
SCRAPE: Scalable Randomness Attested
by Public Entities

Ignacio Cascudo1 and Bernardo David2,3(B)

1 Aalborg University, Aalborg, Denmark
2 Aarhus University, Aarhus, Denmark

davidm.bernardo@gmail.com
3 IOHK, Hong Kong, Hong Kong

Abstract. Uniform randomness beacons whose output can be publicly
attested to be unbiased are required in several cryptographic protocols.
A common approach to building such beacons is having a number par-
ties run a coin tossing protocol with guaranteed output delivery (so that
adversaries cannot simply keep honest parties from obtaining random-
ness, consequently halting protocols that rely on it). However, current
constructions face serious scalability issues due to high computational
and communication overheads. We present a coin tossing protocol for
an honest majority that allows for any entity to verify that an output
was honestly generated by observing publicly available information (even
after the execution is complete), while achieving both guaranteed output
delivery and scalability. The main building block of our construction is
the first Publicly Verifiable Secret Sharing scheme for threshold access
structures that requires only O(n) exponentiations. Previous schemes
required O(nt) exponentiations (where t is the threshold) from each of
the parties involved, making them unfit for scalable distributed random-
ness generation, which requires t = n/2 and thus O(n2) exponentiations.

1 Introduction

The problem of obtaining a reliable source of randomness has been studied since
the early days of cryptography. Whereas individual parties can choose to trust
locally available randomness sources, it has been shown that local randomness
sources can be subverted [BLN16,DPSW16] and many applications require a
common public randomness source that is guaranteed to be unbiased by a poten-
tial adversary. This necessity inspired the seminal work on Coin Tossing by
Blum [Blu81], which allows two or more parties to generate an output that is
guaranteed to be uniformly random as long as at least one of the parties is honest
(and given that the protocol terminates).

I. Cascudo acknowledges support from the Danish Council for Independent Research,
grant no. DFF-4002-00367.
B. David—This project has received funding from the European research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 669255).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 537–556, 2017.
DOI: 10.1007/978-3-319-61204-1 27

538 I. Cascudo and B. David

The concept of a public randomness beacon that periodically issues fresh
unpredictable and unbiased random values was proposed by Rabin [Rab83]
in the context of contract signing and has found several other applica-
tions such as voting protocols [Adi08], generating public parameters for
cryptographic schemes [BDF+15,LW15], privacy preserving instant messag-
ing [WCGFJ12,vdHLZZ15], and anonymous browsing [DMS04,GRFJ14]. More
recently, blockchain [Nak08,GKL15] applications such as smart contracts
[KMS+16,B+14], sharding [CDE+16] and Proof-of-Stake based consensus pro-
tocols [KKR+16] have increased the need for randomness sources [BCG15].

Rabin’s concept of randomness beacons fits the above applications very nicely
but the proposed implementation in [Rab83] relies on a trusted third party. The
goal of this paper is to construct a distributed randomness beacon guaranteeing
output delivery and uniformly distributed randomness for the parties that use
the beacon as long as a majority of these parties are honest. Moreover, in many
of the aforementioned applications, parties that do not necessarily participate
in randomness generation but wish to audit the protocol execution must be
able to attest a posteriori that the randomness source is reliable and unbiased.
Hence, we aim at constructing a publicly verifiable randomness beacon and not
only a protocol that outputs randomness to the parties actively involved in its
execution.

1.1 Related Works

A natural solution for obtaining randomness beacons consists in using a coin toss-
ing protocol as proposed by Blum [Blu81] with its messages posted to a public
bulletin board for later verification (or broadcast among the parties). However,
it is known that in case half or more of the parties are corrupted, the adver-
sary can bias the output of the protocol or even prevent the honest parties from
obtaining any output at all by aborting protocol execution at a given point
[Cle86]. Assuming that a majority of the players are honest, it is possible to
guarantee output delivery [RBO89] through threshold verifiable secret sharing
(VSS) [CGMA85] given that a broadcast channel is available. Basically, given
that a majority of n parties are honest, each party can secret share its input
into n shares such that n/2 are enough to reconstruct the secret, sending one
share to each involved party before starting the coin tossing protocol. While the
adversary cannot recover any input (since it has at most n/2 − 1 shares of each
input), the honest parties collective know at least n/2 shares, which they can
use to reconstruct the inputs of parties who abort and then finish the protocol.

While a coin tossing protocol with guaranteed output delivery (G.O.D.) with
a honest majority based on VSS provides a reliable source of randomness, this
approach still has two main issues: 1. most VSS schemes require interaction
between the dealer and the other parties, which hinders scalability and 2. only
parties who actively participate in the protocol can verify that it was executed
correctly. While non-interactive VSS [Fel87] solves the interaction problem, it
does not allow the protocol execution to be independently verified by entities
that did not actively participate. A natural way to allow for any entity to verify

SCRAPE: Scalable Randomness Attested by Public Entities 539

that the outputs produced by such protocols is indeed honestly generated is to
substitute traditional VSS by publicly verifiable secret sharing (PVSS) schemes
[Sta96], which allow for anybody to verify the validity of shares and reconstructed
secrets through information that can be made publicly available without requir-
ing direct interaction between any of the parties. Variations of this approach
have been proposed in [KKR+16,SJK+16].

While [KKR+16] instantiates a plain [RBO89]-style G.O.D. coin tossing
protocol requiring communication among all parties (through a public ledger),
[SJK+16] reduces the communication complexity by partitioning parties into
committees that internally run a protocol with publicly verifiable outputs. Later
on, a client that only communicates to the leader of each committee (instead
of talking to all parties) can aggregate these outputs to obtain publicly veri-
fiable randomness. However, while the vanilla approach of [KKR+16] achieves
security assuming only an honest majority (meaning that the adversary corrupts
less than half of all parties), the communication efficient approach of [SJK+16]
only achieves security against an adversary that corrupts less than a third of
all parties. Moreover, provided that there is an honest majority, the protocol of
[KKR+16] guarantees that all parties get output regardless of which parties are
corrupted, while in the protocols of [SJK+16], even if only the client is corrupted,
it can abort and prevent all other parties from receiving randomness.

Even though coin tossing with G.O.D. built through PVSS can poten-
tially achieve scalability and public verifiability, current PVSS constructions
[Sta96,FO98,Sch99,BT99,RV05,HV09,Jha11,JVSN14] suffer from high compu-
tational overhead. In general, the parties are required to each compute O(nt)
exponentiations to verify n shares of a secret with threshold t, which translates
into O(n2) exponentiations since t = n/2 in our randomness beacon application1.
This computational overhead arises because the main idea behind these schemes
is to commit to the coefficients of a polynomial used for a Shamir Secret Sharing
[Sha79] and encrypt the shares, later using the commitments to the coefficients
to independently compute commitments to the shares, which are proven in zero-
knowledge to correspond to the encrypted shares. This approach was originally
put forth in [Sch99], which uses the Fiat-Shamir heuristic (and consequently the
random oracle model) to obtain the necessary non-interactive zero-knowledge
proofs. Later on, variations of this protocol in the plain model were proposed in
[RV05,JVSN14], which substitute the zero-knowledge proofs by checks based on
Paillier Encryption [Pai99], and in [HV09,Jha11], which propose a pairing based
method for checking share validity.

Other approaches for constructing public randomness beacons have been con-
sidered in [BCG15,BDF+15,LW15,BLMR14,BGM16]. Public verifiability (or

1 In fact [Jha11] provides an alternative solution where only O(n) exponentiations
and a constant number of pairings are required for verification but O(n) pairings are
required for setup and O(n2) exponentiations in the target group of a bilinear map
(more expensive than the other exponentiations performed in the source groups) are
required for reconstruction.

540 I. Cascudo and B. David

auditability) in the context of general multiparty computation protocol has been
previously considered in [BDO14,SV15].

1.2 Our Contributions

We introduce SCRAPE, a protocol that implements a publicly verifiable random-
ness beacon given an honest majority through a PVSS based guaranteed output
delivery coin tossing protocol. Our main result lies at the core of SCRAPE:
the first threshold PVSS scheme that only requires a linear number of expo-
nentiations for sharing, verifying and reconstruction, whereas previous schemes
only achieve quadratic complexity. This PVSS scheme can be instantiated both
under the Decisional Diffie Hellman (DDH) assumption in the Random Ora-
cle Model (ROM) and in the plain model under the Decisional Bilinear Square
(DBS) assumption [HV09]. While improving on the computational complexity
of previous schemes, our PVSS scheme retains a similarly low communication
overhead, making it fit for applications with large amounts of users. We remark
that our new PVSS schemes can also be used to improve the performance of
[SJK+16].

Model: As in previous works [BDO14], we assume that the parties can use a
“public bulletin board” to publish information that will be used for posterior
verification. In fact, in the applications we are interested in, a ledger where
messages can be posted for posterior verification is readily available, since the
Bitcoin Backbone protocol itself implements such a mechanism (i.e. the distrib-
uted ledger analysed in [GKL15]). Nevertheless, our protocols are compatible
with any public ledger, not only with that of [GKL15].

Our Techniques: We improve on Schoenmakers’ PVSS scheme [Sch99] and its
variants (which require O(nt) exponentiations to verify n shares) by designing
a share verification procedure that only requires O(n) exponentiations (or pair-
ings). Our procedure explores the fact that sharing a secret with Shamir Secret
Sharing [Sha79] is equivalent to encoding the secret (plus randomness) with a
Reed Solomon error correcting code, a fact which was first observed by McEliece
and Sarwate in [MS81]. Since shares from Shamir Secret Sharing form a code-
word of a Reed Solomon code, computing the inner product of a share vector
with a codeword from the corresponding dual code should yield 0 if the shares
are correctly computed. As in [Sch99], the dealer in our scheme shares the secret
using Shamir Secret sharing, encrypts the shares s1, . . . , sn in ciphertexts of the
form hskisi (where hski is a public key and ski is a secret key) but also commits
to all shares by computing vi = gsi , where g, h are two independently chosen
generators of a group where the DLOG problem is assumed to be hard. The
dealer also provides evidence that the shares in the ciphertexts are the same as
the shares in the commitments. To verify the validity of the shares, anybody
can sample a random codeword c⊥ = (c⊥

1 , . . . , c⊥
n) of the dual code of the Reed

Solomon code corresponding to the instance of Shamir Secret sharing that was
used, compute the inner product of c⊥ with the share vectors in the exponents

SCRAPE: Scalable Randomness Attested by Public Entities 541

of g (by computing
∏

i v
c⊥
i

i = g
∑

i sic
⊥
i) and check that it is equal to g0 = 1. If

the shares are not valid, this check fails with large probability. To prove that the
shares in the ciphertexts and in the commitments are the same, the dealer can
either use a non-interactive zero-knowledge (NIZK) proof constructed using the
Fiat-Shamir heuristic as in [Sch99] (resulting in a construction in the ROM under
the DDH assumption) or have the parties do pairing based checks as in [HV09]
(resulting in a construction in the plain model under the DBS assumption).

Concrete Efficiency: In the DDH based construction in the ROM, the dealer
is required to compute 5n exponentiations in the sharing phase, while verifi-
cation and reconstruction respectively require 4n and 5t + 3 exponentiations
(given that all n shares are verified but only t shares are used in reconstruc-
tion). In the DBS based construction in the plain model, the dealer is required
to compute 2n exponentiations in the sharing phase, while verification requires
2n pairings and reconstruction requires 2n pairings and t + 1 exponentiations
(given that n decrypted shares are verified but only t shares are used in recon-
struction). Previous results required nt extra exponentiations in the verification
phase, resulting in n2/2 extra exponentiations in the randomness beacon appli-
cation, which requires t = n/2. In the random oracle model construction, extra
NIZK data is needed, amounting to a total of 2n group elements and n + 1
ring elements published by the dealer. In the construction in the plain model,
the dealer saves on the NIZK data and only posts 2n group elements, while
requiring more expensive computation (i.e. pairings).

2 Preliminaries

In this section, we establish notation and introduce definitions that will be used
throughout the paper. We denote uniformly sampling a random element x from
a finite set D by x ← D. We denote vectors as x = (x1, . . . , xn). We denote
the inner product of two vectors x,y as 〈x,y〉 =

∑
1≤i≤n xi · yi. For the sake of

notation, the integer n will always be considered to be even, so that n/2 is an
integer. In this paper q will always denote a prime number. We denote by Zq

the ring of integers modulo q and by G a finite multiplicative group of order q.
Since q is prime, Zq is a finite field and G is a cyclic group where every element
g �= 1 is a generator. We denote by Zq[x] the ring of polynomials in one variable
with coefficients in Zq. We denote by logge the discrete logarithm of an element
e ∈ G with respect to generator g ∈ G.

2.1 Coding Theory

We define a [n, k, d] code C to be a linear error correcting code over Zq of length
n, dimension k and minimum distance d. Its dual code C⊥ is the vector space
which consists of all vectors c ∈ Z

n
q such that 〈c, c⊥〉 = 0 for all c in C. The

dual code C⊥ of an [n, k, d] code C is an [n, n − k, d⊥] code (for some d⊥). In
this work, we will use the following basic linear algebra fact.

542 I. Cascudo and B. David

Lemma 1. If v ∈ Z
n
q \ C, and c⊥ is chosen uniformly at random in C⊥ then

the probability that 〈v, c⊥〉 = 0 is exactly 1/q.

Proof. By linearity, a c⊥ ∈ C⊥ is orthogonal to v if only if it is also orthogonal
to every vector in the code D spanned by v and C, i.e., if and only if c⊥ ∈ D⊥.
Since v /∈ C, then the dimension of D is k + 1 and hence the space D⊥ has
dimension n − k − 1. Therefore if c⊥ is chosen uniformly at random in C⊥ the
probability that 〈v, c⊥〉 = 0 is

#(D⊥)
#(C⊥)

=
qn−k−1

qn−k
=

1
q
.

Moreover, in this work we will always be under the assumption n < q and
we will use Reed-Solomon codes C of the following form

C = {(p(1), p(2), . . . , p(n)) : p(x) ∈ Zq[x],deg p(x) ≤ k − 1}
where p(x) ranges over all polynomials in Zq[x] of degree at most k − 1. This is
an [n, k, n − k + 1]-code. Its dual C⊥ is an [n, n − k, k + 1]-code, which can be
defined as follows

C⊥ = {(v1f(1), v2f(2), . . . , vnf(n)) : f(x) ∈ Zq[x],deg f(x) ≤ n − k − 1}
for the coefficients vi =

∏n
j=1,j �=i

1
i−j .

2.2 Shamir Secret Sharing

An (n, t) threshold secret sharing scheme allows a dealer D to split a secret s
into n shares S = (s1, . . . , sn) distributed among n parties P1, . . . , Pn such that
it is possible to reconstruct the secret given t of the shares but no information at
all is revealed if less shares are known. We refer to S as the share vector of the
secret sharing scheme. The first threshold secret sharing scheme was introduced
by Shamir in [Sha79]. In order to split a secret s ∈ Zq, the dealer samples
t − 1 random coefficients c1, . . . , ct−1 ← Zq and constructs a polynomial p(x) =
s+c1x+c2x

2+· · ·+ct−1x
t−1. The shares are computed as si = p(i) for 1 ≤ i ≤ n.

A party who possesses t shares can use Lagrange interpolation to recover the
polynomial p(x) and thus obtain s. On the other hand, a party who knows less
than t shares has no information about the secret. McEliece et al. first observed
that sharing a secret into n shares with Shamir Secret Sharing is equivalent to
encoding the message (x, c1, . . . , ct−1) under a [n, t, n−t+1] Reed Solomon code,
implying that the share vector S is a codeword of such Reed Solomon code.

2.3 Assumptions

One of our constructions is proven in the Random Oracle Model [BR93], where
it is assumed that the parties are given access to a function H(x) that takes
inputs of any size and returns unique uniformly random outputs of fixed size

SCRAPE: Scalable Randomness Attested by Public Entities 543

(returning the same output every time the input is the same). Such a function
can be instantiated in practice by a cryptographic hash function. In this model
we prove security of our protocols under the DDH assumption, that states given
g, gα, gβ it is hard for a PPT adversary to distinguish between gαβ from gr,
where g is a generator of a group G of order q and α, β, r ← Zq.

We assume efficient non-degenerate bilinear groups described by Λ :=
(q,G,GT , e), where G and GT are groups of order q and G×G → GT is a bilin-
ear map. We use symmetric pairings to describe the construction for the sake of
clarity but remark that our construction can also be easily converted to asym-
metric bilinear groups [AHO16], for which state-of-the-art pairing friendly curves
[BN06] for which more efficient algorithms for computing pairings [AKL+11]
are known. We prove our pairings based protocol secure under the Decisional
Bilinear Square (DBS) assumption [HV09] that was shown in that paper to be
equivalent to the Decisional Bilinear Quotient assumption [LV08] and related to
the Decisional Bilinear Diffie Hellman assumption.

Assumption 1 Decisional Bilinear Square (DBS) [HV09]. Let Λ :=
(q,G,GT , e) be a bilinear group. For a generator g ∈ G, random values
μ, ν, s ← Zq and given u = gμ and v = gν , the following probability distrib-
utions are computationally indistinguishable: D0 = (g, u, v, T0 = e(u, u)ν) and
D1 = (g, u, v, T1 = e(u, u)s).

Adversarial Model. We prove the security of our protocols in the stand alone
setting against malicious adversaries, who may deviate from the protocol in any
arbitrary way. We consider static adversaries, who have to choose which parties
to corrupt before protocol execution begins.

Public Ledger and Broadcast Channel. We assume that the parties have access to
a public ledger with Liveness, meaning that an adversary cannot prevent honest
parties from adding information and agreeing on it, and Persistence, meaning
that the information cannot be modified or removed a posteriori. It is known that
such a ledger can be implemented by the Bitcoin backbone protocol assuming an
honest majority, digital signatures and a Random Oracle [GKL15]. However, we
remark that our protocols do not rely on any properties that are unique to the
ledger of [GKL15], meaning that our constructions can also be instantiated over
public ledgers in the plain model. Notice that access to a broadcast protocol is
commonly assumed in multiparty protocols for an honest majority [RBO89] and
that the same effect of broadcasting a messages can be achieved by writing it
to the ledger. We also remark that the availability of a public bulletin board has
been assumed in previous works on public verifiability for multiparty protocols
[BDO14,SV15].

2.4 Publicly Verifiable Secret Sharing

We adopt the general model for PVSS schemes of [Sch99] and the security defini-
tions of [RV05,HV09] (with some differences that we remark below). We consider

544 I. Cascudo and B. David

a set of n parties P = {P1, . . . , Pn} and a dealer D who shares a secret among
all the parties in P. We will construct schemes for (n, t)-threshold access struc-
tures, meaning that the secret is split in n shares in such a way that knowing at
most t − 1 shares reveals no information but a collection of t shares allows for
secret reconstruction. Additionally, any external verifier V can check that the D
is acting honest without learning any information about the shares or the secret.
A PVSS protocol has four phases described below:

– Setup: The dealer D generates and publishes the parameters of the scheme.
Every party Pi publishes a public key pki and withholds the corresponding
secret key ski.

– Distribution: The dealer creates shares s1, . . . , sn for the secret s, encrypts
share si with the public key pki for i = 1, . . . , n and publishes these encryp-
tions ŝi, together with a proof PROOFD that these are indeed encryptions
of a valid sharing of some secret.

– Verification: In this phase, any external V (not necessarily being a partic-
ipant in the protocol) can verify non-interactively, given all the public infor-
mation until this point, that the values ŝi are encryptions of a valid sharing
of some secret.

– Reconstruction: This phase is divided in two.
Decryption of the shares: This phase can be carried out by any set Q of t or
more parties. Every party Pi in Q decrypts the share si from the ciphertext ŝi

by using its secret key ski, and publishes si together with a (non-interactive)
zero-knowledge proof PROOFi that this value is indeed a correct decryption
of ŝi.
Share pooling: Any external verifier V (not necessarily being a participant in
the protocol) can now execute this phase. V first checks whether the proofs
PROOFi are correct. If the check passes for less than t parties in Q then V
aborts; otherwise V applies a reconstruction procedure to the set si of shares
corresponding to parties Pi that passed the checks.

A PVSS scheme must provide three security guarantees: Correctness, Verifi-
ability and IND1-Secrecy. These properties are defined below:

– Correctness: If the dealer and all players in Q are honest, then all verifica-
tion checks in the verification and reconstruction phases pass and the secret
can be reconstructed from the information published by the players in Q in
the reconstruction phase.

– Verifiability: If the check in the verification step passes, then with high
probability the values ŝi are encryptions of a valid sharing of some secret.
Furthermore if the check in the Reconstruction phase passes then the com-
municated values si are indeed the shares of the secret distributed by the
dealer.

– IND1-Secrecy: Prior to the reconstruction phase, the public information
together with the secret keys ski of any set of at most t − 1 players gives
no information about the secret. Formally this is stated as in the following
indistinguishability based definition adapted from [RV05,HV09]:

SCRAPE: Scalable Randomness Attested by Public Entities 545

Definition 1 Indistinguishability of secrets (IND1-secrecy). We say that
the PVSS is IND1-secret if for any polynomial time adversary APriv corrupting
at most t−1 parties, APriv has negligible advantage in the following game played
against a challenger.

1. The challenger runs the Setup phase of the PVSS as the dealer and sends all
public information to APriv. Moreover, it creates secret and public keys for
all uncorrupted parties, and sends the corresponding public keys to APriv.

2. APriv creates secret keys for the corrupted parties and sends the corresponding
public keys to the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets.
Furthermore it chooses b ← {0, 1} uniformly at random. It runs the Dis-
tribution phase of the protocol with x0 as secret. It sends APriv all public
information generated in that phase, together with xb.

4. APriv outputs a guess b′ ∈ {0, 1}.

The advantage of APriv is defined as |Pr[b = b′] − 1/2|.
The IND1-secrecy definition is the one used in [RV05,HV09], except for the

fact that we do not impose any privacy requirement after the Reconstruction
phase. The difference stems from the fact that in [RV05,HV09] it was required
that nobody learns the secret but the parties interacting during the reconstruc-
tion, while in our random beacon application the secret must be publicly recon-
structed and published. We remark that our scheme can achieve both the relaxed
definition required by the random beacon application and the stronger secrecy
guarantees of [RV05,HV09] (through the use of private channels between parties
or through the technique of [HV09] that requires extra data to be posted to
the ledger). We also remark that our schemes can achieve the stronger secrecy
notion formalized as IND2-secrecy in [RV05,HV09], which allows the adversary
to choose arbitrary secrets. This is done by a black box transformation to the
protocols that allows for sharing arbitrary secrets instead of random ones by
using the random shared secret as a “one time pad” to encrypt an arbitrary
secret, which is formally proven in [RV05,HV09].

2.5 Zero-Knowledge Proofs of Discrete Logarithm Knowledge

In our construction based on the DDH assumption in the random oracle model
we will need a zero-knowledge proof of knowledge of a value α ∈ Zq such that
x = gα and y = hα given g, x, h, y. We denote this proof by DLEQ(g, x, h, y).
Chaum and Pedersen constructed a sigma protocol to perform this proof in
[CP93], their protocol works as follows:

1. The prover computes a1 = gw and a2 = hw where w ← Zq and sends a1, a2

to the verifier.
2. The verifier sends a challenge e ← Zq to the prover.
3. The prover sends a response z = w − αe to the verifier.

546 I. Cascudo and B. David

4. The verifier checks that a1 = gzxe and a2 = hzye and accepts the proof if
this holds.

This proof has the properties of completeness, soundness and zero-knowledge.
In our proofs, we will specifically reference the soundness property, which means
that a prover cannot convince a verifier of a fake statement except with a negli-
gible soundness error ε. Notice that this sigma protocol can be transformed into
a non-interactive zero-knowledge proof of knowledge of α in the random oracle
model through the Fiat-Shamir heuristic [FS87,PS96]. We remark that, as in
[Sch99], we need to compute this proof in parallel for n distinct pairs of values
(x1, y1), . . . , (xn, yn). In this case, a single challenge e is computed by the prover
as e = H(x1, y1, . . . , xn, yn, a1,1, a2,1, . . . , a1,n, a2,n), where the values a1,i, a2,i

are computed according to xi, yi as described above and H(·) is a random oracle
(that can be of course substituted by a cryptographic hash function). The proof
then consists of the challenge e along with responses zi computed according
to each xi, yi. The verifier can check the proof by computing a′

1,i = gzixe
i and

a′
2,i = hziye

i , and verifying that H(x1, y1, . . . , xn, yn, a′
1,1, a

′
2,i, . . . , a

′
1,n, a′

2,n) = e.

3 PVSS Based on the DDH Assumption in the ROM

In this section, we construct a PVSS protocol secure under the DDH assump-
tion in the Random Oracle Model. Our general approach is similar to that of
Schoenmakers [Sch99] but differs significantly in the procedure used for share
verification, which represents the main overhead in Schoenmakers’ scheme.

3.1 Security Analysis

Notice that the Setup and Reconstruction phases are exactly equal to those of
[Sch99], while our protocol differs in the Distribution and Verification phases,
where we apply our new technique. The key observation is that maliciously
generated encrypted shares ŝ1, . . . , ŝn will only pass the verification procedure
with probability 1/q plus the soundness error of the DLEQ proof, while v1, . . . , vn

reveal no information about the secret hs under the DDH assumption (by an
argument similar to that of [Sch99]).

We formalize these observations below. First we consider IND1-secrecy. We
remark that while we use our relaxed IND1-secrecy notion or our randomness
beacon application (where no secrecy is preserved after reconstruction), Proto-
col πDDH achieves the original stronger IND1-secrecy notion of [RV05,HV09]
(where secrecy against parties outside the qualified set is guaranteed even after
the reconstruction) if the reconstruction is carried out through private channels
between the parties in the qualified set.

Theorem 1. Under the decisional Diffie-Hellman assumption, the protocol
πDDH is IND1-secret against a static PPT adversary (Fig. 1).

SCRAPE: Scalable Randomness Attested by Public Entities 547

Fig. 1. Protocol πDDH

Proof. We show that, if there exists an adversary APriv which can break the
IND1-secrecy property of protocol πDDH , then there exists an adversary ADDH

which can use APriv to break the decisional Diffie-Hellman assumption with the
same advantage. Without loss of generality we assume APriv corrupts the t − 1
first parties.

548 I. Cascudo and B. David

Let (g, gα, gβ , gγ) be an instance of the DDH problem. Obviously if α = 0 or
β = 0 then the problem is trivial, so we assume these values are nonzero. Now
ADDH, using APriv, can simulate an IND1 game as follows:

1. The challenger sets h = gα and runs the Setup phase of πDDH . For t ≤ i ≤ n,
ADDH selects uniformly random values ui ← Zp (these can be thought of
implicitly defining ski as ski = ui/α) and sends the values pki = gui to
APriv.

2. For 1 ≤ i ≤ t − 1, APriv chooses uniformly random values ski ← Zq and sets
pki = hski and sends this to the challenger.

3. For 1 ≤ i ≤ t − 1, the challenger chooses uniformly random values si ← Gq

and sets vi = gsi and ŝi = pksi
i .

For t ≤ i ≤ n, it generates the values vi = gp(i) where p(x) is the unique
polynomial of degree at most t determined by p(0) = β and p(i) = si for
i = 1, . . . , t−1. Note that ADDH does not know β, but it does know gβ = gp(0)

and gsi = gp(i) for 1 ≤ i ≤ t − 1, so it can use Lagrange interpolation in the
exponent to compute the adequate vi. It also creates the values ŝi = vui

i . Note
that then ŝi = gui·p(i) = pk

p(i)
i . From all the computed values, the challenger

now creates the DLEQ proofs as the dealer does in the PVSS protocol. Finally
it sends all this information together with the value gγ (which plays the role
of xb in the IND game) to APriv.

4. APriv makes a guess b′.

If b′ = 0, ADDH guesses that γ = α · β. If b′ = 1, ADDH guesses that γ is a
random element in Zp.

The information that APriv receives in step 3. is distributed exactly like a
sharing of the value hβ = gα·β with the PVSS. Consequently, γ = α · β if and
only if the value gγ sent to APriv is the secret shared by the PVSS. It is now
easy to see that the guessing advantage of ADDH is the same as the advantage
of APriv.

The following two theorems guarantee the verifiability property of πDDH .

Theorem 2. If the dealer does not construct values (vi, ŝi) of the right form
in the Distribution phase (i.e. either loggvi �= logpki

ŝi for some i, or loggvi =
logpki

ŝi = si for all i but the values si do not constitute a valid sharing of some
secret in Zq with the (n, t)-threshold Shamir secret sharing scheme), then this is
detected in the verification step with probability at least 1 − ε − 1/q, where ε is
the soundness error of the proof DLEQ.

Proof. If the verification of DLEQ passes, then we have that, except with prob-
ability ε, for every 1 ≤ i ≤ n, there exists si with vi = gsi and ŝi = pksi

i . Now
the values si are a valid sharing with the (n, t)-threshold Shamir secret sharing
scheme if and only if the vector v = (s1, . . . , sn) ∈ C. Suppose that (s1, . . . , sn) /∈
C. Then by Lemma 1, since c⊥ is sampled uniformly at random then 〈v, c⊥〉 �= 0

except with probability 1/q. But then
∏n

i=1 v
c⊥
i

i =
∏n

i=1 gsi·c⊥
i = g〈v,c⊥〉 �= 1.

Hence if the values si are not a valid Shamir sharing, then the check fails with
probability 1 − 1/q.

SCRAPE: Scalable Randomness Attested by Public Entities 549

Theorem 3. If a party in Q communicates an erroneous decryption share s̃i

in the Reconstruction phase, then this is detected by the verifier with probability
1 − ε, where ε is the soundness error of the DLEQ proof.

Proof. This is straightforward by definition since an adversary that succeeds in
providing a DLEQ proof for an invalid decrypted share breaks DLEQ’s soundness
property.

4 PVSS Based on Pairings in the Plain Model

In this section, we construct a PVSS scheme based on the DBS assumption
in the plain model (without requiring random oracles). This scheme uses the
techniques of [HV09] to eliminate the need for the random oracle based NIZKs
and instead use pairings to check that the encrypted shares ŝi correspond to the
committed shares vi and, later on, check that the decrypted shares correspond
to ŝi. We use the same information theoretical verification procedure as in the
DDH based scheme. The protocol is described in Fig. 2.

4.1 Security Analysis

As in the DDH based protocol, notice that the Setup and Reconstruction phases
are exactly equal to those of [HV09], while our protocol differs in the Distribution
and Verification phases. Maliciously generated encrypted shares ŝ1, . . . , ŝn will
only pass the verification procedure with probability of 1/q, while v1, . . . , vn

again reveal no information about the secret e(h, h)s but this time under the BDS
assumption. Again we remark that Protocol πDBS achieves the original stronger
IND1-secrecy notion of [RV05,HV09] (where secrecy against parties outside the
qualified set is guaranteed even after the reconstruction) if the reconstruction is
carried out through private channels between the parties in the qualified set. The
proofs of Theorems 4 and 5 are similar to those of Theorems 1 and 2, respectively,
and are presented in the full version of this work [CD17].

Theorem 4. Under the DBS assumption, protocol πDBS is IND1-secret against
a static PPT adversary.

Theorem 5. If the dealer does not construct values (vi, ŝi) of the right form
in the Distribution phase (i.e. either loggvi �= logpki

ŝi for some i, or loggvi =
logpki

ŝi = si for all 1 ≤ i ≤ n but the values si do not constitute a valid sharing
of some secret in Zq with the (n, t)-threshold Shamir secret sharing scheme),
then this is detected in the verification step with probability at least 1 − 1/q.

Theorem 6. If a party in Q communicates an erroneous decryption share s̃i in
the Reconstruction phase, then this is detected by the verifier with probability 1.

Proof. If s̃i = ha with a �= si then e(pki, s̃i) = e(pki, h)a �= e(pki, h)si = e(ŝi, h).

550 I. Cascudo and B. David

Fig. 2. Protocol πDBS

5 Building the SCRAPE Randomness Beacon

Publicly verifiable secret sharing schemes have a multitude of applications as
discussed in [Sch99], among them universally verifiable elections, threshold ver-
sions of El Gamal encryption and threshold software key escrow. However, we
are specially interested in constructing SCRAPE, a protocol that implements a
distributed randomness beacon that is guaranteed to be secure given an honest
majority, a PVSS scheme and a public ledger. SCRAPE is basically a coin tossing
protocol with guaranteed output delivery (G.O.D.), meaning that an adversary

SCRAPE: Scalable Randomness Attested by Public Entities 551

Fig. 3. Protocol πSCRAPE

cannot prevent honest parties from obtaining a correct output (e.g. by abort-
ing before the execution is finished). Moreover, SCRAPE is publicly verifiable,
meaning that anybody can analyse past (and current) protocol transcripts to
verify that the protocol is being correctly executed. The reason we aim at guar-
anteed output delivery is twofold: 1. Protecting against particularly adversarial
behavior and 2. Tolerating non-byzantine failures in users after the commitment
phase (e.g. power outage). When used to bootstrap blockchain based consensus
protocols such as in [KKR+16], πSCRAPE has to tolerate adversaries that can
force a temporary loss of consensus making the users end up with conflicting ran-
dom outputs or temporarily “disconnecting” users from the network or public
ledger. We follow the general approach of [RBO89] to obtain guaranteed output
delivery based on verifiable secret sharing, building on our PVSS schemes to
achieve public verifiability for the final coin tossing protocol. More specifically,
we use our PVSS protocols to instantiate the construction of [KKR+16], which
proposed to combine a PVSS scheme with a public ledger to obtain publicly
verifiable G.O.D. coin tossing. The protocol is described in Fig. 3. The security
of πSCRAPE follows from the security of the general construction of [KKR+16]
and the security of our protocols that was proven in the previous sections. We
refer the reader to [KKR+16] for a detailed discussion on the general protocol.

552 I. Cascudo and B. David

6 Concrete Complexity and Experiments

In this section, we discuss the concrete computational and communication com-
plexity of our schemes, comparing them with previous work. We first start by dis-
cussing the computational complexity of our PVSS protocols, which is compared
to that of the protocols of [Sch99,HV09] in terms of numbers of exponentiations
and pairings required for each phase in Table 1. Notice that for our randomness
beacon application we need t = n/2, which translates into an extra overhead of
n2/2 exponentiations required for the verification phase of previous protocols.
Our protocols eliminate this quadratic overhead, resulting in much better scal-
ability. For example, if 10000 users run SCRAPE based on [Sch99], 50004000
exponentiations are required in the verification phase, while our instantiation

Table 1. Concrete computational complexity in terms of numbers of exponentiations
(Exp.) and pairings (Pair.) needed for each phase, considering that n shares are gen-
erated and t shares are used in reconstruction.

Distribution Verification Reconstruction

Exp. Exp. Pair. Exp. Pair.

[HV09] n + t nt 2n t + 1 2t + 1

Protocol πDBS 2n n 2n t + 1 2t + 1

[Sch99] 3n + t nt + 4n - 5t + 3 -

Protocol πDDH 4n 5n - 5t + 3 -

0.2 0.4 0.6 0.8 1

·104

0

1,000

2,000

3,000

4,000

Number of shares n

V
er

ifi
ca

ti
o
n

ru
n
ti

m
e

(s
ec

o
n
d
s)

Verification runtime of πDDH vs. πDBS vs. [Sch99]

πDDH

πDBS

[Sch99]

Fig. 4. Execution time of the verification phases of πDDH vs. πDBS vs. Schoenmakers’
PVSS [Sch99] for a number of shares n from 1000 to 10000 and threshold t = n

2
.

SCRAPE: Scalable Randomness Attested by Public Entities 553

of SCRAPE would require only 50000 exponentiations, achieving a performance
gain of over 100 times. In terms of communication complexity, our protocols
match previous results [Sch99,HV09] in the reconstruction phase while requir-
ing 2n group elements to be published in the distribution phase. In the ran-
domness beacon application, this represents an overhead of only 0.5n in relation
to [Sch99,HV09]. In order to evaluate the concrete performance of our proposed
protocols, we have conducted experiments with implementations of πDDH , πDBS

and the PVSS scheme of [Sch99], all written in Haskell. The experiments were
run on a single core of a Linux machine with a Intel(R) Core(TM) i7-3770K
CPU @ 3.50 GHz and 32 GB of RAM. Figure 4 compares the runtime of the ver-
ification phases of πDDH and [Sch99], which represents the main improvement
of πDDH . Further discussion on concrete complexity and experimental results
can be found in the full version of this work [CD17].

Acknowledgements. We thank Vincent Hanquez and Andrzej Rybczak for imple-
menting πDDH and πDBS , respectively.

References

Adi08. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)
Proceedings of 17th USENIX Security Symposium, 28 July–1 August 2008,
San Jose, CA, USA, pp. 335–348. USENIX Association (2008)

AHO16. Abe, M., Hoshino, F., Ohkubo, M.: Design in type-I, run in type-III: fast and
scalable bilinear-type conversion using integer programming. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 387–415. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53015-3 14

AKL+11. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster
explicit formulas for computing pairings over ordinary curves. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-20465-4 5

B+14. Buterin, V., et al.: A next-generation smart contract and decentralized appli-
cation platform. White paper (2014)

BCG15. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness
source. Cryptology ePrint Archive, Report 2015/1015 (2015). http://eprint.
iacr.org/2015/1015

BDF+15. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain,
M.: Trap me if you can - million dollar curve. Cryptology ePrint Archive,
Report 2015/1249 (2015). http://eprint.iacr.org/2015/1249

BDO14. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-
party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014.
LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). doi:10.1007/
978-3-319-10879-7 11

BGM16. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work.
In: Clark et al. [CMR+16], pp. 142–157 (2016)

BLMR14. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending
bitcoin’s proof of work via proof of stake [extended abstract]y. SIGMETRICS
Perform. Eval. Rev. 42(3), 34–37 (2014)

http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1249
http://dx.doi.org/10.1007/978-3-319-10879-7_11
http://dx.doi.org/10.1007/978-3-319-10879-7_11

554 I. Cascudo and B. David

BLN16. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back
door. In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Code-
breakers. LNCS, vol. 9100, pp. 256–281. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49301-4 17

Blu81. Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO 1981,
vol. ECE report 82-04, pp. 11–15. U.C. Santa Barbara, Department of Elec-
trical and Computer Engineering (1981)

BN06. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime
order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp.
319–331. Springer, Heidelberg (2006). doi:10.1007/11693383 22

BR93. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–
73. ACM Press, November 1993

BT99. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes
with fast or delayed recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS
1999. LNCS, vol. 1726, pp. 87–102. Springer, Heidelberg (1999). doi:10.1007/
978-3-540-47942-0 8

CD17. Cascudo, I., David, B.: Scrape: scalable randomness attested by public enti-
ties. Cryptology ePrint Archive, Report 2017/216 (2017). http://eprint.iacr.
org/2017/216

CDE+16. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A.E.,
Miller, A., Saxena, P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.:
On scaling decentralized blockchains - (a position paper). In: Clark et al.
[CMR+16], pp. 106–125 (2016)

CGMA85. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In:
26th FOCS, pp. 383–395. IEEE Computer Society Press, October 1985

Cle86. Cleve, R.: Limits on the security of coin flips when half the processors
are faulty (extended abstract). In: Hartmanis, J. (ed.) Proceedings of 18th
Annual ACM Symposium on Theory of Computing, 28–30 May 1986, Berke-
ley, California, USA, pp. 364–369. ACM (1986)

CMR+16. Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff,
K. (eds.): FC 2016 Workshops. LNCS, vol. 9604. Springer, Heidelberg (2016)

CP93. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg
(1993). doi:10.1007/3-540-48071-4 7

DMS04. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation
onion router. In: Proceedings of 13th Conference on USENIX Security Sym-
posium, SSYM 2004, Berkeley, CA, USA, vol. 13, p. 21. USENIX Association
(2004)

DPSW16. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors
in pseudorandom number generators: possibility and impossibility results. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 403–432.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 15

Fel87. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing.
In: 28th FOCS, pp. 427–437. IEEE Computer Society Press, October 1987

FO98. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for pub-
licly verifiable secret sharing and its applications. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg
(1998). doi:10.1007/BFb0054115

http://dx.doi.org/10.1007/978-3-662-49301-4_17
http://dx.doi.org/10.1007/978-3-662-49301-4_17
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/978-3-540-47942-0_8
http://dx.doi.org/10.1007/978-3-540-47942-0_8
http://eprint.iacr.org/2017/216
http://eprint.iacr.org/2017/216
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/978-3-662-53018-4_15
http://dx.doi.org/10.1007/BFb0054115

SCRAPE: Scalable Randomness Attested by Public Entities 555

FS87. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/
3-540-47721-7 12

GKL15. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46803-6 10

GRFJ14. Ghosh, M., Richardson, M., Ford, B., Jansen, R.: A torpath to torcoin:
proof-of-bandwidth altcoins for compensating relays. Technical report, DTIC
Document (2014)

HV09. Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret
sharing schemes. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 294–308. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04159-4 19

Jha11. Jhanwar, M.P.: A practical (non-interactive) publicly verifiable secret sharing
scheme. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 273–
287. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21031-0 21

JVSN14. Jhanwar, M.P., Venkateswarlu, A., Safavi-Naini, R.: Ayineedi venkateswarlu,
and reihaneh safavi-naini. paillier-based publicly verifiable (non-interactive)
secret sharing. Des. Codes Crypt. 73(2), 529–546 (2014)

KKR+16. Kiayias, A., Konstantinou, I., Russell, A., David, B., Oliynykov, R.: A prov-
ably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive,
Report 2016/889 (2016). http://eprint.iacr.org/2016/889

KMS+16. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the
blockchain model of cryptography and privacy-preserving smart contracts.
In: 2016 IEEE Symposium on Security and Privacy, pp. 839–858. IEEE Com-
puter Society Press, May 2016

LV08. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78440-1 21

LW15. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryp-
tology ePrint Archive, Report 2015/366 (2015). http://eprint.iacr.org/2015/
366

Mau96. Maurer, U.M. (ed.): EUROCRYPT 1996. LNCS, vol. 1070. Springer, Heidel-
berg (1996). doi:10.1007/3-540-68339-9

MS81. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes.
Commun. ACM 24(9), 583–584 (1981)

Nak08. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
Pai99. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

PS96. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer
[Mau96], pp. 387–398 (1996)

Rab83. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256–267 (1983)

RBO89. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85.
ACM Press. May 1989

http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1007/978-3-642-04159-4_19
http://dx.doi.org/10.1007/978-3-642-04159-4_19
http://dx.doi.org/10.1007/978-3-642-21031-0_21
http://eprint.iacr.org/2016/889
http://dx.doi.org/10.1007/978-3-540-78440-1_21
http://eprint.iacr.org/2015/366
http://eprint.iacr.org/2015/366
http://dx.doi.org/10.1007/3-540-68339-9
http://dx.doi.org/10.1007/3-540-48910-X_16

556 I. Cascudo and B. David

RV05. Ruiz, A., Villar, J.L.: Publicly verifiable secret sharing from Paillier’s cryp-
tosystem. In: Wolf, C., Lucks, S., Yau, P.-W. (eds.) WEWoRC 2005 - Western
European Workshop on Research in Cryptology. Leuven, Belgium, 5–7 July
2005. LNI, vol. 74, pp. 98–108. GI (2005)

Sch99. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 10

Sha79. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11),
612–613 (1979)

SJK+16. Syta, E., Jovanovic, P., Kokoris Kogias, E., Gailly, N., Gasser, L., Khoffi,
I., Fischer, M.J., Ford, B.: Scalable bias-resistant distributed randomness.
Cryptology ePrint Archive, Report 2016/1067 (2016). (To appear at IEEE
Security & Privacy 2017). http://eprint.iacr.org/2016/1067

Sta96. Stadler, M.: Publicly verifiable secret sharing. In: Maurer [Mau96], pp. 190–
199 (1996)

SV15. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computa-
tion from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov,
V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp.
3–22. Springer, Cham (2015). doi:10.1007/978-3-319-28166-7 1

vdHLZZ15. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable
private messaging resistant to traffic analysis. In: Proceedings of 25th Sym-
posium on Operating Systems Principles, SOSP 2015, pp. 137–152. ACM,
New York (2015)

WCGFJ12. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in num-
bers: making strong anonymity scale. In: Proceedings of 10th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI 2012, pp.
179–192. USENIX Association, Berkeley (2012)

http://dx.doi.org/10.1007/3-540-48405-1_10
http://dx.doi.org/10.1007/3-540-48405-1_10
http://eprint.iacr.org/2016/1067
http://dx.doi.org/10.1007/978-3-319-28166-7_1

	SCRAPE: Scalable Randomness Attested by Public Entities
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	2.1 Coding Theory
	2.2 Shamir Secret Sharing
	2.3 Assumptions
	2.4 Publicly Verifiable Secret Sharing
	2.5 Zero-Knowledge Proofs of Discrete Logarithm Knowledge

	3 PVSS Based on the DDH Assumption in the ROM
	3.1 Security Analysis

	4 PVSS Based on Pairings in the Plain Model
	4.1 Security Analysis

	5 Building the SCRAPE Randomness Beacon
	6 Concrete Complexity and Experiments
	References

