
Secure and Efficient Pairing at 256-Bit Security
Level

Yutaro Kiyomura1(B), Akiko Inoue2, Yuto Kawahara1, Masaya Yasuda3,
Tsuyoshi Takagi3, and Tetsutaro Kobayashi1

1 NTT Secure Platform Laboratories, Musashino, Japan
{kiyomura.yutaro,kawahara.yuto,kobayashi.tetsutaro}@lab.ntt.co.jp

2 NEC Central Research Laboratories, Kawasaki, Japan
a-inoue@cj.jp.nec.com

3 Kyushu University, Fukuoka, Japan
{yasuda,takagi}@imi.kyushu-u.ac.jp

Abstract. At CRYPTO 2016, Kim and Barbulescu proposed an effi-
cient number field sieve (NFS) algorithm for the discrete logarithm prob-
lem (DLP) in a finite field. The security of pairing-based cryptography
(PBC) is based on the difficulty in solving the DLP. Hence, it has become
necessary to revise the bitlength that the DLP is computationally infea-
sible against the efficient NFS algorithms. The timing of the main oper-
ations of PBC (i.e. pairing, scalar multiplication on the elliptic curves,
and exponentiation on the finite field) generally becomes slower as the
bitlength becomes longer, so it has become increasingly important to
compute the main operations of PBC more efficiently. To choose a suit-
able pairing-friendly curve from among various pairing-friendly curves
is one of the factors that affect the efficiency of computing the main
operations of PBC. We should implement the main operations of PBC
and compare the timing among some pairing-friendly curves in order
to choose the suitable pairing-friendly curve precisely. In this paper, we
focus on the five candidate pairing-friendly curves from the Barreto-
Lynn-Scott (BLS) and Kachisa-Schaefer-Scott (KSS) families as the 256-
bit secure pairing-friendly curves and show the following two results; (1)
the revised bitlength that the DLP is computationally infeasible against
the efficient NFS algorithms for each candidate pairing-friendly curve,
(2) the suitable pairing-friendly curve by comparing the timing of the
main operations of PBC among the candidate pairing-friendly curves
using the revised bitlength.

1 Introduction

Many pairing-based cryptography (PBC) have been proposed, e.g., ID-based
encryption [8,40], attribute-based encryption [41], and functional encryp-
tion [38]. A pairing on the elliptic curve is a non-degenerate bilinear map

A. Inoue—This work was done while the author was the student of Kyushu Univer-
sity.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 59–79, 2017.
DOI: 10.1007/978-3-319-61204-1 4

60 Y. Kiyomura et al.

e : G1 × G2 → G3, where G1, G2, G3 are a group with order r respectively.
The security of the pairing is based on the difficulty in solving the discrete log-
arithm problem (DLP) in G1, G2, G3. The group G1, G2 are a subgroup on the
elliptic curve, and the DLP on an elliptic curve (ECDLP) in G1, G2 must be
computationally infeasible against the rho algorithm [16,39]. Hence, we should
choose r with a secure bitlength against the rho algorithm. The group G3 is
a subgroup on finite field Fpk , where p is a prime and k ≥ 1 is an embedding
degree, and the DLP on a finite field (FFDLP) in G3 must be computationally
infeasible against the number field sieve (NFS) algorithms. There are various
NFS algorithms (e.g. Classical-NFS [25], tower NFS (TNFS) [10,45], and special
NFS (SNFS) [10,26]). We should choose p and k with a secure bitlength of pk

against the NFS algorithms.
The recommended bitlength of pk of the pairing was discussed in the 2013

report of ENISA [15, Table 3.6], where the pairing and RSA have the same
recommended bitlength. This was in accordance with a general belief stated,
for example, by Lenstra: “An RSA modulus n and a finite field Fpk therefore
offer about the same level of security if n and pk are of the same order of
magnitude” [32, Sect. 5.1]. The recommended bitlength of RSA was derived from
the complexity of the NFS algorithm for integer factorization [33]. In other words,
the bitlength of pk of the pairing was estimated considering the complexity of
this NFS algorithm.

At CRYPTO 2016, Kim and Barbulescu proposed an efficient NFS algorithm
called the extended tower number field sieve (exTNFS) algorithm [28]. This
NFS algorithm greatly impacted the security of the mainstream pairing such as
optimal ate pairing [47]. The complexity of the exTNFS algorithm was reduced
from that of previous NFS algorithms by using the trivial equation Fpk = Fpηκ ,
where gcd(η, κ) = 1. Kim and Barbulescu concluded that the bitlength of the
pairing should increase roughly twice [28]. Therefore, we should revise to estimate
the secure bitlength of pk against the exTNFS in detail. Note that Menezes et al.
estimated the bitlength of pk for the pairing considering the exTNFS algorithm
at 128- and 192-bit security levels [37].

Generally, faster timing of the main operations of PBC (i.e. pairing, scalar
multiplication on the elliptic curves, and exponentiation on the finite field) is pre-
ferred to implement the PBC. To choose a suitable pairing-friendly curve from
among various pairing-friendly curves is one of the factors that affect the effi-
ciency of computing the main operations of PBC. Among the studies conducted
before the exTNFS algorithm was proposed, Scott [44] theoretically chose the
suitable pairing-friendly curve at each security level based on the bitlength of
r, pk and ρ-value given in Freeman et al.’s taxonomy [16]. However, Aranha et
al. [3] discussed the suitable pairing-friendly curve different from that chosen the-
oretically by comparing the timing of the pairing among several pairing-friendly
curves at 192-bit security level. To choose a suitable pairing-friendly curve at a
certain security level, it is important to not only choose theoretically but also
compare the timing of the main operations of PBC.

Secure and Efficient Pairing at 256-Bit Security Level 61

Our Contributions. Our goal with this paper is to obtain a secure and effi-
cient pairing at 256-bit security level. To achieve this, our contribution is to
revise the estimation of the bitlength of pk due to the efficient NFS algorithms
(e.g. Special exTNFS, Special TNFS) and choose the suitable pairing-friendly
curve for efficiently computing the main operations of PBC. We focus on the
Barreto-Lynn-Scott (BLS) [11] and Kachisa-Schaefer-Scott (KSS) [29] families
that have high embedding degree and are easy to implement the pairing. We
specifically choose the following five candidate pairing-friendly curves at the 256-
bit security level; the BLS-k with k = 24, 42, 48 and KSS-k with k = 32, 36. For
these curves, we estimate the secure bitlength pk in detail against the efficient
NFS algorithms by comparing the upper bound of norms of these algorithms
using the Kim and Barbulescu’s estimation method [28]. Furthermore, based on
the revised bitlength of pk, we search for the specific parameter of each candi-
date pairing-friendly curve to implement the main operations of PBC, and then
compare the timing of these operations among the five candidate pairing-friendly
curves. Finally, we show the suitable pairing-friendly curve at 256-bit security
level.

2 Overview of Pairing

2.1 Definition and Properties

Let p be a prime and E be an elliptic curve defined over the finite field Fp. Let
r be a prime with gcd(p, r) = 1. An embedding degree k is the smallest positive
integer with r | pk − 1. Let G1, G2 be a subgroup on the elliptic curve with
order r and G3 be a subgroup on the finite field Fpk with order r. A pairing e is
defined by e : G1 × G2 −→ G3 ; (P,Q) �−→ fr,P (Q)(p

k−1)/r, where the rational
function fr,P satisfies div(fr,P) = r(P) − r(O) for the point at infinity O. For
P ∈ G1, Q ∈ G2 and a ∈ Z, a pairing e has the following properties;

– bilinearity: e(aP,Q) = e(P, aQ) = e(P,Q)a,
– non-degeneracy: for all P ∈ G1, e(P,Q) = 1 then Q = O and for all Q ∈ G2,

e(P,Q) = 1 then P = O,
– efficiently computable: e(P,Q) can be efficiently computed.

2.2 Optimal Ate Pairing

The optimal ate pairing proposed by Vercauteren [47] is the most efficient
method of computing the pairing e. There are many implementation results
of the optimal ate pairing [3,9,13,36,44]. Let m be an integer such that r � m.
Let λ = mr and write λ =

∑ω
i=0 αip

i where ω = �logp λ�. Let E[r] be an
r-torsion subgroup. Define G1 = E[r] ∩ Ker(πp − [1]) = E(Fp)[r], Ĝ2 = E[r]∩
Ker(πp − [p]) ⊆ E(Fpk)[r] as the subgroup with r. Let E′ be a twist of degree d

of E with ψ : E′ → E defined over Fpd , and define G2 = ψ−1(Ĝ2). Note that d

62 Y. Kiyomura et al.

depends on the pairing-friendly curve and is in {2, 3, 4, 6} [24]. An optimal ate
pairing ak is defined by

ak : G1 × G2 −→ G3, (P,Q) �−→
(

ω∏

i=0

fpi

αi,Q
(P) ·

ω−1∏

i=0

[βi+1]Q,[αipi]Q(P)
v[βi]Q(P)

) pk−1
r

(1)

where βi =
∑ω

j=i αjp
j ,
T,T ′ is the line through T and T ′, and vT is the vertical

line through T , where T and T ′ are points on the elliptic curve.

3 Candidate Pairing-Friendly Curves at 256-Bit Security
Level

In this section, we choose the five candidate pairing-friendly curves satisfying
the security and efficiency from the BLS [11] and KSS [29] families to choose the
suitable pairing-friendly curve at 256-bit security level. In this paper, we define
len(x) as the bitlength of x.

3.1 How to Choose Candidate Pairing-Friendly Curves

We show the security against the ECDLP and FFDLP and the efficiency for
implementation of the main operations of PBC. An embedding degree k is
determined by the chosen pairing-friendly curve, and the primes r and p are
represented by the polynomial of a positive integer x.

Security. The parameters r, p, and k should satisfy the complexity of solving
the DLP in G1, G2 and G3 to achieve the K-bit security level. The definition
of ECDLP in G1 and G2 is as follows. Given points G,Y ∈ G1 (or G2), find
x ∈ Z such that Y = xG. An efficient algorithm for solving the ECDLP is the
rho algorithm [16,39], which has the complexity of O(

√
r). Therefore, we should

choose the bitlength of r with len(r) ≥ 2K. The definition of the FFDLP in G3

is as follows. Given points g, y ∈ G3, find x ∈ Z such that y = gx. An efficient
algorithm for solving the FFDLP are the STNFS [10,26] and SexTNFS [28]
algorithms. We give the bitlength of pk which the FFDLP is computationally
infeasible against these NFS algorithms in Sect. 5.

Efficiency. To efficiently compute the main operations of PBC (i.e. pairing,
scalar multiplication in G1 and G2, and exponentiation in G3) with the above
security, we consider the following conditions as affecting the efficiency of these
operations.
– len(r) and len(pk) are as small as possible.
– The ρ-value is approximately 1 (ρ = log p/ log r).
– Parameter x in polynomials (e.g. p(x), r(x)) has a low Hamming weight.
– The embedding degree k has the form k = 2i · 3j (i ∈ Z≥1, j ∈ Z≥0).
– The twist of degree d is 6 (d = 6 is maximum of degree).

These conditions are theoretically efficient ones, then the effect of each condition
is uncertain in the implementation.

Secure and Efficient Pairing at 256-Bit Security Level 63

Table 1. Parameters for the five candidate pairing-friendly curves

BLS-24

[16, Construction 6.6]

k = 24, ρ = 1.250, deg(p(x)) = 10, ϕ(k) = 8,

p(x) = (x − 1)2(x8 − x4 + 1)/3 + x, r(x) = x8 − x4 + 1, t(x) = x + 1

KSS-32

[29, Example 4.4]

k = 32, ρ = 1.063, deg(p(x)) = 18, ϕ(k) = 16,

p(x) = (x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8

+815730721x2 − 4948305594x + 10604499373)/2970292,

r(x) = (x16 + 57120x8 + 815730721)/(2 · 138 · 2392),
t(x) = (−2x9 − 56403x + 3107)/3107

KSS-36

[29, Example 4.5]

k = 36, ρ = 1.167, deg(p(x)) = 14, ϕ(k) = 12,

p(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2

−386569x + 823543)/28749,

r(x) = (x12 + 683x6 + 117649)/(76 · 372), t(x) = (2x7 + 757x + 259)/259

BLS-42

[16, Construction 6.6]

k = 42, ρ = 1.333, deg(p(x)) = 16, ϕ(k) = 12,

p(x) = (x − 1)2(x14 − x7 + 1)/3 + x,

r(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x + 1, t(x) = x + 1

BLS-48

[16, Construction 6.6]

k = 48, ρ = 1.125, deg(p(x)) = 18, ϕ(k) = 16,

p(x) = (x − 1)2(x16 − x8 + 1)/3 + x, r(x) = x16 − x8 + 1, t(x) = x + 1

* deg(): degree of polynomial, ϕ(): Euler function

3.2 Selection of Candidate Pairing-Friendly Curves

In this subsection, we decide the candidate pairing-friendly curves from the
BLS [11] and KSS [29] families to choose the suitable pairing-friendly curve at
256-bit security level based on Sect. 3.1. We focus on the BLS and KSS families
that have high embedding degree and can be easy to construct the pairing. We
specifically choose the following five candidate pairing-friendly curves at the
256-bit security level; the BLS-k with k = 24, 42, 48 and the KSS-k with
k = 32, 36. In the case of the BLS-k, the small len(r) and len(pk) in the BLS-42
and BLS-48 can be choose because these curve have high embedding degree k,
and the implementation results in the BLS-24 exists [9,44]. In the case of the
KSS-k, the KSS-36 has the small len(r), the KSS-32 has small ρ-value and simple
tower construction for Fpk since k = 32 = 25.

The detail of the five candidate pairing-friendly curves are as follows; the
curves with 6 | k are defined by E/Fp : y2 = x3 + b, and has the complex
multiplication discriminant D = 3 and d = 6, the curves with 4 | k is defined by
E/Fp : y2 = x3 + ax, and has D = 1 and d = 4. Table 1 shows the parameters
p(x), r(x), t(x), k, ρ-value, deg(p(x)), and Euler function ϕ(k) for each curves.
The parameters n(x) and f(x) satisfy n(x) = p(x)+1− t(x) and 4p(x)− t(x)2 =
Df(x)2, respectively.

4 Overview of Number Field Sieve and Its Variants

In this section, we give an overview of the NFS algorithm and its variants to
revise the bitlength of the five candidate pairing-friendly curves introduced in
Sect. 3.2.

The FFDLP is classified into three cases by size of p: small, medium, or
large. In medium and large cases, the NFS algorithms is the most efficient algo-
rithm for solving the FFDLP. To accurately classify p, let p = Lpk(lp, cp), where
Lpk(lp, cp) = exp((cp + o(1))(log pk)lp(log log pk)1−lp). o(1) becomes 0 when

64 Y. Kiyomura et al.

pk → ∞. The prime p is called medium if 1/3 < lp < 2/3, large if 2/3 < lp < 1,
boundary if lp = 2/3.

Note that the above Lpk -notation is just an asymptotic value. If we fix the
value of pk, the Lpk -notation has a constant value c such that c × exp((cp +
o(1))(log pk)lp(log log pk)1−lp) and o(1) �= 0. Therefore, when we substitute the
concrete value for pk in Lpk -notation, it is important to evaluate c and o(1).

The NFS algorithms for solving the FFDLP are classified into three types:
Classical-NFS, TNFS, and exTNFS, according to their mathematical construc-
tions. The Classical-NFS algorithm was proposed in 2006, and the complexities
are Lpk(1/3, (128/9)1/3) and Lpk(1/3, (64/9)1/3) in the medium and large cases,
respectively. The TNFS algorithm was proposed in 1999 and later applied to
the large case in 2015, where the complexity of the TNFS algorithm is also
Lpk(1/3, (64/9)1/3) in the large case. Finally, the exTNFS algorithm proposed
in 2015 is the generalization of combining the Classical-NFS and TNFS algo-
rithms, and its complexities in medium and large cases are Lpk(1/3, (64/9)1/3).

4.1 Extended TNFS and Special-NFS Algorithms

In this subsection, we explain the exTNFS algorithm [28], which is effective for
solving the FFDLP. We then give an overview of the Special-NFS algorithm.
The NFS algorithms (not specified for exTNFS) are divided into the following
four steps: 1. polynomial selection, 2. relation collection, 3. linear algebra, and
4. individual logarithm.

exTNFS Algorithm. We can use the exTNFS algorithm when the extension
degree k is composite. Let k = ηκ. We select an irreducible polynomial h(t) ∈
Z[t] over Q and Fp whose degree is η. We construct Q(ι) = Q[t]/h(t) and put
R = Z[t]/h(t) ⊂ Q(ι).

Note that the Classical-NFS algorithm [25] is the case in which R = Z in the
exTNFS algorithm, and the TNFS algorithm [45] is the case in which deg h = n
in the exTNFS algorithm.

Polynomial Selection. We select polynomials f1 and f2 ∈ R[X] that satisfy the
condition that f1 mod p and f2 mod p have a common factor ϕ(X) of degree
κ, which is irreducible over Fpη = R/pR. In this section, i ∈ {1, 2}. Let Ki be the
number fields defined by fi above the fraction field of R and Oi be the integer
ring of Ki. We denote the roots of fi in C by θi and the degree of fi by di. We
then obtain two maps from R[X] to (R/pR)[X]/ϕ(X) ∼= Fpk .

Relation Collection. We select smoothness bound B ∈ N and define factor base
Fi as follows: Fi = {(q, θi − γ) : q : prime in Q(ι) lying over a prime p ≤ B,
fi(γ) ≡ 0 mod q}. We then obtain a− bX ∈ R[X] by selecting (a(t), b(t)) ∈ R2.
The coefficients of a(t) and b(t) are bounded by A. Let E = Aη be the sieve
parameter. The norm of a − bθi in Ki is expressed as follows.

Secure and Efficient Pairing at 256-Bit Security Level 65

NKi/Q(a − bθi) =

∣
∣
∣
∣
∣
∣
Res

⎛

⎝h(t),
∑

j∈[0,di]

fi,ja(t)jb(t)di−j

⎞

⎠

∣
∣
∣
∣
∣
∣
,

where fi,j is the coefficient of polynomial fi =
∑di

j=0 fi,jX
j . When NK1/Q

(a − bθ1) and NK2/Q(a − bθ2) are B-smooth, the (a(t), b(t)) pair is called a
double smooth pair (an integer is B-smooth if the largest prime factor is less
than B). When (a(t), b(t)) is a double smooth pair, (a−bθ1) and (a−bθ2) can be
factored into the prime ideal in O1 and O2 using only the elements of F1 and F2,
respectively. Therefore, we obtain the following notation: (a − bθi) =

∏
p∈Fi

pμp

and the following relation up to units.

φ1((a − bθ1)) = φ2((a − bθ2)) in Fpk ⇐⇒ φ1(
∏

p∈F1

pμp) = φ2(
∏

q∈F2

qμq)

⇐⇒
∏

p∈F1

φ1(p)μp =
∏

q∈F2

φ2(q)μq

Thus, this leads to
∑

p∈F1

μp log φ1(p) +
∑

j

λ1,j log Λ1,j

=
∑

q∈F2

μq log φ2(q) +
∑

j

λ2,j log Λ2,j mod pk − 1,
(2)

where log φ1(p), log φ2(q), log Λ1,j and log Λ2,j are the unknowns called virtual
logarithms [46], and λ1,j and λ2,j are computable values called character maps
to distinguish the difference in units. Let Nλ be the number of character maps.
When we collect more than |F1|+ |F2|+Nλ double smooth pairs (a(t), b(t)), we
obtain the relations of (2).

In this section, we collect double smooth pairs (a, b), but it is possible to col-
lect double smooth tupples (a1, a2, · · · , aτ). We call parameter τ a sieve dimen-
sion.

Linear Algebra. In collecting adequate relations in the previous step, we can
construct and solve the simultaneous congruence. We obtain the values of the
virtual logarithms log φ1(p), log φ2(q), log Λ1,j , and log Λ2,j .

Individual Logarithm. Finally, we compute the target logarithm x from the values
of the virtual logarithms.

Special-NFS Algorithms. We collectively call three NFS algorithms
(exTNFS, Classical-NFS, and TNFS) as the General NFS (GNFS) algorithms.
The GNFS algorithms can be applied for special polynomial selection when p has
a special form. The special cases of the GNFS algorithms are called Special-NFS
(SNFS) algorithms. We consider the SNFS algorithms for solving the FFDLP to
estimate the security of the pairing where p has a special form.

66 Y. Kiyomura et al.

4.2 Larger Norm Implies Higher Complexity

In this section, we give an overview on the complexity of the NFS algorithms.
The main steps to evaluate this complexity are as follows.

– We evaluate the upper bound of norms and probabilities in which the norms
are B-smooth.

The smaller the upper bound of norms is, the higher the probability the norms
are B-smooth. Therefore, we have to select polynomials so that the upper bounds
of norms become small.

– We set the parameters appropriately so that we can collect adequate double
smooth pairs from the sieve region.

The sieve region is the region to collect relations. When the sieve degree is τ , the
sieve region is Eτ . We set the appropriate parameters to satisfy the inequality
that Eτ× (the probability of B-smooth of norm’s upper bound) ≤ (the number
of double smooth pairs we collect) = B1+o(1).

– Relation collection and linear algebra have the same complexities.

The whole complexity of NFS algorithms is the sum of the complexities of follow-
ing two steps: relation collection and linear algebra. In the exTNFS algorithm,
the complexity of relation collection is O(E2). We need to evaluate sizes of para-
meters because of the trade-off between relation collection and linear algebra.

When the norm is small, the probability that norms are B-smooth becomes
high. We can obtain relations with a few trials. The complexity of relation col-
lection becomes small, and the whole complexity becomes small. That is, the
decrease in norms implies the reduction in the security of cryptography, which
is based on the difficulty of the FFDLP. Therefore, we can estimate bitlengths
by comparing the sizes of norms.

4.3 Comparing Norms of NFS Algorithms by Using Kim and
Barbulescu’s Estimation Method

We refer to the method of comparing norms in [28] to estimate and compare the
norms of various NFS algorithms. The norms of each GNFS algorithm are listed
in Table 2, and the norms of each SNFS algorithm are listed in Table 3 (part of
Table 2 is omitted).

In Tables 2 and 3, EG is the sieve parameter of the GNFS algorithms and
ES is the sieve parameter of the SNFS algorithms. In addition, d is the degree
of polynomial selected in the step of polynomial selection. Note that d in SNFS
algorithm is equal to the degree of p. The τ is the sieve dimension, and others
are parameters used in each NFS algorithm. Sieve parameter E depends on the
implementations. Kim and Barbulescu [28] used the formula

EG = cGLpk

(
1
3
,

(
8
9

)1/3
)

, ES = cSLpk

(
1
3
,

(
4
9

)1/3
)

.

Secure and Efficient Pairing at 256-Bit Security Level 67

Table 2. Norm sizes of GNFS algorithms

Algorithm Norm product

NFS-JLSV1 EG
4k
τ (pk)

τ−1
k

TNFS EG

2(d+1)
τ (pk)

2(τ−1)
d+1

exTNFS-Conj EG
6κ
τ (pk)

τ−1
2κ

Table 3. Norm sizes of SNFS algorithms

Algorithm Norm product

STNFS ES

2(d+1)
τ (pk)

τ−1
d

SNFS-JP ES

2k(d+1)
τ (pk)

τ−1
kd

SexTNFS ES

2κ(d+1)
τ (pk)

τ−1
κd

They determined log2 cG ≈ −4.30 using the results of three implementa-
tions [6,7,14]. Similarly, they determined log2 cS ≈ −4.27 using the results of
an implementation [1]. After the values of EG and ES are determined, other
parameters must be determined. The parameters, except τ , are computed using
the theoretical optimal values. Then τ is determined as the best value in their
bitsize of the norm.

5 Revise the Bitlength for Candidate Pairing-Friendly
Curves

In this section, we revise to estimate the bitlengths for the five pairing-friendly
curves (i.e. the BLS-k with k = 24, 42, 48 and KSS-k with k = 32, 36) at 256-bit
security level by using the norms of NFS algorithms in the previous section.

5.1 Revised Estimation of Bitlength for BLS-48

In this subsection, we revised to estimate the bitlength for the BLS-48. We
compare the norms of NFS algorithms based on the constants cG and cS and
estimate the bitlength based on the initial norm of the GNFS algorithms at the
256-bit security level. The estimations for other pairing-friendly curves (i.e. the
BLS-24, KSS-32, KSS-36 and BLS-42) are described in the AppendixA.

Determining Constants cG and cS. Before plotting norms, the constant val-
ues of cG and cS must be evaluated. As previously mentioned, cG and cS are eval-
uated from the implementation results. We discuss these values by adding new
implementation results. In Kim and Barbulescu’s study [28], log2 cG ≈ −4.30 and
log2 cS ≈ −4.27; however, we evaluate cG and cS by adding to new results. First,
we evaluate cG using the result from Kleinjung [31] who solved the DLP in Fp.
We extrapolate from the pair (log2 pk = 768, log2 EG ≈ 35) Kleinjung used [31]
and obtain log2 cG ≈ −3.26. The sieve parameter EG using Kleinjung’s result is
larger than that Kim and Barbulescu evaluated. Because EG by Kim and Bar-
bulescu [28] is evaluated more strictly, we plot the norms of the GNFS algorithms
using log2 cG ≈ −4.30 they used. Next, we evaluate cS using the results by Fried
et al. [17] and Guillevic et al. [22]. We extrapolate from the pair (log2 pk = 1024,
log2 ES ≈ 31) used by Fried et al. [17] and obtain log2 cS ≈ −3.43. We also

68 Y. Kiyomura et al.

extrapolate from the pair (log2 pk = 510, log2 ES ≈ 26) used by Guillevic et
al. [22] and obtain log2 cS ≈ 0.67. The sieve parameters ES using the results
from Fried et al. and Guillevic et al. are larger than those Kim and Barbulescu
evaluated. As with EG, because ES from Kim and Barbulescu [28] is evaluated
more strictly, we plot the norms of the SNFS algorithms using log2 cS ≈ −4.27
they used.

Initial Norm of General NFS Algorithms at 256-Bit Security Level.
We define the initial norm as the norm of the GNFS algorithm for integer factor-
ization, which corresponds to the bitlength at 256-bit security level. Let N be a
composite number. The norm of this GNFS algorithm is Ed+1

G N2/d+1, where d
is the degree of the polynomial selected in the step of polynomial selection. The
recommended bitlength of RSA at 256-bit security level is 15360-bit [5]. When
N is 15360-bit, the optimal value of d is 15. We substitute the value of cG, which
we evaluated in the previous section, for the norm, and the initial norm is about
4006-bit.

Fastest Variant of NFS Algorithms for BLS-48. We concretely estimate
the bitlengths of the PBC. We give details of the BLS-48, and the other curves
are mentioned in the AppendixA. We fix the extension degree to k = 48 and
examine the fastest NFS algorithm that solves the DLP in Fp48 , where p is
expressed by the BLS-48.

First, we plot the norms of three GNFS algorithms (i.e. NFS-JLSV1, TNFS,
and exTNFS-Conj) in Fig. 1. The EG is as follows;

EG = 2−4.3Lpk

(
1
3
,

(
8
9

) 1
3
)

.

– NFS-JLSV1. The norm of the NFS-JLSV1 algorithm is expressed as
EG

4k
τ (pk)

τ−1
k . The optimal value of τ is 9 when the norm is EG

192
τ (pk)

τ−1
48 .

– TNFS. The norm of the TNFS algorithm is expressed as EG

2(d+1)
τ (pk)

2(τ−1)
d+1 .

The d is 15 using the formula d = 3
√

3
(
log pk/ log log pk

)1/3. The optimal

value of τ is 2 when the norm is EG
32
τ (pk)

2(τ−1)
16

– exTNFS-Conj. The norm of the exTNFS-Conj algorithm is expressed as
EG

6κ
τ (pk)

τ−1
2κ . Kim and Barbulescu [28] used the case of gcd(η, κ) = 1. How-

ever, Kim and Jeong proposed an algorithm allowing the choosing of η and
κ freely from the co-primality condition, and their algorithm has the same
complexities as when η and κ are co-prime [30]. Therefore, we use all cases
of (η, κ). When n = 48, we can consider the cases of (η, κ) = (2, 24), (3, 16),
(4, 12), (6, 8), (8, 6), (12, 4), (16, 3), (24, 2). When (η, κ) = (2, 24), (3, 16),
(4, 12), (6, 8), (8, 6), (12, 4), (16, 3), (24, 2), the optimal value of τ is 7, 5,
4, 3, 2, 2, 2, 2, respectively.

Secure and Efficient Pairing at 256-Bit Security Level 69

Fig. 1. Norms of GNFS algorithms in Fp48 Fig. 2. Norms of SNFS algorithms in Fp48

Next, we plot the norms of three SNFS algorithms (i.e. STNFS, SNFS-JP,
and SexTNFS) in Fig. 2. In the BLS-48, deg(p(x)) = 18. The ES is as follows:

ES = 2−4.3Lpk

(
1
3
,

(
4
9

) 1
3
)

– STNFS. The norm of the STNFS algorithm is expressed as
EG

2(d+1)
τ (pk)

τ−1
d . The optimal value of τ is 2 when the norm is EG

38
τ (pk)

τ−1
18 .

– SNFS-JP. The norm of the SNFS-JP algorithm is expressed as
EG

2k(d+1)
τ (pk)

τ−1
kd . The optimal value of τ is 103 when the norm is

EG
1824

τ (pk)
τ−1
864 .

– SexTNFS. The norm of the SexTNFS algorithm is expressed as
EG

2κ(d+1)
τ (pk)

τ−1
κd . We also use the all case of (η, κ). When (η, κ) = (2, 24),

(3, 16), (4, 12), (6, 8), (8, 6), (12, 4), (16, 3), (24, 2), the optimal value of τ
is 51, 34, 26, 17, 13, 9, 6, 4, respectively.

In Figs. 1 and 2, the STFNS algorithm has the smallest norm. When the
norm is the initial norm of 4006-bit, the bitlength of the STNFS algorithm is
27410-bit. Therefore, we can estimate that the bitlength at 256-bit security level
is 27410-bit.

5.2 Revised Bitlength at 256-Bit Security Level

We revise to estimate the bitlength for the five candidate pairing-friendly curves
(i.e. the BLS-k with k = 24, 42, 48 and KSS-k with k = 32, 36) at 256-bit security
level based on the Kim and Barbulescu’s method [28]. The results are listed in
Table 4. According to ENISA [15, Table 3.6], the bitlength of the pairing requires
more than 15360-bit to achieve the 256-bit security level [16]. However, our
revised estimation shows that it is necessary to increase the bitlength by more
than 10000-bit to achieve the 256-bit security level. In other word, it is necessary
to approximately multiply the bitlength by 1.7 times to achieve the 256-bit
security level.

70 Y. Kiyomura et al.

Table 4. Revised bitlength at 256-bit security level

BLS-24 KSS-32 KSS-36 BLS-42 BLS-48

len(pk) 25,990 27,410 28,280 28,150 27,410

6 Comparison of Timing Among Candidate
Pairing-Friendly Curves

In this section, we measure and compare the timing of the main operations of
PBC among the five candidate pairing-friendly curves using the revised bitlength
to show a suitable pairing-friendly curve at 256-bit security level. Our implemen-
tation uses the efficient algorithms for computing the main operations of PBC.

6.1 Specific Parameter for Implementation

The specific parameter x0 for each candidate pairing-friendly curve is required
to decide the parameters of each curve in Table 1 and implement the main opera-
tions of PBC. The x0 for the BLS-24 showed in [13] satisfies the revised bitlength
of pk in Table 4, but there are no documents showed the parameter satisfying the
revised bitlength of pk in Table 4 for other curves. Therefore, we should search
for x0 for each KSS-32, KSS-36, BLS-42, and BLS-48.

To efficiently compute the pairing, we search for the specific parameter x0

with a low Hamming weight and len(r) ≥ 512 and len(pk) always more than the
bitlength in Table 4. Table 6 shows x0, the bitlength of parameters, and Hamming
weight of x0 for the five candidate pairing-friendly curves. Note that the G1,
G2, G3 are better to satisfy subgroup security [12] in order to resist against
small-subgroup attacks as an optional security requirement. The information of
implementation (i.e. the tower construction, elliptic curve E, twist E′ of E, and

T,T ′(P)) are showed in Table 5.

6.2 Our Implemented Algorithms

In this subsection, we give an overview of the implemented efficient algorithms
for computing the main operations of PBC. We implement the base field Fp

arithmetic by using the GMP library [18]. Additionally, in the arithmetic of
the tower field, we use the lazy reduction technique [42] which can reduce the
number of the modulo operations of Fp.

Pairing. The formulas of optimal ate pairing for each candidate pairing-friendly
curve are given in Table 7. Note that these formulas can be produced from Eq. (1)
and [47, Eq. (9)]. There are two steps involved in computing the optimal ate
pairing; the miller loop (ML) f ′ = fx,Q(P) · g, where g is the part other than
fx,Q(P) in Table 7, and final exponentiation (FE) f ′(pk−1)/r.

Secure and Efficient Pairing at 256-Bit Security Level 71

Table 5. Information of implementation for the five candidate pairing-friendly curves

BLS-24 Fields Fp
u2+1−−−→ Fp2

v2+u+1−−−−−→ Fp4
w3+v−−−−→ Fp12

z2+w−−−−→ Fp24

E, E′ E/Fp : y2 = x3 + 1, E′/Fp4 : y2 = x3 − 1/v

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

w

: 0
︸︷︷︸

w2

|
z

︷ ︸︸ ︷

(−λ · xP)u
︸ ︷︷ ︸

1

: cu
︸︷︷︸

w

: 0
︸︷︷︸

w2

]

KSS-32 Fields Fp
u2+2−−−→ Fp2

v2−u−−−→ Fp4
w2−v−−−−→ Fp8

z2−w−−−−→ Fp16
s2−z−−−→ Fp32

E, E′ E/Fp : y2 = x3 + 2x, E′/Fp8 : y2 = x3 + 2x/w

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

z

|
s

︷ ︸︸ ︷

−λ · xP
︸ ︷︷ ︸

1

: c
︸︷︷︸

z

]

KSS-36 Fields Fp
u2+1−−−→ Fp2

v3+u+1−−−−−→ Fp6
w3+v−−−−→ Fp18

z2+w−−−−→ Fp36

E, E′ E/Fp : y2 = x3 + 2, E′/Fp6 : y2 = x3 − 2/v

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

w

: 0
︸︷︷︸

w2

|
z

︷ ︸︸ ︷

(−λ · xP)u
︸ ︷︷ ︸

1

: cu
︸︷︷︸

w

: 0
︸︷︷︸

w2

]

BLS-42 Fields Fp
u7+2−−−→ Fp7

v3+u−1−−−−−→ Fp21
w2−v−−−−→ Fp42

E, E′ E/Fp : y2 = x3 + 1, E′/Fp6 : y2 = x3 + 1/(1 − u)

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

v

: 0
︸︷︷︸

v2

|
w

︷ ︸︸ ︷

−λ · xP
︸ ︷︷ ︸

1

: c
︸︷︷︸

v

: 0
︸︷︷︸

v2

]

BLS-48 Fields Fp
u2+1−−−→ Fp2

v2+u+1−−−−−→ Fp4
w2+v−−−−→ Fp8

z3+w−−−−→ Fp24
s2+z−−−→ Fp48

E, E′ E/Fp : y2 = x3 + 1, E′/Fp8 : y2 = x3 − 1/w

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

z

: 0
︸︷︷︸

z2

|
s

︷ ︸︸ ︷

(−λ · xP)u
︸ ︷︷ ︸

1

: cu
︸︷︷︸

z

: 0
︸︷︷︸

z2

]

In the ML, the rational function fx,Q(P) can be computed using Miller’s
algorithm [34]. The computational cost of the ML is affected by bitlength x0

and the Hamming weight of x0. We can reduce the computational cost of the
multiplication on Fpk by using the sparse multiplication technique [35]. We use
the affine pairing [2] since the computation of the inversion in G2 is fast.

In the FE, the equation f ′(pk−1)/r can be broken down into three components
by using cyclotomic polynomial Φk as follows [43].

(pk − 1)/r = [(pk/2 − 1)] · [(pk/2 + 1)/Φk(p)]
︸ ︷︷ ︸

easy part

· [Φk(p)/r]
︸ ︷︷ ︸
hard part

.

The computation of the easy part m = f ′(pk/2−1)·((pk/2+1)/Φk(p)) requires one
conjugation, one inversion, some Frobenius operations and some multiplications
on Fpk , so the computational cost of the easy part hardly affects that of the
whole FE. The hard part can be computed by using the base p representation
of Φk (p) /r as

72 Y. Kiyomura et al.

Table 6. x0, bitlength of parameters and Hamming weight of x0

x0 len(x0) HW(x0) len(pk) len(pk/d) len(p) len(r)

BLS-24 −1 + 265 − 275 + 2109 109 4 26122 4354 1089 872

KSS-32 −1 − 22 − 212 + 214 + 218 − 230 + 249 49 7 27536 6884 861 738

KSS-36 25 + 234 + 240 + 245 − 258 58 5 28699 4784 798 669

BLS-42 −1 + 22 − 28 + 243 43 4 28830 4805 687 516

BLS-48 −1 + 27 − 210 − 230 − 232 33 5 27851 4642 581 518

* HW() : Hamming weight

Table 7. Formulas for computing optimal ate pairing ak(P, Q)

BLS-k with k = 24, 42, 48
(
fx,Q(P)

)(pk−1)/r

KSS-32

(
fx,Q(P) · f

p9
2,Q

(P) ·
(

f3,Q(P)
)p · �xQ,−3pQ(P)

)(p32−1)/r

KSS-36

(
fx,Q(P) · f

p7
2,Q

(P) ·
(

f3,Q(P)
)p · �xQ,−3pQ(P)

)(p36−1)/r

* t : conjugation of t in F
pk

mΦk(p)/r = (mλ0) · (mλ1)p · · · (mλs−1)ps−1 · (mλs)ps

, (3)

where λi is the polynomial by x and s = ϕ(k)− 1. For computing the Eq. (3), in
the BLS-k, we can compute it with essentially just exponentiation by x since the
BLS-k has a very convenient way to compute the each mλi [13]. In the KSS-k, we
apply the addition chain technique with Ghammam et al.’s λi-representation to
compute the each mλi efficiently since the coefficients of λi are dozens bits [23].
Additionally, to efficiently compute the exponentiation by x, we use the Karabina
squaring technique [27] in the case of the curve with d = 6, and Granger-Scott
squaring technique [19] in the case of the curve with d = 4 respectively. Hence,
the computation of the hard part requires exponentiations by x deg(p(x)) − 1
times, Frobenius operations s times, and squarings/multiplications on Fpk .

Scalar Mult. in G1 and G2. To efficiently compute the scalar multiplication in
G1 and G2, we use the Gallant-Lambert-Vanstone (GLV) [20] and Galbraith-
Lin-Scott (GLS) [21] which are the scalar decomposition methods By using the
GLV/GLS, for given a scalar u and P ∈ G1 (or G2), the scalar u is decomposed
into t scalars u1, u2, . . . , ut with roughly the size len(u)/t, then we convert the
multi-scalar multiplication uP = u1P + u2ψ(P) + · · · + utψ

t−1(P) by using an
efficient endomorphism ψ [9], where t = 2 in G1 and t = ϕ(k) in G2 respec-
tively. The number of the doubling in G1 and G2 can reduce to roughly 1/t.
Moreover, by using the width-w non adjacent form (w-NAF) [45], the number
of the addition in G1 and G2 can be reduced in the computing the each scalar
multiplication uiψ

i−1(P). Note that we chose the optimal window size w for
the scalars ui. Let Ii and Mi be the cost of inversion and multiplication in Fpi

respectively. We use the Jacobian coordinates in G1 since I1 ≈ 17.7M1. We use
the affine coordinates in G2 since Ik/d ≈ 3.3Mk/d for BLS-24, KSS-32, KSS-36,
BLS-48, and the Jacobian coordinates in G2 since I7 ≈ 17.6M7 for BLS-42.

Secure and Efficient Pairing at 256-Bit Security Level 73

Table 8. Timing of computing pairing (ML, FE), scalar multiplication in G1, G2 and
exponentiation in G3 (M clk: million clocks)

BLS-24 KSS-32 KSS-36 BLS-42 BLS-48

Pairing ML 53.80 32.04 37.61 36.36 20.48

FE 89.84 197.26 147.49 100.95 96.36

Total 143.64 229.30 185.10 137.31 116.84

Scalar Mult. in G1 12.00 8.31 6.13 3.94 3.56

Scalar Mult. in G2 38.87 53.32 35.01 49.43 25.18

Exp. in G3 71.00 62.88 77.30 56.00 63.46

* Scalar Mult. in G2 of BLS-42 only used the Jacobian coordinates
because of I7 ≈ 17.6M7.

Exp. in G3. To efficiently compute the exponentiation in G3, we can use the
GLS method and w-NAF since G3 ⊆ GΦk(p) = {α ∈ Fpk | αΦk(p) = 1} and the
inversion in G3 can be efficiently computed by the conjugation [4].

6.3 Timing and Comparison

In this subsection, we show the timing of the main operations of PBC and
compare those among the five candidate pairing-friendly curves.

Environment. We implement in C language, and its compiler is gcc 6.2.0 with
-O3 option. We also measure on an Intel Core i7-6700 @ 3.4 GHz, RAM: 32 GB
and OS: Ubuntu 16.04 (64-bit).

Results. Table 8 shows the timing of computing the pairing (ML, FE), scalar
multiplication in G1, G2, and exponentiation in G3 for each candidate pairing-
friendly curve. We discuss the timing of these operations among the five candi-
date pairing-friendly curves.

Pairing. The computational cost of the ML is affected by the bitlength and
Hamming weight of x0. The effect on the timing of the ML by the Hamming
weight of x0 is small since the Hamming weight of x0 of each five candidate
pairing-friendly curves is sufficiently small and much the same. As the embedding
degree k increases, the bitlength of x0 decrease, so the timing of the ML in the
BLS-48 can be computed most efficiently.

The computational cost of the FE is affected by the coefficient of λi of Eq. (3),
ϕ(k), degree of p(x), the bitlength of x0 and pk. The timings of the FE in the
KSS-k are slower than that of the BLS-k since the computational cost of addition
chain is required in addition to the exponentiation by x to compute the each
mλi in Eq. (3) of KSS-k. In the BLS-k, the coefficient of each λi of Eq. (3) is
a few bits. Hence, the cost to compute all mλi in the BLS-k is affected by the

74 Y. Kiyomura et al.

bitlength of pk. The timing of the FE in the BLS-24 is faster than other BLS-k
since the bitlength of x0 of the BLS-24 is smaller.

Consequently, the timing of the pairing in the BLS-48 is faster than other
pairing-friendly curves. The multi-pairing requires computing multiple MLs and
one FE. Hence, the pairing-friendly curve with fast calculation of the ML has a
significant effect on the efficiency of the computing the multi-pairing.

Scalar Mult. in G1. The input of scalar multiplication in G1 is a random element
P ∈ G1 and a random scalar value of less than r. The computational cost is
affected by the bitlength of r and the point addition/doubling in G1 affected
by the bitlength of p. As k increases, the bitlength of p and r decrease. Hence,
the timing of the scalar multiplication in G1 in the BLS-48 is faster than other
pairing-friendly curves.

Scalar Mult. in G2. The input of scalar multiplication in G2 is a random element
of P ∈ G2 and a random scalar value of less than r. Its computational cost is
affected by the degree of twist d, and the bitlength r and pk/d. The group G2

is a subgroup on E′(Fpk/d), and the bitlength of pk/d can be small when d is
large. The bitlength of pk/d in the KSS-32 with d = 4 is about 2000-bit larger
than that in the BLS-24, KSS-32, KSS-36, and BLS-48 with d = 6. Hence, the
timing of the scalar multiplication in G2 in the KSS-32 is slower than other
curves. Among the BLS-24, KSS-36 and BLS-48, as k increases, the bitlength of
r decrease. Hence, the timing of the scalar multiplication in G2 in the BLS-48 is
faster than other curves.

Exp. in G3. The input of exponentiation in G3 is a random element of g ∈ G3 and
a random scalar value of less than r. The group G3 is a subgroup on finite field
Fpk , and then the computational cost of the exponentiation in G3 is affected by
the bitlength of r and the multiplication/squaring in Fpk . The BLS-42 and BLS-
48 are theoretically better to compute the exponentiation in G3 efficiently since
the bitlength of r is small rather than other curves. The number of the squaring
in Fpk in the BLS-48 is less than that in the BLS-42 because of the decomposition
size. To compute the multi-exponentiation after the decomposition, the number
of the multiplication in Fpk in the BLS-42 is more reduced rather than in the
BLS-48 because the bigger window size can be use in BLS-42 by w-NAF. As
the result, the timing of the exponentiation in G3 in the BLS-42 is fastest in all
candidate curves.

6.4 Impact on Timing by Revised Bitlength

In this subsection, we show the impact on the timing of the main operations of
PBC by revised bitlength of pk at 256-bit security level by comparing between
our and previous implementations. Note that it is difficult to directly compare the
timing of the main operations of PBC between our and previous implementations
since the implemented algorithms and techniques are different.

Secure and Efficient Pairing at 256-Bit Security Level 75

In previous implementations, Scott [44] showed that the timing of the pairing
is 88.8M clk, and Bos et al. [9] showed that the timing of the scalar multiplication
in G1 and G2, and exponentiation in G3 are 5.2, 27.6, 47.1M clk respectively.
These implemented in BLS-24 with about 15000-bit pk and 500-bit r.

We compare the timing between our BLS-48 implementation and the
previous BLS-24 implementations. Our BLS-48 implementation of the scalar
multiplication in G1 is approximately 1.5 times faster than the previous BLS-
24 implementations of that because the bitlength of r is the same between
these implementations. Then, our BLS-48 implementation of other operations
is approximately 1.0–1.3 times slower than the previous BLS-24 implementa-
tions of that due to the effect of the efficient NFS algorithms.

7 Conclusion

We give for the first time the revised bitlength which the DLP is computation-
ally infeasible against the efficient NFS algorithms (e.g. SexTNFS, STNFS), and
the timing of the main operations of PBC for the five candidate pairing-friendly
curves (i.e. the BLS-k with k = 24, 42, 48, KSS-k with k = 32, 36) at 256-bit
security level. On the security side, we show that it is necessary to increase
bitlengths by more than 10000-bit from the previous estimation to achieve the
256-bit security level. On the implementation side, we show that the BLS-48
curve is the suitable curve at the 256-bit security level by comparing the tim-
ing of the main operations of PBC among the five candidate pairing-friendly
curves with revised bitlengths. For more speeding up, we should implement Fp-
arithmetic in assembly, apply other efficient algorithms, etc.

A Norm Plots of BLS-24, KSS-32, KSS-36 and BLS-42

In this appendix, we show the norm plots of the GNFS and SNFS algorithms
for the BLS-24, KSS-32, KSS-36, and BLS-42 in order to revise the bitlength of
the these curves using the same method discussed in Sect. 5 (Figs. 3, 4, 5, 6, 7,
8, 9 and 10).

Fig. 3. Norms of GNFS algorithm in Fp24 Fig. 4. Norms of SNFS algorithm in Fp24

76 Y. Kiyomura et al.

Fig. 5. Norms of GNFS algorithm in Fp32 Fig. 6. Norms of SNFS algorithm in Fp32

Fig. 7. Norms of GNFS algorithm in Fp36 Fig. 8. Norms of the SNFS algorithm in
Fp36

Fig. 9. Norms of GNFS algorithm in Fp42 Fig. 10. Norms of SNFS algorithm in Fp42

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 1

2. Acar, T., Lauter, K., Naehrig, M., Shumow, D.: Affine pairings on ARM. In:
Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 203–209. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36334-4 13

http://dx.doi.org/10.1007/978-3-540-76900-2_1
http://dx.doi.org/10.1007/978-3-642-36334-4_13

Secure and Efficient Pairing at 256-Bit Security Level 77

3. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-36334-4 11

4. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 5

5. Barker, E.B., Barker, W.C., Burr, W.E., Polk, W.T., Smid, M.E.: Recommendation
for key management - part 1: General (Revision 4). NIST SP 800-57 (2016)

6. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 6

7. Bouvier, C., Gaudry, P., Imbert, L., Jeljeli, H., Thom, E.: Discrete logarithms in
GF(p) — 180 digits. Announcement available at the NMBRTHRY archives, item
004703 (2014)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

9. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 438–455.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 22

10. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 2

11. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). doi:10.1007/3-540-36413-7 19

12. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). doi:10.1007/978-3-319-22174-8 14

13. Costello, C., Lauter, K., Naehrig, M.: Attractive subfamilies of BLS curves for
implementing high-security pairings. In: Bernstein, D.J., Chatterjee, S. (eds.)
INDOCRYPT 2011. LNCS, vol. 7107, pp. 320–342. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25578-6 23

14. Danilov, S.A., Popovyan, I.A.: Factorization of RSA-180, Cryptology ePrint
Archive, Report 2010/270 (2010)

15. European Union Agency of Network and Information Security (ENISA): Algo-
rithms, key sizes and parameters report, 2013 recommandations, version 1.0, Octo-
ber 2013

16. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23, 224–280 (2010)

17. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A kilobit hidden SNFS dis-
crete logarithm computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 202–231. Springer, Cham (2017). doi:10.1007/
978-3-319-56620-7 8

18. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/

http://dx.doi.org/10.1007/978-3-642-36334-4_11
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/978-3-662-46800-5_6
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-662-43414-7_22
http://dx.doi.org/10.1007/978-3-662-48800-3_2
http://dx.doi.org/10.1007/3-540-36413-7_19
http://dx.doi.org/10.1007/978-3-319-22174-8_14
http://dx.doi.org/10.1007/978-3-642-25578-6_23
http://dx.doi.org/10.1007/978-3-319-56620-7_8
http://dx.doi.org/10.1007/978-3-319-56620-7_8
https://gmplib.org/

78 Y. Kiyomura et al.

19. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 13

20. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 11

21. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Crypto 24, 446–469 (2011)

22. Guillevic, A., Morain, F., Thomé, E.: Solving discrete logarithms on a 170-bit MNT
curve by pairing reduction, arXiv preprint arXiv:1605.07746 (2016)

23. Ghammam, L., Fouotsa, E.: Adequate elliptic curves for computing the product
of n pairings. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol.
10064, pp. 36–53. Springer, Cham (2016). doi:10.1007/978-3-319-55227-9 3

24. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theory 52(10), 4595–4602 (2006)

25. Joux, A., Lercier, R., Smart, N., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006). doi:10.1007/11818175 19

26. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang, F.
(eds.) Pairing 2013. LNCS, vol. 8365, pp. 45–61. Springer, Cham (2014). doi:10.
1007/978-3-319-04873-4 3

27. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82, 555–579
(2013)

28. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complex-
ity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 20

29. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Pater-
son, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85538-5 9

30. Kim, T., Jeong, J.: Extended tower number field sieve with application to
finite fields of arbitrary composite extension degree. In: Fehr, S. (ed.) PKC
2017. LNCS, vol. 10174, pp. 388–408. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54365-8 16

31. Kleinjung, T.: Discrete Logarithms in GF(p) – 768 bits. Announcement available
at the NMBRTHRY archives, item 004917 (2016)

32. Lenstra, A.K.: Unbelievable security matching AES security using public key sys-
tems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer,
Heidelberg (2001). doi:10.1007/3-540-45682-1 5

33. Lenstra, A.K., Lenstra, H.W. (eds.): The Development of the Number Field Sieve.
LNM, vol. 1554. Springer, Heidelberg (1993). doi:10.1007/BFb0091534

34. Miller, V.S.: The weil pairing, and its efficient calculation. J. Cryptol. 17, 235–261
(2004)

35. Mori, Y., Akagi, S., Nogami, Y., Shirase, M.: Pseudo 8–sparse multiplication for
efficient ate–based pairing on barreto–naehrig curve. In: Cao, Z., Zhang, F. (eds.)
Pairing 2013. LNCS, vol. 8365, pp. 186–198. Springer, Cham (2014). doi:10.1007/
978-3-319-04873-4 11

36. Mitsunari, S.: A fast implementation of the optimal ate pairing over BN curve on
intel haswell processor, Cryptology ePrint Archive, Report 2013/362 (2013)

http://dx.doi.org/10.1007/978-3-642-13013-7_13
http://dx.doi.org/10.1007/3-540-44647-8_11
http://arxiv.org/abs/1605.07746
http://dx.doi.org/10.1007/978-3-319-55227-9_3
http://dx.doi.org/10.1007/11818175_19
http://dx.doi.org/10.1007/978-3-319-04873-4_3
http://dx.doi.org/10.1007/978-3-319-04873-4_3
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-540-85538-5_9
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/3-540-45682-1_5
http://dx.doi.org/10.1007/BFb0091534
http://dx.doi.org/10.1007/978-3-319-04873-4_11
http://dx.doi.org/10.1007/978-3-319-04873-4_11

Secure and Efficient Pairing at 256-Bit Security Level 79

37. Menezes, A., Sarker, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography, Cryptology ePrint Archive,
Report 2016/1102 (2016)

38. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

39. Pollard, J.: Monte Carlo methods for index computation (mod p). Math. Comput.
32(143), 918–924 (1978)

40. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, C-20, pp. 26–28 (2000)

41. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

42. Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over
barreto-naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73489-5 10

43. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03298-1 6

44. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen,
L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25516-8 18

45. Schirokauer, O.: Using number fields to compute logarithms in finite fields. Math.
Comp. 69, 1267–1283 (2000)

46. Schirokauer, O.: Virtual logarithms. J. Algorithms 57, 140–147 (2005)
47. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)

http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-540-73489-5_10
http://dx.doi.org/10.1007/978-3-642-03298-1_6
http://dx.doi.org/10.1007/978-3-642-25516-8_18

	Secure and Efficient Pairing at 256-Bit Security Level
	1 Introduction
	2 Overview of Pairing
	2.1 Definition and Properties
	2.2 Optimal Ate Pairing

	3 Candidate Pairing-Friendly Curves at 256-Bit Security Level
	3.1 How to Choose Candidate Pairing-Friendly Curves
	3.2 Selection of Candidate Pairing-Friendly Curves

	4 Overview of Number Field Sieve and Its Variants
	4.1 Extended TNFS and Special-NFS Algorithms
	4.2 Larger Norm Implies Higher Complexity
	4.3 Comparing Norms of NFS Algorithms by Using Kim and Barbulescu's Estimation Method

	5 Revise the Bitlength for Candidate Pairing-Friendly Curves
	5.1 Revised Estimation of Bitlength for BLS-48
	5.2 Revised Bitlength at 256-Bit Security Level

	6 Comparison of Timing Among Candidate Pairing-Friendly Curves
	6.1 Specific Parameter for Implementation
	6.2 Our Implemented Algorithms
	6.3 Timing and Comparison
	6.4 Impact on Timing by Revised Bitlength

	7 Conclusion
	A Norm Plots of BLS-24, KSS-32, KSS-36 and BLS-42
	References

