4,×
D -abstract role terms and R is an

DL4,×
D -abstract role term, is called a role inclusion axiom (RIA).
A DL4,×

D -TBox is a set of statements of the following types:

– C1 ≡ C2, C1 
 C2, C1 
 ∀R1.C2, ∃R1.C1 
 C2, ≥n R1.C1 
 C2, C1 

≤nR1.C2,

– t1 ≡ t2, t1 
 t2, C1 
 ∀P1.t1, ∃P1.t1 
 C1, ≥nP1.t1 
 C1, C1 
 ≤nP1.t1,

where C1, C2 are DL4,×
D -concept terms, t1, t2 data type terms, R1 a DL4,×

D -
abstract role term, P1 a DL4,×

D -concrete role term. Any statement of the form
C 
 D, with C, D DL4

D-concept terms, is a general concept inclusion axiom.
A DL4,×

D -ABox is a set of individual assertions of the forms: a : C1, (a, b) : R1,
a = b, a �= b, ed : t1, (a, ed) : P1, with C1 a DL4,×

D -concept term, d a data type,
t1 a data type term, R1 a DL4,×

D -abstract role term, P1 a DL4,×
D -concrete role

term, a, b individual names, and ed a constant in NC(d).
The semantics of DL4,×

D is given by means of an interpretation I =
(ΔI,ΔD, ·I), where ΔI and ΔD are non-empty disjoint domains such that
dD ⊆ ΔD, for every d ∈ ND, and ·I is an interpretation function. The definition
of the interpretation of concepts and roles, axioms and assertions is illustrated
in [8, Table 1].

Let R, T , and A be as above. An interpretation I = (ΔI,ΔD, ·I) is a D-
model of R (resp., T ), and we write I |=D R (resp., I |=D T ) if I satisfies
each axiom in R (resp., T ) according to the semantic rules in [8, Table 1].
Analogously, I = (ΔI,ΔD, ·I) is a D-model of A, and we write I |=D A if I
satisfies each assertion in A, according to the semantic rules in [8, Table 1]. A
DL4,×

D -knowledge base K = (A, T ,R) is consistent if there is an interpretation
I = (ΔI,ΔD, ·I) that is a D-model of A, T , and R (we write I |=D K).

Some considerations on the expressive power of DL4,×
D are in order. As illus-

trated in [8, Table 1] existential quantification is admitted only on the left
hand side of inclusion axioms. Thus DL4,×

D is less powerful than logics such
as SROIQ(D) [11] as far as the generation of new individuals is concerned. On
the other hand, DL4,×

D is more liberal than SROIQ(D) in the definition of role
inclusion axioms since the roles involved are not required to be subject to any
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ordering relationship, and the notion of simple role is not needed. For example,
the role hierarchy presented in [11, p. 2] is not expressible in SROIQ(D) but
can be represented in DL4,×

D . In addition, DL4,×
D is a powerful rule language able

to express rules with negated atoms such as

Person(?p) ∧ ¬hasCar(?p, ?c) =⇒ CarlessPerson(?p).

Notice that rules with negated atoms are not supported by the SWRL language.

3 ABox Reasoning Services for DL4,×
D -Knowledge Base

The most important feature of a knowledge representation system is the capa-
bility of providing reasoning services. Depending on the type of the application
domains, there are many different kinds of implicit knowledge that is desirable
to infer from what is explicitly mentioned in the knowledge base. In particular,
reasoning problems regarding ABoxes consist in querying a knowledge base in
order to retrieve information concerning data stored in it. In this section we
study the decidability for the most widespread ABox reasoning tasks for the
logic DL4,×

D by resorting to a general problem, called Higher Order Conjuctive
Query Answering (HOCQA), that can be instantiated to each of them.

Let Vi = {v1, v2, . . .}, Vc = {c1, c2, . . .}, Var = {r1, r2, . . .}, and Vcr = {p1,
p2, . . .} be pairwise disjoint denumerably infinite sets of variables which are dis-
joint from Ind,

⋃
{NC(d) : d ∈ ND}, C, RA, and RD. A HO DL4,×

D -atomic
formula is an expression of one of the following types: R(w1, w2), P (w1, u1),
C(w1), r(w1, w2), p(w1, u1), c(w1), w1 = w2, u1 = u2, where w1, w2 ∈ Vi ∪ Ind,
u1, u2 ∈ Vi∪

⋃
{NC(d) : d ∈ ND}, R is a DL4,×

D -abstract role term, P is a DL4,×
D -

concrete role term, C is a DL4,×
D -concept term, r ∈ Var, p ∈ Vcr, and c ∈ Vc.

A HO DL4,×
D -atomic formula containing no variables is said to be ground. A

HO DL4,×
D -literal is a HO DL4,×

D -atomic formula or its negation. A HO DL4,×
D -

conjunctive query is a conjunction of HO DL4,×
D -literals. We denote with λ the

empty HO DL4,×
D -conjunctive query.

Let v1, . . . , vn ∈ Vi, c1, . . . , cm ∈ Vc, r1, . . . , rk ∈ Var, p1, . . . , ph ∈ Vcr,
o1, . . . , on ∈ Ind ∪

⋃
{NC(d) : d ∈ ND}, C1, . . . , Cm ∈ C, R1, . . . , Rk ∈ RA,

and P1, . . . , Ph ∈ RD. A substitution

σ := {v1/o1, . . . , vn/on, c1/C1, . . . , cm/Cm, r1/R1, . . . , rk/Rk, p1/P1, . . . , ph/Ph}

is a map such that, for every HO DL4,×
D -literal L, Lσ is obtained from L by

replacing the occurrences of vi in L with oi, for i = 1, . . . , n; the occurrences
of cj in L with Cj , for j = 1, . . . ,m; the occurrences of r� in L with R�, for
� = 1, . . . , k; the occurrences of pt in L with Pt, for t = 1, . . . , h.
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Substitutions can be extended to HO DL4,×
D -conjunctive queries in the usual

way. Let Q := (L1∧. . .∧Lm) be a HO DL4,×
D -conjunctive query, and KB a DL4,×

D -
knowledge base. A substitution σ involving exactly the variables occurring in Q
is a solution for Q w.r.t. KB if there exists a DL4,×

D -interpretation I such that
I |=D KB and I |=D Qσ. The collection Σ of the solutions for Q w.r.t. KB is
the higher order answer set of Q w.r.t. KB. Then the higher order conjunctive
query answering problem for Q w.r.t. KB consists in finding the HO answer set
Σ of Q w.r.t. KB. We shall solve the HOCQA problem just stated by reducing
it to the analogous problem formulated in the context of the fragment 4LQSR

(and in turn to the decision procedure for 4LQSR presented in [4]). The HOCQA
problem for 4LQSR-formulae can be stated as follows. Let φ be a 4LQSR-formula
and let ψ be a conjunction of 4LQSR-quantifier-free atomic formulae of level 0
of the types x = y, x ∈ X1, 〈x, y〉 ∈ X3, or their negations.

The HOCQA problem for ψ w.r.t. φ consists in computing the HO answer
set of ψ w.r.t. φ, namely the collection Σ′ of all the substitutions σ′ such that
M |= φ ∧ ψσ′, for some 4LQSR-interpretation M.

In view of the decidability of the satisfiability problem for 4LQSR-formulae,
the HOCQA problem for 4LQSR-formulae is decidable as well. Indeed, let φ and
ψ be two 4LQSR-formulae fulfilling the above requirements. To calculate the HO
answer set of ψ w.r.t. φ, for each candidate substitution

σ′ := {x/z,X1/Y 1,X2/Y 2,X3/Y 3}

one has just to check the 4LQSR-formula φ∧ψσ′ for satisfiability. Since the num-
ber of possible candidate substitutions is |Vars(φ)||Vars(ψ)| and the satisfiability
problem for 4LQSR-formulae is decidable, the HO answer set of ψ w.r.t. φ can
be computed effectively. Summarizing,

Lemma 1. The HOCQA problem for 4LQSR-formulae is decidable. ��

The following theorem states decidability of the HOCQA problem for DL4,×
D .

Theorem 1. Given a DL4,×
D -knowledge base KB and a HO DL4,×

D - conjunctive
query Q, the HOCQA problem for Q w.r.t. KB is decidable. ��

The proof of Theorem 1 is much along the same lines of [7, Theorem 1] and,
for space reasons, is omitted. However, the interested reader can find it in the
extended version of this paper [8]. Here, we just sketch the main ideas of the
proof to ease the understanding of the rest of the paper. As mentioned above, the
DL4,×

D -HOCQA problem can be solved by reducing it effectively to the HOCQA
problem for 4LQSR-formulae and then exploiting Lemma 1. The reduction is car-
ried out by means of a transformation function θ that maps the DL4,×

D -knowledge
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base KB in a 4LQSR-formula φKB in Conjunctive Normal Form (CNF) and the
HO DL4,×

D -conjunctive query Q in the 4LQSR-formula ψQ. Specifically,2

φKB :=
∧

H∈KB
θ(H) ∧

∧12

i=1
ξi, ψQ := θ(Q).

Let Σ be the HO answer set of Q w.r.t. KB and Σ′ the HO answer set
of ψQ w.r.t. φKB. Then Σ consists of all substitutions σ (involving exactly the
variables occurring in Q) such that θ(σ) ∈ Σ′. By Lemma 1, Σ′ can be calculated
effectively and thus Σ can be calculated effectively as well.

Next, we list the most widespread reasoning services for DL4,×
D -ABox and

then show how to define them as particular cases of the HOCQA task.

1. Instance checking : the problem of deciding whether or not an individual a is
an instance of a concept C.

2. Instance retrieval : the problem of retrieving all the individuals that are
instances of a given concept.

3. Role filler retrieval : the problem of retrieving all the fillers x such that the
pair (a, x) is an instance of a role R.

4. Concept retrieval : the problem of retrieving all concepts which an individual
is an instance of.

5. Role instance retrieval : the problem of retrieving all roles which a pair of
individuals (a, b) is an instance of.

The instance checking problem is a specialisation of the HOCQA problem admit-
ting HO DL4,×

D -conjunctive queries of the form QIC = C(w1), with w1 ∈ Ind.
The instance retrieval problem is a particular case of the HOCQA problem in
which HO DL4,×

D -conjunctive queries have the form QIR = C(w1), where w1

is a variable in Vi. The HOCQA problem can be instantiated to the role filler
retrieval problem by admitting HO DL4,×

D -conjunctive queries QRF = R(w1, w2),
with w1 ∈ Ind and w2 a variable in Vi. The concept retrieval problem is a
specialization of the HOCQA problem allowing HO DL4,×

D -conjunctive queries
of the form QQR = c(w1), with w1 ∈ Ind and c a variable in Vc. Finally,
the role instance retrieval problem is a particularization of the HOCQA prob-
lem, where HO DL4,×

D -conjunctive queries have the form QRI = r(w1, w2), with
w1, w2 ∈ Ind and r a variable in Vcr.

Notice that the CQA problem for DL4,×
D defined in [7] is an instance of the

HOCQA problem admitting HO DL4,×
D -conjunctive queries of the form (L1∧. . .∧

Lm), where the conjuncts Li are atomic formulae of any of the types R(w1, w2),
2 The map θ coincides with the transformation function defined in [7] as far as it

concerns the translation of each axiom or assertion H of KB in a 4LQSR-formula
θ(H). The map θ extends the function introduced in [7] for what regards the trans-
lation of the HO query Q and of the substitutions σ of the HO answer set Σ. In
particular it maps effectively variables in Vc in variables of sort 1 (in the language of
4LQSR), and variables in Var and in Vcr in variables of sort 3. The constraints ξ1–ξ12
are added to make sure that each 4LQSR-model of φKB can be transformed into a
DL4,×

D -interpretation (cf. [7, Theorem 1]).
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C(w1), and w1 = w2 (or their negation), with w1, w2 ∈ (Ind ∪ Vi). Notice also
that problems 1, 2, and 3 are instances of the CQA problem for DL4,×

D , whereas
problems 4 and 5 fall outside the definition of CQA. As shown above, they can
be treated as specializations of HOCQA.

4 An Algorithm for the HOCQA Problem for DL4,×
D

In this section we introduce an effective set-theoretic procedure to compute the
answer set of a HO DL4,×

D -conjunctive query Q w.r.t. a DL4,×
D knowledge base

KB. Such procedure, called HOCQA-DL4,×
D , takes as input φKB (i.e., the 4LQSR-

translation of KB) and ψQ (i.e., the 4LQSR-formula representing the HO DL4,×
D -

conjunctive query Q), and returns a KE-tableau TKB, representing the saturation
of KB, and the answer set Σ′ of ψQ w.r.t. φKB, namely the collection of all
substitutions σ′ such that M |= φKB ∧ψQσ′, for some 4LQSR-interpretation M.
Specifically, HOCQA-DL4,×

D constructs for each open branch of TKB a decision
tree whose leaves are labelled with elements of Σ′.

Let us first introduce some definitions and notations useful for the presenta-
tion of Procedure HOCQA-DL4,×

D .
Assume without loss of generality that universal quantifiers in φKB occur

as inward as possible and that universally quantified variables are pairwise dis-
tinct. Let S1, . . . , Sm be the conjuncts of φKB having the form of 4LQSR-purely
universal formulae. For each Si := (∀zi

1) . . . (∀zi
ni

)χi, with i = 1, . . . , m, we put

Exp(Si) :=
∧

{xa1 ,...,xani
}⊆Var0(φKB)

Si{zi
1/xa1 , . . . , z

i
ni

/xani
}.

We also define the expansion ΦKB of φKB by putting

ΦKB := {Fj : i = 1, . . . , k} ∪
m⋃

i=1

Exp(Si) , (1)

where F1, . . . , Fk are the conjuncts of φKB having the form of 4LQSR-quantifier
free atomic formulae.

To prepare for Procedure HOCQA-DL4,×
D to be described next, a brief intro-

duction to KE-tableau systems is in order (see [10] for a detailed overview of KE-
tableaux). KE-tableaux are a refutation system inspired to Smullyan’s semantic
tableaux [14]. The main characteristic distinguishing KE-tableaux from the lat-
ter is the introduction of an analytic cut rule (PB-rule) that permits to reduce
inefficiencies of semantic tableaux. In fact, firstly, the classic tableau system can
not represent the use of auxiliary lemmas in proofs; secondly, it can not express
the bivalence of classical logic. Thirdly, it is highly inefficient, as witnessed by
the fact that it can not polynomially simulate the truth-tables. None of these
anomalies occurs if the cut rule is allowed. Procedure HOCQA-DL4,×

D constructs
a complete KE-tableau TKB for the expansion ΦKB of φKB (cf. (1)), representing
the saturation of the DL4,×

D -knowledge base KB.
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Let Φ := {C1, . . . , Cp} be a collection of disjunctions of 4LQSR-quantifier free
atomic formulae of level 0 of the types: x = y, x ∈ X1, 〈x, y〉 ∈ X3. T is a
KE-tableau for Φ if there exists a finite sequence T1, . . . , Tt of trees such that
(i) T1 is a one-branch tree consisting of the sequence C1, . . . , Cp, (ii) Tt = T , and
(iii) for each i < t, Ti+1 is obtained from Ti either by an application of one of the
rules in Fig. 1 or by applying a substitution σ to a branch ϑ of Ti (in particular,
the substitution σ is applied to each formula X of ϑ; the resulting branch will
be denoted by ϑσ). The set of formulae Sβ

i := {β1, . . . , βn} \ {βi} occurring as
premise in the E-rule contains the complements of all the components of the
formula β with the exception of the component βi.

β1 ∨ . . . ∨ βn Sβ
i

βi
E-Rule

where Sβ
i := {β1, ..., βn} \ {βi},

for i = 1, ..., n

A | A
PB-Rule

with A a literal

Fig. 1. Expansion rules for the KE-tableau.

Let T be a KE-tableau. A branch ϑ of T is closed if it contains either both
A and ¬A, for some formula A, or a literal of type ¬(x = x). Otherwise, the
branch is open. A KE-tableau is closed if all its branches are closed. A formula
β1∨ . . .∨βn is fulfilled in a branch ϑ, if βi is in ϑ, for some i = 1, . . . , n; otherwise
it is unfulfilled. A branch ϑ is fulfilled if every formula β1∨ . . .∨βn occurring in ϑ
is fulfilled; otherwise it is unfulfilled. A branch ϑ is complete if either it is closed
or it is open, fulfilled, and it does not contain any literal of type x = y, with x,
y distinct variables. A KE-tableau is complete (resp., fulfilled) if all its branches
are complete (resp., fulfilled or closed). A 4LQSR-interpretation M satisfies a
branch ϑ of a KE-tableau (or, equivalently, ϑ is satisfied by M), and we write
M |= ϑ, if M |= X for every formula X occurring in ϑ.

A 4LQSR-interpretation M satisfies a KE-tableau T (or, equivalently, T is
satisfied by M), and we write M |= T , if M satisfies a branch ϑ of T . A branch
ϑ of a KE-tableau T is satisfiable if there exists a 4LQSR-interpretation M that
satisfies ϑ. A KE-tableau is satisfiable if at least one of its branches is satisfiable.

Let ϑ be a branch of a KE-tableau. We denote with <ϑ an arbitrary but
fixed total order on the variables in Var0(ϑ).

Procedure HOCQA-DL4,×
D takes care of literals of type x = y occurring in the

branches of TKB by constructing, for each open and fulfilled branch ϑ of TKB, a
substitution σϑ such that ϑσϑ does not contain literals of type x = y with distinct
x, y. Then, for every open and complete branch ϑ′ := ϑσϑ of TKB, Procedure
HOCQA-DL4,×

D constructs a decision tree Dϑ′ such that every maximal branch
of Dϑ′ induces a substitution σ′ such that σϑσ′ belongs to the answer set of ψQ

with respect to φKB. Dϑ′ is defined as follows.
Let d be the number of literals in ψQ. Then Dϑ′ is a finite labelled tree of

depth d + 1 whose labelling satisfies the following conditions, for i = 0, . . . , d:
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(i) every node of Dϑ′ at level i is labelled with (σ′
i, ψQσϑσ′

i); in particular, the
root is labelled with (σ′

0, ψQσϑσ′
0), where σ′

0 is the empty substitution;
(ii) if a node at level i is labelled with (σ′

i, ψQσϑσ′
i), then its s successors, with s ≥

1, are labelled with
(
σ′

i�
qi+1
1 , ψQσϑ(σ′

i�
qi+1
1 )

)
, . . . ,

(
σ′

i�
qi+1
s , ψQσϑ(σ′

i�
qi+1
s )

)
,

where qi+1 is the (i+1)-st conjunct of ψQσϑσ′
i and Sqi+1 := {�

qi+1
1 , . . . , �

qi+1
s }

is the collection of the substitutions � = {v1/o1, . . . , vn/on, c1/C1, . . . , cm/
Cm, r1/R1, . . . , rk/Rk, p1/P1, . . . , ph/Ph}, with {v1, . . . , vn} = Var0(qi+1),
{c1, . . . , cm} = Var1(qi+1), and {p1, . . . , ph, r1, . . . , rk} = Var3(qi+1), such
that t = qi+1�, for some literal t on ϑ′. If s = 0, the node labelled with
(σ′

i, ψQσϑσ′
i) is a leaf node and, if i = d, σϑσ′

i is added to Σ′.

We are now ready to define Procedure HOCQA-DL4,×
D .

1: procedure HOCQA-DL4,×
D (ψQ,φKB);

2: Σ′ := ∅;
3: - let ΦKB be the expansion of φKB (cf. (1));
4: TKB := ΦKB;
5: while TKB is not fulfilled do
6: - select an unfulfilled open branch ϑ of TKB and an unfulfilled formula

β1 ∨ . . . ∨ βn in ϑ;

7: if Sβ
j is in ϑ, for some j ∈ {1, . . . , n} then

8: - apply the E-Rule to β1 ∨ . . . ∨ βn and Sβ
j on ϑ;

9: else
10: - let Bβ be the collection of the formulae present in ϑ and let

h be the lowest index such that βh /∈ Bβ ;

11: - apply the PB-rule to βh on ϑ;
12: end if ;
13: end while;
14:

while TKB has open branches containing literals of type x = y, with distinct x and y do

15: - select such an open branch ϑ of TKB;
16: σϑ := ε (where ε is the empty substitution);
17: Eqϑ := {literals of type x = y occurring in ϑ};
18: while Eqϑ contains x = y, with distinct x, y do
19: - select a literal x = y in Eqϑ, with distinct x, y;
20: z := min<ϑ

(x, y);

21: σϑ := σϑ · {x/z, y/z};
22: Eqϑ := Eqϑσϑ;
23: end while;
24: ϑ := ϑσϑ;
25: if ϑ is open then
26: - initialize S to the empty stack;
27: - push (ε, ψQσϑ) in S;
28: while S is not empty do
29: - pop (σ′, ψQσϑσ′) from S;
30: if ψQσϑσ′ �= λ then
31: - let q be the leftmost conjunct of ψQσϑσ′;
32: ψQσϑσ′ := ψQσϑσ′ deprived of q;

33: LitM
Q := {t ∈ ϑ : t = qρ, for some substitution ρ};

34: while LitM
Q is not empty do

35: - let t ∈ LitM
Q , t = qρ;

36: LitM
Q := LitM

Q \ {t};
37: - push (σ′ρ, ψQσϑσ′ρ) in S;
38: end while;
39: else
40: Σ′ := Σ′ ∪ {σϑσ′};
41: end if ;
42: end while;
43: end if ;
44: end while;
45: return (TKB, Σ′);
46: end procedure;
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{β1, . . . , βn} that is included in ϑ
For each open branch ϑ of TKB, Procedure HOCQA-DL4,×

D computes the
corresponding Dϑ by constructing a stack of its nodes. Initially the stack contains
the root node (ε, ψQσϑ) of Dϑ, as defined in condition (i). Then, iteratively, the
following steps are executed. An element (σ′, ψQσϑσ′) is popped out of the stack.
If the last literal of the query ψQ has not been reached, the successors of the
current node are computed according to condition (ii) and inserted in the stack.
Otherwise the current node must have the form (σ′, λ) and the substitution σϑσ′

is inserted in Σ′.
Correctness of Procedure HOCQA-DL4,×

D follows from Theorem 2, which show
that φKB is satisfiable if and only if TKB is a non-closed KE-tableau, and from
Theorem 3, which shows that the set Σ′ coincides with the HO answer set of
ψQ w.r.t. φKB. Theorems 2 and 3 are stated below. In particular, Theorem 2,
requires the following technical lemmas.

Lemma 2. Let ϑ be a branch of TKB selected at step 15 of Procedure HOCQA-
DL4,×

D (ψQ,φKB), let σϑ be the associated substitution constructed during the exe-
cution of the while-loop 18–23, and let M = (D,M) be a 4LQSR-interpretation
satisfying ϑ. Then, for every x ∈ Var0(ϑ), Mx = Mxσϑ is an invariant of the
while-loop 18–23. ��

Lemma 3. Let T0, . . . , Th be a sequence of KE-tableaux such that T0 = ΦKB,
and where, for i = 1, . . . , h − 1, Ti+1 is obtained from Ti by applying either the
rule of step 8, or the rule of step 10, or the substitution of step 24 of Procedure
HOCQA-DL4,×

D (ψQ,φKB). If Ti is satisfied by a 4LQSR-interpretation M, then
Ti+1 is satisfied by M as well, for i = 1, . . . , h − 1. ��

Then we have:

Theorem 2. The formula φKB is satisfiable if and only if the tableau TKB is
not closed. ��

The proof of Theorem 3 below requires the following technical lemma.

Lemma 4. Let ψQ := q1 ∧ . . .∧ qd be a HO 4LQSR-conjunctive query, (TKB, Σ′)
the output of HOCQA-DL4,×

D (ψQ,φKB), and ϑ an open and complete branch of
TKB. Then, for any substitution σ, we have

σ ∈ Σ′ ⇐⇒ {q1σ, . . . , qdσ} ⊆ ϑ . ��

Theorem 3. Let Σ′ be the set of substitutions returned by Procedure HOCQA-
DL4,×

D (ψQ, φKB). Then Σ′ is the HO answer set of ψQ w.r.t. φKB.

Due to space limitations, we do not include here the proofs of Theorems 2
and 3 and of Lemmas 2, 3, and 4, which can be found in the extended version
of the paper [8].

Termination of Procedure HOCQA-DL4,×
D is based on the fact that the while-

loops 5–13 and 14–44 terminate. Termination of the while-loop 5–13 can be shown
much in the same way as for Procedure 1 in [7].
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Concerning the while-loop 14–44, its termination can be proved by observing
that the number of branches of the KE-tableau resulting from the execution of
the previous while-loop 5–13 is finite and then showing that the internal while-
loops 18–23 and 28–42 always terminate. Indeed, initially the set Eqϑ contains
a finite number of literals of type x = y, and σϑ is the empty substitution. It
is then enough to show that the number of literals of type x = y in Eqϑ, with
distinct x and y, strictly decreases during the execution of the internal while-
loop 18–23. But this follows immediately, since at each of its iterations one puts
σϑ := σϑ · {x/z, y/z}, with z := min<ϑ

(x, y), according to a fixed total order <ϑ

over the variables of Var0(ϑ) and then the application of σϑ to Eqϑ replaces a
literal of type x = y in Eqϑ, with distinct x and y, with a literal of type x = x.

The while-loop 28–42 terminates when the stack S of the nodes of the decision
tree gets empty. Since the query ψQ contains a finite number of conjuncts and
the number of literals on each open and complete branch of TKB is finite, the
number of possible matches (namely the size of the set LitMQ ) computed at step
33 is finite as well. Thus, in particular, the internal while-loop 34–38 terminates at
each execution. Once the procedure has processed the last conjunct of the query,
the set LitMQ of possible matches is empty and thus no element gets pushed in
the stack S anymore. Since the first instruction of the while-loop 28–42 removes
an element from S, the stack gets empty after a finite number of “pops”. Hence
Procedure HOCQA-DL4,×

D terminates, as we wished to prove.
We provide now some complexity results. Let r be the maximum number of

universal quantifiers in each Si (i = 1, . . . ,m), and put k := |Var0(φKB)|. Then,
each Si generates at most kr expansions. Since the knowledge base contains m
such formulae, the number of disjunctions in the initial branch of the KE-tableau
is bounded by m · kr. Next, let � be the maximum number of literals in each Si.
Then, the height of the KE-tableau (which corresponds to the maximum size of
the models of ΦKB constructed as illustrated above) is O(�mkr) and the number
of leaves of the tableau (namely, the number of such models of ΦKB) is O(2�mkr

).
Notice that the construction of Eqϑ and of σϑ in the lines 16–23 of Procedure
HOCQA-DL4,×

D takes O(�mkr) time, for each branch ϑ.
Let η(TKB) and λ(TKB) be, respectively, the height of TKB and the num-

ber of leaves of TKB computed by Procedure HOCQA-DL4,×
D . Plainly, η(TKB) =

O(�mkr) and λ(TKB) = O(2�mkr

), as computed above. It is easy to verify that
s = O(�kr) is the maximum branching of Dϑ. Since the height of Dϑ is h, where
h is the number of literals in ψQ, and the successors of a node are computed
in O(�kr) time, the number of leaves in Dϑ is O(sh) = O((�kr)h) and they
are computed in O(sh · �kr · h) = O(h · (�kr)h+1) time. Finally, since we have
λ(TKB) of such decision trees, the answer set of ψQ w.r.t. φKB is computed in
time O(h · (�kr)h+1 · λ(TKB)) = O(h · (�kr)h+1 · 2�mkr

).
Since the size of φKB and of ψQ are related to those of KB and of Q,

respectively (see the proof of Theorem 1 in [8] for details on the reduction),
the construction of the HO answer set of Q with respect to KB can be done
in double-exponential time. In case KB contains neither role chain axioms nor
qualified cardinality restrictions, the complexity of our HOCQA problem is in
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EXPTIME, since the maximum number of universal quantifiers in φKB, namely
r, is a constant (in particular r = 3). The latter complexity result is a clue to the
fact that the HOCQA problem is intrinsically more difficult than the consistency
problem (proved to be NP-complete in [3]). In fact, the consistency problem
simply requires to guess a model of the knowledge base, whereas the HOCQA
problem forces the construction of all the models of the knowledge base and the
computation of a decision tree for each of them.

We remark that such result compares favourably with the complexity of the
usual CQA problem for a wide collection of description logics such as the Horn
fragment of SHOIQ and of SROIQ, which are EXPTIME- and 2EXPTIME-
complete respectively (see [13] for details).

5 Conclusions and Future Work

We have considered an extension of the CQA problem for the description logic
DL4,×

D to more general queries on roles and concepts. The resulting problem,
called HOCQA, can be instantiated to the most widespread ABox reasoning
services such as instance retrieval, role filler retrieval, and instance checking.
We have proved the decidability of the HOCQA problem by reducing it to the
satisfiability problem for the set-theoretic fragment 4LQSR.

We have introduced an algorithm to compute the HO answer set of a
4LQSR-formula ψQ representing a HO DL4,×

D -conjunctive query Q w.r.t. a
4LQSR-formula φKB representing a DL4,×

D knowledge base. Our procedure, called
HOCQA-DL4,×

D , is based on the KE-tableau system and on decision trees. It takes
as input ψQ and φKB, and yields a KE-tableau TKB representing the saturation
of φKB and the requested HO answer set Σ′. Procedure HOCQA-DL4,×

D is proved
correct and complete, and some complexity results are provided. Such procedure
extends the one introduced in [7] as it handles HO DL4,×

D -conjunctive queries.
We are currently implementing Procedure HOCQA-DL4,×

D and plan to
increase its efficiency by providing a parallel model and enhancing the expansion
rules. We also intend to allow data types reasoning.

Further, we plan to extend the fragment presented in [4] with a restricted
form of composition operator, since this would allow one to represent various
logics in set-theoretic terms. The KE-tableau based procedure will be adapted
to the new set-theoretic fragments exploiting the techniques introduced in [5,6]
in the area of relational dual tableaux.
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