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Preface

The International Joint Conference on Rules and Reasoning (RuleML+RR 2017) is the
first conference of a new series of conferences, joining the efforts of two existing
conference series, namely, RuleML (International Web Rule Symposium) and RR (Web
Reasoning and Rule Systems). The ten conferences of the RR series have been a forum
for discussion and dissemination of new results on all topics concerning Web reasoning
and rule systems, with an emphasis on rule-based approaches and languages. The
RuleML series of conferences has been held since 2002, being devoted to disseminating
research, applications, languages, and standards for rule technologies, with attention to
both theoretical and practical developments, to challenging new ideas, and industrial
applications. Both series of conferences aimed at building bridges between academia
and industry in the field of rules and their applications. Therefore, RuleML+RR is
expected to become a leading conference for all subjects concerning theoretical
advances, novel technologies, and innovative applications about knowledge represen-
tation and reasoning with rules.

This new joint conference provides a valuable forum for stimulating cooperation
and cross-fertilization between the many different communities focused on the
research, development, and applications of rule-based systems. It provides the possi-
bility to present and discuss applications of rules and reasoning in academia, industry,
engineering, business, finance, health care, and other application areas.

RuleML+RR 2017 was hosted by Birkbeck, University of London, UK. The con-
ference was co-located with the following events: the 13th Reasoning Web Summer
School, which is a high-level educational initiative devoted to reasoning techniques
related to the Semantic Web, Linked Data and Knowledge Graph application scenarios;
DecisionCAMP, a renowned event in the field of Business Rules and Decision Man-
agement Technology; and BICOD, the 31st British International Conference on
Databases, a venue for research papers in the broad area of data management. BICOD
and RuleML+RR shared a session that included a keynote talk and presentations of two
research papers. The conference also included a Doctoral Consortium, an initiative to
attract and promote student research in rules and reasoning, with the opportunity for
students to present and discuss their ideas and benefit from close contact with leading
experts in the field. RuleML+RR 2017 also included: an Industry Track as a forum for
all sectors of industry and business (as well as public sectors) to present, discuss, and
propose existing or potential rule-based applications; and the 11th International Rule
Challenge, prividing competition among work in progress and new visionary ideas
concerning innovative rule-oriented applications, aimed at both research and industry.

The technical program of RuleML+RR 2017 included the presentation of 14
research papers, carefully selected by the Program Committee among 38 high-quality
submissions, with an acceptance rate of 37%. The review process included the pos-
sibility for authors to respond to initial reviews. These responses were thoroughly
discussed by the reviewers and the Program Committee chairs before finalizing the



reviews. All submissions received four reviews, with only one exception receiving
three. Presentations of accepted papers were divided into sessions on Rules and
Databases, Rules and Description Logics, Applications of Rules, and Rules and Logic
Programming. The best Doctoral Consortium paper was presented as a full paper,
accompanied by short presentations of the other five accepted Doctoral Consortium
papers.

RuleML+RR 2017 offered successful Invited and Keynote Talks and Tutorials by
experts in the field, as listed here.

The following keynote talks were given:

• Robert A. Kowalski, Imperial College London, presenting “Logic and AI – The
Last 50 Years” (Social Dinner talk)

• Elena Baralis, Politecnico di Torino, presenting “Opening the Black Box: Deriving
Rules from Data” (BICOD joint talk)

• Jordi Cabot, Internet Interdisciplinary Institute, Open University of Catalonia,
Barcelona, presenting “The Secret Life of Rules in Software Engineering”

• Stephen Muggleton, Imperial College London, presenting “Meta-Interpretive
Learning: Achievements and Challenges”

An industry talk was also given (joint with DecisionCAMP):

• Jean-Francois Puget, IBM, presenting “Business Analytics and Decision
Optimization”

Four tutorials:

• “Decision Modeling with DMN and OpenRules” by Jacob Feldman (Open Rules,
Inc.)

• “How to do it with LPS (Logic-Based Production System)” by Robert Kowalski,
Fariba Sadri (Imperial College London), and Miguel Calejo (InterProlog
Consulting)

• “Logic-Based Rule Learning for the Web of Data” by Francesca A. Lisi (University
of Bari, Italy)

• “Rulelog: Highly Expressive Semantic Rules with Scalable Deep Reasoning” by
Benjamin Grosof (Accenture), Michael Kifer, and Paul Fodor (Stony Brook
University, NY)

The Chairs sincerely thank the Invited and Keynote Speakers for accepting to
contribute to the event, and all those who submitted tutorial proposals and presented
tutorials for their excellent proposals. The chairs wish to recognize the hard work of the
Program Committee members and of the additional reviewers for the revision and
careful selection of submitted papers. The reviews were balanced, provided construc-
tive criticisms and useful comments and suggestions for improving the papers, and
resulted in high-quality publications. The chairs are also grateful to all authors for their
interest in the conference and for the efforts devoted to preparing their submissions and
camera-ready version within the established schedule. Sincere thanks are due to the
chairs of the co-located events and to the chairs of the additional tracks, namely, the
Doctoral Consortium, Rule Challenge and Industry Track, for the excellent coopera-
tion; thanks are due to the publicity, sponsorship, financial, and proceedings chairs,

VI Preface



who actively contributed to the organization and the success of the enterprise; thanks
also to the sponsors, including EurAI, ALP, Oxygen, and Binary Park, who provided
vital contributions that helped us organize a high-standard event for the participants;
and to the publisher, Springer, for their cooperation in editing this volume and pub-
lication of the proceedings.

July 2017 Stefania Costantini
Enrico Franconi

William Van Woensel
Roman Kontchakov

Fariba Sadri
Dumitru Roman

Preface VII



Organization

General Chairs

Roman Kontchakov Birkbeck, University of London, UK
Fariba Sadri Imperial College London, UK

Scientific Program Chairs

Stefania Costantini University of L’Aquila, Italy
Enrico Franconi Free University of Bozen-Bolzano, Italy
William Van Woensel Dalhousie University, Canada

Industry Track Chairs

Paul Fodor Coherent Knowledge Systems, USA
Mark Proctor Red Hat, UK
Leora Morgenstern Leidos Corporation, USA

Doctoral Consortium Chairs

Antonis Bikakis University College London, UK
Theodore Patkos Institute of Computer Science, FORTH, Greece

DecisionCAMP

Jacob Feldman OpenRules, USA

International Rule Challenge Chairs

Nick Bassiliades Aristotle University of Thessaloniki, Greece
Marcello Ceci University College Cork, Ireland
Adrian Giurca Brandenburg University of Technology,

Cottbus–Senftenberg, Germany
Firas al Khalil University College Cork, Ireland

Sponsorship Chair

Nick Bassiliades Aristotle University of Thessaloniki, Greece



Publicity Chairs

Giovanni De Gasperis University of L’Aquila, Italy
Konstantinos Gkoutzis Imperial College London, UK
Mark Proctor Red Hat, UK
Frank Olken Frank Olken Consulting, USA

Proceedings Chair

Dumitru Roman SINTEF/University of Oslo, Norway

Financial Chair

Tara Orlanes-Angelopoulou Birkbeck, University of London, UK

Poster Chairs

Stefania Costantini University of L’Aquila, Italy
Enrico Franconi Free University of Bozen-Bolzano, Italy
William Van Woensel Dalhousie University, Canada

Web Chair

William Van Woensel Dalhousie University, Canada

Program Committee

Mario Alviano University of Calabria, Italy
Nick Bassiliades Aristotle University of Thessaloniki, Thessaloniki,

Greece
Leopoldo Bertossi Carleton University, Canada
Pedro Cabalar Fernández Corunna University, Spain
Diego Calvanese Free University of Bozen-Bolzano, Italy
Wolfgang Faber University of Huddersfield, UK
Sergio Flesca University of Calabria, Italy
Thom Frühwirth University of Ulm, Germany
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy
Michael Kifer Stony Brook University, USA
Markus Krötzsch Technische Universität Dresden, Germany
Evelina Lamma ENDIF, University of Ferrara, Italy
Domenico Lembo Sapienza Università di Roma, Italy
Maurizio Lenzerini Sapienza Università di Roma, Italy
Francesca Lisi Università degli Studi di Bari Aldo Moro, Italy
Thomas Lukasiewicz University of Oxford, UK
Viviana Mascardi University of Genoa, Italy

X Organization



Alessandra Mileo INSIGHT Centre for Data Analytics,
Dublin City University, Ireland

Marco Montali Free University of Bozen-Bolzano, Italy
Marie-Laure Mugnier LIRMM/Inria, Montpellier, France
Adrian Paschke Freie Universität Berlin, Germany
Andreas Pieris Vienna University of Technology, Austria
Alessandro Provetti Birkbeck, University of London, UK
Francesco Ricca University of Calabria, Italy
Fabrizio Riguzzi University of Ferrara, Italy
Riccardo Rosati Sapienza Università di Roma, Italy
Rolf Schwitter Macquarie University, Australia
Mantas Simkus Vienna University of Technology, Austria
Giorgos Stoilos National Technical University of Athens, Greece
Umberto Straccia ISTI-CNR, Pisa, Italy
Anni-Yasmin Turhan Technische Universität Dresden, Germany
Leon van der Torre University of Luxembourg, Luxembourg

Additional Reviewers

Marco Alberti
Alessandro Artale
Jean-François Baget
Elena Bellodi
Julien Corman
Giuseppe Cota
Giorgos Flouris
Daniel Gall

Tiantian Gao
Elem Güzel Kalaycı
Nikos Katzouris
Magdalena Ortiz
Luigi Pontieri
Despoina Trivela
Federico Ulliana
Riccardo Zese

Organization XI



RuleML+RR 2017 Sponsors

XII Organization



Keynote Talks



Opening the Black Box:
Deriving Rules from Data

Elena Baralis

Politecnico di Torino, Turin, Italy
elena.baralis@polito.it

Abstract. A huge amount of data is currently being made available for explo-
ration and analysis in many application domains. Patterns and models are
extracted from data to describe their characteristics and predict variable values.
Unfortunately, many high quality models are characterized by being hardly
interpretable.

Rules mined from data may provide easily interpretable knowledge, both for
exploration and classification (or prediction) purposes. In this talk I will intro-
duce different types of rules (e.g., several variations on association rules, clas-
sification rules) and will discuss their capability of describing phenomena and
highlighting interesting correlations in data.

Keywords: Rules • Data exploration • Model interpretability



The Secret Life of Rules
in Software Engineering

Jordi Cabot1,2

1 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

2 Universitat Oberta de Catalunya, Barcelona, Spain

Abstract. Explicit definition and management of rules is largely ignored in most
software development projects. If the most “popular” software modeling lan-
guage (UML) has already limited success, its companion, the Object Constraint
Language (the OMG standard to complement UML models with textual con-
straints and derivation rules) is simply laughed at. As a result, rules live hidden
in the code, implemented in an adhoc manner. This somehow worked when data
was mostly stored in relational databases and DBAs could at least enforce some
checks on that data. But now, data lives in the open (e.g. data as a service, big
data) accessible in a variety of formats (NoSQL, APIs, CSVs,…). This facilitates
the consumption and production of data but puts at risk any piece of software
accessing it when no proper knowledge of the structure, quality and content of
that data is available. And with the emergence of open data, it’s not only the
software who accesses the data but people.

In this talk, I will argue that rules must become first-class citizens in any
software development project and describe our initiatives in discovering, rep-
resenting and enforcing rules on (open and/or semi-structured) data.
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Meta-Interpretive Learning:
Achievements and Challenges (Invited Paper)

Stephen H. Muggleton(B)

Imperial College London, London, UK
s.muggleton@imperial.ac.uk

Abstract. This invited talk provides an overview of ongoing work
in a new sub-area of Inductive Logic Programming known as Meta-
Interpretive Learning.

1 Introduction

Meta-Interpretive Learning (MIL) [12] is a recent Inductive Logic Programming
[7,13,14] technique aimed at supporting learning of recursive definitions. A pow-
erful and novel aspect of MIL is that when learning a predicate definition it
automatically introduces sub-definitions, allowing decomposition into a hierar-
chy of reusable parts. MIL is based on an adapted version of a Prolog meta-
interpreter. Normally such a meta-interpreter derives a proof by repeatedly fetch-
ing first-order Prolog clauses whose heads unify with a given goal. By contrast,
a meta-interpretive learner additionally fetches higher-order meta-rules whose
heads unify with the goal, and saves the resulting meta-substitutions to form a
program. This talk will overview theoretical and implementational advances in
this new area including the ability to learn Turing computable functions within
a constrained subset of logic programs, the use of probabilistic representations
within Bayesian meta-interpretive and techniques for minimising the number of
meta-rules employed. The talk will also summarise applications of MIL includ-
ing the learning of regular and context-free grammars, [11], learning from visual
representations [3] with repeated patterns, learning string transformations for
spreadsheet applications, [6], learning and optimising recursive robot strategies
[1] and learning tactics for proving correctness of programs [5]. The paper con-
cludes by pointing to challenges which remain to be addressed within this new
area.

2 Simple Worked Example

Suppose we machine learn a set of kinship relations such as those in Fig. 1. If
examples of the ancestor relation are provided and the background contains only
father and mother facts, then a system must not only be able to learn ancestor
as a recursive definition but also simultaneously invent parent to learn these
definitions.
c© Springer International Publishing AG 2017
S. Costantini et al. (Eds.): RuleML+RR 2017, LNCS 10364, pp. 1–6, 2017.
DOI: 10.1007/978-3-319-61252-2 1



2 S.H. Muggleton

Family Tree

Jake

Jo

Sam

Megan

Alice

Jill

Jane

Bob

Liz

John
Mary

Susan

Bill

Matilda

Ted

Harry

Andy

Target Theory
father(ted, bob) ←
father(ted, jane) ←
parent(X,Y ) ← mother(X,Y )
parent(X,Y ) ← father(X,Y )
ancestor(X,Y ) ← parent(X,Y )
ancestor(X,Y ) ← parent(X,Z), ancestor(Z, Y )

First-order Metalogical substitutions
Examples

ancestor(jake, bob) ←
ancestor(alice, jane) ←

N/A

Background Knowledge
father(jake, alice) ←
mother(alice, ted) ←

N/A

Instantiated Hypothesis
father(ted, bob) ←
father(ted, jane) ←
p1(X,Y ) ← father(X,Y )
p1(X,Y ) ← mother(X,Y )
ancestor(X,Y ) ← p1(X,Y )
ancestor(X,Y ) ← p1(X,Z),

ancestor(Z, Y )

metasub(instance, [father, ted, bob])
metasub(instance, [father, ted, jane])
metasub(base, [p1, father])
metasub(base, [p1,mother])
metasub(base, [ancestor, p1])
metasub(tailrec, [ancestor, p1, ancestor])

Fig. 1. Kinship example. p1 invented, representing parent.

Although the topic of Predicate Invention was investigated in early Inductive
Logic Programming (ILP) research [8,18] it is still seen as hard and under-
explored [14]. ILP systems such as ALEPH [17] and FOIL [15] have no predicate
invention and limited recursion learning and therefore cannot learn recursive
grammars from example sequences. By contrast, in [11] definite clause grammars
were learned with predicate invention using Meta-Interpretive Learning (MIL).
MIL [6,9,10] is a technique which supports efficient predicate invention and
learning of recursive logic programs built as a set of metalogical substitutions
by a modified Prolog meta-interpreter (see Fig. 2) which acts as the central part
of the ILP learning engine. The meta-interpreter is provided by the user with
meta-rules (see Fig. 3) which are higher-order expressions describing the forms
of clauses permitted in hypothesised programs. As shown in Fig. 3 each meta-
rule has an associated Order constraint, which is designed to ensure termination
of the proof. The meta-interpreter attempts to prove the examples and, for
any successful proof, saves the substitutions for existentially quantified variables
found in the associated meta-rules. When these substitutions are applied to the
meta-rules they result in a first-order definite program which is an inductive
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Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −
metarule(Name,MetaSub, (Atom :- Body), Order),
Order,
save subst(metasub(Name,MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

Fig. 2. Prolog code for the generalised meta-interpreter. The interpreter recursively
proves a series of atomic goals by matching them against the heads of meta-rules.
After testing the Order constraint save subst checks whether the meta-substitution
is already in the program and otherwise adds it to form an augmented program. On
completion the returned program, by construction, derives all the examples.

generalisation of the examples. For instance, the two examples shown in the
upper part of Fig. 1 could be proved by the meta-interpreter in Fig. 2 from the
Background Knowledge BK by generating the Hypothesis H using the Prolog
goal

← prove([ancestor, jake, bob], [ancestor, alice, jane], BK,H).

H is constructed by applying the metalogical substitutions in Fig. 1 to the cor-
responding meta-rules found in Fig. 3. Note that p1 is an invented predicate
corresponding to parent.

Name Meta-Rule Order
Instance P (X,Y ) ← True

Base P (x, y) ← Q(x, y) P Q

Chain P (x, y) ← Q(x, z), R(z, y) P Q,P R

TailRec P (x, y) ← Q(x, z), P (z, y) P Q,
x z y

Fig. 3. Examples of dyadic meta-rules with associated Herbrand ordering constraints.
� is a pre-defined ordering over symbols in the signature.

Completeness of SLD resolution ensures that all hypotheses consistent with
the examples can be constructed. Moreover, unlike many ILP systems, only
hypotheses consistent with all examples are considered. Owing to the efficiency
of Prolog backtracking MIL implementations have been demonstrated to search
the hypothesis space 100–1000 times faster than state-of-the-art ILP systems
[11] in the task of learning recursive grammars1.

1 MetagolR and MetagolCF learn Regular and Context-Free grammars respectively.
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a) Staircase b) Regular polyhedra

Fig. 4. MIL vision applications: (a) learning a recursion definition of a staircase from
a single image [11] and (b) learning definition relating regular polygons [3].

3 Vision Applications

Figure 4 illustrates two applications in which MIL has been used to analyse
images. The staircase learning in Fig. 4a was based on data from Claude Sam-
mut’s group [4]. However, the original author’s approach, using ALEPH was not
entirely general since it does not involve recursion. Using MIL it was possible
to learn a general recursive definition of a staircase using predicate invention. A
staircase is represented as a set of ordered planes, where the background predi-
cates vertical and horizontal describe adjacent planes. The resulting hypothesis
is shown in Fig. 5, where a is an invented predicate corresponding to step. Due
to its recursive form, this definition has shorter description length than those
found by ALEPH. It is also general in its applicability and easily understood.

stair(X,Y) :- a(X,Y).
stair(X,Y) :- a(X,Z), stair(Z,Y).
a(X,Y) :- vertical(X,Z), horizontal(Z,Y).

Fig. 5. Definition of staircase learned in 0.08 s on a laptop from single image. Note
predicate invention and recursion.

4 Challenges

A number of open challenges exist for Meta-Interpretive Learning. These include
the following.

Generalise beyond Dyadic logic. The dyadic fragment of Prolog has pro-
vided an efficient approach to selecting a compact and efficient universal set
of metarules [2] for MIL. However, many Prolog programs are more natural
to represent when represented with more than two arguments.
Deal with classification noise. Most data sources for machine learning
contain both classification and attribute noise. We are presently developing
variants of the Metagol system which act robustly in the face of such noise.
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Active learning. Most forms of machine learning are passive in the sense
that they take a given training data set and generate a model. Active learning
involves proposing and testing instances which are classified either by a user
of by carrying out experiments in the real world. We are developing proba-
bilistic variants of Meta-Interpretive Learning [10] which could be adapted
for efficient Active Learning.
Efficient problem decomposition. Finding efficient ways of decomposing
the definitions in MIL is one of the hardest open problems in the field.
Meaningful hypotheses. In ongoing work [16] we are investigating the
issues which are most important for improving the understandability of
learned programs.
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Abstract. Abductive Logic Programming (ALP) has been proven very
effective for formalizing societies of agents, commitments and norms, in
particular by mapping the most common deontic operators (obligation,
prohibition, permission) to abductive expectations.

In our previous works, we have shown that ALP is a suitable frame-
work for representing norms. Normative reasoning and query answer-
ing were accommodated by the same abductive proof procedure, named
SCIFF.

In this work, we introduce a defeasible flavour in this framework,
in order to possibly discharge obligations in some scenarios. Abductive
expectations can also be qualified as dischargeable, in the new, extended
syntax. Both declarative and operational semantics are improved accord-
ingly, and proof of soundness is given under syntax allowedness conditions.

The expressiveness and power of the extended framework, named
SCIFFD, is shown by modeling and reasoning upon a fragment of the
Japanese Civil Code. In particular, we consider a case study concerning
manifestations of intention and their rescission (Sect. 2 of the Japanese
Civil Code).

1 Introduction

A normative system is a set of norms encoded in a formal language, together
with mechanisms to reason about, apply, and modify them. Since norms pre-
serve the autonomy of the interacting parties (which ultimately decide whether
or not to comply), normative systems are an appropriate tool to regulate inter-
action in multi-agent systems [15]. Usually, norm definitions build upon notions
of obligation, permission and prohibition, in the tradition of Deontic Logic [36].

When formalizing norms, a natural approach is to encode them as impli-
cations; semantically, implications naturally represent conditional norms, where
the antecedent is read as a property of a state of affairs and the consequent as its
deontic consequence, and operationally rule-based systems offer support for rea-
soning and drawing conclusions from norms and a description of the system they
c© Springer International Publishing AG 2017
S. Costantini et al. (Eds.): RuleML+RR 2017, LNCS 10364, pp. 7–21, 2017.
DOI: 10.1007/978-3-319-61252-2 2
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regulate. Applications of computational logic to formalize norms include logic
programming for the British Nationality Act [35], argument-based extended logic
programming with defeasible priorities [33], defeasible logic [27].

As mentioned above, normative systems have been applied in multi-agent sys-
tems [15]. Among the organizational models and [18,19] exploit Deontic Logic to
specify the society norms and rules. Significant portions of EU research projects
were devoted to formalizing norms for multiagent systems; namely, the ALFEBI-
ITE project [11] was focused on the formalization of an open society of agents
using Deontic Logic, and in the IMPACT project [12,20] an agent’s obligations,
permissions and prohibitions were specified by corresponding deontic operators.

The EU IST Project SOCS proposed various Abductive Logic Programming
(ALP) languages and proof procedures to specify and implement both individual
agents [17] and their interaction [4]; both approaches have later been applied to
modeling and reasoning about norms with deontic flavours [7,34].

ALP has been proved a powerful tool for knowledge representation and
reasoning [30], taking advantage of ALP operational support as a (static or
dynamic) verification tool. ALP languages are usually equipped with a declar-
ative (model-theoretic) semantics, and an operational semantics given in terms
of a proof-procedure. Fung and Kowalski proposed the IFF abductive proof-
procedure [23] to deal with forward rules, and with non-ground abducibles. It
has been later extended [5], and the resulting proof procedure, named SCIFF,
can deal with both existentially and universally quantified variables in rule heads
and Constraint Logic Programming (CLP) constraints [28]. The resulting sys-
tem was used for modeling and implementing several knowledge representation
frameworks, such as deontic logic [7], where the deontic notions of obligation
and permission are mapped into special SCIFF abducible predicates, norma-
tive systems [6], interaction protocols for multi-agent systems [8], Web services
choreographies [3], and Datalog± ontologies [24].

In this work, we present SCIFFD, an extension of the SCIFF framework,
which introduces a defeasible flavour in the norm portion of the framework, as
a mechanism for discharging obligations: intuitively, rather than removing an
abductive expectation representing obligation with a sort of contraction [10], we
mark it as discharged to indicate that the lack of a fulfilling act is not a violation
of the norms. Both declarative and operational semantics are extended accord-
ingly, and a proof of soundness is given under syntax allowedness conditions.

Thanks to this extension, we are better able to cope with real-life norms,
even in the legal domain.

The paper is organized as follows. In Sect. 2, we first recall the SCIFF lan-
guage, also mentioning its declarative semantics and its underlying proof proce-
dure, and discuss a case study from Sect. 2 of the Japanese Civil Code. Then, in
Sect. 3, we introduce the SCIFFD syntax, with a novel abducible for discharg-
ing obligations (namely, expectations); we also discuss the formalization of a
further article from the Japanese Civil Code. Section 4 extends the declarative
and operational semantics accordingly, and presents the proof of soundness for
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the extended framework. In Sect. 5 we discuss related work and in Sect. 6 we
conclude the paper.

2 SCIFF language and semantics

As a running example, we consider, throughout the paper, article 96 (“Fraud or
duress”) of the Japanese civil code (see, for example, [29]). In order to model,
and discuss it, we first provide an informal description of the SCIFF language;
for formal definitions, we refer the reader to [7].
The SCIFF language. In SCIFF, the agent behaviour is described by means
of events (actual behaviour) and expectations (expected behaviour):

– events are atoms of the form H(Content ,Time)
– expectations are abducible atoms of the following possible forms, which,

while not being modal operators, can be given a deontic reading as shown
in [7]: E(Content ,Time): positive expectations, with a deontic reading of
obligation; EN(Content ,Time): negative expectations, read as prohibition;
¬E(Content ,Time): negation of positive expectation, or explicit absence
of obligation; ¬EN(Content ,Time): negation of negative expectation, or
explicit permission.

where Content is a logic term that describes the event and Time is a variable or
a term representing the time of the event. CLP constraints can be imposed over
variables; for time variables, they represent time constraints, such as deadlines.

A SCIFF program is a pair 〈KB, IC〉, where KB is a set of logic program-
ming clauses (used to express domain specific knowledge) which can have expec-
tations, but not events, in their bodies, and IC is a set of implications called
Integrity Constraints, which implicitly define the expected behaviour of the inter-
acting parties. Function symbols and arbitrary nesting of terms are allowed. Each
Integrity Constraint (IC) in IC has the form Body → Head, where Body is a
conjunction of literals defined in KB, events and expectations, while Head is a
disjunction of conjunctions of expectations.

Thanks to their implication structure and the deontic reading of expectations
shown in [7], ICs can be read as conditional norms [6].

Case Study. In order to model article 96 (“Fraud or duress” from the Japanese
Civil Code), we describe the content of events and expectations by means of the
following terms:

– intention(A,B, I, IdI): person A utters a manifestation of intention to person
B, with identifier IdI for action I;

– do(A,B): person A performs act B;
– induce(A,B): act A induces act B;
– rescind(A,B, I, F, IdI , IdR): person A rescinds, with identifier IdR, his or

her intention, uttered to B and identified by IdI , to perform action I, due to
fraud or duress F ;
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– know(A,F ): person A becomes aware of fact F ;
– assertAgainst(A,B, IdR): person A asserts the legal act identified by IdR

against person B.

Legally relevant acts (intention, rescind, assertAgainst) have identifiers.
The following integrity constraint states that a manifestation of intention

should, in general, be followed by the performance of the act.

H(intention(A,B, I, IdI), T1) → E(do(A, I), T2) ∧ T2 > T1 (1)

Each of the following integrity constraints models one of the paragraphs of Arti-
cle 96. Here, fraudOrDuress/1 is a predicate, defined in KB, which specifies
which actions count as fraud or duress.

1. Manifestation of intention which is induced by any fraud or duress may be
rescinded.

H(intention(A,B, I, IdI), T1) ∧ H(do(B,F ), T3) ∧ H(induce(F, I), T2)
∧ fraudOrDuress(F ) ∧ T3 < T2 ∧ T2 < T1 ∧ T1 < T4

→¬EN(rescind(A,B, I, F, IdI , IdR), T4)
(2)

2. In cases any third party commits any fraud inducing any person to make a
manifestation of intention to the other party, such manifestation of intention
may be rescinded only if the other party knew such fact.

H(intention(A,B, I, IdI), T1) ∧ H(do(C,F ), T3) ∧ C �= B

∧ H(know(B,F ), T5) ∧ H(induce(F, I), T2)
∧ fraudOrDuress(F ) ∧ T2 < T1 ∧ T3 ≤ T5 ∧ T5 < T1

→¬EN(rescind(A,B, I, F, IdI , IdR), T4) ∧ T4 > T1

(3)

3. The rescission of the manifestation of intention induced by the fraud pursuant
to the provision of the preceding two paragraphs may not be asserted against
a third party without knowledge.

H(rescind(A,B, I, F, IdI , IdR), T1) ∧ not H(know(C,F ), T2)
→EN(assertAgainst(A,C, IdR), T3) ∧ T1 < T3

(4)

Declarative Semantics. The abductive semantics of the SCIFF language
defines, given a set HAP of H atoms called history and representing the actual
behaviour, an abductive answer, i.e., a ground set EXP of expectations that

– together with the history and KB, entails IC:

KB ∪ HAP ∪ EXP |= IC (5)

where |= is entailment according to the in 3-valued completion semantics.
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– is consistent with respect to explicit negation;

{E(Content ,Time),¬E(Content ,Time)} � EXP∧
∧{EN(Content ,Time),¬EN(Content ,Time)} � EXP (6)

– is consistent with respect to the meaning of expectations

{E(Content ,Time),EN(Content ,Time)} � EXP (7)

– is fulfilled by the history, i.e.

if E(Content ,Time) ∈ EXP then H(Content , T ime) ∈ HAP and (8)
if EN(Content ,Time) ∈ EXP then H(Content , T ime) �∈ HAP (9)

Operational Semantics. Operationally, the SCIFF abductive proof procedure
finds an abductive answer if one exists, or detects that no one exists (see [5] for
soundness and completeness statements), meaning that the history violates the
SCIFF program. We call the two cases success and failure, respectively. The
SCIFF proof-procedure is defined through a set of transitions, each rewriting
one node of a proof tree into one or more nodes. The basic transitions of SCIFF
are inherited from the IFF [23], and they account for the core of abductive
reasoning. Other transitions deal with CLP constraints, and are inherited from
the CLP [28] transitions. Due to lack of space, we cannot describe in detail all
transitions; we sketch those dealing with the concept of expectation, that are
most relevant for the rest of the paper.

In order to deal with the concept of expectation, in each node of the proof
tree, the set of abduced expectations EXP is partitioned into two sets: the
fulfilled (FULF), and pending (PEND) expectations.

Transition Fulfillment E deals with the fulfillment of E expectations: if an
expectation E(E, TE) ∈ PEND and the event H(H,TH) is in the current history
HAP, two nodes are generated: one in which E = H, TE = TH and E(E, TE)
is moved to FULF, the other in which E �= H or TE �= TH (where �= stands for
the constraint of disunification).

Transition Violation EN deals with the violation of EN expectations: if an
expectation EN(E, TE) ∈ PEND and the event H(H,TH) ∈ HAP, one node is
generated where the constraint E �= H ∨ TE �= TH is imposed, possibly leading
to failure.

When there are no more relevant events, history closure is applied; in this
case, all remaining E expectations in PEND are considered as violated and
failure occurs.

As regards complexity, the SCIFF language is an extension of Prolog, and,
as such, it is Turing-complete; so a SCIFF evaluation, in general, may not ter-
minate. Even in the propositional case, Gottlob and Eiter [21] proved that the
complexity of abduction is ΣP

2 -complete.
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3 SCIFFD Language

In legal reasoning, expectations can be discharged not only because they become
fulfilled by matching the actual behaviour of the agent, but also for other reasons.
For example, in case a contract is declared null, the agents are no longer expected
to perform the actions required in the contract.

We introduce an extension of the SCIFF language to deal with expectations
that do not hold any longer. We introduce two new abducible atoms, D(E) and
D(EN), which mean that an expectation is discharged; for example, the atom

D(E(X,T ))

means that the expectation E(X,T ) is no longer required to be fulfilled, as it
has been discharged.

The integrity constraints can have D atoms, which can be abduced.

Example 1. The user might write an IC saying that, if a contract with identifier
IdC is null (represented in this example with an abducible NULL, carrying the
identifier of the contract and that of the reason for nullification), all expectations
requiring an action in the context of that contract are discharged:

NULL(IdC , Idnull) ∧ E(do(Agent,Action, IdC), Tdo)
→ D(E(do(Agent,Action, IdC), Tdo)).

(10)

We can express that a contract that is explicitly permitted to be rescinded can be
nullified as

¬EN(rescind(A, I, F, IdI , IdR), Tr) ∧ H(rescind(A, I, F, IdI , IdR), Tr)
→NULL(IdI , IdR)

(11)

The combined effect of ICs (10) and (11) is that rescission is only effective when
the circumstances grant an explicit permission.

Example 2. As a second case study from the Japanese Civil Code, we consider
Article 130, which states “In cases any party who will suffer any detriment as
a result of the fulfillment of a condition intentionally prevents the fulfillment
of such condition, the counterparty may deem that such condition has been
fulfilled”. Article 130 can be modeled as follows:

H(do(Agent1, Action1), T1) ∧ E(do(Agent2, Action2), T2)
∧ detrimental(Action2, Agent1) ∧ prevent(Action1, Action2)
→ D(E(do(Agent2, Action2), T2))

(12)

where detrimental/2 and prevent/2 are predicates defined in the KB to specify
when, respectively, an action is detrimental to an agent and when an action
prevents another.
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Syntactic Restrictions. The following syntactic restriction is used in the proof
of soundness.

Definition 1. Weak D-allowedness. An IC containing a D atom is weakly D-
allowed if there is only one D atom, it occurs in the head, and the head contains
only that atom.

A KB is weakly D-allowed if none of its clauses contains D atoms.
A SCIFFD program 〈KB, IC〉 is weakly D-allowed if KB is weakly D-allowed

and all the ICs in IC are weakly D-allowed.

The following restriction is not necessary for the soundness results proved in
Sect. 4.3, but it allows a more efficient treatment of the D atoms. Note that all
the examples presented in this paper satisfy the restriction.

Definition 2. Strong D-allowedness. An IC containing a D atom is strongly
D-allowed if it is weakly D-allowed and the (only) expectation in the D atom
occurs identically in the body of the IC.

Intuitively, the given notion of strong D-allowedness allows one to define ICs that
select one expectation and make it discharged, subject to conditions occurring
in the body. This syntactic restriction is aimed at capturing the most common
scenarios while trying to maintain an efficient execution.

In fact, if the strong allowedness condition is lifted, it is not required for an
atom E(X) to have been abduced before declaring it discharged. If two atoms
E(X) and D(E(Y )) are abduced, two options have to be explored, as alterna-
tives: either X unifies with Y , and the expectation E(X) becomes discharged, or
X and Y do not unify (e.g., by imposing a dis-unification constraint X �= Y ).
These cases, the SCIFF proof-procedure opens a choice point; this means that, in
case |E| expectations E are abduced and |D| D atoms are abduced, |E||D| choice
points will be created, each opening 2 alternative branches, which would generate
2|E||D| branches (of course, the same could be said for EN expectations).

We performed an experiment to verify this worst-case analysis. We gener-
ated a number of E(X) and D(E(Y )) atoms, and measured the time SCIFFD

took to find the first solution and all solutions (all experiments were run on a
Intel Core i7-3720QM CPU @ 2.60 GHz running SWI-Prolog version 7.4.0-rc1
on Linux Mint 18.1 Serena 64 bits). For all solutions (Fig. 1 right), the running
time follows closely the foreseen 2|E||D|, while for one solution (Fig. 1 left), the
running time seems dependent mainly on the number of raised expectations and
almost independent from the number of D atoms. Note also the different scales:
finding one solution takes at most 3 s with 100 expectations and discharge atoms,
while finding all solutions takes almost 3 h with |E| = |D| = 8.

From a language viewpoint, the strong allowedness condition restricts the
set of expectations that can be discharged to those that have been raised. With-
out such restriction, one could abduce a generic atom D(E(X)) saying that
one expectation is discharged. Semantically, this would mean that one of the
expectations might be discharged, although it is not said which one.
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Fig. 1. Experiments with different numbers |D| of D atoms and |E| of E atoms; time
in seconds for finding one solution (left) or all solutions (right).

Dischargement Scenarios. The remainder of this section is devoted to discuss
an example concerning manifestation of intention (Sect. 2 of the Japanese Civil
Code), modeled in SCIFFD and one concerning prevention of fulfillment of con-
ditions. Sections presenting the declarative and operational semantics of the
extended framework and proof of soundness then follow.

Example 3. (Example 1 continued). Let us consider the case study of Sect. 2
again, and assume that work on an acquired good G is to be paid by the good’s
owner O, unless O rescinds the good’s purchase and asserts the rescission against
the performer of the work M (which, due to integrity constraint (4), is only
allowed if the performer was aware of the rescission’s cause, such as a fraud).
We can express this norm by means of the following integrity constraint:

H(work(M,G,O,W ), T1)
→E(pay(O,M,W ), T2) ∧ T1 < T2

∨(E(rescind(O,B, buy(G), F, IdI , IdR), T3)
∧ E(assertAgainst(O,M, IdR), T4)
∧ T1 < T3 ∧ T3 < T4)

(13)

where the term work(M,G,O,W ) represents mechanic M doing work W on the
good G owned by O, and the term pay(O,M,W ) represents owner O paying
mechanic M for work W .

The KB states that fixing a car’s mileage constitutes fraud or duress.

fraudOrDuress(fixMileage(C)) (14)
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In the scenario defined by the following history

H(do(bob, fixMileage(car)), 1)
H(induce(fixMileage(car), buy(car)), 2)
H(intention(alice, bob, buy(car), i1), 3)
H(work(mechanic, car, alice, lpgSystem), 4)
H(rescind(alice, bob, buy(car), fixMileage(car), i1, i2), 5)

(15)

Alice’s rescission is explicitly permitted by IC (2), because her manifestation
of intention was induced by Bob’s fraudulent act of fixing the car’s mileage;
the expectation E(do(alice, buy(car)), T ), raised because of IC (1), is discharged
because of ICs (10) and (11).

However, since the mechanic was not aware of Bob’s fraud, IC (4) prevents
Alice from asserting the rescission against him, so the second disjunct in IC
(13) cannot hold, and Alice still has to pay him for installing the LPG system
(E(pay(alice,mechanic, lpgSystem, T2))). For the history that contains all the
events in formula (15), plus H(know(mechanic, fixMileage(car)), 1) (i.e., the
mechanic is now aware of the car’s mileage being fixed), alice is not prohibited
from asserting the rescission against the mechanic by integrity constraint (4).
With the event H(assertAgainst(alice,mechanic, i2), 6), the second disjunct in
the head of integrity constraint (13), is satisfied and alice is not obliged to pay
the mechanic for his work.

Example 4. Consider the following scenario, where an order by a customer
should be followed by a delivery by the seller:

H(order(Customer, Seller,Good), Torder)
→ E(do(Seller, deliver(Good)), Tdelivery) ∧ Tdelivery > Torder.

(16)

Suppose that Alice placed an order, but in the meanwhile she was diagnosed a rare
immunodeficiency, and she cannot meet people, except her family members. Her
mother usually lives with her, but today she went out, so Alice locked the door,
as it would be detrimental for her if any person got in the house. This prevents
any delivery, but it is a minor issue for her compared to the consequences that
Alice should face in case she met a stranger.

detrimental(deliver(Good), alice).
prevent(lockDoor, deliver(Good)).

(17)

Given the following history

H(order(alice, bob, computer), 1)
H(do(alice, lockDoor), 2)

(18)

the expectation for Bob to deliver the good, raised by IC (16), is discharged by
IC (12), because Alice performed an action that prevents the fulfillment.
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4 SCIFFD Declarative and Operational Semantics

4.1 Declarative Semantics

We now show how to deal with the discharge of expectations in the context
of ALP. We first give an intuitive definition, then show its pitfalls and finally
provide a correct definition.

In order to accept histories in which expectations may not have matching
events, we need to extend the definition of fulfillment of expectations given in
Eqs. (8) and (9); intuitively, a positive expectation is fulfilled if either there is a
matching event or if the expectation has been discharged:

if E(Content ,Time) ∈ EXP
then H(Content , T ime) ∈ HAP ∨ D(E(Content ,Time)) ∈ EXP (19)

and symmetrically for a negative expectation:

if EN(Content ,Time) ∈ EXP
then H(Content , T ime) �∈ HAP ∨ D(EN(Content ,Time)) ∈ EXP (20)

However in this way there could exist abductive answers with D literals even
if there is no explicit rule introducing them. For example, in the history of
formula (15) an abductive answer would be1

¬EN(rescind(alice, bob, buy(car), fixMileage(car), i1, ), T2),
D(EN(assertAgainst(alice, , i2), ))
D(E(do(alice, buy(car), i1), ))
D(E(pay(alice,mechanic, lpgsystem), ))
NULL(i1, i2)

since it satisfies Eq. (5) (which takes into account knowledge base and integrity
constraints), (6), (7), (19) and (20). Note that Alice is no longer required to pay
the mechanic, because although no IC introduces explicitly the dischargement
of the expectation that she should pay, the abductive semantics accepts the
introduction of the literal D(E(pay(alice,mechanic, lpgsystem), )).

We propose the following semantics.

Definition 3. Abductive answer.
If there is a set EXP such that

1. satisfies Eqs. (5), (6), and (7)
2. is minimal with respect to set inclusion within the sets satisfying point 3,

considering only D atoms; more precisely: there is no set EXP′ satisfying
point 3 and such that EXP′ ⊂ EXP and EXP = EXP′ ∪ F , where F
contains only D atoms

3. satisfies Eqs. (19) and (20)

then the set EXP is an abductive answer, and we write 〈KB, IC〉 |=EXP true.
1 For brevity, we omit an expectation E(x) if we have already its discharged version
D(E(x)).
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4.2 Operational Semantics

Operationally, the proof procedure is extended with transition Dischargement.
If EXP contains two atoms E(x, T ) ∈ PEND and D(E(x, T )), then atom

E(x, T ) is moved to the set FULF of fulfilled expectations.
Similarly, if EXP contains two atoms EN(x, T ) ∈ PEND and D(EN(x, T )),

then atom EN(x, T ) is moved to the set FULF of fulfilled expectations.
Another modification is that transition EN violation is postponed after all

other transitions (including the closure of the history). In fact, if we have H(x, 1),
EN(x, T ) and D(x, T ), a failure would occur if the proof-procedure applied first
EN violation. Instead, if Dischargement is applied first, expectation EN(x, T )
is moved to the FULF set and transition EN violation is no longer applicable.

In case, at the end of a derivation, there are still expectations that are not
fulfilled, the derivation is a failure derivation (and backtracking might occur to
explore another branch, if available).

If a computation terminates with success, we write 〈KB, IC〉 �EXP true.

4.3 Soundness

We are now ready to give the soundness statements; these statements rely on
the soundness and completeness theorems of the SCIFF proof-procedure, so they
hold in the same cases; for the SCIFF allowedness conditions over knowledge
base and integrity constraints, we refer the reader to [5].

Theorem 1 (Soundness of success). If 〈KB, IC〉 is weakly D-allowed and
〈KB, IC〉 �EXP true then 〈KB, IC〉 |=EXP true.

Proof. If no D atoms occur in IC, the procedure coincides with SCIFF, which
is sound [5]. In the case with D atoms in IC, the procedure might report success
in cases in which SCIFF reports failure due to the extended notion of fulfillment
(Eqs. (19) and (20)). In such a case, the D atom must have been generated, and
the only way to generate it is through an IC having such atom in the head (see
Definition 1).

The procedure generates the atom only if the body of the IC is true. If the
body is true, it means (from the soundness of SCIFF) that it is true also in the
declarative semantics, so the D atom must be true also declaratively. In such a
case, Eq. (19) (or (20)) is satisfied, meaning that the success was sound. �
Theorem 2 (Soundness of failure). If 〈KB, IC〉 is weakly D-allowed and
〈KB, IC〉 |=EXP true, then ∃EXP′ ⊆ EXP such that 〈KB, IC〉 �EXP′ true.

Proof. If there are no D atoms in IC, the procedure coincides with SCIFF, so
the completeness theorem of SCIFF holds [5]. In the case with D atoms in IC,
the declarative semantics allows as abductive answers some sets that would not
have been returned by SCIFF, and in which expectations are not fulfilled by
actual events, but discharged through an abduced D atom.

Consider such an abductive answer EXP. We prove by contradiction that
each D atom in EXP occurs in the head of an IC whose body is true. In fact, if
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a D atom in EXP was not in the head of an IC whose body is true, then the set
EXP′ obtained by removing the D atom from EXP would satisfy Eq. (5). On
the other hand, since EXP satisfies Eqs. (6) and (7) and those equations do not
involve D atoms, also EXP′ satisfies those equations. This means that EXP
does not satisfy condition 2 of Definition 3, which means that EXP was not an
abductive answer and we get a contradiction.

Since each D atom occurs in the head of an IC whose body is true, the proce-
dure applies such IC and abduces that atom. This means that the corresponding
expectation becomes discharged, and hence it does not cause failure. �

5 Related Work

Many authors have investigated legal and normative applications of deontic
logics. The use of such logics was initially debated when taking into account
permissions. For example, in [16] the authors present an approach based on
input/output logics [32] for formalizing conditional norms, obligations and per-
missions in a scenario where many hierarchically organized authorities are
present. In such a scenario, there can be norms that are more important than
others and therefore the authors consider a hierarchy of norms, defined by “meta-
norms”, and different types of permissions with different strengths. However, the
focus of [16] is on helping the legislator to understand how the modification of a
norm or the definition of a new one may change the whole normative system. In
fact, following the input/output logic’s semantics, [16] is not concerned about the
truth value of formulae representing (part of) norms but defines a cause-effect
link between inputs and obligatory outputs in an abductive-like way.

Recently deontic logics have been increasingly applied to legal domains. In
[26] the authors discuss the impact new contracts, which introduce new con-
straints, may have on already existing business processes. The authors present
a logic called FCL (Formal Contract Language), based on RuleML, for repre-
senting contracts in a formal way. The language allows automatic checking and
debugging, analysis and reasoning [25]. In [26] a normal form of FCL, called
NFCL, is presented with the aim of having a clean, complete and non-redundant
representation of a contract. This normal form is obtained by merging the new
constraints with the existing ones and cleaning up the redundancies by using the
notion of subsumption. The result points out possible conflicts among contracts
and how each contract is intertwined with the whole business process. Similar
results can be accomplished with SCIFFD which allows checking the consistency
of the SCIFFD program representing the constraints of the business process.

A different approach is the combination of temporal logics with deontic log-
ics. An example is given in [1], where the authors define Normative Temporal
Logic (NTL) which replaces the standard operators of the well-known CTL [22]
with deontic operators. The use of time, which forces the sequentiality of the
constraints, avoids many paradoxes typical of standard deontic logic, such as
those involving contrary-of-duty. Moreover, the authors present the Simple Reac-
tive Modules Language (SRML) which follows NTL and allows the execution of
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model checking in four different scenarios depending on the presence or absence
of an interpretation of the normative system and on the definition of the model
under examination. Similarly, SCIFFD can manage time although it does not
follow the temporal logic semantics. A similar approach is proposed by the same
authors in [2] where they present the Norm Compliance CTL (NCCTL). This
logic extends CTL by adding a new deontic-like operator P modeling coalitions
between norms which cooperate in the normative system. NCCTL is equipped
with a model checker, called NorMC [31]. Since SCIFF performs on-the-fly
checking of compliance, the two systems cannot be directly compared.

The AD system [9] is a deontic logic that supports defeasibile obligations by
means a revision operator (called f), which represents the assumptions that nor-
mally come with an explicitly stated condition. Intuitively, fA ⇒ O(B) means
that A implies that B is obligatory, as long as the usual assumptions about A are
true. The SCIFFD semantics implements an implicit assumption that an expec-
tation is not discharged (and is therefore required to be fulfilled), which can be
defeated by an explicit dischargement atom (which allows for the expectation
not to be fulfilled).

This paper shows that representing and reasoning with norms facilitate for
the adoption of such approaches in many scenarios. Checking whether certain
facts are compliant with the normative system in use is in fact often needed.
Abductive frameworks such as SCIFFD can also be used, for example, in foren-
sics for analysing and arguing on evidence of a crime or for explaining causal
stories, sequence of states and events forming (part of) a case. Such stories must
be coherent and there must be a process, usually abductive, able to prove their
truthfulness. These necessities are pointed out for example in [13,14], where
the authors present a hybrid framework which combines the two most used
approaches in reasoning about criminal evidences: argumentative and story-
based analysis. Both of them could benefit from the use of normative systems.

6 Conclusions

In this article we continue our line of research that applies abductive logic pro-
gramming to the formalization of normative systems.

We introduced the SCIFFD language, extending the SCIFF abductive frame-
work with the notion of dischargeable obligation. Dischargeable obligations can
occur in the head of forward rules (named ICs), fired under specific conditions
mentioned in the body of the rules. The SCIFFD declarative semantics and its
operational counterpart for verification accordingly extend SCIFF’s, and sound-
ness is proved under syntactic conditions over these (discharging) constraints.

To experiment the framework we considered case studies requiring the notion
of discharging of an obligation. In particular, we considered the articles in the
Japanese Civil Code that deal with the rescission of manifestation of intentions
and prevention of fulfillment of conditions. We also show - informally - the result
of running the operational support upon this example in some simple scenarios.
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Abstract. The success of the Semantic Web highly depends on its ingre-
dients. If we want to fully realize the vision of a machine-readable Web,
it is crucial that Linked Data are actually useful for machines consum-
ing them. On this background it is not surprising that (Linked) Data
validation is an ongoing research topic in the community. However, most
approaches so far either do not consider reasoning, and thereby miss the
chance of detecting implicit constraint violations, or they base them-
selves on a combination of different formalisms, e.g. Description Logics
combined with SPARQL. In this paper, we propose using Rule-Based
Web Logics for RDF validation focusing on the concepts needed to sup-
port the most common validation constraints, such as Scoped Negation
As Failure (SNAF), and the predicates defined in the Rule Interchange
Format (RIF). We prove the feasibility of the approach by providing an
implementation in Notation3 Logic. As such, we show that rule logic can
cover both validation and reasoning if it is expressive enough.

Keywords: N3 · RDF validation · Rule-based reasoning

1 Introduction

The amount of publicly available Linked Open Data (LOD) sets is constantly
growing1, however, the diversity of the data employed in applications is mostly
very limited: only a handful of RDF data is used frequently [27]. One of the
reasons for this is that the datasets’ quality and consistency varies significantly,
ranging from expensively curated to relatively low quality data [33], and thus
need to be validated carefully before use.

One way to assess data quality is to check them against constraints: users
can verify that certain data are fit for their use case, if the data abide to their
requirements. First approaches to do that were implementations with hard coded
validation rules, such as Whoknows? [13]. Lately, attention has been drawn to
formalizing RDF quality assessment, more specifically, formalizing RDF con-
straints languages, such as Shape Expressions (ShEx) [30] or Resource Shapes
(ReSh) [28]. This detaches the specification of the constraints from its imple-
mentation.

1 See, e.g. statistics at: http://lod-cloud.net/.
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Constraint languages allow users dealing with RDF data and vocabularies
to express, communicate, and test their particular expectations. Such languages
can either be (i) existing frameworks designed for different purposes, e.g. the
query language SPARQL [12,21], or the description logic based Web Ontology
Language (OWL) [31], or they can be (ii) languages only designed for validation,
e.g. ShEx [30], ReSh [28], Description Set Profiles (DSP) [23], or the forthcom-
ing W3C recommendation candidate Shapes Constraint Language (SHACL) [19].
These different languages can be compared by testing them on commonly sup-
ported constraints [9,21], as conducted by Hartmann (né Bosch) et al. [8].

Depending on the users’ needs, constraint languages have to be able to cope
with very diverse kinds of constraints which imply certain logical requirements.
Such requirements were investigated by Hartmann et al. [8] who identified the
Closed World Assumption (CWA) and the Unique Name Assumption (UNA)
as crucial for validation. Since both are not supported by many Web Logics,
Hartmann et al. particularly emphasize the difference between reasoning and
validation languages and favour SPARQL based approaches for validation which
– if needed – can be combined with OWL DL or QL reasoning. In this paper,
we take a closer look into these findings from a rule-based perspective: We show
that neither UNA nor CWA are necessary for validation if a rule-based frame-
work containing predicates to compare URIs and literals, and supporting Scoped
Negation as Failure (SNAF) is used. This enables us to – instead of combining
separate, successive systems – do both RDF validation and reasoning in only one
system which acts directly on a constraint language. We show the feasibility of
this approach by providing an implementation. This proof-of-concept is imple-
mented in Notation3 Logic (N3Logic) and tackles the subset of the constraints
identified by Hartmann et al. [8] which are covered in RDFUnit [21].

The remainder of this paper is structured as follows: In Sect. 2 we discuss
related work. In Sect. 3 we give an overview of common RDF validation con-
straints. In Sect. 4, we discuss how different requirements for RDF validation are
met by rule-based logics. Section 5 explains the details of our proof of concept
and Sect. 6 concludes the paper and provides an outlook for future work.

2 Related Work

In this section, first, we will present the state of the art around validation con-
straint languages. Then, we will give an overview of different languages and
approaches used for RDF validation.

Data quality can be described in many dimensions, one of them being the
intrinsic dimension, namely, the adherence to a data schema [33]. In the case
of RDF data, this implies adhering to certain constraints. These have been
carefully investigated by several authors (e.g. Hartmann [12]). The formula-
tion of (a subset of) these constraints can be done using existing languages
(e.g. the Web Ontology Language (OWL) [7], the SPARQL Inferencing Nota-
tion (SPIN) [18], or SPARQL [26])), or via dedicated languages (e.g. Shape
Expressions (ShEx) [30], Resource Shapes (ReSh) [28], Description Set Profiles
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(DSP) [23], or Shapes Constraint Language (SHACL) [19]. Their execution is
either based on reasoning frameworks, or querying frameworks.

On the one hand, Motik et al. [22] and Sirin and Tau [29] propose alter-
native semantics for OWL which support the Closed World Assumption, and
are therefore more suited for constraint validation than the original version. To
know which semantics apply, constraints have to be marked as such. Using one
standard to express both, validation and reasoning, is a strong point of this
approach, however, this leads to ambiguity: If the exact same formula can have
different meanings, one of the key properties of the Semantics Web – interop-
erability – is in danger. Another disadvantage of using (modified) OWL as a
constraint language is its limited expressiveness. Common constraints such as
mathematical operations or specific checks on language tags are not covered by
OWL [12].

On the other hand, SPARQL based querying frameworks for validation exe-
cution emerged (e.g. Hartmann [12] or Kontokostas et al. [21]). Where Hartmann
proposes SPIN as base language to support validation constraints, Kontokostas
introduces a similar but distinct language to SPIN, more targeted to validation,
so-called Data Quality Test Patterns (DQTP). DQTPs are generalized SPARQL
queries containing an extra type of variables. In an extra step, these variables
are instantiated based on the RDFS and OWL axioms used by the data schema
and can then be employed for querying. As such, the authors assume a closed
world semantics for OWL but in contrast to the approaches mentioned above,
this special semantics cannot be marked in the ontology itself. They thus change
the semantics of the common Web standard OWL. To also find implicit con-
straint validation an extra reasoning step could be added, but this step would
then most probably assume the standard semantics of OWL, further increasing
the possibly of experiencing conflicts between the two contradicting versions of
the semantics. Hartmann proposes a dedicated ontology to express integrity con-
straints, and as such, this method does not involve changing existing semantics.
For both, involving reasoning is not possible without inclusion of a secondary
system.

3 RDF Validation Constraints

Based on the collaboration of the W3C RDF Data Shapes Working Group2 and
the DCMI RDF Application Profiles Task Group3 with experts from industry,
government, and academia, a set of validation requirements has been defined,
based on which, 81 types of constraints were published, each of them corre-
sponding to at least one of the validation requirements [9]. This set thus gives a
realistic and comprehensive view of what validation systems should support.

Prior to this, the creators of RDFUnit [21] had provided their own set of
constraint types they support. Given the usage of RDFUnit in real-world use

2 https://www.w3.org/2014/data-shapes/wiki/Main Page.
3 http://wiki.dublincore.org/index.php/RDF Application Profiles.

https://www.w3.org/2014/data-shapes/wiki/Main_Page
http://wiki.dublincore.org/index.php/RDF_Application_Profiles
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cases [20], this set gives a good overview of what validation systems should
minimally cover.

Table 1 shows the alignment of the 17 types of constraints as supported by
RDFUnit with the relevant constraint types as identified by Hartmann et al. [8].
As can be seen, these types are not mapped one-to-one. One constraint from
RDFUnit maps to at least one constraint as identified by Hartmann, except
for PVT and TRIPLE, which are both not very complex constraints and could
thus easily be added to the work of Hartmann et al. In this paper, we mainly
focus on these 17 constraints which are all covered by our implementation. To
make the topic of constraint validation more concrete, we discuss the examples
(TYPEDEP), (INVFUNC) and (MATCH) in more detail later in this paper and
refer the interested reader to the above mentioned sources.

Table 1. Constraints Alignment. The first column lists the codes as used in RDFUnit;
the second column lists the constraints of Hartmann following the numbering [12,
Appendix]; and the third column lists the description taken from RDFUnit.

RDFUnit Constraint code Description

COMP A11 Comparison between two literal values of a resource

MATCH A20, A21 A resource’s literal value (does not) matches a RegEx

LITRAN A17, A18 The literal value of a resource (having a certain type)
must (not) be within a specific range

TYPEDEP A4 Type dependency: the type of a resource may imply
the attribution of another type

TYPRODEP A41 A resource of specific type should have a certain
property

PVT B1 If a resource has a certain value V assigned via a
property P1 that in some way classifies this resource,
one can assume the existence of another property P2

TRIPLE B2 A resource can be considered erroneous if there are
corresponding hints contained in the dataset

ONELANG A28 A literal value has at most one literal for a language

RDFS-DOMAIN A13 The attribution of a resource’s property (with a certain
value) is only valid if the resource is of a certain type

RDFS-RANGE A14, A15 The attribution of a resource’s property is only valid if
the value is of a certain type

RDFS-RANGED A23 The attribution of a resource’s property is only valid if
the literal value has a certain Datatype

INVFUNC A2 Some values assigned to a resource are considered to
be unique for this particular resource and must not
occur in Connection with other resources

OWL-CARD A1, A32–37 Cardinality restriction on a property

OWLDISJC A70 Disjoint class constraint

OWLDISJP A69 Disjoint property constraint

OWL-ASYMP A57 Asymmetric property constraint

OWL-IRREFL A64 Irreflexive property constraint
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4 Features Required for Validation

After having listed the kind of constraints relevant for RDF validation in the
previous section, we will now focus on the suitability of rule-based logics for
that task. Based on the work of Sirin and Tao [29], and Hartmann et al. [8] who
identified the logical requirements constraint languages need to fulfil, we discuss
why rule-based logic is a reasonable choice to validate RDF datasets.

4.1 Reasoning

We start our discussion with reasoning. Hartmann [12, p. 181] points out that
performing reasoning in combination with RDF validation brings several bene-
fits: constraint violations may be solved, violations which otherwise would stay
undetected can be found, and datasets do not need to contain redundant data to
be accepted by a validation engine. To better understand these benefits, consider
the following ontology example:

:Reseacher rdfs:subClassOf :Person. (1)

And the instance:

:Kurt a :Researcher; :name"Kurt01". (2)

If we now have a type dependency constraint (TYPEDEP) saying that every
instance of the class :Researcher should also be an instance of the class
:Person, which we test on the data above, a constraint validation error would
be raised since :Kurt is not declared as a :Person. If we perform the same
constraint check after reasoning, the triple

:Kurt a :Person. (3)

would be derived and the constraint violation would be solved. Without the rea-
soning, Triple 3 would need to be inserted into the dataset to solve the constraint,
leading to redundant data.

To understand how reasoning can help to detect implicit constraints, consider
another restriction: suppose that we have a constraint stating that a person’s
name should not contain numbers4. Without reasoning, no constraint validation
would be detected because even though the :name of :Kurt contains numbers,
:Kurt would not be detected as an instance of :Person.

Hartmann’s and many other validation approaches thus suggest to first per-
form a reasoning step and then do an extra validation step via SPARQL querying.
The advantage of using rule-based reasoning instead is that validation can take
place during the reasoning process in one single step. Relying on a rule which
supports rdfs:subClassOf as for example presented in [2] the aforementioned
problem could be detected. In general, OWL-RL [10] can be applied since it is
supported by every rule language. If higher complexity is needed, rule languages
with support for existential quantification can be used for OWL QL reasoning.
4 This could be expressed by an extended version of MATCH as for example the

constraint “Negative Literal Pattern Matching” in [12].
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4.2 Scoped Negation as Failure

Another aspect which is important for constraint validation is negation. Hart-
mann et al. claim that the Closed World Assumption is needed to perform vali-
dation tasks. Given that most Web logics assume the Open World Assumption,
that would form a barrier for the goal of combining reasoning and validation
mentioned in the previous section. Luckily, that is not the case. As constraint val-
idation copes with the local knowledge base, Scoped Negation as Failure (SNAF),
inter alia discussed in [11,16,25], is enough. Among the logics which support this
concept are for example FLORA-2 [14] or N3Logic [6].

In order to understand the idea behind Scoped Negation as Failure, consider
the triples that form Formula 2 and suppose that these are the only triples in a
knowledge base we want to validate. We now want to test the constraint from
above that every individual which is declared as a researcher is also declared as
a person (TYPEDEP). This means our system needs to give a warning if it finds
an individual which is declared as a researcher, but not as a person:

∀x : (( x a :Researcher) ∧ ¬( x a :Person))
→ (:constraint :is :violated.)(4)

In the form it is stated before, the constraint cannot be tested with the Open
World Assumption. The knowledge base contains the triple

:Kurt a :Researcher.

but not Triple 3, but the rule is more general: given its open nature, we cannot
guarantee that there is no document in the entire Web which declares Triple 3.
This changes if we make an addition. Suppose that K is the the set of triples we
can derive (either with or without reasoning) from our knowledge base consisting
of Formula 2. Having K at our disposal, we can test:

∀x : (( x a :Researcher) ∈ K) ∧ ¬(( x a :Person) ∈ K))
→ (:constraint :is :violated.)(5)

The second conjunct is not a simple negation, it is a negation with a certain
scope, in this case K. If we added new data to our knowledge like for example
Triple 3, we would have different knowledge K′ for which other statements hold.
The truth value of the formula above would not be touched since this formula
explicitly mentions K. The logic stays monotonic. Scoped negation as failure is
the kind of negation we actually need in RDF validation: we do not want to make
and test statements in the Web in general, we just want to test the information
contained in a local file or knowledge base.

4.3 Predicates for Name Comparison

Next to the Open World Assumption, Hartmann et al. [8] identify the fact
that most Web logics do not base themselves on the Unique Names Assump-
tion (UNA) as a barrier for them being used for constraint validation. This
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assumption is for example present in F-Logic [17] and basically states that every
element in the domain of discourse can only have one single name (URI or Literal
in our case). The reason, why this assumption is in general problematic for the
Semantic Web lies in its distributed nature: different datasets can – and actu-
ally do – use different names for the same individual or concept. For instance,
the URI dbpedia:London refers to the same place in England as for example
dbpedia-nl:London. In this case this fact is even stated in the corresponding
ontologies using the predicate owl:sameAs.

The impact of the Unique Name Assumption for RDF validation becomes
clear if we take a closer look at OWL’s inverse functional property and
the related constraint (INVFUNC). Let us assume that dbo:capital is an
owl:InverseFunctionalProperty and our knowledge base contains:

:England dbo:capital :London. :Britain dbo:capital :London. (6)

Since :England and :Britain are both stated as having :London as their capital
and dbo:capital is an inverse functional property, an OWL reasoner would
derive

:England owl:sameAs :Britain. (7)

Such a derivation cannot be made if the Unique Name Assumption is valid, since
the former explicitly excludes this possibility.

The constraint (INVFUNC) is related to the OWL concept above, but it
is slightly different: while OWL’s inverse functional property refers to the ele-
ments of the domain of discourse denoted by the name, the validation constraint
(INVFUNC) refers to the representation itself. Formula 6 thus violates the con-
straint. Even if our logic does not follow the Unique Name Assumption, this
violation can be detected if the logic offers predicates to compare names. In
N3Logic, log:equalTo and log:notEqualTo5 are such predicates: in contrast
to owl:sameAs and owl:differentFrom, they do not compare the resources
they denote, but their representation. The idea to support these kinds of predi-
cates is very common. So does, for example, the Rule Interchange Format (RIF)
cover several functions which can handle URIs and strings, as we will discuss in
the next subsection.

4.4 RIF Built-Ins

In the previous subsection we indicated that a special predicate of a logic, in
this case log:notEqualTo, can be used to do URI comparisons and thereby
support a concept which would otherwise be difficult to express. Such built-in
functions are widely spread in rule-based logics and play an important role in
RDF validation which very often deals with string comparisons, calculations or
operations on URI level. While it normally depends on the designers of a logic
which features are supported, there are also common standards.

5 https://www.w3.org/2000/10/swap/doc/CwmBuiltins.

https://www.w3.org/2000/10/swap/doc/CwmBuiltins
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One of them is the Rule Interchange Format (RIF) [15] whose aim it is to pro-
vide a formalism to exchange rules in the Web. Being the result of a W3C working
group consisting of developers and users of different rule-based languages, RIF
can also be understood as a reference for the most common features rule based
logics might have. This makes the list of predicates [24] supported by the different
RIF dialects particularly interesting for our analysis. And it is indeed the case
that by only using RIF predicates many of the constraints listed in Sect. 3 can
already be checked: negative pattern matching (MATCH) can be implemented by
using the predicate pred:matches, the handling of language tags as required for
the constraint ONELANG can be done using func:lang-from-PlainLiteral,
and for the comparison of literal values (COMP) there are several predicates to
compare strings, numbers or dates.

To illustrate how powerful RIF is when it comes to string validation, we take
a closer look at the predicate log:notEqualTo from the previous section. In
the example above it is used to compare two URI representations and succeeds
if these two are different. To refer to a URI value, RIF provides the predi-
cate pred:iri-string which converts a URI to a string and vice versa. In N3

notation6 that could be expressed by:

(:England "http://exmpl.com/England") pred:iri-string true. (8)

To compare the newly generated strings, the function func:compare can be
used. This function takes two string values as input, and returns -1 if the first
string is smaller than the second one regarding a string order, 0 if the two strings
are the same, and 1 if the second is smaller than the first. The example above
gives:

("http://exmpl.com/Britain""http://exmpl.com/England")

func:compare -1.(9)

To enable a rule to detect whether the two URI names are equal, one addi-
tional function is needed: the reasoner has to detect whether the result of
the comparison is not equal to zero. That can be checked using the predicate
pred:numeric-not-equal which is the RIF version of �= for numeric values. In
the present case the output of the comparison would be true since 0 �= 1, a
rule checking for the name equality of :England and :Britain using the three
predicates would therefore be triggered.

Even though we needed three RIF predicates to express one N3 predicate,
the previous example showed how powerful built-ins in general – but also the
very common RIF predicates in particular – are. Whether a rule based Web
logic is suited for RDF validation highly depends on its built-ins. If it supports
all RIF predicates, this can be seen as a strong indication that it is expressive
enough.

6 More about that in Sect. 5.1.



30 D. Arndt et al.

5 Validation with N3Logic

In the previous section we analysed the requirements on a rule-based Web logic to
be able to combine validation and reasoning: it should support scoped negation
as failure, it should provide predicates to compare different URIs and strings, and
its built-in functions should be powerful enough to, inter alia, access language
tags and do string comparison as they are supported by RIF. N3Logic as it
is implemented in the EYE reasoner [32] fulfils all these conditions. With that
logic, we were able to implement rules for all the constraints listed in Sect. 3,
and thus provide similar functionality as RDFUnit using rule-based Web logics.
Below we discuss the details of this implementation starting by providing more
information about N3Logic and EYE. The code of our implementation can be
accessed at https://github.com/IDLabResearch/data-validation.

5.1 N3Logic

N3Logic was introduced in 2008 by Berners-Lee et al. [6] and is an extension
of RDF: All RDF turtle triples are also valid in N3. As in RDF, blanknodes
are understood as existentially quantified variables and the co-occurrence of two
triples as in Formula 6 is understood as their conjunction. N3 furthermore sup-
ports universally quantified variables. These are indicated by a leading question
mark ?.

?x :likes :IceCream. (10)

stands for “Everyone likes ice cream.”, or in first order logic

∀x : likes(x, ice-cream)

Rules are written using curly brackets { } and the implication symbol =>. The
rdfs:subClassOf relation from Formula 1 can be expressed as:

{?x a :Researcher} => {?x a :Person}. (11)

Applied on Formula 2 the rule results in Formula 3. More details about syntax
and semantics of N3 can be found in our previous paper [4].

There are several reasoners supporting N3: FuXi [1] is a forward-chaining pro-
duction system for Notation3 whose reasoning is based on the RETE algorithm.
The forward-chaining cwm [5] reasoner is a general-purpose data processing tool
which can be used for querying, checking, transforming and filtering information.
EYE [32] is a reasoner enhanced with Euler path detection. It supports back-
ward and forward reasoning and also a user-defined mixture of both. Amongst
its numerous features are the option to skolemise blank nodes and the possibility
to produce and reuse proofs for further reasoning. The reason why we use EYE
in our implementation is its generous support for built-ins7: next to N3’s native
built-ins8, RIF, but also several other functions and concepts are implemented.
7 http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.html.
8 https://www.w3.org/2000/10/swap/doc/CwmBuiltins.

https://github.com/IDLabResearch/data-validation
http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.html
https://www.w3.org/2000/10/swap/doc/CwmBuiltins
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5.2 Expressing Constraints

Before we can detect violations of constraints using N3 logic, these constraints
first need to be stated. This could either be done by directly expressing them in
rules – and thereby creating a new constraint language next to the ones presented
in Sect. 2 – or on top of existing RDF-based conventions. We opt for the latter
and base our present implementation on the work of Hartmann [12, p. 167 ff]:
in his PhD thesis, Hartmann presents a lightweight vocabulary to describe any
constraint, the RDF Constraints Vocabulary (RDF-CV)9. The reason why we
chose that vocabulary over the upcoming standard SHACL is its expressiveness.
We aim to tackle the 81 constraints identified by Hartmann which are not all
expressible in SHACL or any other of the constraint languages mentioned in
Sect. 2 [12, p. 52, Appendix]. As will be shown in the following section, it is not
difficult to adopt the rules to different constraint languages as long as they are
based on RDF and as such valid N3 expressions.

RDF-CV supports the concept of so called simple constraints which are all
the constraints expressible by the means of the vocabulary, in particular the ones
mentioned in Sect. 3. Each simple constraint has a constraining element. Where
applicable, the names of these elements are inspired by their related DL names,
but the constraining element can also be for example the name of a SPARQL
function. In some cases, the same constraint type can be marked by different
constraining elements as for example the constraint COMP whose constraining
element is the relation used to compare values (e.g. the usual numerical orders:
<,>,≤, and ≥) or there can be different constraint types sharing the same
constraining element. To be sure that cases like this do not cause any ambigu-
ity we additionally assign a constraint type to every constraint. The names of
these types follow the names used by Hartmann [12, Appendix]. The TYPEDEP
constraint from Sect. 4.1 is for example of constraint type :Subsumption.

In addition to constraining element and constraint type, there are several
predicates to assign the constraints to individuals and classes: context class,
classes, leftProperties, rightProperties, and constraining values. The context class
of a constraint fixes the set of individuals for which a constraint must hold.
For the subsumption constraint mentioned above, that would be the class
:Researcher, the constraint talks about every individual labelled as researcher.
There could be other classes involved. In our subsumption example that is the
superclass the individuals should belong to, :Person. Every researcher should
also be labelled as person. Since these kinds of properties can be multiple, they
are given in a list. How and if the predicate classes is used depends on the con-
straint. The predicates leftProperties and rightProperties are used to do similar
statements about properties. The constraint INVFUNC as displayed in Listing 1
makes for example use of it to relate the constraint specified to the predicate it
is valid for. The objects of the predicates leftProperties and rightProperties are
lists. The predicate constraining value is used for the predicates where a literal
value is needed to further specify a constraint. An example for such a constraint

9 https://github.com/boschthomas/RDF-Constraints-Vocabulary.

https://github.com/boschthomas/RDF-Constraints-Vocabulary
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1 @prefix rdfcv: <http://www.dr-thomashartmann.de/phd-thesis/
rdf-validation/vocabularies/rdf-constraints-vocabulary#>.

2 @prefix : <http://example.com/constraints#>.
3 @prefix dbo: <http://dbpedia.org/ontology/> .
4
5 :example_constraint a rdfcv:SimpleConstraint ;
6 :constraintType :InverseFunctionalProperties;
7 rdfcv:constrainingElement :inverse -functional -properties;
8 rdfcv:leftProperties ( dbo:capital );
9 rdfcv:contextClass dbo:Country.

Listing 1. Example inverse functional property constraint: No city can be the capital
of two countries.

is MATCH as described in Sect. 4.1. To express, that a name should not contain
numbers, the predicate constraining value connects the constraint to the string
pattern, "[1-9]" in the present case.

5.3 Constraint Rules

Having seen in the last section one possible way to describe constraints on RDF
datasets, this section explains how these descriptions can be used. We employ
rules which take the expressed constraints and the RDF dataset to be tested
into account and generate triples indicating constraint validations, if present.
We illustrate that by an example: In Listing 2 we provide a rule handling the
constraint INVFUNC. Lines 7–11 contain the details of the constraint. The rule
applies for simple constraints of the type inverse functional properties for which
a context class ?Class and a list ?list of left properties is specified. This part of
the rule’s antecedence unifies with the constraint given in Listing 1. Lines 13–18
describe which situation in the tested data causes a constraint violation: for an
?object which is an instance of ?Class, there are two subjects, ?x1 and ?x2,
defined which are both connected to ?object via ?property. This ?property is
an element of ?list, and the names, i.e. the URI- or string-representations, of
?x1 and ?x differ. The latter is expressed using the predicate log:notEqualTo10

(Line 18). Together with Listing 1 that violation is thus detected if two differ-
ent resource names for resources of the class dbo:Country are connected via
the predicate dbo:capital to the same object. Assuming that :Britain and
:England are both instances of the class dbo:Country, the triples in Formula 6
lead to the violation:

:x a :violaton; :violatedConstraint :example constraint. (12)

The example shown relies on descriptions following the vocabulary Hartmann
suggests, but our approach can easily be adapted for other RDF based constraint
10 As explained in Sect. 4.4 there are alternative ways to express the predicate

log:notEqualTo in N3, the antecedence of the entire rule could also be expressed
only using RIF predicates.
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1 @prefix rdfcv: <http://www.dr-thomashartmann.de/phd-thesis/
rdf-validation/vocabularies/rdf-constraints-vocabulary#> .

2 @prefix : <http://example.com/constraints#> .
3 @prefix list: <http://www.w3.org/2000/10/swap/list#>.
4 @prefix log: <http://www.w3.org/2000/10/swap/log#> .
5
6 {
7 ?constraint a rdfcv:SimpleConstraint ;
8 :constraintType :InverseFunctionalProperties;
9 rdfcv:constrainingElement :inverse -functional -properties;

10 rdfcv:leftProperties ?list;
11 rdfcv:contextClass ?Class.
12
13 ?object a ?Class.
14 ?property list:in ?list.
15 ?x1 ?property ?object.
16 ?x2 ?property ?object.
17 ?x1 log:notEqualTo ?x2
18 }
19 =>
20 {
21 [] a :constraintViolation ;
22 :violatedConstraint ?constraint.
23 }.

Listing 2. Rule for inverse functional property (INVFUNC). The predicate
log:notEqualTo compares the resources based on their URI and thereby supports
the Unique Name Assumption.

vocabularies. All we need is a consistent way to express constraints in RDF. Note
that our rules act directly on constraint descriptions and RDF datasets: while the
SPARQL based approaches [12,21] mentioned in Sect. 2 rely on an extra mapping
step to instantiate the search patterns. If reasoning needs to be included into the
data validation, a rule based system can do reasoning, mapping and constraint
validation in one single step where other systems need to perform three.

6 Conclusion and Future Work

In this paper we investigated the requirements a rule based Web logic needs
to fulfil to be suitable for RDF validation: it should support Scoped Negation
as Failure, it should provide predicates for name comparison, and its built-ins
should be powerful enough to, for example, do string comparisons or access
language tags. Together with the capability to meet its primary purpose, Web
reasoning, such a Web logic is a strong alternative to the common approach
of either combining reasoning and validation in two different steps, for exam-
ple by first performing OWL reasoning and then executing SPARQL queries
on top of the result as done by Hartmann [12], or only executing SPARQL
queries and thereby ignoring possible implicit constraint violations as done in
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RDFUnit [21]. Rule based Web logics fulfilling the requirements still provide
the same expressivity as SPARQL with the additional advantage of supporting
reasoning. Validation and reasoning can thus be done by one single system in
one single step. The practical feasibility of this approach has been shown by
providing a proof-of-concept in N3Logic which supports all RDFUnit constraint
types. As such, we allow users to assess their data quality more easily using
a single rule based validation system, and potentially uncovering more errors.
Thus, improving data quality on the Semantic Web overall.

In future work, we are planning to extend our implementation: we aim to
cover all of the 81 constraints identified by Hartmann et al. [8] which are not
specific to SPARQL. We furthermore envisage to extend the supported RDF
constraint vocabularies and to align our efforts with SHACL. Another direction
of future research will be a better combination of performant reasoning and
validation, following the ideas provided in previous work [3]. Further evaluation
on performance is also to be conducted.
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Abstract. Contemporary approaches for the Semantic Web include
hybrid knowledge bases that combine ontologies with rule-based lan-
guages. Despite a number of existing combination approaches, little
attention has been given to change mechanisms for hybrid knowledge
bases that can appropriately handle the dynamics of information on the
Web. We present here three methods for revising hybrid knowledge bases
in light of new information. We show by means of representation theo-
rems that two of them fit properly into the classic belief change frame-
work and that each of the two generalises the third method.

Keywords: Belief revision · Hybrid knowledge bases · Logic programs ·
Ontologies · Here-and-there logic · Semantic web

1 Introduction

In the last decade, ontologies [9] have become widely accepted as knowledge engi-
neering artefacts in the Semantic Web for modelling domains of expertise. For
example, SNOMED CT1, the Gene Ontology2, and OBO Foundry Ontologies3

represent standardised biomedical terminologies and are well-established within
their field of application. They are usually specified in a fragment of first-order
logic and can be viewed as first-order theories in restricted form. More recently,
ontologies have been integrated with logic programs [4,13] into hybrid knowl-
edge bases to combine monotonic reasoning over the former component with
nonmonotonic reasoning over the latter. A wide array of such integrations have
been proposed (overviews can be found in [7,12,14]), which differ in the way
ontologies and rules are combined. We concentrate here on hybrid knowledge
bases under quantified here-and-there logic [3], because they place no restriction
on the fragment of first-order logic or the class of logic programs to be used in
the composition and capture several other integration approaches.

1 http://www.snomed.org/snomed-ct.
2 http://www.geneontology.org/.
3 http://www.obofoundry.org/.
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For hybrid knowledge bases to be successfully adopted in practical appli-
cations, it is crucial that they are not only static entities but also responsive
to changes as required within the domain. It may be necessary to add new
knowledge or retract some existing knowledge. We focus on this problem by
framing it within the traditional belief change framework [1,8,10], which pro-
vides sets of postulates that any rational change operator should satisfy. While
the framework has been applied to a variety of knowledge representation for-
malisms (e.g., [2,6,23,24]), a particular challenge in constructing appropriate
belief change mechanisms for hybrid knowledge bases lies in their bi-component
nature. Any change operator must be able to handle changes to the theory com-
ponent, the logic program component, or both, depending on the new informa-
tion acquired. When either component is changed, it may have an effect on the
other component and cause the hybrid knowledge base to become inconsistent.

In the following, we address this gap by first adapting a partial meet revi-
sion operator from classical logics to hybrid knowledge bases. We then define
a special case of partial meet revision, called protected revision, allowing to
preferably revise only one component of the hybrid knowledge base. Finally,
we present prioritised revision, a more fine-grained method, where a priority
ordering over individual elements of the hybrid knowledge base determines the
outcome. By evaluating our operators with respect to each other and the revi-
sion postulates, we find that partial meet revision and prioritised revision are
interdefinable and comply with the belief change framework, whereas protected
revision is a restricted version of partial meet revision.

2 Preliminaries

We first formally introduce hybrid knowledge bases under here-and-there logic
and then briefly cover relevant belief change fundamentals.

2.1 Hybrid Knowledge Bases Under Here-and-There Logic

Let L = (C,PT ∪PP ) be a function-free, first-order language, in which C is a set of
constant symbols and PT ,PP are sets of predicate symbols such that C,PT ,PP

are pairwise disjoint. Let L further include the symbols ‘∧’, ‘∨’, ‘→’, ‘¬’, ‘∀’, ‘∃’,
the predicate symbol ‘≈’ for equality, a countably infinite set of variables, and
the standard punctuation marks, as well as the symbols ‘; ’, ‘, ’, ‘not’, ‘←’,
and ‘⊥’. Atoms, formulas, closed formulas, and theories are defined in the usual
way. A (first-order) rule r over L has the form

a1; . . . ; ak;not b1; . . . ;not bl ← c1, . . . , cm, not d1, . . . , not dn. (1)

Here, all ai, bi, ci, di are atoms from L and k, l,m, n ≥ 0. If m = n = 0, then we
omit ‘←’. A hybrid knowledge base (HKB) [3] K = (KT ,KP ) over L consists of
a classical first-order theory KT over the language subset LT = (C,PT ), and a
set of rules of the form (1) over L that constitute a program KP . We write KL
for the class of all HKBs over L.
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A HKB can be used to combine specific constraints that hold in a domain,
expressed by a program component KP , with more general information, captured
by a theory component KT . For instance, a personal assistant system on a mobile
phone may have in its HKB some general information about gender and marriage
as well as some specific information about its user Chris, shown in Example 1.

Example 1. Let C = {Chris,Alex}, PT = {male, female,married}, PP = ∅,
and K = (KT ,KP ) be a HKB over (C,PT ∪ PP ) such that

KT = { ∀x : male(x) → ¬female(x),
∀x, y : married(x, y) → married(y, x),
∀x, y : married(x, y) ∧ female(x) → male(y) },

KP = { female(Chris). }.

�

We extend the usual set operations to HKBs as follows. For any pairs of
sets K1 = (K1

T ,K1
P ), . . . ,Kn = (Kn

T ,Kn
P ), let K1  · · ·  Kn = ({K1

T  · · · 
Kn

T }, {K1
P  · · ·  Kn

P }) for  ∈ {∩,∪}, K1 \ K2 = (K1
T \ K2

T ,K1
P \ K2

P ), and
for i, j ∈ {T, P} with i �= j:

K1 ⊆ K2 iff K1
i ⊆ K2

i and K1
j ⊆ K2

j ,
K1 ⊆i K2 iff K1

i ⊆ K2
i , and if K1

i = K2
i , then K1

j ⊆ K2
j , and

K1 ⊂◦ K2 iff K1 ⊆◦ K2 and K2 �◦ K1 where ⊆◦∈ {⊆,⊆T ,⊆P }.

For any K ∈ KL, let K|T = (KT , ∅), K|P = (∅,KP ), and, for any K ⊆ 2K ,
K|T = { (τ, ∅) | (τ, ρ) ∈ K } and K|P = { (∅, ρ) | (τ, ρ) ∈ K }.

An L structure is a pair I = (U, I), where the universe U = (D, σ) consists
of a non-empty domain D and a function σ from C ∪D to D such that σ(D) = D
for all D ∈ D, and an interpretation I is a set of variable-free atoms that can
be constructed from (C ∪ D,PT ∪ PP ). For a tuple t = (D1, . . . , Dn), we define
σ(t) = (σ(D1), . . . , σ(Dn)). To obtain a ground instance of a rule in KP , we
replace each constant symbol C in the rule by σ(C) and each variable in the rule
by an element from D. The set of all ground instances of rules in KP is written
ground(KP ).

A QHTs
= (quantified here-and-there logic with static domains and equality)

structure with respect to L [18] (or simply QHTs
= structure if L is clear from the

context) is a triple M = (U,H, T ) such that (U,H) and (U, T ) are L structures
with H ⊆ T . Let QHT be the set of all QHTs

= structures over L. For any
set S of QHTs

= structures, by S we denote the complement of S with respect
to QHT , that is, S = QHT \S. We define the satisfaction relation for a QHTs

=

structure M recursively as follows. Let p(t1, . . . , tn) be an atom and φ, ψ closed
formulas built from (C ∪ D,PT ∪ PP ), x be a variable, and w ∈ {H,T}. Then
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M |=w p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ w,

M |=w φ ∧ ψ iff M |=w φ and M |=w ψ,

M |=w φ ∨ ψ iff M |=w φ or M |=w ψ,

M |=T φ → ψ iff M �|=T φ or M |=T ψ,

M |=H φ → ψ iff (i) M |=T φ → ψ and (ii) M �|=H φ or M |=H ψ,

M |=w ¬φ iff M �|=T φ,

M |=T ∀xφ(x) iff M |=T φ(D) for all D ∈ D,

M |=H ∀xφ(x) iff M |=T ∀xφ(x) and M |=H φ(D) for all D ∈ D,

M |=w ∃xφ(x) iff M |=w φ(D) for some D ∈ D,

M |=w t1 ≈ t2 iff σ(t1) = σ(t2).

A QHTs
= structure M is a QHTs

=model of a closed formula φ, denoted
M |= φ, iff M |=w φ for each w ∈ {H,T}. A QHTs

= structure M is a:

– QHTs
= model of a theory KT iff it is a model of all formulas in KT ;

– QHTs
= model of a program KP iff it is a QHTs

= model of all rules in
ground(KP ) where each rule of the form (1) is interpreted as

c1 ∧ · · · ∧ cm ∧ ¬d1 ∧ · · · ∧ ¬dn → a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl ;

– QHTs
= model of a HKB K = (KT ,KP ) iff it is a QHTs

= model of KT

and KP .

The set of all QHTs
= models of K is denoted by QHT (K) and K is satisfiable

iff QHT (K) �= ∅.

Example 2. For K from Example 1, we obtain QHT (K) = {M1,M2,M3,M4,
M5,M6,M7,M8} such that, for i = {1, . . . , 8}, Ui = ({Chris,Alex}, σ) for
each Mi, where σ is the identity function, and Hi, Ti contain the atoms marked
with a H (here) or T (there), respectively, in Table 1. �

Table 1. (H,T )-elements for models of K in Example 1

M1 M2 M3 M4 M5 M6 M7 M8

male(Chris)

male(Alex) H,T H,T T H,T T

female(Chris) H,T H,T H,T H,T H,T H,T H,T H,T

female(Alex) H,T T

married(Chris, Alex) H,T T T

married(Alex,Chris) H,T T T
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2.2 Belief Change

The belief base framework [8,10,19] of belief change defines expansion, revision,
and contraction as the operations on a body of beliefs held by an agent, called
a belief base, in light of some new information. In an expansion, new beliefs are
simply added to an existing belief base, regardless of any inconsistencies that
may arise. A revision operation also incorporates new beliefs into a belief base,
but may discard some existing beliefs to ensure consistency of the outcome.
During a contraction, some beliefs are removed from a belief base but no new
beliefs are added. Particularly, and contrary to other frameworks, a belief base is
not required to be closed under logical consequence, which makes this framework
suitable for consideration regarding belief change in HKBs.

For propositional logic, Hansson [11] defined a partial meet (base) contraction
operator −γ for a belief base B and a sentence φ as B −γ φ =

⋂
γ(B⊥φ),

where B⊥φ = {B′ ⊆ B | B′ �� φ and, for all B′′, B′ ⊂ B′′ ⊆ B implies
B′′ � φ } and γ is a selection function such that γ(B⊥φ) = {B} if B⊥φ = ∅,
and ∅ �= γ(B⊥φ) ⊆ B⊥φ otherwise. He determined a set of four postulates that
exactly characterises the class of partial meet contraction operators. He further
defined a corresponding partial meet (base) revision operator �γ as B �γ φ =
(B −γ ¬φ) ∪ {φ} and showed that a set of five postulates exactly characterises
the class of partial meet revision operators.

We now translate these five revision postulates to HKBs, so that we can
later evaluate the rationality of our proposed operators. Let + be an expansion
operator for K ∈ KL such that for any K ′ ∈ KL, K+K ′ = K∪K ′. The postulates
are as follows, where we assume K,K ′,K ′′ ∈ KL and a revision operator ∗ to be
a function from KL × KL to KL.

(∗1) K ′ ⊆ K ∗ K ′
(∗2) K ∗ K ′ ⊆ K + K ′
(∗3) If κ ⊆ K \ (K ∗ K ′), then there exists a κ′ ∈ KL such that K ∗ K ′ ⊆ κ′ ⊂

K + K ′ and κ′ is satisfiable but κ′ ∪ κ is not satisfiable
(∗4) If it holds for all κ ⊆ K that κ + K ′ is satisfiable iff κ + K ′′ is satisfiable,

then K ∩ (K ∗ K ′) = K ∩ (K ∗ K ′′)
(∗5) If K ′ is satisfiable, then K ∗ K ′ is satisfiable

3 Revision in Hybrid Knowledge Bases

In this section, we introduce three new methods for revising HKBs. We begin
with an adaptation of partial meet revision (Sect. 3.1), then define a method
that prioritises either component of a HKB in its entirety during a revision,
called protected revision (Sect. 3.2), and finally propose a method that prioritises
individual elements of a HKB, termed prioritised revision (Sect. 3.3).

3.1 Partial Meet Revision

As the foundation of our revision operations, we define the subsets of a HKB
that are consistent with another HKB.



42 S. Binnewies et al.

Definition 1 (Compatible Set). Let K,K ′ ∈ KL and ⊆◦∈ {⊆,⊆T ,⊆P }.
The set of compatible sets of K regarding K ′ is

KK′,⊆◦ = {κ = (τ, ρ) | κ ⊆ K,QHT (κ) ∩ QHT (K ′) �= ∅, and,
for all κ′ = (τ ′, ρ′), κ ⊂◦ κ′ ⊆ K implies
QHT (κ′) ∩ QHT (K ′) = ∅ }.

To construct our revision, we will further make use of a selection function
that chooses from a set of compatible sets the most suitable ones. As we aim to
employ our selection function for different types of compatible sets, we define it
here with respect to an arbitrary set.

Definition 2 (Selection Function). A selection function γ for a set S is a
function such that (i) S ⊆ 2S, (ii) γ(S) ⊆ S, and (iii) if S �= ∅, then γ(S) �= ∅.

We are now ready to introduce a partial meet revision operator for HKBs as
follows.

Definition 3 (Partial Meet Revision). Let K ∈ KL and γ be a selection
function for K. A partial meet revision operator ∗γ for K is defined such that
for any K ′ ∈ KL:

K ∗γ K ′ =

{
K + K ′ if K ′ is not satisfiable,
⋂

γ(KK′,⊆) + K ′ otherwise.

Since one of the maxims for belief revision is to ensure primacy of new infor-
mation [5], our revision operator ∗γ always includes the information expressed
by the revising HKB K ′ in the outcome. In addition, the main characteristic that
distinguishes a revision from an expansion is that the former aims at providing a
consistent outcome. In the case that K ′ is itself not satisfiable, our revision oper-
ator returns the combination of K ′ and the initial HKB K in its entirety, since
no removal of any part of K would lead to a satisfiable outcome. This behaviour
adheres to the maxim of persistence of prior knowledge [5]. In all other cases, the
revision operator returns the intersection of the selected compatible sets of K
added to K ′.

We obtain the following representation theorem, stating that our partial meet
revision operator ∗γ is exactly characterised by the postulates (∗1)–(∗5).

Lemma 1. Let K,K ′ ∈ KL and γ be a selection function for K. If κ ⊆ K ∩K ′,
then κ ⊆◦

⋂
γ(KK′,⊆◦).

Theorem 1. An operator ∗γ is a partial meet revision operator for K ∈ KL
determined by a selection function γ for K iff ∗γ satisfies (∗1)–(∗5).

Proof. We first show that a partial meet revision operator ∗γ for K determined
by a given selection function γ for K satisfies (∗1)–(∗5).

(∗1): Follows directly from Definition 3.
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(∗2): If K ′ is not satisfiable, then K ∗γ K ′ = K + K by Definition 3. Otherwise,
since

⋂
γ(KK′,⊆) ⊆ K we have

⋂
γ(KK′,⊆) + K ′ ⊆ K + K ′.

(∗3): Let κ ⊆ K. Assume that for all κ′ with K ∗γ K ′ ⊆ κ′ ⊂ K + K ′ and
κ′ being satisfiable, it holds that κ′ ∪ κ is satisfiable. In particular, for each
κ′′ ∈ KK′,⊆ with K ∗γ K ′ ⊆ κ′′ ∪ K ′, this implies κ′′ ∪ K ′ ∪ κ is satisfiable.
As each κ′′ is ⊆-maximal, it follows that κ ⊆ κ′′ and thus κ ⊆

⋂
γ(KK′,⊆).

From Definition 3 we can then conclude κ � K \ (K ∗γ K ′).
(∗4): For all κ ⊆ K, let κ + K ′ be satisfiable iff κ + K ′′ is satisfiable. Then

KK′,⊆ = KK′′,⊆ by Definition 1 and so
⋂

γ(KK′,⊆) =
⋂

γ(KK′′,⊆) as well as
K∩

⋂
γ(KK′,⊆) = K∩

⋂
γ(KK′′,⊆). By Lemma 1 we obtain (K∩

⋂
γ(KK′,⊆))∪

(K∩K ′) = (K∩
⋂

γ(KK′′,⊆))∪(K∩K ′′). This means K∩(
⋂

γ(KK′,⊆)∪K ′) =
K ∩ (

⋂
γ(KK′′,⊆) ∪ K ′′). Thus, K ∩ (K ∗γ K ′) = K ∩ (K ∗γ K ′′).

(∗5): If K ′ is satisfiable, then, for any κ ∈ KK′,⊆, κ + K ′ is satisfiable, which
implies K ∗γ K ′ is satisfiable.

We now show that any operator ◦γ for K satisfying (∗1)–(∗5) is a partial meet
revision operator for K determined by some selection function for K. We first
find a selection function γ for K. Let γ be such that (i) if KK′,⊆ = ∅, then
γ(KK′,⊆) = ∅ and (ii) γ(KK′,⊆) = {κ ∈ KK′,⊆ | K ∩ (K ◦γ K ′) ⊆ κ } otherwise.

We begin by showing that γ is a function. For any K ′,K ′′ ∈ KL, if KK′,⊆ =
KK′′,⊆, then K ∩ (K ◦γ K ′) = K ∩ (K ◦γ K ′′) by (∗4). This means γ(KK′,⊆) =
γ(KK′′,⊆) according to our definition of γ.

We next show that γ is a selection function. Clearly, γ(KK′,⊆) ⊆ KK′,⊆ by
our definition of γ. If KK′,⊆ �= ∅, then K ′ is satisfiable by Definition 1 and thus
K ◦γ K ′ is satisfiable by (∗5). Since K ′ ⊆ K ◦γ K ′ by (∗1) and K ◦γ K ′ ⊆ K ∪K ′

by (∗2), it follows that (K ∩ (K ◦γ K ′))∪K ′ is satisfiable. This means that there
exists κ ∈ KK′,⊆ such that K ∩ (K ◦γ K ′) ⊆ κ. From our definition of γ we
therefore obtain that γ(KK′,⊆) �= ∅.

Finally, we show that ◦γ is a partial meet revision operator for K, that is,
K◦γK ′ = K∪K ′ if K ′ is not satisfiable and K◦γK ′ =

⋂
γ(KK′,⊆)∪K ′ otherwise.

Consider first the limiting case that K ′ is not satisfiable. If κ ⊆ K \ (K ◦γ K ′),
then there exists κ′ such that K ◦γ K ′ ⊆ κ′ ⊂ K ∪ K ′ and κ′ is satisfiable but
κ′ ∪ κ is not satisfiable by (∗3). This is a contradiction since K ′ ⊆ κ′ by (∗1).
Therefore, it holds for all κ ⊆ K that κ ⊆ K ◦γ K ′, that is, K ⊆ K ◦γ K ′.
Since K ′ ⊆ K ◦γ K ′ by (∗1) and K ◦γ K ′ ⊆ K ∪ K ′ by (∗2), we can conclude
K ◦γ K ′ = K ∪ K ′.

Assume now that K ′ is satisfiable. Let κ ⊆ K \ (K ◦γ K ′). If KK′,⊆ = ∅, then
it follows from (∗1) and (∗3) that K ◦γ K ′ = K ′. Since γ(KK′,⊆) = ∅ by our
definition of γ, we thus have K◦γK ′ = K ′ =

⋂
γ(KK′,⊆)∪K ′. If KK′,⊆ �= ∅, then

it follows directly from our definition of γ that K∩(K◦γK ′) ⊆
⋂

γ(KK′,⊆). From
(∗1) and (∗2) we then obtain K ◦γ K ′ ⊆

⋂
γ(KK′,⊆)∪K ′. To show the converse

inclusion, first assume the case that K∪K ′ is satisfiable. This implies that for any
κ′ ⊆ K∪K ′ it holds that κ′ is satisfiable. Applying (∗3), we obtain K\(K◦γK ′) =
∅ and thus K ⊆ K ◦γ K ′. From (∗1) and (∗2) it follows that K ◦γ K ′ = K ∪ K ′.
Moreover, due to the assumption that K ∪ K ′ is satisfiable and Definition 1, we
have KK′,⊆ = {K}. By our definition of γ, we obtain γ(KK′,⊆) = {K} and thus
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⋂
γ(KK′,⊆) = K and can conclude K ◦γ K ′ =

⋂
γ(KK′,⊆) ∪ K ′. Lastly, assume

the case that K ∪ K ′ is not satisfiable. We will show that κ � K ◦γ K ′ implies
κ �

⋂
γ(KK′,⊆) ∪ K ′. If κ � K, then κ � (K ◦γ K ′) \ K ′ by (∗1) and (∗2) and

κ �
⋂

γ(KK′,⊆) by Definition 1. Since κ � K ◦γ K ′ implies κ � K ′ by (∗1), it
follows that κ � ((K ◦γ K ′) \ K ′) ∪ K ′) = K ◦γ K ′ and κ ⊆

⋂
γ(KK′,⊆) ∪ K ′.

Now assume κ ⊆ K \ (K ◦γ K ′). According to (∗3), then there exists κ′ such
that K ◦γ K ′ ⊆ κ′ ⊂ K ∪ K ′ and κ′ is satisfiable but κ′ ∪ κ is not satisfiable.
This means that there exists κ′′ ∈ KK′,⊆ such that K ∩ κ′ ⊆ κ′′ and κ � κ′′.
Since K ∩ (K ◦γ K ′) ⊆ K ∩ κ′ ⊆ κ′′, we obtain from our definition of γ that
κ′′ ∈ γ(KK′,⊆). We can thus conclude from κ � κ′′ that κ �

⋂
γ(KK′,⊆). ��

3.2 Protected Revision

As a HKB consists of two components, it may be desirable to emphasise one
component over the other during a revision operation. We can achieve this by a
protected revision, which keeps the theory (or program) component of the initial
HKB intact as much as possible whenever the theory (or program) component
of the revising HKB is compatible with the initial HKB.

Definition 4 (Protected Revision). Let K ∈ KL and γ be a selection func-
tion for K. A protected revision operator ∗γ,⊆◦ for K is defined such that for
any K ′ ∈ KL:

K ∗γ,⊆◦ K ′ =

{
K + K ′ if K ′ is not satisfiable,
⋂

γ(KK′,⊆◦) + K otherwise,

where ⊆◦=⊆T if K + K ′|T is satisfiable, ⊆◦=⊆P if K + K ′|P is satisfiable, and
⊆◦=⊆ otherwise.

In contrast to our partial meet revision operator, the protected revision opera-
tor ∗γ,⊆◦ relies on selecting only among those compatible sets that have a maximal
theory (or program) component, whenever K + K ′|T (K + K ′|P , respectively) is
satisfiable. The two revision operators coincide whenever neither K + K ′|T nor
K + K ′|P is satisfiable. Obviously, the parameter ⊆◦ could also be fixed to ⊆T

(or⊆P ) in settingswhere the theory (program, respectively) component is required
to have absolute priority over the other. We illustrate the operation of protected
revision in the following example.

Example 3. Consider again K from Example 1. Suppose the user Chris now
states the command: “Call my wife Alex.” This input by the user contains new
information, i.e., Alex is female and Chris is married to Alex, to be added to K.
Formally, let K ′ = (K ′

T ,K ′
P ) ∈ KL with K ′

T = ∅ and K ′
P = { female(Alex).,

married(Chris,Alex). }. Since K ′
T = ∅, K + K ′|T is satisfiable and we obtain

KK′,⊆T
= {(KT , ∅)}. Thus, K ∗γ,⊆T

K ′ = (KT ,K ′
P ). �

The next proposition establishes that partial meet revision is a generalisation
of protected revision.
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Proposition 1. Let K,K ′ ∈ KL. For any selection function γ for K, there
exists a selection function γ′ for K such that K ∗γ,⊆◦ K ′ = K ∗γ′ K ′.

Proof. Let K,K ′ ∈ KL and γ be a selection function for K. In the limiting
case that K ′ is not satisfiable, it holds by Definitions 3 and 4 that K ∗γ,⊆◦ K ′ =
K+K ′ = K∗γ K ′ for any selection function γ′. Otherwise, since KK′,⊆◦ ⊆ KK′,⊆
for ⊆◦∈ {⊆,⊆T ,⊆P } by Definition 1, we can choose a selection function γ′ for K
such that γ′(KK′,⊆) = γ(KK′,⊆◦). From Definitions 3 and 4 it then follows that
K ∗γ,⊆◦ K ′ = K ∗γ′ K ′. ��

The other direction of the proposition does not hold because the use of
the parameter ⊆◦ in Definition 4 restricts the compatible sets to be included
in KK′,⊆◦ . Due to this restriction, protected revision also does not satisfy (∗4).
If we consider the weaker postulate (∗4c) below, then we can show that our
protected revision operator ∗γ,⊆◦ satisfies (∗1)–(∗3), (∗4c), and (∗5).

(∗4c) If it holds for all κ ⊆ K that κ+K ′|T is satisfiable iff κ+K ′′|T is satisfiable
and κ + K ′|P is satisfiable iff κ + K ′′|P is satisfiable, then K ∩ (K ∗ K ′) =
K ∩ (K ∗ K ′′)

Theorem 2. Let K ∈ KL and γ be a selection function for K. If ∗γ,⊆◦ is a
protected revision operator for K, then ∗γ,⊆◦ satisfies (∗1)–(∗3), (∗4c), and (∗5).

Proof. (∗1)–(∗3) and (∗5): Follow analogously to the proofs for Theorem 1.
(∗4c): Assume that for all κ ⊆ K, it holds that κ+K ′|T is satisfiable iff κ+K ′′|T
is satisfiable and κ + K ′|P is satisfiable iff κ + K ′′|P is satisfiable. We proceed
by cases.
Case 1: K + K ′|T is satisfiable. This implies K + K ′′|T is satisfiable by the
assumption and thus KK′|T ,⊆◦ = K = KK′′|T ,⊆◦ by Definition 1. In particular,
KK′|T ,⊆T

= K = KK′′|T ,⊆T
as Definition 4 requires ⊆◦=⊆T . Since κ + K ′|P

is satisfiable iff κ + K ′′|P is satisfiable for all κ ⊆ K by the assumption, we
obtain KK′,⊆T

= KK′′,⊆T
by Definition 1. Then

⋂
γ(KK′,⊆T

) =
⋂

γ(KK′′,⊆T
)

as well as K ∩
⋂

γ(KK′,⊆T
) = K ∩

⋂
γ(KK′′,⊆T

). By Lemma 1 we obtain (K ∩⋂
γ(KK′,⊆T

)) ∪ (K ∩ K ′) = (K ∩
⋂

γ(KK′′,⊆T
)) ∪ (K ∩ K ′′). This means K ∩

(
⋂

γ(KK′,⊆T
) ∪ K ′) = K ∩ (

⋂
γ(KK′′,⊆T

) ∪ K ′′). Thus, K ∩ (K ∗γ,⊆T
K ′) =

K ∩ (K ∗γ,⊆T
K ′′).

Case 2: K + K ′|P is satisfiable. Follows symmetrically to Case 1.
Case 3: Neither K + K ′|T nor K + K ′|P is satisfiable. This implies neither
K + K ′′|T nor K + K ′′|P is satisfiable by the assumption as well as ⊆◦=⊆ by
Definition 4. Thus, ∗γ,⊆◦ = ∗γ and the proof reduces to the one for satisfaction
of (∗4) in Theorem 1. ��

At this point it becomes interesting to investigate how protected revision
relates to a “stepwise” application of partial meet revision, that is, K|P ∗γ (K|T ∗γ

K ′) or K|T ∗γ (K|P ∗γ K ′). It turns out that the result of protected revision
K ∗γ,⊆T

K ′ is a subset of the result of stepwise revision K|P ∗γ (K|T ∗γ K ′),
provided that the selection function chooses similar sets in each respective oper-
ation, more specifically, the same theory-maximal compatible sets for protected
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revision as for the first step of stepwise revision and only those compatible sets
for the second step of stepwise revision that include the program component of a
selected compatible set for protected revision (analogously for K|T ∗γ (K|P ∗γ K ′)
and K ∗γ,⊆P

K ′). Before we show these results formally in Propositions 2 and 3,
we introduce some useful notation. For any K,K ′ ∈ KL, let

TK′ = { (τ, ∅) | τ ⊆ KT , QHT ((τ, ∅)) ∩ QHT (K ′) �= ∅, and, for all τ ′,
τ ⊂ τ ′ ⊆ KT implies QHT ((τ ′, ∅)) ∩ QHT (K ′) = ∅ },

PK′ = { (∅, ρ) | ρ ⊆ KP , QHT ((∅, ρ)) ∩ QHT (K ′) �= ∅, and, for all ρ′,
ρ ⊂ ρ′ ⊆ KP implies QHT ((∅, ρ′)) ∩ QHT (K ′) = ∅ }.

Proposition 2. Let K,K ′ ∈ KL and K + K ′|T be satisfiable. There exists a
selection function γ for K such that K ∗γ,⊆T

K ′ ⊆ K|P ∗γ (K|T ∗γ K ′).

Proof. Let K,K ′ ∈ KL and K +K ′|T be satisfiable. Assume that γ is a selection
function for K such that γ(TK′) = γ(KK′,⊆T

)|T and γ(PK|T ∗γK′) = { (∅, ρ) |
(∅, ρ′) ∈ γ(KK′,⊆T

)|P and (∅, ρ′) ⊆ (∅, ρ) }. If K ′ is not satisfiable, then it follows
directly from Definitions 3 and 4 that K∗γ,⊆T

K ′ = K+K ′ = K|P ∗γ (K|T ∗γ K ′).
Otherwise, it follows from Definition 1 and our definition of TK′ that TK′ =
KK′,⊆T

|T . Due to the assumption, this implies
⋂

γ(TK′) =
⋂

γ(KK′,⊆T
)|T . For

each (τ, ∅) ∈ γ(KK′,⊆T
)|T , since

⋂
γ(TK′) ⊆ (τ, ∅) it holds that QHT ((τ, ∅)) ∩

QHT (K ′) ⊆ QHT (
⋂

γ(TK′)) ∩ QHT (K ′). Thus, for each (∅, ρ) ∈ γ(KK′,⊆T
)|P

there exists a (∅, ρ′) ∈ PK|T ∗γK′ such that (∅, ρ) ⊆ (∅, ρ′). From the assumption
we then obtain

⋂
γ(KK′,⊆T

)|P ⊆
⋂

γ(PK|T ∗γK′), which implies K ∗γ,⊆T
K ′ ⊆

K|P ∗γ (K|T ∗γ K ′) by Definitions 3 and 4. ��

Proposition 3. Let K,K ′ ∈ KL and K + K ′|P be satisfiable. There exists a
selection function γ for K such that K ∗γ,⊆P

K ′ ⊆ K|T ∗γ (K|P ∗γ K ′).

Proof. Let K,K ′ ∈ KL and K +K ′|P be satisfiable. Assume that γ is a selection
function for K such that γ(PK′) = γ(KK′,⊆P

)|P and γ(TK|P ∗γK′) = { (τ, ∅) |
(τ ′, ∅) ∈ γ(KK′,⊆P

)|T and (τ ′, ∅) ⊆ (τ, ∅) }. The proof then follows symmetrically
to the proof of Proposition 2. ��

For completeness, we also show here the relationship between stepwise revi-
sion and partial meet revision in Propositions 4 and 5, namely, that the result of
stepwise revision is a subset of the result of partial meet revision, given that the
selection function behaves similarly in each operation. Particularly, this is the
case for K|P ∗γ (K|T ∗γ K ′) whenever the theory part of K retained in the first
step of stepwise revision is included in each selected compatible set for partial
meet revision and the set of selected compatible sets for the second step of step-
wise revision is the same as the set of program parts in the selected compatible
sets for partial meet revision (analogously for K|T ∗γ (K|P ∗γ K ′)).

Proposition 4. Let K,K ′ ∈ KL. There exists a selection function γ for K such
that K|P ∗γ (K|T ∗γ K ′) ⊆ K ∗γ K ′.
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Proof. Let K,K ′ ∈ KL. Assume that γ is a selection function for K such that, for
any (τ, ρ) ∈ γ(KK′,⊆),

⋂
γ(TK′) ⊆ (τ, ∅) and γ(PK|T ∗γK′) = γ(KK′,⊆)|P . If K ′

is not satisfiable, then it follows directly from Definition 3 that K|P ∗γ (K|T ∗γ

K ′) = K + K ′ = K ∗γ K ′. Otherwise, for any (∅, ρ′) ∈ PK|T ∗γK′ , there exists
a (τ ′′, ρ′′) ∈ KK′,⊆ such that (∅, ρ′) = (∅, ρ′′) by Definition 1 and our definition
of PK′ and (K|T ∗γ K ′) \ K ′ =

⋂
γ(TK′) ⊆ (τ ′′, ∅) by Definitions 1 and 3.

Due to the assumption, it then follows that
⋂

γ(KK′,⊆)|P =
⋂

γ(PK|T ∗γK′)
and

⋂
γ(TK′) ⊆

⋂
γ(KK′,⊆)|T . This implies K|P ∗γ (K|T ∗γ K ′) ⊆ K ∗γ K ′ by

Definition 3. ��

Proposition 5. Let K,K ′ ∈ KL There exists a selection function γ for K such
that K|T ∗γ (K|P ∗γ K ′) ⊆ K ∗γ K ′.

Proof. Let K,K ′ ∈ KL. Assume that γ is a selection function for K such that,
for any (τ, ρ) ∈ γ(KK′,⊆),

⋂
γ(PK′) ⊆ (∅, ρ) and γ(TK|P ∗γK′) = γ(KK′,⊆)|T .

The proof then follows symmetrically to the proof of Proposition 4. ��

3.3 Prioritised Revision

While protected revision allows us to emphasise entire components of a HKB
during a revision, its flexibility is somewhat limited. Specifically, in Example 3
above we saw that the theory component of K was fully preserved due to the
structure of the new information K ′. Intuitively, the revision outcome states
that the unisex name Chris was incorrectly identified or entered as female. Yet,
what if Chris is actually female and she married Kate after the law changed
to allow same-sex marriage? In that case, we need to have a more fine-grained
method than protected revision to allow the theory component to be changed.
We therefore define prioritised revision now, based on an idea by Nebel [17].

Definition 5 (Priority Level). Let K ∈ KL and ≤ be a total preorder on
KT ∪ KP . A priority level of K is

λ = { (τ, ρ) ⊆ K | e1 ≤ e2 and e2 ≤ e1 for all e1, e2 ∈ τ ∪ ρ }.

We call ≤ defined as above a prioritisation of K. Furthermore, for all e1 ∈ λ1

and e2 ∈ λ2, we write λ1 ≤ λ2 iff e1 ≤ e2, and λ1 < λ2 iff e1 ≤ e2 and e2 � e1. A
prioritisation partitions K into a hierarchical sequence of levels and places each
formula or rule of K in a particular level. We modify our definition of compatible
sets to include priority levels.

Definition 6 (Prioritised Compatible Set). Let K,K ′ ∈ KL and ≤ be a
prioritisation of K. The set of prioritised compatible sets of K regarding K ′ is

KK′,≤ = { (τ, ρ) | (τ, ρ) =
⋃

λ⊆K

(τλ, ρλ)},

such that for all λ ⊆ K:
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(a) (τλ, ρλ) ⊆ λ,
(b) QHT (

⋃
λ≤λ′(τλ′ , ρλ′)) ∩ QHT (K ′) �= ∅, and

(c) for all (τ ′
λ, ρ′

λ) ⊆ λ, (τλ, ρλ) ⊂ (τ ′
λ, ρ′

λ) implies QHT (
⋃

λ<λ′(τλ′ , ρλ′)) ∩
QHT ((τ ′

λ, ρ′
λ)) ∩ QHT (K ′) = ∅.

Each prioritised compatible set is composed of a maximal subset of the high-
est level that is compatible with K ′, a maximal subset of the next highest level
that is compatible with K ′ and the subsets formed previously in higher levels,
and so on. With these concepts established, we can now define a prioritised
revision operator as follows.

Definition 7 (Prioritised Revision). Let K ∈ KL and ≤ be a prioritisation
of K. A prioritised revision operator ∗≤ for K is defined such that for any
K ′ ∈ KL:

K ∗≤ K ′ =

{
K + K ′ if K ′ is not satisfiable,
⋂

KK′,≤ + K ′ otherwise.

Whenever K ′ is satisfiable, our prioritised revision operator ∗≤ returns those
elements of K that are common to all prioritised compatible sets together
with K ′. The following example illustrates the operation of prioritised revision
and shows that it can indeed return the desired result with respect to our running
example, that is, appropriately represent a change in marriage legislation.

Example 4. Consider again K from Example 1 and K ′ from Example 3. Let ≤
be a prioritisation of K such that assertion of the user’s gender is given higher
priority than prohibition of same-sex marriage. Formally, let λ1 = ({ ∀x, y :
married(x, y) ∧ female(x) → male(y) }, ∅), λ2 = (∅, { female(Chris).}), λ3 =
K \ (λ1 ∪ λ2), and λ1 < λ2 < λ3. It then follows that KK′,≤ = {λ2 ∪ λ3} and
thus K ∗≤ K ′ = λ2 ∪ λ3 ∪ K ′. �

Comparing our prioritised revision operator to our partial meet revision oper-
ator, we find that they coincide, as stated in Propositions 6 and 7.

Proposition 6. Let K,K ′ ∈ KL. For any selection function γ for K, there
exists a prioritisation ≤ of K such that K ∗γ K ′ = K ∗≤ K ′.

Proof. Let K,K ′ ∈ KL and γ be a selection function for K that determines
the outcome of K ∗γ K ′. By S =

⋂
γ(KK′,⊆) we denote the part of K that is

preserved in the partial meet revision and by S′ = K \ S the part of K that is
discarded. We can then create a prioritisation ≤ of K as follows. In the limiting
case that S = ∅, let ≤ consist of one level λ1 = S′ only. From Definitions 1 and 6
it then follows that KK′,⊆ = KK′,≤. Since γ(KK′,⊆) ⊆ KK′,⊆ by Definition 2 and⋂

γ(KK′,⊆) = ∅ by the assumption, we obtain
⋂

KK′,≤ = ∅ and consequently
K ∗γ K ′ = K ∗≤ K ′. Otherwise, let ≤ consist of exactly two levels λ1 and λ2 such
that λ1 = S′, λ2 = S, and λ1 < λ2. We now show that

⋂
KK′,≤ = S. For any

κ ∈ KK′,≤, it follows from Definition 6 and our choice of ≤ that S ⊆ κ, which
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implies S ⊆
⋂

KK′,≤ by Definition 7. Assume that there exists a κ′ ⊆ S′ such
that κ′ ⊆

⋂
KK′,≤. Then for each compatible set κ′′ ∈ KK′,⊆ with S ⊆ κ′′ it

would hold that κ′ ⊆ κ′′ because κ′′ is maximal by Definition 1. Yet, this would
imply κ′ ⊆

⋂
γ(KK′,⊆) and thus κ′ ⊆ S, a contradiction. ��

Proposition 7. Let K,K ′ ∈ KL. For any prioritisation ≤ of K, there exists a
selection function γ for K such that K ∗≤ K ′ = K ∗γ K ′.

Proof. Let K,K ′ ∈ KL and ≤ be a prioritisation of K that determines the
outcome of K ∗γ K ′. In the trivial case that K ′ is not satisfiable, we have K ∗≤
K ′ = K + K ′ = K ∗γ K ′. Let K ′ be satisfiable in the following. We first show
that for any prioritised compatible set κ1 ∈ KK′,≤, there exists a compatible
set κ2 ∈ KK′,⊆ such that κ1 = κ2. It follows directly from Definitions 1 and 6
that κ1 ⊆ κ2. Assume that κ1 ⊂ κ2. From Definition 6 it would then follow that
QHT (κ1) ∩ QHT (κ2 \ κ1) ∩ QHT (K ′) = ∅. Yet, this is a contradiction since
QHT (κ2) ∩ QHT (K ′) �= ∅ by Definition 1 and κ1 is required to be maximal
by Definition 6. Thus, for any κ1 ∈ KK′,≤ it holds that κ1 ∈ KK′,⊆, that is,
KK′,≤ ⊆ KK′,⊆. We can now set γ as a selection function for K such that
γ(KK′,⊆) = KK′,≤ and consequently obtain K ∗≤ K ′ = K ∗γ K ′. ��

Since prioritised revision and partial meet revision coincide, it also holds that
prioritised revision generalises protected revision and further that prioritised
revision is exactly characterised by the postulates (∗1)–(∗5).

Corollary 1. Let K,K ′ ∈ KL. For any selection function γ for K, there exists
a prioritisation ≤ of K such that K ∗γ,⊆◦ K ′ = K ∗≤ K ′.

Proof. Follows directly from Propositions 1 and 6. ��

Theorem 3. Let K ∈ KL. An operator ∗≤ is a prioritised revision operator
for K determined by a prioritisation ≤ of K iff ∗≤ satisfies (∗1)–(∗5).

Proof. Follows directly from Theorem 1 and Propositions 6 and 7. ��

4 Related Work

Closest related work concerns itself with belief update, a relative of belief revi-
sion, in hybrid MKNF knowledge bases [21], which combine first-order theories
and logic programs in a different semantic composition to the one considered here.
That approach takes the combination of an initial HKB and an updating HKB and
splits it into hierarchical levels, similar to the process of logic program stratifica-
tion, such that updating information is given priority. It then applies given ontol-
ogy update and rule update semantics to the respective components to evaluate
the models of the updated HKB. In contrast to our prioritised revision, the update
method does not allow arbitrary combinations of formulas and rules on the same
level. In addition, since the update operation preserves all existing information
and relies on the chosen semantics to determine a satisfiable outcome, the initial
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HKB grows with each operation and may contain duplicate elements to express
information that was first asserted, then contradicted, and later asserted again.

Multi-context systems allow reasoning over two or more knowledge bases,
specified in some monotonic or nonmonotonic logic, by connecting them via
nonmonotonic bridge rules. An adaptation of Dalal’s [5] and Satoh’s [20] classic
belief revision operators to multi-context systems [22] computes the outcome of
revising one multi-context system by another as the set of those models of the
revising multi-context system that are closest to the ones of the initial multi-
context system, where closeness is determined by Dalal’s or Satoh’s notion of
distance. The adaptation to multi-context systems exhibits the same properties
as the classic construction with respect to the belief revision postulates.

To assist with the task of rule authoring in HKBs, inductive logic program-
ming can be used to learn new rules from the existing rules and formulas in
a HKB [15]. As any induced rule is consistent with existing knowledge and no
existing knowledge is removed, this process can be compared to screened revision
[16] where the entire existing HKB is protected.

5 Conclusion

In this study, we proposed three operators to revise hybrid knowledge bases,
namely, a general partial meet revision operator that does not assume any order-
ing of the elements of a hybrid knowledge base, a protected revision operator
that emphasises the theory or program component of a hybrid knowledge base
depending on the structure of information in the revising hybrid knowledge base,
and lastly a prioritised revision operator that computes the outcome based on a
pre-defined priority ordering among the elements in a hybrid knowledge base. We
demonstrated the interdefinability between our operators, provided representa-
tion theorems for partial meet revision and prioritised revision with respect to
the belief revision postulates, and showed that partial meet revision as well as
prioritised revision are generalisations of protected revision.

It is straightforward to define corresponding partial meet, protected, and
prioritised contraction operators, by using the complement of QHT (K ′) in the
definitions of compatible sets. Properties and representation theorems analo-
gous to revision can then be obtained, after translating the classic contraction
postulates in a similar manner as the ones for revision.

While our operators return a revised hybrid knowledge base, they do not
specify how a selection function or prioritisation changes during the operation.
In future work, we aim to investigate such an extension to our approach.
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Abstract. Test automation is adopted by the majority of software and
hardware producers since it speeds up the testing phase and allows to
design and perform a large bunch of tests that would be hardly man-
ageable in a manual way. When dealing with the testing of hardware
instruments, different physical environments have to be created so that
the instruments under test can be analyzed in different scenarios, involv-
ing disparate components and software configurations.

Creating a test case is a time consuming activity: test cases should
be reused as much as possible. Unfortunately, when a physical test plant
changes or a new one is created, understanding if existing test cases can
be executed over the updated or new test plant is extremely difficult.

In this paper we present our approach for checking the compliance of
a test case w.r.t. a physical test plant characterized by its devices and
their current configuration. The compliance check, which is fully auto-
mated and exploits a logic-based approach, answers the query “Can the
test case A run over the physical configured test plant B”?

Keywords: Test automation · Test case compliance · Logic program-
ming

1 Introduction

Defects, or so-called bugs, are very common in software development and cause
enormous economic losses. According to a research carried out by Cambridge
University in 20131, the global cost of debugging software has risen to $312
billion annually. The research found that, on average, software developers spend
50% of their programming time finding and fixing bugs.

Nowadays, software organizations invest a lot of time and money in analyzing
and testing software, trying to keep up with developers who have to continuously
modify the product throughout the entire software testing life cycle. For a long

1 http://www.prweb.com/releases/2013/1/prweb10298185.htm.
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time, software testing has been conducted manually: a human tester runs the
application using predefined processes to verify the correct behavior of the code.
Nowadays manual testing is definitely less popular because some tasks are dif-
ficult to face manually, they can be repetitive and boring and, most important,
they are often uselessly time consuming and error prone.

Today, to improve the testing phase, automation frameworks are widely
adopted: they are integrated systems that automatically perform a set of tests
over a specific product, offering scheduling policies, reports, test creation facili-
ties and many other services. Scientists addressed the problem of automating the
software testing stage starting from the end of the nineties [7,8] and the benefits
of test automation, at least for some kind of processes and situations, were soon
clear [12]. The research area became more and more important, with the birth
of many conferences and workshops2 and the publication of tens of books and
manuals over the years [10,11,20,26]. Test automation is still an extremely lively
research field, and recent works confirm the favorable impacts of software test
automation in software cost, quality and time to market [16].

One of the most important aspects in test automation is tests reusability:
companies that perform tests on entities that have similar internal structure
have particular interest in this issue. These companies can use an equipment
that changes its architecture from build to build, or pieces of software changing
from release to release. These changes can either fix minor bugs or introduce new
features, but the overall system remains stable and performs its core activity.
Redesigning and rewriting tests when the system undergoes minor changes is
an extremely time-consuming activity: for this reason, tests written for testing
a specific area of the system under test, a part of an equipment, or a specific
portion of code should be adaptive, flexible and reusable. A good practice to
achieve this goal would be to keep the test itself and its configuration separate
from each other. Configuration includes all necessary parameters, variables and
constraints that should be isolated from the test. In this way, the test would
contain the description of the steps that should be performed in order to test a
specific area of a system, while the configuration would describe the test scope.
This approach enables scalability of a test and provides the context of this work.

Tests reuse can be resorted to checking the compliance of a test case w.r.t. a
physical test plant characterized by its devices and their current configuration.
The compliance check should answer the query “Can the test case A run over
the physical configured test plant B”?

The research activity described in this paper addresses test compliance using
Prolog and has been carried out in collaboration with a world-leading provider of
telecommunication equipments and services to mobile and fixed network opera-
tors. We will name this big company “BlindedCompany” throughout the paper,
to respect the NDA signed with its legal representatives. We will also modify the
name of some components of the System Under Test, to avoid disclosing Blind-
edCompany’s identity. The experiments carried out together with BlindedCom-

2 http://testingconferences.org/.

http://testingconferences.org/
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pany’s engineers show that the logic based algorithm we designed and developed
solves the compliance check problem.

The paper is organized in the following way: Sect. 2 introduces the Blind-
edCompany test automation domain and Sect. 3 discusses how we modeled it.
Section 4 explains the compliance check algorithm, Sect. 5 presents the experi-
ments we run and how we hid the Prolog details to the BlindedCompany testers,
and finally Sect. 6 presents related work and conclusions.

2 Test Plants and Test Cases in BlindedCompany

The first activity we carried out with BlindedCompany was to identify a shared
terminology in the test automation domain. Although we agreed on an almost
standard one, understanding the vocabulary used in the company and reaching
this agreement required some effort. In the end, we set the following definitions:

– Test Case (TC): a sequence of operations used to test the correct behavior
of a software functionality;

– Test Suite (TS): a set of TCs usually related to a specific fragment or
component of the software application;

– Test Plant (TP): a physical system representing a significant portion of
BlindedCompany’s telecommunications network or of its clients’ products;

– Physical Configured Test Plant (PCTP): the actual, physical test plant
under test along with its configuration; it should be possible to represent the
PCTP in some suitable modeling language L (discussed later on);

– Minimal Configured Test Plant of a Test Case (MCTP(TC)): the
representation, in the same language L used for representing PCTP, of the
minimal set of components, links among them and their configuration, which
is required to run a given test case. MCTP(TC) states the minimal require-
ments that a configured TP should satisfy to support the run of TC.

In the sequel we describe the TPs and the unstructured data (such as text
files) used by BlindedCompany to describe the elements that a TP should include
in order for a TC to run on it, and that would allow us to extract the MCTP(TC).
Section 3 discusses how we modeled both TCs and MCTP(TC)s in a formal way.

2.1 Test Plants

A TP is a physical system that represents a significant part of BlindedCom-
pany network or a part of product for clients; it is subject to tests execu-
tion. TPs include Packet Optical Transport Platforms, AttachedUnitType1,
AttachedUnitType2, and third-party instruments. The first three elements are
developed by BlindedCompany and for this reason we changed their names.



56 D. Briola and V. Mascardi

Packet Optical Transport Platforms (POTPs). BlindedCompany designs and
develops a family of products providing the management of metropolitan net-
works. POTPs are compact multiservice and packet optical transport elements.
They are optimized to be used in Access and Metro networks and provide Eth-
ernet and TDM (Time Division Multiplexing) services interworking with metro
and core Networks based on Ethernet or WDM (Wavelength Division Multiplex-
ing) connectivity. The POTP flexibility of installation and configuration makes
it perfect for both the implementation of a new network architecture and for the
renewal of existing ones.

A POTP is a shelf hosting cards for the management of data traffic in
a metropolitan network. The shelf also accommodates control cards (usually
inserted in specific positions by default), cooling fans and power supplies: a
POTP can be seen as a set of cards (traffic cards or control cards, inserted into
slots), each characterized by different Module Modes (MM), or modes of opera-
tion. Typically, each card has a set of ports whose configuration depends on the
Module Mode loaded on the card. The Module Mode can be set by the Local
Craft Terminal, a web Graphical User Interface (GUI) that allows the system
developer or the tester to interact with the device and configure it to suit his or
her purposes.

Attached Units. The shelf can accommodate one or more attached units of type
1, AttachedUnitType1, either connected directly to a shelf or integrated into a
hierarchic system of attached units of type 1. They provide the photonics part.
Attached units of type 2, AttachedUnitType2 in the sequel, also belong to the
POTP family and are usually connected to one or more AttachedUnitType1.
They amplify an optical signal directly, without the need to first convert it
into an electrical signal. Attached units provide a variety of Dense Wavelength
Division Multiplexing (DWDM) networking functions for building the POTP
photonics network layer. Different configurations are loaded into ports of the
cards and are used to connect POTPs.

Instruments. Some third-party devices, generically called “Instruments” in the
sequel, may be part of the TP as well and may undergo a testing process. Their
architecture is a “black box”: we only possess information about their integration
with the other elements of the POTP. Instruments can be used for example to
simulate traffic events (traffic generator instrument) or the degradation of a wire
and, as a result, of an optical signal.

Figure 1 shows the architecture of a real TP installed in BlindedCompany,
called WDM2: the two elements shown on top represent two POTPs (POTP1
and POTP2); AU1 1 and AU1 2 are two AttachedUnitType1 elements connected
to POTP1 and POTP2, respectively. The third component (AttachedUnitType2
named AU2) is shown in the middle of the picture. The POTPs are connected to
AU2 thanks to AU1 1 and AU1 2. Some instruments are connected to the POTPs
and AUs to register/create traffic, evaluate performances and so on.
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Fig. 1. WDM2 TP.

2.2 Current Representations of TPs and TCs in BlindedCompany

To design the compliance check, the first input we needed from BlindedCompany
was a model of all the entities involved in the testing process in general, and in
TCs and MCTP(TC)s in particular. It turned out that BlindedCompany used
different models, represented in different languages and formats, for some of the
tests portions only, and that it did not model in an explicit way the physical
plant under test. We started a deep analysis of the different modeling approaches
used in the company, in order to design a unified one. This activity represented
a relevant part of the domain elicitation phase and required almost two man-
months of a student who carried out his Bachelor’s Thesis in BlindedCompany,
supported by the authors and by the engineers from BlindedCompany’s test
automation team.

BlindedCompany does not use any formal representation of TCs: they are
just source code files with the actual test code to be executed, plus some natural
language documents describing them.

Even if the TC itself is not properly modeled, BlindedCompany uses an
XML file to model the elements that should be available in the TP in order to
run the TC, including the foreseen configurations, equipments, instruments and
connections of the elements. This file is called, following a standard terminology,
SUT (System Under Test) file. The SUT file helps testers to focus on what they
are actually testing. It is used by the test automation tool to automate the
execution of tests, and by testers to configure the TP as needed. After analyzing
different SUT files and making interviews with many testers we understood that,
given a TC associated with a SUT file, the information contained in the SUT
file corresponds to a superset of the information characterizing MCTP(TC).

Identifying the MCTP(TC) based on the SUT file of TC may lead to some
overestimation. For example, the SUT file might list more entities than those
actually “solicited” by TC: these entities should not appear there, but our analy-
sis shows that the presence of useless entities in the SUT file is very common
and we must be aware of it.
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Another approach for extracting MCTP(TC) would be to statically analyze
the TC code and extract the entities and their relationships directly from it.
This activity would lead to more precise results, but it is known to be extremely
complex [1,13,14] and was out of the scope of our collaboration: consequently,
we agreed on adopting the SUT as an approximation of the MCTP(TC).

Although the SUT is neither structured nor formalized, it follows a three
levels hierarchy that makes it processable in an automatic way: at Level one,
POTPs, Attached Units of both type 1 and type 2 and Instruments are described,
then for each of them a description of their cards appears in Level two, and finally
the description of the ports for each card is reported at Level three.

To make the reading of the remainder easier, the domain-dependent acronyms
used in this paper are summarized below:

– AUx: Attached Unit of type “x”.
– DWDM: Dense Wavelength Division Multiplexing.
– MCTP(TC): Minimal Configured Test Plant of a Test Case.
– MM: Module Mode.
– PCTP: Physical Configured Test Plant.
– POTP: Packet Optical Transport Platform.
– SUT: System Under Test.
– TC: Test Case.
– TP: Test Plant.
– WDM: Wavelength Division Multiplexing.

3 Modeling PCTPs and MCTP(TC)s in UML and Prolog

Given a TC and a PCTP, if we choose the language L in a suitable way, we
should be able to:

1. extract (either manually, semi-automatically, or automatically) MCTP(TC)
from TC and describe it in L;

2. describe PCTP using L.

The objective of the compliance check is to answer the question:

given a set of TCs, which of them can run on a given PCTP?

If we are able to model both MCTP(TC) and PCTP in the same machine-
readable language L, an algorithm able to perform a smart comparison between
the two models would allow us to find compliant ones.

Among the possible candidates as languages for modeling MCTP(TC) and
PCTP, we took under consideration UML [24], OWL [25] and Prolog [23]. Since
BlindedCompany’s documentation describing the POTP was already in UML
and the test automation engineers were more familiar with UML than with the
other languages, we decided to adopt UML for sharing the model representation
with them. Then we designed an ad-hoc manual translation mechanism from
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Fig. 2. UML representation of the POTP family with its main related classes.

UML to Prolog to make the specification suitable for undergoing a Prolog-based
compliance check3.

In the remainder of this section, we describe the models of POTP, PCTPs
and of MCTP(TC)s in both UML and Prolog.

3.1 POTP

The most complex among the TP elements is the POTP. Figure 2 shows the
UML class diagram for the POTP instruments family. The diagram consists
of 5 classes modeling the architecture of the different types of POTPs, formal-
izing which cards each POTP type can contain in its slots. Class POTP mod-
els the POTP and its slots. The attribute type indicates a type of POTP, for
example POTP1410, POTP1460, POTP1485, etc., while the numOfSlots attribute
stores the number of available slots for the current type of POTP: the relation
supported cards relates the POTP with the possible cards that can be installed,
belonging to class Card Type. Each card has several possible Module Modes (or
modes of operation), which represent the interfaces of the card, used to man-
age it. A Module Mode defines, for that specific mode of operation, the avail-
able ports with their possible configurations. For each port, class Port Type
defines its number (index) and name (pt name) plus its possible configurations
(possible configs). Class Possible Port Config represents one configuration
of a port, and is identified with a unique name.

The main difference among POTP types lies in the cards they support: sup-
ported cards will be used to make a comparison between the POTPs in the
MCTP and those in the PCTP to check their compliance.

The UML classes in Fig. 2 were manually translated into Prolog predicates.
As customary, we use “?” to denote arguments that can be either (partially)
bound or unbound. Since we use mainly cards and module modes in our com-
pliance algorithm, we report here an example of these predicates; we will focus
on the POTP details later on.
potp(?type of potp, ?list of attributes including installed cards).
card type(?card, ?list of supported mm).
3 This manual translation was enough for the purpose of our work, but if we had

to generalize and automatize our approach, a logic-based language supporting a
declarative representation of the structural aspects of object-oriented and frame-
based languages like F-logic [15] might be taken into account in the modeling stage.
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module mode(?mm, ?list of possible port types).
port type(?port type, ?list of possible port config).

For example, a card type SM-1xS64-4xS16-AH, with one of its possible module
mode, is described as:

card_type(’SM-1xS64-4xS16-AH’, supported_mms([’1xSTM64/OTU2(SM)’,

’4xSTM16/OTU1(SM)’, ’2xSTM16/OTU1(SM)’, ’4xXFP(SM)’])).

module_mode(’4xXFP(SM)’, port_types([

(1, [

(’OTN’,possible_configs([’klevel2’,’klevel2e’])),

(’CBR’,possible_configs([’lan 10g’,’oc192’,’stm64’,’wan 10g’]))]),

(2, [

(’OTN’,possible_configs([’klevel2’,’klevel2e’])),

(’CBR’,possible_configs([’lan 10g’,’oc192’,’stm64’,’wan 10g’]))]),

])).

For space constraints we do not provide examples of port type, and we do
not discuss the UML and Prolog models of AUs and instruments.

When dealing with PCTPs and MCPTs, we have to manage concrete
instances of POTPs, each containing different installed cards, all coherent with
those foreseen in the general model in Fig. 2: we speak of POTP Instances, as
modeled in Fig. 3, where a concrete instance of a POTP (a POTP instance) is
described. The classes and their relationships come from those in Fig. 2 and for-
malize which elements are concretely, physically, installed in a specific POTP
instance, among those foreseen for that POTP type. Attribute type in class
POTP instance recalls the UML Class modeling the generic POTP; besides the
type, a POTP instance could also have a name, and the IP and NTP addresses. A
POTP instance has a set of Slots with one installed Card, each configured with
a specific Module Mode (installed interface). Ports and their configuration
come together with the selected MM.

Fig. 3. UML representation of a POTP Instance.

As an example, a POTP instance named ’ne1’ is represented by the follow-
ing ground fact meaning that it has type POTP1415,IP1 and NTP1 addresses,
and three slots, identified by number 1, 2 and 3, the first two hosting cards
of type SCM with no installed interfaces, the third hosting a card with type
SM-1xS64-4xS16-AH with module mode 4xXFP(SM).
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potp_instance(’ne1’, attributes([

(’TYPE’, ’POTP1415’), (’IPADDR’, ’IP1’), (’NTPADDR’, ’NTP1’),

(’INSTALLED_CARDS’, [

slot(1, card(’SCM’),installed_int([])),

slot(2, card(’SCM’),installed_int([])),

slot(3, card(’SM-1xS64-4xS16-AH’),installed_int([(1,’4xXFP(SM)’)]))

])])).

3.2 Test Plant (PCTP) and Test Case (MCTP) Representation

A PCTP, denoted by the pctp predicate, is identified by a name (such as WDM1,
WDM2, etc.) and by four lists containing the identifiers of POTP Instances, Instru-
ments, AttachedUnitType1 and AttachedUnitType2. Each list can be empty,
meaning that a PCTP may not have elements of a particular type at all.

The PCTP representation must come along with the predicates describing
the POTP instances (like ne1 described before), and the predicates describing
the AU1s, AU2s and Instruments. AttachedUnitType1 and AttachedUnitType2
instances have an attribute connected to which lists connections between them
and POTPs. An example of predicate describing a PCTP is reported below.

pctp(’wdm1’,

popt([’ne1’, ’ne2’, ’ne4’]),

instrument([’ONT_506_H’, ’VOA_MAP200_S2P2’]),

au2([(’AU2_138’, connected_to([’ne1’, ’ne2’]))]),

au1([

(’AU1_15’, connected_to([’ne1’])),

(’AU1_40’, connected_to([’ne2’])),

(’AU1_25’, connected_to([’ne4’])),

(’AU1_28’, connected_to([’ne4’])),

(’AU1_35’, connected_to([’ne4’])) ]) ).

The Prolog representations of MCTP(TC), mctp/5, is identical in structure
to the PCTP Prolog representation. Some of its arguments might be modeled
by variables, whereas a PCTP representation is always a ground fact. As far
as the POTP components of MCTP(TC) are concerned, we face the same sit-
uation: some of the arguments of a potp instance of MCTP(TC) might be
represented by variables, whereas the arguments of a potp instance character-
izing the PCTP must be ground since they represent physical running elements,
with all the parameters already configured.

Since TCs operate on TPs with specific element types (POTPs, cards, AUs
and so on) and not on specific instances, some concrete details like the IP address
and the slots numbers are not relevant in their representation.
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An example of a potp instance for a MCTP is shown below.

potp_instance(’potp1’, attributes([

(’TYPE’, ’POTP1415’), (’IPADDR’, _IP), (’NTPADDR’, _NTP),

(’INSTALLED_CARDS’, [

slot(_S1, card(’SM-1xS64-4xS16-AH’),installed_int([(1,’OTU2_DWDM’)])),

slot(_S2, card(’SM-1xS64-4xS16-AH’),installed_int([(1,’OTU2_DWDM’)])),

slot(_S3, card(’SM-2x10GE-10xGE-A’),installed_int([(1,’10GBASE_LW’)])),

slot(_S4, card(’SM-2xXFP-16xSFP’),installed_int([(1,’OTU2_DWDM’)]))

]) ])).

4 Compliance Algorithm

A TC is fully compliant with a PCTP if the following four conditions are satisfied:

1. Each POTP in MCTP(TC) is compliant with one POTP in PCTP, which is
not already compliant with another POTP in MCTP(TC). A POTP P1 is
compliant with a POTP P2 if all cards of P1 are compliant with some (or all)
distinct cards of POTP P2. From now on, we will use the notion of mapping.
If a POTP P1 is compliant with POTP P2, all cards of P1 can be mapped to
some (or all) cards of P2. The compliance check of POTPs is done through
the exploration of the space of all possible solutions via backtracking. Two
cards C1 and C2 are compliant if the installed interface (MM) of C1 is exactly
the one installed in C2 or if it is supported by the card type of C2.

2. Each Instrument in MCTP(TC) is present in PCTP.
3. Each AttachedUniteType1 in MCTP(TC) is compliant with one in PCTP

(not already compliant with another AUType1 in MCTP(TC)) and its con-
nections are correct.

4. Each AttachedUniteType2 in MCTP(TC) is compliant with one in PCTP
(not already compliant with another AUType2 in MCTP(TC)) and its con-
nections are correct.

The compliance algorithm is implemented by the can run on Prolog predi-
cate which retrieves the PCTP and MCTP(TC) models, and operates a pairwise
compliance check between pairs of homogeneous entities; for presentation pur-
poses we ignore the possibility of a setof failure, and due to space limitation
we do not show the code for the compliance between AttachedUnits and Instru-
ments. That code is simpler than the one for the POTPs since it only checks
that, for each e ∈ AttachedUniteType1

⋃
AttachedUniteType2

⋃
Instrument, if

e ∈ MCTP(TC), then there must exist e′ ∈ PCTP whose attributes are equiv-
alent to those in e (and all the e′ are distinct) and connection are correct (this
for attached units only).
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can_run_on(MCTP, PCTP) :-

% get the description of a PCTP by means of the pctp/5 predicate

pctp(PCTP, potp(PCTP_POTPS), instrument(PCTP_INSTRUMENTS),

au2(PCTP_AU2), au1(PCTP_AU1)),

% get the description of the MCTP(TC) by means of the mctp/5 predicate

mctp(MCTP, potp(MCTP_POTPS), instrument(MCTP_INSTRUMENTS),

au2(MCTP_AU2), au1(MCTP_AU1)),

% perform the compliance check of Instruments and Attached Units

compliance_INSTRUMENTS(MCTP_INSTRUMENTS, PCTP_INSTRUMENTS),

compliance_AU1(MCTP_AU1, PCTP_AU1),

compliance_AU2(MCTP_AU2, PCTP_AU2),

% unify [MinNotMapped|_] with the list of couples (NotMapped,Res),

% ordered in increasing order of not mapped cards (the lower,

% the better) such that Res is a List containing couples (MCTP_POTP,

% PCTP_POTP) of succesfully mapped POTPs obtained by calling the

% compliance_potps/3 predicate and NotMapped is the number of cards

% that remained unmapped, as computed by compute_efficiency/2

setof((Eff,Res),

(compliance_potps(MCTP_POTPS, PCTP_POTPS, Res),

compute_efficiency(Res, Eff)),

[MinNotMapped|_]),

% print the MinNotMapped result on screen ...

The compliance of POTPs implemented by the compliance potps predicate
is the core part of the algorithm.

compliance_potps([], _, []).

compliance_potps([H|T], List, Res) :-

compliance_card_aux(H,List,(H,PCTP_POTP)),

delete(List, PCTP_POTP, Removed),

compliance_potps(T,Removed,Sol),

append([(H,PCTP_POTP)],Sol,Res).

compliance_card_aux(POTP,[Head|Tail],(POTP,Head)) :-

compliance_cards(POTP,Head,(POTP,Head)).

compliance_card_aux(POTP,[Head|Tail],R) :-

compliance_card_aux(POTP,Tail,R).

compliance_cards(Id_MCTP, Id_PCTP, (Id_MCTP, Id_PCTP)) :-

potp_instance(Id_MCTP,

attributes([TYPE_MCTP, IP_ADDR_MCTP, NTP_ADDR_MCTP,

(’INSTALLED_CARDS’, CARDS_MCTP)])),

potp_instance(Id_PCTP,

attributes([TYPE_PCTP, IP_ADDR_PCTP, NTP_ADDR_PCTP,

(’INSTALLED_CARDS’, CARDS_PCTP)])),

cards(CARDS_MCTP, CARDS_PCTP, Result).
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The predicate cards, not reported here for space limitation, checks if two
cards are compliant. The best candidate for mapping of POTPs is selected based
on “Minimal not mapped cards” parameter which shows how good a mapping
is. The best POTP’s mapping is the one with the minimal number of non-
mapped cards. Below is a formula for computation of this parameter along with
its implementation. Only mappable POTPs are taken into account.

Efficiency = (#CardsPCTP POTP1 - #CardsMCTP POTP1) + (#Card-
sPCTP POTP2 - #CardsMCTP POTP2) + . . . + (#CardsPCTP POTPn -
#CardsMCTP POTPn) where #CardsXXX is the number of successfully
mapped cards.

compute_efficiency([], 0).

compute_efficiency([(POTP_A, POTP_B)|T], Eff) :-

potp_instance(POTP_A,

attributes([_, _, _, (’INSTALLED_CARDS’, CARDS_MCTP)])),

potp_instance(POTP_B,

attributes([_, _, _, (’INSTALLED_CARDS’, CARDS_PCTP)])),

length(CARDS_MCTP, Length_MCTP),

length(CARDS_PCTP, Length_PCTP),

K is Length_PCTP-Length_MCTP,

compute_efficiency(T, Rest),

Eff is K+Rest.

The Prolog code defining can run on and its auxiliary predicates can
be downloaded from http://www.disi.unige.it/person/MascardiV/Software/
RuleML17Code.zip. It consists of 194 lines of code, including predicates for com-
puting the best mapping and for pretty-printing the output. The total number
of predicates in the program is 23, defined by means of 33 clauses (including
both rules and facts). Among the 23 predicates, 10 are defined recursively: 4 are
tail recursive, 6 are not. Only 4 predicates defined recursively call in their body
another recursively defined predicate. In only one case there is a double nesting,
with recursive predicate P1 calling recursive predicate P2, which in turn calls
recursive predicate P3.

5 Implementation and Experiments

During the interviews with BlindedCompany’s testers it turned out that none
of them was familiar with Prolog. Hence, we implemented an easy to use web
application providing a GUI, hiding the details of the Prolog algorithm discussed
in Sect. 4. To the BlindedCompany’s testers, the compliance check tool was pro-
posed as a black box with a GUI. The model of a POTP instance, as well as
of instances of Attached Units and Instruments that make up a PCTP, can
be entered by the test designer via that GUI. Because of space constraints, we
cannot go into the details of the web application implementation. It uses Java
Servlets able to communicate with Prolog thanks to JPL4. For the implemen-
tation of the View Layer we adopted HTML plus CSS, JavaScript to perform
4 http://www.swi-prolog.org/packages/jpl.

http://www.disi.unige.it/person/MascardiV/Software/RuleML17Code.zip
http://www.disi.unige.it/person/MascardiV/Software/RuleML17Code.zip
http://www.swi-prolog.org/packages/jpl
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some action callbacks, and AJAX for asynchronous communication with the
server and for performing background tasks.

To test the correctness of the algorithm, we first created fictional MCTPs
and PCTPs that were simple enough to allow a manual check of the algorithm
behavior, but complex enough to demonstrate all the features of the compliance
checking mechanism.

mctp(’MCTP’,potp([’POTP1_1’]),
instrument([’INSTRUMENT1_1’,’INSTRUMENT1_2’]),
au2([(’ATTACHEDUNIT_TYPE2_12’,
connected_to([’POTP11’]))]),
au1([(’ATTACHEDUNIT_TYPE1_11’,
connected_to([’POTP11’]))])).
potp_instance(’POTP11’, attributes([
(’TYPE’, _TYPE),(’IPADDR’, _IP1),(’NTPADDR’, _NTP1),
(’INSTALLED_CARDS’, [
slot(SLOT1_NE1, card(’CARD1’),
installed_int([(1, ’MMODULE_1’)])),
slot(SLOT2_NE1, card(’CARD2’),
installed_int([]))])])).
au1_instance(’ATTACHEDUNIT_TYPE1_11’, attributes([
(’MAC_ADDRESSS’, ’02:00:0a:22:82:58’),
(’TYPE’, ’APS_ROADM_4WAY_50_A’),(’GRID’, 96),
(’WDM_LINE_FROM’, ’’),(’WDM_LINE_TO’, ’’)])).
au2_instance(’ATTACHEDUNIT_TYPE2_12’, attributes([
(1, (’WDM_LINE_TO’, ’POTP11’), (’GRID’, 96))])).
instrument_instance(’INSTRUMENT1_1’, attributes([
(’TYPE’, ’ONT_506_SC’),
(’INSTR_SLOT’, 4),(’INSTR_PORT’, 1),
(’INSTR_BIT_RATE’, ’STM64’)])).
instrument_instance(’INSTRUMENT2_1’, attributes([
(’TYPE’, ’VOA_MAP200’),
(’INSTR_SLOT’, 1),(’INSTR_PORT’, 1),
(’INSTR_BIT_RATE’, ’STM64’)])).

Fig. 4. Fictional TC, modeled in Prolog by mctp, and PCTP (Prolog model not shown).

For example, in Fig. 4 one couple of fictional TCs and PCTPs is reported5:
the TC needs one POTP with two cards, two instruments (INSTRUMENT1 1
and INSTRUMENT2 1), one AttachedUnitType1 (ATTACHEDUNIT TYPE1 11) and
one AttachedUnitType2 (ATTACHEDUNIT TYPE2 12) both connected (continuous
arrows) to POTP1 1, while in the TP there are two POTPs, three Instruments,
one AttachedUnitType1 and two AttachedUnitType2. The dotted arrows con-
nect the equivalent elements (that is, those elements that are compatible: for
example, CARD3 in POTP2 1 is not compatible with those in POTP1 1).

On the left of Fig. 4 the Prolog representation of MCTP(TC) is reported; for
space limitations we cannot show the PCTP Prolog model, which has the same
structure.

If we execute the compliance algorithm, it answers that the POTP1 1 is com-
patible with both the POTPs in the PCTP, but the best mapping is the one
with POTP2 2 since all its cards are mapped into those of POTP1 1.

Many similar tests with fictional data where performed to assess the compli-
ance check, all built to be similar to the real data but with simplified entities
and properties name and connections.

5 Since TC is the actual test case and MCTP(TC) is its representation, in the sequel
we prefer TC to MCTP(TC) to stress the fact that our experiments involved real or
fictional but realistic TCs.
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Then, we performed two kinds of tests on real data, those where we already
knew the results and those whose results were unknown, involving randomly
chosen TCs and PCTPs. Both were based on actual data collected with the
collaboration of BlindedCompany: we started testing a large set of TCs currently
used on two PCTPs, which we manually formalized in Prolog. Since we used
PCTPs and TCs whose compliance was already known by our partner, we only
had to verify that all the compliance check runs gave the expected result. This
happened, giving us an empirical validation of the algorithm correctness.

Finally, we randomly selected ten TCs from different Test Suites and we per-
formed the compliance check with the two PCTPs used in the previous tests.
These experiments were limited to twenty because creating the Prolog represen-
tation of the PCTP is a complex work and, above all, because in order to execute
the TCs we needed physical test plants available, and the two PCTPs that we
previously formalized were the only ones we could use without interfering with
the normal job of our partner. After the experiments were set and the compli-
ance check was run, we manually inspected the TCs to understand if they were
compliant or not with the PCTPs, to be able to check the algorithm results. We
verified that all the twenty tests gave the correct results.

To summarize, we performed 100 tests with fictional data using 10 TCs and
10 PCTPs (with different elements and values, to cover all the involved entities
and their possible values), and testing all the 100 possible combinations. Then,
we tested 2 real PCTPs with 100 different real TCs, for a total of 200 tests. In
these tests, we knew in advance the expected results and we could verify that the
computed results were the same. Finally, we used the same 2 PCTPs employed
in the previous experiments to execute 20 more tests on 10 randomly selected
TCs, which had to be physically executed on the company PCTPs.

Based on the experiments outcomes, we are confident that the compliance
algorithm correctly performs its task, since we selected TCs to cover all the
involved entities and all the configurations used in the Test Suites: the “Com-
pliance Check Web Application” has been delivered to BlindedCompany, which
is currently integrating it in its test automation tools suite and process.

6 Related Works and Conclusions

We presented a logic based algorithm able to verify the compliance of a MCTP
with a PCTP, which represents a real problem faced by our industrial partner
and in general by several hardware developers: starting from BlindedCompany’s
real data, we created a model expressive enough to be used to solve this problem,
and our tests verified that the algorithm works correctly.

The main contribution of our work is on “exporting” Prolog to a big company.
The task we faced is “easy” for academic researchers working in the computa-
tional logic field: we did not use meta-programming capabilities, cyclic terms,
coinduction, constraints, or other sophisticated features. Nevertheless, the easy
Prolog program we developed turned out to be extremely promising for the
company, and this is a relevant result.
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We were not able to find works sharing the same goal and exploiting the same
logic-based approach as ours in the literature. The test automation experts in
BlindedCompany helped us in this search making queries to colleagues in other
test automation units and looking for patents. The result was the same.

Our compliance check is aimed at TC reuse [3,6,27], a problem whose impor-
tance was understood many years ago and improved in the last few years with the
increased importance of software product lines, and which has been addressed
using techniques different from ours. To the best of our knowledge, this makes
our proposal original: Logic Programming and related approaches including con-
straint programming and CLP are used in the test automation domain since the
mid eighties. Many works discuss how Prolog, CP and CLP programs are used
either as generators of inputs for the SUT, or as a validators of the SUT out-
puts (test oracle), or both, in particular in conjunction with model-based testing
[9,17,19,21,22], but TC reuse is never addressed.

As a future work we see the following improvements that, thanks to Prolog
and its meta-programming abilities, should be implemented with little effort:

– Automation of the extraction of MCTP and PCTP models;
– Integration of a “suggestion module” that provides suggestions on how to

reconfigure a TP in order to support a given TC;
– Extension of the model with more detailed information about Instruments

and Attached Units, to make their compliance check more sophisticated.

Finally, we are considering how the lessons learned from this experience
could be generalized and ported to other domains including planning (“is an
actual course of activities compliant with a planned one?”) and interactions in
multiagent systems (“is an actual conversation among agents compliant with
an expected one?”). The problems are different since in the test automation
domain compliance is “structural/static”, whereas in the agent interaction pro-
tocol and in the planning domains it must take the dynamics of the protocol/plan
into account. Nevertheless, using Prolog for coping with compliance in dynamic
domains is not a novelty, and we are exploiting it in our research on monitoring
the communicative behavior of a set of agents w.r.t. the expected one [2,4,5,18].
Being able to generalize this work with BlindedCompany and to unify it with
our research activities in the agents field would demonstrate the suitability and
the flexibility of logic-based approaches to generic compliance problems.

Acknowledgements. We thank Vladimir Zaikin who contributed to the realization
of some parts of this work, and the engineers from BlindedCompany’s test automation
team involved in the project. We also thank the reviewers for their valuable comments.



68 D. Briola and V. Mascardi

References

1. Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shelton, C., Latronico, E.:
Automatic requirement extraction from test cases. In: Barringer, H., et al. (eds.)
RV 2010. LNCS, vol. 6418, pp. 1–15. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16612-9 1

2. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring mass from multiparty global session types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76–95. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37890-4 5

3. Asaithambi, S.P.R., Jarzabek, S.: Towards test case reuse: a study of redundan-
cies in android platform test libraries. In: Favaro, J., Morisio, M. (eds.) ICSR
2013. LNCS, vol. 7925, pp. 49–64. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38977-1 4

4. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE and
Jason multiagent systems with Prolog. In: Italian Conference on Computational
Logic, CEUR Workshop Proceedings, vol. 1195, pp. 319–323 (2014)

5. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE
multiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C.
(eds.) Intelligent Distributed Computing VIII. SCI, vol. 570, pp. 81–91. Springer,
Cham (2015). doi:10.1007/978-3-319-10422-5 10

6. Cai, L., Tong, W., Liu, Z., Zhang, J.: Test case reuse based on ontology. In:
15th IEEE Pacific Rim International Symposium on Dependable Computing, 2009.
PRDC 2009, pp. 103–108. IEEE (2009)

7. Dustin, E., Rashka, J., Paul, J., Testing, A.S.: Introduction, Management, and
Performance. Addison-Wesley, Boston (1999)

8. Fewster, M., Graham, D.: Software Test Automation. Addison-Wesley, Reading
(1999)

9. Gorlick, M.M., Kesselman, C.F., Marotta, D.A., Parker, D.S.: Mockingbird: a log-
ical methodology for testing. J. Log. Program. 8(1–2), 95–119 (1990)

10. Graham, D., Fewster, M.: Experiences of Test Automation: Case Studies of Soft-
ware Test Automation. Addison-Wesley, Upper Saddle River (2012)

11. Hayes, L.G.: Automated Testing Handbook. Software Testing Inst, Dallas (2004)
12. Hoffman, D.: Cost benefits analysis of test automation. Report of Software Qual-

ity Methods, LLC (1999). https://www.agileconnection.com/sites/default/files/
article/file/2014/Cost-Benefit
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Abstract. The Decision Model and Notation (DMN) is a recent OMG
standard for the elicitation and representation of decision models. DMN
builds on the notion of decision table, which consists of columns repre-
senting the inputs and outputs of a decision, and rows denoting rules.
DMN models work under the assumption of complete information, and
do not support integration with background domain knowledge. In this
paper, we overcome these issues, by proposing decision knowledge bases
(DKBs), where decisions are modeled in DMN, and domain knowledge is
captured by means of first-order logic with datatypes. We provide a logic-
based semantics for such an integration, and formalize how the different
DMN reasoning tasks introduced in the literature can be lifted to DKBs.
We then consider the case where background knowledge is expressed as
an ALC description logic ontology equipped with datatypes, and show
that in this setting, all reasoning tasks can be actually decided in Exp-
Time. We discuss the effectiveness of our framework on a case study in
maritime security.

1 Introduction

The Decision Model and Notation (DMN) [11] is a recent OMG standard for the
elicitation and representation of decision models, and for managing their inter-
connection with business processes, separating decision and control-flow logic
[4]. The standard is already receiving widespread adoption in the industry, and
an increasing number of tools and techniques are being developed to assist users
in modeling, checking, and applying DMN models. DMN builds on the notion
of a decision table (cf. [13]), which consists of columns representing the inputs
and outputs of a decision, and rows denoting rules. Each rule is a conjunction
of basic expressions, which in our case are captured in a language known as
S-FEEL, which is also part of the DMN standard itself.

According to the standard, DMN models work under the assumption of
complete information, and do not support integration with background domain
knowledge. In this paper, we overcome this limitation, by proposing a com-
bined framework, which we call Semantic DMN, that is based on decision
c© Springer International Publishing AG 2017
S. Costantini et al. (Eds.): RuleML+RR 2017, LNCS 10364, pp. 70–86, 2017.
DOI: 10.1007/978-3-319-61252-2 6



Semantic DMN: Formalizing Decision Models with Domain Knowledge 71

Table 1. Ontology of cargo ships and their features.

Ship type Short name Length (m) Draft (m) Capacity (TEU)

Converted Cargo Vessel CCV 135 0–9 500

Converted Tanker CT 200 0–9 800

Cellular Containership CC 215 10 1000–2500

Small Panamax Class SPC 250 11–12 3000

Large Panamax Class LPC 290 11–12 4000

Post Panamax PP 275–305 11–13 4000–5000

Post Panamax Plus PPP 335 13–14 5000–8000

New Panamax NP 397 15.5 11000–14500

knowledge bases (DKBs). In a DKB, decisions are modeled in DMN, and
background domain knowledge1 is captured by means of an ontology expressed
in multi-sorted first-order logic. The different sorts are used to seamlessly inte-
grate abstract domain objects with the data values belonging to the concrete
domains used in the DMN rules (such as strings, integers, and reals).

For the enriched setting of Semantic DMN, we provide a logic-based seman-
tics, and we formalize how the different DMN reasoning tasks that have been
introduced in the literature can be lifted to DKBs. We then approach the prob-
lem of actually reasoning on DKBs, and of devising effective algorithms for the
different reasoning tasks captured by our formalization. For this purpose, we need
to put restrictions on how to express background knowledge, and we consider
the significant case where such knowledge is formulated in terms of an ontology
expressed in a description logic (DL) [3] equipped with datatypes [2,9,10,14].
In such a DL, besides the domain of abstract objects, one can refer to concrete
domains of data values (such as strings, integers, and reals) accessed through
functional relations, and one can express conditions on such values by making
use of unary predicates2 over the concrete domains. Specifically, we prove that
for the case where the DL ontology is epressed in ALC(D), i.e., ALC [3] extended
with multiple datatypes, all reasoning tasks can be actually decided in ExpTime.

We show the effectiveness of our framework by considering a case study in
maritime security, arguing that our approach facilitates modularity and separa-
tion of concerns.

1 We remark that our notion of domain knowledge is different from that of business
knowledge model in DMN. The latter is a reusable decision logic, with a purely
operational meaning.

2 The restriction to unary predicates only, is what distinguishes DLs with datatypes
from the richer setting of DLs with concrete domains, where in general arbitrary
predicates over the datatype/concrete domain can be specified.
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2 Case Study

Our case study is inspired by the international Ship and Port Facility Security
Code3, used by port authories to determine whether a ship can enter a Dutch port.

2.1 Domain Description

As shown in Table 1, there are several types of cargo ships that may enter a
port, with different characteristics: (i) Length of the ship (in m); (ii) Draft size
(in m); (iii) Capacity of the ship (in TEU , for Twenty-foot Equivalent Units).
Such characteristics, together with other data about the ships, allow the port
managers to decide whether to grant entrance permission to an incoming ship
or not. More specifically, a ship can enter the port only if it complies with the
requirements of the inspection, which is the case if it is equipped with a valid
certificate of registry, and it meets the safety requirements.

The ship’s certificate is valid if its expiration date is after the current date.
The rules for establishing whether a ship meets the safety requirements depend
on its characteristics, and the amount of its residual cargo. In particular, small
ships (with length ≤260 m and draft ≤10 m) may enter only if their capacity is
≤1000 TEU. Ships with a small length (≤260 m), medium draft >10 and ≤12 m,
and capacity ≤4000 TEU, may enter only if cargo residuals have ≤0.75 mg dry
weight per cm2. Medium-sized ships (with length >260 m and <320 m, and draft
>10 m and ≤13 m), and with a cargo capacity <6000 TEU, may enter only if
their residuals have ≤0.5 mg dry weight per cm2. Big ships with length between
320 m and 400 m, draft >13 m, and capacity >4000 TEU, may enter only if their
carried residuals have ≤0.25 mg dry weight per cm2.

2.2 Challenges

The first challenge posed by this case study concerns modeling, representation,
management, and actual application of the decision rules that relate the numeri-
cal inputs capturing the characteristics of ships, to the boolean, clearance output.
All these issues are tackled by the DMN standard. In particular, the standard
defines clear guidelines to encode and graphically represent the input/output
attributes and the rules of interest in the form of a DMN decision table. This
table, in turn, may be used to document the decision logic for clearance deter-
mination, and to match the data of a ship with the modeled rules, computing
the corresponding output(s), i.e., whether the ship can enter or not. this latter
mechanism is backed up by a formal semantics in predicate logic [5].

In addition, DMN allows the modeler to decorate the decision with meta-
information: completeness indicates that rules cover all possible input config-
urations, while the hit policy describes how input may match with the rules.
Different hit policies are used to declare whether rules are non-overlapping, or
may instead simultaneously match with the same input, then also specifying how
to calculate the final output.

3 https://dmcommunity.wordpress.com/challenge/challenge-march-2016/.

https://dmcommunity.wordpress.com/challenge/challenge-march-2016/
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A crucial aspect is that such meta-information is declared in DMN without
actually checking whether it suitably captures how the decision logic behaves.
Dedicated algorithms have been thus developed to accomplish this task (see, e.g.,
[5,12,15–17]). There are, however, a number of additional crucial challenges that
cannot be tackled by capturing the decision logic alone. Let us imagine how a
decision table for ship clearance could actually be employed in an actual Dutch
port, when a ship is approaching the port. How would the port authority know
about all ship characteristics needed to take the decision? An immediate, but
quite inconvenient, solution would be to measure all required characteristics on
a per ship basis, then applying the decision table directly so as to compute
the clearance outcome. A more pragmatic and feasible approach is to exploit
the domain knowledge captured in Table 1, by acquiring from the ship only
the information regarding ship type and cargo residuals, while using Table 1
to infer from the ship type the information about length, draft, and capacity.
It is important to stress that the possibility of interconnecting multiple DMN
tables (so that the output of one table is used as input of another table), also
supported by the standard, is not applicable here: Table 1 is not a decision table,
since it is not always possible to univocally compute the ship characteristics from
the type (see, e.g., the case of Post Panamax ship type). In fact, the domain
knowledge captured by Table 1 is a set of constraints, implicitly discriminating
between allowed combinations of ship types and characteristics, from those that
are impossible. In this light, Table 1 captures a domain ontology.

The interplay between such a domain ontology and the ship clearance decision
model is far from trivial. On the one hand, it requires to lift from an approach
working under complete information to one that works under incomplete infor-
mation, and where the background knowledge is used to complement the known
inputs, before the corresponding outputs are inferred. On the other hand, it does
not only impact how decision table outputs are computed, but it also changes
the interpretation of the completeness and hit policy indicators: they cannot be
checked anymore by analyzing the decision table in isolation (as in [5]), but in
the context of the domain knowledge.

In particular, by elaborating on the rules above, one would understand that
rules are non-overlapping regardless of the domain knowledge, since their input
conditions are mutually exclusive. However, one would also conclude, by mistake,
that they are not complete, since, e.g., they do not cover the case of a long
ship (≥320 m) with small draft (≤10 m). However, under the assumption that
all possible ship types are those listed in Table 1, one would know that such a
combination of parameters is impossible and, more in general, that the set of
rules is indeed complete w.r.t. the domain knowledge.

3 Sources of Decision Knowledge

We now generalize the discussion in Sect. 2 by introducing the two main sources
of decision knowledge: background knowledge expressed using a logical theory
enriched with datatypes, and decision logic captured in DMN.
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3.1 Logics with Datatypes

To capture background knowledge, we resort to a variant of multi-sorted first-
order logic (see, e.g., [6]), which we call FOL(D), where one sort Δ denotes a
domain of abstract objects, while the remaining sorts represent a finite collection
D of datatypes. We consider a countably infinite set Σ of predicates, where each
p ∈ Σ comes with an arity n, and a signature Sigp : {1, . . . , n} → D � {Δ},
mapping each position of p to one of the sorts. FOL(D) contains unary and binary
predicates only. A unary predicate N with SigN (1) = Δ is called a concept, a
binary predicates P with SigP (1) = SigP (2) = Δ a role, and a binary predicate
F with SigF (1) = Δ and SigF (2) ∈ D a feature.

Example 1. The cargo ship ontology in Table 1 should be interpreted as follows:
each entry applies to a ship, and expresses how the specific ship type constrains
the other features of the ship, namely length, draft, and capacity. Thus the first
table entry is encoded in FOL(D) as

∀s.CCV(s) → Ship(s) ∧ ∀l.(length(s, l) → l = 135) ∧
∀d.(draft(s, d) → d ≥ 0 ∧ d ≤ 9) ∧ ∀c.(capacity(s, c) → c = 500),

where CCV and Ship are concepts, while length, draft, and capacity are features
whose second component is of sort real. �

We consider also well-behaved fragments of FOL(D) that are captured by
description logics (DLs) extended with datatypes. For details on DLs, we refer
to [3], and for a survey of DLs equipped with datatypes (also called, in fact,
concrete domain), to [9]. Here we adopt the DL ALC(D), a slight extension of
the DL ALC(D) [9] with multiple datatypes. As for datatypes, we follow [1],
which is based on the OWL 2 datatype map [10, Sect. 4], but we adopt some
simplifications that suffice for our purposes.

A (primitive) datatype D is a pair 〈ΔD, ΓD〉, where ΔD is the domain of
values4 of D, and ΓD is a (possibly infinite) set of facets, denoting unary predicate
symbols. Each facet S ∈ ΓD comes with a set SD ⊆ ΔD that rigidly defines the
semantics of S as a subset of ΔD. Given a primitive datatype D, datatypes E
derived from D are defined according to the following syntax

E −→ D | E1 ∪ E2 | E1 ∩ E2 | E1 \ E2 | {d1, . . . , dm} | D[S]

where S is a facet for D, and d1, . . . , dm are datatype values in ΔD. The domain
of a derived datatype is obtained for ∪, ∩, and \, by applying the corresponding
set operator to the domains of the component datatypes, for {d1, . . . , dm} as the
set {d1, . . . , dm}, and for D[S] as SD. In the remainder of the paper, we consider
the (primitive) datatypes present in the S-FEEL language of the DMN standard:
strings equipped with equality, and numerical datatypes, i.e., naturals, integers,

4 We blur the distinction between value space and lexical space of OWL 2 datatypes,
and consider the datatype domain elements as elements of the lexical space inter-
preted as themselves.
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rationals, and reals equipped with their usual comparison operators (which, for
simplicity, we all illustrate using the same set of standard symbols =, <, ≤,
>, ≥). We denote this core set of datatypes as D. Other S-FEEL datatypes,
such as that of datetime, are syntactic sugar on top of D.

A facet for one of these datatypes D is specified using a binary comparison
predicate ≈, together with a constraining value v, and is denoted as ≈v. E.g.,
using the facet ≤9 of the primitive datatype real, we can define the derived
datatype real[≤9], whose value domain are the real numbers that are ≤ 9. In the
following, we abbreviate D[S1] ∩ D[S2] as D[S1∧S2], D[S1] ∪ D[S2] as D[S1∨S2],
and D[S1] \ D[S2] as D[S1∧¬S2], where S1 and S2 are either facets or their
combinations with boolean/set operators.

Let Δ be a countably infinite universe of objects. A (DL) knowledge base
with datatypes (KB hereafter) is a tuple 〈Σ,T,A〉, where Σ is the KB signature,
T is the TBox (capturing the intensional knowledge of the domain of interest),
and A is the ABox (capturing extensional knowledge). When the focus is on
the intensional knowledge only, we omit the ABox, and call the pair 〈Σ,T 〉
intensional KB (IKB). The form of T and A depends on the specific DL of
interest. We review each component next.

Signature. Σ = ΣC �ΣR �ΣF consists of: (i) a finite set ΣC of concept names,
i.e., unary predicates interpreted over Δ, (ii) a finite set ΣR of role names,
binary predicates connecting pairs of objects in Δ; and (iii) a finite set ΣF of
features, i.e., binary predicates connecting objects to corresponding typed values.
In particular, each feature F comes with its datatype DF ∈ D.

TBox. T is a finite set of universal FO axioms based on predicates in Σ, and
on predicates and values of datatypes in D. To capture such axioms, we employ
the usual DL syntax, using the boolean connectives �, � and ¬ for intersection,
union and complement, and ∃R.C for qualified existential restriction. In the case
of ALC(D), such axioms are built from ALC(D) concepts, inductively defined as
follows:

• An atomic concept N ∈ ΣC is a concept;
• � and ⊥ are concepts, respectively denoting the top and empty concepts;
• given a concept C, its complement ¬C is a concept;
• given two concepts C and D, their conjunction C � D is a concept;
• given a role R ∈ ΣR and a concept C, the qualified existential restriction

∃R.C is a concept;
• given a feature F ∈ ΣF , and a datatype r that is either DF or a datatype

derived from DF , the feature restriction ∃F. r is a concept.

Intuitively, ∃F. r allows the modeler to single out those objects having an F -
feature that satisfies condition r, interpreted in accordance with the underlying
datatype. We adopt the usual abbreviations C � D for ¬(¬C � ¬D), and ∀R.C
for ¬∃R.¬C.

An ALC(D) TBox is a finite set of inclusion assertions of the form C � D,
where C and D are ALC(D) concepts. Intuitively, such assertions model that
whenever an individual is an instance of C, then it is also an instance of D.
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Example 2. The ALC(D) encoding of the first entry in Table 1 is:

CCV � Ship � ∀length. real[=135] � ∀draft. real[≥0 ∧ ≤9] � ∀capacity. real[=500]

All other table entries can be formalized in a similar way. The entire table is then
captured by the union of all so-obtained inclusion assertions, plus an assertion
expressing that the types mentioned in Table 1 exhaustively cover all possible
ship types:

Ship � CCV � CT � CC � SPC � LPC � PP � PPP � NP �

ABox. The ABox A is a finite set of assertions, or facts, of the form N(d),
P (d, d′), or F (d, v), with N a concept name, P a role name, F a feature, d, d′ ∈ Δ,
and v ∈ ΔDF

.

Semantics. The semantics of an ALC(D) KB K = 〈Σ,T,A〉 relies, as usual, on
first-order interpretations I = 〈Δ, ·I〉 over the fixed domain Δ, where ·I is an
interpretation function mapping each atomic concept N in T to a set NI ⊆ Δ,
� to Δ, ⊥ to ∅, each role R to a relation RI ⊆ Δ × Δ, and each feature F to a
relation F I ⊆ Δ × ΔDF

. Complex concepts are interpreted as follows:

• (¬C)I = Δ \ CI ;
• (C � D)I = CI ∩ DI ;
• (∃R.C)I = {x ∈ Δ | ∃y ∈ Δ s.t. 〈x, y〉 ∈ RI and y ∈ CI};
• (∃F. r)I = {x ∈ Δ | ∃v ∈ ΔDF

s.t. 〈x, v〉 ∈ F I and r(v) holds}.

When an interpretation I satisfies an assertion is defined as follows:

C � D if CI ⊆ DI ; P (d1, d2) if 〈d1, d2〉 ∈ P I ;
N(d) if d ∈ NI ; F (d, v) if 〈d, v〉 ∈ F I .

Finally, we say that I is a model of T if it satisfies all inclusion assertions of T ,
and a model of K if it satisfies all assertions of T and A.

Reasoning in ALC(D). Reasoning in ALC with a single concrete domain is
decidable in ExpTime (and hence ExpTime-complete) under the assumption
that (i) the logic allows for unary concrete domain predicates only, (ii) the
concrete domain is admissible [7,8], and (iii) checking the satisfiability of con-
junctions of predicates of the datatype is decidable in ExpTime. This follows
from a slightly more general result shown in [9, Sect. 2.4.1]. Admissibility requires
that the set of predicate names is closed under negation and that it contains a
predicate name denoting the entire domain. Hence, reasoning in ALC extended
with one of the concrete domains used in DMN (e.g., integers or reals, with
facets based on comparison predicates together with a constraining value), is
ExpTime-complete. The variant of DL with concrete domains that we consider
here, ALC(D), makes only use of unary concrete domain (i.e., datatype) pred-
icates, but allows for multiple datatypes. Hence, the above decidability results
do not directly apply. However, exploiting the absence of non-unary datatype
predicates, and considering that each feature is typed with a specified datatype,
it is easy to see that the various datatypes essentially do not interact with each
other, and that therefore the complexity of reasoning is not affected.
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Theorem 1. Checking satisfiability of an ALC(D) KB is decidable in Exp-
Time (and so are the problems of deciding instance checking and subsumption
w.r.t. a KB).

Rich KBs. We also consider rich KBs where axioms are specified in full FOL(D)
(and the signature is that of a FOL(D) theory). We call such KBs FOL(D) KBs.

3.2 DMN Decision Tables

To capture the business logic of a complex decision, we rely on the DMN standard
and its S-FEEL language [11]. Specifically, we resort to [5] for a formal definition
of the notion of decision as specified in the standard. We do not consider priorities
here. An S-FEEL DMN decision table M (called simply decision table in the
following) is a tuple 〈Name, I, O,AType,AFacet, R,C,H〉, where:

• Name is the table name.
• I and O are disjoint, finite sets of input and output attributes.
• AType : I � O → D is a typing function that associates each input/output

attribute to its corresponding data type.
• AFacet is a facet function that associates each input/output attribute a ∈ I�O

to an S-FEEL condition over AType(a) (see below).
• R is a finite set {r1, . . . , rp} of rules. Each rule rk is a pair 〈Ifk,Thenk〉, where
Ifk is an input entry function that associates each input attribute ain ∈ I to
an S-FEEL condition over AType(ain), and Thenk is an output entry function
that associates each output attribute aout ∈ O to an object in AType(aout).

• C ∈ {c, i} is the completeness indicator - c (resp., i) stands for (in)complete
table.

• H is the (single) hit indicator defining the policy for the rule application. Since
we do not focus on priorities, the interesting policies are: (i) u for unique hit
policy, (ii) a for any hit policy.

In the following, we use a dot notation to single out an element of a decision
table. For example, M.I denotes the set of input attributes for decision M.

An (S-FEEL) condition Q over type D is inductively defined as follows:

• “−” is an S-FEEL condition representing any value (i.e., it evaluates to true
for every object in ΔD);

• given a constant v, expressions “v” and “not(v)” are S-FEEL conditions
respectively denoting that the value shall (not) match with v.

• if D is a numerical datatype, given two numbers v1, v2 ∈ ΔD, the interval
expressions “[v1, v2]”, “[v1, v2)”, “(v1, v2]”, and “(v1, v2)” are S-FEEL condi-
tions (interpeted in the usual, mathematical way);

• given two S-FEEL conditions Q1 and Q2, “Q1,Q2” is an S-FEEL condition
representing their disjunction (i.e., it evaluates to true for a value v ∈ ΔD if
either Q1 or Q2 evaluates to true for v).
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Table 2. Decision table for determining vessel clearance in Dutch ports; symbol today
is a shortcut for the milliseconds representing time 00:00:00 of the current date.

Vessel Clearance
C U Cer. Exp. Length Draft Capacity Cargo Enter

(date) (m) (m) (TEU) (mg/cm2)
≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 Y,N

1 ≤ today − − − − N
2 > today <260 <10 <1000 − Y
3 > today <260 <10 ≥1000 − N
4 > today <260 [10,12] <4000 ≤0.75 Y
5 > today <260 [10,12] <4000 >0.75 N
6 > today [260,320) (10,13] <6000 ≤0.5 Y
7 > today [260,320) (10,13] <6000 >0.5 N
8 > today [320,400) ≥13 >4000 ≤0.25 Y
9 > today [320,400) ≥13 >4000 >0.25 N

Example 3. We use our case study to illustrate how a complex decision can be
captured in DMN. Table 2 depicts the decision table for ship clearance, formal-
izing Sect. 2.1. The first two rows (below the table title) indicate the table meta-
information. In particular, the leftmost cell indicates that the table is meant to
be complete, and that rules are declared to not overlap.5 Blue-colored cells (i.e.,
all other cells but the rightmost one), together with the cells below, respectively
model the input attributes used to determine ship clearance, and the facets over
their corresponding datatypes. In particular, the input attributes are: (i) the
certificate expiration date, (ii) the length, (iii) the size, (iv) the capacity, and
(v) the amount of cargo residuals of a ship. Such attributes are nonnegative real
numbers; this is captured by typing them as reals, adding restriction “≥ 0” as
facet. The rightmost, red cell represents the output attribute, i.e., whether the
ship under scrutiny may enter the port. This is modeled by typing the output
attribute as string, allowing only values Y and N. Every other row models a
rule. The intuitive interpretation of such rules relies on the usual “if . . . then
. . . ” pattern. For example, the first rule states that if the certificate of the ship
is expired, then the ship cannot enter the port (regardless of the other input
attributes). The second rule, instead, states that if the ship has a valid certifi-
cate, a length shorter than 260 m, a draft smaller than 10 m, a capacity smaller
than 1000 TEU, then the ship is allowed to enter the port (regardless of the
cargo residuals it carries). Other rules are interpreted similarly. �

4 Semantic Decision Models

We now combine the two knowledge sources discussed in Sect. 3.1, namely
FOL(D) knowledge bases and DMN decision tables, into an integrated decision
knowledge base (DKB) that empowers DMN with semantics.
5 Recall that such indicators are provided by the user, and may not reflect the actual

table content.
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4.1 Decision Knowledge Bases

The intuition behind our proposal for integration is to consider decision tables as
a sort of enhancement of a KB describing a domain of interest. In this respect, a
decision table M is linked to a specific concept. The idea is that given an object
o of the specified type, M inspects all features of o that correspond to its input
attributes M.I, matching their values against the decision rules. Depending on
which rule(s) match, M then dictates which are the values to which o must
be connected via those features that correspond to the output attributes M.O.
Hence, the KB and the decision table “interact” on (some of) the input attributes
of the decision, while the output attributes exclusively belong to the decision
table, which is in fact used to infer new knowledge about the domain.

Formally, a decision knowledge base over datatypes D (D-DKB, or DKB for
short) is a tuple 〈Σ,T,M, C,A〉, where:

• T is a FOL(D) IKB with signature Σ.
• M is a decision table that satisfies the following two typing conditions:

(output uniqueness) M.O ∩ Σ = ∅;
(input type compatibility) for every binary predicate P ∈ Σ whose name

appears in M.I, their types are compatible, i.e., M.AType(P ) = SigP (2).
• C ∈ ΣC is a bridge concept, that is, a concept from Σ that links T with M.
• A is an ABox over the extended signature Σ ∪ M.I.

When the focus is on the intensional decision knowledge only, we omit the ABox,
and call the tuple 〈Σ,T,M, C〉 intensional DKB (IDKB).

Example 4. The combination of Tables 1 and 2 using “ship” as bridge concept
gives rise to a DKB for the ship clearance domain. On the one hand, Table 1 intro-
duces different types of ships, which can be modeled as subtype concepts of the
generic concept of “ship”, together with a set of axioms constraining the length,
draft, and capacity features depending on the specific subtype (cf. Example 1).
On the other hand, Table 2 extends the signature of Table 1 with three additional
features for ships, namely certificate expiration and cargo, as well as the indication
of whether a ship can enter a port or not. This latter feature is the output of the
decision, and is in fact inferred by applying the ship clearance decision table in the
context of a specific port. �

4.2 Formalizing DKBs

From the formal point of view, the integration between a KB and a decision table
is obtained by encoding the latter into FOL(D), consequently enriching the KB
with additional axioms that capture its intended semantics. The purpose of this
section is to provide such an encoding. To this end, we use the predicate logic-
based formalization of DMN introduced in [5] as a starting point. However, we
cannot simply rely on it, since it does not interpret input and output attributes
as features of a certain type of object, but directly encodes decisions as for-
mulae relating tuples of input values to corresponding tuples of output values.
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This “objectification” is essential in our setting: it is the basis for the integration
between the two sources of knowledge.

Technically, we introduce a translation function τ that transforms a DKB
X = 〈Σ,T,M, C,A〉 into a corresponding FOL(D) KB τ(X ) = 〈Σ′, T ′, A〉 (or
an IDKB X = 〈Σ,T,M, C〉 into a corresponding FOL(D) IKB τ(X )) as follows.
Signature Σ′ = Σ∪Σi

M∪Σo
M is the signature obtained from the original DKB by

incorporating a set Σi
M = {P i/2 | P i ∈ M.I} of binary predicates that account

for the input attributes of the table, and a set Σo
M = {P o,k/2 | P o ∈ M.O, k ∈

{1, . . . , |M.R|}} of predicates that account for the output attributes. Specifically,
each input attribute becomes a binary predicate with the same name, while each
output attribute gives rise to a series of corresponding binary predicates, one
per rule in the table. In this way, an output value retains information about its
provenance, i.e., which rule was applied to produce it. All so-generated predicates
have first component typed with Δ, and second component typed according to
the type assigned by M to their corresponding attribute.

TBox T ′ = T ∪ τC(M) extends the original axioms in T with a set of addi-
tional axioms that encode M into FOL(D), relativizing the encoding to the
bridge concept C.

The encoding τC(M) of decision table M consists of the union of formulae
obtained by encoding: (i) input/output attributes of M; (ii) the facet conditions
attached to such attributes; (iii) rules in M.

In the following, given a predicate P ∈ Σi
M ∪ Σo

M, we denote by attr(P ) the
attribute in M.I ∪ M.O from which P has been obtained. In addition, given
m ∈ {1, . . . , |M.R|}, we denote by Σo

M|m = {P o,k | P o,k ∈ Σo
M, k = m} the

subset of Σo
M containing only the predicates associated to index m.

Encoding of attributes. For each predicate P ∈ Σi
M ∪ Σo

M, function τC

produces two formulae: (i) a typing formula ∀x, y.P (x, y) → C(x), declaring that
the domain of the attribute is the bridge concept; (ii) a functionality formula
∀x, y, z.P (x, y) ∧ P (x, z) → x = z, declaring that every object of the bridge
concept cannot be connected to more than one value through P . If attr(P ) is
an input attribute, functionality guarantees that the application of the decision
table is unambiguous. If attr(P ) is an output attribute, functionality simply
captures that there is a single value present in an output cell of the decision
table. In general, multiple outputs for the same column may in fact be obtained
when applying a decision, but if so, they would be generated by different rules.

Encoding of facet conditions. For each attribute predicate P ∈ Σi
M ∪ Σo

M,
function τC produces the facet formula imposing that the range of the predi-
cate must satisfy the restrictions imposed by the S-FEEL condition attached to
attribute attr(P ):

∀x, y.P (x, y) → τy(M.AFacet(attr(P ))),

where, given an S-FEEL condition Q, function τx(Q) builds a unary FOL(D)
formula that encodes the application of Q to x. This is defined as follows:
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τx(Q) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if Q = “−”

x �= v if Q = “not(v)”

x = v if Q = “v”

x ≈ v if Q = “≈ v” and ≈ ∈ {<, >, ≤, ≥}
x > v1 ∧ x < v2 if Q = “(v1..v2)”

. . . (similarly for the other types of intervals)

τx(Q1) ∨ τx(Q2) if Q = “Q1,Q2”

Example 5. Consider the length attribute in Table 2. Assuming that Ship acts
as bridge concept, its typing and facet FOL(D) formulae are:

∀x, y.length(x, y) → Ship(x). ∀x, y.length(x, y) → y ≥ 0. �

Encoding of rules. Each rule is translated into a formula expressing that
whenever an object belonging to the bridge concept is related, via predicates
accounting for the input attributes, to values that satisfy the S-FEEL conditions
associated by the rule to such attributes, then the same object must be related,
via predicates accounting for the output attributes, to the values associated by
the rule to such attributes. Formally, fix an ordering over the rules M.R. For
every m ∈ {1, . . . , |M.R|}, given the m-rule rm = 〈If,Then〉 ∈ R, function τC

produces:

∀x,y.
∧

P i
j ∈Σi

M

(
P i

j (x, yj) ∧ τyj
(
attr(If(P i

j ))
))→

∧

P
o,m
k

∈Σo
M|m

(
∃zk.P o,m

k ∧ τzk
(
Then(attr(P o,m

k ))
))

Example 6. Rule 2 in Table 2 is encoded in FOL(D) as:

∀x, e, l, d, c. exp(x, e) ∧ e > today ∧ length(x, l) ∧ l < 260 ∧
draft(x, d) ∧ d < 10 ∧ cap(x, c) ∧ c < 1000 → ∃o.enter2(x, o) ∧ o = Y.

where enter2 is obtained from output attribute enter in the context of
Rule 2. �

We close this section by arguing that our encoding can be seen as a sort of
“objectification” of the encoding in [5], where a tuple of values is now reified
into an explicit object, together with corresponding predicates pointing to the
different tuple components.

4.3 Reasoning Tasks

We formally revisit the main reasoning tasks introduced in [5] for DMN, in the
presence of background knowledge. Such reasoning tasks aim at understanding
whether the metadata attached to a DMN decision to indicate completeness
and hit policies, indeed reflect the semantics of the DKB of interest. In the
following, we fix a DKB X = 〈Σ,T,M, C,A〉, and denote by X = 〈Σ,T,M, C〉
its corresponding IDKB.
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I/O relationship. The first and most fundamental reasoning task is to check
whether the DKB induces a certain input/output relationship over a given
object. The I/O relationship problem for DKBs is defined as follows:

Input: (i) DKB X , (ii) object c ∈ Δ of type C, (iii) output attribute P o ∈ M.O,
(iv) value v ∈ M.AType(P o).

Question: Is it the case that X assigns output v for attribute P o to object c?
Formally, this amounts to check whether fact P o,k(c, v) is implied for some
rule k, i.e., whether: τ(X ) |= ∨

P o,k∈Σo
M

P o,k(c, v).

Table completeness. Completeness is declared by setting M.C = c, and indi-
cates that the rules in M cover all possible configurations for the input values.
The table completeness problem is then defined as follows:

Input: IDKB X .
Question: Is it the case that at least one rule of M is guaranteed to trigger?

Formally:

τ(X ) |= ∀x,y.
∨

〈If,Then〉∈M.R

∧

P i
j ∈Σi

M

(
P i

j (x, yj) → τyj (If(attr(P i
j )))

)
?

Correctness of unique hit. Unique hit is declared by setting M.H = u, and
indicates that at most one rule of M may trigger on a given input object. The
correctness of unique hit problem is hence defined as follows:

Input: IDKB X .
Question: Is it the case that rules in M do not overlap? Formally: is it the case

that, for every pair 〈If1,Then1〉 and 〈If2,Then2〉 of rules in M.R,

τ(X ) |= ∀x,y.
∨

P i
j ∈M.I

(
P i

j (x, yj) → ¬( ∧

k∈{1,2}
τyj (Ifk(attr(P i

j )))
))

?

Correctness of any hit. Any hit is declared by setting M.H = a, and states
that whenever multiple rules may simultaneously trigger, they need to agree on
the produced output. In this light, checking whether this policy is correct can
be directly reduced to the case of unique hit, but considering only those pairs of
rules that differ in output.

DMN reasoning tasks. We conclude by pointing out that, in the case where
background knowledge is absent, i.e., T = ∅, the different reasoning tasks reduce
to the case of pure DMN (as defined in [5]). The reduction is direct for table
completeness, and also for checking correctness of unique/any hit. Checking I/O
relationship is obtained instead by fixing A to contain exactly the following facts:
(i) a fact C(c) where c is an arbitrary object from Δ; (ii) a set of facts of the
form {P i

j (c, vj) | P i
j ∈ M.I}, denoting the assignment of input attributes for c

to the corresponding values of interest.
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5 Reasoning on Decision Knowledge Bases

While the translation from DKBs to FOL(D) presented in Sect. 4.2 provides the
logic-based semantics of DKBs, it does not give any insight on how to actually
approach the different reasoning tasks of Sect. 4.3. Obviously, decidability and
complexity of such reasoning tasks depend on the background knowledge and on
the decision component. Since the decision component comes with the fixed S-
FEEL language, we approach this problem as follows. First, we show that DMN
decision tables based on S-FEEL can be encoded in ALC(D). Then, we show
that all reasoning tasks defined in Sect. 4.3 can be reduced to (un)satisfiability
of an ALC(D) concept w.r.t. a KB consisting of the union of the background
knowledge with the ALC(D) formalization of the decision table. We consequently
obtain that such satisfiability checks can be carried out in ExpTime, whenever
the background knowledge is expressed in ALC(D).

5.1 Encoding Decision Tables in ALC(D)

We revisit the translation from DKBs to FOL(D) introduced in Sect. 4.2, show-
ing that the translation of decision tables can be reformulated so as to obtain an
ALC(D) IKB. Given a bridge concept C and a decision table M, we introduce
a translation function ρC that encodes M into the corresponding ALC(D) IKB
ρC(M) = 〈ΣM, TM〉, using C to provide a context for the encoding. Specifically,
the signature of the target IKB is simply obtained from the bridge concept and
the input/output attributes of M, adopting exactly the same strategy followed
for the encoding into FOL(D): input attributes become binary predicates, and
output attributes become binary predicates relativized w.r.t. the different rules
present in M. In formulae, ΣM = C ∪ Σi

M ∪ Σo
M. The encoding of TM recon-

structs that of Sect. 4.2, and in fact deals with: (i) input/output attributes of
M; (ii) the facet conditions attached to such attributes; (iii) rules in M.

Encoding of attributes. For each attribute P ∈ Σi
M ∪ Σo

M, function ρC

produces the typing axiom ∃P � C. Note that functionality is not explicitly
asserted, since ALC(D) features are functional by default.

Encoding of facet conditions. For each attribute P ∈ Σi
M ∪ Σo

M,
function ρC produces a derived datatype declaration of the form: C �
ρP (M.AFacet(attr(P ))), where, given an S-FEEL condition Q, and assuming
that M.AType = type, ρP (Q) builds an ALC(D) concept application of Q to x.
This is defined as follows:

ρP (Q) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if Q = “−”

¬∃P.type[=v] if Q = “not(v)”

∀P.type[=v] if Q = “v”

∀P.type[COPv] if Q = “COP v” and COP ∈ {<, >, ≤, ≥}
∀P.type[>v1 ∧ <v2 ] if Q = “(v1..v2)”

. . . (similarly for the other types of intervals)

ρP (Q1)  ρP (Q2) if Q = “Q1,Q2”
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Example 7. Consider the length attribute in Table 2. Assuming that Ship acts
as bridge concept, its typing and facet FOL(D) formulae are ∃length � Ship
and Ship � ∀length.real[>0]. �

Encoding of rules. Fix an ordering over the rules M.R. For every m ∈
{1, . . . , |M.R|}, given the m-rule rm = 〈If,Then〉 ∈ R, function ρC produces
an inclusion assertion of the form:

�

P i
j ∈Σi

M

(
ρP i

j
(
attr(If(P i

j ))
)) �

�

P o,m
k ∈Σo

M|m

(
∃P o,m

k � ρP o,m
k

(
Then(attr(P o,m

k ))
))

Example 8. Rule 2 in Table 2 is encoded in ALC(D) as:

∀exp.real[>today] � ∀length.real[<260] � ∀draft.real[<10] � ∀cap.real[<1000]
� ∃enter2 � ∀enter2.string[=Y] �

Thanks to the fact that ALC(D) can be seen as a fragment of FOL(D), we
can directly establish that the ALC(D) encoding of decision tables is indeed
correct.

Theorem 2. For every decision table M, and (bridge) concept C, we have that
the FOL(D) IKB τC(M) is logically equivalent to the ALC(D) IKB ρC(M).

Proof. Direct by construction of the translation functions τC and ρC , noting
that, once the standard FOL(D) encoding of ALC(D) is applied to the ALC(D)
IKB ρC(M), it becomes syntactically identical to the FOL(D) IKB τC(M). ��

5.2 Reasoning over ALC(D) Decision Knowledge Bases

In this section, we leverage the possibility of encoding decision tables into
ALC(D) so as to obtain a characterization of the decidability and complexity of
reasoning in the case of ALC(D) DKBs, i.e., DKBs whose background knowledge
is specified in ALC(D). Formally, a DKB X = 〈Σ,T,M, C,A〉 is an ALC(D)
DKB if 〈Σ,T,A〉 is an ALC(D) KB. We extend the translation function of Sect. 5
to handle the entire ALC(D) KB as follows: ρ(X ) = 〈Σ ∪ ΣM, T ∪ TM, A〉,
where 〈ΣM, TM〉 = ρC(M) (similarly for an ALC(D) IKB). With these notions
at hand, we show the following.

Theorem 3. The I/O relationship, table completeness, and correctness of
unique hit problems can all be decided in ExpTime for ALC(D) DKBs.

Proof. The proof is based on a reduction from the three decision problems to
a polynomial number of instance or subsumption checks w.r.t. an ALC(D) KB,
which can be decided in ExpTime (cf. Theorem 1). Let X = 〈Σ,T,M, C,A〉 be
an ALC(D) DKB, and let X = 〈Σ,T,M, C〉 be its corresponding IDKB.

(I/O relationship) Fix an ordering over the rules M.R. Given (i) X ,
(ii) object c ∈ Δ of type C, (iii) output attribute P o ∈ M.O, and (iv) value
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v ∈ M.AType(P o) , we have that X assigns output v for attribute P o to object c
iff there exists k ∈ {1, . . . , |M.R|} such that instance checking for fact P o,k(c, v)
w.r.t. KB ρ(X ) succeeds.
(Table completeness) Decision rules in X are complete iff the following ALC(D)
subsumption holds with respect to KB ρ(X ):

� �
⊔

〈If,Then〉∈M.R

�

P i
j ∈Σi

M

(
ρP i

j (If(attr(P i
j )))

)

(Unique hit) Decision rules in X do not overlap iff for every pair 〈If1,Then1〉 and
〈If2,Then2〉 of rules in M.R, the following subsumption holds w.r.t KB ρ(X ):

� �
⊔

P i
j ∈M.I

¬
�

k∈{1,2}
ρP i

j (Ifk(attr(P i
j )))

��
Example 9. As discussed in Example 2, the ship ontology in Table 1 can be
formalized in ALC(D). Hence, the maritime security DKB of Example 4 is actu-
ally an ALC(D) DKB. Thanks to Theorem 3, standard ALC(D) reasoning tasks
can then be used to check that such a DKB guarantees table completeness and
the correctness of the unique hit indicators, as specified in Table 2. Recall that
completeness holds because the table is interpreted w.r.t. the ship ontology. �

6 Conclusions

In this work, we have provided a threefold contribution to the area of decision
management, recently revived by the introduction of the DMN OMG standard.
First, we have introduced decision knowledge bases (DKBs) as a framework to
integrate DMN decision tables with background knowledge, captured by means
of a DL KB. Second, we have formalized the framework, as well as different
fundamental reasoning tasks, in FOL(D). Third, we have shown that, in the case
where background knowledge is expressed in ALC(D), all such reasoning tasks
are decidable in ExpTime. Before delving into the implementation of such rea-
soning tasks, we are interested in refining the analysis of their complexity, by
varying the DL used to capture the background knowledge. On the one hand,
we argue that DMN decision tables can actually be integrated with more expres-
sive DLs, such as OWL 2, by retaining the complexity of reasoning that comes
with the DL. On the other hand, we note that the DL encoding of DMN deci-
sion tables falls within the lightweight fragment of ALC(D) constituted by the
DL-Lite(HN )

bool (D) logic extended with qualified existentials on the left-hand side
of inclusions. This logic has been very recently introduced in [1, Sect. 4.3], and
although upper bounds for the standard DL reasoning services are not yet estab-
lished for such logic, we conjecture that it is strictly less complex than ALC(D).
This paves the way towards the study of lightweight DKBs.
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Abstract. In this paper we consider the most common ABox reasoning
services for the description logic DL〈4LQSR,×〉(D) (DL4,×

D , for short) and
prove their decidability via a reduction to the satisfiability problem for
the set-theoretic fragment 4LQSR. The description logic DL4,×

D is very
expressive, as it admits various concept and role constructs and data
types that allow one to represent rule-based languages such as SWRL.

Decidability results are achieved by defining a generalization of the
conjunctive query answering (CQA) problem that can be instantiated to
the most widespread ABox reasoning tasks. We also present a KE-tableau
based procedure for calculating the answer set from DL4,×

D -knowledge
bases and higher order DL4,×

D -conjunctive queries, thus providing means
for reasoning on several well-known ABox reasoning tasks. Our calculus
extends a previously introduced KE-tableau based decision procedure for
the CQA problem.

1 Introduction

Recently, results from Computable Set Theory have been applied to knowledge
representation for the semantic web in order to define and reason about descrip-
tion logics and rule languages. Such a study is motivated by the fact that Com-
putable Set Theory is a research field full of interesting decidability results and
that there exists a natural translation map between some set-theoretic fragments
and description logics and rule languages.

In particular, the decidable four-level stratified fragment of set theory 4LQSR,
involving variables of four sorts, pair terms, and a restricted form of quantifi-
cation over variables of the first three sorts (cf. [4]), has been used in [3] to
represent the description logic DL〈4LQSR〉(D) (DL4

D, for short). The logic DL4
D

admits concept constructs such as full negation, union and intersection of con-
cepts, concept domain and range, existential quantification and min cardinality
on the left-hand side of inclusion axioms. It also supports role constructs such
as role chains on the left hand side of inclusion axioms, union, intersection, and

This work has been partially supported by the Polish National Science Centre
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complement of abstract roles, and properties on roles such as transitivity, sym-
metry, reflexivity, and irreflexivity. As briefly shown in [3], DL4

D is particularly
suitable to express a rule language such as the Semantic Web Rule Language
(SWRL), an extension of the Ontology Web Language (OWL). It admits data
types, a simple form of concrete domains that are relevant in real world applica-
tions. In [3], the consistency problem for DL4

D-knowledge bases has been proved
decidable by means of a reduction to the satisfiability problem for 4LQSR, whose
decidability has been established in [4]. It has also been shown that, under not
very restrictive constraints, the consistency problem for DL4

D-knowledge bases
is NP-complete. Such a low complexity result is motivated by the fact that exis-
tential quantification cannot appear on the right-hand side of inclusion axioms.
Nonetheless, DL4

D turns out to be more expressive than other low complexity
logics such as OWL RL and therefore it is suitable for representing real world
ontologies. For example, the restricted version of DL4

D mentioned above allows
one to express several ontologies, such as Ontoceramic [9], for the classification
of ancient pottery.

In [7], the description logic DL〈4LQSR,×〉(D) (DL4,×
D , for short), extending

DL4
D with Boolean operations on concrete roles and with the product of con-

cepts, has been introduced and the Conjunctive Query Answering (CQA) prob-
lem for DL4,×

D has been proved decidable via a reduction to the CQA problem
for 4LQSR, whose decidability follows from that of 4LQSR (see [4]). CQA is a
powerful way to query ABoxes, particularly relevant in the context of description
logics and for real world applications based on semantic web technologies, as it
provides mechanisms for interacting with ontologies and data. The CQA prob-
lem for description logics has been introduced in [1,2] (further references on the
problem can be found in [8]). Finally, we mention also a terminating KE-tableau
based procedure that, given a DL4,×

D -query Q and a DL4,×
D -knowledge base KB

represented in set-theoretic terms, determines the answer set of Q with respect
to KB. KE-tableau systems [10] allow the construction of trees whose distinct
branches define mutually exclusive situations, thus preventing the proliferation
of redundant branches, typical of semantic tableaux.

In this paper we extend the results presented in [7] by considering also the
main ABox reasoning tasks for DL4,×

D , such as instance checking and concept
retrieval, and study their decidability via a reduction to the satisfiability problem
for 4LQSR. Specifically, we define Higher Order (HO) DL4,×

D -conjunctive queries
admitting variables of three sorts: individual and data type variables, concept
variables, and role variables. HO DL4,×

D -conjunctive queries can be instantiated
to any of the ABox reasoning tasks we are considering in the paper. Then, we
define the Higher Order Conjunctive Query Answering (HOCQA) problem for
DL4,×

D and prove its decidability by reducing it to the HOCQA problem for
4LQSR. Decidability of the latter problem follows from that of the satisfiability
problem for 4LQSR. 4LQSR representation of DL4,×

D -knowledge bases is defined
according to [7]. 4LQSR turns out to be naturally suited for the HOCQA problem
since HO DL4,×

D -conjunctive queries are easily translated into 4LQSR-formulae.
In particular, individual and data type variables are mapped into 4LQSR vari-
ables of sort 0, concept variables into 4LQSR variables of sort 1, and role variables
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into 4LQSR variables of sort 3. Finally, we present an extension of the KE-tableau
presented in [7], which provides a decision procedure for the HOCQA task for
DL4,×

D .

2 Preliminaries

2.1 The Set-Theoretic Fragment 4LQSR

It is convenient to first introduce the syntax and semantics of the more general
four-level quantified language 4LQS. Then we provide some restrictions on the
quantified formulae of 4LQS to characterize 4LQSR. The interested reader can
find more details in [4] together with the decision procedure for the satisfiability
problem for 4LQSR.

4LQS involves four collections, Vi, of variables of sort i = 0, 1, 2, 3, respec-
tively. These will be denoted by Xi, Y i, Zi, . . . (in particular, variables of sort 0
will also be denoted by x, y, z, . . .). In addition to variables, 4LQS involves also
pair terms of the form 〈x, y〉, for x, y ∈ V0.
4LQS-quantifier-free atomic formulae are classified as:

– level 0: x = y, x ∈ X1, 〈x, y〉 = X2, 〈x, y〉 ∈ X3;
– level 1: X1 = Y 1, X1 ∈ X2;
– level 2: X2 = Y 2, X2 ∈ X3.

4LQS-purely universal formulae are classified as:

– level 1: (∀z1) . . . (∀zn)ϕ0, where z1, . . . , zn ∈ V0 and ϕ0 is any propositional
combination of quantifier-free atomic formulae of level 0;

– level 2: (∀Z1
1 ) . . . (∀Z1

m)ϕ1, where Z1
1 , . . . , Z1

m ∈ V1 and ϕ1 is any propositional
combination of quantifier-free atomic formulae of levels 0 and 1, and of purely
universal formulae of level 1;

– level 3: (∀Z2
1 ) . . . (∀Z2

p)ϕ2, where Z2
1 , . . . , Z2

p ∈ V2 and ϕ2 is any propositional
combination of quantifier-free atomic formulae and of purely universal formu-
lae of levels 1 and 2.

4LQS-formulae are all the propositional combinations of quantifier-free atomic
formulae of levels 0, 1, 2, and of purely universal formulae of levels 1, 2, 3.

The variables z1, . . . , zn are said to occur quantified in (∀z1) . . . (∀zn)ϕ0. Like-
wise, Z1

1 , . . . , Z1
m and Z2

1 , . . . , Z2
p occur quantified in (∀Z1

1 ) . . . (∀Z1
m)ϕ1 and in

(∀Z2
1 ) . . . (∀Z2

p)ϕ2, respectively. A variable occurs free in a 4LQS-formula ϕ if it
does not occur quantified in any subformula of ϕ. For i = 0, 1, 2, 3, we denote
with Vari(ϕ) the collections of variables of level i occurring free in ϕ and we put
Vars(ϕ) :=

⋃3
i=0 Vari(ϕ).

A substitution σ := {x/y, X1/Y 1, X2/Y 2, X3/Y 3} is the mapping ϕ �→
ϕσ such that, for any given 4LQS-formula ϕ, ϕσ is the 4LQS-formula obtained
from ϕ by replacing the free occurrences of the variables xi in x (for i = 1, . . . , n)
with the corresponding yi in y, of X1

j in X1 (for j = 1, . . . , m) with Y 1
j in Y 1, of
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X2
k in X2 (for k = 1, . . . , p) with Y 2

k in Y 2, and of X3
h in X3 (for h = 1, . . . , q)

with Y 3
h in Y 3, respectively. A substitution σ is free for ϕ if the formulae ϕ

and ϕσ have exactly the same occurrences of quantified variables. The empty
substitution, denoted with ε, satisfies ϕε = ϕ, for every 4LQS-formula ϕ.

A 4LQS-interpretation is a pair M = (D,M), where D is a non-empty
collection of objects (called domain or universe of M) and M is an assignment
over the variables in Vi, for i = 0, 1, 2, 3, such that:

MX0 ∈ D, MX1 ∈ P(D), MX2 ∈ P(P(D)), MX3 ∈ P(P(P(D))),

where Xi ∈ Vi, for i = 0, 1, 2, 3, and P(s) denotes the powerset of s.
Pair terms are interpreted à la Kuratowski, and therefore we put

M〈x, y〉 := {{Mx}, {Mx,My}}.

Quantifier-free atomic formulae and purely universal formulae are evaluated in a
standard way according to the usual meaning of the predicates ‘∈’ and ‘=’. The
interpretation of quantifier-free atomic formulae and of purely universal formulae
is given in [4].

Finally, compound formulae are interpreted according to the standard rules
of propositional logic. If M |= ϕ, then M is said to be a 4LQS-model for ϕ. A
4LQS-formula is said to be satisfiable if it has a 4LQS-model. A 4LQS-formula
is valid if it is satisfied by all 4LQS-interpretations.

We are now ready to present the fragment 4LQSR of 4LQS of our interest.
This is the collection of the formulae ψ of 4LQS fulfilling the restrictions:

1. for every purely universal formula (∀Z1
1 ) . . . (∀Z1

m)ϕ1 of level 2 occurring in
ψ and every purely universal formula (∀z1) . . . (∀zn)ϕ0 of level 1 occurring
negatively in ϕ1, ϕ0 is a propositional combination of quantifier-free atomic
formulae of level 0 and the condition

¬ϕ0 →
n∧

i=1

m∧

j=1

zi ∈ Z1
j

is a valid 4LQS-formula (in this case we say that (∀z1) . . . (∀zn)ϕ0 is linked to
the variables Z1

1 , . . . , Z1
m);

2. for every purely universal formula (∀Z2
1 ) . . . (∀Z2

p)ϕ2 of level 3 in ψ:
– every purely universal formula of level 1 occurring negatively in ϕ2 and

not occurring in a purely universal formula of level 2 is only allowed to
be of the form

(∀z1) . . . (∀zn)¬(
n∧

i=1

n∧

j=1

〈zi, zj〉 = Y 2
ij),
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with Y 2
ij ∈ V2, for i, j = 1, . . . , n;

– purely universal formulae (∀Z1
1 ) . . . (∀Z1

m)ϕ1 of level 2 may occur only
positively in ϕ2.1

Restriction 1 has been introduced for technical reasons related to the decid-
ability of the satisfiability problem for the fragment, while restriction 2 allows
one to define binary relations and several operations on them (see [4] for details).

The semantics of 4LQSR plainly coincides with that of 4LQS.

2.2 The Logic DL〈4LQSR,×〉(D)

The description logic DL〈4LQSR,×〉(D) (which, as already remarked, will be
more simply referred to as DL4,×

D ) is an extension of the logic DL〈4LQSR〉(D)
presented in [3], where Boolean operations on concrete roles and the product
of concepts are introduced. In addition to other features, DL4,×

D admits also
data types, a simple form of concrete domains that are relevant in real-world
applications. In particular, it treats derived data types by admitting data type
terms constructed from data ranges by means of a finite number of applications of
the Boolean operators. Basic and derived data types can be used inside inclusion
axioms involving concrete roles.

Data types are introduced through the notion of data type map, defined
according to [12] as follows. Let D = (ND, NC , NF , ·D) be a data type map,
where ND is a finite set of data types, NC is a function assigning a set of
constants NC(d) to each data type d ∈ ND, NF is a function assigning a set
of facets NF (d) to each d ∈ ND, and ·D is a function assigning a data type
interpretation dD to each data type d ∈ ND, a facet interpretation fD ⊆ dD to
each facet f ∈ NF (d), and a data value eDd ∈ dD to every constant ed ∈ NC(d).
We shall assume that the interpretations of the data types in ND are non-empty
pairwise disjoint sets.

Let RA, RD, C, I be denumerable pairwise disjoint sets of abstract role
names, concrete role names, concept names, and individual names, respectively.
We assume that the set of abstract role names RA contains a name U denoting
the universal role.

(a) DL4,×
D -data types, (b) DL4,×

D -concepts, (c) DL4,×
D -abstract roles, and

(d) DL4,×
D -concrete role terms are constructed according to the following syntax

rules:

(a) t1, t2 −→ dr | ¬t1 | t1 � t2 | t1 � t2 | {ed} ,

(b) C1, C2 −→ A | � | ⊥ | ¬C1 | C1 � C2 | C1 � C2 | {a} | ∃R.Self |∃R.{a}|∃P.{ed} ,

(c) R1, R2 −→ S | U | R−
1 | ¬R1 | R1 �R2 | R1 �R2 | RC1| | R|C1 | RC1 | C2 | id(C) |

C1 × C2 ,

(d) P1, P2 −→ T | ¬P1 | P1 � P2 | P1 � P2 | PC1| | P|t1 | PC1|t1 ,

1 Definitions of positive and of negative occurrences of a formula within another
formula can be found in [4].
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where dr is a data range for D, t1, t2 are data type terms, ed is a constant in
NC(d), a is an individual name, A is a concept name, C1, C2 are DL4,×

D -concept
terms, S is an abstract role name, R,R1, R2 are DL4,×

D -abstract role terms, T is
a concrete role name, and P, P1, P2 are DL4,×

D -concrete role terms. We remark
that data type terms are introduced in order to represent derived data types.

A DL4,×
D -knowledge base is a triple K = (R, T ,A) such that R is a DL4,×

D -
RBox, T is a DL4,×

D -TBox, and A a DL4,×
D -ABox. These are defined as follows.

A DL4,×
D -RBox is a collection of statements of the following forms: R1 ≡

R2, R1 
 R2, R1 . . . Rn 
 Rn+1, Sym(R1), Asym(R1), Ref(R1), Irref(R1),
Dis(R1, R2), Tra(R1), Fun(R1), R1 ≡ C1 × C2, P1 ≡ P2, P1 
 P2, Dis(P1, P2),
Fun(P1), where R1, R2 are DL4,×

D -abstract role terms, C1, C2 are DL4,×
D -abstract

concept terms, and P1, P2 are DL4,×
D -concrete role terms. Any expression of the

type w 
 R, where w is a finite string of DL4,×
D -abstract role terms and R is an

DL4,×
D -abstract role term, is called a role inclusion axiom (RIA).
A DL4,×

D -TBox is a set of statements of the following types:

– C1 ≡ C2, C1 
 C2, C1 
 ∀R1.C2, ∃R1.C1 
 C2, ≥n R1.C1 
 C2, C1 

≤nR1.C2,

– t1 ≡ t2, t1 
 t2, C1 
 ∀P1.t1, ∃P1.t1 
 C1, ≥nP1.t1 
 C1, C1 
 ≤nP1.t1,

where C1, C2 are DL4,×
D -concept terms, t1, t2 data type terms, R1 a DL4,×

D -
abstract role term, P1 a DL4,×

D -concrete role term. Any statement of the form
C 
 D, with C, D DL4

D-concept terms, is a general concept inclusion axiom.
A DL4,×

D -ABox is a set of individual assertions of the forms: a : C1, (a, b) : R1,
a = b, a �= b, ed : t1, (a, ed) : P1, with C1 a DL4,×

D -concept term, d a data type,
t1 a data type term, R1 a DL4,×

D -abstract role term, P1 a DL4,×
D -concrete role

term, a, b individual names, and ed a constant in NC(d).
The semantics of DL4,×

D is given by means of an interpretation I =
(ΔI,ΔD, ·I), where ΔI and ΔD are non-empty disjoint domains such that
dD ⊆ ΔD, for every d ∈ ND, and ·I is an interpretation function. The definition
of the interpretation of concepts and roles, axioms and assertions is illustrated
in [8, Table 1].

Let R, T , and A be as above. An interpretation I = (ΔI,ΔD, ·I) is a D-
model of R (resp., T ), and we write I |=D R (resp., I |=D T ) if I satisfies
each axiom in R (resp., T ) according to the semantic rules in [8, Table 1].
Analogously, I = (ΔI,ΔD, ·I) is a D-model of A, and we write I |=D A if I
satisfies each assertion in A, according to the semantic rules in [8, Table 1]. A
DL4,×

D -knowledge base K = (A, T ,R) is consistent if there is an interpretation
I = (ΔI,ΔD, ·I) that is a D-model of A, T , and R (we write I |=D K).

Some considerations on the expressive power of DL4,×
D are in order. As illus-

trated in [8, Table 1] existential quantification is admitted only on the left
hand side of inclusion axioms. Thus DL4,×

D is less powerful than logics such
as SROIQ(D) [11] as far as the generation of new individuals is concerned. On
the other hand, DL4,×

D is more liberal than SROIQ(D) in the definition of role
inclusion axioms since the roles involved are not required to be subject to any
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ordering relationship, and the notion of simple role is not needed. For example,
the role hierarchy presented in [11, p. 2] is not expressible in SROIQ(D) but
can be represented in DL4,×

D . In addition, DL4,×
D is a powerful rule language able

to express rules with negated atoms such as

Person(?p) ∧ ¬hasCar(?p, ?c) =⇒ CarlessPerson(?p).

Notice that rules with negated atoms are not supported by the SWRL language.

3 ABox Reasoning Services for DL4,×
D -Knowledge Base

The most important feature of a knowledge representation system is the capa-
bility of providing reasoning services. Depending on the type of the application
domains, there are many different kinds of implicit knowledge that is desirable
to infer from what is explicitly mentioned in the knowledge base. In particular,
reasoning problems regarding ABoxes consist in querying a knowledge base in
order to retrieve information concerning data stored in it. In this section we
study the decidability for the most widespread ABox reasoning tasks for the
logic DL4,×

D by resorting to a general problem, called Higher Order Conjuctive
Query Answering (HOCQA), that can be instantiated to each of them.

Let Vi = {v1, v2, . . .}, Vc = {c1, c2, . . .}, Var = {r1, r2, . . .}, and Vcr = {p1,
p2, . . .} be pairwise disjoint denumerably infinite sets of variables which are dis-
joint from Ind,

⋃
{NC(d) : d ∈ ND}, C, RA, and RD. A HO DL4,×

D -atomic
formula is an expression of one of the following types: R(w1, w2), P (w1, u1),
C(w1), r(w1, w2), p(w1, u1), c(w1), w1 = w2, u1 = u2, where w1, w2 ∈ Vi ∪ Ind,
u1, u2 ∈ Vi∪

⋃
{NC(d) : d ∈ ND}, R is a DL4,×

D -abstract role term, P is a DL4,×
D -

concrete role term, C is a DL4,×
D -concept term, r ∈ Var, p ∈ Vcr, and c ∈ Vc.

A HO DL4,×
D -atomic formula containing no variables is said to be ground. A

HO DL4,×
D -literal is a HO DL4,×

D -atomic formula or its negation. A HO DL4,×
D -

conjunctive query is a conjunction of HO DL4,×
D -literals. We denote with λ the

empty HO DL4,×
D -conjunctive query.

Let v1, . . . , vn ∈ Vi, c1, . . . , cm ∈ Vc, r1, . . . , rk ∈ Var, p1, . . . , ph ∈ Vcr,
o1, . . . , on ∈ Ind ∪

⋃
{NC(d) : d ∈ ND}, C1, . . . , Cm ∈ C, R1, . . . , Rk ∈ RA,

and P1, . . . , Ph ∈ RD. A substitution

σ := {v1/o1, . . . , vn/on, c1/C1, . . . , cm/Cm, r1/R1, . . . , rk/Rk, p1/P1, . . . , ph/Ph}

is a map such that, for every HO DL4,×
D -literal L, Lσ is obtained from L by

replacing the occurrences of vi in L with oi, for i = 1, . . . , n; the occurrences
of cj in L with Cj , for j = 1, . . . ,m; the occurrences of r� in L with R�, for
� = 1, . . . , k; the occurrences of pt in L with Pt, for t = 1, . . . , h.
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Substitutions can be extended to HO DL4,×
D -conjunctive queries in the usual

way. Let Q := (L1∧. . .∧Lm) be a HO DL4,×
D -conjunctive query, and KB a DL4,×

D -
knowledge base. A substitution σ involving exactly the variables occurring in Q
is a solution for Q w.r.t. KB if there exists a DL4,×

D -interpretation I such that
I |=D KB and I |=D Qσ. The collection Σ of the solutions for Q w.r.t. KB is
the higher order answer set of Q w.r.t. KB. Then the higher order conjunctive
query answering problem for Q w.r.t. KB consists in finding the HO answer set
Σ of Q w.r.t. KB. We shall solve the HOCQA problem just stated by reducing
it to the analogous problem formulated in the context of the fragment 4LQSR

(and in turn to the decision procedure for 4LQSR presented in [4]). The HOCQA
problem for 4LQSR-formulae can be stated as follows. Let φ be a 4LQSR-formula
and let ψ be a conjunction of 4LQSR-quantifier-free atomic formulae of level 0
of the types x = y, x ∈ X1, 〈x, y〉 ∈ X3, or their negations.

The HOCQA problem for ψ w.r.t. φ consists in computing the HO answer
set of ψ w.r.t. φ, namely the collection Σ′ of all the substitutions σ′ such that
M |= φ ∧ ψσ′, for some 4LQSR-interpretation M.

In view of the decidability of the satisfiability problem for 4LQSR-formulae,
the HOCQA problem for 4LQSR-formulae is decidable as well. Indeed, let φ and
ψ be two 4LQSR-formulae fulfilling the above requirements. To calculate the HO
answer set of ψ w.r.t. φ, for each candidate substitution

σ′ := {x/z,X1/Y 1,X2/Y 2,X3/Y 3}

one has just to check the 4LQSR-formula φ∧ψσ′ for satisfiability. Since the num-
ber of possible candidate substitutions is |Vars(φ)||Vars(ψ)| and the satisfiability
problem for 4LQSR-formulae is decidable, the HO answer set of ψ w.r.t. φ can
be computed effectively. Summarizing,

Lemma 1. The HOCQA problem for 4LQSR-formulae is decidable. ��

The following theorem states decidability of the HOCQA problem for DL4,×
D .

Theorem 1. Given a DL4,×
D -knowledge base KB and a HO DL4,×

D - conjunctive
query Q, the HOCQA problem for Q w.r.t. KB is decidable. ��

The proof of Theorem 1 is much along the same lines of [7, Theorem 1] and,
for space reasons, is omitted. However, the interested reader can find it in the
extended version of this paper [8]. Here, we just sketch the main ideas of the
proof to ease the understanding of the rest of the paper. As mentioned above, the
DL4,×

D -HOCQA problem can be solved by reducing it effectively to the HOCQA
problem for 4LQSR-formulae and then exploiting Lemma 1. The reduction is car-
ried out by means of a transformation function θ that maps the DL4,×

D -knowledge
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base KB in a 4LQSR-formula φKB in Conjunctive Normal Form (CNF) and the
HO DL4,×

D -conjunctive query Q in the 4LQSR-formula ψQ. Specifically,2

φKB :=
∧

H∈KB
θ(H) ∧

∧12

i=1
ξi, ψQ := θ(Q).

Let Σ be the HO answer set of Q w.r.t. KB and Σ′ the HO answer set
of ψQ w.r.t. φKB. Then Σ consists of all substitutions σ (involving exactly the
variables occurring in Q) such that θ(σ) ∈ Σ′. By Lemma 1, Σ′ can be calculated
effectively and thus Σ can be calculated effectively as well.

Next, we list the most widespread reasoning services for DL4,×
D -ABox and

then show how to define them as particular cases of the HOCQA task.

1. Instance checking : the problem of deciding whether or not an individual a is
an instance of a concept C.

2. Instance retrieval : the problem of retrieving all the individuals that are
instances of a given concept.

3. Role filler retrieval : the problem of retrieving all the fillers x such that the
pair (a, x) is an instance of a role R.

4. Concept retrieval : the problem of retrieving all concepts which an individual
is an instance of.

5. Role instance retrieval : the problem of retrieving all roles which a pair of
individuals (a, b) is an instance of.

The instance checking problem is a specialisation of the HOCQA problem admit-
ting HO DL4,×

D -conjunctive queries of the form QIC = C(w1), with w1 ∈ Ind.
The instance retrieval problem is a particular case of the HOCQA problem in
which HO DL4,×

D -conjunctive queries have the form QIR = C(w1), where w1

is a variable in Vi. The HOCQA problem can be instantiated to the role filler
retrieval problem by admitting HO DL4,×

D -conjunctive queries QRF = R(w1, w2),
with w1 ∈ Ind and w2 a variable in Vi. The concept retrieval problem is a
specialization of the HOCQA problem allowing HO DL4,×

D -conjunctive queries
of the form QQR = c(w1), with w1 ∈ Ind and c a variable in Vc. Finally,
the role instance retrieval problem is a particularization of the HOCQA prob-
lem, where HO DL4,×

D -conjunctive queries have the form QRI = r(w1, w2), with
w1, w2 ∈ Ind and r a variable in Vcr.

Notice that the CQA problem for DL4,×
D defined in [7] is an instance of the

HOCQA problem admitting HO DL4,×
D -conjunctive queries of the form (L1∧. . .∧

Lm), where the conjuncts Li are atomic formulae of any of the types R(w1, w2),
2 The map θ coincides with the transformation function defined in [7] as far as it

concerns the translation of each axiom or assertion H of KB in a 4LQSR-formula
θ(H). The map θ extends the function introduced in [7] for what regards the trans-
lation of the HO query Q and of the substitutions σ of the HO answer set Σ. In
particular it maps effectively variables in Vc in variables of sort 1 (in the language of
4LQSR), and variables in Var and in Vcr in variables of sort 3. The constraints ξ1–ξ12
are added to make sure that each 4LQSR-model of φKB can be transformed into a
DL4,×

D -interpretation (cf. [7, Theorem 1]).
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C(w1), and w1 = w2 (or their negation), with w1, w2 ∈ (Ind ∪ Vi). Notice also
that problems 1, 2, and 3 are instances of the CQA problem for DL4,×

D , whereas
problems 4 and 5 fall outside the definition of CQA. As shown above, they can
be treated as specializations of HOCQA.

4 An Algorithm for the HOCQA Problem for DL4,×
D

In this section we introduce an effective set-theoretic procedure to compute the
answer set of a HO DL4,×

D -conjunctive query Q w.r.t. a DL4,×
D knowledge base

KB. Such procedure, called HOCQA-DL4,×
D , takes as input φKB (i.e., the 4LQSR-

translation of KB) and ψQ (i.e., the 4LQSR-formula representing the HO DL4,×
D -

conjunctive query Q), and returns a KE-tableau TKB, representing the saturation
of KB, and the answer set Σ′ of ψQ w.r.t. φKB, namely the collection of all
substitutions σ′ such that M |= φKB ∧ψQσ′, for some 4LQSR-interpretation M.
Specifically, HOCQA-DL4,×

D constructs for each open branch of TKB a decision
tree whose leaves are labelled with elements of Σ′.

Let us first introduce some definitions and notations useful for the presenta-
tion of Procedure HOCQA-DL4,×

D .
Assume without loss of generality that universal quantifiers in φKB occur

as inward as possible and that universally quantified variables are pairwise dis-
tinct. Let S1, . . . , Sm be the conjuncts of φKB having the form of 4LQSR-purely
universal formulae. For each Si := (∀zi

1) . . . (∀zi
ni

)χi, with i = 1, . . . , m, we put

Exp(Si) :=
∧

{xa1 ,...,xani
}⊆Var0(φKB)

Si{zi
1/xa1 , . . . , z

i
ni

/xani
}.

We also define the expansion ΦKB of φKB by putting

ΦKB := {Fj : i = 1, . . . , k} ∪
m⋃

i=1

Exp(Si) , (1)

where F1, . . . , Fk are the conjuncts of φKB having the form of 4LQSR-quantifier
free atomic formulae.

To prepare for Procedure HOCQA-DL4,×
D to be described next, a brief intro-

duction to KE-tableau systems is in order (see [10] for a detailed overview of KE-
tableaux). KE-tableaux are a refutation system inspired to Smullyan’s semantic
tableaux [14]. The main characteristic distinguishing KE-tableaux from the lat-
ter is the introduction of an analytic cut rule (PB-rule) that permits to reduce
inefficiencies of semantic tableaux. In fact, firstly, the classic tableau system can
not represent the use of auxiliary lemmas in proofs; secondly, it can not express
the bivalence of classical logic. Thirdly, it is highly inefficient, as witnessed by
the fact that it can not polynomially simulate the truth-tables. None of these
anomalies occurs if the cut rule is allowed. Procedure HOCQA-DL4,×

D constructs
a complete KE-tableau TKB for the expansion ΦKB of φKB (cf. (1)), representing
the saturation of the DL4,×

D -knowledge base KB.
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Let Φ := {C1, . . . , Cp} be a collection of disjunctions of 4LQSR-quantifier free
atomic formulae of level 0 of the types: x = y, x ∈ X1, 〈x, y〉 ∈ X3. T is a
KE-tableau for Φ if there exists a finite sequence T1, . . . , Tt of trees such that
(i) T1 is a one-branch tree consisting of the sequence C1, . . . , Cp, (ii) Tt = T , and
(iii) for each i < t, Ti+1 is obtained from Ti either by an application of one of the
rules in Fig. 1 or by applying a substitution σ to a branch ϑ of Ti (in particular,
the substitution σ is applied to each formula X of ϑ; the resulting branch will
be denoted by ϑσ). The set of formulae Sβ

i := {β1, . . . , βn} \ {βi} occurring as
premise in the E-rule contains the complements of all the components of the
formula β with the exception of the component βi.

β1 ∨ . . . ∨ βn Sβ
i

βi
E-Rule

where Sβ
i := {β1, ..., βn} \ {βi},

for i = 1, ..., n

A | A
PB-Rule

with A a literal

Fig. 1. Expansion rules for the KE-tableau.

Let T be a KE-tableau. A branch ϑ of T is closed if it contains either both
A and ¬A, for some formula A, or a literal of type ¬(x = x). Otherwise, the
branch is open. A KE-tableau is closed if all its branches are closed. A formula
β1∨ . . .∨βn is fulfilled in a branch ϑ, if βi is in ϑ, for some i = 1, . . . , n; otherwise
it is unfulfilled. A branch ϑ is fulfilled if every formula β1∨ . . .∨βn occurring in ϑ
is fulfilled; otherwise it is unfulfilled. A branch ϑ is complete if either it is closed
or it is open, fulfilled, and it does not contain any literal of type x = y, with x,
y distinct variables. A KE-tableau is complete (resp., fulfilled) if all its branches
are complete (resp., fulfilled or closed). A 4LQSR-interpretation M satisfies a
branch ϑ of a KE-tableau (or, equivalently, ϑ is satisfied by M), and we write
M |= ϑ, if M |= X for every formula X occurring in ϑ.

A 4LQSR-interpretation M satisfies a KE-tableau T (or, equivalently, T is
satisfied by M), and we write M |= T , if M satisfies a branch ϑ of T . A branch
ϑ of a KE-tableau T is satisfiable if there exists a 4LQSR-interpretation M that
satisfies ϑ. A KE-tableau is satisfiable if at least one of its branches is satisfiable.

Let ϑ be a branch of a KE-tableau. We denote with <ϑ an arbitrary but
fixed total order on the variables in Var0(ϑ).

Procedure HOCQA-DL4,×
D takes care of literals of type x = y occurring in the

branches of TKB by constructing, for each open and fulfilled branch ϑ of TKB, a
substitution σϑ such that ϑσϑ does not contain literals of type x = y with distinct
x, y. Then, for every open and complete branch ϑ′ := ϑσϑ of TKB, Procedure
HOCQA-DL4,×

D constructs a decision tree Dϑ′ such that every maximal branch
of Dϑ′ induces a substitution σ′ such that σϑσ′ belongs to the answer set of ψQ

with respect to φKB. Dϑ′ is defined as follows.
Let d be the number of literals in ψQ. Then Dϑ′ is a finite labelled tree of

depth d + 1 whose labelling satisfies the following conditions, for i = 0, . . . , d:
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(i) every node of Dϑ′ at level i is labelled with (σ′
i, ψQσϑσ′

i); in particular, the
root is labelled with (σ′

0, ψQσϑσ′
0), where σ′

0 is the empty substitution;
(ii) if a node at level i is labelled with (σ′

i, ψQσϑσ′
i), then its s successors, with s ≥

1, are labelled with
(
σ′

i�
qi+1
1 , ψQσϑ(σ′

i�
qi+1
1 )

)
, . . . ,

(
σ′

i�
qi+1
s , ψQσϑ(σ′

i�
qi+1
s )

)
,

where qi+1 is the (i+1)-st conjunct of ψQσϑσ′
i and Sqi+1 := {�

qi+1
1 , . . . , �

qi+1
s }

is the collection of the substitutions � = {v1/o1, . . . , vn/on, c1/C1, . . . , cm/
Cm, r1/R1, . . . , rk/Rk, p1/P1, . . . , ph/Ph}, with {v1, . . . , vn} = Var0(qi+1),
{c1, . . . , cm} = Var1(qi+1), and {p1, . . . , ph, r1, . . . , rk} = Var3(qi+1), such
that t = qi+1�, for some literal t on ϑ′. If s = 0, the node labelled with
(σ′

i, ψQσϑσ′
i) is a leaf node and, if i = d, σϑσ′

i is added to Σ′.

We are now ready to define Procedure HOCQA-DL4,×
D .

1: procedure HOCQA-DL4,×
D (ψQ,φKB);

2: Σ′ := ∅;
3: - let ΦKB be the expansion of φKB (cf. (1));
4: TKB := ΦKB;
5: while TKB is not fulfilled do
6: - select an unfulfilled open branch ϑ of TKB and an unfulfilled formula

β1 ∨ . . . ∨ βn in ϑ;

7: if Sβ
j is in ϑ, for some j ∈ {1, . . . , n} then

8: - apply the E-Rule to β1 ∨ . . . ∨ βn and Sβ
j on ϑ;

9: else
10: - let Bβ be the collection of the formulae present in ϑ and let

h be the lowest index such that βh /∈ Bβ ;

11: - apply the PB-rule to βh on ϑ;
12: end if ;
13: end while;
14:

while TKB has open branches containing literals of type x = y, with distinct x and y do

15: - select such an open branch ϑ of TKB;
16: σϑ := ε (where ε is the empty substitution);
17: Eqϑ := {literals of type x = y occurring in ϑ};
18: while Eqϑ contains x = y, with distinct x, y do
19: - select a literal x = y in Eqϑ, with distinct x, y;
20: z := min<ϑ

(x, y);

21: σϑ := σϑ · {x/z, y/z};
22: Eqϑ := Eqϑσϑ;
23: end while;
24: ϑ := ϑσϑ;
25: if ϑ is open then
26: - initialize S to the empty stack;
27: - push (ε, ψQσϑ) in S;
28: while S is not empty do
29: - pop (σ′, ψQσϑσ′) from S;
30: if ψQσϑσ′ �= λ then
31: - let q be the leftmost conjunct of ψQσϑσ′;
32: ψQσϑσ′ := ψQσϑσ′ deprived of q;

33: LitM
Q := {t ∈ ϑ : t = qρ, for some substitution ρ};

34: while LitM
Q is not empty do

35: - let t ∈ LitM
Q , t = qρ;

36: LitM
Q := LitM

Q \ {t};
37: - push (σ′ρ, ψQσϑσ′ρ) in S;
38: end while;
39: else
40: Σ′ := Σ′ ∪ {σϑσ′};
41: end if ;
42: end while;
43: end if ;
44: end while;
45: return (TKB, Σ′);
46: end procedure;
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{β1, . . . , βn} that is included in ϑ
For each open branch ϑ of TKB, Procedure HOCQA-DL4,×

D computes the
corresponding Dϑ by constructing a stack of its nodes. Initially the stack contains
the root node (ε, ψQσϑ) of Dϑ, as defined in condition (i). Then, iteratively, the
following steps are executed. An element (σ′, ψQσϑσ′) is popped out of the stack.
If the last literal of the query ψQ has not been reached, the successors of the
current node are computed according to condition (ii) and inserted in the stack.
Otherwise the current node must have the form (σ′, λ) and the substitution σϑσ′

is inserted in Σ′.
Correctness of Procedure HOCQA-DL4,×

D follows from Theorem 2, which show
that φKB is satisfiable if and only if TKB is a non-closed KE-tableau, and from
Theorem 3, which shows that the set Σ′ coincides with the HO answer set of
ψQ w.r.t. φKB. Theorems 2 and 3 are stated below. In particular, Theorem 2,
requires the following technical lemmas.

Lemma 2. Let ϑ be a branch of TKB selected at step 15 of Procedure HOCQA-
DL4,×

D (ψQ,φKB), let σϑ be the associated substitution constructed during the exe-
cution of the while-loop 18–23, and let M = (D,M) be a 4LQSR-interpretation
satisfying ϑ. Then, for every x ∈ Var0(ϑ), Mx = Mxσϑ is an invariant of the
while-loop 18–23. ��

Lemma 3. Let T0, . . . , Th be a sequence of KE-tableaux such that T0 = ΦKB,
and where, for i = 1, . . . , h − 1, Ti+1 is obtained from Ti by applying either the
rule of step 8, or the rule of step 10, or the substitution of step 24 of Procedure
HOCQA-DL4,×

D (ψQ,φKB). If Ti is satisfied by a 4LQSR-interpretation M, then
Ti+1 is satisfied by M as well, for i = 1, . . . , h − 1. ��

Then we have:

Theorem 2. The formula φKB is satisfiable if and only if the tableau TKB is
not closed. ��

The proof of Theorem 3 below requires the following technical lemma.

Lemma 4. Let ψQ := q1 ∧ . . .∧ qd be a HO 4LQSR-conjunctive query, (TKB, Σ′)
the output of HOCQA-DL4,×

D (ψQ,φKB), and ϑ an open and complete branch of
TKB. Then, for any substitution σ, we have

σ ∈ Σ′ ⇐⇒ {q1σ, . . . , qdσ} ⊆ ϑ . ��

Theorem 3. Let Σ′ be the set of substitutions returned by Procedure HOCQA-
DL4,×

D (ψQ, φKB). Then Σ′ is the HO answer set of ψQ w.r.t. φKB.

Due to space limitations, we do not include here the proofs of Theorems 2
and 3 and of Lemmas 2, 3, and 4, which can be found in the extended version
of the paper [8].

Termination of Procedure HOCQA-DL4,×
D is based on the fact that the while-

loops 5–13 and 14–44 terminate. Termination of the while-loop 5–13 can be shown
much in the same way as for Procedure 1 in [7].
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Concerning the while-loop 14–44, its termination can be proved by observing
that the number of branches of the KE-tableau resulting from the execution of
the previous while-loop 5–13 is finite and then showing that the internal while-
loops 18–23 and 28–42 always terminate. Indeed, initially the set Eqϑ contains
a finite number of literals of type x = y, and σϑ is the empty substitution. It
is then enough to show that the number of literals of type x = y in Eqϑ, with
distinct x and y, strictly decreases during the execution of the internal while-
loop 18–23. But this follows immediately, since at each of its iterations one puts
σϑ := σϑ · {x/z, y/z}, with z := min<ϑ

(x, y), according to a fixed total order <ϑ

over the variables of Var0(ϑ) and then the application of σϑ to Eqϑ replaces a
literal of type x = y in Eqϑ, with distinct x and y, with a literal of type x = x.

The while-loop 28–42 terminates when the stack S of the nodes of the decision
tree gets empty. Since the query ψQ contains a finite number of conjuncts and
the number of literals on each open and complete branch of TKB is finite, the
number of possible matches (namely the size of the set LitMQ ) computed at step
33 is finite as well. Thus, in particular, the internal while-loop 34–38 terminates at
each execution. Once the procedure has processed the last conjunct of the query,
the set LitMQ of possible matches is empty and thus no element gets pushed in
the stack S anymore. Since the first instruction of the while-loop 28–42 removes
an element from S, the stack gets empty after a finite number of “pops”. Hence
Procedure HOCQA-DL4,×

D terminates, as we wished to prove.
We provide now some complexity results. Let r be the maximum number of

universal quantifiers in each Si (i = 1, . . . ,m), and put k := |Var0(φKB)|. Then,
each Si generates at most kr expansions. Since the knowledge base contains m
such formulae, the number of disjunctions in the initial branch of the KE-tableau
is bounded by m · kr. Next, let � be the maximum number of literals in each Si.
Then, the height of the KE-tableau (which corresponds to the maximum size of
the models of ΦKB constructed as illustrated above) is O(�mkr) and the number
of leaves of the tableau (namely, the number of such models of ΦKB) is O(2�mkr

).
Notice that the construction of Eqϑ and of σϑ in the lines 16–23 of Procedure
HOCQA-DL4,×

D takes O(�mkr) time, for each branch ϑ.
Let η(TKB) and λ(TKB) be, respectively, the height of TKB and the num-

ber of leaves of TKB computed by Procedure HOCQA-DL4,×
D . Plainly, η(TKB) =

O(�mkr) and λ(TKB) = O(2�mkr

), as computed above. It is easy to verify that
s = O(�kr) is the maximum branching of Dϑ. Since the height of Dϑ is h, where
h is the number of literals in ψQ, and the successors of a node are computed
in O(�kr) time, the number of leaves in Dϑ is O(sh) = O((�kr)h) and they
are computed in O(sh · �kr · h) = O(h · (�kr)h+1) time. Finally, since we have
λ(TKB) of such decision trees, the answer set of ψQ w.r.t. φKB is computed in
time O(h · (�kr)h+1 · λ(TKB)) = O(h · (�kr)h+1 · 2�mkr

).
Since the size of φKB and of ψQ are related to those of KB and of Q,

respectively (see the proof of Theorem 1 in [8] for details on the reduction),
the construction of the HO answer set of Q with respect to KB can be done
in double-exponential time. In case KB contains neither role chain axioms nor
qualified cardinality restrictions, the complexity of our HOCQA problem is in
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EXPTIME, since the maximum number of universal quantifiers in φKB, namely
r, is a constant (in particular r = 3). The latter complexity result is a clue to the
fact that the HOCQA problem is intrinsically more difficult than the consistency
problem (proved to be NP-complete in [3]). In fact, the consistency problem
simply requires to guess a model of the knowledge base, whereas the HOCQA
problem forces the construction of all the models of the knowledge base and the
computation of a decision tree for each of them.

We remark that such result compares favourably with the complexity of the
usual CQA problem for a wide collection of description logics such as the Horn
fragment of SHOIQ and of SROIQ, which are EXPTIME- and 2EXPTIME-
complete respectively (see [13] for details).

5 Conclusions and Future Work

We have considered an extension of the CQA problem for the description logic
DL4,×

D to more general queries on roles and concepts. The resulting problem,
called HOCQA, can be instantiated to the most widespread ABox reasoning
services such as instance retrieval, role filler retrieval, and instance checking.
We have proved the decidability of the HOCQA problem by reducing it to the
satisfiability problem for the set-theoretic fragment 4LQSR.

We have introduced an algorithm to compute the HO answer set of a
4LQSR-formula ψQ representing a HO DL4,×

D -conjunctive query Q w.r.t. a
4LQSR-formula φKB representing a DL4,×

D knowledge base. Our procedure, called
HOCQA-DL4,×

D , is based on the KE-tableau system and on decision trees. It takes
as input ψQ and φKB, and yields a KE-tableau TKB representing the saturation
of φKB and the requested HO answer set Σ′. Procedure HOCQA-DL4,×

D is proved
correct and complete, and some complexity results are provided. Such procedure
extends the one introduced in [7] as it handles HO DL4,×

D -conjunctive queries.
We are currently implementing Procedure HOCQA-DL4,×

D and plan to
increase its efficiency by providing a parallel model and enhancing the expansion
rules. We also intend to allow data types reasoning.

Further, we plan to extend the fragment presented in [4] with a restricted
form of composition operator, since this would allow one to represent various
logics in set-theoretic terms. The KE-tableau based procedure will be adapted
to the new set-theoretic fragments exploiting the techniques introduced in [5,6]
in the area of relational dual tableaux.
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Abstract. We present an operational semantics for time-aware business
processes, that is, processes modeling the execution of business activities,
whose durations are subject to linear constraints over the integers. We
assume that some of the durations are controllable, that is, they can be
determined by the organization that enacts the process, while others are
uncontrollable, that is, they are determined by the external world.

Then, we consider controllability properties, which guarantee the com-
pletion of the enactment of the process, satisfying the given duration
constraints, independently of the values of the uncontrollable durations.
Controllability properties are encoded by quantified reachability formu-
las, where the reachability predicate is recursively defined by a set of Con-
strained Horn Clauses (CHCs). These clauses are automatically derived
from the operational semantics of the process.

Finally, we present two algorithms for solving the so called weak and
strong controllability problems. Our algorithms reduce these problems to
the verification of a set of quantified integer constraints, which are sim-
pler than the original quantified reachability formulas, and can effectively
be handled by state-of-the-art CHC solvers.

1 Introduction

A business process model is a procedural, semi-formal specification of the order
of execution of the activities in a business process (or BP, for short) and of the
way these activities must coordinate to achieve a goal [18,35]. Many notations
for BP modeling, and in particular the popular BPMN [26], allow the modeler
to express time constraints, such as deadlines and activity durations. However,
time related aspects are neglected when the semantics of a BP model is given
through the standard Petri Net formalization [18], which focuses on the control
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flow only. Thus, formal reasoning about time related properties, which may be
very important in many analysis tasks, is not possible in that context.

In order to overcome this difficulty, various approaches to BP modeling with
time constraints have been proposed in the literature (see [5] for a recent sur-
vey). Some of these approaches define the semantics of time-aware BP models
by means of formalisms such as time Petri nets [24], timed automata [33], and
process algebras [36]. Properties of these models can then be verified by using
very effective reasoning tools available for those formalisms [3,17,23].

In this paper we address the problem of verifying the controllability of time-
aware business processes. This notion has been introduced in the context of
scheduling and planning problems over Temporal Networks [32], but it has not
received much attention in the more complex case of time-aware BP models.
We assume that some of the durations are controllable, that is, they can be
determined by the organization that enacts the process, while others are uncon-
trollable, that is, they are determined by the external world. Properties like
strong controllability and weak controllability guarantee, in different senses, that
the process can be completed, satisfying the given duration constraints, for all
possible values of the uncontrollable durations. Controllability properties are
particularly relevant in scenarios (e.g., healthcare applications [9]) where the
completion of a process within a certain deadline must be guaranteed even if the
durations of some activities cannot be fully determined in advance.

We propose a method for solving controllability problems by extending a
logic-based approach that has been recently proposed for modeling and verify-
ing time-aware business processes [11]. This approach represents both the BP
structure and the BP behavior in terms of Constrained Horn Clauses (CHCs) [4],
also known as Constraint Logic Programs [19], over Linear Integer Arithmetics.
(Here we will use the ‘Constrained Horn Clauses’ term, which is more common in
the area of verification.) In our setting, controllability properties can be defined
by quantified reachability formulas.

An advantage of the logic-based approach over other approaches is that it
allows a seamless integration of the various reasoning tasks needed to analyze
business processes from different perspectives. For instance, logic-based tech-
niques can easily perform ontology-related reasoning about the business domain
where processes are enacted [29,34] and reasoning on the manipulation of data
objects of an infinite type, such as databases or integers [2,10,28]. Moreover, for
the various logic-based reasoning tasks, we can make use of very effective tools
such as CHC solvers [15] and Constraint Logic Programming systems.

For reasons of simplicity, in this paper we consider business process mod-
els where the only time-related elements are constraints over task durations.
However, other notions can be modeled by following a similar approach.

The main contributions of this paper are the following. (1) We define an
operational semantics of time-aware BP models, which modifies the semantics
presented in [11] by formalizing the synchronization of activities at parallel merge
gateways and we prove some properties of this new semantics (see Sect. 3). Our
semantics is defined under the assumption that the process is safe, that is, during
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its enactment there are no multiple, concurrent executions of the same task [1].
(2) We provide formal definitions of strong and weak controllability properties
as quantified reachability formulas (see Sect. 4). (3) We present a transformation
technique for automatically deriving the CHC representation of the reachabil-
ity relation starting from the CHC encoding of the semantics of time-aware
processes, and of the process and property under consideration (see Sect. 4).
(4) Finally, we propose two algorithms that solve strong and weak controllabil-
ity problems for time-aware BPs. These algorithms avoid the direct verification
of quantified reachability formulas, which often cannot be handled by state-of-
the-art CHC solvers, and they verify, instead, a set of simpler Linear Integer
Arithmetic formulas, whose satisfiability can effectively be worked out by the Z3
constraint solver [15] (see Sect. 5). Detailed proofs of the results presented here
can be found in a technical report [12].

2 Preliminaries

In this section we recall some basic notions about the constrained Horn clauses
(CHCs) and the Business Process Model and Notation (BPMN).

Let RelOp be the set {=, �=,≤,≥, <,>} of predicate symbols denoting the
familiar relational operators over the integers. If p1 and p2 are linear polynomials
with integer variables and integer coefficients, then p1R p2, with R∈RelOp, is an
atomic constraint. A constraint c is either true or false or an atomic constraint or
a conjunction or a disjunction of constraints. Thus, constraints are formulas of
Linear Integer Arithmetics (LIA). An atom is a formula of the form p(t1, . . . , tm),
where p is a predicate symbol not in RelOp and t1, . . . , tm are terms constructed
as usual from variables, constants, and function symbols. A constrained Horn
clause (or simply, a clause, or a CHC) is an implication of the form A ← c,G
(comma denotes conjunction), where the conclusion (or head) A is either an
atom or false, the premise (or body) is the conjunction of a constraint c and a
(possibly empty) conjunction G of atoms. The empty conjunction is identified
with true. A constrained fact is a clause of the form A ← c, and a fact is a clause
whose premise is true. We will write A ← true also as A ←. A clause is ground
if no variable occurs in it. A clause A ← c,G is said to be function-free if no
function symbol occurs in (A,G), while arithmetic function symbols may occur
in c. For clauses we will use a Prolog-like syntax (in particular, ‘ ’ stands for an
anonymous variable).

A set S of CHCs is said to be satisfiable if S ∪LIA has a model, or equivalently,
S∪LIA �|= false. Given two constraints c and d, we write c � d ifLIA |= ∀(c → d),
where ∀(F ) denotes the universal closure of formula F . The projection of a con-
straint c onto a set X of variables is a new constraint c′, with variables in X, which
is equivalent, in the domain of rational numbers, to ∃Y.c, where Y is the set of
variables occurring in c and not in X. Clearly, c � c′.

A BPMN model of a business process consists of a diagram drawn by using
graphical notations representing: (i) flow objects and (ii) sequence flows (also
called flows, for short).



106 E. De Angelis et al.

A flow object is: either (i.1) a task, depicted as a rounded rectangle, or (i.2) an
event, depicted as a circle, or (i.3) a gateway, depicted as a diamond. A sequence
flow is depicted as an arrow connecting a source flow object to a target flow
object (see Fig. 1).

Tasks are atomic units of work performed during the enactment (or execu-
tion) of the business process. An events is either a start event or an end event,
which denote the beginning and the completion, respectively, of the activities of
the process. Gateways denote the branching or the merging of activities. In this
paper we consider the following four kinds of gateways: (a) the parallel branch,
that simultaneously activates all the outgoing flows, if its single incoming flow is
activated (see g1 in Fig. 1), (b) the exclusive branch, that (non-deterministically)
activates exactly one out of its outgoing flows, if its single incoming flow is acti-
vated (see g3 in Fig. 1), (c) the parallel merge, that activates the single outgoing
flow, if all the incoming flows are simultaneously activated (see g4 in Fig. 1), and
(d) the exclusive merge, that activates the single outgoing flow, if any one of the
incoming flows is activated (see g2 in Fig. 1). The diamonds representing par-
allel gateways and exclusive gateways are labeled by ‘+++’ and ‘×××’, respectively.
Branch and merge gateways are also called split and join gateways, respectively.

A sequence flow denotes that the execution of the process can pass from the
source object to the target object. If there is a sequence flow from a1 to a2,
then a1 is a predecessor of a2, and symmetrically, a2 is a successor of a1. A path
is a sequence of flow objects such that every pair of consecutive objects in the
sequence is connected by a sequence flow.

We will consider models of business processes that are well-formed, in the
sense that they satisfy the following properties: (1) every business process con-
tains a single start event and a single end event, (2) the start event has exactly
one successor and no predecessors, and the end event has exactly one prede-
cessor and no successors, (3) every flow object occurs on a path from the start
event to the end event, (4) (parallel or exclusive) branch gateways have exactly
one predecessor and at least one successor, while (parallel or exclusive) merge
gateways have at least one predecessor and exactly one successor, (5) tasks have
exactly one predecessor and one successor, and (6) no cycles through gateways
only are allowed. Note that we do not require BP models to be block-structured.

Fig. 1. A business process Proc.
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In Fig. 1 we show the BPMN model of a business process, called Proc. After
the start event, the parallel branch g1 simultaneously activates the two flow
objects g2 and b. The exclusive merge g2 activates the sequential execution of
the task a1 which in turn activates the execution of the task a2 which is followed
by the exclusive branch g3. After g3, the execution can either return to g2 or
proceed to g4. If g3 and b both complete their executions simultaneously, then
the parallel merge g4 is executed, the end event occurs, and the process Proc
terminates.

3 Specification and Semantics of Business Processes

In this section we introduce the notion of a Business Process Specification (BPS),
which formally represents a business process by means of CHCs. Then we define
the operational semantics of a BPS.

Business Process Specification via CHCs. A BPS contains: (i) a set of
ground facts that specify the flow objects and the sequence flows between them,
and (ii) a set of clauses that specify the duration of each flow object and the
controllability (or uncontrollability) of that duration.

For the flow objects we will use of the following predicates: task(X),
event(X), gateway(X), par-branch(X), par-merge(X), exc-branch(X),
exc-merge(X) with the expected meaning. For the sequence flows we will use
the predicate seq(X,Y ) meaning that there is a sequence flow from X to Y . For
every task X we specify its duration by the constrained fact duration(X,D) ←
dmin≤D≤dmax, where dmin and dmax are positive integer constants representing
the minimal and the maximal duration of X, respectively. Events and gateways,
being instantaneous, have duration 0. For every task X and its duration, we also
specify that they are controllable, or uncontrollable, by the fact controllable(X) ←,
or uncontrollable(X) ←, respectively.

In Fig. 2 we show the BPS of process Proc of Fig. 1. For reasons of space,
in that specification we did not list all the facts for the tasks, events, gateways,
and sequence flows of the diagram of Proc.

Fig. 2. The CHCs of the Business Process Specification of process Proc of Fig. 1.

Operational Semantics. We define the operational semantics of a business
process under the assumption that the process is safe, that is, during its enact-
ment there are no multiple, concurrent executions of the same flow object [1].
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By using this assumption, we represent the state of a process enactment as a
set of properties, called fluents holding at a time instant. We borrow the notion
of fluent from action languages such as the Situation Calculus [25], the Event
Calculus [20], or the Fluent Calculus [30], but we will present our semantics
by following the structural operational approach often adopted in the field of
programming languages.

Formally, a state s∈States is a pair 〈F, t〉, where F is a set of fluents and t
is a time instant, that is, a non-negative integer. A fluent is a term of the
form: (i) begins(x), which represents the beginning of the enactment of the flow
object x, (ii) completes(x), which represents the completion of the enactment
of x, (iii) enables(x, y), which represents that the flow object x has completed its
enactment and it enables the enactment of its successor y, and (iv) enacting(x, r),
which represents that the enactment of x requires r units of time to complete
(for this reason r is called the residual time of x). We have that begins(x) is
equivalent to enacting(x, r), where r is the duration of x, and completes(x) is
equivalent to enacting(x, 0). (This redundant representation allows us to write
simpler rules for the operational semantics below.)

The operational semantics is defined by a rewriting relation −→ which is a
subset of States×States. This relation is specified by rules S1–S7 below, where we
use the following predicates, besides the ones introduced in Sect. 3 for defining
the BPS: (i) not-par-branch(x), which holds if x is not a parallel branch, and
(ii) not-par-merge(x), which holds if x is not a parallel merge.

(S1)
begins(x)∈F duration(x, d)

〈F, t〉 −→ 〈(F \ {begins(x)}) ∪ {enacting(x, d)}, t〉

(S2)
completes(x)∈F par-branch(x)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s) | seq(x, s)}, t〉

(S3)
completes(x)∈F not-par-branch(x) seq(x, s)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s)}, t〉

(S4)
∀p seq(p, x) → enables(p, x) ∈ F par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x) | enables(p, x) ∈ F}) ∪ {begins(x)}, t〉

(S5)
enables(p, x)∈F not-par-merge(x)

〈F, t〉 −→ 〈(F \ {enables(p, x)}) ∪ {begins(x)}, t〉

(S6)
enacting(x, 0)∈F

〈F, t〉 −→ 〈(F \ {enacting(x, 0)}) ∪ {completes(x)}, t〉

(S7)
no-other-premises(F ) ∃x∃r enacting(x, r)∈F m>0

〈F, t〉 −→ 〈F�m \ Enbls, t+m〉
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where: (i) no-other-premises(F ) holds iff none of the premises of rules S1–S6

holds, (ii) m = min{r | enacting(x, r) ∈ F}, (iii) F�m is the set F of fluents
where every enacting(x, r) is replaced by enacting(x, r−m), and (iv) Enbls =
{enables(p, s) | enables(p, s) ∈ F}.
We assume that, for every flow object x, there exists a unique value d of its
duration, satisfying the given constraint, which is used for every application of
rule S1. Note that S7 is the only rule that formalizes the passing of time, as it
infers rewritings of the form 〈F, t〉−→〈F ′, t+m〉, with m>0. In contrast, rules
S1–S6 infer state rewritings of the form 〈F, t〉 −→ 〈F ′, t〉, where time does not
pass. Here is the explanation of rules S1–S7.

(S1) If the execution of a flow object x begins at time t, then, at the same time t,
x is enacting and its residual time is its duration d;

(S2) If the execution of the parallel branch x completes at time t, then x enables
all its successors at time t;

(S3) If the execution of x completes at time t and x is not a parallel branch,
then x enables precisely one of its successors at time t (in particular, this
case occurs when x is a task);

(S4) If all the predecessors of x enable the parallel merge x at time t, then the
execution of x begins at time t;

(S5) If at least one predecessor p of x enables x at time t and x is not a parallel
merge, then the execution of x begins at time t (in particular, this case occurs
when x is a task);

(S6) If a flow object x is enacting at time t with residual time 0, then the
execution of x completes at the same time t;

(S7) Suppose that: (i) none of rules S1–S6 can be applied for computing a state
rewriting 〈F, t〉 −→ 〈F ′, t′〉, (ii) at time t at least one task is enacting with
positive residual time (note that flow objects different from tasks cannot have
positive residual time), and (iii) m is the least value among the residual times
of all the tasks enacting at time t. Then, (i) every task x that is enacting at
time t with residual time r, is enacting at time t+m with residual time r−m
and (ii) all enables(p, s) fluents are removed.

Due to rules S4 and S5, if a fluent of the form enables(p, s) is removed by applying
rule S7, then s necessarily refers to a parallel merge that is not enabled at time t
by some of its predecessors. Thus, a parallel merge is executed if and only if it
gets simultaneously enabled by all its predecessors. For lack of space we omit
to model the asynchronous version of the parallel merge [11], which does not
require the simultaneity condition. Note also that, if desired, tasks can be added
for modeling delays in an explicit way.

We say that state 〈F ′, t′〉 is reachable from state 〈F, t〉, if 〈F, t〉 −→∗ 〈F ′, t′〉,
where −→∗ denotes the reflexive, transitive closure of the rewriting relation −→.

The initial state is the state 〈{begins(start)}, 0〉. The final state is the state
of the form 〈{completes(end)}, t〉, for some time instant t.
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Properties of the Operational Semantics. Now we first introduce the
notions of: (i) a derivation, which is a sequence of states, and (ii) a selection func-
tion, which is a rule providing the order in which fluents are rewritten according
to the relation −→. In Theorem 1 below we will prove that the relation −→ is
independent of that order.

Definition 1 (Derivation). A derivation from a state s0 in a BPS is a (possibly
infinite) sequence of states s0, s1, s2, . . . such that for all i≥0, si−→si+1.

Let Statessat be the subset of States where no-other-premises(F ) holds.

Definition 2 (Selection function). Let δ be a finite derivation whose last
state is 〈F, t〉, with F �= ∅. A selection function R is a function that takes the
derivation δ and returns : either (i) a subset of F whose elements satisfy the
conditions in the premise of exactly one rule among S1–S6, or (ii) the union of
the set of the ‘enacting’ fluents in F and the set of the ‘enables’ fluents in F , if
〈F, t〉∈Statessat and at least one ‘enacting’ fluent belongs to F .

The selection function is well-defined, because each fluent can be rewritten
by at the most one rule and the rules S1–S6 are not overlapping, that is, the sets
of fluents which can fire two distinct rules in S1–S6 (or two different instances
of the same rule) are disjoint.

Definition 3 (Derivation via R). Given a selection function R, we say that
a derivation δ is via R iff for each proper prefix δ′ of δ ending with a state s,
if s −→ s′ and (δ′ s′) is a prefix of δ, then R(δ′) are the fluents of s that are
rewritten when deriving s′.

Theorem 1. For every derivation δ from a state s0, and selection function R,
there exists a derivation δ′ from s0 via R such that if 〈F,t〉 is a state in δ and f
is a fluent in F, then there exists a state 〈F ′,t〉 in δ′ such that f is a fluent in F ′.

4 Encoding Controllability Properties into CHCs

In this section we show how weak and strong controllability properties are for-
malized by defining a CHC interpreter, that is, a set of CHCs that encodes the
operational semantics of business processes. Then, the interpreter is specialized
with respect to the business process and property to be verified.

A CHC Interpreter for Time-Aware Business Processes. A state of the
operational semantics is encoded by a term of the form s(F, T ), where F is a set
of fluents and T is the time instant at which the fluents in F hold. The rewriting
relation −→ between states and its reflexive, transitive closure −→∗ are encoded by
the predicates tr and reach, respectively. The clauses defining these predicates are
shown in Table 1. In the body of the clauses, the atoms that encode the premises of
the rules of the operational semantics have been underlined.
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The predicate select(L,F ) encodes a selection function (see Definition 2).
We assume that select(L,F ) holds iff L is a subset of the set F of fluents such
that: (i) there exists a clause in {C1, . . . , C6} that updates F by replacing
the subset L of F by a new set of fluents, and (ii) among all such subsets of
F , L is the one that contains the first fluent, in textual order (in this sense
select(L,F ) is deterministic). The predicate task-duration(X,D,U,C) holds iff
duration(X,D) holds and D belongs to either the list U of durations of the
uncontrollable tasks or the list C of durations of the controllable tasks. The
predicate update(F,R,A, FU) holds iff FU is the set obtained from the set F
by removing all the elements of R and adding all the elements of A. The pred-
icate no-other-premises(F ) holds iff the premise of every rule in {C1, . . . , C6}
is unsatisfiable. The predicate mintime(Enacts,M) holds iff Enacts is a set of
fluents of the form enacting(X,R) and M is the minimum value of R for the
elements of Enacts. The predicate decrease-residual-times(Enacts,M,EnactsU)
holds iff EnactsU is the set of fluents obtained by replacing every element of
Enacts, of the form enacting(X,R), with the fluent enacting(X,RU), where
RU = R−M . The predicates member(El,Set) and set-union(A,B,AB) are self-
explanatory. The predicate findall(X,G,L) holds iff X is a term whose variables
occur in the conjunction G of atoms, and L is the set of instances of X such
that ∃Y.G holds, where Y is the tuple of variables occurring in G different from
those in X.

We denote by Sem the set consisting of clauses C1, . . . , C7, R1, R2, together
with the clauses encoding the business process specification.

Theorem 2 (Correctness of Encoding). Let init be the term that encodes the
initial state 〈{begins(start)}, 0〉, and fin(t) be the term that encodes the final state
〈{completes(end)}, t〉. Then, 〈{begins(start)}, 0〉 −→∗ 〈{completes(end)}, t〉 iff
there exist tuples of integers x and y such that Sem ∪LIA |= reach(init,fin(t),x,y).

A reachability property is defined by a clause of the form:
RP. reachProp(U,C) ← c(T, U, C), reach(init, fin(T), U, C)
where: (i) U and C denote tuples of uncontrollable and controllable durations,
respectively, and (ii) c(T, U, C) is a constraint.

We say that the duration D of task X is admissible iff duration(X,D) holds.
The strong controllability problem for a BPS consists in checking whether or not
there exist durations C such that, for all admissible durations U , the property
reachProp(U,C) holds. The weak controllability problem for a BPS consists in
checking whether or not, for all admissible durations U , there exist durations C
such that reachProp(U,C) holds. Note that, if reachProp(U,C) holds, then all
durations used to reach the final state are admissible, and hence in the definition
of controllability there is no need to require that the existentially quantified
durations C are admissible. We denote by I the set Sem ∪ {RP}.

Definition 4 (Strong and weak controllability). Given a BPS B,

– B is strongly controllable iff I ∪ LIA |= ∃C ∀U. adm(U) → reachProp(U,C)
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Table 1. The CHC interpreter for time-aware business processes.

– B is weakly controllable iff I ∪ LIA |= ∀U.adm(U) → ∃C reachProp(U,C)
where adm(U) holds iff U is a tuple of admissible durations.

If a business process is weakly controllable, in order to determine the dura-
tions of the controllable tasks, we need to know in advance the actual durations of
all the uncontrollable tasks. This might not be realistic in practice, as uncontrol-
lable tasks may occur after controllable ones. Strong controllability implies weak
controllability and guarantees that suitable durations of the controllable tasks
can be computed, before the enactment of the process, by using the constraints
on the uncontrollable durations, which are provided by the process specification.

Specializing the CHC Interpreter. The clauses in I make use of complex
terms, and in particular lists of variable length, to represent states (see clauses
C1–C7). However, I can be specialized to the particular BPS under consideration
and transformed into an equivalent set Isp of function-free CHCs, on which
CHC solvers are much more effective. The specialization transformation is a
variant of the ones for the so called Removal of the Interpreter proposed in the
area of verification of imperative programs [14], and makes use of the following
transformation rules: unfolding, definition introduction, and folding [16].
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The specialization transformation (see [12] for details) starts off by unfold-
ing clause RP, thereby performing a symbolic exploration of the space of the
reachable states. The unfolding rule is defined as follows.
Unfolding Rule. Let C be a clause of the form H ← c, L,A,R, where A is an
atom. Let {Ki ← ci, Bi | i = 1, . . . , m} be the set of the (renamed apart) clauses
in I such that, for i = 1, . . . ,m, A is unifiable with Ki via the most general
unifier ϑi and (c, ci) ϑi is satisfiable. Then, from C we derive the following set of
clauses: { (H ← c, ci, L,Bi, R)ϑi | i = 1, . . . ,m }.

After unfolding, by applying the definition rule, for every reach atom occur-
ring in the body of a clause, a new predicate is introduced by a clause of the
form:

newr(Rs, T,Tf, U, C) ← f(Rs), reach(s(fl(Rs), T ),fin(Tf ), U, C)
where f(Rs) is a constraint obtained by projecting the constraint occurring in
the body of the clause where the reach atom occurs, onto the tuple Rs of variables
representing the residual times, and fl(Rs) denotes the set of fluents that hold
at time T . Then, by applying the folding rule, reach atoms with complex argu-
ments representing states (i.e., reach(s(fl(Rs), T ),fin(Tf ), U, C)), are replaced by
function-free calls to the newly introduced predicates (i.e., newr(Rs, T,Tf, U, C)).
The unfolding-definition-folding transformations are repeated until we derive a
set Isp of function-free CHCs. Since the unfolding, definition introduction, and
folding rules preserve satisfiability [16], we have the following result.

Theorem 3 (Correctness of Specialization). Every set I of CHCs encoding
a reachability property of a BPS can be transformed into a set Isp of CHCs such
that: (i) Isp is a set of function-free CHCs, and (ii) for all (tuples of ) integer
values x and y, I ∪ LIA |= reachProp(x, y) iff Isp ∪ LIA |= reachProp(x, y).

Example 1. Let I be the set of clauses defining the reachability property for the
process Proc of Fig. 1, and let clause RP be:

reachProp(A1,A2,B) ← reach(init,fin(T ), A1, (A2,B))

where A1 denotes the duration of the uncontrollable task a1 and (A2, B) denotes
the durations of the controllable tasks a2 and b. By applying the specialization
transformation to I, we derive the following function-free clauses:
reachProp(A1,A2,B) ← A=A1, B=B1, A1≥2, A1≤4, B≥5, B≤6,

new2(A,B1, F,G,A1, A2, B)
new2(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,

new2(J, I,H,D,A1, A2, B)
new2(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1,

new2(I,J,H,D,A1,A2,B)
new2(A,B1,C,D,A1,A2,B) ← H=A2, A=0, H≥1, H≤2, new5(H,B1,C,D,A1,A2,B)
new5(A,B1,C,C,A1,A2,B) ← A=0, B1=0
new5(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,

new5(J,I,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1,

new5(I,J,H,D,A1,A2,B)

new5(A,B1,C,D,A1,A2,B) ← H=A1, A=0, H≥2, H≤4, new2(H,B1,C,D,A1,A2,B)
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5 Solving Controllability Problems

State-of-the-art CHC solvers are often not effective in solving controllability
problems defined by a direct encoding of the formulas in Definition 4, where
nested universal and existential quantifiers occur. The main problem is that
performing quantifier elimination on formulas defined by, possibly recursive,
Constrained Horn Clauses is very expensive, and often unsuccessful. Thus, we
propose an alternative method that is based on verifying a series of simpler
properties, where quantification is restricted to LIA constraints.

We assume the existence of a solver that is sound and complete for Horn
clauses with LIA constraints. The solver interface is a procedure solve(P,Q)
such that, for any set P of CHCs and for any query Q, which is a conjunction of
atoms and LIA constraints, returns an answer A, that is, a satisfiable constraint
A such that P |= ∀(A → Q), if such an answer exists, and false otherwise.

The method we propose solves controllability problems by looking for a sat-
isfiable constraint a(U,C), where U and C are tuples of variables denoting the
durations of the uncontrollable and controllable tasks, respectively, such that
I ∪ LIA |= ∀U ∀C. a(U,C) → reachProp(U,C) and either
(†) LIA |= ∃C ∀U. adm(U) → a(U,C) (for strong controllability), or
(‡) LIA |= ∀U. adm(U) → ∃C. a(U,C) (for weak controllability).

In particular, we introduce the Strong and Weak Controllability algorithms
(SC and WC for short, respectively) that, given a set of function-free CHCs
defining reachProp(U,C) (that is, a set of clauses generated by the specialization
transformation of Sect. 4), produce a solution for the controllability problem by
constructing a(U,C) as a disjunction of the answer constraints provided by the
solver until either condition (†) holds (respectively, condition (‡) holds) or there
are no more answers (see Fig. 3). In order to avoid repeated answers, at each
iteration of the do-while loop, the solver is invoked on a query containing the
negation of the (disjunction of the) answers obtained so far.1

Since the durations of the tasks belong to finite integer intervals, the set of
answers that can be returned by the solve procedure is finite. Hence the SC and
WC algorithms always terminate. The following theorem states that SC and
WC are sound and complete methods for solving strong and weak controllability
problems, respectively.

Theorem 4 (Soundness and Completeness of SC and WC). Let I be a
set of CHCs defining a reachability property for a BPS B. Then,
(i) SC returns a satisfiable constraint if and only if B is strongly controllable
(ii) WC returns a satisfiable constraint if and only if B is weakly controllable.

We now illustrate how the WC algorithm works by applying it to the clauses
obtained by specialization in Example 1. During the first iteration of the do-
while loop the CHC solver is invoked by executing solve(I, reachProp(A1, A2, B)∧
∀A2, B.¬false), which returns the answer constraint a1(A1, A2, B): A1 ≥ B −2,

1 In WC we introduce a small optimization by using a query that avoids obtaining
multiple answers with the same values of U .
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Fig. 3. The SC and WC algorithms for verifying strong and weak controllability.

A1≤4, A2=B−A1, B≥5, B≤6. In our example, the constraint adm(A1) is A1≥
2, A1 ≤ 4. Now we have that LIA �|= ∀A1. adm(A1) → ∃A2, B. a1(A1, A2, B),
and hence the algorithm executes the second iteration of the do-while loop.
Next, the CHC solver is invoked by executing solve(I, reachProp(A1, A2, B) ∧
∀A2, B.¬a1(A1, A2, B)),which returns the answer constrainta2(A1, A2, B):A1=
2, A2 = 1, B = 6. Now the condition of the do-while loop is false, because LIA |=
∀A1. adm(A1) → ∃A2, B. (a1(A1, A2, B) ∨ a2(A1, A2, B)). Thus, the WC algo-
rithm terminates and we can conclude that the considered weak controllability
property holds.

We have used the VeriMAP transformation and verification system for
CHCs [13] to implement the specialization transformation of Sect. 4, and SIC-
Stus Prolog and the Z3 solver to implement the SC and WC algorithms. We
have applied our method to verify the weak controllability of the process Proc.
The timings are as follows2: the execution of the specialization transformation
requires 0.04 s and the execution of the WC algorithm requires 0.03 s.

We have also solved controllability problems for other small-sized processes,
not shown here for reasons of space, whose reachability relation, like the one
for process Proc, contains cycles that may generate an unbounded proof search,
and hence may cause nontermination if not handled in an appropriate way. In
particular, in all the examples we have considered, we noticed that Z3 is not able
to provide a proof within a time limit of one hour for a direct encoding of the
controllability properties as they are formulated in Definition 4.

6 Related Work and Conclusions

Controllability problems arise in all contexts where the duration of some tasks in
a business process cannot be determined in advance by the process designer. We

2 The experiments have been performed on an Intel Core Duo E7300 2.66 Ghz proces-
sor with 4GB of memory under GNU/Linux OS.
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have presented a method for checking strong and weak controllability properties
of business processes. The method is based upon well-established techniques and
tools in the field of computational logic.

Modeling and reasoning about time in the field of business process manage-
ment has been largely investigated in the recent years [5]. The notion of control-
lability, extensively studied in the context of scheduling and planning problems
over temporal networks [6–8,27,31,32], has been considered as a useful concept
for supporting decisions in business process management and design [9,21,22].

Algorithms for checking strong and weak controllability properties were first
introduced for Simple Temporal Networks with Uncertainty [32]. Later, sound
and complete algorithms were developed for both strong [27] and weak [31] con-
trollability of Disjunctive Temporal Problems with Uncertainty (DTPU). More
recently, a general and effective method for checking strong [7] and weak [8]
controllability of DTPU’s via SMT has been developed.

The task of verifying controllability of BP models we have addressed in this
paper is similar to the task of checking controllability of temporal workflows
addressed by Combi and Posenato [9]. These authors present a workflow con-
ceptual framework that allows the designer to use temporal constructs to express
duration, delays, relative, absolute, and periodic constraints. The durations of
tasks are uncontrollable, while the delays between tasks are controllable. The
controllability problem, which arises from relative constraints that limit the
duration of two non-consecutive tasks, consists in checking whether or not the
delays between tasks enforce the relative constraints for all possible durations of
tasks. The special purpose algorithms for checking controllability presented in [9]
enumerate all possible choices, and therefore are computationally expensive.

Our approach to controllability of BP models exhibits several differences with
respect to the one considered by Combi and Posenato in [9]. In our approach
the designer has the possibility of explicitly specifying controllable and uncon-
trollable durations. We also consider workflows with minimal restrictions on the
control flow, and unlike the framework in [9], we admit loops. We automatically
generate the clauses to be verified from the formal semantics of the BP model,
thus making our framework easily extensible to other classes of processes and
properties. Finally, we propose concrete algorithms for checking both strong and
weak controllability, based on off-the-shelf CHC specializers and solvers.

As future work we plan to perform an extensive experimental evaluation of
our method and to apply our approach to extensions of time-aware BP models,
whose properties also depend on the manipulation of data objects.
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Abstract. Computational cognitive modeling investigates human cog-
nition by building detailed computational models for cognitive processes.
Adaptive Control of Thought – Rational (ACT-R) is a rule-based cogni-
tive architecture that offers a widely employed framework to build such
models. There is a sound and complete embedding of ACT-R in Con-
straint Handling Rules (CHR). Therefore analysis techniques from CHR
can be used to reason about computational properties of ACT-R models.
For example, confluence is the property that a program yields the same
result for the same input regardless of the rules that are applied.

In ACT-R models, there are often cognitive processes that should
always yield the same result while others e.g. implement strategies to
solve a problem that could yield different results. In this paper, a decid-
able confluence criterion for ACT-R is presented. It allows to identify
ACT-R rules that are not confluent. Thereby, the modeler can check if
his model has the desired behavior.

The sound and complete translation of ACT-R to CHR from prior
work is used to come up with a suitable invariant-based confluence cri-
terion from the CHR literature. Proper invariants for translated ACT-R
models are identified and proven to be decidable. The presented method
coincides with confluence of the original ACT-R models.

Keywords: Computational cognitive modeling · Confluence · Invari-
ants · ACT-R · Constraint Handling Rules

1 Introduction

Computational cognitive modeling is a research field at the interface of cognitive
sciences and computer science. It tries to explain human cognition by building
detailed computational models of cognitive processes [15]. To support the model-
ing process, cognitive architectures like Adaptive Control of Thought – Rational
(ACT-R) provide the ability to create models of specific cognitive tasks by offer-
ing representational formats together with reasoning and learning mechanisms
to facilitate modeling [16].

ACT-R is widely employed in the field of computational cognitive modeling.
It is defined as a production rule system that offers advanced conflict resolu-
tion mechanisms to model learning and competition of different strategies for
c© Springer International Publishing AG 2017
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problem solving. Therefore, many ACT-R models are highly non-deterministic
to resemble the applicability of more than one strategy in many situations. The
strategy is chosen depending on information learned from situations in the past.

Confluence is the property of a program that regardless of the order its rules
are applied, they finally yield the same result. By identifying the rules that lead
to non-confluence, model quality can be improved: It allows to check if the model
has the desired behavior regarding competing strategies and e.g. identify rules
that interfere with each other unintentionally.

In this paper, we present a decidable confluence test for the abstract oper-
ational semantics of ACT-R using confluence analysis tools for CHR. In prior
work, we presented a sound and complete embedding of ACT-R in CHR [8,9]. An
invariant-based confluence test for CHR [6,11] is used to decide confluence of the
translated models with invariants on CHR states that come from the abstract
operational semantics of ACT-R. The confluence test identifies the rules that
lead to non-confluence supporting the decision if a model has the desired behav-
ior regarding competing strategies.

First the preliminaries are recapitulated in Sect. 2. The main Sect. 3 describes
the confluence criterion for ACT-R models. For this purpose, the invariant-based
confluence test for CHR is introduced briefly (Sect. 3.1). Then, the ACT-R invari-
ant is defined and a decidable criterion for the invariant is given (Sect. 3.2). It
is shown that the ACT-R invariant is maintained in the translation. The theo-
retical foundations to apply the CHR invariant-based confluence test to ACT-R
models are derived resulting in a confluence criterion for terminating ACT-R
models (Sect. 3.3). An example is given in Sect. 3.4.

2 Preliminaries

2.1 Confluence

Confluence is the property of a state transition system that same inputs yield
the same results regardless of which rules are applied.

Definition 1 (joinability and confluence [7]). In a state transition system
(S, �→) with states S and a transition relation �→: S × S with reflexive transitive
closure �→∗, two states σ1, σ2 ∈ S are joinable, denoted as σ1 ↓ σ2, if there
exists a state σ′ such that σ1 �→∗ σ′ and σ2 �→∗ σ′. A state transition system is
confluent, if for all states σ, σ1, σ2 : (σ �→∗ σ1) ∧ (σ �→∗ σ2) → (σ1 ↓ σ2).

Hence, a program is confluent if for all states that lead to different successor
states, those states are joinable. A program is locally confluent, if (σ �→ σ1)∧(σ �→
σ2) in one transition step and σ1 and σ2 are joinable. It can be shown that for
all state transition systems local confluence and confluence are equivalent [7].
Figure 1 illustrates (local) confluence.
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Fig. 1. Confluence and local confluence.

2.2 Adaptive Control of Thought – Rational (ACT-R)

In this section, ACT-R is introduced briefly. An extensive introduction to the
theory can be found in [3,16]. ACT-R is a modular production rule system.
Its data elements are so-called chunks. A chunk has a type and a set of slots
(determined by the type) that are connected to other chunks. Hence, human
declarative knowledge is represented in ACT-R as a network of chunks. Figure 2
shows an example chunk network that models the representation of an order
over natural numbers.

Fig. 2. A chunk network that represents the order of natural numbers 1, 2, 3. The
chunks are represented by nodes, the slots by labeled edges. The labels of the nodes
are chunk identifiers. Chunks 1, 2 and 3 are of type number that has no slots. Chunks
a and b are of type order that has a first and a second slot.

ACT-R’s modules are responsible for different cognitive features. For
instance, the declarative knowledge (represented as a chunk network) can be
found in the declarative module. Each module has a set of associated buffers
that contain at most one chunk. The heart of ACT-R is the procedural system
that consists of a set of production rules. Those rules only have access to the
contents of the buffers. They match the contents of the buffer, i.e. they check
if the chunks of particular buffers have certain values. If a rule is applicable, it
can modify particular slots of the chunk in the buffer, request the module to put
a whole new chunk in its buffer or clear a buffer. Modifications and clearings
are available directly for the production rule system, whereas requests can take
some time while the procedural system is continuing work in parallel.

Syntax of ACT-R. We use our simplified syntax in form of first-order terms
that can be derived directly from the original syntax [8,9]. The syntax of ACT-R
is defined over two disjoint sets of constant symbols C and variable symbols V.
An ACT-R model consists of a set of types T with type definitions and a set of
rules Σ.

A production rule has the form L ⇒ R where L is a finite set of buffer tests.
A buffer test is a first-order term of the form =(b, t ,P) where the buffer b ∈ C,



122 D. Gall and T. Frühwirth

the type t ∈ C and P ⊆ C × (C ∪ V) is a set of slot-value pairs (s, v) where s ∈ C
and v ∈ C∪V. This means that only the values in the slot-value pairs can consist
of both constants and variables.

The right-hand side R ⊆ A of a rule is a finite set of actions where A =
{a(b, t, P ) | a ∈ A, b ∈ C, t ∈ C and P ⊆ C × (C ∪ V)}. Hence, an action is a
term of the form a(b, t, P ) where the functor a of the action is in A, the set
of action symbols, the first argument b is a constant (denoting a buffer), the
second argument is a constant t denoting a type, and the last argument is a set
of slot-value pairs, i.e. a pair of a constant and a constant or variable. Usually,
the action symbols are defined as A := {=,+,−} for modifications, requests and
clearings respectively. Only one action per buffer is allowed, i.e. if a(b, t, P ) ∈ R
and a′(b′, t′, P ′) ∈ R, then b 
= b′ [4].

We assume the rules to be in so-called set normal form that requires the slot
tests of a rule to be total and unique with respect to the type of the test. This
means that each slot defined by the type of the tested chunk must appear at
most once in the set of slot-value pairs. Every rule can be transformed to set
normal form [8].

Operational Semantics of ACT-R. For the understanding of this paper, it
is sufficient to define ACT-R states and rules formally. The formal definition
of the operational semantics can be found in [8,9]. We define the operational
semantics of ACT-R through our CHR translation that has been first presented
in [9] and in its most current form in [8]. Since the translation is sound and
complete, we omit the formal definition of the ACT-R semantics here, since it
would only distract from the contribution of this paper.

Definition 2 (chunk types, chunk stores). A typing function τ : T → 2C

maps each type from the set T ⊆ C to a finite set of allowed slot names. A
chunk store Δ is a multi-set of tuples (t, val) where t ∈ T is a chunk type and
val : τ(t) → Δ is a function that maps each slot of the chunk (determined by the
type t) to another chunk. Each chunk store Δ has a bijective identifier function
idΔ : Δ → C that maps each chunk of the multi-set a unique identifier.

Additional information represents the inner state of the modules and so-
called sub-symbolic information used in ACT-R implementations to model cog-
nitive features like forgetting, latencies and conflict resolution. The information
is expressed as a conjunction of predicates from first-order logic. We now define
ACT-R states as follows:

Definition 3 (cognitive state, ACT-R state). A cognitive state γ is a
function B → Δ × R

+
0 that maps each buffer to a chunk and a delay. The delay

decides at which point in time the chunk in the buffer is available to the produc-
tion system. A delay d > 0 indicates that the chunk is not yet available to the
production system. This implements delays of the processing of requests.

An ACT-R state is a tuple 〈Δ; γ; υ〉 where γ is a cognitive state and υ is a
multi-set of ground, atomic first order predicates (called additional information).
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2.3 Constraint Handling Rules (CHR)

In this section, syntax and semantics of CHR are summarized briefly. For an
extensive introduction to CHR, its semantics, analysis and applications, we refer
to [7]. We use the latest definition of the state transition system of CHR that is
based on state equivalence [12]. The definitions from those canonical sources are
now reproduced.

The syntax of CHR is defined over a set of variables, a set of function symbols
with arities and a set of predicate symbols with arities that is disjointly composed
of CHR constraint symbols and built-in constraint symbols. The set of constraint
symbols contains at least the symbols = /2, /0 and ⊥/0. In this paper, we
allow the terms to be sets of terms as they can be simply represented as lists
in implementations. For a constraint symbol c/n and terms t1, . . . , tn over the
variables and function symbols, c(t1, . . . , tn) is called a CHR constraint or a built-
in constraint, depending on the constraint symbol. We now define the notion of
CHR states.

Definition 4 (CHR state). A CHR state is a tuple 〈G;C;V〉 where the goal
G is a multi-set of constraints, the built-in constraint store C is a conjunction
of built-in constraints and V is a set of global variables.

All variables occurring in a state that are not global are called local variables.

CHR states can be modified by rules that together form a CHR program. For
the sake of brevity, we only consider simplification rules, as they are the only
type of rules needed for the understanding of the paper.

Definition 5 (CHR program). A CHR program is a finite set of rules of
the form r @ H ⇔ G | Bc, Bb where r is an optional rule name, the heads
H are multi-sets of CHR constraints, the guard G is a conjunction of built-in
constraints and the body is a multi-set of CHR constraints Bc and a conjunction
of built-in constraints Bb. If G is empty, it is interpreted as the built-in constraint
.

Informally, a rule is applicable, if the head matches constraints from the store
G and the guard holds, i.e. is a consequence of the built-in constraints C. In that
case, the constraints matching H are removed and the constraints from Bc, Bb

and G are added.
In the context of the operational semantics, we assume a constraint theory

CT for the interpretation of the built-in constraints. We define an equivalence
relation over CHR states.

Definition 6 (CHR state equivalence [11,12]). Let ρ := 〈G;C;V〉 and
ρ′ := 〈G′;C′;V′〉 be CHR states with local variables ȳ, ȳ′ that have been renamed
apart. ρ ≡ ρ′ if and only if

CT |= ∀(C → ∃ȳ′.((G = G
′) ∧ C

′)) ∧ ∀(C′ → ∃ȳ.((G = G
′) ∧ C))

where ∀F denotes the universal closure of formula F .
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The operational semantics is now defined by the following transition scheme
over equivalence classes of CHR states i.e. [ρ] := {ρ′ | ρ′ ≡ ρ}
Definition 7 (operational semantics of CHR [11,12]). For a CHR pro-
gram the state transition system over CHR states and the rule transition relation
�→ is defined as the following transition scheme:

r @ H ⇔ G | Bc, Bb

[〈H � G;G ∧ C;V〉] �→r [〈Bc � G;G ∧ Bb ∧ C;V〉]

Thereby, r is a variant of a rule in the program such that its local variables are
disjoint from the variables occurring in the representative of the pre-transition
state. We may just write �→ instead of �→r if the rule r is clear from the context.

2.4 Translation of ACT-R to CHR

We briefly summarize the translation of ACT-R models to CHR first presented
in [8,9]. Since the translation is proven to be sound and complete [8], we explain
the operational semantics of ACT-R with the help of the translation.

Definition 8 (translation of abstract states). An abstract ACT-R state
σ := 〈Δ; γ; υ〉 can be translated to the following CHR state:

〈{delta({chunk(idΔ(c), t, [[val ]]) | c ∈ Δ ∧ c = (t, val)})}
� {gamma(b, idΔ(c), d) | b ∈ B ∧ γ(b) = (c, d) ∧ c = (t, val)}; υ; ∅〉

Thereby, [[val ]] denotes the explicit relational notation of the function val as a
set of tuples. We denote the translation of an ACT-R state σ by chr(σ).

The chunk store is represented by a delta constraint that contains a set of
chunk/3 terms representing the chunks with their identifiers, types and slot-value
pairs.

For every buffer of the given architecture, there is a constraint gamma with
buffer name, chunk identifier and delay. Since γ is a total function, every buffer
has exactly one gamma constraint. Additional information is represented directly
as built-in constraints.

Definition 9 (translation of rules). Let cogstate(B) := {(b, Cb) | b ∈ B}
be the relation that connects each buffer with a variable Cb. An ACT-R rule in
set-normal form r := L ⇒ R can be translated to a CHR rule of the form:

r @ delta(D) � {gamma(b, Cb, Eb) | b ∈ B}
⇔

∧

=(b,t,P)∈L
(chunk(Cb, t, P ) in D ∧ Eb=0) |

{delta(D∗)} � {gamma(b, C∗∗
b , resdelay(b)) | b ∈ B ∧ a(b, t, P ) ∈ R}

� {gamma(b, Cb, Eb) | b ∈ B ∧ a(b, t, P ) /∈ R},
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∧

α=a(b,t,P )∈R
action(α,D, cogstate(B),D∗

b , C∗
b , E∗

b )

∧ merge([D∗
b : a(b, t, P ) ∈ R],D′)} ∧ merge([D,D′],D∗) �

∧
∧

a(b,t,P )∈R

map(D,D′, C∗
b , C∗∗

b ).

Note that ACT-R constants and variables from C and V are implicitly translated
to corresponding CHR variables.

We denote the translation of a rule r by chr(r) and the translation of an
ACT-R model Σ that is a set of ACT-R rules by chr(Σ). Thereby, chr(Σ) :=
{chr(r) | r ∈ Σ}.

The rule removes the delta and all gamma constraints from the store. It binds the
translation of the chunk store Δ to the variable D. For all buffers b, each variable
Cb is bound to the chunk identifier of the chunk in b, i.e. Cb = idΔ(γ(b)). The
guard now performs all buffer tests =(b, t ,P) from the ACT-R rule by testing if
a chunk term chunk(Cb, t, P ) is in the translated chunk store D that has type t
and matches all slot-value pairs in P . The ACT-R variables in P are bound to
the values in the state.

In the body, the built-in constraints action perform the actions of the ACT-R
rule as defined by the architecture. An action constraint gets the action term α
of the rule (with all variables bound through the matching), the original chunk
store and a representation of the cognitive state. Since the Cb have been bound
in the matching, it consists of tuples that connect each buffer b with the chunk
identifier it holds.

The action built-in constraint returns a chunk store D∗
b , a chunk identifier

C∗
b that represents the resulting chunk from the request and a result delay E∗

b .
The merge constraints merge the chunk stores of all actions with the original
store D to the store D∗. The result of merging two chunk stores can vary from
implementation to implementation, but has to obey some rules defined in [8].
One can think of it as a multi-set union. As chunk identifiers might change in
the merging process, the built-in map maps the chunk identifier of the results to
the corresponding identifiers in the merged store.

Then, a new Δ constraint with the resulting chunk store D∗ is added as well
as the gamma constraints. If the buffer b has been part of an action, then it is
altered such that it holds the resulting chunk identifier C∗∗

b after the merge and
the resulting delay E∗

b . If it was not part of an action, its parameters Cb (the
chunk identifier) and Eb (the delay) remain unchanged. This is possible, since
the chunk merging guarantees that chunks in the original chunk store D the
constraint gamma is referring to, are also part of the merged chunk store D∗.

Example 1 (counting). We now give an example ACT-R rule to explain its opera-
tional semantics. A classical example inACT-R is counting by recalling count order
facts. The model uses chunks of type order as illustrated in Fig. 2. An order chunk
has a first and a second slot that link two chunks representing natural numbers in
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the right order. Additionally, we define a second chunk type g that memorizes the
current number in the counting process. The main rule is defined as:

=(goal , g , {(current ,X )}), =(retrieval , order , {(first ,X ), (second ,Y )})
⇒ =(goal , g , {(current ,Y )}), +(retrieval , order , {(first ,Y )})

The left-hand side tests if there is a chunk of type g in the goal buffer. The value
of its current slot is bound to variable X by the matching. The second buffer
test checks the retrieval buffer for a chunk of type order that has X in its first
slot. The value of the second slot is bound to variable Y .

The right-hand side modifies the chunk in the goal buffer such that Y is
written to the current slot. The second action requests the retrieval buffer for
an order chunk that has Y in its first slot. As soon as the requested chunk is
available, the program can apply the rule again. The head and guard of the CHR
translation H ⇔ G | B of the rule is

H := {delta(D), gamma(g, Cg, 0), gamma(retrieval , Cr, 0)},

G := chunk(Cg, g, {(current ,X)}) in D ∧
chunk(Cr, order , {(first ,X), (second , Y )}) in D.

3 Confluence Criterion for ACT-R

This section is the main contribution of the paper. We gradually develop a
decidable criterion for confluence of ACT-R using the CHR embedding.

Therefor, a brief introduction to invariant-based confluence analysis for CHR
is given that extends the standard confluence criterion to handle invariants that
must hold for the regarded states. We then define the ACT-R invariant A that
is satisfied if a CHR state has been derived from an ACT-R state. Then a
decidable criterion for the invariant is presented and it is shown that the invariant
is maintained in translated ACT-R models. It is shown how invariant-based
confluence analysis for CHR can be applied to decide ACT-R confluence.

3.1 Invariant-Based Confluence

We now give a brief introduction to invariant-based confluence analysis for CHR.
The first results stem from [6]. We summarize the main theorem of the improved
version that can be found in [11, Sect. 14].

The main idea of the confluence criterion is that heads and guards of the rules
are overlapped to an overlap state. Then both overlapping rules are applied to
this state forming a critical pair that is checked for joinability for all possible
overlap states. An overlap is defined as follows:

Definition 10 (overlap and critical pairs [7,11]). For any two (not nec-
essarily different) rules of a CHR program with renamed apart variables of the
form r @ H ⇔ G | Bc, Bb and r′ @ H ′ ⇔ G′ | B′

c, B
′
b, let O ⊆ H, O′ ⊆ H ′ such

that for B := (O = O′) ∧ G ∧ G′ it holds that CT |= ∃.B and O 
= ∅, then the
state
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σ = 〈R � R′ � O;B;V〉
is called an overlap of r and r′ where R := H \O, R′ := H ′ \O′ and V is the set
of all variables occurring in heads and guards of both rules. The pair of states
σ1 := 〈R′ � Bc;B ∧ Bb;V〉 and σ2 := 〈R � B′

c;B ∧ B′
b;V〉 is a critical pair of the

overlap σ.

CHR has the monotonicity property. It states that all rules that are applica-
ble in a state, are also applicable in any larger state. This idea can be exploited
to reason from joinable overlap states about local confluence and therefore con-
fluence of a CHR program. The problem with invariant-based confluence is that
the idea of using monotonicity to reason about larger states does not work for
states where the invariant does not hold. An overlap that does not satisfy the
invariant makes all information about this state irrelevant [11, p. 79]. The idea
of the invariant-based confluence theorem for CHR is to extend all states where
the invariant does not hold such that the invariant is repaired and include the
extended states in the confluence test. Since in general there are infinitely many
extensions that maintain the invariant, only minimal extensions according to a
partial order defined in [11] have to be considered. Then, monotonicity can be
applied again.

Theorem 1 (invariant-based confluence for CHR [11]). For an invariant
I, let ΣI([ρ]) := {[ρ′] | [ρ′] is an extension of [ρ] such that I holds } be the set
of satisfying extensions of [ρ]. The set MI([ρ]) is the set of minimal elements
of ΣI([ρ]) w.r.t. the partial order on states defined in [11].

Let P be a CHR program and MI([ρ]) be well-defined for all overlaps ρ. P
is locally confluent with respect to I if and only if for all overlaps ρ with critical
pairs (ρ1, ρ2) and all [ρm] ∈ MI([ρ]) holds that [ρ1] extended by [ρm] and [ρ2]
extended by [ρm] are joinable. We then say that P is I-(locally) confluent.

There are two problems with this result making it possibly undecidable: The
invariant could be undecidable and the set of minimal elements can be infinitely
large. We will show that in the case of the ACT-R invariant that we use for
our confluence test, the set of satisfying extensions is empty and the invariant
is decidable. Hence, it is not necessary for the understanding of this paper how
the partial order on states and therefore the set of minimal elements is defined
formally, since the set of satisfying extensions is already empty for the ACT-R
invariant. The ACT-R invariant is defined in the following section.

3.2 ACT-R Invariant

To reason about confluence of ACT-R models in CHR, we need an invariant that
restricts the CHR state space to states that stem from a valid ACT-R state. In
the following example, we show how overlapping translated ACT-R rules can
lead to overlap states that do not describe a valid ACT-R state.
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Example 2. Let {delta(D), gamma(B,C, 0)} ⇔ chunk(C, T, P ) in D | . . . be a
CHR rule that has been obtained from an ACT-R rule. By overlapping the rule
with itself, we could get

σ :=〈delta(D), gamma(B,C, 0), gamma(B,C ′, 0);
chunk(C, T, P ) in D ∧ chunk(C ′, T ′, P ′) in D;V〉.

However, this state does not stem from a valid ACT-R state, since γ is a function
with only one value for each buffer and therefore the translation of an ACT-R
state can never contain two gamma constraints for the same buffer B.

In the following, we define the ACT-R invariant A on CHR states that limits
the state space to states that stem from valid ACT-R states. We show that the
invariant is decidable by breaking it down to five fine grained invariants. We also
show that it actually defines an invariant for translated ACT-R models.

Definition 11 (ACT-R invariant). Let [ρ] be a CHR state. The ACT-R
invariant A holds if and only if there is an ACT-R state σ such that ρ ≡ chr(σ).

Basically, this means that A([ρ]) holds if [ρ] is the valid translation of an ACT-R
state. However, by this definition it is hard to decide if a CHR state satisfies the
invariant.

We now show some decidable sub-invariants on CHR states and prove that
their conjunction is equivalent to A. For this purpose, we define an auxiliary
function ids that returns the set of chunk identifiers for a set of chunk/3 terms.

Definition 12 (chunk identifiers). Let d be a set. Then

ids(d) := {c | chunk(c, t, p) ∈ d}

is the set of chunk identifiers of the set d.

The sub-invariants mainly consist of uniqueness invariants, i.e. they require
that there is only one constraint of a certain kind for a class of arguments, and
functional dependency invariants, i.e. that certain sets that represent relations
appearing in constraints are functions. Eventually, the constraints that can be
be used in a state are restricted.

Theorem 2 (ACT-R invariants). Let ρ ≡ 〈G;C;V〉 be a CHR state. We
define the following sub-invariants:

1. unique chunk store
A1([ρ]) ↔ There is exactly one constraint delta(d) ∈ G for some ground set
d. For all elements e ∈ d, it holds that there exist c ∈ C, t ∈ T, p ∈ C × C, s ∈
τ(t), v ∈ C such that e = chunk(c, t, p) and p = {(s, v) | s ∈ τ(t)∧v ∈ ids(d)}.

2. functional dependency of cognitive state
A2([ρ]) ↔ For all buffers b ∈ B there is exactly one gamma(b, c, e) ∈ G where
c ∈ ids(d) for some delta(d) ∈ G and e ∈ R

+
0 .
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3. unique chunk identifiers
A3([ρ]) ↔ For all chunk identifiers c ∈ C and constraints delta(d) ∈ G, if
chunk(c, t, p) ∈ d, then there is no other term chunk(c, t′, p′) ∈ d.

4. functional dependency of slot-value pairs
A4([ρ]) ↔ For all constraints delta(d) ∈ G, terms chunk(c, t, p) in set d and
(s, v) in set p, there is no other term (s, v′) in p.

5. allowed constraints
A5([ρ]) ↔ In G there are only delta/1 and gamma/3 constraints, only syn-
tactic equality = /2 and the allowed constraints defined by the ACT-R archi-
tectures appear in C and [ρ] is ground.

For all CHR states [ρ] it holds that A([ρ]) ↔
∧5

i=1 Ai([ρ]).

Proof. if direction If A([ρ]), then [ρ] is the product of the translation of an
ACT-R state. It follows directly from Definition 8 that in that case, A1([ρ]),
A2([ρ]), A3([ρ]), A4([ρ]) and A5([ρ]) hold.

only-if direction We have to show that for all CHR states [ρ] where the invari-
ants A1([ρ]), A2([ρ]), A3([ρ]), A4([ρ]) and A5([ρ]) hold, there is an ACT-R
state σ such that ρ ≡ chr(σ). Let [ρ] := [〈G;C;V〉].
We construct the ACT-R state σ := 〈Δ; γ; υ〉. Since A1([ρ]), there is exactly
one delta(d) constraint for a set d and all elements in d are of the form
chunk(c, t, p) where c ∈ C, t ∈ T and p is a set of elements (s, v) with s ∈ τ(t)
and v ∈ ids(d). The set p is total with respect to s and the v are chunk
identifiers that appear in d. Due to A4, there is exactly one (s, v) ∈ p for
each s ∈ τ(t), hence p is the relational representation of a value function. The
invariant A3 guarantees that the chunk identifiers are unique.
We define Δ := {(t, p) | chunk(c, t, p) ∈ d} with the identifier function
idΔ := {((t, p), c) | chunk(c, t, p)}.
Due to invariant A2, the cognitive state can then be defined for all b ∈ B such
that γ(b) := (id−1

Δ (c), e) for each gamma(b, c, e) ∈ G.
Since A5([ρ]), [ρ] is ground. Hence, we can find another representative of the
state with ρ ≡ 〈G′;C′; ∅〉, that applies all equality constraints X=t in C such
that only constants appear in G

′ and C
′ and C

′ only consists of allowed pred-
icates defined by the ACT-R architecture. Therefore, we can set υ := C

′.
From the construction of σ it is clear that ρ ≡ chr(σ).

The invariants A1, . . . ,A5 are obviously decidable. Since they are equivalent
to the ACT-R invariant A, Theorem 2 gives us a decidable criterion for the
ACT-R invariant A.

In the next step, we show that the ACT-R invariant A is maintained by
transitions that come from a translated ACT-R program, i.e. that it really is an
invariant.

Lemma 1. Let �→ be the state transition relation derived from the translation
of an ACT-R model and [ρ] a CHR state with A([ρ]). If [ρ] �→ [ρ′], then A([ρ′]).

Proof. We are going to use soundness and completeness [8] to prove this.
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Let [ρ] be a CHR state with A([ρ]). Since A([ρ]), there is an ACT-R state σ
with ρ ≡ chr(σ). Due to the sound and complete embedding of ACT-R in CHR,
there is an ACT-R state σ′ with ρ′ ≡ chr(σ′). Hence, A([ρ′]) holds.

3.3 Invariant-Based Confluence Test

We want to use Theorem 1 [11, p. 83, Theorem 6] to prove confluence of all
states [ρ] that satisfy the ACT-R invariant, i.e. where A([ρ]). Therefore, we have
to construct the set ΣA([ρ]) for each state [ρ] that does not satisfy A. It contains
all states that can be merged to [ρ] such that they satisfy A (see Theorem 1).
The minimal elements in this set have to be considered in the confluence test.

We will see that for all states [ρ] that do not satisfy A, the set of minimal
elements is empty. Intuitively, this means that there are no states that can extend
[ρ] such that it satisfies A.

Lemma 2 (minimal elements for A). Let A be the ACT-R invariant as
defined in definition Theorem2. For all states [ρ] such that A([ρ]) does not hold,
ΣA([ρ]) = ∅ and therefore MA([ρ]) = ∅.

Proof. Let [ρ] := [〈G;C;V〉]. We use Theorem 2 that allows us to analyze the
individual sub-invariants:

1. If A1 is violated, there are the following cases:
– There are two constraints delta(d), delta(d′) ∈ G. We cannot extend [ρ]

(i.e. add constraints) to satisfy A1.
– There is only one unique delta(d) ∈ G, with elements that do not have

the required form. Again, no constraints can be added to satisfy A1.
2. If A2 is violated, there are two constraints gamma(b, c, e), gamma(b′, c′, e′) ∈

G. We cannot satisfy A2 for such a state.
3. The proof is analogous for A3 and A4.
4. If A5 is violated, there are other constraints then delta or gamma in G or

other than the allowed constraints defined by the architecture in C. This
cannot be repaired by extending G or C.

We can directly apply Theorem 1: For all overlaps ρ where A([ρ]) holds, the
set of minimal elements is MA([ρ]) = {[ρ∅]} [11, p. 80, Lemma 13.13] where
ρ∅ := 〈∅;; ∅〉 is the empty CHR state. Hence, for overlaps where A holds, we
only have to show joinability of the critical pairs that stem from the overlap
itself. This coincides with the regular confluence test of CHR as defined in [7].

For all overlaps ρ where A([ρ]) does not hold, the set of minimal elements
is MA([ρ]) = ∅ by Lemma 2. Therefore, no critical pairs have to be tested. We
summarize this in the following theorem.

Theorem 3 (A-local confluence). A CHR program is A-local confluent if
and only if for all critical pairs (ρ1, ρ2) with overlap ρ for which A(ρ), it is
ρ1 ↓ ρ2.
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Proof. This follows directly from Theorem 1 and Lemma 2 for overlaps where
A([ρ]) does not hold. For overlaps with A([ρ]), the unique minimal element is
the empty state [ρ∅] := [〈∅;; ∅〉] which is the neutral element for state merging
[11, Lemma 13.13, p. 80]. Therefore, if A([ρ]) holds, it suffices to test the critical
pairs that stem from [ρ] by Theorem 1.

We now have a criterion to decide A-confluence of A-terminating CHR pro-
grams that have been translated from an ACT-R model. In the next theorem,
we show that A-confluence of such CHR programs coincides with ACT-R con-
fluence. Therefore, the confluence criterion is applicable to decide confluence of
ACT-R models.

Theorem 4 (confluence in ACT-R). Let M be an ACT-R model. Then
M is terminating and confluent if and only if chr(M) is A-terminating and
A-confluent.

Proof. A-termination is maintained through soundness and completeness. We
now show that confluence for terminating models and their CHR counterparts
coincides. Confluence is defined as (σ �→∗ σ1) ∧ (σ �→∗ σ2) → (σ1 ↓ σ2) for
all states σ, σ1, σ2. It remains to show that joinability in ACT-R and CHR are
equivalent, i.e. (σ1 ↓ σ2) ↔ ([chr(σ1)] ↓ [chr(σ2)]).

If-direction If (σ1 ↓ σ2), there is a state σ′ such that σ1 �∗ σ′ and
σ2 �∗ σ′. Due to soundness and completeness of the embedding, we have
that [chr(σ1)] �→∗ [chr(σ′)] and [chr(σ2)] �→∗ [chr(σ′)].

Only-if-direction This is analogous. We just have to construct the ACT-R
state from the joined CHR state [ρ′]. Since A([ρ′]) holds by Lemma 1, this
state exists.

3.4 Example: Counting

We continue our Example 1. We assume that each number chunk only appears in
at most one order chunk at first or second position. This means that the model
has learned a stable order on the numbers and hence requests to the declarative
module are deterministic. It is clear that this example model terminates for finite
declarative memories. Therefore, we can apply our confluence criterion.

The rule can overlap with itself, e.g. 〈delta(D), delta(D′), . . . ; . . . ; . . .〉. This
state invalidates invariant A1 and hence is not part of the confluence test.
Another overlap is 〈delta(D), gamma(g, Cg, 0), gamma(g, C ′

g, 0), . . . ; . . . ; . . . 〉. It
violates invariant A2, because it has two gamma constraints for the same buffer.

All overlaps consist of the following built-in store:

〈delta(D), . . . ;chunk(Cg, g, {(current ,X)}) in D

∧ chunk(Cg, g, {(current ,X ′)}) in D, . . . ; {D,X,X ′, . . . }〉.

By invariant A3 it must be X = X ′, because otherwise there were two different
chunk terms in the same chunk store with the same chunk identifier.
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The overlap 〈H;G;V〉 that only consists of the head and guard of the rule
where V contains all variables of H and G is joinable, because we assumed
determinism of requests, i.e. there is only one possible result chunk for each
request. It can be seen that all possible overlaps in this small example invalidate
the ACT-R invariant A or are joinable. Therefore, the model consisting only
of this one counting rule is confluent. If we would assume an agent that has
not learned a stable order of numbers, yet, i.e. there are numbers with different
successors, the model would not be confluent. The confluence test constructs
minimal representations of the states that are not joinable, i.e. giving an insight
to the reason why a model is not confluent. This allows to decide whether the
model has the desired behavior when it comes to different available strategies.

4 Related Work

There exist CHR embeddings of other rule-based approaches. The results on
invariant-based confluence analysis have been used successfully to the embedding
of graph transformation systems in CHR [10,13].

In the context of ACT-R, there are – to the best of our knowledge – no other
approaches that deal with confluence so far. There have been other approaches
to formalize the architecture with the aim to reason about cognitive models.
For instance, F-ACT-R [1,2] formalizes the architecture of ACT-R to simplify
comparison of different models or to use model checking techniques. In [14] math-
ematical reformulations of ACT-R models are used for parameter optimization
by mathematical optimization techniques.

5 Conclusion

In this paper, we have shown a decidable confluence test for the abstract opera-
tional semantics of ACT-R. A confluence test can help to improve ACT-R mod-
els by identifying the rules that inhibit confluence. This enables the modeler to
decide about the correct behavior of the model regarding competing strategies.
In our approach, we use the sound and complete embedding of ACT-R in CHR to
apply the invariant-based confluence criterion for CHR to reason about ACT-R
confluence, since standard CHR confluence is too strict.

We have defined the ACT-R invariant A on CHR states such that it is sat-
isfied for all states that stem from a valid ACT-R state. The first main result is
a decidable criterion for the ACT-R invariant (Theorem 2).

Furthermore, the theoretical foundations for applicability of CHR invariant-
based confluence for the ACT-R invariant A are established. This leads to the
second main result: an invariant-based CHR A-confluence test (Theorem 3).

Eventually, it is shown that A-confluence coincides with ACT-R confluence
(Theorem 4). This makes our CHR approach applicable to decide ACT-R con-
fluence. The criterion is decidable as long as the constraint theories behind the
actions are decidable, because the invariant is decidable and the preconditions
for the invariant-based confluence test are satisfied in the context of ACT-R.
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For the future, we want to investigate how the approach can be extended to
confluence modulo equivalence [5], since ACT-R confluence can be too strict due
to possibly differing chunk identifiers in the processing of the production rules.
An equivalence relation on chunk networks that is defined as a special form of
graph isomorphism could abstract from chunk identifiers making a chunk store
more declarative. By summarizing possible outcomes of a model in equivalence
classes, confluence modulo equivalence can also help to reason about correctness
of a model. Confluence modulo this equivalence relation would then guarantee
that the model always gives a result of a certain kind defined by the equivalence
class. For instance, it would be possible to check if a model always yields a chunk
of a certain type, e.g. a number or an order chunk.

Reasoning about requests to modules that appear in a confluence proof can be
extended by specific constraint theories on the modules that integrate domain-
specific knowledge about the model. This idea can be extended by allowing
for model-specific constraint theories. For instance, the integration of domain-
specific knowledge on chunk types in the context of a particular cognitive model
could improve reasoning about module requests in such models.
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Abstract. In this paper we focus on the problem of how lineage for
existential rules knowledge bases. Given a knowledge base and an atomic
ground query, we want to output all minimal provenance paths of the
query (i.e. the sequence of rule applications that generates an atom from
a given set of facts). Obtaining all minimal provenance paths of a query
using forward chaining can be challenging due to the simplifications done
during the rule applications of different chase mechanisms. We build upon
the notion of Graph of Atoms Dependency (GAD) and use it to solve the
problem of provenance path loss in the context of forward chaining with
existential rules. We study the properties of this structure and investigate
how different chase mechanisms impact its construction.

1 Introduction

Provenance is used in many information management systems [3,16,17] and
describes where data came from, how it was derived and how it was updated
over time [12]. In this paper we focus on the problem of how lineage [12] that,
given a knowledge base and a ground query, outputs the provenance paths of the
query (i.e. the sequences of rule applications that generate a query from a given
set of facts). Given that in a provenance path certain rule applications are unnec-
essary for provenance justification, it is usually assumed that one is interested
in minimal provenance paths. Unlike existing work that focuses on obtaining
only one provenance path, the novelty of this work consists in obtaining all
provenance paths to a ground query. This problem is relevant in many practical
applications such as explanation [9], abduction [13], debugging [4] and notably,
defeasible reasoning. In [11], the authors have stumbled upon this problem as
query answering in defeasible reasoning with existential rules became unsound
due to provenance path loss (not all provenance paths could be extracted). This
unexpected behavior as we will show in this paper is due to the order in which
rules are applied and to the type of forward chaining mechanism used.

Forward chaining (a.k.a. chase) is the exhaustive application of a set of rules
on a set of facts. In this paper we focus on classes of existential rules where
forward chaining is finite while backward chaining might be infinite. Different
types of chases have been defined in the literature (Oblivious [5], Skolem [14],
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DOI: 10.1007/978-3-319-61252-2 10
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Restricted [8], etc.), each chase provides a more powerful restriction test for
detecting when to stop. While these tests are crucial for the chase to stop, they
might induce a loss of rule applications depending on the order in which the
rules are applied. This loss is not picked up by existing work on provenance path
extraction which only addressed the problem of obtaining one path, as it was
implicitly assumed that obtaining all provenance paths is not a difficult task but
a mere enumeration of the first. Unfortunately this is not the case as shown in
the following example:

Example 1. Consider a knowledge base KB = (F ,R) and a query q = t(b)
where the set of facts F = {p(a), q(b), s(b)}, and the set of rules R = {R1 :
p(X)→r(X,Y ), R2 : {p(X)∧s(Y )→p(Y ), R3 : q(X)→r(X,Y ), R4 : r(X,Y )→
t(X)}.

Extracting the provenance paths for the query q using backward chaining
[4] is not possible as it is infinite. To extract provenance paths using forward
chaining the state of the art uses a chase graph [6] (also called derivation tree
[1]). A chase graph is a directed graph consisting of a set of nodes representing
the facts of the chase and having an arrow from a fact u to v iff v is obtained
from u (possibly with other atoms) by the application of a rule in R.

The saturated set of facts F∗ = F ∪ {r(a, Y1), p(b), r(b, Y2), r(b, Y3), t(a),
t(b)} is obtained using an Oblivious chase. This is represented by the chase graph
in Fig. 1. From the chase graph we can find that there is only one provenance
path for t(b) which is applying R3 on q(b) then R4 on the resulting r(b, Y2).
However, we can see that by applying R4 on the atom r(b, Y3) we get t(b), which
gives us another provenance path that does not show in the chase graph. This
loss of provenance path is due to the order in which rules are applied. When the
chase applies the rule R4 on r(b, Y3) it generates the atom t(b) but this atom
is considered redundant as t(b) already exists. This rule application is hence
considered not useful and the resulting atoms are not added to the chase graph.

p(a)q(b) s(b)

r(a, Y1)r(b, Y2) p(b)

r(b, Y3) t(a)t(b)

Fig. 1. Chase graph for F w.r.t. R of Example 1

In [11], a solution to the provenance path loss problem limited to the
restricted chase has been proposed by defining a combinatorial structure called
Graph of Atom Dependency (GAD). In this paper we build upon that work and
extend the GAD for other types of chase, define its construction algorithms in
Sect. 3, define the provenance path extraction algorithm, study its properties
and prove its soundness and completeness in Sect. 4.
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2 Preliminaries

Existential rules extend the Datalog language [7] with existential variables in the
conclusion of the rules (also called tuple generating dependencies – TGDs) and
generalise certain fragments of Description Logics by allowing n-ary predicates
as well as cyclic structures [6]. We consider a first-order logical (FOL) language
with constants but no other function symbol based on a vocabulary V composed
of an infinite set of predicates, an infinite set of constants, an infinite set of vari-
ables and an infinite set of existential ‘fresh’ variables (called ‘nulls’, which act
as placeholders for unknown constants). Different constants represent different
values (unique name assumption) while different fresh variables may represent
the same value. An atomic formula (or atom) is of the form p(t1 . . . tk), where p is
a predicate and ti are variables or constants in V . � and ⊥ are also allowed and
considered themselves atoms. For a formula Φ, we note terms(Φ) and vars(Φ)
respectively the terms and variables occurring in Φ. We denote variables by
uppercase letters X,Y,Z, . . ., constants by lowercase letters a, b, c, . . ., nulls with
numbered uppercase letter Y1, Y2, . . . , and predicate symbols by lowercase letters
p, q, r, s, etc. We use FOL classical entailment and equivalence, noted � and ≡
respectively.

A fact F is a ground atom (an atom with only constants and nulls). An
existential rule (or a tuple generating dependency) R is a closed formula of the
form ∀X,Y

(H(X,Y ) → ∃Z C(X,Z)
)

where X,Y are tuples of variables, Z
is a tuple of existential variables, and H, C are finite non empty conjunctions
of atoms respectively called premise and conclusion of R. We omit quantifiers
when there is no ambiguity, and we use the form R = (H, C) to represent a
rule. The frontier of R = (H, C) noted fr(R) is the set of variables occurring
in both H and C: fr(R) = vars(H) ∩ vars(C). Given a set of variables X and
a set of terms T , a substitution of X by T is a mapping from X to T . Let
π : X → T be a substitution, and Φ be a formula, π(Φ) denotes the set of atoms
obtained from Φ by replacing each occurrence of X ∈ X ∩ terms(Φ) by π(X).
A homomorphism from a set of atoms S to a set of atoms S′ is a substitution
of vars(S) by terms(S′) such that π(S) ⊆ S′ (S maps to S′ by π).

A rule R = (H, C) is said to be applicable to a set of facts F if there
is a homomorphism π from H to F . In that case, the application of R to F
according to π adds to the set F the conclusion C with constants and possibly
new fresh existential variables. More precisely, the application produces a set
of facts α(F , R, π) = F ∪ πsafe(C), where πsafe(X) = π(X) if X belongs to
the frontier, and is a fresh variable otherwise. This rule application is said to
be redundant if α(F , R, π) ≡ F . The application of R to F , α(F , R, π) w.r.t
to π, is also denoted by Rπ(F). Given a set of facts F and a set of rules R
the application of all rules R on the facts F is denoted R(F). Please note that
we denote by Π the set of homomorphisms. A knowledge base KB = (F ,R) is
composed of a set of facts F and a set of rules R. A query q is an atom without
fresh or free variables. We consider the boolean query answering problem for
atomic ground queries that checks whether KB |= q (i.e. if R(F) |= q).
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The approach in this paper relies on the notion of hypergraphs and hyper-
paths. We use the classical definitions of hyperedges and hypergraphs [10,15]: a
directed hyperedge e ∈ E is an ordered pair e = (U,W ) of non empty disjoint sub-
sets of vertices U,W ∈ 2V ; U is the tail of e while W is its head noted tail(e) and
head(e) respectively. A directed edge-labeled hypergraph is a tuple H = (V, E ,L)
where V is a set of vertices (or nodes), E ⊆ 2V ×2V is a set of directed hyperedges
(or edges) and L : E → L is a labeling function that maps each edge e ∈ E with
an element of the labeling set L.

We define a path Ps/t of length k in a hypergraph H = (V, E) from a node
s ∈ V to a node t ∈ V as a sequence of hyperedges 〈e1, . . . , ek〉 such that:
s ∈ tail(e1), t ∈ head(ek), and ∀1 < i ≤ k, head(ei−1) ∩ tail(ei) �= ∅. We say
that two nodes vi, vj ∈ V are connected if there is a path Pvi/vj

from vi to
vj . In a hypergraph H = (V, E), a hyperpath ΘS/t from S ⊆ V to t ∈ V is a
hypergraph Hp = (Vp, Ep) satisfying the following conditions: (1) Ep ⊆ E , (2)
S ∪ {t} ⊆ Vp =

⋃
e∈Ep

(tail(e) ∪ head(e)), and (3) ∀v ∈ Vp, v is connected to t. A
hyperpath ΘS/t = (Vp, Ep) from S ⊆ V to t ∈ V is said to be minimal w.r.t. to
Vp and Ep if no other hyperpath Θ′

S/t = (V ′
p, E ′

p) from S to t exits s.t.: V ′
p ⊂ Vp

and E ′
p ⊂ Ep. We denote by BS(v) = {e ∈ E|v ∈ head(e)} the backward star

(incoming edges) of a node v ∈ V.
In order to clearly define hypergraphs and how we draw them in this paper, let

us consider the following Example 2 that illustrates the notion of hypergraph and
hyperedge. In Fig. 3 we give the equivalent bipartite depiction of the hypergraph
in Fig. 2. For clarity reasons we will use the bipartite depiction throughout the
paper.

Example 2. Consider a hypergraph H = (V, E ,L) with V = {v1, v2, v3, v4, v5},
E = {ε1, ε2} such that ε1 = ({v1}, {v3, v4, v5}) and ε2 = ({v1, v2}, {v3}), and
L = {(ε1, labelε1), (ε2, labelε2)}. In this hypergraph we have tail(ε2) = {v1, v2}
(please note that tail(ε2) is depicted in the upper half of the hyperedge ε2
in Fig. 3). A path from v1 to v4 is a sequence of hyperedges Pv1/v4 = 〈ε2〉.
A hyperpath from {v1} to v4 is the hypergraph Θ{v1}/v4 = (VΘ, EΘ) s.t.
VΘ = {v1, v3, v4, v5} and EΘ = {ε1}.

Fig. 2. Hypergraph in Example 2 Fig. 3. Bipartite depiction of the
hypergraph in Example 2
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3 Constructing the Graph of Atom Dependency

In this section we present the notion of Graph of Atom Dependency (GAD), then
we define the algorithms that can be used to construct it, and finally we explain
how chase variants can impact its construction. This hypergraph structure will
be used in order to construct all provenance paths as detailed in Sect. 4.

3.1 Provenance Paths

In order to define the notion of provenance path we first need to define the notion
of derivation of a set of facts with respect to a set of rules.

Definition 1 (Derivation of F with respect to R). Given a set of facts F ,
and a set of rules R, a derivation of F with respect to R is a (potentially
infinite) sequence D of Di s.t. Di is a tuple (Fi, Ri, πi) composed of a set of
facts Fi, a rule Ri = (Hi, Ci) and a homomorphism πi from Hi to Fi where:
D0 = (F , ∅, ∅), and Fi = α(Fi−1, Ri, πi).

In a tuple Di = (Fi, Ri, πi) we denote by fact(Di) = Fi, rule(Di) = Ri and
homorph(Di) = πi the facts, rule and homomorphism of Di respectively.

In this paper we are interested in the notion of provenance path of a query.
Given a query q and a set of facts F , the provenance of the query q from the
facts F with respect to a set of rules R is a finite derivation of F with respect
to R that ends with a set of atoms containing q.

Definition 2 (Provenance path from F to an atom F w.r.t. R). A prove-
nance path PP from the set of facts F to the atom F with respect to a set of
rules R is a finite derivation of F with respect to R s.t.: PP = 〈D0, . . . , Dn〉
and F ∈ fact(Dn).

Example 3. Let us consider a simple knowledge base KB = (F ,R) where F =
{p(a), r(a)}, R = {R1 : p(X) ∧ r(X) → s(X) ∧ t(X), R2 : t(X) → q(X),
R3 : p(X) → u(X)}. A possible derivation of F w.r.t. R is:
〈(F , ∅, ∅), (F1 = F ∪ {s(a), t(a)}, R1, π1 = {X → a}),
(F2 = F1 ∪ {u(a)}, R3, π2 = {X → a}),
(F3 = F2 ∪ {q(a)}, R2, π3 = {X → a})〉.

The provenance path from F to q(a) is the sequence
PPKB = 〈(F , ∅, ∅), (F1 = F ∪ {s(a), t(a)}, R1, π1), (F1 ∪ {q(a)}, R2, π3)〉.

3.2 Graph of Atom Dependency (GAD)

A Graph of Atom Dependency (GAD) [11] is a hypergraph where the set of
nodes corresponds to the set of atoms and the set of labeled edges corresponds
to rule applications labeled by the rule and the corresponding homomorphisms.

Definition 3 (Graph of Atom Dependency). Given a knowledge base KB =
(F ,R), a Graph of Atom Dependency of KB is a directed edge-labeled hypergraph
that allows repeated edges HKB = (VKB, EKB,LKB) where:
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– VKB is a set of ground atoms s.t. F ⊆ VKB (VKB contains F and all gener-
ated atoms from F using R).

– EKB ⊆ 2VKB × 2VKB is a set of hyperedges.
– L : EKB → R × Π is a labeling function that maps each edge e ∈ EKB to a

tuple (R, π) where R ∈ R and π ∈ Π, s.t. head(e) = α(tail(e), R, π).

Example 4. Let us consider the knowledge base in Example 3, KB = (F ,R)
where F = {p(a), r(a)}, R = {R1 : p(X) ∧ r(X) → s(X) ∧ t(X), R2 : t(X) →
q(X), R3 : p(X) → u(X)}. Figure 4 describes the Graph of Atom Dependency of
the derivation in Example 3, that is GADKB(F ,R) = (VKB, EKB,LKB):

– VKB = {p(a), r(a), s(a), t(a), u(a), q(a)}
– EKB = {e1 = ({p(a), r(a)}, {s(a), t(a)}), e2 = ({p(a)}, {u(a)}), e3 = ({t(a)}, {q(a)})}
– LKB = {(e1, (R1, π1)), (e2, (R3, π2)), (e3, (R2, π3))}

p(a) r(a)

s(a) t(a)u(a)

q(a)

(R1, π1)(R3, π2)

(R2, π3)

Fig. 4. Graph of Atom Dependency GADKB (Example 3)

3.3 Chase Variants for GAD

In this section we will describe how to build the Graph of Atom Dependency
using a breadth-first forward chaining algorithm (chase) [5]. We describe the
effects of different variants of the chase on the resulting GAD.

Different kinds of chase can be defined by using different derivation reducers.
A derivation reducer σ is a function that, given a derivation D of F w.r.t. R
returns a sequence of sets of facts such that ∀Di ∈ D, σ(Di) ⊆ fact(Di). We call
σ−chase a chase relying on some derivation reducer σ. It generates a possibly
infinite derivation σ−chase(F ,R) of D′

i = (σ(Di), Ri, π). We say that a (possibly
infinite) derivation obtained by a σ−chase is complete when any further rule
application on that derivation would produce the same set of facts. Since we
place ourselves in a context where the chase is finite (for example, concrete
Finite Expansion Set classes for Skolem and Restricted chases [2]), then we can
extract all provenance paths without loss. This will be detailed below.
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The algorithm to construct the GAD = (V, E) using a chase σ−chase(F ,R)
is straightforward (as described by Algorithm 1): for each rule application, if it
generates new facts (according to the chase derivation reducer), then a hyper-
edge between the involved atoms and the generated ones is added. If, on the
other hand, the generated facts are not considered new according to the chase
derivation reducer (these atoms already exists) then a procedure that handles
atoms that are considered the same is called. This procedure is specific to the
type of chase as each chase defines same atoms differently. The algorithm is poly-
nomial in the size of the saturated knowledge base. The call to the procedure
HandleSameAtoms is what differentiates a Graph of Atom Dependency from a
chase graph.

Algorithm 1. GAD construction with chase
Function ChaseGAD (σ−chase(F , R))

input : σ−chase(F , R) : the chase
output: GAD = (V, E) : Graph of Atom dependency w.r.t. F and R
V ← F ; E ← ∅; GAD ← (V, E);
foreach Di = (Fi, Ri = (Hi, Ci), πi) ∈ σ−chase(F , R) do

if σ(Di) �= (Fi−1) then
foreach v ∈ πi(Ci) and v /∈ (Fi−1) do

Add v to V;
end

end
HandleSameAtoms(Fi−1, Di, GAD);

end
return GAD;

In a chase graph, if the atom v has been generated before the atom w and w
is considered the same as v then w is removed along with the subtree rooted in w.
This is problematic as it removes some provenance paths as detailed in Example
5. In what follows we define the HandleSameAtoms algorithm for each different
kind of chase: oblivious, skolem and restricted.

Oblivious Chase. The oblivious chase σobl −chase (also called naive chase)
[5] relies on the oblivious derivation reducer denoted by σobl and is defined as
follows: for any derivation D, σobl(D1) = F1 and ∀Di = (Fi, Ri, πi) ∈ D:

σobl(Di) =

{
Fi−1 ∪ πsafe

i (Ci) if ∀j < i, πj �= πj or Rj �= Ri

Fi−1 otherwise

Essentially, the oblivious chase ensures that a rule R is applied according to a
homomorphism π only if it has not already been applied according to the same
homomorphism. For this chase, two atoms are considered the same if they are
exactly the same (i.e. redundant). Due to the simplicity of the test performed by
the oblivious chase, the HandleSameAtoms procedure (defined in Algorithm 2)
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for this chase simply ensures that for any rule application, if an edge representing
it has not already been created, then it creates it. This algorithm is polynomial
in the size of Fi−1.

Algorithm 2. Handle same atoms for Oblivious chase
Procedure HandleSameAtoms (Fi−1, Di, GAD)

input : Fi−1 : set of facts, Di(Fi, Ri = (Hi, Ci), πi) : element of the chase, GAD =
(V, E) : graph of atom dependency

if e = (πi(Hi), πi(Ci)) /∈ E then
if e does not create a cycle then

Add e to E ;
end

end

Example 5. Let us consider KB = (F ,R) from Example 1. A possible deriva-
tion for the oblivious chase of F w.r.t. R is:
σobl−chase(F ,R) =< (F , ∅, ∅),
(F1 = F ∪ {r(a, Y1)}, R1, π1 = {X → a}),
(F2 = F1 ∪ {p(b)}, R2, π2 = {X → a,X → b}),
(F3 = F2 ∪ {r(b, Y2)}, R3, π3 = {X → b}),
(F4 = F3 ∪ {t(a)}, R4, π4 = {X → a, Y → Y1}),
(F5 = F4 ∪ {t(b)}, R4, π5 = {X → b, Y → Y2}),
(F6 = F5 ∪ {r(b, Y3)}, R1, π6{X → b}),
(F7 = F6, R4, π7 = {X → b, Y → Y3}) >

The chase graph and GAD resulting from the oblivious chase σobl −
chase(F ,R) are shown in Figs. 1 and 5 respectively. As described before, the
chase graph can only find one minimal provenance path PP1 for t(b) whereas
the GAD can find another minimal provenance path PP2 that the chase graph
lost due to the fact that the application of R4 on r(b, Y3) generates what the
oblivious chase considers a redundant atom:

– PP1 =< (F , ∅, ∅), (F1 = F ∪ {r(b, Y2)}, R3, π3), (F2 = F1 ∪ {t(b)}, R4, π5) >
– PP2 =< (F , ∅, ∅), (F1 = F ∪ {p(b)}, R2, π2), (F2 = F1 ∪ {r(b, Y3)}, R3, π6),

(F3 = F2 ∪ {t(b)}, R4, π7) >.

The following proposition states that for any rule application generated by
an oblivious chase, there exists an edge representing it in the generated GAD
using Algorithm 2, meaning that no rule application is lost.

Proposition 1 (GAD σobl − chase(F ,R) Completeness). Given a knowl-
edge base KB = (F ,R) and GAD = (V, E) generated by an oblivious chase,
∀Di = (Fi, Ri = (Hi, Ci), πi) ∈ σobl − chase(F ,R),∃e ∈ E such that e =
(πi(Hi), πi(Ci)).

Proof (Sketch). We prove this by construction, since for any Di = (Fi, Ri = (Hi,
Ci), πi) ∈ σobl−chase(F ,R), HandleSameAtoms is called (as per Algorithm 1),
if e = (πi(Hi), πi(Ci)) /∈ E then it is added, otherwise, it already exists.
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p(a)q(b) s(b)

r(a, Y1)r(b, Y2) p(b)

r(b, Y3) t(a)t(b)

(R1, π1)(R3, π3) (R2, π2)

(R4, π5) (R4, π4)(R1, π6)

(R4, π7)

Fig. 5. Graph of atom dependency generated for Example 1

Skolem/Frontier Chase. In the frontier chase σfr −chase two applications
α(F , R, π) and α(F , R, π′) of the same rule add the same atoms if they map fron-
tier variables identically (∀X ∈ fr(R), π(X) = π′(X)). The frontier derivation
reducer denoted by σfr is defined as follows: for any derivation D, σfr(D1) = F1

and ∀Di = (Fi, Ri, πi) ∈ D:

σfr(Di) =

⎧
⎪⎨

⎪⎩

Fi−1 ∪ πsafe
i (Ci) if ∀j < i, πj |fr(Rj)(Cj) �= πi|fr(Ri)(Ci)

and Rj �= Ri

Fi−1 otherwise

The frontier chase is equivalent to the skolem chase [14] that relies on a skolemi-
sation of the rules by replacing each occurrence of an existential variable Y with
a functional term fR

Y (X), where X = fr(R) are the frontier variables of R; the
oblivious chase is then run on skolemized rules. Frontier chase and skolem chase
yield isomorphic results [2], in the sense that they generate exactly the same
atoms, up to a bijective renaming of variables by skolem terms.

The oblivious chase is strictly ‘weaker’ than the frontier chase [2] meaning
that if σobl −chase(F ,R) is finite then σfr −chase(F ,R) is also finite. In the
frontier chase, two atoms are considered the same if they have the same constants
(and possibly different freshly generated constants). The HandleSameAtoms
procedure (defined in Algorithm 3) for the frontier chase is more general than the
one for the oblivious chase and might result in different GADs. This algorithm
is polynomial in the size of the Fi−1.
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Algorithm 3. Handle same atoms for Frontier chase
Procedure HandleSameAtoms (Fi−1, Di, GAD)

input : Fi−1 : set of facts, Di(Fi, Ri = (Hi, Ci), πi) : element of the chase, GAD =
(V, E) : graph of atom dependency

if ∃j, πj , Rj s.t. j < i and πj |fr(Rj)(Cj) = πi|fr(Ri)(Ci) then

if e = (πi(Hi), πj(Ci)) /∈ E and does not create a cycle then
Add e to E ;

end

else
if e = (πi(Hi), πi(Ci)) /∈ E and does not create a cycle then

Add e to E ;
end

end

Similarly to Propositions 1 and 2 states that no rule application is lost, even
if it does not generate new atoms, it is still added to the edges of the GAD.

Proposition 2 (GAD σfr−chase(F ,R) Completeness). Given a knowledge
base KB = (F ,R) and GAD = (V, E) generated by a frontier chase, ∀Di =
(Fi, Ri = (Hi, Ci), πi) ∈ σfr−chase(F ,R),∃e ∈ E such that e = (πi(Hi), πi(Ci))
or e = (πi(Hi), πj(Ci)) where πj and πi map frontier variables of R identically.

Proposition 3 expresses the structural link between GADs obtained thanks
to oblivious and frontier chases.

Proposition 3. Let GADσobl
= (Vσobl

, Eσobl
) and GADσfr

= (Vσfr
, Eσfr

) be
two Graphs of Atom Dependency for (F ,R) generated by a complete oblivious
chase and a complete frontier chase. If GADσobl

and GADσfr
are finite, then

|Vσfr
| ≤ |Vσobl

| and |Eσobl
| = |Eσfr

|.
Proof (Sketch). Given that frontier is stronger than the oblivious chase [2], some
generated atoms are judged redundant by the frontier chase while considered new
by the oblivious one, thus |Vσfr

| ≤ |Vσobl
|. Furthermore, since rule applications

are not lost given Propositions 1 and 2, then |Eσobl
| = |Eσfr

|.

Restricted Chase. The restricted chase σres − chase (also called standard
chase) [8] uses the restricted derivation reducer denoted by σres and defined as
follows: for any derivation D, σres(D1) = F1 and ∀Di = (Fi, Ri, πi) ∈ D:

σres(Di) =

{
Fi−1 ∪ πsafe

i (Ci) if Fi−1 � πsafe
i (Ci)

Fi−1 otherwise

The restricted chase relies on the notion of useful homomorphism. For a rule
R = (H, C) and a set of facts F , a homomorphism π from H to F is said to be
useful if it cannot be extended to a homomorphism from H ∪ C to F , meaning
that πsafe(H ∪C) does not exist in F . The frontier chase is strictly weaker than
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the restricted chase, thus, the HandleSameAtoms procedure (defined in Algo-
rithm 4) for the restricted chase is more general than the one for the frontier
chase and might result in different GADs (as described in Example 6). Further-
more, the restricted chase checks only for local redundancy, meaning that the
order in which rules are applied affects the resulting set of atoms as described
in Example 6. This algorithm is polynomial in the size of the Fi−1.

Algorithm 4. Handle same atoms for Restricted chase
Procedure HandleSameAtoms (Fi−1, Di, GAD)

input : Fi−1 : set of facts, Di(Fi, Ri = (Hi, Ci), πi) : element of the chase, GAD =
(V, E) : graph of atom dependency

if ∃π′ s.t. π′(Hi ∪ Ci) ⊆ Fi−1 then
if e = (π′(Hi), π

′(Ci)) /∈ E and does not create a cycle then
Add e to E ;

end

else
if e = (πi(Hi), πi(Ci)) does not create a cycle then

Add e to E ;
end

end

Similarly to Proposition 1 and 2, no rule application is lost for the restricted
chase.

Proposition 4 (GAD σres−chase(F ,R) Completeness). Given a knowledge
base KB = (F ,R) and GAD = (V, E) generated by a restricted chase, ∀Di =
(Fi, Ri = (Hi, Ci), πi) ∈ σres−chase(F ,R),∃e ∈ E such that e = (πi(Hi), πi(Ci))
or e = (π′(Hi), π′(Ci)) where π′ is a homomorphism such that π′(Hi∪Ci) ⊆ Fi−1.

Example 6. We will consider the knowledge base KB = (F ,R) such that F =
{p(a)} and the set of rules R = {R1 : p(X) → r(X,Y )∧q(Y ), R2 : p(X) → r(X,
Y ), R3 : r(X,Y ) → q(Y )}. The GAD generated by the frontier chase for this
example is exactly the same as the one generated by the oblivious chase regardless
of the order in which the rules are applied at each breadth-first derivation. On
the other hand, the order of rule applications affects the GAD generated by a
restricted chase as shown in Figs. 6 and 7.

Let GADσres
be the Graph of Atom Dependency generated by first applying

the rule R1: α(F , R1, π1) gives {r(a, Y1), q(Y1)}, which are considered new as
these atoms are not contained in F (F � {r(a, Y1), q(Y1)}). Hence F2 = F ∪
{r(a, Y1), q(Y1)}.

Then R2 is applied: α(F2, R2, π2) generates {r(a, Y2)}, which is considered
redundant as the chase maps it to {r(a, Y1)} (the fresh variable Y2 is mapped to
the fresh variable Y1). We have F � {r(a, Y2)}, so it is not added and the chase
continues.
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However, in GAD′
σres

, the rule R1 is applied after R2. First applying R2

(α(F , R2, π1)) gives r(a, Y1) which is new as F � {r(a, Y1)}. So F2 = F ∪
{r(a, Y1)}.

Then R1 is applied (α(F2, R1, π2)), generating {r(a, Y2), q(Y2)} which are
considered new as this set of atoms cannot be mapped to any existing atoms (Y2

cannot be mapped to Y1 as there is no q(Y1)). We have F2 � {r(a, Y2), q(Y2)},
so F3 = F2 ∪ {r(a, Y2), q(Y2)}.

4 Obtaining Provenance Paths

The intuition behind the use of the GAD is that, for a given GAD and a given
query, there is a one-to-one mapping, up to provenance path equivalence, between
the set of hyperpaths to q and the set of provenance paths to q. Therefore,
once the GAD constructed (by considering the different chase mechanisms) the
problem of obtaining all provenance paths can be transformed into the problem
of generating all hyperpaths of q in the GAD.

Let us first define the notion of provenance path minimality and equiva-
lence. We recall that a provenance path is a sequence PP of Di such that
Di is a tuple (Fi, Ri, πi). We say that two provenance paths PP and PP ′

from a set of facts F to q are equivalent iff they have the same set of atoms
and the same set of applied rules (along with their respective homomorphisms)
i.e.

⋃
D∈PP fact(D) =

⋃
D′∈PP′ fact(D′) and

⋃
D∈PP(rule(D), homorph(D)) =⋃

D′∈PP′(rule(D′), homorph(D′)). We denote that PP and PP ′ are equivalent
by PP � PP ′. Please note that � is an equivalence relation (as it is obviously
reflexive, symmetric and transitive). Therefore it induces a partition of the set
of all provenance paths. A provenance path PP from a set of facts F to q is said
to be minimal w.r.t. a set of rules R and homomorphisms Π if no other prove-
nance path PP ′ from F to q exits s.t.

⋃
D′∈PP′ fact(D′) ⊂ ⋃

D∈PP fact(D)

p(a)

r(a, Y1)

q(Y1)

(R1, π1)(R2, π2)

(R3, π3)

Fig. 6. GADσres (Example 6) where
R1 is applied before R2

p(a)

r(a, Y1) r(a, Y2)

q(Y2)

(R2, π1) (R1, π2)

(R3, π3) (R3, π4)

Fig. 7. GAD′
σres

(Example 6)
where R2 is applied before R1
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and
⋃

D′∈PP′(rule(D′), homorph(D′)) ⊂ ⋃
D∈PP(rule(D), homorph(D)). The

following property trivially holds.

Proposition 5. If a provenance path PP is equivalent to another minimal
provenance path PP ′ then PP is minimal.

Provenance paths are constructed from the hyperpaths of the GAD. The fol-
lowing proposition shows that for every hyperpath of the GAD we can construct
an equivalent provenance path. This will ensure the soundness of the hyperpath
generation with respect to the problem of generating all provenance paths.

Proposition 6 (Hyperpath Soundness w.r.t. a Provenance Path). Let
GAD be a Graph of Atom Dependency generated by applying a σ−chase(F ,R)
on a set of facts F w.r.t. a set of rules R. If there exists a hyperpath ΘF/t in
GAD from F to a fact t ∈ fact(D) s.t. D ∈ σ−chase(F ,R), then there exist a
provenance path PP from F to t.

Proof (Sketch). Since GAD is acyclic by definition, then ΘF/t is acyclic. If ΘF/t

is acyclic then a valid ordering of its hyperedges is possible [10]. Based on this
valid ordering we can then generate the sequence in the provenance path.

Please note that for a given GAD and for a given hyperpath the provenance
paths that can be constructed from ΘF/t are equivalent (i.e. they belong to the
same class of �).

Proposition 7 (Hyperpath Soundness). Given the GAD for the knowledge
base KB = (F ,R) and a hyperpath ΘF/t in GAD from F to a fact t ∈ fact(D)
s.t. D ∈ σ−chase(F ,R), if two provenance paths PP1 and PP2 are generated
from ΘF/t then PP1 � PP2.

Proof (Sketch). Since GAD is acyclic by definition, then ΘF/t is acyclic. If ΘF/t

is acyclic then a valid ordering of its hyperedges is possible. In fact, ΘF/t can
have different valid orderings of its hyperedges. Provenance paths generated
from these valid orderings contain the same facts and rule applications since all
ordering are for the same hyperedges. Thus, the generated provenance paths are
equivalent.

Let us now show that the completeness holds. More precisely we can show
that for a given knowledge base and a minimal provenance path there exists an
equivalent hyperpath in the GAD associated to the knowledge base.

Proposition 8 (Hyperpath Completeness). Given a knowledge base KB =
(F ,R), a query q and PP a minimal provenance path for q in KB, there exists
a hyperpath ΘF/q in the GAD of KB.

Proof (Sketch). We prove this by contradiction. Let us suppose that there exists
a minimal provenance path PP for q in KB such that no hyperpath ΘF/q can
be constructed in the associated GAD. This means that a rule application in
the provenance path is not present in the hyperpath. This means that in the
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construction of the GAD this rule application has not been considered. This
is impossible given the results of the completeness of GAD construction using
different chase variants (Propositions 1, 2 and 4).

Similar to above, for a given knowledge base and a class of � minimal prove-
nance paths there exists a hyperpath in the associated GAD. The above propo-
sitions show the soundness and completeness of minimal provenance path gen-
eration with respect to hyperpath finding in a GAD.

Please note that the GAD construction is chase sensitive. For each chase
(oblivious, frontier and restricted) a different GAD can be constructed, as shown
in the previous section. For a given knowledge base the oblivious-generated GAD
can be infinite, and for the same knowledge base the frontier -generated GAD
is finite. The same result shows for frontier chase and restricted chase. There-
fore if the GAD is finite then, for any of the above chase methods, for a given
query we can generate all minimal provenance paths supporting this query.

Algorithm 5. Find Paths & Hyperpaths
Function FP (S, t)

input : S : source nodes, t: target node
output: paths: set of all paths between S and t
paths ← {};
if t ∈ S then

return paths;
end
if BS(t) is equal to ∅ then

return null;
end
foreach e ∈ BS(t) do

path ← {e};
tmp ← {};
foreach v ∈ tail(e) do

tmp ← FP (S, v) × tmp;
end
paths ← paths ∪ (path × tmp);

end
return paths;

Procedure FindAllHyperpaths (S, t)
input : S : source nodes, t: target node
output: hyperpaths: set of all hyperpaths between S and t
hyperpaths ← {}; paths ← FP (S, t);
foreach path ∈paths do

V ← S;
E ← path;
foreach e ∈ E do

Add head(e) and tail(e) to V;
end
Add H = (V, E) to hyperpaths;

end
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To construct all non-equivalent minimal provenance paths from a set of facts
S to a fact t we only need to find all minimal hyperpaths from S to t. For this
we need to compute all paths (sequence of hyperedges) from S to t. The recursive
function FP defined in Algorithm 5 computes all paths that connect a subset of
F to an atom t using backward branching; we then use these paths in the proce-
dure FindAllHyperpaths in order to construct the hyperpaths. Please note that
Algorithm 5 is based on a modification of [15] to take into account hyperedges
rather than hyperarcs. The modification does not affect its complexity which is
polynomial in the size of the nodes of the hypergraph.

5 Discussion

In this paper we studied the problem of generating all minimal provenance paths
for an atomic ground query in the context of a knowledge base expressed using
existential rules. As we have shown, this problem can be tricky as it was implic-
itly assumed that obtaining all provenance paths can be reduced to obtaining
one path. However, given the restriction test of different chase, provenance path
loss can occur in certain cases depending on the order in which rules are applied.
This provenance path loss can be critical in applications such as defeasible rea-
soning [11]. To resolve this problem, we extended the notion of a graph of atom
dependency, and showed how the chase choice impacts its construction. We then
used this graph to generate all minimal provenance paths for a given atom.

For future work directions we aim to define an optimized algorithm for con-
junctive atomic queries. The ideas developed in this paper can be used to tackle
this issue however performance can optimized when paths intersect. We also
plan to consider the core chase, and investigate the use of the GAD in the back-
ward chaining reasoning; more precisely, we plan to study if this could lead to a
beneficial combination of backward and forward chaining.
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Abstract. Query rewriting is a popular approach for ontology based
data access and in general for first order rewritable knowledge bases.
The algorithms defined in the field are based on conjunctive queries
with no use of negation over the atoms that are part of them. Also,
the constraints present in the knowledge base are ignored in the process
of rewriting a query and they are only used to check the consistency
of the data. In this paper, we study the problem of answering queries
that allow negated atoms. Our approach uses a rewriting algorithm as a
black box and the constraints in the system to find a set of conjunctive
queries without negated atoms that is equivalent to the original query
containing negated atoms. A system (Completo) was implemented with
the proposed method and compared to another system (Rebsir) that is
able to rewrite negated concepts. In the experimental evaluation Com-
pleto performed better than Rebsir for most of the datasets in the
benchmark and it portrayed a more scalable performance i.e. describing
a faster relative performance with respect to Rebsir’s performance with
the increase of the size of assertions in the dataset.

1 Introduction

The use of Description Logics (DLs) [1] and Existential Rules [4] has become
a powerful tool to answer conjunctive queries over incomplete data. The rules
we can express in those knowledge representation languages are used to infer
assertions that could yield answers to the query and that are not present in the
original data. Query rewriting [7,12] is a very popular reasoning approach that
takes an input query and a set of rules and outputs an equivalent expression
used to find the answers in the data without using the rules in the knowledge
base.

The majority of the existing rewriting algorithms focus on rewriting con-
junctive queries with non negated atoms. The use of negation in queries when
combined even with very simple languages like DL − LiteH

core can make the prob-
lem of query answering undecidable [11]. On the other hand, the use of guarded
negation in queries is proven to be decidable [5] over frontier-guarded existential
rules. Yet, the only rewriting based approach we found in the literature [8] only
focuses on answering negated concepts.

Our approach proposes the elimination of negated atoms in the query by
applying resolution of controlled length with respect to the constraints existing
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in the knowledge base. After this process of elimination we obtain a set of queries
containing answers of the initial query and classical rewriting algorithms can
then be applied. Furthermore, we prove that the method yields a set of queries
containing all the answers when the expressivity of the initial query is restricted.
Additionally, some experiments were conduced to compare our approach to the
existing one for rewriting negated concepts.

In this paper, the next section introduces some basic concepts related to First
Order Logic Resolution, Existential Rules and Queries with Negation. Next, a
rewriting approach to answer queries with negations is introduced. In Sect. 4, the
experimental results are presented and discussed. We end with some conclusions
derived from the results.

2 Preliminaries

We assume the reader is familiar with all the basic notions of first order logic
formulas and the semantics associated with them.

2.1 First Order Logic Resolution

Resolution is a sound and complete algorithm that comes from propositional
logic and it is extended to deal with first-order logic (FOL) formulas. The method
considers FOL formulas F in clausal form, represented by a set

F = {C0, . . . , Cn} . (1)

The formula F is semantically equivalent to the conjunction of the clauses in
the set (F ≡ C0 ∧ . . . ∧ Cn). A clause is defined as a set of literals generally
denoted with square brackets, semantically equivalent to the universal closure
of the disjunction of all the literals in the clause:

Ci = [l1, . . . , lk] Ci ≡ ∀(l1 ∨ . . . ∨ lk). (2)

When k = 0 we have the empty clause [] ≡ ⊥.
In case the original formula has existential variables the resolution algorithm

needs to be applied to the corresponding equisatisfiable formula with the existen-
tial variables replaced by Skolem terms. The complement of a literal l is defined
as the literal with the opposite polarity:

l =

{
a(x) for l = ¬a(x)

¬a(x) for l = a(x)

We say that a formula in clausal form is unsatisfiable if and only if the
resolution algorithm reports that it is unsatisfiable i.e. reaches a formula that
contains the empty clause [] ∈ F . For propositional logic, the algorithm can be
used as a decision procedure for unsatisfiability because it always terminates.
For FOL, resolution is still sound and complete, but the algorithm might not
terminate.
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A resolution rule can be applied to non-ground clauses (i.e. clauses containing
literals with occurrence of variables in their arguments) by including unification
as part of the resolution rule. A substitution is a set θ = {x1 ← t1, . . . , xn ← tn}
of variable xi and term ti pairs. The application of a substitution to a formula Fθ
is the result of replacing simultaneously the occurrences of xi by ti. Substitutions
θ and σ can be composed θσ yielding another substitution:

θσ = {x1 ← t1σ, . . . , xn ← tnσ} ∪ {x′
i ← t′i | x′

i ← t′i ∈ σ ∧ ¬∃t x′
i ← t ∈ θ}.

We say a substitution μ is more general than θ (μ � θ) if there is another
substitution σ such that θ = μσ. The relation � defines a partial order on
the set of substitutions. In a similar way when we can find a substitution such
that Fθ = G for two formulas, we can then say that F is more general than
G (F � G). Applying the composition of two substitutions to a formula is
equivalent to applying first one and then the other to the result: F (θσ) = (Fθ)σ.
A unifier for a set of atoms A = {A1, . . . , An} is a substitution θ such that
A1θ = . . . = Aiθ = . . . = Anθ. The most general unifier θ = mgu(A) is a unifier
that is more general than any other unifier for the same set of atoms.

Definition 1 (General Resolution Rule). Let C(1) and C(2) be two clauses
with no variables in common and let L1 ⊆ C(1) and L2 ⊆ C(2) be sets of comple-
mentary literals after applying the most general unifier σ = mgu(L1 ∪ L2). The
resolvent of C(1) and C(2) with respect to the literals in L1 and L2 is the clause:

Res(C(1), C(2)) = (C(1)σ\L1σ) ∪ (C(2)σ\L2σ).

C(1) and C(2) are said to be clashing clauses.

Since clauses are considered sets, all the set operations defined for them in
the General Resolution Rule assume that identical literals will be collapsed.
Sometimes this can be defined as an additional step called factoring. To ensure
that clauses do not share variables they are always standardized apart i.e. all the
variables are renamed before using them in the resolution rule.

Theorem 1 (Soundness). Any model satisfying two clashing clauses will also
satisfy their resolvent i.e. C(1), C(2) |= Res(C(1), C(2)).

The resolution algorithm for FOL is based on the general resolution rule and
it tries to reach the empty clause from an initial set of clauses that represent a
FOL formula.

Definition 2. A resolution derivation of a clause C from a set of clauses C
is a sequence of clauses C(0), . . . , C(n), where (i) C(n) = C and (ii) for every
i ∈ {0, . . . , n − 1} we have that C(i) ∈ C or it is the resolvent of two previous
clauses C(j) and C(k) on the derivation with j < i and k < i.

A resolution derivation can be seen as a tree rooted in C(n), with leaves being
the clauses belonging to C and the inner nodes are the resolvents of other two
clauses. In this case, the resolvent clause is connected to the other two clauses
used in the resolution step.
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Considering the Soundness Theorem, we can affirm that the clause C will
be a logical consequence of C i.e. C |= C. A resolution derivation of the empty
clause ⊥ from C is called a resolution refutation of C.

Theorem 2 (Completeness). If C is an unsatisfiable set of clauses then there
exists a resolution refutation of C.

A Linear resolution derivation is a sequence of clauses starting with a clause
C(0) from C and the rest of the clauses C(i) are obtained applying resolution
with the previous clause C(i−1) and a clause from C. Any resolution derivation
can be transformed to a linear resolution derivation.

Theorem 3. Let C(1) and C(2) be two clashing clauses with resolvent C ′ and
C(3) a clashing clause with C ′. Lets assume that C(3) only clashes with one of
the two other clauses and without loss of generality we can assume that clause
will be C(2). Then we have that

Res(Res(C(1), C(2)), C(3)) = Res(C(1), Res(C(2), C(3))). (3)

Proof. The proof of the theorem can be done by replacing the resolvents with the
equivalent set expression as defined in the general resolution rule. See Appendix
A1 for a detailed proof. �

2.2 Existential Rules

An existential rule r is defined as a logical implication B[x∪y] → H[x∪z], where
its body B[s] and the head H[s] are a conjunction of atoms a1(x1)∧. . .∧am(xm),
with s to denote the set of all the variables in the arguments of the atoms.
A positive (not negated) atom ai(xi) is a guard for a set of variables x iff x ⊆ x1.
A set of variables x is guarded in a formula F (we could also limit it to a sub-
formula) if there is a guard for x in F . The common variables x between B
and H are called frontier variables of the rule and those variables in the head
z which are not present in the body are called existential variables. Note that
z∩ (x∪y) = ∅. An existential rule is equivalent to the following first order logic
formula:

∀x∀y ∃z (b1(x1) ∧ . . . ∧ bm(xm) → h1(y1) ∧ . . . ∧ hk(yk)) .

A rule is guarded iff there is a guard in the body of the rule for the set of all its
variables. A frontier-guarded rule contains a guard in the body of the rule for
the variables in the frontier of the rule. A fact F , is defined as a set of atoms and
is equivalent to the existential closure of a conjunction of the atoms in the set:

F ≡ ∃x1 . . . ∃xn (a1(x1) ∧ . . . ∧ am(xm)) .

A database D is a grounded fact i.e. without existential variables.

1 http://image.ntua.gr/∼gardero/completo-rr2017/Appendixes.pdf.

http://image.ntua.gr/~gardero/completo-rr2017/Appendixes.pdf
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A conjunctive query q(x) = a1(x1), . . . ,an(xn) is a conjunction of the atoms
ai(xi) with x as free variables (called answer variables) and the remaining vari-
ables (y = (∪n

i x1)\x) are existentially quantified:

q(x) ≡ ∃y (a1(x1) ∧ . . . ∧ an(xn)).

A union of conjunctive queries (UCQ), denoted as a set {q1(x), . . . ,qn′(x)} of
conjunctive queries, represents a disjunction of conjunctive queries q1(x) ∨ . . .
∨ qn′(x).

Rules are often used to find the answers of conjunctive queries (or UCQ)
over incomplete databases D i.e. find the set ans(q(x),R,D) of tuples t such
that D,R |= q(t), where q(t) = q(x)θ and θ replaces all variables in x by
the corresponding component in the tuple t. The tuples contain only constants
from D. A boolean conjunctive query (BCQ) is a conjunctive query without free
variables q. When D,R |= q we say that the answer of q is the empty tuple
ans(q,R,D) = {()}. A CQ q(x) can be associated to a BCQ q = q(x) and we can
say that a tuple t is an answer to q(x) if there is substitution θ to the variables
in q is such that xθ = t and

D,R |= qθ. (4)

A way to reduce a CQ to a BCQ is by introducing a predicate (ans) that is
not present in the knowledge base and building a BCQ by adding an atom built
with that predicate and the answer variables (q = ans(x),a1(x1), . . . ,an(xn)).
Yet, we need to remember that the special predicate ans is only there as a place
holder so that the answer variables x get modified by the unifiers we apply to
the query but no reasoning step would modify the atom directly.

From now on, we focus on the problem of answering BCQs, since CQs can be
transformed to BCQs. Therefore, the term conjunctive query (union of conjunc-
tive queries) will actually refer to a boolean conjunctive query (union of boolean
conjunctive queries).

In a rule system used for query answering we can have also constraints
i.e. rules with a false head denoted by ⊥, a symbol always interpreted as the
empty set:

(R, C) = ({R1, . . . , Rn} ∪ {C1, . . . , Ck}),

where Ci = Bc
i [xi] → ⊥.

The only way the constraints are fulfilled is by allowing only interpretations
of D in which the body of the constraints is always evaluated to false. There-
fore, constraints are not normally used to answer queries. Instead, they are used
to check consistency of the rules system and the database before the process
of query answering [8]. Constraints can be associated to queries qc = Bc

i [xi]
to detect when they are violated. In case one of the constraints is violated
(∃i ans(Bc

i [xi],R,D) �= ∅), the answers of the original query will not make
much sense because every possible answer would be correct. For this reason,
they do not add extra complexity to the system of rules. Obviously, more opera-
tions need to be performed when we consider the constraints but not enough to
change the complexity class of the problem that does not consider them. Indeed,
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adding a constant number k of constraints to a system would only increase the
number of times we answer queries by k times and we know that O(k · f) is still
O(f) for a constant k.

According to the definition of existential rule, a system could have existential
rules with more than one atom in the head. Nevertheless, such a system can be
transformed in polynomial time to an equivalent one where the rules have only
one atom in the head e.g. [4]. Thus, from now on we focus on existential rules
with one atom in the head.

The rewriting approach [7,12] can be considered in order to find an equivalent
expression to the query with a much simpler expressivity i.e. a datalog program
or a union of conjunctive queries. For a given set of rules R, a set of UCQ-
rewritings of a conjunctive query (or UCQ) q is defined as a UCQ R∗

q such that
for all databases D:

∃i qi ∈ R∗
q such that D |= qi implies that R,D |= q. (5)

If the converse of (5) holds i.e.

R,D |= q implies that ∃i qi ∈ R∗
q such that D |= qi,

the set R∗
q is a complete UCQ-rewriting of q with respect to R. Each element of a

UCQ-rewriting set is called a rewriting of the original query with respect to R.
Rewriting algorithms allow us to reduce the problem of reasoning with respect

to a set of rules R and a database D, to the problem of query answering with
respect to D. A set of rules R is called a finite unification set (fus) if for any
query q(x) there exists a sound and complete UCQ-rewriting of q(x) with respect
to R. Finding if there exists a UCQ rewriting with respect to an arbitrary set
of rules R is undecidable [4] yet several classes of rules ensure the existence of
that property [3].

2.3 Queries with Negated Atoms

Lets study the problem of answering conjunctive queries with negated atoms
(CQ¬):

q = a1(x1), . . . ,an(xn),¬p1(y1), . . . ,¬pm(ym),

for a knowledge base composed by D and (R, C). If the system does not have
constraints (C = ∅), when we have an interpretation I of D,R adding pi(ti) to
I will eventually take us to another interpretation I ′ such that {pi(ti)} ∪ I ⊆ I′

and also I ′ |= D,R. Notice that pi(ti) together with some other facts in I,
might have consequences that need to be materialized in order to have a proper
interpretation I ′ of all the rules in R. If we do that for all the elements ti of the
domain we can clearly say that

I ′
� a1(x1), . . . ,an(xn),¬p1(y1), . . . ,¬pi(yi), . . . ,¬pm(ym),

because pi(yi) is true in I ′ for all possible tuples. Therefore, for all possible inter-
pretations I we cannot ensure that I |= D,R implies that I |= q. Consequently,
ans(q,R,D) = ∅ when the knowledge base has no constraints.
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When we have constraints, we can transform the decision problem
D, (R, C) |= q into checking the consistency of D, (R, C),¬q. Hence, we have
that:

D, (R, C) |= q iff D, (R, C),¬q is inconsistent. (6)

A conjunctive query with negated atoms is based on safe negation (CQ¬s) if all
the variables in negated atoms are also present in positive atoms of the query. The
Problem (6) is undecidable for CQ¬s even for a DL − LiteH

core knowledge base [11].
Conjunctive queries with guarded negated atoms (CQ¬g) have guards for the vari-
ables that appear in every negated atom. For a UCQ¬g with a set of frontier-
guarded rules the consistency of our system (6) is in the coNP complexity class [5].

The consistency check approach (6) is useful to study the decidability of the
problem yet finding answers for a query in this way is too inefficient. Basically,
one would need to solve problem (6) for all possible tuples that can be built
using the constants in D.

3 Rewriting Approach for Queries with Negation

To the best of our knowledge, all the rewriting algorithms defined up to now in
the field of existential rules consider only queries with positive atoms and queries
with negated atoms could also be rewritten.

3.1 Constraint Saturation

Example 1. Lets consider the following system and the corresponding clauses
C(i) corresponding to the rules, constraints, and the query:

R = {a(x) → r(x, y)} C(1) = [¬a(x), r(x, f(x))],

C = {b(x), r(x, y) → ⊥} C(2) = [¬b(x),¬r(x, y)],

and a query
q = s(x, y),¬a(x) C(3) = [¬s(x, y), a(x)].

With the initial clauses we can do the following resolution derivation:

C(1), C(2), C(3),

C(4) = [¬s(x, y), r(x, f(x))] res(C(1), C(3)),

C(5) = [¬s(x, y),¬b(x)] res(C(4), C(2)),

which basically means that the last clause is a consequence of the initial clauses
(Theorem (1)). i.e.

R, C |= ∃x∃y s(x, y), b(x) → ∃x∃y s(x, y),¬a(x),

for any D. In other words:

ans(q′, (R, C),D) ⊆ ans(q, (R, C),D),
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where q′ = s(x, y), b(x).
Therefore, we can say that q′ is a rewriting of our initial query. Yet, it cannot

be obtained applying a classical rewriting algorithm on the initial query because
it contains a negated atom. On the other hand, it is well known that resolution
for FOL is semi-decidable and arbitrary length resolution derivations should be
avoided. However, if we rewrite the constraint of our example we get that:

b(x), r(x, y) → ⊥
b(x), a(x) → ⊥ C(6) = [¬b(x),¬a(x)].

Now we can apply one step resolution between the clause corresponding to q
(C(3)) and C(6) and we obtain again the clause corresponding to q′. Note that
at this point if we have more rules in our system, the query q′ could be rewritten
using a classical algorithm and all the rewritings of q′ will also be rewritings of q.

Generalizing the process described in the previous example, we could define
the constraint saturation as the process of eliminating negative atoms from the
queries by using constraints to make resolution derivations of controlled length.
We can achieve that by only allowing resolution steps using clauses corresponding
to constraints.

Definition 3. For a CQ¬ q and a set of constraints C, the constraint sat-
uration Cq is the most general set of conjunctive queries {. . . , qi, . . .} with
no negative atoms that can be obtained from a linear resolution derivation
C(0), C(1), . . . , C(k), where (i) C(0) is the clause corresponding to ¬q, (ii) C(k)

is the clause corresponding to ¬qi and (iii) The set of clauses used are the ones
corresponding to the constraints C1, . . . , C|C| in C together with C(0).

Lemma 1. The answers of the elements qi of the constraint saturation of a
query Cq are also answers of the original query q i.e. ∀i ans(qi, (R, C),D)
⊆ ans(q, (R, C),D).

Clearly since the elements qi were built using a linear resolution derivation start-
ing with a clause corresponding to ¬q and using as side clauses the clauses cor-
responding to the constraints C of our system, we can affirm that C |= qi → q.
Therefore, whenever we have that () ∈ ans(qi, (R, C),D) then we it will also be
the case that () ∈ ans(q, (R, C),D).

When the rules of our system form a fus, we can ensure that the constraint
saturation of a query Cq covers all the answers of q if C contains all the possible
rewritings of the queries associated to the constraints in it i.e. if R,D |= C iff D |=
C holds for all D.

In Example 1, the shape of the initial query is also important. To ensure the
termination of the resolution involving the set of clauses corresponding to the
rewritten constraints and the query we need to avoid cases in which the query
clause clashes with itself and produces a resolvent that could contain different
answers.
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Example 2. Lets consider the query

q = B(x), s(x, y),¬B(y) C(0) = [¬B(x),¬s(x, y), B(y)],

and the constraint:

C = {B(x),W (x) → ⊥} C(1) = [¬B(x),¬W (x)].

Here since C(0) clashes with itself one can end up in a resolution derivation of
unbounded length when trying to remove the negative atoms in q. Particularly,
every query of the form qn = B(x), s(x, x1), . . . , s(x, xn),W (xn) is a rewriting
of the initial query.

A CQ¬ is disconnected if the corresponding clause to C = ¬q does not clash
with itself or if the query q′ corresponding to the resolvent ¬Res(C,C) is less
general i.e. q � q′. Disconnected queries will prevent generating new answers
based on applying resolution involving the clause corresponding to ¬q and itself.

Even if at the beginning our query is disconnected a rewriting of it could end
up resolving with itself and such cases should also be avoided. In general, we
say a CQ¬ q is strongly disconnected with respect to a knowledge base (R, C) if
it is disconnected and all the queries corresponding to a clause resulting from a
resolution derivation of ¬q using clauses of (R, C) are also disconnected.

Clearly, the resolution derivations in Definition 3 have a bounded length for
strongly disconnected queries.

Lemma 2. In Definition 3 the length of the resolution derivation is bounded by
m for a strongly disconnected query with m negative atoms.

Indeed, every resolution step is performing resolution using a clause correspond-
ing to a constraint, with all the atoms negated on it. Therefore, each of those
steps removes one or more positive atoms on the clause corresponding to the
negated query, but those positive atoms in C(0) correspond to the negated atoms
in q and there are only m of them. Moreover, since the query is strongly discon-
nected possible steps applying resolution of the query with itself are discarded.

Theorem 4. For a knowledge base (R, C) and a strongly disconnected query q
with respect to the knowledge base, if C contains all the possible rewritings of the
queries corresponding to the constraints in it then the constraints saturation Cq

contains all the answers of q:

ans(q, (R, C),D) = ans(Cq, (R, C),D) for all D.

Proof. Lemma 1 ensures ans(Cq, (R, C),D) ⊆ ans(q, (R, C),D). Then, we need
to focus on proving ans(q, (R, C),D) ⊆ ans(Cq, (R, C),D).

The proof is based on showing that a resolution derivation starting in ¬q and
ending in the empty clause can be rearranged using Theorem 3 so that the first
resolution steps are applied using constraints from C. After those steps we can
affirm that the clause will correspond to a query in the constraint saturation of q,
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so there will also be a resolution derivation starting from a clause corresponding
to a query in Cq and ending in the empty clause i.e. () ∈ ans(q, (R, C),D) →
() ∈ ans(Cq, (R, C),D).

For a more detailed proof see Appendix B2. �
Theorem (4) allow us to find a set of CQ that will contain all the answers of the
original query q and then we can apply rewriting algorithms to them in order to
find a complete UCQ rewriting of q with respect to R.

To check whether a query is strongly disconnected or not would involve per-
forming resolution therefore it is not an easy condition to check before starting
the rewriting of the query. Furthermore, if we use a rewriting algorithm as a
black box it will be impossible to check while rewriting the query. Yet, if we
implement the rewriting algorithm using the method proposed in [9] we could
focus on checking if the atoms introduced in every rewriting step could at some
point clash with some of the negated atoms that the query had originally. At
the end of the process, if we find out that the query is strongly disconnected, we
will know for sure that the resulting UCQ is equivalent to the initial query.

Depending on the rules we have, there are maybe some atoms that when
negated are not strongly disconnected (Example 3) and so any other query con-
taining them in negated form will neither be.

Example 3. Lets consider the simple query

q = ¬P (x) C(0) = [P (x)],

and the knowledge base:

P (x), B(x) → P ′(x) C(1) = [¬P (x),¬B(x), P ′(x)],

P ′(x), s(x, y) → B(y) C(2) = [¬P ′(x),¬s(x, y), B(y)],

C = {B(x),W (x) → ⊥} C(3) = [¬B(x),¬W (x)].

After computing res(res(C(0), C(1)), C(2)) we will reach again the clause equiv-
alent to the query in Example 2:

q′ = B(x),¬P ′(x) C(4) = res(C(0), C(1)) = [¬B(x), P ′(x)],

q′′ = B(x), s(x, y),¬B(y) res(C(4), C(2)) = [¬B(x),¬s(x, y), B(y)],

and we end up again in a resolution derivation of unbounded length when trying
to remove the negative atoms. Therefore, no query that contains ¬P (x) will be
strongly disconnected with respect to this knowledge base.

A negated atom ¬p(x) is self disconnected with respect to R if the query
q = ¬p(x) is strongly disconnected w.r.t. R. Notice that the only resolution
steps that would probably produce non disconnected queries are those that make
resolution with a clause corresponding to a rule and the head of the rule unifies
2 http://image.ntua.gr/∼gardero/completo-rr2017/Appendixes.pdf.

http://image.ntua.gr/~gardero/completo-rr2017/Appendixes.pdf
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with another atom belonging to the body of another rule (or the same one) used
previously in the resolution derivation. In case our rules contain only one atom
in the body (known as Atomic-hypothesis or linear rules [3]), resolution steps
with rules will not introduce other body atoms.

Property 1. Negated atoms are self disconnected with respect to an Atomic-
hypothesis set of rules.

Proof. Indeed, the initial clause corresponding to q = ¬p(x) cannot yield another
clause with more than one atom by applying resolution with clauses correspond-
ing to rules. �

3.2 Algorithm for Rewriting Conjunctive Queries with Negation

For the design of the algorithm to rewrite negative conjunctive queries we use
the help of another algorithm that rewrites conjunctive queries into UCQs. We
can refer to it as rewrite-ext : R × CQ → UCQ and it can be any of the state
of the art rewriters (Rapid[13], Sysname[9], Graal [2]) compatible with the
theory we support for finding the constraints saturation of a conjunctive query
with negation.

To illustrate better the general idea of the algorithms presented, we treat
data structures in the most simple way. We assume the +/2 operator is the
set union when overloaded for sets, likewise the −/2 operator refers to the set
difference. The method pop when applied to a set, returns one of its elements
and also removes it from the set. The function cover/1 computes the set of most
general conjunctive queries given a set of conjunctive queries.

Preprocessing. For a fixed Knowledge base (R, C) we initially perform the
computation of the rewritings of each one of the initial constraints (Fig. 1). Then,
as long as the rules or constraints do not change, the same computed rewritings
of the constraints can be used to perform the constraint saturation for different
queries.

Fig. 1. Function to rewrite the initial set of constraints
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Fig. 2. Main algorithm to rewrite queries with negated atoms

The Algorithm. Figure 2 shows the main algorithm for rewriting queries with
negated atoms. It computes the rewriting of the constraints (if it is not already
computed for that knowledge base). The function Csaturation (Fig. 3) takes
the clause corresponding to ¬q and performs linear resolution with respect to
the clauses corresponding to the constraints in C to obtain the constraint sat-
uration Cq. The derivations on each step remove at least one of the negated
atoms in q by performing a resolution step (resolve/3) with a derivation of
the original query q′′ and a constraint c from C. For each constraint, we check
all possible clashing sets with the queries in order to explore all possible linear
derivations starting in ¬q and ending in a clause representing a query without
negative atoms. The initial query is transformed to a clause (queryToClause/1)
by creating a set with the complement of each of the atoms in the query. In the
resolution derivation, when the clause generated has no positive atoms we can
affirm that it represents a query with only positive atoms therefore we convert
it back to a query (clauseToQuery/1), by taking the complement of the atoms
in the clause.

With each of the queries in the UCQ resulting from the main algorithm we
can perform query answering, by trying to unify the atoms of the query with
atoms in the database D. In case the original query had some answer variables
the atom ans(x) would be part of each of the queries in the rewriting, but it will
not unify with atoms in D. As a result of the unification of the atoms in the query
and the atoms in D (if possible and in all possible ways), the variables in the ans
predicate will be replaced by constants and we will end up with tuples t that
will be part of the answers of our query. For each query, finding an answer tuple
is an NP-Complete process, yet there are potentially an exponential number of
tuples that can be answers of the query.

In the process of constraints saturation, we have to avoid the queries that
remove answer variables from the atoms of the query in the process of resolution
to avoid ending up in domain dependent queries with answer variables that do
not belong to the atoms of the query. Yet we only need to pay attention to it
when we try to answer queries without safe negation.
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Fig. 3. Function to compute the constraints saturation of a query

4 Experiments

Negated concepts are strongly disconnected queries with respect to a DL − Lite
ontology because DL − Lite axioms are a set of linear of rules (Property 1). There-
fore, the constraint saturation for negated concepts will contain all the possible
answers. In this paper, we focus on comparing the performance of the proposed
approach with another approach by Jianfeng Du and Jeff Z. Pan that is able to
rewrite negated concepts [8].

Our system Completo was implemented using Rapid as an external
rewriter and a connection to a MySQL database for efficient instance retrieval.
A TBox is used to obtain a rewriting of the initial constraints in the sys-
tem. Then, the assertions that could be encoded initially in OWL format are
translated to a MySQL database. Finally, the rewriting and instance retrieval
processes can be carried out by using the constraints rewriting, the database of
assertions and the queries that need to be rewritten and answered. Appendix C3

shows a description of the system and how it can be installed and used.
The experiments were carried out on an Intel R© Coretm i7-3612QM CPU @

2.10 GHz x 8, with 8 Gb of RAM memory and a SSD running Ubuntu 17.04
64-bit. The benchmark used consists of two groups of ontologies used in [8]. One
of the groups was from the Lehigh University Benchmark (LUBM) [10] and the
other from DBPedia (version 2014) [6]. Some axioms were removed from the
original versions of the ontologies in order to make them compatible with the
Rapid system. Also constraints stating that sibling atomic concepts are disjoint

3 http://image.ntua.gr/∼gardero/completo-rr2017/Appendixes.pdf.

http://image.ntua.gr/~gardero/completo-rr2017/Appendixes.pdf


164 E.M. Alfonso and G. Stamou

were added to the LUMB ontologies. The group of LUMB ontologies consists of
the same set of axioms and different number of assertions associated to different
number of universities (1, 5, 10, 50 and 100) given as a parameter to the LUMB
generator [10]. The second group of DBPedia ontologies, was built with basic
assertions about atomic concepts and abstract roles from DBPedia-as-Tables4

to construct the ABox. Each version of the ontology uses the same axioms and
a percentage of the assertions (1, 5, 10, 50 and 100%). The queries to rewrite
and to answer using the assertions were built by negating each of the concepts
present in the TBox. For the LUBM ontologies they were 43 concepts and for
the DBPedia ontologies 783.

Figure 4 shows the comparison of the average runtime taken to answer each
query of the dataset. The performance of Completo is better than the per-
formance of Rebsir for the LUBM group of ontologies. On the other hand,
for the DBPedia datasets Completo on average takes longer than Rebsir to
answer a query for small ontologies. Yet, when the ontologies grow in size the
performance of Completo gets closer to the performance of Rebsir eventually
becoming better than it.
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Fig. 4. Comparison of the average runtime per query for the benchmarks

The relative runtime can be seen in Fig. 5 where the coordinates of the dots
plotted represent the average times taken by each system in each of the datasets.
Both axes of the graph are in logarithmic scale and points over the y = x
line represent datasets where the Completo system takes on average less time
than Rebsir to answer a query. We can clearly see that for the LUBM group
Completo is always faster and it takes on average 59% of the time taken by
Rebsir to answer a query. For the DBPedia group of ontologies, Completo on
average takes 238% of the time that Rebsir takes to answer a query. Yet, for
both cases we can see that the Completo system is more scalable i.e. with the
increase of the size of the ABox the Completo system improves the relative
runtime difference.
4 http://web.informatik.uni-mannheim.de/DBpediaAsTables/.

http://web.informatik.uni-mannheim.de/DBpediaAsTables/
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Fig. 6. Comparison of the maximum RSS used to answer all the queries of the bench-
mark

Figure 6 shows a comparison of the maximum resident set size (RSS) of
the systems during the process of answering all the queries of the benchmark.
Rebsir uses in all the cases less memory than Completo. Considering the
relative memory difference for each case, on average, Rebsir uses 54% of the
memory used by Completo.

5 Conclusions

In this paper, we proposed a method to rewrite conjunctive queries with negated
atoms. The constraints in the knowledge base are rewritten using the rules in
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order to express the inconsistencies without the need of the rules. The expanded
set of constraints is used to build a constraint saturation of the initial query by
eliminating the negated atoms using resolution. Finally, conventional rewriting
algorithms are used in the resulting union of conjunctive queries.

The method was implemented in the system Completo. The Rapid system
was used as an external rewriter and a connection to a MySQL database allowed
efficient instance retrieval for the obtained rewriting.

Completo was compared to Rebsir for rewriting negated concepts. The
experimental results showed that Completo is generally faster than Rebsir,
specially when the number of assertions in the knowledge base grows. The rela-
tive performance of Completo with respect to Rebsir is always improved when
the number of assertions grows. On the other hand, Rebsir used less memory
resources.

Finally, despite the satisfactory performance of Completo we believe that
the principal result in this investigation is the definition of query answering for
queries with negated atoms based on the classical rewriting algorithms.

As future directions we will perform an experimental evaluation of the system
with other strongly disconnected queries. We are also interested in being able to
rewrite more expressive queries.
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Abstract. Reasoning with complex ontologies can be a resource-
intensive task, which can be an obstacle, e.g., for real-time applications.
Hence, weakening the constraints of soundness and/or completeness is
often an approach to practical solutions. In this paper, we propose an
extension of incomplete reasoning methods for checking the consistency
of a large number of ABoxes against a given TBox. In particular, we use
and extend the clash queries proposed by Lembo et al. [9] for DL-Lite to
compute inconsistent patterns of ABox assertions. By caching instanti-
ations of these patterns, we are able to reduce the amount of reasoning
required to determine the inconsistency of an ABox with every previously
processed ABox. We present experimental results of our approach in terms
of runtime and accuracy and compare it against complete reasoning tech-
niques, the reasoning approach for DL-LiteA, and an approximate rea-
soning approach based on machine learning proposed in [15].

1 Introduction

Ontologies, and the reasoning with ontologies, are well established techniques for
capturing and processing knowledge. In the past decades, a large body of research
has been conducted on optimizing reasoning systems for ontology languages of
different expressiveness. So far, the major part of research on ontology reasoning
focuses on developing reasoning systems that are both sound and complete.
However, as already argued in [15], reasoning results that are 100% accurate are
not required in many use cases for which ontology reasoning has been proposed
and/or applied in the past, e.g., information retrieval, recommender systems, or
activity recognition. On the other hand, many of those use cases have very strict
performance requirements, as they are usually applied in real time settings.

These considerations led to the development of reasoning systems that
weaken the constraint of soundness or completeness for the sake of better per-
formance. In this paper, we propose an approach for checking the consistency of
many ABoxes against the same TBox, a task to which many real world reason-
ing tasks can be reduced. Our approach is sound but not complete for detecting
c© Springer International Publishing AG 2017
S. Costantini et al. (Eds.): RuleML+RR 2017, LNCS 10364, pp. 168–183, 2017.
DOI: 10.1007/978-3-319-61252-2 12



Fast ABox Consistency Checking Using Incomplete Reasoning and Caching 169

inconsistencies in OWL 2 ontologies. It builds upon DL-LiteA clash queries [10]
and extends them in order to detect inconsistencies beyond the scope of DL-
LiteA. Furthermore, we propose a caching method to avoid costly calls to a
reasoner, which becomes more effective with every processed ABox.

We conduct comprehensive experiments on two real life datasets and com-
pare our method against three different types of reasoning approaches: First, we
apply complete reasoning techniques using HermiT [6]. Second, we apply the rea-
soning approach for inconsistency detection in DL-LiteA as proposed by Lembo
et al. [9]. Third, we have reimplemented the approximate reasoning approach
based on machine learning, proposed by Paulheim and Stuckenschmidt [15]. The
results indicate that our approach is highly efficient and capable of detecting sig-
nificantly more inconsistencies than other incomplete methods. We analyze the
results of our experiments and explain under which conditions a method that is
based on caching (parts of) explanations is a better choice than a method that
is based on learning from previously seen examples and vice versa.

The rest of this paper is structured as follows. Section 2 introduces some basic
concepts, the preliminaries on checking consistency in DL-LiteA, and the basic
idea of using machine learning techniques as proposed in [15] to solve the given
problem. Section 3 introduces our approach, which is based on the extension
of the techniques proposed for DL-LiteA combined with a caching technique.
Section 4 discusses experimental results both w.r.t. result quality and runtime
performance. We conclude with a summary and an outlook on future work.

2 Preliminaries and Related Work

Within this section we first recall the notion of inconsistency and explanation.
We also argue why explanations are useful for our problem (Sect. 2.1). Then we
introduce the description logics DL-LiteA (Sect. 2.2) before we finally explain
how inconsistencies can be detected in DL-LiteA (Sect. 2.3). Later on we use
the DL-LiteA query expansion techniques as a baseline in our experiments and
extend this approach to detect inconsistencies within ontologies that are beyond
DL-LiteA. In Sect. 2.4 we present and discuss the idea of using machine learning
for detecting inconsistencies.

2.1 Inconsistencies and Explanations

In the following we use T to refer to a TBox that defines the vocabulary used
in a set of ABoxes A1 to An. In description logics, an interpretation I that
satisfies all axioms in T and all assertions in A is called a model of T ∪ A.
If such a model exists, T ∪ A is called consistent. Otherwise, T ∪ A is called
inconsistent [1,3]. The inconsistency of an ontology is usually a sign for an error,
i.e., a sign for a faulty axiom or assertions. In our setting we assume that the
TBox T is not causing the problem, but helps to reveal a mistake in (at least)
one of the assertions in an ABox.
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According to Kalyanpur et al. [7], an explanation (or justification) for an
assertion or an axiom φ is a subset O′ of O = T ∪ A such that O′ |= φ while
O′′ �|= φ for all O′′ ⊂ O′. An explanation can be understood as a minimal
reason that explains why φ follows from O. Analogously, given an inconsistent
ontology O, we are interested in explanations for the inconsistency, i.e., minimal
subsets O′ of O such that there exists no model for O′. More precisely, a minimal
inconsistent subset O′ (also referred to as MIS) is a subset of O such that O′

is inconsistent while O′′ is consistent for all O′′ ⊂ O′. An example for a MIS is
shown as Example 1.

Example 1. This example shows a simplified inconsistency explanation for one of
the ABoxes from the experiments with DBpedia and DOLCE. The inconsistency
is related to the fact that clintonMorrison11 is implicitly typed as a Person, but
at the same time as a time span in the life of a person via the concept Situation.

team(clintonMorrison11 , irelandFootballTeam) (1)
PhysicalObject � ¬SocialObject (2)
PhysicalAgent � PhysicalObject (3)
Person � PhysicalAgent (4)
Situation(clintonMorrison11 ) (5)
∃team � Athlete (6)
Athlete � Person (7)
Situation � SocialObject (8)

The example shows that the explanations for an inconsistency are not trivial
and that mistakes in the ABox can only be detected via chains of relevant axioms.
With respect to our setting, we are only interested in the ABox elements, since
we trust in the correctness of the TBox axioms. For that reason, the relevant
assertions are (1) and (5). It is important to understand that we can replace
the concrete instances in (1) and (5) by any other pair of instances. This means
that any instantiation of team(x , y) ∧ Situation(x ) will be inconsistent. The
computation and caching of the relevant information that corresponds to such a
partial explanation will be an important element of our approach. In particular,
we focus only on a specific type of partial explanations, which correspond to the
clash types in DL-LiteA.

2.2 DL-LiteA

DL-Lite is a family of lightweight description logics proposed by Calvanese et al.
[2] with the aim to find a trade-off between expressiveness and reasoning com-
plexity. This resulted in a family of languages where terminological reasoning
can be done in PTIME in the size of the TBox and query answering in AC0

in the size of the ABox. In DL-LiteA, which is a concrete member of the DL-
Lite family, concept, role, value-domain, and attribute expressions are formed
according to the following syntax:



Fast ABox Consistency Checking Using Incomplete Reasoning and Caching 171

B ::= ⊥C | A | ∃Q | δ(U) E ::= ρ(U)
C ::= 	C | B | ¬B | ∃Q.C F ::= 	D | T1 | . . . | Tn

Q ::= P | P− V ::= U | ¬U

R ::= Q | ¬Q

where 	C denotes the top or universal concept, ⊥C the bottom or empty concept,
A an atomic concept, B a basic concept and C a general concept. Similar to that,
we have atomic roles denoted by P, basic roles by Q and general roles by R.
Atomic attributes are represented by U and general attributes by V whereas E
denotes a basic value-domain and F a value-domain expression. Furthermore,
∃Q (unqualified existential restrictions) represent objects that are related by role
Q to some objects, ∃Q.C (qualified existential restrictions) denote objects that
are related by Q to objects denoted by concept C, ¬ denotes the negation of
concepts, roles or attributes and P is used to represent the inverse of role P.
Concerning an attribute U its domain is denoted by δ(U ) and its range (set of
values) by ρ(U ). Value domains are represented by T 1 | . . . | Tn, where each
T i denotes a pairwise disjoint data type of values and 	D the universal value-
domain [2,16]. In DL-LiteA a knowledge base K = 〈T ,A〉 consists of a TBox T
also known as schema, and an ABox A, the extensional knowledge part which
represents a data source.

The defined expressions can be used in TBox axioms in the following way.
Axioms of the form B � C denote concept inclusions, Q � R role inclusions,
E � F value-domain inclusions and U � V attribute inclusions. Functionality
assertions on roles and attributes in T are denoted by funct Q and funct U.
TBox axioms of the form B1 � B2 and Q1 � Q2 are called positive inclusions
(PI ) whereas B1 � ¬B2 and Q1 � ¬Q2 negative inclusions (NI ). For ABox
assertions a and b represent object constants and v represents a value constant.
We refer the reader to [2,16] for a discussion of the semantics of DL-LiteA, which
we omit here due to the lack of space.

An example of an axiom that is not within the scope of DL-Lite is an axiom
of the form ∃partOf .Event � Event . If such an axiom is part of a MIS, the
approach based on clash query expansion, which is shortly presented in the
following section, will not be able to detect the respective inconsistency.

2.3 Inconsistency Detection in DL-LiteA

Lembo et al. [9] identified a collection of six different patterns that cause clashes
in DL-LiteA knowledge bases listed as follows. This collection is complete for DL-
LiteA. This means that any inconsistency in O = T ∪ A, as long as the axioms
and assertions are within the DL-LiteA profile, can be detected by checking
the following patterns. With respect to the following listing let a, b and c be
individuals, let A and A′ be named concepts, P and P ′ be roles, and let U be
an attribute in accordance with the naming conventions of the previous section.
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(1) Instantiation of an unsatisfiable named concept, role, attribute
(a) T |= A � ¬A and A(a) ∈ A
(b) T |= P � ¬P and P (a, b) ∈ A
(c) T |= U � ¬U and U(a, v) ∈ A

(2) Assertions contradicting axioms that prohibit self-interrelations
(a) T |= P � ¬P− and P (a, a) ∈ A

(3) Incorrect data types
(a) T |= ρ(U) � T and U(a, v) ∈ A and vI /∈ T I

(4) Assertions contradicting negative inclusions
(a) T |= A � ¬A′ and A(a), A′(a) ∈ A
(b) T |= A � ¬∃P and A(a), P (a, b) ∈ A
(c) T |= A � ¬∃U and A(a), U(a, v) ∈ A
(d) T |= A � ¬∃P− and A(b), P (a, b) ∈ A
(e) T |= P � ¬P ′ and P (a, b), P ′(a, b) ∈ A
(f) T |= ∃P � ¬∃P ′ and P (a, b), P ′(a, c) ∈ A
(g) T |= ∃P � ¬∃P ′− and P (a, b), P ′(c, a) ∈ A
(h) T |= ∃P− � ¬∃P ′− and P (a, b), P ′(c, b) ∈ A

(5) Assertions contradicting role functionality
(a) (funct P ) ∈ T and P (a, b), P (a, c) ∈ A and b �= c
(b) (funct P−) ∈ T and P (a, c), P (b, c) ∈ A and a �= b

(6) ABox assertions contradicting attribute functionality
(a) (funct U) ∈ T and U(a, v1), P (a, v2) ∈ A and v1 �= v2

In the context of DL-LiteA it is sufficient to implement the |= operator in
terms of the DL-LiteA expansion rules. All clashes related to clash type (4)(a)
can, for example, be detected by applying the DL-LiteA expansion rules recur-
sively on each directly stated disjointness axiom B � ¬C. As a result, all rel-
evant clashes of the type T |= A � ¬A′ are collected and the ABox can be
checked against these inconsistency patterns. If we apply the approach on the
axiom PhysicalObject � ¬SocialObject given a TBox that contains amongst
others all of the axioms listed in Example 1, the expansion rules will entail
Situation � ¬∃team. This means that every ABox is inconsistent that instanti-
ates team(x , y) ∧ Situation(x ).

2.4 Learning vs Computing Explanations

It has been a trend over the last years to train statistical models on large knowl-
edge graphs in order to predict new facts about the world. An overview is given
in [12]. These works are mainly concerned with the prediction of a fact that
cannot be entailed by deductive reasoning. Opposed to that, in [15] the authors
propose to mimic a reasoner for checking consistency by training a machine learn-
ing model. To this end, the authors propose to translate an ABox to a binary
feature representation. On top of this representation a TBox specific classifier is
learned that is able to distinguish between consistent and inconsistent ABoxes.
The approach requires the usage of a reasoner to annotate the training exam-
ples, which are ABoxes translated to the feature representation, as consistent
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or inconsistent. Once the classifier has been trained, it mimics the behavior of
the reasoner. Results presented in [15] have shown that the approach is highly
efficient once the training phase has been finished.

A crucial aspect of the method is the chosen feature representation. In [15]
the authors propose the use of path kernels introduced in [11] for generating the
features. Without recalling the details, we point out that the generated features
for Example 1 contain a feature for team(x , y), a feature for Situation(z ), and
another feature for the conjunction team(x , y) ∧ Situation(x ). This means that
the classifier can also learn that each instantiation of team(x , y) ∧ Situation(x )
is inconsistent. In order to successfully learn that this pattern causes inconsis-
tency, the training examples have to cover at least one inconsistent ABox A∗ that
makes use of this pattern. Moreover, there need to be some consistent training
examples that use team(x , y) only and some that use Situation(x ) only without
the conjunction to avoid over-fitting. For the same purpose, the training exam-
ples must also cover consistent ABoxes that make use of the other concepts and
roles in A∗ that are not causing the inconsistency.

Contrary to an approach based on machine learning, we compute a partial
explanation for the inconsistency of A∗. By projecting the explanatory entail-
ment to its corresponding assertional pattern, we are able to directly achieve the
goal of the learning process without the need for annotating a sufficient number
of samples with a standard reasoner. However, the computation of an explana-
tion is known to be rather costly and several approaches have been proposed
for this purpose [5,7]. We base our work on the DL-Lite clash patterns. We
will argue in the following section that we can use the DL-Lite techniques or
a standard reasoner to check for A∗ if a certain pattern, which might be part
of a complex explanation, results in an inconsistency. By storing inconsistent
patterns we can directly decide that each ABox that instantiates this pattern is
inconsistent.

3 Our Approach

We describe two approaches for checking a sequence of ABoxes A1, . . . ,An

against a given TBox T . The first approach (Sect. 3.1) is a straightforward appli-
cation of the inconsistency reasoning techniques of DL-LiteA that are based on
the clash types of Lembo et al. [9]. Our approach (Sect. 3.2) extends and mod-
ifies this approach by using a reasoner that is fully compliant with the OWL 2
semantics.

3.1 Precompiling DL-LiteA Clash Types

At the end of Sect. 2.3 we explained how the expansion rules of DL-LiteA can
be used to compute all combinations of concepts, roles and attributes resulting
in inconsistencies in an DL-LiteA ontology. Given a TBox T we apply this pro-
cedure for all clash types storing the results in an efficient index structure. We
have to distinguish between clash types that are related to the use of



174 C. Meilicke et al.

(a) a single concept, role, or attribute (Type 1 and 2),
(b) two concepts, two roles, concept and role, or concept and attribute (Type

4),
(c) an attribute and a value from a datatype (Type 3),
(d) a role or an attribute and the inequality of two instances or values (Type 5

and 6).

For each of these four cases we use a dedicated hash structure (referred to as
H

⊥
a to H

⊥
d ), which allows to check if, e.g., the relevant combination of signature

elements (concepts, roles, attributes), is contained. We sometimes refer to these
data structures in an more general way by omitting the subscript. Once H

⊥
a

to H
⊥
d have been computed, checking an ABox for consistency breaks down to

checking for each single assertion or each pair of assertions if the used signature
elements are stored in the respective data structures. We refer to this approach
as CQ in the following. This approach has proven itself in practice and was
successfully applied in Nolle et al. [13].

3.2 On Demand Reasoning

Our approach, which is a modified extension of CQ, omits the up-front com-
putation of clash queries. Instead, we invoke a reasoner on the fly if we cannot
decide the consistency based on clash queries already observed. We refer to that
approach as CQ+. CQ+ differs from CQ in three aspects.

First, instead of using the expansion rules, we use a standard OWL 2 rea-
soner to compute the signature combinations that correspond to instantiations
of the clash types. This does not guarantee completeness. There are still pos-
sible signature combinations resulting in inconsistencies that are not captured
by one of the clash types, e.g., inconsistent combinations of more than two type
assertions like A(a), B(a), C(a) with A  B � D and D � ¬C. Nevertheless,
we will be able to detect inconsistencies that cannot be detected by expanding
the stated axioms via the DL-LiteA expansion rules, because sometimes relevant
entailments are based on axioms that are beyond the DL-LiteA expressivity.

Second, we do not compute inconsistent combinations of signature elements
in advance, but on the fly during checking combinations of ABox assertions
from the given set of ABoxes. We store every detected clash type instantiation
in one of the H

⊥ caches. Note that these caches are empty when we apply the
approach to check the consistency of the first ABox. This differs from the CQ
approach, where we compute all inconsistent signature combinations in advance.
To minimize the calls to the reasoner, we check prior to any reasoning if the
currently used combination of signature elements is already stored in one of the
H

⊥ caches (or in one of the H
� caches, which will be explained in the following

paragraph). This will obviously be more effective the more ABoxes are already
processed.

Third, we do not only store inconsistent signature combinations, but also
consistent combinations. Without this extension we cannot leverage the knowl-
edge about the inconsistencies we detected so far. In the CQ approach we first
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computed the assertional patterns resulting in inconsistencies, then we started
processing the ABoxes checking each assertion or combination of assertions
against the pattern stored in H

⊥. If this check is negative, we conclude that
the checked combination is consistent. We cannot apply this procedure in the
current approach, because H

⊥ will be empty at the beginning and highly incom-
plete in the initial phase until a significant number of inconsistencies has been
observed. For that reason we have to store inconsistent combinations in H

⊥ and
consistent combinations in H

�. For each combination of axioms within an ABox
that can found in one of these caches, we decide upon the consistency of this
ABox fragment without calling a reasoner.

The algorithm for checking the consistency of an ABox A against a TBox T
is shown in Algorithm 1. This algorithm is called for each of the ABoxes that
need to be checked. The different variants of H

⊥ and H
� are referenced via

global variables pointing to data structures for which the operations of adding
and containment checking run in constant time. We have depicted the algorithm
only for Case (4)(b). In our actual implementation, we extended the algorithm
by a comprehensive set of case distinctions covering the remaining clash types
using all four caches.

Algorithm 1. checkConsistency(A, T )

1: for all a ∈ instances(A) do
2: for all φ(a) ∈ class-assertions(A) do
3: for all ψ(a, b) ∈ role-assertions(A) do
4: if 〈φ, ∃ψ〉 ∈ H

⊥
b then

5: return false
6: end if
7: if 〈φ, ∃ψ〉 ∈ H

�
b then

8: continue // ... with next loop cycle
9: end if

10: if T |= φ � ¬∃ψ then

11: 〈φ, ∃ψ〉 add−→ H
⊥
b

12: return false
13: else
14: 〈φ, ∃ψ〉 add−→ H

�
b

15: end if
16: end for
17: end for
18: end for
19: return true

For the CQ+ approach, every processed ABox increases the probability that
a certain combination of signature elements has already been observed to be
consistent or inconsistent, which means that no reasoning activities are required
for that combination. In terms of Algorithm 1, this means that line 10 to 15
will be executed less often the more often the procedure is called. However,
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this depends both on the size of the TBox and on the distribution of factually
used combinations of signature elements, which will be discussed in the following
section.

4 Experiments

In Sect. 4.1 we first describe the datasets used in our experiments and give an
overview on the reasoning methods that we evaluate. We present and discuss the
most important results of our experiments in Sect. 4.2.

4.1 Setting

We use two datasets in our experiments1. These datasets have also been used
in [15] to demonstrate how machine learning can be applied efficiently to mimic
a reasoner. We rebuild larger versions of these datasets according to the descrip-
tions in [15]. The first dataset, that we refer to as the DBpedia+ dataset, uses
the DBpedia TBox that consists of all mapping-based roles and types in DBpe-
dia [8]. This TBox is extended with the top-level ontology DOLCE-Zero [4].
The reason for this extension is related to the fact that DBpedia contains only
few disjointness axioms, while DOLCE-Zero introduces disjointness on the top
level [14]. We generated 100k ABoxes where each ABox consists of a randomly
chosen role assertion and all class assertions related to its subject and object.
Thus, all of the ABoxes have a very simple structure and most of the reason-
ing task is related to checking the asserted types against the domain and range
restrictions of the role. However, the explanations for an inconsistency can nev-
ertheless be quite complex. This is illustrated by Example 1, which is an (already
slightly simplified) explanation for one of the generated ABoxes. Note also that
an ABox usually contains more assertions than shown in Example 1.

The second dataset uses the GoodRelations ontology as TBox. GoodRela-
tions [4] is a vocabulary designed for e-commerce, which is used as RDFa to
describe products and offers. We have used a sample of documents from the
WebData-Commons 2014 Microdata corpus, and extracted 5k randomly cho-
sen documents (= ABoxes) that make use of the GoodRelations vocabulary. In
doing so we encountered syntactic errors and related parsing problems, which
required a semi-automated extraction process. For that reason, we were able to
extract only 5000 ABoxes. Opposed to the ABoxes from the DBpedia+ dataset,
these ABoxes do not share a common structure and are larger compared to the
ABoxes from the DBpedia+ dataset. The characteristics of the two datasets are
presented in Table 1.

We have not used the schema.org and the YAGO dataset used in [15] because
they pose less complex reasoning tasks. According to our inspection of the
schema.org dataset, many mistakes are based on roles that have been used as

1 All the datasets created for this paper are available online at http://web.informatik.
uni-mannheim.de/rr2017.

http://web.informatik.uni-mannheim.de/rr2017
http://web.informatik.uni-mannheim.de/rr2017
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Table 1. Characteristics of the DBpedia+ and GoodRelations dataset in terms of num-
ber of generated ABoxes, percentage of inconsistent ABoxes, average size of ABoxes;
the description logic of the TBox, and number of logical axioms in the TBox.

ABoxes Inconsistent Average Size DL Logical Axioms

DBpedia+ 100000 24.07% 58.1 SHIN (D) 7436

GoodRelations 5000 28.54% 13.9 SHI(D) 450

attributes (or vice versa). The remaining inconsistencies seem to be only clashes
related to attributes using data values that are incompatible with the explicitly
stated data type. Each of the ABoxes in the YAGO dataset is describing a single
instance by all of its concept assertions. This means that each ABox is of the
form C1(a), . . . , C2(a). Moreover, these assertions are extended in a preprocess-
ing step by adding the transitive closure on the stated class assertions, in order
to support the machine learning.

In our experiments we analyze the following reasoning techniques with
respect to their performance on the two datasets we introduced above.

CQ refers to the technique that uses the DL-LiteA expansion rules. We apply
this technique to compute inconsistent patterns of assertions in a preprocess-
ing step. Checking an ABox boils down to checking the ABox against these
precompiled clash patterns.

CQ+ refers to the method that uses the DL-LiteA clash patterns. However,
instead of using expansion rules in a preprocessing step it uses a complete
reasoner to check the relevant entailments on the fly when the corresponding
combinations appear in the currently processed ABox. We will also report
about experiments, where we turn off the reasoning components after n
ABoxes have been processed and the results are than solely based on the
cache.

ML refers to the machine learning approach that has been described in [15]. For
the feature transformation of the ABoxes, we used all paths up to length 3 for
the GoodRelations dataset, while the ABoxes from the DBpedia dataset nat-
urally have a path length of at most 2. All experiments were conducted with
RapidMiner Studio.2 In particular, we report about results using Decision
Trees which has turned out to achieve good and stable results.

HermiT is a well-known OWL 2 reasoner [6], which we also used to annotate
the training examples for the ML approach.

4.2 Results

The main results of our experiments are depicted in Table 2. The first column is
relevant only for CQ+ and ML. For CQ+ it shows the number of ABoxes that
have been processed to set up the cache. For ML the same number refers to the

2 http://www.rapidminer.com.

http://www.rapidminer.com
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Table 2. Runtime and accuracy of CQ, CQ+, CQ+ turning off reasoning, ML and
HermiT for the DBpedia+ and GoodRelations dataset averaged over ten runs for each
setting. For settings that depend on previously processed ABoxes (“Training”), we
randomly selected the set of these ABoxes in each of the runs.

Training Runtimes Accuracy

Preprocessing (s) Checking Inc. (ms)

DBpedia+ CQ − 746 0.046 98.59%

CQ+ − - 77 to ≤0.5 100%

CQ+ (cache only) 1000 77 0.041 98.6%

10000 172 0.043 99.59%

50000 253 0.04 99.84%

ML 1000 98 + 1 0.356 97.62%

10000 984 + 22 0.383 98.46%

50000 4919 + 183 0.525 98.52%

HermiT − 10 98.38 100%

GoodRelations CQ − 20 0.311 100%

CQ+ − - 4.5 to ≤0.33 100%

CQ+ (cache only) 50 0 0.318 99.89%

500 1 0.315 99.92%

2500 2 0.321 100%

ML 50 1 + 0 1.483 95.60%

500 12 + 0 1.589 99.87%

2500 61 + 1 1.757 99.9%

HermiT − 2 24.48 100%

number of training examples. The second column shows to the preprocessing
time in seconds. In the preprocessing phase the CQ approach computes the
expanded clash queries, the ML method trains a classifier which includes also
the labeling of the samples with a reasoner (HermiT in our setting), the CQ+
(cache only) method requires processing some ABoxes in order to observe and
store clashes (explanations) in the cash, HermiT requires loading the TBox. The
third column shows the average time for checking the consistency of an ABox in
milliseconds. While we know that all reasoning based methods are sound, i.e., a
consistent ABox will never be labeled as inconsistent, an approach based on ML
cannot guarantee soundness. For that reason we compare the results in terms of
accuracy in the fourth column informing about the fraction of correct answers
for each of the methods.

HermiT achieves an accuracy of 100% on both datasets. However, the run-
times are ≈25 ms and ≈100 ms for checking a single ABox. This shows that it is
problematic to apply standard reasoning techniques if we want to check a very
high number of ABoxes, without resorting to parallelization.

The CQ method reaches an accuracy of 98.59% on DBpedia+ and 100%
on Good- Relations. An accuracy of 98.59% corresponds, with respect to the
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DBpedia+ dataset, to 5.44% inconsistent ABoxes that have not been detected
to be inconsistent. The runtimes of the CQ approach are about 0.05 ms for a
DBpedia+ ABox and 0.3 ms for a GoodRelations ABox. The differences can be
explained by the different size of the ABoxes. Comparing these runtimes to the
runtimes of HermiT, the CQ method is about 2000 times faster. The method
requires relatively high preprocessing runtimes for the preprocessing step due to
the fact that all possible DL-LiteA clashes are computed even though most of
them will never be instantiated.

The CQ+ approach is capable of detecting all inconsistencies for both
datasets. The improvement for DBpedia+ from 98.59% (CQ) to 100% (CQ+)
is caused by the use of full-fledged reasoning when checking such patterns as
T |= A � ¬∃P , while the patterns themselves cover all factually existing incon-
sistencies. The runtimes of the CQ+ approach cannot be presented in terms of
an average number, but require presenting the runtime depending on the num-
ber of previously checked ABoxes. Remember that with every processed ABox
more information is stored in the H

⊥ and H
� caches. To measure the impact of

the cache, we apply our algorithm on consecutive blocks of 1000 ABoxes w.r.t
DBpedia+ (100 ABoxes w.r.t GoodRelations) measuring the average runtime
for a single ABox within such a block.

The resulting runtimes are shown in Fig. 1 on a logarithmic scale. We start
with a runtime of ≈ 80 ms for DBpedia. After processing 10 k ABoxes the run-
time for an ABox is ≈ 5 ms. After 50 k ABoxes have been processed less than
1 ms is required. The runtime behavior is similar for GoodRelations. However,
significantly less processed ABoxes are required to reduce the initial runtimes.
After having processed 1000 ABoxes, the runtimes for CQ and CQ+ are roughly
the same. The differences between DBpedia+ and GoodRelations are related to
the significantly smaller TBox of GoodRelations. Since there are less concepts,
roles and attributes in GoodRelations, there are also less (frequently used) incon-
sistent and consistent vocabulary combinations.
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av
er
ag
e
ru
nt
im

e
pe
r
A
B
ox

(l
og
.s
ca
le
)

10k
[1k]

20k
[2k]

30k
[3k]

40k
[4k]

50k
[5k]

60k 70k 80k 90k 100k
0.1ms

1ms

10ms

100ms

DBpedia+
GoodRelations

Fig. 1. Runtime of CQ+ for processing a single ABox with respect to the number of
already processed ABoxes for DBpedia+ [GoodRelations].
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The CQ method is about 80 times (GoodRelations) to 2000 times (DBpe-
dia+) faster compared to HermiT. This means that by applying the CQ method
we are losing completeness, as described above, but gain a significant improve-
ment in runtime. The CQ+ method detects all inconsistencies in both datasets.
Its runtimes are at the beginning similar to the runtimes of HermiT. However,
after processing a large number of ABoxes, CQ+ is between 80 and 200 times
faster compared to HermiT.

One of the most important features of the CQ+ method is the option to turn
off reasoning and to rely solely on the cache after a reasonable number of ABoxes
have been processed. Table 2 shows the runtimes after turning off reasoning as
soon as n ABoxes have been processed. The time required to process the first
n ABoxes is counted as preprocessing time in this setting. n is specified in the
column entitled “Training”. For the ML approach we use exactly this number of
ABoxes as training examples. The CQ+ runtimes, after turning off the reasoning
component, are approximately the same runtimes that we measured for the CQ
approach. However, the accuracy is surprisingly high after processing a relatively
small number of ABoxes. After processing 1 k ABoxes of DBpedia+, the accuracy
is similar to the accuracy of the CQ method; after 10 k ABoxes we are already
reaching an accuracy of 99.59% which is increased to 99.84% when processing
50 k ABoxes. For GoodRelations we achieve an accuracy of 100% after having
processed 2500 ABoxes. This shows that the CQ+ method is highly flexible
and can be configured for the needs of a given application scenario (runtime vs.
accuracy).

We have also applied the ML approach of Paulheim and Stuckenschmidt [15].
The runtimes are slightly worse compared to the runtimes of the CQ method.
Note that most of the runtimes are related to generating the feature repre-
sentation of an ABox, while the classification itself is extremely fast. The high
runtimes for preprocessing are caused by the need to annotate the training exam-
ples with the help of HermiT, while the runtimes for learning the classifier are
of little significance. The accuracy of the approach is rather high. However, the
ML results that are based on learning from n examples are worse than compa-
rable results of the CQ+ approach relying solely on the cache after n ABoxes
have been processed with an active reasoning component. This becomes more
evident when we present the results in terms of the error rate (1 − accuracy).
The error rate on DBpedia+ with n = 10000 is 1.54% for ML and 0.41% for
CQ+, the error rate on GoodRelations with n = 2500 is 0.13% for ML and
0.08% for CQ+. This illustrates the theoretical considerations that we presented
in Sect. 2.4. Moreover, the accuracy of the learned classifier is in none of the
settings higher than the well known CQ method.

In Table 3 we present numbers relevant to the memory usage. For CQ and
CQ+ we show the number of stored combinations in the H

�
b (consistent usage)

and H
⊥
b (inconsistent usage). Note that the Hb caches are the only ones that

can increase up to the square of the concepts, roles and attributes defined in
the TBox, while the other caches will only grow linearly. For ML we show the
dimension of the feature vector that describes a single ABox. First, we compare
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Table 3. Characteristics related to memory consumption for CQ, CQ+ and ML.

DBpedia GoodRelations

# processed/training examples 10 k 100 k 500 5000

CQ (H�
b /H⊥

b ) -/8810234 -/11184

CQ+ (H�
b /H⊥

b ) 17057/480 27580/1460 804/7 1722/12

ML (number of features) 4211.6 8261 1781.4 2427

the clash patterns stored by CQ and CQ+. While there are more than 8 million
instantiations of clashes, there occur only 1460 of these clashes in a set of 100k
ABoxes. This is less then 0.02%. For GoodRelations we measured only 12 differ-
ent inconsistency patterns.3 The fact that only very specific errors occur in the
dataset is also a reason why learning works in the given setting. The fact that
DBpedia results in more than 8 million inconsistent combinations shows that the
CQ approach is only applicable to larger TBoxes if extensive memory resources
are available. While the number of consistent combinations clearly dominates
the inconsistent combinations for CQ+, the overall cache size is still acceptable
and seems to grow linearly with respect to the size of the TBox. The number of
features in the ML approach is less for DBpedia+ and more for GoodRelations
compared to the sum of the entries in the CQ+ caches. Overall, the numbers
are in the same order of magnitude. The differences are mainly based on the
fact that the maximal path length in the DBpedia+ ABoxes is two, while the
GoodRelations dataset has ABoxes that correspond to graphs with longer paths.

5 Conclusion and Future Work

In this work, we have studied different methods to solve the problem of effi-
ciently checking the consistency of a large set of ABoxes against a given TBox.
Our results indicate that the approach proposed in [10], which is complete for
DL-LiteA, can also be applied successfully to scenarios where the given TBox
is more expressive. While such an approach, referred to as CQ, is incomplete
in theory, our experiments indicted that only few inconsistencies remain unde-
tected. Moreover, the CQ approach clearly outperforms an approach based on
machine learning, which has been proposed more recently [15].

We extended the CQ resulting in an approach referred to as CQ+. This
approach is based on the use of a complete reasoner to check on the fly the
entailment that results in an instantiation of a clash pattern. Spotted inconsistent
and consistent combinations of vocabulary usage are stored in a cache, which is
used prior to any calls to the reasoner. This extension resulted in an accuracy of
100% for both datasets used in our experiments. Moreover, we could show that
the runtimes decrease with every processed ABox resulting in a highly efficient
procedure for checking consistency.

3 Note that the Hb caches do not contain errors related to wrong datatypes. However,
these errors are less important from a reasoning perspective since all of them have
been detected by comparing the stated datatype against the type of the given value.
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Even though we measured in our experiments an accuracy of 100%, we are
aware that this is only an empirical observation related to the datasets we used in
our experiments. Even within the simple structure of the DBpedia ABoxes, there
is no guarantee that the CQ+ method finds all inconsistencies. One can easily
define sets of axioms that would result, in combination with an ABox that has
the same structure as the ABoxes of the DBpedia+ dataset, in an inconsistency.
An example are the following axioms and assertions.

∃P.B � A,A � ¬C,P (a, b), C(a), B(b)

Both CQ and CQ+ are not capable of detecting this inconsistency, due to
the fact that the involved assertions do not instantiate one of the clash types.
A machine learning based approach is in principle capable of learning a classifier
that will work for such cases. This will happen if instantiations of P (x, y), C(x),
B(y) appear sufficiently often within the training examples, while proper subsets
of these instantiations, that are marked as consistent, will also appear sufficiently
often within the training examples. Other inconsistencies that are beyond the
scope of CQ+ involve, for example, role transitivity and role irreflexivity.

In general, an approach that is based on learning can pay-off only for datasets
where two conditions hold:

– Some inconsistencies in the dataset cannot be detected with incomplete but
efficient reasoning techniques.

– These inconsistencies are instantiations of the same pattern that appears
rather frequently in the dataset.

In such a setting it might make sense to use (additionally) an approach that
leverages machine learning techniques to learn patterns that are not covered by
CQ, CQ+ or any alternative inference method. This requires the development of
an appropriate feature representation without introducing a huge feature space
that cannot be handled efficiently. However, unless such a method based on
machine learning is available, it seems to be the best choice to rely on the CQ
method, the CQ+ method, or another elementary inference method.

As a first step in our future work, we plan to use the reasoner Konclude [17]
in our experiments.
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Abstract. In this paper we are concerned with a fuzzy logic language
where program rules extend the classical notion of clause by adding fuzzy
connectives and truth degrees on their bodies. In this work we describe
an efficient online tool which helps to select such operators and weights
in an automatic way, accomplishing with our recent technique for tuning
this kind of fuzzy programs. The system offers a comfortable interaction
with users for introducing test cases and also provides useful information
about the choices that better fit their preferences.
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1 Introduction

Logic Programming [14] has been widely used as a formal method for problem
solving and knowledge representation. Nevertheless, traditional logic program-
ming languages do not incorporate techniques or constructs to explicitly deal
with uncertainty and approximated reasoning. In order to fill this gap, fuzzy
logic programming has emerged as an interesting—and still growing—research
area which aims to consolidate the efforts for introducing fuzzy logic into logic
programming.

During the last decades, several fuzzy logic programming systems have been
developed. Here, essentially, the classical SLD resolution principle of logic pro-
gramming has been replaced by a fuzzy variant with the aim of dealing with
partial truth and reasoning with uncertainty in a natural way. Most of these
systems implement (extended versions of) the resolution principle introduced by
Lee [12], such as Elf-Prolog [7], F-Prolog [13], generalized annotated logic pro-
gramming [10], Fril [2], MALP [15], R-fuzzy [3], FASILL [5], the QLP scheme of
[18] and the many-valued logic programming language of [19].

In this paper we focus on the so-called multi-adjoint logic programming app-
roach MALP [15], a powerful and promising approach in the area of fuzzy
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&P(x, y) � x ∗ y ←P (x, y) �
{

1 y ≤ x
x/y 0 < x < y

&G(x, y) � min(x, y) ←G (x, y) �
{

1 y ≤ x
x

&L(x, y) � max(0, x + y − 1) ←L (x, y) � min(x − y + 1, 1)

Fig. 1. Adjoint pairs of three different fuzzy logics over 〈[0, 1], ≤〉.

logic programming. Intuitively speaking, logic programming is extended with
a multi-adjoint lattice L of truth values (typically, a real number between 0
and 1), equipped with a collection of adjoint pairs 〈&i,←i〉 and connectives:
implications, conjunctions, disjunctions, and other operators called aggregators,
which are interpreted on this lattice. Consider, for instance, the following MALP
rule: “good(X) ←P @aver(nice(X), cheap(X)) with 0.8”, where the adjoint pair
〈&P,←P〉 is defined as shown in the first line of Fig. 1, and the aggregator @aver

is typically defined as @aver(x1, x2) � (x1 + x2)/2. Therefore, the rule specifies
that X is good—with a truth degree of 0.8—if X is nice and cheap. Assuming
that X is nice and cheap with, e.g., truth degrees n and c, respectively, then X
is good with a truth degree of 0.8 ∗ ((n + c)/2).

When specifying a MALP program, it might sometimes be difficult to assign
weights—truth degrees—to program rules, as well as to determine the right
connectives.1 This is a common problem with fuzzy control system design, where
some trial-and-error is often necessary. In our context, a programmer can develop
a prototype and repeatedly execute it until the set of answers is the intended
one. Unfortunately, this is a tedious and time consuming operation. Actually, it
might be impractical when the program should correctly model a large number
of test cases provided by the user.

In order to overcome this drawback, in [16] we have recently introduced a
symbolic extension of MALP programs called symbolic multi-adjoint logic pro-
gramming (sMALP). Here, we can write rules containing symbolic truth degrees
and symbolic connectives, i.e., connectives which are not defined on its associated
multi-adjoint lattice. In order to evaluate these programs, we introduce a sym-
bolic operational semantics that delays the evaluation of symbolic expressions.
Therefore, a symbolic answer could now include symbolic (unknown) truth val-
ues and connectives. The approach is correct in the sense that using the symbolic
semantics and then replacing the unknown values and connectives by concrete
ones gives the same result as replacing these values and connectives in the origi-
nal sMALP program and, then, applying the concrete semantics on the resulting
MALP program. Furthermore, in [16] it is showed how sMALP programs can

1 For instance, we have typically several adjoint pairs as shown in Fig. 1: �Lukasiewicz
logic 〈&L, ←L〉, Gödel logic 〈&G, ←G〉 and product logic 〈&P, ←P〉, which might be used
for modeling pessimist, optimist and realistic scenarios, respectively.
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be used to tune a program w.r.t. a given set of test cases, thus easing what is
considered the most difficult part of the process: the specification of the right
weights and connectives for each rule. The main goal of the present paper is
to describe the online implementation of this technique which is freely available
from http://dectau.uclm.es/tuning/.

The structure of this paper is as follows. Sections 2 and 3 focus on the
syntax and operational semantics of the framework of symbolic multi-adjoint
logic programming by showing how such kind of programs can be loaded and
executed into the online tool. Then, in Sect. 4, we describe the capability of
the tool for tuning several parameters of symbolic programs so that a concrete
program is obtained. Finally, Sect. 5 concludes and points out some directions
for further research.

2 Symbolic Multi-adjoint Logic Programs

We assume the existence of a multi-adjoint lattice 〈L,�,&1,←1, . . . ,&n,←n〉,
equipped with a collection of adjoint pairs 〈&i,←i〉—where each &i is a con-
junctor which is intended to be used for the evaluation of modus ponens [15]—.
In addition, on each program rule, we can have a different adjoint implication
(←i), conjunctions (denoted by ∧1,∧2, . . .), adjoint conjunctions (&1, &2, . . . ),
disjunctions (|1, |2, . . .), and other operators called aggregators (usually denoted
by @1,@2, . . .); see [17] for more details. More exactly, a multi-adjoint lattice
fulfill the following properties:

– 〈L,�〉 is a (bounded) complete lattice.2

– For each truth function of &i, an increase in any of the arguments results in
an increase of the result (they are increasing).

– For each truth function of ←i, the result increases as the first argument
increases, but it decreases as the second argument increases (they are increas-
ing in the consequent and decreasing in the antecedent).

– 〈&i,←i〉 is an adjoint pair in 〈L,�〉, namely, for any x, y, z ∈ L, we have
that: x � (y ←i z) if and only if (x &i z) � y.

Aggregation operators are useful to describe or specify user preferences. An
aggregation operator, when interpreted as a truth function, may be an arith-
metic mean, a weighted sum or in general any monotone function whose argu-
ments are values of a multi-adjoint lattice L. Although, formally, these con-
nectives are binary operators, we often use them as n-ary functions so that
@(x1, . . . ,@(xn−1, xn), . . .) is denoted by @(x1, . . . , xn). By abuse, in these cases,
we consider @ an n-ary operator. The truth function of an n-ary connective ς is
denoted by [[ς]] : Ln 	→ L and is required to be monotonic and fulfill the following
conditions: [[ς]](�, . . . ,�) = � and [[ς]](⊥, . . . ,⊥) = ⊥.
2 A complete lattice is a (partially) ordered set 〈L, �〉 such that every subset S of

L has infimum and supremum elements. It is bounded if it has bottom and top
elements, denoted by ⊥ and 	, respectively. L is said to be the carrier set of the
lattice, and � its ordering relation.

http://dectau.uclm.es/tuning/
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Fig. 2. Screenshot of the online tool showing a loaded program and lattice.

Example 1. In the down window of Fig. 2, we show the shape of the lattice
of truth degrees ([0, 1],≤) loaded by default in our tool. In general, lattices are
described by means of a set of Prolog clauses where the definition of the following
predicates is mandatory: member/1, that identifies the elements of the lattice;
members/1, that highlights into a list a subset of truth degrees to be used at
tuning time as we will see in Sect. 4; bot/1 and top/1 stand for the infimum
and supremum elements of the lattice; and finally leq/2, that implements the
ordering relation. Connectives are defined as predicates whose meaning is given
by a number of clauses. The name of a predicate has the form and label, or label
or agr label depending on whether it implements a conjunction, a disjunction
or an aggregator, where label is an identifier of that particular connective. The
arity of the predicate is n + 1, where n is the arity of the connective that it
implements, so its last parameter is a variable to be unified with the truth value
resulting of its evaluation.

In this work, given a multi-adjoint lattice L, we consider a first order language
LL built upon a signature ΣL, that contains the elements of a countably infi-
nite set of variables V, function and predicate symbols (denoted by F and Π,
respectively) with an associated arity—usually expressed as pairs f/n or p/n,
respectively, where n represents its arity—, and the truth degree literals ΣT

L and
connectives ΣC

L from L. Therefore, a well-formed formula in LL can be either:

– A value v ∈ ΣT
L , which will be interpreted as itself, i.e., as the truth degree

v ∈ L.
– p(t1, . . . , tn), if t1, . . . , tn are terms over V ∪ F and p/n is an n-ary predicate.

This formula is called atomic (or just an atom).



188 G. Moreno and J.A. Riaza

– ς(e1, . . . , en), if e1, . . . , en are well-formed formulas and ς is an n-ary connec-
tive with truth function [[ς]] : Ln 	→ L.

As usual, a substitution σ is a mapping from variables from V to terms over
V ∪ F such that Dom(σ) = {x ∈ V | x �= σ(x)} is its domain. Substitutions are
usually denoted by sets of mappings like, e.g., {x1/t1, . . . , xn/tn}. Substitutions
are extended to morphisms from terms to terms in the natural way. The identity
substitution is denoted by id. The composition of substitutions is denoted by
juxtaposition, i.e., σθ denotes a substitution δ such that δ(x) = θ(σ(x)) for all
x ∈ V.

A MALP rule over a multi-adjoint lattice L is a formula H ←i B, where H
is an atomic formula (usually called the head of the rule), ←i is an implication
symbol belonging to some adjoint pair of L, and B (which is called the body of
the rule) is a well-formed formula over L without implications. A goal is a body
submitted as a query to the system. A MALP program is a set of expressions
R with v, where R is a rule and v is a truth degree (a value of L) expressing the
confidence of a programmer in the truth of rule R. By abuse of the language,
we often refer to R with v as a rule (see, e.g., [15] for a complete formulation of
the MALP framework).

We are now ready for summarizing the symbolic extension of multi-adjoint
logic programming initially presented in [16] where, in essence, we allow some
undefined values (truth degrees) and connectives in the program rules, so that
these elements can be systematically computed afterwards. In the following, we
will use the abbreviation sMALP to refer to programs belonging to this setting.

Here, given a multi-adjoint lattice L, we consider an augmented language
Ls

L ⊇ LL which may also include a number of symbolic values, symbolic adjoint
pairs and symbolic connectives which do not belong to L. Symbolic objects are
usually denoted as os with a superscript s and, in our online tool, their identifiers
always start with #.

Definition 1 (sMALP program). Let L be a multi-adjoint lattice. An sMALP
program over L is a set of symbolic rules, where each symbolic rule is a formula
(H ←i B with v), where the following conditions hold:

– H is an atomic formula of LL (the head of the rule);
– ←i is a (possibly symbolic) implication from either a symbolic adjoint pair

〈&s,←s〉 or from an adjoint pair of L;
– B (the body of the rule) is a symbolic goal, i.e., a well-formed formula of Ls

L;
– v is either a truth degree (a value of L) or a symbolic value.

Example 2. At the top of Fig. 2, we can see a sMALP program loaded into our
online tool. Here, we consider a travel agency that offers booking services on
three hotels, named sun, sweet and lux, where each one of them is featured
by three factors: the hotel facilities, the convenience of its location, and the
rates, denoted by predicates facilities, location and rates, respectively. Here,
we assume that all weights can be easily obtained except for the weight of the
fact facilities(sun), which is unknown, so we introduce a symbolic weight #s3.
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Also, the programmer has some doubts on the connectives used in the first rule,
so she introduces two symbolic connectives, i.e., the implication and disjunction
symbols # < s1 and #|s2.

3 Running Symbolic Programs

The procedural semantics of sMALP is defined in a stepwise manner as follows.
First, an operational stage is introduced which proceeds similarly to SLD reso-
lution in pure logic programming. In contrast to standard logic programming,
though, our operational stage returns an expression still containing a number of
(possibly symbolic) values and connectives. Then, an interpretive stage evalu-
ates these connectives and produces a final answer (possibly containing symbolic
values and connectives). The procedural semantics of both MALP and sMALP
programs is based on a similar scheme. The main difference is that, for MALP
programs, the interpretive stage always returns a value, while for sMALP pro-
grams we might get an expression containing symbolic values and connectives
that should be first instantiated in order to compute a value.

In the following, C[A] denotes a formula where A is a sub-expression
which occurs in the—possibly empty—context C[]. Moreover, C[A/A′] means
the replacement of A by A′ in context C[], whereas Var(s) refers to the set of
distinct variables occurring in the syntactic object s, and θ[Var(s)] denotes the
substitution obtained from θ by restricting its domain to Var(s). An sMALP
state has the form 〈Q;σ〉 where Q is a symbolic goal and σ is a substitution. We
let Es denote the set of all possible sMALP states.

Definition 2 (admissible step). Let L be a multi-adjoint lattice and P an
sMALP program over L. An admissible step is formalized as a state transition
system, whose transition relation →AS ⊆ (Es × Es) is the smallest relation
satisfying the following transition rules:3

1. 〈Q[A];σ〉 →AS 〈(Q[A/v&iB])θ;σθ〉,
if θ = mgu({H = A}) �= fail, (H ←i B with v)<<P and B is not empty.4

2. 〈Q[A];σ〉 →AS 〈(Q[A/⊥]);σ〉,
if there is no rule (H ←i B with v)<<P such that mgu({H = A}) �= fail.

Here, (H ←i B with v)<<P denotes that (H ←i B with v) is a renamed apart
variant of a rule in P (i.e., all its variables are fresh). Note that symbolic values
and connectives are not renamed.

Observe that the second rule is needed to cope with expressions like
@aver(p(a), 0.8), which can be evaluated successfully even when there is no rule

3 Here, we assume that A in Q[A] is the selected atom. Furthermore, as it is common
practice, mgu(E) denotes the most general unifier of the set of equations E [11].

4 For simplicity, we consider that facts (H with v) are seen as rules of the form
(H←i	 with v) for some implication ←i. Furthermore, in this case, we directly
derive the state 〈(Q[A/v])θ; σθ〉 since v &i	 = v for all &i.
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matching p(a) since @aver(0, 0.8) = 0.4. We sometimes call failure steps to this
kind of admissible steps.

In the following, given a relation →, we let →∗ denote its reflexive and
transitive closure. Also, an Ls-expression is now a well-formed formula of Ls

L

which is composed by values and connectives from L as well as by symbolic
values and connectives.

Definition 3 (admissible derivation). Let L be a multi-adjoint lattice and
P be an sMALP program over L. Given a goal Q, an admissible derivation is
a sequence 〈Q; id〉 →∗

AS 〈Q′; θ〉. When Q′ is an Ls-expression, the derivation
is called final and the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called a symbolic
admissible computed answer (saca, for short) for goal Q in P.

Example 3. Consider again the multi-adjoint lattice L and the sMALP program
P of Example 2. Here, we have the following final admissible derivation for goal
popularity(X) in P (the selected atom is underlined):

〈popularity(X); id〉 →AS

〈#&s1(0.9, #|s2(facilities(X), @aver(location(X), rates(X)))); {X1/X}〉 →AS

〈#&s1(0.9, #|s2(#s3, @aver(location(sun), rates(sun)))); {X/sun, X1/sun}〉 →AS

〈#&s1(0.9, #|s2(#s3, @aver(0.4, rates(sun)))); {X/sun, X1/sun}〉 →AS

〈#&s1(0.9, #|s2(#s3, @aver(0.4, 0.7))); {X/sun, X1/sun}〉
Hence, the associated saca is 〈#&s1(0.9, #|s2(#s3, @aver(0.4, 0.7))); {X/sun}〉.

Given a goal Q and a final admissible derivation 〈Q; id〉 →∗
AS 〈Q′;σ〉, we have

that Q′ does not contain atomic formulas. Now, Q′ can be solved by using the
following interpretive stage:

Definition 4 (interpretive step). Let L be a multi-adjoint lattice and P be an
sMALP program over L. Given a saca 〈Q;σ〉, the interpretive stage is formalized
by means of the following transition relation →IS⊆ (Es × Es), which is defined
as the least transition relation satisfying:

〈Q[ς(r1, . . . , rn)];σ〉 →IS 〈Q[ς(r1, . . . , rn)/rn+1];σ〉
where ς denotes a connective defined on L and [[ς]](r1, . . . , rn) = rn+1.

An interpretive derivation of the form 〈Q;σ〉 →∗
IS 〈Q′; θ〉 such that 〈Q′; θ〉

cannot be further reduced, is called a final interpretive derivation. In this case,
〈Q′; θ〉 is called a symbolic fuzzy computed answer (sfca, for short). Also, if Q′

is a value of L, we say that 〈Q′; θ〉 is a fuzzy computed answer (fca, for short).

Example 4. Given the saca of Example 3, we have the following final interpretive
derivation (the connective reduced is underlined):

〈#&s1(0.9, #|s2(#s3, @aver(0.4, 0.7))); {X/sun}〉 →IS

〈#&s1(0.9, #|s2(#s3, 0.55)); {X/sun}〉
with [[@aver]](0.4, 0.7) = 0.55. Therefore, 〈#&s1(0.9,#|s2(#s3, 0.55)); {X/sun}〉
is a sfca of popularity(X) in P since it cannot be further reduced.
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In Fig. 3, we can see the run area of our online tool. After introducing a goal
and clicking on the Answers & Tree button, the system executes the goal and
generates both the whole set of its sfca’s as well as its associated derivation tree
(in plain text and also graphically), as seen in Fig. 4. Each sfca appears on a
different leaf of the tree, where each state contains its corresponding goal and

Fig. 3. Screenshot of the online tool showing the run input area.

Fig. 4. Screenshot of the symbolic derivation tree generated by the online tool.
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substitution components and they are drawn inside yellow ovals. Computational
steps, colored in blue, are labeled with the program rule they exploit in the case
of admissible steps or with the word “is”, corresponding to interpretive steps.
In our particular example, note that the leftmost branch in the tree of Fig. 4,
contains the sequence of computational steps performed on the admissible and
interpretive derivations shown in Examples 3 and 4, respectively.

Given a multi-adjoint lattice L and a symbolic language Ls
L, in the following

we consider symbolic substitutions that are mappings from symbolic values and
connectives to expressions over ΣT

L ∪ΣC
L . Symbolic substitutions are denoted by

Θ,Γ, . . . Furthermore, for all symbolic substitution Θ, we require the following
condition: ←s/←i ∈ Θ iff &s/&i ∈ Θ, where 〈&s,←s〉 is a symbolic adjoint pair
and 〈&i,←i〉 is an adjoint pair in L. Intuitively, this is required for the substi-
tution to have the same effect both on the program and on an Ls-expression.

Fig. 5. Fuzzy computed answers and derivation tree generated for a MALP program.
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Given an sMALP program P over L, we let sym(P) denote the symbolic values
and connectives in P. Given a symbolic substitution Θ for sym(P), we denote
by PΘ the program that results from P by replacing every symbolic symbol es

by esΘ. Trivially, PΘ is now a MALP program.
The following theorem formally proved in [16] is a key result in order to use

sMALP programs for tuning the components of a MALP program:

Theorem 1. Let L be a multi-adjoint lattice and P be an sMALP program over
L. Let Q be a goal. Then, for any symbolic substitution Θ for sym(P), we have
that 〈v; θ〉 is a fca for Q in PΘ iff there exists a sfca 〈Q′; θ′〉 for Q in P and
〈Q′Θ; θ′〉 →∗

IS 〈v; θ′〉, where θ′ is a renaming of θ.

Example 5. Consider again the multi-adjoint lattice L and the sMALP program
P in Fig. 2. Let Θ = {#&s1/←prod,&s1/&prod,#|s2/|prod,#s3/0.3} be a sym-
bolic substitution. Given the sfca from Example 4, we have:

〈#&s1(0.9,#|s2(#s3, 0.55))Θ; {X/sun}〉 ≡ 〈&prod(0.9, |prod(0.3, 0.55)), {X/sun}〉

So, we have the following interpretive final derivation for the instantiated sfca:

〈&prod(0.9, |prod(0.3, 0.55)), {X/sun}〉 →IS

〈&prod(0.9, 0.685), {X/sun}〉 →IS

〈0.6165; {X/sun}〉

By Theorem 1, we have that 〈0.6165; {X/sun}〉 is also a fca for popularity(X)
in PΘ, as confirmed in Fig. 5, where we can see the result of running the MALP
program obtained after instantiating the original sMALP program in Example 2
with the proposed symbolic substitution Θ.

4 Tuning Multi-adjoint Logic Programs

In this section, we summarize the automated technique for tuning multi-adjoint
logic programs using sMALP programs initially presented in [16] and recently
implemented in our online tool (see Fig. 6) as we are going to explain.
Consider a typical Prolog clause “H : −B1, . . . , Bn”. It can be fuzzified in order
to become a MALP rule “H ←label B with v” by performing the following actions:

1. weighting it with a truth degree v,
2. connecting its head and body with a fuzzy implication symbol ←label (belong-

ing to a concrete adjoint pair 〈←label,&label〉) and,
3. linking the set of atoms B1, . . . , Bn on its body B by means of a set of fuzzy

connectives (i.e., conjunctions &i, disjunctions |j or aggregators @k).

Introducing changes on each one of the three fuzzy components just described
above may affect—sometimes in an unexpected way—the set of fuzzy computed
answers for a given goal.



194 G. Moreno and J.A. Riaza

Fig. 6. Screenshot of the online tool for starting the tuning process.

Typically, a programmer has a model in mind where some parameters have
a clear value. For instance, the truth value of a rule might be statistically deter-
mined and, thus, its value is easy to obtain. In other cases, though, the most
appropriate values and/or connectives depend on subjective notions and, thus,
programmers do not know how to obtain these values. In a typical scenario, we
have an extensive set of expected computed answers (i.e., test cases), so the pro-
grammer can follow a “try and test” strategy. Unfortunately, this is a tedious
and time consuming operation. Actually, it might even be impractical when the
program should correctly model a large number of test cases.

The first action for initializing the tuning process in the online tool obvi-
ously consists in introducing a set of test cases as shown in Fig. 6. Each test
case appears in a different line with syntax: r −> Q, where r is the desired
truth degree for the fca associated to query Q (which obviously does not con-
tain symbolic constants). Before directly using the test cases introduced in the
input box, the system firstly tries to refine them by automatically instantiat-
ing the variable symbols as much as possible. So, in our particular example,
after introducing the test case 0.6−> popularity(X), the tool generates the
three sfca’s shown in Fig. 4 and then uses their substitution components for
instantiating the original query, thus changing the original test case by the fol-
lowing three ones: 0.6−> popularity(sun), 0.6−> popularity(sweet), and
0.6−> popularity(lux). Next, the user can manually update the truth degrees
of some refined test cases, as done in the top box of Fig. 7, where we observe that
the three final test cases to be used at tuning time are: 0.6−> popularity(sun),
0.77−> popularity(sweet), and 0.85−> popularity(lux).

Once the set of test cases has been appropriately customized, users simply
need to click on the Generate substitution button for proceeding with the tuning
process. The precision of the technique depends on the set of symbolic substitu-
tions considered at tuning time. So, for assigning values to the symbolic constant
(starting with #), our tool takes into account all the truth values defined on the
members/1 predicate (which in our case is defined as members([0.3,0.5,0.8]))
as well as the set of connectives defined in the lattice of Fig. 2, which in our run-
ning example coincides with the three conjunction and disjunction connectives
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Fig. 7. Screenshot of the online tool showing the output of a tuning process.

based on the so-called Product, Gödel and �Lukasiewicz logics, as shown in Fig. 8.
Obviously, the larger the domain of values and connectives is, the more precise
the results are (but the algorithm is more expensive, of course).

&P(x, y) = x ∗ y |P(x, y) = x + y − x ∗ y
&G(x, y) = min(x, y) |G(x, y) = max(x, y)
&L(x, y) = max(x + y − 1, 0) |L(x, y) = min(x + y, 1)

Fig. 8. Conjunctions and disjunctions of three different fuzzy logics over 〈[0, 1], ≤〉.

The following definition resumes the tuning algorithm described in [16]:

Definition 5 (algorithm for symbolic tuning of MALP programs).

Input: an sMALP program Ps and a number of test cases vi → Qi, i = 1, . . . , k.
Output: a symbolic substitution Θ.

1. For each test case vi → Qi, compute the sfca 〈Q′
i, θi〉 of 〈Qi, id〉 in Ps.

2. Then, consider a finite number of possible symbolic substitutions for sym(Ps),
say Θ1, . . . , Θn, n > 0.

3. For each j ∈ {1, . . . , n}, compute 〈Q′
iΘj , θi〉 →∗

IS 〈vi,j ; θi〉, for i = 1, . . . , k.
Let di,j = |vi,j − vi|, where | | denotes the absolute value.

4. Finally, return the symbolic substitution Θj that minimizes z =
∑k

i=1 di,j.
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Unfortunately, the naive algorithm introduced so far might be very inefficient
when dealing with many symbolic values and connectives, or when the considered
set of their possible substitutions is large. Here, in order to improve its efficiency,
in the following definition we consider thresholding techniques—well-known in
the fuzzy logic arena—for prematurely disregarding useless computations leading
to non-significant answers (see our previous experiences in [1,8,9]).

Definition 6 (algorithm for thresholded tuning of MALP programs).

Input: an sMALP program Ps and a number of test cases vi → Qi, i = 1, . . . , k.
Output: a symbolic substitution Θτ .

1. For each test case vi → Qi, compute the sfca 〈Q′
i, θi〉 of 〈Qi, id〉 in Ps.

2. Then, consider a finite number of possible symbolic substitutions for sym(Ps),
say Θ1, . . . , Θn, n > 0.

3. τ = ∞; For each symbolic substitution j ∈ {1, . . . , n} and τ �= 0

z = 0;For each test case i = {1, . . . , k} and τ > z

compute〈Q′
iΘj , θi〉 →∗

IS 〈vi,j ; θi〉
letz = z + |vi,j − vi|.

ifz < τthen{τ = z; Θτ = Θj}.

4. Finally, return the best symbolic substitution Θτ .

The improved algorithm of Definition 6 is perfectly analogous to the algorithm
in Definition 5, but makes use of a threshold τ for determining when a partial
solution is acceptable. The value of τ is initialized to ∞ (in practice, a very
large number). Then, this threshold dynamically decreases whenever we find a
symbolic substitution with an associated deviation which is lower that the actual
value of τ . Moreover, a partial solution is discarded as soon as the cumulative
deviation computed so far is greater than τ . In general, the number of discarded
solutions grows as the value of τ decreases, thus improving the pruning power
of thesholding.

For tuning an sMALP program, we have implemented the three methods just
commented before (which exhibit different run-times for obviously producing the
same outputs as shown in Fig. 7, where number 0.049 refers to the accumulated
deviation z computed in the algorithms of Definitions 5 and 6):

Basic: The basic method is based on applying each symbolic substitution to the
original sMALP program and then fully executing the resulting instantiated
MALP programs (both the operational and the admissible stages).

Symbolic: This version refers to the algorithm introduced in Definition 5, where
symbolic substitutions are
directly applied to sfca’s (thus only the interpretive stage is repeatedly
executed).
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Thresholded: In this case, we consider the symbolic algorithm improved with
thresholding techniques detailed in Definition 6.

The system also reports the processing time required by each method and offers
an option for applying the best symbolic substitution to the original sMALP
program in order to show the final, tuned MALP program. In our case, by clicking
the Apply substitution button, the first two rules of our tuned program become:

popularity(X) <prod facilities(X) |prod

@aver(location(X),rates(X)) with 0.9.

facilities(sun) with 0.3.

And the result of executing goal popularity(X) is shown in Fig. 5.

5 Conclusions and Future Work

In this paper, we have been concerned with fuzzy programs belonging to
the so-called multi-adjoint logic programming approach. More exactly, we have
described an online tool implementing the following two main results achieved
in [16]:

– On one side, we have extended the MALP syntax for allowing the presence of
symbolic weights and connectives on program rules, which very often prevents
the full evaluations of goals. As a consequence, we have also relaxed the
operational principle for producing what we call symbolic fuzzy computed
answers, where all atoms have been exploited and the maximum number of
expressions involving connectives of the underlaying lattice of truth degrees
have been solved too.

– On the other hand, we have implemented three versions of a tuning process
for MALP programs that takes as inputs a set of expected test cases and an
sMALP program where some connectives and/or truth degrees are unknown.
The efficiency of the method has been largely improved by combining it with
thresholding techniques, as it can be checked online via the URL http://
dectau.uclm.es/tuning/.

Since in [4–6], we have defined a new fuzzy language dealing with similarity
relations that cohabit with lattices of truth degrees, as future work we plan to
extend the implementation of the tuning method to cope with such similarity
relations.
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Abstract. Detecting small sets of relevant patterns from a given dataset is a
central challenge in data mining. The relevance of a pattern is based on user-
provided criteria; typically, all patterns that satisfy certain criteria are considered
relevant. Rule-based languages like Answer Set Programming (ASP) seem well-
suited for specifying such criteria in a form of constraints. Although progress has
been made, on the one hand, on solving individual mining problems and, on the
other hand, developing generic mining systems, the existing methods either focus
on scalability or on generality. In this paper we make steps towards combining
local (frequency, size, cost) and global (various condensed representations like
maximal, closed, skyline) constraints in a generic and efficient way. We present a
hybrid approach for itemset and sequence mining which exploits dedicated highly
optimized mining systems to detect frequent patterns and then filters the results
using declarative ASP. Experiments on real-world datasets show the effectiveness
of the proposed method and computational gains both for itemset and sequence
mining.

1 Introduction

Motivation. Availability of vast amounts of data from different domains has led to an
increasing interest in the development of scalable and flexible methods for data analysis.
A key feature of flexible data analysis methods is their ability to incorporate users’
background knowledge and different criteria of interest. They are often provided in
the form of constraints to the valid set of answers, the most common of which is the
frequency threshold: a pattern is only considered interesting if it appears often enough.
Mining all frequent (and otherwise interesting) patterns is a very general problem in
data analysis, with applications in medical treatments, customer shopping sequences,
Weblog click streams and text analysis, to name but a few examples.

Most data analysis methods consider only one (or few) types of constraints, limiting
their applicability. Constraint Programming (CP) has been proposed as a general app-
roach for (sequential) mining of frequent patterns [1], and Answer Set Programming
(ASP) [6] has been proved to be well-suited for defining the constraints conveniently
thanks to its expressive and intuitive modelling language and the availability of opti-
mized ASP solvers (see e.g., [5,9,13] for existing approaches).

This work has been partially funded by the ERC AdG SYNTH grant (Synthesising inductive
data models).
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In general, all constraints can be classified into local constraints, that can be vali-
dated by the pattern candidate alone, and global constraints, that can only be validated
via an exhaustive comparison of the pattern candidate against all other candidates. Com-
bining local and global constraints in a generic way is an important and challenging
problem, which has been widely acknowledged in the constraint-based mining commu-
nity. Although progress has been made, on the one hand, on solving individual mining
problems and, on the other hand, on developing generic mining systems, the existing
methods either focus on scalability or on generality, but rarely address both of these
aspects. This naturally limits the practical applicability of the existing approaches.

State of the art and its limitations. Purely declarative ASP encodings for frequent
and maximal itemset mining were proposed in [13]. In this approach, first every item’s
inclusion into the candidate itemset is guessed, and the guessed candidate pattern is
checked against frequency and maximality constraints. While natural, this encoding is
not truly generic, as adding extra local constraints requires significant changes in it.
Indeed, for a database, where all available items form a frequent (and hence maximal)
itemset, the maximal ASP encoding has a single model. The latter is, however, elimi-
nated once restriction on the length of allowed itemsets is added to the program. This is
undesired, as being maximal is not a property of an itemset on its own, but rather in the
context of a collection of other itemsets [3]. Thus, ideally one would be willing to first
apply all local constraints and only afterwards construct a condensed representation of
them, which is not possible in [13].

This shortcoming has been addressed in the recent work [5] on ASP-based sequen-
tial pattern mining, which exploits ASP preference-handling capacities to extract pat-
terns of interest and supports the combination of local and global constraints. However,
both [5,13] present purely declarative encodings, which suffer from scalability issues
caused by the exhaustive exploration of the huge search space of candidate patterns.
The subsequence check amounts to testing whether an embedding exists (matching of
the individual symbols) between sequences. In sequence mining, a pattern of size m
can be embedded into a sequence of size n in O(nm) different ways, therefore, clearly
a direct pattern enumeration is unfeasible in practice.

While a number of individual methods tackling selective constraint-based mining
tasks exist (see Table 1 for comparison) there is no uniform ASP-based framework that
is capable of effectively combining constraints both on the global and local level and is
suitable for itemsets and sequences alike.

Contributions. The goal of our work is to make steps towards building a generic frame-
work that supports mining of condensed (sequential) patterns, which (1) effectively
combines dedicated algorithms and declarative means for pattern mining and (2) is
easily extendable to incorporation of various constraints. More specifically, the salient
contributions of our work can be summarized as follows:

– We present a general extensible pattern mining framework for mining patterns of
different types using ASP.

– We introduce a feature comparison, such as closedness under solutions, between dif-
ferent ASP mining models and dominance programming, which is a generic itemset
mining language and solver.
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Table 1. Feature comparison between various ASP mining models and dominance programming
(“–”: “not designed for this datatype”, �∗: only maximal is supported)

Datatype Task [13] [5] [16] Our work

Itemset Frequent pattern mining � – � �
Condensed (closed, max, etc.) �∗ – � �
Condensed under constraints – – � �

Sequence Frequent pattern mining – � – �
Condensed (closed, max, etc.) – � – �
Condensed under constraints – � – �

– We demonstrate the feasibility of our approach with an experimental evaluation
across multiple itemset and sequence datasets.

2 Preliminaries

In this section we briefly recap the necessary background both from the fields of pattern
mining and Answer Set Programming (ASP).

Let D be a dataset, L a language for expressing pattern properties or defining sub-
groups of the data, and q a selection predicate. The task of pattern mining is to find
Th(L,D, q) = {φ ∈ L | q(D,φ) is true} (see the seminal work [14]).

Pattern mining has been mainly studied for itemsets, sequences and graphs. These
settings are determined by the language of L. We focus on the first two categories.

2.1 Patterns

Itemsets. Itemsets represent the most simple setting of frequent pattern mining. Let I
be a set of items {o1, o2, . . . , on}. Then a nonempty subset of I is called an itemset. A
transaction dataset D is a collection of itemsets, D = {t1, . . . , tm}, where ti ⊆ I. For
any itemset α, we denote the set of transactions that contain α as Dα = {i | α ⊆ ti, ti ∈
D} and we refer to |Dα| as the support (frequency) of α in D, written sup(α). The
relative frequency of α in D refers to the ratio between sup(α) and |D |. The cardinality
(or size) |α| of an itemset α is the number of items contained in it.

Definition 1 (Frequent Itemset). For a transaction dataset D and a frequency thresh-
old σ ≥ 0, an itemset α is frequent in D if sup(α) ≥ σ.1

Example 1. Consider a transaction dataset D from Table 2. We have I = {a, b, c, d, e}
and |D| = 3. For σ = 2, the following itemsets are frequent: α1={a}, α2={b},
α3={e}, α4={a, e} and α5={b, e}. ��

1 In frequent pattern mining, often, a relative threshold, i.e.,
σ

|D| is specified by the user.
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Table 2. Transaction database

ID a b c d e

1 � � � �
2 � � �
3 � �

Table 3. Sequence database

ID Sequence

1 〈a b c d a e b〉
2 〈b c e b〉
3 〈a a e〉

Sequences. A sequence is an ordered set of items 〈s1, . . . , sn〉. The setting of sequence
mining includes two related yet different cases: frequent substrings and frequent subse-
quences. In this work we focus on the latter.

Definition 2 (Embedding in a Sequence). Let S = 〈s1, . . . , sm〉 and
S′ = 〈s′

1, . . . , s
′
n〉 be two sequences of size m and n respectively with m ≤ n. The

tuple of integers e = (e1, . . . , em) is an embedding of S in S′ (denoted S 
e S′) if and
only if e1 < . . . < em and for any i ∈ {1, . . . ,m} it holds that si = s′

ei
.

Example 2. For a dataset in Table 3 we have that 〈b c e b〉 �e1 〈a b c d a e b〉 for e1 =
(2, 3, 6, 7) and analogously, 〈a a e〉 �e2 〈a b c d a e b〉 with e2 = (1, 5, 6).

We are now ready to define an inclusion relation for sequences.

Definition 3 (Sequence Inclusion). Given two sequences S = 〈s1, . . . , sn〉 and S′ =
〈s′

1, . . . , s
′
m〉, of size m and n resp. with n ≤ m, we say that S is included in S′ or S is

a subsequence of S′ denoted by S 
 S′ iff an embedding e of S in S′ exists, i.e.

S 
 S′ ↔ ∃e1 < . . . < em and ∀i ∈ 1 . . . m : si = s′
ei

. (1)

Example 3. In Example 2 we have 〈b c e b〉 � 〈a b c d a e b〉 but 〈a a e〉 �� 〈b c e b〉.
��

For a given sequence S and a sequential dataset D = {S1, . . . , Sn} we denote
by DS the subset of D s.t. S 
 S′ for all S′ ∈ DS . The support of S is
sup(S) = |DS |.
Definition 4 (Frequent Sequence). For a sequential dataset D = {S1, . . . , Sn} and
a frequency threshold σ ≥ 0, a sequence S is frequent in D if sup(S) ≥ σ.

Example 4. For a dataset in Table 3 and σ = 2, it holds that 〈b c e b〉 and 〈a a e〉 are
frequent, while 〈b d b〉 is not. ��

Note that 
 and ⊆ are incomparable relations. Indeed, consider two sequences s1 =
〈a b〉 and s2 = 〈b a a〉. While s1 ⊂ s2, we clearly have that s1 �� s2.

2.2 Condensed Pattern Representations Under Constraints

In data mining, constraints are typically specified by the user to encode domain back-
ground knowledge. In [17] four types of constraints are distinguished: constraints (1)
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over the pattern (e.g., restriction on its size), (2) over the cover set (e.g., minimal fre-
quency), (3) over the inclusion relation (e.g., maximal allowed gap in sequential pat-
terns) and (4) over the solution set (e.g., condensed representations).

Orthogonally, constraints can be classified into local and global ones. A constraint
is local if deciding whether a given pattern satisfies it is possible without looking at
other patterns. For example, minimal frequency or maximal pattern size are local con-
straints. On the contrary, deciding whether a pattern satisfies a global constraint requires
comparing it to other patterns. All constraints from the 4th group are global ones. We
are interested in global constraints related to condensed representations.

As argued in Sect. 1, the order in which constraints are applied influences the solu-
tion set [3]. As in [3] in this work we apply global constraints only after local ones.

We now present the notions required in our pattern mining framework. Here, the
definitions are given for itemsets; for sequences they are identical up to substitution of
⊂ with � (subsequence relation). First, to rule out patterns that do not satisfy some of
the local constraints, we introduce the notion of validity.

Definition 5 (Valid Pattern Under Constraints). Let C be a constraint function from
L to {�,⊥} and let p be a pattern in L, then the pattern p is called valid iff C(p) = �,
otherwise it is referred as invalid.

Example 5. Let C be a constraint function checking whether a given pattern is of size
at least 2. Then for Example 1, we have C(αi) = ⊥, i = 1..3 and C(αj) = �, j = 4..5.
��

For detecting patterns that satisfy a given global constraint, the notion of dominance
is of crucial importance. Intuitively, a dominance relation reflects pairwise preference
(<∗) between patterns and it is specific for each mining setting. In this work we primar-
ily focus on global constraints related to maximal, closed, free and skyline condensed
representations, for which <∗ is defined as follows:

(i) Maximal. For itemsets p, q, p <∗ q holds iff p ⊂ q
(ii) Closed. For itemsets p, q, p <∗ q holds iff p ⊂ q ∧ sup(p) = sup(q)

(iii) Free. For itemsets p, q, p <∗ q holds iff q ⊂ p ∧ sup(p) = sup(q)
(iv) Skyline. For itemsets p, q, p <∗ q holds iff

(a) sup(p) ≤ sup(q) and size(p) < size(q) or
(b) sup(p) < sup(q) and size(p) ≤ size(q)

Dominated patterns under constraints are now formally defined.

Definition 6 (Dominated Pattern Under Constraints). Let C be a constraint func-
tion, and let p be a pattern, then p is called dominated iff there exists a pattern p′ ∈ L
such that p <∗ p′ and p′ is valid under C.

Example 6. In Example 1 for the maximality constraint we have that α1 is dominated
by α4, α2 by α5, while α3 both by α4 and α5. ��

Exploiting the above definitions we obtain condensed patterns under constraints.
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Definition 7 (Condensed Pattern Under Constraints). Let p be a pattern fromL, and
let C be a constraint function, then a pattern p is called condensed under constraints
iff it is valid and not dominated under C.

Example 7. For the constraint function selecting maximal itemsets of size at most 2 and
size at least 2, α4 and α5 from Example 1 are condensed patterns. ��

2.3 Answer Set Programming

Answer Set Programming (ASP) [6] is a declarative problem solving paradigm oriented
towards difficult search problems. ASP has its roots in Logic Programming and Non-
monotonic Reasoning. An ASP program Π is a set of rules of the form

a 0 :- b 1, ..., b k, not b k+1,..., not b m, (2)

where 1 ≤ k ≤ m, and a 0, b 1, ..., b m are classical literals, and not is
default negation. The right-hand side of r is its body, Body(r), while the left-hand side
is the head, Head(r). Body+(r) and Body−(r) stand for the positive and negative parts
of Body(r) respectively. A rule r of the form (2) is a fact if m = 0. We omit the symbol
:- when referring to facts. A rule without head literals is a constraint. A rule is positive
if k = m.

An ASP program Π is ground if it consists of only ground rules, i.e. rules without
variables. Ground instantiation Gr(Π) of a nonground program Π is obtained by sub-
stituting variables with constants in all possible ways. The Herbrand universe HU (Π )
(resp. Herbrand base HB(Π )) of Π , is the set of all constants occurring in Π , (resp.
the set of all possible ground atoms that can be formed with predicates and constants
occurring in Π). Any subset of HB(P) is a Herbrand interpretation. MM (Π ) denotes
the subset-minimal Herbrand interpretation (model) of a ground positive program Π .

The semantics of an ASP program is given in terms of its answer sets. An interpre-
tation A of Π is an answer set (or stable model) of Π iff A = MM (ΠA), where ΠA is
the Gelfond–Lifschitz (GL) reduct [6] of Π , obtained from Gr(Π) by removing (i) each
rule r such that Body−(r) ∩ A �= ∅, and (ii) all the negative atoms from the remaining
rules. The set of answer sets of a program Π is denoted by AS(Π).

Example 8. Consider the program Π given as follows:

(1) pattern(1); (2) pattern(2); (3) item(1,a);

(4) item(1,b); (5) item(2,a);

(6) not subset(I,J) :- pattern(I), item(I,V), I != J,

pattern(J), not item(J,V).

The grounding Gr(Π ) of Π is obtained from Π by substituting I,J with 1,2 and
V with b resp. The GL-reduct ΠA′

(Π ) for the interpretation A′ containing facts of Π
and not subset(1,2) differs from Gr(Π ) only in that notitem(2,b) is not in
the body of the rule. A′ is the minimal model of ΠA′

(Π ), and thus it is in AS(Π). ��
Other relevant language constructs include conditional literals and cardinality con-

straints [22]. The former are of the form a:b 1,...,b m, the latter can be written as
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l{c 1,...,c n}t, where a and b i are possibly default negated literals and each
c j is a conditional literal; l and t provide lower and upper bounds on the number
of satisfied literals in a cardinality constraint. For instance, 1{a(X):b(X)}3 holds,
whenever between 1 and 3 instances of a(X) (subject to b(X)) are true. Furthermore,
aggregates are of the form #sum{K: cost(I,K)}>N. This atom is true, whenever
the sum of all K, such that cost(I,K) is true, exceeds N.

3 Hybrid ASP-Based Mining Approach

In this section we present our hybrid method for frequent pattern mining. Unlike previ-
ous ASP-based mining methods, our approach combines highly optimized algorithms
for frequent pattern discovery with the declarative ASP means for their convenient post-
processing. Here, we focus on itemset and sequence mining; however our approach can
be also applied to subgraph discovery (details are left for future work).

Given a frequency threshold σ, a (sequential) dataset D and a set of constraints
C = Cl ∪ Cg , where Cl and Cg are respectively local and global constraints, we proceed
in two steps as follows.

Step 1. First, we launch a dedicated optimized algorithm to extract all (sequential)
frequent patterns from a given dataset, satisfying the minimal frequency threshold σ.
Here, any frequent pattern mining algorithm can be invoked. We use Eclat [24] for
itemsets and PPIC [2] for sequences.

Step 2. Second, the computed patterns are post-processed using the declarative
means to select a set of valid patterns (i.e., those satisfying constraints in Cl). For
that the frequent patterns obtained in Step 1 are encoded as facts item(i, j)
for itemsets and seq(i, j, p) for sequences where i is the pattern’s ID, j is an
item contained in it and p is its position. The local constraints in Cl are represented as
ASP rules, which collect IDs of patterns satisfying constraints from Cl into the dedicated
predicate valid, while the rest of the IDs are put into the not valid predicate.

Finally, from all valid patterns a desired condensed representation is constructed by
storing patterns i in the selected predicate if they are not dominated by other
valid patterns based on constraints from Cg . Following the principle of [13], in our
work every answer set represents a single desired pattern, which satisfies both local and
global constraints. The set of all such patterns forms a condensed representation. In
what follows we discuss our encodings of local and global constraints in details.

3.1 Encoding Local Constraints

In our declarative program we specify local constraints by the predicate valid, which
reflects the conditions given in Definition 5. For every constraint in Cl we have a set of
dedicated rules, stating when a pattern is not valid. For instance, a constraint checking
whether the cost of items in a pattern exceeds a given threshold N is encoded as

not valid(I) : − #sum{C : item(I, J), cost(J, C)} > N, pattern(I).
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A similar rule for sequences can be defined as follows:

not valid(I) :− #sum{C : seq(I, J, P), cost(J, C)} > N, pattern(I).

Analogously, one can specify arbitrary domain constraints on patterns.

Example 9. Consider a dataset storing moving habits of young people during
their studies. Let the dedicated frequent sequence mining algorithm return the
following patterns: S1 = 〈bG mF ba mG ma〉; S2 = 〈bF mG ba mF ma〉;
S3 = 〈bA ba ma〉, where bG , bF , bA stand for born in Germany, France and Amer-
ica, ba,ma stand for bachelors and masters and the predicates mG ,mF reflect that a
person moved to Germany and France, respectively. Suppose, we are only interested in
moving habits of Europeans, who got their masters degree from a German university.
The local domain constraint expressing this would state that (1) bA should not be in the
pattern, while (2) either both bG and ma should be in it without any mF in between or
mG should precede ma . These constraints are encoded in the program in Listing 1.1.
From the answer set of this program we get that both S2 and S3 are not valid, while S1

is. ��
� �

1 time(1..5).
2 % people born in Germany or France are Europeans
3 eu(I) :- seq(I,bG,P).
4 eu(I) :- seq(I,bF,P).
5 % collect those who moved to France before P
6 moved_before(X,P) :- seq(X,mF,P1), P>P1, time(P), time(P1).
7 % collect those who moved to France after P and before masters
8 moved_after(X,P) :- seq(X,mF,P1), seq(X,ma,P2), P<P1,
9 p1<P2, time(P), time(P1), time(P2).

10 % keep Europeans who moved to Germany straight before masters
11 keep(X) :- seq(X,ma,P+1), seq(X,mG,P), eu(X).
12 % keep Germans who did not move before masters
13 keep(X) :- seq(X,bG,P1), seq(X,ma,P), not moved_before(X,P).
14 % keep Europeans whose last move before masterswas to Germany
15 keep(X) :- seq(X,mG,P1), seq(X,ma,P2), P1<P2,
16 eu(X), not moved_after(X,P1).
17 % a pattern is not valid, if it should not bekept
18 not_valid(X) :- pattern(X), not keep(X)
� �

Listing 1.1. Moving habits of people during studies

To combine all local constraints from Cl we add to a program a generic rule speci-
fying that a pattern I is valid whenever not valid(I) cannot be inferred.

valid(I) : − pattern(I), not not valid(I)

Patterns i, for which valid(i) is deduced are then further analyzed to construct
a condensed representation based on global constraints from Cg .

3.2 Encoding Global Constraints

The key for encoding global constraints is the declarative formalization of the domi-
nance relation (Definition 6). For example, for itemsets the maximality constraint boils
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down to pairwise checking of subset inclusion between patterns. For sequences this
requires a check of embedding existence between sequences.

Regardless of a pattern type from L and a constraint from Cg every encoding pre-
sented in this section is supplied with a rule, which guesses (selected/1 predicate)
a single valid pattern to be a candidate for inclusion in the condensed representation,
and a constraint that rules out dominated patterns thus enforcing a different guess.
� �

1 % I is not a subset of J if I has items that arenot in J
2 not_subset(J) :- selected(I), item(I,V), not item(J,V),
3 valid(J), I != J.
4 % derive dominated whenever I is subset of J
5 dominated :- selected(I), valid(J),
6 I != J, not not_subset(J).
� �

Listing 1.2. Maximal itemsets encoding

1 {selected(I) : valid(I)} 1.

: − dominated.

In what follows, we discuss concrete realizations of the dominance relation both
for itemsets and sequences for various global constraints, i.e., we present specific rules
related to the derivation of the dominated/0 predicate.

Itemset Mining. We first provide an encoding for maximal itemset mining in List-
ing 1.2. To recall, a pattern is maximal if none of its supersets is frequent. An itemset I
is included in J iff for every item i ∈ I we have i ∈ J . We encode the violation of this
condition in lines (1)–(3). The second rule presents the dominance criteria.

For closed itemset mining a simple modification of Listing 1.2 is required. An
itemset is closed if none of its supersets has the same support. Thus to both of the
rules from Listing 1.2 we need to add atoms support(I, X), support(J, X),
which store the support sets of I and J respectively (extracted from the output of
Step 1).

For free itemset mining the rules of the maximal encoding are changed as follows:
� �

4 not_superset(J) :- selected(I), item(J,V), not item(I,V),
5 valid(J), I != J.
6 dominated :- selected(I), valid(J), support(I,X),
7 I != J, not not_superset(J), support(J,X).
� �

� �

1 % support and size comparison among patterns
2 g_size_geq_fr(J) :- selected(I), valid(J), support(I,X),
3 support(J,Y), size(I,Si), size(J, Sj),
4 Si < Sj, X <= Y.
5 geq_size_g_fr(J) :- selected(I), valid(J), support(I,X),
6 support(J,Y), size(I,Si), size(J, Sj),
7 Si <= Sj, X < Y.
8 % derivation of the domination condition
9 dominated :- valid(J), g_size_geq_fr(J).

10 dominated :- valid(J), geq_size_g_fr(J).
� �

Listing 1.3. Skyline itemsets encoding
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Finally, the skyline itemset/sequence encoding is given in Listing 1.3, where the first
two rules specify the conditions (a) and (b) for skyline itemsets as specified in Sect. 2.
� �

1 % if V appears in a valid pattern I, derive in(V,I)
2 in(V,I) :- seq(I,V,P), valid(I).
3 % I is not a subset of J if I has V that J does not have
4 not_subset(J) :- selected(I), valid(J), I != J,
5 seq(I,V,P), not in(V,J).
6 % if for a subseq <V,W> in I there is V followed
7 % by W in J then deduce domcand(V,J)
8 domcand(V,J,P) :- selected(I), seq(I,V,P), seq(I,W,P+1), I != J
9 valid(J), seq(J,V,Q), seq(J,W,Q’), Q’>Q.

10 % if domcand(V,J) does not hold for some V in I
11 % and a pattern J then derive not dominated by(J)
12 not_dominated_by(J) :- selected(I), seq(I,V,P), seq(I,W,P+1),
13 I != J, valid(J), not domcand(V,P,J).
14 % if neither not dominated by(J) nor not subset of(J)
15 % are derived for some J, then I is dominated
16 dominated :- selected(I), valid(J), I != J,
17 not not_subset_of(J), not not_dominated_by(J).
� �

Listing 1.4. Maximal sequence encoding

SequenceMining. The subpattern relation for sequences is slightly more involved, than
for itemsets, as it preserves the order of elements in a pattern. To recall, a sequence S
is included in S′ iff an embedding e exists, such that S 
e S′.

In Listing 1.4 we present the encoding for maximal sequence mining. A selected
pattern is not maximal if it has at least one valid superpattern. We rule out patterns
that are for sure not superpatterns of a selected sequence. First, obviously J is not a
superpattern of I if I is not a subset of J (lines (4)–(5)), i.e., if not subset(J) is
derived, then J does not dominate I. If J is a superset of I then to ensure that I is
not dominated by J, the embedding existence has to be checked (lines (6)–(9)). I is not
dominated by J if an item exists in I, which together with its sequential neighbor cannot
be embedded in J. This condition is checked in lines (10)–(13), where domcand(V,
J, P) is derived if for an item V at position P and its follower, embedding in J can be
found.

The encoding for closed sequence mining is obtained from the maximal sequence
encoding analogously as it is done for itemsets. The rules for free sequence mining are
constructed by substituting lines (4)–(13) of Listing 1.4 with the following ones:
� �

4 not_superset(J) :- selected(I), in(V,J),
5 not in(V,I), I != J.
6 domcand(V,J) :- selected(I), seq(J,V,P), item(J,P+1,W),
7 item(I,V,Q), seq(I,W,Q’),Q’>Q, I != J.
8 not_dominated_by(J) :- selected(I), valid(J), I != J,
9 seq(J,V,P), seq(J,W,P+1),

10 not domcand(V,J).
� �

Finally, the encoding for mining skyline sequences coincides with the skyline item-
sets encoding, which is provided in Listing 1.3.
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4 Evaluation

In this section we evaluate the proposed hybrid approach by comparing it to the existing
declarative pattern mining methods: ASP model for sequences from [5] and Dominance
Programming (DP) from [16]. We do not consider the itemset mining ASP model [13],
since it focuses only on frequent itemset mining and is not applicable to the construction
of condensed representations under constraints as in [16]. Moreover, we do not perform
comparison with dedicated algorithms designed for a specific problem type; these are
known to be more efficient than declarative mining approaches [17].

More specifically, we investigate the following experimental questions.

– Q1: how does the runtime of our method compare to the existing ASP-based
sequence mining models?

– Q2: what is the runtime gap between the specialized mining languages such as dom-
inance programming and our method?

– Q3: what is the influence of local constraints on the runtime of our method?

In Q1 we compare our work with the ASP-based model from [5]. In Q2 we measure
the runtime difference between specialized itemset mining languages [16] and our ASP-
based model. Finally, in Q3 we estimate the runtime effect of adding local constraints.

We report evaluation on 2 transaction datasets,2 Mushrooms (8124 transac-
tions/119 items) and Vote (435/48), and on 3 sequence datasets (full),3 JMLR (788
sequences/3847 distinct symbols), Unix Users (9099/4093), and iPRG (8628/21). All
experiments have been performed on a desktop with Ubuntu 14.04, 64-bit environment,
Intel Core i5-3570 4xCPU 3.40 GHz and 8 GB memory using clingo 4.5.44 and C++14
for the wrapper. The timeout was set to one hour. Free pattern mining demonstrates the
same runtime behavior as closed, due to the symmetric encoding, and is thus omitted.

To investigate Q1, in Fig. 1a, we compare the ASP model [5] with our method on
the default 200 sequence sample, generated by the tool5 from [5]. We performed the
comparison on the synthetic data, as the sequence-mining model [5] failed to compute
condensed representations on any of the standard sequence datasets for any support
threshold value within the timeout. One can observe that our method consistently out-
performs the purely declarative approach [5] and the advantage naturally becomes more
apparent for smaller frequency threshold values.

In Figs. 1b, c and d (the point 0.05 for JMLR is a timeout), we present the runtimes
of our method for maximal, closed and skyline sequential pattern mining settings on
JMRL, Unix Users and iPRG datasets. In contrast to [5], our method managed to pro-
duce results on all of these datasets for reasonable threshold values within a couple of
minutes.

To investigate Q2, we compare out-of-the-box performance of DP [16] with our
approach on maximal, closed and skyline itemset mining problems using standard

2 From https://dtai.cs.kuleuven.be/CP4IM/datasets/.
3 From https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html.
4 http://potassco.sourceforge.net.
5 https://sites.google.com/site/aspseqmining.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
http://potassco.sourceforge.net
https://sites.google.com/site/aspseqmining
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(a) Comparing with ASP sequence model [5]
on the 200 generated sequences (closed)

(b) Maximal sequence patterns

(c) Closed sequence patterns (d) Skyline sequence patterns

Fig. 1. Investigating Q1: comparison with pure ASP model (a) and maximal (b), closed (c), and
skyline (d) sequence mining on JMLR, Unix Users, and iPRG datasets.

datasets Vote and Mushrooms. As we see in Figs. 2a and b, on average, DP is one-
to-two orders of magnitude faster; this gap is, however, diminishing as the minimum
frequency increases. Surprisingly, our approach is significantly faster than DP out-of-
the-box for skyline patterns (Fig. 2c); this holds also for the Mushrooms dataset, not
presented here.

Fine-tuning parameters of DP by changing the order in which operators are applied
within the system (skyline+ option) allowed to close this gap. With this adaptation
DP demonstrates one-to-two orders of magnitude better performance, as can be seen
in Fig. 2c. However, fine-tuning such a system requires the understanding of its inner
mechanisms or exhaustive application of all available options.

To address Q3 we introduced three simple local constraints for the itemset mining
setting from Q2: two size constraints size(I) > 2 and size(I) < 7 and a cost constraint:
each item gets weight equal to its value with the maximal budget of n, which is set to
20 in the experiments.

In Fig. 2d, we present the results for closed itemset mining with and without local
constraints (experiments with other global constraints demonstrate a similar runtime
pattern and are not depicted here for space reasons). Local constraints ensure better
propagation and speed up the search. One of the key design features of our encoding
is the filtering technique used to select candidate patterns among only valid patterns.
Its effect can be clearly seen, e.g., for the Vote dataset in Fig. 2d, where for certain
frequencies the runtime gap is close to an order of magnitude.
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(a) Maximal itemset mining: comparing with
DP on Vote and Mushrooms

(b) Closed itemset mining: comparing with DP
on Vote and Mushrooms

(c) Skyline itemset mining: comparing with
out-of-the-box and fine-tuned DP on Vote

(d) Closed itemset mining: our method with
(w/o) local constraints on Vote and Mushrooms

Fig. 2. Investigating Q2: comparison with DP [16] (a, b, c); and Q3: the effect of local constraints
on runtime (d)

In all experiments, Step 1 of our method contributes to less than 5% of runtime.
Overall, our approach can handle real world datasets for sequential pattern mining as
demonstrated in Q1. In many cases its performance is close to the specialized mining
languages, as shown in Q2. Finally, as demonstrated in Q3 various local constraints can
be effectively incorporated into our encoding bringing additional performance benefits.

5 Related Work

The problem of enhancing pattern mining by injecting various user-specified con-
straints has recently gained increasing attention. On the one hand, optimized dedicated
approaches exist, in which some of the constraints are deeply integrated into the min-
ing algorithm, e.g., [19]. On the other hand, declarative methods based on Constraint
Programming [15,17,21], SAT solving [11,12] and ASP [5,9,13] have been proposed.

Techniques from the last group are the closest to our work. However, in contrast
to our method, they typically focus only on one particular pattern type and consider
local constraints and condensed representations in isolation [20,23]. The works [7,16]
focused on CP-based rather than ASP-based itemset mining and did not take into
account sequences unlike we do. The authors of [5] studied declarative sequence min-
ing with ASP, but in contrast to our approach, optimized algorithms for frequent pattern
discovery are not exploited in their method. A theoretical framework for structured
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pattern mining was proposed in [8], whose main goal was to formally define the core
components of the main mining tasks and compare dedicated mining algorithms to their
declarative versions. While generic, this work did not take into account local and global
constraints and neither has it been implemented.

In [5,13], purely declarative ASP methods have been considered; unlike our app-
roach, they do not admit integration of optimized mining algorithms and thus lack prac-
ticality. In fact, the need for such an integration in the context of complex structured
mining was even explicitly stated in [18] and in [10], which study formalizations of
graph mining problems using logical means.

6 Conclusion

We have presented a hybrid approach for condensed itemset and sequence mining,
which uses the optimized dedicated algorithms to determine the frequent patterns and
post-filters them using a declarative ASP program. The idea of exploiting ASP for
pattern mining is not new; it was studied for both itemsets and sequences. However,
unlike previous methods we made steps towards optimizing the declarative techniques
by making use of the existing specialized methods and also integrated the dominance
programming machinery in our implementation to allow for combining local and global
constraints on a generic level.

One of the possible future directions is to generalize the proposed approach into
an iterative technique, where dedicated data mining and declarative methods are inter-
linked and applied in an iterative fashion. More specifically, all constraints can be split
into two parts: those that can be effectively handled using declarative means and those
for which specialized algorithms are much more scalable. Answer set programs with
external computations [4] possibly could be exploited in this mining context.

Another promising but challenging research stream concerns the integration of data
decomposition techniques into our approach. Here, one can divide a given dataset into
several parts, such that the frequent patterns are identified in these parts separately, and
then the results are combined.

Orthogonal to this, materialization of the presented ideas on other pattern types
including graphs and sequences of itemsets instead of sequences of individual symbols
is an interesting future direction.
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Abstract. Research on inconsistency-tolerant query answering usually
assumes that the terminological knowledge is correct, and only the facts
(ABox) need to be repaired. In this paper we study the problem of
answering instance queries over inconsistent ontologies, by repairing the
whole knowledge base (KB). Contrary to ABox repairs, when KB repairs
are considered, instance checking in DL-LiteHorn w.r.t. the brave seman-
tics remains tractable, and the intersection semantics allow for an any-
time algorithm. We also show that inconsistency-tolerant instance check-
ing w.r.t. ABox repairs is intractable even if only polynomially many
ABox repairs exist.

1 Introduction

Inconsistent-tolerant reasoning arose as a means of obtaining meaningful infor-
mation from an inconsistent knowledge base (KB). The main idea behind this
reasoning task is to consider the different ways in which the KB can be repaired
to avoid the inconsistency—or, more generally, any other observed error. The
most natural approach is to consider only consequences that follow from all
such repairs. This approach, which is at the root of the original consistent query
answering in databases [1], provides many logical guarantees. Most importantly,
it only yields answers that are certain in the sense that they will remain the
same, regardless of how the inconsistency is removed. However, providing these
answers tends to be computationally hard. In order to regain tractability, sev-
eral different semantics have been proposed [8,20]. Two notable examples are
the brave semantics that require the consequence to follow from at least one
repair, and the intersection semantics that limit reasoning to the intersection of
all repairs.

The computational complexity of dealing with all these semantics has been
thoroughly studied for a wide variety of description logics, which have the capa-
bility of expressing terminological knowledge along with facts [6,24,35]. A run-
ning assumption in all this previous work is that the terminological knowledge
is always correct, and hence repairs are only made on the data (ABox repairs).
However, this assumption is not always valid, since ontology engineering is a
very error-prone task.

In this work, we consider the problem of inconsistent-tolerant query answer-
ing where repairs allow also parts of the terminological knowledge to be removed,
c© Springer International Publishing AG 2017
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which we call KB repairs. To the best of our knowledge, the only work where
a similar problem has been considered before is [12]. In that work, they con-
sider the problem of inconsistency-tolerant query answering over KB repairs, in
a different logic. To guide our complexity analysis, we focus on instance check-
ing in the light-weight description logic DL-LiteHorn. This choice is motivated
by DL-LiteHorn being the largest member of the DL-Lite family where instance
checking remains tractable (w.r.t. so-called KB complexity). For the scope of
this paper, we focus only on instance checking as a first step towards dealing
with conjunctive queries. Moreover, we do not analyse the data complexity since
the problem depends strongly on the input terminological knowledge.

We show that under KB repairs, brave instance checking remains tractable.
Although cautious and IR semantics become conp-complete, we provide an any-
time algorithm for the latter, based on methods for enumerating minimal incon-
sistent subKBs. Afterwards, we revisit the case of ABox repairs. We show that
hardness of this problem goes deeper than previously implied, as brave and
cautious instance checking cannot be solved in polynomial time even if only
polynomially many ABox repairs exist.

2 Preliminaries

We start by introducing the description logic DL-LiteHorn [4], along with the
main reasoning problems that we consider in this paper. The importance of
looking at DL-LiteHorn is that it is one of the largest members of the DL-Lite
family that remains tractable w.r.t. combined complexity.

Let NC , NR, and NI be mutually disjoint sets of concept, role, and individual
names, respectively. The classes of DL-Lite concepts B, and roles R are defined,
respectivley, by the syntax rules:

B ::= A | ∃R | ⊥
R ::= P | P−

where A ∈ NC and P ∈ NR. A DL-LiteHorn TBox is a finite set of concept
inclusions (CIs) of the form B1 � · · · � Bn � B, n ≥ 1, where each B,Bi is a
concept, and role inclusions (RIs) R1 � R2, where R1, R2 are roles. An ABox is
a finite set of assertions of the form A(a) or P (a, b) with A ∈ NC , P ∈ NR, and
a, b ∈ NI . A knowledge base (KB) is a pair (T ,A), where T is a TBox and A an
ABox.

The semantics of this logic is based on interpretations. An interpretation is
a pair I = (ΔI , ·I), where ΔI is a non-empty set called the domain and ·I is
the interpretation function that maps every a ∈ NI to an element aI ∈ ΔI ,
every A ∈ NC to a set AI ⊆ ΔI , and every P ∈ NR to a binary relation
RI ⊆ ΔI ×ΔI . This interpretation function is extended to concepts and roles by
setting (P−)I := {(y, x) | (x, y) ∈ P I}, ∃RI := {x ∈ ΔI | ∃y.(x, y) ∈ RI}, and
⊥I := ∅. The interpretation I satisfies the CI B1�· · ·�Bn � B if

⋂n
i=1 BI

i ⊆ BI .
It satisfies the assertions A(a) and P (a, b) if aI ∈ AI and (aI , bI) ∈ P I , respec-
tively. This interpretation is a model of the TBox T (ABox A, respectively), if
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it satisfies all the CIs in T (all the assertions in A, respectively). It is a model
of the KB (T ,A) if it is a model of both, T and A.

To simplify the notation, throughout this paper we will often speak of KBs as
finite sets of CIs and assertions, unless the distinction between ABox and TBox
is relevant. Set operations between KBs are defined in the obvious manner, by
operating over each component. For example, if K = (T ,A) and K′ = (T ′,A′),
then K ∩ K′ := (T ∩ T ′,A ∩ A′) and K ∪ K′ := (T ∪ T ′,A ∪ A′).

Two of the most basic reasoning problems in description logics are deciding
consistency of a KB and instance checking. A KB is consistent if it has a model.
The individual name a is an instance of the concept B w.r.t. the KB K (denoted
by K |= B(a)) if aI ∈ BI holds for all models I of K. It is known that deciding
consistency and instance checking in DL-LiteHorn is polynomial on the size of
the KB, which is usually known as the KB complexity in the query answering
literature.

When a KB is inconsistent, its lack of models means that all logical conse-
quences follow trivially. In particular, every individual is an instance of every
concept w.r.t. an inconsistent KB. Thus, instance checking is uninformative in
this case. Inconsistency-tolerant semantics have been introduced as a way to
extract meaningful information from inconsistent KBs by considering some or
all the ways in which the inconsistency can be avoided through a repair.

Definition 1. Let K = (T ,A) be an inconsistent KB. A KB repair of K is a
consistent KB K′ = (T ′,A′) with T ′ ⊆ T ,A′ ⊆ A such that for all T ′ ⊆ T ′′ ⊆ T
and all A′ ⊆ A′′ ⊆ A it holds that (T ′,A′′) and (T ′′,A′) are inconsistent.

An ABox repair of K is a maximal (w.r.t. set inclusion) subset A′ ⊆ A such
that (T ,A′) is consistent.

Intuitively, a KB repair is obtained by removing the least amount of axioms
from a KB to regain consistency. An ABox repair is similar, but assuming that
the TBox is correct, thus removing only assertions from the ABox. This latter
notion is the one most typically used in the literature of inconsistency-tolerant
reasoning. For the rest of this paper, we will use the generic term repair to
encompass both, KB- and ABox repairs.

It is easy to see that repairs are not unique in general. In fact, a single KB may
contain exponentially many repairs (see e.g. [22]). We denote by RepK the set of
all repairs of K. Depending on how these repairs are used, different inconsistency-
tolerant semantics can be defined. We present the three most commonly studied,
focusing on the case of instance checking.

Definition 2. Let K be an inconsistent KB, a ∈ NI and B a concept. We say
that a is a:

– cautious instance of B (K |=c B(a)) if R |= B(a) holds for every R ∈ RepK;
– brave instance of B (K |=b B(a)) if R |= B(a) holds for some R ∈ RepK;
– intersection repair (IR) instance of B (K |=IR B(a)) if

⋂
R∈RepK

R |= B(a)
holds.
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When it is relevant to distinguish the class of repairs under consideration, we will
denote it through a superscript on the entailment relation. Thus, K |=KB

c B(a)
refers to cautious entailment w.r.t. the set of all KB repairs, while for K |=A

b B(a)
the inference is made w.r.t. ABox repairs only.

Notice that every IR instance is a cautious instance, and cautious instances
themselves are always brave, as long as the input KB is inconsistent. Interest on
IR semantics has arisen since they have been shown to provide some tractability
guarantees for different scenarios.

The dual notion of a repair is that of a MinA—also known as justification [16,
18,28] or MIPS [33,34]— which is a minimal inconsistent sub-KB of K. We
will denote the set of all MinAs as MinK. It is well known that repairs and
MinAs are dual in the sense that the set of all MinAs can be obtained from all
the justifications, and vice versa, through the complementation of all Hitting
Sets [5,31].1 A simple consequence of this duality is that the union of MinAs
complements the intersection of repairs; that is,

⋃
M∈MinK M = K \

⋂
R∈RepK

R.
Notice that although the computation of Hitting Sets is an important problem
with applications in many fields of computer science [15], its precise complexity
remains unknown. It has been shown that this problem can be solved in a time
bound below no(log n), which implies that it is most likely not conp-hard [14]. It
is conjectured that, together with several computationally equivalent problems,
it forms a class properly contained between p and conp [13].

An important property that will be useful in the following sections is that if
K is an inconsistent KB, then every consistent sub-KB of K can be extended to
a repair, by adding axioms that do not affect its consistency. Analogously, every
inconsistent sub-KB of K can be reduced to a MinA, by removing all superfluous
axioms. Thus, for instance, brave instance checking is equivalent to deciding the
existence of a consistent sub-KB R (not necessarily maximal w.r.t. set inclusion)
that entails the desired instance relation.

Finally, to simplify the presentation of the paper, we assume w.l.o.g. that the
concept ⊥ appears only in CIs of the form B1 � · · · � Bn � ⊥, where for every
i, 1 ≤ i ≤ n, Bi = ⊥. Notice that a CI that contains ⊥ on its left-hand side
is trivially satisfied by every interpretation, and would hence appear in every
repair, and in no MinA.

3 Instance Checking Under KB Repairs

In this section, we study the case where KB repairs are taken into account.
The case of ABox repairs will be the focus of the following section. As the
result depends on the whole KB, including the TBox, it does not make much
sense to consider the data complexity, in which only the size of the ABox is
taken into account. Thus, in the following we focus on the KB complexity only,
without mentioning it explicitly in every instance. In previous work [8] it has
been shown that inconsistency-tolerant instance checking in DL-LiteHorn w.r.t.

1 A hitting set for e.g. RepK is a set S that satisfies S ∩ R �= ∅ for every R ∈ RepK.
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ABox repairs is hard in general, even if one focuses on the simpler brave and
intersection semantics. We show that the same does not hold if KB repairs are
taken into account. Indeed, as we show next, brave instance checking remains
tractable in this case.

Theorem 3. Brave instance checking w.r.t. KB repairs can be decided in poly-
nomial time.

Proof. Given a KB K = (T ,A) and an individual a ∈ NI , let Aa be the sub-
ABox of A that contains only the assertions that refer to a; that is, Aa contains
all axioms A(a), P (a, b), and P (b, a) appearing in A with A ∈ NC , P ∈ NR,
and b ∈ NI . Define T� := T \ {B1 � · · · � Bn � ⊥ ∈ T }, to be the sub-
TBox of T that does not use ⊥. Clearly, a is a brave instance of the concept
B iff (T�,Aa) |= B(a). Since (standard) instance checking in DL-LiteHorn is
polynomial, we obtain the desired upper bound. ��

Unfortunately, tractability does not extend to the other two semantics. As we
show next, hardness for cautious and IR instance checking is a consequence of
the intractability of finding simple paths in a graph that cross through a given
edge.

Theorem 4. Cautious and IR instance checking are conp-complete.

Proof. The upper bounds are obvious, so we focus only on showing hardness
through a reduction from the following np-hard problem: given a directed graph
G = (V, E), two nodes v, v′ ∈ V and an edge e ∈ E , decide whether there is a
simple path from v to v′ in G that passes through e.

Let G = (V, E), v, v′ ∈ V, and e = (u, u′) ∈ E , be an instance of this decision
problem. We assume w.l.o.g. that the edge (v, v′) does not appear in E , and that
u, u′ are both different from v and v′. These cases can be dealt with easily. For
every w ∈ V \ {v, v′} create a concept name Bw, and additionally create two
individual names a, b. Then, we construct the DL-LiteHorn KB KG = (T ,A),
where

T := {Bw � Bw′ | (w,w′) ∈ E , v, v′ /∈ {w,w′}} ∪ {Bw � ⊥ | (w, v′) ∈ E},
A := {Bw(a) | (v, w) ∈ E} ∪ {Bu(b)}.

It is easy to see that there is a simple path from v to v′ passing through (u, u′)
iff there is a repair for KG that does not contain the axiom Bu � Bu′ . Thus,
such a path exists iff b is not a cautious instance nor an IR instance of Bu′ . ��

Interestingly, despite this hardness result, the duality between MinAs and repairs
can be exploited to produce an any-time algorithm for deciding intersection
repair instances. The main idea of this algorithm consists on enumerating all the
possible MinAs for inconsistency of the KB. Since the union of all MinAs and
the intersection of all repairs are complements of each other, any set of MinAs
provides an approximation of the intersection of all repairs. If it is possible to
enumerate all MinAs with only a polynomial (on the size of the KB) delay
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between each new output, then we can efficiently improve this approximation in
polynomial time steps.

A first step towards developing this algorithm is to show that MinAs can
be enumerated in polynomial delay. It was previously shown that this holds
for DL-LiteHorn TBoxes, but the case in which an ABox considered was left
open [29,30]. We build on those previous ideas and provide an algorithm capable
of handling ABoxes too.

First, we make a small simplifying assumption. For the following approach,
we assume that the TBox contains no role inclusions R1 � R2. Notice that, in
the case of DL-LiteHorn, this assumption is without loss of generality since the
role inclusion R1 � R2 can be equivalently expressed through the CI ∃R1 � ∃R2.

Our algorithm is based on the notion of a hypergraph. Formally, a (directed)
hypergraph is a pair H = (V, E), where V is a finite set of vertices and E is a set of
edges of the form V → v, where V ⊆ V and v ∈ V. Given two vertices v, w ∈ V,
a path from v to w in H is a sequence of edges P = V1 → v1, . . . , Vn → vn such
that for every i, 1 ≤ i ≤ n, Vi ⊆ {v} ∪

⋃i−1
j=1{vj} and vn = w. Such a path is

called simple if no subsequence of P is also a path from v to w.
Given a KB K = (T ,A), we construct a directed hypergraph HK as follows.

The set of vertices VK of HK contains one element va for each individual name a
appearing in the ABox A, and an element wB for every concept B appearing in
the KB K; that is, either in the TBox or in the ABox. We call the vertices of the
form va individual nodes. The set of hyperedges of this hypergraph is defined by
EK := ET ∪ EA, where

EA := {va → wB | B(a) ∈ A} ∪ {va → w∃R, vb → w∃R− | R(a, b) ∈ A},

ET := {{wB1 , . . . , wBn
} → wB | B1 � · · · � Bn � B ∈ T }.

It is easy to see that K is inconsistent iff there is a path from some va to w⊥ in
HK. More interestingly, every simple path of this kind corresponds to a MinA
for the inconsistency of K. Unfortunately, this relationship between simple paths
and MinAs is not bijective. As the following example shows, two simple paths
may correspond to the same MinA.

Example 5. Consider the DL-LiteHorn KB Kexa = (Texa,Aexa) defined by

Aexa := {P (a, b), P (b, a), C(a)}
Texa := {∃P � ∃P− � B, B � ⊥, C � ∃P � ⊥}.

The hypergraph HKexa is depicted in Fig. 1(a). Two simple paths from an indi-
vidual node to w⊥ are shown below (Figs. 1(b) and (c)). Clearly, both paths
correspond to the same MinA M = (T1,A1) with A1 := {P (a, b), P (b, a)} and
T1 := {∃P � ∃P− � B,B � ⊥, }.

In order to enumerate all MinAs with polynomial delay, we thus try to enu-
merate all the simple paths leading from an individual node to w⊥, but taking
care of removing all those paths that would yield a repeated MinA. The idea
behind the enumeration of all simple paths in a hypergraph is, given one such
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va

vb

w∃P

w∃P−

wB w⊥

wC

(a) HKexa

va

vb

w∃P

w∃P−

wB w⊥

(b) P1

va

vb

w∃P

w∃P−

wB w⊥

(c) P2

Fig. 1. The hypergraph HKexa from Example 5, and two simple paths.

path, construct a set of sub-hypergraphs that partition the set of all remaining
simple paths from an individual node to w⊥, in the sense that each such path
exists in exactly one of the generated sub-hypergraphs. The main insight needed
for dealing with the repetition of MinAs is that role assertions R(a, b) generate
two hyperedges in HK, even though they correspond to the same ABox axiom.
Thus, these two hyperedges need to be always considered simultaneously: either
they are both included, or both excluded in the search of a new simple path.

One (arbitrary) simple path from an individual node to w⊥ can be found in
polynomial time using standard techniques [25,27]. Given such a path P, let va

be the (unique) individual node appearing in it. Then, by definition P is of the
form L1 → r1, . . . , Ln → rn, where n is the size of P. Intuitively, the sequence
defined by P provides an ordering of the edges in such a way that all the required
nodes to traverse an edge are visited before the head is observed.

Given P and n := |P|, we define n subgraphs of HK as follows. For each
i, 1 ≤ i ≤ n, let

H′
i := HK \

⋃

i<j≤n

{L → r ∈ HK | r = rj , L = Lj}.

Then we define

Hi :=

{
H′

i \ {va → w∃R, vb → w∃R−} if Li → ri was created by R(a, b) ∈ A,

H′
i \ {Li → ri} otherwise.

Example 6. Consider again the KB Kexa from Example 5, and the path P1

depicted in Fig. 1(b), which is defined by the sequence

va → w∃P , va → w∃P − , {w∃P , w∃P −} → wB , wB → w⊥
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The four subgraphs H1, . . . ,H4 of HKexa obtained through this path are depicted
in Fig. 2. As it can be seen from the figure, only H4 contains a path from an
individual node to w⊥. This path represents the only other MinA for the incon-
sistency of Kexa.

va

vb

w∃P

w∃P−

wB w⊥

wC

(a) H1

va

vb

w∃P

w∃P−

wB w⊥

wC

(b) H2

va

vb

w∃P

w∃P−

wB w⊥

wC

(c) H3

va

vb

w∃P

w∃P−

wB w⊥

wC

(d) H4

Fig. 2. The subgraphs H1, . . . ,H4 of HKexa obtained from P1.

Intuitively, each hypergraph Hi can only contain paths reaching w⊥ in which
the last edges coincide with the last n−i edges of the path P. For that reason, in
the previous example only H4 contains the edge {wC , w∃P } → w⊥; in all other
subgraphs, this edge is removed to guarantee that only paths ending with the
edge wB → w⊥ are considered. Taking this intuition into account, it is easy to
see that the following result holds.

Lemma 7. Let P be a simple path from some individual node va to w⊥ in HK,
and Hi, 1 ≤ i ≤ n := |P| constructed as above. Then, for every MinA M, if
P ⊆ HM, then there exists exactly one i, 1 ≤ i ≤ n such that HM contains a
MinA for inconsistency in Hi.

Notice that the sets Hi can be all computed in polynomial time. Hence, Lemma 7
suggests an approach for enumerating all MinAs with only polynomial delay
between answers. Recall here that our interest is not in enumerating these MinAs
per se, but rather on finding their union to answer intersection repair instance
queries in any-time. Algorithm 1 shows an approach for doing this. The algo-
rithm iteratively updates the intersection of all repairs (stored in the set U) and
checks whether this KB still entails the instance query q. As soon as the answer is
no, the algorithm stops and returns this answer. Otherwise, it answers yes. This
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Algorithm 1. Any-time intersection repair instance query answering.
Procedure ic(K,q) (K inconsistent DL-LiteHorn KB, q instance query)

1: U ← K
2: all-MinAs(HK,q)
3: return “yes”

Procedure all-MinAs(HK,q)

1: M ← a MinA in HK
2: U ← U \ M
3: if U �|= q then return “no”

4: for 1 ≤ i ≤ |M| do
5: compute Hi from M
6: if there is a path from an individual node to w⊥ in Hi then
7: all-MinAs(Hi,q)

algorithm can be stopped at any time, in which case, only an (upper) approxi-
mation of

⋂
R∈RepK

R is computed. Although the answer (yes) in this case is not
guaranteed to be correct, the approximation gets tighter in polynomial intervals.

We now turn our attention to inconsistency-tolerant instance query answering
when repairs are limited to removing assertions from the ABox only.

4 Instance Checking Under ABox Repairs

Answering inconsistency-tolerant instance queries under ABox repairs has been
shown to be harder, in terms of computational complexity, to standard instance
query answering over KBs [6–8]. The blame for this increase in complexity is
often laid on the exponential number of repairs available. We argue that the
issue goes deeper than this argument suggests showing that brave and cautious
instance checking are hard already for KBs having polynomially many ABox
repairs. One reason behind this result is the fact that even knowing whether a
set of repairs is equal to RepK is computationally expensive.2

Definition 8. Let K be a KB and R a set of ABox repairs of K. The problem
all-reps consists on deciding whether R = RepK.

Theorem 9. all-reps is conp-complete.

Proof. We prove conp-hardness through a reduction from the negation of the
following np-complete problem [31]: given a monotone Boolean formula ϕ (that
is, a propositional formula without negations) and a set V of valuations of the
variables in ϕ, decide whether there exists a maximal valuation V of the variables
in ϕ that falsifies ϕ and does not contain any valuation in V.3

2 Throughout this section, RepK denotes the set of all ABox repairs.
3 For simplicity, we identify a propositional valuation V with the set of variables that

it makes true.
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Given an instance ϕ,V of this problem, let sub be the set of all subformulas
of ϕ, and csub the subset of sub not containing any propositional variable. For
each ψ ∈ sub, we create a concept name Aψ, and for every ψ ∈ csub define the
TBox

Tψ :=

{
{Aξ1 � Aξ2 � Aψ} if ψ = ξ1 ∧ ξ2

{Aξ1 � Aψ, Aξ2 � Aψ} if ψ = ξ1 ∨ ξ2.

Let now

Tϕ,V :=
⋃

ψ∈csub

Tψ ∪ {Aϕ � ⊥}

Aϕ,V := {Ax(a) | x is a variable from ϕ}.

It is easy to see that R := {(Tϕ,V, {Ax(a) | x ∈ W}) | W ∈ V} is the set of all
ABox repairs of (Tϕ,V,Aϕ,V) iff every maximal valuation falsifying ϕ contains
some W ∈ V. ��

Since all repairs can be computed in exponential time, e.g. by testing all possible
sub-KBs, this theorem intuitively means that there exist KBs that have poly-
nomially many repairs, but finding them all requires super-polynomial time. In
terms of enumeration complexity theory, the set of all repairs cannot be com-
puted in output polynomial time [17].

Obviously, Theorem 9 does not imply that inconsistency-tolerant semantics
are necessarily hard on the number of repairs. However, it does give an indica-
tion that efficient algorithms cannot rely on finding all repairs. We strengthen
previous results by showing that these problems remain hard even in the number
of ABox repairs. First, we recall the notion of repair-polynomial from [22].

Definition 10. An inconsistency-tolerant decision problem w.r.t. a KB K is
called repair-polynomial if it can be solved by an algorithm that runs in polyno-
mial time on the size of both K and RepK.

Theorem 11. Cautious instance checking w.r.t. ABox repairs is not repair-
polynomial, unless p = np.

Proof. We show this result through a reduction similar to the one presented in
the proof of Theorem 9. Given ϕ and V, we construct the TBoxes Tψ and the
ABox Aϕ,V as in the forementioned proof. But now we set

T ′
ϕ,V :=

⋃

ψ∈csub

Tψ ∪ {Aϕ � ⊥} ∪ {
�

x∈W
Ax � B | W ∈ V},

where B is a fresh concept name. Then a is a cautious instance of B w.r.t.
Kϕ := (T ′

ϕ,V,Aϕ,V) under ABox repairs iff every maximal valuation falsifying ϕ
contains some W ∈ V. Notice that (T ′

ϕ,V,Aϕ,V) has as many ABox repairs as ϕ
has maximal valuations falsifying it.
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Suppose now that brave instance checking was repair-polynomial. Then,
there would be an algorithm for solving it that would run in time bounded
by p(K, |RepK|), where p is a polynomial. Then, we can decide whether there
is a new maximal valuation falsifying ϕ by running this algorithm for time
p(Kϕ, |RepKϕ

|). If it answers no or does not finish in that time bound, then
a new valuation exists. Otherwise, the no new valuation exists. ��

A similar method can be used to prove that brave instance checking is not
repair-polynomial either.

Theorem 12. Brave instance checking w.r.t. ABox repairs is not repair-poly-
nomial, unless p = np.

Proof. We use an idea similar to the proof of Theorem 11, but using a reduction
from the following np-complete problem [5,10,11]: given a monotone Boolean
formula ϕ and a set V of valuations, decide whether there exists a minimal
valuation V that satisfies ϕ and does not contain any valuation in V.4

Given an instance ϕ,V of this problem, we construct the TBoxes Tψ, ψ ∈ csub
and the ABox Aϕ,V as in the proof of Theorem 9. We define

T ′′
ϕ,V :=

⋃

ψ∈csub

Tψ ∪ {
�

x∈W
Ax � ⊥ | W ∈ V}.

Then, a is a brave instance of Aϕ iff there exists a valuation satisfying ϕ that does
not contain any W ∈ V. Using the same argument from the proof of Theorem 11,
this shows that brave instance checking is not repair-polynomial. ��

To the best of our efforts, we have not been able to find a similar hardness
result for IR instance checking. However, it is possible to show that the any-time
method described in the previous section cannot work when dealing with ABox
repairs. The reason behind this negative result is that ABox MinAs cannot be
enumerated with polynomial delay. In fact, they cannot be enumerated in output
polynomial time.

Theorem 13. Given an inconsistent KB K and a set M of ABox MinAs of K,
deciding whether M = MinK is conp-complete.

Proof. We show hardness through a reduction from the same np-complete prob-
lem used in the proof of Theorem 12.

Given an instance ϕ,V of this problem, we construct Tϕ,V and Aϕ,V as in
the proof of Theorem 9. Then, M := {(Tϕ,V, {Ax(a) | x ∈ W}) | W ∈ V} is the
set of all ABox MinA of (Tϕ,V,Aϕ,V) iff every minimal valuation satisfying ϕ
contains some W ∈ V. ��

Using standard techniques from enumeration complexity (see e.g. [19]), it is easy
to show that Theorem 13 implies the impossibility of enumerating in output
polynomial time.
4 One can think of this problem as the dual of the one considered in the proof of

Theorem 9.



226 R. Peñaloza

Corollary 14. All ABox MinAs of an inconsistent DL-LiteHorn KB cannot be
enumerated in output polynomial time (unless p = np).

5 Conclusions

We have studied the complexity of answering inconsistency-tolerant instance
queries under different semantics considered in the literature for the description
logic DL-LiteHorn. To the best of our knowledge, we are the first to consider any
case of inconsistent-tolerant query answering problems under KB repairs. In the
literature, the TBox is typically considered to be correct and fixed [20,21,23,24,
32,35].

We have shown that considering KB repairs reduces the complexity of incon-
sistency-tolerant instance checking. Indeed, although cautious and IR instance
checking is shown to be intractable, the brave semantics can be verified in polyno-
mial time in this case. Moreover, we provided an any-time algorithm for verifying
IR instances. The algorithm is based on enumerating all MinAs with polyno-
mial delay, and verifying that the complement of their union (which increasingly
approximates the intersection of all repairs) still entails the desired instance
query. A simple consequence of this algorithm is that IR instance checking is
MinA-polynomial ; that is, it can be solved in time polynomial on the size of the
KB and the number of MinAs.

For the cautious semantics, it remains open whether instance checking w.r.t.
KB repairs is repair-polynomial or MinA-polynomial. Given recent work on the
enumeration of maximal consistent subformulae of a Horn formula [26], it is
likely that repairs in DL-LiteHorn can be enumerated with polynomial delay,
which would suggest a repair-polynomial algorithm for cautious instance check-
ing. In practical terms, however, a MinA-polynomial algorithm would be more
interesting. Indeed, empirical analyses have shown that realistic ontologies typ-
ically contain very few MinAs, but a very large number of repairs [2,3,22].

When restricting to ABox repairs, we have shown that the causes for hardness
for the inconsistent-tolerant semantics go beyond the sheer number of repairs
available, as suggested in previous work. We have shown that brave and cautious
instance checking are not repair-polynomial. This means that these problems
may take super-polynomial time, even for KBs that have a polynomial number
of repairs. In addition, the any-time algorithm proposed for IR instance checking
under KB repairs cannot work for ABox repairs, since ABox MinAs cannot be
enumerated in output polynomial time, much less with a polynomial delay.

The study of repair-polynomial and MinA-polynomial algorithms is much
in the spirit of parameterized complexity theory [9]. In this context, repair-
polynomial is analogous to fixed-parameter tractability where the number of
repairs is the fixed parameter. It thus makes sense to try to understand the pre-
cise parameterized complexity class to which these problems belong. Dually, it
would be interesting to find other meaningful parameters under which tractabil-
ity can be regained.

Another important open question is the effect on the complexity when more
complex queries, such as conjunctive queries, are considered instead of the simple
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instance queries that were the scope of this paper. We conjecture that brave and
cautious conjunctive query answering is not repair-polynomial even under KB
repairs. A thorough analysis of this case will be the focus of future work.

We conclude by highlighting that there exist other inconsistency-tolerant
semantics beyond the three studied in this paper; see [8] for some examples.
These differ mainly on the properties of the repairs that are considered for
making an inference. If our conjecture is correct and all KB repairs from a
DL-LiteHorn KB can be enumerated with polynomial delay, then most of these
semantics will be repair-polynomial under KB repairs. However, this result is
unlikely to be helpful in practice. Thus, in future work we will focus on developing
specialized techniques and finding special cases for which inconsistency-tolerant
instance checking—and conjunctive query answering in general—remains
feasible.
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Abstract. We introduce ArgQL, a declarative query language, which
performs on a data model designed according to the principles of argu-
mentation. Its syntax is based on Cypher (language for graph databases)
and SPARQL 1.1 and is adjusted for querying dialogues, composed by
sets of arguments and their interrelations. We use formal semantics to
show how queries in ArgQL match against data in the argumentation
model. The execution is realized by translating both data and queries
into standard models for storage and querying.

1 Introduction

The recent evolution of social media and debate forums has caused a reshaping
of the Web, turning it into a worldwide podium, wherein humans accommo-
date their inherent need for socializing and expressing themselves. Due to the
easiness with which users can upload digital content, as well as the ability for
their involvement in public debates1, online communities have become popu-
lated with opinions and beliefs about political or social topics, with criticisms or
consultations and with reviews on products, services etc.

The process of human argumentation has been an object of longstanding the-
oretical studies, which have found their way into computational models [7,13] of
the area of argumentation. Roughly, these models address the representation and
reasoning requirements of drawing conclusions through the process of exchang-
ing arguments [9], with part of them to also be taking into account relevant
cognitive features like preferences [1], beliefs and intentions [2]. However, the
process of identifying arguments according to certain criteria and allowing for
navigation in a graph of interconnected arguments has been given less attention.

To cover this gap, we introduce ArgQL (Argumentation Query Language) a
declarative language, designed on a data model for argumentation. ArgQL con-
stitutes a first step to understand the informational and theoretical requirements
of searching in debates. Yet, there are still miscellaneous obstacles until being
able to query real debates on the web, with processing textual information to be
the most difficult to overcome. The fact that there is a considerable amount of
people involved in argumentation, amplifies the significance for a language with
relevant terminology. ArgQL offers a simple and quite elegant way to express
1 http://www.debate.org.
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queries of the form: “How an argument with a given conclusion is attacked?”.
To the best of our knowledge, this is the first effort to approach argumentation
from the scope of data models and query languages.

In this document, we show some initial results. The requirements we set for
ArgQL, led us use a hybrid syntax, with features from both SQL-like and graph
database query languages. The semantics of ArgQL are also presented. As for the
execution, we currently deal with the technical as well as the theoretical issues
lying in the translation of the data model and ArgQL, into RDF and SPARQL.

2 Related Work

There are no equivalent languages to directly compare the potentials of ArgQL.
Nevertheless, considerable efforts have been invested, to make steps closer to the
realization of the vision for a globally interconnected and computable web of
opinions [3,8]. A wide number of tools have been developed, that facilitate the
participation in online debates. A comprehensive review is found in [15]. Some
of them offer better visualization and exploration, such as DebateGraph2, others
support reasoning like Parmenides [5], while others allow for user engagement,
like Debatewise3.

AIF (Argument Interchange Format) [6] is an RDF ontology for arguments
and is considered to be the cornerstone to the realization of the opinion web.
Accompanied with a set of mappings from the different argument representations
[4,16,17] to its concepts, AIF became the interlingua, which bridges arguments
among the various tools. These data are gathered into a public database AIFdb
[11] and queried by several search engines, like ArgDF [14]. DiscourseDB4, is
another equally interesting platform for exploring dialogues, with the extra fea-
ture of dialogues summarization.

To sum up, there is a wide number of systems that offer visualization and
semantic search in dialogues. For all of them, the process of querying dialogues,
merely constitutes an application field for the traditional query languages like
SQL or SPARQL. On the other hand, ArgQL highlights the different informa-
tion needs of such a process and focuses on designing solutions, that cover these
requirements. In the future, it could be integrated into the existing argumenta-
tion tools enriching them with extra semantics and capabilities.

3 A Formal Model for Arguments

Our argumentation model is defined by the tuple L = (P,−,�,→). P is an
infinite set of propositions and ℘(P) its powerset.

The mapping − : P → P, represents the notion of contrariness. We say that,
two propositions x, y ∈ P are conflicting iff x = y. Contrariness mapping is

2 http://debategraph.org/.
3 http://debatewise.org/.
4 http://discoursedb.org/.
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symmetric (if x = y, then y = x), anti-reflexive (x �= x) and non transitive (if
x = y and y = z, with x �= z, then x �= z). Given a subset P ′ ⊂ P, we say that
P ′ is inconsistent if ∃x, y ∈ P ′, s.t. y = x, otherwise it is consistent.

The mapping �⊆ P×P captures the equivalence on the informational content
between two propositions x, y ∈ P and we write it as x � y. Equivalence retains
the following properties: (i) Reflexivity: x � x (ii) Symmetry: if x � y, then
y � x (iii) Transitivity: if x � y and y � z, then x � z.

Mappings − and � will be later used to define the relations between argu-
ments. Given that they serve opposite representation needs, in order to resolve
the ambiguities caused by their coexistence in the same model, we demand the
satisfaction of the following constraints: ∀(x, y, z) ∈ P (i) if x � y then y �= x.
(ii) if x � y, then x � y and (iii) if x � y and y = z, then x = z

Finally, with → we denote the deduction from a set of propositions to a
conclusion. For example, when we write “a, b → c”, we say that propositions a, b
imply proposition c. Such expressions form arguments. In particular:

Definition 1 (Argument). An argument is a tuple a =
〈
pr, c

〉
, where pr ∈

℘(P) is a finite, consistent set, called premise set and c ∈ P is the main claim
of an argument, called conclusion. It holds that pr → c and c �∈ pr. With A we
refer to the infinite set of arguments.

The notions of contrariness and equivalence between propositions, allow us to
define two types of relations between arguments, attack and support, respectively.
The infinite set R ⊆ A × A keeps any relation between two arguments. Given
a relation r = (a1, a2) ∈ R, we denote by src(r) = a1 the source argument of r
and by dst(r) = a2 its destination.

Definition 2 (Attack). Attack relation is defined as: Ra = {(a1, a2) | a1, a2 ∈
A, a1 =

〈
pr1, c1

〉
, a2 =

〈
pr2, c2

〉
and c1 = c2 (rebut) or c1 ∈ pr2 (undercut)}

Definition 3 (Support). Support relation is defined as: Rs = {(a1, a2) |
a1, a2 ∈ A, a1 =

〈
pr1, c1

〉
, a2 =

〈
pr2, c2

〉
and c1 � c2 (endorse) or ∃p ∈ pr2, s.t.

p � c1 (backing)}
It holds that R = Ra ∪ Rs. It is also provable that Ra ∩ Rs = ∅, but for the

sake of space, the proof is omitted. A knowledge base conformed to the current
model has the form of a graph and we call it debate graph. In particular:

Definition 4 (Debate graph). A debate graph is a tuple D = (A′, R′), where
A′ ⊂ A is the set of argument nodes, while the set of edges R′, holding the
relations between arguments in A′, is defined as R′ = {(a1, a2)|a1, a2 ∈ A′ and
(a1, a2) ∈ R}.

The infinite set of all possible debate graphs is denoted as D. We define any
path in a debate graph as follows:

Definition 5 (Path). Given a debate graph D = 〈A′, R′〉, and two arguments
a, b ∈ A′, a path between a and b denoted as PD

a→b is a sequence of relations
r1, r2 . . . , rn ∈ R′, where n ≥ 1, src(r1) = a, dst(rn) = b and ∀i ∈ {1, .., n − 1}
it holds that dst(ri) = src(ri+1). A path is written as r1/r2/ . . . /rn.
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4 ArgQL Specification

4.1 Syntax

The syntax of ArgQL is Cypher-like5, a language for the Neo4j graph database.
The main idea is that it supports pattern expressions matching against data in
a knowledge base, designed according to the model described in Sect. 3. Like
any query language, ArgQL uses variables to bind data and they are prefixed
with ?. Let V be the infinite set of variables. We assume the set PV = P ∪ V.
Constant values for the propositions in P are represented as literals and they
are given in quotes. Figure 1 shows the BNF grammar. Note that, at this stage
of our work, we have not studied how the results of the query are returned,
thus the syntax does not contain any select-like statement, yet. In the future, we
intent to allow for returning more complex structures, such as complete parts
of dialogues. Reserved keywords of the language are in bold. They are not case
sensitive, but for the sake of space the respective rules have been omitted.

Fig. 1. Extended BNF for ArgQL

The main body of the query is included inside the match clause. ArgQL allows
to state multiple pattern expressions. A single pattern expression(rule pattern)
consists either of one argument pattern, or it can be followed by a sequence of
alternations between path patterns and another argument pattern. Next we will
discuss separately about the role of argument patterns and path patterns.
Argument patterns. They constitute fundamental elements of ArgQL, used
to match arguments. Generally, argument patterns represent expressions like:
find arguments with conclusion “some text”, written as 〈?pr, “some text”〉, or
find arguments with the proposition “some text” in their premise set, that cor-
responds to the argument pattern 〈?pr[/{“some text”}], ?c〉.
5 https://neo4j.com/developer/cypher-query-language/.

https://neo4j.com/developer/cypher-query-language/
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Typically an argument pattern ap can be either a single variable, which
matches any argument in A, or be of the form ap = 〈pr([filter])?, c〉, where
pr ∈ V and c ∈ PV . Variable pr matches the premise part of arguments and
essentially it takes values from ℘(P), whereas c matches the conclusion part and
may be either a variable or a constant proposition value. The occurrence of the
expression [filter] is optional. When existed, it adds constraints on the premises.
ArgQL supports a number of filters, that correspond to such constraints like the
requirement for a premise set to include some given propositions, or the premise
sets of two arguments to join etc. Later versions of the language will allow for
multiple filters on a premise part, but for now, we consider only a single one. The
following list presents the available filters. To formally describe them, we assume
the set s included in the filter, with s = {p1, . . . pn}, pi ∈ PV and 1 ≤ i ≤ n.
Inclusion: fincl =

[
/s

]
Requirement for s to be included in pr.

Jointness: fjoin =
[
.s

]
The sets pr and s must have common elements.

Disjointness: fdisj =
[
!s

]
The sets pr and s must be disjoint.

Equality: feq =
[

= s
]

The sets pr and s must be exactly the same.
Inequality: fineq =

[
! = s

]
The set pr must be different than s.

A matching instance of an argument pattern is an argument in A. The cases
where an argument pattern is a single variable, or it has the form 〈?pr, ?c〉 are
equal and they both match any argument in the knowledge base.

Path patterns. They are used to describe sequences of arguments that must be
matched (and the relations that connect them). A match of such an expression is
essentially a sub-graph from the debate graph. We exploit the syntax of SPARQL
1.1 [10] for property paths. In particular, a path pattern may indicate a path in
two ways. The direct one represents a path pattern as a sequence of relations
separated by the symbol ‘/’ (e.g. attack/undercut/support/ . . . ). The indirect
uses one of the ‘+’, ‘*’ numerical indicators to restrict the length of the path.
Expression path ‘+’ means one or more occurrences of path while the expression
path ‘*’n, with n ≥ 1, requires for exactly n repetitions of path. These two ways
can be mixed in arbitrary ways to support many complex types of path patterns.

Next, we give some representative examples of the supported match expres-
sions. The first captures a case from Dung semantics [7].

Q1. Find arguments which “defend” (attack their attackers) all arguments with
conclusion “cloning is immoral”.
match ?arg (attack/attack)+ <?pr, "cloning is immoral">

Q2. Match argument paths which include two sequences of the path
attack/support and one more attack and result to an argument, whose
premise set includes the proposition “cloning contributes positively to the
field of artificial insemination”.
match ?arg (attack/support)*2/attack
<?pr[/{"cloning contributes positively to the field of artificial

insemination"}], ?c>

Q3. Match pairs of arguments whose premise sets join each other.
match <?pr1, ?c1>, <?pr2

[
.{?pr1}

]
, ?c2>
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4.2 Semantics

In this section we describe the semantics of ArgQL. We define the set S =
P∪℘(P)∪A and a mapping function μ : S∪V �→ S, such that μ(x) = x, ∀x ∈ S.
For simplicity we will abuse notation and use μ also for argument patterns. For
example, given an argument pattern ap = 〈pr[filter], c〉, we denote by μ(ap)
the argument obtained by the substitution of pr with μ(pr) and c with μ(c), for
which, μ(pr) satisfies its filter if existed.

For the satisfiability of the filter f by the premise set, we restrict ourselves
to those mappings for pr, for which μ(pr) ⊂ ℘(P). We write μ(pr) � f to
describe that the matching set of propositions satisfies f . In order to describe
the semantics for �, we will need the set s, as was defined before. In accordance
with the argument pattern, we abuse notation also for s and write that μ(s) =
{μ(p1), . . . , μ(pn)}. The following list sets the conditions for each filter to be
satisfied:

• for f = fincl, μ(pr) � f iff μ(s) ⊆ μ(pr)
• for f = feq, μ(pr) � f iff μ(s) = μ(pr)
• for f = fineq, μ(pr) � f iff μ(s) �= μ(pr)
• for f = fjoin, μ(pr) � f iff μ(s) ∩ μ(pr) �= ∅
• for f = fdisj , μ(pr) � f iff μ(s) ∩ μ(pr) = ∅

Each path pattern p determines a set of all possible paths that could match
with it. That set is denoted as �p. Essentially, if p has no length indicators, �p
has a single element, otherwise its cardinality is defined by the indicator. The
set �p is formally defined as:

Definition 6. Let p, p′, p′′ path expressions. �p is defined inductively as follows:

• If p ∈ {attack, support, undercut, rebut, endorse, back’} then: �p = {p}
• If p = p′/p′′, then: �p = {p1/p2 | p1 ∈ �p′, p2 ∈ �p′′}
• If p = p′ ∗ 1, then: �p = {p1 | p1 ∈ �p′}
• If p = p′ ∗n and n > 1, then �p = {p1/p2 | p1 ∈ �(p′ ∗1), p2 ∈ �(p′ ∗(n−1))}
• If p = p′+, then: �p = {p1 | p1 ∈ �p′ ∗ k, for some k ≥ 1}

A pattern expression e may have one of the forms: e = ap or e = ap pe
e′, with e′ another pattern expression. We denote as init(e) = ap the initial
argument pattern for both cases. Next, we define the evaluation of a complete
pattern expression e against a debate graph D.

Definition 7 (Evaluation). Let a pattern expression e and a debate graph D =
〈A′, R′〉. The evaluation of e against D, written as EvalD(e) is defined:

• If e = ap, with ap =< pr[fap], c >, then:
EvalD(ap) = {μ | μ(pr) � fap and μ(ap) ∈ A′}

• If e = ap pe e′, then: EvalD(e) = {μ | μ ∈ EvalD(ap) ∩ EvalD(e′) and
∃p′ = PD

µ(ap)→µ(init(e′)) s.t. p′ ∈ �pe}
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4.3 Query Execution

To implement our language, we chose to leverage existing and well-optimized
storage schemes and languages, in particular RDF and its associated query lan-
guage, SPARQL 1.1. The reasons for our choice is that, first of all, our target
scenario concerns the web, where RDF/SPARQL are the standard languages.
Furthermore, RDF represents a graph data model and SPARQL 1.1 provides use-
ful property paths. Finally, SPARQL is accompanied with well-defined semantics
[12], which makes the transition from ArgQL to be straightforward.

Our implementation is ongoing work, so we just present the general idea here.
First of all, concepts of the data model must be translated into an RDF scheme.
In order to be compatible with the state of the art and the recent tendency of
the argumentation community, we turn to the RDF representation of the AIF
ontology [6]. AIF defines classes equivalent with the basic concepts of the argu-
mentation model presented in Sect. 3. Each element in the tuple L, is mapped
to a particular set of triples in AIF. Next, ArgQL queries are translated into
SPARQL and are executed against the translated data, which are now instances
of AIF scheme. Each expression in the “match” clause in Fig. 1, corresponds
to a different graph pattern in SPARQL. After the execution of SPARQL, RDF
results are translated back into the expected form for the answers of ArgQL. The
equivalence between the expected results and the results received by SPARQL
has to be theoretically proved. To test the whole process of the execution in
practice, we aim to perform it on the AIFdb corpora [11], an RDF knowledge
base in AIF scheme, consisting of over 2,000 argument maps with over 30,000
individual nodes.

5 Research Plans and Conclusions

In this work we presented ArgQL, a query language for argumentation. The first
version supports a core subset of queries and it refers to a minimal data model
which consists only of arguments and their interrelations. We have shown the
syntax, its semantics and we briefly described the idea of its implementation.

Our future plans include the completion of both theoretic and technical issues
of translation, as well as the experimentation on real datasets. Next, we intent
to enrich our data model with more complicated concepts, e.g. topics of dis-
cussion and adjust the language specification to the new features. In subsequent
time, ArgQL will be integrated with reasoning mechanisms, to allow for dynamic
queries, which e.g. will capture well-known argumentation semantics [7], com-
pute acceptability etc. with simpler (in terms of syntax) queries.

In order to tackle more practical, from the web perspective issues, we are
going to incorporate facilities that allow “smart” searching within the textual
content of argument, such as advanced keyword-searching and content-based
searching, imprecise textual mappings (e.g., taking into account synonyms, or
typos in the text), exploratory/navigational capabilities etc. Finally, we plan to
determine formally the expressive power and complexity of ArgQL.
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