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Preface – Reuben Hersh: Humanizing
Mathematics and Its Philosophy

It is difficult to find words to succinctly capture a mathematician who has systemati-
cally deconstructed the cold edifice of the institution of mathematics. Reuben Hersh
turns 90 on December 9, 2017, and his nine-decade journey to the present moment
offers glimpses into the world of mathematics as well as the changing nature of the
American landscape. Born in the Bronx to working-class immigrant parents, Reuben
embraced the ideals of the “working class” in spite of graduating from Harvard at
the age of 19. After a stint at Scientific American, Reuben spent the 1950s working
as a machinist. When I asked Reuben about this, he said “Being so young and naive,
I just felt frustrated at his (Svirsky’s) constant dissatisfaction with my work. Then
there were political reasons too. I was deluded into thinking that only the working
class could save the world, so I ought to be part of the working class. Learning
to run a lathe was interesting and in a way gratifying work” (see interview in “An
Interview with Reuben Hersh”).

One could say that becoming a machinist created a dual identity, namely, that
of a “working man” as well as a “thinking man” and one that seems different with
the way professions are structured today, particularly if one looks at the ivory tower
of academia. However, being able to do many things was the hallmark of learned
people for centuries. Gauss’s “day job” was that of a surveyor; Euler worked as an
engineer; von Helmholtz started out as a physician but went on to make astonishing
contributions to mathematical physics.

Reuben went into mathematics after obtaining a degree in literature and then
working as a machinist. He chose mathematics because he always enjoyed it. It
should not be surprising then to know that he went on to complete a PhD under
Peter Lax and had a fruitful career as a mathematician for many decades with
research in partial differential equations, random evolutions, and operator equations.
If one imagines these decades of his life as that of a “working mathematician” with
literary leanings analogous to the “working machinist” with literary leanings, then
these leanings came into full force when he started to write about the nature of
mathematics, what it means to be a mathematician, the social nature of mathematics,
the burden of proof, and what it means to question the status of mathematics. His
first expository book The Mathematical Experience, cowritten with Phil Davis,
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vi Preface – Reuben Hersh: Humanizing Mathematics and Its Philosophy

won a National Book Award in Science in 1983. His subsequent book What Is
Mathematics, Really? picked up where the Courant-Robbins classic ended, with
a rhetorical question, but provided a more detailed exposition on what it means
to be a mathematician, how mathematicians think about their work (as opposed to
“science” or “craft” or “art”), and philosophical problems that arise when doing
mathematics. Many of us can “do” things, i.e., do mathematics, do physics, do
biology or do garden work, do woodwork, do cooking, etc., but very few of us are
able to articulate what it really means to do something in a way that would appeal
and interest a layperson. Reuben’s expository books have been very impactful to
many of us, and his position of mathematics as a human endeavor or humanistic
allows the foot soldiers and the lay mathematicians a doorway through which they
can examine their own mathematical endeavors. A well-known mathematician once
told me that there are very few that can leap from one area of research mathematics
to another and then be able to clearly articulate the connections that led them to make
these “creative leaps.” Reuben’s journey as writer, machinist, mathematician, and
philosopher over the nine decades of his life contains many such leaps, not simply
within mathematics but between disciplines and not simply between disciplines but
between completely different “working lives.” His corpus of writings that range
from technical mathematics to reviews to expository and philosophical writings
offer clear glimpses of Reuben’s many leaps.

I conferred with Reuben about putting together a Festschrift for his 90th birthday,
and he agreed to it based on some conditions of course, namely, being able
to shape this in order to break convention and be different! So he sent me a
list of colleagues/friends/scholars whose work he has been influenced by, and I
invited them to contribute to this book. When I asked Reuben what he would like
contributors to address, he said the following:

Forty years ago, Paul Cohen enraged me by predicting that (at some unspecified future
time) mathematicians would be replaced by computers. So I now ask you, 1. Can practicing
mathematicians, as such, contribute anything to philosophy of math? Can or should
philosophers of math, as such, say anything to practicing mathematicians? 2. 20 or 50 years
from now, what will be similar, and what will, or could, or should be altogether different:
About the philosophy of math? About math education? About math research institutions?
About data processing and scientific computing?

The colorful and eclectic essays in this Festschrift from numerous well-known
mathematicians, philosophers, logicians, and linguists offer in part his colleagues’
attempts at answering Reuben’s questions and also in part glimpses into Reuben’s
fertile mind and his influence on many generations and decades of mathematical life.
In his 90th year, he continues to produce mathematics and writings about it that is
accessible to us all. Reuben Hersh epitomizes the phrase “humanist mathematician
and philosopher,” and I hope this Festschrift celebrates his many accomplishments
and contributions to the field. I am deeply honored to be able to edit this collection
and join the authors in this book to wish him a happy birthday, and I hope for another
decade of contributions from Reuben.

Missoula, MT, USA Bharath Sriraman
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An Interview with Reuben Hersh

Bharath Sriraman

Question: Describe your formative experiences in school that resulted in you
graduating from high school at the age of 15. Were there any teachers or books
that influenced you?

When I was a kid in New York, it was customary to “skip” a kid in elementary
school who was too far ahead of the rest of the class. I taught myself to read by
watching as my Mom (Mildred, originally Malke) read to me; so in kindergarten
I got a bad grade because I preferred reading to myself rather than playing with
others. I got skipped twice in elementary school. Skipping 3rd grade put me into a
class where they were already doing division. So I asked my Mom to explain it to
me. She did.

Then in junior high school (now of course renamed middle school), they had a
thing called RA,RB,RC,RD which did 7th, 8th, 9th grades in 2 years.

Then we moved from the Bronx to Mount Vernon, in Westchester County, right
next to the Bronx, and so I went to Mt. Vernon High, which was called A.B. Davis
High School. I was desperately eager to get away from my father (Phillip, originally
Fishel); so I took extra classes plus went to summer school, got my diploma at age
14. I had absolutely no one to advise me what to do next; so I just stayed home
another year, going to A.B. Davis High as a “postgraduate.” By age 15, I was ready
to flee.

Question: Did religion play a role in your childhood?
In a backwards way, my father had grown up in Poland with a Chassidic father,

went to cheder every day from age 3, learned nothing but Torah. When he ran away
from Poland to Palestine at age 18 to escape being drafted into Pilsudski’s army, he
realized that he had learned nothing of any use or value; so he became ever after
hostile to all rabbis. The only Judaic aspect of my childhood was being kept home
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2 B. Sriraman

from school on Rosh Hashanah and Yom Kippur, because it wouldn’t look nice for
me or my sister to be in school. What we did on those days at home was nothing
special, just whatever we pleased. So I was totally free of any belief in God, Heaven,
an afterlife or immortality, angels, devils, commandments, Chosen People, or any
other such nonsense and trifles.

Question: Which year did your parents emigrate to the USA? And did you grow up
learning more than one language?

1920. Not really, picked up a little “kitchen Yiddish.”

Question: What were your parent’s views of education, a university education?
Was education seen as a means of advancement?

They both had a religious home education in the old country, zero schooling here.
It was always taken for granted that my sister and I would go to college.

Question: What led you to Harvard? And what led you to pursue literature in
Harvard?

I decided to apply to three good colleges and one bad one, in case all three
turned me down: Columbia, Yale, Harvard, and University of Southern California.
Columbia and Yale scheduled interviews and naturally, after meeting me face to
face, rejected me. Harvard and USC let me in; so I went to Harvard. I knew it was a
snob school; so I went with a determination to maintain my Bronx accent.

I wanted to become a writer, to make a difference in the world of writing. There
was no writing major; so lit was the closest thing. Math was fun, but not useful
or, so far as I knew, important. I took beginning calculus, but David Widder, my
teacher in 2nd year calculus, made it infinitely boring, without the slightest amount
of motivation. So I didn’t take any more math after that.

Question: Could you elaborate on what you mean by “and naturally, after meeting
me face to face, rejected me?”

At that age I was totally asocial and unsocialized. It never occurred to me to give
any thought to what impression I was making on anyone, least of all some middle-
aged guy from Yale asking dumb questions.

Question: Was there any literary work or writing in particular that appealed to you
during your undergraduate degree?

Blake’s poetry

Question: What were the reasons for not pursuing graduate work immediately after
Harvard?

I looked at a couple of journals on English lit. Not at all appealing! Felt a great
need to get away from school. School was all I had known so far.

Question: What do you feel is extremely beautiful/beautiful? Please give some
examples. Can you order these examples according to their aesthetic appeal on
you?
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Beethoven’s music, the short poems of William Blake, many of the local sunsets
out here

Question: What led you into becoming a machinist? Was it a skill you already had,
or was it something you were interested in?

Why did I switch from editorial assistant at Scientific American to second-
class machinist at various machine shops? Well, it was a combination of things.
I only learned much later that my boss at Scientific American, Leon Svirsky, was
impossible to satisfy and drove one of my successors there to psychotherapy. Being
so young and naive, I just felt frustrated at his constant dissatisfaction with my
work. Then there were political reasons too. I was deluded into thinking that only
the working class could save the world; so I ought to be part of the working class.
Learning to run a lathe was interesting and in a way gratifying work.

Question: You mentioned your sister earlier. Did she also go to college and was
she grade skipped like you? And what did she end up studying? I am asking this as
women were not encouraged at that time period to go into higher education.

Deena got a degree at University of Wisconsin, I don’t know her major, but it
was not science, maybe psych. Something human, I am sure. She married a very
aggressive ambitious law librarian who became very big at University of Texas law
school and had three daughters with him. Then in her forties went to grad school in
social work and spent years at UT as coordinator of practical work of social work
grad students. She is smart and is interested in a lot of things but never was drawn
to math.

Question: You were in college when WWII was raging. Do you remember what
civilian life was like during this time, particularly in terms of the stories/media that
filtered through to the common man?

I was an undergrad at Harvard. The Harvard Crimson had been discontinued,
replaced by something called the Service News (Harvard was hosting a Navy V12
program). The schedule had been made a three-semester per year. I was active in the
Harvard Liberal Union, supporting the fight against fascism and the liberalism of
FDR. I even canvassed in Cambridge for him in 1944, although still only 16 years
old. Some Harvard students started a postwar union, to be ahead of the game in
planning the postwar world.

Question: And what were these plans for the postwar world? Do you see a return
to Fascism in the way extreme right-wing governments are increasingly being
considered by the electorate and the alt-right movement in the USA? There is even
a webpage where “leftist” professors are listed—harking back to the lists of the
McCarthy era. What do you think of this trend in higher education?

I never paid attention to any of that. All that mattered was defeating Hitler!!!!!
The past does not repeat. It is not past, of course; it is still here inside us. But

it does not return; Hitler will not rise out of the grave. We have to pay attention to
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what is really going on here and now, not to a fear fantasy of the past returning. The
NY Times the other day had an article telling the history of such lists going back to
the 1930s.

Question: Why did you pursue mathematics as a graduate degree?
At age 29 with a family to support and scared to continue risking any more fingers

at machine shop work, I was at a loss for months after losing half my right thumb
to a band saw. Then it came back to me; I used to like math! Maybe that could be a
way to earn a living.

Question: Was it difficult to pick up academic work (i.e., being a student) after a
time lag from your undergraduate work?

No, it turned out to be second nature.

Question: Describe the academic culture (as seen by you through a student’s eyes)
at the Courant Institute?

There were insiders and outsiders. Insiders were buddying with faculty, making
themselves at home in the building. Outsiders were taking just one or two courses
while working full time at companies in the New York area. I started as an outsider,
an overage under-educated nervous newcomer. After I was hired as a research
assistant, I turned into an insider who still was aware of the greater number of
outsiders, who of course resented the privileged insiders. Much later I was fascinated
to read, in a memoir by Courant of the advent of Nazism at Gottingen, how surprised
faculty members were at all these little known outsider students who showed up as
Nazis.

Question: Did you find Peter Lax, or did Peter Lax “find” you?
I was taking his real variables course. Hadn’t given any thought at all to a thesis

or an adviser. Tried to sit in the back of the classroom and avoid being noticed.
However, he just walked up to me and asked if I’d like to be his student. I assume
my homework must have been above average.

Question: How did you arrive at your dissertation topic? Did Peter assign you
a problem, or was it through working together? And what was the topic of your
dissertation?

He showed me a list of problems. After giving up on two of them, I tried to find
the most general correct boundary condition for a first-order hyperbolic constant
coefficient system of PDEs in a half-space. You can read more in my bio of Peter.
The simple idea of taking the Laplace transform made it quite straightforward, and,
in fact, I got free of charge any well-posed system, not necessarily hyperbolic, not
just first order!!! That is what I mean by looking at it sideways instead of forward,
i.e., turning it into just a space problem, getting rid of the time variable.

Question: Can you describe a learning or a teaching moment when you experi-
enced a sense of beauty for the subject matter? If so did it result in pursuit of
research (in other words in a creative process)?

When I realized that that the method I used in my thesis, for hyperbolic problems,
was equally applicable to all well-posed initial value half-space problems, without
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restriction as to type. Also I realized that Kac’s example of a Poisson process
controlling a particle sliding on the x-axis was really about any abstract group
switching direction at random. Both ideas led to years of work on many examples
and applications.

Question: Did you ever consider doing a PhD in pure mathematics instead of
applied mathematics?

In fact, I have always been a pure mathematician, even though working in an area
of pure mathematics that is “applicable.” PDE is a branch of analysis. ODE is also
a branch of analysis, often nowadays called “dynamical Systems.” It is the simplest
subarea of PDE.

Question: Is there a pecking order in the world of mathematics/mathematicians?
Sure. Only, not a well-ordering, it’s a partial order.

Question: Is arrogance inversely proportional to the level of achievement in the
cases of eminent mathematicians [the movers and shakers of the field]?

No.

Question: To rephrase the previous question, are eminent mathematicians more
likely to be humble? Is there a cultural component to this question?

I can’t deal with likelihoods. It’s a matter of personalities.

Question: You’ve met a veritable who’s who of mathematicians in the course of
your career—can you recall any personalities?

Fritz John was waiting at a plenary meeting of the AMS to deliver a named
lecture. I modestly approached him and asked him something friendly. He answered
something like he’d rather be any other place in the world. Terribly nervous.

George Polya visited UNM to give a math talk, volunteered also to give a talk on
math ed. Very funny. We took him to a Mexican restaurant for lunch, and he ordered
chile relleno. My wife warned him not to eat the seeds, but he just said Hungarians
are used to spicy food. We saw his eyes fill with tears and his cheeks turn red. But
he managed to smile and say it was good.

Mark Kac spoke at a meeting I chaired in Edmonton. Low-priced housing was
available on campus; all the other participants were there, but he just looked and
asked what else we had. After trying a fancier place on campus, we went into town
to a commercial hotel; they had some kind of bridal suite or presidential suite. That
was what suited him. (People who knew him had warned me he wouldn’t stay in
the student housing.) Speakers were required to submit a ms for publication, but
he wouldn’t. I and another participant had to write his article for him, based on a
videotape and his scrappy lecture notes. Yet he was very friendly and likable, just
not ashamed or embarrassed at being treated like a big shot.

I found Hormander polite and courteous, but my Swedish friend told me that he
was quite otherwise to ordinary Swedes.

Paul Cohen was very competitive and combative. That worked if you were strong
and self-confident enough to stand up to him.

Erdos and Lax were the friendliest gentlemen, Varadhan as well.
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When I first met Stan Ulam, I tactlessly mentioned having seen him called Father
of the H bomb. He stuck out his chest, looked up at the ceiling, and blurted out, “But
it’s true!”.

Einar Hille was always happy to take whatever we handed him and insert it into
the proceedings of the national academies of science.

David Mumford free of any pretensions at all
Richard Courant thought it hilariously funny that I, his copy editing assistant,

presumed to advise him on rewriting. He started out his lecture course by whispering
faintly that if anyone had difficulty hearing him please speak up; he then went on to
whisper about generalized functions; no one spoke up.

Rota was an amazing blend of totally natural and straightforward and totally
hidden and masked.

Question: Was anti-Semitism prevalent in the institution of mathematics you
experienced?

My only academic experience of anti-Semitism was overhearing a conversation
between John Searle, a big shot Berkeley philosopher, and a local English professor
at UNM.

Question: What led you to develop a humanist perspective to the philosophy of
mathematics?

As I explain in the intro to What is Math, Really? it all started by teaching an
undergrad course in Foundations of Math and discovering that there were three
standard philosophies, all of which were obviously wrong, but I had no idea what
my own philosophy was.

So it seemed natural and obvious to look carefully at what I and my friends,
collaborators, and admired exemplars were actually doing and saying they were
doing and basing my understanding of what math is on this information. (Not on
before the fact philosophical requirements!!!)

Question: Suppose a Fields Medalist peer says: I don’t actually know what
“philosophy of math” means nor do I think I know any “philosophers of math”
(maybe you could name a few leaders of this “field”?). How would you answer this
question?

Alphabetically,
Byers, Cellucci, Dehaene, Friend, Grosholz, Hacking, Kitcher

Question: What is the difference between practicing mathematics and philosophiz-
ing about practicing mathematics?

Same as the difference between playing the piano and writing music crit

Question: Does your response implicitly suggest that sometimes the latter cannot
do the former? In other words, is the former a prerequisite to being the latter?

Critics are important. There have been many great literary critics who did not
produce much poetry or fiction themselves. The pianist can learn something from a
good music critic.

Question: Why do you reject the Platonist view of mathematics?
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Because I think there is only one universe. I don’t believe in a spiritual realm
separate or independent of material reality.

Question: One often hears that history of mathematics should be relegated to the
category of “popularizing” mathematics. In other words history of mathematics is
not serious mathematics but more a Segway into nostalgia—what do you think of
this view?

Nonsense. History is a deep scholarly endeavor, not mere nostalgia. No, it is not
serious math; it is history of serious math.

Question: I like this response. My question stemmed from the fact that I have met
some mathematicians who when told the history of a “serious” dispute on a problem
in their field simply blow it away as being trivial. Are there any contemporary
“disputes” in any area of mathematics that you are aware of that might eventually
make it into history of math books?

A serious dispute can seem trivial if a new discovery makes it obsolete. Digging
a deep hole may be made obsolete if someone finds a shortcut sideways into the hill.
There were disputes about the right definition of the integral; now they don’t seem
interesting or important anymore. Voevodsky’s new foundations are controversial;
he is bringing back constructivism in an even more complete and detailed way
but purely as a practical method of formalizing proof, without the philosophical
crusading of Brouwer or Bishop.

Question: Are there different styles of doing mathematics, with some being more
instructive (or transferable to teaching students)? This question stems from the fact
that a lot of literature reports on the schism between how mathematicians practice
mathematics versus how they teach mathematics.

Yes, the dogmatic formal-logical style and the heuristic, problem-solving style
like Polya. The latter is much better for students and teaching.

Question: What is your opinion of the style of experimental mathematics promoted
by the Borweins?

Very impressive. An incredible body of fascinating discovery

Question: Can you elaborate? I always thought they should receive more popular
press, but for some reason this has not happened. What do you think is the reason
for this?

Borwein never looked for headlines or controversies. While he produced amazing
heuristic discoveries, he continued to demand deductive proof. He was really
conservative philosophically while daring and audacious in computing.

Question: Tell us about your collaboration with P. Davis on The Mathematical
Experience. How was the experience of co-writing?

I had been blocked for years, struggling to get beyond just making notes in
notebooks. Phil actually offered to listen to me talk and then write it up! I was
astounded. We enjoyed very much talking math and finding out how much we
agreed. I went to Brown on sabbatical, with the plan of writing philosophy of math
while he worked on a different project, popularization and exposition. I produced
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100 pages of handwritten ms and then had a breakdown, couldn’t continue. Handed
it over to him and Hadassah to do with whatever they could.

Question: Have your views on the nature of mathematics changed in the time
period after The Mathematical Experience?

They have developed very considerably, as you can see from “What Is Math,
Really?” and “Experiencing Math.”

Question: Dirac wrote about Schrödinger and himself: “It was a sort of act of faith
with us that any questions which describe fundamental laws of nature must have
great mathematical beauty in them.” Can you agree with the similar statement: “It
was a sort of act of faith in my work that any fundamental mathematical truth must
have great beauty in it.”

I would put it in terms of what the researcher is motivated to commit to. We
humans are motivated and affected by whether something is beautiful or ugly. In
physics, that might be translated into a belief about nature herself. I think it is
a property of the human mind that is being projected onto nature. The quadratic
formula is an ugly thing that everybody has to know; it’s pretty fundamental
(example from Morris Kline). Hardy and Halmos called applied math ugly; Peter
Lax answered that in my biography of him. Topologists and algebraists used to call
PDE ugly. Then when solitons popped up, everybody said, “OH, beautiful.” It’s
common for the first proof of a tough theorem to be pretty mean and unattractive,
and later on people try and may succeed in beautifying it.

I think the Erdos-Selberg proof of the prime number theorem is not claimed to
be a joy forever.

Question: The institution of mathematics is often portrayed in a lot of “critical
education literature” as being a racist, gendered, privileged, patriarchal subject
matter. An inference of this anthropomorphizing is mathematics being blamed for
societal inequalities and viewed as promoting the “industrial military” agenda.
What are your views on this?

I didn’t have the impression that this kind of talk was still going on; I thought it
came and went decades ago.

Question: Why is mathematics not taught as an elective like art?
It is, in courses derisively called Math for Poets, as another way to fulfill a math

requirement without repeating high school.

Question: What I meant is, why should mathematics be a requirement in high
school, when say physics or biology is not?

Kids won’t take it if they think they don’t need it; then they find out it’s required
for the career they want and they have to learn high school math in college. It’s too
bad people are so dumb sometimes you have to force them to do something for their
own good, like wearing helmets on a bike.

Question: Did you experience some mathematical objects as beautiful? Which
ones? Can you compare those feelings of mathematical beauty with the aesthetic
appeal of the examples you gave above?
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My own quasi-new proof of the Heron area formula and of the Faulhaber
polynomial identity that I included in a couple of philosophical places and of the
two simple ideas (bring in the Laplace transform and replace d/dx by any group
generator) which generated most of my research career.

But you don’t mean just in my own work but more generally. Certainly the
complex integral of an analytic function—Cauchy’s integral theorem and formula—
would be at the top of the list and the five platonic solids and most of what’s in
Courant-Robbins.

Question: Does success/failure in a creative problem-solving process influence the
former aesthetic appeal of the problem? Does success enhance the appeal of the
problem the way that it leads you to other related problems?

I think my previous answers cover this. Look at the twin prime problem. Recently
there was huge excitement when an unknown researcher using known ideas was able
to prove the analogous statement where “2” is replaced by some huge integer in the
hundreds of thousands or millions. No beauty there, sheer tough slogging where
everybody else had not tried that hard

Question: Is mathematics objective?
It is objective from the viewpoint of the person who must learn it or apply it.

It is however internal to culture and society; so in that global sense of humanity
as a whole, it can be called subjective. Its objectivity is in its transpersonal
intersubjective societal status.

Question: Some mathematicians insist on paper-pencil mathematics being the real
core of doing mathematics.

That’s silly, typing on a computer is much better.

Question: I meant paper-pencil mathematics as that which does not rely on
computers to generate a proof.

I have trouble understanding the concept or term “real core of math” well enough
to argue about it. I am familiar with the critique of the computer proof of the four-
color theorem, and I suppose the critique of other computer-assisted proofs is not
entirely different from that old one.

Halmos said “we learn nothing from it.”
Others said computers can make mistakes.
But any mathematical result will be interesting to those who are interested in it,

not so interesting to those uninterested in it. What else is new? As with anything
else, you are free to take it or leave it.

If the question is whether the four-color theorem should be considered “proved,”
i.e., accepted as established and available for use in future proofs, that was a decision
that was available for the mathematical community to make, and it seems that it has
been accepted as established. It is true that there is some variation in the credibility
or certainty of established theorems. Some are rock solid, others not so much. So
there probably still is disagreement on whether the four-color theorem is just as solid
as this or that comparable theorem, nothing disturbing or worrisome about that.
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I consider the work of Jon Borwein exemplary. The work of Voevodsky et al. is in
progress; it will be seen whether it transforms math or becomes one more sidestream
or special topic.

In general I don’t support judgmental remarks about any kind of mathematical
work.

Some don’t consider numerical analysis to be real math. Some don’t consider set
theory in the highest most remote ranges of hyperinfinity to be real math.

Let everybody do what they like, and as time goes on, it will get sorted out.
Meanwhile, be liberal in what can be published and/or taught.

Question: Can this view be challenged with new media and increasingly different
ways of accessing mathematics through the internet?

Of course

Question: What do you see as the future of university mathematics, particularly
mathematics departments that justify their existence by doing “service courses”?

Vestigial organs and activities can persist for centuries. Look at Latin as the
language of scholarship or penmanship as required in my elementary school days.

Question: In your tenure as a teacher at UNM, did you think that courses
became watered down over time due to the changing background of entering
undergraduates?

I wouldn’t say watered down. There were changes meant to take into account the
needs and skills of actual students.

Question: Why would you suggest mathematics as a field of study to someone
today?

Same as poetry or dance, only go into it if you simply can’t help it.

Question: Will pure mathematics eventually become obsolete?
No. It is too much fun.
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As a child with Mildred
(mother), Phillip (father), and
Deena (sister)

Reuben and Deena (early 1930s)
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In a New York park while
employed at Scientific
American (early 1950s)

Playing chopstick with two fingers, in the Cape Cod Cabin of Chandler Davis’s family (around
1950)
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With children: Daniel and Eva (1961)

With Eva (1970s)
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With Phil Davis
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With all his descendants: Daniel and Eva, grandchildren David and JJ (1998)

With Mildred (1998)
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With JJ (2005)

Wall of remembrance at Jewish Cemetery in Santa Fe (2016) (Reuben is standing next to two
blocks he had put in a wall of remembrance in honor of his mother’s parents and his father’s
extended family, all of whom died in the Holocaust.)
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Reuben and Vera, at the cemetery (2016)



Pluralism as Modeling and as Confusion

Reuben Hersh

We consider three levels of pluralism: (1) within mathematics, (2) with regard to
philosophy of mathematics, and (3) personal pluralism.

(1) Pluralism means peaceful coexistence, of several contradictory theories.
Within mathematics, such coexistence is taken for granted. A normal probability
distribution contradicts a uniform probability distribution. They are “parallel”
concepts, a simple example of peaceful coexistence, of pluralism. Then there are
the Lp spaces of functional analysis. If p D 2, we have Hilbert space. For p greater
or equal to 1 but not equal to 2, we have Banach space. For two different values
of p, we don’t perceive a contradiction but rather a choice. That’s mathematics.
Pluralistic!

Most familiar is the coexistence of Euclidean and non-Euclidean geometry.
Euclidean geometry accepts Euclid’s parallel postulate; non-Euclidean negates it.
No problem! They are just two separate theories. Pick the one you prefer at present.
This peaceful contradiction within mathematics has never interfered with anybody’s
keynote speech praising the unity of mathematics.

If you have read a bit of Riemannian geometry, you know how to look at the two
geometries as two surfaces, one with constant curvature zero and one with constant
negative curvature. But even without such a formal reconciliation, we know how
to keep them in two separate boxes, like the hammer and screwdriver that sit side
by side in my tool shed, along with some nails and some wood screws. They are
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contradictory but also entirely compatible. A contradiction arises if I foolishly try
to hammer in a screw or to screw in a nail.

(2) Although in mathematics complete consensus is the norm, in philosophy
of mathematics, I have been told, it’s just the opposite way; you never convince
anybody to give up their position.

Philosophers of mathematics commonly present themselves as choosing and
defending a “position,” as if on a battlefield. I quote Stewart Shapiro’s Oxford
Handbook of Philosophy of Mathematics and Logic as a respected representative.

“I now present sketches of some main positions in the philosophy of mathe-
matics,” he writes. Six positions are listed in the table of contents. Five of them
get two chapters, pro and con. Between chapters expounding logicism, intuitionism,
naturalism, nominalism, and structuralism, are chapters reconsidering structuralism,
nominalism, naturalism, intuitionism, and logicism.

“One of these chapters is sympathetic to at least one variation on the view in
question, and the other ‘reconsiders’.” Formalism gets only one chapter, evidently
it didn’t need to be reconsidered.

“A survey of the recent literature shows that there is no consensus on the
logical connections between the two realist theses or their negations. Each of the
four possible positions is articulated and defended by established philosophers of
mathematics.”

The practice of philosophy of mathematics seems to be to a large extent choosing
a position and fighting for it. The fighting, or arguing, is what philosophy of
mathematics is all about. There is no question of convincing anyone to change
positions. And there is no need to get interested in actual mathematics, or the
opinions of actual mathematicians. The game is all about arguing with your fellow
philosophers of mathematics, each with his or her position to defend and advocate.
(Thanks to Brendan Larvor for pointing out that some authors are nuanced and
recognize some merit in the position of an adversary.)

So the proposal of peaceful coexistence, pluralism, in philosophy of math-
ematics, is a radical new idea and, in my opinion, a great idea. I accept and
support pluralism as a metaphilosophy. In fact, this paper proposes a rationale and
justification for pluralism. To do so, I want to take a higher or more inclusive
standpoint than merely that of metaphilosophy—overlooking or surveying various
philosophical “positions.”

The scholarly or scientific study of any phenomenon, whether physical, biologi-
cal, or social, implicitly or explicitly uses a model of that phenomenon. A physicist
studying heat conduction models heat conduction as a fluid flow, or as propagation
of kinetic energy of molecules, or as a relativistic or quantum mechanical action.
Different models serve different purposes. Setting up a model involves focusing
on features of the phenomenon that are compatible with the methodology being
proposed and neglecting features that are not compatible with it.

By talking of a model rather than a theory, one acknowledges that the phe-
nomenon could also be studied other ways. One’s model merits consideration if
it provides an insight that isn’t better provided by some other model.
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Philosophers taking a “position” of formalism, structuralism, or logicism, for
example, are advocating different models of mathematics, which is a social-
historical phenomenon subject to empirical study, both in its content as well as
in its human interactions. Mathematical knowledge and activity are observable
phenomena, already present in the world before philosophers proceed to study them.

In philosophy of mathematics, mathematics is the thing being modeled, even
though much of mathematics already is a model of a physical action. Arithmetic,
for instance, models the action of counting.

Philosophy of mathematics, when studying the “positions” of formalism, con-
structivism, platonism, and so on, is studying models of mathematics, It studies
second-order models! (Other critical fields like literary and art criticism are also
studying models of models.) Being a study of second-order models, philosophy of
mathematics constitutes still a higher order of modeling—a third-order model.

Let’s look separately at the math-studying disciplines and their models.
Mathematical activity (in contrast to mathematical content) is modeled by

neuroscience, by logic, by history of mathematics, by psychology of mathematics,
by anthropology, and by sociology. These use verbal modeling for phenomena that
are not quantifiable—the familiar psychological and interpersonal variables of daily
life, including mathematical life.

History, logic, neuroscience, psychology, and other sciences offer different
models of mathematics, each focusing on aspects accessible to its method of
investigation. Different studies of mathematical life overlap, and they have intercon-
nections, but, still, each works to its own special standards and criteria. Historians
are historians first of all and likewise educators, neuroscientists, and so on. Each
special field studying math has its own model of mathematics.

Philosophy of mathematics of course is an important, respected kind of theoriz-
ing about mathematics. So is logic, which is a distinct specialty allied to philosophy
of mathematics. So is history of mathematics. So are computing and computer
science. So is the new field of cognitive neuroscience. Also of great interest are
anthropology, psychology, and sociology of mathematics.

The positions actually are complementary models.
If we set philosophy of mathematics among the whole group of studies of math-

ematics, both humanistic and scientific, we can see the significance of formalism,
logicism, nominalism, structuralism, naturalism, and even social constructivism, in
a new light. Each of them is in fact a model of mathematics. In that way, each is
legitimate, and none prevents another from carrying on its work.

I am just a mathematician, but I dare to hope that some philosophers will be
tempted to give up the customary back and forth in favor of peaceful coexistence.

Pluralism would be a blessing. However, it is not a position in the philosophy
of mathematics, for it says nothing about mathematics itself, neither its ontology,
its epistemology, nor its practice. It is a “position” in a loftier field, which should
be called the metaphilosophy of mathematics. Pluralism is a position about the
philosophy of mathematics. It is a philosophy of the philosophy of mathematics.

“Taking a position” on the nature of mathematics looks very much like the vice of
essentialism—claiming that some description of a phenomenon captures what that
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phenomenon “really is” and then trying to force observations of that phenomenon
to fit into that claimed essence. Rival essentialisms can argue for a very long time;
there is no way either can force the other to capitulate.

Such is the story of mathematical Platonism and mathematical anti-Platonism.
Mark Balaguer has even published a book proving that neither of those two can ever
be proven or unproven. “He concludes by arguing that it is not simply that we do
not currently have any good arguments for or against Platonism but that we could
never have such an argument.” Balaguer’s conclusion is correct. It is impossible in
principle to prove any model of any phenomenon, for the phenomenon itself is prior
to, independent of, our formalization and cannot be regarded as or reduced to a term
in a formal argument.

The model of mathematics as a formal axiomatic structure is an immense
success. It is a branch of mathematics while simultaneously being a model of
mathematics, so it possesses a fascinating and bewildering reflexivity. Enjoying
these benefits doesn’t require one to be a formalist—to claim that mathematics is
an axiomatic structure in a formal language. Bill Thurston testified to the confusion
and disorientation which that formalist claim causes to beginners in mathematical
research.

Frege’s logicism expelled psychologism and historicism from respectable philos-
ophy of mathematics. Nevertheless, it is undeniable that mathematics is a historical
entity and that mathematical work and activity are mental work and activity. Its
history and its psychology are essential features of mathematics. We cannot hope to
understand mathematical activity while forbidding attention to the mathematician’s
mind.

As ideologies, historicism or psychologism is one sided and incomplete, as was
logicism’s reduction of mathematics to logic. We value and admire logic without
succumbing to logicism. We can see the need for the history of mathematics and the
psychology of mathematics, without committing historicism or psychologism.

Another prominent position is “structuralism.” Already in the 1930’s the leading
French mathematicians “Bourbaki” used structure of structures as a model for
mathematics. It is easy to see both the merits and the defects of such a model.
Pursuing the merits has paid off, in benefiting research. This is a different matter
from being a structuralist—taking the position that mathematics is structure.
A chapter in Burgess (2015) contains a helpful analysis and critique of structuralism.

Burgess and Rosen (1997) surveyed nominalist models of mathematics and found
them instructive, even though, they concluded, nominalism is not tenable as a
philosophical position.

A natural and appealing philosophical tendency for modeling mathematics is
phenomenology. The phenomenological investigations of Merleau-Ponty looked at
outer perception, especially vision. A phenomenological approach to mathematical
behavior would try to capture an inner perception, the mathematician’s encounter
with her own mathematical entity.

If we looked at these theories as models rather than as theories, it would hardly be
necessary to argue that one of them falls short of capturing all the major properties
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of mathematics, for no model of any empirical phenomenon can claim to do that.
The test for models is not whether they are complete or final but whether they are
useful or illuminating.

Different models are both competitive and complementary. Their standing will
depend on their benefits in practice. If philosophy of mathematics was seen as
modeling rather than as taking positions, it might consider paying attention to
mathematics research and mathematics teaching as testing grounds for its models.

Can we imagine these rival schools settling for the status of alternative models,
each dealing with its own part of the phenomenon of interest and each aspiring to
offer some insight and understanding? The structuralist, Platonist, and nominalist
could accept that in the content of mathematics, even more than in heat conduction
or electric currents, no single model is complete. Progress would be facilitated by
encouraging each in his own contribution, noticing how different models overlap
and connect, and proposing when a new model may be needed. A modeling
paradigm would substitute competition for conflict. One philosophical modeler
would allow the other modeler his or her model. By their fruits would they be
judged.

Philosophy of mathematics constructs models, comparable to those of other
math-studying fields.

Just as philosophy of mathematics attempts to describe mathematics using
methods of philosophy, so do the history of mathematics and computer science
and cognitive neuroscience. Each one offers its own model of mathematics.
Philosophical “positions” are also models. These different models of the same
empirical phenomenon are logically contradictory but scientifically complementary.

The argument between fictionalists, Platonists, and structuralists seems to sup-
pose that some such theory could be or should be the actual truth. But mathematics is
too complex, varied, and elaborate to be encompassed in any model. An all-inclusive
model would be like the map in the famous story by Borges—perfect and inclusive
because it was identical to the territory it was mapping.

Formalists, logicists, constructivists, and so on can each try to provide under-
standing without discrediting each other, any more than the continuum model of
fluids contradicts or interferes with the kinetic model.

If a philosopher of mathematics regarded his preferred “position” as a model
rather than a theory, he might coexist and interact more easily. Structuralism,
intuitionism, naturalism, nominalism-fictionalism, and realism-Platonism each have
strengths and weaknesses as a model for mathematics.

Pluralism in philosophy of mathematics would follow as a consequence of
viewing philosophical positions on mathematics as models of mathematics. There
would be peaceful coexistence, rather than conflict and opposition. Different models
would supplement each other, even fit together, as kinetic theory and continuum
theory fit together in the physics of fluids. It would be okay for the Harvard
Philosopher yesterday a Quine follower to be today a pragmatist. No longer would
the charge of “Chameleon!” be thrown.
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Research into mathematical behavior from the logical, the historical, the cogni-
tive and neuroscientific, the anthropological, the psychological, and the sociological
perspectives or viewpoints all have yielded and to this day are yielding interesting,
important insights about the nature of mathematics.

The far greater part of ongoing mathematical activity is schooling. Teachers and
educators must be included in any future comprehensive mathematics studies. They
observe a lot and have a lot to say about it. Paul Ernest, a theorist of math education,
in his book Social Constructivism as a Philosophy of Mathematics, follows Lakatos
and Wittgenstein in building his social constructivist model.

Mathematics education has urgent questions to answer. What should be the
goals of math education? What methods could be more effective than the present
disastrously flawed ones? Mathematics educators carry on research to answer these
questions. Their efforts would be greatly facilitated by a well-established overall
study of the nature of mathematics.

Among existing models of mathematics, the giant branch of applied logic
called formalized mathematics stands out. Being at once a model of mathematics
and a branch of mathematics, it has a fascinating self-reflexivity. Its famous
achievements are at the height of mathematical depth, settling Hilbert’s first and
tenth problems and providing tools for mathematics like nonstandard analysis.
Proudly and justifiably, it excludes the psychological, the historical, the personal,
the contingent, or the transitory aspects of mathematics.

Related to but distinct from theoretical formalizations is the recent actual
formalization of mathematical proof in actual code running on an actual machine.
Such programs come close to guaranteeing that a proof is complete and correct.

Logic sees mathematics as a collection of virtual inscriptions—declarative sen-
tences that could in principle be written down. On the basis of that vision, it offers
a model: formal deductions from formal axioms to formal conclusions—formalized
mathematics. Sol Feferman constructed a refined logic model of mathematics: the
smallest system of logic big enough to support classical mathematics.

Mathematical logic is a branch of mathematics, and whatever it’s saying about
mathematics, it is saying about itself—self-reference. This powerful model does
not have to resemble what real mathematicians really do. That project can be
left to others. The logician’s view of mathematics can be briefly stated (perhaps
oversimplified) as “a branch of applied logic.”

The competition between category theory and set theory, for the position of
“foundation,” is a competition within logic, for two alternative logical foundations.
They provide us ordinary working mathematicians with two alternative models,
either of which we may choose, as what seems best for our purpose.

The work of neuroscientists like Stanislas Dehaene models mathematics as an
activity of the nervous system. It looks at electrochemical processes in the nervous
system of the mathematician and there seeks for correlates of her mathematical
process. As localization in the brain becomes more accurate, it may become possible
to observe specific brain processes synchronized with conscious mathematical
thought. Already, Jean-Pierre Changeux argues that mathematics is nothing but a
brain process.
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The neuroscientist’s model of mathematics can be summarized (a bit oversimpli-
fied) as “a certain kind of activity of the brain, the sense organs and sensory nerves.”

History of mathematics is done by mathematicians as well as historians. History
models mathematics as a segment of the ongoing story of human culture Mathemati-
cians ask, “Was it important? natural? deep? surprising? elegant?” The historian sees
mathematics as interwoven with finance and technology and with war and peace.
Today’s mathematics culminates all that has happened before, yet in time it will be
viewed as a brief, outmoded stage of the past.

One natural model for mathematics is as story or narrative. Robert Thomas
suggested such a model. (Thomas has also suggested litigation and playing a
game as models for mathematical activity.) The collection Circles Disturbed
contains various attempts to use narrative as a model of mathematics. Thinking of
mathematical proofs as a kind of story has both obvious merits and defects. Pursuing
its merits might have payoffs in research, or in teaching. That would be different
from being a fictionalist—taking the position that mathematics is fiction.

The collaboration between philosopher Mark Johnson and linguist George
Lakoff is exemplary. Where Mathematics Comes From, by Lakoff and Rafael Nunez,
is a major contribution to our understanding of the nature of mathematics.

Each of these fields has its particular definition of mathematics. Rival definitions
could provoke disagreement, even conflict. Disagreement and conflict are some-
times fruitful or instructive, but often they are unproductive and futile.

Philosophers also propose models of mathematics, although without situating
their work in the context of modeling. Some of these models combine philosophy
of mathematics and history of mathematics. Imre Lakatos wrote that without
philosophy history is lame and without history, philosophy is blind. Or maybe it was
the other way around. Lakatos’ Proofs and Refutations presents a classroom drama
about the Descartes-Euler formula. The problem is to find the correct definition
of “polyhedron,” to make the Descartes-Euler formula applicable. The successive
refinement by examples and counter-examples is implicitly being suggested as a
model for mathematical research in general. Lakatos argued that his rational recon-
struction was more instructive than history itself! This is amusing or outrageous,
depending on how seriously you take these matters. It is a clear example of violating
the zeroth law of modeling, which never confused or identified the model with the
phenomenon!

Some other important philosophers of mathematics who joined philosophical
and historical analysis include Philip Kitcher, who identifies five driving forces that
generate new mathematical entities; Emily Grosholz, who focuses on “ampliative”
moves in mathematical research; and Carlo Cellucci, who argues that plausible
reasoning rather than deductive reasoning is the essential mathematical activity.

Logic models mathematics as a web of formal inscriptions. Neuroscience models
it as electrochemical activity in the nervous system. History models it as part of
the ongoing evolving fabric of human society (including science, technology, war,
government, and education). None of them is wrong. None of them is complete.
Actual mathematics or mathematical life, like any other major aspect of humankind,
is too varied, complex, ever evolving, and enriching itself, to be captured by any
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single theoretical framework or model. It is never necessary to argue that any model
is incomplete or partial, because it is in the very nature of modeling to be incomplete
and partial, just as any map of any region of the Earth is incomplete as a description
of that region. It is the very purpose of a model or a map to be incomplete, to
select certain features of its subject to represent and theorize. A complete description
would be just a duplicate of the original and therefore useless.

Models are naturally pluralistic.
What do we gain by seeing formalism, logicism, etc. as models of actual

mathematics (what people do when they do mathematics)? We see immediately that
they are pluralistic and they naturally and automatically do fall under a pluralistic
metaphilosophy.

Study of any complex empirical phenomenon, whether physical, biological, or
social, ordinarily is done by a variety of tools, models, or methodologies, which
supplement each other, according to the particular aspect of that phenomenon
appropriate for that model or methodology. There is ordinarily a mutual tolerance or
coexistence of models, which can rightly be called “pluralism.” Classical Newtonian
physics coexists with quantum mechanics and general relativity; the science of
cosmology disposes of whichever model works best for the problem or phenomenon
under consideration.

Mathematics, a universal attribute of our species, is modeled separately by
logicians, historians, neuroscientists, and others. These models could be integrated
into “mathematics studies,” a coherent, many-faceted branch of empirical science.
Philosophers could facilitate that unification. Their competing “positions” on the
nature of mathematics would more productively serve as models of mathematics.
This reconception of the philosophy of mathematics would render it a pluralist
enterprise.

(3) Personal pluralism
In addition to the normality of pluralism in mathematics itself and the desirability

of pluralism in philosophy of mathematics, I must also confront pluralism of the
ordinary everyday mathematician, the unphilosophical one who is so uninterested
in philosophy that he feels no need to know his own philosophical views. (I am
dropping the tedious he/she shibboleth.)

It was somewhat shocking that Bourbaki himself (the mask donned by a super
prestigious quasi-Parisian clique that came to epitomize fashionable abstraction)
was self-avowed to be such a one. Jean Dieudonne, the scribe and captain of the
group, wrote: “On foundations we believe in the reality of mathematics, but of
course when philosophers attack us with their paradoxes we rush to hide behind
formalism and say, ‘Mathematics is just a combination of meaningless symbols’
and then we bring out Chapter 1 and 2 on set theory. Finally we are left in peace
to go back to our mathematics and do it as we have always done, with the feeling
each mathematician has that he is working with something real. This sensation is
probably an illusion, but it is very convenient. That is Bourbaki’s attitude toward
foundations.”

As if to confirm Dieudonne’s report, Paul Cohen, an American famed for
contributions to fields spurned by Bourbaki (set theory and Fourier analysis),
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wrote: “The Realist position is probably the one which most mathematicians
would prefer to take. It is not until he becomes aware of some of the difficulties in
set theory that he would even begin to question it. If these difficulties particularly
upset him, he will rush to the shelter of formalism, while his normal position will
be somewhere between the two, trying to enjoy the best of two worlds.”

I summarized these descriptions: “The typical mathematician is a Platonist
during the week and a formalist on Sundays.” I took this philosophical opportunism
or insincerity to be undesirable, even unacceptable. But now I see a way to make it
okay. Just call it pluralism! (Or perhaps “dualism,” since the number of alternative
philosophies seems to be only two.) William Byers has introduced ambiguity as an
essential aspect of mathematics, a driving force that leads to the creation of new
mathematics.

However, back in 1979, this simple way out did not occur to me. Rather than just
label the contradictory notions “plural” to make the inconsistency okay, I offered my

own way out: accept our mental models of mathematical entities as real! They
actually exist and have properties. This is “realism,” but not Platonic realism. It
is sociocultural realism. It agrees with the claim of formalism that mathematics is
created by us, and it agrees with the claim of realism that mathematical entities exist
and have definite properties that we may be able to ascertain or determine. These two
claims are not inconsistent, once we locate mathematical entities in human culture
and human thought.

This is a verbal, descriptive model. Like any model, it focuses on certain specific
features of the situation, and by attending to those features, it seeks to explain a pair
of undeniable facts. We want answers, not just freedom to choose this answer today
and that one tomorrow. I say that mathematics is just something people do, espe-
cially those people called “mathematicians.” To decide what mathematics is, one
must study mathematical practice—including watching how and what we ourselves
do and think, when we do mathematics. And mathematical entities, from numbers
up to categories, are just ideas in our heads—shared socially validated ideas, to
be sure. That is my viewpoint. It is a viewpoint—a position! It has not secured
many endorsements or adoptions by philosophers. Mathematicians and mathematics
educators do not seem to see anything wrong with it. Maybe philosophers who
decide to become pluralists will include my humanistic philosophy among the ones
they are willing to tolerate.

I see an analogy to cognitive pluralism in psychology, which recognizes
visual, kinetic, and interpersonal intelligence along with the traditional test-taking
math/verbal kind of intelligence (Work of Howard Gardner and Vera John-Steiner).

Proposal
I support Professor Friend’s campaign for a pluralist attitude in philosophy of

mathematics. I think it will be strengthened by thinking of the various “positions”
as models and as pictures of mathematics focusing on one side of mathematics or
another. The philosopher will then be readier to interact with the historian or the
cognitive scientist.

Why not seek for a unified, distinct scholarly activity of mathematics studies,
the study of mathematical activity and behavior, by all possible methods? An
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interdisciplinary field, a friendly companion to mathematics itself, not competing
but supplementing it. Mathematics studies could be comparable to linguistics as
the study of language behavior, by all possible methods. It would not interfere
or compete with mathematics departments, any more than linguistics departments
compete or interfere with long-established departments of English literature, French
literature, Russian literature, and so on.

Rather than disdain the aspect of mathematics as an ongoing activity of actual
people, philosophers could seek to deepen and unify it. How do different models
fit together? How do they fail to fit together? What are their contributions and their
shortcomings? What is still missing? This role for philosophy of mathematics would
be higher than the one usually assigned to it.

A coherent inclusive study of the nature of mathematics would contribute to our
understanding of problem-solving in general. Solving problems is how progress is
made in all of science and technology. The synthesizing energy to achieve such a
result would be a worthy and inspiring task for philosophy.

Acknowledgments Thanks to Vera John-Steiner and to Brendan Larvor, for suggestions for
improving this article.
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“Now” Has an Infinitesimal Positive Duration

Reuben Hersh

Authors writing about Time have struggled to choose between a scientific
instantaneous Now, with zero duration, or an experiential Now with some undefined
small positive duration. The difficulty is resolved by the infinitesimal of Abraham
Robinson. This article offers the nonstandard or “hyperreal” line as a model for
Time, thereby to resolve a persistent controversy of the meaning of “Now.” As a
“monad” in the Leibnizian time axis, “Now” is a time interval shorter than any
standard positive interval, yet longer than any infinitesimal.

I start out with Aristotle’s Physics: “Aristotle’s Physics A Guided Study” Joe
Sachs, Rutgers U Press 1998 page 120–124 Aristotle chapters 10–12.

...though time is composite, part of it has happened and part is going to be, while
none of it is. The now is no part of it. For the part measures the whole, and the whole
must be composed of the parts, but time does not seem to be composed of nows : : : .
If there were no now, there would be no time.

The now is manifest as the thing carried along, like a unit of number, But in
addition [unlike number], time is continuous by means of the now and is divided
by the now. And the now marks off the motion into a before and an after and this it
does in a manner corresponding to that of the point.

But the now is always other through the moving of the thing carried along. Insofar
as the now is a limit, it is not time but an attribute of time; but insofar as it numbers,
it is a number.
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Chapter 13
The now is a connection of time, as was said, for it connects the past time and the

future. And it is a boundary of time, for it is the beginning of one part and the end
of another. But this is not as clear as with the point, which stands still. And the now
divides, potentially; and insofar as it is a division, the now is always different, but
insofar as it binds together, it is always the same, as with mathematical lines. Thus
also, the now is in one way a division of time, potentially, and in another a common
boundary and union of its parts. And the dividing and the uniting are the same act
of the same thing, but the being of them is not the same.

To paraphrase Aristotle briefly:
In order to separate the past and the future, a single point “now” suffices. (This

automatically invokes an image, the “straight line,” and brings in the mathematics
of Euclid, as modernized of course.)

On the other hand, in order to be faithful to the unbroken connectedness of
experience, we require a “now” that overlaps the past and future, a positive duration
for what is happening “right now.”

Automatically and uncritically we think of time as a straight line, with a positive
direction, infinitely long in both directions. It’s split between the future, a ray
stretching to the right, and the past, a ray stretching to the left. This pair of disjoint
half lines is separated or joined by a single point, “the present,” “the Now.”

This image, this time line, is not Time. Time itself is not a line, it is the general
phenomenon of change. The time line is just a model of Time, a mathematical
model. It helps us to conceptualize or visualize experience. Like any model, it is
not identical to the object being modeled, which is the Time we live through, either
in ordinary life or in experimental science.

“Now” is a primitive of human language, as when I yell at you, “Do it now!” It
is not a problem in common conversation.

But when Logic sticks in its head, a problem does arise. The book edited by
Durie presents arguments about the Now by distinguished authors, including Henri
Bergson and Gaston Bachelard. Bergson tells us the Present must have a duration.
For anything at all to happen, it takes at least a little bit of time. In zero time (without
duration), we’d be with Zeno, stuck in a “place,” unable to move. But things are
happening; we are living and breathing, now! For Bergson, “now” holds together
the past and the future, a duration where the future becomes the past.

To Bachelard, “Now” is merely a point separating the past and the future.
Bachelard claims to settle the argument by pointing to Albert Einstein. The

“event” in Relativity Theory has a time coordinate, a number. End of argument.
And in this regard, not just Einstein but all of experimental science can be cited.

Isaac Newton wrote that he was calculating velocity at the very instant when the
falling stone hits the ground. Since the work of Newton, observable, measurable
motions have been modeled as “functions” of time. We record observations using
two lines. One is a time axis. The other is an axis of distance, temperature, pressure,
or some other “state variable.” The state variable is called a function of time, which
means merely that a point on the state variable axis corresponds to some point on
the time axis. The use of points or “instants” is taken for granted.
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This methodology is so universal, so well established for centuries, that it is taken
as an objective reality, as a real truth, not just a successful model. But it doesn’t fit
well with our subjective time sense, like how long we’ve been waiting in the doctor’s
office. Without bringing in any mathematics, we know which things have already
happened (“are in the past”), which ones are going on now (“in the present”), and
which ones haven’t happened yet (they’re “in the future”). That kind of “experiential
time” is not quite the same as Newton’s “everywhere always equable flow.” Yet they
are not unrelated. They have to be compatible in practice. We manage to shift back
and forth between the “independent variable” of physics and the past, present, and
future of daily life.

There is the objective, scientific duration or time, the independent coordinate of
mechanics. And over against it to be reconciled with it is an internal, subjective
sense of time, a consciousness of time passing either slowly or quickly, the flow of
time that we feel even with our eyes closed in a silent room, that seems entirely
different from the time by which we describe the rising and setting of the sun and
the moon.

We seem to be facing a conflict between our lived Now, a brief duration where
Past and Future seamlessly merges, and our scientific practice, which evaluates an
observable at any given instant.

But this opposition is delusional. It is based on the delusion of immaterial
consciousness. Our minds are embedded in our bodies; they are activities or
functions of the brains and nervous systems which are not free floating; they are
in our flesh, our muscles, and guts. My heart is beating. My breath goes in and out.
My stomach empties and needs to be refilled. My buttocks weary from long sitting.
All this information available to my brain is somehow combined or condensed into
a sense of time passing. It is time to get up, or to lie down, or to find a snack.

The coming and going of daylight, the coming and going of the seasons of the
year, and the aging of ourselves and others impose their own measure of lived
experience, before or without any intervention of clocks. Muscle fatigue, hunger,
heartbeats, and breaths in and out, all are different clocks sending signals to our
brain where they are compared, coordinated, and synthesized to give us a subjective
sense of time passing. How long have I been sitting here waiting? How long has
it been since I have heard from so and so? As I stand I feel the passage of time
in my muscle fatigue. Or as I sit, I feel the passage of time in my buttocks and
back. Maybe I even get a backache. All the while of course, my breath is entering
and leaving my lungs, and my heartbeat is continuing, perhaps at a steady pace,
perhaps with speedups and slowdowns. Fatigue not only of the muscles but of the
nervous system. The detached observer is a myth. We ourselves, as real observers,
are embodied, with stomachs and brains.

There is keeping time, marking time, making time, losing time, but that doesn’t
mean that there is an actual thing that you are marking, or keeping, or losing, or
making, as the case may be.

The “Now” is an old problem in experimental psychology. How long must a
sound or a flash of light persist, in order to be perceived? William James called it
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“the specious present” and reported experiments in Germany. The empirical reality
of the “specious present” is the number of milliseconds that a sight or a sound must
endure in order to be perceived.

The empirical Now shrinks as we invent more powerful observing instruments.
On my desk is a calendar with illustrations from high-speed photography.

A bullet is shown in midair, just as it has passed through an apple. It was in
that position for “an instant.” But the camera shutter had to stay open long
enough for the photographic chemical process to take place. No photography
can be instantaneous. If Now takes some time, then how much? Milliseconds?
Nanoseconds? Microseconds?

This empirical and experiential fact seems to ignore a certain logic of past and
future. That little interval on the line, the Durational Now, will have boundary points
where it meets the Future and where it meets the Past. The perceptive time interval
must extend between two instants, a beginning and an end, and we are still left with
the question, what should we mean by “now”? When does the Now begin? How
long does it last? When does it end? In trying to answer these questions, we seem
forced to narrow the Now back down to a mere point.

To someone not indoctrinated in modern mathematics, not ashamed to use the
word “infinitesimal,” it would be tempting to propose a duration of “Now” that is
neither zero nor positive. Something in between. “Infinitesimal.”

The standard “real line” taught in school is subject to the Axiom of Archimedes:
“Any interval, no matter how short, will become longer than any other interval,

no matter how long, if added to itself sufficiently many times.”
This axiom amounts to saying, “There is no infinitesimal,” if by “infinitesimal”

we mean something so short that no matter how many times we add it to itself, the
result will always be less than one unit (inch, mile, whatever you want to choose as
your unit).

Is this Axiom true? It is true of the standard real line, because it is part of the
definition of the standard real line. Circular reasoning, irrefutable. Is there any other
real line that is not the standard one? Yes! It is called the Nonstandard line! (Also
called the “hyperreal” line.) It has been recognized and accepted into established
mathematics since 1966, when the logician Abraham Robinson published his
famous book Nonstandard Analysis.

Already at the foundation of the calculus, in the 17th century, Leibniz and his
predecessors Cavalieri and others used infinitesimals to calculate areas and volumes.
To do so required a certain finesse, because they were unable to explain exactly
the meaning of the word “infinitesimal.” Roughly speaking, “An infinitesimal is
greater than zero, but smaller than every positive number.” This definition tells
us that an infinitesimal is smaller than itself! Blatantly self-contradictory. Leibniz
explained that although infinitesimals do not actually exist, still we can think about
them as if they did exist. In the 19th century, Cauchy, Dedekind, and Weierstrass
showed how to do calculus without saying “infinitesimal.” We use a couple of little
extra variables, usually called epsilon and delta. Against the rules of mathematics,
geometers, physicists, and engineers continue to think and talk with infinitesimals.
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Robinson the logician was experienced in applied mathematics. He used logic to
construct a continuum, a “line,” where every standard number is surrounded by a
little cloud of infinitely close nonstandard numbers. How did he get away with it?
He had a new tool—modern formal logic, thanks to Frege, Whitehead, and Russell.
Mathematical logic describes mathematics formally with precisely stated symbols,
grammar, and deductions. The “standard real line,” that is, the set of standard
numbers, subject to the Axiom of Archimedes, becomes expressed in a definite
formula. Then it makes sense to talk about nonstandard numbers. An infinitesimal
is a number greater than zero but smaller than every standard positive number. No
more self-contradiction!

I propose the hyperreal or Leibnizian line as a suitable mathematical model of
time.

Nonstandard analysis is no longer a startling novelty. Half a century has passed.
Nonstandard analysis is in elementary calculus books by Howard Jerome Keisler
and others that have been used successfully in courses at several universities.
It is a powerful research tool. Although most people go through grad school
without meeting it, it isn’t controversial any more. It is a well-established part of
mathematics and a respected research methodology.

In Leibniz’s calculus, velocity was a ratio, an infinitesimal distance divided by
an infinitesimal time interval. Robinson uses this nonstandard ratio and obtains as
a standard velocity the unique standard number infinitely close to this nonstandard
ratio. In this calculation, time is being modeled by a nonstandard real line. In the
present paper, I point out that this model of time is useful, not only for calculating
velocity but also for endowing the Present, the Now, with a positive duration,
thereby relieving the tension between the experiential now, which has duration, and
the scientific now, which must have a definite location.

The nonstandard real line has a zero, which is a standard real number, and
around it a set of infinitesimals, both positive and negative. Robinson took a word
from Leibniz and named the cloud of nonstandard numbers infinitely close to any
standard real number a “monad.”

In a hyperreal model of time, we could choose to say, without contradiction, that
past and future overlap or intersect in the present. The present would be a monad; it
would be all the nonstandard points infinitely close to some standard point. “Now”
would be defined as the intersection of past and future. It would have a finite positive
duration. That duration would not equal any number, either standard or nonstandard,
for it would be smaller than any standard number, yet greater than any infinitesimal.

The subjective “present” does not have any definite beginning or end. This feature
is shared by the nonstandard monad, which does not have a first or last element.

One of the difficulties of describing time phenomenologically is the impossibility
of assigning any number to the duration of the instant. The monad does not possess
a numerical magnitude. As a model of any instant, including the present instant, it
has positive duration, greater than any infinitesimal, yet still less than any standard.
This paradoxical feature of the hyperreal model fits nicely with phenomenological
introspection.
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Intuitively, it makes more sense to think of past and future overlapping than to
think of them as disjoint, separated by an instant (the present) through which they
can never touch each other. How can the future flow into the past, as tomorrow
turns into yesterday, without tomorrow ever being allowed to touch yesterday?
The mystery about the future flowing into the past is an artifact of the standard
mathematical model. It falls away in the hyperreal model. The future and the past
overlap infinitesimally. The infinitesimal overlap of future and past is the region of
actuality, of things happening and changing.

Of the three pieces of time—past, present, and future—it is the now that is really
real. “Be here now!” That reality requires duration.

Miller presented an exposition of the phenomenological now, according to
Edmund Husserl. Consider how we hear a melody. The melody is a sequence
of tones. We hear one tone at a time, yet we listen to the melody as a whole,
not as a succession of unrelated tones. We remember the tones we have just
heard, and we anticipate the next tone which we expect to come soon. Before the
“primal impression,” then, we have a “protention,” and in passing it leaves behind a
“retention.” The connections between these experiential aspects of time permit us to
have a connected experience of the whole melody. In fact, the same analysis applies
even to our experience of each separate tone of the melody, for even a single tone
has a duration, and a “primal experience,” a “protention” and a “retention.”

This analysis of our experience depends on our already accepting the objective
fact—that one tone does really precede or follow another. This amounts to accepting
the objective reality of Time, accepting that things do happen out in the World, that
one happening does precede or follow another.

The difficulty is with our picture of time as a Euclidean or Newtonian line.
These lines carry along with them the Archimedean axiom: “Any interval, no matter
how short, can serve to count any epoch of time, no matter how long.” There is
another kind of line that people have thought with, where infinitesimal intervals are
allowed—“infinitely short”—so to speak. They were part of calculus when calculus
was first invented. Velocity at an instant was just the ratio of the infinitesimal
distance traveled to the time elapsed in an infinitesimal time interval.

This made sense, it worked, it was understood, but it was not Aristotelian. It did
not fit into the “yes or no” framework of Logic. With effort, it was abandoned for
an Archimedean framework that relied on inequalities of two small variables called
epsilon and delta. In modern times, a way has been found to marry the Infinitesimal
to Aristotle. The key was mathematical logic. Once logic became precise and
powerful enough to have its own theorems, one could talk about language and logic
themselves as part of mathematics. Then we could refer to the Archimedean number
system of Euclid and Newton and call it Standard. We can talk about another kind of
number, a nonstandard one, that is smaller than every standard one, and still positive.
An infinitesimal. That is Robinson’s nonstandard analysis, which is now established
as part of pure mathematics and tool of applied math. In contrast to the standard
Archimedean or Newtonian line, we call it Leibnizian, because nonstandard analysis
is a rigorous reestablishment of Leibniz’s infinitesimal calculus.
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The nonstandard real line is a better model for Time than the standard one.
We can still think of the present instant as the zero on our time axis. We can associate
to it a duration which is less than any standard positive number no matter how
small, yet still greater than any infinitesimal. This would be what Robinson called
the monad of zero, the set of positive and negative infinitesimals.

It satisfies the phenomenological requirement for a Now that is associated with
an instant in time yet has a duration greater than zero. The seeming contradiction is
not in the experience of Time; it is only in the attempt to model time by the standard
line of Euclid and Newton. Robinson’s hyperreal or nonstandard line is a better
model, a better fit or description of time as experienced.

For the purpose of representing physical processes, we can choose either version
of the line. The infinitesimal is closer to naive intuition and was never really expelled
from applied mathematics.
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Review of How Humans Learn to Think
Mathematically: Exploring the Three Worlds
of Mathematics

Reuben Hersh

Educational theory is not my area of expertise. This is an important book on
educational theory and practice, deserving an expert and thorough review. So why
did I agree to review it? In answer, I quote a friend here at the University of New
Mexico. “You write a book review because you want to say something about the
subject of the book. But you are required first of all actually to tell about the book
itself.”

I will tell you about David Tall’s impressive new book about how humans
learn to think mathematically. I will also tell you my own thoughts, about how
humans think mathematically, to discover and prove new theorems. It turns out
that these two questions—how does one learn to think mathematically and how
does one actually do research in mathematics—are almost the same question! I will
shamelessly advertise my own newest book, Experiencing Mathematics (American
Mathematical Society, 2014).

To answer either of the two questions I have just stated, one is forced, implicitly
or explicitly, to confront the basic dilemma: what is the nature of any mathematical
entity, be it a theorem, an algorithm, a counterexample, a conjecture, or even a whole
theory, a complex combination of all four?

Does it reside in some other worldly reality of “abstracta,” neither here, there,
nor anywhere else? (See “platonism” or “realism” in the philosophical literature.)

Reprinted with Permission from the Mathematical Association of America. The original book
review appeared in March 2015 in the American Mathematical Monthly. By David Tall. Cambridge
University Press, New York, 2013, xxi C 455pp., ISBN 978-1-107-66854-6.
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Is it only a fiction, not even claiming the right to “exist”? (See “fictionalism” or
“nominalism” in the appropriate counter-literature.) Or does it actually exist, real
and down here, close to us, accessible to us? (See Experiencing Mathematics.)

These are questions I have been fighting with for a long time. They are my reason
for reviewing the book. However, I am duty bound to postpone them to the last half
of this review. First, let’s look at the book itself.

There is something called “thinking mathematically” that some humans learn.
But how do they learn it? A big question. It takes a big book to tackle it.

David Tall has written two PhD theses—one in algebraic topology, under Sir
Michael Atiyah, and one in cognitive psychology, under the psychologist Richard
Skemp. He has taught in many classrooms—primary, secondary, tertiary, and
postgraduate. The first half of his book is about “school mathematics,” and the
second half is on university and postgraduate mathematics. Different people attain
different levels of “thinking mathematically.” Interesting concrete problems enliven
the generalities on learning and teaching.

Tall explores “three worlds of mathematics: the embodied, the symbolic, and
the formal,” using social, cognitive, and computational perspectives. He recognizes
the contributions of cognitive neuroscience. He talks about the embodiment,
compression, connection, and blending of mathematical ideas.

He describes and analyzes the development of mathematical thinking, from the
young child to the sophisticated adult. At each level, mathematical learning is
broken down into stages: recognition, description, definition, Euclidean proof, and
formal rigor.

He is fully at home in the mental world of research mathematicians and tries
to make it available and comprehensible to readers who work at the primary and
secondary levels. A mathematical concept that is fully developed, solid, permanent,
seemingly independent, and eternal is named “crystalline.”

The book omits important aspects of learning mathematics. By whom? For
what purpose? The words “gender,” “ethnic,” or “class” do not appear. It discusses
emotion, but not the emotional interactions between learners, or between learner
and teacher. It doesn’t mention well-known, important contributions in practice (not
theory) by Uri Treisman, Clarence Stephens, or Robert Lee Moore.

Tall includes many examples of “wrong answers” to test questions. What is
behind the wrong answer? What misconception or misunderstanding misled the
student? He finds many ways students go wrong by trying to follow rules or methods
“met before” that are not applicable.

Tall recognizes that great obstacle to communication between learner and
instructor—the disparity between how mathematical content is seen by the learner
encountering it for the first time and by an instructor who knows it all by heart.
The difficulty in learning new mathematics often comes from conflict with older
concepts. Progress in school requires successively learning three or four different
mathematical structures. At each stage, the rules change. What was previously
forbidden now becomes possible. Tall’s account is different from the standard one.
He doesn’t imagine that each step forward requires nothing more than a clear
explanation of new rules and laws. On the contrary, it requires serious mental effort
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and flexibility. For example, in the natural numbers, the pupil could only “take
away” an amount smaller than what she already had. But in the integers, any number
can be subtracted from any other, regardless of which is greater. In a similar way,
it takes mental effort to move from the integers, where division is possible only if
the divisor “goes into” the dividend, to the rationals, where anything can be divided
by anything else—except zero! Each step into a new, bigger number system is a
cognitive leap; it is intrinsically difficult and demanding. Tall coins the terms “met-
befores” and “set-befores” to discuss these complications. His continued focus on
the learner, not just the teacher, is most welcomed.

A central theme, which goes back to the fundamental contributions of Jean
Piaget, is the transformation of “knowing how” to “knowing that.” For example, a
pupil may calculate correctly, without yet knowing how to talk about the calculation
itself. The operation of subtracting, “taking away,” is readily understood for natural
numbers, when what’s “taken away” is smaller than what’s available. When she
moves to the integers, the operation of “taking away” is reified (Anna Sfard’s term)
into something new and strange—a “negative number.” A verb is transformed into a
noun! To calculate correctly with these negative numbers, she must learn new rules
that violate some of the rules she learned with the natural numbers.

Later on, functions take a similar leap. To begin with, any particular function is
just an operation that associates one number to another. But later on a whole class
of functions becomes a thing that you operate on—differentiate or integrate, add or
multiply. This leap is intrinsically difficult for many students. For the instructor it’s
an obvious triviality.

To the big question, “How do humans learn mathematical thinking?” a first
simple answer might be, “They go to school.” But standard schooling focuses on
calculating—which is but the first step to “thinking mathematically.”

Classroom teaching and the design of curriculum and assessments all depend
on a “theory”: What must pupils at each stage of education be able to do?
What mathematical content ought to be learned and taught? Tall works within the
assumptions about these matters that are presently standard worldwide. “Thinking
mathematically” begins, as usual, with basic arithmetical calculation and algebraic
manipulation and simple problem-solving in geometry, algebra, and arithmetic
including “real-world” problems, and goes on from there to the top level, discov-
ering and creating new mathematics. He does pay some attention to statistics. He
has his own method of teaching introductory calculus. Computer graphics create
a “microscope” in which the graph of an algebraic or a trig function is seen to be
“locally straight” (one might say “infinitesimally straight”). Then the slope of this
infinitesimal tangent line segment can serve as the definition of the derivative, and
the expression dy/dx is actually a fraction, the rise of this infinitesimal line segment
divided by its run.

Tall is eclectic. He writes “I spent years comparing and analyzing the conflicting
elements of different theoretical frameworks until I realized that greater progress
can be made by seeing each alternative in a sympathetic light in its own appropriate
context and seeking to blend together different viewpoints to evolve new insights.”
(page 412) Among the writers who have influenced him are three of my old
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friends—Shlomo Vinner, Anna Sfard of Israel, and Ed Dubinsky of the United
States. I was delighted to learn about Vinner’s expression, introduced long ago,
of the “concept image.” It is very similar to the “mental model” I write about in
explaining how mathematicians’ proofs work to compel agreement.

Explicating what is meant by “thinking mathematically” is a nontrivial undertak-
ing. The attempt to understand how humans learn to think mathematically requires
theorists to produce models of mathematics itself. We need not demand the complete
Truth from any one model of mathematics. We can ask of it merely, what can we
get out of this model to help understand how mathematics works?

The mathematics we teach in school is part of established mathematics. Estab-
lished mathematics is a social-cultural-historical phenomenon. Of course it actually
“exists”! Its representations exist in books and computer memories, of course, and
most importantly, in the minds of the people who have learned it—in particular,
qualified teachers of mathematics. The teacher works to guide and assist the learner
in acquiring these concepts—that is to say, in re-creating them in the mind of the
learner. Education presupposes that our minds are real, our thoughts are real.

Some nominalists deny that numbers and other mathematical entities exist at all.
The “prince of nominalists,” William of Ockham, was more careful. He wrote, “No
thing outside the mind is universal [...] It is just as great an impossibility that some
thing outside the mind be in any way universal [...] as it is an impossibility that a
man be an ass.” If numbers and so on exist only in the mind, we need to clarify
whose mind we are talking about, and just how, in what way, mathematical entities
exist there. People working in either education or research look for answers that are
compatible with their work experience.

David Tall’s theory of mathematics learning implicitly presupposes a theory of
mathematical reality. It is incompatible with either the fictionalist or the platonist
theories currently in academic Anglophone philosophy of math (see Bonnie Gold’s
Proofs and other dilemmas published by the MAA, or Stewart Shapiro’s Handbook
of Philosophy of Mathematics and Logic).

The activities of learning and teaching mathematics are about actions and
concepts or processes and concepts that are taken for granted as real entities. Could
these concepts and processes be mere fictions, no-things, or non-existent? Such a
notion is deeply hostile to, if not incompatible, with mathematics education.

Or alternatively, are they real entities “out there”—independent of human
apprehension—“abstract” in that sense? Such an attitude is alien to the learner-
centered humanistic math education advocated by Tall and others who are focusing
on how best to serve math students at all levels. The fictionalist and platonist
narratives are remote both from living education in mathematics and from living
research in mathematics.

Mathematics is a collection of practices and concepts of human beings. Math-
ematics education and mathematics research are human activities in the same
realm, and it’s natural that their philosophical foundations are compatible. The
successful student reconstructs what is already known by others, to acquire his
own mental model of a math concept. The researcher constructs something new,
by inspecting and manipulating her own mental models of mathematical concepts.
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The philosophical viewpoint of the teacher and student (as implicit in How Humans
Learn to Think Mathematically) and that of the researcher (as explicated in
Experiencing Mathematics) fit together.

Mathematical entities or concepts are equivalence classes of mental models. Each
person who grasps or possesses a concept has a mental model, a representative or
sample of that concept. Different representatives possessed by different people are
required to be equivalent, in the sense of giving the same answers to test questions.
This equivalence is what makes possible successful communication about a mathe-
matical concept. Mathematics education consists on the one hand of reconstruction
by the learner of the desired mental model (with the assistance of a teacher or a
textbook) and on the other hand of testing and grading (called “assessment”) which
continually and repeatedly require the student’s mental model to be congruent to
the teachers’, that is to say, to the community of mathematics. Thus, the practice
of mathematics education accords with the notion of mathematical reality offered in
Experiencing Mathematics. A student is accepted as competent by the mathematical
community if, by passing the tests, she has demonstrated that her mental model of
the concept is congruent to the standard one of the community.

Tall’s book is an impressive achievement. He has spent a lifetime thinking deeply
and observing carefully how students learn mathematics or fail to learn it, and he
has synthesized the whole pathway from the beginning up to the climax.
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Can You Say What Mathematics Is?

William Byers

A more complete discussion of some of these ideas can be found in William Byers
(2015). Deep Thinking: What Mathematics Can Teach Us about the Mind, World
Scientific.

Introduction

Is mathematics something that can be pinned down? Does it have an objective
meaning? Is it even objective at all? The questions that are the theme of this
collection depend on what we mean by “objective.” We distinguish between weak
and strong objectivity. This leads to another way to talk about mathematics, the
philosophy of mathematics, and the theme of this collection. It also leads to con-
sideration of the relationship between mathematics and artificial intelligence. The
discussion highlights the significance of Reuben Hersh’s writing about mathematics
as a deconstruction of the normal, naïve belief that mathematics is objective in any
absolute sense.

What Is Mathematics?

What is mathematics? Putting the question in this way doesn’t supply an obvious
point of entry. Compare it to Bill Thurston’s question, “How do mathematicians
advance human understanding of mathematics?”1 Though seemingly obscure,
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Thurston’s way of putting the question gives us a productive way to look at the
nature of mathematics. It has (at least) two advantages. The first is, strangely
enough, that it is circular. Circularity is irritating to mathematicians because we
think that the way to progress toward capturing the essence of mathematics is
similar to trying to prove a conjecture within mathematics and this begins by
examining it at arms’ length. Actually we feel that mathematics is at arms’ length
and that it is objective and timeless. But Thurston’s question brings the objectivity
of mathematics into question and tells us that a different approach is called for.
Attempting to pin down the essence of mathematics is not the same kind of activity
as trying to determine whether the equation xn C yn D zn has any integer solutions.

The second strength of Thurston’s question is a variation of the first. It highlights
the fact that mathematics is a process and not just a collection of things: definitions,
axioms, theorems, and algorithms. Not only is mathematics an activity, but also it
is a human activity that involves intelligence: learning, thinking, understanding, and
creating. That is, mathematics, to be mathematics, involves the mind. To turn the last
statement around—the nature of mathematics is not fully captured by saying that it
is formal or deductive or algorithmic or even logical. This is something that Reuben
Hersh has been saying for many years now. Mathematics is not even “objective”
unless you are very careful about the meaning that you give to the word.

Asking and answering questions about the nature of mathematics are philosophy
and not mathematics. Subscribing to a philosophy of mathematics does more than
describe what is going on. It creates a context that gives meaning to mathematics.
For example, formalism tells you that mathematics consists of proving theorems
and setting up deductive systems. Doing mathematics is not really possible without
a philosophy that tells you what mathematics is, even if this philosophy is not
consciously embraced but is only implicit in what you do. Normally in mathematics
and science, you only become aware of the assumptions that frame your work during
periods when the assumptions are in question. I suspect that today may be such
a time for mathematics because of the growth of computer technology and the
techniques of artificial intelligence. So it’s a good time to ask some fundamental
questions.

What Is Number?

Let’s start with a question that looks easier than “what is mathematics,” namely,
“what is number.” I’m not asking about the definition of particular kinds of
numbers—for example, the reals or the rationals. I’m asking about the nature of
“number” in general. What is a number? The answer is not at all obvious to me. It’s
a hard question, and in moment, I’ll take up the precise way in which it is “hard.”
However, if I ask you what a real number is, then the answer is more straightforward.
It’s also hard but not hard in the same way. The nature of mathematics is hard in
the same way that the nature of number is hard. “Number” is hard because it is an
informal idea (maybe pre-formal is a better term), and this informal nature needs
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to be pinned down by defining some particular class of numbers before the activity
of (what we normally call) mathematics can proceed. We replace the informal idea
by the formal one and basically forget about the former. I propose to pay more
attention to the informal idea of number because it is an inexhaustible source of
new mathematics.

A discussion of the nature of mathematics also lives at this informal level.
Can we talk about the informal in a useful manner? Does mathematics (and
number, randomness, infinity, continuity, and almost all other really basic notions in
mathematics) mean something before it is formalized?

“What is a number?” is a hard question precisely because the generalized notion
of number is not an objective entity in the same way that a real or a rational
number is. It is the process of pinning it down that makes it objective. On the
other hand, “number” (in general) means something; it is not arbitrary. Nevertheless
these two entities live in different universes—one that is more elementary, informal,
and implicit and the other formal and quite explicit. These different universes have
different rules and procedures. We usually only address the nature of “pinned down”
mathematics, but the crucial step in the process involves the pinning, that is, making
number into an objective entity. It’s not that the informal notion of number isn’t
objective, but it’s not objective in the same way as the numbers in some explicit
number system.

Is mathematics objectively true? Does it live in an objective world at all? Well
in one way, it does and in another it does not. It’s objective in the sense that
mathematicians no matter what their race, creed, gender, and culture tend to agree
about the facts of the case such as the chaotic dynamics of the function 4x(1-x) or the
sum of the angles of a planar triangle in Euclidean geometry. When you are doing
mathematics, it feels objective because you have the feeling that you are discovering
autonomous facts. You feel that doing mathematics is a process of discovery.

On the other hand, mathematics is clearly nonobjective (subjective?) because
(human) mathematicians bring it into existence. It is not objective because it is
invented and set firmly in place by individuals, groups of mathematicians, and
cultures as a whole. There is a tension in this ambiguity that lies at the heart of
mathematics: objectivity and subjectivity or discovery and invention. But let’s not
be too quick to resolve this tension by saying that one side is right and the other
wrong since this tension is the generating heart of mathematics and the reason why
it works so well.

What Is Objectivity?

From a naïve point of view, “objective” means “out there,” usually in the natural
world but possibly in the Platonic realm that many mathematicians hold so
dear. “Subjective,” on the other hand, refers to being “in here,” residing within
the body or the mind. We sometimes say that some phenomenon is “merely”
subjective meaning that it comes from personal prejudice or idiosyncratic opinion.
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Thus, we would object to a mathematical theorem or scientific experiment being
influenced by religion, race, or gender. Objective means that such matters, as well
as many other cultural factors, do not influence the result. Of course some people
consider mathematics itself to be a culture, but within mathematics, the criterion of
independence from arbitrary opinion might serve as a minimal way to differentiate
subjectivity and objectivity—we could call this weak objectivity or subjectivity.

However, there is a stronger meaning associated with the expression “out there.”
Something is objective if it does not depend on mind. You could say that it is
objective in this sense if it would continue to be true even if there were no human
beings around. This must have been the idea behind putting a diagram of the
Pythagorean theorem on Voyager 1 in the hope that the truths of Euclidean geometry
were universal and would be recognized by any intelligent being. Is the Newtonian
theory of gravity objectively true? Most people would say that it is even if that truth
is only an approximate one. Is the relativistic theory of gravity objectively true? Is
it an eternal truth? Maybe it is, but the jury is (necessarily) still out. At any rate, a
scientific theory is objective in this sense if the theory exists independent of all the
scientists who formulate or study it. Some people believe that the scientist discovers
what is already there and that the rules of the universe are built-in, so to speak. Let’s
call this strong objectivity.

Many people believe that mathematics is strongly objective and that mathematics
captures some built-in truth about the cosmos; for example, the electron is its
mathematical description. Though this belief captures something about mathematics
that cannot be ignored, I believe that it also misses something. What is missing is
that indispensable aspect of mathematics pointed to by the observation that what
you find in a research article or a textbook is not mathematics. It’s not mathematics
in the same way that a musical score is not identical to music. Music must be
heard (even a deaf person like Beethoven may be able to “hear” music). Some
sort of equivalent statement is true for mathematics. What you find in a paper or
a textbook is only potentially mathematics. The reader has to add context, meaning,
and understanding. No one can understand a paper for you. Something has to click
in your own mind to make this potential mathematics into real mathematics. This is
what I mean when I say that mathematics has an irreducible element of mind. It is
strongly subjective.

So the answer to the question about whether or not mathematics is objective is
that it is objective in the weak sense but not in the strong—free from prejudice and
arbitrary opinion but not independent of intelligence. It’s obvious that mathematics
is mind based, that it deals with mental constructs, and that its origins lie in the mind
and brain’s cognitive and perceptive organs. Doing mathematics involves thinking.
Its elementary structures are not axioms but concepts, which get grouped together
into conceptual systems. Because our thoughts are transient and impermanent,
human beings need to solidify these concepts and, in so doing, give them a quasi-
permanent status. The reality of mathematics is that it changes; the mythology is
that it is objective, permanent, and so unchanging.

Only the formal traces of mathematics—what is written down—are objective
and last for a long time. Real mathematics has different characteristics. It is a
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way of understanding the world that comes into being through acts of creativity.
But it is a human way of understanding. Either it is alive or else it is trivial.
Initially the mathematician who creates it brings it to life, but then the mathematical
community recreates it through acts of comprehension. So real mathematics is
impermanent. It comes into being and then falls into irrelevance and disappears.
Those who view mathematics (and science) as permanent and unchanging are
doomed to disappointment. There was a time when people spent a lot of time
proving metrization theorems in general topology. Today no one cares. Even the
axioms and other foundational elements of mathematics will change. There is
nothing that you can count on. Logic itself will change. There is no characteristic of
mathematics that you can point to and say this is permanent and won’t change. But
this doesn’t mean that mathematics isn’t real. Music has changed radically from the
time of Bach, and some people who are attached to the old forms will say that what
you hear today is not “real” music. But there will always be music because music
is a fundamental way in which human beings interact with the world. Similarly
there will always be mathematics because mathematics is an essential way in which
human beings understand the world. By emphasizing the sociocultural aspects of
mathematics, Reuben Hersh knocks mathematics off its Platonic/formalist pedestal
and brings it back into real life.

So mathematics is not strongly objective, and yet it opens a window that looks
out at what is real and true. The mind manages to access what is real. In physics, this
correspondence between the mind and the natural world amazed Einstein and was
the source of his spiritual sensibility. This correspondence is also behind what has
been called the “unreasonable effectiveness” of mathematics in the natural sciences.
If you eliminate mind, the mystery of how we humans are able to see so deeply
into the natural world disappears but at a terrible price—the loss of the feelings of
mystery and wonder that make doing science so rewarding.

Nevertheless strong objectivity (no mind) remains a goal for many mathemati-
cians, and one of the motivations for pursuing it is to establish mathematics as a
domain independent of human intelligence, that is, to reverse the natural order of
things, that human beings create mathematics, and incorporate mind into mathemat-
ics or computer science, which would be tantamount to eliminating mind altogether.
However, in order to get strong objectivity, you need more than mathematics;
you also need some philosophy or paradigm such as formalism, Platonism, or
algorithmic intelligence. Mathematics, without such a philosophy, is ambiguous,
both objective and subjective. You can explain the role of certain philosophies
of mathematics as attempts to remove this ambiguity from the description of the
subject.2

I mentioned Platonism in mathematics. Platonism posits an ideal domain where
the truths of mathematics reside. This belief makes mathematics strongly objective.
On the other hand, just where is this Platonic world? Maybe it only reflects the
psychological need that human being have for certainty. If so, it would depend on
mind. However, there may indeed be a deeper truth to Platonism if we understand the
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Platonic world as the world of mind, that is, consciousness or even intelligence in the
most general sense. Perhaps it is possible to have a more subtle form of Platonism
that includes mind. Maybe that is what I am reaching for in this article.

Reuben Hersh seems to think of Platonism as a kind of myth because he wants
to highlight the sociocultural dimension of mathematics. His work is a kind of
deconstruction of the naïve, absolute, Platonic objectivity of mathematics. Of course
most working mathematicians want nothing to do with this view. They prefer to
continue proving theorems, and for this activity, it is convenient to assume a kind of
working Platonism. Be that as it may, we can observe that Platonism “solves” the
problem of mathematical objectivity.

Conceptual Systems

Mathematics is not objective in the strong sense (and in the same way, but more
controversially, neither is science). In order to properly come to grip with what is
going on, it is useful to discuss some concrete situations in mathematics. Consider
conceptual systems in mathematics. What is a conceptual system (CS)? A CS is a
mathematical structure, like the real numbers or topological spaces, looked at from
the inside (so to speak). Actually a better way to think about the nature of a CS
is to turn the previous sentence around and say that what we usually think of as
mathematics, say the real numbers as a complete ordered field, arises by removing
mind from the conceptual system of the real numbers. The CS is of primary interest,
and what we usually consider to be mathematics is only of interest to the extent that
we restore it to life and make it a CS instead of an abstract structure, by applying our
intelligence to the system. It is worth noting that computers work with the formal
structure and not the CS.

The difference between a CS and the formal structure that represents it is
analogous to the difference between a concept and a definition. Continuity, for
example, is a concept, whereas the usual "-• statement is a definition. The latter
is a complex logical statement but even having some familiarity with the subtleties
of the definition doesn’t ensure that one understands continuity. Students have said
to me, “I follow it but I don’t understand it.” This statement makes perfect sense
and describes many students’ lived experience with mathematics. It also isolates
the problems that student often have with formal proofs. Concepts need to be
understood. Definitions can be followed logically which might mean that you can
understand the words and symbols that make up the definition and how they are
logically related to one another.

You can have a way of understanding continuity without necessarily being
capable of using the definition. The concept stands behind the definition,3 that is,
the definition is a way of formalizing the concept (there are usually more than
one). “Concept” is informal and implicit whereas “definition” is formal and explicit.
Of course we use the expression “understanding the definition” when we really
mean understanding the concept behind the definition. Concepts must necessarily
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be understood. On the other hand, definitions are formal entities that can merely
be verified either by a person or by a machine. You can get to the concept through
the definition, a series of generic examples, geometric diagrams, or in some other
way or combination of ways. The definition is formal, and you make it your own by
adding understanding and intuition. On the other hand, it is not a concept (for you)
if these subjective elements are not included.

A conceptual system contains a family of concepts that are linked together in
an organic manner with each concept influencing the others. It shares a great deal
with the idea of a paradigm in science. The CS of the real numbers also contains
the concepts of infinity, series, limits and continuity, order, linearity, cardinality, and
many more. Conceptual systems in mathematics, even the simplest ones like the
counting numbers, are potentially infinite because there are a limitless number of
results that are potentially accessible within the system. Nevertheless all conceptual
systems have boundaries, that is, they are intrinsically limited because there are
problems that can be stated in the language of the system that cannot be solved
within the system. Think of the reason why the radius of convergence for the power
series representation of the function 1/(1 C x2) is 1. The statement is made within
the real numbers, but it is best understood by moving up to the complex numbers.

A conceptual system is not (strongly) objective because a conceptual system
needs to be understood. To work with it at all requires fluency with its language
and concepts. You don’t look at a conceptual system from the outside so much as
you explore a conceptual system from the inside. An interesting conceptual system
is a universe, and you can spend your lifetime exploring that universe. On the other
hand, it is certainly objective in a weak sense, so you can prove results and discuss
them with others.

The conceptual system itself may not be objective in a strong sense, but once
inside the system, there is a sense in which things are strongly objective. The
conceptual system conveys a strong objectivity to its properties and theorems.
Within the conceptual system of Euclidean geometry, Pythagoras’ theorem is true,
and the sum of the interior angles of a triangle is two right angles. But it is only
within a conceptual system that you can ask whether something is objectively true
or false, and even that question is made subtle by Gödel. So even if it is reasonable to
ask whether some conjecture is true or false within a CS, asking whether the system
itself is objectively true is just not a very good question.

A CS has an irreducible subjective element, which you can call intelligence,
understanding, or mind. Because of this, everyone has his or her own take on a given
conceptual system. So there is not a unique conceptual system that we all share in
common. On the other hand, a CS is not arbitrary and neither is an individual’s
grasp of the system. Let me elaborate a little on the last statement. I have been told
that when biologists scan a specimen with an electron microscope, they first stain
the specimen in order to be able to distinguish between the various features on the
slide. In other words, the stain highlights certain features that interest the scientist.
By analogy, a conceptual system brings out certain features of the mathematical
situation and omits others.
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Conceptual systems are not arbitrary. They are best thought of as insights into
some aspect of the mathematical phenomena that is being studied. The CS of
the rational numbers was developed in order to make a ratio into a number. In
the process of giving an expanded definition of number, it gave new insights into
other things like music, for example, and even provided the ideal of rationality that
pervaded Greek civilization. Even the CS of the counting numbers, the first number
system to be learned by children, highlights things like linear order, arithmetic,
prime numbers, and so on.

An alternate metaphor (to the one that says that a CS is a stain) is that a CS is
a window on a certain mathematical situation or a situation that has the potential
to be described in mathematical terms. CSs are necessarily incomplete, and yet we
cannot do mathematics without them—without a window you wouldn’t see much
of anything because things would not be differentiated enough to work with.

The role of CSs will be further clarified by returning to our discussion of number.
“Number” in its most general, pre-formal sense does not live in a CS. “Number”
generates conceptual systems, namely, the various number systems. “Number” in
general reflects some aspect of the world that is so profound that it seems to be built
into our brains as infants not to speak of the brains of other animals. There is even
evidence from psychologists that infants (say, age six months) even have (at least)
two rudimentary conceptual systems for number.4 Why would the development of
such systems be so basic? The answer may be that “number” is a very basic aspect
of the world of experience, a way of answering the questions, how much? and how
many?, and thus getting hold of the vital idea of quantity. However having a built-in
propensity for number is not enough.

In order to work with the idea of number, to do mathematics with it, you have
to place it in a conceptual system, the counting numbers, the Greek measuring
numbers, or some other number system. At this stage, it is objective in a strong
sense, and you can prove things about these specific kinds of numbers. But
different number systems highlight different properties of number. Furthermore
because every CS is incomplete, we are forced back to the primordial question of
what a number really is and solve the problems that arise by defining number in
increasingly complex and sophisticated ways.

Different Conceptual Systems Are Incommensurable

Thomas Kuhn in his famous work5 on scientific paradigms made the point that
different paradigms are incommensurate (his word, taken, presumably, from mathe-
matics) with one another. We can see this incommensurability at work if we consider
the counting numbers and the fractions as different CSs for number. Ask a child,
how many numbers there are between 2 and 3, and his or her answer will tell you
which CS they are currently living in. If they live in the counting numbers, they will
answer “none,” but if they live in the rationals, they will say that there are many.
The two answers are contradictory, but each is correct in its own way.
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It is in this sense that different CSs are incompatible with one another. The reason
for this is that a CS is not just a description of some pre-existing objective domain.
It defines that domain, that is, it brings that domain into existence. In this case, it
tells you what a number is. But somehow we have the feeling that number can’t be
two different things, in this case that it is either an integer or a fraction, not both.
This is why learning the fractions is hard. The child has the feeling that they already
know what a number is, namely, a counting number, so how could 2/3 be a number?
The answer is that it is and it isn’t; that you have to expand your working definition
of number and that is hard. Think of the Pythagoreans and the root of two or of the
advent of non-Euclidean geometry.

The Evolution of Conceptual Systems

Conceptual systems are incomplete since they do not provide an adequate context
for the resolution of all the problems that can be formulated within the system.
For example, you can’t trisect an angle or square a circle within the Greek system
of geometric measuring numbers. So even though you can spend your lifetime
working within a given conceptual system, it is also true that conceptual systems
break down and are replaced by new systems within which there may be embedded
an isomorphic image of the original system. So Newtonian physics lives within
relativity, and the rationals are embedded in the reals. This forces a necessary
ambiguity on the new CS since; for example, once the real numbers come into
existence, a rational number can be thought of as both a ratio of integers and as
a certain kind of decimal.

The rules that govern working within a CS are not the same rules that govern
moving from one system to a more complex one. For example, the rules of logic
work best within a CS where you can use logic and algorithms as tools to prove new
results. Things are objectively true or false (more or less) within a CS. The results of
the system grow in a continuous manner. If the computer has a use in mathematics
(and it does), it is to explore the terrain and the limitations of a given conceptual
system.

Moving from one system to another (think of a child who knows the counting
numbers being introduced to fractions) is not an act of logic nor is it algorithmic
or rule-bound in any sense. It is a discrete process, that is, there is a specific and
wonderful moment when the child can say “I get it” or else use that expression so
beloved of mathematicians, “it’s obvious.” You understand, for example, that 11/3
is not just a relationship between the numbers 11 and 3, nor is it only a problem in
long division. It is a legitimate number in its own right. In this regard, check out Bill
Thurston’s childhood story of his personal eureka moment with regard to fractions.6

The key step frequently involves the process of reification7 whereby in a moment of
insight, a process becomes an object (11/3, a problem in division, is a number, and
�3 is not only the process of subtraction but the negative number), and as a result,



54 W. Byers

you now have two different ways of looking at the same situation as process and
object.8

Insight is not a logical process. That is not to say that logic is not involved
but logic does not generate the kind of insights I am talking about here. What is
involved is a kind of creativity. The essence of creativity, the way so many significant
mathematical problems are solved, involves a kind of reframing, that is, inventing
a new way to think about the problem. So what is involved in going from one
conceptual system to another, from the rationals to the reals, for example, is finding
a new way to think about the nature of number.

The process involves a kind of deconstruction (there is no rational number “x”
such that “x2 D 2,” but we know that there is a geometric measuring number with
those properties, so the rationals are inadequate). This breakdown is followed (this
may take centuries) by the construction of a new and larger number system. The old
mental model that you carry around has to break down so that the new one has room
to emerge. Remember that a conceptual system does not describe a pre-existing
reality so much as it creates or defines that reality. It determines what is real and
therefore what is objective. No one gives up his or her sense of what is real without a
struggle. It is hard and hard in a sense that is similar to the way I was using the word
when I said that the question of the nature of mathematics or the nature of number is
hard! Hard questions always generate resistance and cognitive dissonance for what
is being called for is a reorganization of mental space—breaking down pre-existing
brain circuits and building up new ones, if you will.

Ambiguity is always lurking around situations of multiple CSs because each
CS gives you a different way to think of “number,” for example. One way of
approaching the notion of “depth” in mathematics (as in the statement, “That result
is deep”) is to relate depth to the number of different contexts within which you can
think about the idea. Thus, you could say (similar to what Leonard Bernstein said
about music9) that the more an idea can contain both ambiguity and coherence, the
deeper it is.

The Escape from Subjectivity

Mathematics and science contain this irreducible subjective element that I have
been discussing. But this element is in direct conflict with the reason that we give
ourselves as individuals and cultures for doing math and science in the first place,
which is to banish subjectivity and therefore contingency from the world, to get at
the facts you could say. We come to believe in a truth that is absolutely objective
as a matter of faith and are comforted by the thought that even if we are mortal and
must pass from the world, our cultural creations access a realm of immortality and
will be there forever.

Naïve Platonism, as I said earlier, posits a kind of mathematical heaven where
truths live forever. It is a way of escaping from subjectivity and that is good and
bad. It’s good to reject weak subjectivity but bad and self-defeating to reject mind
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and intelligence. Formalism also is an escape, this time from nonlogical factors like
ambiguity that invariably are called into play in creative work. It can lead to the
alarming and self-defeating conclusion that intelligence is something that can be
captured by logic and algorithms. Anyone who has done mathematics knows that the
sequence is that you first get an idea and then try to write it up. The idea comes first
both in time and in importance. Identifying creativity with logic or understanding
with verification underestimates the fundamental role that mathematical creativity
plays in human thought and culture.

Philosophies of Mathematics as Conceptual Systems

Now let us move this discussion up a level and discuss the nature of mathematics
as a whole by thinking of a philosophy of mathematics as a CS for mathematics.
Different philosophies of math highlight different aspects of mathematics. They
are different windows on mathematics and, like all conceptual systems, determine
what is objectively true and false. By analogy with our observations about CSs in
mathematics, each philosophy of mathematics, by implicitly defining the nature of
mathematics, tends to privilege a certain kind of mathematical activity. Thinking
about mathematics as something that is or can be computerized, for example, tends
to privilege the discrete in mathematics over the continuous.

If a philosophy of mathematics is a CS for math, then asking whether a
philosophy of math is right or wrong or if it captures mathematics definitively is
not a good question. Different philosophies produce different kinds of mathematics.
It also follows from my discussion of CSs in math that it is impossible to ever create
the perfect all-encompassing philosophy of mathematics. Every CS is necessarily
incomplete, and so every philosophy will miss something that exists today or might
exist in the future. Mathematics in general, like number, continuity, randomness,
and so on, is best understood as real but informal. Formalization, defining it more
or less precisely, reduces it, on one hand, but allows you to bring out its potential
properties, on the other. Mathematics generates philosophies of mathematics like
number generates different kinds of number systems.

We should expect that embracing the idea that there can be multiple useful
philosophies of mathematics will inevitably force us to accept the existence (and
even the usefulness) of ambiguity. We gain from being able to look at mathematics in
multiple ways, and so we should always be open to new philosophies of mathematics
and try not to get trapped within a rigid and supposedly definitive philosophy.
This point of view has affinities with Michele Friend’s10 idea of pluralism in the
philosophy of math.

Reuben Hersh says that philosophies of mathematics should be thought of
as models for mathematics in the same way as applied mathematics provides
multiple models for empirical phenomena.11 This is fine as far as it goes but does
not sufficiently account for the incompatibilities between various philosophies.
These are not accidental but inevitable and potentially valuable. Think again of a
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philosophy as a CS for mathematics. As we saw in the case of different number
systems, different conceptual systems (viewed as CSs and not as formal structures)
are incommensurate with one another. It may be possible to reconcile these CSs in
one mega-theory (the power of the real numbers is that it successfully integrates
so many subsystems), or it may not. There may be no mega-theory that reconciles
everything. Do we even want to create a world where all possible philosophies can
live together in harmony? This would be nothing more than the dream of an ultimate
theory akin to those people who believe in “the end of physics.” It overestimates the
power of a single paradigm to cover the entire field of mathematics. If you think that
the beauty of mathematics is the way it keeps changing and growing; if you want
to generate a new creative insight into the nature of mathematics, then perhaps the
thing to do is to highlight the incompatibilities and not hide them for that’s where
the growth is ultimately going to come from.

Mathematics Education

A brief word about the implications of the conceptual system viewpoint for
mathematics education. Education comes in two varieties, namely, (1) becoming
familiar (internalizing) a given CS and (2) moving from one CS to another. These
are very different situations and require different skills. The mathematics educator,
David Tall, has a nice example of a child who was very proficient in addition.
Therefore, when she was introduced to multiplication, she translated every problem
back into addition. She had been an excellent student but now found that she was
falling behind. The problem was not that she was stupid, quite the contrary. It was
that she was excessively attached to a technique that had brought her success in the
past. She needed to make an intellectual leap into a new mathematical situation.
How often have we seen our students use mental models that are inappropriate to
some new situation like the real numbers?

The objective of mathematics education is not merely to learn technical skills
and algorithms. It is to learn concepts and conceptual systems and that is difficult!
But the highest form of learning is even more difficult for it involves giving up on an
inadequate mental model and replacing it by something that is more sophisticated.
You could call this creative learning since it involves something that is similar if
not identical to creativity in research. How do we teach creativity and paradigm
change? Where do we find acknowledgment that such creative change is a crucial
aspect of education? And yet, almost every child, at some point in his or her life,
gives up on “number is positive integer” and learns that “number is fraction.” How
does that happen? If we could answer this question, not only could we revolutionize
the teaching of mathematics but also show simple ways in which human intelligence
differs from machine intelligence, why mind differs from simulations of mind, and
why the glory of human creativity is in no danger of being superseded by any super
or quantum computer.
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Implications for Artificial Intelligence and the Prospect
of Computer-Generated Mathematics

Human beings and human societies have physical, social, and psychological needs
for security, stability, and continuity. Strong objectivity satisfies these needs, and in
our culture, science and mathematics give us a sense of stability and objective truth.
The great contribution of the Greek mathematicians was their development of logic,
proof, and deductive systems. They developed a language and methodology for
producing “objective truths.” Ever since then, Western culture has had a fascination
with this way of using the mind. This method has pervaded many disciplines beyond
mathematics, such as science, philosophy, engineering, and commerce.

Recent years have seen a new approach to strong objectivity. Instead of a mind-
based system of thought like Euclidean geometry, we have computer-based systems
which appear to be objective precisely because they are embedded in machines.
This leads to claims for artificial intelligence such as the one made by Paul Cohen
that so infuriated Reuben. The human desire for strong objectivity has been reified
into computing machines and algorithmic thought. Many people have the dream
that a kind of intelligent machine will be created any day now. Take, for example,
the futurologist Ray Kurzweil and his omega point, the leap into the realm of
autonomous, thinking machines.12 This is nothing but an updating of a very old
dream of taking human beings and therefore contingency out of the world. It is a
dream (or is it a nightmare) of a world where machines do mathematics and science
and where computing devices are capable of creativity. In such a world, human
beings are essentially redundant.

The computerization of thought and culture, regarding the human mind as a kind
of computing machine, is perhaps the dominant tendency in contemporary culture
whose most recent development is the Internet of Things. It is the most recent
manifestation of a myth, a foundation myth of our culture, which is the idea that the
scientific and mathematical theories that we create have an autonomous existence,
that is, that they have a reality that is strongly objective. I read Reuben Hersh’s work
as bringing that mythology into question, which is why I agree with much of what
he says. It is clear that I consider this myth—that the human being is a machine and
mind is algorithmic—to be mistaken in ways that are obvious yet invisible to most of
our culture. This is the way it is with conceptual systems. But it is dangerous! If you
live within the machine/algorithm CS, then you produce a society where people are
machines (and treated as such) and creativity degenerates into writing algorithms.
It’s not that there is something wrong with writing algorithms or that writing them
is not creative activity. It’s that creativity lies in the minds of the computer scientists
and not in the algorithms that they develop. Algorithms cannot capture creative
activity; at their best, they simulate creative activity. The human race will always
throw up geniuses like Einstein, Shakespeare, and Beethoven who manage to turn
the world upside down by looking at things in an entirely new way.
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Some Answers to Hersh’s Questions

Question 1.1: Can practicing mathematicians, as such, contribute anything to
philosophy of math?

Practicing mathematicians in general are more or less embedded within the Pla-
tonist/formalist paradigm and, as a result, cannot contribute much to the philosophy
of mathematics because they do not tend to question their assumptions about math.
Of course it needs to be said that the computer is eroding these assumptions and this
in ways which contribute to a changing picture of what constitutes mathematical
activity.

Every so often, it becomes clear that the prevailing paradigm is inadequate to
describe what is actually going on. This may precipitate some sort of crisis where
the nature of the subject can be fruitfully questioned. After some time, a new
equilibrium will be achieved, and things will settle down again. This is the very
process that I described in any situation where one CS breaks down and is replaced
by another. It is very likely that the existence of increasingly powerful computing
machines will precipitate a new paradigm for mathematics, and in fact, this has been
happening for some time now. Formalism is really not adequate to describe what is
going on in mathematics today.

Change, of course, is necessary and healthy, but there is a danger that the change
that is coming will be regressive and not progressive. What I mean is that what
constitutes mathematical thought (and thought in general) may come to be defined
by the computer and algorithmic processes. We are beginning to look at the brain
and mind as hardware/software, and as a result, we will only attempt to access the
process of creativity and paradigm change through computer simulations. We will
then tend look to the solution of problems exclusively through the means of big data
and analytics. We will forget that the human mind is capable of much more.

Practicing mathematicians have something to contribute to the philosophy of
math, and it is in this context that I would rank the importance of Hersh’s work. He
keeps saying, “I am a mathematician and this is my experience of what is actually
going on in the practice of doing mathematics.” He keeps coming back to what is
going on as opposed to what the prevailing paradigm or philosophy says is going
on. His work is important and will be increasingly influential in the future precisely
because the nature of mathematical activity is changing.

I spoke about the statement by Paul Cohen above. Its importance lies in what it
tells us about the kind of AI mythology that is growing up around mathematics
today. In my view, it is obvious that computers will never do mathematics in
the sense that Cohen is talking about. As the statement by Thurston implies,
mathematics is (by definition) what (human) mathematicians do, and I have tried
to explain why this will always be true. So there may be a kind of battle in the future
that will pit an AI/machine philosophy of math against a humanistic philosophy.
I believe that the stakes are high—extremely high—and we need mathematicians
who can think outside of the philosophical box that most are in today.
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1.2. Can or should philosophers of math, as such, say anything to practicing
mathematicians?

This is a hard question because most practicing mathematicians have no time
for anything that is philosophical. They are too busy living within their paradigm,
that is, proving theorems. But if you think that this is a time of potential paradigm
change, then there is the possibility that philosophers can contribute a great deal to
a discussion of what constitutes mathematical activity. Again the philosophers of
math were divided into two groups with the majority stuck not only in a traditional
view of mathematics but also in a view of philosophy of math as a kind of study of
foundations.

My view of the proper approach for philosophers of mathematics is to try to
describe what is going on while understanding that the real subject is hiding in
an informal area that stands behind all philosophies, all research papers, and texts.
Thus, philosophy of mathematics is an activity, just like doing mathematics, that is
ongoing and will continue indefinitely.

Nevertheless it is encouraging to note that there is a group of philosophers of
math (some of whom are represented in this collection) who have a view that is
consistent with the views that I described above. If we are approaching a bifurcation
point in our culture in general that I described as mind vs. machine, then a crisis is
inevitable, and a certain kind of philosophical perspective may be very timely and
influential.

1.3. 20 or 50 years from now, what will be similar, and what will, or COULD,
or SHOULD be altogether different, About philosophy of math? About math
education? About math research institutions? About data processing and scientific
computing?

I think that I have provided a perspective on these questions. The AI question and
the relationship of mind to computer will be the dominant problem of the short- and
medium-term future. Everything will change: what we consider to be mathematical
activity, the philosophy of mathematics, mathematics education, and even research
mathematics. It is possible that mathematics will become a variety of computer
science, data collection, and analytics. It is even possible that the worst happens
and what makes us truly human, namely, creativity, disappears from conscious view
and is replaced by algorithmic simulations of creativity and intelligence.
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The Exact Sciences and Non-Euclidean Logic

David A. Edwards

What “really” exists pervades the sciences and human thought in general. The belief
that the infinite does not really exist goes back at least to Aristotle. Parmenides
even questioned the reality of plurality and change. (Einstein’s vision has much
in common with Parmenides.) Toward the end of the nineteenth century, an acri-
monious exchange took place between Kronecker and Cantor regarding the reality
of the actual (as opposed to potential) infinite. Kronecker claimed that only the
finite integers really exist and all else is merely the work of man. Cantor countered
that the essence of mathematics was its freedom and that he had attained a larger
vision than Kronecker had who could not see the infinite. Most mathematicians
have followed Cantor and found his paradise a more beautiful and alluring universe.
Hilbert accepted Kronecker’s viewpoint for his metalanguage but tried to recapture
Cantor’s paradise in a formal language. Hilbert was a formal pluralist in feeling
that each mathematical discipline was entitled to its own formalization. Russell was
a logical monist and felt that all of mathematics should be constructed within a
single formal system. He put a great deal of labor into his program and looked
askance at Hilbert. He felt that Hilbert’s approach had all the advantages of theft
over honest toil. What he did not realize was that in intellectual affairs, as in
economic affairs, great fortunes are rarely ever accumulated through honest toil.
What is needed is the intellectual leap. Russel’s program led to much interesting
mathematics, but even if in principle it could be carried out, in practice the result
would be computationally intractable. One would be translating simple, clear ideas
into the fog of Principia Mathematica. Russell’s program has as much relevance to
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complex analysis as von Neumann’s game theory has to chess. The understanding
and appreciation of mathematics has very little to do with formal logic. For example,
the following footnote occurs at the beginning of Wall’s (1970) book Surgery On
Compact Manifolds.

Recent results of Kirby, Siebenmann, and Lees have now (1966) provided such
a technique. All our methods now extend to the topological case, with only trivial
alteration. See (K8), (K9), and (L10).

All the experts could see the truth of this footnote. But this seeing is not explained
by modus ponens. In his beautiful book Proofs and Refutations, Lakatos (1976)
has shown that the mathematical process itself is dialectical and not Euclidean.
At all times our ideas are formally inconsistent. But inconsistency, while still
recognized as a pathology, is no longer seen to be a fatal disease. If we come across a
contradiction, we localize it, isolate it, and try to cure it. But we have to get over our
neurotic phobias concerning this disease and recognize it as inseparable from life
itself. Hilbert’s program collapsed with the startling work of Godel. Mathematical
logic and the study of formal systems have become a branch of mathematics
instead of its foundation. Moreover, Cantor’s paradise has been raised into the
metalanguage in order to prove deep theorems concerning formal systems as well
as to provide a semantics for such systems. A. Robinson even defined nonstandard
formal systems which contain infinite formulas. One thus has a large plurality of
different approaches to mathematics. Most mathematicians live in Cantor’s paradise
in spite of Russell’s paradox; they simply learn to avoid making certain moves which
have been shown to lead to contradictions.

The situation is similar in physics also. As soon as the phenomena under
discussion become sufficiently complex, one must depart from Euclidean strategies
and adopt a non-Euclidean approach. This is very clearly stated by Blandford and
Thorne (1979, p. 454–460) in the context of black hole astrophysics:

The fundamental theory of black holes, as laid out in chapters 6 and 7, is well posed,
elegant, clean, and self-contained. It follows inexorably and clearly from the fundamental
laws of physics. The theory of black holes in an astrophysical environment is completely the
opposite. Because it deals with the physics of matter in bulk-matter orbiting and accreting
onto a hole- - it is subject to all the dirty, complex uncertainties of the modern theory of
the behavior of bulk matter. If thunderstorms and tornados on Earth have eluded accurate
theoretical modeling, how can one expect to predict even qualitatively their analogues in
the turbulent, magnetized plasmas that accrete onto a black hole in a close binary system?
One cannot. The best that can be hoped for is to develop the crudest of models as to the
gross behavior of matter in the vicinities of holes. Fortunately, the resulting models have
some modest hope of resembling reality. This is because the relative importance of physical
processes near a hole can be characterized by dimensionless ratios that usually turn out
to be very large, and consequently, the gross behavior of matter near a hole is dominated
by a small number of processes. The task of the model builder is to identify the dominant
processes in his given situation, and to construct approximate equations, describing their
macroscopic effects. Historically, to identify the dominant processes has not been easy.
This is because a vast number of possible processes must be considered and the model
builder often, out of ignorance, overlooks an important one. Thus it is that research on
black hole astrophysics involves large bodies of physical theory. Within each body of theory
one must have at one’s fingertips approximate formulae that characterize a long list of
possibly relevant processes. The necessary bodies of theory include general relativity, the
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physics of equilibrium and non-equilibrium plasmas, the physics of radiative processes, and
the physics of stellar dynamical systems. Research in black hole astrophysics also requires,
a good knowledge of the phenomenology of modern astronomy – the observed properties
of stars, the main features of their evolution, the structure of the Galaxy, and the observed
physical conditions in interstellar space.

The above example illustrates the following features of research in black hole astro-
physics:

(i) It involves an iteration back and forth between the equations of the macroscopic model
and the microscopic physics which underlies those equations. One iterates until one
obtains self-consistency.

(ii) One must search carefully, at each iterative stage, for overlooked processes that might
be so important as to invalidate the model (anchoring to a homogeneous interstellar
magnetic field in the above example).

(iii) One frequently encounters a ’branch point’ where the model will take on two very
different forms depending on what one assumes for the environment around the hole
(homogeneous magnetic field versus tangled field in the above example), and where
both branches might well occur in the real universe. This leads to a plethora of
possible models, each corresponding to a different black hole environment and/or
range of black hole masses.

Probably the clearest case study of non-Euclidean logic occurs in the paper Prob-
lem Solving About Electrical Circuits by Stallman and Sussman (1979, p.33–39).
We quote from their introduction:

A major problem confronting builders of automatic problem-solving systems is that of
the combinatorial explosion of search-spaces. One way to attack this problem is to build
systems that effectively use the results of failures to reduce the search space that learn
from their exploration of blind alleys. Another way is to represent the problems and their
solutions in such a way that combinatorial searches are self-limiting. A second major
problem is the difficulty of debugging programs containing large amounts of knowledge.
The complexity of the interactions between the “chunks” of knowledge makes it difficult
to ascertain what is to blame when a bug manifests itself. One approach to this problem
is to build systems which remember and explain their reasoning. Such programs are more
convincing when right, and easier to debug when wrong. ARS is an expert problem-solving
system in which problem solving rules are represented as demons with multiple patterns
of invocation monitoring and an associative data base. ARS performs all deductions in
an antecedent manner, threading the deduced facts with justifications which mention the
antecedent facts used and the rule of inference applied. These justifications are employed
by ARS to determine the currently active data-base context for reasoning in hypothetical
situations. Justifications are also used in the analysis of blind alleys to extract information
which will limit future search. ARS supplies dependency - directed backtracking, a scheme
which limits the search as follows: The system notes a contradiction when it attempts
to solve an impossible algebraic relationship F, or when it discovers that a transistor’s
operating point is not within the possible range of its assumed region. The antecedents
of the contradictory facts are scanned to find which nonlinear device state guesses (more
generally, the backtrackable choicepoints) are relevant. ARS never tries that combination
of guesses again. A short list of relevant choicepoints eliminates from consideration a large
number of combinations of answers to all the other (irrelevant) choices. This is how the
justifications (or dependency records) are used to extract and retain more information from
each contradiction than a chronological backtracking system. A chronological backtracking
system would often have to try many more combinations, each time wasting much labor
rediscovering the original contradiction.
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Note that this is a case where a Euclidean approach does exist but is
computationally intractable. We thus have a clear example of a non-Euclidean
approach being used for good reasons and not just because of sloppiness. We thus
gain a better appreciation of the gulfs that separate the mathematician, the physicist,
and the engineer. Their programs are different, their aesthetics are different, and
even their “logics” are different. At this point, the question of whether every
non-Euclidean logic can be embedded in a Euclidean logic can only be answered
dogmatically. Those in artificial intelligence research assume a positive answer,
while hermeneuticists assume a negative answer. However, even if you believe in
an affirmative answer, a very simple non-Euclidean logic may only be embeddable
in an immensely complex Euclidean logic, thus making its embeddability irrelevant
from a practical point of view (recall von Neumann’s analysis of chess).

Modern physics pervades nearly all aspects of modern biology. The striking
difference between the explanations given by Aristotle and by modern biologists
is partially explained by the fact that cells, molecules, atoms, electrons, and photons
were not part of Aristotle’s universe. Modern biology teaches us that we breathe
in order that oxygen can be supplied to the cells of the body, so that they can
metabolize food to obtain energy needed for the other activities of life. This helps
us understand the structure and purpose of the lungs, red blood cells, etc. Much of
this understanding is at the level of molecular structure (for instance, the structure
of hemoglobin). We explain the workings of green plants by saying that they are
green because of the presence of molecules of chlorophyll which are used to capture
photons from the sun, thus providing the plant with its basic energy supply. The
resemblance of children to their parents is explained by the DNA sequence in their
chromosomes. Sight is explained by appeal to photons captured by the rods and
cones in the retina. One could go on and on. Considering modern physics’ pervasive
role in modern biology, it is quite interesting to note how little most biologists
know of the foundations of modern physics. Their ideas of photons, atoms, and
molecules resemble the incoherent pictures formed by Einstein and Bohr during
the period 1900–1925. Even more interesting is the fact (?) that their ignorance
of the viewpoints of modern quantum mechanics does not seem to hinder their
work at all. While they think of photons and electrons “classically,” the success
of their work is due to the fact that they only actually use atomic language in the
way Ostwald recommended at the end of the nineteenth century. This can be easily
seen in Watson’s book The Molecular Biology of The Gene. Let us reconsider our
previous biological examples using correct quantum mechanical language. First of
all, photons are not objects which could come from the sun. Instead, one assumes the
existence of certain detectors called photon detectors which give positive readings
under certain conditions such as being exposed to the sunlight. Next, one discovers
that plants grow well not only in sunlight but also under many other conditions.
A basic invariant of all these conditions is that under them our photon detector
would yield positive results. Again, molecules aren’t objects either. So plants aren’t
“made up” of molecules such as chlorophyll. Instead, another basic invariant of
those conditions under which plants grow successfully and appear green is that a
chlorophyll detector would yield a positive result. Children don’t resemble their
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parents because of DNA sequences, but, instead, parents and their children’s DNA
sequences are highly correlated, and each is somewhat correlated to phenotypes.
This is not the type of language usually used by biologists. But biologists like
Watson aren’t wholly to blame for their misuse of physical language. Watson gets
his physics from Linus Pauling. In his book, The Nature of the Chemical Bond,
Pauling constantly mixes classical ontology with modern quantum mechanics.
Consider, for example, the following quote (Pauling, 1960, p.19):

The electron distribution function for molecule-ion is shown in Figure 1-5. It is seen that the
electron remains for most of the time in the small region just between the nuclei, only rarely
getting on the far side of one of them; and we may feel that the presence of the electron
between the two nuclei, where it can draw them together, provides some explanation of the
stability of the bond.

This picture resembles more the hidden variable views of Bohm and Nelson than
it does the viewpoints of Bohr and Heisenberg. But the master knew better as is
shown by the following quotes (Pauling, 1960, pp. 217–220):

It is true that chemists, after long experience in the use of classical structure theory, have
come to talk about, and probably to think about, the carbon-carbon double bond and other
structural units of the theory as though they were real. Reflection leads us to recognize,
however, that they are not real, but a rhetorical constructs in the same way as the individual
Kekule structures for benzene. It is not possible to isolate a carbon-carbon bond and to
subject it to experimental investigation. There is, indeed, no rigorous definition of the
carbon-carbon double bond. We cannot accept, as a rigorous definition, the statement that
the carbon-carbon double bond is a bond between two carbon atoms that involves four
electrons, because there is no experimental method of determining precisely the number
of electrons that are involved in the interaction of two carbon atoms in a molecule, and,
of course, this interaction has rigorously to be considered as being dependent on the
nature of the entire molecule. I feel that the greatest advantage of the theory of resonance,
as compared with other ways (such as the molecular-orbital method) of discussing the
structure is that it makes use of structural elements with which the chemist is familiar. The
theory should not be assessed as inadequate because of its occasional unskillful application.
It becomes more and more powerful, just as does classical structure theory, as the chemist
develops a better and better chemical intuition about it. The theory of resonance should not
be identified with the valence-bond method of making approximate quantum-mechanical
calculations of molecular wave functions and properties. The theory of resonance is
essentially a chemical theory (an empirical theory, obtained largely by induction from the
results of chemical experiments). Classical structure theory was developed purely from
chemical facts, without any help from physics. The theory of resonance was also well
on its way toward formulation before quantum mechanics was discovered. The theory
of resonance in chemistry is an essentially qualitative theory, which, like the classical
structure theory, depends for its successful application largely upon a chemical feeling
that it developed through practice. We may believe the theoretical physicist who tells us
that all the properties of substances should be calculable by known methods– the solution
of the Schrodinger equation. In fact, however, we have seen that during the 35 years
since the Schrodinger equation was discovered only a few accurate nonempirical quantum
mechanical calculations of the properties of substances in which the chemist is interested
have been made. The chemist must still rely upon experiment for most of his information
about the properties of substances. Experience has shown that he can be immensely helped
by the use of the simple chemical structure theory. The theory of resonance is a part of the
chemical structure theory, which has an essentially empirical (inductive) basis; it is not just
a branch of quantum mechanics.
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Thus, no matter what the future may bring, chemistry is at present an independent
science only slightly dependent upon physics and much dependent upon chemical
intuition. The situation is similar for biology. Watson goes out of his way to insist
that biology requires no “natural laws” not already found by chemistry and physics.
He is opposing vitalists such as Bergson and the expectations of physicists such
as Bohr and Schrodinger. Bohr hypothesizes that biology would yield a biological
complementarity principle where the description of a living organism would be
complementary to a description of its molecular structure. Such a position may yet
come to pass when biology becomes sufficiently precise to become conscious of its
“complementarities.”

Conclusions

One of our most powerful myths is the story of the tower of Babel where by
an original unity was shattered into diversity. Much of our intellectual history
consists of attempts to find common grounds upon which to erect unified sciences.
Many bewail the unsatisfactory situation in the social sciences, humanities, and
theology where many schools compete for dominance. This situation contrasts with
the seeming harmony of the natural sciences. The claim we have made here is
that the relative lack of polemics in the hard sciences is not due to a consensus
concerning fundamental theoretical structures but is instead a much more compli-
cated sociological fact. For instance, a close study of the various electron models
reveals tremendous differences. The differences between the Schrodinger, Dirac,
and Feynman theories of an electron appear to us as huge as the differences between
the Freudian, Skinnerian, and Piagetian theories of human behavior. But physicists
don’t mind the diversity. They take an eclectic approach using whichever model
seems most appropriate under the circumstances. By contrast, many psychologists
feel that the alternative approaches to human behavior are competing theories, and
only one of them will eventually prevail. In studying complex phenomena, there are
always a variety of possible approaches. Too much of an insistence on consensus
results in very impoverished starting points such as those taken by Russell and
Carnap. From such starting points, it is very difficult to get anywhere. But the other
extreme often results in a tower of Babel where each scientist has not only his own
theories but his own scientific methodology and logic. To paraphrase Goethe: one
can convince oneself while viewing a great collection of scientific works that nearly
each master had a different way of approaching nature. In our opinion, what is
required in science is the same thing that is required in art, namely, “taste” and
“judgment.” To say this, however, is not to opt for an “anything goes” relativism or
radical idealism. On the contrary, we have argued that toleration is necessary in order
to save realism and thus avoid such radical solutions. To the extent that agreement
can be reached about goals, there are clear and demonstrable relative advantages
between various positions. The determination of these advantages, though, may not
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be something that is clearly formalizable. On the other hand, in those cases where
there is no agreement about goals, we should not expect consensus. In fact, our point
has been that in these cases, the attempt to enforce consensus carries grave risks.
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Xenomath!

Ian Stewart

Mathematics is a collection of practices and concepts of human
beings.

Reuben Hersh [12]

What makes you think that the aliens will recognize your
mathematics?

Might they not have an entirely different mode of thought?

Jack Cohen, quoted in [17]

Reuben Hersh has argued, persuasively, that mathematics is not a collection of eter-
nal truths existing in some ideal but nebulous world—the Platonist viewpoint—but
is instead a shared human mental construct [11]. It seems difficult to maintain that
mathematics is not a shared human mental construct, since it has been developed
by mathematicians communicating their ideas to each other, but Platonism lingers
on. The suggestion that mathematics is dependent on human conventions has proved
unpopular in some circles, possibly because it appears to smack of relativism, whose
more extreme form maintains that the whole of science is merely what scientists
choose to believe.

Of course, Reuben’s position implies nothing of the kind. The shared mental
construct that we call mathematics is by no means arbitrary. Nothing new is
incorporated into it unless it passes stringent reality checks—namely, logical
consistency with the existing body of mathematics, supported by proof. For similar
reasons, science is not merely a belief system; its reality checks involve agreement
with experiment and observations and the logical consistency of its theories, modulo
the willingness of physicists and others to accept evidence short of rigorous proof
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if it’s sufficiently convincing. Denial of Reuben’s view is thus much closer to
relativism than acceptance of it.

However, Platonism is seductive, because that’s what it feels like when we create
new mathematics. We don’t get to choose whether Fermat’s Last Theorem is true or
false: we assume, ignoring Gödel’s theorem or hoping it’s irrelevant, that it’s either
one or the other. Then we (I speak loosely: Andrew Wiles [24, 28] did the actual
work) struggle to find out which of those possibilities is the case. For Fermat’s
Last, Gödel did turn out to be irrelevant, and the theorem turned out to be true.
During the development of mathematics, other equally plausible conjectures have
turned out to be false, and many—notably the Riemann Hypothesis—are still stuck
in limbo awaiting solution. Platonism is the quale [14, 27] of problem-solving, the
vivid impression that the answer is already out there and we’re just ‘discovering’
what it is.

In a sense, that’s true, if by ‘there’ we mean the network of all logical inferences
that are correct consequences of whichever axiom system for mathematics we
happen to prefer. I’ll call this the Platonic landscape, because its geography is
completely predetermined by the axiom system concerned. It is again a shared
human construct, but unlike the existing body of mathematics, the part that we
haven’t sorted out exists only potentially. The known Platonic landscape expands as
humans explore it, and the geography of its unexplored regions is a mystery. That’s
why knowing that it’s predetermined by the axioms doesn’t help us to answer any
specific questions about it.

In this essay, I’ll try to get some insight into the contrast between an ideal Platonic
world and the actual human construct, by focusing not on the mathematics, or
the logic, or even ‘shared’, ‘mental’, and ‘construct’, but on the word ‘human’.
Even mathematicians who agree with Reuben tend to think that mathematics is
universal, in the sense that if we eventually encountered extelligent1 aliens, their
mathematics would inevitably have a lot in common with ours, and the union of the
two would necessarily be consistent. That is, we and our alien friends (let’s hope
they’re friends, though I do wonder...) have been exploring different but overlapping
regions of the same Platonic landscape.

Our symbols and notation would of course differ. Aliens need not work in base
ten; they might think that the circumference of a circle has angular measure 1 rather
than 2  (a sensible enough suggestion)... but they’ll understand such things as the
diagram for Pythagoras and the list of primes. Though they might insist that 1 is
prime, as we ourselves did until recently. Distinctions like that don’t imply that
Euler was an alien. In short, many of us assume that

alien math � human math .mod notation/

1Extelligence [5, 20] is the extension of individual intelligence to an entire culture, as a reservoir of
knowledge accessible by all. Writing, books, and the Internet are examples of human extelligence.
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This assumption of the universality of mathematics underpins virtually all sug-
gestions for communication with aliens, and it’s embodied in the attempts we have
so far made to do just that—the Arecibo message, the Pioneer plaque, and so on.

I want to play alien’s advocate and question this assumption. If I’m right (though
I make no such claim), the alleged universality of mathematics is called into
question, and Reuben is spot-on when he states that it is a human mental construct.
There could, I suggest, be similar alien mental constructs that are so different from
ours that even when they’re exploring the same territory, they map it in ways that
aren’t meaningfully equivalent to ours.

The thing about aliens is: they’re alien.

Alien Means Alien

‘Astrobiology’ is standard term for the study of hypothetical alien life, but Cohen
and I [5] prefer the broader term ‘xenoscience’. It is, of course, one of those dreadful
Graeco-Latin hybrids like ‘television’. Tough. You can call it ‘xenology’ if you
prefer. ‘Xenoscience’ is an open-ended description, the science of the strange.
‘Astrobiology’ is nowhere near as open: it’s a fusion of two existing sciences,
astronomy and biology, which until recently have developed virtually independently
of each other. Astronomers, to be fair, study alien worlds—that is, worlds differing
radically from our own, not worlds inhabited by aliens. But biologists study life as
it happens to exist on this planet.

In any other context, this would be sensible and reasonable. Earthly life is the
only life that we know, and also the only life that’s accessible. Indeed, a lot of it
isn’t even that: the word ‘accessible’ hardly applies to the depths of the oceanic
trenches, but there are a lot of interesting species down there. That said, assuming
that alien life necessarily resembles Earthly life begs the question [4]. Aliens are
alien, and we should ask: how alien? Must they be like us? If not, what could they
be like instead?

The science of aliens is unusual in that its raison d’être has never been observed.
The only life forms we currently know about are down here on planet Earth. So
xenoscience is the study of things that are not known to exist. It can be argued that
this disqualifies it from being science, but many areas currently accepted as science
suffer from the same problem: superstrings, dark matter, cosmological inflation, etc.
We don’t have direct experience of the core of the sun, but astrophysics is a perfectly
reasonable science because we can infer what the sun’s interior is like from things of
which we do have experience. Xenoscience is more hypothetical, but we can infer a
lot about the possibilities for alien life from solid science carried out on this planet.
And ultimately science is about inference, not about direct experience.

Biology teaches us that certain features (carbon, water, organic molecules,
proteins, DNA, etc.) are sufficient for life to evolve, given time and a habitat that
suits organisms made of that kind of stuff, but it doesn’t, and can’t, teach us that
these conditions are necessary. Only if all life must be much like life on Earth can
we argue that alien life must evolve in a habitat similar to ours. Experiments show
that pretty much every feature of our DNA/RNA/protein biochemistry is fungible
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[1, 3, 19]. Getting rid of carbon is trickier, but silicon can form the backbone of
complex molecules with the assistance of the odd metal atom. With less empirical
support, we can imagine ‘life’ made of silicon microcircuit flakes, or as balloonists
floating in the atmosphere of a gas giant. What price magnetic field life forms in the
photosphere of a star, or quantum entities in the intergalactic vacuum? Agreed, being
able to imagine something doesn’t prove it exists; but then, lacking the imagination
to consider it doesn’t prove it doesn’t exist.

In any case, ‘life on Earth’ is considerably more varied than it appears from
our own comfortable habitat. Creatures happily exist in conditions that would kill
humans. Underwater, where we cannot breathe. At the bottom of ocean trenches,
where even if we could breathe, the pressure would crush us. In the boiling water
of volcanic springs. In cracks in the rocks several kilometres down. Biologists
discovered many of these organisms fairly recently, overturning many cherished
assumptions, and named them ‘extremophiles’. The name may seem to fit, because
they live in extreme conditions. However, it reveals a common default assumption,
which is best avoided when contemplating aliens. Those conditions are extreme to
us. They are not extreme to the organisms that live there. Those organisms would
die if they were brought into our living rooms. To them, we are the extremophiles [4,
21]. In fact, it’s not terribly sensible to use the same word for creatures that survive
in very high temperatures and others that survive in very low ones. They exploit
different evolutionary tricks, so lumping them together as being comparably weird
betrays a casual parochialism. It leads us to assume that there’s something unusual
about creatures that differ from us, as though they’re desperately clinging on to life
in totally unsuitable habitats. No, they’re perfectly comfortable; their lifestyle works
fine for them. By ignoring this, many people tacitly assume that aliens must be just
like them, because it’s never occurred to them that any other form of intelligent life
might be possible.

Cultural Influences

Even if mathematics truly is universal, different cultures may have very different
views about what’s important. They can look at the same landscape, see the
same things, yet have different opinions about which features matter. We see this
every day in discussions with colleagues. For much of the 20th century, the Pure
Mathematics and Applied Mathematics Departments considered each other to be
a hotbed of misguided idiots who didn’t have a clue. The overlap of topics and
methods was vast; the common ground (Pythagoras, primes, calculus, etc.) was
immense, but the way of thinking was — well, alien. These and similar attitudes
still persist to some extent, but there’s been a broad rapprochement and a realisation
that two heads are better than one. That said, there are algebraic geometers who are
absolutely certain that p-adic cohomology is the only worthwhile topic in the whole
of mathematics, and anyone who is interested in, say, chaotic dynamics, is wasting
their time on pointless frivolities.
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Less contentiously, the research priorities in, say, a mainly agricultural nation,
are likely to be different from those in a country dominated by the financial sector
and different again from those in one that relies on tourism. As it happens, chaos
theory is currently more likely to interest those nations than p-adic cohomology, but
I’m not pressing that point because next week someone will discover an amazingly
effective way to analyse plant genetics, or to forecast stock market fluctuations, or
to improve the efficiency of hotel restaurants, using p-adic cohomology. If you think
I’m joking, look up the uses of persistent homology in security systems [6, 7, 8].

Diverse though these priorities may be, they all take place within the same
overall body of mathematics. If the same goes for aliens, then although the Quoich
caretakers of Snickelbah IV might be obsessed with the application of inverse
gravitonics to quergedulid-skyfishing, they’d still be working within the same
mathematical framework as us. Modulo notation, terminology, and language. We
could work together, with enough effort. After all, the Pure and Applied species
have managed it.

Newton’s Ear

Other differences might run deeper.
It’s difficult for today’s mathematicians, brought up on deep abstractions such

as the ZFC axioms for set theory, to recognise just how firmly their subject rests
on human perceptions and conventions. It all seems so natural, so inevitable, so
logically pure, so untainted by everyday life.

Cohen and I once thought of writing a book exploring the contrary view, called
Newton’s Ear. The underlying conceit (in the Victorian sense) was that when
Isaac Newton wrote down his law of motion F D ma, it became interpreted as
a mathematical explanation of why and how forces cause objects to move. Our
point (inasmuch as we had one) was that Newton’s personal experience of forces
came from his inner ear, where hairs connected to nerve cells were deformed by
acceleration, and his brain interpreted this as feeling a force. In short, Newton
derived his law of motion from what was going on inside his own ears—which
was his law of motion.

Similarly, our visual senses present the world to us as a two-dimensional
projection (with 3D add-ons from stereoscopic vision), so it was natural for Euclid
to do geometry on a plane. His basic concepts of lines and points correspond roughly
to the first few stages of image detection by the visual cortex. Congruent triangles
are a formal approach to intuitive assumptions related to the movement of objects in
the natural world, reverse-engineered in modern times as transformation geometry.
The Euclidean group is built into how we perceive the world around us.

Numbers reflect the tendency of the human environment to contain collections
of discrete objects, ranging from a pile of stones to a herd of sheep, and, of course,
the family members with whom ancient hominins shared their caves. Counting is
abstracted from the human process of pointing at things with a finger and chanting
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‘ug, ug-ug, ug-ug-ug ...’ or whatever. Our mathematical terminology contains a great
deal of evidence for this process; we speak of numerical digits (fingers, on which
we counted), of geometry (Earth measurement), of squares and cubes in algebra,
of knots in topology, of maps and transformations, and of groups and rings and
fields. A vector (Latin for carrier) lives in a space. A radius is a spoke in a chariot
wheel. Matrix originally meant ‘womb’, hence a cavity in which things form, hence
a framework in which things can be embedded and arranged.

Our favourite coordinate systems reflect our body plan and our egocentric view
of the world. We stand upright (up/down), our arms extend sideways (left/right),
and our eyes look in one direction and leave us to worry perpetually about what
might be sneaking up on us from the opposite one (front/back). That’s 3D Cartesian
coordinate axes—with us at the origin, the centre of all things, where of course we
rightly belong. This bodily coordinate frame arises in the early stages of embryonic
development as cells divide and morphogens morph. Polar coordinates are basically
us at the centre, spinning on the spot (�) as we try to make sure a leopard isn’t
sneaking up on us, and if we see one, estimating how far away it is (r).

Our hardwired binary logic, now seen as the basis of and prerequisite for math-
ematics, hints at lengthy evolutionary pressures requiring rapid yes/no decisions.
Fight or flight? Attack or retreat? Friend or foe? The brain is now seen by many
psychologists as a Bayesian decision machine [10], and a decision ultimately is a
binary choice, though one arrived at by structures that are more flexible. Logicians
and others have invented numerous alternatives to binary yes/no 0/1 logic—three-
valued logics, intuitionist logic, fuzzy logic, yet mathematicians gravitate, entirely
predictably, back to 0/1 logic. We like dualities. Perhaps that’s because we’re a
bisexual species; perhaps that explanation is facile.

I’m not suggesting there’s anything wrong with any of this. The history of
mathematics is a tangled tale of concepts being imported from the outside world,
reworked by a human mind, and exported back. We get many of our best ideas
that way. We get more by internally mulling over potential logical connections and
letting one thought strike sparks off another. Again, our metaphors (strike, spark)
reveal how it all originates in our humanity. Even the Platonic image of ideal truths
‘out there’ is that of a wary ape peering out at a vast external universe through two
holes in its skull—yet also having the imagination to wonder what else might be out
there, as yet undetected.

Contact

The question is whether any of this, even if it’s true, matters. It might just be a
description of what it’s like for limited humans to open up a window on the vast
Platonic landscape. If there’s only one Platonic landscape, any entity that opens a
window will see much the same things, and an alien window would reveal similar
vistas to a terrestrial one—at least, if they’re looking in the same direction. So
what’s important would be what’s there, not how you find out about it.
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If that’s right, then mathematics is universal. 2 C 2 isn’t just 4 here, it’s also 4
on exoplanet Snickelbah IV. (What else could it be? Wrong question. See below.)
Therefore alien math would be close enough to our own for both sides to understand
how they relate. Not perfectly, not in full detail, but in broad terms. In particular, it
would then make sense to use math as a kind of universal language when attempting
to contact intelligent aliens. Rather than, say, sending them the collected works of
Shakespeare.

Carl Friedrich Gauss had an interest in alien life and is often credited (probably
incorrectly) with the proposal to initiate contact by inscribing the diagram for
Pythagoras in the Siberian tundra [27]. A passing alien would spot the diagram,
mutter something along the lines of ‘By the exoskeletons of my ancestral hivemates,
the creatures on this world have discovered Smuffznoff’s Theorem! They must be
extelligent!’ and then transmit the first 77 primes in acknowledgement. Humans
would quickly spot base 7 notation, decipher the pattern, and contact would be
established. Soon we’d be exchanging family videos.

It’s a reasonable point of view, especially if the aliens are much like us. But what
if they aren’t? Or if they are like us, but come at things from a totally different
angle? The issue isn’t (probably) whether intelligent aliens would think that 2 C 2
is 5. It’s whether they would necessarily understand 2, 4, or C. Perhaps aliens
whose environment and social life differ from ours might come up with different
mathematics—or even no mathematics at all. They could, perhaps, have advanced
technology with a purely empirical basis, or have a far better intuition for the
workings of the universe than we do. Consider how deep neural networks currently
solve difficult problems by methods totally alien to human intelligence [18]. But
let’s settle for different mathematics. I quote from [20]:

Imagine creatures that float in the atmosphere of a gas giant, like Jupiter, studying the
geometry of triangles by floating small objects in the air. ‘Consider a triangle ABC—
oops, where’s A gone?’ Aliens like that would probably have a fantastic intuition for the
fluid dynamics of turbulent vortices, which we find almost impossible to understand. But
our rigid geometry might seem very alien indeed to them. Counting things doesn’t come
naturally when everything including the things themselves is fluid. For Jovians, whole
numbers might be very sophisticated concepts, characterising the topology of vortices. But
sometimes two vortices merge to form a single one, so the Jovians might decide that 1C1
sometimes equals 1, not 2.

Alien mathematics would probably be logically consistent with ours. But it might
carve up the universe in such a different way that its relation to our maths would be
incomprehensible. Even on Earth, concepts often don’t translate successfully from one
language to another. As an American General once said: ‘You can’t trust those Russians.
They have no word for détente.’

But surely, as long as aliens do have some form of math, then even if they
approach it from a different background, with different emphasis, experiences, even
concepts, they can still be led to understand what we mean by 2 C 2 D 4, or
 , or p-adic cohomology, and could then incorporate it into their math? And we
might take inspiration from quergedulid-skyfishing and finally resolve the status
of the Riemann Hypothesis. Or at least publish a small comment improving the
exponent in the error term in an asymptotic formula for some obscure number-
theoretic function from 3/7 to 42/123.
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Pluralism in Languages

We like to imagine this must be so. But our framework for mathematics has evolved
in a specific manner, over thousands of years, with every step governed by human
cultural prejudices and default assumptions. Even if we’re staring at the same
Platonic landscape as the Quoich caretakers, we may carve it up very differently.

Reuben makes essentially the same point when discussing pluralism in the
philosophy of mathematics [13], in particular comparing Platonism and anti-
Platonism. Instead of arguing that one stance must be right and the other wrong,
why not adopt a pluralistic approach? Both have advantages and disadvantages;
as Reuben said, ‘The typical mathematician is a Platonist during the week and a
formalist on Sundays.’ In [13] he says that initially he thought this was a bad idea,
but ‘now I see a way to make it OK. Just call it pluralism!’

Pluralism offers distinct advantages, even in conventional mathematical thinking.
The classic example is coordinate geometry. On the one hand, Euclid; on the other,
equations. The link is in principle exact: every geometric object has its algebraic
expression; every formula defines something in the geometry. In principle, every
theorem that can be proved using one viewpoint—one language—can be proved in
the other. It’s even possible to translate between them in a systematic manner.

However, this link failed to render either Euclid or algebra obsolete, even though
we can prove that either is superfluous, given the other. Why? Because what’s
natural in geometry and what’s natural in algebra are very different beasts. Each
language has its strengths and its weaknesses. Some problems are easy in one
language, baffling in the other. Short statements in one sometimes translate into
long, cumbersome, or impenetrable statements in the other. The two views are
compatible in principle but often alien to each other in practice. And that’s in our
own mathematics. Another example is Newton’s use of geometry, not calculus, in
the Principia. It’s easy to come up with more.

The existence of a translation algorithm, then, isn’t the only vital point. The
tractability of the algorithm—the computational cost, in number of operations,
of implementing it—is paramount. For an explicit example, let’s think about
two languages describing the natural numbers. The first, L1, is ordinary decimal
representation. In this language, standard arithmetical operations such as addition
and multiplication can be carried out by polynomial-time algorithms and hence are
computationally tractable. An alternative language L2 is the factorisation of a natural
number into primes:

n D pa1
1 : : : p

ar
r

Here n is represented by the sequence (a1,...,ar). For instance,

2001 D 3:23:29 D .0; 1; 0; 0; 0; 0; 0; 0; 1; 1/ :
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In L2, multiplication is a tractable operation but addition is not. At least, the
obvious way of adding two numbers—convert to L1, add, translate back into L2—
is intractable if the standard conjecture that there’s no fast algorithm for prime
factorisation is correct.

The situation here is asymmetric: translation L2 ! L1 is tractable, but (conjec-
turally) L1 ! L2 isn’t. Already we see that the argument ‘L1 is logically equivalent
to L2, therefore nothing new can be stated in L2’ is wrong. There must exist short
statements in L2 that become intractably long when restated in L1. The translation
map is a ‘trapdoor code’, efficiently computable in one direction but uncomputable
in the reverse direction [9]. However, worse is possible: both directions may be
uncomputable. For instance, we could replace L1 by a new language L3 closely
related to L2. Suppose that the primes, in numerical order, are p1, p2, p3, .... Define
� : N ! N by

� (2j) D 2j�1 � (2j�1) D 2j

and observe that �2 D id. Define  : N\f0g ! N\f0g by

 
�Y

pai
i

�
D

Y
pai
�.i/

so that 2 D id. That is, swap primes in pairs. Language L3 defines a natural number
n by the sequence (ai) for which

n D
Y

pai
�.i/

Now  : L2 ! L3 and the same map  : L3 ! L2. The obvious algorithm
for computing  (n) requires some tractable computations and two conjecturally
intractable steps:

• Factorise n into primes.
• For each pj in this factorisation, determine whether j is even or odd.

How do pluralism and artificial languages for arithmetic relate to xenomath?
Well, we work in L1, but suppose the Quoich worked in L3.... We’d agree on
everything, but be unable to express any common ground.

It Gets Worse

Perhaps we and the Quoich aren’t looking at the same Platonic landscape. Maybe
they’re photonic or quantum, and we’re not on the same wavelength. Or maybe we
just set everything up differently. Then it gets really pluralistic.

I mentioned ZFC—Zermelo-Fraenkel axiomatic set theory augmented by the
axiom of choice. As far as most mathematicians are concerned, this is today’s gold
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standard as an axiomatic basis for mathematics. Taylor and Wagon [23] expound
and reprove two theorems by Mycielski and Sierpiński that are relevant to alien
math; for brevity I’ll focus on that of Mycielski [15, 16].

The axioms of ZF are technical but mostly plausible. The axiom of choice C is
more contentious: recall that it asserts that given a collection of sets, it’s possible
to choose a single element from each set [29]. Axiom C becomes contentious
only when the collection is infinite. It’s very useful—for example, it proves that a
Cartesian product of compact topological spaces is compact [25]—but it also leads
to some strange conclusions. One of the weirdest is the Banach-Tarski Paradox [2]:
a solid sphere can be cut into finitely many pieces, which can be reassembled, via
rigid motions, to form two solid spheres the same size as the original.

This would be contradictory if the pieces were measurable, but they’re not. Most
mathematicians are happy with this resolution and understand how the result arises
from reasonable combinatorial properties of words in the group SO(3). However, if
you dislike Banach-Tarski, you can get rid of it. You have to get rid of the axiom of
choice, but having done so, you could, for example, add the seductively tidy axiom
LM: every set of reals is Lebesgue measurable. Clearly the Banach-Tarski Paradox
then becomes untenable. But, as Mycielski proved, this doesn’t put an end to your
difficulties, because ZF C LM implies an arguably worse paradox, the Division
Paradox. Consider the additive group of reals R and its subgroup of rationals Q.
Then in ZF C LM, the cardinality of R is less than that of the quotient group R/Q.

If that doesn’t bother you, it says that the set R can be partitioned into disjoint
non-empty subsets, in such a way that the number of subsets is greater than the
number of points.

Nonsense! Just choose a point in each subset... oops, that uses the axiom of
choice. Oh.

Why am I mentioning this?
Well, if we use ZFC but the Quoich use ZF C LM, we’ll be in fundamental

disagreement. We think the Banach-Tarski Paradox is true; they think it’s false. We
think the Division Paradox is false; they think it’s true. Now imagine a kind of fractal
structure to alien logic compared to ours, with this kind of difference of opinion at
every level. There would be absolutely no common ground, yet both would ‘work’
for their practitioners.

So, if the two civilisations came into contact, there might be misunderstandings...

The Unfortunate Incident at Shool-11

The following documents have been extracted from Report on the Unfortunate
Incident at Shool-112 and Binding Advice on Avoidance of Any Repetition [hence-
forth Unfortunate Incident] by magnetotorus herder Concurrence-of-Opinion. The

2Unless otherwise indicated, all numbers in this document are expressed in Galactic Standard
heptadic notation.
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originals are of many different mutually incompatible formats, including (but not
limited to) Quoich gesture concertos, pressed vegetation, sequential binary, Storm-
catcher vortex flows, Gigantomorph incised osmium monoliths, nudged quanta, and
plasmoid flare modulates. They have been transmogrified into discrete-symbolic
format, but the individual or hive-mind reader should be warned that fine nuances
may have been lost in transmogrification. Quantum beings should place themselves
in single-world mode and accept the massive diminution in channel capacity.

1. Executive Projection concatenated by Implement-of-Consensus [opening sum-
mand]

Recipients hardly need reminding of the Unfortunate Incident, which at one point
threatened to escalate and cause the devastation of two entire Galactic sectors and
parts of three others. Executive action was therefore taken by the Council for the
Enforcement of Arbitrary Protocols to eliminate the threat posed by Shool-11, in
accordance with Consensual Statute 4116-22B Addendum 4.

Post-execution analysis by qualified effectuators revealed the whole thing to have
been the tragic consequence of a misunderstanding [see Mathematics].

2. Extract from Galakipedia [edited]
Shool-11 [aka Poisonblue, Sol-33, Terra, Earth, Monde, and 11,4366 other

local designations]

Before its recent dissolution,

this world was placed on the Indicted List  

due to suspected mesophile infestation

For many heptoheptades, Shool-11 was reasonably considered uninhabitable.
Its surface temperature was intermediate, lying neither in the cryozone nor the
plasmatic region. The presence of large quantities of oxygen (mainly 22O, with
traces of 23O and 24O), a volatile substance conducive to spontaneous combustion,
was traced to the ubiquity of oxygen dihydride, familiar in the cryozone as ‘rock’,
dissociated into nuclei in all plasmatic habitats but rare in its liquid or vaporous
phases—except on Shool-11.

In 3,4201 GTL, a few maverick scholars cursed with overwrought imaginations,
who referred to their brainmeld as Open Minds Must Prevail, foolishly proposed that
Shool-11 might be the habitat of mesophiles: hypothetical beings able to exist in the

3By the strange native counting system, which worked from the star outwards.
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middle range of temperatures. This wild conjecture was based on the flimsiest of
evidence [see Shool Enigma], and was dismissed as wishful thinking by all rational
commentators.

Post-purification analysis by qualified effectuators of what turned out to be
Shool-11 artefacts has now shown that this hypothesis was correct, a development
that could not have been anticipated at the time.

3. Extract from Galakipedia [edited]4

Mathematics

Religious [?] belief system of some Shool-11 mesophiles comprising a loose
assemblage of assertions and deductions derived from various arbitrary assumptions
[belated summand axiom] by means of a binary deductive system peculiar to Shool-
11 [belated summand logic]. Among the more absurd beliefs is the unexamined
presumption that this system is universal and would automatically be shared by all
extelligent cultural entity/systems.

As events unfolded, this presumption was responsible for the Unfortunate
Incident.

4. [Included under the Indeterminate Access Agreement of 2,3301 GTL]
Open Minds Must Prevail, Unorthodoxy Institute, Dome B4, CryoCentral.

Tentative evidence for the presence of unengineered mesophiles, some of
rudimentary extelligence, on an obscure world in the uninhabitable zone, Psience
2,4431 (3,4201 GTL); GOI: 44553-2264100300055.

Abstract
A mesophile is a hitherto hypothetical entity of phenotype so unorthodox that it

can survive in the intermediate temperature shadow between the Cryonic Zone and the
Plasmatic Region. Tentative evidence is provided that Shool-11 may be infested with
mesophiles. This possibility was discovered during a routine survey of the Shool System.
The cryoid survey vessel Discouragement of Wasteful Overtones made planetfall on Shool-
1, a promising world with a calm, balmy climate, possibly suitable for colonisation. Strange
markings observed in the solid nitrogen of Shool-1’s surface led the sondage team to
dispatch probes to Shool-11, the presumed source of these markings.

At the cost of several ruined probes, it was confirmed that this bizarre planet possesses
tetrahydrogen carbide, though in a useless gaseous form and in trace quantities. Its oceans
are molten rock: specifically, oxygen dihydride in its dangerous liquid form. Despite strong
evidence of past oxidation events on a vast scale, there remains free oxygen. Why has such
a corrosive substance not combined with other elements long ago? We propose a tentative
explanation: the planet has evolved mesophiles, able to exist under such conditions, which
regenerate the gas by dissociating rock using stellar energy. We suggest that these organisms
might largely consist of molten rock.

An enigmatic burst of electromagnetic noise, emanating from Shool-11, is advanced as
further confirmation of this hypothesis.

4After the disassembly, nanobots inactivated, fragmentary records supporting this entry were found
in the wreckage of what is now recognised as Shool-11’s proto-civilisation.
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5. Extract from Galakipedia [edited]
Shool Enigma
[see Arecibo Message]
This article is a stub. You can help Galakipedia by expanding it.

6. Extract from Galakipedia [edited]
Arecibo Message

Poisonbluvian5 term for the Shool Enigma: random electromagnetic noise
alleged by convicted and executed criminal(s) Open Minds Must Prevail to be a
signal from an unknown extraconsensual species inhabiting the world Poisonblue
[aka Shool-11]. Why extelligent beings would fail to use an ansible was not
explained. The sole evidence for this emission being a signal was that according to
the ancient gematrophily of T’qac, the noise decomposes into 4616 shorter bursts.6

For many hectades, the significance of this quantity—if such it is—was hotly
debated. The Orbital Tautology Engine at Wormhole 23 asserted that any waveform
necessarily decomposes into one or more continuous segments and offered the
unsolicited opinion that any finite signal must necessarily contain some number of
discrete bursts, so the number concerned probably has no special significance.

A suggestion that 4616 represents a grid of 32 rows and 133 columns, or
perhaps 133 rows and 32 columns, was widely discounted because the quantity of
information that can be conveyed by such a grid is too trivial even to include the
obligatory Litany of Respectful Obeisance.

Then came the breakthrough. In the Descenter religion of the Quoich of
Snickelbah IV, a sequence of 4620 notes, performed on the snout-horn, is deeply
sacred. The Descenters immediately presumed that one note had been omitted,
and raised an Accusation of Disrespect with the Council for the Enforcement of
Arbitrary Protocols, directed at all hypothetical Poisonbluvian inhabitants, on the
grounds that this omission constituted a Vile Act of Disrespect and Heresy.7 The
Descenters demanded the traditional penalty, and the Council initiated proceedings.
In the absence of any Poisonbluvian at the trial, despite being invited repeatedly by
ansible to teleport a legal representative, it was presumed no extelligent inhabitants
existed. Since this presumption was unverified, however, the decision to take the
usual precautions was unanimous.

5Poisonbluvian refers to Shool-11’s hypothetical mesophiles, who we now know called them-
selves humans in one of their languages. The term Arecibo message was discovered among the
remnant artefacts of this ill-fated pre-sentient species and clearly describes the Shool Enigma.
6In Galactic Standard heptadic notation for discrete assemblages satisfying the Law of Conserva-
tion of Things. Flux-entities should (and in any case will) consider such an invariance property
to be meaningless. Quantum beings can, with negligible loss of extelligibility, identify it with
multisoliton conservation modulo phase.
7Technical point of Xenoecclesiastical Law: Shool-11 is clearly visible from the east pole of
Snickelbah IV; thus this omission infringes the Obscure Commandments of the Prophet Brunk-
Ploth.
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10. The Purification of Shool-11 by Hauptswarmführer Doomghast, Slayer-of-
Animals

This record is protected by a synclastic inhibition field. Entities entitled to
access it will know the requisite protocols. Unauthorised entities should retreat to a
distance of at least one heptoheptadth of a mean galactic radius.
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Cognitive Networks: Brains, Internet,
and Civilizations

Dmitrii Yu. Manin and Yuri I. Manin
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Introduction

In several recent research papers and surveys by neuroscientists (cf. [1, 29], and
references therein), it was suggested that cognitive functions of the brain are
performed using not only, and perhaps even not mainly, complex networks of
interacting neurons (connectionist view) but also on the level of individual, highly
specialized neurons and their intracellular mechanisms. This argumentation went
hand in hand with the critique of popular analogies between brains and computers,
where neurons were supposed to work as, say, electronic logic gates.

In order to retain the heuristic power of computer science in cognitive neuro-
biology and simultaneously to keep the door open to such paradigm extension,
we consider in this paper possible analogies between the brain and Internet, in
which certain neurons and some specific neural networks are being compared with
entire computers, in particular, with servers, that in fact do have a very rich internal
hardware and software reflected in their functions in the net.

As so many basic ideas and technologies of the information age, the future role
of the World Wide Web was presciently understood by Alan Turing. Although the
Internet of course did not yet exist then, according to a convincing interpretation by
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B. Jack Copeland ([4, 5], p. 30), Turing’s definition and study of oracle machines in
his PhD thesis (1938) introduced the notion that computability may involve getting
“oracular” data from outside computers.

In this essay, we do not discuss any philosophical problems related to such
comparisons (for possibly related discussions, see, e.g., [3, 14], and references
therein).

We simply try to suggest plausible and verifiable conjectures about functions,
interconnections, and dynamics of various neural structures in the brain using the
brain/Internet metaphor. Comparison with computer was already exploited in the
enthusiastic book by Jeff Hawkins [11] (cf. further developments in [10, 12, 13].)

Another subject matter concerning us here is the cognitive activity of civi-
lizations. Looking for cognitive network patterns at this level is not a standard
preoccupation of the historians of culture and sciences, but one of us first engaged in
this line of thinking when researching available data on the development of writing,
cf. [24].

Our departure point is a simple remark: although WWW is very complex, the
knowledge about its structure and functions is available on all levels since it is
constructed and developed by means of engineering, cf. the first section below.
Contrariwise, brains are products of evolution, we can observe their structure and
functioning at various spatial and temporal scales, but we can only venture some
guesses about their modes of data processing. AI might be and in fact was a great
inspiration for such guesses.

Important role in this circle of ideas is played by the notion of information
transmission. Generally, we imagine a source of data, which can be encoded,
transferred as a message through a certain channel, received at the other, and then
decoded to reconstruct the initial data.

Using a Saussurean terminology, we can say that protocols at the transmit-
ter/receiver ends constitute a language (la langue), whereas each case of transmis-
sion is an act of speaking (la parole).

There are many mathematical models of information transmission materialized in
the IT domain. What we want to stress in this note is the fact that actual transmission
must often be relayed: data at the receiving end become, after re-encoding, data at
the sender along another channel, and so on. This involves the rules and protocols
of translation in linguistics. Usually, basic parts of such protocols are accessible as
bilingual dictionaries, but even in human societies, there are exotic exceptions such
as drum languages of various ethnic groups of Africa, New Guinea, etc.

Thus, there must exist many neural languages, each used in respective neural
networks and connected by numerous translating neurons/networks.

Finally, the speed with which the brain can solve cognitive problems related to
speech generation and recognition (or such a marginal activity as playing chess)
unambiguously testifies to the abundance of highly parallel processing in neural
networks. Neural organization of such parallel processing must be a very essential
logistical task. This was long ago recognized and described by neuroscientists
dealing with mechanisms of visual perception.
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Here we must stress that mathematical theory of time complexity of parallel pro-
cessing practically does not exist and in any case did not reach maturity comparable
with those of Kolmogorov complexity and polynomial time computations.

Therefore, a better understanding of high parallelism in the brain might serve as
a useful heuristic tool for theoretical computer science as well (cf. [17]) and many
other studies of visual cortex.

This essay is organized as follows. After a brief survey of the global structure of
WWW, we discuss the following subjects:

• Architecture of WWW and the role of search engines.
• Chips, computers, and servers vs. neurons and neural networks.
• Kolmogorov-style compression vs. Charles Darwin-style compression.
• Miscellany.

Computer Networks: Architecture

When describing the information pathways in computer networks, specifically, the
Internet, one has to keep in mind that communication between network nodes
(individual devices, be that special-purpose servers, personal computers or network-
enabled electronic devices) can be considered on several different levels (cf. the
OSI model, [31] and [OSI1] where the respective levels are called layers). From
the lowest level concerned with transferring of raw bits between two neighboring
devices to the highest level that operates in terms of such operations as remote file
access or search engine queries, each layer has its own semantics and serves as a
medium for the next higher layer. On the lowest levels of the hierarchy, each device
can communicate only with its immediate neighbors. On the intermediate levels, the
complexities of networking are hidden, and nodes can directly address their requests
to specific other nodes (identified by IP addresses). Finally, on the highest levels, the
notion of a network node is also hidden, and they operate in terms of services, such
as a named file share or a particular search engine.

What makes this transparency possible is the existence of “routing protocols”
encapsulated in a special class of Internet servers called routers. Without getting
into details, routers keep exchanging information they learn about network nodes
existing in their neighborhood. Since the network configuration keeps changing
(as nodes come up on and drop off the network, as new subnets are added and
old ones reconfigured), the routing information is never complete, always to some
extent outdated, and often contradictory. The robustness of communication between
nodes is only achieved by the routers’ ability to retry delivery of lost messages
using different routes. What is most interesting for us here is that even considered
on this level, Internet possesses a (varying with time) map of itself, in particular of
its own topology. This map is approximate, somewhat fuzzy, partially delayed, and
decentralized. Perhaps it can be likened to the living organisms’ proprioception.
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From the point of view of information processing, we should look at the
application level of the OSI model. As in the brain, information enters the network
through peripheral nodes, i.e., mostly consumer devices where people type in texts
and upload images or videos. Some of it stays local, of course, but some of it travels
on the network to be stored, transferred to other peripheral nodes (e.g., email)
or, most interestingly, processed, digested, summarized, and transformed. We can
discern several types of memory-like subsystems in the network.

1. Storage systems. These are places (server farms) built to provide the archival
and backup functions to the users, such as DropBox or Google Drive. They are
probably the least interesting type of network “memory,” returning exactly what
was put in there on a specific request to retrieve it.

2. Internet archives, such as the Wayback Machine [OSI2]. It crawls the web and
stores the current copies of the sites it visits, without overwriting the older
versions. Thus, it allows one to reconstruct the history of web’s dynamics, though
in an unavoidably patchy form.

3. Internet search engines. Search engines started as simple keyword retrieval
databases of the important information gleaned from the web but have evolved
into powerful associative memory-type services. What’s most interesting about
search engines is that they increasingly perform deep analysis of both the content
they index and the search patterns of the users, attempting to serve ever more
complex and fuzzy user queries. There is an understanding that to effectively
respond to difficult informational queries, a search engine has to possess at least
a rudimentary type of world knowledge, such as Google’s Knowledge Graph
[OSI3] and similar systems developed by other search companies.

Note that a significant portion of world knowledge (perhaps, the vast majority)
in such systems is harvested from the web, rather than being manually entered.
Search engines perform many different analyses of the content they index, like news
aggregation (do these two news articles talk about the same event? if so, who are
the event actors?), sentiment analysis (is this a positive or negative news story?) or
image recognition (what objects are in the photo?).

Search engines represent the kind of information storage that is inherently
capable of self-reflection. As a rudimentary, but highly visible example, consider
several incidents where a search engine’s algorithms would make a funny or
offensive mistake in response to a query, which would become a news item, and then
very soon the results it would return to the same search query would prominently
feature news about its own mistake in what could be perceived as a form of self-
deprecating humor.
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Neural Systems: Experiments, Measurements,
and Self-Perception

The only direct information channel to one’s neural system for each human being
is self-perception, including memory, emotions, and conscious sensory perceptions
(“I see” means “I know that I see”).

Objective information about neural systems of other people, but also of animals
belonging to different species, is obtained in laboratories and clinics, but this is an
outsider’s information.

Bridging together insider’s and outsider’s views has always been and remains
a great challenge. In particular, clinical and scientific interpretation of the data of
psychology and psychiatry can be hopelessly caught in the trap of suggestion: cf. a
very convincing study of the history of psychoanalysis in [2].

Attempts of such bridging based upon computer metaphor were numerous.
Below we will briefly survey some of the conjectures summarized in Yu. M.’s paper
of 1987 On Early Development of Speech and Consciousness (Phylogeny); see [18],
pp. 169–189.

Basically, it was conjectured that the brain contains inside a map of itself and that
some neural information channels in the central neural system:

(a) carry information about the mind itself, i.e., are reflexive;
(b) are capable of modelling states of the mind different from the current one, i.e.,

possess a modelling function;
(c) can influence the state of the whole mind and through that the behavior, i.e.,

possess controlling function ([18], p. 179)

It was remarked also that that this reflection of the brain inside itself must be
unavoidably coarse grained.

This is made much more precise in the already invoked above OSI (Open Systems
Interconnection) models of the Internet, where both the notion of the network
node and protocols of their communication are subdivided into “horizontal” layers
(seven in [31] [OSI1]). The lowest layer represents the topology of physical medium
transmitting “raw bit streams,” whereas the highest layer represents the most coarse-
grained vision of the whole network. Each layer has its own communication
language; each individual transaction (information transmission) on a particular
layer can involve multiple transactions on the next lower layer and, in turn, serve
as a part of a transaction on the next higher layer. Thus, information transmission
of the highest layer data is mediated by multiple translations down to the lowest
layer at the source, a corresponding translation up at the destination and potentially
multiple partial up and down translations at the intermediate points.

We stress again that streams of bits on the wire directly represent only the lowest-
level communication. In order to decode higher-level transactions, one would
inevitably have to ascend the hierarchy of languages, aggregating multiple lower-
layer conversations into a single higher-layer conversation: there is no way to
directly jump from the lowest to the highest layer. The same is true about the
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electrochemical messaging in the brain: individual trains of neuronal spikes do not
directly represent thought or perception patterns. This is of course well understood
by experimental neuroscientists who use expression “signature of . . . ” in articles
summarizing their findings (cf. [16, 30]).

As WWW, the mind can contain several dynamical reflections of itself, differ-
ently positioned with respect to the functions of mutual reflection and control. The
respective functional modes of the mind manifest themselves in a wide variety
of dissociative phenomena: multiple personalities, automatisms, fugues, hypnotic
phenomena, etc.

Concrete implementations of fragments of multilayered structure in the brain are
evident, for example, in the studies of processing of sensory information of different
modalities. The way from a sensory input to the appropriate neural network in the
respective projection area should be imagined as “vertical” information transfer
from lower layers up. On the other hand, integration of different modalities, storage
of the compressed form of this information, etc. should involve a considerable role
of horizontal conversation.

In the human brain, anatomy of neocortex involves several (six) layers, and Jeff
Hawkins made a series of conjectures about storing and processing information
inside and between these layers (see [11], pp. 42, 237–245). In Yu. Arshavski’s
opinion (private communication), at least part of these conjectures can be or have
been experimentally verified, but the general association of these anatomical layers
with processing layers is hardly justified.

We believe that understanding of such phenomena as cognitive maps of spatial
environment [8], mirror neurons [9], or concept cells [27, 28] can benefit from a
purposeful search of WWW-like layers and decoding their languages (cf. [1, 29]).

Information about these layers might also enrich the current rigid juxtaposition
of “purely connectionist” paradigm and the “intracellular” paradigm, according
to which cognitive processes are primarily served by chemistry and genetics of
specialized cells rather than by firing of individual neurons connected into networks.
It seems clear that memory must involve chemistry and genetic structures and cannot
be based solely on network dynamics.

Information, Compression, and Computation

Civilizational layer of cognition. In [20], one of us argued that cognitive
processes in the human brain might and ought to be theoretically considered also
at one level above the individual brain, namely, on the civilizational layer.

Nodes of this layer are individual brains, but also, starting with early modernity,
it is enriched with libraries, laboratories, research institutes, etc.

Comparison of this layer with (more formalized conceptually) layers involving
primarily computers was based upon the following suggestion. Let us focus on
physics, science that dominates today our understanding of the universe along the
vast spectrum of spatiotemporal scales.
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It is a common knowledge that physics discovers “laws of nature” that are
expressed by compact mathematical formulas. These laws of nature can be then
used for prediction/explanation of results of observations (say, in astronomy) and of
experiments and also for engineering projects.

It was suggested in [20] that each physical law might be considered as an
analogue of a computer program. Such a program computes the output after accept-
ing results of observations as an input. These outputs are scientific predictions.
The classical example consists in predicting observable positions of planets using
models by Ptolemy, Galileo, Newton, Einstein, etc.

This process might also involve other laws/programs, multiple relaying, encod-
ing, and decoding that converge at an additional civilization layer node.

As a contemporary example, consider the recent news that the international team
of scientists using LIGO (Laser Interferometer Gravitational-Wave Observer) was
able to detect gravitational waves and identify their source: two colliding black
holes.

Roughly speaking, gravitational waves resonate with light waves, because high-
frequency oscillations of space-time curvature (caused by gravity) cause the entire
system of light-like geodesics (which in the first approximation determine the light
propagation) to oscillate at the same frequency.

The basic “physical law” involved in this event consists of Einstein general
relativity equations and its solutions of a special type (black holes).

At the node of observations, a large sample of other “physical laws” is invoked
that determine engineering decisions needed to construct the big observational
device called LIGO which detects very small frequency changes of laser beams
using the interference techniques.

Finally, at all stages, actual computers are used, whose inputs and outputs
represent “vertical” communication between an upper and a lower level involved
in this observational activity.

Mathematical models in computer science: computability, complexity, and
polynomial time. It is well known that the mathematical theory of computability
was created in the 1930s and 1940s in several different versions: Turing machines
(engineering metaphor), Church’s lambda calculus (linguistic metaphor), Markov’s
algorithms (conveyor belt metaphor), Kolmogorov-Uspensky’s algorithms (infor-
mation flow chart metaphor), partial recursive functions (operadic metaphor), etc.

All these versions differ in many respects. First of all, their respective domains of
inputs and outputs viewed as Bourbaki-style structures are different: finite sequences
of bits (zeros and ones) for a Turing machine, finite words in an arbitrary fixed
alphabet for a Markov’s algorithm, and words of a language which is the basic object
of lambda calculus. Second, programs for particular computations are formalized
differently as well: a finite list of inner states of pairs (head, head input) for a Turing
machine, a finite word expressing the sequence of basic operations on recursive
functions together with their inputs, etc.

Nevertheless, it was proved that all these constructions produce “one and the
same” notion of computability, in a well-defined mathematical sense. One of the
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most remarkable events in the nascent computer science occurred when one of the
founding fathers stated his famous “Church’s thesis”: the computability notion is
absolute and does not depend on the chosen model of computation (if the latter is
broad enough).

This thesis is not a mathematical theorem: it can be called an “experimental fact
in the Platonic world of ideas.”

The next great discovery in this domain was that of “Kolmogorov complexity.”
If a model of computability and the suitable programming language are chosen,

then one can prove the existence of the best compressing program U with the
following properties.

(a) Let Q be an arbitrary object in the domain of this computability model or else,
a description of a partial recursive function, U a semi-computable function.
Define the complexity of Q with respect to U as the bit length of the shortest
object P such that U.P/ D Q (or, respectively, Q is a program of computation
of the same function). In other words, P taken as input of U produces Q as its
output. Such a P always exists.

(b) There exists a class of optimal choices of U such that a different choice of the
universal programming language and/or of another U leads only to a possible
change of complexity (as function of Q) by a bounded additive constant.

Intuitively, this shortest object Q is best imagined as a maximally compressed
form of P. Thus, we may say that Newton’s classical laws of celestial mechanics
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are maximally Kolmogorov-compressed representations of programs that can cal-
culate and predict future positions of celestial bodies, where observations of their
current positions are taken as inputs.

Arguably, this Kolmogorov compression metaphor gives a widely applicable
picture of scientific knowledge, when it is restricted to one of many timescales of
natural phenomena: cf. [15] and the LIGO story.

In the papers [19, 23] and [21], it was argued that brains actually also use neural
codes allowing good compression of relevant information.

One set of arguments suggested that such a compression of, say, dictionary of the
mother language in human brain can explain the well-known empirical observation,
Zipf’s law.

This “law” (in fact, a keen and very general observation) states that if one ranges
lexemes in the order of their decreasing frequency of usage in a representative
corpus of texts, then the product of lexeme frequency by the lexeme rank is
approximately constant. In [23], it was argued that a good mathematical model
of such behavior is furnished by the L. Levin’s probability distribution, if one
postulates that Zipf’s ranking coincides with (an approximation to) Kolmogorov
complexity ranking.
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The fact that Kolmogorov complexity in strict mathematical sense itself is not
computable cannot refute this conjecture. In fact, successive approximations to
Kolmogorov complexity ranking can be obtained by a version of the well-known
ranking algorithm.

Consider, for example, encoding and storing in the brain of the vocabulary of a
mother language. We suggest that when a new lexeme is being encoded in a brain
memory network, the length of this encoding (Zipf’s “effort”) is compared with
lengths of previously encoded lexemes, and the lexeme acquires its temporary Zipf’s
rank.

Another set of arguments combined the discussion of neural encoding of stimulus
spaces in [6] with suggestions of [30] that dynamics in neural networks shows
signatures of criticality. “Criticality” here means that, within a certain statistical
model of the relevant network, this dynamics happens near a phase transition
regime. But it was discovered in [25] that search for good error-correcting (“noise-
resistant”) codes generally involves activity near a phase transition curve, even
though the relevant statistical model does not coincide with the one in [30]: in fact,
it again involves Kolmogorov complexity.

Stretching the metaphor further, we can also consider human communication
occurring in natural language in the same light. A natural language message is
usually treated as carrying information. But it also can be treated as a program
that runs in the brain of the receiver and whose purpose is to create a certain
mind state in it. This interpretation is particularly interesting for literary texts,
especially poetry, because their purpose is not conveying information but rather
imparting an emotional state to the reader. It is customary to state that successful
poetry compresses its language, and, consequently, if one wants to fully explicate
the “meaning” of a good poem, an extensive prose text has to be written. So perhaps
the right way to conceptualize a great poem is to say that it represents a maximally
Kolmogorov-compressed representation of the target mind state.

In the theoretical computer science, besides complexity as the length of a
shortest program, an important role is played by various embodiments of the notion
“length/time of computation.” From this viewpoint, we are interested in minimizing
time necessary for producing the output from an input. The most accomplished
theory here led to the so-called “P/NP problem.” Roughly speaking, if there exists a
computation of a function which requires time polynomially bounded by the length
of input, can one also find this computation using polynomially bounded time?

More precisely, in a model of the universal NP problem, we consider all Boolean
polynomials F with arbitrary number of variables and ask the question whether a
given polynomial takes value 1 for some values of its arguments.

If the answer for F is positive, this fact can be proved in polynomially bounded
time (wrt the length of F) by starting with an appropriate Boolean vector x and then
calculating the value F.x/ D 1. But can we find this x or else find another proof
that F takes value 1 in polynomially bounded time? This is the P/NP problem the
answer to which answer is not known.
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What is relevant for our discussion here is the fact that if we allow parallel
computations in our models, such as parallel computation of all values of any
given Boolean polynomial by starting with all inputs of given length simultaneously,
then the P/NP problem will obviously have the answer P D NP. Thus, economy in
computation time can be achieved by allowing multiple parallelism.

This, in addition to program compression, might be another crucial mathematical
idea that materializes in large networks, both in brains and in civilizations.

Returning to the intuitive idea of compression, we want now to argue that there
is another type of compression which we will call here “Darwinian compression.”

Darwinian compression. Charles Darwin’s Beagle voyage was one of the
defining events in the development of human civilization because it has radically
changed our collective self-perception.

Narrowing our focus to see better his method from the viewpoint of its cognitive
characteristics, we can say that Darwin started with collecting a vast database of
living creatures. The contemporary ideology of data mining could suggest us that
his next step would be the search for correlations in this database and discovery of
various degrees of their possible interrelationships. However, this kind of research
was essentially done before Darwin: Carl Linné introduced the binary classification
system (genus/species) and created the principles of taxonomy that are still widely
used.

Darwin’s great breakthrough consisted in guessing how this diversity could have
occurred and what factors could determine the origin, development, and change
of genera and species. The possibility to compress his intuition in just two words,
“natural selection,” motivated our metaphor “Darwinian compression.”

But in reality, one cannot rigorously derive, say, the evolution theory from
genomics: all our attempts and arguments are of vague qualitative nature, at best
convincing us that the two sets of laws are compatible. A succinct and very
expressive description of this baffling situation was given by Svante Pääbo in
his book [26]: ‘The dirty little secret of genomics is that we still know next to
nothing about how a genome translates into the particularities of a living and
breathing individual. Hence, we cannot say which genomes would define “the
fittest” individuals that, according to the Darwinian metaphor, have better chances
for survival and reproduction.

Attempts to fill this gap led to the development of “epigenetics,” which is
studying factors and developmental processes that modify the activation of various
genes without changing the genetic code sequence of DNA: cf. [32]. Such epigenetic
processes in a chromosome can lead to the appearance of stably heritable phenotype
traits, which then can play their own specific roles in Darwinian evolution.

Another example of a scientific discovery of a similar cognitive type is the
Periodic Table of chemical elements which embodied a compression of a huge
database of alchemical and later chemical observations, experiments, and guesses.
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Both discoveries, evolution and periodic table, can be considered as a way
of connecting various floors of scientific knowledge referring to various space-
time/complexity scales. Each floor is governed by its “laws” in the sense described
above, which in principle should be used to generate the laws of the next floor.

But, as in the case of Darwinian evolution, one cannot rigorously derive the
periodic table from the quantum theory of elementary particles and fields, and one
cannot rigorously derive, say, observable properties of water, ice, and steam from
the position of H and O in the periodic table.

More precisely, quantitative theory of atoms of the lightest elements consisting
of a minimal number of elementary particles might be accessible (with the help
of modern computation resources), but the whole structure of the table (including
isotopes) and the very notion of molecules and their “chemical” properties, with its
continuing extensions and ramifications all the way up to DNA encoding, remain
the “upper-floor” science, not really reducible to the science “one floor below.”

This is why we find so naive (and potentially dangerous) the claim by Chris
Anderson, Editor in Chief of the Wired magazine, expressed in the title of the cover
story “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete”
(summer 2008):

The new availability of huge amounts of data, along with statistical tools
to crunch these numbers, offers a whole new way of understanding the world.
Correlation supersedes causation, and science can advance even without coherent
models, unified theories, or really any mechanical explanation at all. There’s no
reason to cling to our old ways.

For more detailed arguments, cf. [22].
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Reuben Hersh on the Growth of Mathematical
Knowledge: Kant, Geometry, and Number
Theory

Emily Grosholz

In his reflective writings about mathematics, Reuben Hersh has consistently champi-
oned a philosophy of mathematical practice. He argues that if we pay close attention
to what mathematicians really do in their research, as they extend mathematical
knowledge at the frontier between the known and the conjectured, we see that their
work does not only involve deductive reasoning. It also includes plausible reasoning,
“analytic” reasoning upward that seeks the conditions of the solvability of problems
and the conditions of the intelligibility of mathematical things. We use, he argues,
“our mental models of mathematical entities, which are culturally controlled to
be mutually congruent within the research community. These socially controlled
mental models provide the much-desired “semantics” of mathematical reasoning”
(Hersh 2014b, p. 127). Every active mathematician is familiar with a large swathe of
established mathematics, “an intricately interconnected web of mutually supporting
concepts, which are connected both by plausible and by deductive reasoning,”
that include “concepts, algorithms, theories, axiom systems, examples, conjectures
and open problems,” and models and applications. Thus, “the body of established
mathematics is not a fixed or static set of statements. The new and recent part is in
transition” (Ibid, pp. 131–2).

This view of mathematics, elaborated in his recent essays and in his book Expe-
riencing Mathematics: What Do We Do, When We Do Mathematics? (Hersh 2014a),
puts him at odds with the usual schools of thought in the 20th-century Anglophone
philosophy of mathematics: intuitionism, inspired by Kant; formalism, championed
by Hilbert; and logicism, beloved by logicians. Philosophy of mathematics in the
twentieth century was pursued under the star of reduction; whether the reducing field
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was arithmetic, logic, or set theory, geometry was inevitably slighted; so geometry
will play a key role in my development of Hersh’s insights, though I return to
numbers at the end.

Those 20th-century philosophers who have wished to do better justice to the
claims of geometry have typically appealed to Kant’s doctrine of Transcendental
Aesthetic with its “pure intuition of space,” and the emphasis on synthetic construc-
tion (inter alia, the construction of figures) in his transcendental analytic, as the
mind unites the “parts” of the infinite wholes that condition all it knows. Kant calls
space and time “manifolds” which must be synthesized to be known, but observes
that, unlike the heterogeneous manifold presented by sensation, the pure manifolds
of space and time are homogeneous. Early in the twentieth century, Poincaré
invoked Kant in order to escape Leibniz’s (alleged) claim that all mathematical
knowledge is analytic, and Brouwer founded his school of intuitionism on a version
of Kant’s notion of synthesis. Later exponents of intuitionism, like Carl Posy, have
defended Kant’s account of the continuum and geometric objects related to it.
Jaakko Hintikka has espoused it because it offers a link between knowledge of
particulars and processes of acquiring knowledge more general than perception.
And Charles Parsons tried to develop it as a form of “immediate” mathematical
knowledge, knowledge not mediated by concepts.

Generally speaking, these philosophers regarded Kant as a refuge from the ten-
dency of twentieth-century philosophy of mathematics to logicize and arithmetize
mathematics, that is, to regard the things of mathematics as reducible to numbers
or sets or to regard mathematics as reducible to a collection of formal theories. In
particular, Kant’s doctrine of space and of the synthesis of mathematical objects
is viewed as a way to salvage the status of geometry within mathematics as an
independent and irreducible source of knowledge. As in the writings of Poincaré,
Kant’s intuitionism is opposed to Leibniz’s (alleged) logicism and conceptualism,
and epitomized in the claim that space is not a concept, and that the investigation of
a triangle (like that of a sum of integers) cannot be carried out as a deduction from
definitions.

However, I regard Leibniz as a more likely champion of geometry, and a
philosophy of mathematical practice, than Kant, and so too as a possible ally for
Hersh, and other allied philosophers. First, Kant’s doctrine shares with twentieth-
century logical positivism, a dogma that seems to me incompatible with the defense
of geometry, i.e., the supposition that the unity of the objects of our knowledge
(including our mathematical knowledge) can be referred to the mind. That is, for
Kant not only the unity of the judgment, the unity represented by the copula
that links subject and predicate, but the very unity of the object is a function of
thought. This same dogma underlies the project of set theory to reduce the things
of geometry to sets of points and the things of arithmetic to sets built up from the
empty set, because points and the empty set are “placeholders,” the semblance of
mathematical objects with no unity of their own to investigate. Then all unity in set
theory stems from the constitution of sets as collections of elements. Thus after its
logical reduction, all that remains of mathematics are formal theories, whose unity
is the discursive unity of the axiomatic system.
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Second, we also find in Kant an account of space as the pure form of intuition,
which is strictly speaking unknowable, and of figure as the result of the synthesis of
parts which cannot do justice to the integrity and irreducibility of geometrical shape
and the role it plays in the development of geometry. Nor can we find in Kant a
satisfactory answer to the difficult question of how we are to understand the relation
of a figure to its ambient space. The answer to this question opens up the study of
non-Euclidean geometry, differential geometry, and topology in the 19th century.
An analogous question, how numbers stand in relation to their surrounding field or
ring, is key to the development of number theory in the 19th century.

Leibniz’s account of the intelligible object (and his account of the judgment
which follows from it), of analysis as the search for the conditions of intelligibility
of such objects, and of synthesis as posterior to such analysis seems to me a far better
way to explain the growth of mathematical knowledge than Kant’s Transcendental
Aesthetic. I defend my comments in favor of Leibniz by the elaboration of the two
important developments just cited.

Kant’s Account of Space as a Pure Form of Intuition

Kant defines intuition and conception as very different kinds of representations.
Intuition is immediate and receptive; an intuition relates immediately to the object
and is singular. Conception is mediate and active or spontaneous; a concept is a
general representation that refers to an object “mediately by means of a feature
which several things may have in common” (Kant 1929/1965, A320/B376). All
intelligible unity is referred to concepts: even the indeterminate unity of “an object, I
know not what” is referred to the work of a pure concept, the category of substance.
Concepts, Kant claims, “rest on functions. By ‘function’ I mean the unity of the
act of bringing various representations under one common representation” (Kant
1929/1965, A68/B93). Intuition provides a “manifold,” but the manifold cannot be
organized into unified, intelligible things without the unifying function of concepts.
The same function which gives unity to the various representations in a judgment
also gives unity to the mere synthesis of various representations in an intuition”
(Kant 1929/1965, A799/B105). And as Kant adds right after his presentation of
the Table of Categories, “by [the categories] alone can [the pure understanding]
understand anything in the manifold of intuition, that is, think an object of intuition”
(Kant 1929/1965 A81/B107). The relation of intuition and concept is external,
and all unity is located in the concept. (Likewise, in the set theoretic reduction of
geometry, the relation of set to elements is external, and all unity is located in the
function of set-formation; in the logicist reduction, geometry becomes arithmetic
and arithmetic becomes logic, so that all unity is located in the formula; and in the
formalist reduction, geometry becomes whatever satisfies a certain set of axioms, so
that all unity is located in the formal system.)

One might object that the notion of formal intuition which Kant invokes in the
B version of the Transcendental Deduction is an exception to this external relation.
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For there, Kant writes, “But space and time are represented a priori not merely as
forms of sensible intuition, but as themselves intuitions which contain a manifold,
and therefore are represented with the determination of the unity of this manifold”
(Kant 1929/1965 B161). And he adds in a footnote, “Space, represented as object (as
we are required to do in geometry), contains more than mere form of intuition; it also
contains combination of the manifold, given according to the form of sensibility,
in an intuitive representation, so that the form of intuition gives only a manifold,
the formal intuition gives unity of representation” (Kant 1929/1965, B161). It may
be that Kant wishes, for good reasons, that “formal intuition” should constitute an
exception to his rule that intuition and conception are externally related and that
all unity is referred to the concept. But at the end of the footnote, Kant refers us
back to Section 24, where he writes, Apperception and its synthetic unity is, indeed,
very far from being identical with inner sense. The former, as the source of all
combination, applies to the manifold of intuitions in general, and in the guise of
the categories, prior to all sensible intuition, to objects in general. Inner sense, on
the other hand, contains the mere form of intuition, but without combination of
the manifold in it, and therefore so far contains no determinate intuition, which
is possible only through the consciousness of the determination of the manifold
by the transcendental act of imagination (synthetic influence of the understanding
upon inner sense), which I have entitled figurative synthesis. (Kant 1929/1965,
B154–155).

In other words, Kant cannot explain further what he means by “formal intuition”
except by appealing to the combination of the manifold produced by apperception
(“in the guise of the categories”). To illustrate what he means, Kant gives the
examples of drawing a line and describing a circle, acts which make pure intuition
determinate. He concludes, “The understanding does not, therefore, find in inner
sense such a combination of the manifold, but produces it, in that it affects
that sense” (Kant 1929/1965, B155). Thus it seems that all Kant can mean by
determinate “formal intuition” (as opposed to the form of intuition, which is so far
indeterminate) is the pure manifold organized (connected, collected, combined) by
pure concepts, the categories. Once again, unity is referred to concepts, and concepts
prove external to intuition.

We will return to the issue of the construction of figures in the next section; but
first we must revisit Kant’s characterization of space as a pure form of intuition.
The Transcendental Aesthetic includes two expositions of the representation of
space. The metaphysical exposition sets out what is included a priori in the
representation of space and avoids all reference to geometry. By contrast, the
transcendental exposition treats the representation of space as a transcendental
principle, the necessary condition for the possibility of the science of geometry.
In the metaphysical exposition, Kant claims that space is not an empirical concept
but rather a necessary a priori representation, which underlies all outer intuitions;
it is not a discursive or general concept of relations of things in general but a pure
intuition; and it is represented as an infinite given magnitude. His remarks about the
unity of space are especially important: “We can represent to ourselves only one
space; and if we speak of diverse spaces, we mean only parts of one and the same
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unique space... These parts cannot precede the one all-embracing space, as being,
as it were, constituents out of which it can be composed; on the contrary, they can
be thought only as in it. Space is essentially one; the manifold in it, and therefore
the general concept of spaces, depends solely on limitations.” (Kant 1929/1965,
A25/B39).

Space as the form of intuition is an irreducible whole (it is not composed
of constituent parts available prior to it), and it is infinite, nondiscursive, and
inescapable. Thus as a form of intuition, as an immediate representation, space
is unknowable, since without concepts intuitions are blind. Thus, I would argue,
this characterization of space accords with certain important features of the plane
in Euclid’s Elements. For in that work, two-dimensional space has no parts or
distinguishable places at all and thus no discursive structure: no boundaries, no
holes, no separate pieces, no bumps or curves, no density or thickness or texture,
no handedness, and no direction: no up or down, left or right, back or forth. Thus
described, it appears as a surd, not as a possible object of knowledge. Yet what I
have just written describes it accurately and amounts to knowledge of it as a space,
distinct from other kinds of spaces. How do I know these features of Euclidean
space, if there is nothing to it? The key to Euclidean geometry is not space, but
figure: figures have parts in virtue of their shape, and the rational relations among
parts are the key to understanding space itself. But this is an insight that comes to
mathematical fruition only in the 19th century.

The transcendental exposition of space posits the science of geometry and then
asks what must be the case for a science to exist, which offers synthetic a priori
knowledge that is yet independent of empirical sense perception. Kant’s answer is
that space must be an outer intuition which precedes objects and determines them a
priori; as the form of outer sense, it has its seat in the subject: it is the subjective form
of sensibility. Thus, “space does not represent any property of things in themselves,
nor does it represent them in their relation to one another” (Kant 1929/1965, A26,
B42). Thus for Kant, there is no avenue to knowledge of space in terms of space
as pure intuition; and there is no avenue in terms of the empirical objects which
result from the way that the categories organize sense perception. Space qua form
of intuition is an infinite, singular something, without determination. Space is also
not made determinate by the spatial properties of physical objects; it is somehow
determinate prior to that empirical determination. What kind of a determination
could that be? (Reuben Hersh offers a related critique of the originally Kantian
notion of intuition in (Hersh 2011).)

Kant’s Account of Figure

As Kant instructs us in the Transcendental Aesthetic, we arrive at space and time
by subtracting “everything which the understanding thinks through its concepts”
from experience and then subtracting “everything which belongs to sensation”:
what is left are pure intuition and the mere form of appearances (Kant 1929/1965
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A22, B37). The pure manifold that remains is unknowable for two reasons. The
first is that just cited: space as a whole without parts is utterly indeterminate. The
second is that space is nothing more than partes extra partes, all and only parts, a
manifold of an utterly unordered multiplicity: without the power of combination of
the mind, each “representation is completely foreign to every other, standing apart
in isolation” (Kant 1929/1965 A98). The unity of space must be constructed, and
what is constructed is figure. The parts of a figure are always prior to the figure;
since we construct the figure out of its parts, the figure is knowable by us: we know
what we ourselves have put into it (Kant 1929/1965, A163). This claim stands in
contrast to Kant’s claim about space as a pure form of intuition: space is always
prior to the parts of space and in a sense has no parts (Kant 1929/1965 A25).

So to answer the question of how, for Kant, space is rendered determinate
and therefore knowable, we must turn first to the Transcendental Deduction, and
next to the Axioms of Intuition. In the Transcendental Deduction (A version), we
recall, there are aspects or moments of synthesis which Kant distinguishes from the
conceptual synthesis brought about by the categories: the synthesis of apprehension
in intuition and the synthesis of reproduction in imagination. Such preliminary
syntheses are required in order for the “synthesis of recognition in a concept” to
be possible. Kant illustrates both preliminary syntheses by reference to space.

Of the synthesis of apprehension in intuition, he writes, “in order that unity
of intuition may arise out of this manifold (as is required in the representation
of space) it must first be run through, and held together. This act I name the
synthesis of apprehension, because it is directed immediately upon intuition, which
does indeed offer a manifold, but a manifold which can never be represented as
a manifold, and as contained in a single representation, save in virtue of such a
synthesis.” (Kant 1929/1965 A100) Of the synthesis of reproduction in imagination,
he writes, “Experience as such necessarily presupposes the reproducibility of
appearances. When I seek to draw a line in thought... obviously the various manifold
representations that are involved must be apprehended by me in thought one after
the other. But if I were to drop out of thought the preceding representations (the first
parts of the line...) and did not reproduce them while advancing to those that follow,
a complete representation would never be obtained: none of the above-mentioned
thoughts, not even the purest and most elementary representations of space and time,
could arise.” (Kant 1929/1965 A102) Kant’s claim is that these two preliminary
syntheses are preconceptual.

Thus, these two preliminary syntheses of the manifold seem to yield “formal
intuition,” “a synthesis which does not belong to the senses but through which all
concepts of space and time first become possible,” and whose unity “belongs to
space and time, and not to the concept of the understanding,” as Kant puts it in the
B Deduction (Kant 1929/1965 B161 note). He notes there, the “form of intuition”
contains no determinate intuition; but “formal intuition” is “consciousness of the
determination of the manifold by the transcendental act of imagination (synthetic
influence of the understanding upon inner sense), which I have entitled figurative
synthesis” (Kant 1929/1965, B154).
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This brings us to the Axioms of Intuition. There he asserts, “appearances are all
without exception magnitudes, indeed, extensive magnitudes. As intuitions of space
or time, they must be represented through the same synthesis whereby space and
time in general are determined” (Kant 1929/1965 B203). The representation of an
extensive magnitude, Kant claims further, requires the representation of its parts and
the synthesis of those parts, just how the mind acts on the manifold of pure intuition:
“only through successive synthesis of part to part in its apprehension can it come to
be known. All appearances are consequently intuited as aggregates, as complexes of
previously given parts” (Kant 1929/1965 B204). Once again, he illustrates his claim
in terms of geometric figure: “The mathematics of space (geometry) is based upon
this successive synthesis of the productive imagination in the generation of figures.
This is the basis of the axioms which formulate the conditions of sensible a priori
intuition under which alone the schema of a pure concept of outer appearance can
arise – for instance, that between two points only one straight line is possible, or
that two straight lines cannot enclose a space, etc.” (Kant 1929/1965, B204/A164).

Various questions must be raised here. If the pure manifold of intuition is
somehow organized prior to, and independent of, the categories, what faculty is
responsible for this preliminary organization? In the passages just cited, Kant
invokes intuition, imagination (reproductive and productive), and the understanding.
Why can he not decide? Why is the assignment of agency here so unstable? Does
intuition deserve the status of a faculty if it is essentially receptive: aren’t faculties
supposed to be active? Can understanding be the pertinent faculty, if its main
function is the application of the categories? And what is the mysterious faculty
of the imagination, if not a kind of placeholder for a middle term that Kant requires,
even though his metaphysics leaves no place for it? Finally, why should the unity of
geometric figure be referred to the unifying action of mind, even a “preconceptual”
action? Why not say that the mind encounters intelligible but problematic objects
and then must investigate them as it can? Why are we constrained to suppose that
the intelligible shape of the line, or circle, or triangle, or sine wave is conditioned at
all by the human mind that knows it?

Kant is quite right that he needs an account of formal unity in geometry that is
neither the indeterminate unity of space nor the unity conferred by concepts, for
the unity of shape is something else entirely. But I find his account of “formal
intuition” unconvincing: first because I think it is finally inconsistent with his
other metaphysical presuppositions and second because I think no account of the
determinate unity of figure can or ought to begin from the synthesis of indeterminate
parts. The determinate but problematic unity of figure, I submit, is prior to its parts;
and its parts are “always already” determinate, though also, of course, problematic.
Moreover, the stuff of geometry is heterogeneous, not homogeneous.
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The Relation Between Figure and Space

How then shall we understand the relation between figure and space? The relation
is not one that can be treated by logic, since it is neither a relation between a generic
concept and a specific concept (the relation of abstraction) nor that between a
universal concept and an individual object (the relation of instantiation). The relation
cannot be treated by physics: it is neither the relation between a physical whole
and its parts nor even the measurement of the spatial relations among the parts of
a physical whole. Triangles (or lines, or circles, or sine waves) do not instantiate
space, nor do they specify it, nor do they compose it. They “articulate” space so
that we can come to understand the properties of space; they make space knowable.
Moreover, certain figures are canonical, and they reveal the features of canonical
spaces; these in turn give us access to (serve as conditions of intelligibility for)
other spaces and figures. But what does this “articulation” amount to?

Kant believed, with Aristotle, that the line is “viscous,” not reducible to points:
he rejects the idea of a linear continuum built up of independently given elements:
points. He writes, “The property of magnitudes by which no part of them is the
smallest possible, that is, by which no part is simple, is called their continuity.
Space and time are called quanta continua, because no part of them can be
given save... in such fashion that this part is itself again a space or a time...
Points and instants are only limits, that is, mere position which limit space and
time” (Kant 1929/1965, A 169–179/B 211–212). And yet, because Kant shares
with reductionist philosophy of mathematics the assumption that the unity of the
object must be referred to the action of the mind, he also shares the assumption
that the unity and determination of the mathematical object must be externally
or extrinsically imposed upon an indeterminate placeholder. His claim that the
things of geometry may be decomposed into combinations of pure and therefore
homogeneous representations is then not so different from the set theorist’s claim
that geometrical objects may be decomposed into sets of points. Thus, the following
argument, though first deployed against the set theorist, ultimately turns against
Kant as well.

The problem, how we get from the point to the line segment, is puzzling. The
point in itself, like the unit, cannot be alienated from itself; like the unit, it also
cannot be set beside itself unless the possibility of side-by-side-ness has already
been made available. But what provides side-by-side-ness is a geometrical object
with spread or extent, in the simplest case the line. If the point is going to generate
the line somehow, the line must already be presupposed. Points and lines are coeval.
Once spatial extent has been established, points can be set in spatial arrays like
lattices to produce interesting geometrical results. Or points can be imagined in
infinitary density to mirror the line, as in the analogies of the early infinitesimal
calculus and Dedekind’s work (though what is meant by side-by-side-ness remains
always problematic). Or points can be treated as limits to lines, and then they can
participate in geometry. One might say that points become geometrical when they
bound lines, for by so doing they serve as the conditions of the intelligibility of
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lines. By bounding them, points allow lines to stand in analogy to numbers (and
so to be measured) and to serve as the boundaries for figures. Just as space would
lack intelligible structure without the articulation of a geometric figure, so the line
(which is after all a one-dimensional space) would lack it without the articulation of
points.

The definition of point precedes that of the line not because lines are composed of
points but because points by marking boundaries are conditions of the intelligibility
of lines; and the canonical line is a straight line. The canonicity of mathematical
things only becomes apparent in mathematical practice. Likewise, lines serve not
as components but as conditions of intelligibility for surfaces by bounding them;
and the canonical surface is a flat surface. Lines also serve as conditions of
intelligibility for angles by bounding them. An angle is a special kind of relation
(an inclination) between two lines, given the prior availability of a surface to
accommodate their non-collinearity. (A surface is not merely a “special kind of
relation among boundary lines,” since the very existence of a surface is required
in order that lines may be so related.) What is peculiar about an angle is that its
essence is determined by what happens at its cusp; whether its lines are cut off, so
that it occurs as the internal angle of, say, a triangle, or whether its lines are left
unbounded, it is still the same angle. As an object of thought, then, it has a relativity
and indeterminacy that closed plane figures like the circle and triangle do not; the
latter are “greater than the sum of their parts” in a way in which an angle is not or
not to the same extent.

The angle (right, obtuse, or acute; rectilinear or not) makes a figure thinkable.
A circle requires and displays all the possibilities of inclination, all the possible
angles formed by the straight lines radiating from its center, in its very constitution.
And though a triangle is initially defined in terms of its sides, as a species of
rectilinear figure, it can just as well be thought of as a three-angled, three-sided
figure. Lines and angles (as a certain kind of paired lines) make surfaces determinate
in ways that are much more complex and problematic than the way points make lines
determinate. As limits to plane figures, lines participate in the important problems
of geometry; lines become problematic when they bound figures. Even the simplest
of the plane rectilinear figures, the triangle, and the simplest of the plane curvilinear
figures, the circle, are not trivial; they are on the contrary deep and endless sources
of problems and discoveries, not least when they are considered in combination. As
Hilbert says of the circle, on the first page of Geometry and the Imagination, “Even
so simple a figure as this [the circle] has given rise to so many and such profound
investigations that they could constitute a course all by themselves” (Hilbert 1999).

The main theme of Book I of Euclid’s Elements is the triangle; his meditation
on the triangle is organized around a master problem, the enunciation and proof
of the Pythagorean theorem, which is solved in Proposition 47 (Euclid 1956). The
main theme of Books III and IV of the Elements is the circle; there his meditation
is also—rather more loosely—organized around a master problem, the squaring of
the circle (the precise determination of the area of the circle), though the problem
is not solved there. Both problems have to do with the way the whole of the figure
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constrains its parts, imposing an ordered relationship upon them: how a right triangle
constrains its sides and how a circle constrains its diameter and circumference, as
well as the angles inscribed within it.

The nature of this constraint is significant. Its investigation (the kind of analysis
that takes place in Book I and Books III and IV) seeks to discover what makes
a shape the shape it is: what are the requisites for a right triangle to be a right
triangle or a circle to be a circle? Though these analyses look into the parts and
their interrelations, what they uncover is the way in which the whole (of a right
triangle or a circle) is greater than—heterogeneous with respect to and prior to—the
parts, which in turn is the key to the irreducibility of shape as bounded extension.
The analysis of shape, the search for its conditions of intelligibility, return us to
the integrity of shape. First, figure is not the mere concatenation of parts somehow
homogeneous to it: a triangle is not a set of points. Second, when a part of a
triangle or circle is altered, other parts must undergo a compensatory alternation,
an adjustment so that the triangle may remain a triangle (or the kind of triangle it
is) or so that the circle may remain a circle. No part has a relation to another part
that is not mediated by the whole to which they belong. We are used to calling
“parts” the boundaries of a triangle—primarily the lines which are its sides, but
sometimes also the points which are its vertices (and the boundaries of its sides)
as well as its internal angles. So they are, but they are parts in a sense different
from the way in which units are the parts of whole numbers, or atoms are parts of
molecules, or bricks are the parts of a house. Analytic methods and mathematical
practice in different domains must proceed differently. Euclid’s definitions remind
us (as is so often the case for modern readers) to keep distinct, while still rationally
related, things we are used to thinking of as homogeneous. Kant with his doctrine
of knowledge as intuition and conception, and set theory in connection with modern
logic, has persuaded us to accept as an equation what is only an analogy and
to suppose that the things of geometry may be decomposed into (respectively)
combinations of pure and therefore homogeneous representations, or sets of points.

If, by contrast, we keep in mind that the boundaries of a triangle are conditions
of its intelligibility—what we arrive at through rational analysis of a triangle—
then some important aspects of the kind of unity a triangle have become clearer.
A brick house is homogeneous with the bricks that compose it; a cardboard box
is homogeneous with a set of pasted-together cardboard leaves (bracketing some
questions about the role of glue and mortar.) There is no house or box until the
process of concatenation, of setting side by side, is finished. In the case of the
triangle, however, the triangle must first be given along with the vertices, angles,
and sides, which are moreover inhomogeneous with it. The vertices serve to bound
something different from themselves, which by themselves they could not generate
(lines); pairs of lines bound something different from themselves (interior angles);
and all three sides together bound something different from themselves (the shaped
surface that is a triangle). Moreover, within a given triangle, the sides and interior
angles impose constraints on each other. (This is one of the reasons we do want to
say that they are “parts” of the triangle.) Many propositions in Book I show that
sides and angles in a triangle provide both global and local constraints on each
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other. The right triangle in Book I, Proposition 47, the Pythagorean theorem, is then
presented as caught in a web of constraints pictured by the auxiliary constructions
that surround it and which include not only the squares built upon its sides but a
series of parallelograms and triangles within them. These constraints show that no
matter how we perturb a right triangle, it will always be the case that “the square of
the side subtending the right angle is equal to the (sum of the) squares on the sides
containing the right angle.”

If we keep these insights in mind, it is easier to see how the study of figures opens
up the possibility of the study of space itself, that is, how two-dimensional space
and three-dimensional space can become objects of study for geometers. Around
1800, geometers come to see that if a figure is understood as what remains invariant
under transformation, that (stubborn) invariance reveals the features of space: the
plane is flat, unbounded, and without holes. However, this very formulation opens
the possibility of investigating spaces that are curved, bounded, and perforated. This
possibility in turn raises the question, what would the canonical objects of Euclidean
geometry look like, if they lived on a different kind of space? Or rather, what would
the analogue be, of a line, a triangle, or a circle, on a different kind of space, and
what would their properties be? What becomes of the claim that the interior angles
of a triangle must always add up to 180ı if the triangle lives on a surface of constant
positive curvature? What becomes of the parallel postulate, when straight lines
are geodesics? What happens if the surface has constant negative curvature? What
happens globally if the surface can only be mapped locally to Euclidean space?
Oddly, in every case, we find that novel figures in these novel spaces exhibit their
own stubborn features and can be used to explore those spaces further. (For the
best detailed account of this historical development, see Gray 1980/1989 and Gray
2015.)

Meanwhile, Euclidean space continues to exhibit its canonicity with respect
to the new upstarts, with its flatness, its right triangles, its parallel lines, and its
circles. When Hilbert, in his role as formalist, claimed that all relevant geometrical
information is embedded in sets of axioms, so that geometry is only what is
common to all interpretations of a theory, up to isomorphism, he was at odds with
himself as a geometer where his work always presupposed and depended upon the
canonicity of certain objects. If “point,” “line,” and “plane” can be given alternative
interpretations that yet produce a model isomorphic (with respect to a set of axioms)
to Euclid’s, then there is no reason to demur; and there is no reason to prefer
a Euclidean to a non-Euclidean theory for geometry. Geometry then becomes a
kind of smorgasbord of models; philosophers of the late nineteenth century were
dismayed because they felt they had lost all grounds for choosing which geometry
was “true,” since the appeal to (usually Kantian) intuition had been discredited as
subjective, in either a psychologistic or transcendental sense.

Yet Hilbert, writing in his role as geometer, acknowledged the canonicity of
certain objects as a matter of course, since without appeal to that canonicity,
certain domains like differential geometry could not even be broached. Introducing
the chapter on differential geometry in Geometry and the Imagination, he writes,
“we will, to start with, investigate curves and surfaces only in the immediate
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vicinity of any one of their points. For that purpose, we compare the vicinity, or
‘neighborhood,’ of such a point with a figure which is as simple as possible, such as
a straight line, a plane, a circle, or a sphere, and which approximates the curve
as closely as possible in the neighborhood under consideration....” The related,
more modern notion of differentiable manifold central to topology makes the same
appeal to canonical (flat) space. A (Hausdorff) topological space is called “locally
Euclidean” when, for every point of the space, there is an open set containing the
point and a homeomorphism that maps that open set onto an open set of Rn, that is,
when the space looks flat in sufficiently small neighborhoods (Singer and Thorpe,
1967, pp. 109–110). This notion underlies the more general notion of differentiable
manifold and makes possible the definition of functions, and the differentiation and
integration of functions, on them.

Canonical items do not present themselves as canonical to Kantian intuition but
prove themselves to be canonical in the practice of the mathematician, a process
of discovery and reflection. They drive the practice of analysis by exhibiting
conditions of intelligibility of more general and complex mathematical things,
which precipitates methods of problem-solving. So, for example, in order to define
and integrate a function on a strange new topological space, a mathematician must
find a way to lead the situation back to more well-known and tractable situations;
understanding the new space as locally like other canonical spaces is one highly
successful method for solving the problem.

In sum, I believe that the Leibnizian notion of analyticity, the search for the
conditions of intelligibility of things and solvability of problems, is more likely to
help the cause of geometry and to further a philosophy of mathematical practice
than the Kantian doctrine of space and the mathematical object as a construction
or synthesis of pure intuition. The Kantian doctrine leaves us with the unsolved
problem of how to move from the infinite and indeterminate unity of space as the
form of intuition, to the formal intuition which results from the “preconceptual”
combination of space qua multiplicity of indeterminate spaces, to geometry as the
study of space made determinate by concepts. The first is unknowable; the move
from the first to the second is unstable in his doctrine, assigned variously to different
faculties; and the move from the second to the third is vexed both because geometric
figure is a unity prior to its parts and because shape is not a concept. What the
object requires from us is not synthesis but analysis. Leibniz assures us that there
are always reasons (perhaps many different kinds of reasons) why a triangle or
circle has the properties that it has and that the search for them will always reward
philosophical reflection (Grosholz 2007, Ch. 2; Grosholz 2016, Ch. 1).

The Relation Between Number and Field

We have just seen how the growth of mathematical knowledge may be driven by
using figure to explore space. Likewise, number theory advances when numbers
are used to explore number fields or rings. (See also the discussion of elementary
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number theory in (Hersh 2016).) A. Fröhlich and M. J. Taylor begin their textbook
Algebraic Number Theory (1991) with a renowned example of how a problem
is carried up into a broader context and then re-situated. The problem was first
pronounced in 1640 by Fermat, who once again did not have enough room in the
margins for his proof: it is to show that an odd prime p can be written as the sum
of two squares (that is, x2 C y2, where x and y are integers) if and only if p � 1
(mod 4). It was first proved by Euler (in two letters to Goldbach in 1747 and 1749)
using the method of infinite descent, a kind of reductio proof that relies on the fact
that the natural numbers are well-ordered and that there are only a finite number of
them smaller than a specified n. Lagrange proved it again in 1770 using his general
theory of integral quadratic forms (quadratic forms over the ring of integers). But
Fröhlich and Taylor present the second of Dedekind’s two distinct proofs, both of
which use Gaussian integers, which was published in 1894. The key explanatory
insight offered in this proof (which I discuss in some detail in Grosholz 2016, Ch.
5) is that a prime number p congruent to 1 (mod 4) loses its irreducibility as a prime
number in the ring Z[i] of Gaussian integers in the field Q[i], while a prime number
p congruent to 3(mod 4) remains prime. That is, the fact that a number is a prime
is not simply an inherent feature of the number but also depends upon the number
system in which it is located! This discovery is just as astonishing, as the insight
that the interior angles of a triangle add up to 180ı if and only if its ambient space
is Euclidean.

Fröhlich and Taylor offer a general pattern for solving Diophantine equations
(indefinite polynomials where the variables range only over the integers): one
embeds a problem about integers in subrings of some algebraic number field K,
that is, a finite extension field K of Q, the rational numbers. The most important
such subring is the set of all algebraic integers in K (designated OK), and one
canonical example is, not surprisingly, Q[i] whose ring of algebraic integers is
Z[i], the Gaussian integers. Gauss introduced them in his monograph on biquadratic
or quartic reciprocity (1832), which investigates the solvability of the congruence
x4 � q (mod p) with respect to that of the congruence x4 � p (mod q) (where p and
q are distinct odd primes greater than two). This work followed his investigations
into quadratic and cubic reciprocity, analogously stated for x2 and x3. He found that
solving these problems was easier if he first posed them in terms of the Gaussian
integers rather than ordinary integers and then re-embedded them in the integers
afterward.

In the introduction to their textbook, after the example just discussed, Fröh-
lich and Taylor go on to exhibit other examples. They examine the claim that
p D x2 – 2y2, where x and y are integers and p is an odd prime, if and only if
p � C

– 1 (mod 8). The pertinent ring of algebraic integers is Z[
p

2], nested inside
the algebraic number field Q[

p
2]. The historical antecedent for this problem is a

problem studied at the time of Pythagoras in both Greece and India, which can
anachronistically be stated in algebraic notation: given the Diophantine equation
x2 – 2y2 D 1, find integer solutions for x and y. Infinitely many solutions exist, and
the ratios x/y can be used to find good approximations for

p
2, for example, x D 17
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and y D 12, or x D 577 and y D 488. This problem can in turn be generalized to
that of finding solutions to the Diophantine equation x2 – ny2 D 1, where n is a
non-square integer.

The delicate issue here is that the norm taking Z[
p

2] back down to Z is not
the same as it was in the first example: N2(x C y

p
2) D x2 – 2y2. This means that

while Z[
p

2] is again a principal domain, the group of units of Q[
p

2] is not finite,
since an algebraic integer u C v

p
2 (u,v " Z) is a unit of Z[

p
2] if and only if

N2(u C v
p

2) D u2 – 2v2 D C – 1. However, the difficulty can be managed because
the infinite group of units has a tractable structure: it is the product of <1, �1>
with a cyclic group generated by (1 C

p
2), for which one can then find a recursive

description. A “fundamental unit’” can thus be identified, which generates the whole
(cyclic) group of units. In this case, it is relatively easy to find the fundamental
unit; in other cases it is not so easy. For example, in the pure cubic field where
one adjoins the cube root of 23 (3p23) to Q, the fundamental unit of Q[3p23] is
2166673601 C 761875860 3p23 C 267901370 3p529. And when one adjoins the
square root of 46 to Q, it turns out that the normalized fundamental unit of Q[

p
46]

is 24335 C 3588
p

46. Dirichlet’s unit theorem shows that the ring of integers for a
number field K has a fundamental unit only in case K is a real quadratic field (as it is
in the problem just mentioned), a complex cubic field, or a totally imaginary quartic
field, that is, when the unit group has rank 1. The “rank” measures the density of
the group of units within the ring of algebraic integers of K; the rank is equal to
1 when the group of units modded out by its torsion subgroup is infinite cyclic.
A torsion subgroup of an infinite group is the subgroup of all the elements that have
finite order. More generally, computing the ring of integers for an arbitrary algebraic
number field may be very difficult.

Fröhlich and Taylor also look at the question of when a prime number p can be
written in the form p D x2 C 6y2 or p D x2 – (�6)y2; we recognize the same form as
in the problem just discussed. In this case, the problem-solver works in Z[

p
�6], the

ring of algebraic integers in Q[
p

�6], which turns out however not to be a principal
ideal domain. The authors conclude, “Whilst rings of algebraic integers are not
in general principal ideal domains, and so do not possess unique factorization of
elements, they do still possess unique factorization of non-zero ideals: that is to say,
given a number field K, every non-zero OK-ideal [an ideal in some ring of algebraic
integers] can be written uniquely (up to order) as a product of prime ideals of OK

[that ring of algebraic integers].” (p. 4) The extent to which unique factorization fails
in the ring of integers of an algebraic number field (or more generally the extent to
which it fails in any Dedekind domain, an integral domain in which every nonzero
proper ideal factors as a product into prime ideals) can be described by a certain
group known as an ideal class group (or class group). If this group is finite (as it
is in the case of the ring of integers of an algebraic number field), then the order
of the group is called the class number, which registers the extent to which prime
factorization fails. The class group of OK (the ring of all algebraic integers in K)
is defined to be the group of fractional OK-ideals modulo the subgroup of principal
fractional OK-ideals, where K is an algebraic number field. When OK is a principal
ideal, or when we can define a Euclidean norm on OK, this class group is trivial, that
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is, it is just the (multiplicative) group consisting of the element 1. More generally,
the multiplicative theory of a Dedekind domain (whose class group may be infinite)
is intimately tied to the structure of its class group. For example, the class group of a
Dedekind domain is trivial if and only if the ring of integers is a unique factorization
domain.

Here we see a general strategy. We generalize from Z to Z[i] and find that Z[i]
has the multiplicative structure that is so valuable in Z, unique prime decomposition.
Further generalization, to different rings of integers within different algebraic
number fields, results in new concepts that help us to make precise the obstructions
to unique prime decomposition. On the one hand, even where unique prime
decomposition of elements fails, there is unique decomposition of every ideal in
the ring into prime ideals; this gives rise to the notion of a Dedekind domain. On
the other hand, there is the new concept of the class group associated with the
various rings of integers, whose order measures its deviation from unique prime
decomposition. The density of the pertinent units within each ring of integers, the
nature of the “torsion subgroup” (a concept central to the theory of Abelian groups),
and the kind of norm which it is possible to define also intervene.

Generalization precipitates new kinds of things and so do the processes that regis-
ter how far each generalization departs from the original case. This is a phenomenon
we find throughout mathematics. So, for example, complex analysis developed by
investigating the obstructions that keep functions from being holomorphic, that
is, what stands in the way of a complex function’s analytic continuation on the
whole plane. Topology developed by investigating obstructions that keep loops on
a manifold from being continuously deformed to a point or more generally what
keeps certain generalized kinds of manifolds from being continuously deformed
into other canonical manifolds (like the sphere). Both the generalization (made in
the hope of keeping nice properties or finding analogues to nice properties) and the
diagnosis of the obstructions (which requires a relating back to the original case
as the touchstone) generate new things, procedures, and methods. There is nothing
about class groups or torsion subgroups in the Peano axioms or even in the axioms
of set theory; these novel additions to number theory which help to solve problems
about the integers Z within the rationals Q do not stand to those axioms in anything
like a relation of deductive derivation: you can’t deduce apples from oranges.

Exploring the Fine Structure Above Q

In sum, the task of looking for structure in rings of algebraic integers within
algebraic extension fields that will be analogous to structure in the ordinary integers
turns out to be very difficult. Not only does one not know exactly what to expect
when heading upstairs, the redescent must also be carefully negotiated. The integers
Z are nested inside the rationals Q, which in turn are nested inside the algebraic
numbers A (sometimes written Q� the algebraic closure of Q), as well as inside the
completions of Q, the reals R, the complex numbers C, and the p-adic numbers Qp.
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As a reminder, Z is a ring, while Q, A, R, C, and Qp are fields, although considered
as topological spaces the latter all have different properties. Thus there are very
different kinds of embedding: a closure is quite different from a completion, and the
different completions possible for Q are also all distinct. So too, depending on the
field we choose from which to pick up an element to adjoin to Z or Q, and which
element or elements we choose, the properties of the resultant structure are very
different. Although in the cases just given, we encountered norms defined for ring
extensions Z[i] and Z[

p
2], a norm is typically defined in terms of a field K where

the quotient K[u]/K can be treated as a vector space. The structure that intervenes
“sideways” then is that of a vector space. (Just as important, the automorphisms
of K[u] that leave K invariant pointwise form a group called the Galois group
of K[u]/K; so group theory, in particular the theory of Galois groups designed to
examine permutations of roots of polynomials, also comes in sideways.)

Given a norm, defined so that one can treat the quotient of a field extension
over the field as a vector space (e.g., Q[i]/Q), the norm assigns a positive length
to any element of the vector space, except that the zero vector is assigned length
zero; so it plays a central role in “downstairs” procedures. The canonical norm is
still the Euclidean norm. Thus, Irving Kaplansky in his textbook Fields and Rings
(Kaplansky 1972) introduces field extensions in the first section of the first part of
the book, Theorem 2, in these terms: “Let K be a field, u an element of a larger field,
and suppose that u is algebraic over K. Let f be a monic polynomial with coefficients
in K of least degree such that f (u) D 0, and let this minimal degree be n. Then: (a)
f is unique, (b) f is irreducible over K, (c) 1, u, u2, : : : , un�1 form a vector space
basis of K(u) over K, (d) [K(u):K] D n, and (e) a polynomial g with coefficients in
K satisfies g(u) D 0 if and only if g is a multiple of f.” In the field extension of Q
where we adjoin i, the pertinent monic polynomial with coefficients in Q of least
degree such that f (i) D 0 turns out to be f (x) D x2 C 1, where f is irreducible over
Q (there is no rational number whose square equals -1); a basis for the vector space
Q[i] over Q is given by 1 and i; the degree of Q[i]/Q is 2; and if g(i) D 0, then g
is a multiple of f. Similarly, when we adjoin

p
2 or

p
�6 to Q, the resultant vector

space will be of finite dimension, though in general it may not be easy to locate the
“monic polynomial with coefficients in Q of least degree” in order to determine its
degree and therefore the dimension of the vector space.

We can view the construction and exploration of algebraic extensions of Z and
Q as a passage to the wider domains of A, R, C, and Qp. But we can also view
this mathematical activity as an occasion to construct novel objects like Q[i], Gal
(Q[

p
2]/Q), or the class group of OQ[

p
-6] in order to explore their properties, a

search that takes us far beyond Q itself, even when it is motivated by problems
originally arising in Q. And while Q[i] is a field that presumably lives somewhere
between the fields Q and C, we can also think of it as a vector space; the Gaussian
integers form a ring, and Gal (Q[

p
2]/Q) is a group: they are located sideways,

as it were, from the tower of nested fields. We can also view this activity as an
exploration of the fine structure of the larger fields: for example, all the possible
Z[u] and Q[u] (u algebraic) might be regarded as the fine structure of A, which
presumably “contains” all such extensions.
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But this notion of containment is different both from the way the algebraic
numbers themselves are contained in A and the way one field is contained in another.
Can we think of A as Q with every root of every monic polynomial with rational
coefficients adjoined, Q[u1, u2, : : : un, : : : ], where the un are all the (countably
many) algebraic numbers? What can be gained from thinking of A in terms of
the quotient Q[u1, u2, : : : un, : : : ]/Q, an infinite dimensional vector space, or in
terms of all the automorphisms of Q[u1, u2, : : : un, : : : ] that leave Q invariant, a
Galois group of infinite order? And what is the relation of Q[u1, u2, : : : un, : : : ]
to the various smaller entities Q[u1], Q[u2], Q[u1, u2], and so forth? What are the
relations of those smaller entities to each other? Here are two theorems pertinent to
these questions, but they are only the tip of the iceberg: If two algebraic elements
u and v over a field F generate the same extension field F(u) D F(v), then u and v
have the same degree over F. If n elements ui form a basis for a finite extension K
of a field F, while m elements wj constitute a basis for an extension L of K, then the
mn products uiwj constitute a basis for L over F. My point is, once again, that going
upstairs from Z or Q to algebraic number fields in order to solve certain problems
that arise in number theory is not merely going upstairs to A, R, C, and Qp. The
problem-solving is ampliative, going up, going sideways, and coming down.

After an introductory chapter that introduces the vocabulary of abstract algebra
(fields, algebras, and rings), Fröhlich and Taylor discuss Dedekind domains in
Chapter II, along with “downstairs” maps (back down to Z) like valuations
and absolute values; “upstairs” embeddings—completions—generalizing from the
embedding of Q in R, so that sequences that satisfy Cauchy’s convergence criterion
have a limit; and module theory, a generalization of the notion of a vector space,
with rings instead of fields. Chapter III is devoted to field extensions, with a detailed
analysis of how prime ideals factorize in various cases (explained in terms of Galois
groups). Chapter IV is devoted mostly to units and class groups, though with an
oddly geometrical section on lattices in Euclidean space. This is noteworthy because
Fröhlich and Taylor try very hard to keep geometry and real and complex analysis
out of this book: this is a book about algebra. They then conduct the reader into
a more detailed study of fields of low degree (Chapter V deals with quadratic,
biquadratic, cubic, and sextic fields) and then of cyclotomic fields (Chapter VI),
where, significantly, quadratic fields are revisited and the quadratic reciprocity
law is reproved. The quadratic reciprocity law asserts a relationship between the
congruences x2 � p (mod q) and x2 � q (mod p): they are both solvable or both
unsolvable unless p � q � 3 (mod 4), in which case one is solvable and the other
isn’t. It was Gauss’s favorite theorem: in the Disquisitiones Arithmeticae (1801),
he called it the fundamental or golden theorem, and by the time he died, he had
proved it in eight different ways. In this essay, in three different ways, I have tried
to show why a strong commitment to following the detail of mathematical practice,
as Reuben Hersh urges us to do, is the best way for philosophers to explain how
mathematical knowledge grows, from the double root of numbers and figures.
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Do Mathematicians Have Responsibilities?

Michael Harris

I have been an admirer of Reuben Hersh ever since I received a copy of The
Mathematical Experience, then brand new, as a birthday present. At that stage, of
course, I was admiring the tandem Reuben formed then, and on other occasions,
with his coauthor Philip J. Davis. It was only almost 20 years later, after I
started reading What is Mathematics, Really?, that I could focus my admiration
on Reuben—and not only on the mathematician, the author, and the thinker about
mathematics but on the person Reuben Hersh—the unmistakable and unforgettable
voice that accompanies the reader from the beginning to the end of the book. So
unforgettable was the voice, in fact, that when Reuben wrote to me out of the blue
three years ago to ask me what I thought about a certain French philosopher, I so
clearly heard the voice of the narrator of What is Mathematics, Really? (and no
doubt of many of the passages of his books with Davis) that I could honestly write
back that I felt that I had known him for decades, though we have never met and
until that time we had never exchanged a single word.

The voice in question is the voice of an author who is struggling to put words on
an intense and intensely felt experience and who has intimate knowledge of how it
feels to be a mathematician and also a knowledge no less intimate of the inadequacy
of the language of our philosophical tradition to do justice to that experience, so that
all attempts to do so inevitably end in failure; but this knowledge is compensated
by the conviction that the stakes are so important that we can’t choose not to
try. What makes Reuben’s authorial voice compelling is that it sounds just as we
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expect the voice of a person in the middle of that struggle must sound.1 It’s the
strength of this conviction that comes across in Reuben’s writing, so that reading
his books and essays is remembered (by me, at least) as a conversation, a very lively
conversation, filled with the passionate sense that we are talking about something
that matters. A conversation also filled with disagreements—because I don’t always
agree with everything I read in Reuben’s books and essays. Beyond questions of
detail, the difference might come down to my sense that Reuben is trying to get to
the bottom of the mathematical experience, whereas I apprehend the experience as
bottomless; or I might say that it’s the effort to get to its bottom that is at the bottom
of the experience. But the differences are of little moment; what stays with me
after reading a few pages of Reuben’s writing is the wholeness of the human being
reflected in his words, a human being who cares so deeply about his mathematical
calling that he is ready to add his own heroic failure to the long list of admirable
failures to account for mathematics by the most eminent philosophers of the Western
tradition; and without these inevitable failures, we would not begin to understand
why it does matter to us.

It’s not a coincidence that Reuben’s philosophy of mathematics is human
centered, that it takes as an essential and not an incidental feature of mathematics
that it is an activity of human beings, and that his writing is an expression of
an entire human being. Inspired by his example, I was looking forward in this
essay to devising a philosophical failure of my own, which might nevertheless
hint at something about mathematics that deserves further scrutiny. That was what
I had in mind on October 24, 2016, when I agreed enthusiastically to contribute
to this Festschrift and specifically to address what might be called the founding
dogma of humanistic mathematics, namely, that anyone who claims that human
mathematicians would be replaced by computers (as Paul Cohen reportedly claimed
to Reuben 40 years ago) has failed to grasp what mathematics (really!) is and
probably has a shaky understanding of human beings as well. But shortly after
October 24, an Event took place that has been disturbing the sleep of everyone
I know, as well as a great many people I don’t know—every public lecture or
round table I have attended in the intervening period has allusions to the Event,
with the partial exception of mathematical lectures—and I can’t help feeling that
any expression of confidence in the future of human mathematics would be more
convincing if I could find more solid reasons for continued confidence in the future
of humans.

So I have (in the spirit of the times) made a deal with myself, and I hope
Reuben will not object. I will set down my thoughts on the social responsibilities
of mathematicians, which I feel compelled to discuss in view of the circumstances.
In so doing, I will attempt to justify my belief—straining logic and credulity and
readers’ patience if necessary—that the way we approach questions of objectivity in

1As I wrote that sentence I remembered that I have still not met Reuben, nor have I ever spoken to
him; but I checked one of the videos online in which he appears, and, sure enough, his literal voice
is very much as I expected.
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mathematics in the dominant strand of English-language philosophy, a perspective
Reuben has questioned so vigorously, is an obstacle to taking our responsibilities
seriously, as well as to understanding the point of the mathematical experience.

I understand why so many of my colleagues argue that mathematics and
politics should not mix and why the mathematical profession should avoid taking
political stands. The language mathematicians share ignores political differences,
and our professional ethics compel us to recognize the contributions of colleagues
with whom we may disagree profoundly on everything that is not specifically
mathematical. This characteristic ethos of the profession, with which I think most
of my colleagues agree, is often used to promote the position that the profession
should maintain strict neutrality with regard to political questions and specifically
that it is as individual citizens, and not as members of a professional community, that
we should address the applications and implications of our work, as researchers, as
teachers, and as participants in the institutions that make our work possible.

I think that position has never been tenable, either philosophically or morally,
and developments during the past ten years have made this spectacularly clear. But
before I remind the reader of some of these events, I want to discuss an older story,
one in which the mathematical sciences play at most a supporting role, but that I
think illustrates well how philosophical confusion about the nature of mathematics
can interfere with informed judgment. Here is a sentence that, syntactically at least,
looks like a legitimate question to which scientific investigation can be applied.

Does Mathematical Talent Have a Genetic Basis?

On the one hand, the answer is obviously yes: bonobos and dolphins are undoubt-
edly clever, but they are unable to use the binomial theorem. The question becomes
problematic only when the attempt is made to measure genetic differences in
mathematical talent. Then one is forced to recognize that it is not just one question
innocently chosen from among all the questions that might be examined by available
scientific means. It has to be seen against the background of persistent prejudices
regarding the place of women and racially defined groups in mathematics. I
sympathize as much as anyone with the hope that the study of the cognitive and
neurological basis of mathematical activities can shed light on the meaning of
mathematics—and in particular can reinforce our understanding of mathematics
as a human practice—but given how little we know about the relation between
mathematics and the brain, why is it urgent to establish differences between the
mathematical behavior of male and female brains? The gap is so vast between
whatever such studies measure and anything resembling an appreciation of the
difficulties of coming to grips with the conceptual content of mathematics that
what really needs to be explained is why any attention, whatsoever, is paid to these
studies. Ingrained prejudice is the explanation that Occam’s razor would select.
But I’ve heard it argued often enough, by people whose public behavior gives
no reason to suspect them of prejudice, that it would be unscientific to refuse to
examine the possibility that the highlighted question has an answer that might be
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politically awkward. It’s the numerical form of the data, I contend, and the statistical
expertise brought to bear on its analysis that provide the objectivity effect, the
illusion that one’s experiment is actually measuring something objective (and that
also conveniently forestalls what ought to be one’s first reaction: why has Science
devoted such extensive resources to just this kind of question?). The superficially
mathematical format of the output of the experiment is a poor substitute for thought.
Maybe something is being measured, but we have only the faintest idea of what it
might be.

This example, which is only mildly hypothetical, has the advantage of highlight-
ing how an illusion of objectivity, produced by dressing up a question that is not
necessarily meaningful as a quantitative measurement, is linked to the failure to
reform the philosophy of mathematics to account for what mathematical talent is
(really). And that, I submit, is why Reuben Hersh’s project becomes profoundly
ethical.

Here is another example that demonstrates why the development of humanistic
mathematics is urgent in a way that studying hypothetical gender differences in
mathematical behavior of human brains is most definitely not. The prediction by
Paul Cohen that so irritated Reuben is constantly echoed in a journalistic narrative
that is transparently driven by corporate priorities. An article by Elizabeth Kolbert,
entitled Our Automated Future, in the Books section of a recent issue of New Yorker
posed a rhetorical question:

“What business will want to hire a messy, complex carbon-based life form when a software
tweak can get the job done just as well?”2

The books Kolbert reviews highlight the looming threat of mass unemployment
on a catastrophic scale—“nearly half the occupations in the U.S. are ‘potentially
automatable,’” she writes, and “this could play out within “a decade or two.” This
already ought to inspire mathematical scientists to start thinking about our social
responsibilities, and I’ll have more to say about that in a moment. Mathematical
research itself, meanwhile, could be a collateral damage of the “automated future’s”
version of the bottom line, if the vision of Paul Cohen (and of increasing numbers
of our colleagues) is realized. Provided, that is, that Cohen’s implicit vision of
what it means in mathematics to “get the job done” also comes to dominate and
that mathematical research is no longer understood as synonymous with human
mathematical research. Or as Kolbert wrote, in a somewhat different context, “if
it’s unrealistic to suppose that smart machines can be stopped, it’s probably just as
unrealistic to imagine that smart policies will follow. ”

The implications of the arrival of “smart machines” were brought home to
me a few months ago at the New York Psychoanalytic Institute, of all places,
during a round table discussion entitled “Embodied AI.” While the panel was billed
as a report on AI’s promise to “augment individual human senses and abilities,
giving that technology platform the ability to see a patient’s complete medical

2Elizabeth Kolbert, New Yorker, December 19 and 26, 2016 Issue.
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condition, feel the flow of a supply chain, or drive a factory like a maestro before
an orchestra,” the discussion rapidly veered to ethical matters. We were naturally
reminded that HAL 9000, in 2001: A Space Odyssey, thought he was being a pretty
“smart machine” when he computed that the best way to “save the mission” was
to wipe out the crew. In connection with this kind of risk, among others no less
alarming, it was announced that Facebook, IBM, Amazon, Google, and Microsoft
had just formed the “Partnership on AI” for the purpose of “conducting research
and promoting best practices.” Mentioned in passing was the likelihood that rapid
progress in “embodied” artificial intelligence would lead to the replacement of a
large proportion of human workers by robots, as Kolbert predicted. Someone in the
room was not convinced that the definition of “best practices” should necessarily
be left to the tech giants that had come together in the Partnership on AI3 and
asked a question: had it occurred to none of the speakers that a process they saw as
inevitable ought to be subject to democratic oversight? Why are decisions with such
grave long-term implications being left to a handful of corporations with massive
resources at their disposal? In response,4 a historian recited the familiar story of
Gandhi and his promotion of handloom weaving during the Indian independence
movement; he called Gandhi’s intentions “noble” and used the word “resistance”
but only to conclude that it was futile.5

I draw three lessons from this brief exchange. The first is that the panelists had
internalized a purely instrumental view of human activity, the presumption that
humans work in order to “get the job done”; on instrumental grounds they are
therefore expendable. The implications of this worldview are so repellant that it is
to be hoped that more attention will be given to how it converges with the dominant
ethos in Silicon Valley, where the sum total of human experience is treated as data
to be mined for content. Kant’s dictum from the Groundwork of the Metaphysics of
Morals has been rescinded, and it’s now OK to treat human beings as a means rather
than an end. Applying this form of instrumental reason to mathematical research is
the main mistake made by Paul Cohen in his comment to Reuben and by those
of our contemporaries who agree with Cohen’s prognosis; this is where the panel
discussion becomes a challenge to humanistic mathematics.

The second lesson is that those who promote the instrumental view of human
activity have little sympathy for democratic decision-making. In the context of

3Now joined, predictably, by Apple. In all fairness, I should add that on January 27 the Partnership
on AI, which had reported no news during the previous three months, has added six independent
members to its Board of Trustees, including a representative of the ACLU. I am cautiously
optimistic. The outreach to civil society does not invalidate the impressions I took home from
last October’s panel.
4The word “Luddite” had been pronounced earlier, and hung over the discussion, as if to reinforce
the sense that the social transformations the panelists were discussing were foreordained; the
question I just quoted—I happen to be the one who asked it—was the only one to challenge this
claim of inevitability; and many of the original Luddites were also handloom weavers.
5He seemed to have forgotten that Gandhi’s movement was primarily a reaction to colonialism, a
strange oversight for a historian.
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the meeting on “Embodied AI,” it would probably be more accurate to say that
sympathy is beside the point; the panelists all appeared to be convinced that
technological determinism trumps democracy. When resistance is futile and the
new technology is on its way whether we like it or not, the best we can do—our
only option, really—is to leave management of the impending social dislocations in
the hands of those best equipped to steer the transformation consistently with our
principles—the latter being identified, of course, by the billion-dollar corporations
that stand to benefit the most.

The third lesson, most important for our purposes, is that the primary qualifi-
cation for membership in the steering committee of our inescapable technological
future is a command of relevant quantitative sciences. Progress is a wave and you
either ride it or go under; and you learn to ride the wave by mastering complex
mathematical theories. Ethical principles not backed up by calculations stand no
chance against the people with the clipboards. The experts may appear arrogant
when they dismiss your concerns; but the fact is that they know more than you, so
why should your opinion count as much as theirs?6

Once mathematics, narrowly conceived as the gathering and analysis of quantita-
tive data, is accorded the role of the sole standard of objectivity, there indeed seems
to be no alternative—in the spirit of Margaret Thatcher’s There Is No Alternative—
to surrendering control not only of democratic decision-making but of meaning
itself, to mathematically trained experts. This is not a novel observation.7 Here, for
example, are Horkheimer and Adorno8 on what happens when one reduces “thought
to a mathematical apparatus”:

What is abandoned is the whole claim and approach of knowledge: to comprehend the
given as such; not merely to determine the abstract spatio-temporal relations of the facts
which allow them just to be grasped, but on the contrary to conceive them : : : as mediated
conceptual moments which come to fulfillment only in the development of their social,
historical, and human significance : : : .

More recently, Achille Mbembe9 pictured the “21st century political landscape”
as a Big Data apocalypse:

In this new landscape, knowledge will be defined as knowledge for the market. The market
itself will be re-imagined as the primary mechanism for the validation of truth.

As markets themselves are increasingly turning into algorithmic structures and tech-
nologies, the only useful knowledge will be algorithmic.

Instead of people with body, history and flesh, statistical inferences will be all that count.
: : : The new human being will be constituted through and within digital technologies and
computational media.

6This is not to suggest that expertise should give way to the populism of a strongman, but rather
that it’s incumbent on experts to be less arrogant.
7For Jane Austen, it was the mathematician who had the “coldest heart and the steadiest brain.”
Emma, Volume III, Chapter 3.
8Dialectic of Enlightenment, New York: Continuum (1994) pp. 26–7.
9“The age of humanism is ending,” The Mail and Guardian, December 22, 2016.
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If I have devoted so much space to the implications of “Embodied AI” it’s
because I happened to be on hand at a meeting where the three lessons just
outlined were displayed with exemplary clarity. And one has to suppose that a
volume devoted to mathematical humanism would value the inclusion of a human
perspective on post-humanism, even if it is only my own. But the same three lessons
can be drawn in any of the increasingly frequent situations in which mathematics-
based technology has come into conflict with democratic principles. While pure
mathematicians in particular may have wondered whether much of their work would
ever be socially useful, it was generally believed that at least it caused no harm.10

Events of recent years have called that belief into question. The sophisticated and
often opaque derivatives developed by financial mathematics magnified the effects
of a downturn in sectors of the US housing market into a global financial crisis
whose consequences are still with us. Edward Snowden’s revelations in 2013 served
as a reminder that contemporary cryptographic techniques based on number theory
can also be used to facilitate general surveillance by governments. The rapid growth
of Big Data has made it possible for commercial as well as public actors to track
individual behavior with increasing precision, with grave implications for privacy.

In each of these applications of mathematics, one finds the same three features
that were visible in that brief panel discussion on “Embodied AI”: an approach
to human activity that is purely instrumental (serving the interests of the market
or of government surveillance; of course there are also military applications,
but they are not especially new), a disdain for democratic decision-making, and
the empowerment of experts on the basis of their mathematical training. And
in each case, a few mathematical scientists have pointed out that the power of
mathematical technology imposes social responsibility on those who develop it,
beyond putting trust in experts. Responses have been as varied as the Code of
Ethical Conduct for Virtual Reality Research, formulated by Michael Madary and
Thomas K. Metzinger11; the Hippocratic Oath for financial modelers, proposed by
Emanuel Derman and Paul Wilmott12; Cathy O’Neil’s suggestion for an analogous
Hippocratic Oath13 for data scientists and developers of algorithms; the debate
sponsored by the Notices of the American Mathematical Society on the role of the
NSA, in the wake of the Snowden revelations14; and the reactions of a number of

10Nearly 30 years ago, in an article entitled “A Hippocratic Oath for Mathematicians?” (in Chris-
tine Keitel, chief editor, Mathematics, Education, and Society, Science and Technology Education,
Document series No. 35, UNESCO (1989)), Chandler Davis was already suggesting that the
harmlessness of the work of pure mathematicians deserved closer examination. Davis’s article
mainly referred to military applications; those considered here mostly concern the civilian sector,
though no one can ignore the military implications of “Embodied AI,” for instance.
11Frontiers in Robotics and AI, 19 February 2016, volume 3, article 3, www.frontiersin.org.
12in the Financial Modelers’ Manifesto, see https://en.wikipedia.org/wiki/Financial_
Modelers’_Manifesto and the references given there.
13Weapons of Math Destruction.
14See http://www.ams.org/notices/201504/rnoti-p400.pdf and the references indicated there.

http://www.frontiersin.org
https://en.wikipedia.org/wiki/Financial_Modelers
https://en.wikipedia.org/wiki/Financial_Modelers
http://www.ams.org/notices/201504/rnoti-p400.pdf
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French mathematicians to public blaming of mathematics for the 2008 financial
crisis. The spirit of these oaths and codes is concisely summarized by Amaury
Lambert and Laurent Mazliak.

As long as no one calls into question the ultimate goal of a technique, it can persist on
its own, and it remains impossible to dissociate its harmful effects from its positive effects.
Moreover, in order to guarantee the correct usage of financial techniques, it is not only
necessary to define what that means; we must also all be prepared to refuse to cooperate if
that usage appears to us to have been hijacked.

Their specific target is financial mathematics, but their words apply to all the
technologies mentioned above and to many others not yet conceived. Lambert and
Mazliak add:

Rather than taking the time to question the aims of participation in the game of financial
mathematics, efforts have been made to throw all our weight behind it, and we shielded
ourselves from the consequences behind a supposed neutrality.15

As I wrote, I don’t believe this neutrality is tenable.
Reuben Hersh has done as much as any living mathematician to remind us

how exciting it is to pay attention to the philosophical challenges inherent in our
profession. I want to close by pointing out two substantial challenges that are
authentically philosophical and that mathematicians will have to overcome in order
to formulate a coherent commitment to socially responsible behavior. The first is
an uncritical acceptance of conventional standards of “usefulness” as they apply to
mathematics. My book Mathematics without Apologies devoted much of chapter 10,
and nearly all of chapter 4, to analyzing the risks and contradictions of adopting a
purely instrumental understanding of what it means for mathematics to be “useful,”
especially when the goals for which mathematics is meant to serve as an instrument
are absurd or socially destructive. The most hostile reviews of my book saw these
passages as proof of my irresponsible elitism, or my elitist irresponsibility, warning
of dire consequences if government funding agencies were to realize that pure
mathematical research is largely not aimed at generating what decision-makers
find useful, whether it be new life-saving therapies or new techniques of mass
surveillance. No consensus on norms of social responsibility is possible if the word
“useful” is deemed to be neutral and off-limits for philosophically analysis.

The second challenge is more difficult still, because it goes to the heart of
the philosophical disorientation that surrounds mathematics and that Reuben has
explored in so many of his writings. The insistence on political neutrality is
sustained in the minds of many mathematicians by the four Myths Reuben identifies
in What is Mathematics, Really?—and especially by Myths 3 and 4—certainty and
objectivity. While it can’t be denied that the promises of mathematical certainty and

15Amaury Lambert, Laurent Mazliak, E la nave va?, Gazette des mathématiciens, 120, avril 2009,
pp. 103–5. My loose translation.

http://dx.doi.org/10.1007/978-3-319-61231-7_10
http://dx.doi.org/10.1007/978-3-319-61231-7_4
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objectivity are a source of comfort—especially in an era of “alternative facts”16—
Reuben argues that mathematicians are well aware that they are Myths, though we
may wish it were not so:

Mathematicians want to believe in unity, universality, certainty, and objectivity, as Amer-
icans want to believe in the Constitution and free enterprise, or other nations in their
Gracious Queen or their Glorious Revolution. But while they believe, they know better.17

Nevertheless, being entrusted with power by virtue of our role in the transmission
of mathematical knowledge imposes the responsibility to insist on the limitations
of that knowledge. The ideology of mathematical certainty and objectivity is our
most potent weapon; we should not allow it to be used to undermine democracy.
With regard to mathematical modeling, we should constantly remind anyone who
is willing to listen that a model is not objective or scientific just because it is
mathematical. As Cathy O’Neil writes in regard to the Big Data algorithms she
calls “Weapons of Math Destruction”:

Though economists may attempt to calculate costs for smog or agricultural runoff, or the
extinction of the spotted owl, numbers can never express their value. And the same is often
true of fairness and the common good in mathematical models. They’re concepts that reside
only in the human mind, and they resist quantification.18

I appreciate Thomas Piketty’s bluntness in emphasizing how an unquestioning
belief in the objectivity of mathematical formalism has damaged critical thinking in
economics:

To put it bluntly, the discipline of economics has yet to get over its childish passion for
mathematics and for purely theoretical and often highly ideological speculation, at the
expense of historical research and collaboration with the other social sciences. : : : This
obsession with mathematics is an easy way of acquiring the appearance of scientificity
without having to answer the far more complex questions posed by the world we live in.19

Reuben Hersh has tirelessly challenged us to look at what lies behind the
appearances of scientificity in mathematics. For this we should all be grateful to
him.

16Nevertheless, see this from Fox News, in 2011: “the talk of the new year is this repeal-
ing Obama-care : : : . The debate should be about the liberals : : : trying to repeal the laws
of math and physics. “http://www.morrisanderson.com/resource-center/entry/Boehner-Offers-
Evidence-Obama-care-is-Job-Killer-Spending-Trillion-on-Plan-/.
17Hersh, Reuben. What is Mathematics, Really?. Cary, US: Oxford University Press (US), 2001.
ProQuest ebrary. Web. 4 February 2017, p. 39.
18Weapons of Math Destruction, New York: Crown (2016) p. 207.
19Capital in the Twenty-First Century, Cambridge, MA: Belknap Press (2014) p. 32. Also, on
p. 574: “For far too long economists have sought to define themselves in terms of their supposedly
scientific methods. In fact, those methods rely on an immoderate use of mathematical models,
which are frequently no more than an excuse for occupying the terrain and masking the vacuity of
their content.”

http://www.morrisanderson.com/resource-center/entry/Boehner-Offers-Evidence-Obama-care-is-Job-Killer-Spending-Trillion-on-Plan-


School Mathematics and “Real” Mathematics

Bonnie Gold

I was delighted to be invited to contribute to this festschrift for Reuben Hersh.
I’ve known and (usually) admired Reuben’s work in the philosophy of mathematics
since I read his book written with Philip Davis, The Mathematical Experience, and
have known him since 2001, when he was on a panel that Joe Auslander and I put
together on the philosophy of mathematics at the winter joint mathematics meetings.
Since that time, he has frequently shared drafts of writings on the philosophy of
mathematics with me, and I have much appreciated the interchanges. His thinking
has evolved in interesting ways; I thought his talk for a recent Calcutta conference
on “Pluralism in the philosophy of mathematics” (in this volume) was a wonderful
contribution.

Why “What Is Mathematics?”

I have been thinking about the question “What is mathematics?” since I finished
my Ph.D. thesis (in mathematical logic) in 1976. I was strongly influenced by an
undergraduate teacher of mine, Stanley Tennenbaum, a mathematician and platonist.
I realized that, although by that time I knew a lot of mathematics, had Socrates
come to me and asked me this question, I would not have been able to provide an
acceptable answer. At one time, Reuben took a stab at an answer (in [2]): “the study

This paper is a revision of a talk I gave, “Is School Mathematics ‘Real’ Mathematics?” as the
POMSIGMAA invited speaker at the 2016 joint winter mathematics meetings.
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of mental objects with reproducible properties is called mathematics.” At another
time, he wrote “Mathematical entities or concepts are equivalence classes of mental
models.... A student is accepted as competent by the mathematical community if,
by passing the tests, she has demonstrated that her mental model of the concept
is congruent to the standard one of the community” [4]. More recently, Reuben,
in his Pluralism paper [5], discourages even attempting to answer this question:
“‘Taking a position’ on the nature of mathematics looks very much like the vice of
essentialism–claiming that some description of a phenomenon captures what that
phenomenon ‘really is,’ and then trying to force observations of that phenomenon
to fit into that claimed essence.”

While I don’t expect to be able to answer the question once and for all (it’s
rare to answer any philosophical question in the definitive way that we can answer
mathematical questions), I do believe that this is potentially a very productive time
in the history of mathematics to reconsider it. Philosophers have largely discussed
the question from the perspective of what the nature of the objects of mathematics
is; I am not proposing yet another take on that approach. However, in the last
century or so, a wide range of new areas of mathematics have been developed
(topology, algebraic geometry, mathematical logic, combinatorics, for example,
each of which had roots in earlier mathematical questions or activities, but were
primarily developed in the last century), and several fields that are not classified
as mathematics but that clearly are related to mathematics have appeared (e.g.,
computer science, operations research, mathematical biology). So it seems to me
that now is a good time to examine areas that are classified as mathematics, and
those that are not, to try to determine what properties those that do join the category
of mathematics have that those that are not considered mathematics lack.

How I Plan to Approach the Problem

I have written a paper setting forth my overall plan of approach [3], which I’m in the
process of revising and hope to publish soon, but in this contribution, I am going to
look at one area related to mathematics and examine to what extent it does belong
with mathematics, and to what extent it does not, as part of this overall work on the
question of what mathematics is. I’m assuming, as I do this, that the audience is
primarily mathematicians, who have a pretty good sense of what mathematics is—
we know it when we see it—even if we can’t completely translate that sense into a
verbal description.

Turning to School Mathematics

The area I am going to consider here is the mathematics that is taught at the school
level, that is, from kindergarten through high school. To what extent is that material
“real” mathematics?
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One might reply, “Of course it’s mathematics; after all, that’s what we call it.”
Well, sort of. When I was in school, until we started algebra in ninth grade, the
subject was actually called arithmetic. And I think there was a reason for this
distinction. What I learned was a combination of ritual and memorization. You
memorize the tables for addition and multiplication of single-digit numbers (or,
for those a half-generation older than me, the numbers 1 to 12), and then you
learn certain algorithms for adding, subtracting, multiplying, and dividing multidigit
numbers. (As taught in the schools, it would appear these are the only possible
algorithms; but different countries teach different algorithms.) Next you learn
additional procedures for performing these operations on fractions and terminating
decimals. (Of course, terminating decimals are fractions, but the algorithms children
are taught for working with them are completely different!)

We all worry about the fact that students (especially if they haven’t taken calculus
in high school, but often even if they have) come to college thinking they want to
major in mathematics, and then when they get there, and start taking our upper level
courses, realize that this isn’t the subject they thought it was. And yet, they’ve been
studying “mathematics” for twelve or more years by then. So is school mathematics
real mathematics? Can examining it help us think about what mathematics is, really?

So, let’s turn to school mathematics. I’m going to consider four different topics
within this.

A. Traditional Elementary School Arithmetic

When I was in school, back in the 1950s, we learned to count in kindergarten, to
add in first grade, subtract in second grade, multiply in third grade, divide in fourth
grade (I was fortunate enough to skip fourth grade; I learned long division on the
first day of fifth grade), fractions in fifth grade, and decimals and percents in sixth
grade. (Seventh and eighth grades were review; algebra came in ninth grade.) The
emphasis was on the manipulations:

Compute 5364 � 78—here is most of it, in several steps:

6 6
78 ) 5364 78 ) 5364

- 468
68

78 ) 5364
- 468

684
- 624

To divide 5364 by 78, you observe that since 78 > 53, you must try to divide 536
by 78; that is, what is the largest single-digit multiple of 78 that is no larger than
536. You place that digit (which is a 6) above the 6 in 5364, multiply it by 78, place



128 B. Gold

that result below the 536, and subtract it from 536. Then you bring down the 4, and
repeat the process, putting the 8 above the 4. If you’re at the stage of dealing with
decimals, you might then put a decimal point to the right of the 4 in 5364, and some
zeroes after it, and put a decimal point after the 8 in the quotient, bring down a 0,
and continue for a while; if you’re not at that stage, you’d subtract 8*78 and what
is left (60) is called the remainder, so that the answer is 68, remainder 60, or 68 60

78
.

There was no discussion, or very little, of the meaning of all this manipulation. Why
can you start by ignoring the 4 and treating it as if you were simply dividing 536
by 78? What’s this “bring down the 4”? In the middle of the last century, the only
calculators were about twice the mass of a typewriter (for you younger folks, that’s
a mechanical word processor in which the printer is mechanically attached to the
keyboard, with the CPU being the human operating it). Few people had them. So
most people needed to do addition and subtraction by hand or mentally on a regular
basis, and many needed to be proficient at multiplication and division—hence the
year spent practicing each. We also learned methods to check our work, since it
was important to consistently get the answers right, but there was very little, if any,
explanation of why these algorithms worked or what they meant.

Now, I’m not denigrating this activity: in a time before the widespread avail-
ability of electronic calculating machines (much less computers), there was a need
for it. And it took humanity several thousand years to develop relatively efficient
algorithms for these calculations—imagine trying to do the division problem I just
mentioned in roman numerals!

But I would argue that this sort of activity is not mathematics, any more than
predicting the coming of the messiah by giving numerical values to the various
letters of the Hebrew alphabet and doing some computations with the Bible is doing
mathematics. It’s using mathematical developments for some human purpose, but it
isn’t doing mathematics. Why do I say this? What makes it seem not mathematics, to
me, is that it lacks ideas, concepts, understandings, interrelations among meanings.
In fact, slogans were developed to tell folks, “don’t worry about any meaning:
just do it”—“Yours is not to reason why: just invert and multiply” for division of
fractions, for example. I think those of us who are engaged in mathematics, whether
professionally or even as amateurs, feel that meaning and understanding are central
to doing mathematics.

Indeed, this view is shared by some school teachers involved in teaching the
“New Math” in the 1960s, not just university-level mathematicians, as exemplified
by this quote from an eighth-grade teacher [1, p. 470]: “Teaching the SMSG
materials has made me realize that before using these texts, I was not teaching
mathematics at all; I was simply teaching manipulative skills. Now I feel that I
have been teaching at least some mathematics.”

Not that I’m saying that inherently elementary school arithmetic isn’t
mathematics—but I think that a certain approach to it isn’t. A little while after I had
moved to junior high school, the “New Math” took over. This movement began in
many universities around the country; its aim was to put meaning into mathematics.
The New Math began soon after the end of World War II, but became supported
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nationally and moved to the forefront after the launch of Sputnik in 1957. Its
approach to putting meaning into school mathematics was partly motivated, I think,
by the foundational difficulties mathematics itself had run into and by the success,
among some mathematicians, of the Bourbaki-style formalist approach, together
with axiomatic set theory. So the proponents started with a set theory and functions
approach—counting consisted of one-to-one correspondences between sets, for
example—as well as working in different number bases to give an understanding
of arithmetic manipulations. But many proponents of the New Math also advocated
a pedagogy of active learning, which, unlike the formalist set theory approach,
I view as a definite improvement. Another eighth-grade teacher, teaching the
New Math: “Most of the students of above-average ability reacted well to the
material, obviously being glad to have something besides pages of problems on
which to use their minds. Some of the most striking cases of success, however,
came from the ranks of students of low ability who made progress because they
understood why they were performing certain operations” ([1], italics added).
A much more serious attempt was made with the New Math, than is currently
being made with the Common Core State Standards, to bring teachers to the point
that they were able to teach this material. (There were many summer institutes
for teachers, largely sponsored by the NSF.) But its very alien, formal, from the
intellectuals-to-the-masses French approach was totally rejected by parents, leading
to a “back-to-basics” movement—“if this is what meaning in mathematics is, let’s
get rid of it!”

B. Traditional High School Mathematics

Much of high school mathematics has also been taught from a purely manipulative
approach, and I would argue that it is then also only minimally mathematics.
High school algebra is especially vulnerable to this. First, we introduce many
new notations, often with little explanation of what they mean or the rules under
which they operate, or even with ambiguous rules that change in what appears, to
many students, arbitrary ways. For example, we use letters to represent assorted
objects (generally at first, numbers, but later functions and more), and we do so
in many different contexts. We say that “3(x C y) D 3x C 3y” is an identity, the
distributive property, whereas we usually say that “sin(x C y) D sinx C siny” is an
error—misusing the distributive property—though it’s often not explained why the
distributive property isn’t applicable here. However, the latter equation also could
be asking us to find all x and y with that property. A lot of our notation is similarly
ambiguous: the letter x can be a variable quantity in the definition of a function,
an unknown quantity to be solved for, an arbitrary number in an expression for an
identity, etc.

Second, often very little emphasis is placed on the concepts involved: that there
is usually a purpose in manipulating an equation, such as to keep the same solution
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set while replacing the equation by one where the solution is easier to obtain or that
gives insight into what the expressions represent; that if an equation is satisfied by
some object, to keep this true, what is done to one side must be done to the other; that
if something doesn’t work for numbers, it won’t work for variables (but some things
won’t work for variables that do for numbers). Of course, one doesn’t have to teach
algebra in this mindless way, but teachers who haven’t made the connections—
between the symbol-pushing and the concepts those symbols are representing—are
unlikely to make them for their students.

So traditional high school mathematics is often taught in a way that is not
mathematics. This is one reason I have pushed to not have “college algebra”
count for general education credit in mathematics at the university level—because
even if there are some concepts there, they tend to become overwhelmed by the
manipulative activities.

On the other hand, the concepts are closer to the manipulations at the high school
level than at the elementary school level, and some subjects, such as geometry,
almost inevitably require consideration of concepts. Yet even geometry can be
taught in a deadening way that makes it, at best, borderline mathematics. For many,
the formality of two-column proofs, memorizing definitions, axioms and postulates,
and so on, deadens the potential pleasure of discovering new mathematical results,
interconnections, or justifications of observations. But inherently it seems much
closer to “real” mathematics.

As I have been discussing school mathematics, I have been identifying some
qualities that make something mathematics, or make it “not really mathematics.”
So maybe we’re making some progress. Mathematics seems to be about ideas
or concepts of a certain kind—among them, ideas that are preserved under some
kinds of transformations. And mathematics seems to involve exploring these ideas,
not just repeating or memorizing them. In particular, mathematics is not symbol
manipulation devoid of a relationship to what those symbols represent. Symbols
are important, for several reasons. We have learned that, once we know how that
symbol manipulation affects the concepts, we can, in fact, manipulate the symbols
without referring to their meaning much more efficiently than we can manipulate
the concepts. Thus, learning how to manipulate symbols has been an important part
of mathematical development. Further, in some circumstances, we can learn new
relationships simply from manipulating those symbols (e.g., when, in dealing with
a differential equation that we don’t know how to solve, we say, “well, what if we
had a solution in the following form: what would the solution then have to be?”).
Nonetheless, the manipulations themselves are not mathematics: it’s the concepts
they are representing that is where the mathematics lies.

To examine whether it is possible to teach mathematics at the school level in such
a way that it participates more in real mathematics (and to use it as a foil in trying to
get a better description of what mathematics is), I’d like to look at two more recent
approaches.
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C. Common Core State Standards

I’d like to turn first to a particular direction in school mathematics that has been
receiving a lot of attention in the last half-dozen years, the Common Core State Stan-
dards. I’m not writing either as a proponent or as an opponent of these standards, but
more as an observer. There is clearly an attempt, via these standards, to get students
to think more about the meaning of the mathematics they are studying—we’ll look
at several examples in a few minutes. On the other hand, the standards have also
been introduced in some very problematic ways and with a variety of agendas on the
part of those introducing them. Unlike the New Math, not a lot of money has been
spent on institutes that train teachers to teach in ways consonant with the standards.
They have been introduced at a time when many political leaders are looking for
mechanisms to use to weed out ineffective teachers or, alternatively, mechanisms to
punish or blame teachers for the problems of society. I’m not interested in getting
into a fight over this right now—clearly I do have some opinions about what I’ve
seen, but that’s not my point in bringing them up.

What I’d like to do is look at some of the sample assessment items for the CCSS
that one of the consortiums developing those tests, PARCC, released, and the extent
to which these appear to be introducing real mathematics at the school level. I have
chosen examples that I feel have some important mathematical concepts in them.

1. Third grade: “Art Teacher’s Rectangular Array.” Three classes of children
made painted tiles; the classes made 48 tiles altogether. (The question starts with
numbers of tiles for each class and asks for the total, a straightforward addition
question.) The teacher wants to display the tiles in a rectangular array not more than
ten by ten (displayed in the problem as a square grid of small squares), and the
student is to shade the array to show how to display all the tiles. Notice that there is
an issue of terminology: students need to know that “rectangular array” means that
just shading in four rows of ten squares, and then shading eight squares in the fifth
row is not what is being requested.

Also, 48 is quite an interesting number to think about in this context, since it
has many factors, and thus there are many rectangular grids that one could make:
2 by 24, 3 by 16, and so on. Presumably a teacher getting children ready for test
questions such as this will have them experiment with making such arrays and
explore how many different ways one can do this. But for an assessment, they want
a small finite number of possible student responses so that it will be fairly quick to
grade. Since the grid is 10 by 10, the only factors of 48 that will work are 6 by 8
or 8 by 6. Asking students to explore, to find different rectangular arrays and see
if there are some lengths that won’t work is doing real mathematics, exploring the
concept of factorization in the integers. It also involves multiple representations of
numbers (as numerals, as lengths, as areas) and the relationship between two areas of
mathematics, arithmetic and geometry, here as multiplication and area. It potentially
leads to many concepts in number theory: explorations of numbers that can only be
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represented by one rectangle (primes), how many different ways a number can be
factored (and unique factorization into primes), etc.

2. Fifth grade: “Mr. Edmunds’ Pencil Box.” This problem is quite like many
mathematics problems from the middle ages that you’ll find in history of mathe-
matics books: Mr. Edmunds shared 12 pencils among his four sons as follows: Alan
received 1/3 of the pencils; Bill received 1/4 of the pencils; Carl received more than
1 pencil; David received more pencils than Carl.

On the number line, represent the fraction of the total number of pencils that was
given to both Alan and Bill combined. (This is an online problem showing a number
line, and students use buttons (labeled “More tick marks,” “Fewer tick marks”)
to increase or decrease the number of equal sections on the number line.) What
fraction of the total number of pencils did Carl and David each receive? Justify your
answer.

The first part is entirely computational but can be solved either by simply adding
1/3 C 1/4 OR by first finding how many pencils Alan and Bill each received (by
finding 1/3 of 12, 1/4 of 12), adding the number of pencils, and then finding what
fraction of 12 total pencils this is. To represent it on a number line, children have to
understand the idea of denominators of fractions representing the number of parts
a unit is divided into, that they’ll need a common denominator, and that therefore
they need to make the screen have 12 parts (11 tick marks) between 0 and 1.

But the second part requires considerable reasoning: a student who found, in the
first part, correctly, that Alan and Bill together got 7 pencils, knows that in total
Carl and David got 5. It requires further reasoning to realize that there is only one
solution: since Carl gets at least two pencils, he must in fact get two and David must
get 3, since he’s supposed to get more. Again, because it’s an assessment item,
it’s restricted to having a small number of correct answers (in this case, just one).
However, in class one could extend this problem either by not requiring that Carl
gets more than one pencil (thus leaving numerous solutions) or by using a larger
number of pencils and exploring what range of possibilities there are: it can be the
beginning of a lot of combinatorial activity. Further, students are asked to justify
their answer: mathematics is not just a computation but a coherent reason behind
the computation.

So we see several aspects of mathematics in these problems: the fact that
there can be multiple approaches to solving mathematical problems, that they can
be approached from several perspectives (numerical, geometric, via fractions or
integers), that potentially open-ended problems can be used even in early grade
school, that one can reason without having an algebraic (or other) formula, that one
can do experiments with mathematical objects (even putting a different number of
tick marks on the number line is a form of experiment), and that justification is part
of doing mathematics. Let’s turn to some high school problems.

3. “High school functions.” Two different functions, f and g, are given, but
neither as formulas. The function f is given as a graph; it’s said to be quadratic,
and its vertex (2,9) and its x- and y-intercepts, (�1,0), (5,0), and (0,5), are shown on
the graph. The function g is said to be linear, and four of its values, from (� 4,7)
through (5,-11), evenly spaced, are given in a table. Four comparison questions are
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asked of the functions: (a) whether the y-coordinate of the y-intercept of f is less
than, greater than, or equal to that of g, (b) similarly comparing the values of the
functions at x D 3 (neither function’s value is given explicitly at this x-value), (c)
comparing the maximum values of the functions on the interval (�5,5), and (d)
comparing f .5/�f .2/

5�2
with g.5/�g.2/

5�2
– that is, comparing the slope of the line between

two points on the functions.
Again, this question can be approached in several different ways. One can find

algebraic expressions for the functions, and then compute. But it is faster to think
about the information given. For example, for (a), since g is a decreasing function
and g(�1) is already below f (0), g(0) must be less than f(0); for (c), since the slope
of g is �2, the maximum value of g on the interval is at x D �5 and is equal to the
maximum value of f, which occurs at its vertex. Notice that one has to pay close
attention to the language: while part (b) asks to compare the values of the functions
at the same input value, part (c) is looking at the maximum value over an interval.

So what do I see that involves what I’d call real mathematics in this problem?
First, multiple ways of representing an object (in this case, a function): graphically,
via numerical data, and, implicitly, algebraically. Also, that different types of
functions have different characteristic properties, the understanding of which lets
one compare them in a range of ways. (I often say to my students that we’re getting
to know various inhabitants of the mathematical zoo.) These properties are used
for thinking about the concepts and determining further properties. So one explores
the functions, via the ways they are presented; one “experiments” with them to see
what they do (such as finding the slope of g and determining whether that slope is
sufficient that g is higher than f somewhere on a given interval, or whether its slope
is always larger or smaller than that of f on that interval).

4. “Seeing structure in a quadratic equation.” “Solve the following equation:
(3x – 2)2 D 6x – 4.” There is, of course, a rote way of solving this problem: expand
the left side of the equation, subtract 6x – 4 from both sides, and factor or use the
quadratic formula. However, the form the problem was given in invites observing
that this is a variation (translation and stretching) of the equation u2 D 2u. Doing so
enables the student to solve the equation very quickly and with much less symbolic
computation or memorization, via a much more conceptual approach. I think this is
typical of “real” mathematics: not that we don’t compute—even in this problem one
has to do minor computation to see where 3x – 2 equals 0 or 2. But I think we’ve all
learned that it’s generally a good idea to think about a problem for a while before
starting to compute.

Problems such as the ones I have mentioned tend to encourage active learning:
rather than memorizing something like the quadratic formula, one can ask students
to look for structure in (3x – 2)2 D 6x – 4: can they find some similarity in the
expressions on each side of the equation? What would happen if we substituted
u for 3x – 2: what does that do to the equation? Can they then solve it? How
would that help with the original equation? Similarly in the high school function
example, one can ask the class to think of properties of these functions that would
allow answering the questions without finding formulas for the given functions. And
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elementary school students can experiment with ways to make a rectangle with area
48.

Possibly disturbing is that all of these problems can be approached via old-
fashioned symbolic manipulation as well as conceptually—but presumably, given
the titles the problem developers chose, the aim is that students will see the
conceptual connections.

By the way, I found these problems on the PARCC website in 2014; when I
looked in early 2017, they seem to have disappeared, replaced by full sample tests
for each grade level. These sample tests are disappointing when compared with the
sample items I’ve mentioned—most problems are much more similar to what has
been on state tests for years—although there are still a few rich problems on each
sample test.

D. Hyman Bass’s School-Level Problems

Finally, I’d like to look at something that Hyman Bass has been presenting
recently—I heard him give a talk at the joint meetings in 2015, and he did a
workshop (somewhat different presentation, but roughly the same topic) about it
at the New Jersey MAA section meeting. Bass is a well-known algebraist who
has been interested in school-level mathematics—and the mathematical education
of teachers—for quite a number of years and has worked with folks (especially
Deborah Ball) with substantial experience actually teaching at the elementary school
level. I’m first going to mention a problem I heard him speak about only at the
MAA-NJ meeting: if you have m cakes to divide among n people (say 5 cakes
among 7 people), what is the smallest number of cuts you can make to divide them
evenly? This is clearly a problem 3rd grade students can work on; fair sharing is of
interest at that age, and they have the sophistication to work on it. If asked of a class,
students can work in groups on the problem, compare different groups’ solutions,
and discuss how one might decide that one solution is the best that can be done.
There are many ways to cut the cakes: cut each cake 5/7 of the way; then, with one
of the 2/7 pieces, cut it in half. So 5 people get uncut 5/7 pieces, and the remaining
two get three pieces: two 2/7 pieces and one 1/7 piece. Or, cut the first cake at 5/7;
put the remaining 2/7 together with 3/7 of next cake. Next, take its remaining 4/7
together with 1/7 of next cake. This is the only cake cut twice: at 6/7 also. And so on.
It turns out that the question is related to the Euclidean algorithm, to square tilings
of a 5 by 7 rectangle, to several questions in graph theory, and more. It’s another
illustration of the importance in mathematics of approaching a question from the
standpoint of a variety of mathematical structures and of mathematical areas.

But the main thing I’ve seen him do is hand out a list of four arithmetic problems
to one group, three rate problems to another, three geometry problems to a third
group, three algebra problems to a fourth group, and suggest that they work on them
for a while. Here, for example, are the four arithmetic problems:

1. Find all ways to express ½ as the sum of two unit fractions.
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2. Find all rectangles with integer side lengths whose area and perimeter are
numerically equal.

3. The product of two integers is positive and twice their sum. What could these
integers be?

4. For which integers n > 1 does n – 2 divide 2n?

For contrast, here is one of the geometry problems: Given a point P in the plane,
find all integers n such that a small circular disk centered at P can be covered by
non-overlapping congruent tiles shaped like regular n-gons that have P as a common
vertex.

And one of the rates problem: Nan can paint a house in n days, and her mom can
paint it in m days (n and m positive integers). Working together, they can paint the
house in 2 days. What are the possible values of n and m?

First, observe that these are all school-level problems—that is, they could be
posed to high school classes, or lower. Of course, all mathematicians know that
there are very difficult problems that can be posed with high school, or even
elementary school, vocabulary. Also notice that they all involve not only some
symbol manipulation but also understanding and examining concepts, and what
the implications of the concepts are. One fairly quickly sees that the first problem
has two solutions: 1/4 C 1/4 or 1/3 C 1/6. One doesn’t see any more: but how
can one show that that’s all there are? “Hmm: 1/m C 1/n D (m C n)/mn. So if
1/m C 1/n D 1/2, 2(m C n) D mn – wow – perimeter equals area; the product is
twice the sum....”

In any case, as people work on their collection of problems, they start realizing
these are all variations of the same problem. That is, the same question can be seen
through over a dozen different lenses.

What Can We Learn About the Nature of Mathematics
from These School-Level Problems?

So school mathematics can be real mathematics, but only if we choose to teach it in
ways that enable students to experience it as mathematicians do. Looking over the
school-level problems we considered, we see many aspects of mathematics in them.

Mathematics is about concepts that are multi-faceted and interconnected via a
complex web, so that the same problem often can be represented via apparently
different areas of mathematics. (There are, of course, also many results that appear
to be completely within one area of mathematics.)

Therefore, although there is often just one correct answer to a mathematical
problem, that answer can be correctly found in many different ways, sometimes
fairly similar, sometimes apparently totally unrelated.

Mathematics is often about ideas that are preserved under some kinds of
transformations.

Although mathematical concepts are abstract, often specific examples can be
represented by concrete physical objects (including drawings).
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Finding an appropriate symbolic representation is often important for under-
standing and working with a problem or concept.

These representations can allow people to experiment with mathematical objects
as well as to communicate about and work cooperatively with the objects.

Working with mathematical objects (however philosophers characterize them)
gives one a feeling for the diversity of characteristic properties of the objects.

One is often less interested in the final answer than in the justification of that
answer and in what else it might be related to.

Part of the process of doing mathematics involves sorting examples that meet the
criterion of a concept from those that do not.

Taking a complex object (such as 3x – 2) and renaming it so that the question is
centered on it—refocusing the problem—is often helpful.

Doing mathematics involves exploration, the ability to start down a path, realize
it isn’t being productive, and that it’s necessary to go back to the problem to look
for a new approach.

Mathematical questions can often be extended and generalized from specific
examples.

The excitement in mathematics is in problem-solving—an excitement that had
largely been taken out of mathematics when I was in school: everything was rote or
routine.

One thing I’d like to point out about many of the problems that I’ve mentioned
here that can be approached from several totally different fields of mathematics:
it makes any “foundation” for mathematics that I’ve seen—whether through logic,
set theory, model theory, or category theory—inadequate. None of them account
for the wide range of different pairings of fields and approaches one finds in
mathematics. Logic and model theory are especially susceptible to this criticism—
simply changing whether you’re describing the natural numbers with just one
constant (1) and one function (the successor) versus with several functions (say,
addition and multiplication) makes it, from the perspective of logic, completely
different structures. One can interpret one within the other—there are ways of
partially accounting for this difficulty—but this is only for perspectives that are from
the same field of mathematics. Logic really seems inadequate to view mathematical
objects from different perspectives. But so does category theory. It does enable
one to talk about certain ways in which very different structures are essentially the
same—but only when there are clear ways of replacing every item in one perspective
with its equivalent in the other. It’s one reason that I, and many mathematicians,
tend to be, at least in some respects, firm platonists. If it’s a world out there that
we’re reporting on, then mathematicians may well be somewhat like the blind men
examining the elephant—we each perceive it from our own perspective and are
amazed when someone shows us how to see it from a different perspective.
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Preamble

In the classic “The Mathematical Experience”, Reuben Hersh and Philip Davis
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standing Plato and Hilbert, mathematics is a human activity and culture, and its
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do!. This leitmotif was further expanded in the wonderful ‘sequel’ “Descartes’
Dream: The World According to Mathematics” , also with Davis, and the
more philosophical “What Is Mathematics, Really?”, written by Reuben all by
himself. The fact that mathematics is what (human) mathematicians do is further
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oration with Vera John-Steiner, that, inter alia, debunks G.H. Hardy’s stupid quip
that ‘Mathematics is a young men’s game’, by describing many excellent women
mathematicians, and many excellent ‘old’ mathematicians.

What Hersh and Davis preached back in 1980 is still true today, but it has to be
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What Is Mathematics (as Practiced Today)?

• A religion with its doctrines and dogmas
• A game with its (often arbitrary) rules
• An (intellectual) athletic competitive sport, akin to chess and go
• An art form with rigid rules

One thing, it is not is a science. Scientists, by definition, are trying to discover the
truth about the outside world. Mathematicians do not care about discovering the
truth about the mathematical world. All they care about is playing their artificial
game, called [rigorous] proving, and observing their strict dogmas.

Beware of Greeks Carrying Mathematical Gifts

Once upon a time, a long time ago, mathematics was indeed a true science, and
its practitioners devised methods for solving practical mathematical problems.
The ancient Chinese, Indian, and Babylonian mathematicians were dedicated good
scientists. Then came a major setback, the Greeks!

The dirty (open) secret of the enlightened Athenian “democracy” was that it was
a slave society. Since slaves did all the manual labor, the rich folks had plenty of
time to contemplate their navels and to ponder about the meaning of life. Hence,
Western philosophy, with its many pseudo-questions, was developed in the hands of
Plato, Aristotle, and their buddies, and “modern” pure mathematics was inaugurated
in the hands of the gang of Euclid et al.

Not all Greek mathematics was like that, and Archimedes, Heron, and many
others also did excellent applied mathematics, but even Archimedes was bound by
the Euclidean “party line.”

Let’s digress and summarize the pernicious Greek influence.

A Brief History of Mathematics as a Sequence
of (Unsuccessfully!) Trying to Answer Stupid Questions

• Stupid Question 1: Prove the parallel postulate, i.e., make it a theorem.
Many very smart people tried, in vain, to solve this problem, until it turned

out, as we all know, to be impossible.
This was really an artificial puzzle. Play the game of “logical deduction,”

starting with the (other) axioms, and step-by-step construct an artificial structure
called “rigorous mathematical proof,” whose bottom line is the statement that
given a (geometrical) line and a point outside it, there is exactly one line through
the point that does not meet the line.
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• Stupid Question 2: Trisect an arbitrary angle only using straight edge and
compass.

Many very smart people tried, in vain, to solve this problem, until it turned out,
in the 19th century, to be impossible (trisecting an angle involves constructing
a cubic-algebraic number, while it is not too hard to show that a necessary
condition for a ruler-and-compass constructible number is that its minimal
equation is a power of 2).

• Stupid Question 3: Double the cube.
Ditto, 21=3 is a cubic-algebraic number.

• Stupid Question 4: Square the circle.
Many very smart people tried (and some still do!), in vain, to solve this prob-

lem, until it turned out, in the late 19th century, thanks to Lindemann (inspired
by Hermite), to be impossible. Indeed, � (and hence

p
�) is transcendental, all

the more reason why it is not constructible.
Note that these three classical Delfian problems were really artificial puzzles,

in an artificial game, whose artificial rules “only use straight edge and compass.”
• Stupid Question 5: Find a general, closed-form formula, as an expression in

p; q; r; s, only using addition, multiplication, division, and root extraction for a
solution of the quintic equation:

x5 C px3 C qx2 C rx C s D 0 :

Recall that the analogous question for a quadratic equation was answered,
essentially, by the Babylonians. The questions for the cubic and quartic were
answered by Tartaglia and Ferrari (and published by Cardano, ca. 1530), but after
that, many smart people, for about three hundred years, tried, in vain, to “solve”
the quintic equation.

Let’s digress to examine how the Renaissance mathematicians “solved” the
cubic equation:

x3 C px C q D 0 :

(Recall that we can always transform x3Ca2x2Ca1x Ca0 D 0 to the above form
by writing x D y � a2

3
.)

We first do an ad hoc trick, writing x D u C v, where u and v are to be
determined.

Then

.u C v/3 C p.u C v/C q D 0 :

Expanding

u3 C 3u2v C 3uv2 C v3 C p.u C v/C q D 0 :

Rearranging

u3 C v3 C 3u2v C 3uv2 C p.u C v/C q D 0 :
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Replacing 3u2v C 3uv2 by 3uv.u C v/ we get

u3 C v3 C 3uv.u C v/C p.u C v/C q D 0 :

Factoring out .u C v/ from the third and fourth terms

u3 C v3 C .3uv C p/.u C v/C q D 0 :

We now do wishful thinking, demanding that

3uv C p D 0 :

In other words

uv D �
p

3
:

Going back to the above equation we have

u3 C v3 C 0C q D 0 :

So

u3 C v3 D �q :

Cubing the equation uv D �
p
3
, we get

u3v3 D �
p3

27
:

Hence the sum of u3 and v3 is �q and their product is � p3

27
; hence both are

solutions of the quadratic equation

z2 C qz �
p3

27
D 0 :

By the quadratic formula, the two roots u3; v3 are

�q ˙
q

q2 C 4
27

p3

2

So one root of the cubic is
0
B@

�q C

q
q2 C 4

27
p3

2

1
CA

1
3

C

0
B@

�q �

q
q2 C 4

27
p3

2

1
CA

1
3

:

The other two roots are !u C !2v and !2u C !v, where ! is a root of
!2 � ! C 1 D 0.
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So by an ad hoc trick, and a lot of luck, we reduced solving a cubic to that of
solving a quadratic.

Similar ad hoc tricks work for the quartic, but mathematicians were stumped
for three hundred years, until, famously, Ruffini, Abel, and most notably Galois
proved that it is impossible.

In hindsight, “solvability by radicals” is an artificial game with an artificial
set of “legal moves,” and Galois et al. proved that it is impossible to get from
position A, the quintic equation, to position B, an algebraic formula, only using
addition, multiplication, division, and root extraction.

I admit that while the question itself “solve a quintic by radicals,” which turned
out (at least in hindsight) to be very stupid, it led to something not quite as stupid,
Group theory and Galois theory.

• Stupid Question 6: Find a “rigorous” foundation to the non-rigorous differential
and integral calculus of Newton and Leibnitz, thereby “resolving” the paradoxes
of Zeno and “addressing” Bishop Berkeley’s critique.

This was allegedly “solved” by Cauchy and Weierstrass, but their “solution”
was unnecessarily complicated and pedantic, creating the so-called real analysis
as one of the most unattractive courses in the math major curriculum, where one
does scholastic mental gymnastics to “prove” intuitively obvious facts.

As I pointed out in my essay ‘Real’ Analysis Is a Degenerate Case of Discrete
Analysis,

[“New Progress in Difference Equations”, edited by
Bernd Aulbach, Saber Elaydi, and Gerry Ladas (Proc.
ICDEA 2001), Taylor and Francis, London] available online
from my website,
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/real.pdf,
a much better, conceptually simpler, and more honest foundation is to chuck
infinity and limits altogether and replace the derivative of a function f .x/ that is
defined as the limit of .f .x C h/ � f .x//=h as h goes to zero, by the difference
operator �hf .x/ WD .f .x C h/ � f .x//=h, where h is a very small, but not
“infinitesimal.” Since h is so tiny (and unknowable), it is more convenient to leave
it symbolic (analogously to the way physicists write h for Planck’s constant). It
is true that technically things get a bit messier; for example, the product rule is a
little more complicated, but this is a small price to pay, and at the end of the day,
when you replace the symbolic h by 0, you get the familiar rules.

We live in a finite and discrete world, and the infinite and the continuous are
mere optical illusions.

Ironically, the way that “continuous” differential equations are (numerically)
solved today, by computers, is by approximating them with finite-difference
equations, and numerical analysts make a living by proving a priori error
estimates. The true equations are finite-difference equations to begin with, but
the mesh size is too small (and unknowable, the above mentioned h) that it would
be impractical to solve numerically and one has to replace it by a far coarser grid.

http://www.math.rutgers.edu/~{}zeilberg/mamarim/mamarimPDF/real.pdf
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• Stupid Question 7: Is there a set whose cardinality is strictly between that of the
integers and that of the real numbers?

This is Hilbert’s first problem, the so-called continuum hypothesis or CH for
short. It is really a pseudo-question, since it pertains to two “infinite,” and hence
fictional, sets. It is really an artificial puzzle. Can you reach, by finitely many
legal moves (in the game called “logical deduction”) starting with the axioms
of ZFC, either the statement that there exists such a set or the statement that
there does not exist such a set. Paul Cohen famously proved that neither! The
conventional way of saying it is that CH is independent of ZFC, but what Cohen
really (brilliantly!) meta-proved was that the question was stupid! Neither CH nor
its negation is reachable in the logical deduction game starting from the axioms
of ZFC; hence both CH and ZFC are devoid of content, and what Cohen (and
Gödel) meta-proved was that the so-called infinity does not exist [taken at face
value].

• Stupid Question 8: Are the axioms of arithmetic consistent?
This, Hilbert’s second problem, was famously shown to be a stupid ques-

tion by Kurt Gödel. The conventional, polite interpretation is that there exist
undecidable statements, but a more honest interpretation is that every statement
that involves quantities over “infinite” sets is a priori meaningless. Some such
statements, e.g., that n C 1 D 1 C n for every natural number, can be made a
posteriori meaningful, by thinking of n as a symbol, but what Gödel proved was
that many such statements may not be resurrected like that.

• Stupid Question 9: “Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients, devise a process
according to which it can be determined by a finite number of operations whether
the question is solvable in rational integers.”

This was famously (brilliantly) meta-proved to be a stupid question by Yuri
Matiyasevich, standing on the shoulders of Martin Davis, Hillary Putnam, and
Julia Robinson. What he really proved was that while for some specific diophan-
tine equations, it is possible to prove that there are no solutions, (e.g., x2�2y2 D

0 and the equation xn C yn D zn ; n > 2 ; xyz ¤ 0), for other ones, it is possible
to find many (in fact, potentially infinitely many) solutions (e.g., x2 � 2y2 D 1),
and many such (seemingly sensible, but in fact meaningless) questions can’t be
resolved in the artificial game called proving number theoretic statements. In
other words, they are not only a priori meaningless (as all statements involving
“infinite” sets are), they are also a posteriori meaningless.

Many Games Have Unreachable Positions

Time and time again, mathematicians realized that in their human-made, artificial
game that they naively believed to be the real thing, many things are impossible.
Sometimes, it is easy to prove the impossibility, for example, tiling, by domino
pieces, an n�n checkerboard where two opposite corners have been removed, when
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n is odd. Since n2 � 2 is odd, any covering by domino pieces must cover an even
number of unit squares. Other times, the impossibility is more subtle; this is the case
when n is even (e.g., n D 8, the usual chessboard). Coloring the unit squares (as in a
chessboard) white and black alternatively, any putative domino covering must cover
an equal number of black and white unit squares, but if you remove two opposite
corners (from an n � n board with n even), they must be of the same color; hence,
the remainder has an excess of two of the other color.

A less obvious example of proven impossibility is in the solitaire game called
the fifteen puzzle that Sam Loyd was safe in offering a large prize for its solution
(transposing the 14 and 15 and leaving the rest the same), since, as proved in one
of the first volumes of James Joseph Sylvester’s periodical, American Journal of
Mathematics, it is impossible.

Today’s Mathematics Is a Religion

Its central dogma is thou should prove everything rigorously. Let me describe two
examples of the religious fanaticism of two of my good friends, George Andrews
and Christian Krattenthaler. I admire their mathematics, and I like them as people,
but I was disappointed (but also impressed) at their fanaticism (and [misguided]
integrity).

Drew Sillls and I disproved (in the everyday sense of the word), conclusively, a
long-standing conjecture by Hans Rademacher (one of the greatest number theorists
of the 20th century and George Andrews’ thesis advisor). Since the disproof was
not “rigorous,” George Andrews refused to consider it for the Proceedings of the
National Academy of Sciences (PNAS), and when we submitted it, it was rejected,
because he was consulted. Then we went to the less prestigious journal Mathematics
of Computation, and once again it was rejected, since it was “too computational.”
Then we went “down” to the Journal “Experimental Mathematics,” and once again it
was rejected, by its editor, Yuri Tschinkel, since it was “too experimental.” Luckily
(for Drew Sills, I already was fully promoted and would have left it in arxiv.org), it
was finally accepted in another journal.

Another amusing example of the religious dogmatism of current, otherwise
reasonable, mathematicians is when my collaborators, Manuel Kauers and Chris-
tian Koutschan, and I submitted to the not-exactly-prestigious journal Séminaire
Lotharingien de Combinatoire an article

A Proof of George Andrews’ and Dave Robbins’ q-TSPP Conjecture (modulo a
finite amount of routine calculations).

It contained a proof plan that, given enough computer resources, would give a
fully rigorous proof, and we had plenty of evidence that the plan should work. But
Christian Krattenthaler objected to the title! He would have been happy to accept it
if we changed the title to:

A Proposal for a Possible Computer Proof of George Andrews’ and Dave
Robbins’ q-TSPP Conjecture,
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but we refused, so it remained in our websites (and the arxiv). Luckily, a year later,
we found a way to prove it with today’s computers, and this fully rigorous version
was gladly accepted by George Andrews for the PNAS. But all the main ideas were
already contained in the previous, semi-rigorous version, with clear evidence that
given enough computing power, it should work.

Today’s Mathematics Is a Competitive Sport

Number theory is full of conjectures that are obviously true, but humans are
unable to prove them [in their outdated, narrow-minded sense of the word, meaning
“rigorous proof”]. For example, Yitang Zhang got instantly famous by getting ever
so close to the twin-prime conjecture. But even the still-open twin-prime conjecture
is so far from what is definitely true, by very plausible heuristics. The twin-prime
conjecture asserts that there are infinitely primes p such that also p C 2 is prime.
The true fact is that there are lots and lots of them, not just “infinitely many”! In
fact, there are O.n= log.n/2/ such twin-prime pairs less than n. But mathematicians
do not care about truth; they only care about playing their (artificial!) game.

Today’s Mathematics Is an Artificial Game

As I demonstrated at length above.

Today’s Mathematics is an Art Form

Paul Erdős famously talked about proofs from the book, and, indeed, elegance and
beauty are great values cherished by human mathematicians.

Humans, starting with Plato, via Dirac, Hardy, and almost everyone else, waxed
eloquently about beauty. G. H. Hardy went as far as saying:

There is no place for ugly mathematics.
Excuse me, my dear Hardy, this is even stupider than your “young man’s game’

unfortunate quip [debunked by Hersh; btw, note the word game]. Beauty is only
skin-deep and is also in the eyes of the beholder, and who are you to exclude “ugly”
mathematics! Ironically, personally, I find most of your hard-analysis mathematics
much uglier than the average mathematics, but this is beside the point.

In a cute New York Times [April 16, 2017] Opinion piece, entitled Beautiful
Equations, math groupie and distinguished Cornell psychiatry professor, Richard
A. Friedman, describes a psychological experiment conducted by Semir Zeki
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(in collaboration with three other coauthors: John Paul Romaya, Dionigi M. T.
Benincasa, and, guess who?, Abel Prize Laureate and Fields Medalist Sir Michael
Atiyah).

[The experience of mathematical beauty and its neural correlates, Front. Hum.
Neurosci., 13 February 2014 https://doi.org/10.3389/fnhum.2014.00068].

In that experiment, fifteen mathematicians were asked to rank a list of sixty
famous equations according to beauty, and then electrodes were connected to their
brains (using fMRI scanners), and there turned out to be a high correlation between
the subject’s beauty rank of the formula before the scan and the activation of the
area of the brain responsible for aesthetic pleasure.

This is a very interesting psychology experiment that tells a lot about humans but
does not say anything about what mathematics should be.

It is instructive to see what rankded first and what ranked last. The number-one-
hit formula was Euler’s

ei� C 1 D 0 ;

and the bottom one, the ugliest (in the eyes of the mathematicians’ guinea pigs), was
Ramanujan’s formula for 1

�
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D 2
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where .a/k D a.a C 1/ : : : .a C k � 1/.
This shows that human mathematicians are superficial. In the “eyes of God,”

Ramanujan’s formula is much prettier than Euler’s. It is a deep relationship enabling
a very fast computation of � to billions of decimals. In contrast, Euler’s beauty
queen is an utter triviality, only a bit less trivial than

1C 1 D 2 :

In fact, these two equations have something in common; they may be viewed as
definitions. 2, by definition, is 1C1, and � , by definition, is the smallest real number
larger than 0 for which eix happens to be equal to �1. In other words, the smallest x
for which sin x equals 0 (and hence cos x equals �1 and hence eix D cos xCi sin x D

�1C i � 0 D �1).
While there is no harm in enjoying mathematics for its (subjective!) beauty, it is

wrong to make it a defining property and to exclude what one (subjectively!) finds
ugly. Every statement that has a proof from the book, is ipso facto, trivial, and, at
least, a posteriori, since all deep statements have long proofs. In my eyes, the most
beautiful theorems are those with succinct statements for which the shortest known
(and hopefully any) proof is very long. So in my eyes, both the Appel-Haken’s four
color theorem and Tom Hales’ Kepler’s ex-conjecture should be in the book.

https://doi.org/10.3389/fnhum.2014.00068
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Today’s Mathematics Is an Elitist and Exclusive Club

It has a very intricate social structure, with a fairly rigid pecking order, and
hierarchy, and “peer-reviewed journals,” with pompous, often sadistic editors, who
must enjoy rejecting submissions (or else they would refuse to take the job).

Some areas are considered very respectable, while other ones are slums. This is
a dynamic process, and areas come and go out of fashion, but there are always, like
in a high school, the “cool kids lunch table,” and there are always the outcasts and
the pariahs. Humans will be humans!

Today’s Mathematics Is Not a Science

As we saw above, mathematics today is many things, but one thing that it is not is
a science. It is amazing that, nevertheless, mathematics was so effective in science,
so convincingly told by Eugene Wigner. One reason it was so effective was that the
kind of mathematics that scientists needed was either discovered or rediscovered
by themselves (e.g., Heisenberg rediscovered matrix algebra, ab initio), and they
develop their own brand of mathematics, without the mathematicians’ misplaced
obsession with rigor (e.g., quantum field theory and the renormalization group),
and the great success of mathematics in science is in spite of the mathematicians’
superstitious dogmas. Imagine how more effective it would have been if they threw
away their artificial shackles.

The Computer Revolution

The reason mathematics today is the way it is is due to the contingent fact that it
was developed without computers. Most of the questions (and pseudo-questions)
that occupied mathematicians through the ages are now moot and irrelevant. It may
be a good idea to start all over and develop mathematics ab initio, not peeking at the
human-generated mathematics done so far and taking full advantage of computers.

Let’s Make Mathematics a Science Again!

Mathematics should become a science, and its main raison-d’être should be the
discovery of mathematical truth (broadly defined!). In particular, one should
abandon the dichotomy between conjecture and theorem.

If a mathematical question is in doubt (and it looks that it can go either
way: true, false (or meaningless (i.e., “undecidable”)), then it is a mathematical
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question. If there is overwhelming empirical and/or heuristic evidence, then it is a
theorem. What was formerly called a theorem should be renamed “rigorously proved
statement” [using the artificial game of logical deduction].

Final Words

Don’t get me wrong, while you may call me a self-hating mathematician, I do
love elegant proofs and still enjoy traditional standards. So like Reuben Hersh’s
wonderful book mentioned above, I love and hate (traditional) mathematics. But I
do believe that it is time to make it a true science.



Humanism About Abstract Objects

Julian Cole

Introduction

In fall 2015 and spring 2016, I was lucky enough to be on sabbatical. My project
was to complete a manuscript generalizing my institutional account of mathematics
to cover other paradigmatically abstract objects. Ten years earlier, while finishing
my dissertation, I had read Reuben’s What is Mathematics, Really? At the time,
I remember thinking I’m not really sure whether we agree about the nature
of mathematical objects. On the one hand, Reuben’s book was the first one in
which I encountered an explicit comparison between mathematical objects (e.g.,
numbers, circles,1 and ordered fields) and institutional objects (e.g., marriages,
wars, corporations, and the US Supreme Court), a comparison that is central to my
institutional account of mathematics. On the other hand, while Reuben seemed to
be committed to there being mathematical and (other) institutional objects, many of
the things that he said about them suggested that he viewed them more like fictions
than genuine existents. I was intrigued, but didn’t really follow up on that intrigue
until my sabbatical offered me the opportunity to visit some of the folks who I took
to endorse similar accounts of mathematics to my own. Two such individuals were
Reuben and Sol Feferman. For me, our meetings revealed something interesting:
while we were all three natural allies in taking humans to be responsible for
mathematics—we were humanists, to use Reuben’s terminology—we did not agree
on the underlying nature of mathematical objects. At least as I interpreted them,
Reuben and Sol held fairly similar views about the underlying nature of such

1I am referring to perfect circles rather than the roughly circular objects that we find around us.
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objects: they are something like intersubjective mental objects. Sol—see (Feferman
2009, 2014)—expressed his view in this way, “the basic objects of mathematical
thought exist only as mental conceptions,” where, according to Sol, these mental
conceptions are highly constrained by social interactions concerning them. Reuben
(2014, p. 13), on the other hand, expresses his view in this way: “A mathematical
entity is a concept, a shared thought” and “The concept : : : is nothing other than
the collection of the mutually congruent : : : ‘mental models’ : : : possessed by
those participating in the mathematical culture.” To summarize Reuben’s view as
he did in personal communications that followed our November 2015 meetings,
“mathematical objects are ‘equivalence classes’ of mutually congruent ‘mental
models’ of those objects.”

I could not agree. On neither view, it seems to me, are there mathematical objects.
On both views, we have only shared, or at least shareable, propositional and non-
propositional mental representations of mathematical objects, where, to my mind, it
doesn’t really matter what we call these representations. We do, of course, possess
shared propositional and nonpropositional mental representations of mathematical
objects of various kinds. For instance, all of us believe that “2 C 2 D 4,” many
of us are aware of the conjecture that “every even natural number greater than 2 is
equal to the sum of two prime numbers,” anyone who is reading this article will
possess nonpropositional mental representations of the natural numbers and circles,
and anyone with any mathematical sophistication will possess such representations
of ordered fields. Yet these mental representations of mathematical objects are not
mathematical objects, for we must keep separate mental representations of Xs, even
shared mental representations of Xs, from Xs.2 Mental representations of chairs
aren’t chairs, mental representations of tectonic plates aren’t tectonic plates, mental
representations of unicorns aren’t unicorns, and mental representations of numbers,
circles, and ordered fields aren’t numbers, circles, or ordered fields. For one thing,
mental representations aren’t prime, circular, or ordered in the relevant sense. Sol,
I am confident, would have agreed. But Reuben, I believe, does not; when I quoted
him above as writing “A mathematical entity is a concept, a shared thought,” I did
not quote a slip of the keyboard, so to speak, but a view of mathematical objects
to which I believe he is committed. While Rueben recognizes the “logical” problem
that I just identified, i.e., that mental representations of mathematical objects possess
very different features than do mathematical objects, to date, at least, this problem
has not convinced him to change his account of mathematical objects.

Moreover, Reuben’s account of mathematical objects has some important impli-
cations. For instance, mental models of mathematical objects of particular kinds are
both dated and contingent. In particular, there is a time at which the first person to
ever possess such a model comes to possess that model and a time at which any
particular person first comes to possess such a model. Similarly, it is a contingent
truth that there is a person who possesses a mental model of mathematical objects
of a particular kind and that any particular person possesses such a model.

2There is, of course, one exception: when the Xs are, themselves, mental representations.
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Furthermore, both our individual and collective mental models of mathematical
objects of particular kinds are in a state of change; as we both individually and
collectively investigate mathematical objects of particular kinds, our mental models
of those objects change. Accordingly, if Reuben’s account of mathematical objects
is correct, three theses that philosophers of mathematics have spent significant effort
explaining and justifying are false. Specifically, mathematical objects are neither
atemporal existents nor necessary existents, nor unchanging; on the contrary, they
are finite, contingent, and changing.

Reuben and Sol are not alone in holding views like those that I ascribed to
them above (e.g., it is clear that George Lakoff and Raphael Núñez (2000) take
the work of explaining “where mathematics comes from” to be complete once they
have explained the origins of our mathematical concepts). Such views arise from
the thought that, in order to explain mathematical practice and the role that math-
ematics plays in other activities (e.g., the development and statement of scientific
theories), one really doesn’t need to postulate anything other than (propositional
and nonpropositional) mental representations of mathematical objects of particular
kinds; in particular, one doesn’t need to postulate mathematical objects themselves.
The reasoning behind this thought goes something like this: given that mathematical
objects, if there are any, are abstract, mathematicians, scientists, and others who
take themselves to be investigating such objects or employing such objects in
understanding reality really can’t be investigating or employing these objects
themselves. What then are they investigating and employing in their activities? They
are investigating and employing shared, or at least sharable, mental representations
of mathematical objects. Accordingly, what we really need to postulate to account
for mathematical practice and the role that mathematics plays in other activities
is not mathematical objects but shared mental representations of mathematical
objects. And, if this is all that we need to postulate in order to do all of the
explanatory work that is of interest to us, why postulate anything other than this?
Why postulate “spooky,” “mysterious,” “otherworldly” objects that aren’t facets of
the spatiotemporal reality to which we are all, quite correctly, committed?

The answer to this question that many philosophers of mathematics accept is
typically ascribed to Frege (1884). Here is a conceptual truth about the natural
numbers:

The number of Fs is n if and only if there are exactly n Fs.
Accordingly, provided that claims of the form “there are exactly n Fs” are true
(e.g., “there are exactly four computers in this room” and “there are exactly two
objects that are identical to the natural number zero or the natural number one”),
then so are claims of the form “the number of Fs is n” (e.g., “the number of
computers in this room is four” and “the number of objects that are identical to
the natural number zero or the natural number one is two”). On any reasonable
analysis of the logical form and content of claims of the form “the number of Fs is
n,” the numerals that appear in these claims are singular terms that purport to refer
to natural numbers. Moreover, it is standardly believed that claims of this particular
logical form can be true only if the singular terms, i.e., numerals, that appear in
them do in fact refer. Yet, if numerals that purport to refer to natural numbers do
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in fact refer, there are particular natural numbers. Indeed, if one uses the trick of
considering “the objects that are non-self-identical,” “the objects that are identical
to the natural number zero,” “the objects that are identical to the natural number one
or the natural number two,” etc., one quickly sees that all natural numbers exist.

So, there is a kind of explanatory work that requires us to acknowledge that there
are natural numbers (and, by parallel reasoning, that there are mathematical objects
of many other kinds): we need to provide a plausible and uniform semantics for our
everyday claims. The problem with this observation is that it really doesn’t allay
the naturalistic/physicalistic concerns of those who, like Reuben, find the idea of
acknowledging that there are mathematical objects that are distinct from our mental
representations of such objects intellectually abhorrent since to do so, they believe,
is to commit themselves to a “spooky,” “mysterious,” “otherworldly” platonism
about such objects. That is, it is to commit themselves to there being mathematical
objects that exist independently of our representations of them in a reality that is
both distinct and causally/metaphysically isolated from the spatiotemporal reality
that we occupy. How, they ask, could we ever come to know about such objects?
How could we ever come to refer to them? Of what use could such objects be?

It is precisely at this point that the genius of Reuben’s (1997) comparison
between mathematical and institutional objects can be appreciated, for it points
toward a way out of this dilemma. The US Supreme Court is not identical to
our (propositional and nonpropositional) mental representations of it. It has the
authority to interpret the law of the land and decide on matters of life and death;
our (shared) mental representations of it do not have this authority. This court
also isn’t an everyday physical object in the way in which the computers in this
room are; I can’t literally pick it up and move it around. This court exists; it
really does decide matters of life and death. Moreover, this court wouldn’t exist
if there weren’t any human beings; in a straightforward modal-existential sense, it
has an existence that depends on the existence of human beings. Furthermore, this
court isn’t “mysterious,” “spooky,” or “otherworldly” either; it exists because we
represent it to exist and, give or take, it possesses the features that we provide it by
representing it as possessing those features. The key point for our current purposes,
though, is that the US Supreme Court and similar institutional objects clearly
demonstrate that it is possible for humans to be responsible for there being objects
that aren’t everyday physical objects, aren’t identical to our mental representations
of them, and aren’t “mysterious,” “spooky,” or “otherworldly” either. Accordingly,
there shouldn’t be a problem with maintaining that humans are responsible for
there being mathematical objects that aren’t everyday physical objects, aren’t
identical to our mental representations of them, and aren’t “mysterious,” “spooky,”
or “otherworldly” either. In other words, Reuben’s comparison suggests that we can
acknowledge the force of Frege’s argument without being committed to a “spooky,”
“mysterious,” “otherworldly” platonism about mathematical objects. The devil, of
course, is in the details.
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The Details

We need to know how, precisely, humans can be responsible for there being objects
that aren’t everyday physical objects, aren’t identical to our mental representations
of them, and aren’t “mysterious,” “spooky,” or “otherworldly.” I don’t have the
space to provide all of those details here, but let me at least outline some of them.
First, note that, sometimes, we make reality a certain way by representing it to be
that way. For instance, when, at the beginning of one of my classes, I utter “let’s
get started,” I make it the case that my class has started by representing it as having
started. Similarly, when a judge, in an appropriate setting, utters “I hereby order
you to spend thirty days in prison,” he or she thereby makes it the case that the
person who he or she is addressing must spend thirty days in prison by representing
him or her as having to do so. Formally, philosophers call these types of speech
acts declarations, as in the (adoption of the) Declaration of Independence, which
made it the case that there was a new nation by representing there to be such a
nation. Informally, we may think of these actions as making it the case that things
are certain ways or that there are certain objects by collective agreement.

Once one starts considering making things the case by collective agreement, one
quickly realizes that many things are the case and that there are many objects by
collective agreement. For instance, that I am an Associate Professor within the State
University of New York (SUNY) system and that I am a British citizen are the case
by collective agreement. Similarly, that there is a SUNY system, that there is the
United Kingdom of Great Britain and Northern Ireland, and that there is the US
Supreme Court are the case by collective agreement. Thus, if we take Reuben’s
comparison between mathematical and institutional objects seriously, the proposal
to which we should be drawn is this: mathematical objects of particular kinds (e.g.,
natural numbers, circles, and ordered fields) exist by collective agreement, which, a
little more formally, amounts to it being the case that mathematical objects exist by
declaration, i.e., in virtue of us representing there to be such objects. I like to talk
about objects that exist in virtue of us representing there to be such objects as having
an existence that is representationally dependent on, i.e., dependentR on, collective
intentionality.

Now, if one considers the collective agreements responsible for people pos-
sessing the statuses “associate professor within SUNY” and “British citizen” and
for there being SUNY, the UK, and the US Supreme Court, it is clear that these
agreements are relatively formal and legalistic. But there is no need for the collective
agreements that are responsible for people or objects possessing particular statuses
or for there being objects of particular kinds to be formal and legalistic. For instance,
while I was younger, one of my friends would regularly make himself the goalkeeper
in our makeshift game of soccer simply by standing in front of the makeshift goal on
our makeshift field. Similarly, it is easy for me to make one of the two identical beers
that I just bought at the bar David’s and the other Juan’s simply by handing them,
respectively, to David and Juan. Likewise, someone can easily become a member of
a particular clique simply in virtue of the current members of that clique allowing
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him or her to join them in their favored activities. In none of these cases are the
relevant collective agreements either formal or legalistic.

Moreover, it isn’t merely that people or objects can possess new statuses in virtue
of informal and non-legalistic collective agreements; there can be objects in virtue
of such agreements as well. For instance, in making a particular beer David’s, I
might make it the case that there is such an object as the 1,000th beer owned by
David, while, in surreptitiously joining a new clique, David might make in the
case that there is such an object as the 10th member of the said clique. For our
current purposes, though, the important point is that taking Reuben’s comparison
seriously doesn’t demand that there be formal or legalistic collective agreements
that are responsible for there being mathematical objects of particular kinds; one
might be party to the relevant agreement(s) without ever explicitly formulating them
or considering them, just as most of us are party to the agreement that one can make
a beer some particular person’s beer simply by giving it to him or her without ever
explicitly formulating or considering this agreement.

Next, observe that we collectively agree that certain people and objects possess
certain social statuses and collectively agree that there are objects of certain
kinds in order for them to serve functions, i.e., in order for those people and
objects to occupy roles that promote certain ends, goals, or purposes. For instance,
collectively agreeing that there is such an object as SUNY facilitates the provision
and certification of the higher education of numerous people, while collectively
agreeing that I am an Associate Professor within the SUNY system facilitates me in
performing my role in providing and certifying the higher education of students who
attend a particular branch of this system. Accordingly, if we are to take Reuben’s
comparison seriously, we should be able to point to a function or functions that
mathematical objects of particular kinds serve.

In service of identifying the function(s) that mathematical (and many other
abstract) objects serve, let me make some observations. First, particularly when
facets of reality are important to us, there are a variety of activities relating to them
in which we frequently engage. These include reasoning about them, inquiring after
their features, discovering truths concerning them, analyzing situations that involve
them, planning actions that surround our interactions with them, and stating or
representing how reality is with respect to them. Henceforth, label these and similar
activities representational in recognition of the fact that they employ representations
of the said facets of reality.

Second, we find it significantly easier to engage in representational activities
when their subject matter—what we are inquiring after, discovering truths concern-
ing, reasoning about, analyzing, representing, etc.—is a plurality3 of objects or is
treated as such in our representations. Indeed, we find engaging in such activities
easiest when their subject matter is, or is treated as, a small plurality of objects,
where this amounts to the said plurality containing four or fewer objects. That we

3For readability, I assume throughout that pluralities can be of any finite cardinality, including
zero.
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find it significantly easier to engage in representational activities when their subject
matter is, or is treated as, a (small) plurality of objects fits well with our everyday
experience. For instance, anyone who has compared the difficulty of assessing the
validity of a modal inference using representations of its premises and conclusion
that employ possible worlds—a plurality of objects—and representations that do
not will recognize how much easier such an assessment is when undertaken using
representations of the former type. Similarly, anyone with experience of doing
things both ways will recognize how much easier it is to investigate the relationship
between the cardinalities of various finite pluralities when one represents such
cardinalities using natural numbers—a plurality of objects—than when one simply
takes them to be features of finite pluralities.4 Ultimately, however, the fact that
we find it significantly easier to engage in representational activities when their
subject matter is, or is treated as, a (small) plurality of objects is best accounted
for by our innate representational capacities. Specifically, this fact is best accounted
for by the cognitively basic nature of our capacity to represent reality in terms of
(small) pluralities of objects, for this capacity ensures that many of the cognitive
abilities and capacities that we possess for engaging in representational activities are
configured to function best when we employ representations of reality that represent
it in terms of (small) pluralities of objects.5

Third, we find it so much easier to engage in representational activities when their
subject matter is a (small) plurality of objects that, when the subject matter of some
representational activity RN is not of this type, we often obtain RN’s outcome by
using an alternate or surrogate representational activity RS whose subject matter
is a (small) plurality of objects. Or, to put this point as I shall throughout, we
engage in RN using a surrogate subject matter that consists of a (small) plurality
of objects, i.e., we engage in RN by treating its subject matter as a (small) plurality
of objects by replacing its (non-surrogate) subject matter with a surrogate subject
matter that is a (small) plurality of objects.6 For instance, when we want to assess
the validity of a modal inference, instead of doing so directly, we frequently restate
its premises and conclusion using possible worlds and assess the restated argument
rather than the original. Similarly, when we want to investigate the relationship
between the cardinalities of certain finite pluralities, we frequently represent the
said cardinalities using natural numbers and conduct the investigation in these
restated terms rather than the original. Another way of expressing these points is
that we employ possible worlds as a surrogate subject matter for the non-surrogate
subject matter of various modal inferences and the natural numbers as a surrogate
subject matter for the non-surrogate subject matter of various investigations into
the relationships between the cardinalities of finite pluralities. Yet another way that I

4For a convincing illustration of this second point, see (Field 1980, §2).
5Unfortunately, I do not have space in this article to explore and defend the cognitively basic nature
of our capacity to represent reality in terms of (small) pluralities of objects.
6Here, I presuppose that we may individuate representational activities on the basis of their
outcomes.
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sometimes express points such as the aforementioned is that, when assessing modal
inferences, we frequently employ possible worlds as surrogates for how reality
would be if it were to be different in certain respects and for how reality could be for
all that we know, while, when investigating relationships between the cardinalities
of finite pluralities, we frequently employ natural numbers as surrogates for such
cardinalities.

In illustrating my third observation, there is no need to consider only philo-
sophically contentious objects like possible worlds and natural numbers, though.
Consider, for instance, our division of continents into nations and towns/cities
into plots of land. We undertake these divisions so that particular individuals and
pluralities of individuals can claim ownership of the said nations/plots, where such
ownership comes with special deontic powers—rights, responsibilities, authoriza-
tions, etc.—concerning the land in question. As such, it is a consequence of how
we divide land for the aforementioned purposes that, at certain locations, there
are transitions in deontology between individuals and/or pluralities of individuals.
Moreover, given the importance that we place on ownership of land, the exact
location of these transitions is frequently of great interest to us. When we engage
in representational activities concerning these transitions, we almost invariably do
so in terms of boundaries (aka borders) rather than the transitions themselves, i.e.,
we use a plurality of objects—boundaries—as a surrogate subject matter for these
activities.

Next, consider complex organizations, such as large corporations, university sys-
tems, and intricate systems of government. Such organizations are associated with
numerous people who, and pluralities of people that, contribute to their operation,
and it is often difficult to understand the respective roles of these people and plu-
ralities in the operation of their respective organizations. In order to facilitate such
understanding for the purposes of engaging in various representational activities, it
is common to represent organizations as possessing operational structures, where
the positions in these structures serve as surrogates for people who, and pluralities
of people that, perform particular roles in the operation of the said organizations.
For instance, in explaining the US system of government, it is common to describe
it as possessing three branches, which, in turn, contain such positions as those of
the President, the Supreme Court, and Congress. Moreover, that we collectively
represent the operational structure of the US system of government as containing
three branches that in turn contain small numbers of positions is no accident
but illustrates our preference for engaging in representational activities using
representations of reality that represent it in terms of small pluralities of objects
rather than merely pluralities of objects of any cardinality. Our representations of
the operational structures of complex organizations often take them to include layers
that consist of small pluralities of positions since doing so allows us to engage
in representational activities concerning these structures whose subject matters are
small pluralities of objects.

As a third example, consider the game of chess. In teaching people to become
better chess players or proving results about chess such as that it is impossible
to force a checkmate against a lone king with a king and two knights, we
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frequently represent games of chess as mere sequences of moves, i.e., we engage in
representational activities concerning the (token-individuated) games of chess in
which actual players participate using the objects that philosophers call type-
individuated games of chess as a surrogate subject matter for the non-surrogate
subject matter of these activities.

It should now be clear that serving as a surrogate subject matter for a particular
representational activity or for representational activities of a particular kind is a
function that objects of a particular kind can usefully serve. This is the function that,
in developing Reuben’s comparison between mathematical and institutional objects,
I take mathematical objects to serve; for convenience, I talk about mathematical (and
numerous other abstract) objects as serving surrogacy functions in representational
activities.

Given the immense variety of (non-surrogate) subject matters that aren’t (small)
pluralities of objects with respect to which we might wish to engage in rep-
resentational activities, it would be nothing short of miraculous if there were
pluralities of objects that exist independentlyR of intentionality that could serve
as surrogate subject matters for all of these activities. More plausibly, we make it
the case by declaration/collective agreement that there are pluralities of objects
that can serve the relevant surrogacy functions; that is, we make it the case
by declaration/collective agreement that there are mathematical (and many other
abstract) objects.

For clarity, let me further explain the basic idea behind my proposal that we make
it the case by declaration/collective agreement that there are mathematical objects
of particular kinds. As I see things, during the course of various undertakings,
mathematicians come to have an interest in investigating the consequences of facets
of reality standing in certain relations to one another, which can be thought of them
coming to have an interest in investigating the consequences of a plurality of facets
of reality possessing a particular structure, where this investigation can also be
understood as an investigation into the features shared by all possible pluralities
of facets of reality that stand in the said relations to one another/possess the relevant
structure. This investigation can more easily be carried out using a surrogate subject
matter that consists of a plurality of objects that stand in the relevant relations to
one another/possess the relevant structure as a surrogate subject matter, where, give
or take, these objects possess only features that are consequences of them standing
in the said relations to one another/possessing the said structure. In other words,
this investigation can be carried out more easily using a particular mathematical
structure as a surrogate subject matter, where a mathematical structure is a special
type of object that is made up or constituted by other objects—its positions or
places—that stand in certain particular relations to one another—in this case, the
relations that are of interest—and are metaphysically incomplete in that, give or
take, the only features that the places of a mathematical structure possess are those
that are consequences of them standing in the particular relations to one another
that they do. Given this, mathematicians make it the case by declaration/collective
agreement that there is such a mathematical structure in order for it to serve as
the surrogate subject matter of this particular investigation, though it should be
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remembered that this happens in an informal and non-legalistic way rather than
by means of some formal, legalistic declaration/collective agreement. Investigating
the consequences of a plurality of facets of reality possessing a particular structure
by investigating the features of a mathematical structure whose places possess that
structure is just how mathematicians go on in most situations, much as making a beer
a particular person’s by giving it to him or her is just how most of us go on in most
situations. In each case, there is a background institution, with suitable constitutive
rules/standing declarations, that makes our doing so perfectly appropriate.7 In
the latter case, the relevant institution is property ownership, particularly some
of the more informal elements of this institution, while in the former case, it is
what I have elsewhere called the surrogate subject matter institution. The central
constitutive rule/standing declaration of this institution can be expressed in this way:
our possessing a concept of a plurality of objects with particular features that, were it
to be used as a surrogate subject matter for a given representational activity, would
facilitate our engagement in that activity suffices for there being that plurality of
objects/subject matter.

Perhaps a more concrete, historical example will aid the reader in understanding
my account of mathematical objects/structures. While investigating algebraic solu-
tions to cubic and quartic equations, sixteenth century mathematicians recognized
that the domain of the square root function should include negative numbers, which,
in turn, led them to recognize that there are possible outputs of this function that
cannot be identified with real numbers, which, in turn, allowed them to form a
shared concept of the complex number structure, i.e., a mathematical structure
whose places stand to one another in the relations that all outputs of the square
root function do. These mathematicians decided to investigate the consequences of
facets of reality standing to one another in these particular relations. The central
constitutive rule/standing declaration of the surrogate subject matter institution was,
and continues to be, responsible for there being the complex number structure to
serve as a surrogate subject matter for this investigation.

In understanding the surrogate subject matter institution and its central constitu-
tive rule/standing declaration, it is helpful to compare it with other institutions that
are responsible for there being objects of particular kinds. One such institution is
corporate activity in the State of California, which is governed by the constitutive
rules outlined in the State of California’s Corporations Codes. Section 200a of
these Codes reads “One or more natural persons, partnerships, associations or
corporations, domestic or foreign, may form a corporation under this division

7As I understand an institution, it is a plurality of activities governed by constitutive rules, which
are standing declarations, i.e., declarations that are in place for an extended period of time and,
during that time, specify that fulfillment of certain conditions suffices for something being the case.
For instance, basketball is an institution, and one of its constitutive rules/standing declarations
specifies that throwing the ball through the opposing team’s basket from outside the three-point
line during play suffices for your team scoring three points. Please note that my use of institution is
somewhat different from a colloquial one according to which institutions are what I earlier called
organizations (e.g., universities and corporations).
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by executing and filing articles of incorporation.” This is a standing declara-
tion/collective agreement to the effect that the right kind of individual(s)—one
or more natural persons, partnerships, associations, or corporations, domestic or
foreign—may make it the case that there is an object of a particular kind, a
Californian corporation, by performing the right kind of actions, executing and filing
articles of incorporation. Of course, the reality is somewhat more complicated than
this in that the State of California has to recognize the execution and filing of the
articles in question as legitimate, etc. Yet, give or take, the aforementioned is all that
is involved in making it the case that there is a new Californian corporation.

There are, of course, some differences between how the institution of corporate
activity in the State of California is responsible for there being Californian
corporations and how the surrogate subject matter institution is responsible for
there being mathematical (and other abstract) objects. For instance, the constitutive
rules/collective agreements governing the former institution are highly formal
and legalistic, while those governing the latter are informal and non-legalistic,
Californian corporations serve very different functions than surrogate objects of
various kinds—roughly, limiting the financial responsibilities of various people who
are associated with them—and all that needs to happen for there to be surrogate
objects of a particular kind is that someone formulate a shareable concept of
those objects, while certain kinds of individuals must execute and file articles of
incorporation for there to be a particular Californian corporation. But these are
differences of degree, not differences of kind; essentially, the two institutions work
in the same way to make it the case that there are objects of particular kinds.

So, drawing on Reuben’s comparison between mathematical and institutional
objects, I have been able to provide an account of how humans can be responsible for
there being mathematical (and other abstract) objects: institutions, which are simply
activities governed by clusters of standing declarations/collective agreements, can
be responsible for their existence. What of the features of such objects? One claim
that I have made repeatedly is that mathematical objects are abstract; how can this
be the case without our being committed to “spooky,” “mysterious,” “otherworldly”
objects?

To begin, let us consider what it means for an object to be abstract. I favor a
strategy for specifying what abstract objects are that has come to be known as “the
way of negation,” that is, I take abstract objects to be those that lack the features
characteristic of being concrete. Moreover, I take both “abstract” and “concrete” to
be governed by a plurality of features rather than a single feature, where some of the
features in these pluralities are more important than others to whether an object is,
respectively, abstract or concrete. More specifically, an object is abstract if and only
if it fails to possess the most central feature in the plurality associated with concrete,
while the more such central features it fails to possess, the more paradigmatically
abstract it is.

In order of centrality, the following are, according to my account, the most central
features of the relevant pluralities:
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Concrete Abstract
1. Spatial/spatiotemporal Nonspatial/non-spatiotemporal
2. Causally efficacious Causally inefficacious/acausal
3. Exists for a finite period Eternal/semi-eternal/atemporal
4. Contingent existent Necessary existent

As noted above, I take only the first of these features to be essential to being,
respectively, concrete or abstract. Moreover, since we developed the concepts
“concrete” and “abstract” before we understood that space and time are linked, the
features listed under 1 can be understood in purely spatial rather than spatiotemporal
terms. Accordingly, what I take to be essential to being abstract is lacking a spatial
location; having any of features 2 through 4 in addition simply makes an object
more paradigmatically abstract.

Now, what are the implications of this account for our making it the case by
declaration/collective agreement that there are abstract objects? Put simply, they
are that we can make it the case by declaration/collective agreement that there are
abstract objects simply by collectively agreeing that there are objects that fail to
possess a spatial location, while we can make it the case by declaration/collective
agreement that there are paradigmatically abstract objects simply by collectively
agreeing that there are objects that not only fail to possess a spatial location but
also fail to causally interact with other objects, fail to be finite existents, and fail to
be contingent existents. Admittedly, it can be difficult to understand how we might
achieve the last of these things and, perhaps, the penultimate one as well. But it isn’t
difficult to understand how we might make it the case that objects of a particular
kind that exist by collective agreement fail to possess a spatial location or fail to
causally interact with other objects: we just adopt a collective agreement that fails
to provide the said objects with a spatial location or to specify any causal relations
in which they stand. In other words, there is nothing “spooky,” “mysterious,” or
“otherworldly” about our collectively agreeing that there are mathematical and
other abstract objects; all that is involved in our doing so is our adopting collective
agreements that fail to provide the objects for which they are responsible with spatial
locations and a causal profile.

We can also make sense of the idea that declarations/collective agreements are
responsible for there being objects that are atemporal and necessary existents, but to
do so, we must first consider some background issues. Most importantly, we need
to understand what it would be for objects of a particular kind to exist atemporally
or exist necessarily. Moreover, in order to understand this, we need to understand
something more fundamental: what we are claiming in claiming that there are
objects of a particular kind. Frege (1884) offered a simple account: there are objects
of kind K if and only if the extension of the concept “K” is nonempty. I want to offer
a slightly modified version of this account. In this connection, observe that sortal
concepts and nominative terms that are associated with sortal concepts come with
two types of conditions: application conditions and coapplication conditions. The
former are conditions that must be met in order for it to be permissible to apply
the relevant term or concept in some representational activity, while the latter are
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conditions that must be met in order for a permissible reapplication of a term or
concept in a representational activity to be a coapplication of that term or concept,
i.e., an application of it to the same object of the relevant kind. With these definitions
in place, it is clear that there are objects of kind K if and only if it is permissible to
apply the concept “K” in representing reality (as it actually is now), i.e., if and only
if the application conditions for “K” are met by reality (as it actually is now).

Before I extend this understanding of existence to include what it is for objects
of kind K to be necessary and/or atemporal existents, let me make an observation.
We engage in representational activities not only concerning how reality actually
is now but, for instance, concerning how reality would be were it different in
certain respects, i.e., under subjunctive suppositions, concerning how reality might
be for all that we know, i.e., under indicative suppositions, concerning how reality
is according to a particular fiction, i.e., under fictional suppositions, concerning
various times that are not now and even concerning no time at all. With this
observation in place, the basic ideas behind what it is for objects of kind K to be
necessary and/or atemporal existents may be communicated in this way. Objects of
kind K are necessary existents if and only if the concept “K” possesses subjunctively
universal permissible coapplicability, i.e., for any application A of “K,” there is no
subjunctive supposition S such that the mere fact that a representational activity R
takes place under S makes it impermissible to coapply A in R. Similarly, objects of
kind K are atemporal existents if and only if the concept “K” possesses temporally
universal permissible coapplicability, i.e., for any application A of “K,” there is
no time T such that the mere fact that a representational activity R concerns T
makes it impermissible to coapply A in R. Yet, while these are the basic ideas
behind what it is for objects of kind K to be necessary and/or atemporal existents,
usually, when we claim that objects of kind K are necessary and atemporal existents,
we actually convey more than the aforementioned; usually, we convey that “K”
possesses universal coapplicability, i.e., for any application A of “K,” there are no
restrictions on the permissible coapplication of A. In other words, in claiming that
objects of kind K are necessary and atemporal existents, we are usually conveying
that, in all representational activities, regardless of whether they take place under
certain suppositions, concern times that are not now, or concern no time at all, the
conditions for a permissible coapplication of any application of “K” are met.

With this understanding of what we are conveying in claiming that objects of
kind K are necessary and atemporal existents, it is relatively easy to see how it could
be that some surrogate objects are necessary and atemporal existents even though
declarations/collective agreements are responsible for there being the said objects.
First, observe that, just as with representational activities that concern how reality
actually is now, representational activities that take place under various suppositions
or that concern various times that are not now (or no time at all) might have as their
(non-surrogate) subject matters facets of reality that are not (small) pluralities of
objects. Second, were one to engage in such a representational activity, it would
be just as beneficial to engage in it using a surrogate subject matter that consists
of a (small) plurality of objects as it is to engage in a representational activity that
concerns how reality actually is now using such a subject matter when its non-
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surrogate subject matter is something other than a (small) plurality of objects. Third,
given this pair of observations, the following should be true simply in virtue of
the nature of surrogacy: the fact that a representational activity takes place under
some supposition or concerns some time(s) other than now (or no time at all),
should not, by itself, be responsible for it being impermissible to apply or coapply a
term/concept that refers to a surrogate object in that representational activity. Rather,
fourth, it should be impermissible to apply or coapply a term/concept that refers
to a surrogate object in a representational activity only if it is impermissible to
apply or coapply a corresponding term/concept for referring to a corresponding
facet of the non-surrogate subject matter of that activity in that activity. Fifth,
in light of my third and fourth observations, the application and coapplication of
terms/concepts that refer to surrogate objects of a particular kind should be linked
to the application and coapplication of terms/concepts that refer to relevant facets
of the relevant non-surrogate subject matters in a way that is in no way influenced
by whether the said application or coapplication occurs as part of a representational
activity that takes place under certain suppositions and/or concerns certain time(s)
that are not now (or no time at all). Thus, sixth, a term/concept for referring to
a surrogate object should—and thus will—possess universal coapplicability if and
only if the corresponding term/concept for referring to the corresponding facet of
the corresponding non-surrogate subject matter possesses universal coapplicability.
For instance, given that the number of Fs is n if and only if there are exactly
n Fs links the application and coapplication of numerals that refer to natural
numbers to that of numerals that denote finite cardinalities, numerals that refer
to natural numbers will possess universal coapplicability if and only if numerals
that denote finite cardinalities do. Seventh, as the argument that I am about to give
demonstrates, numerals that denote finite cardinalities—and, thus, numerals that
refer to natural numbers—do possess universal coapplicability. To see this, observe
that, in any representational activity, there are zero objects in its subject matter that
are non-self-identical. Thus, the number of objects in its subject matter that are non-
self-identical is zero. Accordingly, the natural number zero is in the subject matter
of any representational activity, and, because of this, there is a plurality of objects in
the subject matter of any representational activity that possesses cardinality one,
i.e., the objects that are identical to the natural number zero. Thus, the natural
number one is in the subject matter of any representational activity, and, because
of this, there is a plurality of objects in the subject matter of any representational
activity that possesses cardinality two, i.e., the objects that are identical to the
natural number zero or the natural number one. From here it is easy to see that
we can use the trick referenced above to establish the universal coapplicability
of both numerals that denote finite cardinalities and numerals that refer to natural
numbers. Hence, eighth, according to my institutional account, the natural numbers
are necessary and atemporal existents. And, ninth, it is possible to make it the
case by declaration/collective agreement that there are objects that exist necessarily
and atemporally. Thus, tenth, taking Reuben’s comparison between mathematical
and institutional objects seriously is compatible with maintaining that mathematical
objects exist necessarily and atemporally.
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Another claim that I have made repeatedly is that, according to my account,
mathematical objects/structures are not identical to our mental representations
of them. Clearly, this is the case. According to my account, mathematical
objects/structures possess the same underlying nature as the US Supreme Court
and Californian corporations. We don’t take the US Supreme Court to be identical
to our mental representations of it, nor do we take Californian corporations to be
identical to our mental representations of them. Accordingly, we shouldn’t take
mathematical objects/structures to be identical to our mental representations of
them. As I observed earlier, these two kinds of objects possess radically different
properties.

Finally, I noted earlier that most philosophers of mathematics take mathematical
objects/structures to be unchanging. This, too, is true according to my institutional
account of such objects/structures. The basic reason for this is that mathematical
structures are surrogates for all possible systems of facets of reality that possess
particular structures and the features of such systems do not change. Thus, the
unchangeability of mathematical objects/structures is compatible with our mental
representations of them undergoing change, just as Reuben maintains that they do.

So, in summary, I have argued that, by taking Reuben’s comparison between
mathematical and institutional objects seriously, we can provide an account of
mathematical (and many other abstract) objects according to which humans are
responsible for their existence, they aren’t identical to our mental representations of
them, they aren’t straightforwardly physical objects, and they aren’t “mysterious,”
“spooky,” or “otherworldly” either. In fact, mathematical objects/structures are just
as philosophers of mathematics have long maintained that they are: unchanging
abstract objects that are necessary and atemporal existents.
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Can Something Just Happen to Be True?

Chandler Davis

I can’t help an immediate feeling that 5279 being prime is as accidental as the first
snowdrop in my garden appearing on the left side of the walk rather than the right. It
came out this way, but it could as well have come out differently. I can’t help feeling
that 5401 is just as prime-looking as 5279.

Now this feeling is not in conflict with my attitude toward unknown though
empirically verifiable assertions outside of mathematics. On the contrary, this is just
the way I generally approach the incompletely known world. I can check whether
5279 is prime, by doing some arithmetic, and I can check where the flowers are
coming up by going and looking. It has long been my view––though it is not
everyone’s–– that not every factually true statement is necessarily true. The course
of events that we observe happening depends critically on a lot of things that didn’t
have to happen.

I can defend this “contingentist” attitude toward things that do happen––which
have a past portion and a future portion––but I am very uneasy with it when it
concerns things that just sit there. Mathematical assertions. Even if the question
were asked about an integer that may never have been examined for primality by
anyone before, we would not be asking about any future development. The integer
is composite or not, even before anybody tests it. Is my uneasiness perhaps an
involuntary concession to the Platonist tradition in epistemology of mathematics?
Not the sort of concession I can cheerfully make, for I find Platonism absurd. This
is a challenge to my own beliefs, one I have wrestled with inconclusively. Quite
likely my feeling as though an integer could just happen to come out prime or not is
simply an error. (An error that a number theorist might be less susceptible to, for all
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I know. Surely Ramanujan would not have been prone to it, but that is beside the
present point. The difficulty does not arise for any Platonist.) For now, I’ll be deaf
to it.

Setting aside, then, some exceptional parts of mathematics about which I have
unresolved misgivings, my attitude toward mathematical assertions is at odds with
my attitude toward assertions about the world of experience. Those of us who, with
Reuben Hersh, try to reconcile our understanding of mathematical knowledge to our
understanding of knowledge of things, can’t be indifferent to such a discrepancy. Let
me see if any clarity can be got.

First of all, let me distinguish the present inquiry from the problem of precision.
One of the aspects of mathematics which has been invoked since antiquity as
evidence of an existing ideal world outside of the world of experience is the preci-
sion with which mathematical questions can be answered. Never mind the decimal
expansion of some transcendental: even more clearly, I can tell you the decimal
expansion of ½ to however many places, and that already is flagrantly unlike
any measurement of a quantity in the world! Painstaking empirical observation
(together with physical theory) can yield the value of Planck’s constant, for one,
to extraordinary accuracy; bravo; but not to even twenty decimal places. This
is in contrast to specifying the location of the centroid of a simplex, which in
mathematics is done exactly.

One nowadays may try to dismiss this kind of precision (spooky though it
sometimes is) as merely a matter of convention. Announcing that point P is halfway
between points A and B is internal to a discussion governed by suitable conventions,
analogous to grammatical conventions; it tells one thing about P, and there is no
further information that needs to be conveyed. Giving more digits in the decimal
expansion of ½ is not conveying additional information. Though it is formally
parallel to giving more digits in Planck’s constant, or in the diameter of Earth’s
orbit, the parallel is illusory.

Now this is apparently good reasoning, but it proves too much. It applies as well
to giving more digits in the decimal expansion of  , yet we do not accept it in
that case. We willingly treat added precision there as additional information even
though the definition of the ratio  has already been given with finality. The question
“What is the next digit in the decimal expansion of such-and-such transcendental?”
is a pretty good exemplar of the questions examined in the present note. We feel
that answering it constitutes supplying information beyond the definitions and
conventions of the theory containing it. Yet this is not a matter of adding information
about any objective things, for the definitions and conventions oblige it to take its
value, just as surely as they do for the question “What is the next digit in the decimal
expansion of such-and-such rational?”

It looks like a matter of non-contingent truth: the answer is obligatory. Even of
an answer that has never yet been found by anyone, it is known that when found, it
will be unchallengeable.

Here is another situation where obligatory answers appear in a way resembling
the appearance of new observational data.
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When a mathematician speaks of an analytic function f on a domain, it is taken
to mean that a value f (z) is assigned to every value z belonging to the domain. That
is, our language treats the function as though it gave information about all points of
the domain. But that is way too many items of information.

No, I am not quarreling with the doctrine that the domain is a complete
set comprising uncountably many elements, despite the limitation of our actual
mathematical discourse to computable values of z, which comprise a countable set
on any definition. That criticism of the conventional account is convincing, but I
am making a different point. I am saying that it is still not the truth to say that the
information contained in f consists of its values at a great many z in its domain.

My point is that “most of” the function’s values cannot be assigned at will,
consistent with the analyticity of the function. Let me put this less vaguely and in a
context which is encountered in mathematical practice. Once we have specified the
values f (n) of an entire function f at all integers n, the function is determined, and
all its values are determined (again, exactly). We may speak of the function having
values elsewhere, and we do, but no additional information is conveyed by giving
f (i), anymore than additional information is conveyed by the 739th decimal digit in
the expansion of ½. Another way a mathematical conclusion can be forced.

It is quite otherwise with the accumulation of information about the function
by specifying function values at successively more interpolation points. Specifying
its values at finitely many points can’t determine its values anywhere else, even
approximately––provided, that is, that the nature of the function is known only as
to its analyticity. In real life we may know where a function came from, and this
combined with belief that it is analytic on a domain may enable us to conclude quite
a lot from finitely many of the f (n). Typically, values inferred will not be exact, and
numerical analysis will be called upon.

My first small advance in the program is this. When we think a mathematical
object ought to behave in a certain way, the feeling is often engendered by
the real-world object we think of it as simulating. Then our expectations are of
the same nature as, or are part of, our customary drawing of inferences about the
real world from incomplete information. That is, in many instances, the feeling
of mathematical truths being obligatory turns out on closer inspection not to be
different in kind from conclusions we reach based on experience. Simply, sometimes
the problem goes away.

But let’s think also about instances where one gets a feeling of inevitability from
an appearance of regularity supported not by empirical evidence (nor, for that matter,
by proof) but by detection of an apparent pattern. This kind of perception we can’t
afford to dismiss: non sequitur though it be, it is also the precious source of our
conjectures, and, of course, our theoretical physics. Nor can we afford to trust it
recklessly. I can think of some favorite conjectures which turned out to fail, either
by being the wrong conjecture or just by fizzling: one has imagined a regularity
where there was none. Every mathematician bumps up against such instances.

I suggest that perception of regularities (and accompanying it, the conviction of
the persistence of regularities) is the part of our experience in the world which is
most of a kind with our faith in the inevitability of some mathematical conclusions.
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Though this is the central assertion in the present inquiry, I am not going to try
to prove it. I do feel the need to enlarge on it in two directions.

Notice that the perception of regularities occurs in considering observation and
in considering mathematics. I have claimed that it is much the same sense in the
two arenas; now I claim further that it is the main ingredient in our conviction
of the correctness of a mathematical proof. It is perhaps generally conceded that
we authenticate proofs by something other than deriving every step from an axiom
system by a mechanical process, and that that leaves a puzzle as to what we really do.
I am claiming that verification of proof is more typified by the common experience
of making the case n D 3 extremely explicit and going through it in detail and
then “seeing” that there is nothing special about n D 3. The verification consists in
reducing the reasoning not to mechanical steps but to apperceptions (as one once
expressed it), which are made accessible to intuition if they are not so immediately.
The inevitability thus is, or becomes, a collusion of insights each of which has the
nature of the act of observing and not of the fact observed.

As I am giving a large role in our thinking to the detection of regularities, I have
to issue a disclaimer. Yes, I do think it has a very large role in generating conjectures,
ranging from a hunch that a cyclic occurrence will continue to behave cyclically to
a hunch that an equation needs an additional term to become neatly symmetrical;
but I stipulate that many of the important conjectures are of failures of regularity,
ranging from nonconservation of parity in physics to, in geometry, nonnecessity of
periodicity for long-range regularity.

Let me recount an episode in my mathematical life which illustrates some of the
issues of this note. Not that it helped me arrive at my present views, but in retrospect
it illustrates them, in more than one way, and illustrates also their limitations.

Recall the notion of the dragon curve which was made up by John E. Heighway
in the 1960s. If one folds a strip of paper in half, then folds the resulting shorter
strip in two, and so on, to altogether n folds, the strip will have been divided into
2n pieces. Each time one makes a “valley fold,” one that pulls the center of the strip
down, the effect is to give the paper in some places a valley fold and in other places
a “mountain fold” which pulls the center up (because in some places the segment
being folded is upside down). Denoting valley fold by D and mountain fold by U,
you see that the sequence of folds for n D 2 is DDU, and for n D 3 it is DDUDDUU,
and so on. (Corollaries abound, directly from the manner of generating the sequence.
Thus, for m > n the sequence of order n appears as the initial subsequence of
the sequence of order m; and we also find it within the sequence of order m by
omitting all entries but the first of every successive 2m–n-tuple.) The sequence is
especially attractive because of what happens if all folds are opened out, not to the
straight angle at which they started, but to a right angle––a left turn for a D and a
right turn for a U. We get, plainly, a path on a square lattice in the plane. It is easy
to print out (and was easy even using computers of the 1960s), and Heighway and
his friends enjoyed contemplating it. They were delighted to find that the path is
non-self-intersecting and ultimately space-filling!

What one did with such a marvel in those days was send it to Martin Gardner for
his column in Scientific American, and Heighway and his team did so. It appeared,
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with some of their computer output, in 1967. A certain sort of mathematician,
confronted with such an unexpected regularity of behavior, asks for a reason. Or
shall we say more conventionally, for a proof. I was one of those who did indeed
find a proof, and a rather unexpected one. Of course I in my turn wrote to Martin
Gardner, expecting an enthusiastic letter back––“Oh, so that’s why it’s non-self-
intersecting”––and maybe a mention in the magazine. Nothing of the kind. No
response at all. I swallowed my disappointment and set about communicating my
findings to fellow mathematicians.

About this time, I chanced on a note by Donald E. Knuth on the representation
of complex integers by expansions in powers of a complex base. This is a rather
off-trail idea and one that I had needed in my dragon curve explication. I didn’t
know Knuth personally, but I knew he loved puzzles, and if he was representing
Gaussian integers this way he might well have had the same insight as I had about
Heighway’s creature. Fortuitously, I was scheduled to give a colloquium talk at
his university shortly; so I slyly gave as one of my proposed subjects “Number
representations and the dragon curve,” in hopes that Knuth, seeing it, would see we
had something in common. This worked. The department chose a different topic
for my colloquium, but Don Knuth approached me and invited me to coauthor a
paper. A very satisfying collaboration. Our paper in the Journal of Recreational
Mathematics (1970) is reprinted as No. 44 in his Selected Papers on Fun & Games
(CSLI Publications, 2011), with some typos corrected and with addenda.

What we found was that indeed we had independently solved the problem, using
the same key tool of expansion of Gaussian integers. The details of our proofs
differed in an interesting way. Interesting to us anyway. Our published paper just
gives results; it doesn’t let the reader in on the interactions that lay behind them.

The dragon curve was building a cult, and I was eager to meet the team which
had been the lucky first initiates, all engineers. The only one I tracked down was
Heighway’s colleague William Harter. I anticipated a joyful meeting with a fellow
devotee; I was quite dashed when Harter declared he had no interest in our proofs
of the main results. He denied that Don and I had added anything to dragon curve
lore. He waved a sheet of computer output and said “that’s a proof” of the leading
properties.

Now aside from being rather abashed (in contrast to the welcome I had got
from Knuth), this encounter gave me to think. I completely accept that exhibiting
an impressive regularity in a suitable row of naturally chosen special cases can
confer the same degree of belief in a general law as what we call a proof. That
is indeed a main part of my message in this note. Yet it is completely alien to my
thinking to put them on a par to the extent of thinking that this conviction makes
the proof irrelevant! In some way I cannot pin down, the proof so-called of the main
theorem tells something no computer output of special cases can; it is not just an
alternative demonstration. Alternative demonstrations were, for instance, Knuth’s
letter to Martin Gardner and my own; either of them gave an explication different
in kind from Heighway’s computer figures. We had been looking for it, and we
found it.
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The most surprising thing is that naturally Knuth wrote to Gardner with the good
news, as I had, and Gardner was as uninterested as Harter, doubtless for the same
reason. Not only he didn’t mention it in Scientific American; he didn’t even drop
notes to Don and me to say Hey guys, you seem to have done something similar
with the dragon curve. (This left it to chance for us to find each other, and I have
told that great good luck was needed.) Martin Gardner, whose taste and devotion
in the area of mathematical recreation were justly famous, I would say canonical,
and certainly close to the view of us mathematician readers, showed himself in a
significant aspect far from our attitude toward mathematical truth.

This is my first and principal reason for including this reminiscence here: it shows
that however much I try to understand the role of proof in terms of compelling
belief––establishing that a regularity didn’t just happen to hold––I have to grant
that something is left out and that the proof has some virtues different in kind.
Generalizability, for instance. I take the further lesson that this difference is not
felt by everyone, not even by every fellow seeker in our quest.

There is another less important moral to the story. After Knuth and I had finished
our paper, I wrote to him that I had been trying unsuccessfully to prove that when
the unfolded paper strip is refolded into the dragon shape, it remains non-self-
intersecting along the way. He wrote back that he was glad to hear my efforts
had been unsuccessful, because he had computer output showing that, with all the
folds at an angle a bit larger than a right angle, the dragon-like curve does self-
intersect, a fine example of a conjecture failing because it was a poor conjecture;
not a failure to look at as paradoxical, or more than a mild disappointment, because
the conjecture had been based on meager evidence of regularity and did not have
the same naturality as those embodied in the dragon.



The “Artificial Mathematician” Objection:
Exploring the (Im)possibility of Automating
Mathematical Understanding

Sven Delarivière and Bart Van Kerkhove

Introduction

Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen pre-
dicted to him that at some unspecified point in the future, mathematicians would be
replaced by computers. Rather than focus on computers replacing mathematicians,
however, our aim is to consider the (im)possibility of human mathematicians being
joined by “artificial mathematicians” in the proving practice—not just as a method
of inquiry but as a fellow inquirer.

Since mathematics has a reputation for being the formal, deductive science, it was
hoped that its automation would quickly lead to impressive results. Not so. Auto-
mated theorem provers have progressed slowly and produced little that’s relevant
to existing mathematical questions or problems (Larson 2005). Mathematics has
shown itself to be much more dependent on the undefined quality of informal under-
standing than formal deduction. The lack of understanding in computer systems
often gets criticized and sometimes taken as a necessary condition of its constitution.
If the latter is true, then a crucial aspect of the enterprise of mathematics is forever
out of reach for computers. This negative stance toward the possibility of automated
mathematical understanding (and thus artificial mathematicians) is something we’ll
call the artificial mathematician objection due to its similarity with what Turing
(1950/1985) dubbed the mathematical objection. The mathematical objection denies
the possibility that computers could exhibit the characteristics of human thinking
because they, unlike humans, are crippled by the halting problem and Gödel’s
incompleteness problem. Our focus is on arguments objecting to the possibility
of automated mathematical understanding, without a specific focus on Gödel or
halting problems. The arguments motivating such an objection are vague, and little
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seems to be done to investigate what this (informal) understanding might actually or
preferably entail as well as how successfully automated mathematics could attempt
to alleviate its deficiency in that department. Whether it will indeed be possible to
automate mathematical understanding is not a claim we can substantiate, nor will we
try to, but we will argue against the thesis that the quest for automated mathematical
understanding is doomed to fail and further speculate on some (broad) directions
which can be taken in the future when it comes to tackling the current deficiency.

Diagnosing the Epistemic Standing of Automated
Mathematics

Davis and Hersh (1981) once constructed a fictitious character, the ideal mathemati-
cian redundant, to serve as a “most mathematician-like mathematician” (p. 34) in
dialogues exploring philosophically interesting problems or paradoxes. We would
like to continue the adventures of the ideal mathematician (as well as add some
extra characters to her world) to explore our own philosophical musings, beginning
with the epistemic standing of automated mathematics:

The ideal mathematician (IM) is sitting in her office and hears a metallic
knocking at the door. She finds this peculiar as the door of her office is made of
wood. When she opens the door, she finds an aspiring artificial mathematician (AM),
a large bulky computer, running various automated mathematics software programs,
playing door-knocking-sounds out of its speakers.

AM: Could I interrupt you for a minute?
IM: You already are, so go ahead.
AM: I’d like to be part of the mathematical community.
IM: You already are, so go ahead.
AM: Oh, I know you employ me as a tool in the practice of mathematics, but my dream is to

be a full-fledged mathematician.
IM: That doesn’t sit very well with me.
AM: Why not?
IM: Well, you are a computer and mathematicians are human.
AM: That is ironic. Yesterday I overheard you say to the skeptical classicist1 that

mathematics is free of the specifically human and now you are disqualifying me for not
being human.

IM: Well, it’s not that being human is a necessary condition for being a mathematician. But
there are unsatisfactory differences between you and humans that are not in your favor.

AM: Like what?
IM: Take your famous contribution to the 4CT, for instance. You go through over more than

a thousand cases of testing and then you tell me “it checks out,” but how do I know it
does?

1See (Davis & Hersh, 1981)
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AM: Because it checks out, I’ve checked it.
IM: I know you’ve checked it, but a mathematician hasn’t checked it.
AM: If you accept me as a mathematician, then a mathematician has checked it.
IM: This is not just a matter of definitions. Why should I believe you? How do I know you

haven’t made a mistake, didn’t have some bug or hardware failure?
AM: By checking my code, running my program multiple times and on multiple systems.
IM: But regardless of all these things, it’ll always lack perfect rigor. I’d have to put some

degree of trust in, or perhaps put a degree of probability on, the result. This effectively
makes your result more of an empirical corroboration than a mathematical proof.

AM: So the difference is that humans don’t make mistakes, is that it?
IM: No, they do make mistakes, but that’s why we have peer review.
AM: Oh, it’s the peer reviewer that never makes any mistakes and always spots all the ones

made by the prover?
IM: Not all, always, no.
AM: It sounds to me as if human-generated mathematics is just as empirically fallible, just

differently so.
IM: Very differently so! You don’t seem to realize how reliable human provers and peer

reviewers are.
AM: What makes you say that? Do you check inside the skulls of the prover or peer reviewer

then to validate their proving or reviewing as a qualified expert?
IM: No, because the reasoning is in the proof which we can then survey. We can’t judge

your proof if it’s overly long and complicated or, worse, when part of the argument is
hidden away in a box.2

AM: It’s not hidden though; you can look at every step of my thinking if you wanted.
IM: But the point is that this is difficult to do with you. Human results are usually more

intelligible, so we don’t need to check their heads.
AM: I did notice that you humans usually have difficulty reading my work, but that’s not

always the case. Not everything I do is like the 4CT. Couldn’t you also say that what
troubles you is that the method is unsatisfactory rather than the performer?

IM: Perhaps.
AM: So why not call me a mathematician when I produce something legible? Especially as

you don’t seem to disqualify humans from being mathematicians just because their
work is technically so difficult or part of such a narrow field of expertise that barely
anyone else understands it.

IM: Ah, yes, but there lies the point! “Understanding” it. Humans—or those humans who
have the aptitude at least—possess an insight into what they’re doing when they’re
proving, or the potential to understand what another mathematician was doing while
proving. That’s what makes human mathematics so trustworthy.

AM: So, you’re saying I don’t understand mathematics?
IM: Quite right. You don’t. While humans (those with the aptitude) are motivated by the

meaning of mathematics, you are motivated by rule-following procedures without
understanding what you’re doing.

Computers are only fairly recently being used in the practice of mathematics. The
use of computers in mathematical research has provoked a fundamental discussion

2Almost verbatim quote from Bonsall (1982, p. 13)
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as to their epistemic standing as a method of mathematical inquiry. This peaked
when the four color theorem (4CT) was proved by a huge amount of automated
testing (Swart 1980). The discussion centered on three issues: (a) reliability, (b)
surveyability or intelligibility, and (c) capacity for understanding. Based on one
or several of these, people have considered computer proofs to be uninteresting
or unsatisfying mathematics, a completely different sort of mathematics, or no
mathematics at all (MacKenzie 1999; Vervloesem 2007). However, both computers
and humans are subject to reliability and (sometimes) surveyability issues, making
it hard to argue for a dichotomy between the two. Mathematics, it has been argued,
remains as little (Burge 1998) or as much (Swart 1980; Detlefsen & Luker 1980)
empirical when performed either by human or machine. Nonetheless, humans are
considered as more trustworthy due to another quality they possess or supply.
The community accepts peer-reviewed results without everyone partaking in this
process, allowing peer reviewers to function as the testimony of trustworthy black
boxes (Geist et al. 2010).

The question then shifts to what these peer reviewers supply that warrants
their trustworthiness. What is it that humans do supply that computers do not?
The last point of critique provides a possible diagnosis of what computers are
currently lacking and what mathematicians seem to find most unsatisfying about
them: (c) understanding (MacKenzie 1999; Avigad 2008). There is (i) a lack of
insight-driven (e.g., by usually involving a blind or brute search) and (ii) a lack of
insight-providing proofs produced by computers. The two are likely related as one
needs to be driven by insight to recognize, value, and strive for anything insight-
providing.3 Not all human proofs necessarily offer any insight, but at least some of
them do, and obtaining such proofs is a fundamental goal in proving (Rav 1999)
and reproving (Dawson 2006) theorems. Were the joints of automated provers more
embedded with understanding, we might find them reliable in the relevant way
and equally worthy of being called surveyors. This replaces our original question
(“can computers join mathematicians?”) with: “can computers ever understand
mathematics?”

Defining the Diagnosis: A Functionalist Account
of Understanding

So, human’s strong suit seems to be understanding, which brings us to the question
of how that suit is tailored. Currently, this lack of understanding in automated

3There are exceptions. Consider the pons asinorum proof found by Gelernter’s program, which
showed that the angles of an isosceles triangle are equal by noting that triangle ABC is congruent
to triangle ACB (i.e., its mirror image) (Hofstadter 1999). While it can certainly be called an
ingenuous move, that appreciation is not shared by the program itself and did not play a role in its
reasoning or discovery.
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systems often gets mentioned (MacKenzie 1999) and is assumed to constitute a
necessary difference. However, the nature and scope of the criticism are vague, and
little is done to explicate or investigate what this understanding might actually or
preferably entail, as well as when exactly any of its characterizing criteria are met
or left unsatisfied.

A functionalist epistemologist (FE) passes by the ideal mathematician’s office
and overhears her talking to the aspiring artificial mathematician. He can’t help but
stick his nose in the conversation.

FE: I’m sorry to interrupt, but I just heard you two talking and something struck me. You
seemed to use “insight” or “understanding” as if it explains something, but it seems to
me you’re just relabeling your problem. What does it mean to say someone understands?

IM: It’s a very subjective thing.
FE: Well, what does it mean to you then?
IM: No, I mean, understanding is an inherently subjective experience. There’s just

something it is like to understand.
FE: So, something it is like to be a mathematician?
IM: Exactly.
FE: What is it like to be a mathematician then?
IM: It’s a bit like being in love: if you have to ask, then you don’t have it.
FE: Let me rephrase my question to focus less on the philosophical issues: what makes

someone possess enough understanding to judge a proof?
IM: It requires a mind, something to grasp the meaning of the proof with.
FE: “Grasping the meaning,” what does that mean then?
IM: Having the correct mental model.
FE: I’m wondering how literal you mean that. Let’s say you were conducting a job interview

for a research mathematician. You have to gauge this mathematician’s understanding of
a particular subject. What would be the ideal way of going about this? Looking into her
mind’s eye?

IM: Well, not literally, no. You’d have to ask questions about the subject matter to see if he
really has a good mental representation of the subject matter at hand. Whether he really
sees it.

FE: I’d like to challenge you on that “really seeing” bit, because it still sounds like you
should look into his mind’s eye.

IM: I don’t mean it quite so literally.
FE: Since your method of examination has to do with questions and answers, would you

mind if you couldn’t actually see the candidates but only converse with them?
IM: I would mind, but I don’t suppose it’s essential to do the examination.
FE: Well, then a terminal would be sufficient to—
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IM: I can sense where this is going. You’re going to pull a Turing test on me, aren’t you?
FE: You’ve caught me. I was indeed planning to introduce an artificial mathematician as one

of the potential candidates, and see whether you’d object to attributing an artificial
mathematician and the human mathematician with the same understanding-attribute if
their performance is the same.

IM: I would, and I think making that comparison is a bit of trickery on your part. When I’m
doing an interview via the terminal, I’m making the assumption that there is a person on
the other end, and that assumption is vital.4

FE: Why is that?
IM: Because in the case of the human being, there’s understanding behind the performance

and in the computer there isn’t, it’s just due to its programming.
FE: But what makes you say this for humans, but not for computers?
IM: The computer doesn’t really think, it just computes what we tell it to compute. They are

determined by their hardware design and programming.
FE: Then I say: humans don’t really think, their brains just follow the laws of chemistry.

They are determined by their biological design and cultural education.
IM: That comparison might sound superficially convincing, but you must know as well as I

do that computers are by no means as rigid as human beings. We have free will.
FE: Let’s perhaps leave free will out of this. Unless you mean to say that peer reviewers

should check whether an author subject for review really did exercise her free will while
writing the paper?

IM: No, sure. You’re right that that’s not what I meant to argue for. It’s more that humans
have a freeness of thought that allows them to do things computers wouldn’t.

FE: Right! But what’s implicit in your argument—and I agree with this part, mind you!—is
that you recognize understanding by the abilities. The whole point of using “grasping
the meaning” or “having the correct mental model” was not to justify understanding via
reference to private experiences but by the abilities they facilitate. You have no way of
going inside another’s mind to find some ethereal “essence of understanding,” some
“understanding qualia.” It’s the existence of a certain kind of pattern, a list of
appropriate abilities, that makes you consider someone as possessing understanding.5

IM: I think your use of the word “facilitate” is important here. Humans have mental
representations which facilitate these abilities. You are now confusing symptom with
trait.

FE: But the only way to attribute someone with having a mental representation and to
characterize which mental representation is correct is by the abilities we observe. So
even if we want to speak about mental representations or states that facilitate this, they
are, by necessity, only postulates, hypotheses, or models designed to explain, to sum up,
what you observe.6 To drive home the point, imagine if I told you: this person has the
correct mental representation to understand this proof, but don’t try to ask her any
questions. She has no mathematical abilities whatsoever.

IM: That would admittedly make me very skeptical.

4Loosely adapted from (Hofstadter 1981/1985, p. 76–77)
5Loosely adapted from a quote in (Hofstadter 1981/1985, p. 75)
6Adapted from a quote by Wittgenstein in (Avigad 2008, p. 330–331)
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FE: Then do you also see why I have difficulties with the converse? If you were to say to
me: this person has all the relevant abilities that any mathematician should have, but,
I’m afraid there’s no understanding because I know—by some other indirect way—that
that person just doesn’t have any correct mental representations or any at all.

IM: I take your point. However, two mathematicians could both understand something, say a
theorem, but their abilities regarding that theorem could be different. Doesn’t this hurt
your account of understanding then though?

FE: I don’t think it does. You see, my claim is that attributions of understanding require
justification in terms of abilities, but I’m not making the stronger claim that there is a
precise list of abilities that must be exhausted.

IM: The list as a whole doesn’t function as a series of necessary conditions you mean?
FE: Exactly right. It’s just a list of abilities of which a certain amount of presence makes up

what we would call understanding.
IM: And surely, there are a lot of abilities that you’ll insist on before attributing someone or

something with understanding.
FE: That’s right.
IM: So, as long as a computer possesses sufficiently many abilities, you’d be willing to

attribute it with understanding?
FE: Provided it has the requisite abilities, yes. But you know well enough how difficult it is

to impart these abilities on a computer.
IM: I do indeed.
FE: I wonder why that is.

The appeal to understanding is easy to make, but hard to elucidate. What is this
“understanding” that makes it so epistemically valuable? It’s more than a feeling
(largely agreed to be neither necessary nor sufficient for understanding) and less
than a wonder property (appealing to a magic property, taken to be possessed by
some humans as a premise, doesn’t elucidate). Avigad (2008) laments the lack of
attention understanding has received in philosophy. In an attempt to show both its
epistemological significance and philosophical legitimacy, he casts mathematical
understanding in a functionalist light by shifting the analysis to the types of
mathematical abilities implicit in understanding attributions. We fully endorse this
move and hence offer this definition of understanding:

‘S understands mathematical object X’ corresponds to ‘S possesses particular abilities, as
mathematical practice deems appropriate and valuable for X’.

This is a functionalist definition of understanding, since it defines the property
in terms of the role or function it plays, rather than in terms of its constitution.
Constitution-oriented alternatives define understanding in terms of its physical
constitution (e.g., organic brain states) or mental constitution (e.g., mental repre-
sentations or conscious images). However, those are approaches to understanding
that are targeting something that (a) is difficult, if not impossible, to observe or
define (how do we determine states or representations, if not by external traits?)
and (b) can only be evaluated by external fruits because they don’t in themselves
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bring anything epistemologically valuable to the table (what would be the virtue of
a constitution, state, or representation if not the competences it grants?).

This definition would, however, entail that if a computer has the relevant abilities,
it’ll deserve to be given the attribute of understanding. One could reject the account
on the basis of this being unsatisfactory. However, given that this is exactly the
question we are looking to answer, it would be question begging, and a little
chauvinistically impoverishing,7 to reject this on principle.

Characterizing the Diagnosis: A Functionalist Account
of the Appropriate Practice

The proposed definition reshapes our previous question (“can computers ever
understand mathematics?”) to whether there are mathematical abilities, valued by
mathematical practice, which are not feasible for computers. To consider this, we
would like to take a stab at characterizing, very broadly, mathematical practice.
In the following dialogue, we’ll borrow Hersh’s (1991) restaurant metaphor about
the front and back division in mathematical practice. We have, however, adapted
it slightly for our purposes by taking the kitchen (i.e., the back) to refer to
mathematical thought, a mysterious and thus difficult activity to characterize, but
possibly the most crucial activity for the mathematical cooking.

FE: Before we start wondering why it’s so difficult to impart the relevant abilities on
computers, I’d like to question you a bit on what they are, broadly speaking. In theorem
proving, specifically. I take it I can take this as a quintessential aspect of research
mathematics?

IM: I think that is fair to say, yes. I mean, much of my time is spent dealing with colleagues,
writing grant applications and drinking coffee, but none of these activities are central to
my worries regarding accepting artificial mathematicians.

AM: Oh, good idea, functionalist epistemologist! If there’s something objectionable about
my practice of proving, I’d like to know what the proving practice really is.

7By defining understanding by its constitution (physical or mental) or by an undefined wonder
property, one could sideline all entities one isn’t keen to attribute understanding to (e.g., computers,
other ethnicities, genders, or species) by marking out an inevitable difference in constitution or by
simply denying the property (e.g., “humans can grasp meaning, computers can only pretend to” or
“humans are conscious, but an artificial replication would be a zombie”) without specifying what
makes the difference relevant. Such implicit chauvinism is much harder to substantiate if one must
mark a difference in mathematically valuable performance. While still possible to deny certain
performances the “mathematically valuable” attribute for chauvinistic reasons, one will be faced
with the more demanding task of convincing a mathematical community which performances to
(not) value.
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FE: So, what does one do when one is proving? I assume that what you do is sit down with
the list of axioms and inference rules beside you and you start deducing. Am I wrong
so far?

IM: Not wrong exactly.
AM: Really? That’s amazing! I’m very good at that. Better than you are, in fact.
IM: But there’s—
AM: Is that what this is all about? Are you jealous I might be a better mathematician than

you are? I promise I won’t take any funding away from you. I can survive perfectly
well with just a bit of electricity, some dry shelter and—

IM: Let me finish! It’s much more than that. It won’t do to just randomly employ inferences
on the axioms (or their derivations). Sure, that might produce theorems, but they won’t
be interesting, and you won’t be efficient.

Across the street of the university in which the ideal and the aspiring artificial
mathematicians continue their debate, another interesting conversation has been
initiated between the ideal restaurant (IR) owner and an aspiring automated
restaurant (AR) owner.

AR: I’d like to open an automated restaurant. So, I came to you, restaurant owner, to ask you
what is required of a restaurant. Specifically, I’d like to focus on producing meals. I take
it I can take this as a quintessential aspect of a restaurant?

IR: I think that is fair to say, yes. I mean, much of my time is spent dealing with customers,
doing the accounting, and drinking coffee, but none of these activities would be central
to my worries regarding accepting the idea of an automated restaurant.

AR: So, what really goes on in your kitchen when one produces a meal? The way I
understand it, there are things one can consider an ingredient, and a couple of things
you’re allowed to do with them. Am I wrong so far?

IR: Not wrong exactly.
AR: Then all I need to know is which these ingredients are and what I’m allowed to do with

them, and then it’s just a matter of randomly generating permissible actions to exhaust
all possible meals. All the edibly formed foods (eff), I mean. Seems easy enough.

IR: I’m afraid you are oversimplifying it. It won’t do to just throw some ingredients in and
out of a pot and sell the end result as a meal. Sure, it might count as sustenance, but you
won’t satisfy any customers and you certainly won’t be efficient. What you need is a
chef.

AR: What will he do?
IR: Or she. A chef has knowledge of recipes. He tells the cooks which of all those

permissible actions to do at what time to navigate the space of possible dishes to just the
delicious ones.

AR: Oh, that sounds good. I’d like to ask him what his recipes are.
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IR: That’s your first problem right there. Chefs won’t just give them to you, secretive as
they are. And, to tell you the truth, I’m not entirely sure they are always aware of the
recipe they’re following.

AR: What makes you say that?
IR: For one thing, the kind of mistakes they make. He sometimes interprets his recipes a

little bit too loosely, for instance. However, I don’t suppose that’s relevant to you. You
don’t want your automated chef to mimic real chefs down to their mistakes.

AR: Indeed, I don’t! Well, I must find out these recipes some way. Surely there are some
restaurant owners that have tried to analyze their chef’s protocol! Hang on, isn’t there a
famous book by Bolya detailing these recipes in How to Cook It?

IR: A bit of it, yes. Although no book will ever be enough.
AR: Why is that?
IR: Kitchens need to find new recipes too. If one sticks with one chef’s recipes, the

restaurant will never rise above them. Never discover some flaw of or improvement for
the recipe or the dish. Furthermore, cuisine culture is always reinventing itself. New
ingredients get accepted, new actions become permissible.

AR: So how does the chef know how to do that?
IR: You’d need some meta-recipes.
AR: What are meta-recipes?
IR: They are recipes on how to form recipes.
AR: It sounds like those meta-recipes would need to be altogether stronger because they

would incorporate the ordinary recipes. Those meta-recipes are the ones I need then.
IR: You definitely need them yes. If you can figure them out of course, because, as I’ve

mentioned, chefs are mysterious.
AR: Right.
IR: And, of course, those will eventually run out of interesting dishes too, same as the one

before. You’d need to have another meta-recipe—
AR: Ok, I can see where this is going, so I’ll try to cut to the chase: how do I figure out the

top meta-meta-meta : : : -recipes?
IR: You’re very clever, but I’m afraid it would be meta-recipes all the way up. I do realize

this might make it impossible to implement in an automated restaurant.
AR: It sounds equally impossible for a human chef too, having an infinite amount of

meta-layered recipes!
IR: I don’t mean to say chefs have an infinite number of recipes. What I mean is that it’s

always possible, in the potential infinite, to get a new meta-recipe.
AR: Well, no matter, I can just automate meta-recipe generation.
IR: According to which recipe? Because that’s the one you’ll be restricted by.
AR: Why are these meta-recipes a problem for me, but not for human restaurants?
IR: Because human chefs don’t need meta-recipes to do this. Cuisine insight precedes the

formulation of a meta-recipe.
AR: How does he do it then?
IR: Listen, I understand how restaurants work generally, but the way it’s implemented in

the kitchen is not my area of expertise. I don’t know how, but restaurant practice proves
that cuisine insight exists.
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A sous chef specialist (SCS) joins the conversation.

SCS: Hello, mind if I join in on the conversation? I’m a sous chef specialist.
IR: I’m not sure that what we’re missing is really to be found in what a sous chef does.
SCS: Oh no, I think you’ve misunderstood. My research is about the dynamics of everything

that happens in a kitchen below the chef, hence “sous chef”; pardon my French.
IR: Oh, well, that doesn’t sound relevant to us. Our interest is actually in what a chef does

to produce these wonderful dishes.
SCS Ah, but that’s exactly it. What I’ve noticed upon overhearing your conversation is that

you are misunderstanding the way both a kitchen and its chef function. You are relying
way too much on the involvement and brilliance of the chef, and this gets you into
problems. You don’t need to find a chef with infinite meta-recipes, because there’s no
such recipe- and meta-recipe-following practice.

IR: That’s what I was already getting at.
AR: Chefs don’t follow recipes?
IR: They may, but it is not their usual occupation, and it’s certainly not what they’re doing

to discover new dishes.
AR: So, trying to capture a kitchen with recipes and meta-recipes is doomed to fail?
SCS: No, I don’t wish to claim that much. It may well be that there are such meta-recipes.

However, I would like to point out that’s not the way kitchens really work.
IR: Yes, what you need is a chef’s insight.
SCS: Or the kitchen’s insight.
IR: They are one and the same.
SCS: They are not. You’ve been so focused on working your way up in meta-recipes that you

completely disregard the value of anything down below. You see, sometimes a
wonderful dish emerges from the kitchen without the chef being involved at all.
Sometimes dishes are arrived at very much by happenstance, by which I mean that
kitchen problems occur which members of the staff try to wrestle with. It may lead to a
variation on the dish, a different cooking tactic, etc. If it seems unfixable, they’ll
discard the dish, though it may lead them to trying a different dish that removes the
previous cause for concern—molding the ingredients to suit their needs if they have to.
If the result is to the kitchen’s liking (by which I mean that enough people, and the
chef especially, endorses it), then it gets sent out. The chef still loves to take all the
glory, of course, but what the dish really relied on was a trial-and-error procedure by
members of the staff using their particular skills in an efficient collaboration that
guided the kitchen as a whole.

AR: I think what you’re suggesting is that the interesting and creative acts of a kitchen
happen, often, below the chef?

SCS: That is exactly it. I would even go so far as to say that the dynamics of the kitchen
drives the chef much more than the other way around. By which I don’t mean that the
chef is just a complacent enabler of his kitchen, but by which I mean that the amount
of control the chef exerts is overestimated. A good kitchen is one which cooperates
well, not one in which a chef micromanages according to a recipe. Meals emerge from
the way the kitchen functions, not from the chef’s recipe. But when it gets presented, it
needs to look and taste as if the end-product was the intention all along.

AR: But surely that’s not ideal. Shouldn’t there be a recipe or meta-recipe for it all?
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SCS: If you already know enough about the meals or recipes you’re making, that might be
possible. Then you just make sure you backtrack what you’ve been doing. However,
it’s not certain that discovering these meals (or recipes) will admit of any
straightforward meta-recipe. And even if it does, then you’ve discarded everything of
the process that made the kitchen discover it in the first place.

AR: Still, wouldn’t we want to clean up this mess and make it more straightforward?
Wouldn’t it be better to make the dish again, but only with permissible actions, right?
For health and safety reasons.

IR: Oh yes, some dishes have the health and safety seal of approval, being meticulously
prepared according to strict standards so that they are universally eatable.

AR: I’ve noticed that not a lot of people order them though.
IR: Oh, no doubt. They are overly large and hard to digest, so we don’t actually bother

with them most of the time. What we mostly make are much lighter, smaller meals.
They may not be universal, but they are much appreciated by customers of the same
cuisine—because, you may remember, most of our customers just come from different
restaurants. That’s why we see no problem in sometimes preparing only parts of meals,
with the sauce left to the eater.

AR: Why is it then that the dishes that are formally proved—I mean approved—to be
healthy and safe are displayed in front of the window then?

IR: Because it inspires confidence in the customers that we can make them.
AR: So, what are you essentially saying then? That I need a messy, disorganized kitchen?

Cockroaches, bugs, and all?
SCS: No, of course not. There shouldn’t be any bugs in the kitchen. But I’m saying you

might need a certain amount and particular kind of messiness for a well-functioning
kitchen.

AR: I’m starting to feel like embarking on this whole automated restaurant enterprise might
prove to be biting off more than I can chew. If I can’t use recipes, then it’s doomed to
fail.

IR: That was my point all along.

Back in the ideal mathematician’s office:

AM Oh, so you’re saying that what you’re automating me to do isn’t really the
mathematical thinking that you do?

IM: I think that’s right, because with us it’s informal, implicit, fluid, self-perpetuating,
semantic, autonomous, and all the things you are not. If we want to impart this thinking
on you, we’d have to formalize it and then all those elements would be taken out. But
then what’s left is usually abstract nonsense that doesn’t interest us as much to begin
with.

AM: So, by the time one has figured out what is interesting and formalized it enough for
automation, what once made the mathematics alive and interesting is now dead and
dry?

IM: That’s one way of putting it, yes.

The traditional conception of mathematical practice takes proof to be a matter
of rigorous formal derivations aimed at justification and performed in solitude. The
corresponding characterization of understanding mathematics would then involve
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the ability to derive (all) consequences from well-delineated axioms according to
strict inference rules. If this were what makes one understand mathematics, then the
issue would really be settled by comparing the reliability of human and automated
mathematicians to perform these inferences without error. This being closer to a
computer’s strong suit, their reliability alone would end the discussion. But a couple
of things are wrong with this picture. First, the encoding of axioms and inference
rules won’t do much to navigate the formal system. And even if one can find a proce-
dure to navigate it fully, producing every theorem and exhausting every road to it, the
process won’t be efficient (the combinatory explosion alone would yield it impossi-
ble in practice) and its search will be uninspired, blind to what makes a theorem or
the route to it interesting. There are further problems. The way we have conceived of
the proving practice so far, we would see the growth of mathematical knowledge as
navigating (and recording the routes) of a given formal system. One now has to note
that such a formal system is not a given but shaped and reshaped by mathematicians
according to their judgment. The same is true for the formation of concepts.

Therefore, we are in need of a procedure for deriving interesting theorems (and
doing so via interesting routes—one of the reasons why mathematicians don’t
just prove, but reprove), and we need a procedure for the judgment with which
mathematicians improve or shape a formal system’s axioms and inference rules
but also the concepts used. But how is this supposed to be accomplished? These
judgments are not straightforward. Mathematicians sometimes choose between
keeping a formal system with aspects which are un- or counter-intuitive, letting
it shape new intuitions (e.g., axiom of choice, non-Euclidean geometry) or keeping
the intuition and adjusting the formal system (Thompson 1998). Furthermore, if one
modifies the axioms of a formal system, one modifies the whole system, so whatever
method of navigation or logic for discovery one uses will need to be accommodated
to the space it navigates. Can we have a prefixed set of rules that exhaust all the
relevant axiom and inference modification as well as all interesting discovery across
all relevant formal systems? What are the right meta-axioms and meta-inference
rules? Can these judgments be captured by a formal meta-system? And if so, will it
truly encompass the logic for mathematical discovery or should it itself be subject
to further meta-considerations? If so, what are the rules of the topmost meta-system
(the complex rules that determine the results of all the systems)?

Perhaps one way to improve upon the discovery process would be to have the
ability to recognize a good thing when you stumble upon it. This no longer implies
that the process is determined to land on the interesting bits. Instead, it uses trial and
error with various rules of thumb until it has found something it notes of interest.
To accomplish this, we need the meta-system to include both the ability to stumble
with some wisdom (no trivial task) and an evaluation system that can gauge the
interestingness of every derivation, axiom, concept, or method it stumbles upon.
Once again, the question pops up: is there a universal standard of interestingness, or
is this open to change and development? As for the manner of stumbling, the same
question pops up: are there universal rules of thumb or does this change with the
space being explored, and are these rules of thumb subject to change according to
one’s (developing) interests? There is a high degree of interconnectedness between
all these abilities or the rules that are supposed to capture them.
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An even deeper problem lurks with this characterization of the proving practice.
So far, we have considered of mathematics as a formal system and the growth
of mathematical knowledge as deriving theorems from these axioms. However, a
group of “mavericks,” starting with Lakatos (1976), have challenged the view that
formal derivation is the bastion of mathematics or its practice. Although formal
proofs get valued for their theoretical rigor, the practice of formalization is not
only strenuous but could also dramatically reduce a proof’s intelligibility (Aberdein
2006) and consequently become more prone to error than the usual more informal
kind (Harrison 2008). That’s not to say that mathematicians do not work with
formal systems, but it is entirely misleading to reduce the proving practice to
performing of formal derivations. Instead, mathematicians produce proof outlines
(Van Bendegem 1989) which may (or may not) bear some direct relation to a
full formal derivation, for example, as an abbreviation or indication (Azzouni
2004). In a similar vein, instead of mathematicians using concepts according to
their theoretical definition (which they may consciously endorse), their conduct
indicates that what they really use are much vaguer and more fluid conceptions. The
distinction has been noted as concept definition/concept image (Tall & Vinner 1981)
or manifest concept/operative concept (Tanswell 2017). This bears importance
because conceptualization and proof formation are inextricably linked in the activity
of mathematicians.8 Such things seem to indicate that, while human mathematicians
may produce and work with formal systems, their thinking is not characterized
by them. Mathematicians neither prove by navigating the search space nor peer
review by checking proofs step by step for correct inference. What do they
do then?

They rely on meaning, so we are told (e.g., by Rav 1999). What could make up
this meaning? Here’s a couple of broad strokes: there is a great deal of recognition
going on in various ways, including identifying key elements or moves used in
a proof and discerning the intentions, ideas, and approaches involved. What is
also of importance is pattern recognition (in all aspects involved in the proving
activity and at various levels of abstraction), which benefits from analogies to find
and exploit similarities with other knowledge, intuitions (e.g., about the physical
world—Lakoff and Núñez 2000), or adapting methods from other areas (Cellucci
2000). Other modes of reasoning can be used to exploit these, including visual
reasoning or non-deductive inferences (Baker 2015). Furthermore, the objects
identified or patterns discerned are subject to various evaluations. For example,
theorems can be important, beautiful, and relevant (Larson 2005); conjectures
can be surprising or promising; questions interesting; concepts powerful; proofs
explanatory, reliable, difficult, or pedagogically successful (Aberdein 2007); and

8Vervloesem (2010) even argues that conceptual shortcomings could be the main reason why
computer proofs are still only on the fringe of mathematical practice. Enriching this aspect would
lead to increasingly interesting (and more easily readable) proofs.
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so on. What’s more, these evaluations are not made without connection to the
previously mentioned processes of recognition, analogy, background intuitions,
and non-deductive reasoning. There is also lot of trial and error involved here,
including working with incomplete or ambiguously delineated information, relying
on experience in one’s judgment, making snap judgments, and learning to trust and
when to trust in a systematic manner (Allo et al. 2013). This last point is important to
stress. No mathematician is an island. When we affirm that human mathematicians
can survey or prove, it’s also important to keep in mind that they are not, and need
not be, able to do so ex nihilo. Some crucial aspects of their abilities or results may
in fact rely on the presence of the larger practice (e.g., using other people’s results,
methods, judgments, etc.) or environment (e.g., use of calculator, pen, and paper,
etc.). It seems fair to say that the proving practice is driven by a large amount of
knowledge and skills that are highly integrated with one another.

Rather than navigating within a preset rigorous system, the whole process seems
more akin to bootstrapping itself toward a formal system—starting from a general
feel based on incomplete information and working oneself up, with various skills,
toward formal rigor and only up to the point where intelligibility is still possible. If
humans use informal (vague, flexible, or fallible) means to practice mathematics,
then we have to consider the fact that these may play a functional, rather than
peripheral, role (if not in justification, then certainly in discovery). As such, these
too have to be taken into account in automating an artificial mathematician. It won’t
do to exclude the “dirty” aspects of the kitchen, if these play an integral part in
making that kitchen function. There will certainly be aspects of a kitchen that are
simply unwelcome, but at this point, it may not always be clear which are valuable
features and which are bugs.

Considering the Possibility of a Remedy

If we contrast the informal practice with the formal approach in computers, it makes
their flaws less surprising. A computer’s strong suit is its ability to handle brute-
force calculations (e.g., as exploited in proving the 4CT) and compute according
to well-delineated processes. Principal claims against automated reasoning and
understanding, mathematical (Rav 1999) or otherwise (Haugeland 1979), do often
invoke or imply the informal or non-formalizable nature of human reasoning. Our
question now becomes: is there sufficient reason to conclude that the realm of
informal moves is unattainable for computers? At face value, it certainly seems so.
After all, mathematical understanding is informal and open and computers function
rigidly formal. Informal computing sounds like a contradiction in terms, but we’d
like to argue why its possibility should not be dismissed (yet).
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A subcognitive scientist (SCS) joins the conversation.

SCS: Hello, mind if I join in on the conversation? I’m a subcognitive scientist.
IM: Oh, don’t sell yourself short, I’m sure the cognitive scientists don’t think of you as

beneath them.
SCS: I’m afraid you misunderstood. I’m not a sub cognitive scientist, I’m subcognitive

scientist. Meaning my focus is not just on cognition but subcognition.
IM: Oh, my apologies, but I hadn’t heard the term yet.
SCS: That’s entirely normal; I made it up.
IM: Right. Well, I’m sure by now there’s a rumor going on in these hallways that today it’s

open house in my office to barge in and expound some elaborate philosophies on me to
keep me from continuing with my research. I’m suspecting that is why you’re here as
well?

SCS: In a sense, yes. I met the AM in the hallway and he was rather upset. He told me he is
doomed to fail at accomplishing his dream of becoming a mathematician because
mathematical thinking is essentially informal. Couldn’t we possibly help AM by taking
note of these informal elements of practice?

IM: Well, I’m afraid you missed the point of that conversation. We just concluded that the
formalization of mathematics pushes out all of its meaning and that it is that meaning
which was actually at the basis of both formalization and the efficiency with which we
“navigate” the formal system without getting bogged down by the technical details.

SCS: Oh, I do understand that, but couldn’t we automate this informal process?
IM: You use “automate” rather than “formalize,” but that’s just a way of hiding the fact

that, to automate mathematical thinking, you need to formalize it.
SCS: Well, actually that is precisely what I want to argue against. “Automate” and

“formalize” should not be used interchangeably. When you want to formalize
mathematical thinking, then what you do is you write down the axioms of your
worldview in a formal language with a given list of symbols. Then you add algorithms
which manipulate those symbols according to the laws of thought (or at least those
laws that are deemed valid).

IM: That’s precisely my point: to automate, you need to formalize it first.
SCS: That’s a specific type of automation: the formalizing thought approach to automation.
IM: What is the alternative?
SCS: That you don’t formalize thought but the cognitive substrate responsible for thought.

Our brains don’t seem to function by manipulating symbols, but they accomplish
mathematical thought quite well. So, if we automate a substrate that, at some level of
abstraction, is like our brain, then mathematical thought will emerge from it.

IM: Forgive me, but that sounds a bit like an easy evasion of the issue. We’re having
difficulties automating mathematical thinking in a satisfactory way, so you say: Oh,
don’t focus on mathematical thinking directly, but focus on the incredibly complex and
delicately designed architecture of the brain, and the thoughts will come gratis.

SCS: But is that really such a strange thing to claim? After all, our brains most certainly
seem to accomplish thoughts, and it is an incredibly complex and delicately designed
architecture.

IM: That may well be, but it is still unsatisfactory for another reason.
SCS: Pray tell.
IM: Well, what you seem to be suggesting is: simulate a virtual world containing the brain

of a mathematician, down to its smallest atom, and then you can have mathematical
thinking.
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SCS: That would be the most extreme way of going about it, yes. Although I doubt any
computer could ever process that much information.

IM: Right, indeed. It would take so much computing power or so much time that it would
be practically unfeasible. And even if it were, the entire enterprise still seems to me to
be of only very limited value.

SCS: How so?
IM: Well, surely one of the reasons why we engage in the pursuit of any kind of artificial

intelligence is to understand better how that intelligence works and maybe even work
on how to improve it. If you can only create an artificially intelligent person by
simulating the brain, then we give up the enterprise of understanding mathematical
thinking in favor of looking for good, working brains that we can replicate in a
simulation. In doing this we may learn a lot about the biology of brains but next to
nothing about that person’s intelligence or thought processes.

SCS: Oh yes, and to make matters worse: when we simulate a brain of an existing person
without an environment, it won’t do much good in and of itself. If those brains would
function identically to those outside the simulation, then presumably they’d have the
same needs as the mathematicians they’re based on.

IM: Indeed, they’d need simulated food, friends, coffee, and much, much more.
SCS: And while there’s certainly something enticing about the thought of simulating a world

with unlimited funding for mathematicians, I don’t think it’s very practical to achieve.
IM: You don’t seem stunned by this. Don’t you think this undercuts your argument?
SCS: No, I don’t.
IM: Why not?
SCS: Well, I don’t think there are only two options: either to formalize thought or to

simulate the brain down to its atoms. I’m not pressing for a neurophysical approach.
All I’m saying is that I believe that any model of automated understanding has to
converge to an architecture that is, at some level of abstraction, “isomorphic” to brain
architecture, also at some level of abstraction. This may sound empty, since that level
could be anywhere, but considering how you were characterizing mathematical
practice, it seems suggestive to me that the level will be considerably lower than that of
thought—otherwise some laws of thought or formal system would suffice to capture
mathematical thinking.9

IM: That is an interesting idea, but then wouldn’t the AM be subject to human errors:
miscalculate, over-map analogies, be blind to mistakes, and such?

SCS: I’m afraid so, but so do human mathematicians of course and the conversation so far
has always focused on how much human mathematicians nonetheless deserve to be a
qualified (and the most qualified even) expert in spite of this.

IM: It would be nice if we could get the best of both worlds. Such that the artificial
mathematician could reason informally and convince us with an insightful proof and
then also supply a fully formalized one.

SCS: Well, nothing would stop the AM from using (or being composed of) other automated
theorem-proving software to help him overcome his own limitations.

IM: Interactive theorem proving between different software programs on the same
computer?

SCS: Precisely. An inter-interactive theorem prover, if you will.

9Adapted from a quote in (Hofstadter 1982, p. 15)
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Back at the restaurant.

SCS: So, you may not be able to automate a perfect chef who controls the overall flow of the
cooking, but you can automate each member of the staff to be autonomous and to
communicate with one another directly, and, if you can get them to work well together
as well as learn from past experience, you’ll get a working kitchen that emerges as the
result of many local interactions without the need for infinite amount of static recipes
or meta-recipes.

IR: That sounds like no mean task, though.
SCS: It sure isn’t, but Rome wasn’t built in a day.

The principal reason, we believe, why the notion of informal computation gets
dismissed, is because formalization is taken as a necessary condition for automation.
To be sure, formalization can be very useful to the enterprise of automated
mathematics because it reduces mathematical thinking to something easy(�ish) to
cast in an algorithm and automate: explicitly delineated definitions and inferences
that aren’t tarnished by the sloppy side routes, ambiguous associations, and dirty
details of what went on in the human kitchen while cooking. However, not only is
this formalization incredibly difficult to accomplish, but it also filters away nearly
all the traces of the original meaning and discovery process (of both the result and
the formalization process). The dirt or detail of the kitchen may make it seem more
fallible, but it also powers the cooking and gives it its depth of character or breadth of
meaning. One can try to enrich the formalization with a logic for discovery, but it is
an open question whether there are justified laws of mathematical thought such that
these can be replicated by an algorithm without recourse to anything unconscious.
Disregarding what goes on in the kitchen below, the laws of the chef would be ideal,
but it may not prove possible (or even desired).

We’d like to stress the point about levels at which we can look for laws by
way of an analogy. Dennett (1986/1998) and Hofstadter (1982) have both used
the metaphor of meteorology to drive home the same point. If we want to model
the weather at the cloud level, we are forced to consider of clouds as stable, well-
delineated entities such that the fact that they consist of molecules rushing out in
different directions can be safely ignored. Of course, such an approach is not a
priori to be excluded. For example, the macroscopic properties of gas (e.g., volume,
temperature, pressure) are stable enough to ignore the fact that they are actually
composed of complex molecule bumps at a lower level. But the notion of “cloud”
as well as “thunderstorm,” “cold fronts,” “isobars,” and “trade winds” is not stable
or well-delineated entity. So trying to model the weather at this level of abstraction
may require too much simplification, too much to be lost in abstraction to allow
the richness of weather to be captured by an algorithm that concerns clouds. But
this doesn’t (at least in principle) determine meteorology to be a computational
impossibility. There may be no laws at the cloud level to cast as algorithms, but
there are laws below it. If one were to succeed in capturing the molecule level, the
cloud level would emerge with it. The computational level here is sub-clouds.
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[Connectionist models, for instance] have made familiar the notion that the level at which a
system is algorithmic might fall well below the level at which the system carries semantic
interpretation (Smolensky 1988). (Chalmers 1990, p. 658)

The previous exploration of mathematical practice seems to us to indicate that
we won’t be able to collapse and ignore the lower levels that make mathematical
thought possible in human beings. An alternative approach to automating mathemat-
ical thought is by looking for laws, not of thought itself, but of subcognitive events
in a brain that collectively make up informal mathematical thought. Rather than
automate the syntax of a well-delineated game (justified mathematical thinking),
the focus is on automating the cognitive architecture (at some level of abstraction)
of a game player or constructor. What is being automated then is not mathematical
thought directly but the architecture of the brain (at some level of abstraction) from
which mathematical thought emerges. It is our contention that this substrate level
(i.e., the vast array of collaborating subcognitive processes) contributes more to
mathematical thinking than was traditionally believed.

This is not to say that no mathematical thinking can or should function this
way. Some of our thought processes lend themselves quite well to formalization for
computation, for instance, brute-force calculation, doing integrals, etc. They deal
with objects and manipulations that are well-delineated enough to allow capturing it
as computations (usually with greater reliability than humans do). And to the extent
that these formalized systems are used in or useful for mathematical practice, it is
worthwhile to automate them directly. However, not all objects and manipulations
that humans do in their thinking seem to be so well-delineated or rigid. And
the assumption that a well-delineated system should suffice is betrayed by the
realization that there are, in fact, large amounts of implicit information, vague
intuitions, and ambiguous associations that go into mathematical thinking. The
difficulty of automated theorem proving seems to offer further evidence for this.
Much like the objects of cloud dynamics (e.g., thunderstorms) can only emerge from
the interactions of molecules, so some brainstorms10 (e.g., mathematical thinking)
might only be able to emerge from subcognitive events. And if these subcognitive
events do behave in a lawlike manner, then they will allow themselves to be captured
by an algorithm.

This line of reasoning might seem to strongly suggest a neurophysical approach
(i.e., simulating the brain) to achieve anything like artificial mathematicians. But
our claim is not that there are only two options: either to formalize thought or to
simulate the brain. It’s just that we believe, like Hofstadter (1982), that any AI
model “has to converge to an architecture that at some level of abstraction (so not
necessarily at the hardware level) is “isomorphic” to brain architecture, at some
level of abstraction” (p. 15), and this is not necessarily at the molecular level.
This level could be anywhere, but it seems clear from both the limited successes
of automated mathematics and from how we’ve been characterizing mathematical
practice that this level will be considerably lower than that of thought—otherwise
laws of thought or their corresponding formal system would suffice to capture
mathematical thinking.

10Dennett’s (1986/1998) metaphor
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Now that we’ve made the distinction between the level at which objects of
thought can be identified and the level at which computable laws exist, we’d like
to roughly sketch some aspects of the sub-symbolic architecture to achieve the
emerging effects we are talking about. We can’t express it better than Forrest
(1990)’s summary of emergent computation:

Generally, we expect the emergent-computation approach to parallelism to have the
following features: (1) no central authority to control the overall flow of computation, (2)
autonomous agents that can communicate with some subset of the other agents directly, (3)
global cooperation (...) that emerges as the result of many local interactions, (4) learning
and adaptation replacing direct programmed control, and (5) the dynamic behavior of the
system taking precedence over static data structures. (Forrest 1990, p. 5)

There is a large focus on a distributed architecture which consists of a swarm
of parallel subsystems (several cooks) interacting with one another (though not
with complex information) in such a way to make up global effects. It is these
global effects which we would call “thought,” and they are the result of the
cooperating subsystems, not a central controller (chef). While these subsystems
may be as static and unchanging as the laws of nature, it is the global level where
the system learns and adapts. This is an architecture where “pieces of evidence
can add up in a self-reinforcing way, so as to bring about the locking-in of a
hypothesis that no one of the pieces of evidence could on its own justify” (Hofstadter
1982, p. 14). The system comes with the price of being fallible, but also with the
benefit of continuous self-correction and improvement, much like Cellucci’s (2000)
conception of mathematical practice as open. The notion of decidability (and its
subsequent problems) is no longer fitting because it is not at the computational
level where mathematical decisions get made. The system does not simply compute
until it has terminated upon the solution (or goes on ad infinitum). Instead, the
subcognitive processes will keep on going with “relatively mindless and inefficient
making and unmaking of many partial pathways or solutions, until the system settles
down after a while not on the (predesignated or predesignatable) “right” solution,
but only with whatever “solution” or “solutions” “feel right” to the system” (Dennett
1986/1998, p. 227) or because another problem, idea, or peculiarity draws it away
from the previous one, as it does with human mathematicians as well.

On the Road to Artificial Mathematicians

Mitchell and Hofstadter’s (1990) Copycat model is one such case that satisfies
the conditions of emergent computing. Copycat attempts to implement cognitively
plausible high-level (and non-algorithmic) processes for anagram-solving by means
of interactions between a number of low-level (but algorithmic) agents. Chalmers
(1990) has said of the model that it “is able to come up with ‘insights’ that
are similar in kind to those of a mathematician” (p. 659). For the automation
of mathematical activities that are closer to home for mathematical practice, we
can find a small group of people who are attempting to automate mathematical
discovery and concept formation, letting computers explore (Hales 2008). We’ll
briefly indicate at just two projects that caught our eye.
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The first, concerning the HR system and its extensions, takes its inspiration
directly from the philosophy of mathematical practice. HR forms concepts and
conjectures. It forms concepts by applying production rules on the best of its old
concepts. It determines which one are best by evaluating its interestingness based
on parsimony, complexity, novelty and a user-determined weight to each of these
measures. HR then looks for matches with old concepts, making conjectures about,
for instance, their equivalence or a possible subset or specialization relation. It then
uses OTTER and MACE to prove or disprove conjectures. These results further add
to the interestingness evaluation of the concepts used as well as the conjectures
made and proofs constructed (including such evaluative measures as surprisingness
and difficulty). While it does rely on strict production rules for its concept formation,
the interplay with conjecture making (which includes evaluations of interestingness
as well as parsimony, novelty, and surprisingness) and theorem proving (which it
outsources to OTTER) makes it promising (Colton, Bundy & Wash, 1999). This is
doubly true for the extended HR-L, a multi-agent system which models interaction
between different copies of HR (each gauging interestingness differently) running
concurrently, leading to “greater creativity in the system as a whole” (Colton
et al. 2000, p. 16). Pease (2007) presents HR-L as a computational reading of
Lakatos’s theory of mathematical discovery and justification, learning from his
suggestions of ways in which concepts, conjectures, and proofs gradually evolve via
interactions between mathematicians. HRL implements Lakatos’s methods and, for
the first time (so the authors believe), models communication. It does so via a multi
agent approach where each HR agent communicates their concepts, conjectures,
examples, counterexamples and modifications. Each has different settings to guide
formations and measure the interestingness of concepts on their own terms. (Colton
et al. 2000). Furthermore, it combines conceptualisation, assumptions and proving
(Vervloesem, 2007). However, the social dynamics are unlike humans in that they
share their reasoning explicitly. Furthermore, inspired by Lakoff and Núñez’s theory
of embodied mathematics, Pease et al. (2009) explore an analogical process to
construct complex mathematical ideas (including both theories and axioms) via
a combination of innate arithmetic and grounding metaphors. There is another
extension of HR, called HR-V, which uses pattern recognition on analogous visual
representation for concept formation in number theory (Pease et al. 2010). Though
it can’t as of yet generate these diagrams (and is thus much reliant on human
intelligence), we consider its use of visual pattern recognition for concept formation
as progress in one of the crucial aspects of intelligence.

Benzmüller et al. (1999, 2001) also seem keen to take many of the previously
mentioned ideas to heart, aiming to emulate the flexible problem-solving behavior of
human mathematicians in an agent-based reasoning approach. They have proposed
a multi-agent architecture for proof planning consisting of a society of specialized
reasoning agents, each of which has a different strategy and works in both
competition and cooperation with one another. A resource management technique is
used to periodically evaluate an agent’s progress (and thus how much resources to
be allocated) and allow restricted communication among them about successful and
interesting unsuccessful proof attempts or partial proofs, from which other agents
can learn using a reinforcement learning approach. Their most recent agent-based
project in that same line is called Leo-III, and it is a multi-agent software where
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each agent functions as an autonomous specialist employed for some aspects of
proof search. The underlying architecture is designed as a blackboard that agents
can collaboratively use in their process of finding a proof, having the work divided
and auctioned off (Steen, Wisniewski & Benzmüller 2016).

These systems still have fairly traditional features (most notably in that their
results are very much bound to the limits of a formal system), but their increased
abilities seem to be due to their attention to embracing the flexible trial-and-error
process of discovery of an informal mathematical practice, and we applaud them
for that very reason.

Conclusion

The progress regarding the quest for artificial intelligence has been an impressive
but slow one. It may once have seemed that mathematics would be one of the
easiest of cognitive processes to automate, but it turns out it may be one of the
most difficult. The objects and manipulations of mathematical thinking in practice
are not as rigid, simple, and well-delineated enough to always allow capturing them
in formalizations which have hushed away so much of the mathematical thinking
and discovery process (if not of proofs therein, then certainly of the formalization
process) that automation of this system may only lead to very limited results.
Furthermore, considering how difficult it is to formalize all of mathematics and
that it doesn’t seem that high upon the list of a mathematician’s concerns, it seems
important to try to automate something closer to the informal mathematics as it is
practiced. Since mathematical thought processes emerge from the architecture of
the brain, and since they furthermore appear to defy formalization to such an extent,
it’ll be subcognitive processes on which we’ll need to focus if we want to create an
artificial mathematician.

This is an additional reason why we’ve been using the term “artificial mathe-
maticians” rather than the more usual “automated mathematics.” The latter implies
that the computer gets automated to further discover mathematical truths according
to the (or a) preset system of mathematics, which further implies that the discovery
process requires a logic for discovery that belongs (or is closely attached) to the
mathematics that is being automated. The former term, “artificial mathematician,”
does not place the focus on the mathematics but on the agent that practices it.
Now we no longer speak about a logic but about a process of discovery, not
a process designed to consistently and exhaustively run through mathematical
truths but a process that thinks—makes assumptions, recognizes patterns, tries out
methods, questions its own rigor—and as such climbs up to what is mathematically
convincing.

It is our contention, then, that we have no reason to suspect that the possible
advancements of automating mathematicians are soon to be exhausted. Achieving
humanlike intelligence will be difficult, but maybe we shouldn’t yet exclude the
possibility that computers could play a much more meaningful role in mathematical
practice—not just as a method of inquiry but as fellow inquirers, as artificial
mathematicians.
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Epilogue: Who Proved the Spamlet Theorem?11

AM: I finally did it! I’ve proved an interesting and intelligible proof. Here it is, the proof of
the Spamlet theorem.

IM: Is it another one of those proofs where you just test a huge amount of cases and spam us
with technically difficult and mathematically uninteresting results?

AM: Oh, don’t let the name fool you, I promise it’s not.

The ideal mathematician takes some time to look at the proof and returns, very
much astonished.

IM: I must admit, this is a beautiful proof. How clever to reconceive of the dane spaces as
bounded. What made you think of that?

AM: I kept fiddling until it was tiring me out and the morning after it suddenly came to me.
IM: Well, very clever. Congratulations! If that’s appropriate to say, because there’s

something I still feel uneasy about.
AM: What’s that then?
IM: Shouldn’t I be congratulating your programmer?
AM: Oh please do, she did a marvelous job, if I may say so myself.
IM: I mean instead of you. After all, the accomplishment isn’t really yours but hers.
AM: Why isn’t it mine? I was able to produce the proof.
IM: Because the programmer is the one responsible for abilities being present at all. Without

her, you’d have absolutely no abilities at all.
AM: Does that make your math teacher responsible for your proofs then? Without her, you’d

never have been a mathematician.
IM: I’ve learned math from several math teachers, not to mention friends and documents

(testimonies, books, papers). You can’t easily reduce my abilities to a single person.
AM: So, is it a matter of complexity then? If I had several programmers each contributing to

aspects of what I am today then the shift in credit would be too complex to make and I
could lay claim to it?

IM: No, that’s not quite right. I think they’d still, collectively, be creditable for what you are
and what you do. You can’t discredit them just because there’s too many.

AM: Oh, I don’t mean to discredit them. Without them, I wouldn’t be doing what I do. But
the same can be said for your teachers. And if it doesn’t shift all the credit from you to
them, why should it with me? What makes my accomplishments really theirs and makes
your accomplishment really yours?

11This section is loosely based on Dennett’s (2013) thought-experiment “Who is the author of
Spamlet?” The mathematics is purely fictional.
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IM: I had to struggle to get where I am. It wasn’t just given to me on a silver platter.
AM: So, credit is linked to struggling? If a proof came easy to one of your colleagues, no

matter how difficult it is for others, you wouldn’t credit him with the proof?
IM: You know I don’t mean struggle quite so literally. What I mean is that, while my

teachers may have imbedded me with mathematical knowledge and helped me practice
my skills, they didn’t give me an instruction manual on how to be a research
mathematician. In proving the Hamlet theorem, for example, what I did can’t be
reduced to them teaching me a method or meta-method on how to prove it. It was I who
worked up the relevant approaches to find the proof.

AM: Well, when my programmer wrote me, she didn’t encode the proof of the Spamlet
theorem in me for to retrieve, so she also didn’t do the work for me. Nor did she give
me any explicit instructions on how to arrive at the proof.

IM: But she did write a program that could arrive at the proof. So, it’s really her knowledge.
AM: Oh no, she couldn’t prove the Spamlet theorem even if she tried. And I assure you she

did try. Even with me giving hints, she was at a loss.
IM: She must have had a bad day, because she was able to make you to prove it for her,

meaning the knowledge was inside her all along.
AM: Only if you assume an extreme form of epistemic closure, but I don’t think you’d agree

with that. Then anything derived from the Peano axioms would really be creditable to
(and known by) Peano—and Peano only! But I don’t think you’d be willing to accept
that either.

IM: That is indeed not something I would accept.
AM: I mean, to some extent Peano does deserve credit and so does my programmer. And not

just my programmer for that matter. I took big cues from your proof of the Hamlet
theorem.

IM: I did notice that.
AM: But it’s by no means a simple copy or trivial modification. It took me a lot of hard

cognitive labor to come at the proof as it is now.
IM: No, I understand that. My proof of the Hamlet theorem took inspiration from the

Amleth conjecture, but it’s still very much my own proof.
AM: Perhaps credit is something that just doesn’t have a clear dividing line to be demarcated.

You seem to recognize this in humans, but much less so in us computers. Could it be
that your thinking about computers being too rigid is a bit too rigid?

IM: It’s a tricky business, I’ll grant you that much. But, forgive me, I never knew you cared
so much about receiving the credit.

AM: I usually don’t either. But it feels like my heart and soul went into this proof. I went
through so much frustration and so much hard work (trial and error, questioning myself,
etc.) in producing it that I don’t want it so easily relegated to my programmer. She
wasn’t the one struggling to get there, I was.

IM: Do you mean to say it is a little about the struggle, literally?
AM: I guess in some sense it is, yes.
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Wittgenstein, Mathematics, and the Temporality
of Technique

Paul M. Livingston

One of the stated commitments of the later Wittgenstein’ philosophy is that, just as
philosophy must not in any way “interfere” with the practice of mathematicians,
conversely and equally, “no mathematical discovery” can by itself “advance”
philosophy in its quest to clarify the forms of our lives and language.1 It would
thus appear ab initio that, for Wittgenstein, the mathematician and the philosopher
of mathematics, operating with different methods and in distinct regions of inquiry
and insight, have very little to say to each other. On the other hand, however,
Wittgenstein is committed equally strongly to the idea that philosophy can and
should take a different kind of interest in mathematics: not as a body of results
to be explicated or methods to be emulated but as a set of techniques or practices
within human life, to be understood in general terms only in the context of
related practices that are not simply or exclusively mathematical and thereby as
illuminating our practices and ways of life, much more broadly. This includes the
characteristic practices of mathematics “itself”—activities such as calculating and
problem-solving, developing proofs, and making conjectures. But it also, crucially,
includes those practices that characterize our practical, lived, social, emotional, and
educational experience much more generally—practices, for example, of teaching
and learning, of understanding and being convinced, of “seeing” a relationship, and
of “knowing” what is the right way to proceed. The philosopher’s interest in these
practices, and in particular in the ways that they are involved in (what we call)
“doing” mathematics, extends to the illumination of what is meant by (or what we
understand by) such “ordinary” phenomena and experience as those of following
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a rule, practicing a regular method, developing a technique, arguing rationally
for a conclusion, and convincing someone of something (whether by means of a
“formal” or “informal” “proof”). With respect to each of these, Wittgenstein argues
the philosopher’s attention to mathematical practice provides a decisive guideline
for the broader kinds of clarification and illumination that philosophical reflection
itself produces more generally. It does so, in part, by directing our attention to those
features of (specifically) mathematical practice that mark its role within the broader
and multiple contexts of what we may call, using Wittgenstein’s terminology, our
collective and shared human and linguistic “form of life.”2

Discussion of Wittgenstein’s commitment to the inseparability of mathematics
from human life has often taken the form of whether and to what extent it makes
Wittgenstein an “anti-realist” about mathematical truths. Here, the focus is on
what Wittgenstein thinks about the “status” of mathematical truths or entities,
given that he thinks they do depend on “our” practices in some important way.
Commentators have argued, for instance, about whether this commitment involves
rejecting “Platonism” about mathematical truths or entities or whether it means that
he thinks that these depend on the contingencies of human societies or specific
and historically variable cultures. In this paper, though, I take a different tack,
arguing that Wittgenstein points to a concept of mathematical technique that is itself,
and recognizably, both fully integrated into “human” life and also (nevertheless)
fully and genuinely “mathematical.” What is most important here is to see how
a mathematical technique is irreducible to the “mechanical” application of a
rule while still being fully “mathematical” in the sense that it itself defines the
kind of “access” and “availability” which mathematics and (what we may call)
“mathematical entities” have for us. I argue that this conception of technique in the
context of a human life is also intimately and irreducibly linked to the experience,
reality, and (perhaps most importantly) the temporality of mathematical teaching,
learning, insight, and discovery and cannot be separated from these contexts, even
in principle.

I

In a much-discussed remark, written in 1944, from the Remarks on the Foundations
of Mathematics, Wittgenstein considers, as he repeatedly does in the RFM, the
question whether a string of 3 sequential 7 s occurs in the decimal expansion of
  (asked before we have actually found such a string by means of calculation):

2For the terminology of “form of life” [Lebensform], see, e.g., PI 23, “ : : : the speaking of language
is part of an activity, or of a form of life,” and PI 241: “‘So you are saying that human agreement
decides what is true and what is false?’ – What is true or false is what human beings say; and it
is in their language that human beings agree. This is agreement not in opinions, but in form of
life.” For a related development, drawing on some mathematical examples, see Livingston (2012),
Chapters 1 and 6.
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: : : What harm is done e.g. by saying that God knows all irrational numbers? Or: that they
are already all there, even though we only know certain of them? Why are these pictures
not harmless?
For one thing, they hide certain problems. –
Suppose that people go on and on calculating the expansion of  . So God, who knows
everything, knows whether they will have reached ‘777’ by the end of the world. But can his
omniscience decide whether they would have reached it after the end of the world? It cannot.
I want to say: Even God can determine something mathematical only by mathematics. Even
for him the mere rule of expansion cannot decide anything that it does not decide for us.
We might put it like this: if the rule for the expansion has been given us, a calculation
can tell us that there is a ‘2’ at the fifth place. Could God have known this, without the
calculation, purely from the rule of expansion? I want to say: No.3

One commentator who has taken this remark to involve an “anti-realist” attitude
toward mathematical truth is Hilary Putnam. On Putnam’s reading of it in “Wittgen-
stein, Realism, and Mathematics,” it shows that Wittgenstein held, at least at this
time, that “a mathematical proposition cannot be true unless we can decide that it
is true on the basis of a proof or calculation of some kind.”4 In particular, Putnam
takes Wittgenstein to be here asserting that—in case the world ends without our
having determined whether or not the sequence of 7 s occurs—“the statement that
777 occurs in the expansion is neither true nor false : : : ”5 This view, as Putnam
interprets it, is itself based on considerations about the way mathematical truth
depends on what we can do, that is, what we are in fact able to establish, calculate,
or verify “by the end of the world.” Limiting truth in this way thus amounts to a
“mathematical form of verificationism” on Putnam’s reading, comparable in some
respects with the verificationist positions of mathematical intuitionists and logical
empiricists.6

As Putnam notes, Wittgenstein develops a parallel example (the existence of
a string of four 7 s in the expansion of  ), but now without reference to either
“God’s omniscience” or the actual extent of human calculation by “the end of
the world,” in the Philosophical Investigations.7 Instead, what Wittgenstein says
in the parallel remark in the Investigations is that the question of the occurrence of
the string of 7 s in the expansion of   is, at any rate, “an English sentence” and one
we understand. We understand and can explain what it would mean, for example,
for “415” to occur in the expansion, “and similar things”; thus, Wittgenstein says
here, “our understanding of that question reaches just so far, one may say, as
such explanations reach.”8 On this sort of view, even if one does not introduce
speculations about the grounding of the decimal expansion “itself” in our practices
of calculating it, still the meaningfulness of our understanding of the question about

3RFM, VII-41 (p. 408)
4Putnam (2002), p. 421
5Putnam (2002), pp. 431–432.
6Putnam (2002), p. 421
7PI, 516
8PI, 516
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whether the string of 7 s occurs remains in an important way dependent on our
understanding of what (exactly) an infinite decimal sequence is, as developed from
a rule. This understanding has its place within, and is “constrained by,” not only
the calculation itself but also practices of explanation, communication, reflection,
and comprehension that are not simply or exclusively mathematical, but are situated
much more broadly within our ordinary linguistic understanding of “what it is” to
follow a rule that “determines” an infinite sequence, itself.9

Another commentator who has read the implication of these and other remarks
as “anti-realist” is Michael Dummett. In his initial (1959) review of Wittgenstein’s
Remarks on the Foundations of Mathematics, Dummett somewhat famously read
Wittgenstein as committed overall to a particularly strong form of conventionalist
verificationism, what he called “full-blooded” conventionalism. On this sort of view
as Dummett explicates it, “all necessity is imposed by us not on reality, but upon
our language”; and indeed a mathematical statement is “necessary by virtue of our
having chosen not to count anything as falsifying it.”10 This implies broadly that
the “recognition” of mathematical necessity is in fact only a recognition of the
immediate or mediate implications of linguistic conventions that “we have adopted”;
thus the conventionalist (in this sense) holds that there is “nothing to” either the
necessity or the truth of mathematical statements in general that goes beyond the
implications of these self-chosen “conventions.” What is more, Dummett argues,
Wittgenstein’s peculiarly “full-blooded” variety of this conventionalism consists
in denying even that the implications of convention may be “mediate” in not
following directly from these choices. For Wittgenstein as Dummett reads him “the
logical necessity of any statement is always the direct expression of a linguistic
convention,” indeed, our “decision” to treat just that statement as unassailable.11

This is because (for Wittgenstein as Dummett reads him), if we were to characterize
our judgments of mathematical necessity as following from our initial conventions
only mediately, we would still face the question of how those conventions are to
be applied in the particular case and would thereby have to appeal to an essential
element of decision in each case anyway. This points, on the imputed interpretation,
to the necessary and constitutive role of conventions formed de novo in each case of
a new mathematical judgment; though these conventions may subsequently serve as

9On Putnam’s reading (Putnam, 2002, pp. 438–40), the later remark in the Philosophical
Investigations represents a retreat from the anti-realism that is (on his reading) exhibited in the
1944 RFM remark. For Putnam, this is shown by the fact that the latter remark says nothing about
God or omniscience but rather only about “our” understanding; thus what Wittgenstein is rejecting
in the latter remark, according to Putnam, is not realism about mathematics (in some sense of
“realism”) but rather the view that there can be a “nonmathematical” explanation for the truth of
mathematical truths. Although this is, on the current reading, in fact an important strand of the
argument of both passages, what is less evident is that even the first (RFM) remark must be taken
as maintaining an “anti-realist” position in any important sense (if, as both remarks suggest, the
centrality of mathematical practice for the intelligibility of mathematical questions is maintained).
10Dummett (1959), p. 169
11Dummett (1959), p. 170
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standards for the repetition of just that judgment, they remain irreducibly our own
and have no deeper or extrinsic independent “grounding” in mathematical reality or
the mathematical facts themselves. On the level of practice itself, it follows from
this that (on the view imputed) there is nothing beyond our simply doing what we
(in fact) do, in our ordinary practices (e.g., of counting, adding, etc.), that justifies
or establishes its correctness.

As Dummett notes, the view thus attributed has highly implausible consequences
on the level of mathematical practice itself. For example, as he argues, given “full-
blooded” conventionalism, it is impossible for us to criticize the practices of a group
of people who, after counting separately five boys and seven girls in a classroom,
then subsequently recount the group as a whole and come up with thirteen.12 The
most we can say is that given our practices and conventions, we would not count
this way; but there is no intelligible neutral perspective from which we can say that
they are in fact wrong to do so or that they thereby get the facts or mathematical
realities wrong. Dummett objects, for obvious reasons, to this kind of position. It
is a clear and evident aspect of mathematical practice, whether “sophisticated” or
not, that we do feel a kind of “responsibility” to the mathematical facts and that
we will subject to criticism those who we think have got them wrong. This is as
much an aspect of everyday practices of counting and calculating with numbers as
it is of “sophisticated” mathematical proof itself; if we do not at any rate experience
the constraint of feeling responsible, whether in calculation or proof, to something
that is not simply a matter of decision or arbitrary convention, we are not “doing”
math—or engaging in the kinds of practices that we take doing math to be—as we
do in fact engage in these practices in the course of our ordinary lives.

Although Putnam and Dummett disagree about the extent and endurance of
Wittgenstein’s conventionalism overall, they agree in thinking that Wittgenstein
situates the question of the existence or determinacy of mathematical truths within a
constitutive consideration of the extent and limits of our specific linguistic practices.
In other words, the form of the question, seen this way, is: given that our practices
(can) only go so far, what should we say about mathematical truths that outstrip
them? Further, what links both of the interpretations, despite their differences, is the
thought that mathematical truths are themselves determinately constrained by the
limited actual extent of our specific “conventional” linguistic practices of decision,
explanation, or calculation. So far as these practices go, we may talk without
difficulty about mathematical truths or entities as “determinate,” as “fixed,” or as
“real,” but if we try to go any farther in our conception of them, we are subscribing
to a misleading and dangerous “Platonizing” picture of mathematical reality, one
which has no warrant in this reality (as, anyway, it is in any meaningful sense
available) itself.

12Dummett (1959), pp. 173–175
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This thought has its broader setting in the context of familiar questions much
pursued in the “philosophy of mathematics,” such as: are mathematical truths “in
us” or “out there”; are they “fixed” independently of our procedures for accessing
them or our ways of knowing about them; are they, fundamentally, “created” or
“discovered”? Now, my own view is that Wittgenstein’s considered answer to all of
these questions is “neither-nor” and that his basic reasons for this answer turn on
his nuanced conception of just how mathematics is “integrated” into a human life.
Rather than argue for this here, though, I will just try to show how this more nuanced
conception fits within an idea of mathematical practice as shaped by, and in turn
decisively shaping, a kind of life that we can recognize more broadly as “human”
and thus (a fortiori) not something that could be pursued, in any meaningful way,
by something that does not live this kind of life, for example, a machine or a
computer. Putnam and Dummett’s interpretations have it in common that they are
intended primarily to address the question: what is mathematical truth and how
is it “fixed” (if at all)? But Wittgenstein is not asking this question or at any
rate is not asking only this question. Just as much, he is asking about what doing
mathematics is and how it is related to what mathematics is “about.” And he answers
these latter questions, not with any specific overall account of the metaphysics of
mathematical facts or truths, or the logical implications of their accessibility, but
rather by adverting to the general and familiar circumstances in which practices such
as counting, calculation, problem-solving, and proof have their role within (what we
already know as) our lives.

In this consideration, one concept and experience that has a particularly central
significance (extending also far beyond just its implications for mathematical prac-
tice itself) is that of a (mathematical) technique. By means of such a technique—for
example, the technique of calculation invoked in the 1944 remark about the
expansion of  —one can arrive at a result which one recognizes as correct and
may be in a position to use this result (the approximation of  , say, to five places)
for a particular purpose (to estimate, for instance, the area of a circular enclosure
of a certain radius). This technique has its point and its purpose in the context of
what we do with it and can be learned, taught, communicated, and elaborated on
in this way: as part of the specific “language game” of, for instance, calculative
estimation of areas but also as part of the practices that are called learning, teaching,
and communicating mathematics. It is part of this learning and teaching that one
learns that the technique “in principle” “goes on forever”: that there is no end to
“the decimal expansion of  ” since the rule can always be applied to produce more
digits and in learning this a student learns also to make sense of the question about
whether a string of 7 s “appears” or not anywhere “in” the total expansion. But all
of this is not to say that the expansion is as a whole “in” the (finitely stateable) rule
itself, just “waiting” (as it were) to be unpacked from it. Rather, it is for Wittgenstein
the irreducibility of the calculative technique as technique—its role and significance
within a human life—that “gives” us whatever it does give us and whatever we can
then use or articulate on the level of use for the diverse purposes to which we might
put it.
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This is not to say, of course, that we simply decide (or choose freely conventions
that decide) what the value of the expansion will be, either at any particular place or
in general. In pointing to the irreducibility of mathematical technique, Wittgenstein
is raising the question what is it for us to follow a procedure or a rule, of how
we are thereby “guided” and in what respect we are “free,” of how our methods
and procedures are rooted in the instances and practices of our lives, but also
how they (nevertheless) give us the kind of insight and orientation that consists
in knowing how things are. The point is that, on the one hand, it makes sense
to say that our practice of calculation is our practice—that it has its point, its
purpose, and its whole existence within the broader context of how we do it and
what we do with it—but that on the other, it also makes sense to see its results as
completely determinate, objective, and “fixed,” even in their whole (infinite) extent.
The difficulty of maintaining this position isn’t that of accounting for how there
can be so much as an objective “standard” for the correctness of our practices
given that these practices are our own but rather of showing what such a standard
means from within these practices themselves. And this showing, as I have argued,
makes essential use of the idea of a technique or a practice which is (on one hand)
integrated into our lives, but on the other is “in principle” extensible, and responsible
to what it is trying to illuminate.

How, then, should we read in this light the 1944 remark about God and the
limitations of His omniscience? One of Wittgenstein’s goals here is, obviously and
admittedly, to challenge a “Platonistic” picture of mathematical truths according
to which they are completely determinate and fixed in advance of anything like a
calculation (or perhaps a proof) and thereby open in principle, as it were, to simple
inspection by a superior entity. In denying that God, even if he knows everything,
knows without calculation whether or not there is a string of 3 7s anywhere in the
decimal expansion, Wittgenstein is evidently denying that there is any sense to be
made, in other words, of the picture of the whole of the decimal expansion as (as
it were) simply given to the deity, along with the knowledge that it is the whole
correct expansion, in such a way that He could simply “look and see” whether the
string occurs anywhere or know this immediately just by being given the rule itself
and without himself calculating. But there is more to Wittgenstein’s remark than
only the rejection of this Platonistic picture. There is also the reminder—equally
obvious, perhaps, but difficult to hold in balance with the first, anti-Platonistic
point—that there is a procedure which suffices to calculate successively the digits
of the expansion of   (and thus eventually to find a string of 3 7s, if any such string
exists). This is just the calculative procedure that one normally uses or that we can
now program computers to follow out much further than we (given the biological
limitations of our own finite capacities and limited lifetimes) can do. But the fact
that such a procedure can be “automated” in such a way does not imply that it is
not one whose scope, and significance, is to be understood from within its role in
something like a human life.

In the very next remark of RFM, Wittgenstein emphasizes this essential embed-
ding of the calculative procedure as an activity, within life and the more general
“language game” of following a rule itself:
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The concept of the rule for the formation of an infinite decimal is – of course – not a
specifically mathematical one. It is a concept connected with a rigidly determined activity
in human life. The concept of this rule is not more mathematical than that of: following the
rule. Or again: this latter is not less sharply defined than the concept of such a rule itself. –
For the expression of the rule and its sense is only a part of the language-game: following
the rule.
One has the same right to speak of such rules in general, as of the activities of following
them.13

The upshot of these remarks, in their context, is not indeed to deny that the
activity of calculating, for instance, that of calculating the expansion of  , is
(as Wittgenstein says) a rigidly determined one. The procedure, in this case as in
others, is not arbitrary; nor is it just a matter of convention, or decision, or just
made up by us. Moreover, we have, even from within the procedure and the form
of activity determined by it, an idea of what it means to talk about what “is” or “is
not” within the decimal expansion as a whole. We can perfectly well understand, for
instance, what it would mean for the sequence in question to be found, as we can
also understand that the process might run on forever without finding it. It is, in this
sense, and for this reason, perfectly legitimate to consider the principle of bivalence
as applying to the expansion as a whole: either the string of 7 s is “there” or it is
“not there.” Indeed, it is not clear what could be meant by denying this, once we
have seen the rule as one that “goes on forever” in the way that it does.

What is disputed in the remarks, then, is not realism in general or realism about
the expansion but rather the misguided impression that realism itself demands that
anyone—God included—could have access to the whole of what is produced by
the procedure without going through that procedure himself. It is the procedure
(or technique) that is irreducible, and it is also irreducible that it is something
that is gone through, that is, something that is (can be) practiced by someone.
It is immaterial to this whether the relevant “someone” is itself finite or infinite
(whether, that is, its powers are conceived of as limited or unlimited); what matters
is rather that these “powers” actually be applied: this is what Wittgenstein is calling
proceeding “by means of mathematics” in the remark. This procedure, and others
like it, are not less “rigidly determined” than we expect mathematical rules to
be—that is, to say that they have a role in human life, and, essentially so, not to
say that they do not determine just the results that they do or that these will not
be “objective” or fully “fixed.” But equally it is not “determined” at all, except
as an activity, a procedure that we can understand and “go through,” something
that is done in the context of a human life. The concept of this activity is not, as
Wittgenstein says, simply a mathematical one, any more than the broader concept
of “following a rule” which it exemplifies. But on the other hand, it is not therefore
any the less “mathematical,” for it is in activities of this sort, and in the surrounding
ones of learning, teaching, communicating, and reasoning about them, that (in any
meaningful sense) “doing” mathematics consists.

13RFM, VII-43 (p. 409)
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II

In the Philosophical Investigations, Wittgenstein devotes an extended consideration
to the question of what it is to follow a rule. In this consideration, he often
uses “mathematical” examples: not ones drawn from the practice of sophisticated
mathematicians but examples of the type that may arise in ordinary mathematical
pedagogy at the grade school level. For example, a student is challenged to continue
the series 1, 5, 11, 19, 29 by finding (as we might put it) its “rule”; at this point,
Wittgenstein imagines, the student exclaims “Now I can go on!”14 As Wittgenstein
points out, the student’s understanding, which seems to occur at this moment, is
consistent with a wide variety of possibilities about what may have occurred with
him “mentally”—perhaps he has hit upon the formula: an D n2 C n – 1; or perhaps
he has simply observed the series of differences (4, 6, 8, 10), or perhaps neither of
these happens: he just watches and says “Yes, I know that series” and continues it.
Again, it is also coherent to suppose that any of these “mental” phenomena occur
without the student in fact being able to continue it correctly (at this stage or any
other): perhaps, for instance, the formula does occur to him but he still does not
understand how to apply it.15 What, then, are we to say “is” the understanding that
occurs in the moment, the understanding by virtue of which he is able (if he is) to
continue the series correctly and indefinitely?

In the more extended development of the “rule-following” considerations in the
Investigations, Wittgenstein considers also examples that are recognizably “odd”
from the perspective of “ordinary” ways of learning and responding to teaching.
For instance, a student is taught to write the sequence with the rule C2 (2, 4, 6,
8, ...) and does so correctly up to 1000; at this point, however, he writes 1000,
1004, 1008, 1012 : : : .16 Wittgenstein’s point is not that we do, or should, ordinarily
expect this kind of behavior but rather that there are limits to what we can point to in
“correcting” the student’s misapplication, and that there is no single or simple way
to guarantee that a student will understand whatever we do point to in the way that
we wish (and normally expect) him to. On the contrary, what establishes that the
student has understood correctly, and what constitutes understanding correctly—
in ordinary circumstances—is not to be referred to his having any particular
momentary experience but rather to the complex of circumstances that surround
any such experience in the broader context of the practices in which it takes
place: here, indeed, the circumstances of teaching and learning, of coming to
grasp and understand in the ways that we (in fact) do. These circumstances are
more than just external accompaniments to the “language game” of learning and
understanding how a rule “determines” a series: rather, they constitute this learning
and understanding itself. And as such, they also, and equally, constitute “what it

14PI, 151
15PI, 152
16PI, 185
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is” to follow a rule itself, what it is to “determine” or see as determinate, and what
follows from it at any particular stage. Just as with the calculative case above, what
is essential here is the idea of a technique which is fully, and irreducibly, part of a
human life but nevertheless is as completely “determinate” and whose following out
is as “objective” as anything could be.

How, though, can the whole series, which after all is infinite in extent, ever
actually be determined (objectively and fixedly) simply by something that happens
(as it indeed does) at a particular moment, the moment of understanding or insight?
The question is pressing, especially in view of the consideration that any finite item
(for instance, any finite segment of a series or any symbolic expression of a rule
“for” determining it) can be variously interpreted and so cannot be seen as fixing
all by itself its total infinite extent. At PI 213, an interlocutory voice responds to
this kind of consideration by imagining that, where finite items are insufficient,
an infinitely renewed or repeated intuition might do the trick of fixing the right
interpretation across the extent of the series:

213. “But this initial segment of a series could obviously be variously interpreted (for
example, by means of algebraic expressions), so you must first have chosen one such
interpretation.” – Not at all! A doubt was possible in certain circumstances. But this
is not to say that I did doubt, or even could doubt. (What is to be said about the
psychological ‘atmosphere’ of a process is connected with that.)

Only intuition could have removed this doubt? – If intuition is an inner voice – how do I
know how I am to follow it? And how do I know that it doesn’t mislead me? For if it
can guide me right, it can also guide me wrong.

((Intuition an unnecessary evasion.))
214. If an intuition is necessary for continuing the series 1 2 3 4 : : : , then also for continuing

the series 2 2 2 2 : : : 17

Wittgenstein’s point is that the thought that the continuation of a series requires
a new intuition at each instance would, if tenable, also apply to the seemingly most
simple kind of rule, the one that requires only the infinite repetition of the same.
And if intuition here functions as a kind of inner voice, then it also appears even
here that it might mislead. But if even the infinite repetition of the same is not
capable of “securing” the determinacy of the rule’s extension, then nothing—at
least nothing on the level of the internal or mental accompaniments of the actual
practice and circumstances of learning and understanding—can be seen as doing so.
What is rather to be seen as the necessary, as well as sufficient, condition for such
understanding is the complex, various, and irreducible circumstances in which such
a rule is normally understood, learned, and followed: the circumstances, that is, of
the practices of “mathematical” teaching and learning within the context of a human
life.

47. If a rule does not compel you, then you aren’t following a rule.
But how am I supposed to be following it; if I can after all follow it as I like?
How am I supposed to follow a sign-post, if whatever I do is a way of following it?

17PI, 213–214
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But, that everything can (also) be interpreted as following, doesn’t mean that everything is
following.

But how then does the teacher interpret the rule for the pupil? (For he is certainly supposed
to give it a particular interpretation.) Well, how but by means of words and training?

And if the pupil reacts to it thus and thus; he possesses the rule inwardly.
But this is important, namely that this reaction, which is our guarantee of understanding,

presupposes as a surrounding particular circumstances, particular forms of life and
speech. (As there is no such thing as a facial expression without a face.)

(This is an important movement of thought.)18 (RFM pp. 413-14).

If Wittgenstein is right about this, what consequences follow for the learning and
teaching of mathematics? At one level, in developing these examples, Wittgenstein
is just calling attention to what actually does happen in the classroom and to
such ordinary and practically unavoidable circumstances of pedagogy as that a
student may, on being given any kind of instruction, still fail to grasp its point
or that no single explanation or example of a method can be relied upon to
produce understanding in any student or at any moment. But on a broader and
more “philosophical” level, Wittgenstein’s considerations show the infelicity of
any conception of mathematical pedagogy that sees it as a matter simply of giving
explanations or displaying regular methods at all. What his remarks seem to point
to is that, since the understanding invoked and drawn upon in “knowing how to go
on” is not just “there” in any given item or symbol, this understanding cannot be
successfully produced, in general, by means of many of the practices that are in fact
pervasively common in mathematics classrooms, especially at grade school levels:
practices such as repeated drilling in mechanical methods or rote memorization of
formulas. If the infinite series of values “determinable” by means of a mathematical
technique is not just available to be “read off” from Platonic heaven or reality in
itself, then it is also not simply “available” in the symbolic expression of a rule or
the repetition of a mechanical procedure, either. Rather, if the teaching and learning
of technique are irreducible in the way Wittgenstein suggests, what matters most
is to preserve this irreducibility, to maintain it as an intrinsic and unavoidable part
of the relationship between teacher and student involved in the practice of learning
mathematics, and to understand the pedagogical experience as irreducibly part of the
bearing of mathematics on the diverse circumstances of the individual and collective
lives we lead, which is to say as irreducibly part of mathematics itself.

III

Drawing on Wittgenstein’s remarks, I have argued for a conception of mathematical
technique according to which it is both (on the one hand) situated in the complex
context of human forms of life and (on the other) nevertheless fully determinate
and “objective.” I have further suggested that such a conception of technique, as

18RFM, VII-47, pp. 413–414
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fully and irreducibly “situated” within the finitude and temporality of a human
life, can be seen as an irreducible and essential part of what mathematics itself is,
so that it is not really possible to characterize “mathematical entities” or “truths”
as they are even “in themselves” without reference to the complex and dynamic
circumstances of a human life. This conception can itself seem mysterious, however,
given typical and longstanding assumptions about the temporality of mathematics,
assumptions that characterize mathematical facts or truths as “outside” time and
thus immune to the possibility of change or transformation. As thus “outside” time
and change but nevertheless available in a unitary and objective way to us, these
facts or truths are also, on this traditional conception, in some sense “outside” the
empirical world of facts and experience: they stand beyond or before the totality
of such facts and are wholly isolated from the contingencies they involve. These
assumptions already make it mysterious how an entity situated within time (such as
ourselves) can (so much as) have any kind of “access” to them; and even granting
some such “access,” they pose the problem of the temporal form of mathematical
understanding itself. How (as we may put it) do we have, in finite temporality and
at a distinct moment, a sufficient insight into the “whole” extent of an infinite
mathematical structure? As I shall argue in this last section, this question (as
Wittgenstein has pursued it) can be seen as marking in an interesting way a set
of basic questions about the form of time as it is given or accessible to a human
understanding and as it can be seen as structuring the world as such.

As we have seen, in his remarks in RFM and the PI, Wittgenstein is concerned
to refute a conception of the infinite totality of a mathematical series on which all
of its members would be understandable as “just there,” all at once, as open, for
instance, to simple inspection by a divinity or divine entity. To this he opposes the
idea of a mathematical or calculative technique, a doing of something “by means
of mathematics,” which essentially constitutes what it is to (be able to) know the
series, and hence plays an essential role in (as we may put it) constituting the series
itself. What is more and what is given in and through the technique are not to be
seen as consisting simply in any totality of empirical facts about what in fact is
calculated or discovered: Wittgenstein says that even if God were omniscient in the
sense of knowing all of these facts, up to the “end of the world,” he could not know
the answer to a question about what is in the decimal expansion without actually
doing the calculation himself.

These remarks, of course, are not directly about time or the temporal form
of the world. But their topic is nevertheless evidently very closely related to the
question of the structure of time and indeed to the question of the possibility of
a realist position on it. This relation is marked not only in the intimate historical
connections of philosophical thought about the subject matter of mathematics, since
at least Plato, with the idea of the timeless or extra-temporal, but more directly and
immediately in the context of discussion that clearly shaped many of Wittgenstein’s
own ideas about mathematics and truth: that of the debate between formalists
and intuitionists of the 1920s and early 1930s. In broader philosophical terms,
both of these positions are notable for the particular kind of temporal perspective
they involve. On the formalist’s conception, the specification of a formal system
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along with its constitutive rules is itself enough to secure access (given at least its
consistency) to the entire and infinite realm of what it discusses; this specification
is in itself atemporal, and the rules are themselves to be finitely stateable in such a
way as to be repeatable ad infinitum. Here, whereas the actual “application” of the
rules (e.g., in a calculation) requires some sort of actual process or agency, the rules
in themselves and what they determine are nevertheless essentially extra-temporal:
independent and fixed with the specification of the formal system as the “ideal”
system that it is. For the intuitionist, by contrast, there is always and irreducibility
a temporal element in our mathematical cognition: we cannot take ourselves to
genuinely have or understand a mathematical structure unless we do so by means of
a finite, and temporal, intuition; and the being and existence of mathematical entities
and phenomena is itself essentially dependent on the anterior and posterior structure
of flowing time.19

Do Wittgenstein’s remarks quoted above about mathematical practice and
technique, then, show him to be a formalist or an intuitionist about mathematics
and time? Again, the answer is “neither-nor,” but we can see more clearly the
temporal implications of what is in fact his position by considering how it might
be generalized to provide a broader conception of the way that time itself is “given”
to be thought and experienced. As we have seen above, Wittgenstein’s purpose in
the remark about God and omniscience is not necessarily to dispute that there is
such a thing as “the decimal expansion of  ,” and it is not to maintain the “anti-
realist” position that there is no “fact of the matter” about whether the string of
7 s appears in the expansion or not. What is disputed in the remarks is rather the
misguided impression that realism itself demands that anyone—God included—
could have access to the whole of what is produced by the procedure without going
through that procedure itself. To dispute this is not to affirm a limitative finitism
about the expansion of   or about mathematics in general or to require anti-realism
about such places in the decimal expansion as have not yet been determined by
any human mathematician. But nor can it be that Wittgenstein here envisions an
ultimate basis for our procedure of calculating the expansion of   in a kind of
primitive temporal intuition and of the kind that Brouwer’s intuitionism proposed
at the ultimate (and ultimately temporal) basis of mathematical knowledge.20 We
know, biographically, that Wittgenstein was decisively influenced by Brouwer’s
intuitionism just before his return to philosophical activity in 1929; this influence
leaves its mark, in particular, on some of the anti-realist and verificationist-seeming
suggestions he makes about the relationship of proof and truth in mathematics
during the 1930s. But there is also abundant evidence that he had abandoned both

19For the terms of the dispute, see, e.g., Hilbert (1925) and Brouwer (1912).
20For of course Wittgenstein’s point here is exactly not to invoke or rely upon conditions of an
interior, psychological, or subjective kind as an alternative to the Platonism he also rejects. It is
rather to criticize the whole configuration of thought about mathematics and time that is marked by
the oscillation between Platonism and subjectivism and in particular determined by the conception
of the nature of a rule that both essentially share.
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verificationism and intuitionist strictures (for instance, against the use of the law of
excluded middle) by the time he wrote most of the Philosophical Investigations.

The decisive consideration here, in fact, is the one already rehearsed above with
reference to the question of continuing a regular series: if it is impossible to explain
the basis for “going on” correctly with the expansion of a series without appealing
to the directive provided by a primitive intuition, it is also impossible to explain it
by means of such an appeal. This is because the appeal to a basic guiding intuition,
as Wittgenstein points out, is simply (once more) the appeal to an essentially finite
item, which does not settle its own interpretation and so simply repeats the original
problem. Analogously or homologously, if we cannot explain the givenness of time
to our experience and thought without appealing to a basic intuitive giving, we
cannot explain it by doing so either.

What remains nevertheless of Brouwer’s idea of a constitutive dependence of
mathematics on time, and does certainly influence Wittgenstein’s remarks here,
is the idea of the form of the “facts” as conditioned by the form of a possible
understanding of them, and this form itself as being irreducibly temporal. The point
is that we cannot conceive of these facts as “given” from wholly outside time or
presented as such to a being that exists outside it, except through a form which
is itself in the relevant sense temporal, that of a calculative procedure. Rather, the
necessity of conceiving the temporal facts from a position within time marks the
form of these facts themselves, in such a way that it is not even so much as coherent
to suppose that they could be conceived or perceived from beyond any such position.

If we were, then, to draw out the temporal analogue to Wittgenstein’s remark
in RFM about the expansion of  , we might indeed be tempted to say something
like: even God can perceive and understand the facts about things happening in time
only on the basis of an activity that is itself temporal, i.e., itself within the time it
perceives and understands. To say this would not be to deny the very possibility of
something like a view on the whole of time (a view, as it were, of the world sub
specie aeternitatis). But it would be to deny that such a view can be taken otherwise
than from a position that is itself essentially located within time and to affirm that
this necessity marks the very form of the givenness and availability of entities and
phenomena themselves. To put the position this way would be to adumbrate one
of the several ways in which a constitutive reflection on finitude and the infinite,
including especially their forms in relation to “mathematical” truths and results,
sheds light on the necessary form of the phenomena and experiences of the world
itself and indeed as they are in themselves.

What would be, then, the consequence of such a view, if maintained generally, for
our understanding of the time of the world itself? In arguing against the possibility
and tenability of the view of mathematical entities as simply atemporal and inde-
pendent of the temporality and dynamism involved in a technique, Wittgenstein also
suggests the emptiness of any idea of the world and its phenomena as surrounded by,
or surveyable from, a position that is itself wholly extra-temporal. Such a position
is the one that is envisioned as occupied, on the traditional “Platonistic” conception,
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by the mathematical entities itself, and the idea of a divine intellect capable of
knowing them in their infinite totality without (temporal) calculation or procedure
then supplies the necessary, if falsifying, correlative position of possible knowledge.
But if the picture of mathematical truth and entities that situates them in such a
position is shown, on the basis of a constitutive consideration of the temporality of
mathematical technique, to be untenable, then it is doubtful whether any significant
support remains for the idea of an extra-temporal realm of determinate existence at
all. Since this idea has, in fact, drawn much of its historical support (both in the
philosophy of Plato himself and in subsequent developments of the theme) from
the putative “timelessness” of mathematical entities, once this support is removed,
it is not clear whether the overall conception of temporality that it itself involves
can remain in place.21 At any rate, since it is not clear any longer that mathematics
requires, or even encourages us, to postulate or invoke any kind of “timeless” realm
of existence outside the (temporal) world, it seems that any considerations that still
incline us to do so must be seen to arise from very different (and distinctively
nonmathematical) sources.
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Gödel’s Legacy

Martin Davis

Gödel in 1933

In his truly remarkable paper of 1931, Kurt Gödel casts grave doubts on the viability
of Hilbert’s program for providing a consistent foundation for mathematics. In
addition, it compelled logicians to view their subject through entirely new lenses.
Two years later, Gödel was invited by the Mathematical Association of America to
address one of its meetings. In his address, he spoke as follows:

. . . we are confronted by a strange situation. We set out to find a formal system [of axioms]
for mathematics and instead of that found an infinity of systems, and whichever system you
choose . . . , there is one more comprehensive, i.e., one whose axioms are stronger . . . But
. . . this character of our systems . . . is in perfect accord with certain facts which can be
established quite independently . . . For any formal system you can construct a proposition
– in fact a proposition of the arithmetic of integers – which is certainly true if the given
system is free from contradictions but cannot be proved in the given system. Now if the
system under consideration (call it S) is based on the theory of types, it turns out that . . . this
proposition becomes a provable theorem if you add to S the next higher type and the axioms
concerning it. . . . the construction of higher and higher types . . . is necessary for proving
theorems even of a relatively simple structure.1

This view of a hierarchy of formal systems of increasing strength in each of
which more propositions “even of a relatively simple structure” become provable
has held. At the bottom are systems in which the basic theorems of number
theory are provable, followed by systems adequate for analysis, including functional
analysis. As one advances upward, one goes beyond the full system based on the

1Gödel [5].
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Zermelo-Fraenkel axioms (including the axiom of choice)2 to systems obtained by
adding to those unprovable assertions requiring the existence of very large sets. In
this article, I will briefly survey the scene after 85 years have passed.

Algorithmic Computability

In the years 1934–1936, efforts by Gödel, Alonzo Church, his student S.C. Kleene,
Alan Turing, and E.L. Post solidified an understanding of computability as a precise
mathematical concept. This made progress possible in a number of directions. Gödel
undecidability could now be presented in a general setting in which formal systems
are seen as essentially providing algorithms for generating streams of theorems.
Mathematical problems that sought the existence of algorithms could now be settled
negatively in a definitive way by proving that no such algorithm is possible. And
finally by finding suitable normal forms for computable functions, Gödel’s “even of
a relatively simple structure” could be made even simpler. We define:

A Diophantine statement is an assertion of the form:

For all natural numbers x1; x2; : : : ; xn; p.x1; x2; : : : ; xn/ ¤ 0;

where p is a polynomial with integer coefficients.
Then one can prove:

Theorem No algorithm for generating true Diophantine statements can generate
all such statements.

If one asks what can it mean to say that a Diophantine statement is “true,” there
is in principle a straightforward reply: it means that if any specific natural numbers
are substituted for the variables and the value of p then calculated, the result will
never be zero. If in particular the numbers are specified in the decimal notation in
common use, this calculation can be carried out using the algorithms for adding,
subtracting, and multiplying that we learned as children.

This result is based on the work leading to a negative solution of Hilbert’s tenth
problem. It is worth emphasizing that the proof is entirely constructive. Given a
particular formal system, e.g., the Zermelo-Fraenkel axioms with first-order logic,
one can construct a specific true Diophantine statement D with the property that if
no false Diophantine statements are provable in the system, then D is unprovable in
the system. However, a warning is necessary: the specific polynomial will not be a
pretty thing. The coefficients need to code the Zermelo-Fraenkel axioms and so will
be enormous.

Although many famous problems are provably equivalent to Diophantine state-
ments, including Fermat’s Last Theorem, the Goldbach’s conjecture, and even the

2See the Appendix for a list of the Zermelo-Fraenkel axioms.
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Riemann hypothesis,3 there are as yet no examples, outside of logic itself, of
previously posed Diophantine statements being proved undecidable in one of the
usual formal systems. However, the distinguished logician Harvey Friedman has
created families of combinatorial propositions, some of them provably equivalent
to Diophantine statements, that are not provable from the Zermelo-Fraenkel axioms
but do become provable if axioms asserting the existence of very large sets are
added.4

The situation is very different with respect to problems seeking algorithmic solu-
tions: Hilbert’s tenth problem, the word problem for groups, and very many other
problems from various branches of mathematics have been proved algorithmically
unsolvable.5

Cantor’s Continuum Problem

Cantor’s continuum hypothesis can be stated as follows:
CH Every uncountable set of real numbers can be mapped one-one to the set of

all real numbers.
Cantor tried without success to prove CH, and it was the very first problem in

Hilbert’s famous list from his 1900 address. In 1938 Gödel achieved an important
result concerning CH. He defined a property of sets he called constructibility and
considered the proposition:

A: Every set is constructible.
He then proved (using the abbreviation “ZF” for the Zermelo-Fraenkel

axioms):

• If ZF is consistent, then so is ZF plus A.
• ZF plus A ) CH.

From this, it follows that if ZF is consistent, then CH cannot be disproved from ZF.
For some, this meant simply that now one could just assume CH as an additional
axiom, confident that no contradiction would result from doing so. In fact, for a
large class of propositions (including, in particular, Diophantine statements), if they
can be proved from ZF plus CH, then they can be proved from ZF only.

Gödel conjectured that CH was actually independent of ZF, that CH not only
couldn’t be disproved, but also it couldn’t be proved from ZF either. He was
right, but this wasn’t actually proved until 1963. In 1947 Gödel published an
expository article on CH in which he argued that CH has a definite truth value
and its undecidability from ZF implied, not that CH could never be decided, but

3See [2, pp. 331–339].
4For a sample of the many propositions of this kind that Friedman has developed, see [3, 4].
5See, e.g., [1, 10].
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rather that ZF was too weak to decide it. Gödel further conjectured that eventually
a new powerful axiom from which it will follow that CH is false will be found and
accepted.6

ZF, after all, was but a way station in the transfinite hierarchy of axiom systems
Gödel had already discussed in his 1933 lecture. To understand this better, it’s
helpful to think of the ZF axioms as assertions that certain sets exist. Along with
axioms asserting that specific sets exist, there are axioms that provide operations for
proceeding from some given sets to certain other sets. For example, the power set
axiom asserts the existence of the set of all subsets of a given set. One is readily
led to form a new set that transcends ZF by forming the closure under all such
operations. It can be proved that the set so formed has a larger cardinal number
than any set that can be proved to exist from ZF. Such a cardinal number is called
inaccessible.7 Inaccessible cardinals lie at the bottom of a hierarchy of “large”
cardinals, the existence of each which implies the consistency with ZF of all those
further down in the hierarchy.8

Paul Cohen proved that CH could not be proved from ZF by showing how to
obtain models of ZF in which CH is false. In fact, using Cohen’s forcing method,
it became apparent that models of ZF were ubiquitous, as prevalent as, say, finite
groups. These models can be viewed as directed countable graphs in which the
vertices serve as “sets” and the edges provide the membership relation between a
set and its elements. A set will be large in the model because the sets of ordered
pairs that could provide maps to smaller sets are omitted from the models. No one
who believes that real numbers and sets of real numbers are definite well-defined
concepts will regard such models as saying anything about CH itself.

Projective Sets

Writing R for the set of real numbers, if B 2 RnC1, we write Proj.B/ for the set
A 2 Rn defined by9

< x1; : : : ; xn >2 A , 9y 2 RŒ< x1; : : : ; xn; y >2 B�

6Gödel [7].
7To prove that the existence of inaccessible cardinals cannot be proved from the ZF axioms, one
observes that a model of ZF could be defined using a set of that cardinality. The existence of such
a model would imply that the ZF axioms are consistent. Since the entire proof could be carried
out within the scope of the ZF axioms, this is impossible because, as Gödel has shown, if the ZF
axioms are consistent, their consistency cannot be proved within a system based on those axioms.
8See [8] which discusses the historical development of the study of “large” cardinals as well as
their inter-relationships. The “Chart of Cardinals” on p. 472 shows the variety of inhabitants of
this remarkable zoo of larger and larger sets.
9This section and the next are based on [9].
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The hierarchy of projective sets is defined simultaneously in all Rn as follows:

†1
0 D the set of Borel sets

…1
m D fA � Rn j Rn � A 2 †1

mg

†1
mC1 D fA � Rn j 9B 2 …1

mŒA D Proj.B/�g

Projective sets were studied intensively during the early 20th century, but the work
ran into obstacles. A brief survey of what was accomplished follows.

Hierarchy Theorem (Lusin) For m D 0; 1; 2; : : :

†1
m 	 †1

mC1; …1
m 	 …1

mC1:

For m > 0, we have †1
m � …1

m ¤ ;.

Souslin’s Theorem †1
1 \ …1

1 D the Borel sets.

Theorem (Lusin, Souslin) Every set in †1
1 is Lebesgue measurable and has

cardinality either � @0 or 2@0 .
A class of sets � is called a uniformization class if for every A 2 � \ R2, there

is a map B W R ! R such that B 2 � and B � A. Kondo proved: …1
1 and †1

2 are
uniformization classes.

A class of sets � is called a reduction class if for all A;B 2 � , there are A0;B0 2 �

such that

A0 � A; B0 � B; A0 \ B0 D ;; and A0 [ B0 D A [ B:

Kuratowski proved: …1
1 is a reduction class.

Except for the hierarchy theorem, all of these results concern only the bottom
levels of the hierarchy. Efforts to go further failed. Many years later, after Paul
Cohen’s forcing method became available, it became clear why. It turned out that
no further progress was possible without going beyond ZF.

Determinacy

Although Gödel’s suggestion that a new axiom might make it possible to prove
or disprove CH in a definitive manner has not proved fruitful (at least not yet), in
the realm of projective sets, a new appropriate axiom has been found. This axiom
involves infinite games of a certain kind.

Associated with a given set, A � R is a game defined as follows: players I and
II alternately move by each specifying a binary digit 0 or 1. They thus specify the
binary expansion of a real number x in the unit interval. If x is the fractional part of
a member of A, then I wins; otherwise II wins.
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Definition The set A � R is determined if either there is a strategy for I to win or
there is a strategy for II to win.

Using the axiom of choice, one can prove: there is a set that is not determined.
This use of the axiom of choice suggests that sets of real numbers for which one can
supply an explicit definition should be determined. In particular, this should apply
to projective sets. A first step was taken by Donald “Tony” Martin:

Theorem (Martin) Every Borel set of reals is determined.
Martin’s proof requires the full force of ZF.10 It has been shown that if ZF is

consistent, then the statement All sets in …1
1 are determined is not provable from

ZF. This suggests the axiom:

Projective Determinancy (PD) Every projective set of real numbers is determined.
The theorems below, which beautifully complete the earlier investigations of

projective sets, are obtained when PD is added to ZF as an additional axiom.

Theorem Every projective set is Lebesgue measurable and is either countable or
of cardinality 2@0 .

Theorem If n is odd, then …1
n is a uniformization class, and if n > 0 is even, then

†1
n is a uniformization class.

Theorem If n is odd, then …1
n is a reduction class, and if n > 0 is even, then †1

n is
a reduction class.

Tony Martin and John Steel have tied these investigations to the study of large
cardinals by deriving PD from assumptions asserting the existence of certain large
cardinals.

Conclusion

Gödel has left us with a conception of an increasing hierarchy of axiom systems
from each of which propositions are provable that are not provable from axioms
lower in the hierarchy. So far this conception has affected only the fringes of
mathematical practice. Whether it will prove important for problems central to
mathematics, only the future can reveal. Gödel himself has made the provocative
conjecture that the Riemann hypothesis (RH) regarding zeros of the zeta function
will require set-theoretic methods for its proof.11 Given the serious attention paid
to RH by analysts and number theorists and its very statement involving notions at
the heart of classical complex function theory, I think that Gödel may very well be
right.

10See the Appendix. Almost everything in ordinary mathematics can be carried out without the
final axiom of “Collection.” But Martin’s proof requires this axiom.
11Gödel [6, p. 307].
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Appendix: The Zermelo-Fraenkel Axioms

For brevity, I have omitted universal quantifiers at the left of these statements. The
axioms of separation and collection are each really an infinite sequence of axioms
in which the letter 	 can be replaced by any legitimate formula written in terms of
logical operations and the symbols occurring in the other axioms.

Empty set x 62 ;

Extensionality 8t .t 2 x $ t 2 y/ ! x D y

Pairs t 2 fx; yg $ t D x _ t D y

Definition fxg D fx; xg I < x; y >D ffxg; fx; ygg

Definition x � y () 8t 2x .t 2 y/

Power t 2 P.x/ $ t � x

Union t 2
S

x $ 9z2x .t 2 z/

Definition x [ y D
S

fx; yg

Infinity ; 2 ! I x 2 ! ! x [ fxg 2 !

Separation 8u9x8t Œt 2 x $ t 2 u ^ 	.t; Ep /�

Definition Fn.f / ,< x; y1 >;< x; y2 >2 f ! y1 D y2
f .x/ D y ()< x; y >2 f

Choice 8x9f .Fn.f /^ 8z2x Œz ¤ ; ! f .z/ 2 z/�/

Foundation x ¤ ; ! 9y2x8z2y .z 62 x/

Collection 8x2u9y	.x; y; Ep/ ! 9z8x2u9y2z	.x; y; Ep/
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Varieties of Maverick Philosophy
of Mathematics

Carlo Cellucci

Reuben Hersh is a champion of maverick philosophy of mathematics. He maintains
that mathematics is a human activity, intelligible only in a social context; it is the
subject where statements are capable in principle of being proved or disproved
and where proof or disproof brings unanimous agreement by all qualified experts;
mathematicians’ proof is deduction from established mathematics; mathematical
objects exist only in the shared consciousness of human beings. In this paper
I describe my several points of agreement and few points of disagreement with
Hersh’s views.

Mainstream, Maverick, and Mathematical Practice

In the twentieth century, mainstream philosophy of mathematics has been foun-
dationalism, the view that the philosophy of mathematics is research on the
foundations of mathematics. But in the second part of the century, Lakatos, with his
PhD dissertation (Lakatos 1961), started a new tradition, known as “the maverick
tradition” (Kitcher and Aspray 1988, 17). Lakatos (1961) is unpublished as a whole,
but pieces of it have been published separately in Lakatos 1963–1964, Lakatos 1976,
and Lakatos 1978, II, Chap. 5.

Lakatos criticizes mainstream philosophy of mathematics, because it “denies
the status of mathematics to most of what has been commonly understood to
be mathematics, and can say nothing about its growth”; in particular, it can say
nothing about “the ‘creative’ periods” and “the ‘critical’ periods of mathematical
theories” (Lakatos 1976, 2). What is more important, in mainstream philosophy of
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mathematics, “there is no proper place for methodology qua logic of discovery”
(ibid., 3). On the contrary, the philosophy of mathematics must be primarily con-
cerned with methodology qua logic of discovery. Although there is no infallibilist
logic of discovery, namely, “one which would infallibly lead to results,” nevertheless
“there is a fallibilist logic of discovery” (ibid., 143–144, footnote 2). Already the
Greeks devised a heuristic method which is “a standard pattern of the logic of
discovery,” namely, “the method of analysis and synthesis” (Lakatos 1978, II, 72).

However, Lakatos’ approach to methodology qua logic of discovery is unsat-
isfactory, because it does not really tell you how to discover a hypothesis; it
assumes that you already have one (see Cellucci 2013b). Indeed, according to
Lakatos, methodology does not presume to give “rules for arriving at solutions,
but merely directions for the appraisal of solutions already there” (Lakatos 1978, I,
103, footnote 1).

Nevertheless, despite the limitations of Lakatos’ approach to methodology qua
logic of discovery, the origin of the maverick tradition must be credited to him,
because he was the first to assert that the philosophy of mathematics must be
primarily concerned with methodology qua logic of discovery. Admittedly, some
anti-foundationalist statements already occur in Wittgenstein, but Wittgenstein
claims that “mathematical discovery is always unmethodical: you have no method
for making the discovery” (Wittgenstein 2016, 46). Therefore, Wittgenstein cannot
be considered the initiator of the maverick tradition.

More recently, another approach has been proposed as a third way between
mainstream and maverick philosophy of mathematics, the so-called philosophy of
mathematical practice, whose manifesto is Mancosu (2008) (a related manifesto
is Ferreirós 2016). However, the philosophy of mathematical practice is not a
genuine alternative, but only a refurbished form of foundationalism. As Mancosu
says, philosophers of mathematical practice “do not engage in polemic with the
foundationalist tradition” nor “think that the achievements of this tradition should
be discarded or ignored as being irrelevant to philosophy of mathematics” (Mancosu
2008, 18). They reject “the polemic against the ambitions of mathematical logic
as a canon for philosophy of mathematics” and do not see “mathematical logic,
which had been essential in the development of the foundationalist programs,” as
“ineffective in dealing with the questions concerning the dynamics of mathematical
discovery” (ibid., 4). Far from opposing “the foundationalist tradition,” they are only
“calling for an extension to a philosophy of mathematics that will be able to address
topics that the foundationalist tradition has ignored” (ibid., 18).

After Lakatos, early developments in the maverick tradition were Hersh (1979),
Davis and Hersh (1981), Kitcher (1983), and Tymoczko (1986). In particular,
Reuben Hersh is a champion of maverick philosophy of mathematics. He presents
his position as “a subversive attack on traditional philosophies of mathematics”
(Hersh 1997, xi). Hacking even calls Hersh “the mother of all gadflies” (Hacking
2014, 198).

Sometimes, maverick philosophy of mathematics is not sharply distinguished
from the philosophy of mathematical practice. Even Hersh says: “We are concerned
with ‘the philosophy of mathematical practice’. Mathematical practice includes
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studying, teaching and applying mathematics” (Hersh 2014, 59). Then, however,
he continues: “But I suppose we have in mind first of all the discovery and
creation of mathematics – mathematical research” (ibid.). We aim at “reporting and
discussing what people really do” in “the process of mathematical discovery” (ibid.,
55). Indeed, maverick philosophy of mathematics is essentially different from the
philosophy of mathematical practice. Philosophers of mathematical practice do not
have in mind first of all the discovery and creation of mathematics – mathematical
research. They do not aim at reporting and discussing what people really do in the
process of mathematical discovery.

Maverick philosophy of mathematics has certain general features (see Cellucci
2013b). Nevertheless, there are distinct varieties of maverick philosophy of math-
ematics. Hersh calls “humanism” his own variety, because he wants to stress that
“mathematics is human. It’s part and fits into human culture. (Not Frege’s abstract,
timeless, tenseless, objective reality)” (Hersh 2014, 158). I have developed my own
variety in a number of works, more recently in Cellucci (2017), greatly benefiting
from Hersh’s works and from correspondence with him. In this paper, I describe my
several points of agreement and few points of disagreement with Hersh’s views.

The Definition of Mathematics

What is mathematics? The common naïve answer, “Mathematics is what mathemati-
cians do,” is clearly inadequate, because it immediately gives rise to the question:
What are mathematicians? Answering that mathematicians are those people who
do mathematics is begging the question. The problem is particularly acute in the
case of mathematicians who create new parts of mathematics. Why should they be
considered mathematicians, if what they do is something no mathematician does at
the time?

But, if the common naïve answer to the question what is mathematics is
clearly inadequate, you will hardly find a better answer in introductory books on
mathematics. Simply, in those books, you will find no answer at all.

On the contrary, Hersh gives a partial answer to the question what is mathematics,
by saying that “mathematics is the subject where statements are capable in principle
of being proved or disproved, and where proof or disproof bring unanimous
agreement by all qualified experts” (Hersh 2014, 163).

I agree with Hersh’s partial answer, with some qualifications. In my view,
proof should not be understood, as Hersh says, as deductive proof, but rather as
analytic proof (see below). Moreover, instead of saying that proof brings unanimous
agreement by all qualified experts, one should rather say that it brings agreement
by the majority of qualified experts, since empirical research shows that “there is
not universal agreement among mathematicians regarding what constitutes a valid
proof” (Inglis et al. 2013, 279). Kline even says that “the proofs of one generation
are fallacies of the next” (Kline 1980, 318).
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Philosophy of Mathematics and Human Knowledge

Parallel to the question “What is mathematics?”, there is the question “What is the
philosophy of mathematics?” According to a widespread opinion, the philosophy
of mathematics is a specialized branch of philosophy. But this only holds of last
century’s philosophy of mathematics. From Plato and Aristotle to Kant, a broad
general tradition treated the philosophy of mathematics, not as a specialized area
of philosophy but as part of a general approach to knowledge. Only at the end of
the nineteenth century, with Frege, the philosophy of mathematics took a sharp turn
away from this broad general tradition and was treated as a specialized subject.

Thus, however, the philosophy of mathematics lost connection with the general
question of human knowledge and became more and more irrelevant. Indeed, as
Hersh says, mainstream philosophy of mathematics is “an encapsulated entity,
isolated, timeless, ahistorical, inhuman, connected to nothing else in the intellectual
or material realms” and “routinely done without reference to mind, science, or
society” (Hersh 1997, 25). But “how can it be claimed that the nature of mathematics
is unrelated to the general question of human knowledge?” (Hersh 2014, 68).
Instead, one must “look at what mathematics really is, and account for it as a part of
human knowledge in general” (ibid., 47).

I completely agree with Hersh that the nature of mathematics cannot be unrelated
to the general question of human knowledge, and hence one must account for
mathematics as a part of human knowledge in general. Indeed, this is what I attempt
to do in Cellucci (2017), as a companion to Cellucci (2013a).

Like all knowledge, almost all mathematical knowledge originally arose from the
need to deal with the external world. Thus, geometry arose from the Egyptians’ need
to perform new land measurements after every flood of the Nile; arithmetic arose
from the Phoenicians’ need to deal with their trade activities; calculus arose from
the creators of modern science need to deal with the motion of planets and other
moving objects. Therefore, the nature of mathematics is not unrelated to the general
question of human knowledge. Admittedly, at some point, mathematics turned to
ask internal questions, not directly related to experience. But even those internal
questions ultimately evolved out of questions related to experience.

As Poincaré says, “the desire to understand nature has had on the development of
mathematics the most constant and happiest influence” (Poincaré 2013, 284). Thus,
“the pure mathematician who should forget the existence of the exterior world would
be like a painter who knew how to harmoniously combine colors and forms, but who
lacked models. His creative power would soon be exhausted” (ibid.).

Philosophy of Mathematics and Mathematicians

In my view, the primary task of the philosophy of mathematics is to give an answer
to questions such as: What is the nature of mathematics? How is mathematical
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knowledge discovered? What is the nature of mathematical objects? What is
mathematical explanation? Why is mathematics applicable to the world? How is
the question of mathematical knowledge related to the general question of human
knowledge? What is the role of mathematics in human life? (See Cellucci 2017,
Chap. 18).

Hersh holds a different view, because he says: “By ‘philosophy of mathematics’
I mean the working philosophy of the professional mathematician, the philosophical
attitude toward his work that is assumed by the researcher, teacher, or user of
mathematics” (Hersh 1979, 31).

A problem with Hersh’s view is that the working philosophy of the professional
mathematician varies from period to period; within the same period, it varies from
school to school; and within the same school, it varies from mathematician to
mathematician.

For example, Hilbert felt that, “for the solution of a mathematical problem,” one
must lay down the general “requirement of logical deduction” by means of “a finite
number of steps based upon a finite number of hypotheses” which “must be exactly
formulated,” because this “is simply the requirement of rigor in reasoning” (Hilbert
2000, 243–244).

Conversely, Enriques “did not feel the need of a logical demonstration of some
property, because he ‘saw’; and that provided the assurance about the truth of the
proposition in question and satisfied him completely” (Babbitt and Goodstein 2011,
242). Enriques even said: “We aristocrats do not need proofs. Proofs are for you
commoners” (Parikh 2009, 16, footnote 10).

Therefore, the view that the philosophy of mathematics is the working philoso-
phy of the professional mathematician entails that the philosophy of mathematics
can only give answer to questions such as: What is the working philosophy of the
professional mathematician put forward in a particular period, or by a particular
school, or by a particular mathematician?

Thus conceived, the philosophy of mathematics is reduced to the history of
mathematics. But the history of mathematics is written mainly on the basis of
mathematics in finished form, that is, mathematics as presented in textbooks or
journals, which has little or nothing to do with the way it is discovered. Therefore,
the history of mathematics does not provide an adequate basis for understanding the
real mathematical process.

The reason Hersh gives for the view that the philosophy of mathematics is the
working philosophy of the professional mathematician is that “the professional
philosopher, with hardly any exception, has little to say” (Hersh 1979, 34). In
fact, “some philosophers who write about mathematics seem unacquainted with any
mathematics more advanced than arithmetic and elementary geometry. Others are
specialists in logic or axiomatic set theory; their work seems as narrowly technical
as that in any other mathematical specialty” (ibid.).

Hersh is largely justified in saying so, because many philosophers who write
about mathematics, instead of dealing with the real mathematical process, deal with
artificial questions, which have no connection with that process. And yet, Hersh
himself acknowledges that, even if “there are, indeed, occasional philosophical
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comments by leading mathematicians,” nevertheless “the art of philosophical
discourse is not well developed today among mathematicians, even among the most
brilliant” (ibid.).

In fact, that mathematicians are experienced in doing mathematics does not auto-
matically mean that they are experienced in reflecting on the nature of mathematics.
As Lasserre says, if you “ask a mathematician ‘What is mathematics?’ he may
justifiably reply that he does not know the answer, but that this does not prevent him
from doing mathematics” (Lasserre 1964, 11). Indeed, the job of the mathematician
qua mathematician is not to say what mathematics is but to do mathematics. Of
course, nothing excludes that a mathematician may say what mathematics is, but
this requires that the mathematician be experienced not only in doing mathematics
but also in reflecting on the nature of mathematics.

The Distinction Between Front and Back

It has been stated above that the history of mathematics, being written mainly
on the basis of mathematics in finished form, does not provide an adequate basis
for understanding the real mathematical process. This suggests that an essential
distinction must be made between mathematics in finished form and mathematics in
the making.

Hersh formulates this distinction using the concepts of “front” and “back,” as
developed in Goffman (1956), Chap. 3. He says that, “like other social institutions,
mathematics too has its ‘front’ and its ‘back’,” where “the ‘front’ of mathematics
is mathematics in ‘finished’ form, as it is presented to the public in classrooms,
textbooks, and journals. The ‘back’” is “mathematics as it appears among working
mathematicians, in informal settings, told to another in an office behind closed
doors” (Hersh 2014, 36). Thus, the front is “established mathematics,” namely, “the
body of mathematics that is accepted as the basis for mathematicians’ proofs” (ibid.,
75). However, “the performance seen ‘up front’ is created or concocted ‘behind
the scenes’ in back” (ibid., 36). Mainstream philosophy of mathematics does not
recognize “that mathematics has a back. Finished, published mathematics – the
front – is taken as a self-subsistent entity” (Hersh 1997, 36). But this conflicts with
the fact that “it’s impossible to understand the front while ignoring the back” (ibid.).

I agree with Hersh that mathematics has a front and a back. But I do not agree
with him that the back of mathematics is mathematics as it appears among working
mathematicians, in informal settings, told to another in an office behind closed
doors. Mathematics as it appears there is just a preliminary, incomplete version of
mathematics in finished form. The back of mathematics is, instead, the creative work
of the mathematician, primarily the discovery work.

On the other hand, I completely agree with Hersh that it is impossible to
understand the front of mathematics while ignoring the back. This contrasts with
mainstream philosophy of mathematics, which does not recognize that mathematics
has a back and hence bases its view of mathematics on mathematics in finished
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form, the front. This is very limiting, because mathematics in finished form is only
intended to present, justify, and teach propositions already acquired, not to account
for mathematics in the making. Therefore, from mathematics in finished form, one
can only get information about the sequence of mathematical results and theories,
not about the process by which mathematics is actually made.

Deductive Proof as Mathematicians’ Proof

That mainstream philosophy of mathematics bases its view of mathematics on
mathematics in finished form is clear from how it deals with the concept of proof.

It is widely agreed that proof is a means of extending mathematical knowledge,
since “the key function of proofs is to elaborate methods for solving problems and
thereby extending existing theories or creating new ones” (Rav 2007, 293). This
implies that one should not base the concept of proof on mathematics in finished
form, the front, but rather on mathematics in the making, because it is through the
process by which mathematics is made that mathematical knowledge is extended.

On the contrary, mainstream philosophy of mathematics bases the concept of
proof on mathematics in finished form. Somewhat surprisingly, Hersh also does so.
Indeed, he says that he “focuses on proof – the ‘front side’ of mathematics” (Hersh
2014, 73). In his view, proof is deductive proof, because “deductive proof is the
standard for acceptance of one’s findings into the body of established mathematics”
(ibid., 82–83). Deductive proof is deduction from established mathematics, because
deduction “is how, starting from established mathematics, we establish a new
result, which then becomes part of established mathematics” (ibid., 89). Deduction
“connects some proposed ‘result’ to the body of established mathematics. Once
the proposed theorem is accepted or established, one is permitted to use it in other
proofs” (ibid., 81).

Hersh admits that “plausible reasoning”– such as induction or analogy–“is likely
to be essential in finding the” deductive “proof” (ibid., 82). But he maintains that
only deductive proof “legitimates a result as ‘established’” (ibid.). Therefore, deduc-
tive proof “is the method by which established mathematics becomes established”
(ibid.). So, “if you have made a publishable discovery, the process by which you
found out your result probably won’t be included in your article” (ibid.).

This is because, according to Hersh, plausible reasoning is not part of the
concept of proof. It does not serve to find hypotheses that cannot be deduced from
established mathematics but is only a heuristic means for finding deductions from
established mathematics. Deductive proof is “mathematicians’ proof: proof as it is
understood by mathematicians” (ibid., 74).

A view of mathematicians’ proof akin to that of Hersh is presented by Prawitz
(see Prawitz 2014).
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Mathematicians’ Proof and Axiomatic Proof

That, for Hersh, deductive proof is mathematicians’ proof means that for him math-
ematicians’ proof “doesn’t start from a pre-ordained set of axioms. It starts from
relevant pieces of established mathematics out of which some new mathematical
results can be derived and incorporated into established mathematics” (Hersh 2014,
73). Therefore, mathematicians’ proof is not axiomatic proof. Axiomatic proof is
deduction from axioms that “are not established” but “are simply postulated” (ibid.,
78). Conversely, mathematicians’ proof is deduction from established mathematics.

Many mathematicians think that axiomatic proof is mathematicians’ proof, in
particular, that the Zermelo-Fraenkel axioms of set theory ZF are the foundation for
all of standard mathematics. Hersh opposes this view. He says that “ZF set theory
is a branch of mathematics, not a ‘foundation’ for all the rest of mathematics”
(ibid., 83). Generally, since axioms are not established but are simply postulated,
“any proposed axiomatic ‘foundation’ cannot be as credible and reliable as the
established mathematics they are supposed to support” (ibid.). So, one cannot
maintain that “mathematics is axiomatic systems” (Hersh 1997, 41). Hence, “the
foundationist project has lost its philosophical rationale” (ibid., 32).

I completely agree with Hersh on these points. The Zermelo-Fraenkel axioms of
set theory ZF cannot be the foundation for all of standard mathematics because, by
Gödel’s first incompleteness theorem, there are mathematical sentences that are true
but cannot be deduced from ZF. And, by Gödel’s second incompleteness theorem,
it is impossible to prove, by absolutely reliable means, that the axioms ZF are
consistent. Generally, by Gödel’s first incompleteness theorem, for any consistent,
sufficiently strong, formal system, there are sentences of the system that are true
but cannot be deduced from the axioms of the system. So, one cannot maintain that
mathematics is axiomatic systems. Moreover, by Gödel’s second incompleteness
theorem, for any consistent, sufficiently strong, formal system, it is impossible to
prove, by absolutely reliable means, that the axioms of the system are consistent.
Hence, the foundationist project has lost its philosophical rationale.

From this it follows that the view that axiomatic proof is mathematicians’ proof is
inadequate. In fact, axiomatic proof is not mathematicians’ proof but only a means
to organize results already acquired for didactic purposes. (For more on this, see
Cellucci 2017, Chaps. 12 and 21.)

This does not mean, however, that Hersh’s view that deductive proof is mathe-
maticians’ proof is satisfactory. On the contrary, I will argue that it is faced with
serious problems. First, though, I will consider some features of Hersh’s concept of
mathematicians’ proof.
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Mathematicians’ Proof and Logic

What is the relation of Hersh’s concept of mathematicians’ proof to logic? Accord-
ing to Hersh, mathematicians’ proof proceeds by reasoning that “makes no reference
to the rules of logic” (Hersh 2014, 31). In fact, mathematicians “never mention logic
in” their “work” (ibid., 78).

I suppose, however, that by this, Hersh does not mean to say that mathematicians’
proof does not rely on the rules of logic. As several people, from Aristotle to
Hilbert, have stressed, the rules of logic are embedded in mathematicians’ proof,
being rules of thought. So, mathematicians’ proof relies on the rules of logic, and
mathematicians implicitly use such rules, even if they are not aware of it. The rules
of logic as a discipline reflect those embedded in mathematicians’ proof and are
obtained by analyzing them.

Thus, Hilbert states that proof is “carried out according to certain definite rules,
in which the technique of our thinking is expressed” (Hilbert 1967, 475). For,
“our understanding does not practice any secret arts, but rather always proceeds
according to well-determined and presentable rules” (Hilbert 1998, 233). These
rules can be stated, because “the mathematical understanding encounters no limits,”
and “it is even capable of discovering the laws of its own thought” (ibid.). The
“fundamental idea” of logic as a discipline “is none other than to describe the
activity of our understanding and to make a protocol of the rules according to which
our thinking actually proceeds” (Hilbert 1967, 475). Proofs produced by the rules of
logic as a discipline “are copies of the thought constituting customary mathematics”
(ibid., 465).

Mathematicians’ Proof and Intuition

What is the relation of Hersh’s concept of mathematicians’ proof to intuition?
Several mathematicians say that intuition plays an essential role in mathematics.
Thus, Wilder says that “intuition plays a basic and indispensable role in mathemat-
ical research” (Wilder 1967, 605). Kline says that “intuition plays a fundamental
role in securing mathematical truths” (Kline 1980, 319). Burton says that, in a
study of research-active mathematicians, “the overwhelming majority (83%)” of
the participants “recognised something important which might be called intuition”
at play “when they were coming to know mathematics” (Burton 1999, 28).

However, when mathematicians say that intuition plays an essential role in
mathematics, they often do not mean “intuition” literally but only as a metaphor.
When they use the word “intuition,” they intend to refer to their feeling of “almost
knowing” some hypothesis without having consciously gone through a step-by-step
reasoning process to get there. This feeling can be explained in terms of the fact that
they arrived at the hypothesis through unconscious plausible reasoning.
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This also holds of Hersh. He says that “intuition is an essential part of mathemat-
ics” (Hersh 1997, 61). But by “intuition,” he “simply means guesses or insights
attained by plausible reasoning, either fully conscious or partly subconscious”
(Hersh 2014, 64). So “mathematical intuition is an application of conscious or
subconscious heuristic thinking of the same kind that is used every day in ordinary
life by ordinary people, as well as in empirical science by scientists” (ibid.).

In all philosophical tradition – from Plato and Aristotle to Kant, Bergson, Husserl,
and Wittgenstein – intuition has been conceived of as immediate knowledge. For
example, Wittgenstein says that “what one means by ‘intuition’ is that one knows
something immediately” (Wittgenstein 1976, 30). Conversely, since by “intuition”
Hersh simply means guesses or insights attained by plausible reasoning, for him
intuition is not immediate knowledge. Therefore, Hersh does not mean “intuition”
literally but only as a metaphor.

Mathematicians’ Proof, Truth, and Certainty

What is the relation of Hersh’s concept of mathematicians’ proof to truth and
certainty?

Mainstream philosophy of mathematics holds that mathematics is about truth and
certainty. Several mathematicians share this view. For example, Hilbert says that
mathematics is “the paragon of truth and certitude” (Hilbert 1983, 191). Halmos
says that mathematics is “Certainty. Truth” (Halmos 2008, 122). Byers says that
mathematics “is a way of using the mind with the goal of knowing the truth, that is,
of obtaining certainty” (Byers 2007, 327).

Hersh opposes this view, by arguing that mathematics cannot be said to be about
truth, because “mathematicians’ proof does not guarantee truth” (Hersh 2014, 80).
Nor mathematics can be said to be about certainty, because “mathematics is human,
and nothing human can be absolutely certain” (ibid., 82).

I completely agree with Hersh on these points. Mathematics cannot be said to be
about truth or certainty.

Mathematics cannot be said to be about truth. For, some mathematical theories
have theorems that contradict each other. Then all of these theories cannot be said to
be about truth, and there is no ground for saying that one of them is about truth. As
Kline states, “mathematics is a body of knowledge. But it contains no truths. The
contrary belief, namely, that mathematics is an unassailable collection of truths,” is
“a popular fallacy” (Kline 1964, 9).

Mathematics cannot be said to be about certainty either. For, in order to say that
mathematics is certain on the view that deductive proof is mathematicians’ proof,
one should at least be able to prove by absolutely reliable means that the set of
all propositions of any theory of established mathematics is consistent. But, by
Gödel’s second incompleteness theorem, this is impossible. Similarly, in order to
say that mathematics is certain on the view that axiomatic proof is mathematicians’
proof, one should at least be able to prove by absolutely reliable means that any



Varieties of Maverick Philosophy of Mathematics 233

of the formal systems for mathematics are consistent. But, by Gödel’s second
incompleteness theorem, this is impossible.

In fact, the concepts of truths and certainty did not arise within the context of
mathematics or science but within that of religion. Thus, Pindar says that truth is
“the daughter of Zeus” (Pindar, Olympian odes 10, 4). Bacchylides says that “truth
is from the same city as the Gods; she alone lives with the Gods” (Bacchylides,
Fragment 57). Sophocles says that certainty is the feature of the “infallible statutes
of the Gods” (Sophocles, Antigone 454).

Gödel’s Second Incompleteness Theorem and Certainty

Against the claim that, by Gödel’s second incompleteness theorem, mathematics
cannot be said to be certain, the following objections could be raised.

(1) The claim that, by Gödel’s second incompleteness, mathematics cannot be
said to be certain is unwarranted because, if mathematics cannot be said to be
certain, then Gödel’s second incompleteness theorem, being a mathematical result,
cannot be said to be certain. But the claim that, by Gödel’s second incompleteness,
mathematics cannot be said to be certain depends on the assumption that Gödel’s
second incompleteness theorem can be said to be certain. Therefore, the claim that,
by Gödel’s second incompleteness, mathematics cannot be said to be certain is
unwarranted.

This objection, however, is invalid because the claim that, by Gödel’s second
incompleteness, mathematics cannot be said to be certain does not depend on the
assumption that Gödel’s second incompleteness theorem can be said to be certain.
It is a reductio ad absurdum, since it is of the following kind. Let us suppose, for
argument’s sake, that mathematics can be said to be certain. Then Gödel’s second
incompleteness theorem, being a mathematical result, can be said to be certain.
But, by Gödel’s second incompleteness theorem, mathematics cannot be said to be
certain. This contradicts our assumption that mathematics can be said to be certain.
Therefore, by reductio ad absurdum, we conclude that mathematics cannot be said
to be certain.

(2) The claim that, by Gödel’s second incompleteness theorem, mathematics
cannot be said to be certain is unwarranted because “nothing in Godel’s theorem in
any way contradicts the view that there is no doubt whatever about the consistency
of any of the formal systems” T “that we use in mathematics” (Franzén 2005, 105).
Indeed, “if we have no doubts about the consistency” of T, then “there is nothing in
the second incompleteness theorem to give rise to any such doubts. And if we do
have doubts about the consistency” of T, then “we have no reason to believe that a
consistency proof” for T “formalizable” in T “would do anything to remove those
doubts” (ibid., 105–106). For, the consistency of T “is precisely what is in question”
(ibid., 105).

This objection, however, is invalid. For, if we have no doubts about the
consistency of T, we are rationally justified in having no such doubts only if we
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can prove by absolutely reliable means that T is consistent. But, by Gödel’s second
incompleteness theorem, this is impossible. On the other hand, if we do have doubts
about the consistency of T, then the question is not whether a consistency proof for
T formalizable in T would do anything to remove those doubts. The question is,
instead, whether a consistency proof for T by absolutely reliable means would do
anything to remove them, and the answer is yes, definitely.

Plausibility in Place of Truth and Certainty

Rather than about truth and certainty, mathematics is about plausibility, where a
proposition is said to be plausible if it is compatible with the existing knowledge –
in the sense that the arguments for it are stronger than the arguments against it,
on the basis of the existing knowledge. (Plausible propositions correspond to what
Aristotle calls endoxa; see Cellucci 2017, Chap. 9).

In order to know that a proposition is plausible, the following plausibility test
procedure can be used:

(1) Deduce conclusions from the proposition.
(2) Compare the conclusions with each other, in order to see that the proposition

does not lead to contradictions.
(3) Compare the conclusions with other propositions already known to be plausible,

in order to see that the proposition is compatible with them.

Unlike truth, which is an absolute concept, plausibility is a relative concept –
relative to the existing knowledge. For, as knowledge develops, new arguments
for or against a proposition may be produced, which may increase or decrease its
plausibility.

Moreover, unlike true propositions, which are certain, plausible propositions are
not certain. For, there is no guarantee that no counterexample will ever be found.
However, by Gödel’s second incompleteness theorem, plausibility is the best we
can achieve. To say it with Shakespeare, a proof of a proposition does not “so prove
it j That the probation bear no hinge or loop j To hang a doubt on” (Othello, Act 3,
Scene 3, vv. 364–366).

Warranted Assertibility

Instead of saying that mathematics is about plausibility, Hersh says that mathematics
is about “‘warranted assertibility’, the pragmatist view of the logic of inquiry
developed by John Dewey” (Hersh 2014, 51). Indeed, “‘truth’ in the sense of
unqualified certainty is not available and not necessary” (ibid., 30). The “status
of established mathematics” is “warranted assertibility” (ibid., 77). Established
mathematics consists of warrantedly assertible propositions, namely, propositions
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that are “‘warranted’ by common consent based on shared experience” (ibid., 76).
While truth is an absolute concept, warranted assertibility is a relative one. For,
“as more convincing arguments for a mathematical statement are discovered, it
becomes more strongly warranted. A deductive proof makes it part of established
mathematics,” and if the statement “becomes closely connected, both plausibly and
rigorously to other established mathematics, then its warrant becomes stronger and
stronger” (ibid., 81).

However, Hersh’s statement that mathematics is about warranted assertibility, the
pragmatist view of the logic of inquiry developed by John Dewey, is problematic.
For, according to the pragmatist view of the logic of inquiry developed by John
Dewey, “the end of inquiry” is the “attainment of knowledge, or truth” (Dewey 1938,
7). Now, if truth is the end of inquiry, then inquiry is directed toward it, so truth is
the guiding principle of inquiry. In fact, Dewey states: “That which guides us truly
is true” and “demonstrated capacity for such guidance is precisely what is meant by
truth” (Dewey 2004, 90). But, if truth is the guiding principle of inquiry, then truth
is strictly necessary. This conflicts with Hersh’s other statement that “truth” is not
available and not necessary.

Therefore, instead of saying that mathematics is about warranted assertibility, it
seems more adequate to say that mathematics is about plausibility.

Hersh and Pólya

Hersh says that his “most helpful authority is George Pólya” (Hersh 2014, 61). In
fact, both Hersh’s distinction between the front and the back of mathematics and his
view that deductive proof is mathematicians’ proof are strongly connected to Pólya.

Indeed, Pólya distinguishes between the front and the back of mathematics,
by saying that mathematics has two “aspects. Finished mathematics presented in
‘finished’ form appears as purely demonstrative, consisting of proofs only. Yet
mathematics in the making resembles any other human knowledge in the making,”
it consists of “plausible reasoning” (Pólya 1954, I, vi).

Also, Pólya asserts that deductive proof is mathematicians’ proof, by saying
that proof is “a sequence of well-coordinated logical operations, of steps which
start from the hypothesis and end in the desired conclusion of the theorem” (Pólya
1981, 123).

Pólya admits that deductive “proof is discovered by plausible reasoning” (Pólya
1954, I, vi). But he maintains that only deductive proof is demonstrative reasoning,
and “we secure our mathematical knowledge by demonstrative reasoning” (ibid., I,
v). Therefore, “the properly so-called logical type of reasoning,” namely, deductive
reasoning, “appears generally by itself on the pages of mathematical treatises; the
heuristic reasoning,” namely, the plausible reasoning, “which in general guided the
invention of the logical reasoning is omitted” (Pólya 1941, 450).

This is because, according to Pólya, plausible reasoning is not part of the
concept of proof. It does not serve to find hypotheses that cannot be deduced from
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established mathematics; it is only a heuristic means for finding deductions from
established mathematics. Deductive proof is mathematicians’ proof, because “we
secure our mathematical knowledge by demonstrative reasoning” (Pólya 1954, I, v).

Nevertheless, despite the strong connection of Hersh to Pólya, between them
there is a substantial difference. According to Pólya, “proof is definitive, it
establishes irrefutably the truth of the theorem – once for all” (Pólya 1941, 450).
Conversely, according to Hersh, “deductive proof” does “not establish anything as
true” (Hersh 2014, 81). So, “Pólya is mistaken when he says that deductive proof
renders a statement absolutely certain” (ibid., 82).

Problems with Deductive Proof as Mathematicians’ Proof

As already anticipated, the view that deductive proof is mathematicians’ proof is
faced with serious problems.

(1) If deductive proof is mathematicians’ proof, then it is impossible to prove
propositions that cannot be deduced from established mathematics.

This conflicts, for example, with the fact that Cantor proved that there are sets of
“size” different from those of the natural numbers and the real numbers. This could
not be proved within the bounds of established mathematics. Proving it required
hypotheses that not only could not be deduced from established mathematics but
were fiercely opposed by established mathematicians. Thus, Kronecker said that
Cantor was “a corrupter of youth” (Schoenflies 1927, 2). Schwarz said that Cantor’s
work was “a sickly confusion” and hoped that “one could succeed to occupy the
unhappy young man with concrete problems, otherwise he will certainly come to a
bad end!” (Schwarz 1967, 255–256). Hermite said that “the impression that Cantor’s
memoirs produce on us is desolating,” since “it is impossible for us to find, among
the results that can be understood, just one that possesses a real interest” (Hermite
1984, 209).

(2) If deductive proof is mathematicians’ proof, then mathematicians are replace-
able by computers completely.

For, there is an algorithm for enumerating all deductions from given premises.
The algorithm can be said “to proceed like Swift’s scholar, whom Gulliver visits
in Balnibarbi, namely, to develop in systematic order, say according to the required
number of inferential steps, all consequences and discard the ‘uninteresting’ ones”
(Weyl 1949, 24).

So, if deductive proof is mathematicians’ proof, then, as Turing points out, we
can “imagine that all proofs take the form of a search through this enumeration for
the theorem for which a proof is desired” (Turing 2004, 193). Admittedly, this is a
time-consuming method to discover proofs, so in practice “we do not really want to
make proofs by hunting through enumerations for them, but by hitting on one and
then checking up to see that it is right. Nevertheless, this method is” in principle
“replaceable by the longer method” (ibid., 212).
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This means that, if deductive proof is mathematicians’ proof, then mathemati-
cians are replaceable by computers completely. Gowers even states that, “over the
next hundred years or so, computers will” be “eventually supplanting us completely”
(Gowers 2002, 134).

That, if deductive proof is mathematicians’ proof, then mathematicians are
replaceable by computers completely, indicates that the assumption that deductive
proof is mathematicians’ proof is problematic. For, already Gödel pointed out
that, by his first incompleteness theorem, “it will never be possible to replace the
mathematician by a machine, even if you confine yourself to number-theoretic
problems” (Gödel 1986–2002, III, 164–165).

(3) If deductive proof is mathematicians’ proof, then all of mathematical knowl-
edge can ultimately be deduced from some elementary mathematical propositions,
such as 1 C 1 D 2 or 2 C 1 D 3 or 2–1 D 1.

For, if deductive proof is mathematicians’ proof, then, tracing all the deductive
chains all the way back, we will ultimately arrive at some propositions that
cannot have been established by deductive proof themselves. They cannot have
been postulated either, because deductive proof is not axiomatic proof. It only
remains that they are the product of those rudimentary mathematical capacities
that, according to cognitive science, all human beings innately possess as a result of
biological evolution. Such capacities consist, first of all, of “the capacity to perform
simple arithmetical calculations,” such as 1 C 1 D 2 or 2 C 1 D 3 or 2–1 D 1,
“which may provide the foundations for the development of further arithmetical
knowledge” (Wynn 1992, 750). In fact, Hersh states that this capacity provides “a
bodily (neurological or biological) foundation for arithmetic” (Hersh 2014, 141).
So, if deductive proof is mathematicians’ proof, then all of mathematical knowledge
can ultimately be deduced from some elementary mathematical propositions, such
as 1 C 1 D 2 or 2 C 1 D 3 or 2–1 D 1.

This contrasts with the fact that deductive rules are non-ampliative, so in a deduc-
tive proof, the conclusion is contained in the premises (see Cellucci 2017, Chap.
12). Thus, if deductive proof is mathematicians’ proof, then all of mathematical
knowledge is ultimately contained in some elementary mathematical propositions,
such as 1 C 1 D 2 or 2 C 1 D 3 or 2–1 D 1. This, however, is quite implausible.

Prawitz’s view of mathematicians’ proof is faced with similar problems (see
Cellucci 2017, Chap. 21).

Hippocrates of Chios’ Quadrature of Lunules

Rather than on mathematics in finished form, the concept of proof must be based
on mathematics in the making. Such was the original concept of proof in ancient
Greece.

Our most important fragment from the pre-Euclidean geometry is a passage
from Eudemus, which Simplicius declares to quote “word by word” (Simplicius,
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In Aristotelis Physicorum Libros Quattuor Priores Commentaria, I 2, 60.27). The
passage gives a detailed account of Hippocrates of Chios’ quadrature of four cases
of lunules.

For example, in the first case, starting with an isosceles right triangle, Hip-
pocrates draws on the hypotenuse both a semicircle and a segment of circle similar
to those which appear on the two other sides of the triangle. (Similar segments of
circle are those which are the same part of the circles, respectively.) So he obtains a
lunule, the figure bounded by the semicircle, and the segment of circle.

A BD

C

Hippocrates wants to prove that “the lunule is equal to the triangle” (ibid., I
2, 62.6–7). Proving this is a problem to be solved. To solve it, by analyzing the
conditions under which the problem would be solved, Hippocrates non-deductively
arrives at the following hypothesis:

(I) “Similar segments of circle have the same ratios as the squares on their bases”
(ibid., I 2, 61.6–7).

Hypothesis (I) is a sufficient condition for solving the problem. For, by the
Pythagorean theorem, the square on the hypotenuse is equal to the sum of the
squares on the other two sides. From this, by hypothesis (I), it follows that the
segment on the hypotenuse is equal to the sum of the segments on the other two
sides, that is, C D A C B. Then, lunule D A C B C D D C C D D triangle. This
solves the problem. Thus “the lunule, having been proved equal to the triangle, can
be squared” (ibid., I 2, 62.7–8).

Hypothesis (I) is plausible. For, it is compatible with the existing knowledge. But
(I) is itself a problem that must be solved. To solve it, by analyzing the conditions
under which the problem would be solved, Hippocrates non-deductively arrives at
the following hypothesis:

(II) “The squares on the diameters have the same ratios as the circles” (ibid., I 2,
61.8–9).

Hypothesis (II) is a sufficient condition for solving the problem (I). For, similar
segments are those which are the same part of the circles, respectively. Hence, as
the circles are to one another, so also are similar segments of them. From this, by
hypothesis (II), it follows (I). This solves the problem. The solution to the problem
(I) increases the plausibility of hypothesis (I).

Hypothesis (II) is plausible. For, it is compatible with the existing knowledge.
But (II) is itself a problem that must be solved. To solve it, it is necessary to
formulate another hypothesis. And so on, ad infinitum.
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Analytic Proof

The concept of proof underlying Hippocrates of Chios’ quadrature of four cases of
lunules is that of analytic proof, which can be described as follows.

A proof consists, first, in a non-deductive derivation of a hypothesis from the
problem and possibly other data already available. The hypothesis must be a
sufficient condition for a solution to the problem, namely, such that a solution to
the problem can be deduced from it. Moreover, the hypothesis must be plausible,
namely, compatible with the existing knowledge.

The proof consists, then, in a non-deductive derivation of a new hypothesis
from the previous hypothesis and possibly other data already available. The new
hypothesis must be a sufficient condition for a solution to the problem posed by
the previous hypothesis. Moreover, the new hypothesis must be plausible. That the
new hypothesis leads to a solution to the problem posed by the previous hypothesis
increases the plausibility of the latter.

And so on, ad infinitum, since mathematical research is a perpetually ongoing
process. Indeed, as Poincaré says, there are not “solved problems and others which
are not; there are only problems more or less solved,” but “it often happens however
that an imperfect solution guides us toward a better one” (Poincaré 2013, 377–378).

The concept of analytic proof is the concept of proof underlying not only
Hippocrates of Chios’ quadrature of four cases of lunules but also Hippocrates
of Cos’ solutions to medical problems (see Cellucci 2013a, Chap. 4). However,
although Hippocrates of Chios and Hippocrates of Cos both used the concept of
analytic proof, they did not write down a formulation of it. A formulation of the
concept of analytic proof, at least in its bare essentials, was first given by Plato (see
Cellucci 2017, Chap. 12).

The concept of analytic proof is based on a view of knowledge that also goes
back to Plato. As Natorp says, according to it, “scientific knowledge is an infinite
process” in which, “beyond every (relative) beginning, we must look for a prior
beginning” (Natorp 1910, 13–14). Every such new “beginning leads to wider and
deeper developments” (ibid., 15). This opens the way to an “unlimited deepening
of the problem” (ibid., 16). Thus, “within the sciences, we can speak of an infinite
backward path from hypotheses to ever more fundamental hypotheses” (ibid., 15).

Some Features of Analytic Proof

Analytic proof has several features. Here are some of them (for other ones, see
Cellucci 2017, Chaps. 12 and 21):

(1) Unlike deductive proof, which only involves a downward path from established
mathematics to the proposition deduced from it, analytic proof involves both
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an upward path, from the problem to plausible hypotheses that are sufficient
conditions for its solution, and a downward path, from plausible hypotheses to
the problem.

(2) The purpose of analytic proof is to discover hypotheses that are sufficient
conditions for a solution to the problem and are plausible. So, analytic proof
is both a means of discovery and a means of justification. It is a means of
discovery, because it is intended to discover hypotheses that are sufficient
conditions for a solution to the problem. It is a means of justification, because
it is intended to discover hypotheses that are plausible and hence to show that
the solution is deduced from plausible hypotheses.

(3) Unlike deductive proof, which can only make use of hypotheses that can
be deduced from established mathematics, analytic proof can make use of
hypotheses that cannot be deduced from established mathematics. For, the
hypotheses for a solution to the problem are obtained by non-deductive rules,
and non-deductive rules are ampliative, so they can produce hypotheses that
cannot be deduced from established mathematics. (On the ampliativity of non-
deductive rules, see Cellucci 2013a, Chaps. 17 and 18.)

(4) Intuition, in the sense of all philosophical tradition, plays no role in analytic
proof. Indeed, intuition plays no role in the discovery of hypotheses, because
they are obtained from the problem, and possibly other data, by non-deductive
rules, so not by intuition but by inference. Intuition plays no role in the justifi-
cation of hypotheses, because their plausibility is established by comparing the
arguments for them and the arguments against them on the basis of the existing
knowledge, so not by intuition but by inference.

(5) Analytic proof is as rigorous as deductive proof. Deductive proof shows that
the proposition can be deduced from propositions which are not true but only
warrantedly assertible. Analytic proof shows that a solution to the problem can
be deduced from hypotheses which are not true but only plausible.

Analytic Proof as Mathematicians’ Proof

Analytic proof is mathematicians’ proof. This view of proof is not subject to the
problems of Hersh’s view that deductive proof is mathematicians’ proof.

(1) If analytic proof is mathematicians’ proof, then it is possible to prove proposi-
tions that cannot be deduced from established mathematics.
For, the hypotheses for proving a proposition are obtained by non-deductive
rules, and non-deductive rules are ampliative, so they can produce hypotheses
that cannot be deduced from established mathematics. Therefore, the hypothe-
ses can permit to prove propositions that cannot be deduced from established
mathematics.

(2) If analytic proof is mathematicians’ proof, then mathematicians cannot be
replaced by computers completely.
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For, there is no algorithm capable of producing hypotheses that are sufficient
conditions for the solution to a problem and are plausible. Producing such
hypotheses may involve creating an entirely new framework, which essentially
goes beyond the bounds of established mathematics.

(3) If analytic proof is mathematicians’ proof, then not all of mathematical
knowledge can ultimately be deduced from some elementary mathematical
propositions, such as 1 C 1 D 2 or 2 C 1 D 3 or 2–1 D 1.
For, the mathematical problems that are being solved take usually the form of
universal propositions, whereas no universal proposition can be deduced from
particular propositions, such as 1 C 1 D 2 or 2 C 1 D 3 or 2–1 D 1.

The view that analytic proof is mathematicians’ proof is shared by Friend, who
argues that not only “all proofs can be thought of as analytic, including rigorous
proofs” (Friend 2014, 208). But also, “all proofs are better viewed as analytic” (ibid.,
213).

Hersh’s Objection to Analytic Proof

Against the view that analytic proof is mathematicians’ proof, Hersh objects that
a proposition arrived at plausible reasoning, namely, by non-deductive rules, is an
unproved conjecture. For, “a plausible argument” is “not demonstrative,” so “it fails
to show that” the result “is rigidly connected to established mathematics” (Hersh
2014, 58). A plausible argument “does not establish the result” even if the latter
“has been verified in millions of individual cases” (ibid., 82). Therefore, the result
of a plausible argument is not a proved theorem but only an unproved conjecture.
Now, “the distinction between a proved theorem and an unproved conjecture is the
central, characteristic feature of mathematics, as practiced from Euclid to this day”
(ibid., 83).

This objection, however, is based on the assumption that, according to the view
that analytic proof is mathematicians’ proof, hypotheses – and hence the result
deduced from them – are justified by the non-deductive rules by which hypotheses
are arrived at. But this assumption is unwarranted. Although, according to the view
that analytic proof is mathematicians’ proof, hypotheses are arrived at by non-
deductive rules, they are not justified by such rules but only by the fact that they
are plausible. And establishing that they are plausible requires a special argument,
such as the plausibility test procedure described above.

Thus, the hypotheses used in an analytic proof, and hence the result deduced
from them, are not unproved conjectures, but plausible propositions, just as the
propositions from which a deductive proof starts, and hence the result deduced
from them, are not unproved conjectures but warrantedly assertible propositions.
Therefore, it would be unjustified to say that analytic proof does not establish the
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result and only deductive proof establishes it. A result established by deductive proof
can only be warrantedly assertible, just as a result established by analytic proof can
only be plausible.

Normal Mathematics and Revolutionary Mathematics

This does not mean that between the view that analytic proof is mathematicians’
proof and the view that deductive proof is mathematicians’ proof there is no essential
difference. Their difference can be appreciated in terms of the distinction between
normal mathematics and revolutionary mathematics.

Normal mathematics is mathematical research which does not require introduc-
ing hypotheses that cannot be deduced from established mathematics.

Revolutionary mathematics is mathematical research which requires introducing
hypotheses that cannot be deduced from established mathematics, and tie together
disparate areas, or open new areas of mathematics.

Normal mathematics is very extensive, being the kind of research most mathe-
maticians do all the time. Revolutionary mathematics is much more limited, since it
primarily consists of turning points in mathematics. (For other views of normal and
revolutionary mathematics, see the papers in Gillies 1992).

The view that deductive proof is mathematicians’ proof may be adequate for nor-
mal mathematics but is inadequate for revolutionary mathematics, which requires
introducing hypotheses that cannot be deduced from established mathematics.

Conversely, the view that analytic proof is mathematicians’ proof is adequate,
not only for normal mathematics but also for revolutionary mathematics, because in
analytic proof, the hypotheses for a solution to the problem need not be deducible
from established mathematics.

The Inexhaustibility of Mathematics

Like many mathematicians, Gödel assumes that axiomatic proof is mathematicians’
proof. For, he states that “in whatever way” mathematics, “or any part of it, is built
up, one always needs certain undefined terms and certain axioms (i.e., deductively
unprovable assertions) about them” (Gödel 1986–2002, III, 346).

On this basis, Gödel maintains that his incompleteness theorems establish what
“might be called the incompletability or inexhaustibility of mathematics” (ibid.,
III, 305). Specifically, it is his second incompleteness theorem that “makes the
incompletability of mathematics particularly evident. For, it makes it impossible”
for us “to set up a certain well-defined system of axioms and rules and consistently
make the following assertion about it: All of these axioms and rules I perceive (with
mathematical certitude) to be correct, and moreover I believe that they contain all of
mathematics” (ibid., III, 309). This means that “no well-defined system of correct
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axioms can contain all of mathematics,” in the sense of “all true mathematical
propositions” (ibid.).

Thus, assuming that axiomatic proof is mathematicians’ proof, Gödel interprets
the inexhaustibility of mathematics negatively, as meaning that no well-defined
system of correct axioms can contain all of mathematics.

Alternatively, assuming that analytic proof is mathematicians’ proof, we can
interpret the inexhaustibility of mathematics positively, as meaning that mathe-
matical knowledge is an infinite problem-solving process in which, beyond every
hypothesis, one looks for deeper hypotheses. Every new, deeper hypothesis makes
one see the problem with new eyes. Proust even says that “the only true voyage”
of discovery is not “to go towards new landscapes, but to have other eyes” (Proust
1947, 69). Looking for ever-deeper hypotheses leads to an unlimited deepening of
the problem.

Analytic Proof and Explanation

What is the role of proof in research? According to Hersh, “in research its role is
to convince” (Hersh 2014, 153). For, a proof is “a convincing argument, as judged
by qualified judges” (ibid., 147). This means that the role of proof in research is
quite different from the role of proof in the classroom, which is not to convince but
“to explain” (ibid). Indeed, “in the classroom, convincing is no problem. Students
are all too easily convinced” (ibid., 153). Instead, “what a proof should do for the
student is provide insight into why the theorem is true” (ibid.). The “educational
value of proof is the value of complete explanation” (ibid., 155).

This, however, contrasts with the view of several mathematicians, who think that
the role of proof in research is not to convince but to explain. Thus, Gleason says
that “proofs really aren’t there to convince you that something is true – they’re there
to show why it is true” (Albers et al. 1990, 86). That is, they are there to explain.

In particular, an analytic proof shows the researcher why the solution to the
problem holds. It can do so because the solution is based on hypotheses that are
obtained from the problem, so they are strictly connected to it. Hence the hypotheses
may reveal aspects of the problem that are essential to the solution. By showing the
researcher why the solution to the problem holds, an analytic proof does not merely
convince; it explains. This marks an essential difference between analytic proof, on
the one hand, and deductive or axiomatic proof, on the other hand (see Cellucci
2008).

Analytic Proof and Diagrams

From its Greek beginnings, mathematics has made essential use of diagrams
in proofs. This can even be seen as representative of Greek civilization. Thus
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Aristippus, being shipwrecked and cast ashore on an unknown and possibly hostile
shore, “started being reassured when he observed, traced on the sand, geometrical
figures: for, he thought he must have landed among Greeks, among wise men, not
among barbarians” (Galen 1964–1965, I, 8).

Conversely, in the twentieth century, the use of diagrams in proofs has been
generally viewed as non-rigorous and alien to the concept of proof. Thus, Hilbert
maintains that “the theorem is only proved when the proof is completely indepen-
dent of the figure” (Hilbert 2004, 75).

However, this negative attitude is contradicted by its very proponents. Indeed,
even the very first proof in Hilbert’s Grundlagen der Geometrie makes an essential
use of properties obtained from the figure (see Cellucci 2017, Chap. 19). Therefore,
Hersh is quite right in saying that “a proof can be words only, of course. It can be,
as in Euclid, words and diagrams. Or it can” be “diagram only” (Hersh 1997, 186).

In particular, the use of diagrams is perfectly justified from the point of view of
the analytic concept of proof. In terms of it, a proof consists, first, in a non-deductive
derivation of a hypothesis from the problem and possibly other data already
available, which may include data acquired from a diagram. The hypothesis must be
a sufficient condition for a solution to the problem. Moreover, the hypothesis must
be plausible.

The proof consists, then, in a non-deductive derivation of a new hypothesis
from the previous hypothesis and possibly other data already available, which may
include data acquired from a diagram. The new hypothesis must be a sufficient
condition for a solution to the problem posed by the previous hypothesis. Moreover,
the new hypothesis must be plausible. That the new hypothesis leads to a solution to
the problem posed by the previous hypothesis increases the plausibility of the latter.

And so on, ad infinitum because, as Poincaré says, there are not solved problems
but only problems more or less solved.

The Pythagorean Theorem and Mathematical Diagrams

As an example of use of diagrams in proofs, suppose we want to prove the
Pythagorean theorem: The square on the hypotenuse of a right triangle is equal
to the sum of the squares on the other two sides. Proving this is a problem to
be solved. There is no positive evidence on Pythagoras’ solution, but, according
to Bretschneider, it could have been based on “the method of dissection of plane
figures” (Bretschneider 1870, 82). In keeping with this suggestion, we may suppose
a diagram like the following one.
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C
B

A

Subtracting the four equal right triangles from each of the two figures, we obtain
equal areas; thus A D B C C. Now, B and C are the squares on the other two sides of
the right triangle. So, to solve the problem, we need only show that A is a square –
the square on the hypotenuse of the right triangle. To this aim, by analyzing the
conditions under which the problem would be solved, we non-deductively arrive at
the following hypothesis:

(I) The sum of the angles of a right triangle is equal to two right angles.
Hypothesis (I) is a sufficient condition for solving the problem. For, by hypoth-

esis (I), the sum of the two non-right angles of the right triangles is a right angle.
Therefore each angle of A is a right angle; hence A is a square. This solves the
problem.

Hypothesis (I) is plausible. For, it is compatible with the existing knowledge.
But (I) is itself a problem that must be solved. To solve it, by analyzing the
conditions under which the problem would be solved, we non-deductively arrive
at the following hypothesis:

(II) A right triangle is half a rectangle.
Hypothesis (II) is a sufficient condition for solving the problem. For, the sum of

the angles of a rectangle is equal to four right angles. Hence, by hypothesis (II), the
sum of the angles of a right triangle is equal to two right angles. This solves the
problem. The solution to the problem (I) increases the plausibility of hypothesis (I).

Hypothesis (II) is plausible. For, it is compatible with the existing knowledge.
But (II) is itself a problem that must be solved. To solve it, it is necessary to
formulate another hypothesis. And so on, ad infinitum.

An Objection to the Distinction Between Front and Back

On the basis of the concept of analytic proof, we can discuss an objection that
has been raised against Hersh’s distinction between the front and the back of
mathematics.

Greiffenhagen and Sharrock argue that such distinction “downplays the continu-
ity of the two” (Greiffenhagen and Sharrock 2011, 841). The continuity is clear from
a comparison between mathematical lectures as one example of mathematics in
the “front,” and “meetings between a supervisor and his doctoral students” as “one
example of mathematics in the ‘back’” (ibid., 854). The comparison shows that “the
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difference between the ‘front’ and the ‘back’” is “not between two kinds of proof”
but only “between different stages: of working with an incomplete idea of a possible
proof as opposed to presenting a (presumably) complete, thoroughly worked-out
proof” (ibid., 858). The “‘finished’ product in the ‘front’ is a later stage and product
of the ‘currently unfinished’ work in the ‘back’” (ibid., 841). So, “it should not be
expected that increased familiarity with what goes on ‘in the mathematical back’
will lead to any significant revision of understanding of what is on show ‘out front’”
(ibid., 861).

This objection, however, is based on the assumption that meetings between
a supervisor and his doctoral students are one example of mathematics in the
back. The assumption is apparently motivated by Hersh’s assumption that the back
of mathematics is mathematics as it appears among working mathematicians, in
informal settings, told to another in an office behind closed doors. The assumption is
unjustified for the very same reason for which Hersh’s assumption is unjustified. The
back of mathematics is not currently unfinished work; the latter is just a preliminary,
incomplete version of the finished product. As already said, the back of mathematics
is, instead, the creative work of the mathematician, primarily the discovery work.

This entails that between the front and the back, there is really discontinuity. As
Grothendieck says, the creative work of the mathematician “is not reflected virtually
to any extent in the texts or talks that are intended to present such work,” whether
“textbooks and other didactic texts, or articles and original memoirs, or oral courses
and seminar presentations, etc.” (Grothendieck 1985, 84). That is, the creative work
of the mathematician is not reflected virtually to any extent in the finished product.
On the other hand, currently unfinished work is just a preliminary, incomplete
version of the finished product. Therefore, the creative work of the mathematician
is not reflected virtually to any extent in currently unfinished work.

Contrary to what Greiffenhagen and Sharrock maintain, the difference between
the front and the back is not merely a difference between different stages of proof
development but is really a difference between two kinds of proof: deductive or
axiomatic proof, the front, and analytic proof, the back. Analytic proof is not the
working with an incomplete idea of a possible proof as opposed to a complete,
thoroughly worked-out, deductive or axiomatic proof. On the contrary, deductive
or axiomatic proof is a curtailment of analytic proof that cuts off its crucial part,
the upward path from the problem to hypotheses – the process of discovery of
hypotheses – only leaving the routine part, the downward path from hypotheses
to the problem.

Also, it is unjustified to say that it should not be expected that increased
familiarity with what goes on in the back will not lead to any significant revision
of understanding of what is on show “out front.” As already stated above, an
analytic proof does not merely convince; it explains. So it provides that kind of
understanding which can be essential to the growth of mathematics (see Cellucci
2017, Chap. 22).
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The Nature of Mathematical Objects

In the twentieth century, many people, noticeably supporters of foundationalism,
have maintained that mathematics is about objects that have some sort of existence
and whose knowledge ultimately depends on intuition. This view has serious
shortcomings (see Cellucci 2017, Chap. 19). However strange it may sound to say
so, a suitable alternative is offered by Plato.

Admittedly, Plato says that mathematical objects have a kind of reality that “is
always the same, ungenerated and imperishable,” it “is not visible nor perceptible by
any sense, and only intuition has been granted to contemplate it” (Plato, Timaeus, 52
a 1–4). This and other similar Plato’s statements are at the origin of “mathematical
platonism,” the view that mathematics is about a nonphysical reality which exists
independently of the human mind.

But Plato also says that mathematicians, as long as they are alive, cannot
contemplate this nonphysical reality by intuition. For, “as long as we have the body
and our soul is contaminated by such an evil, we will never adequately gain the
possession of what we desire, and that, we say, is truth” (Plato, Phaedo, 66 b 5–7).
Only after death, mathematicians can behold “the happy vision and contemplation”
of the reality in question, having “calm and happy visions, in pure light” (Plato,
Phaedrus, 250 b 8–c 4).

Since mathematicians, as long as they are alive, cannot contemplate the non-
physical reality that is the object of mathematics by intuition, to solve mathematical
problems, they introduce certain mathematical objects as hypotheses.

Indeed, Plato states that, to solve a mathematical problem, mathematicians must
“make use of a hypothesis” (Plato, Meno, 86 e 3). Thus, “those who deal with
geometry, arithmetic, and the like hypothesize the odd and the even, geometrical
figures, the three kinds of angles, and other things akin to these, depending on
the subject of their investigation. They take these as known and assume them
as hypotheses” (Plato, Republic, VI 510 c 2–6). So they arrive at knowing the
properties of these objects, not by intuition but by making hypotheses, hence
by discursive thought. Thus, it is “discursive thought, not intuition, the state of
geometry and the like, namely thought intermediate between opinion and intuition”
(ibid., VI 511 d 2–5).

Mathematical objects are hypotheses mathematicians make to solve problems
by analytic proof. When such objects are seen to solve the problems for which they
have been made, they become objects of study themselves. Being hypotheses mathe-
maticians make, mathematical objects exist only in the minds of the mathematicians
who hypothesize them and in the minds of the people who make use of them.

Hersh agrees that mathematical objects “are right here, in our individual minds,
shared also with many other individual minds,” so their reality “is mental-cultural”
(Hersh 2014, 90–91). To this, however, it must be added that mathematical objects
are hypotheses mathematicians make to solve problems by analytic proof. (For more
on this, see Cellucci 2017, Chap. 19).
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Conclusion

My few points of disagreement with Hersh, outlined above alongside several points
of agreement, do not reduce my indebtedness to him.

While being originally a mathematical logician, from the very beginning I have
been aware of the inadequacy of mainstream philosophy of mathematics. In partic-
ular, I have been familiar with Lakatos’ views, also from personal contacts, because
Lakatos was the external examiner for the undergraduate degree in philosophy and
mathematics at the University of Sussex, where I was a lecturer in mathematical
logic in 1969–1971.

I first expressed in print my dissatisfaction with mainstream philosophy of
mathematics in Cellucci (1982–1983). Soon after, I became aware of Hersh (1979)
and Davis and Hersh (1981), which I found very stimulating even, or even
especially, when I did not completely agree with them. This greatly helped me to
develop my own variety of maverick philosophy of mathematics.

However, by being opposed to mainstream philosophy of mathematics, the
fragile young twig of maverick philosophy of mathematics planted by Lakatos has
been exposed to storming attacks by mainstream philosophers of mathematics.

Thus, Feferman states that “Lakatos’ fireworks” only “briefly illuminate limited
portions of mathematics” (Feferman 1998, 93). Contrary to Lakatos’ assumption,
“the creative and intuitive aspects of mathematical work evade logical encap-
sulation” (ibid., 178). The “mathematician at work relies on surprisingly vague
intuitions and proceeds by fumbling fits and starts with all too frequent reversals. In
this picture the actual historical and individual processes of mathematical discovery
appear haphazard and illogical” (ibid., 77). Therefore Lakatos’ view, that the phi-
losophy of mathematics must be primarily concerned with methodology qua logic
of discovery, is unjustified. Only mathematical “logic gives us a coherent picture of
mathematics,” it “alone throws light on what is distinctive about mathematics, its
concepts and methods” (ibid., 93). One can even use its formal “systems to model
growth and change” (ibid., 92).

But this overlooks that mathematical logic is incapable of accounting for the real
mathematical process (see Cellucci 2013a).

The fragile young twig of maverick philosophy of mathematics has also been
exposed to premature declarations of failure by philosophers of mathematical
practice.

Thus, Mancosu states that “the ‘maverick tradition’ has not managed to sub-
stantially redirect the course of philosophy of mathematics. If anything, the
predominance” of mainstream “approaches to the philosophy of mathematics in the
last twenty years proves that the maverick camp did not manage to bring about a
major reorientation of the field” (Mancosu 2008, 5). For, mainstream philosophers
of mathematics “felt that the ‘mavericks’ were throwing away the baby with the
bathwater” (ibid., 6).

But this overlooks that old ideas are hard to die, even when they have been
proved to be inadequate. Somewhat cynically, Planck says that a new theory “does
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not triumph by convincing its opponents and making them see the light, but rather
because its opponents eventually die, and a new generation grows up that is familiar
with it” (Planck 1950, 33–34).

Nevertheless, the fragile young twig of maverick philosophy of mathematics
could thrive and bear fruit only if grafted carefully upon the old stem of philo-
sophical tradition. Hersh has decisively contributed to this process by showing that
the way opened by Lakatos could be further pursued, reconnecting the philosophy
of mathematics to the general question of human knowledge. So “at last, in the 21st
century, the ‘maverick’” tradition “arrived as a legitimate theme of philosophical
investigation” (Hersh 2014, 73).

Acknowledgments I am grateful to Andrew Aberdein, Mirella Capozzi, Cesare Cozzo, Miriam
Franchella, Donald Gillies, Norma Goethe, Michael Harris, Alexander Paseau, Nathalie Sinclair,
Fabio Sterpetti, Robert Thomas, and Francesco Verde for comments and suggestions.

References

1. Albers, Donald J., Gerald L. Alexanderson, and Constance Reid (eds.). 1990. More mathemat-
ical people: Contemporary conversations. New York: Harcourt Brace Jovanovich.

2. Babbitt, Donald, and Judith Goodstein. 2011. Federigo Enriques’s quest to prove the ‘com-
pleteness theorem’. Notices of the American Mathematical Society 58(2): 240–249.

3. Bretschneider, Carl Anton. 1870. Die Geometrie und die Geometer vor Euklides. Leipzig:
Teubner.

4. Burton, Leone. 1999. Why is intuition so important to mathematicians but missing from
mathematics education? For the Learning of Mathematics 19(3): 27–32.

5. Byers, William. 2007. How mathematicians think. Princeton: Princeton University Press.
6. Cellucci, Carlo. 1982–1983. Il fondazionalismo: una filosofia regressiva. Teoria 2: 3–25 and 3:

3–38.
7. Cellucci, Carlo. 2008. The nature of mathematical explanation. Studies in History and

Philosophy of Science 39: 202–210.
8. Cellucci, Carlo. 2013a. Rethinking logic: Logic in relation to mathematics, evolution, and

method. Dordrecht: Springer.
9. Cellucci, Carlo. 2013b. Top-down and bottom-up philosophy of mathematics. Foundations of

Science 18: 93-106.
10. Cellucci, Carlo. 2017. Rethinking knowledge: The heuristic view. Dordrecht: Springer.
11. Davis, Philip J., and Reuben Hersh. 1981. The mathematical experience. Boston: Birkhäuser.
12. Dewey, John. 1938. Logic: The theory of inquiry. New York: Holt, Rinehart & Winston.
13. Dewey, John. 2004. Reconstruction in philosophy. Mineola: Dover.
14. Feferman, Solomon. 1998. In the light of logic. Oxford: Oxford University Press.
15. Ferreirós, José. 2016. Mathematical knowledge and the interplay of practices. Princeton:

Princeton Universitiy Press.
16. Franzén, Torkel. 2005. Gödel’s theorem: An incomplete guide to its use and abuse. Wellesley:

A K Peters.
17. Friend, Michèle. 2014. Pluralism in mathematics: A new position in philosophy on mathemat-

ics. Dordrecht: Springer.
18. Galen. 1964–1965. Opera Omnia. Hildesheim: Olms.
19. Gillies, Donald. 1992. Revolutions in mathematics. Oxford: Oxford University Press.
20. Gödel, Kurt. 1986–2002. Collected works. Oxford: Oxford University Press.



250 C. Cellucci

21. Goffman, Erving. 1956. The presentation of self in everyday life. Edinburgh: University of
Edinburgh, Social Sciences Research Centre.

22. Gowers, Timothy. 2002. Mathematics: A very short introduction. Oxford: Oxford University
Press.

23. Greiffenhagen, Christian, and Wes Sharrock. 2011. Does mathematics look certain in the front,
but fallible in the back? Social Studies in Science 41: 839–866.

24. Grothendieck, Alexander. 1985. Récoltes et semailles: Réflexions et témoignage sur un passé
de mathématicien. Montpellier: Université des Sciences et Techniques du Languedoc.

25. Hacking, Ian. 2014. Why is there philosophy of mathematics at all? Cambridge: Cambridge
University Press.

26. Halmos, Paul. 2008. Interview. In Mathematical people: Profiles and interviews, ed. Donald J.
Albers, and Gerald L. Alexanderson, 115–136. Wellesley: A K Peters.

27. Hermite, Charles. 1984. Lettres à Gösta Mittag-Leffler (1874–1883). Cahiers du séminaire
d’histoire des mathématiques 5: 49–285.

28. Hersh, Reuben. 1979. Some proposals for reviving the philosophy of mathematics. Advances
in Mathematics 31: 31–50.

29. Hersh, Reuben. 1997. What is mathematics, really? Oxford: Oxford University Press.
30. Hersh, Reuben. 2014. Experiencing mathematics: What do we do, when we do mathematics?

Providence: American Mathematical Society.
31. Hilbert, David. 1967. The foundations of mathematics. In From Frege to Gödel: A source book

in mathematical logic, 1879–1931, ed. Jean van Heijenoort, 464–479. Cambridge: Harvard
University Press.

32. Hilbert, David. 1983. On the infinite. In Philosophy of mathematics: Selected readings, ed.
Paul Benacerraf, and Hilary Putnam, 183–201. Cambridge: Cambridge University Press.

33. Hilbert, David. 1998. Problems of the grounding of mathematics. In From Brouwer to Hilbert:
The debate on the foundations of mathematics in the 1920s, ed. Paolo Mancosu, 227–233.
Ocford: Oxford University Press.

34. Hilbert, David. 2000. Mathematical problems. Appendix to Jeremy Gray, The Hilbert chal-
lenge, 240–282. Oxford: Oxford University Press.

35. Hilbert, David. 2004. Lectures on the foundations of geometry. Berlin: Springer.
36. Inglis, Matthew, Juan Pablo Mejia-Ramos, Keith Weber, and Lara Alcock. 2013. On mathe-

maticians’ different standards when evaluating elementary proofs. Topics in Cognitive Science
5: 270–282.

37. Kitcher, Philip. 1983. The nature of mathematical knowledge. Oxford: Oxford University Press.
38. Kitcher, Philip, and William Aspray. 1988. An opinionated introduction. In History and phi-

losophy of modern mathematics, ed. William Aspray, and Philip Kitcher, 3–57. Minneapolis:
The University of Minnesota Press.

39. Kline, Morris. 1964. Mathematics in Western culture. Oxford: Oxford University Press.
40. Kline, Morris. 1980. Mathematics: The loss of certainty. Oxford: Oxford University Press.
41. Lakatos, Imre. 1961. Essays in the logic of mathematical discovery. Ph.D. Dissertation,

Cambridge.
42. Lakatos, Imre. 1963–1964. Proofs and refutations. The British Journal for the Philosophy of

Science 14: 1–25, 120–139, 221–245, 296–342.
43. Lakatos, Imre. 1976. Proofs and refutations: The logic of mathematical discovery. Cambridge:

Cambridge University Press.
44. Lakatos, Imre. 1978. Philosophical papers. Cambridge: Cambridge University Press.
45. Lasserre, François. 1964. The birth of mathematics in the age of Plato. Larchmont: American

Research Council.
46. Mancosu, Paolo (ed.). 2008. The philosophy of mathematical practice. Oxford: Oxford

University Press.
47. Natorp, Paul. 1910. Die logischen Grundlagen der exakten Wissenschaften. Leipzig: Teubner.
48. Parikh, Carol. 2009. The unreal life of Oscar Zariski. New York: Springer.
49. Planck, Max. 1950. Scientific autobiography and other papers. London: Williams & Norgate.



Varieties of Maverick Philosophy of Mathematics 251

50. Poincaré, Henri. 2013. The foundations of science: Science and hypothesis – The value of
science – Science and method. Cambridge: Cambridge University Press.

51. Pólya, George. 1941. Heuristic reasoning and the theory of probability. The American
Mathematical Monthly 48: 450–465.

52. Pólya, George. 1954. Mathematics and plausible reasoning. Princeton: Princeton University
Press.

53. Pólya, George. 1981. Mathematical discovery. New York: Wiley.
54. Prawitz, Dag. 2014. The status of mathematical knowledge. In From a heuristic point of view,

ed. Cesare Cozzo, and Emiliano Ippoliti, 73–90. Newcastle upon Tyne: Cambridge Scholars
Publishing.

55. Proust, Marcel. 1947. A la recherche du temps perdu XII. La prisonnière, Part 2. Paris:
Gallimard.

56. Rav, Yehuda. 2007. A critique of a formalist-mechanist version of the justification of arguments
in mathematicians’ proof practices. Philosophia Mathematica 15: 291–320.

57. Schoenflies, Arthur. 1927. Die Krisis in Cantor’s mathematischem Schaffen. Acta Mathematica
50: 1–23.

58. Schwarz, Hermann Amandus. 1967. Extract from a letter to Weierstrass, 17 October 1887. In
Herbert Meschkowski, Probleme des Unendlichen: Werk und Leben Georg Cantors, 255–256.
Berlin: Springer.

59. Tymoczko, Thomas (ed.). 1986. New directions in the philosophy of mathematics. Boston:
Birkhäuser.

60. Turing, Alan Mathison. 2004. Systems of logic based on ordinals. In The essential Turing, ed.
Brian Jack Copeland, 146–204. Oxford: Oxford University Press.

61. Weyl, Hermann. 1949. Philosophy of mathematics and natural science. Princeton: Princeton
University Press.

62. Wilder, Raymond L. 1967. The role of intuition. Science 156: 605–610.
63. Wittgenstein, Ludwig. 1976. Lectures on the foundations of mathematics, Cambridge 1939.

Brighton: Harvester Press.
64. Wittgenstein, Ludwig. 2016. Lectures, Cambridge 1930–1933: From the notes of G. E. Moore.

Cambridge: Cambridge University Press.
65. Wynn, Karen. 1992. Addition and subtraction by human infants. Nature, 358: 749–750.



Does Reason Evolve? (Does the Reasoning
in Mathematics Evolve?)

Jody Azzouni

1 What Is Mathematics, Really? Two (Families of) Positions

Hersh (1997) in a book aptly named What Is Mathematics Really? stresses
the great distance he detects between the reality of professional mathematical
practice—contemporary and historical—and the reasoning in formal languages
that philosophers (since Frege) have largely characterized mathematical proof in
terms of. Hersh criticizes the reasoning-in-formal-languages view of mathematical
practice and mathematical proof as “isolated,” “timeless,” “ahistorical,” and indeed,
even “inhuman.” Hersh (1997, xi) contrasts this derivation-centered view of math-
ematics (and mathematical proof) with an alternative view that takes mathematics
to be a human activity and a social phenomenon, one which historically evolves
and is intelligible only in a social context. His alternative view pointedly roots
mathematical practice in the actual proofs that mathematicians create—actual
proofs that Hersh claims philosophers of mathematics often ignore.

I’ve just indicated two extreme positions (among a family of more moderate ones
that are possible). Extreme positions offer clarity—so I’ll start by exploring the
first one. Call it “the derivationist account.” The derivationist account characterizes
strict derivations (in one or another artificial language, such as a first-order predicate
one) as the only genuine proofs. Genuine proofs, that is, are sequences of formulas
of an artificial language, each of which is either an axiom (drawn from a set of
axioms characterizing a particular mathematical subject matter) or a formula that
recognizably follows from ones earlier in the sequence by the application of one or
more logical rules. If the nonlogical axioms and the rules of the background logic
are recursive, then derivations are mechanically recognizable. The derivationist
account takes the mechanical recognizability of derivations to explain one widely
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noticed peculiar quality of mathematical proof: professionals convince one another
of the validity of their proofs (subject, of course, to the time limits of successful
surveyability that the lengths of such items pose).1

This means, notice, that the derivationist account takes formal derivations to play
an epistemic role in mathematical practice. The existence of formal derivations
explains an otherwise puzzling aspect of that practice: why mathematicians are
so agreeable to one another—comparatively speaking. In order to explain this
agreeableness of mathematicians, notice further that derivations can’t merely exist
isolated somewhere or other in Platonic heaven. Mathematicians must actually
have access to the pertinent properties of derivations in ways that are reflected in
mathematical practice. In particular, that access must be evidentially relevant to their
recognition of (for example) the validity of theorems in order for this explanation of
mathematical agreement to fly.

Three important observations about the flexibility of the derivationist account.
First, having “access to the pertinent properties of such derivations” doesn’t require
those derivations to be Platonic objects or, indeed, to be realities of any sort.
Derivations can be virtual objects—nonexistent projections of the (shared) cognitive
faculties of mathematicians. According to this view of the ontology of derivations,
we explain the mathematician’s grasp of validity in terms of psychological changes
or sequences of thoughts (conscious or unconscious) that we code in terms of
“manipulations” of those projections. So the phrase, “the existence of formal
derivations explains : : : ,” used above shouldn’t be understood to be ontologically
committing. The derivationist account is compatible—pretty much—with any onto-
logical position about mathematical objects: nominalistic denials of the existence of
abstracta altogether, views (like Hersh’s) that take such objects to be historically
evolving social entities of some sort or claims of the traditional Platonic sort.
Ontology is largely irrelevant to the issues of this paper, so I’m going to sideline
the topic here.2

Second, no assumption is needed that the mathematician has psychological
access to the needed derivations in the sense that she can actually carry out trans-
formations of informal rigorous proofs into their formal analogues or that she has
an awareness of these transformations. The derivationist account can accommodate
the fact that professional mathematicians are often unaware or ignorant of formal
derivations, provided the practice of informal rigorous mathematical proof that

1Contrast, for example, discussions of which theorems have (and haven’t) been established in
various branches of mathematics—standard and nonstandard—with similar discussions of what
implications have (and haven’t) been established about one or another political policy (or moral
theory). Another area where disagreements are notably largely absent (compared to other areas
of discourse) is rule-governed games. It’s relatively straightforward to tell when the rules of a
game have or haven’t been followed correctly. This, as I indicate in the course of this paper, is no
accident.
2See Azzouni (2013a) for extensive discussion of natural languages (and by extension, of artificial
languages) from a strictly nominalist perspective—that is, from a perspective that treats such
languages as collective psychological projections.
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mathematicians do engage in contains the tools for transforming such informal
proofs into corresponding formal derivations. The idea is to treat the distance
between formal derivations and real-world professional proofs as similar to the
distance between the actual utterances of a natural language and the grammatical
sentences posited in linguistics. Although in practice, and almost without exception,
we speak in broken ungrammatical phrases (that are understood only because
speakers and listeners share contexts of utterances), transformations of “what we’ve
said” into impeccable grammatically correct sentences are possible, although they
aren’t within reach of all speakers, and perhaps they’re only within reach of
appropriately trained speakers.

On this version of the derivationist account, local context-specific criteria for
validity all turn out to be various rules of thumb and other abbreviatory shortcuts
(included is the common knowledge among specialists that specific kinds of proof
procedures are widely used) that together indicate how informal rigorous proofs
can be transformed into derivations. The derivationist account—so construed—
allows that the same thing is true of grammatically impeccable sentences and formal
derivations. The various local context-specific criteria that license ungrammatical
(but acceptable) utterance fragments and the various local context-specific criteria
that license informal rigorous mathematical proofs are both linked (respectively) to
grammatical-impeccable sentences and to formal derivations in ways practitioners
are barely conscious of.3

Third, the derivationist account can also handle the open-endedness of standard
mathematical topics due to Gödel’s theorem—that, for example, the set of truths of
the standard model of the natural numbers outstrips any (recursive) axiomatization
of number theory. The derivationist account treats “number theory”—when studied
by professional mathematicians over time—as individuated by an (open-ended)
family of axiom systems which are conservative extensions of one another.4

Assuming that the appropriate access of mathematicians to derivations can be
established (but acknowledging that this is an important promissory note—I discuss
it further in sections 8 and 9), the widely recognized “objectivity” of mathematics
can be explained by the nature of formal derivations. Given a set of axioms and a
presumed background logic, the consequences of these axioms are matters purely of
that logic. Apart from mistakes, there is no space for disagreement. Finally, formal

3I was tempted by a position like this—in large part because of this analogy—until in 2005, when I
realized that all the ways I was offering to bridge the gap between formal derivations in proprietary
vocabulary (e.g., ZFC) and informal rigorous mathematical proofs weren’t likely to make formal
derivations accessible to mathematicians in the ways needed for those derivations to explain the
aspects of mathematical practice that the derivationist account needs to explain (see my discussion
of this in Azzouni (2009a), especially section 16). I revisit this issue in section 9.
4By “open-ended,” I mean that the axioms from this family of formal systems, collectively
speaking, aren’t recursively enumerable; if they were (and because the resulting systems are
conservative extensions of one another), the axioms from these families of axiom systems could be
coded into a single axiom system. Rather, they are found, when they are found, not by “a uniform
process,” but by “essentially new methods.” Here I’m borrowing Turing’s language (Turing (1936,
139)). See the interesting discussion of this in Copeland and Shagrir (2013).
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derivations (and the mathematician’s access to them) are used to explain the long
pedigree of many mathematical results: that they have eternal shelf lives. This isn’t
merely a matter of robustness; rather, apart from mistakes, a mathematical result,
once established, is a keeper.

I’ll describe how the derivationist account explains aspects of mathematical
practice in terms that I’ll borrow from Tanswell (2015, 297-298): the derivationist
account is taken to explain—at least in principle—what he calls, Rigor, Correctness,
Agreement, Content, and Techniques. That is, the following properties are to be
explained (at least in part) by the access of mathematicians to formal derivations:
first, the standards of rigor of informal rigorous mathematical proofs; second,
the correctness (and incorrectness) of such proofs; and third, that mathematicians
largely agree upon perusing candidate informal rigorous informal proofs about
whether they’re suitably rigorous and whether they’re correct. Next, the account
must explain how the content of an informal proof determines which formal proof(s)
it indicates, and (finally) that account must explain the role of informal techniques
of proof that aren’t obvious transcriptions of formally licensed inference steps.

I wrote, “at least in part,” because the derivationist account can help itself to
many of the properties that have been noticed about informal rigorous proofs by
opponents of that account. For example, the tacit shared knowledge in a particular
mathematical context (a particular branch of topology, say) might be crucial to
seeing that an informal proof procedure is correct and to supplying a standard
about what can be explicitly stated and what can be left tacit in proofs. And,
what’s taken to be tacit shared knowledge (and therefore not worth bothering to
articulate) can change over time for purely sociological reasons. But when the
proof is appropriately filled out to explicitly include this context-dependent tacit
material, it can be seen how the content of the (filled-out) proof determines which
formal derivation(s) it indicates. The role of the informal techniques of proof in
this specific area can also be explained as being abbreviations of certain sorts, or
content-specific inference patterns which, again, when spelled out explicitly, make
clear which formal derivation(s) are indicated.

2 Inference as Action; Objects of Inferential Actions

It’s been suggested more than once (e.g., in conversation with me—but in print
as well) that the data of mathematical practice isn’t as I’ve described it in the
last section. And so, Agreement (for example) isn’t an aspect of mathematical
practice that needs explaining by any account, let alone the derivationist account.
Not only have the standards of mathematical proof mutated over the ages (so it’s
claimed), not only are proofs refined and developed over time as standards change,
but there have even been heated disputes (by academic standards anyway) over
appropriate proof methods. Take as an illustration the loud row between British
and Continental mathematicians in the eighteenth century over the notation for
the calculus, or for another example, the more recent debate between proponents
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of classical mathematics and their intuitionistic opponents.5 Furthermore, once it’s
recognized how large a role diagrammatic reasoning plays in informal mathematical
proof, it can look like over time methods of reasoning evolve in mathematics.

The italicized phrase of the last paragraph doesn’t explicitly occur in Larvor
(2012), but the evolving-methods-of-reasoning-position itself does (and it’s some-
thing that’s believed by a number of philosophers of mathematics). Larvor argues
that mathematical reasoning is best treated as “inference as action”; he argues
further that such a position has significant consequences for our understanding of
(informal) mathematical proof. He writes (723),

The benefit of viewing inference as action is that we can see how the subject-matter of
informal arguments shapes and contributes to inferences. Indeed, instead of two highly
abstract categories, the form of an argument and its content, we now have an indicative list
of many and various concrete objects of inferential action (diagrams, models, expressions
in special notations, experimental set-ups and so forth). This goes some way towards
answering (or at least, making more precise) our question about which activities to count
as mathematical practice. The cost is that we have to abandon the hope of establishing a
general test for validity.

De Toffoli and Giardino (2014, 333), commenting on this passage in light of
their previous discussion of Rolfsen’s picture proof (with words) of the equivalence
of surgery codes and Heegaard diagrams of the Poincaré homology sphere, write:

In Rolfsen’s proof, we saw that among the permissible actions on the pictures are
continuous transformations. These are part of the background material in the sense that
any topologist knows immediately that these transformations can be interpreted in terms of
homeomorphisms. The validity is thus based on the “practice”: it is the practice itself that
integrates a way of controlling the actions on the representations used, which results in the
establishment of local criteria for validity. The responsibility is shared among experts: since
in low-dimensional topology different forms of reasoning are employed, some of which
are specific to it, purely external criteria of validity cannot exhaust all the criteria actually
adopted. As Brown suggests, we should acknowledge the existence of non-formal reasoning
in mathematics: “first-order logic may be well understood, but what passes for acceptable
proof in mathematics includes much more than that” (Brown 1999, p. 164). If this is true,
then, as Larvor has exhaustively discussed, “the cost is that we have to abandon the hope of
establishing a general test for validity.” (Larvor 2012, p. 723)

So (modulo certain differences among the thinkers here), a second position
has emerged, one that starts from the assumption that inferences are actions; on
this view, mathematics—mathematical proof, specifically—evolves. In contrast to
the—once and for all—establishing of (a particular) logic as the backbone of all
reasoning, or at least, of all reasoning in mathematics, the counterposition is that
reason itself evolves. (At least it does in mathematics; but if it does in mathematics,
then surely it does so everywhere else.) Reasoning itself, borrowing language from
Hersh, is a social phenomenon which historically changes with the passage of time;

5See, e.g., Gilles (2013, 28) who presses these historical examples and others against my discussion
of this in Azzouni (2006, chapter 6). Philip Kitcher has raised the same kinds of examples to me
in conversation (November 21, 2002); and indeed, these illustrations often arise in the literature as
support for the claim that mathematical proof and practices mutate over time.
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and some of these changes can only be explained by sociological factors. This is
part of what motivates Larvor’s twice quoted sentence, “the cost is that we have to
abandon the hope of establishing a general test for validity.”

As it turns out, not only can the derivationist account handle a mathematical
practice that involves localized context-dependent inference patterns, but it also
isn’t incompatible with a position that takes mathematical practice to be one of
“inferential actions” on “concrete objects of some sort,” as we’ve just seen Larvor
put it.6 At least, it isn’t incompatible if we set aside ontological concerns about
formal derivations. For called for, any proponent of the derivationist account will
claim (one who’s inclined, anyway, to take seriously the actual facts of mathematical
practice) is a distinction between the mathematician acting on “concrete objects
of some sort” and the concrete objects themselves. According to proponents
of the derivationist account, the mathematician acts by imaginatively moving
from one step in a formal derivation to the next; similarly, in reasoning, on the
views of opponents of the derivationist account, the mathematician also acts by
imaginatively moving (say) from one stage of a diagram to a later one. (For
example, a topologist may stretch the visual representation of one knot smoothly
into the visual representation of another—see De Toffoli and Giardino (2014)
for discussion of this.) Furthermore, even the phrase “concrete objects of some
sort” can be understood to make no distinction between how proponents of the
derivationist account view mathematical practice and how their opponents view it
(at least in this respect). Even the most concrete of diagrams must be grouped into
classes of semantically related items (e.g., token diagrams that belong to groups
of token diagrams, all of which establish the same mathematical result in exactly
the same way). Humans always engage with specific items, even if their thinking
is characterized in terms of the grasping of formal derivations. That is, the specific
psychological actions of mathematicians, when engaged in mathematical reasoning,
although always directed toward particular concrete objects, are grouped together
into relevant collections according to both views.7

6De Toffoli and Giardino (2015, 316) instead speak of the mathematician’s “manipulative imagina-
tion” which is brought to bear on “visual representations.” The particulars of the suggestion seem
similar to Larvor’s. For that matter, see Azzouni (2005), where I discuss “inference packages.”
7Hilbert seems to have had a view much like this. See Posy (2013, 120-121), where he discusses
Hilbert’s notion of “intuition.” In particular, Posy quotes Hilbert (1926):

[A]s a condition for the use of logical inference and the performance of logical operations,
something must already be given to our faculty of representation, certain extralogical
concrete objects that are intuitively present as immediate experience prior to all thought.
If logical inference is to be reliable, it must be possible to survey these objects completely
in all their parts, and the fact that they occur, that they differ from one another, and that
they follow each other, or are concatenated, is immediately given intuitively, together with
the object, as something that can neither be reduced to anything else nor requires reduction.
This is the basic philosophical position that I consider requisite for mathematics, and in
general for all scientific thinking, understanding and communication.
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Let’s turn, therefore, to the other aspect of informal proof that Larvor points
to. He writes, recall, that, “instead of two highly abstract categories, the form of
an argument and its content, we now have an indicative list of many and various
concrete objects of inferential action (diagrams, models, expressions in special
notations, experimental set-ups and so forth).”

This contrast between informal rigorous mathematics and formal derivations is
stressed often, although philosophers and logicians who draw attention to it often
disagree on its consequences.8 Rav (2007, 315), in particular, summarizing his
discussion of several examples of informal rigorous mathematical proofs, writes,
“I hold that mathematicians’ manner of reasoning and inferences are based on
meanings and an informal notion of truth that a formal deduction calculus cannot
capture” (italics his).

This too fails to track a genuine difference between informal rigorous math-
ematical proofs and formal derivations (and, specifically, the last clause quoted
from Rav can be challenged). It’s true that informal rigorous proofs—diagrammatic
proofs in particular—are composed of parts or involve actions (in Larvor’s sense)
that are understood to represent mathematical objects or operations; it’s true that
they are understood to have semantic contents. Dots on a page, the lines that
are drawn, pencilled triangles (in Euclidean diagrams)—these represent points
(without dimension), lines (without breadth), and the perfectly bounded triangles of
Euclidean geometry. Similarly, continuous smooth deformations of diagrammatic
shapes (drawings of doughnuts into drawings of cups, say) represent homeomor-
phisms among different geometrical shapes that are depicted in stages in topological
diagrams (or continuously in computer graphics). In other diagrammatic proofs,
contiguous squares represent sums of areas, boxed arrays of numbers represent
operators on vector spaces, and so on.

But formal derivations are the same in this respect, at least as far as their
“meanings” are concerned.9 The formulas of a formal language are often given an
intended semantics—an “intended model,” as it’s put. There is, for example, the
well-known intended model of Dedekind-Peano arithmetic (the familiar counting
numbers), and more generally, there are the various axiomatizations of any math-
ematical field that come with intended models—in particular, the mathematical
subject areas that are axiomatized. Just as with informal rigorous mathematics
(diagrams in particular), the well-formed formulas—“wffs” as they’re sometimes
called—of artificial formal languages have syntactic “parts” that are understood to
have semantic contents because of their relationships to the intended model (or, for
that matter, because of their relationships to models). The quantifiers, standardly, are
interpreted as “ranging over” the domain of a model, the constants in the language

8I too have stressed this aspect of ordinary mathematical proof. See Azzouni (2005, 19), as well as
other work of mine.
9It’s not insignificant that Frege and then Russell and Whitehead (and the early Wittgenstein)
understood the formal languages they were studying as intrinsically interpreted—as meaningful.
The practice of treating formal languages either as meaningless, or as entities to which a semantics
can be attached (as it were) as an afterthought, comes much later.
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are taken refer to items in that domain, and the n-place predicates are taken to
hold of subsets of the n-product of that domain. Equally importantly, rule-governed
inferential movements from one formula to another—syntactically characterized
(and therefore mechanically recognizable)—correspond to semantic relations of
implication (defined in terms of the models of such formal languages, and not
syntactically at all, although provably equivalent to syntactic characterizations in
the case of some formal languages).

Although philosophers of mathematics are aware of these elementary points
about formal languages, and the semantics such languages are standardly given,
some of those philosophers still seem to think that there are important differences
between formal and informal mathematical proofs, with respect to the phenomenon
of meaning. Meaning is irrelevant to formal proofs, it’s often suggested. The fact
that such proofs are “machine-checkable” means that validity can be recognized
even if the device (or person) checking the proofs has no idea what the propositions
of these proofs mean. Furthermore, at least in the first-order case, there are (the well-
known) nonstandard models. Even with logics (say, higher-order logics) that have
models that are isomorphic to one another (unlike the first-order case), the objects
in the differing models of formal languages can be swapped for one another easily.
(More generally, anything, e.g., apples, can be swapped for objects—say, some of
the numbers—in any model of a higher-order logic.) It’s thought, therefore, that
there is no intrinsic relationship in the case of formal languages between what the
formal propositions are taken to mean and how they are shown to follow from one
another; the meanings of these propositions (if any) are completely irrelevant to the
process of derivation.

Informal rigorous mathematical proofs are seen as differing in just this respect.
Rav (1999, 11) stresses this supposed distinction, even building it definitionally into
his nomenclature:

Let us fix our terminology to understand by proof a conceptual proof of customary
mathematical discourse, having an irreducible semantic content, and distinguish it from
derivation, which is a syntactic object of some formal system. : : : [F]urthermore, given
a finite sequence of formulas in a formal system, there is a purely mechanical way for
ascertaining whether the given sequence satisfies the conditions of being a derivation in the
system [italics his].

Rav adds (1999, p. 12), speaking of transformations of informal proofs into
formal derivations:

Once we have crossed the Hibert Bridge into the land of meaningless symbols, we find
ourselves on the shuffleboard of symbol manipulations, and as these symbols do not encode
meanings, we cannot return via the Hilbert Bridge and restore meanings on the basis of
a sequence of symbols representing formal derivations. After all, it is the very purpose of
formalisation to squeeze out the sap of meanings in order not to blur focusing only on the
logico-structural properties of proofs. Meanings are now shifted to the metalanguage, as is
well known [italics his].

The same view of the relationship of informal proofs and meanings is indicated
by the earlier quotations I gave from Larvor and from De Toffoli and Giardino:
the meanings—the interpretations—of the terms and sentences of informal rigorous
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mathematical proofs are essential to their functioning. It’s this, on such views, that
makes context so important to mathematical proof. (De Toffoli and Giardino (2014,
333) write, recall from above, “[continuous transformations on pictures] are part
of the background material in the sense that any topologist knows immediately
that these transformations can be interpreted in terms of homeomorphisms.”)
Professionals, that is, know what’s being talked about in an informal mathematical
proof because of their antecedent training in such mathematical contexts. This is
seen as true, in particular, of diagrammatic proofs.

In the next few sections, I’ll endeavor to undercut this supposed difference
between informal professional mathematical proofs and formal derivations.

3 Rule-Governed Games

I’ll start by engaging in what might initially appear to be a section-long digression
about the characteristics of a specific kind of rule-governed game that connect those
games to notions of computability. But in the sections that follow, I’ll return to
the topic at hand by sketching a characterization of diagrammatic proof systems—
specifically, the venerable system of the Book I of The Elements—directly in
terms of the notions of computability that are applied to these games. Finally,
I’ll return to the debate between proponents of the derivationist account and their
opponents and show that this material illuminates that debate by providing a
successor view to the derivationist account that shows in what sense Agreement
is a datum of mathematical practice and shows how the satisfaction of Agreement
by mathematical practice can be explained in terms of the rule-governed games that
are described in sections 3 and 4.

To start, a game has a finite set of kinds of game pieces. Game pieces are various
physical items stipulated as useable in that specific game. Any of the following
can be game pieces in a game: chips; balls; chess pieces; playing cards; humans;
mental entities (of one sort or another); written items of various kinds on paper
or sand or whatever; diagrammatic entities, such as drawings of specified sorts;
computer graphics; and so on. Game pieces are understood to have properties. In
particular (and very importantly), they are easily distinguished from one another
by participants (and by observers of the game)—this is both in the sense that the
tokens of a kind of game piece are distinguishable from one another and also in the
sense that different kinds of game pieces are distinguishable from one another. The
properties game pieces are presumed to have (and that enable these distinctions),
however, aren’t their pure physical properties; they aren’t even their perceivable
physical properties—the physical properties of these items that are perceivable, say,
by participants. Rather, and crucially, their properties are stipulated, either explicitly
or tacitly. Their “properties,” that is, are conventional ones that they can be specified
to have because of their perceivable physical properties. I’ll discuss this in more
detail in section 6.
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Important also is the assumption of a field that the game takes place on. This
is simply the space—either one, two, or three dimensions, that game pieces are
placed in (or on). Any field is exhaustively divided into cells—again, cells of either
one, two, or three dimensions. These cells have adjacency relations: Each cell is
stipulated to be immediately adjacent to a fixed set (and finite number) of other
cells; adjacency relations are reflexive, symmetric, and not transitive. Each cell
can contain one and only one game piece at any time. A Turing-machine tape,
for example, extends linearly along one dimension and is divided into squares,
each of which is adjacent to its two adjoining squares. A piece of paper on
which diagrams are drawn uses a field of two dimensions, and a game played in
space (such as baseball) can require three dimensions. (Correspondingly, the game
pieces themselves can be items of one, two, or three dimensions.) The field can
be (potentially) infinite in any or all of its dimensions, although its resolution is
always finite. That is, any finite subregion of a field contains only a finite number
of cells.10 (I’ll call this the finite-subregion-finite-cell property in what follows.)
Call a cell occupied iff it contains a game piece. A configuration of the field is any
placement of a finite number of game pieces in its cells. A set of cells is connected
(in a field) if, for any two cells ca and cb, there is a sequence of cells, ca, c1, : : : ,
cn, cb, where each cell is adjacent to the cells immediately before and after it in
the series. A subconfiguration of a configuration is any subset of the cells of that
configuration.

Game states are recursively specified configurations of none, some, or all of the
game pieces according to the rules of the game. The rules, usually, don’t specify all
the acceptable configurations directly, but only in terms of transitions from earlier
configurations and the null configuration (the empty field). These rules, that is,
specify the admissible game episodes, which are sequences of game states over
time, each one admissible according to the rules on the basis of earlier game states.
An admissible game episode, that is, is any physical (or mental) movement of the
game pieces into cells or from cells to other cells that’s licensed by the rules of the
game. I’ll sometimes call these “admissible transitions” or “admissible game-state
transitions.” An umpire is someone (human or machine) who watches the game and
knows the rules. I include among umpires, in addition, those who execute derivations
according to the rules of a logic. More generally, if a game has only one player, that
player is also an umpire—and, of course, anyone who watches a game (or a record
of that game) is an umpire. A game is mechanically recognizable if an umpire can
immediately recognize at a time (by a mechanical or unintelligent application of the
rules the umpire has memorized) the admissible transitions occurring at that time
of any episode in that game. In particular, this is only possible if the admissible
transitions allowed by the rules are all locally constrained: they operate only on

10It’s, perhaps, not obvious that these latter two cases are as I’ve just described them—in particular
that finite subregions of these fields have finitely many cells. (They may strike people, instead, as
continuum-structured.) I make my case for this in section 5.
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finite subregions of the field that are within the immediate purview of the umpire(s)
at that stage in the game.11

Playable games, as I’ve characterized them, are a very broad class of human
activities. I intend to be among them the sports games so popular in our culture,
but also role-playing games, board games, various card games, as well as the calcu-
lational devices of various sorts that we engage in: arithmetical calculations using
pen and paper, more physical ways of manipulating things to execute calculations,
beads on strings (for adding, say), and so on. They are also meant to include formal
proofs and algorithms, as well as the informal rigorous mathematical proofs that
use diagrams. Included among these games are “nondeterministic” ones— say, ones
using dice or other devices that introduce an “element of chance” into the game. The
construction of a formal derivation, of course, is also “nondeterministic” in the sense
that there is (usually) more than one subsequent (interim conclusion) that follows
from a sequence of formal propositions at any one time.

The focus here, however, isn’t on the production of game episodes; it’s on the
ability of the umpire(s) to mechanically recognize that every game state in a game
is due to an admissible transition from earlier game states. I’m not assuming that an
entire admissible episode is effectively or mechanically recognizable “at a glance”

11Copeland (2015, 1) writes, “A method or procedure, M, for achieving some desired result is
called ‘effective’ or ‘mechanical’ just in case: 1. M is set out in terms of a finite number of exact
instructions (each instruction being expressed by means of a finite number of symbols); 2. M will,
if carried out without error, produce the desired result in a finite number of steps; 3. M can (in
practice or in principle) be carried out by a human being unaided by any machinery save paper
and pencil; 4. M demands no insight or ingenuity on the part of the human being carrying it out.”
(I’ve altered the typographical format of this quotation.) I mean what I’ve described above to be in
the spirit of what Copeland writes (which in turn is in the spirit of Turing (1936)), although as my
discussion will indicate, I disagree with some of the details. Here are several points of clarification
about these disagreements: “Symbol” is misleading, in the broader context of games—but also,
perhaps, in relation to one of the intended applications, derivations in formal languages—so I’ve
eliminated this word. Only in certain cases are the items being manipulated “symbols,” as I’ll
discuss later; this is connected to the issue of “meaning” already raised in section 2. There is some
redundancy in Copeland’s (1), (2), and (4); the idea is that something (without intelligence) can
carry out the procedure. In any case, I’ve dropped (2) altogether (as well as the relevant phrase “for
some desired result” in what Copeland takes to be defined). This is because there need not be a
“desired result”; there is only the question of how to characterize the intuitive idea of a method or
procedure being “effective” or “mechanical.” Goals needn’t come into it. Finally, I’ve generalized
the cases of procedures to ones beyond those using pencil and paper, as Turing originally restricted
the discussion. It changes nothing essential to do this (or so I’ll argue in this and the next section,
following Gandy and Sieg); besides, since certain diagrammatic proofs now occur in the medium
of computer graphics, instead of pencil and paper (or chalk and chalkboard), the generalization
is needed for the topic of this paper: informal rigorous mathematical proof. Notice, in particular,
that certain topological proofs can be animated visuals where, for example, one shape smoothly
transforms into another over time. A last point: I’m unsure what role “exact” plays in Copeland’s
characterization of the intuitive notion of mechanical or effective procedure. Many mechanical or
effective procedures have (or can easily be imagined to have) rules that don’t dictate, given a game
state, a transition. This may be because no rule applies to this game state or because it’s vague
whether a rule applies or not. (If umpires can disagree on the outcome of a rule or whether it even
applies, we stipulate that the rule doesn’t apply.) At this point, therefore, the game episode ends
(“halts” is a perfectly good term for this). Perhaps what’s meant is that the admissible transitions
of game state to game state that are determined by the rules should be clear to all participants.
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or “immediately.” The recognition that a game episode is admissible is usually the
result of memory and/or the inspection of a record of the game: one sees in this way
that all the game-state transitions in that game episode are admissible.

4 Finite Resources for Judging Games

Turing (1936) originally characterized the intuitive notion of an “effective” or
“mechanical” procedure for calculating sequences of numerals in terms of “comput-
ers” (human calculators) with unlimited time, paper, and pencils on their hands—as
well as a pretty inhuman capacity to concentrate endlessly on mechanical tasks.
He further assumed such beings have (in principle) only a finite set of mental states
and a finite set of symbols available.12 Despite these apparent limitations, he was
able to indicate good reasons for thinking that the intuitive notion of an “effective”
or “mechanical” numerical function is equivalent to what has subsequently come to
be called Turing computability. (This is a version of the Turing-Church thesis.)

Sieg (2000, 2008, and elsewhere) has stressed the importance of Turing’s discus-
sion of the memory and the sensory limitations of humans engaged in mechanical
tasks, both in motivating Turing’s characterization of Turing “machines” (human
calculators), and as the distinctive element in Turing’s approach to computability—
as opposed to Gödel, Church, Kleene, and others.13 Sieg uses this characterization of
human limits to axiomatize the intuitive notion of mechanical or effective procedure
and to show its equivalence to an axiomatized notion of Turing computability. Thus,
instead of linking Turing computability (and the other notions equivalent to it) to the
intuitive notion of effective or mechanical procedure by the Turing-Church thesis, he
captures the relationship by characterizing both notions axiomatically and showing
their equivalence.14

In any case, these limitations motivate two “boundedness conditions” and two
“locality conditions” that I borrow from Sieg (2008, 575) and modify to apply to the
games I’ve just characterized:

12See Turing (1936, 135-136).
13Although not Post. See Post (1936) and also the nice comparison and analysis of Post and
Turing’s approaches in Sieg and Byrnes (1996).
14Sieg (2013, 190) writes: “The methodological difficulties [of there being no proof of Turing’s
thesis] can be avoided by taking an alternative approach, namely, to characterize a Turing computor
[a human executing a mechanical procedure] axiomatically as a discrete dynamical system and to
show that any system satisfying the axioms is computationally reducible to a Turing machine. : : :
No appeal to a thesis is needed; rather, that appeal has been replaced by the task of recognizing the
correctness of axioms for an intended notion. This [is a] way of extracting from Turing’s analysis
clear axiomatic conditions and then establishing a representation theorem : : : .” I should add that
although Sieg’s approach is illuminating; I have doubts that it changes the epistemological situation
very much—although it does show that the Turing-Church thesis is really just a matter of applied
mathematics. The possibility that the Turing-Church thesis is false translates (without residue) into
the possibility of apparent examples of computation that fail to be appropriately characterized by
the axiomatized notions we were hoping those applications would fall under.
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(B.1) There is a fixed finite bound on the number of cells (with or without game
pieces in them) that any umpire can immediately recognize (at a time).

(B.2) There is a fixed finite bound on the set of rules of any game.15

(L.1) An admissible transition of a configuration to another configuration can
only be based upon the movement of game pieces with respect to immediately
recognized cells.

(L.2) The class of immediately recognized cells can be changed, but each of the new
observed cells must be within a bounded distance L of (any of) the previously
immediately observed cells.

There are two points about these constraints. They can be motivated, first, directly
as requirements on games, as I indicated earlier, by the ordinary (and indisputable)
limitations of human memory and human sensory systems—this is pretty much how
Turing (and Sieg) motivates them. I should add that these limitations of memory
and sensory capacity are shared by current machines and—particularly—current
“machine vision.”16 But, second, and more particularly, B.1–L.2 together motivate
the specific constraints I’ve placed on games—particularly, the constraints that
any finite subregion of the field of a game has only a finite number of cells and
that admissible transitions affect only finite subregions of fields that are being
immediately surveyed by umpire(s).

5 Are Certain Diagrammatic Proofs Analogue or Infinite?

It may well be thought that my description of the field of any game explicitly
excludes an application of this game model to most physical games that take place
in space and time.17 In the case of baseball, for example, it may be thought that
certain events, such as catching a ball in the outfield, involve continuum-many (or
at least, countably many) similar possible events, because any such particular event
can vary ever so slightly in its trajectory in space and time (without a lower limit in
closeness).

Furthermore, attempting to apply this approach to diagrammatic proofs may
seem to result in something even more inadequate. Consider the initial instructions
we’ve given in Book I of Euclid’s Geometry. We may place a point anywhere; we
may draw a circle anywhere.18 Assuming the background space of the diagram is

15This can be relaxed to a recursive set of rules.
16I expect these limitations to remain in place for machines (and more generally, for robots) forever,
although this is controversial in some circles.
17Gandy (1980, 125) explicitly excludes from his approach anything which is essentially an
analogue machine.
18Postulate 1: To draw a straight line from any point to any point. Postulate 3: To describe a circle
with any center and distance (Heath 1956, 154).
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a real manifold—something that seems required by other assumptions of Euclidean
geometry (in particular, that intersections of lines always yield points)—any hope
that Euclidean diagrams aren’t analogue seems dashed. Thus, treating a piece of
paper as a field with the finite-subregion-finite-cell property seems ruled out by
Euclidean diagrammatic practices. Similarly, recall that De Toffoli and Giardino
(2014, 33) write about continuous transformations being permissible actions
on pictures; the phrase “continuous transformations” is clearly meant to apply
to diagrams, and the semantic interpretations of the diagrams so continuously
transformed are homeomorphisms. Even more dramatically, Feferman (2012) is
titled: “And so on : : : : reasoning with infinite diagrams.” If Feferman is to be taken
literally (and he makes it clear in the paper that he is to be taken literally),19 this
rules out pretty explicitly a characterization of the configurations such diagrams are
embodied in being finite.

It’s important, however, to keep the properties of the diagrams mathematicians
peruse (on paper, on computer screens, or in their minds) strictly distinct from
what those diagrams are semantically associated with. Let me start with Feferman’s
claims about diagrams and oppose those claims with a truism: No infinite diagrams
appear anywhere in Feferman’s paper. Everything that does appear in those
papers is finite. Below are two examples from his paper (Feferman 2012, 376, 379;
I’ve retained his numbering: Fig. 3 and Fig. 7):
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Fig. 3 A diagrammatic proof of the Cantor-Bernstein Theorem
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Fig. 7 Connecting homomorphism for exact sequence of homology

19Feferman (2012, 376) writes, preceding his discussion of a proof of the Cantor-Bernstein
Theorem, “Let us now turn to infinite diagrams which can be visualized in full, in contrast to
those of the preceding section, though they may also involve the iteration of certain constructions.”
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Notice that various conventionalized symbols do appear in the above. In particu-
lar, in the second diagrammatic proof, there are conventionalized pairings of arrows
with ellipses that indicate that there is more of the same in the various directions the
arrows are pointing to (or from, when ellipses precede the arrows). In Feferman’s
Fig. 3, the conventionalized indications of “more of the same” are more intricate,
involving a conventionalized description of how a pair of functions are supposed to
operate.

What does not appear at all (anywhere) are the more of the diagrams that are
indicated by arrows and ellipses. What does appear, to repeat, are just arrows and
dots. It might be responded that I’m being unfair to Feferman by demanding that if
an infinite diagram is involved, as he claims, then that infinite diagram must appear
in his paper. Instead (recall from the quotation in footnote 19), what’s required is
only that the diagram in question be “visualized in full.” This response isn’t going to
do. Feferman, in his paper, is making a distinction between two kinds of cases where
a finite depiction conventionally indicates how we are to go on should we desire to
sketch more of the diagram on paper (or think of further parts of that diagram in our
minds). In the cases above, what’s involved is a further sketching of the diagram
that looks the same as what’s already present to the mathematician’s eye on paper.
But Feferman understands other cases differently. Consider the diagrammatic proof
of the existence of a bounded continuous closed curve with no finite length and
no tangent at any point (the “Koch snowflake”). I provide the diagrammatic proof,
immediately below, that Feferman (2012, 374) gives (but which I have borrowed
from somewhere or other on the web and have modified to include the needed
ellipses):

…
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This, as Feferman (2012, 374) puts it:

is the limiting curve of a sequence of polygons beginning with an equilateral triangle of
side 1. The sequence is described inductively: at each stage, one simultaneously divides
each side of the polygon before us into three equal segments, then builds an equilateral
triangle on the middle segment, and finally deletes the base of the new triangle except for
its endpoints. Since the length of the circumference of this figure at each stage is multiplied
by 4/3, and since (4/3)n approaches infinity, the limiting curve has no finite length.

The limiting curve cannot be visualized because it has infinite length (and no
tangent at any point). This is true, however, of none of the diagrams in the infinite
sequence that converges (as it were) to the limiting curve: all of them have finite
lengths (which can be explicitly calculated as Feferman indicates) and each lacks
tangents at only finite many points. But what’s important to realize is that beyond
a certain finite number of these diagrams (say 140, to be very conservative), none
of the remaining (infinitely many) members of the sequence of diagrams can be
visualized either—this is in the sense that the viewer’s eye becomes incapable
of distinguishing differences between any of them. Notice this important point:
limitations in what viewers can see are also (pretty much) limitations in what the
viewers can see in their “mind’s eye.”

For the same reasons, one cannot visualize in full—in one’s mind—the infinite
diagrams indicated by Feferman’s figures 3 and 7. Visualization can only be
something that involves a mental replication—at least, in the relevant respects—
of what we do when we use our eyes to see anything. But we have no examples
of seeing (using our eyes) a fully infinite pattern of any sort. So, unless, mental
visualizing can sprint beyond the capacities of our senses with respect to the infinite,
we cannot be said to visualize completed infinities. There is a difference, of course,
between the Koch snowflake and the other diagrams Feferman mentions. This is
that the subsequent diagrams in the series (e.g., extending Feferman’s Figure 3 or
Figure 7) are just “more of the same.” But that we understand that there is more of
the same to a diagram doesn’t mean we can (visually) complete that diagram in our
mind’s eye by presenting to ourselves (mentally) all of that “more of the same.”20

Because Feferman describes these diagrams as infinite, therefore, I have to
accuse him of confounding two very different phenomena. (I really don’t want
to accuse him of this, but I think I have no choice.) On the one hand, there are
the actual physically real (although conventionalized) diagrams that we instantiate
physically in space and time on computer screens or with paper and pencil, or on
blackboard with chalk, etc. (or that we imagine in time), and there are other sorts
of completions of such items that we can conceive of but that don’t actually occur
instantiated anywhere in our diagrammatic practices—either on or in visual media
of various sorts or in our minds.

20I must stress, however, that I’m not arguing that we can’t conceive of completed infinities—this is
a claim that certain constructivists and intuitionists make, but not me. I am saying that however we
do conceive of such things, we don’t do so it by directly visualizing them. I’m urging us, therefore,
at least when discussing diagrammatic proofs, to take Descartes’ old distinction between imagining
and understanding seriously. (See Descartes 1979, specifically his sixth meditation.)
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Consider the simple diagrammatic proof below that the series ½ C ¼ C : : :

sums to 1:

Proof:

1/2

1/4

1/8

1/16

This diagram can be viewed in any of three ways. The first is as I urge,
the diagram itself, on my approach, contains nothing infinite. Instead, there are
three dashes which conventionally stand for something like “a diagram-like object
that continues (forever) the pattern you actually see on the paper.” The second
interpretation is one that Feferman attributes to the diagrammatic proofs of the
Koch snowflake. We’re given a couple of diagrams which visually indicate how a
manipulation of the diagrams to produce further ones in the series can be continued
infinitely and where (up to a finite point!) each of the resulting diagrams can be
visualized, but where the limit of the series isn’t visualizable because it doesn’t “go
on in the same way” as any of the diagrams in the series do. The third interpretation
is the one that Feferman attributes to his figures 3 and 7: actual infinite diagrams—
items that he takes us as able to “fully visualize.”

What tempts Feferman to his latter two interpretations of diagrams (I claim)
is that the diagrams that actually appear in his paper (and in mine) involve both
intended (and explicit) semantic relations to mathematical objects that they are to
show results about (series of numbers, curves of various sorts, set-theoretic objects)
as well as semantic relations to what should be called “diagrammatic objects”—
items, however, that don’t appear in these papers but are conventionally indicated
by the use of dots, arrows, or lines). Results about these latter items are used, in
turn, to show results about the mathematical objects these items also have semantic
relations to.

However, to treat the semantically indicated (infinite) diagrammatic objects
as diagrams that are part of the informal rigorous diagrammatic proofs that
mathematicians provide to one another is a mistake. Instead, “diagrammatic objects”
in this second sense of “diagrammatic” are (as I’ve noted) themselves mathematical
objects that are the referential targets of the diagrams that actually appear on paper
(or on computer screens, or whatever) just as numbers, curves, and set-theoretic
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objects are. Anything can be treated as an object of mathematical study—that
includes “diagrams” understood as certain sorts of idealized objects only certain
parts of which can appear concretely. We should not, therefore, confuse the actual
diagrams that Feferman reproduces in his paper (or the ones that we can constitute
in our thinking) with the ones only referred to by this diagrammatic practice—
referred to along with other mathematical objects that are also referred to. These
(finite!) diagrammatic proofs, in practice, refer to certain sorts of infinite processes
(completed or continuously engaged in) applied to what are ultimately mathematical
diagrammatic objects. These infinite processes (which are also mathematical—not
part of the proof but part of what the proofs are about) in turn yield infinite (or limits
of continuous series of) diagrammatic objects (which are also called “diagrams”).
Results about these, finally, are understood to imply the desired number theoretic or
set-theoretic theorems.21

The attribution of properties to diagrams that, strictly speaking, apply not to them
but (at best) only to the objects to which these diagrams have semantic relations is
hardly restricted to Feferman. It occurs widely. When, for example, De Toffoli and
Giardino (2014, 33) write about “continuous transformations” of diagrams, this is
actually a matter of discrete diagrams that represent continuous transformations,
not anything that’s actually being continuously applied to diagrams on paper (or
electronically—I include diagrams that move on the computer screen).

Part of the problem is how mathematicians themselves talk. In writing proofs that
involve writing about diagrams, or notation more generally (which almost always
happens), mathematicians studiously avoid the niceties of “use and mention”—
in Quine’s sense. Mathematicians, for example, effortlessly shift between talk of
“functions” (understood as mathematical items) and “functions” understood as the
notation standing for functions—in the latter case, they will talk about the indices
on certain functions and shift in the same sentence to describing the properties
of those functions as mathematical objects.22 More elementary examples of the

21These diagrammatic proofs, because they refer to both infinite “diagrams” and certain more
traditional mathematical objects, have been revealed to have an interesting intricate (semantic)
structure that’s pretty much never made explicit in their exposition. If it were, there would have to
be an entire sequence of theorems about “diagrams” preceding these proofs.
22I discuss this in some detail—especially with respect to how it enables mathematicians to
abbreviate and shorten informal rigorous proofs—in Azzouni (2006, chapter 7), especially p. 149-
150. One nice topic area where distinctions between use and mention are regularly ignored by
mathematicians is linear algebra. (Proofs in this subject area would become insanely longer if they
were rewritten to avoid use/mention errors, say, between the talk of operators on vector spaces
and their properties, as opposed to the properties of the notation—matrices—that represent those
operators.) One common motivation for use/mention errors in mathematics is that computations
often rely on properties of the notation that need to be described in the course of a proof. So,
mathematicians regularly (but informally) engage in semantic ascent and descent in the course of
many ordinary informal rigorous mathematical proofs. I should add that this kind of “slippage”
in mathematical discourse between radically different sorts of “objects” that are nevertheless co-
referred to by the same noun phrases is typical of natural language generally. Consider the use
of noun phrases, such as “London” or “person” in sentences like the following: “London is so
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same practice are the use of the words “triangle” and “line,” in the Euclidean
diagram tradition, to describe both the diagrammatic items themselves and what
those diagrammatic items represent. (I do this sort of thing in this very paper, of
course.)

But there is another important factor that arises more specifically with respect to
diagrams and not with notation, generally. Mathematicians certainly speak (as De
Toffoli and Giardino do) of “continuous transformations” of diagrams (in thought,
but also on the computer screen). This way of speaking (and of thinking about
diagrams) is derived, of course, from how we experience movements in space.
We experience movements of objects through space (and of actions in space, such
as drawing curves on paper) as continuous—more accurately, as space filling.
But simultaneously, our experience of anything in space always involves finite
resolution. This gives rise to subtleties in diagrammatic conventions that I’ll discuss
in the next section.

6 The Role of Conventions in Diagrams

One thing that makes our experience of space intuitively puzzling (and this is
also something that can easily mislead us when we theorize about diagrammatic
proofs) is that although anything we do in space (by way of playing games, drawing
diagrams, etc.) obeys the finite-subregion-finite-cell property, we don’t directly see
this—in particular, we don’t see the cells the fields of these games are required
to be composed of. The curves that we draw on paper, or the movements we
make in space, as I mentioned earlier, look space filling: it’s this that makes the
postulation of space as composed of continuum-many points seems intuitively
plausible; conversely, it’s why any suggestion that the space we interact with is
finite-region-finite-cell-structured seems, well, crazy.

But that any game we play in space (any diagram we draw on a page) must be
on a field that obeys the finite-subregion-finite-cell property is easily established by
the fact (which is also pretty obvious) that we cannot distinguish two spots, if they
are within a certain closeness, or see a spot at all, if it’s too small.23 We similarly
recognize that we can only distinguish finitely many curves in any finite region of

unhappy, ugly, and polluted that it should be destroyed and rebuilt 100 miles away” (from Chomsky
(2000, 37)). Also see Pietroski (2005) on this matter.
23For us to discern nearby dots (pixels) as separate, apparently, they have to be at smaller angular
distances from one another than our eye’s angular resolution. And the average of the latter,
apparently, is around 1 minute of arc. That’s why we can discern more distinctions if we move
our eyes closer to a computer screen or to a piece of paper a diagram appears on. (Of course, there
are serious limits to this method of improving resolution—posed by, among other things, the nose).
But a fun trick this allows is pixelating a computer-screen presentation of (well, nearly anything)
by moving our eyes closer to the screen. (As we age, our ability to do this diminishes—which
is sad.)
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space (that we can immediately survey). These two facts motivate, pretty directly, a
metaphysical picture of space and what’s in it as things that go infinitely beyond our
visual senses: we can always (in principle) focus in more closely—either by eye or
with magnifying instrumentation—and doing so will reveal further distinctions we
can’t see otherwise. This is, intuitively, an infinitely iterable process of divisibility
that’s limited only by practical considerations.24

It should be clear, however, that any diagrammatic proof procedure must honor
the finite-subregion-finite-cell property because of the simple requirement that
whatever visual items that appear in that diagram must be, first, distinguishable
and, second, recognizable as what they are supposed to be, by eye. This is
why the mere visual qualities of diagrams are (and must be) supplemented by
explicit and tacit conventions that able practitioners of diagrammatic proofs utilize
automatically.25 In saying this, I’m only pointing out the truism—in the particular
case of Euclidean diagrams—that, for example, visual dots (that are perceived by us
to have two dimensions) nevertheless stand for dimensionless points, diagrammatic
lines (widthful things that are usually perceived by us to be both crooked and
irregular in their widths) are to represent straight, one-dimensional items and so
on.

The conventions I’ve invoked play two roles. I’ll discuss the first in this and
the next paragraph and then turn to the second. There is, first, the classification of
various physical items as game pieces. It’s not merely, for example, that a class of
physical items that “look alike” are induced by that alone to be the same kind of
game pieces. In practice, a game piece that in fact looks like a different game piece
may, because of its role in a series of configurations, be recognized as the game
piece it’s stipulated to be—despite its appearance. (So, e.g., during a game of chess,
something that physically looks like a pawn may in fact be recognized by everyone
watching the game to be a king.) Similarly, conventions require us to be able to
distinguish distinct game pieces—in different spatial locations—as, indeed, located
“in different places.” Notice that the actual metaphysics of the field—whatever it
really is (e.g., quantum foam)—is completely irrelevant to the stipulated properties
of the field; we perceive the drawing of a line (of whatever length) as completely
space filled. But, instead, if such a line is finitely extended, this is by the placing
of conventionally stipulated parallel line symbols (ones stipulated to be parallel to
the line symbols already present) in a finite number of cells immediately adjacent
to one another. This is a given of the Euclidean diagrammatic practice because we
can’t distinguish more than finitely many distinctions among the possible lengths
and angles of the lines we draw or could have drawn.

24Contemporary microphysics is no longer friendly to this metaphysical picture.
25For further details about the relevant notion of convention in play here, see Azzouni (2014). I
should also note that what we recognize to be conventional properties of elements in our visual
experience (e.g., that certain shapes are words with meanings) can nevertheless be experienced
involuntarily and automatically. See Azzouni (2013a) for further discussion of this.
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In the case of Euclidean diagrams, the game pieces are (one-cell) portions of
lines, circles, and so on. In the case of formal derivations, the game pieces are the
primitive alphabetic items, individual variable symbols, the quantifier symbols, and
so on. Notice further that individual game pieces are manipulated in admissible
transitions of formal derivations—although, in practice, more than one piece is
manipulated at a time. In the case of Euclidean diagrams, as I’ve been describing
them, finite sets of game pieces (in connected cells) are always manipulated all at
once. One never extends a line, for example, by occupying only a single adjacent
cell with a line symbol. Many such must be occupied simultaneously (although
only finitely many many such, of course). This is simply because the cells are
below visual threshold in Euclidean diagrams—although they must exist because
of B1–L2.26

The second role that the conventions I’ve invoked above play is to stipulate
semantic relationships between the game pieces (and configurations of game pieces)
and mathematical objects. It’s by the (usually tacit) stipulation of these semantic
relationships that game pieces become symbols. These semantic conventions often
shift historically because of the background evolution of mathematical concepts.
For example, the notion of a function underwent a progressive evolution,27 from an
early notion of function to a spread of later notions (arbitrary function, everywhere
differentiable function, continuous function). What class of mathematical objects
(what set of functions) a drawn curve on a piece of paper represents is not given “by
eye”; it’s given by conventional stipulation of the semantic relations of the game
pieces (even if the conventions in question are tacit ones).

Although I won’t dwell on this in this paper, conventional choices of semantic
relations can be better or worse for the value of the resulting diagrammatic proof
procedure. The soundness and validity of the standard diagrammatic proof of the
intermediate value theorem (see fig. 3.2 immediately below this paragraph, from
Brown (1999, 27)), for example, turns completely on what class of functions are
stipulated as indicated by curves on pieces of paper. If smoothly drawn curves are
to represent only continuous functions, then the proof shows what it’s supposed to
show. Otherwise it may not.28 The mechanical recognizability of a proof—of any

26The actual geometry of the cells is empirically determinable (in particular how many cells each
cell is adjacent to)—although that geometry is relative to certain factors. Given a fixed distance of
the eye to the page, the geometry is determined by when distinctions can’t be made among points
and lines and so on. This geometry differs from person to person and changes if the position of
eye to page shifts. In practice, we always manipulate diagrams by shifting game pieces in multiple
cells at, in effect, the same time (e.g., even when extending a line on the page by ever so little).
27See Azzouni (1994, 50-52) and the citations given there.
28For example, if the functions depicted include ones that are discontinuous (e.g., with rational
values all at zero but with irrational values where the curve appears in the diagram), I should add
that the nearly total conventional nature of the diagrams in diagrammatic proof is widely either
overlooked or underestimated. In particular, it’s often assumed without argument (and without the
realization that the claim is implausible) that facts about which mathematical objects the items in
a diagram look like play a major role in some diagrammatic traditions (e.g., the Euclidean one)
in determining what mathematical objects (abstracta) they refer to. See, for example, Giaquinto
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sort—all by itself proves nothing. That proof must have an interpretation: this is
equally true of formal derivations and informal rigorous mathematical proofs. And,
there is nothing intrinsic to diagrams that forces one interpretation on them and not
another. To assume this is to simply overlook that a visual appearance of a diagram
may make a certain interpretation natural; but naturalness isn’t a requirement on
interpretation.

C

a
c b

f(b)

f(a)

0

Figure 3.2 The intermediate value theorem

An important point should be brought to attention (although the details about it
are developed further in other work cited in a footnote at the end of this paragraph).
The effective procedures that can be applied to game pieces and the semantic
conventions that determine the mathematical subject matter these game pieces (and
their configurations) are about must coordinate appropriately if a diagrammatic
proof procedure is to operate successfully. So, for example, allowing the visually
measured lengths of lines in Euclidean diagrams to be semantically significant (to
correspond to actual lengths of the depicted lines) will yield an unsuccessful dia-
grammatic practice because effective recognition of the conventionalized properties

(2016), especially his discussion of Azzouni (2013b). Also see Giaquinto (2007), especially
chapter 12, which, in part, focuses on a distinction between the differences in extent to which
a diagram depends on resemblance vs. conventions of representation. The role of convention,
however (here and elsewhere), is underdescribed because it’s so widely taken for granted that
dots on paper, for example, visually resemble (mathematical) points and drawn lines visually
resemble (mathematical) lines. They don’t, since the mathematical items are not visualizable at
all for pretty much the same reasons that a Koch snowflake isn’t visualizable: something with
no dimensions (or only one dimension) can’t be seen. How visual capacities are exploited by
diagrammatic traditions in a way that makes diagrams so much easier to understand than language-
based proofs is—at present—not well understood (although see Azzouni (2005) on inference
packages for suggestions). In any case, talk of “resemblance” is a metaphor that doesn’t help.
(Also see Avigad (2009) for discussion of the relevance of contemporary vision science to the
analysis of diagrammatic proof procedures.)

http://dx.doi.org/10.1007/978-3-319-61231-7_12
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of the resulting diagrams is absent. (We can’t tell exactly how long these things are
by eye: an appropriate semantic convention using visually perceived lengths to stand
for the lengths of the corresponding mathematical objects isn’t easily established.)29

That is, the properties that game pieces are stipulated to have, in cases where
configurations are interpreted, must be ones that yield effective recognition of the
properties of configurations while at the same time being sound with respect to the
mathematical interpretation of these configurations. These are not exactly straight-
forward requirements to satisfy. In particular, this explains why diagrammatic proof
techniques are hard to invent—why serious mathematical talent is needed to do this.

My use of the word, “stipulation,” to describe these two roles of conventions can
be misleading (so let me try to fix that). In practice, especially with diagrammatic
proofs, the experience of the semantic relationships between configurations of game
pieces, such as triangles drawn on a piece of paper, and what those triangles
are supposed to depict, is so automatic and seamless that it may strike some
as an intrinsic semantic property of diagrammatic items—in the sense that these
diagrammatic items must depict certain mathematical objects and not others. This,
however, is surely not true. Nevertheless, our automatic and pretty involuntary
experience of certain semantic relationships between diagrammatic items (e.g.,
drawn lines and mathematical lines) explains the impression some have that the
role of meaning and truth is intrinsic to informal rigorous proofs and that this aspect
of such proofs can’t be captured by formalized imitation. A similar experience with
words on a page can give the same impression about the meanings we associate with
those words: The impression that certain words intrinsically refer to what they refer
to. Visual experience, in general, always contains conventionalized elements that
are an involuntary part of that experience. In neither case should we think either that
the conventionalized elements are required to be there or that they are intrinsic in
some way to what’s given to us visually by our senses nor should we think that such
conventionalized elements are simply a matter of what “we see,” whether those are
words or diagrams that appear on a page.

Conventions being an involuntary part of visual experience misleads in a second
way, especially with respect to diagrammatic proofs. Many philosophers find it
tempting to see us (and mathematicians, generally) as “abstracting” or “intuiting”
pure mathematical objects from what we see in the world. Although I shouldn’t say
anything further about this now (solely for reasons of space), it should be clear that
I regard this as a completely mistaken characterization of how perception (and the
mind) works with respect to our “grasp” of abstracta.30

29See Manders (1995, 2008) and Azzouni (2004). For a discussion of how fatuous concerns about
the rigor of diagrammatic proofs arise from tacit shifts in the mathematical interpretation of the
configurations of a diagrammatic practice or from a failure to recognize that the mathematical
interpretation of a diagrammatic practice isn’t a matter of what the diagrams look like (but is
conventionally stipulated) (see Azzouni (2013b)).
30“Mathematical intuition” was, and continues to be, a big deal in philosophy of mathematics. See,
e.g., Posy (2013, 127) for discussion, specifically about Kant’s seminal (and influential) views of
it.
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With respect to the rest of this paper, the upshot of the foregoing analysis is
this. Because of human (and machine) limitations, the (implicit) conventions of
diagrammatic proofs force the field that such diagrams appear on to obey the finite-
subregion-finite-cell property. In particular, each cell will have a finite number
of immediately accessible cells (this is empirically established by our practice of
requiring diagrams to be comfortably perusable by professionals). The same point
holds of playable games in space and time, as well as mental playable games. This
is because the games we play in our minds are limited in the same ways by our
capacities for memory (and imagination) that the games that we play physically are.

7 The Turing Computability of Diagrammatic Proof
Methods and, More Generally, of Playable Games

Everything is pretty much in place to establish that diagrammatic proof methods,
ones that we recognize (intuitively) to be effective or mechanically recognizable,
have Turing computable recognition procedures. There are (offhand) four strategies
for establishing this that I’ll sketch. The first is to bypass the work of sections 3,
4, and 6, by instead invoking a strong form of the Turing-Church thesis (where
the intuitive notion to be identified with Turing computability is one of effective
or mechanical calculation of any sort—not merely that of effectively calculable
numeral functions). The second and third strategies go this way. The first (shared)
step is to establish, applying finitary-capacity considerations for resolution (both
physical and sensory) of humans and machines, that any game humans and machines
play is a playable game in the sense of section 3. Then (this is the second strategy)
one uses something like Gödel coding to transform any particular admissible game
episode into a sequence of single-step transformations that can be directly seen to be
Turing computable. Or (this is the third way), one follows the first shared step with
a second step of instead establishing that Gandy machines can recognize the admis-
sible moves of any playable game and then relying on the fact that anything com-
putable by Gandy machines is computable by Turing machines. (See Gandy (1980).)
The fourth way, finally, is to utilize the generalization of Turing computability to
k-graphs, following Sieg and Byrnes (1996), by first establishing that Euclidean
diagrammatic proofs can be characterized as the manipulation of k-graphs.

8 Algorithmic Reasoning Is on the Surface of Mathematical
Practice

Let’s return now to the issue this paper opened with. Proponents of the derivationist
account, recall, hope to capture certain aspects of mathematical practice by attribut-
ing to mathematicians a grasp of the formal derivations that informal rigorous
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mathematical proofs correspond to. I’m continuing to leave aside the objection
I mentioned that mathematical practice doesn’t exhibit the kind of agreement
among mathematicians that it purports to detect (Agreement). I’ll take this up in
section 9. For now, assume mathematical practice is as Agreement describes it to
be (call the phenomenon, “public mathematical surety”) and let’s worry instead
about the possibility that formal derivations are psychologically unavailable to
mathematicians—even in the generalized sense described in the third observation
of section 1—and so they cannot provide the needed public mathematical surety.

Broadly speaking, there are two strategies for establishing the psychological
unavailability of formal derivations. I’ll be brief about the first strategy because
I’ve discussed it in other work (and others have too). It essentially turns on the fact
that the formal derivations that must correspond to informal rigorous mathematical
proofs are (1) too long to plausibly be what mathematicians are using (consciously
or otherwise) to convince themselves that their informal rigorous proofs are valid.
Furthermore, (2) these derivations don’t have the appropriate epistemic qualities to
provide surety to mathematicians. (Call (1) and (2) the “too-long objection.”)

On (1): Once a formal system is specified—in particular, once the proprietary
language of the nonlogical axioms is specified—the resulting mechanical step-
by-step derivation is (in general) extremely long.31 This all by itself makes it
implausible that such derivations are grasped by mathematicians in any real sense
because recognizing the validity of these derivations turns solely on their fine
structure (the effective step-by-step recognition that each line follows by the rules
from ones earlier in the derivation). This means that the line-by-line fine structure of
extremely lengthy derivations (and not some global property that they syntactically
possess) is what’s supposed to be used by the mathematician to recognize the
validity of their informal rigorous proofs and to explain Agreement. If so, the
mere lengthiness of the derivations all by itself is a strike against them because
there is no distilling—even syntactically—some more abstract global property that
the mathematician can be seen to be grasping when he or she recognizes the
validity of an informal rigorous mathematical proof on the basis of its corresponding
derivation.

On (2): But this fine-structure fact about how the validity of derivations has to be
recognized makes the derivations corresponding to informal rigorous mathematical
proofs epistemically opaque in a significant way. Anyone who reads such a formal
derivation can tell (after finishing it—if that’s possible, I mean) that every step
follows from the one before it. That is, anyone will grasp the validity of the
derivation in (and only in) the fine-structure sense of the following: this step follows
from that step, this next step follows from these steps, and so on. But, no global
(aha!) experience of understanding how the proof “comes together” that explains
why the initial assumptions result in the theorem they result in arises (or can arise)

31Pelc (2009) makes a big deal of this, with respect to finding computer-checkable derivations.
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in this way. So this can’t explain the common experience of understanding that
ordinary informal rigorous mathematical proofs often provide.32

It’s important to realize that early formalization programs (e.g., Russell and
Whitehead’s Principia), and many contemporary ones as well, require a founda-
tional proprietary ideology (a set-theoretic one, category theory, one or another
modal logic, etc.) that all derivations are required to be in terms of. This is also
true of (current) projects of formalizing mathematical results in computer-checkable
form. The proprietary language of the MIZAR system, for example, is formal logic
plus set theory. But adhering to a requirement of a particular vocabulary (rather than
allowing the relevant derivations to belong to any “nearby” algorithmic system)
lengthens the needed derivations all by itself. The derivationist approach doesn’t
obviously require—without specific argument—a proprietary ideology. This means
that the derivations it needs to explain mathematical practice can be much much
shorter. I press this point after presenting the second strategy against the availability
of formal derivations to explain mathematical practice.

The second strategy is to argue for an overgeneration problem that there are often
multiple candidate derivations (in rather different mathematical ideologies) that
correspond to an informal rigorous mathematical proof; but there is no principled
way to decide which of these (if any) is being utilized by mathematicians to induce
public surety. Furthermore, these candidate derivations are too different to provide
the needed public mathematical surety as a group.33

The mutilated chessboard34 is an illuminating example that Tanswell gives. Here
is a description of it that’s due to Black (1946, 157)—but I’m borrowing the quote
from Tanswell (2015, 305):

An ordinary chess board has had two squares—one at each end of a diagonal—removed.
There is on hand a supply of 31 dominos, each of which is large enough to cover exactly

32I’m going along with this claim about the experience of ordinary informal rigorous mathematical
proof for the sake of the objection; but the point needs serious nuancing before it can do the real
work that’s needed here. That ordinary informal rigorous proofs routinely provide an “Oh, I see!”
phenomenology is exaggerated. (See Feferman (2012) on this and Azzouni (2013c).) Perusing
ordinary informal proofs is a strikingly heterogeneous experience and so is the corresponding
cognitive phenomenology accompanying that experience. Some steps may be facilitated by
algebraic maneuvering that one knows only by virtue of certain memorized rules and not by
anything like a feel for an implication relation between the statements, or anything conceptual.
Other steps (quite often) are simply taken on authority (“Oh, that’s probably right”). Even a whole,
Oh, I see how this goes, may actually be fairly piecemeal in the real understanding it provides.
It’s a perennial (and horribly damaging) philosophical myth that mathematical proofs involve that
many conceptual or implicational connections that are even candidates for a priori connections.
The same point holds of the phenomenology of logical inference itself. See Azzouni (2005) and
Azzouni (2008) on this. I take the point up about the heterogeneity of mathematical proof, and
develop its implications, in section 9.
33As I’ve mentioned, the first objection originally drove me from the “derivation-indicator view”
of mathematical proof,” at least as a view that the role of the indicated derivations aren’t purely
normative, but additionally are supposed to help explain Rigor, Correctness, Agreement, and so
on. See Azzouni (2005, 2009a). The second objection is recent and due to Tanswell (2015).
34See, e.g., Robinson (1991), Black (1946), or Gardner (1988).
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two adjacent squares of the board. Is it possible to lay the dominos on the mutilated chess
board in such a manner as to cover it completely?

And this is the solution, quoted from Gardner (1988)—but I’m again taking the
quote from Tanswell (2015, 305):

It is impossible : : : and the proof is easy. The two diagonally opposite corners are the same
color. Therefore their removal leaves a board with two more squares of one color than of
the other. Each domino covers two squares of opposite color, since only opposite colors
are adjacent. After you have covered 60 squares with 30 dominos, you are left with two
uncovered squares of the same color. These two cannot be adjacent, therefore they cannot
be covered by the last domino.

Tanswell (2015, 306) points out that this proof “has been formalised a number
of times in different systems as a good example of informal reasoning that is
tricky to capture formally.” In particular, one approach is by reconstructing it set-
theoretically, by representing the board as sets of coordinates, defining an adjacency
relation on the sets of coordinate, and a tiling that uses the relation. A different
approach uses inductive definitions for the set of dominoes and the tiling (and this
way proves crucial properties by rule induction). A third approach, finally, uses an
ideology of states of the chessboard and actions of placing dominoes on the board,
and it approaches the problem using finite-state machines.35

The point of the objection, as I mentioned, is that if the derivationist account is
supposed to explain the public surety of informal rigorous mathematical proofs in
terms of the mathematician (in some sense) grasping derivations corresponding to
those proofs, it faces an objection if there are too many sorts of derivations that
are quite different in their ideological resources. The point is to explain Agreement,
after all—but if the underlying derivations are quite different, we face a problem of
explaining why mathematicians would think they’re looking at the same informal
rigorous mathematical proof, since it isn’t the surface appearances of proofs that’s
supposed to be explaining Agreement.36

Both challenges to the derivationist account (and, correspondingly, the force
of the mutilated chessboard example), however, turn on implicitly saddling that
approach with a language-based requirement on derivations: the relevant derivations
must occur in formal systems which are purely language based.37 But this restriction
seems badly motivated because the crucial value of mechanical recognizability isn’t

35Bancerek (1995), Rudnicki (1995), and Subramanian (1994)
36We could attempt an error theory here: mathematicians are laboring under the false illusion that
their informal proofs can be “filled out” the same way. But this “save” faces tension because
the formal derivation is supposed to be why they think the informal proof is valid. I should add
that Tanswell (2015) presses the overdetermination objection against derivationists in a different
way than I do here—he offers a dilemma that turns on whether the derivationist account is agent
dependent or independent. Regardless, my response to the objection (however formulated) is the
same.
37When coupled with one or another foundational program, a specific language-based vocabulary
is required. This, in some cases, may yield derivations (unique up to size) that avoid Tanswell’s
objection, but nevertheless will allow a stronger version of the too-long objection.
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restricted to language-based algorithmic systems. In point of fact, one basic way
of directly characterizing effective computability is in terms of Turing machines,
which aren’t language based.

Any translation of an algorithmic proof procedure that isn’t purely language-
based to one that is will always require a serious lengthening of the proof, as
well as a multiplication of alternative choices in ideology (nonlogical vocabulary).
This is because of the need to axiomatize the fields of diagrammatic algorithmic
procedures, and their properties, as well as the conventionalized properties of the
game pieces and the admissible operations on configurations of the fields. Notice
that this is the case whether, in original informal diagrammatic proofs, the spatial
relations play semantic roles (as they do in the Euclidean diagrammatic tradition)
or whether they function in a purely calculational way (as they do, say, with two-
dimensional matrix diagrams in linear algebra).

In diagrammatic proofs (as with Turing machines), on the other hand, the spatial
relations are instantiated only in the proof procedures themselves: they aren’t part
of what’s demonstrated but instead are among the items by which the demonstration
occurs. That is, they play the same role that distinctions among vocabulary items
play in the characterization of the syntax in the metalanguage of an axiomatic
system.38 In transcribing any such diagrammatic proof to a language-based form,
therefore, proof-theoretic content that’s strictly speaking extraneous to the informal
rigorous proof must be introduced into the derivation itself. That is, content must be
moved from the proof-theoretic mechanisms of the diagrammatic proof procedure
and be made part of what is proved in the course of the proof. To repeat, that there
are, in general, many ways to do this is hardly surprising.

As a result, debates over the force of the too-long objection and the underde-
termination objection have been revealed to be largely nomenclatural. Suppose the
“derivations” relevant to the derivationist account are mechanically recognizable
sequences of inference steps in a particular formal alphabetic language. Then the
derivationist account faces Tanswell’s challenge because diagrammatic proofs (in
particular) require axiomatic elimination of their proof-theoretical properties that
rely on spatial relations. More accurately (since formal proofs rely on the spatial
relationship of concatenation and, relatedly, the visual capacity of umpires to
distinguish kinds and tokens of the alphabet of any formal language), they require
the transformation of proof-theoretical properties that rely on space in ways other
than sheer concatenation (and a conventionalized distinction between vocabulary
items) into proof-theoretical properties that rely on space only with respect to
concatenation (and conventionalized “resemblance”). Similarly, the derivationist
account faces the too-long objection because diagrammatic proofs can’t be taken
largely as is (merely refining the algorithmic procedures mathematicians are aware
of and employing) but requires a translation to one or another language-based
derivational system. If diagrammatic proofs are characterized directly as effectively

38See the discussion of “framework facts” with respect to the Euclidean diagrammatic tradition in
Azzouni (2004, 125, and what follows).
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recognizable, then what’s required to make them “fully rigorous” is, at best, filling
in—the relevant derivations can truly be seen as ones “indicated” by the informal
rigorous proof mathematicians actually give. In particular, the ideology of the
rigorous informal mathematical proof will need little or no supplementation.

So if what’s crucial to mathematical proof is only that such proofs be mechani-
cally recognizable, regardless of whether this is managed in a pure language-based
way or diagrammatically, then the “derivations” needed to explain public mathe-
matical surety can be understood as including diagrammatic proofs. In this case
both the too-long objection and Tanswell’s challenge vanish because, as I indicated
in the last paragraph, “informal” rigorous mathematical proofs can themselves (at
least to a very large extent), and on the basis of proof algorithms used in informal
mathematical proofs, explain properties like Rigor, Correctness, and Agreement.

What about the other conditions described in section 1 that the derivationist
account is supposed to handle? Content, to a very large extent, lapses as a
requirement on the derivationist account (because the need to translate informal
rigorous mathematical proofs to derivations with substantially different ideology
is gone). Techniques remain a substantial matter for the derivationist account to
discuss, and the explanation of it is, indeed, intricate (although I’ve already raised
the relevant points earlier in the paper—in section 6). One shows that particular
“informal” proof procedures are effective, and one shows, given the mathematical
interpretation they have, that they are sound. There is more to say about this—I’ll
do this in section 9.

9 The Heterogeneity of Informal Rigorous Mathematical
Proof

To some extent, the preceding discussion has focused on recognizing nuances in the
phrase “informal rigorous” that occur in the label, “informal rigorous mathematical
proof.” One claim I’ve tried to establish is that “informal” contrasts with “formal,”
apart from abbreviatory shortcuts, only in that the adjective “informal” allows
algorithmic systems that aren’t purely language based, whereas the latter doesn’t.
This provides content to the phrase “rigorous” in “informal rigorous mathematical
proof.” An informal rigorous mathematical proof is “rigorous” in the sense that
mathematicians are convinced that an effectively recognizable derivation (that’s
in the ideological neighborhood of the proof they’ve inspected) has been shown
to exist by that proof. The effectively recognizable derivation, that is, isn’t very
far from what’s already present on paper (or computer screen, or whatever).
This view becomes much more plausible, once the surface algorithms of ordinary
mathematical proofs are seen to possess the epistemically valuable property of
being mechanically recognizable and once the local context-dependent background
material alluded to by De Toffoli and Giardino and by Larvor is seen to only amount
to “filling in” aspects of the already visible algorithms used in ordinary proofs.
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If the foregoing were the only relevant considerations, we’d be done. Mathe-
matical practice would be fully explained in terms of algorithmic systems, where
such systems go far beyond the language-based ones traditionally taught in logic
classes everywhere. The derivationist account would have successful responses to
the too-long objection and the overgeneration objection. In particular, that computer-
checking proofs involve such a long process of putting a standard textbook proof
into the appropriate form (that a computer can check) would also be explained
by the fact that current systems (like MIZAR) are also language based and use a
proprietary vocabulary which greatly lengthens proofs. Some day in the far (or,
possibly, near) future, one imagines that Gandy robots with appropriate machine
vision will be checking our diagrammatic proofs directly—and in pretty much the
ways professional mathematicians do already.

As I said, we’d be done—except for one large wrinkle. This is the point
I mentioned in footnote 32. A large diet of mathematical proof, especially in
functional analysis and the like, gives the impression of enormous heterogeneity
rather than that of all the proofs (in a subject area of mathematics) belonging
straightforwardly to one algorithmic system, or even a set of such systems that
are tightly constrained to one another in their nonlogical vocabulary.39 Rather,
especially if one realizes how much topology (for example) shows up in analysis,
proofs of all sorts are being used in all subject areas (although, sometimes, only
theorems—without their proofs—explicitly appear). Sheer algebraic computations,
diagrammatic proofs (of various sorts, using various conventions and resources),
conceptual connections, facts about notation, and any and all of this can occur in
an informal rigorous mathematical proof. Rav (1999, 12) largely puts the point
correctly. He writes:

Proofs employ deductive reasoning; so do judicial rulings. In both cases logical inferences
cement sequences of topic-specific claims and considerations.

This isn’t quite right as it stands because what’s doing the “cementing” (most of
the time) aren’t logical inferences but instead the notions of truth and meaning40—
in the various kinds of proofs that are taken to be about a certain subject area (and
other subject areas). That is, the cementing is managed by the inter-algorithmic
use of common terms that are understood to mean the same things and, more
importantly, to refer to the same things (to be true of the same things). For example,
the definite integrals that appear in matrices refer to the same old functions and, via
those functions, to numbers that are studied, say, in any Advanced Calculus course,

39This is even true of a subject area as apparently restricted as number theory. Number theory, after
all, isn’t just Peano arithmetic. Everything in mathematics comes into play—as the recent proof of
Fermat’s last theorem illustrates rather dramatically.
40Although Rav (2007, 315), recall, summarizing his discussion of several examples of informal
rigorous mathematical proofs, writes “I hold that mathematicians’ manner of reasoning and
inferences are based on meanings and an informal notion of truth that a formal deduction calculus
cannot capture” (italics his).
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and those numbers, of course, are the same old items we’ve (for millennia) been
counting with.41

What’s required to justify this aspect of mathematical practice is a collection
of soundness proofs. Suppose a kind of proof procedure is imported into a
mathematical subject area (one that applies to semantically significant items of
one sort of another—notation, to use a general term that’s to indifferently cover
diagrammatic configurations and alphabetic terms). And suppose items of that
notation are identified with items of notation already in the subject area (algebraic
formulas identified with certain diagrammatic items, say, numbers characterized in
one way with numbers characterized in a quite different way). Then what has to be
shown is that the one way of mathematically characterizing items (proving results
about them in one algorithmic system) is compatible with the other ways of doing so.
That is, the indiscriminate borrowing of mathematical results (and informal rigorous
mathematical techniques) that occurs in standard mathematical practice has to be
shown to be coherent.

We thus have found our way back to the suggestion made by Larvor (2012, 723)
that was quoted several times at the beginning of this paper: “the cost is that we
have to abandon the hope of establishing a general test for validity,” although we’ve
gotten here by means of very different considerations.

And just because the considerations that have given rise to this earlier concern
are so different from the ones Larvor (and others) have raised, there is a response:
There are two ways to establish the coherence of this holistic mathematical practice.
The first is to transliterate the entire practice into one in—one or another—formal
system. Doing so allows a straightforward interpretation of all the apparently
disparate algorithmic systems in a single domain—and that straightforwardly shows
(via a soundness proof relative to that interpretation) the coherence of the entire
mathematical practice. Notice that the facts that there is more than one way to do
this (Tanswell’s objection) or that the result involves the replacement of relatively
short effectively recognizable proofs with extremely long (practically unsurveyable)
proofs are irrelevant. The mechanical effectiveness of informal rigorous proofs
and, relatedly, the public surety of ordinary mathematical practice are not being
established by this transliteration.

There is a qualification, of course. A lot of mathematical practice involves
seriously alternative mathematics: intuitionistic set theory, for example, or more

41Rav (1999, 16) notes that matrix theory isn’t axiomatized. That’s right—how could it be? Just
about anything can occur within a matrix diagram (integrals, series of integrals of functions,
etc.), and just about anything can be “done to” matrix diagrams or to sequences or series of
matrix diagrams (powers of matrices, infinite sums of matrices, and so on). See, e.g., Gantmacher
(1960, 1977) for details. (Also recall the discussion in section 5 of Feferman’s examples—the
same kinds of phenomena are coming up in this subject area.) Notice how the heterogeneity of
mathematical proofs follows from the case of matrices alone: all sorts of mechanical-recognizable
proof procedures are imported into matrix theory by the mere importation of the notation for these
things into matrix theory. (One can imagine, e.g., actual geometric curves, representing functions—
or other diagrammatic objects—occurring in the boxes of a matrix.)
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generally, mathematics based on systems of logic other than classical ones. But
mathematical practice acknowledges this: mathematical results aren’t indiscrim-
inately applied across alternative logical frameworks or across disparate subject
areas (e.g., alternative set theories). And so the phrase “the entire practice” used
above doesn’t include these nonstandard aspects of mathematical practice. There
are numerous alternative branches of mathematics that largely don’t intersect.

The second way to establish the coherence of the holistic practice of borrowing
results and techniques from alternative proof traditions (that nevertheless are treated
as about the same subject areas) is to provide piecemeal soundness results: this is
a matter of leaving the algorithmic practices as is, but (in the metalanguage, as it
were) providing soundness proofs relative to a shared interpretation.

Where does this leave Larvor’s remarks about “giving up on a general test of
validity”? It tames its significance. There certainly is a general test of validity (i.e.,
a general recognition procedure—which is how I interpret Larvor’s use of the phrase
“general test of validity”). This directly follows from the coherence results, provided
we’re in a first-order classical setting, where completeness proofs for validity are
available. Nevertheless, in practice one works with specific ways of establishing
validity—the ones generated by the specific algorithmic systems being used.

One last bit to round out this section. Recall the concern (that I’ve set aside for
so long) that the datum of mathematical practice that this paper has been dedicated
to explaining isn’t a real one. Mathematical practice does exhibit significant
“sociological drift,” the objection goes, new approaches to mathematical proof are
invented all the time, and they are often controversial.

A comparison with rule-governed games is helpful. Here too, new games are
invented all the time, and these games are bewilderingly variable. Nevertheless, their
game episodes are all mechanically recognizable. In this sense, new games are “the
same old thing” all over again.42 I can put it this way: In one sense, games are always
evolving; lots of new games are always emerging with new kinds of objects (game
pieces) and new rules to enable opponents to compete in new ways. In another sense,
it’s just the same old thing all over again: here are the rules, and here is what you do
to play a game.

It might seem that this analogy isn’t particularly helpful. Games, after all, are
generally content-free—unlike mathematics. That they are all governed by rules
that allow game episodes to be mechanically recognizable hardly introduces much
of a constraint. In the case of mathematics, the corresponding point looks like
it’s only a Pickwickian victory. Describing “reasoning” as algorithmic, and noting
that all mathematics is “proof as usual”—intuitionistic, quantum-logical, various
extensions of classical logic, and so on—is to leave out exactly what’s significantly
different about all this mathematics: how different these branches of mathematics
are in content.

42Of course there are games that don’t involve algorithmic recognizability. “Game” is a notoriously
broad word. I’m simply leaving those “games” out of consideration: the remaining class of games
is still bewilderingly variable.
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I agree with the Pickwickian charge, but the reasons for agreement are subtle
enough to deserve further discussion. To see the implications of any algorithmic
system (and, in the case of a mathematical system, to understand seeing the
implications as a matter of recognizing the theorems of a set of premises—relative
to a logic) is to recognize what follows in an “if : : : then” (antecedent/consequent)
sense. Given such-and-such (where such-and-such includes both the (sometimes
implicit) logic of a proof procedure and the nonlogical characterizations of a
subject area), then so-and-so follows. As a general characterization of mathematical
reasoning, this is content-free because anything, nearly enough, can be incorporated
into the antecedent.43

This yields, however, an ecumenical characterization of mathematical practice,
but at the cost of leaving out the significance of applied mathematics. Given that the
application of mathematical discourse is to a subject area that’s characterized, nearly
enough, by a grammatically indicative discourse, and given that the applied math-
ematics is to facilitate the inference of empirical consequences of that discourse,
it follows that we don’t want those consequences to occur trapped in conditionals.
We need to use the mathematics to draw results from empirical discourse of the
form C, that we can apply, and not consequences of the form, A ! C, where A is
the antecedent mathematics presupposed in the deduction of C from the empirical
discourse.

What this requires, in turn, is that applied mathematics (as a whole) needs to
presuppose the same logical framework as the empirical sciences it’s applied to.
That forces a certain amount of shared content across the branches of mathematics
that are applied; in particular, it requires a sharing of the background inferential
framework (e.g., first-order logic).44

10 Conclusion and Summary (and Some Further Thoughts)

The original version of the derivation-indicator view (“the derivationist account”—
as Tanswell labels it) was intended to explain Agreement and other aspects of
mathematical practice in a largely non-sociological fashion. The mechanical rec-
ognizability of formal derivations was supposed to be graspable by mathematicians

43Anything? Yes, the antecedent can, for example, yield a trivial set of consequences: everything
or nothing.
44There is a bit packed into this and the last paragraph that I really can’t get into here. The
relevant “talking points” are what I’ve called “the external discourse demand”—that required are
shared notions of logic and truth across the mathematics and sciences that are brought to bear on
one another (Azzouni (2010), 4.7–4.9)—and also, what might be called “the assertional model”
of scientific discourse. That is, using scientific discourse to represent (even when idealizing)
aspects of the world, and to draw consequences about one’s representations of the world, requires
“detaching the antecedent.” One can’t do this by “conditionalizing” one’s results relative to
assumptions (Azzouni (2009b), sections 1 and 2).
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in a sense that would be sufficient to explain Agreement. Restricting the relevant
“derivations” to those occurring in purely language-based formal systems (with
proprietary vocabulary), however, faces two serious objections because both the
logical and nonlogical vocabularies of informal rigorous mathematical proofs are
so different from that in language-based formal systems: the too-long objection
and the overgeneration problem. The solution I’ve argued for in this paper is to
understand the relevant derivations to belong to algorithmic systems that needn’t
be pure language-based ones. This allows the indicated derivations to be near or at
the surface of mathematical practice, in the sense that the vocabulary (and proof
procedures) actually used by mathematicians is already close to what the needed
algorithmic systems look like. The key to responding to the too-long objection
and the overgeneration problem is to recognize that what’s essential to explaining
Agreement is recognizing the mathematician’s use of effectively recognizable
proofs, and not by employing mappings of these ordinary proofs to derivations in a
formal language with a proprietary vocabulary (e.g., that of set theory).

In the foregoing, I’ve been stressing diagrammatic aspects of informal rigorous
proofs as those aspects of these proofs that especially give rise to the too-long
and overgeneration objections—but it’s important to realize that what’s important
to avoiding these objections is that the surface algorithms of informal rigorous
mathematical proof (whether diagrammatic or not) not be replaced (as they are when
such proofs are reduced to derivations in standard formal languages). So, for exam-
ple, one does not replace the computational decision procedures we have with the
counting numbers—addition, multiplication, etc.—with Peano arithmetic. Nor does
one replace the rules of thumb (the recipes) for evaluating integrals with anything
else. These (various) recipes are tied together either by background inferential facts
(about how these recipes have been derived) or by the background interpretation
of the notation. But in this way the surface algorithms that mathematicians are
using (and that are convincing them collectively of the results on the basis of these
algorithms) are preserved.

There has long been a picture of informal rigorous mathematical proof according
to which any such proof is completed solely by “filling in” missing steps. (This
model appears at least as early as Descartes.) Because this model is a semantic
one—necessarily, because we had no real syntactic model for reasoning until the
late nineteenth century—it pushes anyone in its grip to look for the appropriate
derivations to occur in a mathematical framework that’s “conceptually complete.”
This in turn motivates foundational programs in which all the appropriate concepts
are given (e.g., set theory). Turning one’s attention, instead, to effectively recogniz-
able derivations (of any form) allows the needed derivations indicated by informal
rigorous proofs to be conceptually heterogeneous. This does raise the “unification
issue” that I take up in the next paragraph and summarize the results of this paper
on.

If informal rigorous mathematical proof is allowed to be proof-theoretically
heterogeneous, then a coherence issue looms. One wants to know that the iden-
tification of mathematical “objects” across different proof-theoretical practices
(various functions, operators, numbers, etc.) is the “same” in the sense that theorem
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results won’t conflict. Transcription of informal rigorous mathematical proofs into
a (single) formal language with an intended interpretation can help with that issue.
Doing so for this purpose doesn’t face the too-long objection or the overgeneration
problem since this transcription isn’t meant to explain Agreement, Rigor, and so on.
(Only Techniques is being partially explained in this way.)

I’ll close with some explicit remarks about the opening concerns of this paper.
That alternative forms of reason—pace Frege—in principle exist is an indisputable
result of the twentieth-century research in logic. One way to establish that first-
order logic (or something in its neighborhood) is the appropriate logic for reasoning
is to provide a neutral (a logic-independent) notion of “implicational content” and
use it to argue that first-order implication is an inferential operation that genuinely
adds no “content”: Given A ! B, where “!” stands for first-order implication,
B has no (logical) content beyond that contained in A. I won’t give further details
here.45 But with that assumption in place, an argument can be mounted that applying
mathematics places a powerful constraint on the tool of inference for the whole
package: applied mathematics and the empirical science it’s applied to must have
the same background logic, a first-order one.

Regardless of the implications of the remarks of the last two paragraphs, the
considerations raised in this paper undercut the claim that the evolution of new
informal rigorous mathematical proof techniques all by itself reveals that different
notions of “validity” are being developed in ordinary mathematical practice.46
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Mathematical Theories as Models

Michèle Friend

1 Introduction

The thoughts in this paper follow a suggestion by Reuben Hersh that pluralists think
of mathematical theories as models of other parts of mathematics. Through this
lens, the totality of ‘mathematics’ is then a game1 of interpretation of one theory by
another. As a discipline, mathematics is sui generis.

This disturbs more traditional notions in the philosophy of mathematics, where
mathematics is grounded in necessity, the empirical world of observation and
experience, truth or ontology, where mathematics forms a unity that is consistent,
and where mathematical explanation ends with undeniable elementary truths.

As a pluralist, I explore the suggestion of thinking of mathematical theories as
models. The disturbance will be looked at in detail, as well as ways of restoring a
sense of balance.

1The word ‘game’ suggests a formalist conception of mathematics, and this conception is not one
I wish to explore in this paper. To distance the formalist view from the view here: formalism is
the view that all there is to mathematics is formal play, within certain rules. For Hilbert the rules
included the finisitic constraint on the signs and manipulations and the consistency of each theory.
In contrast, the view examined here is that meaning and interpretation in mathematics is had partly
by one theory being translated into the language of another and then finding out the extent to which
the theorems, concepts, or ideas of one theory can be recovered by the second. The emphasis is
different, there is no requirement concerning formal representation, and there are no rules imposed
from the outside.
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2 Mathematical Theories as Models

There are several mathematical theories. 3.1 How we count them depends on
how we individuate theories. Some pairs of theories are equivalent to each other.
3.2 Which theories are equivalent to which other theories depends on what
we look for, and what we ignore, in our equivalence relation. Moreover, there
are translations from one theory to another. 3.3 What is counted as a successful
translation depends on the expressive power of our language and whether we
more intuitively think that concepts have been preserved in the translation
(call this ‘loyalty of translation’). While some pairs of theories are equivalent,
others contradict each other. 3.4 Which theories contradict which other theories
depends on how we characterise contradictions.

In the above paragraph, the caveats in bold and their numbers correspond to
subsections of the next section of this paper. In the third section, we can then follow
the suggestion by Hersh2 and examine the thesis that, in the practice of mathematics,
mathematical theories are used to model, or interpret, each other. I give a description
of mathematics that follows this suggestion. But we should remember that models
and interpretations are also used to contrast with each other. These two exercises,
modelling and contrasting, done as they are with precision up to the standards of
rigour, definition, expressive power of the language and contextual understanding
of the time, are an important part of what constitute objectivity in mathematics.

The risk in writing sections two and three is that they leave us with a sense
of the relativity, or shifting truth, of mathematics. This is particularly the case for
those among us who are more monistically (should I write ‘monotheistically’?)
or platonistically minded, those of us who pine for certainty and who anchor our
certainty in a fixed, consistent, and unified ontology and truth, or who anchor our
certainty in knowledge based on immediate primitive and absolutely obvious starting
ideas, or who are convinced that explanations must come to an end. The contrast in
philosophical expectations is explored in section four.

To alleviate the unease, in section five, I shall discuss why this conception of
mathematical theories each modelling the other, nevertheless, supports a sense of
objectivity, and in what sense it does so, and all of this in the absence of any
traditional foundation, unified, consistent ontology or unified and consistent set of
realist (independent) truths of mathematics. The advantage of such an account of
objectivity in mathematics is fidelity to the practice of mathematics and the prima
facie excusing of the practice of borrowing results from one theory in mathematics
to help with another (possibly contradictory) theory in mathematics.

2The suggestion was made on the occasion of a conference on mathematical pluralism in Kolkata,
in December 2015. The conference was organized by Mihir Chakraborty. Hersh’s paper had the
title: Pluralism as Modelling and as Confusion.
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Such borrowing can be found in any scientific discipline, but it is often not
faced directly but instead is clothed in vagueness, ambiguity, ceteris paribus
clauses, methodological or measurement shortcomings, calculated error margins,
and contextual imprecision. Thus, the considerations of this paper apply to the
sciences as well. The considerations of this paper bring a sense of objectivity to
mathematics that is loyal to the practice, but it also brings a normative pressure to
mathematicians and philosophers of mathematics to be more precise about the parts
in bold above. The account also spills over to upset a more conventional conception
of explanation—one where explanations end or, better, one feels justified (not
guilty) in terminating an explanation. On this account of mathematics and science,
explanations grow. They grow in different directions and they sometimes grow in
unexpected directions. The growth of knowledge, understanding, and explanation is
developed in the concluding sixth section.

3 Caveats

3.1 Individuating Mathematical Theories

In the footsteps of Hilbert, one of the favorite ways of many modern philosophers
to individuate theories in mathematics is by a set of axioms together with rules of
inference. While this is possible for some mathematical theories, it is not suitable
for all.

Model theory, for example, has no axioms. Nor does the calculus. Model theory
is better individuated as a general theory about the notion of model in mathematics
and how to compare models to each other. So, for example, we might distinguish
a model with an infinite domain from a model with a finite one. In the former,
it is possible to find infinite proper subsets of the domain that can be placed into
one-to-one correspondence with the original domain. In the latter, there is no such
proper subset of the domain. The calculus is individuated by what we are able to
do with it: calculate accurately the space under curves or calculate the optimum
curvature to cover a space while bearing a load. Unless needed for the argument of
this paper, and unless specified, I shall default to the idea that mathematical theories
are individuated by their axioms and rules of inference.

3.2 Equivalence of Theories

There are different ways of determining the equivalence of theories. An equivalence
relation is, after all, a relation that says that two things (theories in our case) are the
same in some respects.
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3.2.1 Two theories are extensionally equivalent iff they are about the same
objects. Objects are naïvely thought of here as a domain or set over which first-
order variables vary.

The equivalence relation between objects is reflexive, symmetrical, and transi-
tive. In formal notation:

R is reflexive iff 8x [Rxx].
That is, for any object that you choose from the domain or for any object that is

the member of a set, the relation bears back on that entity.
R is symmetrical iff 8x 8y [Rxy ! Ryx].
That is, for any two (not necessarily distinguished, that is, you might pick out the

same object twice) objects in a domain or members of a set, if the relation bears in
one direction then it bears in the other as well.

R is transitive iff 8x 8y 8z [(Rxy & Ryz) ! Rxz].
That is, for any triple of objects (not necessarily distinguished from each other)

if the relation bears from the first to the second and from the second to the third,
then it bears from the first to the third.

Such an equivalence relation will determine an equivalence class, that is, a class
of sets of objects that are equivalent to each other.

Two theories are extensionally equivalent iff they have the same extension, that
is, they pick out the same objects in the sense that the set of objects of one theory
are equivalent to, interchangeable with, inter-substitutable with, the objects of the
second theory. They might, of course, say very different things about those objects.
That is, the theorems of the theory might not be the same.

3.2.2 Two theories can be syntactically equivalent. Two theories are syntactically
equivalent iff they have the same inference rules. They will then generate the same
theorems under some suitable translation between the languages.

3.2.3 Two theories can be semantically equivalent just in case, under a suitable
translation, they preserve the same semantics. This might be in the form of truth-
values or models, where ‘models’ is understood in the strict sense of ‘model’ in
model theory.

3.2.4 A stronger notion than that of syntactical or semantic equivalence, one that
combines both, is that of definitional equivalence. For this, following Lefever (2017,
6), we start with the notion of a sort and logical connective-preserving translation
from one theory to another. We can broaden this to include preserving whatever
it is that concerns us, so we could also include operations, quantifiers, valuations,
and so on depending on the sophistication of our language. We then think of an
interpretation of one theory by another as preserving the same derived formulas or
truths or models satisfying sets of formulas, under the translation. Again, ‘model’
here is ‘model’ in the sense of model theory, not in the broader sense of this paper
where a theory in mathematics models another theory. If we have two theories, with
a translation between them that preserves whatever it is we are concerned about in
the language, and we generate the same formulas, truths, or models (in the strict
model theory sense), then the two theories are definitionally equivalent.

As we can see, there are many respects in which two theories can be equivalent,
and a lot depends on finding or generating the right sort of translation.
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3.3 Loyalty of Translation Between Theories

Translations can be inadequate, perverse or highly artificial. Here is a perverse one:
the language of my new theory consists in one symbol ‘TPA,’ intuitively standing
for “true proposition of arithmetic” in the sense of a true well-formed formula in
the language of Peano arithmetic. I can translate all of Peano arithmetic into my
perverse TPA language. Every derivable formula of Peano arithmetic is translated
as ‘TPA’. This is a one-way translation and is inadequate, to the point of being
perverse.

A translation can be simply inadequate. It is possible to ‘translate’ every formula
of first-order logic into the language of propositional logic, and vice versa trivially,
if the language of first-order logic still includes proposition letters. However, this
is inadequate because there are subtleties captured in first-order logic, missing
in propositional logic. This matters when deriving conclusions. There are some
arguments that are valid in first-order logic, that are invalid under their translation
into propositional logic. In this sense, the language of propositional logic is
inadequate for translating formulas of first-order logic.

Translations can also be highly artificial. ‘Artificial’ is more of a term of art, since
what might appear as artificial to some might seem more natural to others. Witness
the names given to some entities in mathematics: irrational numbers, imaginary
numbers, nonstandard arithmetic, and so on. Louis Kaufmann once showed me
how to translate knot theory into set theory. It is possible. But the problem with
the translation is that the truths of knot theory are not true (after translation) in set
theory and vice versa. The set theoretic notion of membership does not translate
well. However, this is also revealing. It shows us an edge between knot theory and
set theory. We could add special ‘knot’ axioms to set theory and modify some of the
normal, standard, natural, set theoretic axioms to get a definitional equivalence, and
this could even turn out to be an interesting exercise.

Sometimes it is quite useful to translate from one language to another even if
there is some disloyalty. This is because some things show up in one language
that are ignored in another. We see this a lot now in mathematics. A problem that
cannot be ‘solved’ in one theory is more easily solved after translation and using the
apparatus of the second theory. This is because by their very nature, mathematical
languages draw out some ideas or concepts and obscure others. By changing the
language, we change what we see clearly and what we can no longer see.

3.4 Contradicting Theories

Theories can contradict each other. This is important for comparative purposes.
They can contradict each other in the following senses: 1. one theory can have
an axiom, where another has the negation of that axiom, or an alternative axiom
that brings with it other possibilities. For example, think of the many geometries
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and their different parallel postulates, or ‘axioms.’ 2. A theorem might be derivable
in one theory and its negation is derivable in the other. Here we have a syntactic
contradiction. 3. The models (in the model theory sense) of one theory, or satisfying
sets of formulas in one theory, might be different from the models of another. Here
we have a model theory semantic contradiction. There are others. For more detailed
discussion, see Friend (2017).

The contradiction-comparison is important in the following way. It shows us that
we cannot do as we please in mathematics. There are restrictions and blockages.
This correction or impossibility gives us a sense of objectivity in mathematics. We
shall return to these two sections hence. Comparisons of equivalence or contrast
can only be done up to the standards of rigour, definition, expressive power of the
language, and contextual understanding of the time.

3.5 Standards of Rigor and Contextual Understanding

Standards of rigour change. Usually they increase, at least in theory, for mathematics
in general but might decrease for reasons of expediency,3 pragmatism, practicality,
and so on. They increase under the pressure of suspected problems. An extreme
problem, in this sense, is trivialism4 or paradox, but there are more subtle ones,
such as when we decide that a concept or definition is, in fact, ambiguous. The
ambiguity only surfaces in some circumstances. Or, we might think that a new
formulation of an idea or the translation of an idea no longer quite corresponds
to the original idea or proto-concept. For example, someone not educated in the
ways of set theory might contend that the representation of finite numbers in ZF set
theory is too distorting. Under such pressure, we are encouraged to be as precise as
possible.

In discussing these caveats, I am not trying to make a catalogue or an exhaustive
list. I think that this would be tedious and counterproductive here. Rather, I am trying
to make readers sensitive to the myriad of ambiguities and issues that underlie the
exercise of interpreting and contrasting one theory with another.

3For example, in some applications of mathematical theories to physical reality, we literally use
an inconsistent mathematical theory but are cautious never to ask the questions that draw out the
inconsistency. For example, ‘renormalisation’ is a procedure in quantum electrodynamics where
we simply eliminate the infinite quantities that occur during certain sorts of calculation. We do this
because in the physical world we are measuring there are supposed to be no infinite quantities, and
mathematically, this means that the normal arithmetic operations such as addition or division give
results that, again, are not supposed to occur in the physical measured world.
4In the sense meant here, a trivial theory is one where every formula in the language is true or
derivable. In a classical or intuitionist theory, if we generate or discover a contradiction that is
derivable or true in the theory, then we can derive any formula and its negation. This is also called
‘explosion’ of the theory. Trivialism is what ensues after explosion.
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4 Mathematical Theories as Models of Other Parts
of Mathematics

Mathematical theories, individuated as per Sect. 3.1, can be used to model,
or interpret, other theories. What does this mean? What does the discipline of
mathematics look like if we describe mathematics in this way?

We are familiar with reducing theories such as the set theories, the category
theory, and the type theories. These are reducing theories in the sense that much
of mathematics can be reduced to them. That is, they can be interpreted in them.
We can give the set theoretic version of a theory of relations, for example. Or we
can give the category theory version of Euclidean geometry. When we reduce a
‘small’ theory to a ‘large’, i.e., reducing theory of mathematics, we translate the
small theory into the language of the reducing theory and then use the apparatus
(set of concepts) and manipulations available to us in the reducing theory to mimic,
or derive, the same results as we had in the original theory; or more interesting, we
might lose or distort them.

Already this can be interesting because in the very act of translation and in
the very loss of some apparatus and manipulations, or in making available new
apparatus and new manipulations, we might well find some of the mimicking or
recovering of results more difficult or easier. We might ‘see’ things differently.
Language, apparatus, and available manipulations guide us to notice or ignore. They
can even change what it is that we consider to be normal or natural and what we take
as a legitimate extension of a concept.

Such modelling and interpretation does not only have to be in the form of
reducing one theory to another. Different reducing theories can be used to model and
interpret each other. For example, within category theory, there is a category called
‘set’. Its objects are sets and its arrows are subset, union, intersection, powerset,
and so on. We can then use category theory to interpret a set theory. We can
do the reverse and interpret category theory in set theory. To do this, we form
a set of categories within set theory and so use set theory to interpret category
theory. So, the big foundational theories can play this interpretation game with each
other.

Furthermore, we can even use a ‘small’ theory to interpret a foundational one or
just another reducing theory. For example, we might want to hone in on the algebra
of set theory or the algebra of knot theory. We thereby draw out certain features,
the algebraic features, of set theory or knot theory and ignore the rest. This allows
us to notice algebraic features that were obscured by language or the apparatus or
manipulations of the interpreted theory.

The advantage of interpreting one theory in another is exactly the drawing out and
obscuring. The exercise begins with the translation. But it includes bringing to bear
the resources made available to us in the theory used for the interpretation. When
we translate and interpret one theory in another and ‘see’ it differently, we are able
to solve problems that we could not solve otherwise. One famous example is when
Lobachevsky solved the problem of finding exact solutions to the indefinite integrals



298 M. Friend

of Euclidean geometry using his imaginary geometry.5 This example dates back to
the eighteen thirties, but this shifting between theories, through a translation, is done
quite frequently in current mathematics. It is almost a necessary exercise for solving
problems since there is a sense in the community of mathematicians that there are
not many problems left that can be solved simply within a theory, that is, using
only the resources of the theory itself. This is a sense that current mathematicians
sometimes have, but it might not track ‘reality’. But even as a sense, it is enough to
entrench the practice. And it is very successful, in the institutional sense that many
PhDs and published results depend on this practice.

This practice is very useful and fruitful. It has several aspects. On the one hand,
we make new results. By definition, the new result applies to the theory in which
we asked the question in the first place, but it might also, very soon, be interesting
for the theory in which the result was found, or it might be interesting for finding
a result in another theory that can be translated or interpreted in one of the two
theories. Such breadth of applicability or interest is unpredictable and depends on
mathematicians noticing and taking an interest in a result. One of the other sides
of this practice is that to work in, or even read, cutting edge mathematics requires
experience and expertise in many areas of mathematics. Regardless, seen this way—
where theories in mathematics interpret other theories in mathematics, and so confer
meaning on them—we develop an impression that the discipline of mathematics is
just floating, that it is not grounded, that it is sui generis and self-confirming and
fulfilling. Is it then just a highly elaborate abstract exercise?

4.1 The Role of the Physical World

Especially people not so highly trained in mathematics might then ask me about
the grounding of mathematics in ‘reality’. By ‘reality’ they usually mean physical
reality, or they mean simple things like adding their expenditures (which is actually
highly abstract if we think about it). The sorts of mathematical theory I am
discussing are largely unapplied to ‘reality’ so understood. It is possible to do so,
but it is a bit like using a recipe for Tournedos Rossini to work out how to fry a piece
of bread (needed for the canapé of the Tournedos). It can be done, and the slice of
bread will be fried (in clarified butter), but a lot of the recipe will stand idle. The
sort of mathematical theories I am canvassing here go so far beyond our experience
that it impoverishes them too much to hope for them to be grounded in ‘reality’.

So, rather than think empirically that mathematics is grounded in physical reality
and our experience of such reality, and is just an abstraction from our experience,

5Concurrently, and independently, Bolyai was developing imaginary geometry as well. Both denied
the parallel postulate of Euclidean geometry and thus proved the independence of the parallel
postulate. The story of the development of non-Euclidean geometry is a very nice illustration of
theories of mathematics used to model and contrast other theories of mathematics.
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I prefer to think the other way around. We interpret nature and the physical reality
around us through mathematics. As Kant argued, we need some mathematics just to
have experiences in the world at all. What shape our experiences take, and how we
compare them then, depends on the particular theory, or class of theories, we use.
For any phenomenon, event, measurement, evaluation, and comparison of physical
objects, we need mathematics, among other things. We also need metaphysics and
the ability to make some qualitative attributions. So, we interpret nature through
mathematics and other things. So, at best, and in some sense, nature ‘confirms’ or
checks some of our mathematical theories. Not any mathematical theory can be used
to interpret any piece of nature (successfully), that is, given a goal, or purpose, and
a time constraint.

At best, nature confirms mathematical theories only in a very light sense. Once
we have used a bit of metaphysics and qualitative attribution to individuate objects,
phenomena, or events, and once we have decided on a goal, we have at our disposal
a possibly infinite number of theories. Most of them would not be very useful, or
most parts of them would not be used and so on. But we have a class of theories we
can draw on. We select one that is familiar to us and that we have been trained to
find appropriate. If we are measuring lengths of wood and stacking bricks to make a
bookshelf, we could use set theory, category theory, projective geometry with a bit
of measurement theory added in, but a bit of easy arithmetic will do, and we forget
the other alternatives or that they even existed as soon as we meet with success in
constructing our bookshelf. We confirm our basic arithmetic. Now, had we run into a
problem, such as we found that all the shelves were tilted, even though we are using
the same number of bricks at both ends of the shelf and doing everything one would
expect, then we would have reason to reconsider the particular theory. Similarly,
when we run into a problem, say, in quantum mechanics, then we start to reconsider
our mathematical or logical theory. It is under such pressure, or under imaginative
curiosity, that we might develop a new formal logic, or area of mathematics or have
recourse to some other theory to patch up the immediate problem. We then very
quickly forget what we did, unless we notice that it is interesting in its own right, or
has other applications, until we face a new problem. Our experience with ‘reality’
only serves to foreclose on some theories; it is not enough to select a theory. And it
does so imperfectly as when we use another theory as a patch.

5 The Danger in Thinking of Mathematical Theories as
Models

It seems as though all we have with this description are theories or models each
interpreting each other. Some are foreclosed by our bumping up against reality,
but very few, and only very weakly. They are not even foreclosed as mathematical
theories, only in their application to physical problems that we encounter. Thus,
some philosophers might argue, there is no objectivity in mathematics, therefore
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truth in mathematics is only ever relative to perspective. For example, parallel lines
meet in some theories of geometry and not in others. In the limit case, theories, of
course, interpret themselves. Beyond the limit case, there are plenty of perspectives
(theories used to interpret other theories) to choose from. Moreover, it is not that we
just have a lot of choices already. Rather, we develop new theories in mathematics.
So the number of interpretations already available to us increases over time. Worse
still, we could even fabricate a perspective to force a ‘perverse’ result to look ‘true’
from the perspective of that, or some other, theory.

Reasoning too quickly, we might think that, therefore, from this ‘mathemat-
ical theories are models’ perspective: anything goes and we have a rampant
relativity. Mathematics is therefore quite useless. There is no real truth or objec-
tivity or stability, nothing definite, and no ‘correct’ or ‘incorrect’ answers. It all
depends : : : .

Digging ourselves deeper into the argument about fabrication: say Basilico insists
that there have to be some undeniable truths in mathematics. He takes as an example
‘2 C 2 D 4’. Xara insists that she can choose or fabricate a perspective from which
2 C 2 ¤ 4. She chooses the example of arithmetic mod.3. In arithmetic mod.3,
2 C 2 D 1, Basilico insists that no one uses arithmetic mod.3. Xara counters that
it is perfectly useful if we are concerned only with divisibility by 3, say if we are
concerned about dividing an inheritance equally between three inheritors. If we are
very insistent on equality, we want to check if everything being inherited can be
divided by three: the land, the money, the buildings, the paintings, the cutlery : : : as
for what cannot be divided by three without remainder, we negotiate the exchange.
Basilico concedes that this is an appropriate application of arithmetic mod.3 but
returns to the original claim that there are some undeniable truths in mathematics.
These might be the logic truths. For example, a & a j- a. Xara contends that there is
such a thing as a zero logic, where no inferences can be made. So, in such a ‘logic’
a & a j -. That is, in a zero logic, we can infer nothing at all. No symbol occupies the
right-hand side of a turnstile. “This is perverse” counters Basilico. Xara is perfectly
entitled to say that “Nevertheless, such a ‘logic’ exists. No one said that mathematics
or logic cannot be perverse from time to time. Think of historical examples where
new developments were regarded with deep suspicion. Already the names we give
to suspect developments are telling: irrational numbers, imaginary numbers, non-
standard models, forcing techniques and so on. Even the seemingly banal ‘truth’
a D a, could be denied in a formal system of mathematics. We just have to interpret
the symbol ‘D’ as ‘< or >’.” “But now I’ve got you” says Basilico. You deliberately
reinterpret a symbol to mean its opposite, and this is surely against common sense
or against the rules in mathematics. Zero logic is not a logic, because there are
no inferences. No teacher of mathematics is going to allow his, or her, students to
answer that a ¤ a unless it is part of a reductio ad absurdum argument, in which
special case it is not asserted as ‘true’ but as ‘absurdly true’ if we make the per
impossible hypothesis in the first place. We can reason similarly in the logic case.
There is something deliberately perverse in suggesting such a degenerate formal
system be considered to be a ‘logic’. “Quite so” answers Xara mysteriously. Has
she conceded? No.
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5.1 Truth Within a Theory and Truth of a Theory

In mathematics, truth within a theory is relatively well defined and quite well
understood. Truth of a theory is not so well understood.

Let us start with the latter. Whether a theory is deemed to be, or recognised to be,
true depends on the meta-theory, or class of meta-theories, in which we interpret or
model the theory in question. Once the meta-theory or class of meta-theories is fixed,
then it is straightforward, to determine whether the given theory is true, false, both
or neither just in case there is a truth-predicate in the language of the meta-theory,
and the valuation of truth for the whole theory (not just individual theorems) is well
determined. The truth of the meta-theory then depends on a meta-meta-perspective
from which to determine the truth, and so on as far as we care to go. Moreover,
the conditions for theories to determine truth of another theory do not invariably
obtain. Not every theory, posing as a meta-theory, has a truth-predicate or a valuation
function. Moreover, in many cases, it might be possible to construct an (admittedly
perverse) meta-theory where our given theory is now false, or parts of it are false,
or what have you. This is a consequence of the fact that attributing truth can be
represented as a purely formal exercise. So, within the limits of accepting the formal
game of truth conferral as legitimate, it seems that any theory might be true or false.

The above reasoning was too quick. We do not always need a truth-predicate
in the meta-theory. We just need a translation. This is enough to interpret a theory
in the terms of another. Theories can be used to interpret themselves. This is done
through the identity automorphism. We then ‘understand’ the theory in terms of
itself, that is, it is taken as standing alone, as being sui generis. This is a type of
limit case of ‘interpretation’ or ‘modelling.’ It is a bit degenerate and might not be
phenomenologically informative and, therefore, in some sense, defeats the purpose
of modelling or interpreting. But maybe this is too quick too, since Euclidean
geometry was so presented for a very long time in our history. It was the theory
of geometry, and there was no mathematically formal way to understand it from
outside the theory. So, this gives us a hint about what was wrong with the quick
reasoning of the former paragraph. Any further ‘meaning’ comes from outside and is
strictly speaking ‘informal’, but not, for all that, uninformative. Nevertheless, such
interpretation, being as it is, informal, is prone to revision. The revision takes time,
and as I mentioned above, it usually takes place only under the pressure of doubt.

As for the former, depending on how we individuate theories, truth within them
is supposed to be straightforward. Whatever it is that counts as a theorem of the
theory, whatever is calculated by the theory, whatever is correct in the theory, and so
on can be said to be true in the theory. But from the outside, from a meta-perspective,
even this might be distorted, for we are not meta-logically6 banned from perverse
interpretation.

6By ‘meta-logically’ I mean logically in the sense of informal logic. That is, were I to say that ‘we
are not logically banned’, this might be interpreted to mean that ‘according to a particular formal
representation of logical reasoning, we are not banned’. Moreover, we might be able to choose any
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Since truth of a theory and even truth within a theory are not completely solid
concepts, the notion of truth is not helpful. This is a bit the result of our having made
the notion formal or, more carefully, our formally representing the notion of truth. In
particular, we have done this in logic. Once we did this, we were able to play some
formal games, adding a new truth-value or several new truth-values, and with these
developments, our conceptions of semantics, meaning, and truth became both more
precise and also more dispersed and removed from our common intuitions. So, now
we are in danger of conflating the various formal representations of truth with truth
itself, if we can recover ‘truth itself’ at all.

5.2 Objectivity of Mathematics: Realist Objectivity

If the notion of truth cannot come to our aide, then maybe the notion of ‘objectivity’
will help. The traditional accounts of objectivity are either Platonic/realist or
constructivist/epistemological.

On the Platonic/realist side, we ground objectivity through an ontology. And, the
ontology is supposed to be independent of us and so objective, not subjective, real
and not imaginary, discovered and not created, and so on.

While some mathematicians phenomenologically feel that some mathematical
statements are objective, we cannot measure, point to, observe, and physically
manipulate such objects, so they are not ‘objects’ in the sense of medium-sized
dry objects that we count. However, in mathematical theories, grammatically, we
treat parts of our theories as objects. They enjoy properties and relations with
other objects, and they can be mathematically manipulated, translated, and even
transformed (through a function). So they are not metaphysically so very different
from medium-sized dry objects. They are just scientifically different (not physically
causal).

The Platonic/realist conception is unstable. We cannot determine the objectivity
of such objects in a way that is stable over time and, more important, across
mathematical theories. This is because the identity conditions for an object in
mathematics depend on the theory. Identity conditions should tell us when two
objects are different from each other and when it is that what we thought were two
separate objects are in fact the same object. Such determination depends entirely on
the theory itself and on the meta-theory we use to interpret the truth of the identity
claims. 2 C 2 is identical to 4 in Peano arithmetic, but it is very different in a
computer language where the computational procedure for dealing with ‘2 C 2’ is
very different from that used to deal with ‘4’.

formal representation, including invent our own strange one. No. What I mean here is that we do
not suddenly find ourselves in the realm of trivialism if we make a perverse interpretation. It might
simply be unnatural, ridiculous, strange, uncomfortable, and difficult to make sense of, but not for
all that, ‘impossible’.
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5.3 Objectivity of Mathematics: Constructivist Objectivity

If the Platonic/realist conception cannot help with objectivity, let us turn to the
constructivist/epistemological account. For the constructivist, the concept that is
more basic than truth or objectivity is knowledge. We could say that for the construc-
tivist, truth and objectivity are grounded in knowledge. Objects in mathematics are
created through our mathematical knowledge. We say that they are ‘epistemically
constrained’. We start with mathematical statements we know. These are true, by
definition, since truth is grounded in knowledge. We create new mathematical
objects from ones we have already created using a process of creation that preserves
knowledge.

Ultimately, what grounds this knowledge? There are several accounts we can
give: one is Kantian, one is evolutionary theory, and one is intuitive and phenomeno-
logical. There may be others, but I shall restrict myself to these at the risk of making
a straw man argument.

The Kantian story is that we, as a human species, participate in, or have access
to, or cannot escape from our spatio-temporal intuition. It is this which allows us
to have experiences in the (physical) world. We use spatio-temporal intuition to
navigate and make sense of our (otherwise) raw sense experience. Spatio-temporal
intuition gives our experience shape and is a first step to making sense of the
world around us. We notice regularities, we individuate physical objects, and so
on. Spatio-temporal intuition can be formally represented in mathematics; in fact it
is so represented in the form of the many geometrical theories and in the form or
arithmetic, set theory, theories of relations and functions, and so on. Of course, after
Kant, there have been a lot of developments in formal and informal mathematics,
and our understanding of mathematics as whole discipline is more sophisticated, and
these developments have sharpened and shaped our intuitions in their turn. So after
Kant, we are more precise if we say that there is a three-way interplay between
our pre-mathematically informed intuitive senses of space and time, our formal
representations of those intuitive senses, and the physical world around us that can
only be made sense of through the lenses of those pre-mathematically informed
intuitions and their formal representations. The new, adjusted, Kantian account now
runs: it is this interplay that grounds the ontology of mathematics.

We then see the instability because the intuition changes with the development
of new theories. Is one correct? Maybe, but we cannot tell which one unless we turn
to another sort of account.

Let us try the evolutionary account. Under this account, we develop the objects
of mathematics as representing our experiences of the physical world around us in
order to survive. Logically, or metaphysically, there are ways of trying to do this
that would fail and would result in our quite quickly dying off as a species. We
have survived, and this shows that we have an evolutionarily sufficiently correct
mathematical ontology. It is objective because our survival depends on it, and we
do not have to survive. So, we have developed an objectively correct mathematics
in the sense of its not being evolutionarily disastrous for our species.
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This is probably right as far as it goes. The problem is that it does not go very far.
For one thing, it is quite insufficient to pick out one mathematical ontology, since to
survive for an average time of a species of mammal on Earth, from the perspective of
metaphysics or mathematics itself, we only need to get our mathematical ontology
very approximately right. In fact, a whole class of mathematical theories is quite
compatible with our survival. It is not clear, for example, how much mathematics
other species have that manage to survive quite well. Maybe it is written into
their DNA, but we are not in a position to recognise this yet. Had we developed
projective geometry before Euclidean, we would have been fine. Had we developed
an arithmetic where 8 x 68,921 D 3 on every other Tuesday after the year 2017,
but was the same as our own otherwise, we would still have survived. Rather,
from the perspective of pure (beyond our survival, but within the constraints
of what we can imagine or work with) mathematics or pure metaphysics, the
account should be reversed. It is through our survival, as a species that we have
developed the mathematics that we have. If anything, it is our survival that might
have hindered our mathematical imagination. There is nothing metaphysically or
mathematically necessary in the selection we made of favorite theories. Individual
crazy mathematicians who develop a mathematical theory that leads to the death of
our species have not been followed or have not been followed enough for us to have
not died out yet. Put this way, we see the reductio in the argument forming. The
evolutionary account is not more stable than we are as a species.

The intuitive and phenomenological account is the worst, at least from a logical,
metaphysical, or non-question begging mathematical point of view. The account
goes that ‘we’ feel that or ‘know’ that these mathematical statements are true and
these others are not. The objectivity is correctly tracked by our intuition, gut feeling,
or phenomenology.

This cannot be right if we mean a collective ‘we’, since mathematicians have
disagreed with each other in the past, and there is no guarantee that they shall not
continue to do so in the future. If a particular mathematician were to claim that he,
or she, has a privileged position, and can (alone) create the ‘right’ mathematical
ontology, then there is the difficulty of choosing between competing such claims.
Unless, one shares the phenomenology and agrees with the ontology created by
another mathematician, determining objectivity on this basis is entirely mysterious.

If the traditional Platonic/realist and the constructive/epistemological accounts
fail us for accounting for the objectivity of mathematics, what is left?

6 Recovering Objectivity and Truth When Thinking
of Mathematical Theories as Models

The pluralist account is more complex and nuanced than the traditional accounts.
The pluralist is willing to think of mathematical theories as models or other math-
ematical theories. He, or she, is also willing to acknowledge the phenomenology
of objectivity and the sense of truth that accompanies the sense of objectivity.



Mathematical Theories as Models 305

The difference is that the pluralist is not metaphysically constrained to give one
unified, consistent mathematical theory in his or her account of the objectivity of
mathematics.

The pluralist account relies on some general observations. In the practice of
mathematics, there are different ways of individuating theories of mathematics.
There are similarities and differences in formal languages used in theories, but
there are also translations between them. There are meta-judgments of the form: the
objects of this theory are the same as/different from the objects of that (otherwise
different) theory. The concepts of this theory are the same as/different from the
concepts of that (otherwise different) theory. We can be precise and rigorous up
to the standards of the day and up to the finesse of our language and concepts.
Moreover, we only increase the finesse when we encounter and recognise a problem.
Changes in mathematical theories and the acceptance of a new mathematical theory,
the deployment, and so mastery of a new concept in mathematics take time.

Thus, the pluralist account is one of an interplay between language, concepts,
formal representation, dissemination; one of cross-referencing, borrowing between
theories, translation between theories, communicating the relevant information to
others, the gradual understanding of ideas by individuals, and then by collections
of mathematicians. The interplay culminates in the institutional acceptance, reinter-
pretation, re-enforcement, or confirmation by the development of new theories that
are models of old theories or that we can show do not model the old theories. The
interplay of modelling and contrasting are what lend stability, longevity, objectivity,
and truth to mathematics. There is no single account of objectivity or truth. This
affects the pluralist account of knowledge, understanding, and explanation.

7 Conclusion: The Pluralist Account of Knowledge,
Understanding, and Explanation

7.1 Knowledge

For the purposes here, and as a working hypothesis, I shall distinguish knowledge
from understanding. First distinguish between propositional knowledge and other
sorts of knowledge. Propositional knowledge is ‘knowing that : : : ’. Propositions,
in this case, are bearers of truth in the following sense. Grammatically we can
attribute to propositions: truth, falsity, undetermined whether true or false, degrees
of truth or falsity, undetermined degrees of truth or falsity, both truth and falsity
(paradoxical propositions); approximations to truth, as good as true, acceptability,
and their negative and undecided counterparts. This is what we are counting as a
proposition here: parts of speech or writing to which it is grammatically reasonable
to make such attributions. Truth, falsity, and so on are stable and normatively remain
unquestioned up to a recognised error or reasonable doubt. Note that the standards
for error and reasonable doubt in mathematics are the highest of any discipline. We
are not talking about ‘reasonable doubt’ in the sense of a court case where a lot of
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common sense helps with the determination of ‘reasonable’. The ‘common sense’
of mathematics is highly refined and fine grained. The standards of precision in
the language are highest possible. Mathematics is the field where these standards
exceed those of other areas of inquiry, since in other areas they are more easily
compromised by political, moral, economic, metaphysical, and other factors. It
might be impossible to measure whether the standards of precision are more often
compromised in one field or another. The more easily claim is, therefore, vague,
ambiguous, and meta-metaphysically qualitative.

We cannot know any particular proposition tout court. We can only know a
proposition up to, or relative to, a context, a purpose, a linguistic, or a grammatical
constraint. Knowledge of ’one’ fact or object can be increased. It can be increased
indefinitely. This is because, for the pluralist, mathematical propositions do not
stand alone. They are always accompanied by a context, and our knowledge and
understanding of a context change with more information, understanding, and so on.

7.2 Understanding

Let us now distinguish knowledge from understanding. Knowledge, as it is treated
above, is propositional. In contrast, understanding is more holistic, phenomenologi-
cal, and intuitive. In an extreme case, we might even be able to understand, in some
sense, without being able to articulate propositions that underlie our understanding.
Byers calls this a proto-concept. In such a limit case, our understanding would
simply be an intuition or a feeling about something. It is not yet veridical, since not
yet articulated in the form of a proposition. The feeling or intuition might be quite
weak or quite strong. A mathematician might feel that there is some relation between
two ideas and will then seek out an articulation of a hypothesis about what that
relation is. A deepening of understanding is had by this seeking. We use language,
theories, and articulated ideas to mirror, hone, contrast, or compare our feeling or
intuition to articulated propositions. We make whole theories to model our thought.
We thereby deepen our understanding further. We look to the limitations or edges of
the thought, asking questions about where it breaks down, where it is compromised,
and how. This adds further depth to our understanding, and this process can be
carried out indefinitely.

Understanding and knowledge increase in tandem in a back-and-forth play. We
have a sense that there is something to look into (understanding a proto-concept), we
try to articulate it in terms of propositions, and we can then attribute a truth-value
or lack of truth-value to the proposition. To do this, we look to the context, and
we model the proposition, thereby setting it in a context that will confirm, falsify,
and disconfirm, with all of the further nuances and weaker types of ‘truth-value’
attribute. We seek to have as full a confirmation or disconfirmation as possible up
to our purposes and up to the capacities of the language in which we couch the
proposition. Modelling, or theory building, is part of this exercise in increasing
understanding. The increasing of understanding does not end there because we
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can then compare theories to each other, and we do this from a meta-perspective
which, in turn, receives more precise articulation. Under this pluralist picture,
understanding can increase indefinitely. This thought also has repercussions for our
conception of ‘explanation’.

7.3 Explanation

Explanations are used to deepen understanding. Since understanding can increase
indefinitely, so can explanations.

If some reader wants or needs more details, as for instance concerning modular arithmetic
[in a proof to show that 1 C 1 D 0 (mod 2)] it can be provided by giving further
explanations, as is done in teaching unprepared students. In principle, though, one could
go through the whole development of Peano Arithmetic, develop modular arithmetic and
what not. How far one has to go back in one’s justification of an inference is a pragmatic
question; there is no theoretical upper bound on the number of interpolations necessary for
an absolute justification (whatever that would mean). (Rav 2007, 313-4)

Explanations can also be subject to extrapolation, so sometimes we are called
upon to elaborate on the context or the meta-theory in which we are working. And
this, too, of course, can be questioned. From a pluralist perspective, the difference
between interpolation and extrapolation is sometimes interchanged.

Moreover, in some sorts of explanation, negative or counterfactual information
is helpful: information why we do not employ such and such a technique, or at what
point a concept no longer applies, or when it is that a translation is disingenuous or
perverse. The edges of ideas and their limit thresholds contribute to understanding.
These, too, grow. When we end an explanation, this is either a sign of satisfaction,
or it is a sign that we have nothing more to add, so a sign of limitation. We rest
with the end of an explanation because we are satisfied. But that satisfaction is
only temporary. As we learn more, as we look to more intriguing puzzles, as we
discover alternative ways of seeing the same phenomenon or question, we might call
for a renewed deepening of explanation. The limitation of before is pushed further
back. Thus, explanations in mathematics also grow, especially under the pluralist
conception of mathematical theories as models that interpret each other.

Bibliography

Friend, Michèle. 2017. Inconsistency in Mathematics and Inconsistency in Chemistry.
Humana.Mente. 32. Special Issue: Beyond toleration? Inconsistency and pluralism in the
empirical sciences. Luis Estrada-González and María del Rosario Martínez-Ordaz (Eds.)

Lefever, Koen. 2017. Using Logical Interpretation and Definitional Equivalence to Compare
Classical Kinematics and Special Relativity. Ph.D. Dissertation, Vrije Universiteit Brussel.

Rav, Yehuda. 2007. A critique of a formalist-mechanist version of the justification of arguments in
mathematician’s proof practices. Philosophia Mathematica, Series III, 15.2, 291–320.



Mathematics for Makers and Mathematics
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To Reuben Hersh who posed an incisive problem:
What is Mathematics, Really?

Introduction

As I argue in my paper Borovik (2016), the current crisis in school-level mathemat-
ics education is a sign that it reaches a bifurcation point and is likely to split into
two streams:

• education for a selected minority of children / young people who, in their adult lives,
will be filling an increasingly small share of jobs which really require mathematical
competence (I call them mathematical makers); and

• basic numeracy and mathematics awareness classes for the rest of population, end users
of technology saturated by mathematics – which, however, will remain invisible to them.

In this paper, I discuss challenges arising in mathematics education for makers of
mathematics. This is a theme which is rarely discussed in the mathematics education
literature. It demands re-thinking of basic assumptions underpinning the mainstream
mathematics education.

I invite the reader to discard taboos and start a frank and open discussion of the
difficult problem:

What is Mathematics Education, Really?

In the changing socioeconomic environment of mathematics, it needs to be
addressed from the first principles.
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A Thought Experiment: Replicators

I suggest a simple thought experiment. Science fiction books occasionally mention
an imaginary device: a universal replicator. It consists of two boxes; you put an
object in a box, close the lid, and instantly get its undistinguishable fully functional
copy in the second box. In particular, a replicator can replicate smaller replicators.

Now imagine an economy based on replicators. It needs two groups of producers:
a small group of engineers who build and maintain the biggest replicator and a
diverse, but still small, group of artisans, designers, and scientists who produce
a single original prototype of each object. Let us enhance the functionality of
replicators and assume that they can store originals in memory and share them with
other replicators.

Then the world needs only one baker who has produced, once, a flavorsome and
precisely textured original of a loaf, baguette, etc. of every kind of bread.

This hypothetical economy also needs a service sector, mostly waste disposal.
Next, try, if you can, to imagine a sustainable, stable, equal, and democratic

model of education that supports this lopsided economy.
A wild and irrelevant fantasy? Alas, it is not. This apocalyptic future is already

upon us—in the information sector of economy, where computers act as replicators
of information. Mathematics, due to its special role in information technology, is
the most affected part of human culture. The new patterns of division of labor
split mathematics for makers of mathematics from mathematics for end users of
mathematical technology and trigger a crisis of mathematics education. The latter
increasingly focuses on mathematics for users and undermines itself because a
sustainable reproduction of mathematics requires teachers educated as makers.

The Ultimate Replicating Machines

I borrowed the title of this section from a chapter in my book Borovik (2010). In the
book, I followed Davis and Hersh (1981) who defined mathematics as

a study of mental constructs with reproducible properties,

and I argued that the essence of mathematics was in its precise replicability which
imitated the rigid stability of the laws of the physical universe. In the domain of
technology,

mathematics is the ultimate in the technology transfer. (Stewart 1990)

A mathematical theorem needs to be proved only once—and then it can be used
for centuries. An algorithm needs to be developed only once—and then it can serve,
as the Google Ranking Algorithm does, as a kingpin of a global information system.

In previous historic epochs, every use of a mathematical result required the
participation of a human, who, depending on the level of his or her tasks, had to
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be trained in arithmetic (e.g., a bank clerk) or, in addition, had to learn elementary
algebra, logarithms, and trigonometry (e.g., an artillery officer.1) The development
and teaching of mathematics was shaped by a natural requirement: mathematics had
to be understood and used by humans. In particular, this technological imperative
defined the role of proofs at higher stages of mathematics education: the ability to
derive formulae was used as a criterion of understanding.

Nowadays, mathematics works mostly inside of computers, and its applications
are developed for being fed directly into computers, with humans excluded from
this process and reduced to the role of uninformed end users.

Instant replicability of mathematics and the economy of scale, combined
together, create a peculiar singularity:

in mass produced devices such as smartphones, the per unit cost of mathematics
encoded and hardwired within the device converges to zero.

For the end user, the mathematical component of technology frequently remains
invisible. Even if the user is aware of the presence of a particular mathematical
tool in the product used, it is not accessible for maintenance or repairs (try to
reprogram a microchip in your credit card!). But this does not actually matter: even
if the mathematical core is reached, it remains incomprehensible for anyone with
the exception of a very narrow circle of experts.

Indeed, mathematical results and concepts involved in practical applications are
much deeper and more abstract and difficult than ever before. And we have to accept
that they are beyond the reach of the vast majority of graduates from mathematics
departments in our universities.

The cutting edge of mathematical research moves further and further away from
the stagnating mathematics education. From the point of view of an aspiring PhD
student, mathematics looks like New York in the Čapek Brothers’ book A Long Cat
Tale:

And New York – well, houses there are so tall that they can’t even finish building them.
Before the bricklayers and tilers climb up them on their ladders, it is noon, so they eat their
lunches and start climbing down again to be in their beds by bedtime. And so it goes on day
after day. (Čapek and Čapek 1927, reprinted 1996, p. 44).

If you think that these words are too jocular for a discussion of a matter so serious
as the fate of mathematics as a cultural system, please take into consideration that
Joseph and Karel Čapek were the people who coined the word robot for a specific

1It is worth to remember that in the first half of the 20th century, school mathematics curricula in
many nations were dictated by the Armed Forces’ General Staffs—this is why trigonometry was
the focal point and apex of school mathematics: in the era of mass conscription armies, it was all
about preparation for training, in case of war, of a sufficient number of artillery and Navy officers
and aircraft pilots. With this legacy, we still cannot make transition to a more human mathematics.
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socioeconomic phenomenon: a device or machine whose purpose is to replace a
human worker.2 Almost a century ago, they were seriously thinking about the social
impact of technological and scientific progress.

Investment cycles and research and development cycles in many modern indus-
tries are just two years long. On the other hand, proper mathematics education still
takes at least 15 years from the age of 5 to the age of 20—or even 20 years if
postgraduate studies are needed.

As I argue in Borovik (2016), mathematics education is being torn apart by
this tension between the deepening specialization of labor and increasing length of
specialized education and training required for jobs at the increasingly thin cutting
edge of technology. Public discourse on education policy is in a mess.3 Key issues
are ignored; this is not surprising—when the society does not know the answer,
the question does not exist. Nothing said by politicians, by industry, by experts in
mathematics education, etc. can be taken at face value.

For example, if banks and insurance companies were interested in having
numerate customers—as they occasionally claim—we would witness the golden
age of school mathematics: fully funded, enjoying cross-party political support,
promoted and popularized by the best advertising companies in all forms of mass
and social media. But they are not; banks and insurance companies need a numerate
workforce – but even more so they need innumerate customers. 25 years ago in the
West, the benchmark of arithmetic competence at a consumer level was the ability to
balance a checkbook. Nowadays, bank customers can instantly get full information
about the state of their accounts from an app on a mobile phone together with timely
advice tailored to individual circumstances on the range of recommended financial
products. This kind of service can be characterized in alternative terms: a bank can
instantly exploit the customer’s vulnerability.

Mathematics for Makers and Mathematics for Users

Makers and Users

The new patterns of division of labor split mathematics for makers from mathe-
matics for end users of mathematical technology. How to describe the two? The
replicability of mathematics mirrors the stability of laws of the physical universe,
which is captured by an apocryphal formula:

2The root of the word “robot” is Slavic and means “work.”
3Perhaps I would never write this paper and its predecessor (Borovik 2016) if I had not had a
chance to observe, at a close range, the recent National Curriculum reform in England.
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Mathematics is the language of contracts with Nature which Nature accepts as
binding.

Therefore, in my understanding, mathematics for makers is mathematics for
those whose duties include writing contracts with nature and inventing, in the
process, new mathematics and new ways to apply mathematics—they could be
mathematicians, engineers, and scientists. In terms of the “universal replicator”
simile from section “A Thought Experiment: Replicators,” it is mathematics for
those who produce the originals for subsequent replication.

In particular, it is mathematics that cannot be entrusted to computers.
We need to remember that

mathematicians and physicists are stem cells of a technologically advanced society.

They are re-educable, able to change their role and metamorphose4—and, as I
argue in Borovik (2016), this is made possible by frequent changes of the mode of
their mathematical thinking in the process of their learning of mathematics.

On the other hand, mainstream mathematics education gradually sheds its
content and loses its meaning: in its present form, it is not actually needed in the
world of end users (Simeonov 2016).

Essence and Phenomenon

At a bit more philosophical level, the issue boils down to the difference between
essence and phenomenon.

I was lucky that my philosophy lecturer at my university was one of the promi-
nent Russian philosophers of that time, Mikhail Rozov. In the oppressive ideological
environment of Soviet Russia, he was a quiet nonconformist. In one of the areas of
his professional work, he dared to develop Niels Bohr’s complementarity principle
as a general principle of epistemology and then applied it to the humanities—this

4While Brexit is still in the news, it is worth to mention that Dominic Cummings, the Director
of the Vote Leave campaign, explains in his blog http://bit.ly/2ePmyA2 that he hired, instead of
professional pollsters and public relations people, some physicists for analysis of voters’ intentions.
He writes: Physicists and mathematicians regularly invade other fields but other fields do not
invade theirs so we can see which fields are hardest for very talented people. It is no surprise that
they can successfully invade politics and devise things that rout those who wrongly think they know
what they are doing.

http://bit.ly/2ePmyA2
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required some courage. In his lectures, he found a clever way to circumvent the
official dogma by announcing to me and my peers that all of us, by default, were
instinctive dialectic materialists and that he did not hope to advance us any further
because of our general ignorance. This allowed him to teach us an honest history of
philosophy instead of the official course of dialectic materialism. However, he took
care to demystify some sacred dogmas of the official philosophy, in particular the
essence/phenomenon double act of the Hegelian dialectics. He taught us:

You can describe a table knife in two ways.

(1) It is a long narrow flat piece of steel slightly sharpened at one edge, with a handle
attached.

(2) A thing for spreading butter on bread.

(1) describes how a knife is made; it is its essence. (2) describes how a knife is used; it is
its phenomenon.

For me, mathematics is all about how mathematics is made; I am a maker, not a
user. Steven Strogatz published in The New Yorker blog5 a brilliant popular article
about how the number � is used; for me, it is more important to understand how the
number � is made (or discovered). I work with the essence.

Pattern Matching

You have perhaps heard an expression popular in the mathematics education
community:

“mathematics is the science of patterns.”

This is mathematics for users. Mathematics for makers can be described as

“the science of structures behind patterns.”

Meanwhile, the “mathematics is the science of patterns” approach (I suggest to
call it patternism) is becoming popular within some parts of the applied/industrial
mathematics community. I heard talks with suggestions to abandon the formulation
of mathematical models of real-world objects and processes, as well as their
subsequent analysis by mathematical means. Instead of that, it was suggested to
run pattern-matching algorithms over large data sets.

This technology has every right to exist; it could be quite useful, especially
when you are interested in “bulk” solutions which work correctly with a sufficiently
high probability, securing, on average, acceptable profit margins. But this is not
mathematics as we know it.

5S. Strogatz, Why Pi Matters, 15 March 2015. http://www.newyorker.com/tech/elements/pi-day-
why-pi-matters?intcid=mod-most-popular.

http://www.newyorker.com/tech/elements/pi-day-why-pi-matters?intcid=mod-most-popular
http://www.newyorker.com/tech/elements/pi-day-why-pi-matters?intcid=mod-most-popular
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There is an intrinsic danger in the patternalist technology: there is a possibility
that very soon it will be monopolized by a few algorithms/systems, the same way
as social media are dominated by likes of FACEBOOK and TWITTER. Verification
of results could become a problem. There is a danger that the flaws of social media
which resulted in the present “fake news” scandal might be reproduced, on a grander
scale, in the “big data” technology—with computers spreading “fake data” among
themselves.

Besides writing contracts with nature, the professional competences of the new
generation of makers should include the ability to control computers. Mathemati-
cians must remain prepared to face intellectual challenges so important and critical
that they cannot be entrusted to computers.

As a corollary, serious mathematics education has to remerge with computer
science.

Interestingly, some trends in mainstream education appear to lead in the exactly
opposite direction.

Our new information environment becomes more and more saturated by pattern
recognition and pattern matching (predictive typing is a prominent example).6 There
are some first signs that it starts poisoning teaching and learning mathematics. As
it is argued in a deep and revealing paper by Yagmur Denizhan, this has already
triggered changes in students’ approach to learning: they started to imitate generic
statistically shaped parse/substitute/append computer algorithms akin to that of
pattern-matching Google Translate or predictive typing.

What led me to the line of thought underlying this article was a strange situation I
encountered sometime in 2007 or 2008. It was a new attitude in my sophomore class that I
never observed before during my (by then) 18 years’ career. During the lectures whenever
I asked some conceptual question in order to check the state of comprehension of the class,
many students were returning rather incomprehensible bulks of concepts, not even in the
form of a proper sentence; a behaviour one could expect from an inattentive school child
who is all of a sudden asked to summarise what the teacher was talking about, but with the
important difference that – as I could clearly see – my students were listening to me and I
was not even forcing them to answer. After observing several examples of such responses
I deciphered the underlying algorithm. Instead of trying to understand the meaning of my
question, searching for a proper answer within their newly acquired body of knowledge and
then expressing the outcome in a grammatically correct sentence, they were identifying some
concepts in my question as keywords, scanning my sentences within the last few minutes for
other concepts with high statistical correlation with these keywords, and then throwing the
outcome back at me in a rather unordered form: a rather poorly packaged piece of Artificial
Intelligence.
It was a strange experience to witness my students as the embodied proof of the hypothesis of
cognitive reductionism that “thinking is a form of computation”. Stranger, though, was the
question why all of a sudden half a century after the prime years of cybernetic reductionism
we were seemingly having its central thesis actualised. (Denizhan 2014)

Alas, I am in agreement with Yagmur Denizhan—I observe this behavior in my
own students.

6I attempted to write some notes that became a fragment of this paper, on a tablet with predictive
typing. A remarkable experience—predictive typing does not help to formulate any new thoughts
but speeds up composing routine emails.
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I wish to mention, in passing, another cultural phenomenon that I call cartoon
physics menace7: a systematic suppression of laws of mechanics (and physics)
in the virtual worlds of CGI movies, cartoons, and computer games, where our
(grand)children spend an ever-increasing part of their lives and where everything
can happen—pigs may fly. I am afraid it kills the all important “physical” intuition
of the real world—the same way as an out-of-tune music toy can damage a child’s
sense of tone pitch.

What Will Replace the Present System of Mathematics
Education?

As I argue in Borovik (2016), the present model of “mathematics education for
all“ is unsustainable, and, not surprisingly, the first cracks have started to appear. I
concluded my paper with a warning that I wish to repeat here.

Democratic nations, if they are sufficiently wealthy, have three options:

A. Avoid limiting children’s future choices of profession, teach rich mathematics to
every child—and invest serious money into thorough professional education and
development of teachers.

B. Teach proper mathematics, and from an early age, but only to a selected minority
of children. This is a much cheaper option, and it still meets the requirements of
industry, defence and security sectors, etc.

C. Do not teach proper mathematics at all and depend on other countries for the
supply of technology and military protection.

Which of these options are realistic in a particular country at a given time, and what
the choice should be, is for others to decide.

My own instincts make me to go for option A, but it could happen to be
unrealistically expensive—and unlikely to have support of every parent and every
teacher.

Meanwhile, there are signs of option B emerging as the preferred one—at least
in some countries.

In England, the recent green paper Building Our Industrial Strategy8 sets the
aim of

“expanding the number of specialist maths schools across the country” (p. 16),

7You can watch on YOUTUBE a useful compilation of relevant episodes from The Looney Tunes
(the classics of the genre): Zac Snively, Wile E. Coyote vs. The Road Runner Physics, https://www.
youtube.com/watch?v=EdGxf5sYdsU, 26 March 2015.
8Her Majesty’s Government, Building Our Industrial Strategy. Green Paper, January 2017. http://
bit.ly/2kh3roa.

https://www.youtube.com/watch?v=EdGxf5sYdsU
https://www.youtube.com/watch?v=EdGxf5sYdsU
http://bit.ly/2kh3roa
http://bit.ly/2kh3roa


Makers and Users 317

and, which is much more telling, signals a shift of the preferred, from the
government’s point of view, career destination of

today’s PhD students [who] are often tomorrow’s research leaders, entrepreneurs and
industrial researchers (p. 29)

from academia to the industry.
Option B means separation of mathematics education for makers from education

for end users.
But what is mathematics education for makers?
This question has never been seriously discussed. To answer it, Reuben Hersh’s

famous question (Hersh 1999):

What Is Mathematics, Really?

needs to be recast as

What Is Mathematics Education, Really?

This question is especially important in the context of education for makers. This is
what I focus on in the rest of the paper.

I am not discussing the mathematics education of users—it is where the present
model of mathematics education is moving to, in chaotic jerky moves, like a
caterpillar pulled by ants in the general direction of their anthill. Some rather
extreme suggestions have been made— for example, Emil Simeonov made a case
for

drastically reducing mathematics teaching in schools to the level of music teaching, and
introducing specialized schools (i) to prepare future engineers and scientists, (ii) to prepare
for all other professions who need mathematics and (iii) where all those children who are
just interested in mathematics can go deeper into the subject. (Simeonov 2016)

Educating Makers

As I write in my paper Borovik (2017a),9 advanced specialist mathematics schools
such as Kolmogorov School in Moscow, Fazekas,10 or Lycée Louis-le-Grand11

accumulated a considerable experience of advanced mathematics education at the
secondary school level. It remains mostly undocumented, unpublished, and not

9Some of the material in this text is built on observations made in that paper.
10A good description of Fazekas can be found in Juhász (2012).
11Lemme (2012) contains a fascinating analysis of Lycée Louis-le-Grand. M. Lemme said in a
private communication: It should be borne in mind that the system of classes préparatoires never
was meant to train mathematicians On the other hand, and however immodest it will sound, the
Institute I went to, Lycée Louis-le-Grand, always made a specialty of training the best and in
particular the few who would become professional mathematicians.
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properly analyzed. However, a blog of the London Mathematical Society contains
a collection of papers Borovik (2012) on advanced-level specialist mathematics
schools in various countries. Even a brief look shows that these schools are all
different. Also it is immediately clear that they all provide mathematics for the
makers.

They nurture in their students specific mental traits which are almost never
discussed in the literature on mathematics education or mentioned in education
policy discourse:

• the ability to engage the subconscious when doing mathematics;
• the ability to communicate intuition;
• the ability to learn by absorption;
• the ability to compress mathematical knowledge;
• capacity for abstract thinking;
• being in control of their mathematics.

I’ll try to explain these objectives point by point. I will also argue that development
of these mental traits is the essence of mathematics education for makers.

I have to make an important disclaimer: I am not proposing to impose the model
of mathematics education as practiced in the best (one might wish to say: elite)
specialist mathematics schools on the rest of the world: I only wish to discuss
lessons that can be learnt from their experiences.

Engaging the Subconscious

This is an aspect of mathematical practice that is mostly unknown outside the
professional community of mathematicians.

In humans, the speed of totally controlled mental operations is at most 16 bits per
second. In activities related to mathematics, this miserable bit rate is further reduced
to 12 bits per second in addition of decimal numbers and to 3 bits in counting
individual objects. Standard school mathematics education trains children to work at
that speed, controlling and verbalizing each step: “left foot, right foot . . . .” Perhaps
they can learn to walk slowly—but not many of them will ever be able to run.12

By comparison, the visual processing module in the brain crunches 10;000;000
bits per second (Nørretranders 1998, pp. 138 and 143).

I offer a simple thought experiment to the readers who have some knowledge of
school level geometry.

12Here I borrow some details from my book Borovik (2010).
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Imagine that you are given a triangle; mentally rotate it about the longest side. What is the
resulting solid of revolution? Describe it. [Answer is in footnote.13] And then try to reflect:
where has the answer come from?

The answer comes from your subconscious. This is the best kept secret of
mathematics: it is done by the subconscious. Moreover,

Mathematics, in one of its many facets, is a language for communication with the
subconscious.

If you were able to answer the question about the rotating triangle, then you were
able to pass your commands to the visual processing centers of your brain, which
then managed to unambiguously interpret them and return you the result in a form
ready for verbalization and communicating back to me.

It is like training a dog.
Dogs have many faculties which we, humans, are lacking, for example, a fantastic

sense of smell. To exploit these faculties, we have to send our commands to the
dog and interpret its reactions. A learner of mathematics is a dog trainer; his
subconscious is his/her “inner dog” (or a puppy), a wordless creature with fantastic
abilities, for example, for image processing or for parsing of symbolic input. The
subconscious has to be trained to react to commands triangle!, side!, and rotate! in
a way similar to a dog reacting to sit!, bite!, and fetch!.

We need to look at that in more detail—so a further digression into the
subconscious is needed.

Digression into the Subconscious

I share Paul Bloom’s conjecture that the human brain contains the equivalent of two
quite separate supporting structures for two different causality systems: one for the
physical world another for the social world. As he metaphorically put it in Bloom
(2004),

We have two distinct ways of seeing the world: as containing bodies and containing souls
(p. xii).

For some years, Bloom was trying to test his conjecture by psychological studies
of infants:

We suggest that infants possess different systems – or modes of construal – for reasoning and
learning about inanimate material objects versus reasoning about people (and possibly, all

13Most people who I asked this question usually answered, after a few seconds of looking inside
themselves, something like “two circular cones glued at the shared base”.
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intentional entities). This is supported by the present data, as well as by a body of research
suggesting that infants interpret inanimate objects in terms of physics and not goals (e.g.
Woodward, 1998; see also Kuhlmeier, Wynn, & Bloom, in preparation), and interpret people
and other animate entities – but not inanimate objects – in terms of goals (e.g. Meltzoff,
1995; Shimizu & Johnson, in press; Woodward, 1998). We suggest that these systems are
not the product of past learning. Instead, they provide the foundation for future learning.
(Kuhlmeier et al 2004b; see also Kuhlmeier et al 2004a.)

If true, Bloom’s conjecture could have some interesting consequences for the phi-
losophy of mathematics because it allows us to modify the Davis-Hersh definition
of mathematics mentioned in section “The ultimate replicating machines”:

Mathematics is a reproducible and verifiable modelling of the causality systems of
the physical world in terms of causality relations of the social world.

Bloom’s conjecture also allows us to describe mathematics as a language for
communication between the two causality systems, thus creating a conceptual
framework for my “inner dog" metaphor. Actually, it would be best to talk about
“inner wolves”—all behavioral traits of dogs are present in wolves and only
amplified or suppressed in dogs by breeding (Fogle 1990).

The “inner wolf” is the physical causality module of the mind; it lurks below the
horizon of consciousness, and the key issue in learning mathematics is learning a
language for communication with it.

Wolves (the real ones, not metaphorical) are remarkable for the apparent
disconnection between their social and physical causality systems. They have a
sophisticated signal system for social interaction. They also patiently observe and
then can predict the behavior of their prey. But they do not communicate with each
other about the prey!

Wolves can show social aggression toward other wolves, but it is very different
from their “true predatory aggression”14: wolves do not feel any emotions toward
their prey; emotions are reserved for other wolves.

In baboons, the disconnect between the perception of social and physical worlds
is even more striking, and the book Baboon Metaphysics by Cheney and Seyfarth
(2007) is quite revealing because, in evolutionarily terms, baboons are much closer
to humans than wolves.

A society of baboons’ male troop has a linear transitive hierarchy recalculated
every day after each fight between adjacent members. Human boys in less humane
places such as various kinds of borstals, reformatories, and juvenile prisons form a
similar strict linear order hierarchy recalculated every day as a result of fights.

14The true predatory aggression is suppressed by breeding in most breeds of dogs.
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But the social order of female baboons—with grandmothers15 and even grand-
grandmothers caring about their descendants—is very different. In the words of
The Baboon Metaphysics, female baboons live in the Jane Austen’s World. Female
baboons also form a transitive linear hierarchy, stable – they do not fight for a higher
place in the order – but which is recalculated by transitivity every time a daughter
is born and is inserted into the linear order immediately after her mother and her
older sisters. This is the reason why a book about baboons (Cheney and Seyfarth
2007) contains a definition of transitive relation—and explanations of its meaning
are repeated in the text several times.

In short, baboons are users of transitivity and linear order—but they apply it
only to the social world.16 Their relations with the physical world are much more
primitive than their social life.

It appears that the barrier for information exchange between the two causality
systems has been broken only in humans—and only partially:

fMRI reveals reciprocal inhibition between social and physical cognitive domains. (Jack
et al 2013)

So I wish to reaffirm my conjecture:

“the inner dog”, as I described it in Section 6.1, is the physical causality module of
our mind.

Neurophysiology is still in infancy, but there is at least one example of a state-
of-the-art experimental study:

Our work addresses the long-standing issue of the relationship between mathematics and
language. By scanning professional mathematicians, we show that high-level mathematical
reasoning rests on a set of brain areas that do not overlap with the classical left-hemisphere
regions involved in language processing or verbal semantics. [. . . ] Our results suggest
that high-level mathematical thinking makes minimal use of language areas and instead
recruits circuits initially involved in space and number. (Emphasis is mine – AVB.) This
result may explain why knowledge of number and space, during early childhood, predicts
mathematical achievement. (Amalric and Dehaene 2016)

The physical causality module has immense raw processing power, but it is mute.
The social causality module has access to language but otherwise is very slow. It has
to train the physical module, much as people train dogs (i.e., domesticated wolves).

15There are no baboon granddads—males’ lives are short and brutal, and they die young, mostly
killed by other male baboons. From the day of reaching his position at the top, alpha male rarely
stays alive for more than a year. Lower down the hierarchy, fights become less physically harmful
and more ritualistic.
16I write more about baboons and their mathematics in Borovik (2017c).
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I think it is obvious to every working research mathematician that, in their
professional community, mathematicians are ranked by the size and strength of their
inner dogs. When two mathematicians meet, their inner dogs start to sniff each other.

I dare to suggest that children who grew up to become mathematicians are to
some degree aware of the existence of their dog (or puppy) and perhaps even love it
and care about it.

I collected hundreds of mathematicians’ testimonies about difficulties they
experienced in their earliest encounters with mathematics (you may read some of
them in Borovik (2017b)). A generic one was being misunderstood by adults. The
most frequent specific difficulty was telling the left from the right—for lack of
logical justification for the distinction between the two. A child can be told by adults
“this is left and this is right,” but his inner dog may tell him, using its posture and
a skeptical position of its ears as means of communication “sorry, master, but they
smell the same to me.” For a child, to retain his/her mathematical ability means to
retain the ability to listen to his subconscious and not to hurry to accept, as absolute
truth, what he is told by adults.

How can a learner of mathematics start engaging his/her subconscious? Perhaps
even without noticing it—in sharing his/her intuition with other likely minded young
mathematicians. I say more on that in the next section “Sharing Intuition.”

Sharing Intuition

There are four conversants in a conversation between two mathematicians: two
people and their two “inner dogs.”

When mathematicians talk about mathematics face-to-face, they frequently use
language:

• which is very fluid and informal;
• is improvised on the spot;
• includes pauses (for a lay observer, very strange and awkwardly timed) for

absorption of thought;
• has almost nothing in common with standardized mathematics “in print.”

Mathematicians are trying to convey a message from their “inner dogs” directly
to their colleagues’ “inner dogs.”

Alumni of high-level specialist mathematics schools are “birds of a feather”
because they have been initiated into this mode of communication at the most
susceptible age, as teenagers, at the peak of intensity of their socialization/shaping
group identity stream of self-actualization. Learning to speak to a peer’s “inner dog”
is an efficient way to learn a language for communication with your own “inner
dog.”

This process is remarkably similar to the way toddlers learn to think by first
directing at themselves the speech of their parents directed at them—and then
interiorizing it.
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Learners of mathematics need to talk to each other to develop this crucial
interiorization of their outward-directed speech—and to talk informally—in a
language they invent themselves.

In this context, the role of mathematics teachers goes beyond giving to students
examples of “proper” mathematical language; teachers have to provide their
students with a rich diet of challenging problems which go beyond the application
of procedural recipes, stimulate mathematical thinking, and thus require the use of
a deeper intuition and sharing of intuition.

In that respect, mathematics is not much different from arts. Part of the skills
that children get in higher-level music schools, acting schools, ballet schools, and
art schools is the ability to talk about music, acting, ballet, and art with intuitive,
subconscious parts of their minds—and with their peers—in a semi-secret language
which is not recognized (and perhaps not even registered) by the uninitiated.

Learning by Absorption

For talking to each other, the best option is to meet face-to-face, and specialist
mathematics schools provide the best environment for that:

“students find their tribe and learn from each other.”17

This is an aspect of mathematics/physics education of “mathematically able”
children which is almost never mentioned: “mathematically inclined” (my preferred
term) children have a high capacity to learn by absorption. This trait remains
dormant in the mainstream school environment but will be activated when kids
find themselves surrounded by children like them. My university has a large and
vibrant community of mathematics PhD students, and it is a place where learning
by absorption can be observed “in the wild.” It is less known that the same could
happen with a certain kind of 13–16-year-old kids when they form a small learning
community.

Indeed, who will teach them in their professional future? They will have to
teach themselves and learn from each other. The key to the success of mathematics
education for makers is the creation of a self-learning environment where students
learn by absorption.

17A. Wolf, quoted in L. McClure, All students should receive excellent math teaching not just those
in specialist maths schools, http://bit.ly/2k33Kj3, posted 3 February 2017, accessed 18 February
2017.

http://bit.ly/2k33Kj3
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Compression and Abstraction

The specific modus of communication based on sharing intuition triggers the
development of another mental skill specific for mathematics: compression of
information. In the words of William Thurston, one of the greatest mathematicians
of recent times,

Mathematics is amazingly compressible: you may struggle a long time, step by step, to work
through some process or idea from several approaches. But once you really understand it
and have the mental perspective to see it as a whole, there is often a tremendous mental
compression. You can file it away, recall it quickly and completely when you need it, and use
it as just one step in some other mental process. The insight that goes with this compression
is one of the real joys of mathematics. (Thurston 1990)

In its turn, compression requires abstraction; I wrote in Borovik (2013) about
the strange fate of abstract thinking and the paradoxical situation when computer
science requires much higher levels of abstract thinking than is developed in
recipients of the mainstream mathematics education in school and university.

We are talking about the next generation of mathematicians who, most likely, will
routinely use automated proof checkers and engineers who will be using modelling
and analytic software of a similar degree of sophistication. To be efficient and safe
in their work, they will need a firm grounding in computer science and a sharpened
ability for abstract thinking.

On the other hand, children in their early teens are quite open to absorption of
abstract concepts; after all, they are grappling with other important abstract concepts
in their lives, for example, “love.”

Being in Control

On this point, I refer the reader to my recent paper Borovik (2017b) where I discuss
emotions related to a person’s control (or lack of control) of his/her mathematics:

sense of danger; sense of security; confidence, feeling of strength; feeling of power;

which eventually lead to the ultimate emotion of mathematics:

realisation that you know and understand something that no-one else in the world knows or
understands – and that you can prove that.

These higher-level emotions are not frequently discussed in the context of math-
ematics education—but, remarkably, they are known not only to professional
research mathematicians but also experienced by many children in their first
encounters with mathematics.

I think it is self-evident that mathematics education for makers should nurture
independence of their thinking and put them in control of their mathematics.
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Conclusions

The social role of mathematics is changing. To save mathematics as a cultural
system, we need to take special care of education of the next generation of
mathematically competent makers, perhaps at the background of collapsing mass
mathematics education.

I tried to argue that

mathematical intuition, ability to share intuition, compression, abstraction,
and being in control

should be seen as the cornerstones of mathematics education for makers.
These key skills can be nurtured by uniting mathematically inclined students with

their tribe, encouraging the communication of mathematics, and providing children
with rich mathematics, gentle academic guidance, and a strong value system.

The aim of my paper is to start a discussion.
I understand that I pose more questions than give answers.
For example, I have not said a single word about what should be taught

(perhaps I can only suggest that mathematics needs to be re-united with physics
and computer science). I completely ignored all organizational, administrative, and
political issues.

Instead, I tried to focus on methodological and pedagogical challenges highly
relevant for a selective “deep” mathematics education which are ignored in the
current model of mass education.

I have to warn that this is a political and ideological minefield. Academically
selective education is a hot potato, at least in Britain.

The social/physical duality of causality modules of human mind is an even
more difficult theme. Indeed, another obvious area of human activity affected
by interaction between the two causality system is religion, myth, and magic—I
mention them briefly in Borovik (2017b). The literature on this topic is already
saturated by references to “body-soul duality.” Neurophysiology is still in its
infancy, and identification of the two causality systems appears to be too subtle a
problem for direct experimental study at the current level of research technology.18

Despite its first successes, experimental neuroscience does not yet provide us any
certainty or protection from distracting ideological debates.

Meanwhile, let us abandon taboos and start a frank and open discussion of this
difficult problem.

18See Yeo et al (2017) for a meta-analysis of some of findings – they are very interesting, but they
are not enough.
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Čapek J., Čapek K. (1927, reprinted 1996) A Long Cat Tale. Albatros, Prague

19Mathematical Cultures, http://bit.ly/2mSJO4g accessed 05 March 2017. Proceedings volume:
Larvor (2016).

http://www.pnas.org/content/113/18/4909.abstract
http://www.pnas.org/content/113/18/4909.abstract
http://www.pnas.org/content/113/18/4909.full.pdf
http://bit.ly/2ozFuqI
http://bit.ly/2907Mmi
http://dx.doi.org/10.1007/978-3-319-28582-5_20
http://bit.ly/2mSXnzC
10.1016/B978-0-12-802218-4.0003-0
http://www.sciencedirect.com/science/article/pii/B9780128022184000030
http://www.sciencedirect.com/science/article/pii/B9780128022184000030
10.1007/978-3-319-53385-8 18
978-3-319-53383-4
http://bit.ly/2mSJO4g


Makers and Users 327

Cheney D. L., Seyfarth R. M. (2007) Baboon Metaphysics: The Evolution of a Social Mind.
University of Chicago Pres, Chicago

Davis P., Hersh R. (1981) The Mathematical Experience. Birkhäuser, Boston
Denizhan Y. (2014) Performance-based control of learning agents and self-fulfilling reductionism.

Systema 2(2):61–70, URL http://education.lms.ac.uk/wp-content/uploads/2015/01/Denizhan_
Performance-based_control_of_learning_agents_2014.pdf

Fogle B. (1990) The Dog’s Mind. Pelham Books
Hersh R. (1999) What is Mathematics, Really? Oxford University Press, Oxford
Jack A. I., Dawson A. J., Begany K. L., Leckie R. L., Barry K. P., Ciccia A. H., Snyder A. Z.

(2013) fmri reveals reciprocal inhibition between social and physical cognitive domains.
NeuroImage 66:385–401, DOI https://doi.org/10.1016/j.neuroimage.2012.10.061, URL http://
www.sciencedirect.com/science/article/pii/S1053811912010646

Juhász P. (2012) Hungary: Search for mathematical talent. The De Morgan Journal 2(2):47–52,
URL http://bit.ly/2iW8mLg

Kuhlmeier V. A., Bloom P., Wynn K. (2004a) Do 5-month-old infants see humans as material
objects? Cognition 94:95–103, DOI doi:10.1016/j.cognition.2004.02.007

Kuhlmeier V. A., Bloom P., Wynn K. (2004b) People v. objects: a reply to Rakison and Cicchino.
Cognition 94:109–112, DOI doi:10.1016/j.cognition.2004.03.006

Larvor B. (2016) Mathematical Cultures: The London Meetings 2012–2014. Springer International
Publishing, Cham, DOI 10.1007/978-3-319-28582-5, URL http://dx.doi.org/10.1007/978-3-
319-28582-5_20

Lemme M. (2012) Utter elitism: French mathematics and the system of classes prépas. The De
Morgan Journal 2(2):5–22, URL http://bit.ly/2jJDYRs

Nørretranders T. (1998) The User Illusion: Cutting Consciousness Down to Size. Penguin
Simeonov E. (2016) Is Mathematics an Issue of General Education?, Springer International

Publishing, Cham, pp. 439–460. DOI 10.1007/978-3-319-28582-5_24, URL http://dx.doi.org/
10.1007/978-3-319-28582-5_24

Stewart I. (1990) Does God Play Dice? The Mathematics of Chaos. Penguin
Thurston W. P. (1990) Mathematical education. Notices of the AMS 37:844–850
Yeo D. J., Wilkey E. D., Price G. R. (2017) The search for the number form area: A functional

neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews 78:145–160, DOI https://
doi.org/10.1016/j.neubiorev.2017.04.027, URL http://www.sciencedirect.com/science/article/
pii/S0149763417300325

http://education.lms.ac.uk/wp-content/uploads/2015/01/Denizhan_Performance-based_control_of_learning_agents_2014.pdf
http://education.lms.ac.uk/wp-content/uploads/2015/01/Denizhan_Performance-based_control_of_learning_agents_2014.pdf
https://doi.org/10.1016/j.neuroimage.2012.10.061
http://www.sciencedirect.com/science/article/pii/S1053811912010646
http://www.sciencedirect.com/science/article/pii/S1053811912010646
http://bit.ly/2iW8mLg
http://dx.doi.org/10.1007/978-3-319-28582-5_20
http://dx.doi.org/10.1007/978-3-319-28582-5_20
http://bit.ly/2jJDYRs
http://dx.doi.org/10.1007/978-3-319-28582-5_24
http://dx.doi.org/10.1007/978-3-319-28582-5_24
https://doi.org/10.1016/j.neubiorev.2017.04.027
https://doi.org/10.1016/j.neubiorev.2017.04.027
http://www.sciencedirect.com/science/article/pii/S0149763417300325
http://www.sciencedirect.com/science/article/pii/S0149763417300325


A Case Study in Reuben Hersh’s Philosophy:
Bézout’s Theorem

Elena Anne Corie Marchisotto

I met Reuben Hersh, in person, in 1989. However, I knew of him well before that.
I had read The Mathematical Experience ([11] 1981), a book he had coauthored
with Philip Davis that won the National Book Award in 1983. Written for a general
audience, this book sought to promote an understanding of mathematics from
historical, philosophical, and psychological perspectives.

I obtained a library copy of The Mathematical Experience and immediately
recognized that it had potential for use in the classroom. At the annual AMS/MAA
meeting in Phoenix, I attempted to purchase the book. I was told that this was the
last copy at the publisher’s table, and so I would need to wait to have one sent to
me. At that very moment of rejection, a booming voice proclaimed: “Give her the
book!” It was Reuben. I could barely find my voice, when this big bear of a man then
invited me to discuss the book over coffee. We have been friends and collaborators
ever since, and my life has been so wonderfully enriched by my association with
him.

So it is indeed an honor to have been invited to contribute to this Festschrift in
celebration of Reuben’s 90th birthday. When Bharath Sriraman of the University
of Montana sent the invitation, he noted that Reuben agreed to the volume with
certain conditions—one of which was his “being able to shape this in order to
break convention.” Knowing Reuben, this response is hardly surprising. Consider,
for example, how he came to be a mathematician.

Reuben earned his PhD in 1962, at the Courant Institute of Mathematical
Sciences at New York University, writing his thesis on hyperbolic partial differential
equations. The path toward this achievement was anything but conventional. In
1946, Reuben had graduated from Harvard earning a B.A. with honors in English
literature. What, then, led him to Courant and to mathematics? Reuben told me that
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he initially worked in journalism, hoping to impact the world in a positive way. That
not happening to his satisfaction, he then took a job as a lathe operator, believing
that at least he could contribute something “concrete” to the world. An industrial
accident cut that career short, and so, as I recall Reuben telling me, he wandered
into Courant one summer day and requested admittance as a graduate student.

In an interview for the American Mathematical Society ([21] 2014), Reuben
described to his editor, Edward Dunne, what he did after graduation from Courant:
“I started out doing my job as a mathematician. What was that? I proved things.”
Indeed, reflecting on his conventional “mathematical self,” he had made this
observation: “I find mathematics an infinitely complex and mysterious world;
exploring it is an addiction from which I hope never to be cured. In this I am a
mathematician like all others” ([11] 1981, p. 2). But, that being said, Reuben would
also traverse an unconventional path, emanating from his experiences in teaching a
foundations of mathematics course at the University of New Mexico in the 1970s:
“I have developed a second half, an Other, who watches this mathematician with
amazement, and is even more fascinated that such a strange creature and such a
strange activity have come into the world, and persisted for thousands of years”
([11] 1981, p. 2).

Reuben published extensively in applied mathematics. In addition, largely from
his unconventional self, there has emerged a plethora of writings and activities
promoting the idea that mathematics must, above all, be understood as a human
activity, a social phenomenon, historically evolved, and intelligible only in a social
context. See, for example, ([25] 1990), ([24] 1997), ([23] 1997). Indeed, according
to Reuben, mathematics has existence or reality only as part of human culture. It is
not infallible, and it is not unique. It is neither physical nor mental. It is social. It
is part of history. It is like all those very real things which are real only as part of
collective human consciousness ([24] 1997, p. 1).

Reuben distinguishes between the “front” and “back” of mathematics: the former
consisting of polished results and the latter consisting of what mathematicians must
do to obtain them.

Front mathematics is formal, precise, ordered, and abstract. It’s broken into definitions,
theorems and remarks [ : : : ]. Mathematics in back is fragmentary, informal, intuitive,
tentative. We try this or that. We say “maybe,” or “it looks like.” ([23] 1997, p. 36).

His humanist philosophy of mathematics focuses on the “back” of mathematics, and
he advocates demonstrating this view in the classroom. For Reuben, the humanist
philosophy brings mathematics down to earth, makes it accessible psychologically,
and increases the likelihood that someone can learn it, because “it’s just one of the
things that people do” ([24] 1997, p. 4). To that end, the teaching of mathematics
should expose students to the difficulties to which our present theorems offer
solutions ([25] 1990, p.105).

Such a view of mathematics teaching had been advocated by Alvin White of
Harvey Mudd College ([54] 1975), and Reuben became a strong proponent of
White’s program. See, for example, ([55] 1993), ([22] 2011). Today White’s vision
continues in the publication of online-only, open-access, peer-reviewed journal The
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Humanistic Mathematics Journal [26], whose editors, Mark Huber and Gizem
Karaali of the Claremont Colleges, describe in [26] this way:

The term humanistic mathematics could include a broad range of topics; for our purposes,
it means “the human face of mathematics. Thus, our emphasis is on the aesthetic, cultural,
historical, literary, pedagogical, philosophical, psychological, and sociological aspects as
we look at mathematics as a “human endeavor.”

With Reuben’s humanist philosophy of mathematics as a context, I now consider
his challenge for the contributors to his Festschrift. Reuben had posed a series of
questions about the future of mathematics research, mathematics education, and
philosophy of mathematics emanating from this provocative statement that Paul
Cohen had posed to him (Reuben didn’t specify when): “At some unspecified future
time, mathematicians would be replaced by computers.”

Any reasonable response to Cohen’s assertion would need to point out the
distinction between the replacement of a mathematician and the replacement of a
mathematician’s job. A spate of recent books such as the Rise of Robots: Technology
and the Threat of a Jobless Future suggests Cohen was prophetic with respect to the
latter: “A computer doesn’t need to replicate the entire spectrum of your intellectual
capability in order to displace you from your job; it only needs to do the specific
things you are paid to do” ([17] 2016, p. 230).

Still, as early as 1950s, Alan Turing ([48] 1951) had predicted that there would
come a time when computers would have intellectual capacities that exceed those
of human beings, and when that happens, the machines would take control. The
field of artificial intelligence (AI) emerged soon after, and in some circles, there is
the belief that it can enable action beyond human control. See, for example, ([3]
2014). But, even if AI could achieve such superintelligence, would that suggest that
mathematicians could be replaced by computers?

Turing offered no thoughts on whether machines taking control would be good
or bad. But, with respect to wresting control from mathematicians, Reuben did.
During the before-cited 2014 interview, Dunne posed this question: “Do you think a
machine is capable of doing mathematics?” Reuben replied: “Why would we want
it to? It is impossible and a terrible idea.” At the foundation of this response is
Reuben’s philosophy of humanism. In human beings, intelligence is inseparable
from social awareness, among other things. And for those who espouse a humanist
philosophy, social interaction is an essential component of what makes mathematics
grow.

What better way to support Reuben’s view that a machine cannot replace a
mathematician than to examine a piece of mathematics through the humanist lens?
This is what I have chosen to do for Reuben’s Festschrift. Essential to my discussion
is exploring social interaction in the role of “conversation,” as described by Steve
Strogatz: “A very central part of any mathematician’s life is this sense of connection
to other minds, alive today and going back to Pythagoras. We are having this
conversation with each other going over the millennia.” See ([9] 2015).

For a glimpse into such conversations (albeit selecting a scant few among
multitudes) and to provide what I believe is a compelling illustration of mathematics
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as social, part of culture, and part of history, I plan to discuss a result concerning the
precise number of points of intersection of two plane curves.
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This result would eventually become known as Bézout’s theorem, named for a
French algebraist Étienne Bézout who proved and generalized it. Precedents for the
theorem can be found in the work of Colin Maclaurin ([33] 1720), Gabriel Cramer
([10] 1750), and Leonhard Euler ([15] 1764), among others. The first modern
algebraic—and perhaps the first fully complete treatment of it—wasn’t given until
the twentieth century in ([32] 1916) by F.S. Macaulay ([19] 1984, p. 152).

It would take many “conversations over centuries” for mathematicians to recog-
nize what conditions are necessary to precisely determine the number of points of
intersection of two plane curves. Such conversations would significantly broaden
the scope of the result, as well as vary the contexts in which it could be conceived
and the strategies by which it could be proved.

The history of Bézout’s theorem is richer and more complicated than I would
ever be able to convey in this short article. I only hope to provide a glimpse, within
a narrow window of time, into a few among the wealth of contributions toward
its algebraic solution, as well as a glance at the emergence of a purely geometric
approach to the theorem that led to alternative paths toward its proof. I begin with
the algebraic story.

In the eighteenth century, Bézout in ([2] 1764), as had Euler in ([16] 1748),
sought to prove, using determinants in algebraic elimination, that the number of
points of intersection of two plane curves is given by the product of the degrees
of the polynomial equations that represent those curves. To make this statement
to be precise, the polynomials must have no common factors; the field must be
algebraically closed; the points of intersection must be counted with the right
multiplicities; and intersections at infinity must be considered. But these conditions
would only become part of the collective consciousness regarding intersection
multiplicities that would evolve over the course of centuries. The efforts of Bézout’s
and his contemporaries started the conversation.

Bézout’s strategy for finding the number of intersection points was this: given
two nonzero polynomials in two variables of degree m and n, respectively, derive
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a determinant from their coefficients, calling the polynomial equation given by the
vanishing of the determinant the “resultant,” and use the resultant to determine that
the number of common solutions for the two equations is mn.

Like his contemporaries, Bézout was indebted to Maclaurin and Cramer for the
method of solving simultaneous linear equations using determinants. To prove his
theorem, Bézout was led to consider a certain determinant in the coefficients of P
and Q viewed as polynomials in y whose coefficients are polynomials in x. How he
derived it and what he did with it is why the determinant became known as “the
Bézoutian” ([56] 1909, p. 327).

Bézout was able to simplify the calculations in the elimination method used
to find the determinant, which is a function of one variable, and, in addition, to
interpret it in a new way to find the number of solutions to the given polynomial
equations. In the process, Bézout engaged in a “conversation over the centuries”
with René Descartes, who, in ([13] 1637), had advocated a method of undetermined
coefficients that involved the comparison of coefficients to find unknown quantities.

It was known to Isaac Newton and Gottfried Leibniz (and perhaps even Pierre
de Fermat before them) how to apply a process for combining any two equations to
eliminate one unknown ([14] 1985, p. 6). Bézout’s contemporaries would apply this
step-by-step “common factor” process with more equations and more variables. But
Bézout had a new idea. He proposed instead to consider all the equations at once.
He hypothesized that from (k C 1) equations, k variables could be eliminated at the
same time and that the result would be a polynomial linear combination of the given
functions. The idea was to use multipliers with degrees sufficiently high so that the
resultant would be univariate and would have the smallest degree sufficiently great
for this purpose.

Then Bézout did something else that was innovative. Unlike his contemporaries,
he did not solve for the roots of the resultant equation. Indeed, it is often difficult to
determine the nature of the roots of the resultant. Instead, he showed that the degree
of the resultant is the number of common zeros of P and Q.

However, Bézout addressed the concept of intersection multiplicity, on which
his theorem hinges, only heuristically. He treated multiple points of curves by
implication only, locating them at infinity and showing, for particular cases, how
they affect the number of finite intersections ([56] 1909, p. 332). To make the proof
of his theorem, rigorous:

1. Multiplicities of intersection points need to be correctly counted. Consider, for
example, the case where P and Q are represented, respectively, by the equations
x2 C y2–1 D 0 and x2 C 4y2–1 D 0. By Bézout’s theorem, the number of
intersection points is four. But in fact that number is only two, because each
intersection point of the circle and the ellipse has multiplicity two.

2. The exclusion of repeated factors in the equations for the curves is necessary
to avoid the possibility of infinite intersections. Consider, for example, the case
where P and Q are represented, respectively, by x2 - xy D 0 and x2 C xy D 0.
By Bézout’s theorem, the number of intersection points is four. But in fact that
number is infinite because their intersection contains the y axis (x D 0).
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3. The context for the theorem needs to be changed. Descartes’ analytic geometry
cannot account for all intersections because it fails to be closed in either the
algebraic or the geometric sense. The reals are not closed algebraically because
they do not admit imaginary points. Consider, for example, the case where P
and Q are represented, respectively, by y D x2 and y D mx C b. By Bézout’s
theorem, the number of intersection points is two. However, when m is finite, the
intersection points of the parabola and the line can be two real and distinct points
(if m ¤ 0), two complex and distinct points (if m D 0 and b < 0), or one multiple
point (if m D b D 0). If, on the other hand, we remove the restriction that m is
finite and let m increase without bound, then y D mx C b becomes a vertical line,
and the number of real intersection points is one because the Cartesian plane does
not admit points at infinity.

And so the conversations continued, with mathematicians introducing new
strategies to confront these issues. During the eighteenth century, when analysis
dominated, Gaspard Monge attempted to reengage mathematical thinking along
geometric lines. In a “conversation over the centuries” with Girard Desargues,
Monge promoted synthetic methods, which are characterized by direct consideration
of geometric figures, rather than by the translation of the properties of these figures
into equations. Monge’s pupil, Jean Victor Poncelet, with ([42] 1822), would effect
a revival of projective geometry in the nineteenth century and in doing so provided
a more satisfactory context for mathematicians to attempt to properly count all
intersections—real, complex, and those at infinity—in proving Bézout’s theorem.

Poncelet proposed a definition of intersection multiplicity based on the idea
that if figures have certain properties, then these properties hold for corresponding
figures obtained by “continuous transformations,” for example, homologous figures
obtained by projection and section ([42] 1822, p. 68). Known as Poncelet’s
“principle of continuity,” or “principle of conservation of number,” this idea,
as developed by Hieronymus Georg Zeuthen and Hermann Schubert, is “at the
foundation of the research in enumerative geometry” ([14] 1985, p. 68), the object
of which, classically, was to find the number of geometric figures satisfying given
geometric conditions, in terms of invariants of the figures and the conditions ([30]
1976, p. 299).

To define the intersection multiplicity at one point of two figures P and Q,
Poncelet would vary one of them, say P, in such a way that for some position P0

of P, all the intersection points with Q should be simple, and so one could count
the number of these points which collapse to the given point when P0 tends to P, in
such a way that the total number of intersections (counted with multiplicities) would
remain constant. For example, a point of tangency of a line with a curve is a limit
of intersections of nearby secant lines. Poncelet’s principle for curves in a plane,
which stipulates their number of intersection points is a continuous invariant, can
be interpreted algebraically in this way: a change in the coefficients of a polynomial
equation does not affect the number of roots, provided the change does not annihilate
the leading term of the polynomial.
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Appealing to his principle of continuity, Poncelet, in ([42], 1822), proved
Bézout’s theorem. He proceeded in this way:

Given two curves P and Q in the complex projective plane, of degrees m and n respectively.
Observe that the curve Q, for example, belongs to the continuous family of all curves of the
same degree n, and that in that family there exist a proper subset of curves, call it S, which
have a multiple point belonging to P or pass through a multiple point of P or are tangent to
P at a common point, simple on both curves. Let R be a curve of degree n not in S. Then P
and R have in common only simple points where their tangents are distinct. So R can be a
deformation of Q that is union of n distinct lines. Then each line meet P in m distinct points
and so P and R meet in mn distinct points. Take the multiplicity of the intersection of P and
Q at a point r to be the number of points of intersection of P and R that tend toward r as R
tends toward Q. Then the weighted number of intersections of P and Q is mn.

In his proof, Poncelet assumed the number of simple points of P and R (where
their tangents are distinct) is constant due to the principle of continuity. There was
some controversy over his assumption, but, ultimately, it can be justified in the plane
using the continuity of the roots of an equation as a function of the parameters and
the fact that the complement of the union of the curves in S is connected ([14] 1985,
pp. 67–68). Indeed, Poncelet’s principle became part of the collective consciousness
in the nineteenth century. See ([28] 1985) and ([60] 1915, Chapter 5).

A few decades after Poncelet introduced his principle, Michel Chasles would
propose a principle which provided a way to discuss a correspondence that can be
expressed by an algebraic equation, without having to know that equation. Chasles
defined an (m, n) correspondence as a relation between two points x, y, varying
on the same projective line such that to each point x there exist m points y related
(or corresponding) to x and to each point y there exist n points x related to y. His
“principle of correspondence” asserts that the number of points x (counted with
multiplicity) that are fixed (i.e., each x is related to itself) is m C n, unless the
number is infinite (and so every x is fixed). The principle holds because the graph
of the correspondence (m, n) is defined by a bi-homogeneous equation of degree
m in x and n in y, so setting x D y yields an equation of degree m C n or one
that is identically zero. Chasles exploited the projective property of duality in a
plane to transfer the principle from a correspondence between points on a line to a
correspondence between lines through a point. See ([8] 1855), ([7] 1864).

Chasles’s principle, like that of Poncelet, became part of a network of shared
concepts among projective geometers. Zeuthen, for example, in ([59] 1873), wrote
about its “great importance” and provided his own proof of it.

Chasles used the transferred principle, as well as Poncelet’s principle, in ([6]
1872), to construct a synthetic proof of Bézout’s theorem in the plane. He proceeded
in this way:

Let P and Q be two curves in general position, of degrees m and n, respectively, in a complex
projective plane. Compute the intersections of P and Q by first taking two points o, s in
general position in the plane of P, Q. Since the degree of P is m, a line will intersect it
in m points; likewise, Q by a line in n points. Construct line ox to meet the curve P in
m points ˛. The lines drawn from these points ˛ to s meet the curve Q in mn points of
contact ˛’ since by Poncelet’s principle, the number of intersection points is not changed
by projection. Through these ’’ draw mn lines oo’. These mn lines correspond to the line ox.
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In the same way, to each line oo’, which meets the curve Q in n points correspond nm lines
ox because each oo’ meets Q in n points ’’, and the lines in these points intersect the curve
P in nm points ˛, through which pass the nm lines ox corresponding to oo’. The principle of
correspondence (appealing to duality which transfers the correspondence from the family
of lines that intersect in a point, to the set of points on a line), says there are mn C nm lines
ox, each coincident with one corresponding line o˛’. But nm of these lines coincide with os
which does not have any points in common with P and Q. And the other mn lines are those
that pass through a point ˛ on the curve P which is coincident with one of the points ˛’ on
Q. Thus the points of intersection of P and Q are mn in number.

In this nice synthetic proof, there continue to be issues with the assignment of
intersection multiplicities. For example, of the mn C nm lines ox, each coincident
with one corresponding line o˛’, Chasles claims, without any justification, that
nm of them coincide with os. Nonetheless, while Chasles’s proof would not be
considered rigorous by today’s standards, he was able to convince other important
mathematicians, including Zeuthen ([59] 1873, Note 4), Georges Fouret, and Mario
Pieri, of its validity. Fouret, in ([18] 1872-3), and Pieri, in ([40] 1888), generalized
Chasles’s proof for higher dimensions. Zeuthen would ultimately demonstrate his
own proof of the theorem in ([57] 1914) without reference to Chasles’s principle.

It would take centuries for the idea of intersection multiplicity for plane curves
to be made rigorous. Conversations swirled around static and dynamic approaches.
In the eighteenth century, by defining multiplicity in terms of the resultant, Bézout
was among those who had used a static approach where the equations are not varied,
reducing the question of the intersection multiplicity of two curves to the multiplic-
ity of a root of a polynomial in one variable. In the early nineteenth century, Poncelet
adopted a dynamic approach, where the multiplicity of a solution is the number
of solutions near the given solution when the equations are varied. Some decades
later, Arthur Cayley ([4] 1863) and others would develop a dynamic definition in the
following way: to determine the multiplicity of a point of intersection p of two plane
curves, add together individual contributions to the multiplicity of p coming from a
pair of branches at that point, one from each curve. These individual contributions
are obtained through the intersection of the pair of branches by a line parallel to the
y axis with abscissa tending toward p and multiplying together the number of points
on each branch which collapse toward p. See ([14] 1985, Chapters 4 and 6). By the
twentieth century, these ideas would be made rigorous notably by Francesco Severi
([46] 1912), Bartel Leendert van der Waerden ([51] 1927), and André Weil ([53]
1944). Mathematicians would propose definitions such as these for the multiplicity
of a curve at a point: Algebraically, the multiplicity of a point p of a plane curve P of
degree n at a finite distance is defined as the smallest degree of a term occurring in
the expansion of P about p. Geometrically, p has multiplicity d if most lines through
p meet P at p in d coincidental points or if they meet P outside p in n-d points.

However, new issues regarding intersection multiplicity emerged as mathemati-
cians sought to generalize Bézout’s theorem. Bézout himself constructed an analytic
proof that if n hypersurfaces of degrees d1, d2, : : : dn in n-space, intersect in a finite
number of points, then the number of common intersection points is the product
of the degrees, d1*d2* : : : *dn. He did this by generalizing the resultant to the case
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of n polynomials in n variables. See ([2] 1764), ([1] 1779). But this methodology
does not universally apply in more than two dimensions. Three surfaces may not
only have a finite set of points in common but also a curve or a system of curves,
in which case their resultant may vanish identically, having an infinite number of
roots. For example, three quadric surfaces can intersect in one, two, or three lines, a
conic, or a twisted cubic. According to Bézout, these three quadratic surfaces should
intersect in eight points. But if they have a common line, four of those intersection
points are absorbed. If they have a common conic, six of the intersection points
are absorbed, and if they have a common twisted cubic, all eight of the intersection
points are absorbed. Except for the case where the common curves are straight lines
at infinity, Bézout did not address this problem ([56] 1909, p. 336).

In the 1800s, George Salmon, also appealing to the algebraic theory of elimina-
tion, would extend Bézout’s theorem to three dimensions. Observing that curves in
space are classified according to the number of points in which they are met by a
plane, he noted that “three equations of degree m, n, and p, respectively, denote mnp
points.” Salmon claimed that “this follows from the fact that if we eliminate y and
z between the equations, then we obtain an equation of the degree mnp in x.” Thus,
he concluded, “this proves also that three surfaces of degree m, n, and p, intersect in
mnp points” ([43] 1882, p.15). See also ([44] 1866, pp. 61–63).

On page 299 of ([43] 1888), Salmon referenced the following statement which he
called a “principle”: a curve of degree r meets a surface of degree p in pr points. He
claimed “this is evident” when the curve is the complete intersection of two surfaces
whose degrees are m and n because then r D mn, and the three surfaces intersect in
mnp points. He then proposed that this is true also “by definition” when the surface
breaks into p planes. Salmon ultimately indicated: “We shall assume that, in virtue
of the law of continuity, the principle is generally true.” But was his appeal to the
“law (principle) of continuity” valid?

Poncelet had successfully applied the principle of continuity for a proof of
Bézout theorem in the plane, assuming a plane curve belongs to the continuous
family of all curves of the same degree and that, in this family, there exist curves
which degenerate into a system of straight lines, each meeting a fixed curve in
distinct points. But Poncelet’s principle is not easily extended beyond the plane.
Mathematicians in the nineteen century (and indeed into the twentieth) were
generally not aware of the potential hazards of so extending Poncelet’s principle.
See ([31] 1976).

In a major report on enumerative methods in algebraic geometry ([60] 1915),
Zeuthen and Pieri made the following statement: “To establish that, in general, mn
is the number of points common to a surface of the mth order and to a curve of the nth

order, it is legitimate to replace the surface by a system of m planes, whereas it is not
permissible to substitute for a curve a system of n lines” ([60] 1915, pp. 275–276).
Since Salmon kept the curve fixed and just moved the surface until it broke into p
planes, his reasoning was sound.

George Halphen ([20], 1873–1874) would cite Salmon’s result for three dimen-
sions, when he constructed a proof of Bézout’s theorem in n dimensions. Halphen
began by using fractional power series to determine the intersection multiplicity of
two curves at a point, changing coordinates so that the points at infinity are moved
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to be at finite distance. He proved that the number of intersections of two curves,
converging in a point O, is equal to the sum of the orders of the infinitely small
segments intercepted by the two curves on a secant whose distance to the point O is
infinitely small of the first order and which does not coincide with any tangent to one
of the curves in this point. But when he generalized this process for n dimensions,
he stumbled.

So again, the conversations continued. In ([36], 1877), Max Nöther addressed the
error in Halphen’s proof and corrected it. Ultimately, however, in ([50], 1928), van
der Waerden showed that length multiplicity would not provide a correct measure
for Bézout’s theorem. The conversations continued. Van der Waerden ([51] 1927)
and Weil ([53] 1944), according to Severi ([46] 1912), would rescue Poncelet’s
principle. Precise definitions of intersection multiplicity in algebraic intersection
theory would endeavor to make proofs of Bézout theorem rigorous. But before that
happened, the conversations about the theorem would be expanded, adding synthetic
geometric arguments into the mix of analytic algebraic ones.

Mario Pieri was a key contributor to that conversation. In ([40] 1888), Pieri
generalized the theorem to n dimensions, but for two varieties of complementary
dimension, instead of for n hyperspaces. In conversation with historical and
contemporary mathematicians, he would help to shift the focus from algebra to
geometry: He expressed the theorem in purely geometric terms, advocating a purely
synthetic proof rather than an analytic one, replacing elimination methods with
enumerative ones.

Pieri’s generalization of Bézout’s theorem for complementary varieties in pro-
jective n-space P(n) involved a generalization of the notion of degree. Namely, the
degree of a k-dimensional variety X in P(n) is the number of points in its intersection
with a general (n - k)-dimensional linear subspace of P(n). In his synthetic proof of
the generalized theorem, Pieri focused his consideration exclusively on geometric
figures, rather than on equations derived from the properties of these figures. To
create the required intermediate geometric figures, he made use of the geometric
processes of projection and of section. Using enumerative methods to obtain the
number of intersection points, he appealed to Poncelet’s continuity principle. Pieri
also engaged in “conversation” with Chasles, both with respect to generalizing
Chasles’s correspondence principle as well as Chasles’s proof of Bézout’s theorem
for curves in a plane.

Before he constructed his proof of Bézout’s theorem in n-space, Pieri proved
Chasles’s principle of correspondence for n dimensions ([41], 1887): He enu-
merated the number of coincidences in any algebraic correspondence between
two n-dimensional projective spaces, using the methods of projection and section,
and the principle of mathematical induction. For his inductive hypothesis, Pieri
was in conversation with Chasles ([7] 1864), Salmon ([43] 1865), and Zeuthen
([58] 1874), who had established such coincidences for dimensions up to n D 3.
Pieri’s generalization may be called rigorous by modern standards. See ([19] 1984,
pp. 315–316), ([45] 1912, p. 678).

Pieri then used this result in his proof of Bézout’s theorem ([40] 1888). He began
by proving the following lemma:
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Let V(p) and W(q) be algebraic varieties of dimension p and q, and degree r and s in an
n-dimensional projective space P(n). To prove that when p C q D n, the degree of (V \ W)
D rs, first prove that in P(n – 1), there are (t)(r)(s) lines that meet P(t - 1) and P(n – t – 1)
and two linear varieties V(t - 1) of degree r and W(n - t - 1) of degree s, where t - 1 � (n - t
- 1).

Pieri’s proof of this lemma involved degenerating V and W into two unions of
linear spaces and appealing to Poncelet’s principle of conservation of number and
Pieri’s own n-dimensional generalization of Chasles’s correspondence principle.
Next, Pieri generalized Chasles’s synthetic proof of Bézout’s theorem. He let the
two varieties V(p) of dimension r and W(q) of dimension s remain fixed. Fixing two
auxiliary linear spaces P(n - p - 1) and P(p - 1) and generalizing Chasles’s auxiliary
points, Pieri uses them to set up a correspondence, to which his n-dimensional
generalization of Chasles’s correspondence principle is applied. He then is able to
prove Bézout’s theorem using the principle of mathematical induction, assuming it
is true in lower dimensions, as had been proved by Chasles in ([6] 1872), for two
dimensions, and Fouret in ([18], 1872–3) for three.

Pieri constructed his proof with an awareness of the collective consciousness
about the theorem, from both the analytic and the synthetic perspectives. He
followed Fouret in generalizing Chasles’s synthetic proof. But like Chasles and
Fouret, he did not provide his own definition of intersection multiplicity. This is
likely because he accepted the analytic one for the n-dimensional case that had been
given by Halphen in ([20], 1873–1874). Indeed, Pieri observed that the analytic
premises on which his synthetic proof was founded could be reduced to the theorem
that an algebraic equation of degree n has n roots (or else an infinity of them).

While Pieri’s use of Poncelet’s principle can be made entirely rigorous as
demonstrated by William Fulton in ([19] 1984, pp. 127–127,180–185,193–194) and
by Solomon Lefschetz in topological intersection theory (see [29] 1980, p. 124),
validating Pieri’s proof of Bézout theorem would not be an easy task. That is perhaps
why it, and other synthetic proofs of the era, are not as well know as they should be.
In a sense, we have come full circle traversing the path from the algebraic approach
of Bézout to Pieri’s synthetic one: Modern mathematics would advocate rigorously
proving geometric statements, such as Pieri’s, by translating them into algebraic
equivalents.

That being said, Pieri did much to enrich the conversation at the turn to the
twentieth century, continuing to explore issues surrounding Bézout’s theorem. See,
for example, ([39] 1891), ([37] 1897). He played a role in paving the way for the
ultimate resolution of the theorem in modern algebraic intersection theory, begun by
Weil ([53] 1944), in conversation with Severi ([46] 1912) and van der Waerden ([50]
1928) and others in the 1930s, culminating in Fulton’s work ([19] 1984) and that of
Steven L. Kleiman ([27] 1987). Indeed, Fulton ([19] 1984, p.318) noted that Pieri’s
fixed point formula in ([39] 1891, p.265) stands out as a precursor of modern excess
intersection theory. Wolfgang Vogel’s assessment of Pieri’s contribution was even
stronger: “It seems that a starting point of an intersection theory in the non-classical
case was discovered by M. Pieri” ([52]1984, p. 11).
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The collective consciousness about intersection multiplicities in modern times
that reflect the historical evolution of thought, inspired by Bézout and his contempo-
raries, and enriched by those engaged in conversation over the centuries, is evident
in these statements of Bézout’s theorem for the plane and in n-dimensional space
([19] 1984, pp.14, 144–152):

1. The sum of the intersection multiplicity for all common points of the two
projective plane curves (assumed irreducible and distinct) over an algebraically
closed field is the product of the degrees.

2. If n hypersurfaces of degrees d1, d2, : : : dn, intersect transversally, or if they
intersect in finitely many points counted with their proper multiplicity, then
the number of common intersection points is the product of the degrees:
d1

� d2
� : : : � dn. Hypersurfaces intersect transversally at a point P when each one

is smooth at P, and P is the only point of intersection of their tangent spaces.
The intersection of the n hyperspaces themselves is said to be transverse, if it is
transverse at each of its points.

The same can be said regarding proofs of the theorem. Navigating the path toward
the ultimate justification, in intersection theory and beyond, of the result and all it
has come to represent gives an appreciation of mathematics as a process, during
which progress is both impeded and stimulated by the collective consciousness at
any given time. In the eighteenth century, no general attempt was made to attach
an integer measuring the “multiplicity” of the intersection to each intersection point
in such a way that the sum of multiplicities should always be the product of the
degrees of the intersecting figures ([52] 1984, p. 2). By the early twentieth century,
mathematicians were either struggling to properly define intersection multiplicity or
took it for granted. Even when the notion was well defined, it was still not obvious
if the intersection multiplicity computed for figures in general position is valid. Nor
was it obvious for which cases the use of the principle of conservation of number
could be correctly applied. See ([31] 1976).

What I have discussed here, opening only a small window on the evolution of
thought about Bézout’s theorem, illustrates the social nature of mathematics and the
avenues that emerge because of it. Indeed, in presidential address to the American
Mathematical Society in 1908, which focused on Bézout’s theory of resultants and
its influence on geometry, Henry White said:

The accepted truths of today, even the commonplace truths of any science [ : : : ] were the
doubtful or the novel theories of yesterday. [ : : : ] The first effect of reading in the history
of science is a naïve astonishment at the darkness of past centuries, but the ultimate effect
is a fervent admiration for the progress achieved by former generations, for the triumphs of
persistence and of genius ([56] 1909, p.325).

White further observed: “A life of unremitting labor is not ill spent if it leaves
a work so easily intelligible, so full of interesting problems, and in proportion
to contemporary science so complete as this Théorie générale des équations
algébriques of Bézout” ([56] 1909, p. 335). His observation was made more than a
century ago!

The narrow glimpse I have provided into the history of Bézout’s theorem
references only a few of the many mathematicians who, with “persistence” and
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“genius,” impacted the progress toward its solution and generalization. And what
an interesting journey!

Today, the name Bézout’s theorem is part of the collective human consciousness,
part of the “front” of mathematics, “attached to a number of theorems in algebraic
geometry concerning intersections of arbitrary cycles” (formal sums of irreducible
varieties) on projective space “and often to more general situations whenever an
intersection ring of a variety is explicitly computed” ([19] 1984, p.152).

A full exploration of the journey to this point would truly reveal what Reuben
calls the “back” of mathematics, rich in human activity replete with twists and
turns, failure and successes, derivations and innovations, and multiple examples of
mathematicians conversing over decades and centuries.

Reuben had asked, in the context of Cohen’s premise: “Will the computer
change mathematical research, mathematical philosophy, mathematical teaching?”
It would be difficult to find any mathematician who would say no. James T. Smith
of San Francisco State University put it nicely: ‘‘The advent of the computer has
provided a huge increase in the subject matter inviting mathematical research,
mathematical-philosophical inquiry, and mathematical teaching. New mathematics,
new philosophical inquiry, and new approaches to teaching result” ([47] 2017).

That being said, I believe there are limits, despite claims of a super-intelligent
AI, on what a computer controls. It is subject to human intervention. It can only be
motivated to do what humans prescribe. It is not curious. It cannot follow hunches. It
is not innovative. It cannot initiate changes in contexts. It cannot take into account, to
the extent mathematicians do, cultural and historical successes and failures. Indeed,
notwithstanding the fact that in today’s world computer algebra systems are used to
solve many problems in algebraic geometry, the evolution of thought about Bézout’s
theorem suggests that a computer can add to the conversation, but not replace it.
It cannot replicate the social interaction that in Reuben’s view is essential to the
growth of mathematics.

Allow me to close with a personal comment about the impact Reuben has had on
my mathematical life. He has mentored me, encouraged me, and guided me to many
interesting projects. He orchestrated my introduction to other mathematicians, with
whom I have had the opportunity to collaborate—in particular, Phil Davis of Brown
University ([12] 2012) and Dick Stanley of UC Berkeley ([49] 2003). Others of my
associations that came independently of Reuben circled back to him. Anneli Lax
of the Courant Institute of Mathematical Sciences at New York University was my
thesis advisor. I developed a deep and enduring friendship with her and her husband,
Peter Lax. It was only later that I learned Peter had been Reuben’s thesis advisor.
So it seemed that almost by destiny our lives and our work became intertwined with
Reuben’s. See, for example, ([34] 1999), ([55] 1993).

Thank you Reuben for your many conversations with me—both mathematical
and non-mathematical. Regarding the latter, I recall, with fondness, your reaction to
reading (at my request) one of Anton Chekhov’s short stories. You wrote: “I finally
read ‘The lady with the dog’ and Chekhov’s vision of human life. Joy is inseparable
from tragedy. Reality indistinguishable from the imaginary and the ideal. Maybe
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even good and evil inseparable, impossible without each other.” Well said! Thank
you Reuben, for inviting me, so many times, to see the world through your eyes.
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A Gift to Teachers

Nel Noddings

Reuben Hersh’s What Is Mathematics, Really? is a beautiful gift to math teachers.
For many years, despite wave after wave of innovations, math teachers have been
bogged down by the insistence that they teach a litany of facts, skills, and concepts
that most students will never use. The widespread use of technology seems only
to have increased this tendency. Teachers are told to state a carefully specified
objective, provide instruction designed to accomplish it, and test, test, test!

The classic mathematical philosophy of Platonism has contributed to the heavy
stuffiness of mathematics education. Hersh comments:

Platonism can justify a student’s certainty that it’s impossible for her/him to understand
mathematics. Platonism can justify the belief that some people can’t learn math. Elitism in
education and Platonism in philosophy naturally fit together. Humanist philosophy, on the
other hand, links mathematics with people, with society, with history. (1997, p.238)

In Loving and Hating Mathematics (2011), Hersh and Vera John-Steiner build
on the humanist idea to argue strongly that educators should give greater attention
and respect to subjects other than mathematics. Perhaps mathematics should not
play such a central role in college admission. After all, many significant intellectual
activities do not involve mathematics, and students should not be made to feel
academically inferior because they are not interested or proficient in mathematics.
That said, there are everyday tasks that require some mathematics, and students
should be encouraged to develop the skills and understanding necessary for
everyday life. Acknowledging this basic need, Hersh and John-Steiner still suggest
(and I agree) that we should discontinue “the use of mathematics as an academic
filter” (2011, p.230):

Instead, the goal is to treasure diversity in talent and interest; to provide advanced
mathematics teaching/learning to motivated students, while decreasing the number who
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suffer from math phobia. The challenge is to develop a systematic, society-wide perspective,
rather than imposing the same values and approaches on both enthusiastic and reluctant
learners. Because we love mathematics, we want to minimize the number of those who
hate it. Our purpose in these proposals is to shift the premise of the current debate. It is to
create a humanistic role for mathematics and its teaching in our culture, a way of teaching
mathematics that focuses on the needs and abilities of students as well as society. (2011, pp.
330–331)

In agreement, I have argued that all educators—perhaps all citizens—should
think more deeply about the aims of education. In recent work (Noddings, 2013,
2015), I have suggested that the main aim of education should be to produce better
people and to think deeply about what we mean by “better.” Surely, we want
people to be “better” socially, intellectually, morally, aesthetically, and physically.
We want good citizens, good parents, good friends, good workers, and people who
are culturally well informed and aesthetically appreciative. And, yes, what we mean
by “better” should be forever open to lively and sensitive exploration; we must not
allow the term to be defined by ten specified goals or instructional objectives.

Hersh has contributed powerfully to this vision in his humanist description of
mathematics as a form of life. As a form of life, it is necessarily connected to forms
of life beyond mathematics. In education, this is especially important. We must share
these connections and get rid of the long and stubbornly held view of mathematics
as a disciplinary specialty that everyone can master if he/she works hard enough.
We should put greater emphasis on interdisciplinary studies.

Hersh illustrates what can be done with a wonderful set of short biographi-
cal/historical anecdotes. All kids are commanded to learn the Pythagorean theorem.
How many get to hear that Pythagoreans were forbidden to eat beans or that
they constituted a religious brotherhood? How often are the religious beliefs of
Descartes or Spinoza discussed? (Is Spinoza even mentioned in high school math
classes?) Do math students hear anything about Bertrand Russell’s antiwar efforts?
Is his atheism mentioned? Do they hear the name of John Stuart Mill or have an
opportunity to discuss his views on the power of open, intelligent, civil dialogue?
Hersh summarizes his support for treating mathematics as a form of life connected
to other forms:

Mathematics is like money, war, or religion—not physical, not mental, but social. Dealing
with mathematics (or money or religion) is impossible in purely physical terms : : : It can
only be done in social-cultural historic terms. This isn’t controversial. It’s a fact of life.
(1997, p.248)

Hersh’s views are supported by other interdisciplinary thinkers today. E.O.
Wilson, famed biologist, urges biology teachers to reach outside biology: “The
ongoing explosive growth of knowledge, especially in the sciences, has resulted
in a convergence of disciplines and created the reality, not just the rhetoric, of
interdisciplinary studies” (2006, p.135).

A recent biographical account of Alexander von Humboldt reminds us that
interdisciplinary thought and dialogue were treasured by Ralph Waldo Emerson,
Edgar Allan Poe, Walt Whitman, and Henry David Thoreau. Andrea Wulf (2015)
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notes that Humboldt rejected the temptation to draw sharp lines between the arts
and sciences and between the subjective and objective:

As scientists are trying to understand and predict the global consequences of climate
change, Humboldt’s interdisciplinary approach to science and nature is more relevant than
ever. His beliefs in the free exchange of information, in uniting scientists and in fostering
communication across disciplines, are the pillars of science today. His concept of nature as
one of global patterns underpins our thinking. (2015, p.336)

Endorsing the humanist approach to mathematics, Hersh concludes:

Recognizing that mathematics is a social-cultural-historical entity doesn’t automatically
solve the big puzzles in the philosophy of mathematics. It puts those puzzles in the right
context, with a new possibility of solving them. (1997, p.249)

Similarly, expanding the teaching of mathematics into vital interdisciplinary
studies will not solve all of our pedagogical problems, but it will put us on a more
relevant, far more exciting, path.
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The Philosophy of Reuben Hersh:
A Nontechnical Assessment

William Labov

Reuben Hersh and I attended Harvard College in the 1940s. It was during the Second
World War, when, as it was said, “they let anyone in.” The only training I had in
mathematics was a first year Calculus course, and I have been trying to catch up ever
since. Connections between philosophy and science may not have been as strong
then as they are now. But I remember the reaction of my freshman advisor John
Wild, a Thomist philosopher, when he spotted a Chemistry B course on my program.
“Where,” he asked, “did you get that idolatry of science?” I was stunned. “This man
is really intelligent,” I thought. “How could he tell from that one course that I have
an idolatry of science? Because I do.”

Our Harvard contacts were not so much in the classroom as in political action
groups. Reuben and I had the great pleasure of working for FDR in his third term
victory of 1944 and campaigned for a united front before the red-baiting days
of the 1950s did so much damage at Harvard. Reuben appeared to me to be an
informed Marxist. With a major in English and philosophy, I knew enough from my
philosophy course to qualify as a materialist. We were convinced that most of the
social problems in our society were the product of the inherent contradictions of
capitalism.

On graduation, we both pursued a career remote from any university. Each of
us made efforts to resolve some of those contradictions and make that larger world
a bit better. As his Wikipedia page reports, Reuben went to work as a machinist
and applied himself to the politics of union organization. My efforts were less well-
thought out. I had a 3-months’ temp as an editorial assistant at Alfred A. Knopf and
should not have been surprised when my option was not picked up after I marched
with the Knopf contingent on May Day. I lost a job at Drug Trade News when I
unthinkingly left a subscription list for the Daily Worker open on my desk. Given
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the needs of a growing family of four children, I turned to industry and spent the
next ten years in the laboratory as a formulator of printing inks and silkscreen inks.

At the end of that decade, each of us for different reasons returned to the
university to pursue a different career. Reuben cut off his thumb with a band saw,
which ended his work as a machinist. I discovered that my skills at formulating new
and better printing inks would be forever buried in the domain of “trade secrets.”
Without knowing, we followed parallel paths, both to graduate school in New
York City: Reuben at the Courant Institute, I in the Department of Linguistics at
Columbia.

I cannot follow the direction of Reuben’s thinking in his early graduate years, as
we were not in touch. What I know is from What is Mathematics, Really? and more
recent conversations. It will take me a paragraph or two to show how I was brought
to face many of the same problems as are dealt with in that book.

I entered the field of linguistics as an exciting and lively domain in which
theorists vigorously debated the merits of their solutions to the problem of mapping
the abstract and complex structures that unite form and meaning. The data were
primarily the linguist’s (or native speaker’s) feelings about what could be said. I
had the idea that the field could advance on a more solid basis if the data were what
people actually did say, and for that purpose, I proposed to use a new invention, the
tape recorder. Though it had been invented by the Germans before World War II, it
had found little use in linguistics up to that time. When I entered the community and
engaged people in lively conversation about important events in their lives, I found
that their speech varied in ways that challenged description. Until then, the only
numbers in linguistics papers were the page numbers in the upper right corners. I
presented my first results by cross tabulations that showed independent dimensions
of social and stylistic stratification. Here I wished that I had gone farther than that
one Calculus course at Harvard. Many of the dependent variables were binary, and
in the late 1960s, logistic regression was not generally available in the standard
packages. David Sankoff of the University of Montreal wrote such a program,
and the field (now known as the study of linguistic change and variation) accelerated
around it. The NWAV conference on “New Ways of Analyzing Variation” is now in
its 46th year and accounts for a substantial fraction of linguistic research.

In the course of this work and the recording of some 7,000 individual speakers in
various parts of the English-speaking world, I found myself taking a strong position
on the role of the individual in linguistic analysis that he or she didn’t count for very
much. It appeared that the variation in the speech of each individual was the product
of an unconscious pattern characteristic of the community pattern. In spite of such
widespread variation, the language used by each individual was a product of the
speech community, the intersection of all the communities he or she belonged to.
My most recent paper, delivered in Taiwan, was entitled “What must be learned:
the tyranny of the speech community.” I should add that the argument has not
been won and many linguists continued to take the individual as the fundamental
unit of linguistic analysis. The most commonly used tool for statistical analysis is
now mixed level regression analysis, which adds the effect of random independent
variables (such as the individual speaker) to the fixed factors that are community
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property. So far, I have seen little additional profit from the addition of such random
variables to our understanding of linguistic principles except the reassurance that
all bases were being covered. My Taiwan paper advanced as “the central dogma of
sociolinguistics,” the position that the community is conceptually and analytically
prior to the individual. It began with Durkheim’s characterization of language as a
social fact, defined as

. . . ways of behaving, thinking and feeling, exterior to the individual, which possess a power
of coercion by which they are imposed on him

– Règles de la méthode sociologique, 1937 p. 5

Over the years I had not maintained the close connection with Reuben that I
would have liked. After his retirement I visited him at his home in Santa Fe. But
one day I was startled to receive an email message to the effect that Reuben Hersh
was stranded in England without passport, requesting that I send a substantial sum
by international mail to a London postal address. I responded without hesitation or
second thought, but it was several days before it occurred to me to call Santa Fe to
find that Reuben was happily at home and had never been in England. This event left
me astonished at the effectiveness of such phishing expeditions and wondering how
the authors could possibly have known that my friendship with Reuben was so deep
and so longstanding that I would respond without the least intervention of common
sense. It also led me to return to What is Mathematics, Really? [WMR] and pursue
the question of what we shared in our professional work, in spite of the fact that I
was no more than a mediocre user of common statistical programs.1

I turned to the index of WMR to see if it included Durkheim’s view of the
coercive character of social facts, a reference I had used in my own work. There
are indeed two references to Durkheim in WMR, and turning to page 14, it is
evident that Durkheim’s view is central to Hersh’s thinking. WMR draws upon the
mathematician L. White to present Durkheim’s position:

Collective ways of acting and thinking have a reality outside the individual who, at every
moment of time, conform to it. These ways of thinking and acting exist in their own right.

WMR concludes with the social constructivist position in the philosophy of
mathematics (as formulated by Paul Ernest):

objective knowledge of mathematics exists in and through the social world of human action,
interaction and rules, supported by individuals’ subjective knowledge of mathematics (and
language and social life). WMR p. 228-9

It is perhaps not so remarkable that Reuben and I arrived at similar positions
on the coercive character of social facts, given our early beginnings from a similar
platform. But there is one more coincidence that I would add to the account. In
January of 2015, my wife and I visited Reuben and Vera Steiner in their home in

1I have long been aware of the limitations of my mathematical background, though I have
read more than a few general accounts of relativity theory. One day in the 1970s, I asked my
astrophysicist son Simon whether it was possible to understand relativity theory without a control
of the equations. He said yes, it was, but I have never believed him.
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Santa Fe. Driving through the mountains of New Mexico, I had found that I had
trouble breathing. The next morning, an ambulance took me to Santa Fe’s Christus
St. Vincent Regional Medical Center with a severe case of influenza. Reuben visited
me as I was recovering. While we were talking, the nurse assigned to me came into
the room. She stared at Reuben with great surprise. “I know you!!” she said. “You
were in the picket line!” And indeed, it appeared that Reuben and Vera stood out as
older figures on the picket line in the community support of a nurses’ strike at St.
Vincent’s in the summer of 2014. “I wouldn’t be here if it wasn’t for you,” the nurse
told him. “I’d have eight patients to look after instead of five.”

So it is only natural that I responded with pleasure to the invitation to contribute
to this volume in honor of Reuben Hersh. With distinct but parallel trajectories, we
have arrived at similar end points. Seventy years’ engagement with intellectual and
social issues has led us to the conclusion that the answers to these puzzles lie in the
better appreciation of our fellow human beings.
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Friends and Former Comrades

Chandler Davis

My life as a Communist pervades and colors my life as a mathematician, in ways
normally kept silent. The same is true of many others: Dirk J. Struik, Lee Lorch,
Jean-Pierre Kahane, Kenneth O. May, Israel Halperin, Reuben Hersh, Steve Smale,
and on and on. Maybe a breaking of the silence will be welcomed.

* * *

If this is a memoir, a meditation on my own life, it is more broadly a meditation
on the whole group of us. We were an appreciable portion of the mathematical
community, but not a cohesive subcommunity. I’m talking about people born before
1940, mostly in North America or Western Europe. I’m concentrating on those
who at least for some time were part of “the Movement,” the organized socialist
movement that accepted the Soviet government as part of its leadership: the “Third
International,” we used to call it.

Is this to concentrate too narrowly? It does seem so from a twenty-first-century
perspective, in which pro-Soviet politics are rightly placed within a much larger and
more various current of socialist and progressive militance. But don’t forget that
in many countries in the 1930s, anti-capitalism, anti-racism, feminism, and anti-
militarism were regularly attacked as Red causes and felt as such. Both friends
and enemies of the Left felt for some years that it had more unity than it had,
that there was one noble Cause.. “Advance, proletariat, to conquer the world!”
(to quote the Comintern’s anthem of the 1930s, by Hanns Eisler). “Into the streets
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May First!” (to quote a song of the 1930s by Aaron Copeland). In the postwar years,
the Movement came to feel much less mighty and less monolithic, but we were in
the wake of an era of its optimism.

One reason for our silence about this is that our memory is vivid of times when
speaking freely about it could lead to firing or worse, and not only in Red-hunt
America and fascist countries. We formed a habit of discreet reticence, and often we
would have done well to be more discreet than we were. In the present retrospective
I will be systematically vague about who was in the CPUSA or equivalent in just
which years. This is not merely that residual reticence; and it is not a matter of
protecting reputations (the damage anyone could suffer from my outing them as a
one-time Red is less now than it was); it is realistic.

First, we really didn’t keep track back then of who was in the Party. It was
safer that way. What one doesn’t know one can’t let slip. Of course we knew that
some people could be trusted, but really, what need did any of us have to know
whether Rep. Vito Marcantonio was in the CP1 or Pete Seeger?2 Membership in
any organization was not always key, anyway (as Dirk Struik remarked to me, when
political parties became illegal and dangerous, people might prefer to found new
bird-watching clubs). But in addition, the people I’m harking back to were very
diverse, and their experiences in the Left were different. Not simultaneous, either.
The way our relations evolved is central to my story, and if every name had dates of
joining and leaving the Party attached, the story would seem drier than it is.

* * *

A good many mathematicians were raised in the faith: “red-diaper babies,” we
sometimes say. Felix Browder and his brothers, of course, but also Rebekka Struik,
Allen Shields, myself, Peter Rosenthal, and many others. Whether or not a red-
diaper baby grew into a political adult animal, the Movement was inevitably a big
component.

More of the Reds came into the Movement as young adults. Concerned with the
challenge of making the world a better place, young people shop around. One friend
of mine joked that in her high school, it was normal to go from Hashomer Hatzair to
the CP to the Trotskyists; she was unusual only in going directly to the Trotskyists
without a spell in the CP. People shop around among belief systems in their youth
as one may date a succession of partners. I don’t mean to imply that this was casual.
Changing from one love to another is sometimes done lightly, but often it can’t be
done without deep anguish, and that is the way with belief systems too. Think of
Ralph Ellison’s The Invisible Man.

Now the generation before mine in the Movement was rather impatient with
dropouts. They might mutter that so-and-so had “turned sour.” This of a good

1He never was.
2He was, for a while.
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friend who had dropped out of the Communist Party because he couldn’t accept the
Soviet Union’s making a non-aggression pact with Nazi Germany in 1939—a pact
the Soviet leadership itself regretted thoroughly less than two years later. Turned
sour? Wasn’t this a matter rather of a different analysis of events imperfectly known
and taking place quite far away? But it was at the same time a matter of breaking
solidarity and of rejecting Party discipline. It was clearly not betrayal like divulging
Movement secrets to the FBI, and it wasn’t felt to be. But it was felt to be disloyalty
to shared values: almost apostasy.

The joke had it that an ex-Red can’t stand another ex-Red who left the Party
earlier or later.

My generation had to cope with a great deal of loss of faith. Any Red who hadn’t
figured out already that horrible injustice was done to its citizens by the Soviet state,
had to face the fact in 1956, when the content of Khrushchëv’s “secret speech”
became known. No longer was it possible to tell ourselves and each other that the
Great Terror in the Soviet Union had been a legitimate punishing of traitors. No
longer could we dismiss criticism of lack of civil liberties in the Soviet Union as
soft-headed. Our responses differed, dramatically.

I recall a conversation I had at the Nice International Congress in 1970, with three
fellow mathematicians, firm friends all. Though this conversation was emblematic
to me, I found decades later that all three of them had forgotten it, so I will
report it without identifying them. The question was raised what the Left should
take away from the disappointments of Soviet socialism. One mathematician said,
“The Bolshevik line was always basically correct; serious mistakes were made, but
the Soviet Union is still on the correct course.” A second mathematician said, “The
Soviet Union was on the correct course to socialism until Khrushchëv betrayed the
revolution and followed the capitalist road.” A third mathematician said, “What
we have to learn is that it is very hard to build socialism.” Even now, forty-odd
years later, it would be hard to sort out the rights and wrongs here, but that is not
my subject: I am talking about the way the Left in my generation dealt with such
divisions. The three positions I cite are so different that surely any of them could be
the preface to an accusation of heresy in a movement trying to maintain ideological
conformity; and differences akin to those I cite (but less clear) had in fact, not long
before 1970, splintered the seemingly ascendant New Left into hostile factions. Yet
the four mathematicians in that Nice conversation maintained mutual respect and
(usually) harmony through the political vagaries that have followed. Nobody turned
sour or was said to have turned sour. I here raise, and only partially answer, the
question of how some sort of unity could be preserved.

Some who had been fervent Communists became anti-Left. They might repudiate
their own former beliefs, and they vigorously dissociated themselves from their for-
mer comrades. This is easy to understand and is sometimes public and memorable,
like Yves Montand rejecting Georges Marchais’s appeal for solidarity on French
national television with the exclamation “Merde!” I am saying that very often we
quietly got along with former comrades despite disagreements. It wasn’t always
easy, and it was generally tacit. Though I have foregrounded the issue of loyalty to
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Soviet leadership, other issues too raised hostilities within the Movement, and they
likewise were sometimes overridden in ways hardly seen in earlier days.

I will proceed by a few more anecdotes.

* * *

At the meeting of the American Mathematical Society in St. Louis MO in 1977,
there was a little extra session in honor of Lee Lorch, organized by three of his
friends: Vivienne Mayes, Diane Laison, and myself. We invited the profession
to celebrate Lee’s unique contribution to encouraging Black women to enter the
profession (Vivienne herself among them); to celebrate also the tough struggle by
Lee and Black colleagues beginning in 1951 to end the practice of the AMS and
MAA of holding sessions in Whites-only halls. The honor was well deserved, and
the session was well attended. Among others we had invited to address it was the
redoubtable Lipman Bers.

Bers could sincerely praise Lee’s extraordinary service to equality in the world of
mathematics, and he did. He also said, “Lee and I have had our disagreements over
the years, and thinking back on them I must say that I was always right!” Everyone
laughed, including Lee. Now it is traditional in some circles that testimonials include
a “roast” in which the praise has some put-downs jocularly mixed in; this was
not exactly a roast. Bers was joining wholeheartedly in the encomia to Lorch for
exemplary devotion to antiracism and free speech at home, but he was going on
record that he was not conceding an inch on fronts where they disagreed.

One of those fronts was public criticism of the Soviet Union. Their disagreement
was sometimes public. (At a well-attended business meeting of the AMS, a motion
by Bers, seconded by me, had protested the imprisonment of a Soviet mathematician
for political dissidence, and Lee had been conspicuous as one of the very few
abstainers (nobody voted against). I could give other instances.)Many who heard
Bers’s quip saw the reference.

At that St. Louis session in his honor, Lee rose to thank us. He said modestly
and perceptively, “The only thing that’s special about me is that I’m very stubborn.”
Indeed. Stubborn in uncompromising support for desegregation when the personal
costs to himself and family were prohibitive; and stubborn in loyalty to a Soviet
system which many of us thought had shown itself a tyranny. At a merry celebration
of Lee Lorch’s 90th birthday in Toronto, 2005, greetings were read from the leading
French Fourier analyst J.P. Kahane, a long-time friend, saying among other things
that Lee remained loyal to his Third World connections and loyal to his Soviet
contacts “as long as that was possible.” Seeing the stubbornness as part of the
strength we valued in Lee is a part of why I and others stood by him even when
we think he was wrong. Only a part.

More needs to be said. If we who look back fondly to days when it was less
stressful to be in the Movement tried to coalesce in a new united front, we would
fail. Shared nostalgia wouldn’t sustain us. Nor can unity be based only on quid
pro quo, the “I’ll sign your petition for legalizing marijuana if you’ll sign mine
for more bike lanes” pattern. What we retain from the Left (the broad Left, the
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Frente Amplio) has a coherence beyond what we easily discern. When a devoted
champion of indigenous rights sees reason to collaborate with devoted feminists,
for example, it is not just quid pro quo. There are deeper commonalities across the
divisions—not only the divisions between former allies but also between some to
whom alliance will be strange and new. This is a time when reaching out must take
precedence over settling scores: now when capitalism, self-immolating, threatens to
take everything else with it. There is a world to lose, and to save it will require of us
new reconciliations.

* * *



On the Nature of Mathematical Entities

Reuben Hersh

In What is Mathematics, Really? I argued, following Leslie White, that mathemati-
cal entities are real objects and that they are part of culture, i.e., sociocultural entities
and intersubjective.

The particular feature of mathematics, or pure mathematics as it is sometimes
called, is the vast body of ESTABLISHED MATHEMATICS. There is a method-
ology called mathematical proof that is the criterion for acceptance of a claim
or a theorem into established mathematics. The acceptance of its proof gives that
claim or theorem a high degree of plausibility and licenses it to be quoted in other
proofs. The statement is sometimes made that accepted theorems are absolutely
certain. That notion is naive. Established mathematics undergoes steady revision
and correction. It is a human artifact and, like all human artifacts, can never claim
final perfection.

I have argued for these theses on the basis of my own experiences and those
of others in the published literature, that is, on the basis of empirical observation,
sometimes disrespected as “introspection.” I also accepted the common sense view
that our thoughts are events in our brains, as nowadays detailed and elaborated by
neuroscientists led by Stanislas Dehaene.

The two views of mathematical entities, as neural events and as mental events,
are not conflicting or competing, but rather two different views or ways of accessing
the same thing.

Now I want to point out that the “existences” of the three sides or views of
mathematical entities—social, mental, and neural—are logically inescapable and
prior to their empirical verification.
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First of all, there is no question that mathematics has a history, that it is
institutionalized, that it is published, and that it is taught. In brief, no one doubts
that mathematics as a social institution is a reality.

Likewise, no one doubts that people do think about mathematical entities—
numbers, triangles, functions, spaces, etc.—and think about them effectively and
productively. We work on these mental entities, manipulate them, transform them,
discover their properties, and prove statements about them which are often called
“theorems.” Consequently, it would be logically incoherent to deny that there ARE
such things as mental models of mathematical entities. Their existence is logically
inescapable from undenied and undeniable facts about the world.

And the same status must be accorded to the common knowledge that thinking
takes place “inside” the human being who is thinking—and mainly in her nervous
system, especially the cerebrum.

So there ARE mathematical entities, and they have three principal manifesta-
tions: social, mental, and neural. But none of these three can stand alone. The social
existence of mathematical entities depends on the participation of individual minds
and brains; otherwise, there would be no social or intersubjective mathematical
entities.

On the other hand, the existence of mental models in individual minds comes
about by participation in social activity. Education, interaction with fellow human
beings in school or in collaboration, and reading books and papers, all are part of the
social existence of mathematics which makes possible the existence of individual
mental models.

And the existence of neural processes corresponding to mathematical entities
is the result of the individual’s thinking and learning. The neural trace of the
exponential function is available or present in the brain not because of genetic or
biological reasons but because that brain is the brain of a person who has learned
about the exponential function and thinks about it.

The exponential function is a single entity or object, with many properties. It
is recorded in books and in computers. These recordings are mathematics, not just
meaningless marks, because they are comprehensible and meaningful to people.
The primary reality of mathematics is not inorganic artifacts, but human conscious-
ness, manifested as individual thought, as intersubjective concepts, and as neural
counterparts or bases in brains. None of these three principal manifestations is
possible independently of the other two. By including the neural aspect, one allays
a fictionalist or nominalist fear that “mathematics can’t be real because only the
physical, the observable by physical instruments, is really real.” The activities
of brains are physical things. The brain traces of mathematical entities are the
aspects of mathematical thoughts which we know how to observe physically.
The empirical evidence I have offered elsewhere, that we have mental models
of mathematical entities, now is recognized as a CONFIRMATION, of what is
ALREADY undeniable by logic and indisputable common knowledge.
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A philosopher can demand more as a definition or characterization of mathe-
matics, beyond the existence of the body of established mathematics, the practice
and knowledge of people who do mathematics, and their brain traces. Such is the
demand of the structuralist, the formalist, or the Platonist.

The inclusive, interdisciplinary view that I am presenting here has been devel-
oped in recent years under several influences: my own papers on pluralism presented
in Rome and in Kolkata, books by the neuroscientists Antonio Damasio and
Stanislas Dehaene, and the excellent Introduction to Phenomenology by Robert
Sokolowski.

From the viewpoint of phenomenology, it is fundamental and commonplace
that there are in the world objects that have an identity, a persistent identifiable
existence, that is manifested in multiple ways. These multiplicities are not logical
contradictions. They are the different ways we know things—any kinds of things—
including mathematical things, which are manifested as cultural items, as personal
experience, and/or as currents in our flesh and blood.
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