
From Software Services to IoT Services: The Modeling
Perspective

I-Ling Yen1, Farokh Bastani1, San-Yih Hwang2, Wei Zhu1, Guang Zhou1

1 University of Texas at Dallas
800 W. Campbell Road, Richardson, TX 75080, USA

ilyen@utdallas.edu

2 National Sun Yat-sen University
70 Lienhai Rd., Kaohsiung 80424, Taiwan, ROC

syhwang@mis.nsysu.edu.tw

Abstract. Service ontology models have been applied to many application
domains to facilitate the semantic rich specifications of various types of services,
including the business processes, health care, manufacturing processes, etc. Re-
cently, many service models for the Internet of Things (IoT) domain have been
proposed. However, these models are still mostly following the thoughts of soft-
ware services. In this paper, we discuss some differences of the IoT services from
the software services and the requirements in service modeling for IoT services
due to these differences. We also extend the existing software service model to
support the specification of the IoT services and things.

Keywords. Internet of Things, IoT service model, service computing, service
ontology.

1 Introduction

In recent years, Internet of Things (IoT) have gained increasing attentions in research
community and industry. It is estimated that there are tens of billions of “physical
things” that are connected to the Internet, and the number is still growing rapidly. Var-
ious IoT applications are continuously being developed towards the goal of more ad-
vanced automation and improved human living.

Many existing IoT systems are statically built. In these systems, the specific IoT
devices and control and management software are statically selected and configured at
the design time to achieve some predefined tasks and to handle some anticipated events.
This type of systems has a similar nature as the conventional embedded systems, except
that the constituent components (devices and software) are distributed in a wider area.

The IoT world interconnects a vast variety of capabilities, which can be so powerful
if they are properly made use of, in addition to their statically assigned tasks. Consider
a dynamic composition example. The police office receives a report of a hit-and-run
incident that occurred 10 minutes ago by a red sedan at a location with coordinate

c© Springer International Publishing AG 2017
Y. Hara and D. Karagiannis (Eds.): ICServ 2017, LNCS 10371, pp. 215–223, 2017.

215

DOI: 10.1007/978-3-319-61240-9_20

ሺݔ, ሻ. The first task is to collect event related information, so police office will requestݕ
the recorded videos, if available, from cars that may have been at location ሺݔ, ሻ 10ݕ
minutes ago. Then, another task will be to locate the culprit and request the image sen-
sors on cars and on smart roads located within 10 minutes driving distance from ሺݔ, ሻݕ
to detect the culprit. Both of these tasks are dynamic and the set of IoT devices cannot
be identified in advance.

Service computing technologies can be leveraged to help with dynamic discovery
and composition of the IoT devices to handle dynamically arising tasks. The fundamen-
tal technique for service discovery, selection, and composition is the service model.
Without proper service specifications, the discovery and composition tasks will not
work properly. However, existing service models are mainly designed for software ser-
vices and may fall short for the modeling of IoT services. Some research works focus
on the modeling issues for IoT services, such as encapsulating device control and inter-
action details and providing high level service interfaces [1] [2] and event based service
modeling to manage the interactions among IoT services in an application system [3]
[4], etc. Though these models are essential to IoT services, they mostly follow the same
thoughts as software services, and do not consider some specific issues that are different
in IoT services as compared to regular software services.

In this paper, we consider the insufficiency of existing service models for the IoT
domain and discuss what should be considered in the IoT service model that have not
been considered important or have not been considered at all in software service mod-
els. We then propose the modeling techniques to bridge the gap. The major issues we
have identified and the modeling solutions are discussed in Sections 2 to 5. Section 6
surveys the existing IoT service models and discusses their potential problems. In Sec-
tion 7, we conclude the paper and state potential future research directions.

2 Explicit Model for Things

In existing service models, the specifications of the services focus on their functionali-
ties, not on the devices that can host the services. Also, a lot of research considers Qual-
ity of Service (QoS) issues during service composition and these works can address the
availability, efficiency and other QoS issues of the service provisioning. But none of
these need the specification of the underlying computing facilities that hosts the ser-
vices. This is because software services are hosted by computing facilities that have
sufficient uniformity and can be left out from the picture. On the other hand, the ser-
vices provided by the IoT devices are mostly device specific and the characteristics of
the devices can impact the service it provides. For example, all vehicles can provide the
transport service, but each of them has its own characteristics, such as the capacity limit.
If the cargo to be transported exceeds the limit of one truck, it is possible to select
multiple trucks (different Things) or to select one truck and let it transport in multiple
trips. Similar to software services, these issues may be left to QoS considerations. But
due to the diversity of the devices, whether the devices are considered at the functional
composition time or QoS based composition time, the specification of the IoT devices

216 I.-L. Yen et al.

should be explicit. Thus, besides specifying the services, the IoT service model requires
the specific specification of the characteristics of the IoT devices.

There have been specification models proposed to specify devices that may be suit-
able for IoT systems. For example, OASIS has published the Devices Profile for Web
Services (DPWS) [3] which defines the schema for specifying a device and its services.
DPWS defines web Service description, discovery, messaging, and eventing for the
device. However, there are two problems with this type of models.

(1) This model is device centric and services are defined as a part of the device spec-
ification. But frequently, the same service can be provided by a variety of devices. In
this case, should we repeatedly provide the same service specifications for each device
specification? We can also consider a service centric approach and for each service,
define the devices that can provide the service. But this will raise the same issue. A
device may be able to provide multiple different services, and the device specification
should be repeated for the services.

(2) The specification for devices in DPWS is far from comprehensive. The major
fields defined in DPWS schema are the device name, model, maker, etc. The essential
properties of the devices are missing. For example, for a car, it is better to know its
number of seats so that proper device allocation and scheduling can be performed.

Based on the observations above, we believe the IoT service model requires both the
Services and the Things to be incorporated at the same upper level. They can be asso-
ciated to each other in the upper ontology, instead of having one belong to the other.
Also, the detailed specification for the Things should include QoS related properties
that may impact the composition decisions. However, different set of attributes are re-
quired for different types of Things. Due to the diversity of Things, it is difficult to have
a comprehensive model. Thus, domain specific ontology is needed to enhance the spec-
ification of the properties and profiles of Things. Fig. 1 shows the upper ontology for
the IoT Service-Thing model (ST-model). For time being, the Service class can use the
popular service models such as OWL-S, WSMO, etc. Later we will discuss the neces-
sary extensions based on OWL-S for IoT service specifications. The expanded model
for Things is shown in Fig. 2.

Fig. 1. Upper Service-Thing ontology for IoT.

In the Thing ontology, we try to incorporate the general classes for the specification
of Things and leave the details to domain specific ontologies. The General characteris-
tics class is similar to the definition given in the “Characteristics” class of DPWS. The
Q&Q properties class is to specify the quantitative and qualitative properties that may
impact the service selection decisions. For example, if we need to transport a group of

Thing*

Provided-by

Provide

Service*

From Software Services to IoT Services 217

10 people from one location to another, it is important to know how many seats (quan-
titative property) are there in each car (Thing) in order to make the correct decision on
service and thing selection for handling the transport task.

The Operation profile specifies the attributes that are related to how the Thing should
operate. One important element in the Operation profile is the Control model, including
the control mechanisms and commands for the Thing. Similar to the encapsulation fea-
ture in existing IoT middleware, the Control class can specify the detailed control com-
mands and how the upper level services are mapped to a control mechanism, i.e., the

sequence of control commands. Also, Things may be nested. For example, a robotic
swarm consists of multiple robots, which are also Things. In this case, the Control class
can specify the mechanisms for the coordination of the lower level Things to achieve a
certain service of the higher level Thing. These control mechanisms can also be speci-
fied in the Control class.

Fig. 2. Ontology for the Thing.

During service provisioning, there may be constraints on the provider Thing regard-
ing how its services can be provided. For example, in most cases, multiple services
provided by one Thing will have to be provided exclusively. Some device may have to
be operated at a certain temperature range. These and other constraints can be specified
in the Usage constraints class in the Operation profile of the Thing.

During the execution of software services, the computing facility would consume
power. There are research works that consider how to minimize the energy consump-
tion for services. Similarly, the operation of a Thing may consume some resources. A
temperature sensor consumes battery power when providing its temperature sensing
service. A truck consumes gas when providing its “cargo transport” service. Also, some
Things requiring maintenances can also be viewed as requiring some consumable re-
sources, e.g., a car would consume its maintenance free period. However, the issues of
consumable resources for Things are different from the issues of energy consumption
in software services. The energy consumption for software services can be handled as
a QoS issue, while insufficiency of the consumable resources for the Things may re-
quire some external services to replenish them, which is a functional issue. Thus, the

Thing

Provide

Service

Q&Q
properties

Operation
profile

Scheduling

Current
context

Usage
constraints

Control

Consumable
resources

Has

General
characteristics

218 I.-L. Yen et al.

resources and the sufficiency of the resources need to be exposed specifically in the
specification of the Things. The event model is most suitable for this specification. The
Consumable resources class can specify the resources needed and the events for insuf-
ficient resources. When such an event is triggered, external services can be activated to
execute the replenishing task.

Generally, a software service has an execution context, but it hardly has much im-
portance. In the physical world, the context of the Thing is very critical in service pro-
vision. For example, we cannot select a Thing in San Diego to fulfill a service required
in Boston within an hour. Thus, the current context of the Thing and the context of the
service request should be clearly specified. In fact, there is another important consider-
ation that is not there for software services. Consider that a service consumer requests
for a service at location ܺ within a time limit ܶ. A Thing ݐ at location ܻ can provide
this service. Then, we cannot just select ݐ for the task. We also need to compose the
transport services to bring ݐ from ܻ to ܺ within time ܶ in order for ݐ to properly fulfill
the request. Here, we define the Current context class to specify the current context of
a Thing. Later we will further discuss the issue of contexts in service composition.

A software service can be provided simultaneously to multiple requesters from dif-
ferent geographical locations, while IoT services may have to be provided with a spe-
cific context given in a request. Thus, scheduling has a significant role in the Thing-
ontology. We define the Scheduling class in the Thing ontology to address the sched-
uling issues. For example, a plumber (Thing) provides a plumbing service. Several
houses may require the plumbing service concurrently. The provider can only offer the
service one at a time, and needs to schedule these requests and needs to request transport
services to bring itself to these locations. A requester can choose to use another Thing
in case one cannot provide a satisfactory schedule. Though scheduling can be consid-
ered as a QoS issue, it may trigger functional compositions due to the context issue.

3 Extending the IoT Service Model for the Contexts

We consider the OWL-S model for IoT services, but some extensions are needed to
allow the service model to fully support IoT systems. We have already discussed the
Apply-to extension in the IoT service model in Section 3. Here we consider the context
requirements for the IoT services.

In the OWL-S model, a service is formally specified by its IOPE (inputs, outputs,
preconditions, effects), where preconditions are the conditions that have to be satisfied
before the service can be invoked and effects are the conditions that will hold after the
execution of the service, if the preconditions are satisfied. A service request can be
specified as an abstract service with its IOPE being the requirements for match making.

Here, we define “Context preconditions” to support the specification of the context
requirements in a service request. Why can’t the Context preconditions be specified as
the regular preconditions? Generally, preconditions of a service are fixed conditions
that stay the same for all service invocations. But Context preconditions are dynamic,
and can probably be different in each invocation. Why can’t the Context preconditions
be specified as an input? The composition reasoning process needs to take the Context

From Software Services to IoT Services 219

preconditions into account, but input values are not considered during composition rea-
soning. Corresponding to Context preconditions, we also define the “Context effects”
class to specify the dynamic effects that impact the states of the service recipients. The
extended service model for IoT services is shown in Fig. 3.

Fig. 3. Extended IoT Service model.

Separation of the regular preconditions/effects and Context preconditions/effects can
also benefit staged composition reasoning. For example, consider a disaster site that is
hard to reach by human rescuers. To reach the survivor-search goal, the functional rea-
soner selects a survivor-search service provided by a swarm of robots equipped with
life detectors. The service has a Context precondition requiring that the provider Thing
(the swarm) should be at the disaster site. To satisfy the goal, a functional composition
reasoning is used to get a transport service provided by a truck. The QoS based com-
position reasoner can then select the truck that is closest to the swarm to provide the
transport service. For complex composition problems, such separation can help reduce
the complexity of the composition process.

4 Issues in Composition of IoT Services

In a composite service model, various composition constructs need to be provided to
allow the services being composed by different execution patterns. For example, OWL-
S supports sequence, split, split-join, choice, any-order, iterate, etc. The composition
constructs in most existing service models only consider control flow constructs, which
are not sufficient for IoT services.

Consider the example of survivor search by a swarm of robots. The robots cannot
offer the survivor search service by themselves. The swarm can provide an “explore”
service, but the effect of the explore service is traversing a region without any outcome.
The robots need to be equipped with life detectors in order to provide the survivor
search service. On the other hand, a life-detector Thing can provide the life detection
service, but only within a small range. It is necessary to attached the life detector to a
robot or a vehicle to fulfill the survivor search service. This type of composition cannot
be reasoned if we only consider conventional control flow based composition con-
structs. We need some composition construct like “Apply”, which allows a service ݔ to

Service

Provided-by

Provider Thing

Profile
Context

preconditions

Context
effects

Recipient Thing

Process

Apply-to

Preconditions

Effects

Grounding

…

220 I.-L. Yen et al.

apply its service effects to its recipient service ݕ, i.e., ݕ’s new effects become the ag-
gregated effects of ݔ and its own effects. When the “explore” service is applied to the
“life detection” service, the composite service can be “survivor search”.

In the physical world, things and their services sometimes need to coordinate with
each other to accomplish a certain goal. For example, when a robot and its attached life-
detector perform the survivor search service, a survivor is discovered but with some
heavy object fell on him. The robot also offers a transport service, which can lift and
move away the object. But in this situation, the object is too heavy for a single robot to
transport it. The robot can ask another robot nearby to collaboratively lift and move
away the object. During this “composed” effort, the behavior of one robot impacts the
other and they need to communicate, synchronize, physically interact, etc. to success-
fully achieve the goal. The composition between collaborative Things and their services
can be complex and may have many different patterns. In a more complex collabora-
tion, many Things may have to collaborate to achieve the desired goal and the compo-
sition of their services can be even more complex.

Instead of considering each case of collaboration, we consider both example cases
given above in a uniform paradigm and provide a collaboration composition construct
to support the specification of such compositions. The model for the collaboration com-
position construct is shown in Fig. 4.

Fig. 4. Upper Service-Thing ontology for IoT.

The collaboration between the services is governed by a collaboration service, which
provides messaging, synchronization, event management, as well physical actions re-
quired for the collaboration. As can be seen, the collaboration composition may have a
little similarity with the conversation model, but is far more complex. It can be used to
in place of the conversation model to offer conversational services. For the first exam-
ple above, the collaboration service should specify that the robot should attach the life
detector to itself and define the effects of the collaborative service based on the effects
of the collaborative services. For the second example above, the collaboration service
needs to provide the synchronization mechanism for the collaborative services and the
collaborative services need to define all their synchronization points.

5 Brief Literature Review

There have been several service modeling research directions for IoT in the literature.
One direction defines the event model, including event definition, publishing, and sub-

Service*

Governed-by

Collaboration
service

Collaboration

From Software Services to IoT Services 221

scription, to model IoT service interactions. DPWS [3], SOCRADES [1], SenaaS (sen-
sor as a service) [2], and ED-SOA [4], are example works in this category. Though
event model is indeed suitable for IoT services, the modeling concept and mechanism
are almost the same as those for software services [5]. Another major direction is de-
signing middleware to support the encapsulation of detailed control of IoT devices and
offering web service interfaces to simplify the IoT capability invocation. Representa-
tive works include SOCRADES [1], SenaaS (sensor as a service) [2], and ScriptIoT [6]
are example middleware for IoT. Encapsulation is essential for the diverse types of IoT
devices, but the concepts and designs in these middleware are not much different from
conventional middleware for software systems. Some IoT models focus on sensors and
sensor data, such as SensorML [7] and SSN-Ontology [8]. These models are data
driven, in which services are composed for sensor data processing or for reacting to
events detected from the IoT data. None of these existing works can address the issues
in service modeling and composition for IoT services that are different from those in
software services.

6 Conclusion

In this paper, we take a different approach form other research works in IoT service
modeling and look into the issues in IoT service modeling that are different from exist-
ing software services models. We then attempt to construct a more comprehensive IoT
service model to address these issues.

We plan to consider a set of example cases to evaluate our IoT service model and
further investigate the missing issues. Also, as discussed in some examples in the paper,
the composition reasoning process for IoT services may be complex and it is better to
decompose the composition process into multiple stages, including functional and QoS-
based compositions. We are developing automated composition techniques for IoT ser-
vices based on this decomposition approach.

References

1. P. K. S. Spiess, D. Guinard and D. Savio, "SOA-based integration of the Internet
of Things in enterprise services," in International Conference on Web Services,
2009.

2. S. Alam, M. M. Chowdhury and J. Noll, "SenaaS: An event-driven sensor virtual-
ization approach for Internet of Things cloud," in IEEE International Conference
on Networked Embedded Systems for Enterprise Applications, 2010.

3. T. Nixon, "OASIS Devices Profile for Web Services (DPWS), Version 1.1," 2009.
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf.

4. Y. Zhang, L. Duan and J. L. Chen, "Event-driven SOA for IoT services," in IEEE
International Conference on Service Computing, 2014.

5. S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratnam, J. Parikh, S. Patil
and etc., "Publish-subscribe notification for Web services, Version 1,0," 2004.

222 I.-L. Yen et al.

https://www.oasis-open.org/committees/download.php/6661/WSNpubsub-1-
0.pdf.

6. H.-C. Hsieh, K.-D. Chang, L.-F. Wang, J.-L. Chen and H.-C. Chao, "ScriptIoT: A
script framework for Internet-of-Things applications," IEEE Internet of Things
Journal, pp. 628-636, 2015.

7. M. Botts and A. Robin, "OGC SensorML: Model and XML encoding standard,"
2014. http://www.opengis.net/doc/IS/SensorML/2.0.

8. M. Compton, P. Barnaghi, L. Bermudez and e. al., "The SSN Ontology of the Se-
mantic Sensor Networks Incubator Group," in Web Semantics: Science, Services
and Agents on the World Wide Web, 2012.

From Software Services to IoT Services 223

	20
From Software Services to IoT Services: The Modeling Perspective
	Abstract
	Keywords
	1 Introduction
	2 Explicit Model for Things
	3 Extending the IoT Service Model for the Contexts
	4 Issues in Composition of IoT Services
	5 Brief Literature Review
	6 Conclusion
	References

