
Dieter Gollmann · Atsuko Miyaji
Hiroaki Kikuchi (Eds.)

 123

LN
CS

 1
03

55

15th International Conference, ACNS 2017
Kanazawa, Japan, July 10–12, 2017
Proceedings

Applied Cryptography
and Network Security

Lecture Notes in Computer Science 10355

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Dieter Gollmann • Atsuko Miyaji
Hiroaki Kikuchi (Eds.)

Applied Cryptography
and Network Security
15th International Conference, ACNS 2017
Kanazawa, Japan, July 10–12, 2017
Proceedings

123

Editors
Dieter Gollmann
Hamburg University of Technology
Hamburg
Germany

Atsuko Miyaji
Graduate School of Engineering
Osaka University
Suita, Osaka
Japan

Hiroaki Kikuchi
Department of Frontier Media Science
Meiji University
Tokyo
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-61203-4 ISBN 978-3-319-61204-1 (eBook)
DOI 10.1007/978-3-319-61204-1

Library of Congress Control Number: 2017944358

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 15th International Conference on Applied Cryptography and Network Security
(ACNS2017) was held in Kanazawa, Japan, during July 10–12, 2017. The previous
conferences in the ACNS series were successfully held in Kunming, China (2003),
Yellow Mountain, China (2004), New York, USA (2005), Singapore (2006), Zhuhai,
China (2007), New York, USA (2008), Paris, France (2009), Beijing, China (2010),
Malaga, Spain (2011), Singapore (2012), Banff, Canada (2013), Lausanne, Switzerland
(2014), New York, USA (2015), and London, UK (2016).

ACNS is an annual conference focusing on innovative research and current
developments that advance the areas of applied cryptography, cyber security, and
privacy. Academic research with high relevance to real-world problems as well as
developments in industrial and technical frontiers fall within the scope of the
conference.

This year we have received 149 submissions from 34 different countries. Each
submission was reviewed by 3.7 Program Committee members on average. Papers
submitted by Program Committee members received on average 4.4 reviews. The
committee decided to accept 34 regular papers. The broad range of areas covered by
the high-quality papers accepted for ACNS 2107 attests very much to the fulfillment
of the conference goals.

The program included two invited talks given by Dr. Karthikeyan Bhargavan (Inria
Paris) and Prof. Doug Tygar (UC Berkeley).

The decisions of the best student paper award was based on a vote among the
Program Committee members. To be eligible for selection, the primary author of the
paper has to be a full-time student who is present at the conference. The winner was
Carlos Aguilar-Melchor, Martin Albrecht, and Thomas Ricosset from Université de
Toulouse, Toulouse, France, Royal Holloway, University of London, UK, and Thales
Communications & Security, Gennevilliers, France. The title of the paper is “Sampling
From Arbitrary Centered Discrete Gaussians For Lattice-Based Cryptography.”

We are very grateful to our supporters and sponsors. The conference was
co-organized by Osaka University, Japan Advanced Institute of Science and Tech-
nology (JAIST), and the Information-technology Promotion Agency (IPA); it was
supported by the Committee on Information and Communication System Security
(ICSS), IEICE, Japan, the Technical Committee on Information Security (ISEC),
IEICE, Japan, and the Special Interest Group on Computer SECurity (CSEC) of IPSJ,
Japan; it and was co-sponsored by the National Institute of Information and Com-
munications Technology (NICT) International Exchange Program, Mitsubishi Electric
Corporation, Support Center for Advanced Telecommunications Technology Research
(SCAT), Foundation Microsoft Corporation, Fujitsu Hokuriku Systems Limited,
Nippon Telegraph and Telephone Corporation (NTT), and Hokuriku Telecommuni-
cation Network Co., Inc.

We would like to thank the authors for submitting their papers to the conference.
The selection of the papers was a challenging and dedicated task, and we are deeply
grateful to the 48 Program Committee members and the external reviewers for their
reviews and discussions. We also would like to thank EasyChair for providing a
user-friendly interface for us to manage all submissions and proceedings files. Finally,
we would like to thank the general chair, Prof. Hiroaki Kikuchi, and the members
of the local Organizing Committee.

July 2017 Dieter Gollmann
Atsuko Miyaji

VI Preface

ACNS 2017

The 15th International Conference
on Applied Cryptography
and Network Security

Jointly organized by

Osaka University
and

Japan Advanced Institute of Science and Technology (JAIST)
and

Information-technology Promotion Agency (IPA)

General Chair

Hiroaki Kikuchi Meiji University, Japan

Program Co-chairs

Dieter Gollmann Hamburg University of Technology, Germany
Atsuko Miyaji Osaka University / JAIST, Japan

Program Committee

Diego Aranha University of Campinas, Brazil
Giuseppe Ateniese Stevens Institute of Technology, USA
Man Ho Au Hong Kong Polytechnic University, Hong Kong,

SAR China
Carsten Baum Bar-Ilan University, Israel
Rishiraj Bhattacharyya NISER Bhubaneswar, India
Liqun Chen University of Surrey, UK
Chen-Mou Chen Osaka University, Japan
Céline Chevalier Université Panthéon-Assas, France
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong,

SAR China
Mauro Conti University of Padua, Italy
Alexandra Dmitrienko ETH Zurich, Switzerland
Michael Franz University of California, Irvine, USA
Georg Fuchsbauer ENS, France
Sebastian Gajek FUAS, Germany
Goichiro Hanaoka AIST, Japan
Feng Hao Newcastle University, UK

Swee-Huay Heng Multimedia University, Malaysia
Francisco Rodrguez

Henrquez
CINVESTAV-IPN, Mexico

Xinyi Huang Fujian Normal University, China
Michael Huth Imperial College London, UK
Tibor Jager Paderborn University, Germany
Aniket Kate Purdue University, USA
Stefan Katzenbeisser TU Darmstadt, Germany
Kwangjo Kim KAIST, Korea
Kwok-yan Lam NTU, Singapore
Mark Manulis University of Surrey, UK
Tarik Moataz Brown University, USA
Ivan Martinovic University of Oxford, UK
Jörn Müller-Quade Karlsruhe Institute of Technology, Germany
David Naccache École normale supérieure, France
Michael Naehrig Microsoft Research Redmond, USA
Hamed Okhravi MIT Lincoln Laboratory, USA
Panos Papadimitratos KTH Royal Institute of Technology, Sweden
Jong Hwan Park Sangmyung University, Korea
Thomas Peyrin Nanyang Technological University, Singapore
Bertram Poettering Ruhr-Universität Bochum, Germany
Christina Pöpper NYU, United Arab Emirates
Bart Preneel KU Leuven, Belgium
Thomas Schneider TU Darmstadt, Germany
Michael Scott Dublin City University, Ireland
Vanessa Teague University of Melbourne, Australia
Somitra Kr. Sanadhya Ashoka University, India
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Ivan Visconti University of Salerno, Italy
Bo-Yin Yang Academia Sinica, Taiwan
Kan Yasuda NTT Secure Platform Laboratories, Japan
Fangguo Zhang Sun Yat-sen University, China
Jianying Zhou SUTD, Singapore

Organizing Committee

Local Arrangements

Akinori Kawachi Tokushima University, Japan

Co-chairs

Kazumasa Omote University of Tsukuba, Japan
Shoichi Hirose University of Fukui, Japan
Kenji Yasunaga Kanazawa University, Japan
Yuji Suga IIJ, Japan

VIII ACNS 2017

Finance Co-chairs

Masaki Fujikawa Kogakuin University, Japan
Yuichi Futa JAIST, Japan
Natsume Matsuzaki University of Nagasaki, Japan
Takumi Yamamoto Mitsubishi Electric, Japan

Publicity Co-chairs

Noritaka Inagaki IPA, Japan
Masaki Hashimoto IISEC, Japan
Naoto Yanai Osaka University, Japan
Kaitai Liang Manchester Metropolitan University, UK

Liaison Co-chairs

Keita Emura NICT, Japan
Eiji Takimoto Ritsumeikan University, Japan
Toru Nakamura KDDI Research, Japan

System Co-chairs

Atsuo Inomata Tokyo Denki University/NAIST, Japan
Masaaki Shirase Future University Hakodate, Japan
Minoru Kuribayashi Okayama University, Japan
Toshihiro Yamauchi Okayama University, Japan
Shinya Okumura Osaka University, Japan

Publication Co-chairs

Takeshi Okamoto Tsukuba University of Technology, Japan
Takashi Nishide University of Tsukuba, Japan
Ryo Kikuchi NTT, Japan
Satoru Tanaka JAIST, Japan

Registration Co-chairs

Hideyuki Miyake Toshiba, Japan
Dai Watanabe Hitachi, Japan
Chunhua Su Osaka University, Japan

Additional Reviewers

Alesiani, Francesco
Aminanto, Muhamad Erza
Andaló, Fernanda
Armknecht, Frederik

Ashur, Tomer
Auerbach, Benedikt
Azad, Muhammad Ajmal
Bai, Shi

ACNS 2017 IX

Barrera, David
Bauer, Balthazar
Beierle, Christof
Beunardeau, Marc
Blazy, Olivier
Bost, Raphael
Bourse, Florian
Broadnax, Brandon
Chakraborti, Avik
Chi-Domínguez, Jesús Javier
Chin, Ji-Jian
Choi, Rakyong
Choi, Suri
Ciampi, Michele
Connolly, Aisling
Coon, Ralph A.C.
Costello, Craig
Couteau, Geoffroy
Crane, Stephen
Culnane, Chris
Dargahi, Tooska
Datta, Nilanjan
Davies, Gareth T.
Del Pino, Rafael
Demmler, Daniel
Dirksen, Alexandra
Dominguez Perez, Luis J.
Dong, Xinshu
Dowling, Benjamin
Eom, Jieun
Faust, Sebastian
Ferradi, Houda
Frederiksen, Tore
Gay, Romain
Geraud, Remi
Germouty, Paul
Gochhayat, Sarada Prasad
Hartung, Gunnar
Herzberg, Amir
Huang, Yi
Iovino, Vincenzo
Jap, Dirmanto
Jati, Arpan
Jiang, Jiaojiao
Kairallah, Mustafa
Kamath, Chethan

Karvelas, Nikolaos
Keller, Marcel
Kim, Hyoseung
Kim, Jonghyun
Kim, Joonsik
Kim, Taechan
Kiss, Ágnes
Kitagawa, Fuyuki
Kohls, Katharina
Kuo, Po-Chun
Kurek, Rafael
Lai, Junzuo
Lai, Russell W.F.
Lain, Daniele
Lal, Chhagan
Lee, Kwangsu
Lee, Youngkyung
Li, Huige
Li, Wen-Ding
Li, Yan
Liebchen, Christopher
Liu, Jianghua
Liu, Yunwen
Longa, Patrick
Lu, Jingyang
Lu, Jiqiang
Luykx, Atul
Lyubashevsky, Vadim
Ma, Jack P.K.
Mainka, Christian
Mancillas-López, Cuauhtemoc
Masucci, Barbara
Matsuda, Takahiro
Mazaheri, Sogol
Mechler, Jeremias
Meier, Willi
Meng, Weizhi
Mohamad, Moesfa Soeheila
Moonsamy, Veelasha
Nagel, Matthias
Nielsen, Michael
Nishimaki, Ryo
O’Neill, Adam
Ochoa-Jiménez, José Eduardo
Oliveira, Thomaz
Peeters, Roel

X ACNS 2017

Pereira, Hilder Vitor Lima
Perrin, Léo
Poh, Geong Sen
Puddu, Ivan
Ramanna, Somindu C.
Ramchen, Kim
Renes, Joost
Reparaz, Oscar
Resende, Amanda
Rill, Jochen
Roy, Arnab
Ruffing, Tim
Rupp, Andy
Sakai, Yusuke
Sasaki, Yu
Schuldt, Jacob
Sen Gupta, Sourav
Seo, Hwajeong
Seo, Minhye
Shahandashti, Siamak
Shin, Seonghan
Siniscalchi, Luisa
Spolaor, Riccardo
Stebila, Douglas
Su, Chunhua
Tai, Raymond K.H.

Tan, Syhyuan
Thillard, Adrian
Tosh, Deepak
Vannet, Thomas
Vergnaud, Damien
Volckaert, Stijn
Wang, Ding
Wang, Jiafan
Wang, Xiuhua
Weinert, Christian
Wong, Harry W.H.
Xagawa, Keita
Xie, Shaohao
Yamada, Shota
Yamakawa, Takashi
Yang, Rupeng
Yang, Shaojun
Yang, Xu
Yu, Zuoxia
Zaverucha, Greg
Zhang, Huang
Zhang, Tao
Zhang, Yuexin
Zhang, Zheng
Zhao, Yongjun
Zhou, Peng

ACNS 2017 XI

Contents

Applied Cryptography

Sampling from Arbitrary Centered Discrete Gaussians
for Lattice-Based Cryptography. 3

Carlos Aguilar-Melchor, Martin R. Albrecht, and Thomas Ricosset

Simple Security Definitions for and Constructions of 0-RTT
Key Exchange . 20

Britta Hale, Tibor Jager, Sebastian Lauer, and Jörg Schwenk

TOPPSS: Cost-Minimal Password-Protected Secret Sharing Based
on Threshold OPRF . 39

Stanisław Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu

Secure and Efficient Pairing at 256-Bit Security Level 59
Yutaro Kiyomura, Akiko Inoue, Yuto Kawahara, Masaya Yasuda,
Tsuyoshi Takagi, and Tetsutaro Kobayashi

Data Protection and Mobile Security

No Free Charge Theorem: A Covert Channel via USB Charging Cable
on Mobile Devices . 83

Riccardo Spolaor, Laila Abudahi, Veelasha Moonsamy,
Mauro Conti, and Radha Poovendran

Are You Lying: Validating the Time-Location of Outdoor Images 103
Xiaopeng Li, Wenyuan Xu, Song Wang, and Xianshan Qu

Lights, Camera, Action! Exploring Effects of Visual Distractions
on Completion of Security Tasks . 124

Bruce Berg, Tyler Kaczmarek, Alfred Kobsa, and Gene Tsudik

A Pilot Study of Multiple Password Interference Between Text
and Map-Based Passwords . 145

Weizhi Meng, Wenjuan Li, Wang Hao Lee, Lijun Jiang,
and Jianying Zhou

Security Analysis

Hierarchical Key Assignment with Dynamic Read-Write Privilege
Enforcement and Extended KI-Security . 165

Yi-Ruei Chen and Wen-Guey Tzeng

http://dx.doi.org/10.1007/978-3-319-61204-1_1
http://dx.doi.org/10.1007/978-3-319-61204-1_1
http://dx.doi.org/10.1007/978-3-319-61204-1_2
http://dx.doi.org/10.1007/978-3-319-61204-1_2
http://dx.doi.org/10.1007/978-3-319-61204-1_3
http://dx.doi.org/10.1007/978-3-319-61204-1_3
http://dx.doi.org/10.1007/978-3-319-61204-1_4
http://dx.doi.org/10.1007/978-3-319-61204-1_5
http://dx.doi.org/10.1007/978-3-319-61204-1_5
http://dx.doi.org/10.1007/978-3-319-61204-1_6
http://dx.doi.org/10.1007/978-3-319-61204-1_7
http://dx.doi.org/10.1007/978-3-319-61204-1_7
http://dx.doi.org/10.1007/978-3-319-61204-1_8
http://dx.doi.org/10.1007/978-3-319-61204-1_8
http://dx.doi.org/10.1007/978-3-319-61204-1_9
http://dx.doi.org/10.1007/978-3-319-61204-1_9

A Novel GPU-Based Implementation of the Cube Attack: Preliminary
Results Against Trivium. 184

Marco Cianfriglia, Stefano Guarino, Massimo Bernaschi,
Flavio Lombardi, and Marco Pedicini

Related-Key Impossible-Differential Attack on Reduced-Round SKINNY 208
Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List,
Florian Mendel, Siang Meng Sim, and Gaoli Wang

Faster Secure Multi-party Computation of AES and DES
Using Lookup Tables . 229

Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl,
Eduardo Soria-Vazquez, and Srinivas Vivek

Cryptographic Primitives

An Experimental Study of the BDD Approach for the Search
LWE Problem . 253

Rui Xu, Sze Ling Yeo, Kazuhide Fukushima, Tsuyoshi Takagi,
Hwajung Seo, Shinsaku Kiyomoto, and Matt Henricksen

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption . . . 273
Akshayaram Srinivasan and Chandrasekaran Pandu Rangan

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 293
San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu

Breaking and Fixing Mobile App Authentication
with OAuth2.0-based Protocols . 313

Ronghai Yang, Wing Cheong Lau, and Shangcheng Shi

Adaptive Proofs Have Straightline Extractors (in the Random
Oracle Model) . 336

David Bernhard, Ngoc Khanh Nguyen, and Bogdan Warinschi

More Efficient Construction of Bounded KDM Secure Encryption 354
Kaoru Kurosawa and Rie Habuka

Signature Schemes with Randomized Verification . 373
Cody Freitag, Rishab Goyal, Susan Hohenberger, Venkata Koppula,
Eysa Lee, Tatsuaki Okamoto, Jordan Tran, and Brent Waters

Side Channel Attack

Trade-Offs for S-Boxes: Cryptographic Properties
and Side-Channel Resilience. 393

Claude Carlet, Annelie Heuser, and Stjepan Picek

XIV Contents

http://dx.doi.org/10.1007/978-3-319-61204-1_10
http://dx.doi.org/10.1007/978-3-319-61204-1_10
http://dx.doi.org/10.1007/978-3-319-61204-1_11
http://dx.doi.org/10.1007/978-3-319-61204-1_12
http://dx.doi.org/10.1007/978-3-319-61204-1_12
http://dx.doi.org/10.1007/978-3-319-61204-1_13
http://dx.doi.org/10.1007/978-3-319-61204-1_13
http://dx.doi.org/10.1007/978-3-319-61204-1_14
http://dx.doi.org/10.1007/978-3-319-61204-1_15
http://dx.doi.org/10.1007/978-3-319-61204-1_16
http://dx.doi.org/10.1007/978-3-319-61204-1_16
http://dx.doi.org/10.1007/978-3-319-61204-1_17
http://dx.doi.org/10.1007/978-3-319-61204-1_17
http://dx.doi.org/10.1007/978-3-319-61204-1_18
http://dx.doi.org/10.1007/978-3-319-61204-1_19
http://dx.doi.org/10.1007/978-3-319-61204-1_20
http://dx.doi.org/10.1007/978-3-319-61204-1_20

A Practical Chosen Message Power Analysis Approach Against Ciphers
with the Key Whitening Layers . 415

Chenyang Tu, Lingchen Zhang, Zeyi Liu, Neng Gao, and Yuan Ma

Side-Channel Attacks Meet Secure Network Protocols 435
Alex Biryukov, Daniel Dinu, and Yann Le Corre

Cryptographic Protocol

Lattice-Based DAPS and Generalizations: Self-enforcement
in Signature Schemes . 457

Dan Boneh, Sam Kim, and Valeria Nikolaenko

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 478
Russell W.F. Lai and Sherman S.M. Chow

Bounds in Various Generalized Settings of the Discrete
Logarithm Problem . 498

Jason H.M. Ying and Noboru Kunihiro

An Enhanced Binary Characteristic Set Algorithm and Its Applications
to Algebraic Cryptanalysis . 518

Sze Ling Yeo, Zhen Li, Khoongming Khoo, and Yu Bin Low

SCRAPE: Scalable Randomness Attested by Public Entities 537
Ignacio Cascudo and Bernardo David

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic
Operations . 557

David Chaum, Debajyoti Das, Farid Javani, Aniket Kate,
Anna Krasnova, Joeri De Ruiter, and Alan T. Sherman

Almost Optimal Oblivious Transfer from QA-NIZK 579
Olivier Blazy, Céline Chevalier, and Paul Germouty

OnionPIR: Effective Protection of Sensitive Metadata in Online
Communication Networks . 599

Daniel Demmler, Marco Holz, and Thomas Schneider

Data and Server Security

Accountable Storage . 623
Giuseppe Ateniese, Michael T. Goodrich, Vassilios Lekakis,
Charalampos Papamanthou, Evripidis Paraskevas,
and Roberto Tamassia

Contents XV

http://dx.doi.org/10.1007/978-3-319-61204-1_21
http://dx.doi.org/10.1007/978-3-319-61204-1_21
http://dx.doi.org/10.1007/978-3-319-61204-1_22
http://dx.doi.org/10.1007/978-3-319-61204-1_23
http://dx.doi.org/10.1007/978-3-319-61204-1_23
http://dx.doi.org/10.1007/978-3-319-61204-1_24
http://dx.doi.org/10.1007/978-3-319-61204-1_25
http://dx.doi.org/10.1007/978-3-319-61204-1_25
http://dx.doi.org/10.1007/978-3-319-61204-1_26
http://dx.doi.org/10.1007/978-3-319-61204-1_26
http://dx.doi.org/10.1007/978-3-319-61204-1_27
http://dx.doi.org/10.1007/978-3-319-61204-1_28
http://dx.doi.org/10.1007/978-3-319-61204-1_28
http://dx.doi.org/10.1007/978-3-319-61204-1_29
http://dx.doi.org/10.1007/978-3-319-61204-1_30
http://dx.doi.org/10.1007/978-3-319-61204-1_30
http://dx.doi.org/10.1007/978-3-319-61204-1_31

Maliciously Secure Multi-Client ORAM . 645
Matteo Maffei, Giulio Malavolta, Manuel Reinert,
and Dominique Schröder

Legacy-Compliant Data Authentication for Industrial
Control System Traffic . 665

John Henry Castellanos, Daniele Antonioli, Nils Ole Tippenhauer,
and Martín Ochoa

Multi-client Oblivious RAM Secure Against Malicious Servers. 686
Erik-Oliver Blass, Travis Mayberry, and Guevara Noubir

Author Index . 709

XVI Contents

http://dx.doi.org/10.1007/978-3-319-61204-1_32
http://dx.doi.org/10.1007/978-3-319-61204-1_33
http://dx.doi.org/10.1007/978-3-319-61204-1_33
http://dx.doi.org/10.1007/978-3-319-61204-1_34

Applied Cryptography

Sampling from Arbitrary Centered Discrete
Gaussians for Lattice-Based Cryptography

Carlos Aguilar-Melchor1, Martin R. Albrecht2, and Thomas Ricosset1,3(B)

1 INP ENSEEIHT, IRIT-CNRS, Université de Toulouse, Toulouse, France
{carlos.aguilar,thomas.ricosset}@enseeiht.fr

2 Information Security Group, Royal Holloway, University of London, London, UK
martin.albrecht@royalholloway.ac.uk

3 Thales Communications & Security, Gennevilliers, France

Abstract. Non-Centered Discrete Gaussian sampling is a fundamental
building block in many lattice-based constructions in cryptography, such
as signature and identity-based encryption schemes. On the one hand, the
center-dependent approaches, e.g. cumulative distribution tables (CDT),
Knuth-Yao, the alias method, discrete Zigurat and their variants, are the
fastest known algorithms to sample from a discrete Gaussian distribu-
tion. However, they use a relatively large precomputed table for each
possible real center in [0, 1) making them impracticable for non-centered
discrete Gaussian sampling. On the other hand, rejection sampling allows
to sample from a discrete Gaussian distribution for all real centers with-
out prohibitive precomputation cost but needs costly floating-point arith-
metic and several trials per sample. In this work, we study how to reduce
the number of centers for which we have to precompute tables and pro-
pose a non-centered CDT algorithm with practicable size of precomputed
tables as fast as its centered variant. Finally, we provide some experimen-
tal results for our open-source C++ implementation indicating that our
sampler increases the rate of Peikert’s algorithm for sampling from arbi-
trary lattices (and cosets) by a factor 3 with precomputation storage
up to 6.2 MB.

1 Introduction

Lattice-based cryptography has generated considerable interest in the last decade
due to many attractive features, including conjectured security against quantum
attacks, strong security guarantees from worst-case hardness and constructions
of fully homomorphic encryption (FHE) schemes (see the survey [33]). More-
over, lattice-based cryptographic schemes are often algorithmically simple and
efficient, manipulating essentially vectors and matrices or polynomials modulo
relatively small integers, and in some cases outperform traditional systems.

M.R. Albrecht—The research of this author was supported by EPSRC grant “Bit
Security of Learning with Errors for Post-Quantum Cryptography and Fully Homo-
morphic Encryption” (EP/P009417/1) and the EPSRC grant “Multilinear Maps in
Cryptography” (EP/L018543/1).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-61204-1 1

4 C. Aguilar-Melchor et al.

Modern lattice-based cryptosystems are built upon two main average-case
problems over general lattices: Short Integer Solution (SIS) [1] and Learning
With Errors (LWE) [35], and their analogues over ideal lattices, ring-SIS [29]
and ring-LWE [27]. The hardness of these problems can be related to the one
of their worst-case counterpart, if the instances follow specific distributions and
parameters are choosen appropriately [1,27,29,35].

In particular, discrete Gaussian distributions play a central role in lattice-
based cryptography. A natural set of examples to illustrate the importance of
Gaussian sampling are lattice-based signature and identity-based encryption
(IBE) schemes [16]. The most iconic example is the signature algorithm proposed
in [16] (hereafter GPV), as a secure alternative to the well-known (and broken)
GGH signature scheme [18]. In this paper, the authors use the Klein/GPV algo-
rithm [21], a randomized variant of Babai’s nearest plane algorithm [4]. In this
algorithm, the rounding step is replaced by randomized rounding according to a
discrete Gaussian distribution to return a lattice point (almost) independent of
a hidden basis. The GPV signature scheme has also been combined with LWE
to obtain the first identity-based encryption (IBE) scheme [16] conjectured to
be secure against quantum attacks. Later, a new Gaussian sampling algorithm
for arbitrary lattices was presented in [32]. It is a randomized variant of Babai’s
rounding-off algorithm, is more efficient and parallelizable, but it outputs longer
vectors than Klein/GPV’s algorithm.

Alternatively to the above trapdoor technique, lattice-based signatures
[11,23–26] were also constructed by applying the Fiat-Shamir heuristic [14]. Note
that in contrast to the algorithms outlined above which sample from a discrete
Gaussian distribution for any real center not known in advance, the schemes devel-
oped in [11,25] only need to sample from a discrete Gaussian centered at zero.

1.1 Our Contributions

We develop techniques to speed-up discrete Gaussian sampling when the center
is not known in advance, obtaining a flexible time-memory trade-off comparing
favorably to rejection sampling. We start with the cumulative distribution table
(CDT) suggested in [32] and lower the computational cost of the precomputa-
tion phase and the global memory required when sampling from a non-centered
discrete Gaussian by precomputing the CDT for a relatively small number of
centers, in O(λ3), and by computing the cdf when needed, i.e. when for a given
uniform random input, the values returned by the CDTs for the two closest pre-
computed centers differ. Second, we present an adaptation of the lazy technique
described in [12] to compute most of the cdf in double IEEE standard double
precision, thus decreasing the number of precomputed CDTs. Finally, we pro-
pose a more flexible approach which takes advantage of the information already
present in the precomputed CDTs. For this we use a Taylor expansion around
the precomputed centers and values instead of this lazy technique, thus enabling
to reduce the number of precomputed CDTs to a ω(λ).

We stress, though, that our construction is not constant time, which limits
its utility. We consider addressing this issue important future work.

Sampling from Arbitrary Centered Discrete Gaussians 5

1.2 Related Work

Many discrete Gaussian samplers over the Integers have been proposed for lattice-
based cryptography.Rejection Sampling [12,17], Inversion Samplingwith aCumu-
lative Distribution Table (CDT) [32], Knuth-Yao [13], Discrete Ziggurat [7],
Bernoulli Sampling [11], Kahn-Karney [20] and Binary Arithmetic Coding [36].

The optimal method will of course depend on the setting in which it is used.
In this work, we focus on what can be done on a modern computer, with a
comfortable amount of memery and hardwired integer and floating-point opera-
tions. This is in contrast to the works [11,13] which focus on circuits or embedded
devices. We consider exploring the limits of the usual memory and hardwired
operations in commodity hardware as much an interesting question as it is to
consider what is feasible in more constrained settings.

Rejection Sampling and Variants. Straightforward rejection sampling [37] is a
classical method to sample from any distribution by sampling from a uniform
distribution and accept the value with a probability equal to its probability in
the target distribution. This method does not use pre-computed data but needs
floating-point arithmetic and several trials by sample. Bernoulli sampling [11]
introduces an exponential bias from Bernoulli variables, which can be efficiently
sampled specially in circuits. The bias is then corrected in a rejection phase based
on another Bernouilli variable. This approach is particularly suited for embed-
ded devices for the simplicity of the computation and the near-optimal entropy
consumption. Kahn-Karney sampling is another variant of rejection sampling
to sample from a discrete Gaussian distribution which does not use floating-
point arithmetic. It is based on the von Neumann algorithm to sample from
the exponential distribution [31], requires no precomputed tables and consumes
a smaller amount of random bits than Bernoulli sampling, though it is slower.
Currently the fastest approach in the computer setting uses a straightforward
rejection sampling approach with “lazy” floating-point computations [12] using
IEEE standard double precision floating-point numbers in most cases.

Note that none of these methods requires precomputation depending on the
distribution’s center c. In all the alternative approaches we present hereafter,
there is some center-dependent precomputation. When the center is not know
this can result in prohibitive costs and handling these becomes a major issue
around which most of our work is focused.

Center-Dependent Approaches. The cumulative distribution table algorithm is
based on the inversion method [9]. All non-negligible cumulative probabilities are
stored in a table and at sampling time one generates a cumulative probability
in [0, 1) uniformly at random, performs a binary search through the table and
returns the corresponding value. Several alternatives to straightforward CDT
are possible. Of special interest are: the alias method [38] which encodes CDTs
in a more involved but more efficient approach; BAC Sampling [36] which uses
arithmetic coding tables to sample with an optimal consumption of random bits;
and Discrete Ziggurat [7] which adapts the Ziggurat method [28] for a flexible

6 C. Aguilar-Melchor et al.

time-memory trade-off. Knuth-Yao sampling [22] uses a random bit generator to
traverse a binary tree formed from the bit representation of the probability of
each possible sample, the terminal node is labeled by the corresponding sample.
The main advantage of this method is that it consumes a near-optimal amount
of random bits. A block variant and other practical improvements are suggested
in [13]. This method is center-dependent but clearly designed for circuits and on
a computer setting it is surpassed by other approaches.

Our main contribution is to show how to get rid of the known-center con-
straint with reasonable memory usage for center-dependent approaches. As
a consequence, we obtain a performance gain with respect to rejection sam-
pling approaches. Alternatively, any of the methods discussed above could have
replaced our straightforward CDT approach. This, however, would have made
our algorithms, proofs, and implementations more involved. On the other hand,
further performance improvements could perhaps be achieved this way. This is
an interesting problem for future work.

2 Preliminaries

Throughout this work, we denote the set of real numbers by R and the Integers
by Z. We extend any real function f(·) to a countable set A by defining f(A) =∑

x∈A f(x). We denote also by UI the uniform distribution on I.

2.1 Discrete Gaussian Distributions on Z

The discrete Gaussian distribution on Z is defined as the probability distribution
whose unnormalized density function is

ρ : Z → [0, 1)

x → e
−x2
2

If s ∈ R
+ and c ∈ R, then we extend this definition to

ρs,c(x) := ρ

(
x − c

s

)

and denote ρs,0(x) by ρs(x). For any mean c ∈ R and parameter s ∈ R
+ we can

now define the discrete Gaussian distribution Ds,c as

∀x ∈ Z, Ds,c(x) :=
ρs,c(x)
ρs,c(Z)

Note that the standard deviation of this distribution is σ = s/
√

2π. We also
define cdfs,c as the cumulative distribution function (cdf) of Ds,c

∀x ∈ Z, cdfs,c(x) :=
x∑

i=−∞
Ds,c(i)

Sampling from Arbitrary Centered Discrete Gaussians 7

Smoothing Parameter. The smoothing parameter ηε(Λ) quantifies the minimal
discrete Gaussian parameter s required to obtain a given level of smoothness on
the lattice Λ. Intuitively, if one picks a noise vector over a lattice from a discrete
Gaussian distribution with radius at least as large as the smoothing parameter,
and reduces this modulo the fundamental parallelepiped of the lattice, then the
resulting distribution is very close to uniform (for details and formal definition
see [30]).

Gaussian Measure. An interesting property of discrete Gaussian distributions
with a parameter s greater than the smoothing parameter is that the Gaussian
measure, i.e. ρs,c(Z) for Ds,c, is essentially the same for all centers.

Lemma 1 (From the proof of [30, Lemma 4.4]). For any ε ∈ (0, 1), s > ηε(Z)
and c ∈ R we have

Δmeasure :=
ρs,c(Z)
ρs,0(Z)

∈
[
1 − ε

1 + ε
, 1

]

Tailcut Parameter. To deal with the infinite domain of Gaussian distributions,
algorithms usually take advantage of their rapid decay to sample from a finite
domain. The next lemma is useful in determining the tailcut parameter τ .

Lemma 2 ([17, Lemma 4.2]). For any ε > 0, s > ηε(Z) and τ > 0, we have

Etailcut := Pr
X∼DZ,s,c

[|X − c| > τs] < 2e−πτ2 · 1 + ε

1 − ε

2.2 Floating-Point Arithmetic

We recall some facts from [12] about floating-point arithmetic (FPA) with m
bits of mantissa, which we denote by FPm. A floating-point number is a triplet
x̄ = (s, e, v) where s ∈ {0, 1}, e ∈ Z and v ∈ N2m−1 which represents the real
number x̄ = (−1)s · 2e−m · v. Denote by ε = 21−m the floating-point precision.
Every FPA-operation ◦̄ ∈ {+̄, −̄, ×̄, /̄} and its respective arithmetic operation
on R, ◦ ∈ {+,−,×, /} verify

∀x̄, ȳ ∈ FPm, |(x̄ ◦̄ ȳ) − (x̄ ◦ ȳ)| ≤ (x ◦ y)ε

Moreover, we assume that the floating-point implementation of the exponential
function ¯exp(·) verifies

∀x̄ ∈ FPm, | ¯exp(x̄) − exp(x̄)| ≤ ε.

2.3 Taylor Expansion

Taylor’s theorem provides a polynomial approximation around a given point for
any function sufficiently differentiable.

8 C. Aguilar-Melchor et al.

Theorem 1 (Taylor’s theorem). Let d ∈ Z
+ and let the function f : R → R

be d times differentiable in some neighborhood U of a ∈ R. Then for any x ∈ U

f(x) = Td,f,a(x) + Rd,f,a(x)

where

Td,f,a(x) =
d∑

i=0

f (i)(a)
i!

(x − a)i

and

Rd,f,a(x) =
∫ x

a

f (d+1)(t)
d!

(x − t)d
dt

3 Variable-Center with Polynomial Number of CDTs

We consider the case in which the mean is variable, i.e. the center is not know
before the online phase, as it is the case for lattice-based hash-and-sign signa-
tures. The center can be any real number, but without loss of generality we will
only consider centers in [0, 1). Because CDTs are center-dependent, a first naive
option would be to precompute a CDT for each possible real center in [0, 1) in
accordance with the desired accuracy. Obviously, this first option has the same
time complexity than the classical CDT algorithm, i.e. O(λ log sλ) for λ the
security parameter. However, it is completely impractical with 2λ precomputed
CDTs of size O(sλ1.5). An opposite trade-off is to compute the CDT on-the-
fly, avoiding any precomputation storage, which increase the computational cost
to O(sλ3.5) assuming that the computation of the exponential function run in
O(λ3) (see Sect. 3.2 for a justification of this assumption).

An interesting question is can we keep the time complexity of the classical
CDT algorithm with a polynomial number of precomputed CDTs. To answer this
question, we start by fixing the number n of equally spaced centers in [0, 1) and
precompute the CDTs for each of these. Then, we apply the CDT algorithm to
the two precomputed centers closest to the desired center for the same cumulative
probability uniformly draw. Assuming that the number of precomputed CDTs
is sufficient, the values returned from both CDTs will be equal most of the time,
in this case we can conclude, thanks to a simple monotonic argument, that the
returned value would have been the same for the CDT at the desired center and
return it as a valid sample. Otherwise, the largest value will immediately follow
the smallest and we will then have to compute the cdf at the smallest value
for the desired center in order to know if the cumulative probability is lower
or higher than this cdf. If it is lower then the smaller value will be returned as
sample, else it will be the largest.

3.1 Twin-CDT Algorithm

As discussed above, to decrease the memory required by the CDT algorithm
when the distribution center is determined during the online phase, we can pre-
compute CDTs for a number n of centers equally spaced in [0, 1) and compute
the cdf when necessary. Algorithm 1 resp. 2 describes the offline resp. online

Sampling from Arbitrary Centered Discrete Gaussians 9

phase of the Twin-CDT algorithm. Algorithm 1 precomputes CDTs, up to
a precision m that guarantees the λ most significant bits of each cdf, and
store them with λ-bits of precision as a matrix T, where the i-th line is the
CDT corresponding to the i-th precomputed center i/n. To sample from Ds,c,
Algorithm 2 searches the preimages by the cdf of a cumulative probability p,
draw from the uniform distribution on [0, 1)∩FPλ, in both CDTs corresponding
to the center 	n(c − 	c
)
/n (respectively �n(c − 	c
)�/n) which return a value
v1 (resp. v2). If the same value is returned from the both CDTs (i.e. v1 = v2),
then this value added the desired center integer part is a valid sample, else it
computes cdfs,c−�c�(v1) and returns v1 + 	c
 if p < cdfs,c(v1) and v2 + 	c
 else.

Algorithm 1. Twin-CDT Algorithm: Offline Phase
Input: a Gaussian parameter s and a number of centers n
Output: a precomputed matrix T
1: initialize an empty matrix T ∈ FP

n×2�τs�+3
λ

2: for i ← 0, . . . , n − 1 do
3: for j ← 0, . . . , 2�τs� + 2 do
4: Ti,j ← FPm : cdfs,i/n(j − �τs� − 1)

Algorithm 2. Twin-CDT Algorithm: Online Phase
Input: a center c and a precomputed matrix T
Output: a sample x that follows Ds,c

1: p ← U[0,1)∩FPλ

2: v1 ← i − �τs� − 1 s.t. T�n(c−�c�)�,i−1 ≤ p < T�n(c−�c�)�,i

3: v2 ← j − �τs� − 1 s.t. T�n(c−�c�)�,j−1 ≤ p < T�n(c−�c�)�,j

4: if v1 = v2 then
5: return v1 + �c�
6: else
7: if p < FPm : cdfs,c−�c�(v1) then
8: return v1 + �c�
9: else

10: return v2 + �c�

Correctness. We establish correctness in the lemma below.

Lemma 3. Assuming that m is large enough to ensure λ correct bits during
the cdf computation, the statistical distance between the output distribution of
Algorithm2 instantiated to sample from DZm,σ,c and DZm,σ,c is bounded by 2−λ.

Proof. First note that from the discrete nature of the considered distribution we
have Ds,c = Ds,c−�c� + 	c
. Now recall that the probability integral transform
states that if X is a continuous random variable with cumulative distribution

10 C. Aguilar-Melchor et al.

function cdf, then cdf(X) has a uniform distribution on [0, 1]. Hence the inversion
method: cdf−1(U[0,1]) has the same distribution as X. Finally by noting that for
all s, p ∈ R, cdfs,c(p) is monotonic in c, if cdf−1

s,c1(p) = cdf−1
s,c2(p) := v, then

cdf−1
s,c(p) = v for all c ∈ [c1, c2], and as a consequence, for all v ∈ [−�τs� −

1, �τs� + 1], the probability of outputting v is equal to FPm : cdfs,c(v) − FPm :
cdfs,c(v − 1) which is 2−λ-close to Ds,c(v). �
The remaining issue in the correctness analysis of Algorithm 2 is to determine
the error occurring during the m-precision cdf computation. Indeed, this error
allows us to learn what precision m is needed to correctly compute the λ most
significant bits of the cdf. This error is characterized in Lemma 4.

Lemma 4. Let m ∈ Z be a positive integer and ε = 21−m. Let c̄, s̄, h̄ ∈ FPm be
at distance respectively at most δc, δc and δh from c, s, h ∈ R and h = 1/ρs,c(Z).
Let Δf(x) := |FPm : f(x) − f(x)|. We also assume that the following inequalities
hold: s ≥ 4, τ ≥ 10, sδs ≤ 0.01, δc ≤ 0.01, s2ε ≤ 0.01, (τs+1)ε ≤ 1/2. We have
the following error bound on Δcdfs,c(x) for any integer x such that |x| ≤ τs + 2

Δcdfs,c(x) ≤ 3.5τ3s2ε

Proof. We derive the following bounds using [10, Facts 6.12, 6.14, 6.22]:

Δcdfs,c(x) ≤ Δ

⎡

⎣
�τs	+1∑

i=−�τs	−1

ρs,c(i)

⎤

⎦
(

1
s

+ 3.6sε

)

+ 3.6sε

Δ

⎡

⎣
�τs	+1∑

i=−�τs	−1

ρs,c(i)

⎤

⎦ ≤ 3.2τ3s3ε

�
For the sake of readability the FPA error bound of Lemma4 is fully simplified
and is therefore not tight. For practical implementation, one can derive a better
bound using an ad-hoc approach such as done in [34].

Efficiency. On average, the evaluation of the cdf requires �τs� + 1.5 evalua-
tions of the exponential function. For the sake of clarity, we assume that the
exponential function is computed using a direct power series evaluation with
schoolbook multiplication, so its time complexity is O(λ3). We refer the reader
to [6] for a discussion of different ways to compute the exponential function in
high-precision.

Lemma 5 establishes that the time complexity of Algorithm 2 is O(λ log sλ+
λ4/n), so with n = O(λ3) it has asymptotically the same computational cost
than the classical CDT algorithm.

Lemma 5. Let Pcdf be the probability of computing the cdf during the execution
of Algorithm2, assuming that τs ≥ 10, we have

Pcdf ≤ 2.2τs
(
1 − e− 1.25τ

sn Δmeasure

)

Sampling from Arbitrary Centered Discrete Gaussians 11

Proof.

Pcdf ≤ max
c∈[0,1)

⎛

⎝
�τs	+1∑

i=−�τs	−1

∣
∣
∣cdfs,c(i) − cdfs,c+ 1

n
(i)

∣
∣
∣

⎞

⎠

Assuming that τs ≥ 10, we have

e− 1.25τ
sn Δmeasure cdfs,c(i) ≤ cdfs,c+ 1

n
(i) ≤ cdfs,c(i)

Hence the upper bound. �

On the other hand, the precomputation matrix generated by Algorithm1 take n
times the size of one CDT, hence the space complexity is O(nsλ1.5). Note that
for n sufficiently big to make the cdf computational cost negligible, the memory
space required by this algorithm is about 1 GB for the parameters considered in
cryptography and thus prohibitively expensive for practical use.

3.2 Lazy-CDT Algorithm

A first idea to decrease the number of precomputed CDTs is to avoid costly cdf
evaluations by using the same lazy trick as in [12] for rejection sampling. Indeed,
a careful analysis of Algorithm 2 shows most of the time many of the computed
cdf bits are not used. This gives us to a new strategy which consists of computing
the bits of cdfs,c(v1) lazily. When the values corresponding to the generated
probability for the two closest centers are different, the Lazy-CDT algorithm
first only computes the cdf at a precision m′ to ensure k < λ correct bits. If
the comparison is decided with those k bits, it returns the sample. Otherwise, it
recomputes the cdf at a precision m to ensure λ correct bits.

Correctness. In addition to the choice of m, discussed in Sect. 3.1, to achieve λ
bits of precision, the correctness of Algorithm 3 also requires to know k which is
the number of correct bits after the floating-point computation of the cdf with
m′ bits of mantissa. For this purpose, given m′ Lemma 4 provides a theoretical
lower bound on k.

Efficiency. As explained in [12] the precision used for floating-point arithmetic
has non-negligible impact, because fp-operation become much expensive when
the precision goes over the hardware precision. For instance, modern processors
typically provide floating-point arithmetic following the double IEEE standard
double precision (m = 53), but quad-float FPA (m = 113) is usually about
10–20 times slower for basic operations, and the overhead is much more for mul-
tiprecision FPA. Therefore the maximal hardware precision is a natural choice
for m′. However this choice for m′ in Algorithm 3 is a strong constraint for cryp-
tographic applications, where the error occurring during the floating-point cdf
computation is usually greater than 10 bits, making the time-memory tradeoff
of Algorithm 3 inflexible. Note that the probability of triggering high precision
in Algorithm 3 given that v1 �= v2 is about 2q−kPcdf, where q is the number of

12 C. Aguilar-Melchor et al.

Algorithm 3. Lazy-CDT Algorithm: Online Phase
Input: a center c and a precomputed matrix T
Output: a sample x that follows Ds,c

1: p ← U[0,1)∩FPλ

2: v1 ← i − �τs� − 1 s.t. T�n(c−�c�)�,i−1 ≤ p < T�n(c−�c�)�,i

3: v2 ← j − �τs� − 1 s.t. T�n(c−�c�)�,j−1 ≤ p < T�n(c−�c�)�,j

4: if v1 = v2 then
5: return v1 + �c�
6: else
7: if FPk : p < FPm′ : cdfs,c−�c�(v1) then
8: return v1 + �c�
9: else

10: if FPk : p > FPm′ : cdfs,c−�c�(v1) then
11: return v2 + �c�
12: else
13: if p > FPm : cdfs,c−�c�(v1) then
14: return v1 + �c�
15: else
16: return v2 + �c�

common leading bits of cdfs,�n(c−�c�)�/n(v1) and cdfs,�n(c−�c�)	/n(v2). By using
this lazy trick in addition to lookup tables as described in Sect. 5 with parame-
ters considered in cryptography, we achieve a computational cost lower than the
classical centered CDT algorithm with a memory requirement in the order of 1
megabyte.

4 A More Flexible Time-Memory Tradeoff

In view of limitations of the lazy approach described above, a natural question
is if we can find a better solution to approximate the cdf. The major advantage
of this lazy trick is that it does not require additional memory. However, in
our context the CDTs are precomputed and rather than approximate the cdf
from scratch it would be interesting to reuse the information contained in these
precomputations. Consider the cdf as a function of the center and note that
each precomputed cdf is zero degree term of the Taylor expansion of the cdf
around a precomputed center. Hence, we may approximate the cdf by its Taylor
expansions by precomputing some higher degree terms.

At a first glance, this seems to increase the memory requirements of the
sampling algorithm, but we will show that this approach allows to drastically
reduce the number of precomputed to a ω(λ) centers thanks to a probability
which decreases rapidly with the degree of the Taylor expansion. Moreover, this
approximation is faster than the cdf lazy computation and it has no strong con-
straints related to the maximal hardware precision. As a result, we obtain a
flexible time-memory tradeoff which reaches, in particular, the same time com-
plexity as the CDT algorithm for centered discrete Gaussians with a practical
memory requirements for cryptographic parameters.

Sampling from Arbitrary Centered Discrete Gaussians 13

4.1 Taylor-CDT Algorithm

Our Taylor-CDT algorithm is similar to the Lazy-CDT algorithm (Algorithm 3)
described above, except that the lazy computation of the cdf is replaced by the
Taylor expansion of the cdf, viewed as a function of the Gaussian center, around
each precomputed centers for all possible values. The zero-degree term of each
of these Taylor expansions is present in the corresponding CDT element Ti,j

and the d higher-degree terms are stored as an element Ei,j of another matrix
E. As for the other approaches, these precomputations shall be performed at a
sufficient precision m to ensure λ correct bits. During the online phase, Algo-
rithm5 proceed as follow. Draw p from the uniform distribution over [0, 1)∩FPλ

and search p in the CDTs of the two closest precomputed centers to the desired
center decimal part. If the two values found are equal, add the desired center
integer part to this value and return it as a valid sample. Otherwise, select the
closest precomputed center to the desired center decimal part and evaluate, at
the desired center decimal part, the Taylor expansion corresponding to this cen-
ter and the value found in its CDT. If p is smaller or bigger than this evaluation
with respect for the error approximation upper bound Eexpansion, characterized
in Lemma 6, add the desired center integer part to the corresponding value and
return it as a valid sample. Otherwise, it is necessary to compute the full cdf to
decide which value to return.

Algorithm 4. Taylor-CDT Algorithm: Offline Phase
Input: a Gaussian parameter s, a number of centers n, a Taylor expansion degree d
Output: two precomputed matrices T and E
1: initialize two empty matrices T ∈ FP

n×2�τs�+3
λ and E ∈ (FPd

λ)n×2�τs�+3

2: for i ← 0, . . . , n − 1 do
3: for j ← 0, . . . , 2�τs� + 2 do
4: Ti,j ← FPm : cdfs,i/n(j − �τs� − 1)
5: Ei,j ← FPm : Td,cdfs,x(j−�τs�−1),i/n(x) − Ti,j

Efficiency. Algorithm 5 performs two binary searches on CDTs in O(λ log sλ),
d additions and multiplications on FPm in O(m2) with probability Pcdf ≈ 3λ/n
(see Lemma 5) and a cdf computation on FPm in O(sλ3.5) with probability
close to 2q+1PcdfEexpansion, where q is the number of common leading bits of
cdfs,�n(c−�c�)�/n(v1) and cdfs,�n(c−�c�)	/n(v2) and Eexpansion is the Taylor expan-
sion approximation error bound described in Lemma6.

Lemma 6. Let Eexpansion be the maximal Euclidean distance between cdfs,x(v)
and Td,cdfs,x(v),c(x), its Taylor expansion around c, for all v ∈ [−�τs�−1, �τs�+
1], c ∈ [0, 1) and x ∈ [c, c + 1/2n], assuming that τ ≥ 2.5, s ≥ 4, we have

Eexpansion <
4τd+2

nd+1s
d+1
2

14 C. Aguilar-Melchor et al.

Algorithm 5. Taylor-CDT Algorithm: Online Phase
Input: a center c and two precomputed matrices T and E
Output: a sample x that follows Ds,c

1: p ← U[0,1)∩FPλ

2: v1 ← i − �τs� − 1 s.t. T�n(c−�c�)�,i−1 ≤ p < T�n(c−�c�)�,i

3: v2 ← j − �τs� − 1 s.t. T�n(c−�c�)�,j−1 ≤ p < T�n(c−�c�)�,j

4: if v1 = v2 then
5: return v1 + �c�
6: else
7: if |c − �n(c − �c�)�| < |c − �n(c − �c�)�| then
8: c′ ← �n(c − �c�)�
9: else

10: c′ ← �n(c − �c�)�
11: i ← j
12: if p < Tc′,i + Ec′,i(c − �c�) − Eexpansion then
13: return v1 + �c�
14: else
15: if p > Tc′,i + Ec′,i(c − �c�) + Eexpansion then
16: return v2 + �c�
17: else
18: if p > FPm : cdfs,c−�c�(v1) then
19: return v1 + �c�
20: else
21: return v2 + �c�

Proof. From Theorem 1 we have

Eexpansion = max
c∈[0,1)

x∈[c,c+1/2n]
v∈[−�τs	−1,�τs	+1]

⎛

⎝
v∑

i=−�τs	−1

∫ x

c

ρ
(d+1)
s,t (i)

d! ρs,t(Z)
(c +

1
2n

− t)
d

dt

⎞

⎠

By using well-known series-integral comparison we obtain ρs,t(Z) ≥ s
√

2π − 1

and since
∣
∣
∣ρ

(d)
s,t (i)

∣
∣
∣ < d(1.3τ)d2d

sd/2 for s ≥ 4 and τ ≥ 2.5, it follows that

Eexpansion ≤ (d + 1)(1.3)d+1τd+2

d!nd+1s
d+1
2

�

A careful analysis of this technique show that with d = 4 we achieve the same
asymptotic computational cost as the classical CDT algorithm with n = ω(λ),
where the hidden factor is less than 1/4, therefore for this degree the space com-
plexity of Algorithms 4 and 5 is only λ times bigger than for centered sampling,
showing that these algorithms can achieve a memory requirement as low as 1 MB.
Finally, note that taking care to add the floating-point computation error to the
error of approximation, one can compute the Taylor expansion evaluation at the
maximal hardware precision to reduce its computational cost.

Sampling from Arbitrary Centered Discrete Gaussians 15

5 Lookup Tables

We shall now show how to use partial lookup tables to avoid the binary search in
most cases when using CDT algorithms, this technique is the CDT analogue of
the Knuth-Yao algorithm improvement described in [8]. Note that this strategy
is particularly fitting for discrete Gaussian distributions with relatively small
expected values. The basic idea is to subdivide the uniform distribution U[0,1)

into � uniform distributions on subsets of the same size U[i/�,(i+1)/�), with � a
power of two. We then precompute a partial lookup table on these subsets which
allows to return the sample at once when the subset considered does not include
a cdf image. We note that instead of subdividing the uniform range into stripes
of the same size, we can also recursively subdivide only some stripes of the
previous subdivision. However, for the sake of clarity and ease of exposure, this
improvement is not included in this paper and we will describe this technique
for the classical centered CDT algorithm.

First, we initialize a lookup table of size � = 2l where the i-th entry corre-
sponds to a subinterval [i/�, (i + 1)/�) of [0, 1). Second, after precomputing the
CDT, we mark all the entries for which there is at least one CDT element in
their corresponding subinterval [i/�, (i + 1)/�) with ⊥, and all remaining entries
with �. Each entry marked with � allows to return a sample without the need
to perform a binary search in the CDT, because only one value corresponds to
this subinterval which is the first CDT element greater or equal to (i + 1)/�.

Efficiency. The efficiency of this technique is directly related to the number
of entries, marked with �, whose subintervals do not contain a CDT element.
We denote the probability of performing binary search by Pbinsrch, obviously the
probability to return the sample immediately after choosing i, which is a part
of p, is 1 − Pbinsrch. Lemma 7 gives a lower bound of Pbinsrch.

Lemma 7. For any � ≥ 28 and s ≥ η 1
2
(Z). Let Pbinsrch be the probability of per-

forming binary search during the execution of the CDT algorithm implemented
with the lookup table trick described above, we have

Pbinsrch < 1.2s
√

log2 �/�

Proof.

Pbinsrch =
� −

∑�c+τs	
i=�c−τs� 	� cdfs,c(i)
 − 	� cdfs,c(i − 1)

�

From Lemma 2 we have
⌊
� cdfs,c

(⌊
c − 0.6s

√
log2 �

⌋)⌋
= 0

⌊
�
(
1 − cdfs,c

(⌈
c + 0.6s

√
log2 �

⌉))⌋
= 0

�

16 C. Aguilar-Melchor et al.

6 Experimental Results

In this section, we present experimental results of our C++ implementation1

distributed under the terms of the GNU General Public License version 3 or
later (GPLv3+) which uses the MPFR [15] and GMP [19] libraries as well as
Salsa20 [5] as the pseudorandom number generator. Our non-centered discrete
Gaussian sampler was implemented with a binary search executed byte by byte
if � = 28 and 2-bytes by 2-bytes if � = 216 without recursive subdivision of U[0,1),
therefore [0, 1) is subdivided in � intervals of the same size and cdf(x) is stored for
all x ∈ [−�τσ� − 1, �τσ� + 1]. The implementation of our non-centered discrete
Gaussian sampler uses a fixed number of precomputed centers n = 28 with a
lookup table of size � = 28 and includes the lazy cdf evaluation optimization.

We tested the performance of our non-centered discrete Gaussian sampler
by using it as a subroutine for Peikert’s sampler [32] for sampling from D(g),σ′,0
with g ∈ Z[x]/(xN + 1) for N a power of two. To this end, we adapted the
implementation of this sampler from [3] where we swap out the sampler from

Table 1. Performance of sampling from D(g),σ′ as implemented in [3] and with our non-
centered discrete Gaussian sampler with � = n = 28. The column D(g),σ′/s gives the
number of samples returned per second, the column “memory” the maximum amount
of memory consumed by the process. All timings are on a Intel(R) Xeon(R) CPU
E5-2667 (strombenzin). Precomputation uses 2 cores, the online phase uses one core.

[3]

N log σ′ precomp time D(g),σ′/s memory

256 38.2 0.08 s 8.46 ms 118.17 11,556 kB

512 42.0 0.17 s 16.96 ms 58.95 11,340 kB

1024 45.8 0.32 s 38.05 ms 26.28 21,424 kB

2048 49.6 0.93 s 78.17 ms 12.79 41,960 kB

4096 53.3 2.26 s 157.53 ms 6.35 86,640 kB

8192 57.0 6.08 s 337.32 ms 2.96 192,520 kB

16384 60.7 13.36 s 700.75 ms 1.43 301,200 kB

This work

N log σ′ precomp time D(g),σ′/s memory

256 38.2 0.31 s 2.91 ms 343.16 17,080 kB

512 42.0 0.39 s 5.99 ms 166.88 21,276 kB

1024 45.8 0.65 s 11.89 ms 84.12 38,280 kB

2048 49.6 1.04 s 25.07 ms 39.89 74,668 kB

4096 53.3 2.35 s 48.63 ms 20.56 148,936 kB

8192 57.0 7.27 s 96.67 ms 10.34 302,616 kB

16384 60.7 14.41 s 205.35 ms 4.87 618,448 kB

1 The implementation is available at https://github.com/tricosset/FGN.

https://github.com/tricosset/FGN

Sampling from Arbitrary Centered Discrete Gaussians 17

the dgs library [2] (implementing rejection sampling and [11]) used in [3] with
our sampler for sampling for DZ,σ,c. Note that sampling from D(g),σ′,0 is more
involved and thus slower than sampling from DZN ,σ′,0. That is, to sample from
D(g),σ′,0, [3] first computes an approximate square root of Σ2 = σ′2 ·g−T ·g−1−r2

with r = 2 · �
√

log N �. Then, given an approximation
√

Σ2
′ of

√
Σ2 it samples

a vector x ←$ R
N from a standard normal distribution and interpret it as a

polynomial in Q[X]/(xN + 1); computes y =
√

Σ2
′ · x in Q[X]/(xN + 1) and

returns g · (y�r), where 	y�r denotes sampling a vector in Z
N where the i-

th component follows DZ,r,yi
. Thus, implementing Peikert’s sampler requires

sampling from DZ,r,yi
for changing centers yi and sampling from a standard

normal distribution. We give experimental results in Table 1, indicating that our
sampler increases the rate by a factor ≈ 3.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, STOC 1996, NY, USA, pp. 99–108. ACM, New York (1996)

2. Albrecht, M.R.: dgs – discrete gaussians over the integers (2014). https://bitbucket.
org/malb/dgs

3. Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing candidate
graded encoding schemes from ideal lattices. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 752–775. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3 31

4. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. In:
Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg
(1985). doi:10.1007/BFb0023990

5. Bernstein, D.J.: The salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs: The eSTREAM Finalists, pp. 84–97. Springer,
Heidelberg (2008)

6. Brent, R.P., et al.: Fast algorithms for high-precision computation of elementary
functions. In: Proceedings of 7th Conference on Real Numbers and Computers
(RNC 7), pp. 7–8 (2006)

7. Buchmann, J., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.: Discrete Ziggu-
rat: a time-memory trade-off for sampling from a Gaussian distribution over the
integers. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 402–417. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 20

8. de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 339–344 (2015)

9. Devroye, L.: Non-Uniform Random Variate Generation. Springer, Heidelberg
(1986)

10. Ducas, L.: Lattice based signatures: attacks, analysis and optimization. Ph.D.
thesis (2013)

11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

https://bitbucket.org/malb/dgs
https://bitbucket.org/malb/dgs
http://dx.doi.org/10.1007/978-3-662-48800-3_31
http://dx.doi.org/10.1007/BFb0023990
http://dx.doi.org/10.1007/978-3-662-43414-7_20
http://dx.doi.org/10.1007/978-3-642-40041-4_3

18 C. Aguilar-Melchor et al.

12. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
415–432. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 26

13. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014)

14. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

15. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2) (2007)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008)

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, Victoria, 17–20 May 2008

18. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). doi:10.1007/BFb0052231

19. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Preci-
sion Arithmetic Library, 6.0.1 edn. (2015). http://gmplib.org/

20. Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math.
Softw. 42(1), 3:1–3:14 (2016)

21. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2000, pp. 937–941. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (2000)

22. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number genera-
tion. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent
Results. Academic Press, New York (1976)

23. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78440-1 10

24. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 35

25. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 43

26. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78524-8 3

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

28. Marsaglia, G., Tsang, W.W.: A fast, easily implemented method for sampling from
decreasing or symmetric unimodal density functions. SIAM J. Sci. Stat. Comput.
5, 349–359 (1984)

http://dx.doi.org/10.1007/978-3-642-34961-4_26
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/BFb0052231
http://gmplib.org/
http://dx.doi.org/10.1007/978-3-540-78440-1_10
http://dx.doi.org/10.1007/978-3-642-10366-7_35
http://dx.doi.org/10.1007/978-3-642-29011-4_43
http://dx.doi.org/10.1007/978-3-540-78524-8_3
http://dx.doi.org/10.1007/978-3-642-13190-5_1

Sampling from Arbitrary Centered Discrete Gaussians 19

29. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Comput. Complex. 16(4), 365–411 (2007)

30. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

31. von Neumann, J.: Various techniques used in connection with random digits. J.
Res. Nat. Bur. Stand. 12, 36–38 (1951)

32. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14623-7 5

33. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4), 283–424 (2016)

34. Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 390–405. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89255-7 24

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, NY, USA, pp. 84–93. ACM, New York (2005)

36. Saarinen, M.J.O.: Arithmetic coding and blinding countermeasures for lattice sig-
natures. J. Cryptographic Eng. 1–14 (2017)

37. Von Neumann, J.: The general and logical theory of automata. Cerebral Mech.
Behav. 1(41), 1–2 (1951)

38. Walker, A.J.: New fast method for generating discrete random numbers with arbi-
trary frequency distributions. Electron. Lett. 10, 127–128 (1974)

http://dx.doi.org/10.1007/978-3-642-14623-7_5
http://dx.doi.org/10.1007/978-3-540-89255-7_24

Simple Security Definitions for
and Constructions of 0-RTT Key Exchange

Britta Hale1(B), Tibor Jager2, Sebastian Lauer3, and Jörg Schwenk3

1 NTNU, Norwegian University of Science and Technology, Trondheim, Norway
britta.hale@ntnu.no

2 Paderborn University, Paderborn, Germany
tibor.jager@upb.de

3 Horst Görtz Institute, Ruhr-University Bochum, Bochum, Germany
{sebastian.lauer,joerg.schwenk}@rub.de

Abstract. Zero Round-Trip Time (0-RTT) key exchange protocols
allow for the transmission of cryptographically protected payload data
without requiring the prior exchange of messages of a cryptographic key
exchange protocol. The 0-RTT KE concept was first realized by Google
in the QUIC Crypto protocol, and a 0-RTT mode has been intensively
discussed for inclusion in TLS 1.3.

In 0-RTT KE two keys are generated, typically using a Diffie-Hellman
key exchange. The first key is a combination of an ephemeral client share
and a long-lived server share. The second key is computed using an
ephemeral server share and the same ephemeral client share.

In this paper, we propose simple security models, which catch the
intuition behind known 0-RTT KE protocols; namely that the first (resp.
second) key should remain indistinguishable from a random value, even
if the second (resp. first) key is revealed. We call this property strong key
independence. We also give the first constructions of 0-RTT KE which
are provably secure in these models, based on the generic assumption
that secure non-interactive key exchange (NIKE) exists (This work was
partially supported by a STSM Grant from COST Action IC1306).

Keywords: Foundations · Low-latency key exchange · 0-RTT proto-
cols · Authenticated key exchange · Non-interactive key exchange ·
QUIC · TLS 1.3.

1 Introduction

Efficiency, in terms of messages to be exchanged before a key is established, is a
growing consideration for internet protocols today. Basically, the first generation
of internet key exchange protocols did not care too much about efficiency, since
secure connections were considered to be the exception rather than the rule: SSL
(versions 2.0 and 3.0) and TLS (versions 1.0, 1.1, and 1.2) require 2 round-trip
times (RTT) for key establishment before the first cryptographically-protected
payload data can be sent. With the increased use of encryption,1 efficiency is
1 For example, initiatives like Let’s Encrypt (https://letsencrypt.org/).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 20–38, 2017.
DOI: 10.1007/978-3-319-61204-1 2

https://letsencrypt.org/

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 21

of escalating importance for protocols like TLS. Similarly, the older IPSec IKE
version v1 needs between 3 RTT (aggressive mode + quick mode) and 4.5 RTT
(main mode + quick mode). This was soon realized to be problematic, and in
IKEv2 the number of RTTs was reduced to 2.

The QUIC Protocol. Fundamentally, the discussion on low-latency key exchange
(aka. LLKE, zero-RTT or 0-RTT key exchange) was opened when Google pro-
posed the QUIC protocol.2 QUIC (cf. Fig. 1) achieves low-latency by caching a
signed server configuration file on the client side, which contains a medium-lived
Diffie-Hellman (DH) share Y0 = gy0 .3

When a client wishes to establish a connection with a server and possesses
a valid configuration file of that server, it chooses a fresh ephemeral DH share
X = gx and computes a temporal key k1 from gy0x. Using this key k1, the client
can encrypt and authenticate data to be sent to the server, together with X. In
response, the server sends a fresh DH share Y = gy and computes a session key
k2 from gxy, which is used for all subsequent data exchanges.

Fig. 1. Google’s QUIC protocol (simplified) with cached server key configuration file
(Y0, σS). AE denotes a symmetric authenticated encryption algorithm (e.g., AES-
GCM), (sksig

S , pksig
S) denotes the server’s long-term signing keys, and πt

S (resp. πs
C)

denotes the oracle at server S executing the single t-th instance of the protocol (resp.
for client).

2 See https://www.chromium.org/quic.
3 If the client does not have a valid file, it has to be requested from the server, which

increases the number of RTTs by 1, but may then be re-used for future sessions.

https://www.chromium.org/quic

22 B. Hale et al.

TLS 1.3. Early TLS 1.3 drafts, e.g. draft-ietf-tls-tls13-08 [25], contained a
0-RTT key exchange mode where a QUIC-like ServerConfiguration message is
cached by the client. The current version draft-ietf-tls-tls13-18 [26] follows
a different approach, where the initial key establishment between a client and a
server is never 0-RTT. Instead, it defines a method to establish a new session
based on the secret key of a previous session. Even though this is also called
“0-RTT” in the current TLS 1.3 specification, it is rather a “0-RTT session
resumption” protocol, but does not allow for 0-RTT key establishment. Most
importantly, the major difference between the approach of the current TLS 1.3
draft in comparison to a “real” 0-RTT key exchange protocol is that the former
requires storing of secret key information on the client between sessions. In
contrast, a 0-RTT key establishment protocol does not require secret information
to be stored between sessions.

Facebook’s Zero Protocol. Very recently, the social network Facebook announced
that it is currently experimenting with a 0-RTT KE protocol called Zero.4 Zero
is very similar to QUIC, except that it uses another nonce and encryption of
the ServerHello message. It is noteworthy that the main difference between Zero
and QUIC was introduced in order to prevent an attack discovered by Facebook,
which has been reported to Google and meanwhile been fixed in QUIC, too. We
believe that this is a good example that shows the demand of simple security
definitions and provably-secure constructions for such protocols.

Security Goals. 0-RTT KE protocols like QUIC have ad-hoc designs that aim at
achieving three goals: (1) 0-RTT encryption, where ciphertext data can already
be sent together with the first handshake message; (2) perfect forward secrecy
(PFS), where all ciphertexts exchanged after the second handshake message will
remain secure even after the (static or semi-static) private keys of the server have
been leaked, and (3) key independence, where “knowledge” about one of the two
symmetric keys generated should not endanger the security of the other key.

Strong Key Independence. Intuitively, a 0-RTT KE protocol should achieve
strong key independence between k1 and k2; if any one of the two keys is leaked
at any time, the other key should still be indistinguishable from a random value.
In all known security models, this intuition would be formalized as follows: if the
adversary A asks a Reveal query for k1, he is still allowed to ask a Test query for
k2, and vice versa. If the two keys are computationally independent from each
other (which also includes computations on the different protocol messages),
then the adversary should have only a negligible advantage in answering the
Test query correctly.

Ultimately this leads to the following research questions: Do existing exam-
ples of 0-RTT KE protocols have strong key independence? Can we describe a
generic way to construct 0-RTT KE protocols that provably achieve strong key
independence?
4 See https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-

fast-secure-mobile-connections/.

https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-fast-secure-mobile-connections/
https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-fast-secure-mobile-connections/

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 23

QUIC Does Not Provide Strong Key Independence. If an attacker A is allowed to
learn k1 by a Reveal-query, then he is able to decrypt AE(k1;Y) and re-encrypt
its own value Y ∗ := gy∗

as AE(k1;Y ∗). Furthermore, he can then compute the
same k2 = Xy∗

as the client oracle, and can thus distinguish between the “real”
key and a “random” key chosen by the Test query. See [11] for more details on
key dependency in QUIC.

Note that this theoretical attack does not imply that QUIC is insecure. It only
shows that the authenticity of the server’s Diffie-Hellman share, which is sent
in QUIC to establish k2, depends strongly on the security of key k1. Therefore
QUIC does not provide strong key independence in the sense sketched above.

Previous Work on 0-RTT Key Exchange. The concept of 0-RTT key exchange
was not developed in academia, but in industry – motivated by concrete practical
demands of distributed applications. All previous works on 0-RTT KE [11,23]
conducted a-posteriori security analyses of the QUIC protocol, with tailored
models. There are no foundational constructions as yet, and the relation to
other cryptographic protocols and primitives is not yet well-understood.

At ACM CCS 2014, Fischlin and Günther [11] provided a formal definition
of multi-stage key exchange protocols and used it to analyze the security of
QUIC. Lychev et al. [23] gave an alternate analysis of QUIC, which considers
both efficiency and security. They describe a security model which is bespoke to
QUIC, adopting the complex, monolithic security model of [17] to the protocol’s
requirements. Zhao [31] considers identity-concealed 0-RTT protocols, where
user privacy is protected by hiding identities of users in a setting with mutual
cryptographic authentication of both communicating parties. Günther et al. [14]
extended the “puncturable encryption”-approach of Green and Miers [13] to
show that even 0-RTT KE with full forward secrecy is possible, by evolving the
secret key after each decryption. However, their construction is currently mainly
of conceptual interest, as it is not yet efficient enough to be deployed at large
scale in practice.

Security Model. In this paper, we use a variant of the Canetti-Krawczyk [7]
security model. This family of security models is especially suited to protocols
with only two message exchanges, with one-round key exchange protocols con-
stituting the most important subclass. Popular examples of such protocols are
MQV [22], HMQV [18], SMQV [27], KEA [21,24], and NAXOS [20]. A compar-
ison of different variants of the Canetti-Krawczyk model can be found in [9,29].

The Importance of Simplicity of Security Models. Security models for key
exchange protocols have to consider active adversaries that may modify, replay,
inject, drop, etc., any message transmitted between communicating parties. They
also need to capture parallel executions of multiple protocol sessions, potential
reveals of earlier session keys, and adaptive corruptions of long-term secrets of
parties. This makes even standard security models for key exchange extremely
complex (in comparison to most other standard cryptographic primitives, like
digital signatures or public-key encryption, for example).

24 B. Hale et al.

Naturally, the novel primitive of 0-RTT KE requires formal security defi-
nitions. There are different ways to create such a model. One approach is to
focus on generality of the model. Fischlin and Günther [11] followed this path,
by defining multi-stage key exchange protocols, a generalization of 0-RTT KE.
This approach has the advantage that it lays the foundation for the study of
a very general class of interesting and novel primitives. However, its drawback
is that this generality inherently also brings a huge complexity to the model.
Clearly, the more complex the security model, the more difficult it becomes to
devise new, simple, efficient, and provably-secure constructions. Moreover, proofs
in complex models tend to be error-prone and less intuitive, because central tech-
nical ideas may be concealed in formal details that are required to handle the
generality of the model.

Another approach is to devise a model which is tailored to the analysis
of one specific protocol. For example, the complex, monolithic ACCE security
model was developed in [17] to provide an a posteriori security analysis of TLS.5

A similar approach was followed by Lychev et al. [23], who adopted this model
for an a posteriori analysis of QUIC, by defining the so-called Q-ACCE model.
The notable drawback of this approach is that such tailor-made models tend to
capture only the properties achieved by existing protocols, but not necessarily
all properties that we would expect from a “good” 0-RTT KE protocol. In gen-
eral, such tailor-made models do not, therefore, form a useful foundation for the
creation of new protocols.

In this paper, we follow a different approach. We propose novel “bare-bone”
security models for 0-RTT KE, which aim at capturing all (strong key inde-
pendence and forward secrecy), but also only the properties intuitively expected
from “good” 0-RTT KE protocols. We propose two different models. One consid-
ers the practically-relevant case of server-only authentication (where the client
may or may not authenticate later over the established communication channel,
similar in spirit to the server-only-authenticated ACCE model of [19]). The other
considers traditional mutual cryptographic authentication of a client and server.

The reduced generality of our definitions – in comparison to the very general
multi-stage security model of [11] – is intended. A model which captures only,
but also all the properties expected from a “good” 0-RTT KE protocol allows
us to devise relatively simple, foundational, and generic constructions of 0-RTT
KE protocols with as-clean-as-possible security analyses.

Importance of Foundational Generic Constructions. Following [3], we use non-
interactive key exchange (NIKE) [8,12] in combination with digital signatures
as a main building block.6 This yields the first examples of 0-RTT KE protocols
with strong key independence, as well as the first constructions of 0-RTT KE
from generic complexity assumptions. There are many advantages of such generic
constructions:
5 A more modular approach was later proposed in [4].
6 Recall that digital signatures are implied by one-way functions, which in turn are

implied by NIKE. Thus, essentially we only assume the existence of NIKE as a
building block.

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 25

1. Generic constructions provide a better understanding of the structure of pro-
tocols. Since the primitives we use have abstract security properties, we can
see precisely which abstract security requirements are needed to implement
0-RTT KE protocols.

2. They clarify the relations and implications between different types of crypto-
graphic primitives.

3. They can be generically instantiated with building blocks based on different
complexity assumptions. For example, if “post-quantum” security is needed,
one can directly obtain a concrete protocol by using only post-quantum secure
building blocks in the generic construction.

Usually generic constructions tend to involve more computational overhead than
ad-hoc constructions. However, we note that our 0-RTT KE protocols can be
instantiated relatively efficiently, given the efficient NIKE schemes of [12], for
example.

Contributions. Contributions in this paper can be summarized as follows:

– Simple security models. We provide simple security models, which capture
all properties that we expect from a “good” 0-RTT KE protocol, but only
these properties. We consider both the “practical” setting with server-only
authentication and the classical setting with mutual authentication.

– First generic constructions. We give intuitive, relatively simple, and efficient
constructions of 0-RTT KE protocols in both settings.

– First Non-DH instantiation. Both QUIC and TLS 1.3 are based on DH key
exchange. Our generic construction yields the first 0-RTT KE protocol which
is not based on Diffie-Hellman (e.g., by instantiating the generic construction
with the factoring-based NIKE scheme of Freire et al. [12]).

– First 0-RTT KE with strong key independence. Our 0-RTT KE protocols are
the first to achieve strong key independence in the sense described above.

– Well-established, general assumptions. The construction is based on gen-
eral assumptions, namely the existence of secure NIKE and digital signature
schemes. For all building blocks we require only standard security properties.

– Security in the Standard Model. The security analysis is completely in the
standard model, i.e. it is performed without resorting to the Random Oracle
heuristic [1] and without relying on non-standard complexity assumptions.

– Efficient instantiability. Despite the fact that our constructions are generic,
the resulting protocols can be instantiated relatively efficiently.

Full Version of this Paper. Due to space limitations, we have to defer sev-
eral results to the full version of this paper [15]. This includes the full proof of
Theorem 1, the Definition and Security Model for a 0-RTT protocol under mutual
authentication (0-RTT-M), a construction of a 0-RTT-M protocol along with its
security model and its security proof.

26 B. Hale et al.

2 Preliminaries

For our construction in Sect. 4, we need signature schemes and non-interactive
key exchange (NIKE) protocols. Here we summarize the definitions of these two
primitives and their security from the literature.

2.1 Digital Signatures

A digital signature scheme consists of three polynomial-time algorithm
SIG = (SIG.Gen,SIG.Sign,SIG.Vfy). The key generation algorithm (sk, pk) $←
SIG.Gen(1λ) generates a public verification key pk and a secret signing key sk on
input of security parameter λ. Signing algorithm σ

$← SIG.Sign(sk,m) generates
a signature for message m. Verification algorithm SIG.Vfy(pk, σ,m) returns 1 if
σ is a valid signature for m under key pk, and 0 otherwise.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk) $← SIG.Gen(1λ), the
adversary receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies to each query with a signature σi = SIG.Sign(sk,mi). Here i is
an index, ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can be made
adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 1. We define the advantage on an adversary A in this game as

AdvsEUF-CMA
SIG,A (λ) := Pr

[
(m,σ) $← AC(λ)(pk) :

SIG.Vfy(pk, σ,m) = 1,
(m,σ) �= (mi, σi) ∀i

]
.

SIG is strongly secure against existential forgeries under adaptive chosen-
message attacks (sEUF-CMA), if AdvsEUF-CMA

SIG,A (λ) is a negligible function in λ
for all probabilistic polynomial-time adversaries A.

Remark 1. Signatures with sEUF-CMA security can be constructed generi-
cally from any EUF-CMA-secure signature scheme and chameleon hash func-
tions [6,28].

2.2 Secure Non-interactive Key Exchange

Definition 2. A non-interactive key exchange (NIKE) scheme consists of two
deterministic algorithms (NIKE.Gen,NIKE.Key).

NIKE.Gen(1λ, r) takes a security parameter λ and randomness r ∈ {0, 1}λ. It
outputs a key pair (pk , sk). We write (pk , sk) $← NIKE.Gen(1λ) to denote that
NIKE.Gen(1λ, r) is executed with uniformly random r

$← {0, 1}λ.

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 27

NIKE.Key(sk i, pk j) is a deterministic algorithm which takes as input a secret
key sk i and a public key pk j, and outputs a key ki,j.

We say that a NIKE scheme is correct, if for all (pk i, sk i)
$← NIKE.Gen(1λ) and

(pk j , sk j)
$← NIKE.Gen(1λ) holds that NIKE.Key(sk i, pk j) = NIKE.Key(sk j , pk i).

A NIKE scheme is used by d parties P1, . . . , Pd as follows. Each party Pi gen-
erates a key pair (pk i, sk i) ← NIKE.Gen(1λ) and publishes pk i. In order to com-
pute the key shared by Pi and Pj , party Pi computes ki,j = NIKE.Key(sk i, pk j).
Similarly, party Pj computes kj,i = NIKE.Key(sk j , pk i). Correctness of the NIKE
scheme guarantees that ki,j = kj,i.

CKS-Light Security. The CKS-light security model for NIKE protocols is rel-
atively simplistic and compact. We choose this model because other (more
complex) NIKE security models like CKS , CKS-heavy, and m-CKS-heavy are
polynomial-time equivalent to CKS-light. See [12] for more details.

Security of a NIKE protocol NIKE is defined by a game NIKE played between
an adversary A and a challenger. The challenger takes a security parameter λ
and a random bit b as input and answers all queries of A until she outputs a bit
b′. The challenger answers the following queries for A:

– RegisterHonest(i). A supplies an index i. The challenger runs NIKE.Gen(1λ)
to generate a key pair (pki, ski) and records the tuple (honest, pki, ski) for
later and returns pki to A. This query may be asked at most twice by A.

– RegisterCorrupt(pki). With this query A supplies a public key pki. The chal-
lenger records the tuple (Corrupt, pki) for later.

– GetCorruptKey(i, j). A supplies two indices i and j where pki was registered
as corrupt and pkj as honest. The challenger runs k ← NIKE.Key(skj , pki)
and returns k to A.

– Test(i, j). The adversary supplies two indices i and j that were registered
honestly. Now the challenger uses bit b: if b = 0, then the challenger runs
ki,j ← NIKE.Key(pki, skj) and returns the key ki,j . If b = 1, then the chal-
lenger samples a random element from the key space, records it for later, and
returns the key to A.

The game NIKE outputs 1, denoted by NIKEA
NIKE(λ) = 1, if b = b′ and 0

otherwise. We say A wins the game if NIKEA
NIKE(λ) = 1.

Definition 3. For any adversary A playing the above NIKE game against a
NIKE scheme NIKE, we define the advantage of winning the game NIKE as

AdvCKS-light
NIKE,A (λ) =

∣∣∣2 · Pr
[
NIKEA

NIKE(λ) = 1
]

− 1
∣∣∣ .

Let λ be a security parameter, NIKE be a NIKE protocol and A an adversary. We
say NIKE is a CKS-light-secure NIKE protocol, if for all probabilistic polynomial-
time adversaries A, the function AdvCKS-light

NIKE,A (λ) is a negligible function in λ.

28 B. Hale et al.

3 0-RTT Key Exchange Protocols: Syntax and Security
with Server-Only Authentication

In the model presented in this section, we give formal definitions for 0-RTT KE
with strong key independence and main-key forward secrecy. We start with the
case of server-only authentication, as it is the more important case in practice
(in particular, server-only authentication will be the main operating mode of
both QUIC and TLS 1.3).

3.1 Syntax and Correctness

Definition 4. A 0-RTT key exchange scheme with server-only authentication
consists of deterministic algorithms (Genserver,KEclient

init ,KEclient
refresh,KE

server
refresh).

– Genserver(1λ, r) → (pk , sk): A key generation algorithm that takes as input
a security parameter λ and randomness r ∈ {0, 1}λ and outputs a key pair
(pk , sk). We write (pk , sk) $← Genserver(1λ) to denote that a pair (pk , sk) is
the output of Genserver when executed with uniformly random r

$← {0, 1}λ.
– KEclient

init (pk j , ri) → (ki,j
tmp,mi): An algorithm that takes as input a public key

pk j and randomness ri ∈ {0, 1}λ, and outputs a temporary key ki,j
tmp and a

message mi.
– KEserver

refresh(sk j , rj ,mi) → (kj,i
main, k

j,i
tmp,mj): An algorithm that takes as input a

secret key sk j, randomness rj and a message mi, and outputs a key kj,i
main, a

temporary key kj,i
tmp and a message mj.

– KEclient
refresh(pk j , ri,mj) → ki,j

main: An algorithm that takes as input a public key
pk j, randomness ri, and message mj, and outputs a key ki,j

main.

We say that a 0-RTT key exchange scheme is correct, if for all (pk j , sk j),
$←

Genserver(1λ) and for all ri, rj
$← {0, 1}λ holds that

Pr[ki,j
tmp �= kj,i

tmp or ki,j
main �= kj,i

main] ≤ negl(λ) ,

where (kj,i
tmp,mi) ← KEclient

init (pk j , ri), (ki,j
main, k

i,j
tmp,mj) ← KEserver

refresh(sk j , rj ,mi), and
kj,i
main ← KEclient

refresh(pk j , ri,mj).

A 0-RTT KE scheme is used by a set parties which are either clients C

or servers S (cf. Fig. 2). Each server Sp has a generated key pair (skp, pkp)
$←

Genserver(1λ, j) with published pkp. The protocol is executed as follows:

1. The client oracle Ci chooses ri ∈ {0, 1}λ and selects the public key of the
intended partner Sj (which must be a server, otherwise this value is unde-
fined). Then it computes (ki,j

tmp,mi) ← KEclient
init (pk j , ri), and sends mi to Sj .

Additionally, Ci can use ki,j
tmp to encrypt some data Mi.

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 29

Ci Sj

(skj , pkj)
$← Genserver(1λ, j)

ri
$← {0, 1}λ

(ki,j
tmp,mi) ← KEclient

init (pk j , ri)

Di ← Encrypt(ki,j
tmp,Mi)

mi, Di

rj
$← {0, 1}λ

(kj,i
main, k

j,i
tmp,mj) ← KEserver

refresh(sk j , rj ,mi)
Dj ← Encrypt(ki,j

main,Mj)
mj , Dj

ki,j
main ← KEclient

refresh(pk j , ri,mj)

Fig. 2. Execution of a 0-RTT KE Protocol with Server-Only Authentication in Parallel
to Encrypted Application Data. Note that the messages Di and Dj correspond to the
symmetric encryption protocol used to encrypt payload data, and are therefore not
part of the 0-RTT KE protocol, but a separate protocol. These messages are only
displayed here only to illustrate the basic, parallel application message flow to that of
a 0-RTT KE protocol. While it would in principle be possible to define the symmetric
encryption directly as part of the protocol, this would require a significantly more
complex “ACCE-style” [17] security model, which we avoid for sake of simplicity.

2. Upon reception of message mi, Sj initializes a new oracle Sj,t. This oracle
chooses rj ∈ {0, 1}λ and computes (kj,i

main, k
j,i
tmp,mj) ← KEserver

refresh(sk j , rj ,mi).
The server may use the ephemeral key kj,i

tmp to decrypt Di. Then, the server
sends mj and optionally some data Mj encrypted with the key kj,i

main to the
client.

3. Ci computes ki,j
main ← KEclient

refresh(pk j , ri,mj) and can optionally decrypt Dj .
Correctness of the 0-RTT KE scheme guarantees that ki,j

main = kj,i
main.

3.2 Execution Environment

We provide an adversary A against a 0-RTT KE protocol with the following exe-
cution environment. Clients, which are not in possession of a long-term secret are
represented by oracles C1, . . . ,Cd (without any particular “identity”). We con-
sider � servers, each server has a long-term key pair (sk j , pk j)7, j ∈ {1, . . . , �},
and each client has access to all public keys pk1, . . . , pk �. Each server is repre-
sented by a collection of k oracles Sj,1, . . . ,Sj,k, where each oracle represents a
process that executes one single instance of the protocol.

We use the following variables to maintain the internal state of oracles.

Clients. Each client oracle Ci, i ∈ [d], maintains
– two variables ktmp

i and kmain
i to store the temporal and main keys of a

session,

7 We do not distinguish between static (i.e. long-lived) and semi-static (i.e. medium
lived) key pairs. Thus the long-lived keys in this model correspond to the server
configuration file keys of QUIC and TLS 1.3.

30 B. Hale et al.

– a variable Partneri, which contains the identity of the intended communi-
cation partner, and

– variables Min
i and Mout

i containing messages sent and received by the
oracle.

The internal state of a client oracle is initialized to (ktmp
i , kmain

i ,Partneri,
Min

i ,Mout
i) := (∅, ∅, ∅, ∅, ∅).

Servers. Each server oracle Sj,t, (j, t) ∈ [�] × [k], maintains:
– two variables ktmp

i and kmain
i to store the temporal and main keys of a

session, and
– variables Min

j,t and Mout
j,t containing messages sent and received by the

server.
The internal state of a server oracle is initialized to (ktmp

j,t , kmain
j,t ,Min

j,t,

Mout
j,t) := (∅, ∅, ∅, ∅).

We say that an oracle has accepted the temporal key if ktmp �= ∅, and accepted
the main key if kmain �= ∅.

In the security experiment, the adversary is able to interact with the oracles
by issuing the following queries.

Send(Ci/Sj,t,m). The adversary sends a message m to the requested oracle.
The oracle processes m according to the protocol specification. Any response
generated by the oracle according to the protocol specification is returned to
the adversary.
If a client oracle Ci receives m as the first message, then the oracle checks if
m consists of a special initialization message (m = (init, j)). If true, then
the oracle responds with the first protocol message generated for intended
partner Sj,, else it outputs ⊥.

Reveal(Ci/Sj,t, tmp/main). This query returns the key of the given stage if it
already has been computed, or ⊥ otherwise.

Corrupt(j). On input of a server identity j, this query returns the long-term
private key of the server. If Corrupt(j) is the τ -th query issued by A, we say
a party is τ -corrupted. For parties that are not corrupted we define τ := ∞.

Test(Ci/Sj,t, tmp/main). This query is used to test a key and is only asked once.
It is answered as follows: If the variable of the requested key is not empty, a
random b

$← {0, 1} is selected, and
– if b = 0 then the requested key is returned, else
– if b = 1 then a random key, according to the probability distribution of

keys generated by the protocol, is returned.
Otherwise ⊥ is returned.

Security Model Security Game G0RT T −sa
A . After receiving a security para-

meter λ the challenger C simulates the protocol and keeps track of all variables
of the execution environment: he generates the long-lived key pairs of all server
parties and answers faithfully to all queries by the adversary.

The adversary receives all public keys pk1, . . . , pk � and can interact with the
challenger by issuing any combination of the queries Send(), Corrupt(), and

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 31

Reveal(). At some point the adversary queries Test() to an oracle and receives
a key, which is either the requested key or a random value. The adversary may
continue asking Send(), Corrupt(), and Reveal()-queries after receiving the key
and finally outputs some bit b′.

Definition 5 (0-RTT KE-Security with Server-Only Authentication).
Let an adversary A interact with the challenger in game G0RT T −sa

A as it is
described above. We say the challenger outputs 1, denoted by G0RT T −sa

A (λ) = 1,
if b = b′ and the following conditions hold:

– if A issues Test(Ci, tmp) all of the following hold:
• Reveal(Ci, tmp) was never queried by A
• Reveal(Sj,t, tmp) was never queried by A for any oracle Sj,t such that

Partneri = j and Min
j,t = Mout

i

• the communication partner Partneri = j, if it exists, is not τ -corrupted
with τ < ∞

– if A issues Test(Ci, main) all of the following hold:
• Reveal(Ci, main) was never queried by A
• Reveal(Sj,t, main) was never queried by A, where Partneri = j, Min

j,t =
Mout

i , and Min
i = Mout

j,t

• the communication Partneri = j is not τ -corrupted with τ < τ0, where
Test(Ci, main) is the τ0-th query issued by A

– if A issues Test(Sj,t, tmp) all of the following hold:
• Reveal(Sj,t, tmp) was never queried by A
• there exists an oracle Ci with Mout

i = Min
j,t

• Reveal(Ci, tmp) was never queried by A to any oracle Ci with Mout
i =

Min
j,t

• Reveal(Sj,t′ , tmp) was never queried by A for any oracle Sj,t′ with Min
j,t =

Min
j,t′

• j is not τ -corrupted with τ < ∞
– if A issues Test(Sj,t, main) all of the following hold:

• Reveal(Sj,t, main) was never queried by A
• there exists an oracle Ci with Mout

i = Min
j,t

• Reveal(Ci, main) was never queried by A, if Min
i = Mout

j,t

else the game outputs a random bit. We define the advantage of A in the game
G0RT T −sa

A (λ) by

Adv0RT T −sa
A (λ) :=

∣∣2 · Pr[G0RT T −sa
A (λ) = 1] − 1

∣∣ .

Definition 6. We say that a 0-RTT key exchange protocol is test-secure, if
there exists a negligible function negl(λ) such that for all PPT adversaries A
interacting according to the security game G0RT T −sa

A (λ) it holds that

Adv0RT T −sa
A (λ) ≤ negl(λ).

32 B. Hale et al.

Remark 2. Our security model captures forward secrecy for the main-key,
because key indistinguishability is required to hold even if the adversary is able
to corrupt the communication partner of the test-oracle (but only after the
test-oracle has accepted, of course, in order to avoid trivial attacks).

Moreover, strong key independence is modeled by the fact that an adver-
sary which attempts to distinguish a tmp-key from random (i.e., an adversary
which asks Test(X, tmp) for X ∈ {Ci,Sj,t for some i, j, t}) is allowed to learn
the main-key of X. Similarly, an adversary which tries to distinguish a main-key
from random by asking Test(X, main) is allowed to learn the tmp-key of X as
well. Security in this sense guarantees that the tmp-key and the main-key look
independent to a computationally-bounded adversary.

Remark 3. Note that the requirements of Mout
i = Min

j,t etc. in the above secu-
rity model essentially adopt the notion of matching conversations, defined by
Bellare and Rogaway [2] for general, multi-message key exchange protocols, to
the special case of 0-RTT KE.

3.3 Composing a 0-RTT KE Protocol with Symmetric Encryption

The security model described above considers only the 0-RTT KE protocol,
without symmetric encryption of payload data (that is, without the messages Di

and Dj displayed in Fig. 2). A protocol secure in this sense guarantees the indis-
tinguishability of keys in a hypothetical setting, where the key is not used for
symmetric encryption of payload messages potentially known to the adversary.
One may think that this is not sufficient for 0-RTT KE, because the key will
be used to encrypt payload data, and this will enable an adversary to trivially
distinguish a “real” key from a “random” key (this holds for both the “tempo-
ral” key ki,j

tmp and the actual “main” session key ki,j
main). Note that this argument

applies not only to the above 0-RTT KE security model, but actually to any
security model for (authenticated) key exchange which is based on the indis-
tinguishability of keys, such as the classical model of Bellare and Rogaway and
many similar models [2,5,7,10,20,27]. In practice, this key will usually be used in
a cryptographic protocol, e.g. to encrypt messages, and therefore trivially allow
for distinguishing “real” from “random” keys. The security of the composition of
a protocol secure in the sense of [2,5,7,10,20,27] with a symmetric encryption
protocol follows from a standard two-step hybrid argument, which essentially
proceeds as follows:

1. In the original security experiment, the adversary interacts with a composed
protocol, where the KE protocol is first used to derive a key k, which is then
used to encrypt payload data with the symmetric encryption protocol.

2. In the next hybrid experiment, the adversary interacts with a composed pro-
tocol, where the symmetric encryption does not use the key k computed by
the KE protocol, but an independent random key. Note that an adversary
that distinguishes this hybrid from the original game can be used to distin-
guish a “real” key of the KE protocol from a “random” one.

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 33

Now the adversary interacts with an encryption protocol that uses a key
which is independent of the KE protocol. This allows for a reduction of the
security of the composed protocol to the security of the symmetric protocol.

A similarly straightforward hybrid argument applies to the composition of
0-RTT KE with symmetric encryption, which works as follows:

1. In the original security experiment, the adversary interacts with a composed
protocol, where the 0-RTT KE protocol is first used to derive a key ki,j

tmp, which
is then used to encrypt the payload data sent along with the first protocol
message. Then the 0-RTT KE protocol is used to derive the main key ki,j

main,
which in turn is used to encrypt all further payload data.

2. In the first hybrid experiment, the adversary interacts with a composed pro-
tocol, where only ki,j

tmp is replaced with an independent random value. An
adversary that distinguishes this hybrid from the original game can be used
to distinguish a “real” ki,j

tmp from a “random” one.
Now the adversary interacts with an encryption protocol that encrypts the
first payload message with a key which is independent of the 0-RTT KE pro-
tocol. This allows for a reduction of the security of the first payload message
to the security of the symmetric protocol.

3. In the second hybrid experiment, the adversary interacts with a composed
protocol, where ki,j

main is now also replaced with an independent random value.
An adversary that distinguishes this hybrid from the previous one can be used
to distinguish a “real” ki,j

main from a “random” one. This allows for a reduction
of the security of all further payload messages to the security of the symmetric
protocol.

Following the long tradition of previous works on indistinguishability-
based key exchange security models [2,5,7,10,20,27], we can thus consider an
indistinguishability-based security model for 0-RTT KE even though in prac-
tice key exchange messages will be interleaved with messages of the symmetric
encryption protocol. This allows for simple security models, and enables a mod-
ular analysis of the building blocks of a composed protocol.

4 Generic Construction of 0-RTT KE from NIKE

Now we are ready to describe our generic NIKE-based 0-RTT KE protocol and
its security analysis.

4.1 Generic Construction

Let NIKE = (NIKE.Gen,NIKE.Key) be a NIKE scheme according to Definition 2
and let SIG = (SIG.Gen,SIG.Sign,SIG.Vfy) be a signature scheme. Then we con-
struct a 0-RTT KE scheme 0-RTT = (Genserver,KEclient

init ,KEclient
refresh,KE

server
refresh), per

Definition 4, in the following way (cf. Fig. 3).

34 B. Hale et al.

Fig. 3. 0-RTT KE from NIKE. Again, it is possible to include the parallel execution
of a symmetric encryption protocol which would behave as in Fig. 2 for encrypted
application data. As such a protocol is not part of the 0-RTT KE protocol, we omit it
here for simplicity.

– Genserver(1λ, r) computes key pairs using the NIKE key generation algorithm
(pknike−static, sknike−static) $← NIKE.Gen(1λ) and signature keys using the SIG

algorithm (pk sg, sk sg) $← SIG.Gen, and outputs

(pk , sk) := ((pknike−static, pk sg), (sknike−static, sk sg)).

– KEclient
init (pk j , ri) samples ri

$← {0, 1}λ, parses pk j = (pknike−static
j , pk sg

j), runs
(pknike

i , sknike
i) ← NIKE.Gen(1λ, ri) and knike

i,j ← NIKE.Key(sknike
i , pknike−static

j),
and outputs

(ki,j
tmp,mi) := (knike

i,j , pknike
i).

– KEserver
refresh(sk j , rj ,mi) takes in mi = pknike

i , parses sk j = (sknike−static
j , sk sg

j), and

samples rj
$← {0, 1}λ. It then computes knike

i,j ← NIKE.Key(sknike−static
j , pknike

i),
(pknike

j , sknike
j) ← NIKE.Gen(1λ, rj), and σj ← SIG.Sign(sk sg

j , pknike
j). If mi =

pknike−static
j then it samples knike

main uniformly random, else it computes knike
main ←

NIKE.Key(sknike
j , pknike

i), outputting

(kj,i
main, k

j,i
tmp,mj) := (knike

main, k
nike
i,j , (pknike

j , σj)).

– KEclient
refresh(pk j , ri,mj) parses pk j = (pknike−static

j , pk sg
j) and mj = (pknike

j , σj).
It then checks true ← SIG.Vfy(pk sg

j , σj , pknike
j) and computes

knike
main ← NIKE.Key(sknike

i , pknike
j), outputting ki,j

main := knike
main.

Ultimately, the construction follows by applying the NIKE NIKE.Gen algo-
rithm and the signature SIG.Gen algorithm to generate a server configuration

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 35

file which is comprised of the server public key and a server public signature key
which a client can then employ for generating the first protocol flow. In order
for the 0-RTT KE construction to abstract the security guarantees of the under-
lying NIKE, the appropriate client (pknike

i , sknike
i) must be available for use in

the NIKE.Key algorithm. Consequently, the (pknike
i , sknike

i) values are generated
locally by the client, with pknike

i passed to the server as a message. Note that this
construction naturally forgoes client-side authentication. Figure 3 demonstrates
the construction.

Remark 4. One may wonder why we define KEserver
refresh(sk j , rj ,mi) such that it

samples a random key when it takes as input a client message mi which is equal
to its own static NIKE key, that is, if mi = pknike−static

j . We note that this is
necessary for the security the constructed 0-RTT KE scheme to be reducible to
that of the NIKE scheme, because in some cases we will not be able to simulate
the key computed by a server oracle that receives as input a message which is
equal to the “static” NIKE public key contained in its 0-RTT KE public key.
Note that this incurs a negligible correctness error. However, it is straightforward
to verify the correctness of the protocol according to Definition 4.

Theorem 1. Let 0-RTT be executed with d clients, � servers with long-term
keys, and k server oracles modeling each server. From each attacker A, we
can construct attackers Bsig, according to Definition 1, and Bnike, according to
Definition 3, such that

Adv0RT T −sa
A (λ) ≤ 2kd� ·

(
AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)

)

+ d� ·
(
k · AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)

)

+ d� ·
(
AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)

)
+4 · AdvCKS-light

NIKE,Bnike
(λ) .

The running time of Bsig and Bnike is approximately equal to the time required
to execute the security experiment with A once.

Intuition for the Proof of Theorem 1. In order to prove Theorem1, we
distinguish between four types of attackers:

– adversary A1 asks Test() to a client oracle and the temporary key (CT-
attacker)

– adversary A2 asks Test() to a client oracle and the main key (CM-attacker)
– adversary A3 asks Test() to a server oracle and the temporary key (ST-

attacker)
– adversary A4 asks Test() to a server oracle and the main key (SM-attacker).

Let us give some intuition why this classification of attackers will be useful
for the security proof. In the 0-RTT KE scheme 0-RTT each party computes 2
different keys k,

tmp and k,
main, where k,

tmp depends on the ephemeral keys of the

36 B. Hale et al.

client and the static keys of the server, and k,
main depends on the ephemeral keys

of both parties. In our proof we want to be able to reduce the indistinguishability
of the 0-RTT-key to the indistinguishability of the NIKE-key.

In the NIKE security experiment the attacker receives two challenge public
keys {pknike

i , pknike
j }. In the reduction, we want to embed these keys in the 0-

RTT security experiment, according to Sect. 3.2, and still be able to answer all
Reveal()- and Corrupt()-queries correctly. In the case of adversaries that test
the temporary key of the client or the server we can embed the NIKE-keys as
pknike−static

j = pknike
j and mi = pknike

i . However, this does not work for adversaries
against the main key, because k,

main depends on the ephemeral keys of the parties.
In this case we have to embed the keys as mi = pknike

i and mj = pknike
j . The

Test()-query of the attacker in the 0-RTT experiment can then be answered
with the challenge the attacker in the NIKE experiment receives.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, 3–5 November 1993, Fairfax,
Virginia, USA, pp. 62–73. ACM Press (1993)

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21

3. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 21

4. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 14

5. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). doi:10.1007/BFb0024447

6. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on compu-
tational Diffie-Hellman. In: Yung et al. [30], pp. 229–240

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 28

8. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 8

9. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: Cheung, B.S.N.,
Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 2011, 22–24 March 2011,
Hong Kong, China, pp. 80–91. ACM Press (2011)

10. Cremers, C.J.F.: Session-state reveal is stronger than ephemeral key reveal: attacking
the NAXOS authenticated key exchange protocol. In: Abdalla, M., Pointcheval,
D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9 2

http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/978-3-662-46447-2_21
http://dx.doi.org/10.1007/978-3-662-46447-2_21
http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/978-3-540-78967-3_8
http://dx.doi.org/10.1007/978-3-642-01957-9_2

Simple Security Definitions for and Constructions of 0-RTT Key Exchange 37

11. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, 3–7 November
2014, Scottsdale, AZ, USA, pp. 1193–1204. ACM Press (2014)

12. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 17

13. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: IEEE S&P 2015 [16], pp. 305–320

14. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 519–548. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 18

15. Hale, B., Jager, T., Lauer, S., Schwenk, J.: Simple security definitions for and con-
structions of 0-RTT key exchange. Cryptology ePrint Archive, Report 2015/1214
(2015). http://eprint.iacr.org/2015/1214

16. IEEE Symposium on Security and Privacy, 17–21 May 2015, San Jose, CA, USA.
IEEE Computer Society Press (2015)

17. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 273–293. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 17

18. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). doi:10.1007/11535218 33

19. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 429–448. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 24

20. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75670-5 1

21. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung et al. [30], pp. 378–394

22. Law, L., Menezes, A., Minghua, Q., Solinas, J., Vanstone, S.: An efficient protocol
for authenticated key agreement. Des. Codes Crypt. 28(2), 119–134 (2003)

23. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is
QUIC? Provable security and performance analyses. In: IEEE S&P 2015 [16], pp.
214–231

24. NIST: SKIPJACK and KEA algorithm specifications (1998). http://csrc.nist.gov/
groups/STM/cavp/documents/skipjack/skipjack.pdf

25. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3: draft-ietf-
tls-tls13-08. Technical report, August 2015. Expires 29 Feb 2016

26. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3: draft-ietf-
tls-tls13-18. Technical report, October 2016. Expires 29 April 2017

27. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenti-
cated key agreement. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 219–234. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4 15

28. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforge-
able signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA
2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006). doi:10.1007/
11967668 23

http://dx.doi.org/10.1007/978-3-642-36362-7_17
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://eprint.iacr.org/2015/1214
http://dx.doi.org/10.1007/978-3-642-32009-5_17
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/978-3-642-40041-4_24
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf
http://dx.doi.org/10.1007/978-3-642-15317-4_15
http://dx.doi.org/10.1007/11967668_23
http://dx.doi.org/10.1007/11967668_23

38 B. Hale et al.

29. Yoneyama, K., Zhao, Y.: Taxonomical security consideration of authenticated key
exchange resilient to intermediate computation leakage. In: Boyen, X., Chen, X.
(eds.) ProvSec 2011. LNCS, vol. 6980, pp. 348–365. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24316-5 25

30. Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.): PKC 2006. LNCS, vol. 3958.
Springer, Heidelberg (2006)

31. Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, 24–28 October 2016, Vienna, Austria, pp. 1464–1479. ACM Press (2016)

http://dx.doi.org/10.1007/978-3-642-24316-5_25

TOPPSS: Cost-Minimal Password-Protected
Secret Sharing Based on Threshold OPRF

Stanis�law Jarecki1(B), Aggelos Kiayias2, Hugo Krawczyk3, and Jiayu Xu1

1 University of California, Irvine, USA
stasio@ics.uci.edu, jiayux@uci.edu

2 University of Edinburgh, Edinburgh, UK
aggelos@kiayias.com

3 IBM Research, New York City, USA
hugo@ee.technion.ac.il

Abstract. We present TOPPSS, the most efficient Password-Protected
Secret Sharing (PPSS) scheme to date. A (t, n)-threshold PPSS, intro-
duced by Bagherzandi et al. [4], allows a user to share a secret among n
servers so that the secret can later be reconstructed by the user from any
subset of t+ 1 servers with the sole knowledge of a password. It is guar-
anteed that any coalition of up to t corrupt servers learns nothing about
the secret (or the password). In addition to providing strong protection
to secrets stored online, PPSS schemes give rise to efficient Threshold
PAKE (T-PAKE) protocols that armor single-server password authenti-
cation against the inherent vulnerability to offline dictionary attacks in
case of server compromise.

TOPPSS is password-only, i.e. it does not rely on public keys in
reconstruction, and enjoys remarkable efficiency: A single communication
round, a single exponentiation per server and just two exponentiations per
client regardless of the number of servers. TOPPSS satisfies threshold secu-
rity under the (Gap)One-More Diffie-Hellman (OMDH) assumption in the
random-oracle model as in prior efficient realizations of PPSS/T-PAKE
[18,19].Moreover, we show thatTOPPSS realizes theUniversallyCompos-
able PPSS notion of [19] under a generalization of OMDH, the Threshold
One-More Diffie-Hellman (T-OMDH) assumption. We show that the T-
OMDH and OMDH assumptions are both hard in the generic group model.

The key technical tool we introduce is a universally compos-
able Threshold Oblivious PRF which is of independent interest and
applicability.

1 Introduction

Passwords have well-known weaknesses as authentication tokens, foremost
because of their vulnerability to offline dictionary attacks in case of the

S. Jarecki—Supported by NSF grant CNS-1547435.
A. Kiayias—Supported by ERC project CODAMODA and H2020 Project Panoramix,
#653497.
H. Krawczyk—Supported by ONR Contract N00014-14-C-0113.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 39–58, 2017.
DOI: 10.1007/978-3-319-61204-1 3

40 S. Jarecki et al.

all-too-common leakage of the database of password hashes stored by the authen-
tication server (see e.g., [1]). Worse still, most people re-use their passwords
across multiple services, hence a break-in into one service effectively breaks the
security of others. Yet, because of their convenience, passwords are a dominant
form of authentication, and the amount and value of information protected using
passwords keeps growing. Defenses such as the use of secondary authentication
factors (e.g., a PIN generated by a personal device or a USB dongle) increase pro-
tection against on-line attacks but not against offline attacks upon server com-
promise. Techniques such as Password Authenticated Key Exchange (PAKE)
[6,8] improve on today’s de-facto standard of “password over TLS” authentica-
tion by eliminating the reliance on a Public Key Infrastructure (PKI), but they
do not help against offline attacks after server compromise.

T-PAKE and PPSS. To address the threat of offline dictionary attacks on
the server, Mackenzie et al. [26] introduced (t, n)-Threshold PAKE (T-PAKE),
which replaces a single authentication server with a group of n servers and leaks
no information on passwords even if up to t servers are corrupted. Bagherzandi et
al. [4] proposed a related notion of Password-Protected Secret Sharing (PPSS)
which simplifies the notion of T-PAKE by reducing the goal of key exchange
between user and servers to that of the user retrieving a single secret previ-
ously shared with the servers. Specifically, a (t, n)-PPSS scheme, as formulated
in the PKI-free setting by [18], allows a user to share a random secret s among n
servers under the protection of her password pw s.t. (1) a reconstruction protocol
involving at least t + 1 honest servers recovers s if the user inputs the (correct)
password pw; (2) the compromise of up to t servers leaks no information about
either s or pw; (3) an adversary who corrupts t′ ≤ t servers and has qU interac-
tions with the user and qS interactions with the uncorrupted servers can test at
most qS

t−t′+1 + qU passwords. (In the PKI setting one can set qU = 0.)
The PPSS notion is useful in the design of efficient T-PAKE’s because of the

low-overhead generic PPSS-to-TPAKE compiler [4,18]. It is also an important
primitive in its own right, allowing for online storage of sensitive information like
keys, credentials, or personal records, with availability and privacy protection.
The only token needed for retrieving stored information is a single password,
and both information and password remain private if no more than t servers are
compromised (and if the adversary does not guess or learn the password).

In this paper we present TOPPSS, the most efficient PPSS scheme to date –
and using the PPSS-to-TPAKE compiler of [18] also the most efficient T-PAKE
– with a hard-to-beat complexity as detailed below. Our work builds on the
works of Jarecki et al. [18,19] who constructed PPSS protocols based on Oblivi-
ous Pseudorandom Functions (OPRF), formulated as a universally composable
(UC) functionality. The works of [18,19] define UC OPRF differently, but each
instantiates its OPRF notion using the blinded Diffie-Hellman technique, follow-
ing Ford and Kaliski [15], under the so-called (Gap) One-More Diffie-Hellman
(OMDH) assumption [5,22] in the Random Oracle Model (ROM). Using one
OPRF construction, [18] showed a PPSS whose reconstruction phase takes a
single round between a user and t+1 servers, with 2 (multi)exponentiations per

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 41

server and 2t + 3 for the user. The PPSS of [19] uses a simplified OPRF scheme
secure under the same assumptions, with 1 exponentiation per server and t + 2
for the user. In addition to improving on [18] in efficiency, the latter scheme sat-
isfies a stronger PPSS notion formulated as a UC functionality, which we adopt
here.

Our Contributions. We present TOPPSS, a simple PPSS protocol with
remarkable and hard to beat performance. The reconstruction procedure requires
just one exponentiation per server and a total of two exponentiations for the user
(independent of the number of servers), plus O(t) modular multiplications by
each party. Communication is also optimal: The user sends a single group ele-
ment to a subset of t + 1 servers and gets one group element from each server.
Furthermore, we show that this “minimal cost” (and PKI-free) PPSS satisfies
the strong UC notion of PPSS from [19]. This contribution is based on the obser-
vation that a more efficient PPSS can result from replacing the OPRF used in
the protocols of [18,19] with its threshold (or multi-party) counterpart which
we define as Threshold OPRF (T-OPRF). We provide a UC definition of T-
OPRF as a functionality that allows a group of servers to secret-share a key k
for PRF f with a shared PRF evaluation protocol which lets the user compute
fk(x) on her input x, s.t. both x and k are secret if no more than t of n servers
are corrupted. T-OPRF is an input-oblivious strengthening of Distributed PRF
(DPRF) of Naor et al. [27], hence in particular T-OPRF can replace DPRF
in all its applications, e.g. for corruption-resilient Key Distribution Center, and
long-term information protection (see [27]).

Using this strong notion of T-OPRF security we show a compiler which
transforms UC T-OPRF into UC PPSS at negligible additional cost (in ROM).
In particular, TOPPSS is obtained by designing a T-OPRF protocol, denoted
2HashTDH, with the efficiency parameters stated above. This T-OPRF protocol
is essentially a “threshold exponentiation” protocol, where each server computes
mki on input m where ki is the server’s secret-share of the PRF key k. We prove
that TOPPSS realizes UC T-OPRF under the following assumptions in ROM.
Let t′ ≤ t denote the number of parties actually controlled by an attacker. First,
our results imply that in the so-called full corruption case, i.e. if t′ = t, the same
(Gap) OMDH assumption used in [18,19] implies that the attacker must query
one uncorrupted party per each input on which the attacker wants to obtain
the function value. Since this is the case when the attacker controls the full
threshold t of servers it is also the case for any t′ < t. In the application to PPSS
this means that the attacker can test up to qS + qU passwords, which matches
the qS

t−t′+1 + qU bound for t′ = t. Since many existing works on T-PAKE, e.g.
[2,9,14,23,26,31], implicitly assume the t′ = t case by defining security using
the simplified qS +qU bound on the number of passwords the adversary can test,
we call this level of security a standard threshold security for T-PAKE/PPSS.

Secondly, for the general case of t′ ≤ t, we show that TOPPSS achieves the
stronger qS

t−t′+1 +qU bound assuming a generalization of the OMDH assumption
which we call (Gap) Threshold One-More Diffie-Hellman (T-OMDH). As a san-
ity check for the T-OMDH assumption we show that the T-OMDH problem is

42 S. Jarecki et al.

hard in the generic group model. Since OMDH is a special case of T-OMDH, to
the best of our knowledge this is also the first generic group analysis of OMDH.
The stricter bound implies that an adversary controlling t′ ≤ t servers must con-
tact t − t′ + 1 uncorrupted servers for each input on which it wants to compute
the function, which coincides with the standard threshold security notion when
t′ = t, but it is stronger for t′ < t. For example, it means that the default network
adversary who does corrupt any party but runs q sessions with each server, can
test up to qn/(t + 1) passwords, whereas the standard threshold security would
in this case upper-bound the number of tested passwords only by qn.

As a point of comparison in the full version of this paper [20] we consider
a generic compiler from any OPRF to T-OPRF. This compiler performs multi-
party computation of the server code in the underlying OPRF protocol, but in
the case of the OPRF of [19] such MPC protocol has the same low computational
cost as the customized T-OPRF protocol 2HashTDH discussed above, i.e. 1
exponentiation per server and 2 for the user, with the only drawback of adding
an additional communication round to enforce an agreement between the servers
on the client’s input to the MPC protocol. On the other hand, since the security
depends only on the base OPRF, the resultant two-round T-OPRF protocol
achieves the qS

t−t′+1 + qU bound based solely on OMDH for all t′ ≤ t.

Other Applications. Oblivious PRFs have found multiple applications which
can also enjoy the benefits of a threshold version, particularly given the remark-
able efficiency of our schemes. Examples of such applications include search
on encrypted data [13,17], set intersection [22], and multiple-server DE-PAKE
(device enhanced PAKE) [21].

Related Work. The first (t, n)-Threshold PAKE (T-PAKE) by Mackenzie et
al. [26] required ROM in the security analysis and relied on PKI, namely, it
assumed that the client can validate the public keys of the servers during the
reconstruction phase.1 Gennaro and Raimondo [14] dispensed with ROM and
PKI (in authentication) but increased protocol costs. Abdalla et al. [2] showed
a PKI-free T-PAKE in ROM with fewer communication rounds than T-PAKE
of [26] but the client establishes a key with only one designated gateway server.
Yi et al. [31] showed a similar round-reduction without ROM. The case of n= 2
servers, known as 2-PAKE, received special attention starting with Brainard et
al. [9,29] on 2-PAKE in ROM and PKI, and several works [7,23–25] addressed
the non-PKI and no-ROM case. Still, each of these T-PAKE schemes requires
server-to-server communication. If communication is mediated by the client then
the lowest round complexity is 3 for n > 2 [2] and 2 for n = 2 [7,25].

Bagherzandi et al. [4] introduced the notion of Password-Protected Secret
Sharing (PPSS) with the goal of simplifying T-PAKE protocols. Specifically,

1 When we say that PPSS/T-PAKE assumes PKI we mean that it relies on it for the
security of the reconstruction/authentication phase. By contrast, the initialization
phase of any PPSS/T-PAKE solution must assume some trust infrastructure, e.g.
PKI, or otherwise each party could be initializing the scheme with an impostor.

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 43

they showed a PPSS protocol in ROM assuming PKI, with 2 rounds, constant-
sized messages, and 8(t + 1) (multi) exponentiations per client, and a low-cost
PKI-model compiler from PPSS to T-PAKE. Camenisch et al. [10] constructed
another PPSS scheme, called T-PASS, for Threshold Password-Authenticated
Secret Sharing, without assuming PKI but with 14n exponentiations for the
client, 7 exponentiations per server, and 5 rounds of communication.

Jarecki et al. [18,19] showed significantly faster PPSS protocols, also without
assuming PKI (in reconstruction): The PPSS of [18] takes a single round (two
messages) between a user and each server, and uses 2 (multi) exponentiations
per server and 2t + 3 (multi) exponentiations for the client, secure under (Gap)
OMDH in ROM. (They also show a 4-message non-ROM PPSS with O(n · |pw|)
exponentiations using Paillier encryption.) The PPSS of [19] improves upon this
with a single-round PPSS with 1 exponentiation per server and t + 2 exponenti-
ations for the client, also under OMDH in ROM. In related works, [11] showed
a single-round proactive PPSS in the PKI setting for the case of t = n, and [3]
showed general methods for ensuring robustness in PPSS reconstruction, and a
non-ROM PPSS using O(|pw|) exponentiations in a prime-order group.

Another important aspect of these PPSS solutions is the type of security
notion they achieve. Both the PKI-model PPSS notion of [4] and the PKI-free
PPSS notion of [18] were indistinguishability-based, while [10,19] provided Uni-
versally Composable (UC) definitions of the PPSS functionality. The essence of
the UC PPSS definition of [19], which we adopt here, is that the only attack
the adversary can stage is the inevitable one, namely, an online dictionary
attack where validating a single password guess requires interaction with either
t + 1 instances of the servers or with the user. The UC definitions have further
advantages for a password-based notion like PPSS, e.g. they imply security in
the presence of non-uniformly distributed passwords, correlated passwords used
for different services, and password mistyping.

Organization. In Sect. 2 we define the fundamental tool TOPPSS relies on,
namely T-OPRF, as a UC functionality. In Sect. 3 we show a single-round,
1exp/server + 2exp/client realization of T-OPRF, protocol 2HashTDH, secure
in ROM under the Threshold OMDH assumption we introduce in that section. In
Sect. 4 we show a low-cost compiler from T-OPRF to PPSS, which we exemplify
in Sect. 5 with a concrete instantiation using 2HashTDH.

2 Universally Composable Threshold OPRF

Notation. We use “:=” for deterministic assignment, “←” for randomized
assignment, and “←R” for uniform sampling from some set.

The T-OPRF Functionality. In the introduction we gave an informal
overview of the notion of Threshold Oblivious PRF (T-OPRF) and its applica-
bility, e.g. to PPSS schemes. Here we provide a formal definition of this notion
as a secure realization of the UC functionality FTOPRF shown in Fig. 1 which

44 S. Jarecki et al.

generalizes the single-server (non-verifiable) OPRF functionality of [19] to the
multi-party setting. In the FTOPRF setting, the PRF key is effectively controlled
by a collection of n servers and it remains secret as long as no more than a
threshold t of these servers are corrupted. Such (t, n)-threshold “collective con-
trol” over a functionality can be realized as we show in our 2HashTDH real-
ization in Sect. 3. We chose to base the T-OPRF notion on the non-verifiable
OPRF notion of [19] rather than the verifiable OPRF notion of [18] because the
former was shown to have a more efficient realization under the same assump-
tions, and because this form of OPRF suffices in the key application of interest
to us, namely, Password-Protected Secret-Sharing.

Fig. 1. Functionality FTOPRF with parameters t, n.

The T-OPRF functionality of Fig. 1 has two stages, Initialization and Eval-
uation. The functionality enforces that the outputs of any such function are
uniformly disributed, similarly to the single-server OPRF notion of [19], even in
the case that the adversary controls the private key and/or its sharing among the

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 45

n servers. In more detail, in the initialization stage, a set of n servers, denoted
SI, are activated at the discretion of the adversary. The stage is complete when
all servers become active. Note that the set may include adversarial servers, yet
the functionality guarantees that all servers identified in SI become active by
the end of the initialization stage. The initialization also specifies a parameter
p used to identify a table T (p, ·) of random values that defines the proper PRF
values computed by the user when interacting with any subset of t + 1 honest
servers from the set SI. Additional parameters p∗, and corresponding tables
T (p∗, ·), can be specified by the adversary to represent rogue tables with val-
ues computed by the user in interaction with corrupted servers (see more on
this below). The parameter p is also used to identify a counter tx(p, S) for each
S ∈ SI as specified below.

In the evaluation stage, users connect to an arbitrary set of servers SE chosen
by the adversary and which may arbitrarily overlap with SI (representing the
fact that the user has no memory of who the servers in SI are). When, at
the discretion of the adversary, a server S ∈ SI completes its interaction, the
functionality increases the counter tx(p, S). Eventually, the adversary can trigger
a response to the user which will be drawn from one of the tables maintained by
the functionality. Recall that in addition to the proper table T (p, ·) the adversary
can register additional function tables T (p∗, ·) and may connect an evaluation
request from a user to any such table of its choice.

The security guarantees provided by the T-OPRF functionality are the fol-
lowing: (1) it enforces the use of the proper function table p whenever the set of
servers SE selected for an evaluation are all honest; (2) it “charges” t + 1 server
tickets for accessing the proper table p by decrementing (non-zero) ticket coun-
ters tx(p, S) for an arbitrary set of t + 1 servers in SI; and (3) all tables T (the
proper table p as well as any additional ones set by the adversary with p∗ �= p)
are filled with random entries that are chosen on demand as the functionality
responds back to the user. These guarantees ensure that at least t+1− t′ honest
servers from SI need to be contacted for the proper function to be evaluated
once. To see why this is the case observe that t + 1 tickets are “spent” (decre-
mented) during evaluation which correspond to at least t + 1 − t′ tickets from
honest ticketing counters. This implies that t+1 servers from SI have registered
a SndrComplete message as this is the only event that triggers a counter incre-
ment. In the real world this corresponds to the event that a server has completed
its interaction with a user that attempts to perform an evaluation.

It is important to highlight that the functionality does not necessarily decre-
ment the ticketing counters of the servers identified in the chosen evaluation set
SE ; rather, it decrements an arbitrary set of t+1 non-zero counters for servers in
SI. This reflects the fact that the functionality does not provide any guarantee
about the identities of the responding servers. For instance, this means that we
allow for an implementation of T-OPRF where an honest user U attempts to
connect to a set of servers SE1 that are corrupted and its message is rerouted by
the adversary so that, unbeknownst to U , an honest set of servers servers SE2

becomes the responder set.

46 S. Jarecki et al.

Another important point regarding the T-OPRF functionality is that while it
guarantees correct OPRF evaluation in case the user completes an undisturbed
interaction with t + 1 honest servers in SI, the ideal world adversary may also
maintain an arbitrary collection of random tables and connect a user to them, if
desired, as long as the responder set is not composed of honest servers only. For
instance, the adversary can assign to a subset of corrupted servers SE1 a certain
function table, while it can assign a different function table to a different subset
of corrupted servers SE2. While the two function tables will be independent, they
are not under the control of the ideal world adversary completely: their contents
will be populated by the ideal functionality with random values independently
of each other. In practice this means that we allow for an implementation where
two successive evaluation requests for the same x value result in a different
(but still random) value to be produced, depending on which set of servers the
user connects to. We stress that the secrecy of the input x is always preserved
irrespectively of the subset of servers the user communicates with. At the same
time, observe that the randomness requirement imposed for adversarial tables
restricts our ability to implement the functionality to the random oracle setting.

3 Threshold OPRF Protocol from OMDH and T-OMDH

Here we present our Threshold Oblivious PRF protocol, called 2HashTDH, that
instantiates the FTOPRF functionality defined in Sect. 2. Thus, 2HashTDH pro-
vides a secure T-OPRF for use in general applications and, in particular, as
the basis for our PPSS scheme, TOPPSS, presented in Sect. 4. The 2HashTDH
scheme is formally defined as a realization of FTOPRF in Fig. 3. In a nutshell, it
is a threshold version of the 2HashDH OPRF from [19], recalled in Fig. 2. The
underlying PRF, fk(x) = H2(x, (H1(x))k), remains unchanged, but the key k is
shared using Shamir secret-sharing across n servers, where server Si stores the
key share ki. The initialization of such secret-sharing can be done via a Dis-
tributed Key Generation (DKG) for discrete-log-based systems, e.g. [16], and
in Fig. 2 we assume it is done with a UC functionality FDKG which we discuss
further below. For evaluation, given any subset SE of t + 1 servers, the user U
sends to each of them the same message a = (H ′(x))r for random r, exactly as

Fig. 2. The 2HashDH OPRF [19]

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 47

in the single-server OPRF protocol 2HashDH. If each server Si in SE returned
bi = aki then U could reconstruct the value ak using standard Lagrange inter-
polation in the exponent, i.e. ak =

∏
i∈SE bλi

i with the Lagrange coefficients λi

computed using the indexes of servers in SE . After computing ak, the value
of fk(x) is computed by U by deblinding ak exactly as in the case of protocol
2HashDH. Note that this takes a single exponentiation for each server and two
exponentiations for the user (to compute a and to deblind ak) plus one multi-
exponentiation by U to compute the Lagrange interpolation on the bi values. We
optimize this function evaluation by having each server Si compute bi = aλi·ki ,
which costs one exponentiation and O(t) multiplications and divisions in Zm to
compute λi. (Note that Si must know set SE to compute λi.) This way U can
compute ak using only t multiplications instead of a multi-exponentiation, and
the total costs are 1 exps for each Si and 2 exps for U .

Protocol 2HashTDH can be also be seen as a simplification of a protocol
which results from a generic transformation of any OPRF to T-TOPRF using
multi-party secure computation of the server code, and then applying this trans-
formation to the 2HashDH OPRF of [19]. The server in 2HashDH computes ak

on input a, and the MPC protocol for it is exactly the threshold exponentiation
protocol described above, except that this generic OPRF to T-OPRF transfor-
mation must assure that the servers perform the MPC subprotocol on the same
input a, and this involves an additional round of server-to-server interaction,
which the 2HashTDH protocol avoids. We refer to the full version of this paper
[20] for the specification of this general OPRF to T-OPRF compiler.

Roadmap. In Sect. 3.1 we show protocol 2HashTDH and explain the assump-
tions taken in its specification. In Sect. 3.2 we introduce the T-OMDH assump-
tion, a generalization of OMDH, and we show that it is equivalent to OMDH
in several cases, including the full corruption case t′ = t discussed in the intro-
duction. In Sect. 3.3 we show that protocol 2HashTDH realizes the Threshold
OPRF functionality FTOPRF under the T-OMDH assumption in ROM for any
threshold parameters (t, n) and any number t′ < t of corrupted servers. It fol-
lows that protocol 2HashTDH achieves the standard threshold security property,
which corresponds to the full corruption case, under just OMDH in ROM. Note
that the non-threshold OPRF 2HashDH of [19] also relies on OMDH.

3.1 T-OPRF Protocol Based on T-OMDH Assumption

The 2HashTDH T-OPRF protocol is shown in Fig. 3, relying on realizations of
functionalities FDKG,FAUTH and FSEC, which model, respectively, the distrib-
uted key generation, authenticated channel, and secure channel. Assuming these
functionalities, the 2HashTDH protocol realizes the UC T-OPRF functionality
defined in Sect. 2, under the T-OMDH assumption in ROM. As we argue in
Sect. 3.2, this implies security under OMDH in ROM in several cases, including
the full corruption case, where the adversary corrupts t′ = t servers, and the addi-
tive sharing case, where t = n − 1. Functionalities FDKG,FAUTH,FSEC all have
well-known efficient realizations in ROM under the Diffie-Hellman assumption
which is implied by OMDH, and hence also by T-OMDH.

48 S. Jarecki et al.

Fig. 3. Protocol 2HashTDH realizing FTOPRF assuming FDKG,FSEC,FAUTH.

Note on Authentic and Secret Channels. In Fig. 3 protocol 2HashTDH is
presented in the (FAUTH,FSEC,FDKG)-hybrid world, i.e., assuming that there
are both authenticated and secure (i.e. authenticated and secret) channels
between protocol participants. We refer to [12] for the UC models of authen-
ticated and secret channels, but simply speaking, what the authenticated and
secure channel functionalities model is that if party P1 sends message m to party
P2 using FAUTH command (Send, sid , P2,m), then P2 will be able to authen-
ticate m as originated from P1, i.e. if P2 receives command (Sent, sid , P1,m

′),
it is guaranteed that m′ = m, and if P1 sends m to P2 using FSEC command
(Send, sid , P2,m), then P2 can verify authenticity of P1’s message as above, but
in addition m will be hidden to the adversary unless P2 is corrupted.

We note that using ideal functionalities such FAUTH,FSEC in the hybrid
world, does not determine their implementation when the UC protocol is
deployed in the real world. This is because they only describe how the adversarial
model against the protocol is envisioned. For instance, FAUTH may be realized
using a PKI involving all connected participants, or it may be simply substituted
by unauthenticated TCP/IP communication in case it is deemed that modifying
message contents is not a relevant threat in the protocol deployment. Indeed,
this will also be the case in our setting since we allow the (adversarial) envi-
ronment to choose the servers that a user connects in the evaluation stage of
the protocol in a way that is independent from the initialization servers; in this
way, any man-in-the-middle scenario can be simulated by the adversary without

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 49

violating the FAUTH constraints. Similarly, FSEC may be implemented by TLS,
but may also be achieved in other ways, e.g., physically transferring private state
between the parties engaged in the protocol.

A second important point is that if a user U initializes a T-OPRF instance
with a server set SI = {S1, ..., Sn} such that some subset B of SI is made of
corrupt entities (which models both the fact that some SI members are corrupt
and the fact that U can execute T-OPRF initialization on an incorrect set of
servers), then in this case command (Send, sid , Si,m) for Si ∈ B will leak m to
the adversary, and if U receives (Sent, sid , Si,m) from FAUTH for Si ∈ B, we can
assume that the adversary supplies message m. In other words, the FAUTH and
FSEC channels implement authenticated and/or secret point-to-point message
delivery only if they are executed for a proper and non-corrupt server. We note
that we assume a secret channel FSEC in addition to an authenticated channel
FAUTH solely to simplify the description of T-OPRF initialization. Indeed, the
former can be built from the latter [12], e.g. by having each server Si first send
its encryption public key to U using the authenticated channel.

Note on Distributed Key Generation. Protocol 2HashTDH assumes that
servers in SI establish a secret-sharing (k1, ..., kn) of a random key k over authen-
ticated channels via a Distributed Key Generation (DKG) functionality FDKG,
shown in Fig. 4. The DKG sub-protocol for discrete-log based cryptosystems
can be efficiently realized without user’s involvement [16,30], but if the call to
initialize a TOPRF instance is executed by an honest user U then the DKG
subprotocol can be even simpler, because U can generate sharing (k1, ..., kn) of
k and then distribute the shares among the servers in SI. Note that since our
realizations of FTOPRF pertains only to the static adversarial model, where the
identity of corrupt parties is determined at the outset, we would not explicitly
require that the parties erase the information used in the initialization, but any
implementation should erase such information. In our specification of protocol
2HashTDH we rely on the FDKG functionality to abstract from any specific
DKG implementation, e.g. whether it is done by the server or by an honest
user.

3.2 Threshold OMDH Assumption

Notation. If n is an integer, then [n] = {1, ..., n}. If D is a set, then |D| is
its cardinality. We use bold font to denote vectors, e.g. a = [a1, ..., an]. If a
and b are two vectors of the same dimension, then a � b is their Hadamard
(component-wise) product. If |a | = n and J is a sequence in [n] then aJ denotes
the components of a with indices in J , i.e. [ai1 , ..., aik]T if J = (i1, ..., ik).

Let Iw be the set of w-element subsets of [n], i.e. Iw = {I ⊆ [n] s.t. |I| = w}.
Let W (a) be the hamming weight of a . Let Vw be the set of n-bit binary vectors q
s.t. W (q) = w, i.e. Vw = {v ∈ {0, 1}n s.t. vi = 1 iff i ∈ Iw}. For q = [q1, . . . , qn]
define Cw(q) as the maximum integer m for which there exist v1, ..., vm ∈ Vw

(not necessarily distinct) s.t. v1 + ... + vm ≤ q . In other words, Cw(q) is the

50 S. Jarecki et al.

Fig. 4. Distributed key generation functionality FDKG [30].

maximum number of times one can subtract elements in Vw from q s.t. the
result remains ≥ 0 . For example if and q = [3, 3, 4] then C2(q) = 4 because
q = 2 × [1, 0, 1] + [1, 1, 0] + 2 × [0, 1, 1].

T-OMDH Intuition. Let 〈g〉 be a cyclic group of prime order m > n. The
T-OMDH assumption considers the setting where a random exponent k ∈ Zm is
secret-shared using a random t-degree polynomial p(·), and the n trustees holding
shares k1=p(1), . . . , kn=p(n) implement a “threshold exponentiation” protocol
which computes ak for any given a ∈ 〈g〉 and k = p(0). Let TOMDHp(·, ·) be
an oracle which on input (i, a) ∈ [n] × 〈g〉 outputs ap(i). The standard way
to implement threshold exponentiation is to choose a set I ∈ It+1, compute
bi = TOMDHp(i, a) = aki for each i in I and derive ak as

∏
i∈I bλi

i using
Lagrange interpolation coefficients λi s.t. k =

∑
i∈I λi·ki. The T-OMDH assump-

tion states that querying oracle TOMDHp(·, ·) on at least t + 1 different points
i ∈ [n] is necessary to compute ap(0) for a given random challenge a. More
generally, T-OMDH considers an experiment where the attacker A receives a
challenge set R = {g1, ..., gN} of random elements in 〈g〉 and is given access to
the TOMDHp(·, ·) oracle for random t-degree polynomial p(·). T-OMDH assump-
tion states that A can compute gk

j for k = p(0) for no more than Ct+1(q1, . . . , qn)
elements gj ∈ R, where qi is the number of A’s queries to TOMDHp(i, ·).

The above intuition and Definition 1 below correspond to the setting where
the attacker does not control any of the trustees holding shares of p, hence it
needs t + 1 queries to TOMDHp(·, ·) to compute ap(0) for each random chal-
lenge a. Later we extend this definition to the case where A controls a subset
of trustees.

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 51

Definition 1. The (t, n,N,Q)-Threshold One-More Diffie Hellman (T-OMDH)
assumption holds in group 〈g〉 of prime order m if the probability of any
polynomial-time adversary A winning the following game is negligible. A receives
challenge set R = {g1, . . . , gN} where gi ←R 〈g〉 for i ∈ [N], and is given access
to an oracle TOMDHp(·, ·) for a random t-degree polynomial p(·) over Zm. A
wins if it outputs gk

j where k = p(0) for Q + 1 different elements gj in R, and if
Ct+1(q1, . . . , qn) ≤ Q where qi is the number of A’s queries to TOMDHp(i, ·).

Note that the (N,Q)-OMDH assumption [5,22] is the (t, n,N,Q)-T-OMDH
assumption for t = 0 and any n ≥ 1, because then p(·) is a constant polynomial
and C1(q) = W (q), i.e. the total number of A’s TOMDHp(·, ·) queries.

T-OMDH: The General Case. In its general form, the T-OMDH assumption
corresponds to computing gk

j if some subset of t′ ≤ t trustees holding shares
ki = p(i) is corrupt, and hence the adversary can not only learn these shares but
can also set them at will.

Definition 2. The (t′, t, n,N,Q)-T-OMDH assumption holds in group 〈g〉 of
prime order m if for any B ⊆ [n] s.t. |B| = t′ ≤ t, the probability of any
polynomial-time adversary A winning the following game is negligible. On input
a challenge set R = {g1, . . . , gN} where gi ←R 〈g〉 for i ∈ [N], adversary A
specifies a set of t′ values {αj}j∈B in Zm. A random t-degree polynomial p(·)
over Zm is then chosen subject to the constraint that p(j) = αj for j ∈ B, and
the adversary A is given access to oracle TOMDHp(·, ·). We say that A wins
if it outputs gk

j where k = p(0) for Q + 1 different elements gj in R, and if
Ct−t′+1(q1, . . . , qn) ≤ Q where qi for i /∈ B is the number of A’s queries to
TOMDHp(i, ·), and qi = 0 for i ∈ B.

Note that (t′, t, n,N,Q)-T-OMDH is identical to (t, n,N,Q)-T-OMDH for t′ = 0.

Gap T-OMDH. In order to prove the security of T-OPRF, we need to extend
the T-OMDH assumption stated in Definition 2 to its “gap” form, i.e. suppose
〈g〉 is a gap group where A is in addition given access to the DDH oracle in 〈g〉.
Definition 3. The Gap (t′, t, n,N,Q)-T-OMDH assumption is the T-OMDH
assumption of Definition 2 except that A is also given access to the DDH oracle in
group 〈g〉, which on input (a, b, c, d) outputs 1 if loga b = logc d and 0 otherwise.

In the full version of this paper [20] we show that the (Gap) (t, t′, n,N,Q)-T-
OMDH assumption holds in the generic group model for any (t′, t, n). Specifically,
the advantage of a T-OMDH adversary restricted to r generic group operations
is upper-bounded by O(Qr2/m), assuming r ≥ Q ≥ N . This is larger by factor
Q from the O(r2/m) upper-bounds on generic group attacks against many static
problems related to discrete logarithm [28], and this weakening is caused by the
presence of up to Q-degree polynomials of the “target” secret k = p(0) in the
representation of the group elements which the adversary can compute given
access to TOMDHp(·, ·) using the query pattern q = [q1, ..., qn] s.t. Ct−t′+1(q) ≤
Q. Since (Q,N)-OMDH is identical to (t′, t, n,N,Q)-T-OMDH for (t′, t) = (0, 0)

52 S. Jarecki et al.

and any n, the same upper-bound applies applies to OMDH, and to the best of
our knowledge this is the first generic model security hardness argument for the
OMDH (or Gap OMDH) assumption.

T-OMDH = OMDH in Full Corruption and Additive Sharing Cases.
The T-OMDH and OMDH assumptions are equivalent in two important cases,
namely the full corruption case of t′ = t, for any (t, n), and in the additive
sharing case of t = n − 1, for any t′. We refer to the full version of this paper
[20] for (easy) proofs of above equivalences. Note also that whereas the question
whether the T-OMDH and OMDH assumptions are equivalent for any t′ < t and
t + 1 < n remains open, in the full version [20] we also show the same generic
group hardness bound for both problems.

3.3 Security Analysis of 2HashTDH

Protocol 2HashTDH protocol of Fig. 3 is secure under the T-OMDH assumption.
As a corollary of the fact that in the full corruption case of t′ = t faults the T-
OMDH and OMDH assumptions are equivalent, Theorem1 implies that protocol
2HashTDH is secure under OMDH in ROM in the full corruption case of t′ = t.
The proof of Theorem1 appears in the full version of this paper [20].

Theorem 1. Protocol 2HashTDH realizes functionality FTOPRF with parame-
ters t, n in the (FAUTH,FSEC,FDKG)-hybrid model, assuming static corruptions,
hash functions H1(·) and H2(·, ·) modelled as Random Oracles, and the Gap
(t′, t, n,N,Q)-T-OMDH on group 〈g〉, where Q is the number of Eval messages
sent by any user, N = Q + q1 where q1 is the number of H1(·) queries the
adversary makes, and t′ < t is the number of corrupted servers in SI.

Specifically, for any efficient adversary A against protocol 2HashTDH, there
is a simulator SIM s.t. no efficient environment Z can distinguish the view of A
interacting with the real 2HashTDH protocol and the the view of SIM interacting
with the ideal functionality FTOPRF, with advantage better than qT · ε(N,Q) +
N2/m, where qT is the number of TOPRF instances, ε(N,Q) is the bound on the
probability that any algorithm of the same cost violates the Gap (t′, t, n,N,Q)-
T-OMDH assumption, and m = |〈g〉|.

4 TOPPSS: A PPSS Scheme Based on T-OPRF

In Fig. 5 we show a compiler which converts a T-OPRF scheme which realizes
the UC T-OPRF notion of Sect. 2 into a PPSS scheme, called TOPPSS, which
realizes UC PPSS functionality of [19]. The terminology of the UC setting might
obscure the amazing practicality of this construction, so in Sect. 5 we show a con-
crete implementation of this scheme with the FTOPRF functionality implemented
using the T-OPRF instantiation 2HashTDH from Sect. 3.

TOPPSS Overview. To explain the mechanics of TOPPSS based on the
T-OPRF functionality, it is instructive to compare it to the OPRF-based PPSS

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 53

Fig. 5. The TOPPSS protocol

scheme of [19]. In that scheme each server holds its own independently random
key ki for an OPRF f . At initialization, the secret to be protected is processed
with a (t, n) secret sharing scheme and each share is stored at one of n servers,
where server Si stores the i-th share encrypted under fki

(pw). At reconstruction,
the user receives the encrypted shares from t + 1 servers which it decrypts using
the values fki

(pw) that it learns by running the OPRF on pw with each of these
servers. By contrast, in our TOPPSS scheme, which is T-OPRF-based, the (ran-
dom) secret to be protected is defined as a single PRF value v = fk(pw) where k
is a key secret-shared as part of a T-OPRF scheme. This provides a significant
performance gain by reducing the number of exponentiations performed by the
user from t + 2 to just 2. In the scheme of [19] implemented with 2HashDH, the
user computes the OPRF sub-protocol with each server independently, which

54 S. Jarecki et al.

involves one blinding operation re-used across all servers, but requires one de-
blinding operation per server for a total of t + 2 exponentiations. By contrast,
in the T-OPRF protocol 2HashTDH of Sect. 3 the user performs a single blind-
ing and de-blinding, hence just 2 exponentiations, regardless of the number of
servers and threshold t.

Note that the T-OPRF functionality allows the user to evaluate function
fk(·) on the user’s password pw, without leaking any information about pw, but
it does not let the user verify whether the function is computed correctly. Indeed,
following the rules of functionality FTOPRF, either corrupt servers or a man-in-
the-middle adversary could make the user compute fk(pw) on key k of their
choice. If the dictionary D from which the user draws her password is small, the
adversary can potentially pick k s.t. function fk(·) behaves on domain D in some
ways the adversary can exploit (e.g., reducing the number of possible outputs).
However, since FTOPRF assures that fk(·) behaves like a random function for all
k’s, even for k’s chosen by the adversary, it suffices to include a commitment to
the master secret v = fk(pw) in the information that the servers send to the user,
so that the user can verify its correctness. The adversary can still pick k but if
fk(·) is pseudorandom for all k then the adversary cannot change either k or v
without guessing pw. Note that the randomness for verifying this commitment
must be derived from the committed plaintext fk(pw) itself as this is the only
value the user can retrieve using its only input pw. Although this mechanism
requires the commitment scheme to be deterministic, the hiding property of the
commitment is still satisfied thanks to the pseudorandomness of the committed
plaintext v = fk(pw) (and assuming no more than t corruptions).

Since our realizations of FTOPRF, protocol 2HashTDH, requires the Random
Oracle Model (ROM) for hash functions in the security analysis, we implement
this commitment simply with another hash function modeled as a random oracle.
Finally, since the user needs to verify the master-secret v as well as to derive a
key K from it, we implement both operation using a single hash function call,
i.e. we set [C|K] to H(v) where H hashes onto strings of length 2�.

The proof of the following theorem is in the full version of this paper [20].

Theorem 2. The TOPPSS scheme of Fig. 5 UC-realizes the PPSS functionality
FPPSS assuming access to the T-OPRF functionality FTOPRF and to the authen-
ticated message delivery functionality FAUTH, and assuming that hash function
H is a random oracle.

5 Concrete Instantiation of TOPPSS Using 2HashTDH

For concreteness we show an instantiation of TOPPSS with the T-OPRF func-
tionality realized by protocol 2HashTDH from Fig. 3 in Sect. 3. In this figure we
realize the FDKG subprotocol assuming an honest user U , because in the context
of a PPSS protocol, we only care about security for PPSS instances which were
initialized with an honest user. Hence we simply have U create the sharing of the
T-OPRF key and distributing it among the servers in SI (see a note on DKG in

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 55

Fig. 6. Concrete instantiation of TOPPSS based on 2HashTDH T-OPRF.

Sect. 3.1). Note that if we implement FDKG in this user-centric way then we do
not have to execute T-OPRF evaluation for U to compute v = fk(pw) as part of
the initialization: User U can just compute v = fk(pw) locally because U picked
the TOPRF key k (Fig. 6).

On the Role of Secure Channels. The communication in such instantiation
of TOPPSS must go over secure channels in the initialization phase, which in
practice could be implemented using e.g. TLS.2 In the reconstruction phase, the
communication does not have to go over secure channels, because TOPPSS is
2 Note that if the FDKG was instantiated with the distributed key generation then

authenticated channels would suffice for the communication between the user and
the servers because the TOPRF evaluation protocol does not need secure chan-
nels. However, the standard realization of FDKG [30] would require secure channels
between the servers.

56 S. Jarecki et al.

secure in the password-only, i.e. PKI-free, model. However using TLS would
offer a security benefit against the network adversary as a hedge against any
server-spoofing attacks due to which the user might be tricked to run the PPSS
reconstruction with the wrong set of servers. To see the benefit of running a
PPSS protocol over TLS channels, denote the set of server identities which U
inputs in the reconstruction as SR. In the case of running PPSS reconstruction
over TLS these can be equated with the public keys the user would use in the
TLS sessions with the t+1 servers in the reconstruction. Consider the following
two cases, and refer to the specification of the UC PPSS functionality FPPSS of
[19], which we include in the full version of this paper [20].

Case I: Every server S′ in set SR is either incorrect (i.e. S′ �∈ SI) and w.l.o.g.
represents a malicious entity, or it is correct (i.e. S′ ∈ SI) but it is corrupted.
In this case, according to FPPSS specifications (see line 3b of the reconstruction
phase), the adversary can perform one on-line password guess on such session.
In other words, if the user runs reconstruction with incorrect/corrupt servers,
the security is as in a (password-only) PAKE, i.e. the adversary can attempt to
authenticate to such user using a password guess pw∗, and test if pw∗ = pw.

Case II: There are some servers S′ in set SR which are both correct (i.e. S′ ∈ SI)
and uncorrupted. In this case, according to FPPSS specifications (lines 3a and
3b of FPPSS), the adversary cannot learn anything from such instance, and can
only either let it execute (line 3a) in which case U reconstructs the (correct!)
secret K, or interfere with the protocol (line 3c) and make U output Fail.
In short, if PPSS reconstruction is executed over insecure channels then the
man-in-the-middle adversary could make every reconstruction instance fall into
Case I. By contrast, executing it over TLS forces the reconstruction instances
to fall into Case II, unless the adversary tricks U to execute the reconstruction
for the set of servers SR which includes only corrupt entities, in which case such
reconstruction instance (and only such instance) falls back into Case I.

Note on sid/ssid Monikers. As we explain above, it is not essential for security
of reconstruction that the user remembers the servers in the initialization set SI.
It might also be helpful to clarify the potential security implications of sid/ssid
monikers which we assume are inputs in the initialization and the reconstruction
phase. String sid (which stands for “session ID” in the AKE and UC terminology)
in the context of a PPSS scheme can be equated with a “user ID”, because it
is a string which servers in SI will use to disambiguate between multiple PPSS
instances which they can potentially service. It is therefore sensible to require
that U remembers this user ID string sid in addition to her password pw. On
the other hand, string ssid could be a nonce, or some application-determined
identifier of a unique PPSS reconstruction session.

References

1. Russian hackers amass over a billion internet passwords. New York Times, 08 June
2014. http://goo.gl/aXzqj8

http://goo.gl/aXzqj8

TOPPSS: Cost-Minimal Password-Protected Secret Sharing 57

2. Abdalla, M., Chevassut, O., Fouque, P.-A., Pointcheval, D.: A simple threshold
authenticated key exchange from short secrets. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 566–584. Springer, Heidelberg (2005). doi:10.1007/
11593447 31

3. Abdalla, M., Cornejo, M., Nitulescu, A., Pointcheval, D.: Robust password-
protected secret sharing. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 61–79. Springer, Cham (2016).
doi:10.1007/978-3-319-45741-3 4

4. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, pp. 433–444. ACM (2011)

5. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M., et al.: The one-more-
rsa-inversion problems and the security of chaum’s blind signature scheme. J. Cryp-
tol. 16(3), 185–215 (2003)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

7. Blazy, O., Chevalier, C., Vergnaud, D.: Mitigating server breaches in password-
based authentication: secure and efficient solutions. In: Sako, K. (ed.) CT-
RSA 2016. LNCS, vol. 9610, pp. 3–18. Springer, Cham (2016). doi:10.1007/
978-3-319-29485-8 1

8. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 12

9. Brainard, J., Juels, A., Kaliski, B., Szydlo, M.: Nightingale: a new two-server app-
roach for authentication with short secrets. In: 12th USENIX Security Symposium,
pp. 201–213. IEEE Computer Society (2003)

10. Camenisch, J., Lehmann, A., Lysyanskaya, A., Neven, G.: Memento: how to recon-
struct your secrets from a single password in a hostile environment. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 256–275. Springer, Hei-
delberg (2014). doi:10.1007/978-3-662-44381-1 15

11. Camenisch, J., Lehmann, A., Neven, G.: Optimal distributed password verifica-
tion. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 182–194. ACM (2015)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, 2001, pp. 136–145. IEEE (2001)

13. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

14. Raimondo, M., Gennaro, R.: Provably secure threshold password-authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 507–523.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 32

15. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a pass-
word. In: Proeedings of the IEEE 9th International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises 2000, (WET ICE 2000), pp.
176–180. IEEE (2000)

16. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

http://dx.doi.org/10.1007/11593447_31
http://dx.doi.org/10.1007/11593447_31
http://dx.doi.org/10.1007/978-3-319-45741-3_4
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/978-3-319-29485-8_1
http://dx.doi.org/10.1007/978-3-319-29485-8_1
http://dx.doi.org/10.1007/3-540-45539-6_12
http://dx.doi.org/10.1007/978-3-662-44381-1_15
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/3-540-39200-9_32

58 S. Jarecki et al.

17. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric
private information retrieval. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, pp. 875–888. ACM (2013)

18. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45608-8 13

19. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
276–291. IEEE (2016)

20. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Threshold oblivious PRF and
minimal-cost password-protected secret sharing. Cryptology ePrint Archive (2017).
http://eprint.iacr.org/2017/[TBD]

21. Jarecki, S., Krawczyk, H., Shirvanian, M., Saxena, N.: Device-enhanced password
protocols with optimal online-offline protection. In: Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pp. 177–188. ACM
(2016)

22. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15317-4 26

23. Katz, J., MacKenzie, P., Taban, G., Gligor, V.: Two-server password-only authen-
ticated key exchange. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 1–16. Springer, Heidelberg (2005). doi:10.1007/11496137 1

24. Kiefer, F., Manulis, M.: Distributed smooth projective hashing and its application
to two-server password authenticated key exchange. In: Boureanu, I., Owesarski,
P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 199–216. Springer, Cham
(2014). doi:10.1007/978-3-319-07536-5 13

25. Kiefer, F., Manulis, M.: Universally composable two-server PAKE. In: Bishop, M.,
Nascimento, A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 147–166. Springer, Cham
(2016). doi:10.1007/978-3-319-45871-7 10

26. MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 385–400.
Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 25

27. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 23

28. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). doi:10.1007/3-540-69053-0 18

29. Szydlo, M., Kaliski, B.: Proofs for two-server password authentication. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 227–244. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-30574-3 16

30. Wikström, D.: Universally composable DKG with linear number of exponentia-
tions. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 263–277.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-30598-9 19

31. Yi, X., Hao, F., Chen, L., Liu, J.K.: Practical threshold password-authenticated
secret sharing protocol. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS
2015. LNCS, vol. 9326, pp. 347–365. Springer, Cham (2015). doi:10.1007/
978-3-319-24174-6 18

http://dx.doi.org/10.1007/978-3-662-45608-8_13
http://dx.doi.org/10.1007/978-3-642-15317-4_26
http://dx.doi.org/10.1007/11496137_1
http://dx.doi.org/10.1007/978-3-319-07536-5_13
http://dx.doi.org/10.1007/978-3-319-45871-7_10
http://dx.doi.org/10.1007/3-540-45708-9_25
http://dx.doi.org/10.1007/3-540-48910-X_23
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/978-3-540-30574-3_16
http://dx.doi.org/10.1007/978-3-540-30598-9_19
http://dx.doi.org/10.1007/978-3-319-24174-6_18
http://dx.doi.org/10.1007/978-3-319-24174-6_18

Secure and Efficient Pairing at 256-Bit Security
Level

Yutaro Kiyomura1(B), Akiko Inoue2, Yuto Kawahara1, Masaya Yasuda3,
Tsuyoshi Takagi3, and Tetsutaro Kobayashi1

1 NTT Secure Platform Laboratories, Musashino, Japan
{kiyomura.yutaro,kawahara.yuto,kobayashi.tetsutaro}@lab.ntt.co.jp

2 NEC Central Research Laboratories, Kawasaki, Japan
a-inoue@cj.jp.nec.com

3 Kyushu University, Fukuoka, Japan
{yasuda,takagi}@imi.kyushu-u.ac.jp

Abstract. At CRYPTO 2016, Kim and Barbulescu proposed an effi-
cient number field sieve (NFS) algorithm for the discrete logarithm prob-
lem (DLP) in a finite field. The security of pairing-based cryptography
(PBC) is based on the difficulty in solving the DLP. Hence, it has become
necessary to revise the bitlength that the DLP is computationally infea-
sible against the efficient NFS algorithms. The timing of the main oper-
ations of PBC (i.e. pairing, scalar multiplication on the elliptic curves,
and exponentiation on the finite field) generally becomes slower as the
bitlength becomes longer, so it has become increasingly important to
compute the main operations of PBC more efficiently. To choose a suit-
able pairing-friendly curve from among various pairing-friendly curves
is one of the factors that affect the efficiency of computing the main
operations of PBC. We should implement the main operations of PBC
and compare the timing among some pairing-friendly curves in order
to choose the suitable pairing-friendly curve precisely. In this paper, we
focus on the five candidate pairing-friendly curves from the Barreto-
Lynn-Scott (BLS) and Kachisa-Schaefer-Scott (KSS) families as the 256-
bit secure pairing-friendly curves and show the following two results; (1)
the revised bitlength that the DLP is computationally infeasible against
the efficient NFS algorithms for each candidate pairing-friendly curve,
(2) the suitable pairing-friendly curve by comparing the timing of the
main operations of PBC among the candidate pairing-friendly curves
using the revised bitlength.

1 Introduction

Many pairing-based cryptography (PBC) have been proposed, e.g., ID-based
encryption [8,40], attribute-based encryption [41], and functional encryp-
tion [38]. A pairing on the elliptic curve is a non-degenerate bilinear map

A. Inoue—This work was done while the author was the student of Kyushu Univer-
sity.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 59–79, 2017.
DOI: 10.1007/978-3-319-61204-1 4

60 Y. Kiyomura et al.

e : G1 × G2 → G3, where G1, G2, G3 are a group with order r respectively.
The security of the pairing is based on the difficulty in solving the discrete log-
arithm problem (DLP) in G1, G2, G3. The group G1, G2 are a subgroup on the
elliptic curve, and the DLP on an elliptic curve (ECDLP) in G1, G2 must be
computationally infeasible against the rho algorithm [16,39]. Hence, we should
choose r with a secure bitlength against the rho algorithm. The group G3 is
a subgroup on finite field Fpk , where p is a prime and k ≥ 1 is an embedding
degree, and the DLP on a finite field (FFDLP) in G3 must be computationally
infeasible against the number field sieve (NFS) algorithms. There are various
NFS algorithms (e.g. Classical-NFS [25], tower NFS (TNFS) [10,45], and special
NFS (SNFS) [10,26]). We should choose p and k with a secure bitlength of pk

against the NFS algorithms.
The recommended bitlength of pk of the pairing was discussed in the 2013

report of ENISA [15, Table 3.6], where the pairing and RSA have the same
recommended bitlength. This was in accordance with a general belief stated,
for example, by Lenstra: “An RSA modulus n and a finite field Fpk therefore
offer about the same level of security if n and pk are of the same order of
magnitude” [32, Sect. 5.1]. The recommended bitlength of RSA was derived from
the complexity of the NFS algorithm for integer factorization [33]. In other words,
the bitlength of pk of the pairing was estimated considering the complexity of
this NFS algorithm.

At CRYPTO 2016, Kim and Barbulescu proposed an efficient NFS algorithm
called the extended tower number field sieve (exTNFS) algorithm [28]. This
NFS algorithm greatly impacted the security of the mainstream pairing such as
optimal ate pairing [47]. The complexity of the exTNFS algorithm was reduced
from that of previous NFS algorithms by using the trivial equation Fpk = Fpηκ ,
where gcd(η, κ) = 1. Kim and Barbulescu concluded that the bitlength of the
pairing should increase roughly twice [28]. Therefore, we should revise to estimate
the secure bitlength of pk against the exTNFS in detail. Note that Menezes et al.
estimated the bitlength of pk for the pairing considering the exTNFS algorithm
at 128- and 192-bit security levels [37].

Generally, faster timing of the main operations of PBC (i.e. pairing, scalar
multiplication on the elliptic curves, and exponentiation on the finite field) is pre-
ferred to implement the PBC. To choose a suitable pairing-friendly curve from
among various pairing-friendly curves is one of the factors that affect the effi-
ciency of computing the main operations of PBC. Among the studies conducted
before the exTNFS algorithm was proposed, Scott [44] theoretically chose the
suitable pairing-friendly curve at each security level based on the bitlength of
r, pk and ρ-value given in Freeman et al.’s taxonomy [16]. However, Aranha et
al. [3] discussed the suitable pairing-friendly curve different from that chosen the-
oretically by comparing the timing of the pairing among several pairing-friendly
curves at 192-bit security level. To choose a suitable pairing-friendly curve at a
certain security level, it is important to not only choose theoretically but also
compare the timing of the main operations of PBC.

Secure and Efficient Pairing at 256-Bit Security Level 61

Our Contributions. Our goal with this paper is to obtain a secure and effi-
cient pairing at 256-bit security level. To achieve this, our contribution is to
revise the estimation of the bitlength of pk due to the efficient NFS algorithms
(e.g. Special exTNFS, Special TNFS) and choose the suitable pairing-friendly
curve for efficiently computing the main operations of PBC. We focus on the
Barreto-Lynn-Scott (BLS) [11] and Kachisa-Schaefer-Scott (KSS) [29] families
that have high embedding degree and are easy to implement the pairing. We
specifically choose the following five candidate pairing-friendly curves at the 256-
bit security level; the BLS-k with k = 24, 42, 48 and KSS-k with k = 32, 36. For
these curves, we estimate the secure bitlength pk in detail against the efficient
NFS algorithms by comparing the upper bound of norms of these algorithms
using the Kim and Barbulescu’s estimation method [28]. Furthermore, based on
the revised bitlength of pk, we search for the specific parameter of each candi-
date pairing-friendly curve to implement the main operations of PBC, and then
compare the timing of these operations among the five candidate pairing-friendly
curves. Finally, we show the suitable pairing-friendly curve at 256-bit security
level.

2 Overview of Pairing

2.1 Definition and Properties

Let p be a prime and E be an elliptic curve defined over the finite field Fp. Let
r be a prime with gcd(p, r) = 1. An embedding degree k is the smallest positive
integer with r | pk − 1. Let G1, G2 be a subgroup on the elliptic curve with
order r and G3 be a subgroup on the finite field Fpk with order r. A pairing e is
defined by e : G1 × G2 −→ G3 ; (P,Q) �−→ fr,P (Q)(p

k−1)/r, where the rational
function fr,P satisfies div(fr,P) = r(P) − r(O) for the point at infinity O. For
P ∈ G1, Q ∈ G2 and a ∈ Z, a pairing e has the following properties;

– bilinearity: e(aP,Q) = e(P, aQ) = e(P,Q)a,
– non-degeneracy: for all P ∈ G1, e(P,Q) = 1 then Q = O and for all Q ∈ G2,

e(P,Q) = 1 then P = O,
– efficiently computable: e(P,Q) can be efficiently computed.

2.2 Optimal Ate Pairing

The optimal ate pairing proposed by Vercauteren [47] is the most efficient
method of computing the pairing e. There are many implementation results
of the optimal ate pairing [3,9,13,36,44]. Let m be an integer such that r � m.
Let λ = mr and write λ =

∑ω
i=0 αip

i where ω = �logp λ�. Let E[r] be an
r-torsion subgroup. Define G1 = E[r] ∩ Ker(πp − [1]) = E(Fp)[r], Ĝ2 = E[r]∩
Ker(πp − [p]) ⊆ E(Fpk)[r] as the subgroup with r. Let E′ be a twist of degree d

of E with ψ : E′ → E defined over Fpd , and define G2 = ψ−1(Ĝ2). Note that d

62 Y. Kiyomura et al.

depends on the pairing-friendly curve and is in {2, 3, 4, 6} [24]. An optimal ate
pairing ak is defined by

ak : G1 × G2 −→ G3, (P,Q) �−→
(

ω∏

i=0

fpi

αi,Q
(P) ·

ω−1∏

i=0

[βi+1]Q,[αipi]Q(P)
v[βi]Q(P)

) pk−1
r

(1)

where βi =
∑ω

j=i αjp
j ,
T,T ′ is the line through T and T ′, and vT is the vertical

line through T , where T and T ′ are points on the elliptic curve.

3 Candidate Pairing-Friendly Curves at 256-Bit Security
Level

In this section, we choose the five candidate pairing-friendly curves satisfying
the security and efficiency from the BLS [11] and KSS [29] families to choose the
suitable pairing-friendly curve at 256-bit security level. In this paper, we define
len(x) as the bitlength of x.

3.1 How to Choose Candidate Pairing-Friendly Curves

We show the security against the ECDLP and FFDLP and the efficiency for
implementation of the main operations of PBC. An embedding degree k is
determined by the chosen pairing-friendly curve, and the primes r and p are
represented by the polynomial of a positive integer x.

Security. The parameters r, p, and k should satisfy the complexity of solving
the DLP in G1, G2 and G3 to achieve the K-bit security level. The definition
of ECDLP in G1 and G2 is as follows. Given points G,Y ∈ G1 (or G2), find
x ∈ Z such that Y = xG. An efficient algorithm for solving the ECDLP is the
rho algorithm [16,39], which has the complexity of O(

√
r). Therefore, we should

choose the bitlength of r with len(r) ≥ 2K. The definition of the FFDLP in G3

is as follows. Given points g, y ∈ G3, find x ∈ Z such that y = gx. An efficient
algorithm for solving the FFDLP are the STNFS [10,26] and SexTNFS [28]
algorithms. We give the bitlength of pk which the FFDLP is computationally
infeasible against these NFS algorithms in Sect. 5.

Efficiency. To efficiently compute the main operations of PBC (i.e. pairing,
scalar multiplication in G1 and G2, and exponentiation in G3) with the above
security, we consider the following conditions as affecting the efficiency of these
operations.
– len(r) and len(pk) are as small as possible.
– The ρ-value is approximately 1 (ρ = log p/ log r).
– Parameter x in polynomials (e.g. p(x), r(x)) has a low Hamming weight.
– The embedding degree k has the form k = 2i · 3j (i ∈ Z≥1, j ∈ Z≥0).
– The twist of degree d is 6 (d = 6 is maximum of degree).

These conditions are theoretically efficient ones, then the effect of each condition
is uncertain in the implementation.

Secure and Efficient Pairing at 256-Bit Security Level 63

Table 1. Parameters for the five candidate pairing-friendly curves

BLS-24

[16, Construction 6.6]

k = 24, ρ = 1.250, deg(p(x)) = 10, ϕ(k) = 8,

p(x) = (x − 1)2(x8 − x4 + 1)/3 + x, r(x) = x8 − x4 + 1, t(x) = x + 1

KSS-32

[29, Example 4.4]

k = 32, ρ = 1.063, deg(p(x)) = 18, ϕ(k) = 16,

p(x) = (x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8

+815730721x2 − 4948305594x + 10604499373)/2970292,

r(x) = (x16 + 57120x8 + 815730721)/(2 · 138 · 2392),
t(x) = (−2x9 − 56403x + 3107)/3107

KSS-36

[29, Example 4.5]

k = 36, ρ = 1.167, deg(p(x)) = 14, ϕ(k) = 12,

p(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2

−386569x + 823543)/28749,

r(x) = (x12 + 683x6 + 117649)/(76 · 372), t(x) = (2x7 + 757x + 259)/259

BLS-42

[16, Construction 6.6]

k = 42, ρ = 1.333, deg(p(x)) = 16, ϕ(k) = 12,

p(x) = (x − 1)2(x14 − x7 + 1)/3 + x,

r(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x + 1, t(x) = x + 1

BLS-48

[16, Construction 6.6]

k = 48, ρ = 1.125, deg(p(x)) = 18, ϕ(k) = 16,

p(x) = (x − 1)2(x16 − x8 + 1)/3 + x, r(x) = x16 − x8 + 1, t(x) = x + 1

* deg(): degree of polynomial, ϕ(): Euler function

3.2 Selection of Candidate Pairing-Friendly Curves

In this subsection, we decide the candidate pairing-friendly curves from the
BLS [11] and KSS [29] families to choose the suitable pairing-friendly curve at
256-bit security level based on Sect. 3.1. We focus on the BLS and KSS families
that have high embedding degree and can be easy to construct the pairing. We
specifically choose the following five candidate pairing-friendly curves at the
256-bit security level; the BLS-k with k = 24, 42, 48 and the KSS-k with
k = 32, 36. In the case of the BLS-k, the small len(r) and len(pk) in the BLS-42
and BLS-48 can be choose because these curve have high embedding degree k,
and the implementation results in the BLS-24 exists [9,44]. In the case of the
KSS-k, the KSS-36 has the small len(r), the KSS-32 has small ρ-value and simple
tower construction for Fpk since k = 32 = 25.

The detail of the five candidate pairing-friendly curves are as follows; the
curves with 6 | k are defined by E/Fp : y2 = x3 + b, and has the complex
multiplication discriminant D = 3 and d = 6, the curves with 4 | k is defined by
E/Fp : y2 = x3 + ax, and has D = 1 and d = 4. Table 1 shows the parameters
p(x), r(x), t(x), k, ρ-value, deg(p(x)), and Euler function ϕ(k) for each curves.
The parameters n(x) and f(x) satisfy n(x) = p(x)+1− t(x) and 4p(x)− t(x)2 =
Df(x)2, respectively.

4 Overview of Number Field Sieve and Its Variants

In this section, we give an overview of the NFS algorithm and its variants to
revise the bitlength of the five candidate pairing-friendly curves introduced in
Sect. 3.2.

The FFDLP is classified into three cases by size of p: small, medium, or
large. In medium and large cases, the NFS algorithms is the most efficient algo-
rithm for solving the FFDLP. To accurately classify p, let p = Lpk(lp, cp), where
Lpk(lp, cp) = exp((cp + o(1))(log pk)lp(log log pk)1−lp). o(1) becomes 0 when

64 Y. Kiyomura et al.

pk → ∞. The prime p is called medium if 1/3 < lp < 2/3, large if 2/3 < lp < 1,
boundary if lp = 2/3.

Note that the above Lpk -notation is just an asymptotic value. If we fix the
value of pk, the Lpk -notation has a constant value c such that c × exp((cp +
o(1))(log pk)lp(log log pk)1−lp) and o(1) �= 0. Therefore, when we substitute the
concrete value for pk in Lpk -notation, it is important to evaluate c and o(1).

The NFS algorithms for solving the FFDLP are classified into three types:
Classical-NFS, TNFS, and exTNFS, according to their mathematical construc-
tions. The Classical-NFS algorithm was proposed in 2006, and the complexities
are Lpk(1/3, (128/9)1/3) and Lpk(1/3, (64/9)1/3) in the medium and large cases,
respectively. The TNFS algorithm was proposed in 1999 and later applied to
the large case in 2015, where the complexity of the TNFS algorithm is also
Lpk(1/3, (64/9)1/3) in the large case. Finally, the exTNFS algorithm proposed
in 2015 is the generalization of combining the Classical-NFS and TNFS algo-
rithms, and its complexities in medium and large cases are Lpk(1/3, (64/9)1/3).

4.1 Extended TNFS and Special-NFS Algorithms

In this subsection, we explain the exTNFS algorithm [28], which is effective for
solving the FFDLP. We then give an overview of the Special-NFS algorithm.
The NFS algorithms (not specified for exTNFS) are divided into the following
four steps: 1. polynomial selection, 2. relation collection, 3. linear algebra, and
4. individual logarithm.

exTNFS Algorithm. We can use the exTNFS algorithm when the extension
degree k is composite. Let k = ηκ. We select an irreducible polynomial h(t) ∈
Z[t] over Q and Fp whose degree is η. We construct Q(ι) = Q[t]/h(t) and put
R = Z[t]/h(t) ⊂ Q(ι).

Note that the Classical-NFS algorithm [25] is the case in which R = Z in the
exTNFS algorithm, and the TNFS algorithm [45] is the case in which deg h = n
in the exTNFS algorithm.

Polynomial Selection. We select polynomials f1 and f2 ∈ R[X] that satisfy the
condition that f1 mod p and f2 mod p have a common factor ϕ(X) of degree
κ, which is irreducible over Fpη = R/pR. In this section, i ∈ {1, 2}. Let Ki be the
number fields defined by fi above the fraction field of R and Oi be the integer
ring of Ki. We denote the roots of fi in C by θi and the degree of fi by di. We
then obtain two maps from R[X] to (R/pR)[X]/ϕ(X) ∼= Fpk .

Relation Collection. We select smoothness bound B ∈ N and define factor base
Fi as follows: Fi = {(q, θi − γ) : q : prime in Q(ι) lying over a prime p ≤ B,
fi(γ) ≡ 0 mod q}. We then obtain a− bX ∈ R[X] by selecting (a(t), b(t)) ∈ R2.
The coefficients of a(t) and b(t) are bounded by A. Let E = Aη be the sieve
parameter. The norm of a − bθi in Ki is expressed as follows.

Secure and Efficient Pairing at 256-Bit Security Level 65

NKi/Q(a − bθi) =

∣
∣
∣
∣
∣
∣
Res

⎛

⎝h(t),
∑

j∈[0,di]

fi,ja(t)jb(t)di−j

⎞

⎠

∣
∣
∣
∣
∣
∣
,

where fi,j is the coefficient of polynomial fi =
∑di

j=0 fi,jX
j . When NK1/Q

(a − bθ1) and NK2/Q(a − bθ2) are B-smooth, the (a(t), b(t)) pair is called a
double smooth pair (an integer is B-smooth if the largest prime factor is less
than B). When (a(t), b(t)) is a double smooth pair, (a−bθ1) and (a−bθ2) can be
factored into the prime ideal in O1 and O2 using only the elements of F1 and F2,
respectively. Therefore, we obtain the following notation: (a − bθi) =

∏
p∈Fi

pμp

and the following relation up to units.

φ1((a − bθ1)) = φ2((a − bθ2)) in Fpk ⇐⇒ φ1(
∏

p∈F1

pμp) = φ2(
∏

q∈F2

qμq)

⇐⇒
∏

p∈F1

φ1(p)μp =
∏

q∈F2

φ2(q)μq

Thus, this leads to
∑

p∈F1

μp log φ1(p) +
∑

j

λ1,j log Λ1,j

=
∑

q∈F2

μq log φ2(q) +
∑

j

λ2,j log Λ2,j mod pk − 1,
(2)

where log φ1(p), log φ2(q), log Λ1,j and log Λ2,j are the unknowns called virtual
logarithms [46], and λ1,j and λ2,j are computable values called character maps
to distinguish the difference in units. Let Nλ be the number of character maps.
When we collect more than |F1|+ |F2|+Nλ double smooth pairs (a(t), b(t)), we
obtain the relations of (2).

In this section, we collect double smooth pairs (a, b), but it is possible to col-
lect double smooth tupples (a1, a2, · · · , aτ). We call parameter τ a sieve dimen-
sion.

Linear Algebra. In collecting adequate relations in the previous step, we can
construct and solve the simultaneous congruence. We obtain the values of the
virtual logarithms log φ1(p), log φ2(q), log Λ1,j , and log Λ2,j .

Individual Logarithm. Finally, we compute the target logarithm x from the values
of the virtual logarithms.

Special-NFS Algorithms. We collectively call three NFS algorithms
(exTNFS, Classical-NFS, and TNFS) as the General NFS (GNFS) algorithms.
The GNFS algorithms can be applied for special polynomial selection when p has
a special form. The special cases of the GNFS algorithms are called Special-NFS
(SNFS) algorithms. We consider the SNFS algorithms for solving the FFDLP to
estimate the security of the pairing where p has a special form.

66 Y. Kiyomura et al.

4.2 Larger Norm Implies Higher Complexity

In this section, we give an overview on the complexity of the NFS algorithms.
The main steps to evaluate this complexity are as follows.

– We evaluate the upper bound of norms and probabilities in which the norms
are B-smooth.

The smaller the upper bound of norms is, the higher the probability the norms
are B-smooth. Therefore, we have to select polynomials so that the upper bounds
of norms become small.

– We set the parameters appropriately so that we can collect adequate double
smooth pairs from the sieve region.

The sieve region is the region to collect relations. When the sieve degree is τ , the
sieve region is Eτ . We set the appropriate parameters to satisfy the inequality
that Eτ× (the probability of B-smooth of norm’s upper bound) ≤ (the number
of double smooth pairs we collect) = B1+o(1).

– Relation collection and linear algebra have the same complexities.

The whole complexity of NFS algorithms is the sum of the complexities of follow-
ing two steps: relation collection and linear algebra. In the exTNFS algorithm,
the complexity of relation collection is O(E2). We need to evaluate sizes of para-
meters because of the trade-off between relation collection and linear algebra.

When the norm is small, the probability that norms are B-smooth becomes
high. We can obtain relations with a few trials. The complexity of relation col-
lection becomes small, and the whole complexity becomes small. That is, the
decrease in norms implies the reduction in the security of cryptography, which
is based on the difficulty of the FFDLP. Therefore, we can estimate bitlengths
by comparing the sizes of norms.

4.3 Comparing Norms of NFS Algorithms by Using Kim and
Barbulescu’s Estimation Method

We refer to the method of comparing norms in [28] to estimate and compare the
norms of various NFS algorithms. The norms of each GNFS algorithm are listed
in Table 2, and the norms of each SNFS algorithm are listed in Table 3 (part of
Table 2 is omitted).

In Tables 2 and 3, EG is the sieve parameter of the GNFS algorithms and
ES is the sieve parameter of the SNFS algorithms. In addition, d is the degree
of polynomial selected in the step of polynomial selection. Note that d in SNFS
algorithm is equal to the degree of p. The τ is the sieve dimension, and others
are parameters used in each NFS algorithm. Sieve parameter E depends on the
implementations. Kim and Barbulescu [28] used the formula

EG = cGLpk

(
1
3
,

(
8
9

)1/3
)

, ES = cSLpk

(
1
3
,

(
4
9

)1/3
)

.

Secure and Efficient Pairing at 256-Bit Security Level 67

Table 2. Norm sizes of GNFS algorithms

Algorithm Norm product

NFS-JLSV1 EG
4k
τ (pk)

τ−1
k

TNFS EG

2(d+1)
τ (pk)

2(τ−1)
d+1

exTNFS-Conj EG
6κ
τ (pk)

τ−1
2κ

Table 3. Norm sizes of SNFS algorithms

Algorithm Norm product

STNFS ES

2(d+1)
τ (pk)

τ−1
d

SNFS-JP ES

2k(d+1)
τ (pk)

τ−1
kd

SexTNFS ES

2κ(d+1)
τ (pk)

τ−1
κd

They determined log2 cG ≈ −4.30 using the results of three implementa-
tions [6,7,14]. Similarly, they determined log2 cS ≈ −4.27 using the results of
an implementation [1]. After the values of EG and ES are determined, other
parameters must be determined. The parameters, except τ , are computed using
the theoretical optimal values. Then τ is determined as the best value in their
bitsize of the norm.

5 Revise the Bitlength for Candidate Pairing-Friendly
Curves

In this section, we revise to estimate the bitlengths for the five pairing-friendly
curves (i.e. the BLS-k with k = 24, 42, 48 and KSS-k with k = 32, 36) at 256-bit
security level by using the norms of NFS algorithms in the previous section.

5.1 Revised Estimation of Bitlength for BLS-48

In this subsection, we revised to estimate the bitlength for the BLS-48. We
compare the norms of NFS algorithms based on the constants cG and cS and
estimate the bitlength based on the initial norm of the GNFS algorithms at the
256-bit security level. The estimations for other pairing-friendly curves (i.e. the
BLS-24, KSS-32, KSS-36 and BLS-42) are described in the AppendixA.

Determining Constants cG and cS. Before plotting norms, the constant val-
ues of cG and cS must be evaluated. As previously mentioned, cG and cS are eval-
uated from the implementation results. We discuss these values by adding new
implementation results. In Kim and Barbulescu’s study [28], log2 cG ≈ −4.30 and
log2 cS ≈ −4.27; however, we evaluate cG and cS by adding to new results. First,
we evaluate cG using the result from Kleinjung [31] who solved the DLP in Fp.
We extrapolate from the pair (log2 pk = 768, log2 EG ≈ 35) Kleinjung used [31]
and obtain log2 cG ≈ −3.26. The sieve parameter EG using Kleinjung’s result is
larger than that Kim and Barbulescu evaluated. Because EG by Kim and Bar-
bulescu [28] is evaluated more strictly, we plot the norms of the GNFS algorithms
using log2 cG ≈ −4.30 they used. Next, we evaluate cS using the results by Fried
et al. [17] and Guillevic et al. [22]. We extrapolate from the pair (log2 pk = 1024,
log2 ES ≈ 31) used by Fried et al. [17] and obtain log2 cS ≈ −3.43. We also

68 Y. Kiyomura et al.

extrapolate from the pair (log2 pk = 510, log2 ES ≈ 26) used by Guillevic et
al. [22] and obtain log2 cS ≈ 0.67. The sieve parameters ES using the results
from Fried et al. and Guillevic et al. are larger than those Kim and Barbulescu
evaluated. As with EG, because ES from Kim and Barbulescu [28] is evaluated
more strictly, we plot the norms of the SNFS algorithms using log2 cS ≈ −4.27
they used.

Initial Norm of General NFS Algorithms at 256-Bit Security Level.
We define the initial norm as the norm of the GNFS algorithm for integer factor-
ization, which corresponds to the bitlength at 256-bit security level. Let N be a
composite number. The norm of this GNFS algorithm is Ed+1

G N2/d+1, where d
is the degree of the polynomial selected in the step of polynomial selection. The
recommended bitlength of RSA at 256-bit security level is 15360-bit [5]. When
N is 15360-bit, the optimal value of d is 15. We substitute the value of cG, which
we evaluated in the previous section, for the norm, and the initial norm is about
4006-bit.

Fastest Variant of NFS Algorithms for BLS-48. We concretely estimate
the bitlengths of the PBC. We give details of the BLS-48, and the other curves
are mentioned in the AppendixA. We fix the extension degree to k = 48 and
examine the fastest NFS algorithm that solves the DLP in Fp48 , where p is
expressed by the BLS-48.

First, we plot the norms of three GNFS algorithms (i.e. NFS-JLSV1, TNFS,
and exTNFS-Conj) in Fig. 1. The EG is as follows;

EG = 2−4.3Lpk

(
1
3
,

(
8
9

) 1
3
)

.

– NFS-JLSV1. The norm of the NFS-JLSV1 algorithm is expressed as
EG

4k
τ (pk)

τ−1
k . The optimal value of τ is 9 when the norm is EG

192
τ (pk)

τ−1
48 .

– TNFS. The norm of the TNFS algorithm is expressed as EG

2(d+1)
τ (pk)

2(τ−1)
d+1 .

The d is 15 using the formula d = 3
√

3
(
log pk/ log log pk

)1/3. The optimal

value of τ is 2 when the norm is EG
32
τ (pk)

2(τ−1)
16

– exTNFS-Conj. The norm of the exTNFS-Conj algorithm is expressed as
EG

6κ
τ (pk)

τ−1
2κ . Kim and Barbulescu [28] used the case of gcd(η, κ) = 1. How-

ever, Kim and Jeong proposed an algorithm allowing the choosing of η and
κ freely from the co-primality condition, and their algorithm has the same
complexities as when η and κ are co-prime [30]. Therefore, we use all cases
of (η, κ). When n = 48, we can consider the cases of (η, κ) = (2, 24), (3, 16),
(4, 12), (6, 8), (8, 6), (12, 4), (16, 3), (24, 2). When (η, κ) = (2, 24), (3, 16),
(4, 12), (6, 8), (8, 6), (12, 4), (16, 3), (24, 2), the optimal value of τ is 7, 5,
4, 3, 2, 2, 2, 2, respectively.

Secure and Efficient Pairing at 256-Bit Security Level 69

Fig. 1. Norms of GNFS algorithms in Fp48 Fig. 2. Norms of SNFS algorithms in Fp48

Next, we plot the norms of three SNFS algorithms (i.e. STNFS, SNFS-JP,
and SexTNFS) in Fig. 2. In the BLS-48, deg(p(x)) = 18. The ES is as follows:

ES = 2−4.3Lpk

(
1
3
,

(
4
9

) 1
3
)

– STNFS. The norm of the STNFS algorithm is expressed as
EG

2(d+1)
τ (pk)

τ−1
d . The optimal value of τ is 2 when the norm is EG

38
τ (pk)

τ−1
18 .

– SNFS-JP. The norm of the SNFS-JP algorithm is expressed as
EG

2k(d+1)
τ (pk)

τ−1
kd . The optimal value of τ is 103 when the norm is

EG
1824

τ (pk)
τ−1
864 .

– SexTNFS. The norm of the SexTNFS algorithm is expressed as
EG

2κ(d+1)
τ (pk)

τ−1
κd . We also use the all case of (η, κ). When (η, κ) = (2, 24),

(3, 16), (4, 12), (6, 8), (8, 6), (12, 4), (16, 3), (24, 2), the optimal value of τ
is 51, 34, 26, 17, 13, 9, 6, 4, respectively.

In Figs. 1 and 2, the STFNS algorithm has the smallest norm. When the
norm is the initial norm of 4006-bit, the bitlength of the STNFS algorithm is
27410-bit. Therefore, we can estimate that the bitlength at 256-bit security level
is 27410-bit.

5.2 Revised Bitlength at 256-Bit Security Level

We revise to estimate the bitlength for the five candidate pairing-friendly curves
(i.e. the BLS-k with k = 24, 42, 48 and KSS-k with k = 32, 36) at 256-bit security
level based on the Kim and Barbulescu’s method [28]. The results are listed in
Table 4. According to ENISA [15, Table 3.6], the bitlength of the pairing requires
more than 15360-bit to achieve the 256-bit security level [16]. However, our
revised estimation shows that it is necessary to increase the bitlength by more
than 10000-bit to achieve the 256-bit security level. In other word, it is necessary
to approximately multiply the bitlength by 1.7 times to achieve the 256-bit
security level.

70 Y. Kiyomura et al.

Table 4. Revised bitlength at 256-bit security level

BLS-24 KSS-32 KSS-36 BLS-42 BLS-48

len(pk) 25,990 27,410 28,280 28,150 27,410

6 Comparison of Timing Among Candidate
Pairing-Friendly Curves

In this section, we measure and compare the timing of the main operations of
PBC among the five candidate pairing-friendly curves using the revised bitlength
to show a suitable pairing-friendly curve at 256-bit security level. Our implemen-
tation uses the efficient algorithms for computing the main operations of PBC.

6.1 Specific Parameter for Implementation

The specific parameter x0 for each candidate pairing-friendly curve is required
to decide the parameters of each curve in Table 1 and implement the main opera-
tions of PBC. The x0 for the BLS-24 showed in [13] satisfies the revised bitlength
of pk in Table 4, but there are no documents showed the parameter satisfying the
revised bitlength of pk in Table 4 for other curves. Therefore, we should search
for x0 for each KSS-32, KSS-36, BLS-42, and BLS-48.

To efficiently compute the pairing, we search for the specific parameter x0

with a low Hamming weight and len(r) ≥ 512 and len(pk) always more than the
bitlength in Table 4. Table 6 shows x0, the bitlength of parameters, and Hamming
weight of x0 for the five candidate pairing-friendly curves. Note that the G1,
G2, G3 are better to satisfy subgroup security [12] in order to resist against
small-subgroup attacks as an optional security requirement. The information of
implementation (i.e. the tower construction, elliptic curve E, twist E′ of E, and

T,T ′(P)) are showed in Table 5.

6.2 Our Implemented Algorithms

In this subsection, we give an overview of the implemented efficient algorithms
for computing the main operations of PBC. We implement the base field Fp

arithmetic by using the GMP library [18]. Additionally, in the arithmetic of
the tower field, we use the lazy reduction technique [42] which can reduce the
number of the modulo operations of Fp.

Pairing. The formulas of optimal ate pairing for each candidate pairing-friendly
curve are given in Table 7. Note that these formulas can be produced from Eq. (1)
and [47, Eq. (9)]. There are two steps involved in computing the optimal ate
pairing; the miller loop (ML) f ′ = fx,Q(P) · g, where g is the part other than
fx,Q(P) in Table 7, and final exponentiation (FE) f ′(pk−1)/r.

Secure and Efficient Pairing at 256-Bit Security Level 71

Table 5. Information of implementation for the five candidate pairing-friendly curves

BLS-24 Fields Fp
u2+1−−−→ Fp2

v2+u+1−−−−−→ Fp4
w3+v−−−−→ Fp12

z2+w−−−−→ Fp24

E, E′ E/Fp : y2 = x3 + 1, E′/Fp4 : y2 = x3 − 1/v

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

w

: 0
︸︷︷︸

w2

|
z

︷ ︸︸ ︷

(−λ · xP)u
︸ ︷︷ ︸

1

: cu
︸︷︷︸

w

: 0
︸︷︷︸

w2

]

KSS-32 Fields Fp
u2+2−−−→ Fp2

v2−u−−−→ Fp4
w2−v−−−−→ Fp8

z2−w−−−−→ Fp16
s2−z−−−→ Fp32

E, E′ E/Fp : y2 = x3 + 2x, E′/Fp8 : y2 = x3 + 2x/w

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

z

|
s

︷ ︸︸ ︷

−λ · xP
︸ ︷︷ ︸

1

: c
︸︷︷︸

z

]

KSS-36 Fields Fp
u2+1−−−→ Fp2

v3+u+1−−−−−→ Fp6
w3+v−−−−→ Fp18

z2+w−−−−→ Fp36

E, E′ E/Fp : y2 = x3 + 2, E′/Fp6 : y2 = x3 − 2/v

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

w

: 0
︸︷︷︸

w2

|
z

︷ ︸︸ ︷

(−λ · xP)u
︸ ︷︷ ︸

1

: cu
︸︷︷︸

w

: 0
︸︷︷︸

w2

]

BLS-42 Fields Fp
u7+2−−−→ Fp7

v3+u−1−−−−−→ Fp21
w2−v−−−−→ Fp42

E, E′ E/Fp : y2 = x3 + 1, E′/Fp6 : y2 = x3 + 1/(1 − u)

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

v

: 0
︸︷︷︸

v2

|
w

︷ ︸︸ ︷

−λ · xP
︸ ︷︷ ︸

1

: c
︸︷︷︸

v

: 0
︸︷︷︸

v2

]

BLS-48 Fields Fp
u2+1−−−→ Fp2

v2+u+1−−−−−→ Fp4
w2+v−−−−→ Fp8

z3+w−−−−→ Fp24
s2+z−−−→ Fp48

E, E′ E/Fp : y2 = x3 + 1, E′/Fp8 : y2 = x3 − 1/w

�T,T ′(P) [

1
︷ ︸︸ ︷

yP
︸︷︷︸

1

: 0
︸︷︷︸

z

: 0
︸︷︷︸

z2

|
s

︷ ︸︸ ︷

(−λ · xP)u
︸ ︷︷ ︸

1

: cu
︸︷︷︸

z

: 0
︸︷︷︸

z2

]

In the ML, the rational function fx,Q(P) can be computed using Miller’s
algorithm [34]. The computational cost of the ML is affected by bitlength x0

and the Hamming weight of x0. We can reduce the computational cost of the
multiplication on Fpk by using the sparse multiplication technique [35]. We use
the affine pairing [2] since the computation of the inversion in G2 is fast.

In the FE, the equation f ′(pk−1)/r can be broken down into three components
by using cyclotomic polynomial Φk as follows [43].

(pk − 1)/r = [(pk/2 − 1)] · [(pk/2 + 1)/Φk(p)]
︸ ︷︷ ︸

easy part

· [Φk(p)/r]
︸ ︷︷ ︸
hard part

.

The computation of the easy part m = f ′(pk/2−1)·((pk/2+1)/Φk(p)) requires one
conjugation, one inversion, some Frobenius operations and some multiplications
on Fpk , so the computational cost of the easy part hardly affects that of the
whole FE. The hard part can be computed by using the base p representation
of Φk (p) /r as

72 Y. Kiyomura et al.

Table 6. x0, bitlength of parameters and Hamming weight of x0

x0 len(x0) HW(x0) len(pk) len(pk/d) len(p) len(r)

BLS-24 −1 + 265 − 275 + 2109 109 4 26122 4354 1089 872

KSS-32 −1 − 22 − 212 + 214 + 218 − 230 + 249 49 7 27536 6884 861 738

KSS-36 25 + 234 + 240 + 245 − 258 58 5 28699 4784 798 669

BLS-42 −1 + 22 − 28 + 243 43 4 28830 4805 687 516

BLS-48 −1 + 27 − 210 − 230 − 232 33 5 27851 4642 581 518

* HW() : Hamming weight

Table 7. Formulas for computing optimal ate pairing ak(P, Q)

BLS-k with k = 24, 42, 48
(
fx,Q(P)

)(pk−1)/r

KSS-32

(
fx,Q(P) · f

p9
2,Q

(P) ·
(

f3,Q(P)
)p · �xQ,−3pQ(P)

)(p32−1)/r

KSS-36

(
fx,Q(P) · f

p7
2,Q

(P) ·
(

f3,Q(P)
)p · �xQ,−3pQ(P)

)(p36−1)/r

* t : conjugation of t in F
pk

mΦk(p)/r = (mλ0) · (mλ1)p · · · (mλs−1)ps−1 · (mλs)ps

, (3)

where λi is the polynomial by x and s = ϕ(k)− 1. For computing the Eq. (3), in
the BLS-k, we can compute it with essentially just exponentiation by x since the
BLS-k has a very convenient way to compute the each mλi [13]. In the KSS-k, we
apply the addition chain technique with Ghammam et al.’s λi-representation to
compute the each mλi efficiently since the coefficients of λi are dozens bits [23].
Additionally, to efficiently compute the exponentiation by x, we use the Karabina
squaring technique [27] in the case of the curve with d = 6, and Granger-Scott
squaring technique [19] in the case of the curve with d = 4 respectively. Hence,
the computation of the hard part requires exponentiations by x deg(p(x)) − 1
times, Frobenius operations s times, and squarings/multiplications on Fpk .

Scalar Mult. in G1 and G2. To efficiently compute the scalar multiplication in
G1 and G2, we use the Gallant-Lambert-Vanstone (GLV) [20] and Galbraith-
Lin-Scott (GLS) [21] which are the scalar decomposition methods By using the
GLV/GLS, for given a scalar u and P ∈ G1 (or G2), the scalar u is decomposed
into t scalars u1, u2, . . . , ut with roughly the size len(u)/t, then we convert the
multi-scalar multiplication uP = u1P + u2ψ(P) + · · · + utψ

t−1(P) by using an
efficient endomorphism ψ [9], where t = 2 in G1 and t = ϕ(k) in G2 respec-
tively. The number of the doubling in G1 and G2 can reduce to roughly 1/t.
Moreover, by using the width-w non adjacent form (w-NAF) [45], the number
of the addition in G1 and G2 can be reduced in the computing the each scalar
multiplication uiψ

i−1(P). Note that we chose the optimal window size w for
the scalars ui. Let Ii and Mi be the cost of inversion and multiplication in Fpi

respectively. We use the Jacobian coordinates in G1 since I1 ≈ 17.7M1. We use
the affine coordinates in G2 since Ik/d ≈ 3.3Mk/d for BLS-24, KSS-32, KSS-36,
BLS-48, and the Jacobian coordinates in G2 since I7 ≈ 17.6M7 for BLS-42.

Secure and Efficient Pairing at 256-Bit Security Level 73

Table 8. Timing of computing pairing (ML, FE), scalar multiplication in G1, G2 and
exponentiation in G3 (M clk: million clocks)

BLS-24 KSS-32 KSS-36 BLS-42 BLS-48

Pairing ML 53.80 32.04 37.61 36.36 20.48

FE 89.84 197.26 147.49 100.95 96.36

Total 143.64 229.30 185.10 137.31 116.84

Scalar Mult. in G1 12.00 8.31 6.13 3.94 3.56

Scalar Mult. in G2 38.87 53.32 35.01 49.43 25.18

Exp. in G3 71.00 62.88 77.30 56.00 63.46

* Scalar Mult. in G2 of BLS-42 only used the Jacobian coordinates
because of I7 ≈ 17.6M7.

Exp. in G3. To efficiently compute the exponentiation in G3, we can use the
GLS method and w-NAF since G3 ⊆ GΦk(p) = {α ∈ Fpk | αΦk(p) = 1} and the
inversion in G3 can be efficiently computed by the conjugation [4].

6.3 Timing and Comparison

In this subsection, we show the timing of the main operations of PBC and
compare those among the five candidate pairing-friendly curves.

Environment. We implement in C language, and its compiler is gcc 6.2.0 with
-O3 option. We also measure on an Intel Core i7-6700 @ 3.4 GHz, RAM: 32 GB
and OS: Ubuntu 16.04 (64-bit).

Results. Table 8 shows the timing of computing the pairing (ML, FE), scalar
multiplication in G1, G2, and exponentiation in G3 for each candidate pairing-
friendly curve. We discuss the timing of these operations among the five candi-
date pairing-friendly curves.

Pairing. The computational cost of the ML is affected by the bitlength and
Hamming weight of x0. The effect on the timing of the ML by the Hamming
weight of x0 is small since the Hamming weight of x0 of each five candidate
pairing-friendly curves is sufficiently small and much the same. As the embedding
degree k increases, the bitlength of x0 decrease, so the timing of the ML in the
BLS-48 can be computed most efficiently.

The computational cost of the FE is affected by the coefficient of λi of Eq. (3),
ϕ(k), degree of p(x), the bitlength of x0 and pk. The timings of the FE in the
KSS-k are slower than that of the BLS-k since the computational cost of addition
chain is required in addition to the exponentiation by x to compute the each
mλi in Eq. (3) of KSS-k. In the BLS-k, the coefficient of each λi of Eq. (3) is
a few bits. Hence, the cost to compute all mλi in the BLS-k is affected by the

74 Y. Kiyomura et al.

bitlength of pk. The timing of the FE in the BLS-24 is faster than other BLS-k
since the bitlength of x0 of the BLS-24 is smaller.

Consequently, the timing of the pairing in the BLS-48 is faster than other
pairing-friendly curves. The multi-pairing requires computing multiple MLs and
one FE. Hence, the pairing-friendly curve with fast calculation of the ML has a
significant effect on the efficiency of the computing the multi-pairing.

Scalar Mult. in G1. The input of scalar multiplication in G1 is a random element
P ∈ G1 and a random scalar value of less than r. The computational cost is
affected by the bitlength of r and the point addition/doubling in G1 affected
by the bitlength of p. As k increases, the bitlength of p and r decrease. Hence,
the timing of the scalar multiplication in G1 in the BLS-48 is faster than other
pairing-friendly curves.

Scalar Mult. in G2. The input of scalar multiplication in G2 is a random element
of P ∈ G2 and a random scalar value of less than r. Its computational cost is
affected by the degree of twist d, and the bitlength r and pk/d. The group G2

is a subgroup on E′(Fpk/d), and the bitlength of pk/d can be small when d is
large. The bitlength of pk/d in the KSS-32 with d = 4 is about 2000-bit larger
than that in the BLS-24, KSS-32, KSS-36, and BLS-48 with d = 6. Hence, the
timing of the scalar multiplication in G2 in the KSS-32 is slower than other
curves. Among the BLS-24, KSS-36 and BLS-48, as k increases, the bitlength of
r decrease. Hence, the timing of the scalar multiplication in G2 in the BLS-48 is
faster than other curves.

Exp. in G3. The input of exponentiation in G3 is a random element of g ∈ G3 and
a random scalar value of less than r. The group G3 is a subgroup on finite field
Fpk , and then the computational cost of the exponentiation in G3 is affected by
the bitlength of r and the multiplication/squaring in Fpk . The BLS-42 and BLS-
48 are theoretically better to compute the exponentiation in G3 efficiently since
the bitlength of r is small rather than other curves. The number of the squaring
in Fpk in the BLS-48 is less than that in the BLS-42 because of the decomposition
size. To compute the multi-exponentiation after the decomposition, the number
of the multiplication in Fpk in the BLS-42 is more reduced rather than in the
BLS-48 because the bigger window size can be use in BLS-42 by w-NAF. As
the result, the timing of the exponentiation in G3 in the BLS-42 is fastest in all
candidate curves.

6.4 Impact on Timing by Revised Bitlength

In this subsection, we show the impact on the timing of the main operations of
PBC by revised bitlength of pk at 256-bit security level by comparing between
our and previous implementations. Note that it is difficult to directly compare the
timing of the main operations of PBC between our and previous implementations
since the implemented algorithms and techniques are different.

Secure and Efficient Pairing at 256-Bit Security Level 75

In previous implementations, Scott [44] showed that the timing of the pairing
is 88.8M clk, and Bos et al. [9] showed that the timing of the scalar multiplication
in G1 and G2, and exponentiation in G3 are 5.2, 27.6, 47.1M clk respectively.
These implemented in BLS-24 with about 15000-bit pk and 500-bit r.

We compare the timing between our BLS-48 implementation and the
previous BLS-24 implementations. Our BLS-48 implementation of the scalar
multiplication in G1 is approximately 1.5 times faster than the previous BLS-
24 implementations of that because the bitlength of r is the same between
these implementations. Then, our BLS-48 implementation of other operations
is approximately 1.0–1.3 times slower than the previous BLS-24 implementa-
tions of that due to the effect of the efficient NFS algorithms.

7 Conclusion

We give for the first time the revised bitlength which the DLP is computation-
ally infeasible against the efficient NFS algorithms (e.g. SexTNFS, STNFS), and
the timing of the main operations of PBC for the five candidate pairing-friendly
curves (i.e. the BLS-k with k = 24, 42, 48, KSS-k with k = 32, 36) at 256-bit
security level. On the security side, we show that it is necessary to increase
bitlengths by more than 10000-bit from the previous estimation to achieve the
256-bit security level. On the implementation side, we show that the BLS-48
curve is the suitable curve at the 256-bit security level by comparing the tim-
ing of the main operations of PBC among the five candidate pairing-friendly
curves with revised bitlengths. For more speeding up, we should implement Fp-
arithmetic in assembly, apply other efficient algorithms, etc.

A Norm Plots of BLS-24, KSS-32, KSS-36 and BLS-42

In this appendix, we show the norm plots of the GNFS and SNFS algorithms
for the BLS-24, KSS-32, KSS-36, and BLS-42 in order to revise the bitlength of
the these curves using the same method discussed in Sect. 5 (Figs. 3, 4, 5, 6, 7,
8, 9 and 10).

Fig. 3. Norms of GNFS algorithm in Fp24 Fig. 4. Norms of SNFS algorithm in Fp24

76 Y. Kiyomura et al.

Fig. 5. Norms of GNFS algorithm in Fp32 Fig. 6. Norms of SNFS algorithm in Fp32

Fig. 7. Norms of GNFS algorithm in Fp36 Fig. 8. Norms of the SNFS algorithm in
Fp36

Fig. 9. Norms of GNFS algorithm in Fp42 Fig. 10. Norms of SNFS algorithm in Fp42

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 1

2. Acar, T., Lauter, K., Naehrig, M., Shumow, D.: Affine pairings on ARM. In:
Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 203–209. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36334-4 13

http://dx.doi.org/10.1007/978-3-540-76900-2_1
http://dx.doi.org/10.1007/978-3-642-36334-4_13

Secure and Efficient Pairing at 256-Bit Security Level 77

3. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-36334-4 11

4. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 5

5. Barker, E.B., Barker, W.C., Burr, W.E., Polk, W.T., Smid, M.E.: Recommendation
for key management - part 1: General (Revision 4). NIST SP 800-57 (2016)

6. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 6

7. Bouvier, C., Gaudry, P., Imbert, L., Jeljeli, H., Thom, E.: Discrete logarithms in
GF(p) — 180 digits. Announcement available at the NMBRTHRY archives, item
004703 (2014)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

9. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 438–455.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 22

10. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 2

11. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). doi:10.1007/3-540-36413-7 19

12. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). doi:10.1007/978-3-319-22174-8 14

13. Costello, C., Lauter, K., Naehrig, M.: Attractive subfamilies of BLS curves for
implementing high-security pairings. In: Bernstein, D.J., Chatterjee, S. (eds.)
INDOCRYPT 2011. LNCS, vol. 7107, pp. 320–342. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25578-6 23

14. Danilov, S.A., Popovyan, I.A.: Factorization of RSA-180, Cryptology ePrint
Archive, Report 2010/270 (2010)

15. European Union Agency of Network and Information Security (ENISA): Algo-
rithms, key sizes and parameters report, 2013 recommandations, version 1.0, Octo-
ber 2013

16. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23, 224–280 (2010)

17. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A kilobit hidden SNFS dis-
crete logarithm computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 202–231. Springer, Cham (2017). doi:10.1007/
978-3-319-56620-7 8

18. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/

http://dx.doi.org/10.1007/978-3-642-36334-4_11
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://dx.doi.org/10.1007/978-3-662-46800-5_6
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-662-43414-7_22
http://dx.doi.org/10.1007/978-3-662-48800-3_2
http://dx.doi.org/10.1007/3-540-36413-7_19
http://dx.doi.org/10.1007/978-3-319-22174-8_14
http://dx.doi.org/10.1007/978-3-642-25578-6_23
http://dx.doi.org/10.1007/978-3-319-56620-7_8
http://dx.doi.org/10.1007/978-3-319-56620-7_8
https://gmplib.org/

78 Y. Kiyomura et al.

19. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 13

20. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 11

21. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Crypto 24, 446–469 (2011)

22. Guillevic, A., Morain, F., Thomé, E.: Solving discrete logarithms on a 170-bit MNT
curve by pairing reduction, arXiv preprint arXiv:1605.07746 (2016)

23. Ghammam, L., Fouotsa, E.: Adequate elliptic curves for computing the product
of n pairings. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol.
10064, pp. 36–53. Springer, Cham (2016). doi:10.1007/978-3-319-55227-9 3

24. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theory 52(10), 4595–4602 (2006)

25. Joux, A., Lercier, R., Smart, N., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006). doi:10.1007/11818175 19

26. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang, F.
(eds.) Pairing 2013. LNCS, vol. 8365, pp. 45–61. Springer, Cham (2014). doi:10.
1007/978-3-319-04873-4 3

27. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82, 555–579
(2013)

28. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complex-
ity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 20

29. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly
elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Pater-
son, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85538-5 9

30. Kim, T., Jeong, J.: Extended tower number field sieve with application to
finite fields of arbitrary composite extension degree. In: Fehr, S. (ed.) PKC
2017. LNCS, vol. 10174, pp. 388–408. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54365-8 16

31. Kleinjung, T.: Discrete Logarithms in GF(p) – 768 bits. Announcement available
at the NMBRTHRY archives, item 004917 (2016)

32. Lenstra, A.K.: Unbelievable security matching AES security using public key sys-
tems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer,
Heidelberg (2001). doi:10.1007/3-540-45682-1 5

33. Lenstra, A.K., Lenstra, H.W. (eds.): The Development of the Number Field Sieve.
LNM, vol. 1554. Springer, Heidelberg (1993). doi:10.1007/BFb0091534

34. Miller, V.S.: The weil pairing, and its efficient calculation. J. Cryptol. 17, 235–261
(2004)

35. Mori, Y., Akagi, S., Nogami, Y., Shirase, M.: Pseudo 8–sparse multiplication for
efficient ate–based pairing on barreto–naehrig curve. In: Cao, Z., Zhang, F. (eds.)
Pairing 2013. LNCS, vol. 8365, pp. 186–198. Springer, Cham (2014). doi:10.1007/
978-3-319-04873-4 11

36. Mitsunari, S.: A fast implementation of the optimal ate pairing over BN curve on
intel haswell processor, Cryptology ePrint Archive, Report 2013/362 (2013)

http://dx.doi.org/10.1007/978-3-642-13013-7_13
http://dx.doi.org/10.1007/3-540-44647-8_11
http://arxiv.org/abs/1605.07746
http://dx.doi.org/10.1007/978-3-319-55227-9_3
http://dx.doi.org/10.1007/11818175_19
http://dx.doi.org/10.1007/978-3-319-04873-4_3
http://dx.doi.org/10.1007/978-3-319-04873-4_3
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-540-85538-5_9
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/3-540-45682-1_5
http://dx.doi.org/10.1007/BFb0091534
http://dx.doi.org/10.1007/978-3-319-04873-4_11
http://dx.doi.org/10.1007/978-3-319-04873-4_11

Secure and Efficient Pairing at 256-Bit Security Level 79

37. Menezes, A., Sarker, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography, Cryptology ePrint Archive,
Report 2016/1102 (2016)

38. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

39. Pollard, J.: Monte Carlo methods for index computation (mod p). Math. Comput.
32(143), 918–924 (1978)

40. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, C-20, pp. 26–28 (2000)

41. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

42. Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over
barreto-naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73489-5 10

43. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03298-1 6

44. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen,
L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25516-8 18

45. Schirokauer, O.: Using number fields to compute logarithms in finite fields. Math.
Comp. 69, 1267–1283 (2000)

46. Schirokauer, O.: Virtual logarithms. J. Algorithms 57, 140–147 (2005)
47. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)

http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-540-73489-5_10
http://dx.doi.org/10.1007/978-3-642-03298-1_6
http://dx.doi.org/10.1007/978-3-642-25516-8_18

Data Protection and Mobile Security

No Free Charge Theorem: A Covert Channel
via USB Charging Cable on Mobile Devices

Riccardo Spolaor1(B), Laila Abudahi2, Veelasha Moonsamy3, Mauro Conti1,
and Radha Poovendran2

1 University of Padua, Padua, Italy
{rspolaor,conti}@math.unipd.it

2 University of Washington, Seattle, USA
{abudahil,rp3}@uw.edu

3 Radboud University, Nijmegen, The Netherlands
email@veelasha.org

Abstract. More and more people are regularly using mobile and
battery-powered handsets, such as smartphones and tablets. At the same
time, thanks to the technological innovation and to the high user demand,
those devices are integrating extensive battery-draining functionalities,
which results in a surge of energy consumption of these devices. This
scenario leads many people to often look for opportunities to charge
their devices at public charging stations: the presence of such stations is
already prominent around public areas such as hotels, shopping malls,
airports, gyms and museums, and is expected to significantly grow in
the future. While most of the times the power comes for free, there is no
guarantee that the charging station is not maliciously controlled by an
adversary, with the intention to exfiltrate data from the devices that are
connected to it.

In this paper, we illustrate for the first time how an adversary could
leverage a maliciously controlled charging station to exfiltrate data from
the smartphone via a USB charging cable (i.e., without using the data
transfer functionality), controlling a simple app running on the device—
and without requiring any permission to be granted by the user to send
data out of the device. We show the feasibility of the proposed attack
through a prototype implementation in Android, which is able to send
out potentially sensitive information, such as IMEI and contacts’ phone
number.

1 Introduction

Market studies predicted that in 2011 smartphone sales would surpassed that
of desktop PCs [31]. To this date, smartphones remain the most used handheld
devices. This is partly due to the fact that these devices are more powerful and
provide more functionalities than the traditional feature phones. As a result, users
can perform a variety of tasks on an actual smartphone device, which in the past
would have been possible only on a desktop PC. In order to carry out such tasks,
the smartphone platform offers its users a plethora of applications (apps).
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 83–102, 2017.
DOI: 10.1007/978-3-319-61204-1 5

84 R. Spolaor et al.

Moreover, as users are constantly using apps (e.g., the gaming app, Pokémon
Go) and would eventually require to recharge their smartphones, the demand
for public charging stations have increased significantly in the last decade. Such
stations can be seen in public areas such as airports, shopping malls, gyms and
museums, where users can recharge their devices for free. In fact, this trend is
also giving rise to a special type of business1, which allows shop owners to install
charging stations in their stores so as to boost their sales by providing free phone
recharge to shoppers.

As the phone recharging is usually for free, however, at the same time one
cannot be sure that the public charging stations are not maliciously controlled by
an adversary. The Snowden revelations gave us proof that civilians are constantly
under surveillance and nations are competing against each other by deploying
smart technologies for collecting sensitive information en mass. In our work, we
consider an adversary (e.g., manufacturers of public charging stations, Govern-
ment agencies) whose aim is to take control over the public charging station and
whose motive is to exfiltrate data from the user’s smartphone once the device is
plugged into the station.

In this paper, we demonstrate the feasibility of using power consumption (in
the form of power bursts) to send out data over a Universal Serial Bus (USB)
charging cable, which acts as a covert channel, to the public charging station.
We implemented a proof-of-concept app, PowerSnitch, that can send out bits
of data in the form of power bursts by manipulating the power consumption
of the device’s CPU. Interestingly, PowerSnitch does not require any special
permission from the user at install-time (nor at run-time) to exfiltrate data out
of the smartphone over the USB cable. On the adversary’s side, we designed and
implemented a decoder to retrieve the bits that have been transmitted via power
bursts. Our empirical results show that we can successfully decode a payload of
512 bits with a 0% Bit Error Ratio (BER). In addition, we stress that the goal
of this paper is to assess for the first time the feasibility of data transmission on
such a covert channel and not to optimize its performance, which we will tackle
as future work.

We focus primarily on Android, as it is currently the leading platform and
has a large user base. However, we believe that this attack can be deployed on
any other smartphone operating systems, as long as the device is connected to
a power source at the public charging station.

Our contributions are as follows:

1. To our knowledge, we are the first to demonstrate the practicality of using
the power feature of a USB charging cable as a covert channel to exfiltrate
data, in the form of power bursts, from a device while it is connected to a
power supplier. The attack works in Airplane mode as well.

2. We implemented a prototype of the attack, i.e., we designed and implemented
its two components: (i) We built a proof-of-concept app, PowerSnitch, which
does not require any permission granted by the user to communicate bits

1 chargeitspot.com, chargetech.com.

https://chargeitspot.com
https://chargetech.com/

No Free Charge Theorem: A Covert Channel via USB Charging Cable 85

of information in the form of power bursts back to the adversary; (ii) The
decoder is deployed on the adversary side, i.e., public charging station to
retrieve the binary information embedded in the power bursts.

3. We are able with our prototype to actually send out data using power bursts.
Our prototype demonstrate the practical feasibility of the attack.

The rest of the paper is organized as follows. In Sect. 2, we present a brief
literature overview of covert channel and data exfiltration techniques on smart-
phones. In Sect. 3, we include some background knowledge on Android operating
system, and signal transmission and processing. In Sect. 4, we provide a descrip-
tion of our covert channel and decoder design, followed by the experimental
results in Sect. 5 and discussion in Sect. 6. We conclude the paper in Sect. 7.

2 Related Work

In this section, we survey the existing work in the area of covert channels on
mobile devices. We also present other non-conventional attack vectors, such as
side channel information leakage via embedded sensors which can be used for
data exfiltration.

Covert Channels – A covert channel can be considered as a secret channel used
to exfiltrate information from a secured environment in an undetected manner.
Chandra et al. [8] investigated the existence of different covert channels that can
be used to communicate between two malicious applications. They examined
the common resources (such as battery) shared between two malicious applica-
tions and how they could be exploited for covert communication. Similar studies
presented in [14,18,21,26] exploited unknown covert channels in malicious and
clean applications to leak out private information.

As demonstrated by Aloraini et al. [1], the adversary is further empowered
as smartphones continue to have more computational power and extensive func-
tionalities. The authors empirically showed that speech-like data can be sent
over a cellular voice channel. The attack was successfully carried out with the
help of a custom-built rootkit installed on Android devices. In [10], Do et al.
demonstrated the feasibility of covertly exfiltrating data via SMS and inaudi-
ble audio transmission, without the user’s knowledge, to other mobile devices
including laptops.

In our work, we present a novel covert channel which exploits the USB
charging cable by leaking information from a smartphone via power bursts. Our
proposed method is non-invasive and can be deployed on non-rooted Android
devices. We explain the attack in more detail in Sect. 4.1.

Power Consumption by Smartphones – In order to prolong the longevity of
the smartphone’s battery, it is crucial to understand how apps consume energy
during execution and how to optimize such consumption. To this end, several
works [4,6,23,33] have been proposed. Furthermore, the authors from [13,17]

86 R. Spolaor et al.

studied apps’ power consumption to detect anomalous behavior on smartphones,
thus leading to detection of malware.

Since existing work focus on energy consumption on the device, our attack
would therefore go undetected as the smartphone’s CPU sends small chunks
of encoded data, which are translated into power bursts, back to the public
charging station. Additionally, state-of-the-art attacks that have been performed
while the smartphone is charging [15,19] exploit vulnerabilities of USB interface
rather than actual energy consumption.

Attack Vectors using Side Channel Leaks – Modern smartphones are embedded
with a plethora of sensors that allow users to interact seamlessly with the apps
on their smartphones. However, these sensors have access to an abundance of
information stored on the device that can get exfiltrated. These data leaks can
be used as a side channel to infer, otherwise undisclosed, sensitive information
about the user or device [2,16,32].

The authors from [3,22] demonstrated how accelerometer readings can be
used to infer tap-, gesture- and keyboard-based input from users to unlock their
smartphones. Similarly, Spreitzer [27] showed that the ambient-light sensor can
be exploited to infer users’ PIN input. Moreover, considering network traffic as
a side-channel, it is possible to identify the set of apps installed on a victim’s
mobile device [28,29], and even infer the actions the victim is performing with
a specific app [9].

As pointed out in the aforementioned existing work, the adversarial model
did not require any special privileges to exploit side channel leaks to recover
data exfiltrated via sensors. In this paper, we show that our custom app, Pow-
erSnitch, does not require any special permissions to be granted by the user in
order to communicate information (in terms of power bursts) to the adversary.
Furthermore, we stress that while the INTERNET permission is one approach of
data exfiltration, our proposed work is different as we show the feasibility and
practicability of using a USB cable to exfiltrate data. In particular, our attack
still works even when the phone is switched to Airplane mode and defeats exist-
ing USB charging protection dongles, as in [7], since we only require the USB
power pins to exfiltrate data.

3 Background Knowledge

In this section, we briefly recall several concepts that we use in our paper about
Android operating system in Sect. 3.1, and signal transmission and processing
in Sect. 3.2.

3.1 Android System and Permissions

In the Android Operating System (OS), apps are distributed as APK files. These
files are simple archives which contain bytecode, resources and metadata. A user
can install or uninstall an app (thus the APK file) by directly interacting with

No Free Charge Theorem: A Covert Channel via USB Charging Cable 87

the smartphone. When an Android app is running, its code is executed in a
sandbox. In practice, an app runs isolated from the rest of the system, and it
cannot directly access other apps’ memory. The only way an app could gain
memory access is via the mediation of inter-process communication techniques
made available by Android. These measures are in place to prevent the access of
malicious apps to other apps’ data, which could potentially be privacy-sensitive.

Since Android apps run in a sandbox, they not only have restriction in shared
memory usage, but also to most system resources. Instead, the Android OS pro-
vides an extensive set of Accessible Programming Interfaces (APIs), which allows
access to system resources and services. In particular, the APIs that give access
to potentially privacy-violating services (e.g., camera, microphone) or sensitive
data (e.g., contacts) are protected by the Android Permission System [11]. An
app that wants access to protected data or service must declare in the form of
permission (identified by a string) in its manifest file. The list of permissions
needed by an app is shown to the user when installing the app, and cannot
be changed while an app is installed on the device. With the introduction of
Android M (i.e., 6.0), permissions can be dynamically granted (by users) during
an app’s execution.

The permission system has also the goal of reducing the damage in case of a
successful attack that manages to take control of an app, by limiting the resources
that app’s process has access to. Unfortunately, permission over-provisioning is a
common malpractice, so much so that research efforts have been spent in trying
to detect this problem [5]. Moreover, an app asking for permissions not related
to its purpose (or functionality) can hide malicious behaviors (i.e., spyware or
malware apps) [20].

3.2 Signal Transmission and Processing

In this section, we provide some background information on bit transmission,
and signal processing and decoding used in our proposed decoder (see Sect. 4.4).

Bit Transmission – To enable bit transmission over our channel, an understand-
ing of basic digital communication systems is essential. For proof-of-concept pur-
poses, the design of our bit transmission system was inspired by amplitude-based
modulation in the digital communication literature.

Amplitude-Shift Keying (ASK) is a form of digital modulation where digital
bits are represented by variations in the amplitude of a carrier signal. To send bits
over our channel, we used On-Off Signaling (OOS), which is the simplest form
of ASK where digital data is represented by the presence and absence of some
pulse p(t) for a specific period of time. Figure 1a shows the difference between a
Return-to-Zero (RZ) and a Non-Return-to-Zero (NRZ) on-off encoding. In NRZ
encoding, bits are represented by a sufficient condition (a pulse) that occupies
the entire bit period Tb while RZ encoding represents bits as pulses for a duration
of Tb/2 before it returns to zero for the following Tb/2 period.

On the other hand, Fig. 1b shows the difference between a unipolar and a
polar RZ on-off signaling. In a polar RZ encoding, two different conditions,

88 R. Spolaor et al.

different-sign pulses are used to encode different bits(zeros/ones) while the pres-
ence and absence of a single pulse, a positive one in our case, are used to encode
different bits.

For the sake of our channel design, it is safe to assume that we can only
increase the power consumption of a phone at certain times and hence, are able
to generate only positive (high) bursts. Thus, a unipolar encoding seems more
relative and applicable for our channel. Moreover, successive peaks, such as the
first two zeros in Fig. 1a, are easier to identify, and thus decode, in the RZ-
encoded signal than in the NRZ one. This advantage of RZ over NRZ becomes
especially apparent in cases where the bit period is expected not to be restric-
tively fixed in the received signal whether it is due to expected high channel
noises or lack of full control of the phone’s CPU. Therefore, unipolar RZ on-off
signaling was used to encode leaked bits over our covert channel.

NRZ

RZ

Encoded Bits 0 0 1 0 1

(a) Return-to-Zero (RZ) and Non-
Return-to-Zero (NRZ) On-Off Encoding.

(b) A Polar and a Unipolar encoding of
an RZ On-Off Signal.

Fig. 1. A comparison between bit encoding methods

Signal Processing and Decoding – After choosing the appropriate encoding
method to transmit bits, it is also essential to think about the optimal receiver
design and how to process the received signal and decode bits with minimum
error probability at the receiver side of the channel. As known in the digital
communication literature, matched filters are the optimal receivers for Additive
White Gaussian Noise (AWGN) channels. We refer the reader to Sect. 4.2 of [24]
for a detailed proof.

Matched Filters are obtained by correlating the received signal R(t) with the
known pulse that was first used to encode a transmitted bit, in this case P(t)
with period Tb. After correlation, the resulted signal is then sampled at time
Tb, which means that the sampling rate equals to 1/Tb samples/seconds. This
way, each bit is guaranteed to be represented by only one sample. The decoding
decision will then be made based on that one sample value; if the sample value
is more than a given threshold, this indicates the presence of P(t); and hence a
zero in our case, while a sample value below the threshold indicates the absence
of P(t) and hence a one is decoded.

However and most importantly, for matched filters to work as expected, it is
essential to have fixed bit period Tb throughout the entire received signal. If the
periods of the received bits were varying, the matched filter samples taken with
the 1/Tb sampling rate will not be as optimal and representative of the bit data
as expected and synchronization will be lost.

No Free Charge Theorem: A Covert Channel via USB Charging Cable 89

Since there exist infrequent phone-specific, OS-enforced conditions that can
affect the power consumption of a phone, the noises on our channel are expected
to be more complex to fit in an AWGN model. Hence, a matched filter receiver
is most likely not the optimal receiver for our channel. More creative decoder
design decisions are needed to maximize the throughput of our channel and
minimize the error probability.

4 Covert Channel Using Mobile Device Energy
Consumption

In this section, we elaborate on the components that make up our covert channel
attack. We begin by giving an overview of the attack in Sect. 4.1. We then define
the terms and parameters for transmission in Sect. 4.2, followed by a description
of each component of the attack: PowerSnitch app in Sect. 4.3 and the energy
traces decoder in Sect. 4.4.

4.1 Overview of Attack

As illustrated in Fig. 2, the attack scenario considers two components: the
victim’s Android mobile device (sender) and an accomplice’s power supplier
(receiver). Victim’s mobile device is connected to a power supplier (controlled
by the adversary) through a USB cable.

The left side of Fig. 2 depicts what happens after the victim has installed our
proof-of-concept app, PowerSnitch. The app is able to exfiltrate victim’s private
information, which gets encoded as CPU bursts with a specific timing. Indeed, as
the CPU is one of the most energy consuming resources in a device, a CPU burst
can be directly measured as a “peak” based on the amount of energy absorbed
by a mobile device. The right side of Fig. 2 illustrates how the energy supplier
is able to measure (with a given sampling rate) the electric current provided to
the mobile device connected to the public charging station. Then, such electric
measurement, which is considered as a signal, is given as input to a decoder. It
should be noted that the adversary, i.e., the public charging station, has control
of the power supplier, and thus is able to control the amount of current provided
to the device – even if it has the “fast charge” capability.

In our proposed covert channel attack, we consider situations in which users
connect their mobile devices for more than 20 min. There are several scenar-
ios that fulfill such time requirements. Examples are: (i) recharging a device
overnight in a hotel room; (ii) making use of locked boxes in shopping malls for
charging mobile phones; (iii) recharging devices on planes, in trains and cars.

In addition, we argue that those time requirements are more than reasonable
since generally, 72% of users leave their phones on charging for more than 30 min,
with an average time of 3 h and 54 min, as reported in [12]. This means that:
(i) the mobile device is in stand-by mode; (ii) CPU and the use of other energy
consuming resources (e.g., Wi-Fi or 3/4g data connection) usage is limited only
to the OS and background apps. Moreover, since there is no user interaction, it

90 R. Spolaor et al.

is reasonable to assume that the phone screen, which has a relevant impact on
energy consumption, will stay off for the aforementioned period of time.

Moreover, it is also worth noting that the attack is still feasible if there is
no data connection between the victim’s device and the power supplier, such
as Media Transfer Protocol (MTP), Photo Transfer Protocol (PTP), Musi-
cal Instrument Digital Interface (MIDI). This is possible as our methodology
only requires power consumption to send out the power bursts. Moreover, from
Android version 6.0, when a device is connected via USB, it is set by default
to “Charging” mode (i.e., just charge the device), thus no data connection is
allowed unless the user switches on data connection manually. This improve-
ment in security feature does not impact our proposed attack as we do not make
use of data connection to transfer the power bursts.

Fig. 2. The schema of the components involved in the attack.

4.2 Terminology and Transmission Parameters

In this section, we define the necessary terminology to identify concepts used in
the rest of the paper:

– Payload is the information that has to be sent from the device to the receiver.
– Transmission is the whole sequence of bits transmitted in which the payload

is encoded.

In order to obtain a successful communication, the sender and the receiver
need to agree on the parameters of the transmission.

– Period is the time interval during which a bit is transmitted.
– Duty cycle is the ratio between burst and rest time in a period Tb. For exam-

ple: if a burst lasts for Tb/2, the duty cycle will be 50%.
– Preamble is the sequence of bit used to synchronize the transmission. Usually

a preamble is used at the beginning of a transmission, but it can also be used
within a transmission in order to recover the synchronization in case of error.
In our case, we used a preamble composed of 8 bits.

No Free Charge Theorem: A Covert Channel via USB Charging Cable 91

4.3 PowerSnitch App: Implementing the Attack on Android

The first component of our covert channel we discuss is the proof-of-concept
which we called PowerSnitch app. This app, used for the covert channel exploit,
has been designed as a service in order to be installed as a standalone app or a
library in a repackaged app. Henceforth, we refer to both these variants simply
with the term “app”.

PowerSnitch app requires only the WAKE LOCK permission and does not need
root access to work. Such permission allows PowerSnitch app to wake and force
execute the CPU while the device is in sleep mode, so that it can start to trans-
mit the payload. We stress that since it is running as a background service,
PowerSnitch app still works even when user authentication mechanisms (e.g.,
PIN, password) are in place. Moreover, since it does not use any conventional
communication technology (e.g., Wi-Fi, Bluetooth, NFC), PowerSnitch app can
exfiltrate information even if the device is in airplane mode. It is worth men-
tioning that Android M (i.e., 6.0) introduced the Doze mode [30], a battery
power-saving optimization which reduces the apps activity when the device is
inactive and running on battery for extended periods of time. When it is in
place, Doze mode stops background CPU and network activity (ignoring wake-
locks, job scheduler, Wi-Fi scan, etc.). Then on periodic time intervals (i.e.,
maintenance windows), the system runs all pending jobs, synchronization and
alarms. However, such optimization is not active when a device is connected to a
power source or when the screen is on. This means that Doze does not affect our
proposal since we need the wakelock function but also the device to be plugged
to a power source. Moreover, since our proposed attack needs also the status of
the battery, it does not need any permission in order to obtain such information:
in fact, it is sufficient to only register at run-time (not even in the manifest) a
specific broadcast receiver (i.e., ACTION BATTERY CHANGED).

In Fig. 3, we illustrate the modules of PowerSnitch app. It is composed of
three modules: Payload encoder, Transmission controller and Bursts generator.
Payload encoder takes the payload as input and outputs an array of bits. The
payload can be any element that can be serialized into an array of bits. We
use strings as payloads, they are first decomposed into an array of characters
and then, using the ASCII code of each character, into an array of bits. Pay-
load Encoder can also add to its output array synchronization bits (e.g., the
preamble), and error checking codes (e.g., CRC).

Transmission controller is in charge of monitoring the status of the device
with the purpose of understanding when it is feasible to transmit through the
covert channel. Indeed, in order to not be detected by the user, it checks whether
all the following conditions are satisfied: (i) the USB cable is connected; (ii) the
screen is off; and (iii) the battery is sufficiently charged (see Sect. 6). If our app
receives a broadcast intent from the Android OS that invalidates one of the
aforementioned conditions, Transmission controller module will interrupt the
transmission. It is worth noticing that to obtain all this information, Power-
Snitch app does not need any additional permission. From the GUI app used in

92 R. Spolaor et al.

Fig. 3. The modules involved in the PowerSnitch app.

our experiments, we are also able to start or stop PowerSnitch app (represented
in Fig. 3 with a dotted arrow).

The last component of PowerSnitch app is Bursts generator. The task of this
component is to convert the encoded payload into bursts of energy consumption.
These bursts will generate a signal that can be measured at the other end of the
USB cable (i.e., the power supplier). In order to obtain these bursts of energy
consumption, Bursts generator module can use a power consuming resource of
the mobile device such as CPU, screen or flashlight. Our proof-of-concept, Bursts
generator uses the CPU: a CPU burst is generated from a simple floating point
operation repeated in a loop for a precise amount of time (given by transmission
parameters).

4.4 Analysis of Energy Traces

To make better decoder design decisions, several channel traces were observed,
collected and then used to calculate channel estimations and implement different
simulations of the channel performance and behavior. A standard on-off signaling
decoder needs to know the exact period of bits in the received signal in order
to be able to decode them. However, a channel built based on a phone’s power
consumption is expected to have hard-to-model noises that, after examining the
collected channel data traces, are actually affecting not only the peak periods but
also the peak amplitudes. The amount of external power consumed by a phone
can be largely affected by dominant OS-enforced, manufacturer-specific factors.
For instance, different sudden drop patterns in power consumption especially
when the phone is almost or completely charged, lack of control over the OS
scheduler; when, how often and for how long do some heavy power-consuming
OS background services run, as well as the precision and sampling rate of the
power monitor on the receiver side of the channel.

Figure 4 shows a portion of the channel data captured after a transmission
of ten successive bits (ten Zeros, therefore ten peaks) was initiated by our app
on a Nexus 6 phone. It should be noted that the data was passed through a
low-pass filter to get rid of harsh, high frequency noises in order to make the
signal looks smoother. As a result, based on a threshold of 100 mA, ten peaks are

No Free Charge Theorem: A Covert Channel via USB Charging Cable 93

successfully detected. Moreover, the width of each peak, and hence the period of
each bit, is varying sufficiently. The first bit, for example, has a period of 300 ms
while the eighth one has a period of only 195 ms. Although the intended bit
period generated and transmitted by the app was 500 ms, the average period of
the received bits was actually 311 ms, which the receiver has no way to predict
in advance. Such variations in the received signal are expected to affect the
performance of any decoder. An ideal matched filter receiver will have hard time
decoding such inconsistent signal and synchronization will be lost very quickly.
We elaborate further on this issue in the remaining sections.

Fig. 4. A portion of a received signal showing the variations in peak widths and
amplitudes.

Decoder Design. In this section, we provide additional explanation about
the different processing stages that our decoder is taking the received signal
through in order to overcome the channel inconsistencies and decode the sent
bits with the minimum Bit Error Ratio (BER). In signal processing, the quality
of a communication channel can be measured in terms of BER (represented as
a percentage), which is the number of bit errors divided by the total number of
transmitted bits over the channel. Channels affected by interference, distortion,
noise, or synchronization errors have a high BER.

Figure 5 summarizes the different processing stages which will be discussed
in the order they take place in, along with some background information and
algorithm justifications, where applicable.

Fig. 5. Different phases of our decoder.

Data Filtering. First, the received signal is passed through a low-pass filter to
get rid of the harsh high-frequency noises. For instance, Fig. 6 shows the same
portion of a received signal before and after applying the low-pass filter. The
low-pass filter helps not only to make the signal looks smoother, but also to

94 R. Spolaor et al.

make the threshold-based detection of real peaks easier by eliminating narrow-
peak noises that can be falsely identified as real peaks or bits. Additionally, the
low-pass filter used in our decoder adjusts its pass and stop frequencies based
on the intended bit period generated by the phone in order to make sure that
we do not over-filter or over-attenuate the signal.

(a) Raw received signal. (b) Low-pass filtered received signal.

Fig. 6. A portion of a received signal before and after applying the low-pass filter.

Threshold Estimation. The decoder detects peaks by decoding unipolar RZ on-
off encoded bits. The presence or absence of a peak (a 0 or a 1 in our case,
respectively) at a certain time and for a specific period is then translated to
the corresponding bit. Peak detection is usually done by setting an appropriate
threshold; anything above the threshold is a peak and anything below is just
noise. However, deciding which threshold to use is not a trivial process especially
with the unpredictable noise in our channel and the variations in width and
amplitude of the received peaks.

The threshold value used by the decoder is highly critical to peaks detection,
the resulted width of detected peaks and the decoder performance. Hence, we
primarily use a known preamble data sent prior to the actual packet to estimate
the threshold. The preamble consists of eight known bits (eight zeros in our case)
at the start of the transmission, which means that the decoder is expecting eight
peaks at the start. Since a unipolar RZ on-off encoded zero has a pulse for half
of the bit period, the preamble is expected to have roughly the same number of
peak and no-peak samples. Therefore, a histogram of the preamble samples is
expected to split into two portions; peak and no-peak portions. Figure 7a shows a
histogram of the preamble samples shown in Fig. 7b. As observed, the histogram
has two distinguishable densities; each of them look like the probability density
function of a Gaussian distribution.

Estimating the parameters (mean and variance) of two Gaussians that are
believed to exist in one overall distribution is a complicated statistical problem.
However, the Gaussian Mixture Model (GMM), introduced and explained in [25],
is a probabilistic model commonly used to address this type of problem and

No Free Charge Theorem: A Covert Channel via USB Charging Cable 95

to statistically estimate the parameters of existing Gaussian populations. To
estimate the threshold, as shown in Fig. 8, the decoder uses the GMM to fit two
Gaussians to the two histogram portions, find the mean of each one of them and
then compute the threshold as the middle point between the two means. As a
result, our decoder is able to estimate the threshold independently and without
any previous knowledge of the expected amplitudes of the received bits. After
that, each sample is converted to either a peak sample or no-peak sample based
on whether the sample value is above or below the estimated threshold.

(a) A histogram of the preamble samples. (b) A received preamble signal.

Fig. 7. A histogram of the preamble samples shows a mixture of two Gaussian-like
densities.

Robust Decoding. Generally, the way a decoder translates the peak and no-peak
samples to zeros and ones is highly time-sensitive. For instance, if the bit period
is fixed and equals to Tb, the decoder simply checks the presence or absence of
the peak in each Tb period. Since this decoding decision is made based on a very
strict timing manner, the slightest error in the received bit periods will cause a
quick loss of synchronization. As mentioned in the previous section, the received
peak widths (and hence bit periods) over our channel are changing with a high
variation around their mean. Therefore, our decoding decision cannot rely on
an accurate notion of time. Instead, our decoder needs to assume a sufficient
amount of error in the period of each received bit and to search for the peaks in
a wider range instead of a strict period of time.

To address this level of time-insensitivity and achieve robustness to synchro-
nization errors, our decoding decision was made based on the time difference
between each two successive peaks. As an example, assume that two successive
zeros were sent and hence two peaks were received. The difference between the
start time of each peak should be rounded to the average bit period. It should be
noted that the decoder computes the average bit period based on the received
preamble data. However, if a zero-one-zero transmission was made, the time dif-
ference of the start of the two received peaks should be rounded to double of

96 R. Spolaor et al.

Fig. 8. Using the Gaussian Mixture Model to estimate the threshold.

the average bit period. If a zero-one-one-zero transmission was made, the dif-
ference should be rounded to triple the average period and so on. Eventually,
synchronization is regained with every detected peak and based only on the time
difference between peaks, the decoder makes a decision on how many no-peak
bits (ones in our case) are transmitted between the zeros. The time difference
does not have to be exactly equal to a multiple of the average bit period. Instead,
a range of values can be rounded up to the same value and thus more flexible
time-insensitive decoding decision is made.

5 Experimental Evaluation

In this section, we first describe the devices used in our experiments and the val-
ues for transmission parameters. We then report the results of the transmission
evaluation.

5.1 Experiment Settings

In our experiments, we programmed the PowerSnitch app using Android Studio
with API. The device used to measure the energy provided to the device via
USB cable is Monsoon Power Monitor2 in USB mode with 4.55 V in output.
The decoder used to process signal was implemented in MATLAB. In order to
evaluate the performance of the transmission, we send out a payload comprised
of letters and numbers of ASCII code for a total of 512 bits. The values of period
used range from 500 ms to 1000 ms with increments of 100 ms. It is worth men-
tioning that bits sent over our channel were not packeted and no error detection
or correction techniques were used. For each phone and bit period, BER was
computed after sending 512 bits at once and then number of bits that were
incorrectly decoded was calculated.

2 www.msoon.com/LabEquipment/PowerMonitor.

www.msoon.com/LabEquipment/PowerMonitor

No Free Charge Theorem: A Covert Channel via USB Charging Cable 97

We evaluate the performance of our proposal on the following devices running
Android OS: Nexus 4 with Android 5.1.1 (API 22), Nexus 5 with Android 6.0
(API 23), Nexus 6 with Android 6.0 (API 23) and Samsung S5 with Android
5.1.1 (API 22). We underline that the devices used in our experiments are actual
personal devices, kindly lent by some users without any money reward. In order
to replicate an actual real world scenario, we did not uninstall any app, nor
stopped any app running in background. The only intervention we made on
those devices is the installation of our PowerSnitch app.

5.2 Results

In Table 1, we report the performance of the decoder for processing the received
power bursts on different mobile devices. The results presented in the table are
in terms of BER in the transmission of the payload; the lower the BER, the
better is the quality of the transmission. For Nexus devices (i.e., Nexus 4, 5 and
6), we achieve a zero or low BER of periods of 800 ms and 900 ms (i.e., 1.25 and
1.11 bits per seconds, respectively). While for Nexus 4 and 6, the BER remains
under 20% and, for Nexus 5, it increases to 37% and 40% with periods 700 ms
and 600 ms, respectively. For Samsung S5, the transmission BER is at 12.5%
with a period of 1 s, and it slowly increases to around 21% with a period of half
a second.

The higher BER for Nexus 5 (i.e., periods 700 ms and 600 ms in Table 1) are
due to de-synchronization of the signal that the decoder was not able to recover.
To cope with this problem, we can divide the payload into packets, where a
packet header will be the preamble in order to recover the synchronization. A
quick overview of the communication literature can show how a BER of 30% can
be recovered using a simple Forward Error Correction (FEC) technique where
the transmitter encodes the data using an Error Correction Code (ECC) prior
to transmission; for example bits redundancy or parity checks.

Table 1. Results in terms of Bit Error Ratio (BER) as percentage.

Device Period (milliseconds)

Model Operating system version 1000 900 800 700 600 500

Samsung S5 Android 5.1.1 (API 22) 12.5 13.5 13.31 16.33 17.9 21.42

Nexus 4 Android 5.1.1 (API 22) 13.5 0.78 0.0 0.0 13.33 16.21

Nexus 5 Android 6.0 (API 23) 21.0 0.0 0.95 36.82 40.35 13.4

Nexus 6 Android 6.0 (API 23) 1.07 0.0 0.21 0.0 4.05 7.42

6 Discussion and Optimizations

In this section, we elaborate further on the results obtained in the experimental
evaluation of our proposed attack (Sect. 5). In particular, we discuss on interesting

98 R. Spolaor et al.

observation made during our experiments. We also present the optimizations that
were implemented in the framework in order to make our proposed attack more
robust.

An interesting phenomenon to notice is that, as observed in our experiments,
the level of battery affects the quality of the transmission signal. In Fig. 9, we
present the amount of electric current provided by the power supplier to a Nexus
6 during recharge (i.e., the first 35 min) and full battery states (i.e., after 35 min).
Indeed, when the level for the battery is low (i.e., 0% to around 40%) the device
consumes a high amount of energy, and almost all of it is used to recharge the
battery.

When attempting to transmit data in the aforementioned conditions, we
discover that the bursts were not easily distinguishable. In fact, the difference in
terms of energy consumption between burst and rest was so small that it cannot
be distinguished from noise; thus, they can be filtered out during the signal
processing. Additionally, when the level of the battery is increased, the amount
of energy consumed to recharge the battery gradually decreases. We observed
that when the battery level is higher than 50%, the power bursts become more
and more distinguishable. However the best condition under which the bursts are
clear is when the battery is fully charged. Indeed, as we can notice from Fig. 9,
the current drops down after the battery level reaches 100%, because there is
no need to provide energy to the battery anymore - except to keep the device
running.

The percentages mentioned above also depends from the power supplier used
to provide energy to the device. In our experiments, we used Monsoon power
monitor which provides as output at most 4.55 V. Due to the limitation of such
power monitor, during the recharge of devices with fast charge technology (e.g.,
Samsung S5, Nexus 6 and 6P), which are able to work with 5.3 V and 2 mA, the
energy consumed is almost constant until the battery is almost fully charged.
Thus, we cannot decode any signal from the energy consumption.

In order to avoid to transmit when the receiver is not able to decode the
signal, PowerSnitch checks whether the battery level is among a certain threshold
ω. Such threshold ω can be obtained by PowerSnitch itself, simply knowing the
model in which it is running. This information can be easily obtained without
any permission (android.os.Build.MODEL and MANUFACTURER).

Optimizations. In what follows, we elaborate on the optimizations that were
implemented in order to not be detected or make the victim suspicious. The
first optimization is to keep a duty cycle (i.e., the time of burst in a period)
under 50%. During an attack, if such optimization is not taken into account
(i.e., a duty cycle greater than 75%), the victim may be alerted by two possible
effects:

– the temperature of the device could increase significantly, in a way that could
be perceived by touching it.

– if the attack takes place during the battery charge phase, the battery will
take more time to recharge due to the high amount of energy used by CPU.

No Free Charge Theorem: A Covert Channel via USB Charging Cable 99

Fig. 9. Electric current provided to a Nexus 6 during recharge phase and battery fully
charged.

However, as previously explained in Sect. 3.2, the duty cycle should be 50% of
period (i.e., Tb/2) in order to achieve a RZ. Thus, the above effects are already
taken care of in our proposed attack.

Another optimization involves the Android Debug Bridge (ADB) tool. It is
possible to monitor CPU consumption of an Android device via ADB. Hence,
one may use such debug tool to detect that something strange is happening on
the device (i.e., a transmission on the covert channel using CPU bursts). Fortu-
nately, PowerSnitch app could easily detect whether ADB setting is active through
Settings.Global.ADB ENABLED, once again provided by an Android API.

Another optimization to PowerSnitch app would be the ability to detect if
the power supplier is an accomplice of the attack. The accomplice has to let
PowerSnitch app know that it is listening to the covert channel by communicat-
ing something equivalent to a “hello message”. In order to do so, we can rely on
the information about the amount of electric current provided to recharge the
battery. Such information is made available through BatteryManager object,
provided by Android API. In particular, BATTERY PROPERTY CURRENT NOW data
field (available from API 21 and on devices with power gauge, such as Nexus
series) of BatteryManager records an integer that represents the current entering
the battery in terms of mA.

On one hand, the power supplier can then variate the current in output above
and below a certain threshold θ with a precise timing. As a practical and non-
limiting example, at a point in time during the recharging, the power supplier can
output current with the following behavior: (i) below θ for t seconds, (ii) above θ
for t seconds, (iii) again below θ for t seconds and finally (iv) above θ for good. On
the other hand, since PowerSnitch app monitors BATTERY PROPERTY CURRENT NOW
and knows the aforementioned behavior (along with both θ and t), it will be able
to understand that at the other end of the USB cable there is an accomplice
power supplier ready to receive a transmission. This optimization is significant
for reducing the chance to remain undetected, since PowerSnitch app will trans-
mit data if and only if it is sure that an accomplice power supplier is listening. With
such optimization, we will obtain a half-duplex communication channel, since the

100 R. Spolaor et al.

communication is bidirectional but only one participant (i.e., the device or the
power source) is allowed to transmit at a time. This optimization is not currently
implemented and will be considered as future work.

To summarize, the conditions under which the transmission of data is optimal
and the chance of being detected is lowest are as follows: the mobile device has to
be charged more than 50%, the screen has to be off, ADB tool should be switched
off (which is true by default) and the phone must to be plugged with a USB charg-
ing cable to a public charging station which is controlled by the adversary.

7 Conclusion

In this paper, we demonstrate for the first time the practicality of using a (power-
only) USB charging cable as a covert channel to exfiltrate data from a smart-
phone, which is connected to a charging station. Since there are no visible signs
of the existence of a covert channel while the battery is recharging, the user
is oblivious that data is being leaked from the device. Moreover, our proposed
covert channel defeats existing USB charging protection dongles, as described
in [7] because it requires only the USB power pins to exfiltrate data in the form
of CPU power bursts.

To show the feasibility and practicality of our proposed covert channel, we
implemented an app, PowerSnitch, which does not require the user to grant
access to permissions at install-time (nor at run-time) on a non-rooted Android
phone. Once the device is plugged in a compromised public charging station,
the app encodes sensitive information and transmits it via power bursts back to
the station. Our empirical results show that we are able to exfiltrate a payload
encoded in power bursts at 1.25 bits per seconds with a BER under 1% on the
Nexus 4-6 devices and a BER of around 13% for Samsung S5. As future work, we
plan to investigate malicious power banks and how they can be exploited using
our covert channel to exfiltrate data from smart devices. We will also work on the
transmitter and decoder by extending the framework to include error correction
algorithms and synchronization recover mechanisms to lower down the BER of
data transmission—as this was not the main goal of this paper.

Acknowledgments. This work is supported by ONR grants N00014-14-1-0029 and
N00014-16-1-2710, ARO grant W911NF-16-1-0485 and NSF grant CNS-1446866.

Veelasha Moonsamy is supported by the Technology Foundation STW (project
13499 - TYPHOON & ASPASIA) from the Dutch government.

Mauro Conti is supported by a Marie Curie Fellowship funded by the European
Commission (agreement PCIG11-GA-2012-321980). This work is also partially sup-
ported by the EU TagItSmart! Project (agreement H2020-ICT30-2015-688061), the
EU-India REACH Project (agreement ICI+/2014/342-896), “Physical-Layer Security
for Wireless Communication”, and “Content Centric Networking: Security and Pri-
vacy Issues” funded by the University of Padua. This work is partially supported by
the grant n. 2017-166478 (3696) from Cisco University Research Program Fund and
Silicon Valley Community Foundation.

We would like to thank Elia Dal Santo and Moreno Ambrosin for their insightful
comments.

No Free Charge Theorem: A Covert Channel via USB Charging Cable 101

References

1. Aloraini, B., Johnson, D., Stackpole, B., Mishra, S.: A new covert channel over
cellular voice channel in smartphones. Technical report (2015). arXiv preprint
arXiv:1504.05647

2. Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on
smartphone touch screens. In: Proceedings of USENIX WOOT (2010)

3. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on smartphones. In: Proceedings of USENIX ACSAC (2012)

4. Baghel, S., Keshav, K., Manepalli, V.: An investigation into traffic analysis for
diverse data applications on smartphones. In: Proceedings of NCC (2012)

5. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically securing
permission-based software by reducing the attack surface: an application to
android. In: Proceedings of ACM ASE (2012)

6. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
Proceedings of USENIX ATC (2010)

7. Chacos, B.: USB condom promises to protect your dongle from infected ports. PC
World, August 2014. http://tinyurl.com/hvlqkrt

8. Chandra, S., Lin, Z., Kundu, A., Khan, L.: Towards a systematic study of the
covert channel attacks in smartphones. In: Tian, J., Jing, J., Srivatsa, M. (eds.)
SecureComm 2014. LNICSSITE, vol. 152, pp. 427–435. Springer, Cham (2015).
doi:10.1007/978-3-319-23829-6 29

9. Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Analyzing android encrypted
network traffic to identify user actions. IEEE TIFS 11(1), 114–125 (2016)

10. Do, Q., Martini, B., Choo, K.K.R.: Exfiltrating data from android devices. Com-
put. Secur. 48, 74–91 (2015)

11. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of ACM CCS (2011)

12. Ferreira, D., Dey, A.K., Kostakos, V.: Understanding human-smartphone concerns:
a study of battery life. In: Proceedings of PerCom (2011)

13. Kim, H., Smith, J., Shin, K.G.: Detecting energy-greedy anomalies and mobile
malware variants. In: Proceedings of ACM MobiSys (2008)

14. Lalande, J.-F., Wendzel, S.: Hiding privacy leaks in android applications using
low-attention raising covert channels. In: Proceedings of ARES (2013)

15. Lau, B., Jang, Y., Song, C., Wang, T., Chung, P.H., Royal, P.: Mactans: injecting
malware into IOS devices via malicious chargers. Black Hat, USA (2013)

16. Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels:
lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 27

17. Liu, L., Yan, G., Zhang, X., Chen, S.: VirusMeter: preventing your cellphone from
spies. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp.
244–264. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04342-0 13

18. Marforio, C., Ritzdorf, H., Francillon, A., Capkun, S.: Analysis of the communi-
cation between colluding applications on modern smartphones. In: Proceedings of
USENIX ACSAC (2012)

19. Meng, W., Lee, W.H., Murali, S., Krishnan, S.: Charging me and i know your
secrets!: towards juice filming attacks on smartphones. In: Proceedings of ACM
CPS-SEC (2015)

http://arxiv.org/abs/1504.05647
http://tinyurl.com/hvlqkrt
http://dx.doi.org/10.1007/978-3-319-23829-6_29
http://dx.doi.org/10.1007/978-3-642-04138-9_27
http://dx.doi.org/10.1007/978-3-642-04342-0_13

102 R. Spolaor et al.

20. Moonsamy, V., Rong, J., Liu, S.: Mining permission patterns for contrasting clean
and malicious android applications. J. Future Gener. Comput. Syst. 36, 122–132
(2013)

21. Novak, E., Tang, Y., Hao, Z., Li, Q., Zhang, Y.: Physical media covert channels
on smart mobile devices. In: Proceedings of ACM UbiComp (2015)

22. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference
using accelerometers on smartphones. In: Proceedings of ACM HotMobile (2012)

23. Pathak, A., Charlie Hu, Y., Zhang, M.: Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with Eprof. In: Proceedings of
ACM EuroSys (2012)

24. Proakis, J.G.: Intersymbol Interference in Digital Communication Systems. Wiley,
Hoboken (2003)

25. Reynolds, D.: Gaussian mixture models. Encycl. Biom., 827–832 (2015)
26. Schlegel, R., Zhang, K., Zhou, X.Y., Intwala, M., Kapadia, A., Wang, X.: Sound-

comber: a stealthy and context-aware sound trojan for smartphones. In: Proceed-
ings of NDSS (2011)

27. Spreitzer, R.: Pin skimming: exploiting the ambient-light sensor in mobile devices.
In: Proceedings of ACM CCS SPSM (2014)

28. Stöber, T., Frank, M., Schmitt, J., Martinovic, I.: Who do you sync you are?:
Smartphone fingerprinting via application behaviour. In: Proceedings of ACM
WiSec (2013)

29. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Appscanner: automatic fin-
gerprinting of smartphone apps from encrypted network traffic. In: Proceedings of
IEEE EuroS&P (2016)

30. Android Developers. Optimizing for Doze and App Standby. http://tinyurl.com/
zvphw46

31. Business Insider. The Smartphone Market Is Now Bigger Than The PC Market
(2011). http://goo.gl/XkM8XM

32. Yan, L., Guo, Y., Chen, X., Mei, H.: A study on power side channels on mobile
devices. In: Proceedings of ACM Internetware (2015)

33. Yoon, C., Kim, D., Jung, W., Kang, C., Cha, H.: AppScope: application Energy
metering framework for android smartphone using kernel activity monitoring. In:
Proceedings of ATC (2012)

http://tinyurl.com/zvphw46
http://tinyurl.com/zvphw46
http://goo.gl/XkM8XM

Are You Lying: Validating the Time-Location
of Outdoor Images

Xiaopeng Li, Wenyuan Xu(B), Song Wang, and Xianshan Qu

Department of CSE, University of South Carolina, Columbia, SC, USA
{xl4,wyxu,songwang,xqu}@cec.sc.edu

Abstract. Photos have been commonly used in our society to convey
information, and the associated contextual information (i.e., the cap-
ture time and location) is a key part of what a photo conveys. However,
the contextual information can be easily tampered or falsely claimed by
forgers to achieve malicious goals, e.g., creating fear among the general
public or distorting public opinions. Thus, this paper aims at verifying
the capture time and location using the content of the photos only. Moti-
vated by how the ancients estimate the time of the day by shadows, we
designed algorithms based on projective geometry to estimate the sun
position by leveraging shadows in the image. Meanwhile, we compute
the sun position by applying astronomical algorithms according to the
claimed capture time and location. By comparing the two estimations of
the sun position, we are able to validate the consistency of the capture
time and location, and hence the time-location of the photos. Experi-
mental results show that our algorithms can estimate sun position and
detect the inconsistency caused by falsified time, date, and latitude of
location. By choosing the thresholds to be 9.2◦ and 4.8◦ for the sun
position distance and altitude angle distance respectively, our frame-
work can correctly identify 91.1% of the positive samples, with 7.7%
error in identifying the negative samples. Note that we assume that the
photos contain at least one vertical object and its shadow. Nevertheless,
we believe this work serves as the first and important attempt in verify-
ing the consistency of the contextual information only using the content
of the photos.

Keywords: Capture time and location · Sun position · Shadows ·
Consistency · Projective geometry

1 Introduction

Benefiting from the development of digital technologies and internet, photos
become increasingly common in our society. A huge number of photos are shared
through social media platforms. People use photos to convey information and
express emotions, and even employ them to illustrate news stories [14]. Mean-
while, people are exposed to fake photos that had been used for malicious pur-
poses: fooling the world and creating chaos as well as panic [3,7]. For example,
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 103–123, 2017.
DOI: 10.1007/978-3-319-61204-1 6

104 X. Li et al.

Fig. 1. A photo that was taken in Sept. 2013 was used for a news event happened in
Jan. 2017.

the Hurricane Sandy hit the northeastern U. S. in 2012: numerious fake disas-
ter photos and rumors were spread through social networks and caused panic
and fear among the general public [10]. Therefore, the U.S. Federal Emergency
Management Agency had to set up a “rumor control” section to defend against
misinformation including fake photos on social networks [1]. In addition, fake
photos have been used to distort public opinions. For instance, the fake refugee
photos were shared online in the Europe’s refugee crisis in 2015 and used to twist
public opinion on asylum seekers [5].

Previous studies mainly focused on devising forensic techniques to detect
photo tampering and manipulation. For example, researchers have proposed
approaches to demonstrate copy-move manipulation [2,8,23] and leveraged shad-
ows and lighting to determine photo tampering [4,20]. However, in addition to
manipulating the content of a photo itself, the contextual information (i.e., the
capture time and location) can also be falsified. For instance, the photo in Fig. 1
was claimed to be taken in January 2017, and was used on social medias to
illustrate the news that a fleet of bikers were on the way to Washington D.C for
President Trump’s inauguration. However, the photo was actually published in
2013 for the anniversary of 9/111. Thus, it is promising if we can validate the
capture time and locations immediately purely using the photos themselves.

Determining whether the capture time or the location of an image is real
is promising yet challenging. Although most images have timestamps and GPS
information enclosed, these can be altered without traces once the format is
known. Deciding whether a picture is taken at a place simply by experiences
is infeasible since the image scenes may appear to be similar in various places,
such as public lawns, parking lots, beaches and roadsides. Even if the capture
location is true, the capture time can be falsified without any traces. Finding
evidences from the content of an image to verify the time is difficult. Objects
that reveal time directly (e.g., clocks and watches) are rarely seen in images.

1 https://www.buzzfeed.com/tasneemnashrulla/bikers-for-trump-inauguration-fake-p
ictures.

https://www.buzzfeed.com/tasneemnashrulla/bikers-for-trump-inauguration-fake-pictures
https://www.buzzfeed.com/tasneemnashrulla/bikers-for-trump-inauguration-fake-pictures

Are You Lying: Validating the Time-Location of Outdoor Images 105

Objects such as clothing, or colors of trees may indicate the capture time, but
these indicators can only reveal a relatively long time span (e.g., a T-shirt is
suitable from April through October in many places). So far, limited research has
addressed this problem. Garg et al. [9] demonstrated the feasibility of using the
Electric Network Frequency signal as a natural timestamp for video data in an
indoor enviroment. Junejo and Foroosh [17] and Wu and Cao [27] used shadow
trajectories to estimate the geo-location of stationary cameras from multiple
outdoor images. Tsai et al. [26] and Kakar and Sudha [18] developed approaches
that leverage the geolocation of images and the sun information to estimate the
capture time for outdoor images. However, to the best of our knowledge, none
has been done to validate both the capture time and location. In this paper, we
study how to validate whether the image’s capture time and location are true
from a single outdoor image that has at least one shadow. Although we require
a shadow in an image, we believe our work serves as the first attempt towards a
full-fledged solution.

The basic idea is that the position of the sun is determined by time and
location and can be utilized to check time-location consistency of outdoor images.
Specifically, we estimate the sun position from two sets of information: (1) utilize
vertical objects and their shadows in images to estimate sun position, and (2) use
the claimed capture time and location in the metadata of images for estimation.
Finally, we compare these two values and decide whether the claimed capture
time and location are true.

In summary, we outline our three main contributions as below:

– We propose a framework that is called AYL for validating time-location con-
sistency of outdoor images. We show that the variances of sun position corre-
late with the time and location, and the correlation can be used to determine
whether the capture time and location of images are consistent.

– We demonstrate that the sun position can be acquired from shadows and
design algorithms to estimate the sun position from one vertical object and
its shadow in the image. The results show that the algorithms are effective.

– We implement the proposed framework and evaluate it using photos collected
in 15 cities across the U.S. and China, which proves AYL to be effective.

2 Overview

We specify the threat model, overview the framework of AYL, and summarize
the research challenges in this section.

2.1 Threat Model

We assume that an attacker modifies the capture time and location of an image
for malicious purposes, but doesn’t tamper or manipulate the image itself. Note
that even if she modifies the image, we can detect it utilizing the prior works
[2,4,8,20,23]. Below we describe how an attacker can modify the metadata.

106 X. Li et al.

Fig. 2. The basic structure of JPEG compressed image files.

An image file contains not only the image itself but also the metadata that
describes who, when, where, and how an image was taken [21,22]. Exchange-
able image file format (Exif) is a popular standard that specifies the formats
of images. The specification uses the existing file formats (e.g., JPEG) with the
addition of specific metadata tags. Figure 2 shows the basic structure of JPEG
compressed image files [16], and the application marker segment I (APPI) con-
tains contextual information of images, e.g., the capture time, the image size,
compression format, and details of cameras (focal length, camera maker) [16],
etc. In particular, DateTimeOriginal records the capture time. GPSLatitude
and GPSLongitude contain the GPS location (i.e., latitude and longitude) of
where the image was taken. GPSimgDirection represents the direction measured
by the magnetometer (i.e., the direction in which the camera faces). Modifying
the capture time and the GPS information enclosed in metadata can be easily
accomplished by using metadata editing tools such as ExifTool [12]. For exam-
ple, the photo shown in Fig. 2 was taken in Orlando, FL, on 13th October 2016,
at 10:47 a.m. An attacker can claim that the photo was taken in May 2016 in
Los Angeles by changing DateTimeOriginal and other related GPS fields.

2.2 Overview of AYL

Our goal is to validate whether the claimed capture time and location are true.
The capture time indicates the date and time when the photo was taken, and
the capture location reveals where it was taken.

Basic Idea. Although an attacker can modify the metadata and claim that a
photo was taken at time X and location Y , she won’t be able to change the “time”
and “location” information that is embedded in the photo. Thus, our framework
works as follows. On one hand, we utilize the contents in outdoor images—vertical
objects and resulting shadows—to extract the sun position that reflects when
and where the image was taken. On the other hand, we utilize the metadata
information—the claimed capture time and location—to obtain a second estima-
tion of the sun position by applying astronomical algorithms. If these two estima-
tions are close enough, we consider the capture time and location to be true with
a high probability. Otherwise, they are considered to be falsified.

Are You Lying: Validating the Time-Location of Outdoor Images 107

Fig. 3. The work flow of the proposed AYL framework.

Assumption. Without loss of generality, we assume that photos are taken using
smartphone’s rear cameras and the smartphone is held in such way that the
camera looks at the front horizontally or vertically, and it is perpendicular to
the ground. We further assume that the photographer stands on ground and the
ground that interested shadows lie on is approximated to water level. Finally we
assume that at least one vertical object and its shadow can be seen in the image.
The objects can be human beings, road signs, lampposts, tree trunks and so on.

Workflow. Figure 3 shows the work flow of proposed approach. For conve-
nience of description, we use the term shadow-inferred sun position to refer
to the sun position estimated from shadows in the image, and use the term
metadata-inferred sun position to refer to the sun position calculated from
claimed capture time and location. In this paper, capture time denotes the date
of year and the time of day unless otherwise indicated.

2.3 Research Challenges

Shadow-Inferred Sun Position. The first challenge is how to obtain sun
position from a single image. Although shadows can be viewed in images, we still
need to know the length ratio of objects and their shadows and the orientation
of shadows to determine the sun position. However, the relative position of two
objects in real world is no longer preserved when they are projected to a 2-d
image. How to measure the actual length ratio and angles can be a challenging
problem. Although single view reconstruction has been extensively studied, there
is no generalized way to recover the relative positions of objects from one single
image. To address above challenges, algorithms based on projective geometry
are proposed in Sect. 4.

Validation. Once the shadow-inferred sun position is obtained, the next chal-
lenge would be how to validate that the capture time and location are true. To
estimate the true capture time and location directly from the shadow-inferred
sun position is difficult since a specific sun position can be viewed at vari-
ous places and times. Conversely, the claimed capture time and location can
determine a unique value of sun position that should be close enough to the
shadow-inferred sun position. Then, we convert previous problem into a new
problem: how to determine the two estimations—the shadow-inferred sun posi-
tion and the metadata-inferred sun position—are close enough indicating the

108 X. Li et al.

same sun position. Appropriate thresholds need to be selected to solve this prob-
lem. The sun moves across the sky at a varying speed. The changes of sun position
with respect to time and location on the earth are not constant, which further
complicates the selection of thresholds. We will discuss this problem in Sect. 5
and our experimental results are presented in Sect. 6.

3 Background

We discuss the basics on how the sun changes its position in the section, which
serves as the foundation of our algorithm.

3.1 Sun Position Definition

The position of the sun in the sky is defined by an azimuth angle and an altitude
angle. An azimuth angle describes the direction of the sun, whereas an altitude
angle defines the height of the sun [24]. As shown in Fig. 4, the sun azimuth angle
A is measured clockwise in the horizontal plane, from the north to the direction
of the sun. Its value varies from 0◦ (north) through 90◦ (east), 180◦ (south), 270◦

(west), and up to 360◦ (north again). The altitude angle h is measured from the
horizontal to the sun and it thus ranges from −90◦ (at the nadir) through 0◦

(on the horizon), up to 90◦ (at the zenith). For instance, when the sun crosses
the meridian, its azimuth is 180◦ and altitude is at its largest value in a day.

Fig. 4. An illustration of the altitude
and azimuth angles of the sun.

Fig. 5. The path of the sun across
the sky as observed on various dates
in the northern hemisphere.

3.2 How Does the Sun Move

Observed from any location on the earth, the sun moves continuously across the
sky throughout days and years. The relative position change is mainly caused
by two types of motions of the earth: the rotation around its axis, and the
revolution around the sun [24]. It takes about 24 h for the earth to finish one
rotation around the earth’s axis and about 365 days to complete one revolution
around the sun. For an observer on the earth, the first motion contributes to the

Are You Lying: Validating the Time-Location of Outdoor Images 109

alternation of day and night, and the second motion leads to the alternation of
seasons.

Daily Sun Path. Because of the earth’s daily rotation, the sun appears to move
along with the celestial sphere every day. It makes a 360◦ journey around the
celestial sphere every 24 h. To an observer on the earth, the sun rises somewhere
along the eastern horizon, and goes up to the highest point (zenith) around
the noon, then goes down until it sets along the western horizon. Figure 5 shows
three of the sun’s daily paths viewed on the earth. Accordingly, the cast shadows
of any objects move oppositely from somewhere along the west to somewhere
along the east. The shadows’ lengths vary with the sun’s altitude angle. They
become shorter and shorter since sunrise and reach the shortest when the sun is
at its zenith. Then they become longer over time till sunset. Thus, the shadow
that a camera takes at the same day and location but different times of the day
will be totally different.

Yearly Sun Path. The sun’s daily path across the sky also changes throughout
the year. This is because the earth does not rotate on a stationary axis and the
tilt in the axis varies each day with respect to the earth’s orbit plane. To an
observer on the earth, the sun looks higher in the summer than it looks in the
winter at the same time in the day. As shown in Fig. 5, the sun follows different
circles at different days in one year: most northerly on June 21st and most
southerly on December 21st. The sun’s motion along the north-south axis over a
year is known as the declination of the sun, denoted by δ. Thus, the sun position
inferred from photos taken at the same location and time but different days in
a year will be different due to the sun’s declination.

Sun Path at Different Latitudes. As the sun travels across the sky, the
observed altitude angle varies based on the latitude of the observer. The further
north or south we go from the equator, the lower the sun’s altitude becomes.
Figure 6 shows the sun’s altitude angle versus the azimuth angle observed at
25◦ north latitude and 40◦ north latitude respectively. The sun’s altitude angle
observed at 25◦ north latitude is higher than the altitude angle observed at 40◦

north latitude at the same time. Thus, the sun position inferred from photos
taken at the same time but different latitudes will be different.

Fig. 6. The same path of the sun observed at two latitudes.

110 X. Li et al.

4 Shadow-Inferred Sun Position

The framework AYL uses both the azimuth angle and altitude angle to determine
the position of the sun in the sky. As shown in Fig. 4, the sun’s altitude angle
equals the angle between the shadow and the sun ray, and the sun’s azimuth angle
equals the angle measured across the shadow point of the top of the column,
clockwise from the north to the direction of the shadow. In this section, we
provide algorithms to estimate the altitude and azimuth angles of the sun from
shadows in a photo. We study two scenarios and two corresponding algorithms to
estimate the altitude angle. We also design an algorithm to measure the azimuth
angle. For both algorithms, their sensitivities are analyzed.

Fig. 7. Estimate the sun’s altitude
angle with two shadows.

Fig. 8. Estimate the sun’s altitude and
azimuth angle with one shadow.

4.1 Estimate Altitude

We consider two scenarios for estimating the sun’s altitude angles: (a) photos
that contain two vertical objects and their shadows, and (b) photos that contain
only one vertical object and its shadow. Vertical objects refer to the ones that
are perpendicular to the ground plane.

Two-Shadow Estimation. Figure 7 illustrates the first scenario, where two
objects O1 and O2 cast shadows S1 and S2 on the ground plane, respectively.
The sun’s altitude angle h is the angle between the shadow and the sun ray.
From the graphical perspective, a set of parallel lines in space intersect at one
point when they are projected onto a 2-d image. This point is called vanishing
point. In Fig. 7, shadows S1 and S2 of two vertical objects are parallel in space,
and they intersect at vanishing point vs on the ground plane. Since the sun is
far away from the earth, the sun rays r1 and r2 can be considered to be parallel
and intersect at vr. The sun’s altitude angle h can be calculated according to
the following formula [11]:

h = arccos(
vr

Tωvs√
vr

Tωvr

√
vs

Tωvs

), (1)

Are You Lying: Validating the Time-Location of Outdoor Images 111

Algorithm 1. Estimating the altitude angle h

Input: I: an image, f : the camera’s focal length
Output: h
1: G ← find the equation of the ground plane;
2: find the equations of lines {p′

1p1, p
′
2p2, p

′
3p3};

3: {(x1, y1, z1), (x2, y2, z2)} ← compute the coordinates of the points {p1, p2} by
solving a set of equations G and p′

ipi accordingly;
4: find the equation of line p2p3
5: (x3, y3, z3) ← compute the coordinates of p3 by solving a set of equations p2p3 and

p′
3p3;

6: {−−→p1p2,
−−→p1p3} ← {(x2 − x1, y2 − y1, z2 − z1), (x3 − x1, y3 − y1, z3 − z1)}

7: h ← compute the angle between −−→p1p2 and −−→p1p3 using Eq. 9
8: return h

where ω is called the image of the absolute conic and given by the expression
[11,27]:

ω ∼
⎡

⎣
1 0 −u0

0 1 −v0
−u0 −v0 f2 + u2

0 + v2
0

⎤

⎦ . (2)

This expression assumes that the camera has zero skew, the intersection of the
optical axis and the image plane is at the center of the image, and the pixels
are square. Such assumptions are true for current camera technologies [11,27].
In Eq. 2, (u0, v0) denotes the coordinates of the center point of the image, and
f denotes the camera’s focal length. f is either included in the metadata of the
image or can be calculated by the following constraint on ω with respect to f :

vs
Tωvo = 0, (3)

where vo is the vanishing points of the two vertical objects O1 and O2. When
the objects and their shadows are at perpendicular directions, vo and vs will
satisfy Eq. 3 [11]. Once we have the coordinates of vo and vs, we can obtain f
by solving Eq. 3.

One-Shadow Estimation. In this scenario, only one vertical object and its
shadow are visible in the image. Figure 8 illustrates this scenario where C denotes
the camera and I is the image. We assume that the image plane is perpendicular
to the ground plane and the direction −→u is parallel to the ground plane. So the
angle between the image plane and the ground plane is 90◦. Let’s denote the
image plane to be z = 0, and the coordinate frame is shown in Fig. 8. The center
of the image is the origin point (0, 0, 0).

Algorithm 1 describes the steps to measure the altitude angle h given a ver-
tical object and its shadow. Firstly, to find the equation of the ground plane
G, we define the distance between the camera and the ground plane to be hc.
As we know G is perpendicular to the XY plane of the coordinate system, the
equation of G can be written as:

y = −hc. (4)

112 X. Li et al.

Next, we compute the equations of the lines p′
1p1, p′

2p2 and p′
3p3. Since the

line p′
ipi passes through the point C (0, 0, f) and the point p′

i whose coordinates
can be obtained from the image, it can be described by the two points as:

x

x′
i

=
y

y′
i

=
z + f

f
, (5)

where (x′
i, y

′
i, 0) are the coordinates of p′

i for i = 1, 2, 3.
Lines p′

1p1 and p′
2p2 intersect with plane G at points p1 and p2 respectively.

By solving the Eqs. 4 and 5, the coordinates of p1 and p2 can be computed as
follows:

pi = (x′
iti,−hc, f(ti − 1)), (6)

where ti = −hc

y′
i

for i = 1, 2. Then we have vector −−→p1p2 = (x′
2t2 − x′

1t1, 0,

f(t2 − t1)).
Now, we determine the coordinates of p3 which is the intersection point of

lines p′
3p3 and p2p3. The equation of line p2p3 is given by:

x = x′
2t2, z = f(t2 − 1). (7)

By solving the equations of p′
3p3 and p2p3, we can obtain the coordinates of the

point p3:
p3 = (x′

2t2, y
′
3t2, f(t2 − 1)). (8)

Using the coordinates of p2 and p3, we have vector −−→p1p3 = (x′
2t2 − x′

1t1, hc +
y′
3t2, f(t2 − t1)). The angle between −−→p1p3 and −−→p1p2 is the altitude angle and can

be computed as follows:

h = arccos
(−−→p1p3)T−−→p1p2√

(−−→p1p3)T−−→p1p3
√

(−−→p1p2)T−−→p1p2
,

= arccos
m

√
m + (y′

3/y′
2 − 1)2

√
m

.

(9)

where the intermediate variable m = (x
′
2

y′
2

− x′
1

y′
1
)2 + f2(1

y′
2

− 1
y′
1
)2.

4.2 Estimate Azimuth

To estimate the sun’s azimuth angle A from one shadow in an image, we design
the following algorithm. The scenario is illustrated in Fig. 8. In particular, the
point p3 is not necessary to be visible for estimating the azimuth angle. Let C
be the camera and the unit vector −→u = (1, 0, 0). The true north N is set to be
the reference direction in our algorithm. The orientation of −→u with respect to N
can be obtained by subtracting 90◦ from the image direction which is included
in the metadata of the image.

The sun azimuth angle A equals the angle measured clockwise around point
p1 from due north to the shadow. We calculate A as follows:

A = ∠(N,−→u) + ∠(−→u ,−−→p1p2) , (10)

Are You Lying: Validating the Time-Location of Outdoor Images 113

where ∠(−→u ,−−→p1p2) denotes the angle measured clockwise from −→u to −−→p1p2, and
∠(N,−→u) is the angle measured clockwise from N to −→u , which is the orientation
of −→u . ∠(−→u ,−−→p1p2) is the only unknown variable in Eq. 10.

Next, we define the angle between −→u and −−→p1p2 to be α. ∠(−→u ,−−→p1p2) equals α
if it is an acute angle. Otherwise, ∠(−→u ,−−→p1p2) is equal to (360◦ − α). The angle
α can be calculated as:

α = arccos
−→u T−−→p1p2√−→u T−→u

√−−→p1p2T
−−→p1p2

, (11)

where −−→p1p2 has been calculated in Algorithm 1: −−→p1p2 = (x′
2t2 −x′

1t1, 0, f(t2 − t1))
and −→u = (1, 0, 0). Then, we replace −→u and −−→p1p2 in Eq. 11 and compute it as:

α = arccos(
(x

′
1

y′
1

− x′
2

y′
2
)

√
(x

′
1

y′
1

− x′
2

y′
2
)2 + f2(1

y′
1

− 1
y′
2
)2

). (12)

4.3 Sensitivity Analysis

In this section, we quantify the estimation errors in the computing of the altitude
angles and azimuth angles.

Errors of the Altitude Angle Inferred from Two Shadows. The estima-
tion errors of altitude angles stem from the following factors: camera distortion
and the detection errors of the objects and shadows. For a well designed camera,
the systematic errors (e.g. camera distortion) are constant and can be calibrated
if necessary. The detection errors of the shadows and objects in the image can
be modeled as random variables. Consequently, the detection errors will result
in random errors in the calculation of vr and vs. Without loss of generality, we
consider the errors of vr and vs to be linear to the detection errors and define
them to be Δvr and Δvs, respectively.

From the graphical perspective, the sun altitude angle h derived from van-
ishing points vr and vs has the geometric meaning as described in Fig. 9. Let C
be the camera. The lines Cvr and Cvs are parallel to the shadow and the sun
ray respectively. h represents the sun altitude angle and equals the angle formed
by vr, C and vs. The error range of each vanishing point is a circle centered at

Fig. 9. Errors in the estimated altitude angle with two shadows.

114 X. Li et al.

the vanishing point with a radius of the maximum random error. Since Δvr and
Δvs are small enough compared to the length of |Cvr| and |Cvs|, they can be
considered as two arcs with the center at C. In the worst case, the error Δh of
the altitude angle can be calculated as below:

Δh = (
Δvr
|Cvr| +

Δvs
|Cvs|)

180◦

π
, (13)

where |Cvr| and |Cvs| are the lengths between the camera and the two corre-
sponding vanishing points: vr and vs. Thus, the error Δh depends on the random
errors Δvr and Δvs.

Errors of the Altitude Angle Inferred from One Shadow. The sources
of random errors in estimating the altitude angle from one shadow include the
slope of the ground and the detection errors of interested object and its shadow.
If the ground where the shadow located is not flat and has an error of ΔG
with respect to the horizontal plane, ΔG will propagate as the altitude angle is
estimated. In addition, the detection errors of the vertical object and its shadow
can cause estimation errors. The detection errors can affect the angle estimation
depending on the distances from the camera to the object and its shadow. The
farther the distance, the larger the uncertainty of the estimated altitude angle.
The errors in the altitude angle can be linear to the detection errors.

Errors of the Azimuth Angle. The sources of random errors in estimating the
azimuth angle include the camera’s orientation errors and the detection errors of
shadows. To understand how a camera’s orientation affects the estimation error
of the angle between −→u and the shadow S1, we define θ to be the angle between
the image plane and the horizontal ground plane, and γ to be the angle between
the camera and the horizontal plane. Assume θ = 90◦ and γ = 0◦. And the
estimated camera orientation is θ = 90◦ + Δθ and γ = 0◦ + Δγ, where Δθ and
Δγ are random errors.

Figure 10 shows the impact of Δθ and Δγ on the estimated direction of
the shadow. First, the error Δθ will be propagated as we estimate the ground
plane according to the camera’s orientation. And due to this error, the estimated
shadow direction will deviate from the true direction of the shadow. The devia-
tion will be Δθ in the worst case. Second, the error Δγ will also be propagated
to the estimated ground plane. And this error will lead to a deviation in the
estimated shadow direction as well, which is Δγ in the worst case. In summary,
the estimated shadow direction deviates from its true direction at most Δθ+Δγ,
which can produce Δθ + Δγ error in the estimated azimuth angle in the worst
case.

In summary, we find three main sources of the errors: the detection errors of
the objects and their shadows, the ground slope, and the camera’s orientation
errors. In general, the estimation errors of the sun position are linear to the
three types of errors. The detection errors in our algorithms can be reduced by
choosing the objects and shadows that are clear enough and using effective image
detection algorithms. The errors caused by the slope of the ground will not be

Are You Lying: Validating the Time-Location of Outdoor Images 115

Fig. 10. Effects caused by random errors in camera’s orientation

greater than the slope angle and can be reduced greatly by measuring this angle.
In addition, the camera’s orientation errors can be reduced using inertial sensors
to obtain the camera orientation.

5 Metadata-Inferred Sun Position and Validation

In this section, we describe the process to validate the consistency of a photo’s
capture time and location. The key idea is the following: we calculate the sun
position using the capture time and location in the metadata of images. If the
capture time and location are true, the sun position will match the one we
estimated from shadows.

5.1 Metadata-Inferred Sun Position

As mentioned in Sect. 3, the position of the sun depends on the time of day, the
date and the location of the observer. Its movement across the sky obeys the rules
that have been studied in astronomy. In this section, we discuss the astronomical
algorithms that are used to calculate metadata-inferred sun position, given the
time and location.

We refer the time of day as the local time based on the standard time offsets
of Coordinated Universal Time (UTC). However, the local standard time doesn’t
provide an intuitive connection with the sun position. In astronomy, the solar
time is often used to discuss the sun position. It works because the sun finishes
a 360◦ rotation around the celestial sphere every 24 h. The completed journey is
divided into 24 h, and one solar hour means that the sun travels a 15◦ arc [19].
The instant when the sun is due south in the sky or the shadow points to exactly
north is called solar noon, which is 12:00 for solar time. Every 15◦ arc the sun
travels, one hour is added to 12:00 under the 24-h clock system, and the angle
distance that the sun passes on the celestial sphere is defined as the hour angle
H [19]. It is measured from the sun’s solar noon position, and ranges from 0◦ to
+180◦ westwards and from 0◦ to −180◦ eastwards. The conversion between the
local standard time tl to the solar time ts is as follows [13,24]:

ts = tl + ET +
4 min

deg
(λstd − λl), (14)

116 X. Li et al.

where λl denotes the local longitude, and λstd is the local longitude of standard
time meridian, and ET stands for the equation of time, which describes the
difference of the true solar time and the mean solar time [13]. The sun’s hour
angle is calculated as follows:

H = 15◦(ts − 12). (15)

Using the observer’s local horizon as a reference plane, the azimuth and
altitude angles of the sun can be calculated as follows [24]:

tan(A) =
sin H

sinϕ cos H − cos ϕ tan δ
, (16)

sin(h) = sin δ sin ϕ + cos ϕ cos δ cos H, (17)

where ϕ is the latitude of the observer’s location, and δ is the sun’s declination
angle and it can be calculated as below [15,24]:

δ = −23.44◦ cos(
360◦(N + 10)

365◦), (18)

where N is the number of days since January 1st. Note that the azimuth angle A
calculated in Eq. 16 uses south as a reference. We can derive the azimuth angle
according to its definition in Sect. 3.

5.2 Consistency Validation

Once obtaining the shadow-inferred sun position and metadata-inferred sun posi-
tion, we check the difference between these two estimations by comparing their
altitude angles and azimuth angles respectively. However, since there exists ran-
dom and systemic errors in the shadow-inferred sun position, the estimation may
not equal the “true” sun position. Thus, we have to select a threshold that is
large enough to tolerate the errors yet small enough to detect the inconsistency
between the shadow-inferred sun position and metadata-inferred sun position.
Intuitively, the closer these two sun positions are to each other, the more likely
the capture time and location are true.

We define the altitude angles of shadow-inferred sun position and metadata-
inferred sun position to be hs and hm respectively, and the corresponding
azimuth angles to be As and Am. Then the distance of the two altitude angles
is dh = |hs − hm|, and the distance of the two azimuth angles is computed as
dA = |As−Am|. The likelihood of the consistency is inversely proportional to dh
and dA. However, the effects on dh and dA caused by fake capture time and/or
location are different. For example, modifying the capture time from 12:00 p.m.
to 13:00 p.m. may lead to 10◦ in dA but only 2◦ in dh. So two different thresholds
for dh and dA have to be selected. The capture time and location are considered
to be true only when both dh and dA are within the thresholds. Besides, the sun
position can be described by a pair of azimuth angle and altitude angle: (A, h).

Are You Lying: Validating the Time-Location of Outdoor Images 117

We can also use the sun position distance that is computed as dp =
√

d2A + d2h
to distinguish the two estimations of the sun position. Our goal is to choose
appropriate variables and thresholds that can increase the probability of correct
validation for inconsistent images and decrease the probability of false valida-
tion for consistent images. Section 6 details the selection of thresholds in the
validation experiment.

6 Evaluation

This section presents the results of our experiments. To evaluate the perfor-
mance of the sun position estimation algorithms, we conducted an experiment
on November 8, 2016 in the U.S. and collected 60 photos. To validate the effec-
tiveness of the framework AYL, we gathered 124 photos in China and the U.S in
the span of four months, and examined whether we can detect the modifications
of capture time, date and location.

6.1 Sun Position Estimation

To evaluate the accuracy of our sun position estimation algorithms, we collected
60 photos using the rear camera of an iPhone 7 from 9:30 a.m. to 14:30 p.m. at
an interval of about 5 min on November 8, 2016 in Columbia, SC. As shown in
Fig. 11(a) we set up the experiment in a relatively ideal situation: we place two
columns (the red one and the grey one) on the ground vertically, and fixed the
iPhone 7 on another vertical stick to take photos of these two columns and their
shadows. Figure 11(b) shows the estimated altitude angles by applying the two-
shadow estimation and one-shadow estimation algorithms to the photos.
The ground truth sun positions are calculated using the astronomical algorithms
in Sect. 5.1 according to the real time, latitude and longitude. The ground truth
altitude angles are labeled with red and denoted as “Altitude”. The other two

Fig. 11. The experiment setting is shown in (a). And (b) presents the comparison of
estimated altitude angle to ground truth altitude angle. (c) shows the comparison of
estimated azimuth angle to ground truth azimuth angle.

118 X. Li et al.

curves in Fig. 11(b) represent the estimated altitude angles inferred from shad-
ows. “2S-Estimation” is obtained by applying the two-shadow estimation
algorithm, while “1S-Estimation” is plotted by applying the one-shadow esti-
mation algorithm. We find that the average error in “2S-Estimation” is 1.43◦,
while it is 2.98◦ in “1S-Estimation”. Figure 11(c) presents the estimated azimuth
angles versus the ground truth azimuth angles. The curve in red is plotted using
the ground truth azimuth angles, while the curve in blue is plotted using the
data of estimated azimuth angles. The average error is approximately 4.3◦.

The estimation errors of sun positions are mainly contributed by three fac-
tors. First, due to the ground slope and the camera’s orientation, the image plane
may not be precisely perpendicular to the ground plane, which causes errors. The
second type of errors is random one that is introduced when extracting objects
and shadows from the photos. Finally, errors can be created by the measure-
ment drift of the compass over time. Due to the nature of the two algorithms,
these types of errors will have different levels of impact on them. Figure 11(b)
indicates that the two-shadow estimation algorithm outperforms the one-
shadow estimation algorithm. It is partly because the one-shadow estima-
tion algorithm is more sensitive to the ground slope. We believe that given the
measurement of the slope, we shall be able to reduce the error. In summary, the
algorithms in Sect. 4 are able to infer the sun position, either from two vertical
objects and their shadows or from one object and its shadow.

6.2 Consistency Validation

To evaluate the performance of AYL and to understand threshold selection, we
conducted a set of experiments.

Dataset. The data in this experiment was captured at 15 cities around the USA
and China since September 2016. Our dataset consists of 124 photographs taken
by 10 iPhones, including iPhone 5s, 6, 6 plus, 6s, 6s plus and 7. 61 out of the 124
photos were taken in China. Each photo encloses the metadata that includes
the real capture time and location. 72 out of the 124 photos contain at least
two vertical objects and their shadows, while 52 photos only contain one verti-
cal object and its shadow. Our dataset mainly contains three types of vertical
objects: standing people, poles (e.g. road signs, lampposts) and tree trunks. We
chose these objects because they are common in reality and are mostly vertical
to the ground. Our experimental results confirm that our algorithms work well
on these objects. We refer to the true metadata of the 124 photos as the positive
samples.

We generate the attack data by falsifying the metadata of the 124 photos.
Note that multiple types of metadata may result in the same effect. For instance,
modifying longitude one degree more to the west has the same effect on the sun
position as changing the local time forward by four minutes. Thus, falsifying
either longitude or the local time is equivalent. To simplify the analysis yet
without loss of generality, we focus on three types of attacks that modify the
following metadata:

Are You Lying: Validating the Time-Location of Outdoor Images 119

– The falsified time of day, and true date and location.
– The falsified date, and true time and location.
– The falsified latitude of location, and true time and date.

We refer to the attack metadata as the negative samples. We have 124 negative
samples for each type of attack metadata, The “fake” times of day are randomly
generated in the range from 8:00 a.m. to 17:00 p.m. when the sun is likely to be
seen. The “fake” dates are randomly generated from the range within one year.
The “fake” latitudes of location are randomly generated in the range of 25◦ and
50◦ of the Northern Hemisphere where most of the U.S. and China locate. Here
we didn’t consider the attack data with falsified longitude. Because the result
produced by only falsifying longitude can be equivalent to the result caused by
falsifying the time of day accordingly.

Metric. We use ROC curves to evaluate the performance of AYL by varying
thresholds for our system. An ROC curve represents Receiver Operating Char-
acteristic curve and is created by plotting true positive rate (TPR) against false
positive rate (FPR), as the threshold varies [6]. The true positive rate and false
positive rate are defined as below.

TPR =
of true positives

of (true positives + false negatives)
=

of true positives
of positives

FPR =
of false positives

of (true negatives + false positives)
=

of false positives
of negatives

where a true positive denotes the result that a positive sample is correctly iden-
tified as such, and a false positive is the one that a negative sample is identified
as a positive sample by mistakes. The point (0, 1) on the ROC curve denotes 0
FPR and 100% TPR, which indicates an ideal system that can correctly iden-
tify all genuine photos and reject all falsified photos [25]. In our experiment, we
select the optimal threshold as the one that yields the minimum distance from
the corresponding point on the ROC curve to the ideal point (0, 1). Another
indicator that we use to evaluate the average performance of the validation is
the area under the ROC curve (AUC). The closer it is to 1, the better the average
performance is [6].

Performance and Threshold Selection. Based on the framework AYL, we
performed consistency validation using the three types of attack metadata. To
understand how the altitude angle and azimuth angle influence the performance
of the validation, we examine three distances separately: the distance of the
altitude angles dh, the distance of the azimuth angles dA, and the distance of
the sun positions dp. Here, the sun position is defined to be (A, h), in which A
refers to the azimuth angle and h refers to the altitude angle. To decide the best
distance variable which can yield the maximum AUC and the optimal threshold
of the variable, we analyze the ROC curves that are plotted by varying the
threshold of each type of distance.

The results are presented in the set of ROC curves shown in Fig. 12. Each
ROC curve with distinct color is plotted by varying the threshold of one type

120 X. Li et al.

Fig. 12. ROC curves based on different distance variables and different types of attack
metadata.

of the three distances. “TH − dp” denotes varying the threshold of the sun posi-
tion distance dp. “TH − dh” and “TH − dA” denote varying the threshold of the
altitude angle distance dh and the azimuth angle distance dA respectively. For
each type of attack metadata, the randomly generating of 124 negative samples
is repeated 5 times. Each false positive rate on the ROC curve is averaged over
these repeated attack metadata. Figure 12(a) indicates that the detection based
on dA slightly outperforms the one based on dh, to detect the attacks that falsify
the photo’s time of day. However, the dh based detection achieves better perfor-
mance in detecting the other types of attacks as shown in Fig. 12(b–c), especially
in detecting falsified latitude. The result implies that dh is more important in
distinguishing different positions of the sun compared to dA in general. Such a
conclusion confirms with the result reported in Sect. 6.1, i.e., the average esti-
mation error of the altitude angles is smaller than that of the azimuth angles.
If only dh is used for consistency validation, Fig. 12(d) guides us to choose the
optimal threshold of dh to be 3◦ and it achieves combined (TPR, FPR) values
of (89.5%, 22%), which means that 89.5% of positive samples can be correctly
validated but 22% of negative samples will be mistakenly identified. In addition,
Fig. 12(a–c) shows that the dp based detection achieves the best performance in
detecting falsified time, and has almost the same performance as the dh based
detection in detecting the other types of attacks. Once we only use dp for con-
sistency validation as shown in Fig. 12(d), we choose the optimal threshold of dp
to be 9.2◦, which achieves combined (TPR, FPR) values of (92.7%, 18.6%) for
all attacks.

To improve the performance further, we examine both the dp and dh to
validate the consistency of time and location. That is, a sample has to satisfy
both the thresholds of dh and dp to be accepted by AYL. Plotting the ROC
curves and finding the global optimal thresholds by varying two thresholds can
be tricky. Thus, we chose the local optimal threshold for one variable and varied
the other threshold to plot the ROC curve. This approach may not generate the
global optimal thresholds for the two variables, but it strikes a balance between
the optimum and the computational cost. We chose the threshold of dp to be
9.2◦ and varied the threshold of dh. The resulting curve illustrates an improved
performance than the one of using a single threshold as shown in Fig. 12(d).

Are You Lying: Validating the Time-Location of Outdoor Images 121

Note that we cannot plot an integral ROC curve when the threshold of dp is
fixed since the highest true positive rate will be decided by the fixed threshold,
which is 92.7%. The curve “TH − dpdh” in Fig. 12(d) indicates that choosing the
optimal threshold of dh to be 4.8◦ can correctly identify 91.1% positive samples,
and cannot identify 7.7% of negative samples.

Attacks Against AYL. Based on the above results, we analyze the robustness of
the framework AYL when falsifying one of the three parameters—time of day, date
and latitude of location, and falsifying more than one parameters. AYL cannot
detect the falsifications that do not cause violations of both the thresholds of
the altitude angle distance and the sun position distance. If an attacker modifies
both the time and location of a photo such that the altitude angle and the sun
position are within the thresholds, then the modification can fool AYL. Luckily.
the motivation of falsifying the metadata of a photo is to use it for a chose event
and the attacker may not be guaranteed to find such a combination.

Our framework can detect that the image shown in Fig. 1 was not taken at
the claimed date and location. Although we do not have the required metadata
(e.g., the time of day, the image direction and the camera orientation) and cannot
estimate the azimuth angle as well as the exact sun position, we can estimate
the altitude angle from the image. Given that the photo was claimed to be taken
on or before January 16th in Florida, we can calculate the possible maximum
altitude angle between January 1st and 16th to be 41◦. Based on the image, we
estimate the focal length to be 1287 pixels and the altitude angle to be 47.6◦.
The distance between the two estimates will be 6.6◦ which is larger than the
threshold 4.8◦ in our experiments. Thus, we conclude that the date and location
of this image were spoofed.

6.3 Discussions and Limitations

When estimating the altitude angle using the one-shadow estimation algo-
rithm, an integrated vertical object and its shadow are required. However, ver-
tical objects in the real world may not be absolutely vertical. By examining
the scenario, we find that the direction of the sun ray is determined by a point
on the object and the resulting point on the shadow. Even if the object is not
exactly vertical, these two points are still able to decide the path of the sun ray
and the altitude angle can be obtained from the sun ray and the shadow. Thus,
we believe that our algorithm can eliminate this requirement, and AYL may not
require to have the entire object in the photo if there exists a distinct point on
the object.

In this paper, we assume that the camera is perpendicular to the ground
and looks front horizontally or vertically when taking photos. Such assumption
is used to simplify the algorithms for estimating the sun position. In fact, most
smartphotnes are equipped with inertial sensors that have been widely used to
estimate the orientation of the smartphone. If the sensor data is enclosed in
the metadata, the device orientation can be obtained and used to determine
the relationship between the device and the ground as well as the shadows.

122 X. Li et al.

A direction of future work is to estimate the sun position regardless of how
cameras are oriented when taking photos.

7 Conclusion

We presented a new framework AYL which uses two estimations of sun position—
shadow-inferred sun position and metadata-inferred sun position—to check
whether the capture time and location of an outdoor image are true. Our frame-
work exploits the relationship between the sun position in the sky and the time
and location of an observer. We designed algorithms to obtain shadow-inferred
sun position using only one vertical object and its shadow in the image. Our
experiments show that the algorithms can estimate the sun position from shad-
ows in the image with satisfactory accuracy. AYL utilizes both the altitude angle
and azimuth angle for the consistency validation. The evaluation results guide
us to choose the thresholds of altitude angle distance and sun position distance
to be 4.8◦ and 9.2◦ respectively, which achieves combined (TPR, FPR) values
of (91.1%, 7.7%) for the consistency validation. We believe that our results illus-
trate the potential of using sun position to validate the consistency of the capture
time and location. Our work raises an open question that whether other image
contents can be leveraged for validating the consistency of image’s contextual
information.

References

1. Fema now has a rumor control section for misinformation. https://twitter.com/
fema/status/264800761119113216

2. Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting
copy-move forgery. In: IEEE ICASSP 2009, pp. 1053–1056. IEEE (2009)

3. Boididou, C., Papadopoulos, S., Kompatsiaris, Y., Schifferes, S., Newman, N.:
Challenges of computational verification in social multimedia. In: ACM WWW
2014, pp. 743–748. ACM (2014)

4. Carvalho, T., Farid, H., Kee, E.: Exposing photo manipulation from user-guided
3D lighting analysis. In: SPIE/IS&T Electronic Imaging, p. 940902. International
Society for Optics and Photonics (2015)

5. Dearden, L.: The fake refugee images that are being used to distort public opinion
on asylum seekers, September 2015. http://www.independent.co.uk/news/world/
europe/the-fake-refugee-images-that-are-being-used-to-distort-public-opinion-on-
asylum-seekers-10503703.html

6. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8),
861–874 (2006)

7. Ferrara, E.: Manipulation and abuse on social media by Emilio Ferrara with Ching-
man Au Yeung as coordinator. ACM SIGWEB Newslett. (Spring), Article No. 4
(2015)

8. Fridrich, J., Soukal, D., Lukas, J.: Detection of copy move forgery in digital images.
In: Digital Forensic Research Workshop, August 2003

https://twitter.com/fema/status/264800761119113216
https://twitter.com/fema/status/264800761119113216
http://www.independent.co.uk/news/world/europe/the-fake-refugee-images-that-are-being-used-to-distort-public-opinion-on-asylum-seekers-10503703.html
http://www.independent.co.uk/news/world/europe/the-fake-refugee-images-that-are-being-used-to-distort-public-opinion-on-asylum-seekers-10503703.html
http://www.independent.co.uk/news/world/europe/the-fake-refugee-images-that-are-being-used-to-distort-public-opinion-on-asylum-seekers-10503703.html

Are You Lying: Validating the Time-Location of Outdoor Images 123

9. Garg, R., Varna, A.L., Wu, M.: Seeing ENF: natural time stamp for digital video
via optical sensing and signal processing. In: ACM MM 2011, pp. 23–32. ACM
(2011)

10. Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing
and identifying fake images on twitter during hurricane sandy. In: ACM WWW
2013, pp. 729–736. ACM (2013)

11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn.
Cambridge University Press, Cambridge (2004)

12. Harvey, P.: Exiftool. http://www.sno.phy.queensu.ca/∼phil/exiftool/
13. Holbert, K.E., Srinivasan, D.: Solar energy calculations. In: Handbook Of Renew-

able Energy Technology, pp. 189–204 (2011)
14. Imran, M., Elbassuoni, S.M., Castillo, C., Diaz, F., Meier, P.: Extracting infor-

mation nuggets from disaster-related messages in social media. In: Proceedings of
ISCRAM, Baden-Baden, Germany (2013)

15. Iqbal, M.: An Introduction to Solar Radiation. Elsevier, Amsterdam (2012)
16. Japan Electronics and Information Technology Industries Association: Exchange-

able image file format for digital still cameras: Exif Version 2.2, April 2002
17. Junejo, I.N., Foroosh, H.: Estimating geo-temporal location of stationary cameras

using shadow trajectories. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV
2008. LNCS, vol. 5302, pp. 318–331. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88682-2 25

18. Kakar, P., Sudha, N.: Verifying temporal data in geotagged images via sun azimuth
estimation. IEEE Trans. Inf. Forensics and Secur. 7(3), 1029–1039 (2012)

19. Karttunen, H., Kroger, P., Oja, H., Poutanen, M., Donner, K.J.: Fundamental
Astronomy, 5th edn. Springer, Heidelberg (2007)

20. Kee, E., O’brien, J.F., Farid, H.: Exposing photo manipulation from shading and
shadows. ACM Trans. Graph. 33(5), 165:1–165:21 (2014)

21. Metadata Working Group: Guidelines For Handling Image Metadata v2.0,
November 2010

22. National Information Standards Organization: Understanding Metadata (2004)
23. Pan, X., Lyu, S.: Detecting image region duplication using sift features. In: IEEE

ICASSP 2010, pp. 1706–1709. IEEE (2010)
24. Savoie, D.: Sundials: Design, Construction, and Use. Praxis Publishing, Chichester

(2009)
25. Tian, J., Qu, C., Xu, W., Wang, S.: Kinwrite: handwriting-based authentication

using kinect. In: NDSS 2013 (2013)
26. Tsai, T.H., Jhou, W.C., Cheng, W.H., Hu, M.C., Shen, I.C., Lim, T., Hua, K.L.,

Ghoneim, A., Hossain, M.A., Hidayati, S.C.: Photo sundial: estimating the time of
capture in consumer photos. Neurocomputing 177, 529–542 (2016)

27. Wu, L., Cao, X.: Geo-location estimation from two shadow trajectories. In: IEEE
CVPR 2010, pp. 585–590 (2010)

http://www.sno.phy.queensu.ca/~phil/exiftool/
http://dx.doi.org/10.1007/978-3-540-88682-2_25
http://dx.doi.org/10.1007/978-3-540-88682-2_25

Lights, Camera, Action! Exploring Effects
of Visual Distractions on Completion

of Security Tasks

Bruce Berg, Tyler Kaczmarek(B), Alfred Kobsa, and Gene Tsudik

University of California Irvine, Irvine, CA, USA
{bgberg,tkaczmar,kobsa}@uci.edu, gts@ics.uci.edu

Abstract. Human errors in performing security-critical tasks are typ-
ically blamed on the complexity of those tasks. However, such errors
can also occur because of (possibly unexpected) sensory distractions.
A sensory distraction that produces negative effects can be abused by
the adversary that controls the environment. Meanwhile, a distraction
with positive effects can be artificially introduced to improve user per-
formance.

The goal of this work is to explore the effects of visual stimuli on the
performance of security-critical tasks. To this end, we experimented with
a large number of subjects who were exposed to a range of unexpected
visual stimuli while attempting to perform Bluetooth Pairing. Our results
clearly demonstrate substantially increased task completion times and
markedly lower task success rates. These negative effects are notewor-
thy, especially, when contrasted with prior results on audio distractions
which had positive effects on performance of similar tasks. Experiments
were conducted in a novel (fully automated and completely unattended)
experimental environment. This yielded more uniform experiments, bet-
ter scalability and significantly lower financial and logistical burdens. We
discuss this experience, including benefits and limitations of the unat-
tended automated experiment paradigm.

1 Introduction

It is widely believed that the human user is the weakest link in the security chain.
Nonetheless, human participation is unavoidable in many security protocols.
Such protocols require extensive usability testing, since users are unlikely to per-
form well when faced with overly difficult or intricate tasks. Typically, security-
related usability testing entails evaluating human performance in a “best-case”
scenario. In other words, testing is usually conducted in sterile lab-like environ-
ments.

At the same time, security protocols involving human users have become more
commonplace. Examples include activities, such as: (1) using a personal device
for verification of transaction amounts, (2) entering a PIN or a password and
(3) solving a CAPTCHA, (4) comparing PINs when pairing Bluetooth devices,
and (5) answering personal security questions.
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 124–144, 2017.
DOI: 10.1007/978-3-319-61204-1 7

Lights, Camera, Action! Exploring Effects of Visual Distractions 125

Since overall security of these tasks is determined by the human user (as
the weakest link), extensive usability studies have been conducted. They aimed
to assess users’ ability to perform security tasks correctly and without undue
delays, while providing an acceptable level of security [5,9,11,17].

However, the focus on maximizing successful protocol completion led devel-
opers to evaluate usability under contrived and unrealistic settings. In practice,
security tasks can take place in noisy environments. In real-world settings, users
are often exposed to various sensory stimuli. The impact of such stimuli on per-
formance and completion of security tasks has not been well studied. A particular
stimulus (e.g., a fire alarm or flickering lights) can be unintentional or hostile,
i.e., introduced by the adversary that controls the physical environment. Fur-
thermore, recent emergence of Internet of Things (IoT) devices (such as smart
speakers and light fixtures) in home and office settings creates environments
where compromised (malware-infected) devices can expose users to a variety of
visual and audio stimuli.

There has been just one prior study that studied the effects of stimuli on the
completion of security-critical tasks. It showed that introduction of unexpected
audio stimuli during Bluetooth pairing actually improved subject performance
[8]. This initial result, though interesting, motivates a more thorough study in
order to fully understand the effects of a range of unexpected (and potentially
malicious) stimuli.

Since modern user-aided security protocols focus on maximizing successful
outcomes in an ideal environment, human errors are quite rare. For example,
Uzun et al. [22] assume that:

“...[A]ny non-zero fatal error rate in the sample size of 40 is unacceptable
for security applications.”

Consequently, numerous trials with many subjects are needed to gather data
sufficient for making claims about human error rates. The scale is further exac-
erbated by the need to test multiple modalities, each with a distinct set of
subjects. (This is because a given subject is less likely to make a similar mis-
take twice, even under different conditions.) Therefore, the number of required
participants can quickly grow into hundreds, which presents a logistical chal-
lenge. To ease the burden of conducting a large-scale study, we designed and
employed an entirely unattended and automated experimental setup, wherein
subjects receive recorded instructions from a life-sized projection of a video-
recorded experimenter (“avatar”), instead of a live experimenter.

We extensively experimented with subjects attempting to pair two Bluetooth
devices (one of which was the subject’s own device) in the presence of various
unexpected visual stimuli. We tested a total of 169 subjects in the fully unat-
tended experiment setting.1 We initially hypothesized that visual stimuli would
have beneficial or facilitatory effects on subject task completion, as was recently
experienced with its audio counterpart [8]. Surprisingly, we discovered a marked

1 All experiments described in this paper were fully authorized by the Institutional
Review Board (IRB).

126 B. Berg et al.

slowdown in task completion times across the board, and lower task success rates
under certain stimuli.

The rest of the paper is organized as follows: The next section overviews
related work and background material. Then, we present the design and setup of
our experiments, followed by the presentation of our experimental results. Next,
we derive conclusions and summarize lessons learned. The paper concludes with
the discussion of limitations of our approach and directions for future work.
Appendix 1 presents and analyzes performance of subjects arriving in groups.
Appendix 2 contains the description of color spaces used to generate our stimuli.
Details on the unattended experiment setup are in Appendix 3.

2 Background and Related Work

This section overviews related work in automated experiments, and human-
assisted security methods. We also provide background information in psychol-
ogy, particularly effects of sensory arousal on task performance, as well as effects
of visual stimuli on arousal level and emotive state.

2.1 Automated Experiments

Other than recent results describing effects of audio distractions [8], we are
unaware of any prior usability studies utilizing a fully automated and unattended
physical environment.

However, some prior work reinforces validity of virtually-attended remote
experiments and unattended online surveys, in contrast with same efforts in a
traditional lab-based setting. Ollesch et al. [18] collected psychometric data in:
(1) a physically attended experimental lab setting and (2) its virtually attended
remote counterpart. No significant differences were found. This is further rein-
forced by Riva et al. [21] who compared data collected from (1) unattended
online, and (2) attended offline, questionnaires. Finally, Lazem and Gracanin
[14] replicated two classical social psychology experiments where both the par-
ticipants and the experimenter were represented by avatars in Second Life2,
instead of being physically co-present. Here too, no significant differences were
observed.

2.2 User Studies of Secure Device Pairing

Secure device pairing (mostly, but not only, via Bluetooth) has been extensively
researched by experts in both security and usability. While initially pairing, the
two devices have no prior knowledge of one another, i.e., there is no prior security
context. Also, they can not rely on either a Trusted Third Party (TTP) or a Pub-
lic Key Infrastructure (PKI) to facilitate the protocol. This makes device pairing
especially vulnerable to man-in-the-middle (MiTM) attacks. This prompted the

2 See secondlife.com.

http://secondlife.com/

Lights, Camera, Action! Exploring Effects of Visual Distractions 127

design of numerous protocols requiring human involvement (integrity verifica-
tion) over some out-of-band (OOB) channel, e.g., visual or audio comparison or
copying/entering numbers.

For example, Short Authenticated String (SAS) protocols ask the user to
compare two strings of about 20 bits each [13].

Uzun et al. [22] performed the first usability study of Bluetooth pairing
techniques using SAS. It determined that the “compare-and-confirm” method –
which involves the user comparing two 4-to-6-digit decimal numbers and indi-
cating a match or lack thereof – was the most accurate and usable approach.

Kobsa et al. [11] compiled a comprehensive comparative usability study of
eleven major secure device pairing methods. They measured task performance
times, completion times, completion rates, perceived usability and perceived
security. This led to the identification of most problematic as well as most effec-
tive pairing methods, for various device configurations.

Goodrich et al. [5] proposed an authentication protocol that used “Mad-Lib”
style SAS. Each device in this protocol creates a nonsensical phrase based on the
protocol outcome, and the user then determine if the two phrases match. This
approach was found to be easier for non-specialist users.

Kainda et al. [9] examined usability of device pairing in a group setting.
In this setting, up to 6 users tried to connect their devices to one another by
participating in a SAS protocol. It was found that group effort decreased the
expected rate of security and non-security failures. However, if a single individual
was shown a SAS different from that of all others participants, the former often
lied about the SAS in order to fit in with the group, demonstrating so-called
“insecurity of conformity.”

Gallego et al. [4] discovered that subject’s performance in secure device pair-
ing could be improved if it were to be scored. In other words, notifying subjects
about their performance score resulted in fewer errors.

2.3 Effects of Sensory Stimulation

Sensory stimulation has variable impact on task performance. This is due to
many contributing factors, including the subject’s current level of arousal. The
Yerkes-Dodson Law stipulates an inverse quadratic relationship between arousal
and task performance [2]. It implies that, across all contributing stimulants,
subjects who are either at a very low, or very high, level of arousal are not likely
to perform well, and there exists an optimal level of arousal for correct task
completion.

An extension to this law is the notion that completion of less complex tasks
that produce lower levels of initial arousal in subjects benefits from inclusion of
external stimuli. At the same time, completion of complex tasks that produce a
high level of initial arousal suffers from the inclusion of external stimuli. Hockey
[7] and Benignus et al. [1] classified this causal relationship by defining the com-
plexity of a task as a function of the task’s event rate (i.e., how many subtasks
must be completed in a given time-frame) and the number of sources that orig-
inate these subtasks. External stimulation can serve to sharpen the focus of a

128 B. Berg et al.

subject at a low arousal level, improving task performance [19]. Conversely, it
can overload subjects that are already at a high level of arousal, and induce
errors in task completion [6].

O’Malley and Poplawsky [20] argued that sensory noise affects behavioral
selectivity. Specifically, while a consistent positive or negative effect on task
completion may not occur, a consistent negative effect was observed for tasks that
require subjects to react to signals on their periphery. Meanwhile, a consistent
positive effect on task completion was observed for tasks that require subjects
to react to signals in the center of their field of attention. This leads to the
claim that sensory stimulation has the effect of narrowing the subject’s area of
attention.

2.4 Unique Effects of Visual Stimuli

In addition to being general external stimuli that serve to raise arousal level,
visual stimuli, particularly colors, have social and emotional implications. Naz
and Epps [15] surveyed 98 college students about their emotional responses to
five principal hues (red, blue, purple, green and yellow), five intermediate hues
(yellow-red, green-yellow, blue-green, and red-purple) as well as three achromatic
colors (white, gray, and black.) They found that principal hues are more likely to
foster positive emotive responses. Furthermore, different colors within each group
induce differing levels of arousal: some (red or green-yellow) increase arousal,
while others (blue and green) are perceived as relaxing.

Moreover, visual stimuli were found to be dominating in multi-sensory con-
texts. Eimer [3] showed that in experiments with tactile, visual, and audio stim-
uli, subjects overwhelmingly utilized visual queues to localize tactile and audi-
tory events.

3 Methodology

This section describes our experimental setup, procedures and subject
parameters.

3.1 Apparatus

The experimental setting was designed to facilitate fully automated experiments
with a wide range of sensory inputs. We located the experiment in a public, but
low-traffic alcove at the top floor of the Computer Science Department building
in a large public university. Figure 1 shows our setup from the subject’s per-
spective (front view), and Fig. 2 depicts it from the side. More photos can be
found in Appendix 2. The setup is comprised of readily available off-the-shelf
components:

– A 60”-by-45” touch-sensitive interactive Smartboard (See footnote 2) white-
board with a Hitachi CP-A300N short-throw projector (See footnote 2). The
Smartboard acts as both an input and a display device. It reacts to tactile
input, i.e., the user touches its surface, similar to a large touch-screen.

Lights, Camera, Action! Exploring Effects of Visual Distractions 129

Fig. 1. Experimental environment:
subject’s perspective

Fig. 2. Experimental environment:
side view

– A Logitech C920 HD Webcam (See footnote 2).
– Two pairs of BIC America RtR V44-2 speakers (See footnote 2): one alongside

the smartboard, and the other – on the opposite wall. Their arrangement is
such that the subject is typically standing in the center of the four speakers.

– Four programmable wirelessly controllable Phillips Hue A19 LED lightbulbs3

to deliver the visual stimuli.

device. All prospective subjects were explicitly informed, during recruitment,
that they would need to use their own personal device that supports Bluetooth
communication. We could have instead provided a device to the subjects, which
might have fostered a more uniform subject experience. However, there would
have been some drawbacks:

– We wanted to avoid accidental errors due to the use of an unfamiliar device
that might have a different user interface from that of the subject’s own
device. Mitigating this unfamiliarity would have required some training, which
is incompatible with the unattended experiment setting.

– Virtually all current Bluetooth pairing scenarios involve at least one of the
devices being owned by the person performing the pairing. Forcing subjects
to use our device would have resulted in a more contrived or synthetic expe-
rience.

– From a purely practical perspective, an unattended portable device provided
by us would have been more prone to damage or theft than other components,
which are bulky and attached to walls and/or ceilings.

Not surprisingly, the majority of subjects’ devices (152 out of 169) were smart-
phones. Tablets (13) and laptops (4) accounted for the rest.

3 See: meethue.com for Hue Bulbs, smarttech.com for the Smartboard, logitech.com
for the Webcam, bicamerica.com for speakers, and hitachi.com for the projector.

http://www2.meethue.com/en-in/
https://home.smarttech.com/
https://www.logitech.com/
http://bicamerica.com/
http://www.hitachi.com/

130 B. Berg et al.

Bluetooth pairing is not as common as other security-critical tasks, such as
password entry or CAPTCHA solving. However, we believe that Bluetooth pair-
ing is the ideal security-critical task for the unattended experiment setup. It is
preferred to passwords and PINs since it does not require subjects to reveal exist-
ing, or to select new, secrets. The security task at the core of Bluetooth pairing
involves the user comparing two 6-digit decimal numbers – one displayed by each
device being paired – and pressing a single button. This is a much more discrete
and uniform activity than solving CAPTCHA-s, which vary widely in terms of
difficulty and require higher-resolution displays as well as more extensive user
input. These factors, even without external stimuli, would yield large variations
in error rates and completion times.

3.2 Procedures

As mentioned earlier, instead of a live experimenter, we used a life-size video/au-
dio recording of a experimenter giving instructions. This avatar is the subjects’
only source of information about the experiment. Actual experimenter involve-
ment is limited to strictly off-line activities, such as infrequent recalibration of
avatar video volume and visual effects, as well as occasional repair of some com-
ponents that suffered minor wear-and-tear damage throughout the study. This
unattended setup allows the experiment to run without interruption 24/7 over
a 5 month period.

Recall that the central goal of the experiment is to measure performance of
subjects who attempt to pair their personal Bluetooth device to our Bluetooth
device – an iMAC that uses the SmartBoard as an external display. This iMAC
is hidden from the subject’s view; it is situated directly on the other side of the
SmartBoard wall in a separate office. During the pairing process, each subject is
exposed to one randomly selected (from a fixed set) visual stimulus. This is done
by rapid change in the ambient lighting of the room’s four overhead lightbulbs
to the chosen stimulus condition.

The experiment runs in four phases:

1. Initial: the subject walks in, presses a button on the wall which activates the
experiment. Duration: instant.

2. Instruction: the avatar delivers instructions via Smartboard display and
speakers. Duration: 45 s.

3. Pairing: the subject attempts to pair personal device with SmartBoard which
represents the hidden iMAC desktop. In this phase, the subject is exposed to
one (randomly selected out of 7) visual distraction stimulus. Duration: up to
3 min.

4. Final: the subject is prompted, on the SmartBoard, to enter some basic demo-
graphic information, as well as an email address to deliver the reward – an
Amazon discount coupon. The information is entered directly into the Smart-
Board, acting as a touch-screen input device. Duration: up to 6 min.

The total duration of the experiment ranged between 5 and 10 min.

Lights, Camera, Action! Exploring Effects of Visual Distractions 131

In order to mitigate any disparities in task completion times between subjects
that already had Bluetooth Discovery enabled and those who did not, the avatar
informs subjects in the first 15 s of the instruction dialog that they will need to
perform Bluetooth pairing with their personal device. This gives subjects over
30 s to enable Bluetooth Discovery Mode on thier device, if it is not enabled
already.

We selected 6 visual effects that differed across two dimensions: color and
intensity. In terms of color, we picked 3 values in the CIE chromatic space: Red,
Blue, and Yellow-Green. Each is either Solid, i.e., shown at constant maximum
intensity for the duration of the effect, or Flickering, i.e., its intensity grows
and shrinks from the minimum to the maximum and back, completing one full
cycle every second. In all settings, the maximum saturation was used. Color and
intensity parameters for the 4 Phillips Hue bulbs under each condition are as
follows (CCV stands for CIE Chromatic Value) [23]:

1. Red, CCV: X= 0.674, Y = 0.322
2. Blue, CCV: X = 0.168, Y= 0.041
3. Yellow-Green, CCV: X = 0.408, Y = 0.517
4. Solid intensity lumen output: 600 lm
5. Flickering intensity lumen range: 6 lm–600 lm

These color conditions were picked based on capabilities of programmable bulbs
as well as background knowledge about emotive effects of color. Phillips Hue
is an LED system based on creating white light. It can not create a blacklight
effect or any achromatic light, which limits color selection to the subspace of the
CIE color space [23] that Hue supports. (See Appendix 2 for more information).

With that restriction, we looked to the state-of-the-art about emotive recep-
tion and sensory effects of various colors in the Munsell color space [16]. (See
Appendix 2 for more information). It has been shown that principal hues – Red,
Yellow, Purple, Blue, and Green – are typically positively received. In contrast,
intermediate hues, i.e., mixtures of any two principal hues, are more often nega-
tively associated. Also, various colors have been shown to have either an arousing
or a relaxing effect on subjects exposed to them. Based on this information, we
chose three colors that differ as much as possible [15]:

– Red: Principal hue with positive emotional connotations, high associated
arousal levels

– Blue: Principal hue with positive emotional connotations, low associated
arousal levels

– Yellow-Green: Intermediate hue with negative emotional connotation, high
associated arousal levels

Furthermore, we chose to have multiple modalities of light intensity for each
color, with the expectation that a more complex modality would be more arous-
ing and have a greater effect than its simple counterpart [12]. Not having found
any previous work on the impact of exposure to colored light on performance of
security-critical tasks, we include Solid light – the simplest modality of exposure

132 B. Berg et al.

that corresponds to the base level of stimulation. As a more complex modality,
we included Flickering light.

Clearly, these two modalities were not the only possible choices. For exam-
ple, it might have been intuitive to include even a more complex and startling
Strobing light modality, achievable through rapid modulation of light intensity. It
would have probably engendered a more profound impact on the subjects. How-
ever, ethical considerations coupled with the unattended nature of the exper-
iment preclude using any modality that could endanger subjects with certain
sensitivity conditions, such as photosensitive epilepsy. This led us to select a
safe flickering frequency of 1 Hz.

We also found that all three light colors (under both intensity modalities)
do not interfere with readability of a backlit personal wireless device or the
image projected on the Smartboard. All experimenters, including one who used
corrective lenses, could correctly read the screens of their personal devices, under
all color conditions and intensity modalities.

3.3 Prior Results with a Similar Setup

A very similar setup was used in a previous study that assessed effects of
unexpected audio distractions on 147 subjects performing Bluetooth pairing.
As reported in [8], introduction of audio stimuli significantly increased subject
success rates for every stimulus used. There was no significant impact on task
completion time for any stimulus condition. This phenomenon was likely due to
increased sensory arousal, as discussed in [8]. Our expectations for the impact
of unexpected visual stimuli are rooted in these prior results.

3.4 Initial Hypotheses

We started out by hypothesizing that introduction of unexpected visual distrac-
tions during the process of human-aided pairing of two Bluetooth devices would
have similar effects to those observed in prior experiments with audio distrac-
tions. Specifically, we expected two outcomes, as compared to a distraction-free
setting:

[H1]: Lower error rates, and
[H2]: No effect on task completion times

3.5 Recruitment

The main challenge we encountered in the recruitment process is the scale of the
experiments. Prior studies of usability of human-aided pairing protocols [5,9,17],
demonstrated that 20–25 subjects per tested condition represents acceptable size
for obtaining statistically significant findings. Our experiment has one condition
for each of the six visual distraction variations, plus the control condition with
no distractions. Therefore, collecting a meaningful amount of data requires at
least 140 iterations of the experiment.

We used a four-pronged strategy to recruit subjects:

Lights, Camera, Action! Exploring Effects of Visual Distractions 133

1. Email announcements sent to both graduate and undergraduate Computer
Science students.

2. Posters placed (as signboards) near the entrance, and in the lobby, of a large
campus building which housed the experimental setup.

3. Several instructors promoted participation in the experiment in their lectures.
4. Printed fliers handed out at various campus locations during daily peak pedes-

trian traffic times.

Recruitment efforts yielded 169 subjects in total, of whom 125 were male
and 44 – female, corresponding to a 74%–26% gender split. This is expected,
given that the location of our experimental setup was in the Computer Science
and Engineering part of campus. Most subjects (161) were of college age (18–24
years), while 8 were in the 30+ group. This distribution is not surprising given
the university population and the fact that older subjects generally correspond
to researchers, faculty and staff, all of whom are much less likely to be attracted
to being a subject in an experiment.

As follows from the above, our subjects’ demographic was dominated by
young, tech-savvy male undergraduate students.

4 Results

This section discusses the results, starting with data cleaning and proceeding to
subject task completion effects.

4.1 Data Cleaning

We had to discard subject data for three reasons.
First, although instructions (in fliers, announcements and signs near the

setup) specifically stated that subjects were to arrive alone, and perform the
experiment without anyone else present, 37 groups (2 or more) of subjects par-
ticipated. We found that the initial participant from each group performed in a
manner consistent with individual subjects. However, subsequent group members
who tried the experiment were (not surprisingly) significantly faster and more
accurate in their task completion. Consequently, we discarded data of every sub-
ject who arrived in a group and was not the initial participant. We discuss this
issue in more detail in Appendix 1.

The second reason for discarding data would have been due to subject
auditory and/or visual impairment. A subject with an auditory impairment
would have difficulties understanding the avatar’s spoken instructions. A visually
impaired subject would have difficulties with using the Smartboard and with the
pairing process which relies on reading and comparing numbers. After carefully
reviewing all subject video records, we could not identify any obvious visual or
auditory impairment in any subject.

Some subjects successfully completed the experiment several times, perhaps
hoping to receive multiple participation rewards. This occurred despite explicit

134 B. Berg et al.

instructions to the contrary. The system automatically rejected any repeated
pairing attempts from devices already paired with the system, and any repeated
attempts with different devices were discovered by visual inspection of subject
trials. Every such repeated instance was discarded.

4.2 Task Failure Rate

Table 1 shows the number of subjects who, respectively, succeeded and failed at
Bluetooth device pairing under each stimulus condition. It also details the failure
rate for each condition.

Table 2 shows results from Barnard’s exact test applied pairwise to the sub-
ject failure rate of the control condition and each stimulus. It demonstrates that
differences between failure rates are statistically significant at the α = 0.05 level
with respect to all Flickering conditions: Flickering Red, Flickering Blue, and
Flickering Yellow-Green. This even holds if we apply a conservative Bonferroni
correction to account for three pairwise comparisons. This leads us to the mixed
rejection of the initial hypothesis H1, as the failure rate increases significantly
with the introduction of certain kinds of visual distractions, and remains unaf-
fected by others. The next section discusses this further.

Table 3 shows odds ratios and 95% confidence interval for the failure rates
under each stimulus, as compared to the control condition’s failure rate. Inter-
estingly, under this analysis, only the confidence intervals of Flickering Blue and
Flickering Yellow-Green do not include a possible odds ratio of 1.0. Therefore –
under this method of analysis – they are the only statistically significant stimuli
at the α = 0.05 level. The confidence interval defined for the Flickering Red
condition challenges the claim of statistical significance at the α = 0.05 level, as
established by Barnard’s exact test.

Table 1. Subject failure statistics

Stimulus #Successful

subjects

failed

subjects

Failure

rate

None

(control)

32 15 0.32

Solid Red 11 9 0.45

Flickering

Red

9 11 0.55

Solid Blue 14 6 0.30

Flickering

Blue

8 12 0.60

Solid

Yellow-

Green

10 12 0.54

Flickering

Yellow-

Green

7 13 0.65

Total 91 78 0.46

Table 2. Barnard’s exact test on failure rates

Stimulus Total

pairings

Failure

rate

Wald

statistic

Nuisance

parameter

p

None

(control)

47 0.32 – – –

Solid Red 20 0.45 1.02 0.88 0.17

Flickering

Red

20 0.55 1.77 0.86 0.04

Solid

Blue

20 0.30 0.15 0.05 0.49

Flickering

Blue

20 0.60 2.14 0.96 0.03

Solid

Yellow-

Green

22 0.54 1.79 0.94 0.06

Flickering

Yellow-

Green

20 0.65 2.51 0.91 0.01

Lights, Camera, Action! Exploring Effects of Visual Distractions 135

Table 3. Subject failure rate by gender

Stimulus Odds ratio

wrt control

95% Confidence

interval wrt

control

None (control) - –

Solid Red 1.70 0.60-5.11

Flickering Red 2.61 0.89-7.63

Solid Blue 0.91 0.29-2.85

Flickering Blue 3.20 1.08–9.47

Solid

Yellow-Green

1.79 0.91–7.24

Flickering

Yellow-Green

3.96 1.31–11.6

Table 4. Subject failure rate by gender

Gender # Successful

subjects

Unsuccessful

subjects

Failure rate

Male 65 59 0.48

Female 25 20 0.44

We also examined subject failure rates by gender. As shown by Table 4 there
is no statistically significant difference in failure rates between male and female
participants; Wald statistic = 0.36, nuisance parameter = 0.01, p = 0.46.

4.3 Task Completion Times

Table 54 5 shows average completion times in successful trials under each stimu-
lus. After applying a conservative Bonferroni correction to account for six pair-
wise comparisons between individual stimulus conditions and the control condi-
tion, every stimulus condition shows an overwhelmingly large, statistically signif-
icant departure from the control condition. This results in rejection of hypothesis
H2. The following section examines possible causes of this slowdown, as well as
its implications.

Table 5. Avg times (sec) for successful
pairing.

Stimulus Mean

time

Std

Dev

DF wrt

control

t-value wrt

control

p

None 34.50 11.93 – – –

Solid Red 87.81 24.56 41 9.56 <0.001

Flickering

Red

90.44 15.62 39 11.59 <0.001

Solid Blue 106.36 17.39 44 16.32 <0.001

Flickering

Blue

91.25 24.11 38 9.61 <0.001

Solid

Yellow-

Green

90.30 19.08 40 11.1 <0.001

Flickering

Yellow-

Green

90.29 19.06 37 10.01 <0.001

Table 6. Cohen’s d on completion
times wrt Control

Stimulus Cohen’s d wrt control

None (control) -

Solid Red −3.42

Flickering Red −4.49

Solid Blue −5.33

Flickering Blue −3.90

Solid Yellow-Green −4.12

Flickering Yellow-Green −4.29

4 Std Dev = Standard Deviation.
5 DF = Degrees of Freedom.

136 B. Berg et al.

Table 6 shows Cohen’s d for completion times under each stimulus when com-
pared to the control condition. |d| > 1.0 in all cases, which means that every
stimulus condition shows an overwhelmingly large, statistically significant depar-
ture from the control condition for the evaluation of Cohen’s d. This result is
statistically significant: it indicates that, with convincing probability, the mean
completion time observed under the control is representative of a different distri-
bution than that observed under each stimulus condition. This supports rejection
of hypothesis H2.

Next, we looked into subject completion times for successful completion
attempts by gender. Results are displayed in Table 7. A pairwise t-test shows
that observed differences are not statistically significant; t(84) = 0.04, p = 0.96.

Table 7. Avg times (sec)
by gender

Gender Mean
time

Standard
deviation

Male 75.27 22.31

Female 75.20 24.10

Table 8. One-Way ANOVA test

Sum of
squares

DF Mean
square

F p

Between groups 2964.28 5 592.86 1.466 0.217

Within groups 21440.33 53 404.535

Total 24404.61 58

Finally, we preformed Bartlett’s test for homogeneity of variances as well as
a One-Way analysis of variance (ANOVA) test between average task completion
times of all stimulus conditions, excluding the control. Bartlett’s test failed to
reject the null hypothesis that all stimulus conditions share the same variance
(χ2 = 2.80, p = 0.731). Furthermore, the one-way ANOVA test indicated no
significant difference between any sample distributions (F = 1.466, p = 0.217.)
Table 8 shows the results; their implications are discussed in the following section.

5 Discussion of Observed Effects

Several types of visual stimuli appear to have a negative effect on the subjects’
successful completion of the Bluetooth Pairing task. However, collected data
shows that this is not consistent across all stimuli. Instead, the negative effect
may be tied to certain features of the particular stimulus. Instances of significant
degradation in subject success rates were linked to the Flickering modality, for
all color stimuli. This result implies that emotional perception of the stimulus
may not be as much of a contributing factor to the overall increase of subject
arousal as the presence of a dynamic visual stimulus. Also, in contrast with a
previous study of audio distractions that observed positive effects [8], we noted
no benefit to subject success rates under any visual stimulus.

These negative and neutral responses to static and dynamic light stimuli,
respectively, are reinforced by the psychological concept of attentional selectiv-
ity. This concept assumes that the capture of an individual’s attention by an

Lights, Camera, Action! Exploring Effects of Visual Distractions 137

aversive stimulus is likely to be momentary, occurring primarily when the stim-
ulus is first introduced. In cognitive science, attention is conceptualized as a
limited resource. For good evolutionary reason, the greatest demand on atten-
tion is in response to any change in one’s environment. Once an assessment of
the stimulus is made, and determined not to require additional action, atten-
tional devotion to that stimulus fades quickly. This means that – while a static,
adverse lighting change may remain adverse throughout its duration – its capac-
ity to interfere with subject performance will fade rapidly after its onset. Instead,
dynamically changing stimuli can more effectively capture subject attention and
impair their performance, since many assessments are needed for many environ-
mental changes occurring throughout the stimulus’s duration.

Negative impact on subject task completion rates prompts a new attack
vector for the adversary who controls ambient lighting. By taking advantage
of color effects with shifting intensity levels, the adversary could force a user
into failing Bluetooth pairing as a denial-of-service (DoS) attack. Moreover, the
adversary might induce failure by using positively perceived colors of varying
intensity. These colors may not even register as malicious in the user’s mind, as
they are innately associated with beneficial or pleasant emotions.

However, a much greater effect was observed in terms of average completion
time. During review of subject trials, we noted that, upon exposure to the stim-
ulus, subjects often take their gaze off their personal device (or the avatar) and
focus their attention to the colorful, and possibly flickering, lights. The resulting
delay frequently caused the subject’s device to exit the Bluetooth pairing menu
due to a time-out, and re-initiate the pairing protocol, resulting in much longer
completion times overall.

Furthermore, as shown by Table 8, the introduced delay in subject task com-
pletion time was not based on the particular stimulus. Instead, the mere presence
of a visual stimulus was enough to slow down successful subjects. Similar to the
result in inducing user failure, the adversary is not forced to rely on an overtly
malicious stimulus in order to cause substantial slowdown in task completion.
However, the adversary has even more choices in stimulus selection, since all
stimuli (including those with static intensity levels) were shown to impact task
completion times the same way.

This effect shows further power for the adversary in control of ambient light-
ing. One possibility is that the adversary’s goal is a denial-of-service attack by
frustrating user’s pairing attempts. In a more sinister scenario the adversary
could try to “buy time” by introducing its own malicious device(s) alongside
changes to ambient lighting and then leverage the user’s lapse in focus (when
being exposed to new sensory stimuli) to trick the user into pairing with that
device. In the worst case, the adversary might take advantage of the user’s inat-
tentiveness while their gaze shifts away from their device and trick them into
accepting a non-matching authenticator.

138 B. Berg et al.

6 Unattended Setup: Limitations

Based on our earlier discussion of Data Cleaning, some subjects’ data had to be
removed from the dataset because they did not conduct the experiment alone.
This occurred even though all recruitment materials (and means) as well as the
avatar’s instructions stated that subjects were to perform the task alone. This
illustrates a basic limitation of the unattended setup: no one is present to enforce
the rules in real time.6

We did not manage to capture fine-grained data about the subjects’ aware-
ness of a distraction. We have some anecdotal evidence from video recordings
showing that some subjects noticed the distraction in obvious ways, e.g., verbal
remarks or turning their heads. However, we have no evidence of subjects who
failed to notice the stimulus. Information about subjects noticing a change in
the environment is very important to the development of a realistic adversary
model for future studies.

7 Study Shortcomings

In this section we discuss some shortcomings of our study.

7.1 Homogeneous Subjects

Our subject group was dominated by young, tech-savvy male college students.
This is a consequence of the experiment’s location. Replication of our experiment
in a non-academic setting would be useful. However, recruiting a really diverse
group of subjects is hard. Ideal venues might be stadiums, concert halls, fair-
grounds or shopping malls. Unfortunately, deployment of our unattended setup
in such public locations is logistically infeasible. Since these public areas already
have many sensory stimuli, reliable adjustment of our subjects’ arousal level in
a consistent manner would be very hard. Furthermore, it would be very difficult
to secure specialized and expensive experimental equipment.

In addition to being tech-savvy, young subjects are in general more apt to
quickly recover from changes in the lighting of their surroundings than older
adults [10]. It is possible that unexpected visual stimuli would have a different
effect on an older (less technologically adept) population.

7.2 Sufficiently Diverse Stimuli

We selected six conditions to obtain as many diverse stimuli types as we could
rigorously test, in addition to control. We first varied them by changing the
regularity of the stimulus, expecting that a varying signal would have greater

6 However, it would have been possible (though quite difficult in practice) to instru-
ment our recording of the experiment to abort upon detecting simultaneous presence
of multiple subjects.

Lights, Camera, Action! Exploring Effects of Visual Distractions 139

impact on subjects’ arousal than a steady signal. We then varied the colors, with
the expectation that using colors that evoked different emotive responses and
general arousal levels would impact task performance differently.

An ideal experiment would have included a stimulus with negative emotional
connotation and low arousal levels. However, between three colors, two intensity
conditions, and the control, we had seven total conditions to test. Furthermore,
due to the nature of our experiment, we could only reasonably expect each
subject to be tested under a single condition, since prior knowledge about the
experiment would clearly bias the results. Adding just one additional stimulus
(for both intensity modalities) would have required at least 40 more subjects.
This would have placed a heavy logistical burden for our already nearly-depleted
subject pool.

We also note that variance in intensity of our flickering modality did not
approach the technical limit of Philips Hue bulbs. Instead, we deliberately limited
the frequency of intensity fluctuations to 1Hz in order to avoid any possible
negative reaction from light-sensitive subjects. This ethical issue does not reflect
real-world conditions where an adversary (with no ethical qualms) could create
a very fast strobing effect, possibly causing physical harm.

7.3 Synthetic Environment

Our unattended setup, while a step closer to an everyday setting than a sterile
and highly controlled lab, is still quite synthetic. First, our choice to place it
in a low-traffic area makes it quieter than many common settings. Second, our
choice to situate it indoors makes it free of temperature fluctuations, air flow, and
exposure to sunlight. Finally, our equipment (such as the Smartboard projector
system) is not commonly encountered by most subjects.

7.4 Ideal Setting

Drawing upon aforementioned shortcomings, the ideal setting for our experiment
would be one where:

– Subject demographics are more varied
– Subjects are not aware of the nature of the experiment until they are debriefed

after task completion
– The environment is more commonplace
– The task is more security-critical

All of these criteria could be trivially met if, for example, we conducted the
experiment at a busy bank ATM. The task at hand would be the obviously
security-critical entry of the subject’s PIN. A modern ATM comes standard
with all of the features needed for our experiment: it has a keypad, a screen, a
speaker (for visually impaired users), a video camera, and are in areas that are
artificially lit. Similarly, a busy gas station would fit our needs, as each fuel pump
typically includes a keypad for PIN entry, speakers, a screen, artificial lighting,

140 B. Berg et al.

and a video camera recording the transaction. However, despite their attractive
qualities, there would be serious ethical and logistical obstacles to setting up an
unattended automated experiment in one these location examples.

8 Conclusions and Future Work

As human participation in security-critical tasks becomes more commonplace, so
does the incidence of users performing these tasks while subject to accidental or
malicious distractors. This strongly motivates exploring user error rates and their
reactions to various external stimuli. Our efforts described in this paper shed
some light on understanding human errors in security-critical tasks by studying
the effects of visual stimuli on users attempting to pair two Bluetooth devices.

We feel that this unattended experiment paradigm is a valuable approach
that deserves further study. The development of standardized unattended and
automated experimental setups could greatly lower the logistical and financial
burdens associated with conducting large-scale user studies.

Given the observed negative effect on subject completion times, one inter-
esting next step would be to conduct a similar experiment, where, instead of
measuring subjects’ ability to pair Bluetooth devices, we would examine the
rates of incorrect pairing when the subjects are shown mis-matched numbers
during the pairing process. This could help us determine whether (and how)
visual distractions make users more likely to pair their device to some other
(perhaps adversary-controlled) device.

Another direction is investigating effects of hybrid (e.g., audio/visual) dis-
tractions. Finally, we plan to conduct a study of subjects performing security-
critical tasks, while being exposed to multiple visual stimuli lasting longer than
3 min. This might allow us to learn whether subjects’ sensory arousal is the
result of the surprise (due to the sudden visual stimulus), or an unavoidable
psychophysical reaction.

Acknowledgments. This research has been supported by NSF Grant CNS-1544373.

Appendix 1: Analysis of Group Initiators

We considered potential differences in failure rates between subjects who per-
formed the task alone, and those who did it as part of a group. As mentioned in
the discussion of Data Cleaning, for each group, we only consider the initial par-
ticipating group member, referred to as the Group Initiator. As Table 9 shows,
there is no significant difference between failure rates of individual subjects and
Group Initiators; Wald Statistic = 0.34, Nuisance parameter = 0.01, p = 0.51.
Furthermore, as Table 10 shows, a pairwise t-test of completion times for indi-
viduals – compared to group initiators – shows that observed differences are not
statistically significant; t(84) = 0.09, p = 0.93.

Lights, Camera, Action! Exploring Effects of Visual Distractions 141

Table 9. Failure rates: initiators vs. individuals

Participant
type

#Successful
subjects

#Unsuccessful
subjects

Failure
rate

Group
initiator

19 18 0.49

Individual 72 60 0.45

Table 10. Avg times (sec): initia-
tors vs. individuals

Participant
type

Mean
time

Standard
deviation

Group
initiator

76.63 23.00

Individual 76.20 17.93

Appendix 2: A Few Colorful Words

Munsell Color System

The Munsell Color System is used for creating and describing colors. In it, all
colors are grouped into two categories: primary and intermediate hues. Primary
hues include: Red, Yellow, Purple, Blue, and Green, arranged in a circular shape
as in Fig. 3. Intermediate hues are mixtures of two adjacent primary hues, such
as Yellow-Green or Purple-Blue. Colors are defined on three dimensions: hue,
lightness, and color purity. The Munsell system is based on human perception
which makes it useful for rigorously defining human reaction to specific color
forms. However basing the system on human perception makes the Munsell sys-
tem a poor tool for direct conversion of light described by its physical wavelength
into human-perceptible color.

Fig. 3. Munsell color space (Image best viewed in color)

CIE Color Space

The Phillips Hue bulbs use the CIE color space. In CIE, colors are defined as
a 2-dimensional space with X and Y values moving along a roughly triangular

142 B. Berg et al.

curve that corresponds to the translation of wavelengths of light to their human
perception in the visible spectrum. The exact color range of the Philips Hue bulb
is shown in Fig. 4.

Fig. 4. Phillips Hue CIE color space (Image best viewed in color)

Appendix 3: Unattended Experiment Setup

Figures 5, 6, 7 and 8 provide additional details about our experimental setup.

Fig. 5. The experiment environment
during the Solid Blue condition (Image
best viewed in color)

Fig. 6. The subject’s perspective dur-
ing the Solid Red condition (Image best
viewed in color.)

Lights, Camera, Action! Exploring Effects of Visual Distractions 143

Fig. 7. Subject entering email address
on Smartboard

Fig. 8. Post-experimental review of
video recordings (separate office)

References

1. Benignus, V.A., Otto, D.A., Knelson, J.H.: Effect of low-frequency random noises
on performance of a numeric monitoring task. Percept. Mot. Skills 40(1), 231–239
(1975)

2. Cohen, R.A.: Yerkes-Dodson law. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds.)
Encyclopedia of Clinical Neuropsychology, pp. 2737–2738. Springer, New York
(2011)

3. Eimer, M.: Multisensory integration: how visual experience shapes spatial percep-
tion. Curr. Biol. 14(3), R115–R117 (2004)

4. Gallego, A., Saxena, N., Voris, J.: Exploring extrinsic motivation for better secu-
rity: a usability study of scoring-enhanced device pairing. In: Sadeghi, A.-R. (ed.)
FC 2013. LNCS, vol. 7859, pp. 60–68. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39884-1 6

5. Goodrich, M.T., Sirivianos, M., Solis, J., Soriente, C., Tsudik, G., Uzun, E.: Using
audio in secure device pairing. Int. J. Secure. Netw. 4(1), 57–68 (2009)

6. Harris, W., Stress, P.: The effects of intense noise stimulation and noxious stimula-
tion upon perceptual performance. Ph.D. thesis, University of Southern California
(1960)

7. Hockey, G.R.J.: Effect of loud noise on attentional selectivity. Q. J. Exp. Psychol.
22(1), 28–36 (1970)

8. Kaczmarek, T., Kobsa, A., Sy, R., Tsudik, G.: An unattended study of users per-
forming security critical tasks under adversarial noise. In: Proceedings of the NDSS
Workshop on Useable Security, pp. 14:1–14:12 (2015)

9. Kainda, R., Flechais, I., Roscoe, A.W.: Usability and security of out-of-band chan-
nels in secure device pairing protocols. In: Proceedings of the 5th Symposium on
Usable Privacy and Security, pp. 11:1–11:12 (2009). ACM ID: 1572547

10. Kline, D.W., Schieber F.: Vision and aging (1985)
11. Kobsa, A., Sonawalla, R., Tsudik, G., Uzun, E., Wang, Y.: Serial hook-ups: a

comparative usability study of secure device pairing methods. In: Proceedings of
the 5th Symposium on Usable Privacy and Security, pp. 10:1–10:12 (2009). ACM
ID: 1572546

http://dx.doi.org/10.1007/978-3-642-39884-1_6
http://dx.doi.org/10.1007/978-3-642-39884-1_6

144 B. Berg et al.

12. Koelega, H.S., Brinkman, J.-A., Zwep, B., Verbaten, M.N.: Dynamic vs static
stimuli in their effect on visual vigilance performance. Percept. Mot. Skills 70(3),
823–831 (1990)

13. Laur, S., Asokan, N., Nyberg, K.: Efficient mutual data authentication using man-
ually authenticated strings. Cryptology ePrint Archive, report 2005/424 (2005).
http://eprint.iacr.org/

14. Lazem, S., Gracanin, D.: Social traps in second life. In: 2010 Second International
Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES),
pp. 133–140, March 2010

15. Naz, K., Epps, H.: Relationship between color and emotion: a study of college
students. Coll. Stud. J. 38(3), 396 (2004)

16. Nickerson, D.: History of the Munsell color system and its scientific application. J.
Opt. Soc., 575–586 (1940)

17. Nithyanand, R., Saxena, N., Tsudik, G., Uzun, E.: Groupthink: usability of secure
group association for wireless devices. In: Proceedings of the 12th ACM Inter-
national Conference on Ubiquitous Computing, pp. 331–340 (2010). ACM ID:
1864399

18. Ollesch, H., Heineken, E., Schulte, F.P.: Physical or virtual presence of the experi-
menter: psychological online-experiments in different settings. Int. J. Internet Sci.
1(1), 71–81 (2006)

19. Olmedo, E.L., Kirk, R.E.: Maintenance of vigilance by non-task-related stimulation
in the monitoring environment. Percept. Mot. Skills 44(3), 715–723 (1977)

20. O’Malley, J.J., Poplawsky, A.: Noise-induced arousal and breadth of attention.
Percept. Mot. Skills 33(3), 887–890 (1971)

21. Riva, G., Teruzzi, T., Anolli, L.: The use of the internet in psychological research:
comparison of online and offline questionnaires. CyberPsychol. Behav. 6(1), 73–80
(2003)

22. Uzun, E., Karvonen, K., Asokan, N.: Usability analysis of secure pairing meth-
ods. In: Dietrich, S., Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 307–324.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-77366-5 29

23. Wyszecki, G., Stiles, W.S.: Color Science, vol. 8. Wiley, New York (1982)

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-77366-5_29

A Pilot Study of Multiple Password Interference
Between Text and Map-Based Passwords

Weizhi Meng1(B), Wenjuan Li2, Wang Hao Lee3, Lijun Jiang2,
and Jianying Zhou4

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

weme@dtu.dk
2 Department of Computer Science, City University of Hong Kong,

Kowloon Tong, Hong Kong
3 Infocomm Security Department, Institute for Infocomm Research,

Singapore, Singapore
4 Singapore University of Technology and Design, Singapore, Singapore

jianying zhou@sutd.edu.sg

Abstract. Today’s computer users have to remember several passwords
for each of their accounts. It is easily noticed that people may have dif-
ficulty in remembering multiple passwords, which result in a weak pass-
word selection. Previous studies have shown that recall success rates
are not statistically dissimilar between textual passwords and graphi-
cal passwords. With the advent of map-based graphical passwords, this
paper focuses on multiple password interference and presents a pilot
study consisting of 60 participants to study the recall of multiple pass-
words between text passwords and map-based passwords under various
account scenarios. Each participant has to create six distinct passwords
for different account scenarios. It is found that participants in the map-
based graphical password scheme could perform better than the textual
password scheme in both short-term (one-hour session) and long term
(after two weeks) password memorability tests (i.e., they made higher
success rates). Our effort attempts to complement existing studies and
stimulate more research on this issue.

Keywords: User authentication · Graphical passwords · Usable secu-
rity · Multiple password interference · HCI

1 Introduction

Over the past few decades, text-based passwords are the most widely adopted
method for user authentication. However, users may suffer from many issues
when using text or pattern in the aspects of security and usability [6,35,38].
As an example, users find it difficult to remember their textual information for
a long time due to the long-term memory (LTM) limitation [37]. As a result,
they are likely to choose and use weak textual passwords. To mitigate these
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 145–162, 2017.
DOI: 10.1007/978-3-319-61204-1 8

146 W. Meng et al.

drawbacks, graphical passwords (GPs) have been proposed as an alternative in
the literature, where users are able to interact with images during the registration
and authentication [29]. Generally, graphical passwords can be categorized as
recognition-based, pure recall-based and cued recall passwords.

Many research studies have shown that graphical passwords can indeed help
users in remembering passwords (see Sect. 2). However, nowadays users have
to remember not just one password, but many, which would add a significant
burden on users’ memory. As a result, the concern of multiple password inter-
ference is raised, where for users, remembering a password for an account (e.g.,
email account) affects their memory of other accounts’ passwords (e.g., Facebook
account). In the literature, this issue has not been widely investigated, whilst one
previous research had paid attention to this issue. They made a study between
text-based passwords and click-based graphical passwords (PassPoints) [8]. In
particular, the click-based GP system requires users to click on several points on
an image rather than enter textual information [36]. They found that the click-
based GPs were significantly less susceptible to multiple password interference
in the short-term, while the results were not statistically different from textual
passwords in the long-term (i.e., after two weeks).

Our current work was motivated by two observations. (1) In the literature,
there have been few studies investigating this important issue of multiple pass-
word memory in the area of graphical passwords. (2) Map-based graphical pass-
words have been recently developed, where users can click on several locations
on a world map as their secrets. A map is believed to provide better recall for
users, but has not been investigated for multiple password memory. Based on
this claim, our main goal of this paper is to investigate the multiple password
interference between text-based passwords and map-based graphical passwords.
More specifically, we develop a prototype of map-based GP in our study, which
allows a sequence of three click-points on a digital world map. Furthermore, we
follow the steps in the most relevant work [8], in order to facilitate the compar-
ison and validation of the collected results.

More formally, memory interference can be described as “the impaired abil-
ity to remember an item when it is similar to other items stored in memory” [3].
In this work, our primary goal is to investigate the multiple password interfer-
ence in text passwords and map-based GPs. The contributions of our paper are
summarized below:

– A user study consisting of 60 participants was conducted to investigate the
multiple password interference issue between textual passwords and map-
based graphical passwords; where 50 of them successfully return after two
weeks to test recall of those passwords they had created. They were assigned
to use either text password system or map-based GP system. Each participant
should create six distinct passwords for different account scenarios.

– It is found that participants can perform better in recalling multiple pass-
words using the map-based graphical passwords, not only in the short-term
(e.g., a one-hour session) but also in the long-term (namely two weeks). In
comparison with the results from former study (e.g., PassPoints), our results

Multiple Password Interference Between Text and Map-Based Passwords 147

indicate that map-based graphical passwords can offer a better and positive
impact on recalling multiple passwords in both short and long term.

It is worth emphasizing that our study aims to complement existing research
and reveals that recall of multiple passwords between text and map-based graph-
ical password schemes has a statistically significant difference in both short and
long term. The results also encourage research studies to develop proper map-
based schemes to improve the issue of multiple password interference.

The remainder of the paper is organized as follows. Section 2 describes related
work about graphical password classification, map-based graphical passwords
and multiple password interference. Section 3 presents our developed map-based
GP system and introduces our study methodology including procedure and steps.
Section 4 analyzes the collected results. We provide a discussion in Sect. 5 and
present some limitations in Sect. 6. Finally, we conclude our paper in Sect. 7.

2 Related Work

2.1 Graphical Passwords

Graphical password schemes can be classified into three broad categories [5,7]:
namely, recognition-based, pure recall-based and cued recall-based.

– Recognition-based GPs. This kind of scheme requires users to select images
from a large gallery. For example, PassFaces [10,25] lets users identify a set
of human faces during the authentication phase. To create a password, the
user chooses four images of human faces from a fixed portfolio of faces. The
Story scheme [10] lets users identify a few images with a theme (e.g., people
and food) from an image gallery.

– Pure recall-based GPs. Such kind of scheme lets users draw a secret on an
image. An example is the DAS proposed by Jermyn et al. [17], where users
draw the password on a grid. Tao and Adams [30] proposed Pass-Go that lets
users select intersections within a grid as a way to enter their password. Based
on Pass-Go, Android unlock patterns are developed on Android phones, which
are a tuned application requiring users to unlock their phones by inputting
correct patterns. Then, Dunphy and Yan [12] explored whether a background
image can improve the performance of graphical passwords.

– Cued recall-based GPs. This kind of scheme requires users to click on a
sequence of points to construct their passwords. PassPoints by Wiedenbeck
et al. [36] belongs to this category. In PassPoints, users recall a sequence of
five selected points by clicking on them. For authentication, users have to click
close to the chosen click points within some (adjustable) tolerance distance.
Later, Chiasson et al. [9] proposed Persuasive Cued Click-Points (PCCP),
which lets users click a point on each of a sequence of background images.

The current graphical password schemes are designed around the actions of
click, choice or draw. Combinations of these schemes have also been studied. For

148 W. Meng et al.

instance, Meng [20] developed a click-draw based graphical password scheme
(CD-GPS) with the purpose of improving the image-based authentication in
both security and usability by combining the actions of clicking, selecting and
drawing. Several new GP systems can be referred to [14,18,19,23]. There are
many studies focusing on security aspect of graphical passwords [4,16,17,26,32,
33] and relevant user behaviors [1,11,21,27,37,39].

2.2 Map-Based Graphical Passwords

Map-based GPs can be categorized as a kind of cued recall-based graphical pass-
word, in which users can recall their selected places on a world map. Despite some
early research work, map-based GPs start becoming popular in recent years. In
2012, Georgakakis et al. [15] proposed a map-based graphical password scheme
called NAVI, where the credentials of the user are his username and password
formulated by drawing a route on a predefined Google map. In particular, a user
selects the starting and the ending point, so that the route is calculated by the
provider of the route planning service.

During the same time, Sun et al. [28] extended the above idea and suggested
to use an extremely large image as the password space. They proposed a world
map based graphical password authentication system called PassMap, in which
a password consists of a sequence of two click-points on a large world map. To
construct secrets, users can shift the world map to selected areas, and zoom
the map to the desired zoom-level. An example of PassMap is shown in Fig. 1.
Their collected results showed that after a week, the accuracy of login is 92.59%,
and claimed that the performance was better than PassPoints. Later, Thorpe
et al. [31] designed GeoPass, an interface for digital map-based authentication,
where users can choose a single place as his or her password. For this scheme,
users only have to remember the final location, rather than their method of navi-
gating there. They included 35 participants in their study and found that nearly
97% of users could correctly remember their location-based-passwords over 8–9
days with very few failed login attempts. It is worth noting that PassMap and
GeoPass are very similar in that secrets are constructed by clicking one or two
places on a world map (e.g., Google map).

Fig. 1. An example of PassMap. The first click-point with red (Left) and the second
click with red (Right). (Color figure online)

Multiple Password Interference Between Text and Map-Based Passwords 149

Recently, Meng [22] proposed RouteMap for better multiple password mem-
ory, which allows users to draw a route on a map as their password. They found
that users could achieve better performance using RouteMap in terms of multi-
ple password memory. From these studies, it is noticeable that users may have
a better memorability regarding map-based graphical passwords.

2.3 Multiple Password Interference

Today, users have to remember more passwords rather than before in the course
of their daily lives such as social networking accounts, personal email accounts,
commercial email accounts and so on. In these cases, multiple password interfer-
ence may become an important issue.

In the text password scheme, Vu et al. [34] had explored the memorability
of multiple textual passwords for different accounts. The study discovered that
users who were given five passwords have difficulty remembering them compared
to those who only had to remember three. It is also revealed that users often
selected passwords that have direct contextual relationship with the account(s)
in question.

For the graphical password scheme, Everitt et al. [13] presented an early study
on how frequency of access and interference affects recognition-based graphical
passwords such as frequency of access to a graphical password. They employed
PassFaces and discovered that many factors can noticeably impact authenti-
cating with multiple facial graphical passwords. For example, participants who
accessed four different graphical passwords per week were ten times more likely
to completely fail to authenticate than participants who accessed a single pass-
word once per week.

Chiasson et al. [8] has conducted a study on comparing the recall of multiple
text passwords against that of multiple click-based graphical passwords (namely
PassPoints). Six account scenarios were simulated and they found that in the
short-term, participants in the graphical password scheme performed signifi-
cantly better than participants using the textual password scheme. They made
fewer errors when recalling their graphical passwords. However, they found that
recall success rates were not statistically different from each other after two
weeks. More recently, Al-Ameen and Wright [2] showed that mental stories could
be used to improve the interference issue in GeoPass. Meng et al. [24] presented
a study on the memorability of multiple passwords between textual passwords
and unlock patterns. The study also explored the difficulty of remembering those
patterns for a prolonged period of time.

It is worth noting that recent research studies had showed that the perfor-
mance of map-based GPs could be better than PassPoints; thus our current
work is timely for the investigation of multiple password interference between
textual passwords and map-based GPs. Our work is different from [2,24], as our
used map-based scheme is not the same (i.e., GeoPass only allows one location
to be selected). Thus, our study can complement existing research results.

150 W. Meng et al.

3 User Study

Following the methodology in the literature [8], we conducted a lab-based user
study involving two sessions: Session-1 and Session-2. All participants were stu-
dents from a university who had no prior information security training, as well
as no prior experience with graphical passwords.

The first session, Session-1 lasted for approximately an hour, recruiting a
total of 60 participants (M = 25.6 years; SD = 3; 32 females). During the study,
we randomly selected 30 participants to the text password scheme (MText),
while the others were assigned to the graphical password scheme (MMP). For
Session-2, after two weeks, 50 participants were successfully returned to the lab
and recalled their created passwords. Also, we provide a feedback form for each
session asking for users’ feedback and attitude.

3.1 Implementation of Map-Based Graphical Passwords

As the source of existing map-based graphical passwords was not released, we
developed a prototype of map-based graphical passwords in our lab computers
with a 17-inch screen (Intel R, CPU 2.6 GHz). It is worth noting that our system
provides a common platform that is able to realize several existing map-based
GPs such as PassMap and GeoPass.

To obtain a world map, we utilized the JavaScript based Google Maps API,
which provides an extensive move-by-dragging, zooming and search functions.
When users zoom in/out on the map, our system reports the zoom-levels. The
search function allows users to shift to a specific part of the map quickly and
further zoom in to locate a specific area. Similar to [28], our system embedded
a 640 × 420 pixel frame block for displaying the world map in a web page and
road map instead of satellite-type map is used by default. The tolerance areas
are 21 × 21 pixels.

We describe the registration and login phase of our developed map-based GP
in Fig. 2 and Fig. 3, respectively.

– Registration. Figure 2 depicts that users are able to choose three locations
on a world map in constructing their passwords. All the information like
coordinates will be forwarded and stored in a database.

– Login. Figure 3 presents that users have to submit their names and three loca-
tions to the system for authentication. The system will compare the inputs
with the stored information (i.e., checking whether the inputs are within tol-
erance). A user is successfully verified only if both credentials are correct.

It is worth noting that PassPoints requires users to select five points on an
image as their secrets, GeoPass requires users to select one place while PassMap
needs users to click two places. Intuitively, we consider the memory of one place
in a map should be quite easy. To make a better comparison with PassPoints,
our map-based GP system increases the memory burden a bit and thus demands
users to choose three locations on a world map (as a study).

Multiple Password Interference Between Text and Map-Based Passwords 151

Fig. 2. Our developed system of map-
based GP: registration phase.

Fig. 3. Our developed system of map-
based GP: login phase.

3.2 Session-1: Procedure and Steps

Session-1 consists of three phases: password practice, password creation and
password retention. During the first phase, participants must complete two trials
as practice to get them familiarized with the graphical password creation. In this
phase, participants are not required to remember their practice passwords.

In the second phase (password generation), each participant has to complete
six trials. Each password is associated with a different account scenario. A total
of six account scenarios are constructed: email, bank, instant messenger, library,
online dating and work (commercial). The accounts were identified by distinct
banners at the top of the system interface. For map-based GP system, Fig. 4
depicts an example of registration interface with library account. It is worth
noting that the banners are the same for text and map-based passwords.

In Fig. 5, we detail the process of registration, where Fig. 5(a) shows the
interface that requires users to input their names and Fig. 5(b) allows users to
select locations on a Google world map to create their secrets. After selecting
locations, the click points including X and Y coordinates and zoom-level will be

Fig. 4. The interface of map-based password creation.

152 W. Meng et al.

Fig. 5. Registration process: (a) inputting user name and (b) selecting locations.

shown in Fig. 5(a). To facilitate location search, our system provides a search
bar in the map (see Fig. 5(b)) as well as zoom-level selection. Besides, users can
switch the map between road and satellite map background.

In this stage, all accounts were presented to participants in the same order.
In addition, participants were asked to construct their passwords which they
could remember but would be difficult for attackers to guess. All participants
were told that they would have to remember their created passwords for later
use and each password was connected to a specific account scenario. Participants
perform the steps below for each account:

– Creation. Participants have to create a password for each account. The textual
password must consist of at least eight characters (this number is selected
based on [8]) and entered twice. The password text was made visible during
the creation process. For the graphical password, participants follow the steps
in our system. This comprises choosing three different locations on a Google
world map (see Fig. 4).

– Confirmation. In the text password scenario, participants have to enter their
password (shown as asterisks), while they have to choose the same places in
the graphical password scheme. If participants unexpectedly cannot remem-
ber their created password, they have the choice returning to the last step to
create the password again.

– Feedback. Participants were invited to provide feedback to our questions (in
the form of 10-point Likert-scale) about the creation and memory of the
current passwords.

– Distraction. A 2-min interlude is given to each participant as a distraction
task. First of all, participants counted backwards by 3 s from a random 4-digit
number, and then participants were given a Mental Rotations Test puzzle

Multiple Password Interference Between Text and Map-Based Passwords 153

(MRT). Similar to [8], the purpose of these tasks was to clear participants’
visual and textual working memory.

– Login. Participants were then invited to login with their created passwords. In
the event that the password is mis-entered, they are allowed to re-enter their
passwords multiple times with no pre-defined limit. If their created secrets
are forgotten, they are allowed to return to the creation step.

Before the start of retention phase, participants were given a 10-min break
where they were given a demographics questionnaire and could leave the exper-
iment venue for the remaining break time. Upon returning from the break,
account scenarios were presented to participants in a re-shuffled order with the
help of a Latin square, where each row is connected with a participant and each
column is connected with an account. All participants are required to recall each
of their six textual or graphical passwords.

After this phase, participants were given another questionnaire to solicit feed-
back about their attitudes towards system usage and password memory.

3.3 Session-2: Procedure and Steps

Up to 50 participants returned to our lab after two weeks, among which 22 of
them were previously assigned to the text password scheme. This session consists
mainly of the 2-week retention phase, which follows the similar steps as per the
initial retention phase during Session-1. The account scenarios were presented
in the same order.

Similarly, participants are allowed to try multiple times with no limit to recall
their created passwords until they gave up trying to recall. After the end of the
session, a questionnaire was given to collect their feedback about password recall
in these two schemes.

4 Results and Analysis

The Chi-square (χ2) tests are mainly used to analyze data from the user studies.
In all cases, we regard a value of ρ < 0.05 indicating that the results are statis-
tically different between two schemes. In particular, we employ success rates as
one of the major measures to evaluate participants’ performance. The success
rates for each step are presented in Table 1.

Table 1. The success rates of login, recall-1, recall-2 and password-confirmation.
MText: multiple text passwords. MMP: multiple map-based passwords.

Confirmation Login Recall-1 Recall-2

MText MMP MText MMP MText MMP χ2 MText MMP χ2

First attempt 97% 97% 94% 99% 62% 96% χ2 = 43.2, ρ < 0.05 43% 72% χ2 = 30.1, ρ < 0.05

Three attempts 99% 100% 98% 100% 86% 98% χ2 = 27.4, ρ < 0.05 55% 79% χ2 = 23.3, ρ < 0.05

More attempts 100% 100% 99% 100% 89% 99% χ2 = 17.5, ρ < 0.05 64% 82% χ2 = 19.5, ρ < 0.05

154 W. Meng et al.

During password confirmation and login, it is found that there was no sta-
tistically significant difference in success rates between these two schemes. The
observations are in line with the results from the previous research work [8]. In
the next parts, we discuss success rates in retention and recall errors.

4.1 Recall Success Rates

Recall-1. In this phase (short term), it is found that the success-rate differences
between the two password schemes are statistically significant. For correct-first-
time attempts, participants in the text password scheme only achieved a success
rate of 62%, but those in the map password scheme could reach a rate of 96%.
With correct-on-multiple attempts, the textual password scheme yielded a suc-
cess rate of up to 89%, indicating that 11% participants eventually gave up. The
map password scheme in contrast yielded a rate of 99%. In other words, for 11%
trials in the text password scheme, participants cannot remember their pass-
words, but there are only 1% unsuccessful trials for the map-based GP. These
results indicated that participants in the graphical password scheme were more
likely to successfully recall their created passwords than those who were under
the text password scheme.

Recall-2. During this phase, we found that participants in the text password
scheme had more difficulty in remembering their passwords, while those in the
graphical password scheme could perform better. As an example, for the first
attempt, the former could only achieve a success rate of 43%, but the latter
could reach 72%. With multiple attempts, the text password scheme eventually
yielded a rate of 64%, while a rate of 82% could be reached by the latter. Differing
from the previous study [8], our existing results reveal that success rates have
statistically significant differences between these two password schemes.

In Table 2, we present the success rates of male and female participants dur-
ing Recall-2. For the graphical password scheme, 80% males can correctly enter
map-based passwords within three attempts as compared to 78% female partic-
ipants. Finally, male participants can reach 84% while females can reach 80%.

Table 2. Success rates of male and female for the Recall-2.

MText: male MText: female χ2

First attempt 42% 44% χ2 = 4.3, ρ > 0.05

Within three attempts 53% 47% χ2 = 4.7, ρ > 0.05

Multiple attempts 68% 60% χ2 = 5.4, ρ > 0.05

MMP: male MMP: female χ2

First attempt 78% 76% χ2 = 4.1, ρ > 0.05

Within three attempts 80% 78% χ2 = 4.5, ρ > 0.05

Multiple attempts 84% 80% χ2 = 4.8, ρ > 0.05

Multiple Password Interference Between Text and Map-Based Passwords 155

The results are similar under the text password scheme, where male partici-
pants could achieve 53% within three attempts and eventually 68% with multiple
attempts. In contrast, female participants could achieve 47% and 60%, respec-
tively. However, the results have no statistically significant differences (ρ > 0.05).
This indicates that there is no apparent difference between male and female.

In [8], the results showed that males tend to perform better than females
when using PassPoints, as males are good at visual-spatial tasks. By contrast,
our system reduces such gap between males and females. Considering only statis-
tics, participants in our study were performed generally better than the results
reported by [8]. This implies that map-based GP can enable users to have a
better memory of multiple passwords, as compared to PassPoints.

To understand the different observations, we further analyzed the collected
data and informally interviewed the returned participants, where 90% of them
gave their feedback. It is found that participants could connect their created
map-based passwords with their past experience such as tours, visits, conference
locations and so on. That is, when they have to input passwords in different
account scenarios, they can link the account scenarios to their previous memory.
For example, one participant said that “When I have to input my map password
to a work account, I can quickly remind of several locations where I have been”.
During the interview, we found that such relationships can generally enhance
the memory accuracy and strength in the long-term.

4.2 Recall Errors

Recall-1. As shown in Table 3, participants made 183 errors in the text pass-
word scheme, whilst they made 15 errors in the graphical password scheme. Since
we allow participants to try many times for an account, the number of errors is
bigger than the number of trials.

To look closer to the types of errors, participants are vulnerable to multiple
password interference under the text password scheme. It is found that 21 out
of 30 participants made recall errors.

– Wrong account. Many participants tried a wrong password for an account.
For example, some of them tried a password from instant message on an
online dating account. Some of them made mistakes between bank account
and work account.

– Wrong account variant. This error means that participants entered some vari-
ant of the correct password for another account.

– Misspelled variant. Up to 20 errors were made because of wrong spells. For
example, some participants entered “lxyy1987” instead of “Lxyy1987”.

– Unknown errors. These errors were not belonging to any types above. Some
participants reflected that they may try a password other than one they
created during the study.

The errors made in the text password condition and the graphical password
condition are summarized in Table 3 and Table 4, respectively. The main obser-
vations regarding the graphical password condition are discussed as below.

156 W. Meng et al.

Table 3. Classification of recall errors for the text password scheme.

Type of error Recall-1 Recall-2

Wrong account 90 88

Wrong account variant 42 24

Misspelled variant 20 73

Unknown 31 40

Total number of errors 183 225

Table 4. Classification of recall errors for the map-based password scheme.

Type of error Recall-1 Recall-2

Outside tolerance 5 15

Incorrect click order 2 7

Forgotten locations 3 8

Incorrect zoom level 5 46

Total number of errors 15 76

– Outside tolerance. There are up to five errors made for this sake, where par-
ticipants could remember the general location, but may choose a place a bit
far from the correct location. For example, some participants selected a place
of car park, but clicked a “house” near the car park during the recall.

– Incorrect click order. Not many, but still two errors were made since partici-
pants selected their locations in a wrong order.

– Forgotten locations. Some participants may forget their locations, or tried a
location from another account. All these errors belong to this type.

– Incorrect zoom level. Zoom level selection is a feature of map-based graphical
passwords, which can help enlarge the password space. However, we find that
a few participants may make errors by selecting a wrong zoom level, or even
forget the correct level.

Recall-2. Overall, participants made significantly more errors when inputting
their passwords after two-weeks, under either the text password scheme, or the
graphical password scheme. There are totally 225 errors made related to text
passwords, while 76 errors made for map-based passwords. The recall results have
statistically significant differences in these two schemes: MText: (t = 3.73, ρ <
0.05) and MMP (t = 4.81, ρ < 0.05).

For the text password scheme, most errors were made because of “wrong
account” and “misspelled variant”, which cover up to 67% of the total errors.
Some participants may cycle through their passwords or variations of their pass-
words when they forget the correct secret for a specific account. These observa-
tions are in line with [8].

Multiple Password Interference Between Text and Map-Based Passwords 157

For the graphical password scheme, most errors were caused by tolerance
and zoom level, which claim a percentage of nearly 80% total errors. It is found
that participants are more likely to click a place out of the tolerance or forget to
check the zoom levels. For example, some participants could choose the correct
location, but ignore the zoom level, resulting in a wrong trial.

5 Discussion

5.1 User Feedback

As stated earlier, after each session, we provided each participant some ques-
tions to collect their feedback and attitude towards system usage and multiple
password interference. The major questions along with the scores are shown in
Table 5. In particular, 10-point Likert scales were used in each feedback question
ranging from 1 to 10, where 1-score indicates strong disagreement and 10-score
indicates strong agreement.

– System usage. According to the first two questions, most participants consid-
ered that both system interfaces are easy to use (i.e., both scores are above
9 on average).

– Recall-1. Regarding the third and fourth question, it can be observed that
most participants can remember multiple passwords within a short time. The
score in the graphical password scheme is a bit higher than that in the text
password scheme (8.9 versus 8.4).

– Recall-2. Most participants indicated that they had difficulty in remembering
multiple textual passwords after two weeks, in which the score is only 4.5.
In contrast, the score in the password scheme reached 7.6, which is much
better. The feedback shows that participants can have a better capability of
remembering multiple map-based passwords.

– Preference. It is found that participants gave a positive score (8.2 on average)
to the map-based GP system, presenting their interests in using map-based
passwords in practice. In comparison, the text password scheme only received
a score of 5.3.

Table 5. Main questions and relevant scores from users’ feedback.

Questions Score (average)

1. The text password interface is easy to use 9.1

2. The map-based password interface is easy to use 9.0

3. I easily remembered the created map passwords after one hour 8.9

4. I easily remembered the created text passwords after one hour 8.4

5. I easily remembered the created map passwords after two weeks 7.6

6. I easily remembered the created text passwords after two weeks 4.5

7. I prefer using the map-based passwords instead of text passwords in practice 8.2

8. I prefer using the text passwords instead of map-based passwords in practice 5.3

9. I am able to manage multiple map-based passwords 8.3

10. I am able to manage multiple text passwords 6.3

158 W. Meng et al.

– Password management. The last two questions have a score of 8.3 and 6.3,
respectively. These indicate that most participants believed that they can
handle multiple passwords in the graphical password scheme. Most of them
stated that map locations are more easily to recall.

It is worth noting that these scores are subjective, but they reflect partici-
pants’ confidence in their password generation and management. We also inter-
viewed up to 80% (48 out of 60) participants to explore why they provide such
scores. Our interests are mainly focusing on participants’ feedback in relation to
Recall-1, Recall-2 and password management.

– For Recall-1, most participants (40 out of 48) stated that they could remember
both types of passwords in the short term. Some of them reflected that they
had some techniques in remembering text passwords, or could employ some
strategies based on their own experience.

– For Recall-2, most participants (43 out of 48) supported that they can remem-
ber map-based graphical passwords much better, as the map provides many
cues for them to recall their selected locations. As an example, one partici-
pant revealed an example of the created map-based secret as: ‘A school’, ‘B
park’ and ‘C mall’. In real life, this participant will go to ‘A school’, through
‘B park’ and ‘C mall’ sequentially. Thus, it is easily to recall the password as
long as he can remember this route for a specific account.

For password management, most participants (38 out of 48) advocated that
they could have a better memory of multiple passwords in the graphical password
scheme. For instance, one participant said that he could simply use different
routes to create map-based passwords. Some participants said that their map-
based passwords were generated based on their past experience in tourist and
conference; thus, it is very convenient for them to remember the passwords for
a long time.

5.2 Comparison with Map-Based GPs and PassPoints

Both map-based GPs and PassPoints belong to the kind of cued recall-based
graphical password, where users are able to select a set of points on an image
to construct the secrets. By considering the results from [8], both graphical
passwords can be easier to recall than text passwords in the short term. These
results indicate that most participants can manage multiple graphical passwords
with different accounts.

By contrast, after two weeks, Chiasson et al. [8] showed there was no sig-
nificant difference in recalling multiple passwords between PassPoints and text
passwords. However, our study reveals that participants can still cope with mul-
tiple map-based passwords better than text passwords in the long term (after
two weeks). There are two major reasons:

– Background selection. For map-based GPs, users can choose their own map
background, i.e., they can zoom in or zoom out the map to a particular area
and choose their preferred locations. In contrast, they have limited selections
in PassPoints, with an image pool including several pre-loaded images.

Multiple Password Interference Between Text and Map-Based Passwords 159

– Map locations. Users can choose locations on a world map in the map-based
GP. In PassPoints, they should click several points on an image. We find
that locations are more useful for users to remember, as these places are
usually familiar to them. At least, they have a general understanding of the
selected location. Therefore, they can link the locations to facilitate their
long-term memory. In comparison, five clicks in PassPoints may not provide
much information for users to link these clicks to a particular account. For
instance, users should click some objects to improve their memory; however,
there may no strong relation between clicks, causing users unable to remember
their clicks after a long period.

On the whole, our discussion revealed that users are empowered with better
recall capability of multiple graphical passwords with the map-based graphical
passwords rather than PassPoints.

6 Limitations

Lab Study. Our primary goal in this study is to examine the multiple pass-
word interference between textual and map-based graphical passwords. We fol-
lowed the established methodology in the literature for study steps and working
memory clearance. However, we acknowledge that the lab study may not reflect
password usage in real lives. For instance, participants have to construct six
new passwords one after another and recall them in a short time, which seldom
occur in practice. In the lab environment, we found that participants may create
passwords with medium strength. For example, participants in the text pass-
word scheme may generate some weak passwords, where easy patterns could
be identified. By contrast, participants in the graphical password scheme can
generate better secrets. Still, our study results provide useful information and
complement existing research in this area.

Participants. Current participants in our study were mainly students, but this
does not dimmish the results of our work. In future work, diverse participants
can be considered to validate our results. Besides, all participants did not have
any prior experience in utilizing any map-based graphical password system, but
they have much experience in constructing text passwords. In this case, partic-
ipants should have an advantage when recalling text passwords. Interestingly,
our results showed that there was a significant difference in recalling text and
map-based passwords. It is found that participants could handle multiple map-
based passwords better than text passwords, since map can provide cues for
participants when they recalled their secrets.

User Study. In the previous work with PassPoints, it is found that the connec-
tion between account and clicks is not clear. Participants were likely to select
click-points in simple patterns such as a straight line or C-shape [8]. These
indicate that participants tried to connect their passwords with their accounts
for better recall. From our existing data, we reveal that there is a potential of
enhancing multiple password memory through designing graphical passwords in

160 W. Meng et al.

an even proper way. That is, users can have a better recall capability of multiple
graphical passwords when connecting passwords to their past experience. From
this view, map provides many locations for users to select in terms of their own
experience. Our implication could be verified in even larger studies.

Despite these limitations, our study provides interesting results to understand
the effects of password interference, which can complement existing research.

7 Conclusion

Motivated by the recent development of map-based graphical password schemes,
we conducted a two-phase user study with 60 participants to investigate the
issue of multiple password interference between text passwords and map-based
passwords. After two weeks, up to 50 participants successfully returned. In the
study, each participant has to create and remember district passwords for six
different account scenarios. Overall, we find that participants in the graphical
password scheme can perform better than those in the text password scheme, not
only in the short-term (one-hour session), but also in the long-term (after two
weeks). Our current results reveal that participants can cope better with map
when recalling multiple passwords. In particular, it is found that participants
indeed made fewer recall errors in the map-based graphical password scheme
than those in the text password scheme. Our work aims to complement existing
work and stimulate more research in this area.

Acknowledgments. We would like to thank all participants for their hard work and
collaboration in the user studies (e.g., data collection), and thank all anonymous review-
ers for their helpful comments. This work was partially supported by SUTD start-up
research grant SRG-ISTD-2017-124.

References

1. Alt, F., Schneegass, S., Shirazi, A.S., Hassib, M., Bulling, A.: Graphical passwords
in the wild - understanding how users choose pictures and passwords in image-based
authentication schemes. In: Proceedings of the 17th International Conference on
Human-Computer Interaction with Mobile Devices and Services (MobileHCI), pp.
316–322 (2015)

2. Al-Ameen, M.N., Wright, M.: Multiple-password interference in the GeoPass user
authentication scheme. In: Proceedings of NDSS Workshop on Usable Security
(USEC), pp. 1–6 (2015)

3. Anderson, M.C., Neely, J.H.: Interference and inhibition in memory retrieval. In:
Memory. Handbook of Perception and Cognition, chap. 8, 2nd edn, pp. 237–313.
Academic Press (1996)

4. Bianchi, A., Oakley, I., Kim, H.: PassBYOP: bring your own picture for securing
graphical passwords. IEEE Trans. Hum.-Mach. Syst. 46(3), 380–389 (2015)

5. Biddle, R., Chiasson, S., Van Oorschot, P.C.: Graphical passwords: learning from
the first twelve years. ACM Comput. Surv. 44(4), 19 (2012)

6. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy,
pp. 538–552 (2012)

Multiple Password Interference Between Text and Map-Based Passwords 161

7. Chiasson, S., Biddle, R., van Oorschot, P.C.: A second look at the usability of
click-based graphical passwords. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security (SOUPS), pp. 1–12 (2007)

8. Chiasson, S., Forget, A., Stobert, E., van Oorschot, P.C., Biddle, R.: Multiple pass-
word interference in text passwords and click-based graphical passwords. In: Pro-
ceedings of the 2009 ACM Conference on Computer and Communications Security
(CCS), pp. 500–511 (2009)

9. Chiasson, S., Stobert, E., Forget, A., Biddle, R.: Persuasive cued click-points:
design, implementation, and evaluation of a knowledge-based authentication mech-
anism. IEEE Trans. Dependable Secure Comput. 9(2), 222–235 (2012)

10. Davis, D., Monrose, F., Reiter, M.K.: On user choice in graphical password
schemes. In: Proceedings of the 13th Conference on USENIX Security Symposium,
pp. 1–11. USENIX Association (2004)

11. Dirik, A.E., Memon, N., Birget, J.C.: Modeling user choice in the PassPoints graph-
ical password scheme. In: Proceedings of the 3rd Symposium on Usable Privacy
and Security (SOUPS), pp. 20–28 (2007)

12. Dunphy, P., Yan, J.: Do background images improve “draw a secret” graphical
passwords? In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security (CCS), pp. 36–47 (2007)

13. Everitt, K.M., Bragin, T., Fogarty, J., Kohno, T.: A comprehensive study of fre-
quency, interference, and training of multiple graphical passwords. In: Proceedings
of the 27th International Conference on Human Factors in Computing Systems
(CHI), pp. 889–898 (2009)

14. Gao, H., Liu, X.: A new graphical password scheme against spyware by using
CAPTCHA. In: Proceedings of the 5th Symposium on Usable Privacy and Security
(SOUPS), Article No. 21 (2009)

15. Georgakakis, E., Komninos, N., Douligeris, C.: NAVI: novel authentication with
visual information. In: Proceedings of the 2012 IEEE Symposium on Computers
and Communications (ISCC), pp. 588–595 (2012)

16. Go�lofit, K.: Click passwords under investigation. In: Biskup, J., López, J. (eds.)
ESORICS 2007. LNCS, vol. 4734, pp. 343–358. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-74835-9 23

17. Jermyn, I., Mayer, A., Monrose, F., Reiter, M.K., Rubin, A.D.: The design and
analysis of graphical passwords. In: Proceedings of the 8th Conference on USENIX
Security Symposium, pp. 1–14. USENIX Association, Berkeley (1999)

18. Liu, C.-L., Tsai, C.-J., Chang, T.-Y., Tsai, W.-J., Zhong, P.-K.: Implementing mul-
tiple biometric features for a recall-based graphical keystroke dynamics authenti-
cation system on a smart phone. J. Netw. Comput. Appl. 53, 128–139 (2015)

19. Lopez, N., Rodriguez, M., Fellegi, C., Long, D., Schwarz, T.: Even or odd: a simple
graphical authentication system. IEEE Lat. Am. Trans. 13(3), 804–809 (2015)

20. Meng, Y.: Designing click-draw based graphical password scheme for better authen-
tication. In: Proceedings of the 7th IEEE International Conference on Networking,
Architecture, and Storage (NAS), pp. 39–48 (2012)

21. Meng, Y., Li, W.: Evaluating the effect of tolerance on click-draw based graphical
password scheme. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618,
pp. 349–356. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34129-8 32

22. Meng, W.: RouteMap: a route and map based graphical password scheme for better
multiple password memory. Network and System Security. LNCS, vol. 9408, pp.
147–161. Springer, Cham (2015). doi:10.1007/978-3-319-25645-0 10

http://dx.doi.org/10.1007/978-3-540-74835-9_23
http://dx.doi.org/10.1007/978-3-540-74835-9_23
http://dx.doi.org/10.1007/978-3-642-34129-8_32
http://dx.doi.org/10.1007/978-3-319-25645-0_10

162 W. Meng et al.

23. Meng, W., Wong, D.S., Furnell, S., Zhou, J.: Surveying the development of bio-
metric user authentication on mobile phones. IEEE Commun. Surv. Tutor. 17(3),
1268–1293 (2015)

24. Meng, W., Li, W., Jiang, L., Meng, L.: On multiple password interference of touch
screen patterns and text passwords. In: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI), pp. 4818–4822 (2016)

25. Passfaces. http://www.realuser.com/
26. Pinkas, B., Sander, T.: Securing passwords against dictionary attacks. In: Pro-

ceedings of the 9th ACM Conference on Computer and communications security
(CCS), pp. 161–170 (2002)

27. Shin, J., Kancharlapalli, S., Farcasin, M., Chan-Tin, E.: SmartPass: a smarter
geolocation-based authentication scheme. Secur. Commun. Netw. 8(18), 3927–3938
(2015)

28. Sun, H.-M., Chen, Y.-H., Fang, C.-C., Chang, S.-Y.: PassMap: a map based
graphical-password authentication system. In: Proceedings of the 7th ACM Sym-
posium on Information, Compuer and Communications Security (ASIACCS), pp.
99–100 (2012)

29. Suo, X., Zhu, Y., Owen, G.S.: Graphical passwords: a survey. In: Proceedings of the
21st Annual Computer Security Applications Conference (ACSAC), pp. 463–472
(2005)

30. Tao, H., Adams, C.: Pass-go: a proposal to improve the usability of graphical
passwords. Int. J. Netw. Secur. 2(7), 273–292 (2008)

31. Thorpe, J., MacRae, B., Salehi-Abari, A.: Usability and security evaluation of
GeoPass: a geographic location-password scheme. In: Proceedings of the 2013 Sym-
posium on Usable Privacy and Security (SOUPS), pp. 1–14 (2013)

32. van Oorschot, P.C., Stubblebine, S.: On countering online dictionary attacks with
login histories and humans-in-the-loop. ACM Trans. Inf. Syst. Secur. 9(3), 235–258
(2006)

33. van Oorschot, P.C., Salehi-Abari, A., Thorpe, J.: Purely automated attacks on
passpoints-style graphical passwords. IEEE Trans. Inf. Forensics Secur. 5(3), 393–
405 (2010)

34. Vu, K.P.L., Proctor, R.W., Bhargav-Spantzel, A., Tai, B.-L., Cook, J., Schultz,
E.E.: Improving password security and memorability to protect personal and orga-
nizational information. Int. J. Hum. Comput. Stud. 65(8), 744–757 (2007)

35. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings of the
17th ACM Conference on Computer and Communications Security (CCS), pp.
162–175 (2010)

36. Wiedenbeck, S., Waters, J., Birget, J.-C., Brodskiy, A., Memon, N.: PassPoints:
design and longitudinal evaluation of a graphical password system. Int. J. Hum.
Comput. Stud. 63(1–2), 102–127 (2005)

37. Wiedenbeck, S., Waters, J., Birget, J.-C., Brodskiy, A., Memon, N.: Authentication
using graphical passwords: effects of tolerance and image choice. In: Proceedings
of the 1st Symposium on Usable Privacy and Security (SOUPS) (2005)

38. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. 2, 25–31 (2004)

39. Zhu, B.B., Yan, J., Bao, G., Yang, M., Xu, N.: Captcha as graphical passwords -
a new security primitive based on hard AI problems. IEEE Trans. Inf. Forensics
Secur. 9(6), 891–904 (2014)

http://www.realuser.com/

Security Analysis

Hierarchical Key Assignment with Dynamic
Read-Write Privilege Enforcement

and Extended KI-Security

Yi-Ruei Chen(B) and Wen-Guey Tzeng

Department of Computer Science, National Chiao Tung University,
Hsinchu 30010, Taiwan

yrchen.cs98g@nctu.edu.tw, wgtzeng@cs.nctu.edu.tw

Abstract. This paper addresses the problem of key assignment for con-
trolling access of encrypted data in access hierarchies. We propose a hier-
archical key assignment (HKA) scheme RW-HKA that supports dynamic
reading and writing privilege enforcement simultaneously. It not only
provides typical confidentiality guarantee in data encryption, but also
allows users to verify the integrity of encrypted data. It can be applied
to cloud-based systems for providing flexible access control on encrypted
data in the clouds. For security, we define the extended key indistinguish-
able (EKI) security for RW-HKA schemes. An EKI-secure RW-HKA
scheme is resistant to collusion such that no subset of users can con-
spire to distinguish a data decryption key, that is not legally accessible,
from random strings. In this paper, we provide a generic construction of
EKI-secure RW-HKA schemes based on sID-CPA secure identity-based
broadcast encryption (IBBE) and strong one-time signature schemes.
Furthermore, we provide a new IBBE scheme that is suitable in con-
structing an efficient RW-HKA scheme with a constant number of user
private keys, constant size of encrypted data, and constant computation
cost of a user in deriving a key for decryption. It is the first HKA scheme
that achieves the aforementioned performance while supporting dynamic
reading and writing privilege enforcement simultaneously.

Keywords: Hierarchical key assignment · Access control ·
Data outsourcing

1 Introduction

We address the problem of key assignment in access hierarchies to ensure that
only authorized users are allowed to access certain data. Users are organized
as a hierarchy, which is a poset of n disjoint security classes, according to the
roles and clearances of users. A user with access privilege of a class is granted
to access to the data in the descendant classes. A hierarchical key assignment

The research was supported in part by project 104-2221-E-009-112-MY3, Taiwan.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 165–183, 2017.
DOI: 10.1007/978-3-319-61204-1 9

166 Y.-R. Chen and W.-G. Tzeng

(HKA) scheme is a method of assigning cryptographic keys to each class of the
hierarchy. These keys are used to encrypt data and allow a user in a class to
compute the data decryption keys of the descendant classes [1,18].

After the pioneer work of Akl and Taylor [1], the HKA problem has been
extensively studied during the past 3 decades [1,12,18,38]. However, most of
these schemes enforce dynamic reading privileges only. They cannot be directly
applicable to enforce dynamic writing privileges simultaneously. An HKA scheme
with dynamic reading and writing privileges enforcement can be used to provide
flexible access control in cloud-based systems. For example, a private corpora-
tion can realize mobile office by outsourcing its encrypted data to the cloud
and controlling the access right of its employees in a hierarchical structure [38].
This kind of HKA scheme is also useful in developing e-Health systems [33] and
network-based computer systems in mobile ad hoc networks [28].

At the first glance, we can assign each class an asymmetric key pair (ek, dk)
for data encryption and decryption. The writing and reading privileges can be
separately assigned to the users by giving away ek and dk, respectively. Unfor-
tunately, not all the asymmetric cryptosystems can be applicable to provide
such a privilege separation successfully. For example, in the ElGamal encryption
scheme, a user who knows dk can compute ek by itself. Given dk for the reading
privilege would also give away ek for the writing privilege at the same time.
Therefore, the separation of writing and reading privileges fails.

Contribution. In this paper, we propose a generic HKA scheme called RW-
HKA, which supports dynamic reading and writing privilege enforcement simul-
taneously. The enforcement of privileges follows the known “no read-up” and
“no write-down” principles. An authorized user in a class can only read the data
in the descendant classes and write a datum into the ancestor classes in access
hierarchies. Our RW-HKA scheme not only provides typical confidentiality guar-
antee in data encryption, but also allows users to verify the integrity of encrypted
data. For security, we define the extended key indistinguishable (EKI) security
for RW-HKA schemes. An EKI-secure RW-HKA scheme is resistant to collusion
such that no subset of users can conspire to distinguish a data decryption key,
that is not legally accessible, from random strings.

The construction of our generic RW-HKA scheme is based on sID-CPA
secure identity-based broadcast encryption (IBBE) and strong one-time signa-
ture schemes. There are some suitable IBBE and signature schemes for imple-
menting an RW-HKA scheme. In this paper, we provide a new IBBE scheme for
constructing an efficient RW-HKA scheme in which the number of user private
keys and the size of encrypted data are only small constants. In particular, the
computation cost of a user in deriving the key of a descendant class for decryp-
tion is also a constant. This is the first HKA scheme that achieves the afore-
mentioned performance while supporting dynamic reading and writing privilege
enforcement.

Related Work. Akl and Taylor [1] first addressed the problem of assigning cryp-
tographic keys in access hierarchies and proposed the first HKA scheme based
on the hardness of factor problem. Later, Mackinnon et al. [31,32] improved

Hierarchical Key Assignment with Dynamic Read-Write 167

the efficiency of Akl and Taylor’s result by proposing an optimal algorithm for
key generation and key derivation. Sandhu [34] addressed the rekeying issue for
inserting or deleting classes and proposed a solution based on one-way functions
in a specific situation that the security classes are organized as a rooted tree.
Similar results were then proposed by Harn and Lin [26], Shen and Chen [37],
Yang and Li [40], and Das et al. [21] for enhancing the cost for dynamic updates
of access hierarchies. However, the above HKA schemes and some of their alter-
native schemes have two main common issues: inefficient rekeying and no formal
security proofs. The cost of updating a cryptographic key is as the same as re-
generating all the keys in the hierarchy. On the other hand, most of these schemes
lacked rigorous security proofs. A relative large number of these schemes were
shown to be vulnerable to collusion attacks [21,37,40].

To deal with the above issues, Atallah et al. [2,3] formalized two security
notion of HKA schemes: key recovery (KR-security) and key indistinguishability
(KI-security). KR-security ensures that a set of collusive users cannot obtain the
keys for data decryption. In KI-security, the collusive users should not even be
able to distinguish a data decryption key from random strings. Atallah et al. [2,3]
also provided two dynamic and efficient approaches based on pseudorandom
functions and symmetric key encryption schemes. The schemes are provably
secure against KR-security and KI-security, respectively. After Atallah et al.’s
work, many different constructions with the same security notions have been
proposed [19,20,23,35,36]. De Santis et al. [35,36] provided two efficient con-
structions based on symmetric encryption schemes and public-key broadcast
encryption schemes. D’Arco et al. [19,20] analyzed Akl and Taylor’s scheme
and considered different key assignment strategies to get the variations which
are secure against KR-security. They also showed how to turn Akl and Taylor’s
scheme to be a KI-secure one. Freire and Paterson [23] provided a construction
that is KI-secure based on the hardness of factoring Blum integers.

In 2013, Freire et al. [24] proposed a new security notion for HKA schemes
called strong key indistinguishability (SKI-security). Comparing wit the KI-
security, this notion provides an adversary with additional compromise ability
to obtain data encryption keys. Freire et al. also proposed two SKI-secure HKA
schemes based on pseudorandom functions and forward-secure pseudorandom
generators. In 2014, Castiglione et al. [7] proved that the SKI-security notion
is not stronger than the KI-security notion, i.e., these two security notions are
equivalent. Cafaro et al. [6] showed a similar result in the unconditionally secure
setting.

Recently, some of the approaches have been proposed to deal with the
HKA problem in cloud computing [9,12,38]. Chen et al. [12] provided the first
cloud-based HKA scheme called CloudHKA, which is proved to be KI-secure.
CloudHKA first addressed the issue of revoking a user from accessing old data
ciphers that were entitled to the user. In user revocation, the scheme outsources
the cipher re-encryption to semi-trusted clouds by giving away some public re-
encryption keys only. Tang et al. [38] proposed an KI-secure HKA scheme based
on linear geometry. The scheme belongs to the directed derivation HKA schemes

168 Y.-R. Chen and W.-G. Tzeng

such as the schemes in [11,17,30], which only need to perform one (or con-
stant) time of operation in key derivation. When comparing with other directed
scheme, the scheme in Tang et al. [38] is the most efficient one in key derivation.
Castiglione et al. [9] extended the conventional hierarchical access control model
as a general one for certain additional sets of qualified users. They also pro-
posed two KI-secure HKA schemes in the new model. The first construction
is based on symmetric encryption schemes and secret sharing, and the second
one is based on public-key threshold broadcast encryption schemes. Castiglione
et al. [8] defined the concept of HKA schemes supporting dynamic updates and
formalizing the relative security model. They also proposed a corresponding
KI-secure HKA scheme with efficient key derivation and updating procedures,
while requiring each user to store one private key only. Castiglione et al. [10]
analyzed the Akl-Taylor scheme in the dynamic setting characterizing storage
clouds. They considered different key assignment strategies and provided the
corresponding schemes with KR-security.

2 Preliminaries

In this section, we introduce hierarchical access control (HAC) policy and two
main building blocks of our generic RW-HKA scheme. The first one is identity-
based broadcast encryption (IBBE) scheme and the second one is strong one-time
signature scheme.

2.1 Hierarchical Access Control (HAC) Policy

A hierarchical access control (HAC) policy P is a 5-tuple (SC,�,U ,D, λ), where
SC = {SCi : 1 ≤ i ≤ n} is a set of security classes, � is a binary relation on
SC ×SC, U is a set of users, D is a set of data, and λ : U ∪D → SC is a function
that associates each user and datum with a security class. (SC,�) is a partial
order set (poset) and SCj � SCi means that the security level of class SCi is
higher than or equal to that of SCj . P requires the following two properties that
indicate the “no read-up” and “no write-down” principles.

(1) Simple security property : A user U ∈ U can read a datum D ∈ D only if
λ(D) � λ(U).

(2) �-property : A user U ∈ U can write a datum D ∈ D only if λ(U) � λ(D).

The poset (SC,�) is represented as a directed graph (access hierarchy) G.
Each class SCi is a node and there is a path of directed edges from SCi to SCj

if and only if SCj � SCi. G can be simplified by eliminating the edges that
are implied by the transitive closure property. For example, Fig. 1 is an access
hierarchy G with the nodes SC1, SC2, . . ., SC6 and directed edges (SC1, SC2),
(SC1, SC3), (SC2, SC4), (SC2, SC5), (SC3, SC5), and (SC3, SC6).

Hierarchical Key Assignment with Dynamic Read-Write 169

Fig. 1. An access hierarchy with 6 nodes and 6 directed edges.

2.2 Identity-Based Broadcast Encryption (IBBE) Scheme

An identity-based broadcast encryption (IBBE) scheme Ψ is a 4-tuple of poly-
time algorithms Ψ = (Gen, Ext, Enc, Dec), where

– Gen(τ, n) → (msk,mpk). On input a security pkameter τ and the maximal
size n of the set of receivers for each encryption, this key generation algorithm
outputs a master secret key msk and public key mpk.

– Ext(mpk,msk, idi) → dki. On input mpk, msk, and a receiver’s identity idi,
this key extraction algorithm outputs a private key dki.

– Enc(mpk,S, k) → HdrS . On input mpk, a set of receivers’ identities S, and
a symmetric encryption key k, this encryption algorithm outputs a header
cipher HdrS . The header HdrS is for the receivers in S to derive k and k is
used to encrypt a message m as a cipher broadcasted to S.

– Dec(mpk,HdrS , dki) → k or ⊥ . On input mpk, HdrS , and dki, this decryp-
tion algorithm outputs k for decryption if idi ∈ S, and outputs the stop
symbol ⊥ otherwise.

For correctness, we require that for all key pairs (msk,mpk) generated by Gen,
all secret keys dki output by Ext, and all encryption key k,

Dec(mpk,Enc(mpk,S, k), dki) = k

A standard security notion for IBBE schemes is sID-CPA security [4]. This
notion of security is defined by the following game between an adversary A and
a challenger C. In the beginning, A chooses a target identity set S∗ that it wants
to attack.

Setup phase: C runs Gen(τ, n) to obtain (msk,mpk), and gives mpk to A.
Query phase 1: In this phase, A is allowed to issue the key extraction oracle

Oext. For a query of identity idi /∈ S∗, Oext(idi) returns dki.
Challenge phase: After A decides that query phase 1 is over, C runs

Enc(mpk,S∗, k) to obtain HdrS∗ . Then C flips a random coin b ∈ {0, 1}
and sets kb ← k and k1−b ← $, where $ is a random string. C returns
(HdrS∗ , k0, k1) to A.

Query phase 2: In this phase, A is also allowed to issue the oracle queries as in
query phase 1.

Guess phase: A outputs its guess b′ ∈ {0, 1} for b.

170 Y.-R. Chen and W.-G. Tzeng

A wins the sID-CPA security game if b′ = b. The advantage of A in winning the
sID-CPA security game is defined as:

AdvsID-CPA
IBBE,A (τ) := |Pr[A outputs 0|b = 0] − Pr[A outputs 0|b = 1]|

We say that an IBBE scheme is sID-CPA secure if AdvsID-CPA
IBBE,A (τ) is negligible in

τ for all probabilistic and poly-time adversary A.

2.3 Strong One-Time Signature Scheme

A signature scheme Ω is a triple poly-time algorithms Ω = (KG,Sig,Ver),
where

– KG(κ) → (vk, sk). On input a security parameter κ, this key generation
algorithm outputs a verification key vk and a signing key sk.

– Sig(sk,m) → σ. On input sk and a message m, this signing algorithm outputs
a signature σ of m.

– Ver(vk,m, σ) → b. On input vk and a pair of (m,σ), this verification algo-
rithm outputs a bit b ∈ {0, 1}, where b = 1 signifies “acceptance” and b = 0
signifies “rejection”.

For correctness, we require that for all key pairs (vk, sk) generated by KG and
all message m,

Ver(vk,m,Sig(sk,m)) = 1

In the standard security of one-time signature schemes, an adversary should
be unable to forge a valid message and signature pair (m,σ) for all m chosen by
the adversary. In the strong security case, it should be infeasible for an adversary
to generate different signatures on the same message m. The security is defined
by the following game between an adversary A and a challenger C.

Setup phase. C runs KG(κ) to obtain (vk, sk) and gives vk to A.
Attack phase. In this phase, A does one of the following two attacks. Firstly,

A outputs (m∗, σ∗) for undefined m∗ and σ∗. Secondly, A choses a message
m and obtain its signature σ∗ ← Sig(sk,m), then A outputs (m∗, σ∗) for
m∗ 	= m.

A wins the security game if Ver(vk,m∗, σ∗) = 1. We say that an signature
scheme is strong one-time secure if the probability of A wins the security game
is negligible in κ for all probabilistic and poly-time adversary A.

3 The Proposed RW-HKA Scheme

In this section, we first give an overview of our generic RW-HKA scheme and an
intuition of its security. Then we provide a detailed description of our RW-HKA
scheme, the corresponding EKI-security notion, and related analyzes in the rest
sections.

Hierarchical Key Assignment with Dynamic Read-Write 171

3.1 An Overview

Our RW-HKA consists of the initialization algorithm Initial and key derivation
algorithm Derive. In the beginning, the initializer runs Initial to generate all
system parameters according to a given HAC policy P, and assigns the keys
for reading and writing access to authorized users accordingly. A user who has
writing privilege of a class can encrypt-and-sign data into the corresponding
classes such that an authorized user with appropriate reading privilege can run
Derive for decryption.

More precisely, the initializer uses the signature scheme Ω to generate a pair
(vki, ski) of verification and signing keys for each class SCi, and regards vki

as the public “identity” of SCi. The decryption key dkj w.r.t. the identity vkj

is generated with the underlying IBBE scheme Ψ . In key assignment, a user
with reading privilege of SCi is assigned dki for decrypting the data ciphers
of SCi and its descendant classes in the hierarchy. This is the simple security
property (no read-up). A user with writing privilege of a class SCi is assigned
skz for generating a valid signature of Hdrz in SCz for SCi � SCz. This is the
�-property (no write-down). The reading and writing privileges are separated in
our RW-HKA since the generation of dki requires a master secret in Ψ and the
generation of ski is independent of the generation of dki.

To encrypt a datum into SCi, an authorized user takes the ancestor class set
Ai = {vkz : SCi � SCz} as the broadcast set S and encrypts a data encryption
key k with the underlying IBBE scheme Ψ . The resulting Hdri is then signed by
using ski to obtain σi. The final cipher consists of the verification key vki, the
IBBE cipher Hdri, and the signature σ. To decrypt a cipher ci = (vki,Hdri, σi)
in class SCi, an authorized user first verifies the signature of Hdri w.r.t. vki and
uses dkj to decrypt Hdri if the verification has passed. The final decryption is
successful if SCi � SCj since the “identity” vkj is in the target broadcast set
Ai for encrypting k.

In defining the EKI-security for RW-HKA, we model the collusion of autho-
rized users as an adversary A for distinguishing data encryption keys from ran-
dom strings in non-corrupted classes. A is allowed to access the oracles for cor-
rupting (dki, ski)’s and decrypting ci’s for certain chosen classes. Consider a
cipher c = (vk,Hdr, σ) that is not supposed to be decryptable by A. The secu-
rity of Ω ensures that any valid cipher c′ = (vk′,Hdr′, σ′) submitted by A to
the decryption oracle have to satisfy vk′ 	= vk. Simultaneously, the security
of Ψ ensures that decryption of c′ does not give A any further advantage in
decrypting c.

3.2 Notion of RW-HKA Scheme with EKI-Security

In this section, we give a formal description of RW-HKA scheme and its corre-
sponding EKI-security notion. The RW-HKA scheme Π is a pair of poly-time
algorithms (Initial,Derive), where

– Initial(λ, τ,P) → (Pub, Sec). On input two security parameters λ, τ and an
HAC policy P, this initialization algorithm generates a pair (msk,mpk) of

172 Y.-R. Chen and W.-G. Tzeng

master secret key and public key. For each SCi of P, Initial generates a
pair (eki, dki) of write-key and read-key and assigns them to the authorized
users with writing and reading privileges accordingly. The public and secret
information (Pub, Sec) are set as:

Pub = {P,mpk}
Sec = {msk} ∪ {eki, dki : ∀SCi}

An authorized user can use eki to encrypt data encryption key ki as ci and
use dki to decrypt ci.

– Derive(P,mpk, ci, dkj) → ki or ⊥ . On input P, mpk, a cipher ci, and dkj ,
this derivation algorithm outputs the stop symbol ⊥ if SCi 	� SCj . Otherwise,
Derive outputs the data decryption key ki.

Correctness. We require that given an HAC policy P, for all system information
(Pub, Sec) generated by Initial, for all ci of SCi, and for all SCj with SCi �
SCj , we have

Derive(P,mpk, ci, dkj) = ki

To separate the assignment of read and write access privileges, we require that
the write-key eki and read-key dki cannot be derived from each other.

The security notion for an RW-HKA scheme is the extended key indistin-
guishability (EKI). A is allowed to access all public information and all secret
information associated with a number of classes of its choice, and chooses a non-
corrupted class SCi∗ that it want to attack. Formally, this notion of security
is defined by the following EKI-security game between an adversary A and a
challenger C.

Setup phase. Given an HAC policy P, C runs Initial(λ, τ,P) to generate
(Pub, Sec) and gives Pub to A.

Query phase 1. In this phase, A is allowed to issue the read-key corruption oracle
Orc, the write-key corruption oracle Owc, and derivation oracle Oder. For the
query of a class index i and a valid access cipher ci, Orc(i), Owc(i), and
Oder(ci) return the decryption key dki of SCi, the encryption key eki of SCi,
and the data encryption key ki of SCi, respectively.

Challenge phase. After A decides that query phase 1 is over, A specifies a class
index i∗, subject to SCi∗ 	� SCi for any corrupted dki in query phase 1. C
flips a random coin b ∈ {0, 1} and gives ki∗ of ci∗ to A if b = 0. Otherwise, it
gives a random string $ (with the same length of ki∗) to A.

Query phase 2. In this phase, A is also allowed to issue the oracle queries as in
query phase 1, excepts that Orc(i) for SCi∗ � SCi and Oder(i∗).

Guess phase. A outputs its guess b′ ∈ {0, 1} for b.

A wins the EKI-security game if b′ = b. The advantage of A winning the EKI-
security game is defined as

AdvEKI
A (λ) := |Pr[b′ = b] − 1

2
|

We say that an RW-HKA scheme Π is EKI-secure if AdvEKI
A (λ) is negligible in

λ for all probabilistic and poly-time adversary A.

Hierarchical Key Assignment with Dynamic Read-Write 173

3.3 A Generic Construction of RW-HKA Scheme

In this section, we provide our generic RW-HKA based on IBBE and signature
schemes. Let Ai be the identity set of the ancestors of the class SCi in P, i.e.,
Ai = {idz : SCi � SCz}. Let Ψ = (Ψ.Gen, Ψ.Ext, Ψ.Enc, Ψ.Dec) be an
sID-CPA secure IBBE scheme, and Ω = (Ω.KG, Ω.Sig, Ω.Ver) be a strong
one-time signature scheme. Our RW-HKA scheme Π = (Initial,Derive) is as
follows.

– Initial(λ, τ,P) → (Pub, Sec). On input two security parameters λ, τ and an
HAC policy P with n security classes, this initialization algorithm first runs
Ψ.Gen(λ, n) to generate a pair (msk,mpk) of system master secret key and
public key. For each class SCi of P, this algorithm generates verification and
signing key pair (vki, ski) ← Ω.KG(λ), sets the identity idi as the verification
key vki, and assigns ski as the private part of encryption key eki. To generate
the decryption key dki of SCi, this algorithm runs Ψ.Ext to obtain dki ←
Ψ.Ext(mpk,msk, idi). The public and secret information (Pub, Sec) are set
as:

Pub = {P,mpk} ∪ {vki : ∀SCi}
Sec = {msk} ∪ {ski, dki : ∀SCi}

The initializer keeps Sec as secret and publishes Pub. To assign access privi-
leges, the initializer gives dki to the users who has reading privilege of SCi,
and gives ski to the users who has write privilege of SCi though secure chan-
nels. To encrypt data, an authorized user randomly picks a data encryption
key ki and encrypts it as

ci = (vki,Hdri, σi),

where Hdri ← Ψ.Enc(mpk, Ai, ki) and σi ← Ω.Sig(ski, Hdri).
– Derive(P,mpk, ci, dkj) → ki or ⊥ . On input P, mpk, ci = (vki,Hdri, σi),

and dkj , if SCj ≺ SCi, this algorithm outputs ⊥. Otherwise, this algorithm
outputs ki by computing

ki ← Ψ.Dec(mpk,Hdri, dkj)

if Ω.Ver(vki,HdrAi
, σi) = 1 and outputs ⊥ otherwise.

Correctness. Given an HAC policy P, for all (Pub, Sec) generated by Initial,
and for all SCj with SCi � SCj , we have Derive(P, mpk, ci, dkj) = ki since
ci can pass the verification of the signature scheme Ω and ci is an encryption
of ki under the IBBE scheme Ψ with the broadcast set Ai that contains idj .
In addition, our RW-HKA scheme ensures that the write-key eki and read-key
dki of a security class SCi cannot be derived from each other since msk is kept
secret and the generation of ski is independent of the generation of dki.

174 Y.-R. Chen and W.-G. Tzeng

3.4 Supporting Dynamic Access Hierarchies and User Privileges

In this section, we describe the procedures of dealing with dynamic access hier-
archies and user privileges. They are relation insertion, relation deletion, class
insertion, and class deletion, as well as the procedures of revoking user privileges.

Relation Insertion. After inserting a new relation (SCi, SCj) into P, the data
owner updates P as P ′. The ciphers cz of SCz, SCz � SCi, have to be updated
since Az is changed as A′

z ← Az ∪Ai. The initializer updates cz = (vkz,Hdrz, σz)
as c′

z = (vkz,Hdr
′
z, σ

′
z), where Hdr′i ← Ψ.Enc(mpk, A′

z, kz) and σ′
i ← Ω.Sig(ski,

Hdr′z).

Relation Deletion. To delete a relation (SCi, SCj) from P, the corresponding
procedure is as the same as that in relation insertion with new A

′
z ← Az \Ai for

all SCz ≺ SCi.

Class Insertion. To insert a new class SCi into P, the initializer associates
SCi with the class secrets as in our RW-HKA scheme. Then the initializer runs
relation insertion to insert the incoming and outgoing relations of SCi.

Class Deletion. To delete a class SCi from P, the initializer removes the associ-
ated information of SCi, and deletes each of the incoming and outgoing relations
of SCi by using relation deletion.

Access Right Revocation. In our RW-HKA, an authorized user has writing
or reading privilege of some classes. To revoke the writing privilege of SCi from a
user, the initializer updates (vki, ski) to (vk′

i, sk
′
i) ← Ω.KG(λ) and updates idi

and eki accordingly. Then the initializer redistributes the new sk′
i to the other

users who has writing privilege of SCi through secure channels. Afterthen, the
revoked user cannot generate a new ci since it cannot compute a valid signature
that can pass the verification with vk′

i.
To revoke the reading privilege of SCi from a user, the initializer needs to

remove ability of decrypting the ciphers associated with the descendant classes of
SCi. For each class SCz � SCi, the initializer updates (vkz, skz) to (vk′

z, sk
′
z) ←

Ω.KG(λ), and updates idi and eki accordingly. The initializer also needs to
update dkz to dk′

z ← Ψ.Ext(mpk,msk, id′
z) and ci to c′

i with newly generated
k′

z. Finally, the initializer redistributes the new ek′
z and dk′

z, SCz � SCi, to the
corresponding users through secure channels.

Local Rekeying. In the end of revoking the access privileges of a user from
SCi, the key redistribution is required in each of the descendant or ancestor
classes of SCi. It consumes a large bandwidth for transmission if there are many
users in the affected classes. Similar to the results in [2,12,36], our RW-HKA can
also support “local rekeying” with a slight modification. With the local rekeying
property, the key redistribution is only required locally, i.e. only in SCi, and
do not “propagate” to the descendant or ancestor classes in the hierarchy. We
modify our RW-HKA for supporting local rekeying property as follow.

In each class SCz, the initializer prepares two extra symmetric keys rkz and
wkz to encrypt dkz and skz as the public access-tokens rtz and wtz, respec-
tively. Rather than assigning dkz and skz, the initializer assigns the private

Hierarchical Key Assignment with Dynamic Read-Write 175

rkz and wkz to the authorized users with writing and reading privileges,
respectively. A user can obtain the keys dkz and skz by using rkz and wkz

to decrypt rtz and wtz, respectively.

Now, for the revocation of user privileges in SCi, the updates of dkz and skz

in the other classes can be done by updating the public tokens rtz and wtz
without changing the user private keys rkz and wkz. The key redistribution
is only occurred in the local class SCi since only rki and wki are required
to be updated. Furthermore, we can use the group key management (GKM)
schemes such as LKH [39] to maintain the keys rki and wki in each class SCi.
Here we recommend to use the semi-stateful GKM schemes [13–16] for practical
application scenarios.

3.5 Security Analysis

In this section, we proof the security of our generic RW-HKA scheme. The fol-
lowing theorem shows that our RW-HKA scheme Π is EKI-secure based on the
sID-CPA security of Ψ and the strong one-time security of Ω.

Theorem 1 (EKI-secure RW-HKA). If Ψ is a sID-CPA secure IBBE
scheme and Ω is a strong one-time signature scheme, our generic RW-HKA
scheme Π is secure against extended key indistinguishability.

Proof. We show how to turn an adversary A against our RW-HKA scheme Π
into a forger against the signature scheme Ω and an attacker against the IBBE
scheme Ψ . Assume that A specifies the class SCi∗ to attack.

Let SC1, SC2, . . ., SCm = SCi∗ be a topological ordering of the ancestor
classes of SCi∗ in P. We define a sequence of computational indistinguishable
games G0, G1, . . ., Gm. Game G0 is identical to the original EKI-security game
of Π. From G0 to Gm, the later one incrementally makes a slight modification
to the previous one while maintaining the indistinguishability among these two
games on A’s view. In each game Gi, 0 ≤ i ≤ m, the goal of A is to output a
correct guess b′ of b. More precisely, game Gi is defined as follows.

Game Gi, 1 ≤ i ≤ m. This game is identical to game Gi−1, except that the
Initial algorithm is modified in such a way that the data encryption key ki

is substituted with a random string $.

Let Ei be the event that b′ = b in Game Gi. Let Fi be the event that A
makes a valid forger of the challenged access cipher ci∗ , i.e., A submits a valid
cipher c′

i∗ = (vki∗ ,Hdr′i∗ , σ′
i∗) with (Hdr′i∗ , σ′

i∗) 	= (Hdri∗ , σi∗) to the derivation
oracle Oder. We have the following two lemmas:

Lemma 1. Pr[Fi] is negligible.
Lemma 2. |Pr[Ei−1 ∧ F i−1] − Pr[Ei ∧ F i]| is negligible.

176 Y.-R. Chen and W.-G. Tzeng

Lemma 1 ensures that A cannot forge a signature of the challenged cipher Hdri∗ ,
i.e., it cannot obtain ki∗ by feeding Hdri∗ to the derivation oracle Oder. Besides
the case of forgery, Lemma 2 ensures that A cannot distinguish the difference
between game Gi−1 and game Gi.

To see that these two claims imply the theorem, we have:

AdvEKI
A (λ) = |Pr[b′ = b] − 1

2
|

≤
m∑

i=1

|Pr[Ei−1] − Pr[Ei]|

≤
m∑

i=1

|Pr[Fi−1] − Pr[Fi]| +
m∑

i=1

|Pr[Ei−1 ∧ F i−1] − Pr[Ei ∧ F i]|,

since Pr[Ei] can be expressed as

Pr[Ei] ≤ |Pr[Ei ∧ Fi] − 1
2

Pr[Fi]| + |Pr[Ei ∧ F i] +
1
2

Pr[Fi]|

≤ 1
2

Pr[Fi] + Pr[Ei ∧ F i] +
1
2

Pr[Fi]

= Pr[Fi] + Pr[Ei ∧ F i]

Note that in the last game Gm, there is no information about the key km = ki∗

is presented on A’s view. It follows that the probability of a correct guess of b
by A in game Gm is 1

2 , i.e., Pr[Tm] = 1
2 .

Thus, AdvEKI
A (λ) is negligible given the two lemmas. This concludes the proof

of the theorem. �
Lemma 1. Pr[Fi] is negligible.

Proof. We construct a probabilistic poly-time forger F that forges the signature
σi∗ w.r.t. the signature scheme Ω with probability Pr[Fi] as follows.

Given an HAC policy P, F runs Initial(λ, τ,P) to generate (Pub, Sec)
and gives Pub to A. F answers the oracle queries of A as in the EKI-
security game. If A submits a valid access cipher ci∗ = (vki∗ ,Hdr′i∗ , σ′

i∗) with
(Hdr′i∗ , σ′

i∗) 	= (Hdri∗ , σi∗) to the derivation oracle Oder in the query phase, F
outputs (Hdr′i∗ , σ′

i∗) as its forgery and stops. It is easy to see that the success
probability of F to forge the signature at SCi∗ is exactly Pr[Fi]. Thus, the
security of the signature scheme Ω implies this lemma. �
Lemma 2. |Pr[Ei−1 ∧ F i−1] − Pr[Ei ∧ F i]| is negligible.

Proof. Assume that A is able to distinguish game Gi and game Gi−1. We use
A to construct a probabilistic poly-time adversary B which breaks the sID-CPA
security of Ψ as follows.

1. For a given HAC policy P, the challenger CΨ generates (msk,mpk) ←
Gen(τ, n) and gives pk to B.

Hierarchical Key Assignment with Dynamic Read-Write 177

2. B runs the following modified Initial(λ, τ,P) to generates (Pub, Sec) and
gives Pub to A. In the beginning, B generates (msk,mpk) ← Ψ.Gen(λ, n).
For each SCz of P, B generates (vkz, skz), and kz, and sets idz and ekz

as in our RW-HKA scheme. To generate dkz of each SCz, SCi∗ 	� SCz, B
makes the key extraction oracle query to obtain dkz ← Oext(idz). For each
SCz 	= SCi, B generates the cipher cz ← (vkz,Hdrz, σz) as in our RW-
HKA scheme. To generate ci, B asks CΨ for the challenged message (Hdri,
k0, k1), where (kb, k1−b) ← (k, $) with a random bit b chosen by CΨ , and
Hdri ← Enc(eki,Ai, k). B sets ci ← (vki,Hdri, σi) and replaces ki as k0.

3. B answers the oracle queries of A as follows. For a read-key corruption oracle
query Orc(z), B returns dkz if SCi∗ 	� SCz and ⊥ otherwise. For a write-key
corruption oracle query Owc(z), B returns skz. For a derivation oracle query
Oder(z), B returns kz if SCz 	= SCi∗ and ⊥ otherwise.

4. At some point, B starts the challenge phase with A as in the EKI-security
game. Afterthen, A can make more oracle queries as the above and returns its
best answer in the end. Finally, B outputs 0 if A wins the game and outputs
1 otherwise.

In the above construction, B simulates the environment of A through inter-
polating between game Gi−1 and game Gi. In the generation ci, B embeds the
given Hdri into ci and sets ki as k0. This is equivalent to game G0 if b = 0
since ci is the cipher of k0, and equivalent to game G1 otherwise. Eventually, A
outputs its best answer. If A wins the game, B outputs 0, guessing for that CΨ

encrypts k0 as HdrAi
, and outputs 1 otherwise. Now we have

AdvsID-CPA
Ψ,B (λ) = |Pr[B outputs 0|b = 0] − Pr[B outputs 0|b = 1]|

= |Pr[A wins |G0] − Pr[A wins |G1]|
= |Pr[Ei−1 ∧ F i−1] − Pr[Ei ∧ F i]|

Thus, the security of the IBBE scheme Ψ implies this lemma. �

3.6 Efficiency Analysis

In this section, we illustrate the efficiency of our generic RW-HKA scheme. We
also demonstrate the efficiency of the result scheme when applying the existing
and our newly constructed IBBE schemes.

Efficiency of Generic RW-HKA Scheme. For storage cost, the size of private
information Sec is O(|msk| + n) and the the size of public information Pub is
O(|P| + |mpk| + n). For a user who has reading privilege of a class, it only
needs to store one private key. A user who has writing privilege of a class SCi

is assigned O(|Ai|) keys for encrypting data into the ancestor classes of SCi in
the hierarchy. Each encrypted datum requires O(|Hdri|) of spaces for its header
cipher.

For computation cost, the initializer runs one time of Ψ.Gen, n times of
Ω.KG, and n times of Ψ.Ext in generating system parameters. A user runs one

178 Y.-R. Chen and W.-G. Tzeng

time of Ψ.Enc and one time of Ω.Sig for encrypting a datum. To derive a data
encryption key, a user only needs to run one time of Ω.Ver and one time of
Ψ.Dec.

Efficiency of Concrete RW-HKA Schemes. The requirement of the IBBE
scheme for our RW-HKA scheme is the sID-CPA security. Most of the existing
IBBE schemes satisfy this basic security notion. Table 1 shows the efficiency of
our RW-HKA scheme when applying the concrete IBBE schemes proposed by
Baek et al. [4], Delerablée [22], Gentry and Waters [25], Boneh et al. [5], Kim
et al. [29], He et al. [27], and our newly constructed IBBE scheme proposed in
Sect. 4, respectively.

Table 1. Efficiency of our RW-HKA scheme when applying concrete IBBE schemes

Applied IBBE |mpk| |dki| |Hdri| der. cost Security

Baek et al. [4] O(1) O(1) O(|Ai|) O(1) sID-CCA

Delerablée [22] O(n) O(1) O(1) O(|Ai|) sID-CPA

Gentry and Waters [25] O(n) O(1) O(
√
n) O(

√
n) sID-CPA

Boneh et al. [5] O(log n) O(1) O(1) O(|Ai|) sID-CPA

Kim et al. [29] O(n) O(n) O(1) O(|Ai|) sID-CCA

He et al. [27] O(1) O(1) O(|Ai|) O(1) sID-CCA

Ours O(n2) O(1) O(1) O(1) sID-CPA

† n: the number of security classes in hierarchy.
† Ai: the set of ancestor classes of SCi in hierarchy.

We consider the size of public information |mpk|, the number of private key
of a user |dki|, the size of header cipher |Hdri| of each encrypted datum, and the
computation cost of a user in deriving the decryption key of a datum. Here n is
the number of security classes in the hierarchy and Ai is the set of the ancestor
classes of SCi in the hierarchy.

In Baek et al. [4] scheme, the size of public keys, user private keys, and
decryption cost are constants. Thus, when applying this scheme for our RW-
HKA, |mpk|, |dki| and decryption cost are only constants. But the size of each
cipher in Baek et al. [4] scheme is linear to the number of receivers so that
|Hdri| of each cipher is linear to |Ai| in the result RW-HKA. It is not suitable in
storing a large number of encrypted data since the total size of encrypted data is
O(#(data)·|Ai|). In Delerablée [22], Boneh et al. [5], and Kim et al. [29] schemes,
the size of each cipher remains a constant. When applying these schemes to our
RW-HKA, it is efficient in storing many encrypted data since |Hdri| remains a
constant. However, the decryption cost in these three schemes are linear to the
number of receivers. It causes that each user needs O(|Ai|) of computation cost
for key derivation in our RW-HKA. From Table 1, we see that only our IBBE
scheme can provide constant size of |dki| and |Hdri|, and constant key derivation
cost for RW-HKA simultaneously. Although the size |mpk| of public information

Hierarchical Key Assignment with Dynamic Read-Write 179

in our IBBE scheme is O(n2), a user of class SCi only needs to take |Ai| of them
in each time of encryption and O(1) of them in each time of decryption.

4 Our Concrete Construction of IBBE Scheme

In this section, we propose a new IBBE scheme Ψ , which is proved to be sID-CPA
secure. The scheme is modified from the IBBE scheme in Appendix A proposed
by Delerablée [22]. The construction of our IBBE scheme Ψ = (Gen, Ext, Enc,
Dec) is demonstrated as follows.

– Gen(τ, n) → (msk,mpk). Given a security parameter τ and an integer n,
this algorithm constructs a bilinear map ê : G × G → GT , where G and GT

are two multiplicative groups with prime order p and |p| = τ . This algorithm
randomly picks two generators g ∈ G and h ∈ GT , a value γ ∈ Z

∗
p, and a

cryptographic hash function H : {0, 1}∗ → Z
∗
p. This algorithm then computes

w = gγ , v = ê(g, h), an n-vector t = (ti)∀SCi
with ti =

∏
z∈Ai

H(idz), an
(n + 1)-vector h = (h, hγ , . . . , hγn

) and an n × n matrix D = [di,j]n×n with
entries

di,j =
{

hγ−1·Δi,j if SCi � SCj

0 otherwise
, where

Δi,j =
∏

z∈Ai\{j}
(γ + H(idz)) − ti

The master secret key msk and public key mpk are defined as

msk = (g, γ)
mpk = (p,G,GT , ê, w, v, t,h,D,H)

– Ext(mpk,msk, idi) → dki. Given mpk, msk, and an identity idi, this algo-
rithm outputs the private decryption key dki as

dki = g
1

γ+H(idi)

– Enc(mpk,Ai, ki) → Hdri. Given mpk, Ai, and a symmetric encryption key
ki, this algorithm randomly picks a value r ∈ Z

∗
p, and computes Hdri =

(c0, c1, c2), where

c0 = k · vr

c1 = w−r

c2 = hr
∏

z∈Ai
(γ+H(idz))

– Dec(mpk,Hdri, dkj) → k or ⊥. Given mpk, Hdri = (c0, c1, c2), and dkj , if
SCi 	� SCj , this algorithm outputs ⊥ . Otherwise, this algorithm computes

x = (ê(c1, di,j) · ê(dkj , c2))1/ti

ki = c0/x

180 Y.-R. Chen and W.-G. Tzeng

We verify the correctness of the decryption process as follows.

x = (ê(c1, di,j) · ê(dkj , c2))1/ti

= (ê(w−r, hγ−1·Δi,j) · ê(g
1

γ+H(idj) , hr·(Δi,j+ti)·(γ+H(idj))))1/ti

= (ê(g, h)−r·Δi,j · ê(g, h)r·(Δi,j+ti))1/ti

= (ê(g, h)r·ti)1/ti = vr

Thus, we have
c0/x = (ki · vr)/vr = ki

The security of our IBBE scheme Ψ is stated with the following theorem.
The key extraction and encryption algorithms are as the same with the scheme
proposed by Delerablée [22]. In decryption, we move most of the computation to
be pre-computed the key generation algorithm so that the decryptor only needs a
constant time of operations in the result scheme. Notably, the pre-computational
tasks are accomplished by using public information only. Thus, our IBBE scheme
can be shown to be sID-CPA security with a standard reduction argument from
the IBBE scheme proposed by Delerablée [22].

Theorem 2 (sID-CPA Security of Our IBBE Scheme). Our IBBE scheme
Ψ is secure against sID-CPA security.

5 Conclusions

In this paper, we propose a generic HKA scheme called RW-HKA, which sup-
ports dynamic reading and writing privilege enforcement simultaneously. It not
only provides typical confidentiality guarantee in data encryption, but also allows
users to verify the integrity of encrypted data. The construction is based on
sID-CPA secure IBBE and strong one-time signature schemes. It is proved to
be secure against EKI-security, which is resistant to collusion of users for ille-
gal accesses. We also provide a new IBBE scheme for constructing an efficient
RW-HKA scheme with a constant number of user private keys, constant size of
encrypted data, and constant computation cost of a user in deriving a key for
decryption. It is the first HKA scheme that achieves such performance while
supporting reading and writing privilege enforcement simultaneously.

A D07’s IBBE Scheme [22]

– Gen(τ, n) → (msk, pk). Given a security pkameter τ and an integer n, this
algorithm constructs a bilinear map ê : G × G → GT , where G and GT are
two multiplicative groups with prime order p and |p| = τ . This algorithm
randomly picks two generators g ∈ G and h ∈ GT , a value γ ∈ Z

∗
p, and a

Hierarchical Key Assignment with Dynamic Read-Write 181

cryptographic hash function H : {0, 1}∗ → Z
∗
p. The master secret key msk

and the public key pk are defined as

msk = (g, γ), pk = (p,G,GT , ê, w, v, h, hγ , . . . , hγn

,H),

where w = gγ and v = ê(g, h).
– Ext(pk,msk, idi) → dki. Given pk, msk, and an identity idi, this algorithm

outputs the private key dki as

dki = g
1

γ+H(idi)

– Enc(pk,S, k) → HdrS . Given pk, a set S of some identities, and a symmet-

ric encryption key k, this algorithm randomly picks a value r
$←− Z

∗
p, and

computes HdrS = (c0, c1, c2), where

c0 = k · vr, c1 = w−r, c2 = h
r
∏

idj∈S(γ+H(idj))

– Dec(pk,HdrS , dki) → k or ⊥ . Given pk, HdrS = (c0, c1, c2), and dki, if
idi /∈ S, this algorithm outputs ⊥. Otherwise, this algorithm computes

k = (ê(c1, hΔγ(idi,S)) · ê(dki, c2))
1∏

idjS∧idj �=idi
H(idj)

,

where

Δγ(idi,S) = γ−1(
∏

idjS∧idj �=idi

(γ + H(idj) −
∏

idjS∧idj �=idi

H(idj))

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst. (TOCS) 1(3), 239–248 (1983)

2. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), 18:1–18:43
(2009)

3. Mikhail, J.A., Keith, B.F., Marina, B.: Dynamic and efficient key management for
access hierarchies. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security, CCS 2005, Alexandria, VA, USA, 7–11 November 2005,
pp. 190–202 (2005)

4. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient multi-receiver identity-based
encryption and its application to broadcast encryption. In: Vaudenay, S. (ed.)
PKC 2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30580-4 26

5. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 206–223. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 12

6. Cafaro, M., Civino, R., Masucci, B.: On the equivalence of two security notions
for hierarchical key assignment schemes in the unconditional setting. IEEE Trans.
Dependable Secure Comput. 12(4), 485–490 (2015)

http://dx.doi.org/10.1007/978-3-540-30580-4_26
http://dx.doi.org/10.1007/978-3-540-30580-4_26
http://dx.doi.org/10.1007/978-3-662-44371-2_12

182 Y.-R. Chen and W.-G. Tzeng

7. Castiglione, A., De Santis, A., Masucci, B.: Key indistinguishability versus strong
key indistinguishability for hierarchical key assignment schemes. IEEE Trans.
Dependable Secure Comput. 13(4), 451–460 (2016)

8. Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A.,
Huang, X.: Cryptographic hierarchical access control for dynamic structures. IEEE
Trans. Inf. Forensics Secur. 11(10), 2349–2364 (2016)

9. Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A., Li, J.,
Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics
Secur. 11(4), 850–865 (2016)

10. Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Huang, X.,
Castiglione, A.: Supporting dynamic updates in storage clouds with the Akl-Taylor
scheme. Inf. Sci. 387, 56–74 (2017)

11. Chen, T.-S., Chung, Y.-F.: Hierarchical access control based on chinese remainder
theorem and symmetric algorithm. Comput. Secur. 21(6), 565–570 (2002)

12. Chen, Y.-R., Chu, C.-K., Tzeng, W.-G., Zhou, J.: CloudHKA: a cryptographic
approach for hierarchical access control in cloud computing. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954,
pp. 37–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38980-1 3

13. Chen, Y.-R., Tygar, J.D., Tzeng, W.-G.: Secure group key management using uni-
directional proxy re-encryption schemes. In: 30th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and Com-
munications Societies, INFOCOM 2011, 10–15 April 2011, Shanghai, China, pp.
1952–1960 (2011)

14. Chen, Y.-R., Tzeng, W.-G.: Efficient and provably-secure group key management
scheme using key derivation. In: 11th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom 2012, Liver-
pool, United Kingdom, 25–27 June 2012, pp. 295–302 (2012)

15. Chen, Y.-R., Tzeng, W.-G.: Group key management with efficient rekey mecha-
nism: a semi-stateful approach for out-of-synchronized members. Comput. Com-
mun. 98, 31–42 (2017)

16. Chou, K.-Y., Chen, Y.-R., Tzeng, W.-G.: An efficient and secure group key man-
agement scheme supporting frequent key updates on pay-tv systems. In: 13th Asia-
Pacific Network Operations and Management Symposium, APNOMS 2011, Taipei,
Taiwan, 21–23 September 2011, pp. 1–8 (2011)

17. Chung, Y.-F., Lee, H.-H., Lai, F., Chen, T.-S.: Access control in user hierarchy
based on elliptic curve cryptosystem. Inf. Sci. 178(1), 230–243 (2008)

18. Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access
control. In: 19th IEEE Computer Security Foundations Workshop, (CSFW-19
2006), Venice, Italy, 5–7 July 2006, pp. 98–111 (2006)

19. D’Arco, P., Santis, A., Ferrara, A.L., Masucci, B.: Security and tradeoffs of the
Akl-Taylor scheme and its variants. In: Královič, R., Niwiński, D. (eds.) MFCS
2009. LNCS, vol. 5734, pp. 247–257. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03816-7 22

20. D’Arco, P., De Santis, A., Ferrara, A.L., Masucci, B.: Variations on a theme by Akl
and Taylor: security and tradeoffs. Theor. Comput. Sci. 411(1), 213–227 (2010)

21. Das, M.L., Saxena, A., Gulati, V.P., Phatak, D.B.: Hierarchical key management
scheme using polynomial interpolation. Oper. Syst. Rev. 39(1), 40–47 (2005)

22. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 12

http://dx.doi.org/10.1007/978-3-642-38980-1_3
http://dx.doi.org/10.1007/978-3-642-03816-7_22
http://dx.doi.org/10.1007/978-3-642-03816-7_22
http://dx.doi.org/10.1007/978-3-540-76900-2_12

Hierarchical Key Assignment with Dynamic Read-Write 183

23. Freire, E.S.V., Paterson, K.G.: Provably secure key assignment schemes from fac-
toring. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp.
292–309. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22497-3 19

24. Freire, E.S.V., Paterson, K.G., Poettering, B.: Simple, efficient and strongly
KI-secure hierarchical key assignment schemes. In: Dawson, E. (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 101–114. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 7

25. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 10

26. Harn, L., Lin, H.-Y.: A cryptographic key generation scheme for multilevel data
security. Comput. Secur. 9(6), 539–546 (1990)

27. He, K., Weng, J., Liu, J., Liu, J.K., Liu, W., Deng, R.H.: Anonymous identity-based
broadcast encryption with chosen-ciphertext security. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, AsiaCCS
2016, Xi’an, China, 30 May–3 June 2016, pp. 247–255, 2016

28. Huang, D., Medhi, D.: A secure group key management scheme for hierarchical
mobile ad hoc networks. Ad Hoc Netw. 6(4), 560–577 (2008)

29. Kim, J., Susilo, W., Au, M.H., Seberry, J.: Adaptively secure identity-based broad-
cast encryption with a constant-sized ciphertext. IEEE Trans. Inf. Forensics Secur.
10(3), 679–693 (2015)

30. Lin, Y.-L., Hsu, C.-L.: Secure key management scheme for dynamic hierarchical
access control based on ECC. J. Syst. Softw. 84(4), 679–685 (2011)

31. MacKinnon, S.J., Akl, S.G.: New key generation algorithms for multilevel security.
In: Proceedings of the 1983 IEEE Symposium on Security and Privacy, Oakland,
California, USA, 25–27 April 983, pp. 72–78 (1983)

32. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Trans. Comput.
34(9), 797–802 (1985)

33. Odelu, V., Das, A.K., Goswami, A.: An effective and secure key-management
scheme for hierarchical access control in e-medicine system. J. Med. Syst. 37(2),
9920 (2013)

34. Sandhu, R.S.: Cryptographic implementation of a tree hierarchy for access control.
Inf. Process. Lett. 27(2), 95–98 (1988)

35. De Santis, A., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical
key assignment schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol.
4708, pp. 371–382. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74456-6 34

36. De Santis, A., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key
assignment schemes. Theoret. Comput. Sci. 412(41), 5684–5699 (2011)

37. Shen, V.R.L., Chen, T.-S.: A novel key management scheme based on discrete
logarithms and polynomial interpolations. Comput. Secur. 21(2), 164–171 (2002)

38. Tang, S., Li, X., Huang, X., Xiang, Y., Lingling, X.: Achieving simple, secure
and efficient hierarchical access control in cloud computing. IEEE Trans. Comput.
65(7), 2325–2331 (2016)

39. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key
graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)

40. Yang, C., Li, C.: Access control in a hierarchy using one-way hash functions. Com-
put. Secur. 23(8), 659–664 (2004)

http://dx.doi.org/10.1007/978-3-642-22497-3_19
http://dx.doi.org/10.1007/978-3-642-36095-4_7
http://dx.doi.org/10.1007/978-3-642-36095-4_7
http://dx.doi.org/10.1007/978-3-642-01001-9_10
http://dx.doi.org/10.1007/978-3-540-74456-6_34

A Novel GPU-Based Implementation
of the Cube Attack

Preliminary Results Against Trivium

Marco Cianfriglia1,2(B), Stefano Guarino2,3(B), Massimo Bernaschi2,
Flavio Lombardi2, and Marco Pedicini1,2

1 Roma Tre University, Rome, Italy
{cianfriglia,pedicini}@mat.uniroma3.it

2 Istituto per le Applicazioni del Calcolo (IAC - CNR), Rome, Italy
{s.guarino,m.bernaschi,f.lombardi}@iac.cnr.it

3 Sapienza University of Rome, Rome, Italy

Abstract. With black-box access to the cipher being its unique require-
ment, Dinur and Shamir’s cube attack is a flexible cryptanalysis tech-
nique which can be applied to virtually any cipher. However, gaining a
precise understanding of the characteristics that make a cipher vulner-
able to the attack is still an open problem, and no implementation of
the cube attack so far succeeded in breaking a real-world strong cipher.
In this paper, we present a complete implementation of the cube attack
on a GPU/CPU cluster able to improve state-of-the-art results against
the Trivium cipher. In particular, our attack allows full key recovery
up to 781 initialization rounds without brute-force, and yields the first
ever maxterm after 800 initialization rounds. The proposed attack lever-
ages a careful tuning of the available resources, based on an accurate
analysis of the offline phase, that has been tailored to the characteris-
tics of GPU computing. We discuss all design choices, detailing their
respective advantages and drawbacks. Other than providing remarkable
results, this paper shows how the cube attack can significantly benefit
from accelerators like GPUs, paving the way for future work in the area.

Keywords: Cube attack · Trivium · GPU

1 Introduction

The security of a stream cipher relies on its ability to mimic the properties of the
perfectly secure One Time Pad (OTP): predicting future keystream bits (e.g., by
recovering its inner state) must be computationally infeasible. In fact, as high-
lighted by algebraic and correlation attacks, any statistical correlation between
output bits and linear combinations of input bits is a potential security breach
for the cipher. Cryptographers are therefore caught in between implementation
requirements, which suggest the use of efficient primitives such as Feedback Shift
Registers (FSRs) or Finite State Machines (FSMs), and security requirements,
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 184–207, 2017.
DOI: 10.1007/978-3-319-61204-1 10

A Novel GPU-Based Implementation of the Cube Attack 185

which demand for solutions able to disguise the dependence of keystream-bits
on the inner state of the registers. Many recent stream ciphers therefore rely
upon irregular clocks, mutual clock control, non-linear and/or mutual feedback
among different registers, or combinations of these solutions.

The cube attack, proposed by Dinur and Shamir [10], can be classified as an
algebraic known-plaintext attack. Assuming that a chunk of keystream can be
recovered from a known plaintext-ciphertext pair, the attack allows determining
a set of linear equations binding key-bits. However, cube attacks significantly
deviate from traditional algebraic attacks in that the equations are not recov-
ered symbolically, but rather extracted through exhaustive searches over selected
public/IV bits – the edges of the cubes the attack is named after. The possibility
that a cube yields a linear equation depends on both its size and on the alge-
braic properties of the cipher. Since the Algebraic Normal Form (ANF) of the
cipher (that is, its representation as a binary polynomial) is generally unknown
beforehand, in practice the attack usually runs without clear prior insights into
a convenient strategy for selecting the cubes – an approach made possible by
the fact that the attack only requires black-box access to the attacked cipher.
Exploring cubes of different (possibly large) size, trying many different sets of
indices, and varying the binary assignment of the public bits not belonging to
the tested cube are all promising solutions, but they all come at an exponential
cost. In a sense, cube attacks can be therefore assimilated to Time-Memory-
Data Trade-Off (TMDTO) attacks, as their success rate strongly depends on
the extensiveness of the pre-computation stage, on the memory available to
store the results of that stage, and on the amount of data usable to implement
it. Consequently, identifying the most favourable design choices is the main pillar
of a possibly successful cube attack.

Contributions. The present paper motivates and discusses in depth an imple-
mentation for Graphics Processing Unit (GPU) of the cube attack. The target
cipher is Trivium [8,22], already considered in the literature to test the viability
of the cube attack [10,14]. Our contributions can be summarized as follows: (i)
We tailor the design and implementation of the cube attack to the characteris-
tics of GPUs, in order to fully exploit parallelization while coping with limited
memory. Our framework is extremely flexible and can be adapted to any other
cipher at no more cost than some fine (performance) tuning, mostly related to
memory allocation. (ii) We show the performance gain with respect to a CPU
implementation, including results obtained on latest generation GPU cards. (iii)
Our implementation allows for exhaustively assigning values to (subsets of) pub-
lic variables with negligible additional costs. This means extending the quest for
superpolys to a dimension never explored in previous works, and, by not being
tied to a very small set of IV combinations, potentially weakening one of the
basic requirements of the cube attack, that is, the assumption of a completely
tweakable IV . (iv) Even though we run the attack with only a few prelimi-
nary sets of cubes – specifically selected to both validate our code and compare
our results with the literature – our findings improve on the state-of-the-art for
attacks against reduced-round versions of Trivium.

186 M. Cianfriglia et al.

Roadmap. This paper is organized as follows: Sect. 2 introduces the cube attack
and the targeted cipher Trivium; our implementation of the attack is described
in Sect. 3, whereas experimental results are reported and discussed in Sect. 4;
Sect. 5 gives an overview of related works; finally, Sect. 6, draws conclusions and
suggests possible directions for future work.

2 Preliminaries

In this section, we first describe the theoretical implant of the cube attack, and
we then briefly introduce Trivium. More details about Trivium are reported in
AppendixA.

The Cube Attack. Let z denote a generic keystream bit produced by a stream
cipher E . z is the result of a function E : Fn+k

2 → F2, computed over the n + k
input bits obtained from an Initial Vector IV of length n and a secret key K of
length k. It is well known that z can be expressed as z = p(x,y), where p is the
polynomial representation of E, x = (x1, . . . , xn) is the vector of public variables
(IV), y = (y1, . . . , yk) is the vector of secret variables (K), and all variables in
p appear with degree 1, at most. The cube attack relies on extracting from p a
set of linear equations binding private variables in y, through a suitable offline
pre-computation phase involving public variables in x.

Let I = {i1, . . . , im} ⊂ {1, . . . , n} and let us introduce the complement I =
{1, . . . , n}\I of the set I. With a slight abuse of notation, let us consider variables
in x as partitioned by I: x = (xI ,xI), i.e., we tell apart the variables xI indexed
by I from those xI indexed by its complement I. Let tI = xi1 · · · xim be the
monomial induced by I, that is, the product of all variables in xI . By writing
tI(xI) we want to stress that tI contains only variables in xI . If we factor tI(xI)
out of p(x,y) we obtain

p(x,y) = tI(xI) · pS(I)(x,y) + q(x,y)

where the quotient pS(I)(x,y) of the division is called the superpoly of I in p,
whereas q(x,y) is the remainder of the division.

Now, for any binary vector vI , we consider a fixed assignment for variables
xI

1, and let CI(vI) denote the cube induced by I and vI , that is, the set of all 2m

possible binary assignments to x in which variables xI assume values specified
by the binary vector vI and the remaining variables in xI take all the possible
combinations. It is easy to verify that all monomials in pS(I) do not contain any
of the variables xI (i.e., pS(I)(x,y) = pS(I)(xI ,y)), whereas all monomials in q
do not contain at least one of the variables in xI . For this reason, regardless of
y, the sum of p(x,y) over all elements v of CI(vI) yields [10]

∑

v∈CI(vI)

p(v,y) = pS(I)(vI ,y) (1)

which obviously does not depend on variables xI anymore.
1 The standard assumption is vI = 0, but this is not actually required.

A Novel GPU-Based Implementation of the Cube Attack 187

If pS(I)(vI ,y) is linear, the monomial tI(xI) is called a maxterm for p with
the assignment vI . If we can identify maxterms and find the symbolic expression
of their superpolys, we obtain a system of linear equations that can be used to
recover the secret key.

As vI is always clear from the context, to improve readability in the following
we simply denote CI(vI) and pS(I)(vI ,y) as CI and pS(I)(y), respectively.

Trivium. Trivium [8] is a stream cipher conceived by Christophe De Cannière
and Bart Preneel, part of the eSTREAM portfolio. It generates up to 264 bits
of output from an 80-bit key K and an 80-bit Initial Vector IV , and it shows
remarkable resistance to cryptanalysis despite its simplicity and its excellent
performance. Trivium is composed by a 288-bit internal state consisting of three
shift registers of length 93, 84 and 111, respectively. The feedback to each of
these registers and the output bit of the cipher are obtained through non-linear
combinations involving in total 15 out of the 288 internal state bits. To initialize
the cipher, K and IV are written into two of the shift registers, with a fixed
pattern filling the remaining bits. 1152 initialization rounds guarantee that the
output begins to be produced only after all key-bits and IV -bits have been
sufficiently mixed together to define the internal state of the registers.

3 The Proposed GPU Implementation of the Attack

In this section, we present, detail, and discuss our attack, designed to run on
a cluster equipped with Graphics Processing Units (GPU). As previously men-
tioned, the success of a cube attack is highly dependent on suitable implemen-
tation choices. In order to better explain our own approach, we start with an
analysis of the cube attack from a more implementative perspective.

3.1 Practical Cube Attack

At a high level, any practical implementation of the cube attack requires per-
forming the following steps:

S1 Find as many maxterms as possible;
S2 For each maxterm, find the corresponding linear equation(s);
S3 Solve the obtained linear system.

Step S1. This is the core of the attack, where cubes that yield linear equa-
tions are identified. Choosing candidate maxterms (i.e., cubes) is non-trivial.
Intuitively, the degree of most maxterms lies in a specific range that depends on
the (unknown) degree distribution of the monomials of the polynomial p. If the
degree of tI is too small, then pS(I) is most likely non-linear, but if the degree of
tI is too large, then pS(I) will probably be constant (e.g., null). Moreover, since

188 M. Cianfriglia et al.

the complexity of the offline phase scales exponentially with |I|, the degree of
tested potential maxterms is strongly influenced by practical limitations.

In [10], the authors propose a random walk to explore a maximal cube CImax ,
i.e., starting from a random subset I ⊂ Imax and iteratively testing the superpoly
pS(I) to decide whether the degree of tI should be increased or decreased. The
underlying idea is to use a probabilistic approach to identify the optimal size |I|.
In [14], the authors evaluate the cipher upon all vertices of a maximal cube CImax ,
store the results in a table T of size |T | = 2|Imax|, and then apply the Moebius
transform to the entire table T , thus computing at once the sums over

(|Imax|
d

)

sub-cubes of CImax of degree d, for d = 0, . . . , |Imax|. These cubes are all possible
sub-cubes of CImax in which the variables outside the cube have been set equal
to 0. In this case the rationale is minimizing processing cost by reusing partial
computations as much as possible. Interestingly, the authors of [14] show that
specific cubes perform better than others, at least for reduced-round variants of
Trivium, and use their findings to select the most promising maximal set Imax.

None of these two strategies is suitable for GPUs. The stochastic nature
of the random walk prevents the sequence of steps from being determined a
priori, since the computation is performed only when (and if) needed. On the
other hand, the Moebius transform requires a rigid schema of calculations and
a large number of alternating read and write operations in memory that must
be synchronized. Both approaches are conceived for implementations in which
computational power is a constraint (while memory is not), and all advantages
of using the Moebius Transform are lost in case of parallel processing. We rather
perform an exhaustive search over a portion of a maximal cube, a solution that
is highly parallelizable and feasible with our computational resources.

For each candidate maxterm tI , we need to verify whether the superpoly
pS(I) is linear. The goal being recovering key bits, any fixed assignment of vari-
ables xI with the bit vector vI can be used to get rid of variables. In order to
guarantee that the degree of each superpoly is reduced to the bare minimum,
the assignment vI to 0 is usually preferred, but we argue that this is not neces-
sarily the best choice, as motivated later in Sect. 4.2. In any case, at this stage
the superpoly pS(I) only depends on y. In principle, assessing the linearity of
pS(I)(y) requires finding all of its coefficients, but efficient probabilistic linear-
ity tests [7,21] can safely replace deterministic ones in most practical settings.
Probabilistic tests involve verifying if

pS(I)(u1 + u2) = pS(I)(u1) + pS(I)(u2) + pS(I)(0) (2)

holds for random pairs of vectors u1,u2. Practically, this means evaluating
numerically four sums:

∑
v∈CI

E(v,0),
∑

v∈CI
E(v,u1),

∑
v∈CI

E(v,u2), and∑
v∈CI

E(v,u1 + u2).
Probabilistic tests rely on the fact that (2) must be true for all u1,u2 if pS(I)

is linear, whereas, in general, it holds with probability 1
2 . In particular, as done

for previous cube attacks [10,14], we will resort to a complete-graph test [21],
which guarantees a slightly lesser accuracy than the (truly-random) BLR test [7]
with far fewer evaluations of pS(I). Let us remark that what ultimately matters in

A Novel GPU-Based Implementation of the Cube Attack 189

the envisaged scenario is identifying “far-from-linear” superpolys [20]. To clarify,
let us consider the superpoly pS(I)

pS(I)(y) = l(y) +
k∏

i=1

yi

formed by a sum l(y) of linear terms, plus one nonlinear term given by the
product of all variables in y. Despite the equality pS(I)(y) = l(y) is formally
wrong (the degree of pS(I) is as large as k), pS(I)(u) = l(u) is numerically
correct for all u ∈ F

k
2 , except u = (1, 1, . . . , 1). In other words, mistaking pS(I)

for linear has practical consequences only if u = (1, 1, . . . , 1).

Steps S2 and S3. Step S2 consists in finding the symbolic expression of the
superpoly of all identified maxterms, and the free term of the corresponding
equation. Again, this turns into a set of numerical evaluations: the free term of
pS(I)(y) is

pS(I)(0) =
∑

v∈CI

E(v,0)

whereas the coefficient of each variable yi is

pS(I)(ei) + pS(I)(0) =
∑

v∈CI

E(v, ei) +
∑

v∈CI

E(v,0)

where ei is the unit vector with all null coordinates except yi = 1. Once the poly-
nomial pS(I)(y) is found, the attack assumes the availability of the 2m keystream
bits produced in correspondence to a fixed (unknown) assignment to the vari-
ables y, as the variables x take all possible assignments in CI . This produces
the linear equation

pS(I)(y) =
∑

v∈CI

E(v,y)

whose left side is a linear combination of the key variables y with coefficients
found offline, whereas the right side is a number found online, and whose solution
is the sought unknown assignment to y.

Finally, Step S3 just requires solving the obtained linear system with any
suitable technique described in the literature.

3.2 The Setting

Generally speaking, GPUs are processing units characterized by the following
advantages and limitations:

190 M. Cianfriglia et al.

Computing: Each unit features a large number (i.e., thousands) of simple cores,
that make possible running a much higher number of parallel threads com-
pared to a standard CPU. More precisely, the GPU’s basic processing unit is
the warp consisting of 32 threads each. Threads are designed to work on 32-
bit words, and the performance is maximized if all threads belonging to the
same warp execute exactly the same operations at the same time on different
but contiguous data.

Memory: The so-called global memory available on a GPU is limited, typi-
cally between 4 and 12 GB. Each thread can independently access data (ran-
dom access is fully supported, but costly performance-wise). However, when
threads in a warp access consecutive 32-bit words, the cost is equivalent to
a single memory operation. Concurrent readings and writings by different
threads to the same resources, which require some level of synchronization,
should be avoided to prevent serialization that defeats parallelism.

The basic step of the attack is the sum of E(v,y) over all elements v of a
cube CI . Each time we sum over a cube, the key variables y are fixed, either
to a random uj for the linearity tests, or to 0 and to versors ei for determining
the superpoly. In both cases exactly the same sum

∑
v∈CI

E(v,uj) must be
performed for all elements of a set of keys {u1, . . . ,uM}.

We define the following strategy for carrying out the sums over a cube with
the goal of maximizing the parallelization and fully exploiting at its best the
computational power offered by GPUs:

– Assigning to all the threads within a warp the computation of the same cube
CI but with a different key uj . This choice guarantees that all threads perform
the same operation at the same time for the entire computation.

– Leveraging the GPU computational power to calculate all the elements of a
cube CI , providing to the threads just a bit-mask representing the set I. With
this approach we can exploit all available GPU memory to store the cubes
evaluations and minimize, at the same time, the number of memory access
operations.

– Defining a keystream generator function E(x,y) which outputs a 32-bit word,
and letting each thread work on the whole word, fully leveraging the GPU
computing model. This approach offers two remarkable benefits: (i) consid-
ering 32 keystream bits altogether is equivalent to concurrently attacking 32
different polynomials, and (ii) working on 32-bit integers fits much better
with the GPUs features, whereas forcing the threads to work on single bits
would critically affect the performance of the attack. Therefore, attacking 32
keystream bits altogether reduces (of a factor 32) the memory needed for
storing the cubes’ evaluation, thus imposing some limitations on the size of
the cubes to be tested, as we will clarify later.

– Choosing the number M of keys to be a multiple of the warp size in order
to perform the probabilistic linearity test on 32 keystream bits at the same
time and for all M keys.

A Novel GPU-Based Implementation of the Cube Attack 191

3.3 The Attack

A severe constraint in any GPU implementation is represented by the amount
of memory |T | currently available on GPUs. Moreover, for each cube, we need
to consider M different keys in order to run the linearity test, thus reducing the
amount of available memory even further to |T |/M . Storing single evaluations of
the cipher in T means testing only sub-cubes of a maximal cube of size |Imax| =
log2(|T |/M). With the memory available in current GPUs, log2(|T |/M) is not
large enough for any reasonably strong cipher. The new approach we propose is
highly parallelizable, it can fully exploit the computational resources offered by
GPU, and it is able to exploit GPU memory to test high order maximal cubes.

The proposed design of the attack relies on the following rationale: exploring
only a portion of the maximal cube CImax , considering only subsets I ⊆ Imax

characterized by a non-empty minimal intersection Imin. Quite naturally, a sim-
ilar design leads to two distinct CUDA2 kernels, respectively responsible for: (1)
computing many variants of the cube CImin , one for each of the possible com-
binations of the indices in Imax \ Imin, and writing the results in memory; (2)
combining the stored results to test all cubes CI such that Imin ⊆ I ⊆ Imax.
Following this approach, the size of the explored Imax can be raised to |Imax| =
|Imin| + log2(|T |/M), with read and write memory operations carried out by
different kernels.

According to the notation introduced in Sect. 2, the public variables are x =
(x1, . . . , xn). Now, let us distinguish these n public variables into three sets
xfix = (xi1 , . . . , xidfix

), xfree = (xj1 , . . . , xjdfree
), and x∗, of size dfix, dfree, and

n − d, respectively, where d = dfix − dfree. The variables xfix correspond to the
fixed components of CImax identified by Imin, i.e., Imin = {i1, . . . , idfix}, whereas
the variables xfree correspond to the remaining free components of CImax , i.e.,
Imax \ Imin = {j1, . . . , jdfree} and |Imax| = d. The variables u∗ are the remaining
public variables that fall outside Imax.

The two kernels of our attack can be described as follows:

Kernel 1: It uses 2dfree warps. Since, as described before, the 32 threads belong-
ing to the same warp perform exactly the same operations but for different
keys, in the following we simply consider a representative thread per warp and
ignore the private variables y.3 For t = 0, . . . , 2dfree − 1, thread (i.e., warp) s
sums E(u,y) over each vertex of the cube Cs

Imin
of size dfix determined by the

assignment of the dfree-bit representation ufree of integer s to the variables
xfree and of 0 to the variable u∗. Finally, thread s writes the sum in the sth

entry of table T , so that, at the end of the execution of the kernel, each entry
of T contains the sum over a cube of size dfix. These evaluations allow for
testing the monomial tImin with all the aforementioned assignments to the
other n − dfix variables.

2 CUDA is the software framework used for programming Nvidia GPUs.
3 The work that here is assigned to a single thread can be actually split among any

number of threads, reassembling the results at the end. We will not consider this
possibility here for the sake of clarity.

192 M. Cianfriglia et al.

Kernel 2: By simply combining the values stored in T at the end of Kernel
1, it is now possible to explore cubes of potentially any size dfix + δ, with
0 ≤ δ ≤ dfree. Although the exploration can potentially follow many other
approaches (e.g., a random walk as in [10]), the large computing power of
our platform suggests to test cubes exhaustively. Moreover, we extend the
exhaustive search to an area never reached, to the best of our knowledge, in
the literature. For all I such that Imin ⊆ I ⊆ Imax, this kernel considers all
variants of cube CI obtained assigning all possible combinations of values to
the variables in Imax\I. More precisely, for each possible choice of δ ∈ [0, dfree],
there are exactly

(
dfree

δ

)
2dfree−δ distinct cubes of size dfix + δ available. In fact,

we can choose δ free variables (the additional dimensions of the cube) in(
dfree

δ

)
different ways, and we can choose the fixed assignment to the remaining

dfree − δ variables in any of the 2dfree−δ possible combinations.

As a matter of fact, the number of cubes considered in [14] is
∑dfree

δ=0

(
dfree

δ

)
=

2dfree , whereas the number of cubes tested by our approach is significantly larger,
namely,

∑dfree
δ=0 2dfree−δ

(
dfree

δ

)
= 3dfree . We would like to highlight that Kernel 2

is computationally dominated by Kernel 1, so the cost of our exhaustive search
is negligible. Therefore, our design entails considering any possible assignment
to variables outside the cube, to finally address the common conjecture (never
proved in the literature), that assigning 0 is the best possible solution.

Let us underline that, in order to validate our implementation of the cube
attack, we symbolically evaluated the polynomial p of Trivium up to 400 ini-
tialization rounds, and used p to identify all possible maxterms and their super-
poly. We then ran the attack to find all maxterms whose variables belonged
to selected sets I. Our experimental findings matched the symbolical findings.
Further experimental validation of our code is reported in Sect. 4.

3.4 Performance Analysis

To evaluate the performance of our GPU based solution, we developed both
a CPU and a GPU version of the cube attack. The cluster we used for the
experiments is composed by 3 nodes, each equipped with 4 Tesla K80 with 12 GB
of global memory and 4 Intel Xeon CPU E5-2640 with 128 GB of RAM. The
CPU experiments were conducted on a parallel version based on OpenMP that
exploits 32 cores of the four Intel(R) Xeon(R) CPU E5-2640. Each performance
test was executed 5 times and the average time is reported. It is worth noticing
that all versions rely on the same base functions to implement Trivium.

In Fig. 1a, we report the speed-up gained by the GPU version with respect
to the parallel CPU version. We evaluated the two solutions over growing size
maximal cubes CImax , in which we anchor the size of Imin, consequently causing
the size of the set Imax \ Imin to exponentially increase. Overall, the experiments
show that the benefit of using the GPU version grows with the number of free
variables dfree considered, reaching a speed-up up to 70× when dfree = 13. The
rationale is that the execution time of the CPU version increases almost linearly
with dfree from the very beginning, whereas a similar trend can be observed for

A Novel GPU-Based Implementation of the Cube Attack 193

1 6 8 11 13

0

20

40

60

80

Number of free variables dfree

CPU parallel / GPU

(a) Speedup of parallel CPU vs. GPU

1 6 8 11 13

100

101

102

103

Number of free variables dfree

E
xe

cu
ti

on
T

im
e

|Imin| = 20
|Imin| = 19
|Imin| = 18
|Imin| = 17
|Imin| = 16

(b) GPU performance analysis

E
xe

cu
ti

on
T

im
e

sp
ee

d-
up

Fig. 1. Performance experiments

the GPU version only when the number of blocks in use gets larger than the
number of Streaming Multiprocessors (SMs) of the GPU, which happens when
dfree ≥ 9 in our case. Of course, slight fluctuations are possible, mostly due to
the complex interactions among the multiple cache levels of a modern CPU.
Moreover, we evaluated how the GPU solution scales when dfree increases. As
reported in Fig. 1b, our solution scales linearly with the size of the problem,
i.e., exponentially with the size of the sub-cubes CImin , thus paving the way for
future works in the area.

Finally, we ran the attack under the control of the Nvidia profiler in order
to measure the ALU occupancy achieved by our kernels. Kernel 1 is invoked
just once per run to fill the whole table T , with an occupancy consistently over
95% when dfree ≥ 10. Kernel 2 is instead invoked once per each δ ∈ [0, dfree], to
compute all available cubes of size dfix + δ. The maximum occupancy exceeds
95% as soon as dfree ≥ 12, with an average of approximately 50%. In either
case the impact of dfix, which determines the load of each thread, is negligible.
Considering that dfree should be maximized to improve the attack success rate,
our kernels guarantee an excellent use of resources in any realistic application.
For instance, in our experiments discussed in Sect. 4 we set dfree = 16, which
guarantees an occupancy above 99% for Kernel 1, and a maximum occupancy
above 98% for Kernel 2.

4 Results

Finally, this section reports the results obtained by our GPU implementation of
the cube attack against reduced-round Trivium. We recall that the attack ran
on a cluster composed by 3 nodes, each equipped with 4 Tesla K80 with 12 GB
of global memory and 4 Intel Xeon CPU E5-2640 with 128 GB of RAM.

As mentioned in Sect. 3.3, we performed a formal evaluation of our imple-
mentation, by checking our experimental results against Trivium’s polynomials,
explicitly computed up to 400 initialization rounds. In the following, the number

194 M. Cianfriglia et al.

of initialization rounds instead matches (and slightly overtakes) the best results
from the literature, thus reaching a point where a symbolic evaluation would be
prohibitive. Still, the results we exhibit are obtained from experiments specif-
ically designed to reproduce tests carried out in the recent past [14], so as to
provide, at the same time: (i) a direct comparison of our results with the state-
of-the-art; (ii) an immediate means to assess the advantages of our approach,
and (iii) a further validation of the correctness of our code.

Experimental Setting. In our attack, we consider two different reduced-round
variants of Trivium, corresponding to 768 and 800 initialization rounds, respec-
tively. As explained and motivated in Sect. 3.2, in our scheme, each call to Triv-
ium produces 32 key-stream bits, which we use in our concurrent search for
superpolys. The most significant practical consequence of a similar construction
is the ability to devise attacks to Trivium reduced to any number of initializa-
tion rounds ranging from 768 to 831, at the cost of just two attacks, although
the number of available superpolys decreases with the number of rounds. As a
matter of fact, the jth output bit after 768 rounds can also be interpreted as
the (j − i)th bit of output after 768 + i initialization rounds, for any j ≥ i. In
other words, an attack to Trivium reduced to 768 + i initialization rounds can
count upon all superpolys found in correspondence of the jth output bit after
768 rounds, for all j ≥ i.

For each of the two attacks (768 and 800 initialization rounds), we ran a set
of independent runs, each using a different choice for the pair of sets of variables
Imin, Imax (with Imin ⊂ Imax) that define the minimal and maximal tested cubes
CImin and CImax . The size of Imin and Imax \ Imin is dfix = 25 and dfree = 16,
respectively, for all runs, so that all maximal cubes have size d = dfix+dfree = 41.
Peculiarly to our implementation, when we test the monomial composed of all
variables in some set Imin ⊆ I ⊆ Imax, we exhaustively assign values to all public
variables in Imax \ I, thus concurrently testing the linearity of 241−|I| possibly
different superpolys. This feature of our attack – a possibility overlooked in
the literature, but almost free-of-charge in our framework – provides primary
benefits, as described in Sect. 4.2.

In all the reported experiments, we use a complete-graph linearity test based
on combining 10 randomly sampled keys.

4.1 Summary of Results

As mentioned before, we implemented two attacks, against Trivium reduced to
768 (Trivium-768 in the following) and 800 (Trivium-800) initialization rounds,
respectively. In both cases, our setting allows obtaining superpolys corresponding
to 32 output bits altogether, at the cost of a single attack.

Results Against Trivium-768. For the attack against Trivium-768, we took
inspiration from [14]: we launched 12 runs based on 12 different pairs Imin, Imax,
chosen so as to guarantee that each of the 12 linearly independent superpolys

A Novel GPU-Based Implementation of the Cube Attack 195

found in [14] after 799 initialization rounds was to be found by one of our runs.
The rationale of reproducing results from [14] was to both test the correctness
of our implementation, and provide a better understanding of the advantages
of our implementation with respect to the state-of-the-art. In this sense, let us
highlight that a single run of ours cannot be directly compared with all results
presented in [14], because each of our runs only explores the limited portion of
the maximal cube CImax composed by all super-cubes of CImin .

To better describe our results, let us introduce the binary matrix A whose
element A(i, j) is the coefficient of variable yj in the ith available superpoly. The
rank of A, denoted rk(A), clearly determines the number of key bits that can be
recovered in the online phase of the attack based on the available superpolys,
before recurring to brute-force.

As described before, the superpolys yielded by the ith output bit after round
768 are usable to attack Trivium for any number of initialization rounds between
768 and 768+ i. It is possible to define 32 different matrices A768, . . . , A799: A768

includes all superpolys found, while each matrix A768+i is obtained by incre-
mentally removing the superpolys yielded by output bits 0, . . . , i − 1. Figure 2a
shows rk(Ai) as a function of i, comparing our findings with those of [14].

Overall, our results extend the state-of-the-art in a remarkable way, especially
if we consider that our quest for maxterms was circumscribed to multiples of 12
base monomials of degree 25. In particular, let us highlight a few aspects that
emerge from Fig. 2a:

– Since our runs were designed to include all 12 maxterms found in [14] after
799 initialization rounds, it is not surprising that rk(A799) is at least 12. Yet,
it is indeed larger: we found 3 more linearly independent superpolys, reaching
rk(A799) = 15.

– Although we did not force our tested cube to include the maxterms found
in [14] after 784 rounds, we have rk(A784) = 59, compared with rank 42
found in [14].

– Finally, and probably most importantly, our attack allows a full key recovery
up to 781 initialization rounds.

Selected superpolys that guarantee the above ranks are reported in AppendixB,
together with the corresponding maxterms. Very interesting is also how novel
superpolys were found, a point that is better described in the following.

Results Against Trivium-800. To provide a further test of the quality of
our attack, we launched a preliminary attack against Trivium-800. We kept
unvaried all the parameters of the attack (dfix = 25, dfree = 16, 32 output
bits attacked altogether), but this time we only launched 4 runs, and we chose
the sets Imin, Imax at random. In total, we were able to find a single maxterm
corresponding to 800 rounds, and no maxterms afterwards. This maxterm and
the corresponding superpoly are also reported in AppendixB. Although our
findings only allow to cut in half the complexity of a brute force attack, this is the
first ever superpoly found considering more than 799 initialization rounds. We

196 M. Cianfriglia et al.

765 770 775 780 785 790 795 800

20

40

60

80

Number of initialization rounds i

R
an

k
of

A
i

Our results
Results in [14]

(a) Comparison with previous work

765 770 775 780 785 790 795 800

20

40

60

80

Number of initialization rounds i

R
an

k
of

A
i

Full results
Filtered results
Results in [14]

(b) Impact of probabilistic linearity

0 5 10 15 20 25 30

20

40

60

80

Number of output bits j

R
an

k
of

B
j 7
6
8

Full results
Filtered results

(c) Impact of using 32 output bits

765 770 775 780 785 790 795 800

20

40

60

80

Number of initialization rounds i

R
an

k
of

A
i

Full results
Results no ex.

(d) Impact of exhaustive search

Fig. 2. Our results

recall that our limited results should not appear as surprising: as previous work
suggests [10,14], when the number of initialization rounds grows, a cube attack
should increase the average degree of candidate maxterms and/or implement
specific strategies for the selection of the index sets [14].

4.2 Further Discussion

Hereafter, we provide a more detailed analysis and a further discussion of our
findings, considering two aspects in particular: the reliability of commonly used
linearity tests, and the peculiar advantages of our attack design. Unless otherwise
specified, in the following we always focus on Trivium-768.

On Probabilistic Linearity. A common practice in the cube attack related
literature consists in using a probabilistic linearity test, meaning that a (small)
chance exists that the superpolys found by an attack are not actually linear. In
particular, the best results obtained with the cube attack against Trivium use
a complete-graph test, which, with respect to the standard BLR test, trades-off

A Novel GPU-Based Implementation of the Cube Attack 197

accuracy for efficiency. The viability of a similar choice is supported by previous
work [12,21], showing that the complete-graph test behaves essentially as a BLR
test in testing a randomly chosen function f , with the quality of the former being
especially high if the nonlinearity (minimum distance from any affine function)
of f is large, that is, when the result of the test is particularly relevant.

Following the trend, we chose to implement a complete-graph test based
on a set of 10 randomly chosen keys, exactly as done in [14]. However, while
increasing the number of tests done during the attack was costly for us (it
impacts on memory usage), implementing further test on the superpolys found
at the end of the attack was not. We therefore decided to put our superpolys
through additional tests involving other 15 keys chosen uniformly at random.
Figure 2b compares rk(Ai) as a function of i, for our full results and our filtered
results, in which all superpolys that failed at least one of the additional tests
have been removed. Let us stress once more that these two sets of results cannot
be defined as wrong and correct, but they rather correspond to two different
levels of trust in the found superpolys. In a sense, choosing between the two sets
is equivalent to selecting the desired trade-off between efficiency and reliability
of the attack: our full results permit a faster attack, which however may fail
for a subset of all possible keys. Of course, many middle ways/intermediate
approaches are possible. Investigating whether the reason of these failing tests
is related to any of our design choices is left to future work.

On Using 32 Output Bits. A significant novelty of our implementation con-
sists in the ability to concurrently attack 32 different polynomials, which describe
32 consecutive output bits of the target cipher. This choice is induced by GPUs
features – as discussed in Sect. 3.2 – yet it is natural to assess what benefits it
introduces. In Sect. 4.1 we showed that looking at 32 output bits altogether can
be considered a way to concurrently attack 32 different reduced-round variants of
Trivium. However, aiming to extend the attack to the full version of the cipher,
our implementation can be used to check whether the same set of monomials
yield different superpolys, hopefully involving different key variables, when we
focus on different output bits. To this end, let us introduce a new set of matri-
ces B0

768, . . . , B
31
768, where each Bj

768 is obtained considering only the superpolys
yielded by output bits 0, . . . , j after 768 initialization rounds (i.e., A768 = B31

768).
Figure 2c shows rk(Bj

768) as a function of j, for both our full results and our
filtered results. What the figure highlights is that considering several output
bits altogether for the same version of the cipher, albeit possibly causing issues
related to memory usage, does introduce the expected benefit, indeed a remark-
able benefit if the matrix rank is initially (i.e., when j = 0) low. This is the
first ever result showing that considering a larger set of output bits is a viable
alternative to exploring a larger cube.

On the Advantages of the Exhaustive Search. As described before, our
implementation allows to find significantly more linearly independent superpolys
than previous attempts from the literature. One of the reasons of our findings

198 M. Cianfriglia et al.

is the parallelization that makes possible to carry out, at a negligible cost, an
exhaustive search over all public variables in Imax \ I when the cube CI is under
test. Figure 2d, again focusing on rk(Ai), compares our full results with results
obtained without exhaustive search (shortened “no ex.”), i.e., setting all vari-
ables in Imax \ I to 0, as usually done in related work. What emerges is that
through an exhaustive search it is indeed possible to remarkably increase rk(Ai).
Significantly, the exhaustive search is what allows us to improve on the state-of-
the-art for i = 799, which, among other things, suggests that the benefits of the
exhaustive search are particularly relevant when increasing the number of tested
cubes would be difficult otherwise (e.g., by considering other monomials).

Another consequence of implementing an exhaustive search is that we found
many redundant superpolys, i.e., superpolys that are identical or just linearly
dependent with the ones composing the maximal rank matrix Ã. A similar find-
ing is extremely interesting, because we expect it to provide a wide choice of
different IV combinations yielding superpolys that compose a maximal rank
sub-matrix Ã, thus weakening the standard assumption that cube attacks require
a completely tweakable IV .

5 Related Work

The cube attack is a widely applicable method of cryptanalysis introduced by
Dinur and Shamir [10]. The underlying idea, similar to Vielhaber’s AIDA [24],
can be extended, e.g., by assigning a dynamic value to IV bits not belong-
ing to the tested cube [3,11], or by replacing cubes with generic subspaces of
the IV space [25], and it is used in so-called cube testers to detect nonrandom
behaviour rather than performing key extraction [4,5]. Despite the cube attack
and its variants have shown promising results against several ciphers (e.g., Triv-
ium [10], Grain [11], Hummingbird-2 [13], Katan and Simon [3], Quavium [26]),
Bernstein [6] expressed harsh criticism to the feasibility and convenience of cube
attacks. Indeed, a general trend for cube attacks is to focus on reduced-round
variants of a cipher, without any evidence that the full version can be equally
attacked. However, while Bernstein suggests that the cube attack only works if
the ANF of the cipher has low degree, Fouque and Vannet [14] argue (and, to
some extent, experimentally show) that effective cube attacks can be run not
aiming at the maximum degree of the ANF, but rather exploiting a nonran-
dom ANF by searching for maxterms of significantly lower degree. Along this
line, O’Neil [18] suggests that even the full version of Trivium exhibits limited
randomness, thus indicating the potential vulnerability of this cipher to cube
attacks.

In recent years, several implementations of the cube attack attempted
at breaking Trivium, our target cipher described in Sect.A. Quedenfeld and
Wolf [19] found cubes for Trivium up to round 446. Srinivasan et al. [23] intro-
duces a sufficient condition for testing a superpoly for linearity in F2 with a time
complexity O(2c+1(k2 + k)), yielding 69 extremely sparse linearly independent
superpolys for Trivium reduced to 576 rounds. In their seminal paper [10], Dinur

A Novel GPU-Based Implementation of the Cube Attack 199

and Shamir found 63, 53, and 35 linearly independent superpolys after, respec-
tively, 672, 735, and 767 rounds. Fouque and Vannet [14] even improve over Dinur
and Shamir, by obtaining 42 linearly independent superpolys after 784 rounds,
and 12 linearly independent superpolys (plus 6 quadratic superpolys) after 799
rounds. To the best of our knowledge, these are the best results against Trivium
to date, making our attack comparable to (or better than) the state-of-the-art.

Distributed computing and/or parallel processing have been explored in the
literature to render attacks to crypto systems computationally or storage-wise
feasible/practical. Smart et al. [15] develop a new methodology to assess crypto-
graphic key strength using cloud computing. Marks et al. [16] provide numerical
evidence of the potential of mixed GPU(AMD, Nvidia) and CPU technology to
data encryption and decryption algorithms. Focusing on GPU, Milo et al. [17]
leverage GPUs to quickly test passphrases used to protect private keyrings of
OpenPGP cryptosystems, showing that the time complexity of the attack can
be reduced up to three-orders of magnitude with respect to a standard proce-
dure, and up to ten times with respect to a highly tuned CPU implementa-
tion. A relevant result is obtained by Agostini [2] leveraging GPUs to speed
up Dictionary Attacks to the BitLocker technology commonly used in Windows
OSes to encrypt disks. Finally, and most closely related to the present work,
Fan and Gong [13] make use of GPUs to perform side channel cube attacks
on Hummingbird-2. They describe an efficient term-by-term quadraticity test
for extracting simple quadratic equations, leveraging the cube attack. Just like
us, Fan and Gong speed-up the implementation of the proposed term-by-term
quadraticity test by leveraging GPUs and finally recovering 48 out of 128 key bits
of the Hummingbird-2 with a data complexity of about 218 chosen plaintexts.
However, we present a complete implementation of the cube attack thoroughly
designed and optimized for GPUs. Our flexible construction allows an exhaustive
exploration of subsets of IV bits, thus overcoming the limitations of dynamic
cube attacks, which try to find the most suitable assignment to those bits by
analyzing the target cipher.

6 Conclusions and Future Work

This work has discussed in depth an advanced GPU implementation of the
cube attack aimed at breaking a reduced-round version of Trivium. The imple-
mented attack allows extending the quest for superpolys to a dimension never
explored in previous works, and weakens the previous cube attack assumption
of a completely tweakable IV . An extensive experimental campaign is discussed
and results validate the approach and improve over the state-of-the-art attacks
against reduced-round versions of Trivium.

The tool, that we expect to release into the public domain, opens new per-
spectives by allowing a more comprehensive and hopefully exhaustive analysis of
stream-ciphers security. For instance, along the line proposed in [1], we envisage
developing our implementation to test the effectiveness of the generalized cube
attack over Fn.

200 M. Cianfriglia et al.

A Trivium Specifications

Trivium [8] is a synchronous stream cipher conceived by Christophe De Cannière
and Bart Preneel, not patented, and specified as an International Standard under
ISO/IEC 29192-3. Trivium combines a flexible trade-off between speed and gate
count in hardware, and a reasonably efficient software implementation. Citing [9]:
“Trivium is a hardware oriented design focussed on flexibility. It aims to be
compact in environments with restrictions on the gate count, power-efficient on
platforms with limited power resources, and fast in applications that require
high-speed encryption”. Particularly interesting is the fact that any state bit
stays unused for at least 64 iterations after it has been modified. This means
that up to 64 iterations can be parallelized and computed at once, allowing for
a factor 64 reduction in the clock frequency without affecting the throughput.

Trivium generates up to 264 bits of output from an 80-bit key K and an
80-bit Initial Vector IV , and it shows remarkable resistance to cryptanalysis
despite its simplicity and its excellent performance. The 80-bit key K and the
80-bit IV , are used in Trivium to initialize three FSRs of length 93, 84 and 111,
respectively. The internal states of the three registers are denoted (s1, . . . , s93),
(s94, . . . , s177) and (s178, . . . , s288) respectively. Fifteen out the 288 internal state
bits are used at each round to compute the feedbacks to the three registers and
the output bit of the cipher. However, to obtain a better mixing of the seed and
to guarantee that each output bit is a complex non-linear function of all key-bits
and IV -bits, the cipher undergoes 1152 initialization rounds without producing
any output. In detail, the initial seed of the three registers is defined as follows:

(s1, . . . , s93) ← (K1, . . . ,K80, 0, . . . , 0)
(s94, . . . , s177) ← (IV1, . . . , IV80, 0, . . . , 0)

(s178, . . . , s288) ← (0, . . . , 0, 1, 1, 1)

For each t ≥ 1, the internal state of the cipher is updated as follows4:

(s1, s2, . . . , s93) ← (s243 + s286 · s287 + s288 + s69, s1, . . . , s92)
(s94, s95, . . . , s177) ← (s66 + s91 · s92 + s93 + s171, s94, . . . , s176)

(s178, s179, . . . , s288) ← (s162 + s175 · s176 + s177 + s264, s178, . . . , s287)

Finally, for each t > 1152, the output bit zt is computed as:

zt ← s66 + s93 + s162 + s177 + s243 + s288

4 Symbols + and · denote sum and product over F2, i.e., bitwise XOR and AND.

A Novel GPU-Based Implementation of the Cube Attack 201

B Tables of Maxterms and Superpolys

Trivium-781
maxterm bits superpoly round

3, 6, 8, 10, 12, 14, 18, 19, 20, 23, 25, 27, 31, 33, 38, 40, 43, 45, 48,
53, 54, 56, 58, 60, 62, 63, 69, 75, 77, 79, 80

x55 781

1, 5, 7, 8, 10, 15, 16, 18, 20, 23, 25, 27, 32, 33, 36, 38, 40, 41, 43,
47, 49, 52, 53, 54, 56, 58, 63, 69, 71, 75, 77, 80

x69 781

1, 6, 7, 8, 10, 12, 16, 19, 21, 24, 25, 27, 31, 33, 36, 38, 40, 41, 43,
47, 49, 52, 53, 56, 58, 63, 67, 69, 71, 73, 77, 80

x60 781

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 19, 21, 23, 25, 27, 36, 38, 40, 43,
45, 47, 49, 54, 56, 58, 60, 62, 69, 71, 73, 74, 80

x51 + 1 781

1, 2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 25, 27, 36, 38, 40, 43, 45,
47, 52, 54, 56, 58, 60, 62, 69, 71, 73, 76, 79, 80

x45 781

1, 2, 5, 6, 7, 8, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 43, 45,
47, 49, 52, 54, 56, 58, 62, 65, 69, 71, 73, 76, 80

x43 + x58 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 27, 33, 36, 38, 40, 43, 45,
47, 52, 54, 56, 58, 60, 62, 69, 71, 73, 74, 79, 80

x23 781

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 75, 77, 79, 80

x8 + x35 + x64 781

1, 5, 7, 8, 10, 12, 14, 15, 16, 18, 20, 23, 24, 25, 27, 32, 33, 36, 40,
41, 43, 47, 49, 52, 53, 56, 58, 63, 69, 71, 75, 77, 80

x67 + 1 781

3, 5, 6, 8, 10, 12, 14, 16, 18, 19, 20, 23, 24, 25, 27, 31, 33, 38, 43,
45, 48, 53, 54, 56, 58, 60, 62, 63, 69, 75, 77, 79, 80

x2 781

6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 42, 45, 49, 54, 56, 60, 62, 63, 69, 73, 75, 80

x58 781

1, 2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 27, 36, 38, 40, 43, 45, 47,
49, 52, 54, 56, 58, 60, 62, 69, 71, 73, 74, 76, 79, 80

x62 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 53, 54, 56, 63, 69, 71, 73, 75, 80

x3+x25+x39+x40+x51+x66+x67+
x78 + 1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 25, 27, 31, 33, 38, 40, 41, 43,
45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x10 + x13 + x14 + x19 + x25 + x28 +
x29 + x31 + x37 + x40 + x46 + x52 +
x53 + x55 + x56 + x57 + x60 + x61 +
x62 + x64 + x66 + x68 + x69 + 1

781

1, 3, 5, 7, 12, 14, 15, 16, 18, 19, 20, 21, 24, 25, 27, 31, 33, 36, 40,
41, 45, 49, 54, 56, 58, 60, 62, 63, 66, 71, 73, 75, 77, 80

x57 781

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 36, 40, 41, 43, 45,
47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 79, 80

x43 + x58 + x64 + x66 + x70 781

1, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 36, 38, 40, 43,
45, 47, 49, 52, 54, 56, 58, 62, 65, 69, 71, 73, 76, 79, 80

x65 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x23 + x39 + x50 + x66 + x67 + x79 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 25, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x9+x18+x24+x26+x32+x33+x34+
x42 + x51 + x53 + x54 + x58 + x59 +
x64 + x66 + x68 + x69 + x80 + 1

781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x52 + x66 + x67 + x79 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 21, 25, 27, 31, 33, 38, 40, 41,
43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x13 + x14 + x19 + x25 + x27 + x28 +
x29 + x31 + x39 + x41 + x42 + x46 +
x51 + x52 + x54 + x55 + x56 + x57 +
x61 +x62 +x64 +x65 +x66 +x69 +x78

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 31, 32, 33, 36, 38,
40, 41, 45, 47, 48, 49, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x16 + x26 + x27 + x38 + x43 + x53 +
x54 + x56 + x65 + x67 + x80

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x25 + x27 + x30 + x54 + x57 781

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 19, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 52, 54, 56, 58, 60, 62, 65, 69, 70, 71, 73, 74, 76, 80

x42 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 25, 27, 30, 31, 32, 33,
38, 40, 41, 43, 45, 47, 48, 49, 53, 54, 56, 63, 69, 71, 73, 75, 80

x14 + x29 + x41 + x55 + x61 + x62 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x39 + x66 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 25, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x24 + x55 + x61 + x66 + x67 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x12+x27+x32+x33+x40+x42+x51+
x53 + x57 + x58 + x60 + x64 + x80 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x27 + x32 + x42 + x53 + x58 + x60 +
x64 + x78 + x80 + 1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38,
40, 41, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x11 + x24 + x25 + x29 + x30 + x31 +
x40 + x41 + x45 + x50 + x52 + x53 +
x54 + x56 + x58 + x61 + x65 + x66 +
x67 + x68 + x77 + x79 + x80 + 1

781

202 M. Cianfriglia et al.

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x14 + x16 + x27 + x29 + x30 + x31 +
x40 + x41 + x42 + x43 + x54 + x55 +
x56 + x57 + x58 + x64 + x79 + x80 + 1

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x28 + x29 + x32 + x33 + x40 + x41 +
x42 + x44 + x50 + x51 + x55 + x56 +
x57 + x59 + x61 + x62 + x64 + x66 +
x67 + x68 + x70 + x78 + 1

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 36, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x38 + x39 + x41 + x44 + x45 + x50 +
x51 + x52 + x53 + x55 + x57 + x58 +
x60 + x66 + x68 + x72 + x78 + x79 + 1

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 31, 33, 36, 38, 40, 41,
43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x43 + x50 + x52 + x55 + x58 + x66 +
x70 + x77 + 1 781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x41 + x53 + x55 + x58 + x61 + x68 781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x29 + x41 + x42 + x53 + x55 + x56 +
x58 +x61 +x64 +x66 +x67 +x68 +x69

781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x14 + x55 + x58 + x61 + x64 + x66 +
x68 + x80

781

1, 5, 6, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33,
36, 38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 77, 80

x64 781

5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 31, 33,
36, 38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 77, 80

x66 + 1 781

1, 2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 27, 33, 36, 38, 40,
43, 45, 47, 52, 54, 56, 58, 60, 62, 69, 70, 71, 73, 74, 76, 79, 80

x56 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 79, 80

x21 + x36 + x48 + x58 + x63 + 1 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 79, 80

x19+x27+x45+x54+x64+x66+x72+1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 30, 31, 32, 33, 36, 38,
40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 70, 71, 73, 75, 80

x5 +x8 +x24 +x26 +x32 +x33 +x39 +
x40 + x41 + x42 + x44 + x47 + x51 +
x54 + x57 + x59 + x60 + x65 + x66 +
x68 + x69 + x78 + x79

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 25, 27, 31, 32, 33, 36, 38, 40,
41, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x25 + x52 + 1 782

1, 5, 6, 7, 8, 10, 12, 14, 15, 19, 21, 24, 25, 27, 31, 36, 38, 39, 40,
41, 45, 47, 49, 53, 56, 58, 62, 63, 66, 69, 71, 73, 77, 80

x40 782

1, 3, 5, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78

x25 + 1 782

1, 3, 5, 6, 10, 12, 14, 15, 16, 18, 19, 21, 25, 27, 31, 32, 33, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x13 + x16 + x19 + x25 + x29 + x33 +
x35 + x36 + x37 + x38 + x39 + x40 +
x42 + x45 + x51 + x52 + x53 + x54 +
x55 + x62 + x63 + x64 + x65 + x67 +
x69 + x70 + x71 + x73 + x79 + x80 + 1

782

5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40, 45,
47, 48, 49, 53, 54, 56, 58, 60, 62, 63, 69, 71, 80

x38 + 1 783

3, 5, 6, 7, 8, 10, 14, 15, 16, 21, 23, 25, 27, 33, 34, 36, 38, 40, 45,
47, 48, 49, 53, 54, 55, 56, 58, 61, 62, 63, 69, 71, 74, 80

x27 + 1 783

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 24, 25, 27, 30, 31, 32, 33,
38, 40, 41, 45, 47, 48, 49, 50, 53, 54, 56, 63, 69, 71, 73, 75, 80

x32 + x49 + x52 + x56 + x59 + x61 +
x62 + x79 + 1 783

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 24, 25, 31, 33, 36, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x7+x16+x40+x43+x49+x52+x58+
x62 + x70 + x79 + 1 783

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 30, 31, 32, 33, 36,
38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60, 63, 69, 71, 73, 75, 80

x26 + x66 + x68 + 1 783

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 80

x4 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 55, 56, 58, 60, 62, 63, 67, 69, 71, 80

x53 + 1 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 80

x37 784

3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 60, 62, 63, 69, 71, 74, 80

x36 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 45, 47, 49, 53, 58, 60, 63, 71, 75, 76, 80

x12 + 1 785

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 63, 65, 69, 71, 74, 75, 77, 78, 80

x34 785

1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 69, 71, 73, 79, 80

x54 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 69, 71, 74, 75, 77, 78, 80

x13 + x55 + x60 + x64 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x22 + x49 + x64 786

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x14 + x23 + x41 + x47 + x49 + x50 +
x58 + x64

786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x20 +x22 +x30 +x34 +x38 +
x40 + x42 + x45 + x49 + x51 + x58 +
x61 + x65 + x67 + x69 + x72 + x78

786

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 79

x9+x29+x30+x32+x42+x43+x49+
x51+x57+x58+x59+x60+x62+x64+
x66 +x67 +x68 +x69 +x70 +x72 +x76

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x17+x26+x30+x32+x41+x43+x47+
x57+x62+x65+x66+x70+x72+x74+1 791

A Novel GPU-Based Implementation of the Cube Attack 203

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x14 + x17 + x26 + x30 + x43 + x47 +
x50 + x57 + x58 + x59 + x65 + x70 +
x72 + x74 + x77 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 63, 65, 69, 71, 75, 77, 79

x12+x26+x30+x39+x41+x45+x47+
x57+x58+x59+x62+x64+x74+x76+1 791

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 65, 69, 71, 75, 77

x5+x18+x20+x26+x28+x29+x30+
x31 + x32 + x41 + x42 + x44 + x50 +
x51 + x56 + x57 + x62 + x64 + x67 +
x69 + x70 + x71 + x74 + x77 + x78 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77

x1+x28+x32+x47+x58+x59+x62+
x64 + x74

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x10 + x11 + x12 + x13 + x15 + x17 +
x19 + x20 + x29 + x31 + x32 + x33 +
x37 + x39 + x40 + x41 + x42 + x44 +
x46 + x48 + x49 + x50 + x53 + x57 +
x60 +x67 +x70 +x71 +x76 +x78 +x79

791

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 42, 45, 47, 49, 53, 58, 63, 69, 71, 72, 76, 79, 80

x61 791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 75, 77, 78, 80

x43 + x47 + x58 + x70 + x74 + 1 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x12 + x17 + x26 + x27 + x29 + x30 +
x32 + x40 + x43 + x45 + x46 + x49 +
x53 + x54 + x56 + x59 + x62 + x64 +
x65 + x67 + x69 + x72 + x74 + x75

792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 56, 58, 61, 63, 69, 71, 75, 77, 78, 79, 80

x12+x14+x26+x30+x40+x41+x47+
x48+x56+x66+x67+x68+x74+x75+1 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 54, 56, 58, 63, 69, 71, 74, 75, 77, 78, 79, 80

x16 + x43 + x56 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 78, 79, 80

x14 + x16 + x26 + x29 + x30 + x41 +
x45 + x55 + x56 + x59 + x62 + x64 +
x66 + x68 + x70 + x71 + x72 + 1

792

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 69, 71, 75, 77, 80

x45 + x72 793

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 30, 31, 33, 38, 40, 43,
45, 47, 49, 51, 52, 56, 58, 63, 67, 69, 71, 73, 77, 80

x10 + x55 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 80

x36 + x52 + x60 + x63 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 80

x6+x11+x25+x33+x36+x53+x60+
x62 + x63 + x64 + x79

798

Trivium-784
maxterm bits superpoly round

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 80

x4 784

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33,
36, 38, 40, 41, 42, 45, 49, 54, 60, 62, 69, 73, 75, 80

x60 784

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 67, 69, 71, 80

x56 + 1 784

1, 3, 5, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 78

x2 +x9 +x13 +x14 +x22 +x23 +x30 +
x36 + x38 + x39 + x40 + x42 + x47 +
x48 + x51 + x56 + x65 + x67 + x68 +
x69 + x74 + x75

784

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 25, 30, 31, 32, 33, 38, 40,
41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 63, 69, 71, 75, 80

x38 784

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 63, 69, 71, 75, 77, 78, 79

x38 + x47 + x74 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 55, 56, 58, 60, 62, 63, 67, 69, 71, 80

x53 + 1 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 67, 69, 71, 74, 80

x58 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 42, 45, 48, 49, 54, 60, 62, 63, 69, 73, 75, 80

x37 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 45, 48, 49, 54, 56, 60, 62, 69, 73, 75, 77, 80

x64 784

3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 60, 62, 63, 69, 71, 74, 80

x36 784

6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36,
38, 40, 41, 45, 48, 49, 54, 56, 60, 62, 63, 69, 73, 75, 77, 80

x66 784

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 55, 56, 58, 60, 62, 63, 69, 71, 74, 80

x67 + 1 784

5, 6, 8, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33,
36, 38, 40, 41, 42, 45, 49, 54, 60, 62, 63, 69, 73, 75, 77, 80

x62 784

1, 5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 48, 49, 53, 54, 56, 58, 60, 61, 62, 63, 69, 71, 74, 80

x69 + 1 784

3, 5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43,
45, 47, 48, 49, 53, 54, 56, 58, 60, 61, 62, 63, 67, 69, 71, 74, 80

x40 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 45, 47, 49, 53, 58, 60, 63, 71, 75, 76, 80

x12 + 1 785

1, 5, 6, 7, 10, 12, 16, 19, 21, 23, 24, 25, 27, 31, 33, 36, 38, 40, 41,
43, 47, 49, 52, 56, 58, 60, 63, 67, 69, 71, 73, 77, 80

x42 785

204 M. Cianfriglia et al.

1, 5, 6, 10, 12, 14, 15, 16, 19, 21, 25, 27, 30, 31, 33, 36, 38, 40, 41,
43, 45, 47, 48, 49, 53, 54, 56, 63, 69, 71, 73, 75, 80

x55 785

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 63, 65, 69, 71, 74, 75, 77, 78, 80

x34 785

1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 69, 71, 73, 79, 80

x54 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 69, 71, 74, 75, 77, 78, 80

x13 + x55 + x60 + x64 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x22 + x49 + x64 786

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x7 +x12 +x20 +x22 +x30 +
x36+x39+x42+x43+x45+x47+x51+
x58 + x63 + x69 + x70 + x72 + x78 + 1

786

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x14 + x23 + x41 + x47 + x49 + x50 +
x58 + x64

786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x14 +x22 +x30 +x34 +x38 +
x41 + x42 + x45 + x47 + x49 + x51 +
x58 + x61 + x65 + x69 + x72 + x78

786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 80

x3 +x4 +x20 +x22 +x30 +x34 +x38 +
x40 + x42 + x45 + x49 + x51 + x58 +
x61 + x65 + x67 + x69 + x72 + x78

786

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 79

x9+x29+x30+x32+x42+x43+x49+
x51+x57+x58+x59+x60+x62+x64+
x66 +x67 +x68 +x69 +x70 +x72 +x76

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x17+x26+x30+x32+x41+x43+x47+
x57+x62+x65+x66+x70+x72+x74+1 791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x1+x17+x26+x28+x41+x43+x47+
x49 + x59 + x62 + x64 + x65 + x66 +
x70 + x72 + x74 + x76 + 1

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x14 + x17 + x26 + x30 + x43 + x47 +
x50 + x57 + x58 + x59 + x65 + x70 +
x72 + x74 + x77 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43,
45, 47, 49, 53, 56, 58, 63, 65, 69, 71, 75, 77, 79

x12+x26+x30+x39+x41+x45+x47+
x57+x58+x59+x62+x64+x74+x76+1 791

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 65, 69, 71, 75, 77

x5+x18+x20+x26+x28+x29+x30+
x31 + x32 + x41 + x42 + x44 + x50 +
x51 + x56 + x57 + x62 + x64 + x67 +
x69 + x70 + x71 + x74 + x77 + x78 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x7 +x9 +x10 +x11 +x12 +x13 +x15 +
x17 + x19 + x20 + x26 + x30 + x31 +
x33 + x37 + x39 + x40 + x41 + x42 +
x44+x45+x46+x47+x48+x50+x51+
x53+x56+x59+x60+x64+x67+x68+
x70 + x71 + x72 + x74 + x78 + x79 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77

x1+x28+x32+x47+x58+x59+x62+
x64 + x74

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x3 + x4 + x6 + x7 + x9 + x10 + x13 +
x15+x19+x22+x28+x30+x33+x34+
x35+x38+x39+x40+x41+x43+x44+
x47+x48+x49+x50+x53+x54+x55+
x56+x58+x61+x62+x65+x66+x67+
x68 +x69 +x71 +x72 +x76 +x77 +x78

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x10 + x11 + x12 + x13 + x15 + x17 +
x19 + x20 + x29 + x31 + x32 + x33 +
x37 + x39 + x40 + x41 + x42 + x44 +
x46 + x48 + x49 + x50 + x53 + x57 +
x60 +x67 +x70 +x71 +x76 +x78 +x79

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 80

x10+x11+x12+x13+x14+x15+x17+
x19+x20+x26+x29+x31+x33+x37+
x39+x40+x42+x44+x46+x48+x53+
x57+x58+x59+x60+x66+x67+x68+
x70 + x71 + x72 + x77 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 79

x3 +x4 +x6 +x11 +x15 +x17 +x19 +
x20 + x22 + x30 + x34 + x35 + x37 +
x38 + x43 + x47 + x51 + x54 + x57 +
x58 + x60 + x61 + x64 + x65 + x67 +
x68 + x70 + x72 + x74 + x77 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 79

x3 +x4 +x6 +x11 +x12 +x15 +x17 +
x18 + x19 + x20 + x22 + x30 + x34 +
x35+x37+x38+x39+x42+x43+x45+
x47+x50+x54+x56+x57+x58+x61+
x65 + x69 + x70 + x74 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43,
45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 75, 77, 78, 80

x1 +x5 +x9 +x14 +x18 +x20 +x26 +
x28+x32+x41+x42+x43+x45+x47+
x49 +x66 +x67 +x69 +x70 +x76 +x78

791

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36,
38, 40, 41, 42, 45, 47, 49, 53, 58, 63, 69, 71, 72, 76, 79, 80

x61 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 75, 77, 79

x3+x4+x6+x7+x9+x11+x17+x18+
x20+x22+x26+x28+x29+x31+x34+
x35+x37+x38+x39+x41+x46+x50+
x51+x54+x55+x56+x58+x61+x65+
x66 + x67 + x74 + x76 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 75, 77, 78, 80

x43 + x47 + x58 + x70 + x74 + 1 791

A Novel GPU-Based Implementation of the Cube Attack 205

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41,
43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71, 75, 77, 80

x12 + x17 + x26 + x27 + x29 + x30 +
x32 + x40 + x43 + x45 + x46 + x49 +
x53 + x54 + x56 + x59 + x62 + x64 +
x65 + x67 + x69 + x72 + x74 + x75

792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 54, 56, 58, 63, 69, 71, 75, 77, 78, 79, 80

x12 + x26 + x39 + x56 + x68 + 1 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 56, 58, 61, 63, 69, 71, 75, 77, 78, 79, 80

x12+x14+x26+x30+x40+x41+x47+
x48+x56+x66+x67+x68+x74+x75+1 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
41, 43, 45, 47, 49, 53, 54, 56, 58, 63, 69, 71, 74, 75, 77, 78, 79, 80

x16 + x43 + x56 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69, 71, 75, 77, 78, 79, 80

x14 + x16 + x26 + x29 + x30 + x41 +
x45 + x55 + x56 + x59 + x62 + x64 +
x66 + x68 + x70 + x71 + x72 + 1

792

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41,
43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 69, 71, 75, 77, 80

x45 + x72 793

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 30, 31, 33, 38, 40, 43,
45, 47, 49, 51, 52, 56, 58, 63, 67, 69, 71, 73, 77, 80

x10 + x55 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 80

x36 + x52 + x60 + x63 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71, 74, 75, 77, 80

x10 + x17 + x27 + x36 + x37 + x40 +
x52 + x59 + x60 + x63 + x66 + x67

798

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45,
47, 49, 53, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 78, 79

x27 + x54 + x60 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 80

x6+x11+x25+x33+x36+x53+x60+
x62 + x63 + x64 + x79

798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45,
47, 49, 53, 54, 56, 58, 61, 62, 63, 65, 69, 71, 74, 75, 77, 80

x6+x11+x25+x33+x36+x52+x53+
x60 + x62 + x63 + x64 + x79

798

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 60, 61, 62, 63, 67, 69, 71, 74, 80

x65 + x66 + x67 + 1 798

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 54, 56, 58, 62, 69, 71, 73, 80

x25 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43,
45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x12 + x38 + x39 + x40 799

Trivium-799
maxterm bits superpoly round

1, 6, 8, 10, 12, 14, 18, 20, 23, 25, 27, 31, 33, 36, 38, 40, 43, 45, 47,
49, 53, 54, 56, 58, 62, 63, 69, 73, 75, 77, 80

x60 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 54, 56, 58, 62, 69, 71, 73, 80

x25 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43,
45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x25 + x40 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43,
45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x12 + x38 + x39 + x40 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 18, 20, 23, 25, 27, 33, 36, 38, 40,
41, 43, 47, 49, 53, 56, 58, 63, 69, 71, 75, 77, 80

x67 + 1 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 31, 33, 36, 38,
40, 41, 45, 47, 49, 53, 56, 58, 63, 69, 71, 75, 80

x42 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 19, 21, 23, 25, 27, 31, 36, 38, 40, 41,
45, 47, 49, 53, 56, 58, 63, 69, 71, 73, 75, 77, 80

x53 799

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 31, 33, 36,
38, 40, 41, 45, 49, 54, 56, 62, 69, 73, 75, 77, 80

x64 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 80

x36 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43,
45, 47, 49, 53, 56, 58, 63, 65, 69, 71, 75, 77, 80

x38 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 54, 56, 58, 60, 62, 65, 69, 70, 71, 73, 80

x56 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 71, 74, 80

x69 + 1 799

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 25, 27, 30, 31, 33, 36, 38, 40, 41,
43, 45, 47, 49, 51, 52, 56, 58, 63, 67, 69, 71, 73, 77, 80

x66 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 25, 27, 33, 34, 36, 38, 40,
43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 67, 69, 71, 74, 80

x58 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40,
43, 45, 47, 49, 53, 54, 55, 56, 58, 62, 63, 67, 69, 71, 74, 80

x37 799

Trivium-800
maxterm bits superpoly round

0, 5, 6, 7, 9, 11, 13, 17, 19, 20, 22, 24, 26, 30, 32, 33, 35, 37, 39,
42, 44, 46, 48, 52, 55, 57, 61, 62, 66, 68, 72, 74, 76, 79

x63 800

206 M. Cianfriglia et al.

References

1. Agnesse, A., Pedicini, M.: Cube attack in finite fields of higher order. In: Proceed-
ings of 9th Australasian Information Security Conference, AISC 2011, pp. 9–14.
ACS, Inc. (2011)

2. Agostini, E.: Bitlocker dictionary attack using GPUs. In: University of Cam-
bridge Passwords 2015 Conference (2015). https://www.cl.cam.ac.uk/events/
passwords2015/preproceedings.pdf

3. Ahmadian, Z., Rasoolzadeh, S., Salmasizadeh, M., Aref, M.R.: Automated dynamic
cube attack on block ciphers: cryptanalysis of SIMON and KATAN. IACR Cryp-
tology ePrint Archive 2015, 40 (2015)

4. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recov-
ery attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03317-9 1

5. Baksi, A., Maitra, S., Sarkar, S.: New distinguishers for reduced round trivium and
trivia-SC using cube testers. In: WCC2015-9th International Workshop on Coding
and Cryptography 2015 (2015)

6. Bernstein, D.J.: Why haven’t cube attacks broken anything? https://cr.yp.to/
cubeattacks.html. Accessed 11 Nov 2016

7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. In: ACM Symposium on Theory of Computing, pp. 73–83.
ACM (1990)

8. De Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006).
doi:10.1007/11836810 13

9. De Canniere, C., Preneel, B.: Trivium-specifications. eSTREAM, ECRYPT stream
cipher project, report 2005/030 (2005)

10. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-01001-9 16

11. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-21702-9 10

12. Dinur, I., Shamir, A.: Applying cube attacks to stream ciphers in realistic scenarios.
Cryptogr. Commun. 4(3–4), 217–232 (2012)

13. Fan, X., Gong, G.: On the security of Hummingbird-2 against side channel cube
attacks. In: Armknecht, F., Lucks, S. (eds.) WEWoRC 2011. LNCS, vol. 7242, pp.
18–29. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34159-5 2

14. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
502–517. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 26

15. Kleinjung, T., Lenstra, A.K., Page, D., Smart, N.P.: Using the cloud to determine
key strengths. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol.
7668, pp. 17–39. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34931-7 3

16. Marks, M., Jantura, J., Niewiadomska-Szynkiewicz, E., Strzelczyk, P., Góźdź, K.:
Heterogeneous GPU&CPU cluster for high performance computing in cryptogra-
phy. Comput. Sci. 13(2), 63–79 (2012)

https://www.cl.cam.ac.uk/events/passwords2015/preproceedings.pdf
https://www.cl.cam.ac.uk/events/passwords2015/preproceedings.pdf
http://dx.doi.org/10.1007/978-3-642-03317-9_1
http://dx.doi.org/10.1007/978-3-642-03317-9_1
https://cr.yp.to/cubeattacks.html
https://cr.yp.to/cubeattacks.html
http://dx.doi.org/10.1007/11836810_13
http://dx.doi.org/10.1007/978-3-642-01001-9_16
http://dx.doi.org/10.1007/978-3-642-21702-9_10
http://dx.doi.org/10.1007/978-3-642-21702-9_10
http://dx.doi.org/10.1007/978-3-642-34159-5_2
http://dx.doi.org/10.1007/978-3-662-43933-3_26
http://dx.doi.org/10.1007/978-3-642-34931-7_3

A Novel GPU-Based Implementation of the Cube Attack 207

17. Milo, F., Bernaschi, M., Bisson, M.: A fast, GPU based, dictionary attack to
OpenPGP secret keyrings. J. Syst. Softw. 84(12), 2088–2096 (2011)

18. O’Neil, S.: Algebraic structure defectoscopy (2007). Tools for Cryptanalysis 2007
Workshop. http://eprint.iacr.org/2007/378

19. Quedenfeld, F.M., Wolf, C.: Algebraic properties of the cube attack. IACR Cryp-
tology ePrint Archive 2013, 800 (2013)

20. Samorodnitsky, A.: Low-degree tests at large distances. In: Proceedings of 39th
ACM symposium on Theory of Computing, pp. 506–515. ACM (2007)

21. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amor-
tized query complexity. In: Proceedings ACM Symposium on ToC, pp. 191–199.
ACM (2000)

22. Shanmugam, D., Annadurai, S.: Secure implementation of stream cipher: trivium.
In: Bica, I., Naccache, D., Simion, E. (eds.) SECITC 2015. LNCS, vol. 9522, pp.
253–266. Springer, Cham (2015). doi:10.1007/978-3-319-27179-8 18

23. Srinivasan, C., Pillai, U.U., Lakshmy, K., Sethumadhavan, M.: Cube attack on
stream ciphers using a modified linearity test. J. Discret. Math. Sci. Cryptogr.
18(3), 301–311 (2015)

24. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an algebraic IV differential attack
(2007). http://eprint.iacr.org/2007/413

25. Winter, R., Salagean, A., Phan, R.C.-W.: Comparison of cube attacks over different
vector spaces. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 225–238.
Springer, Cham (2015). doi:10.1007/978-3-319-27239-9 14

26. Zhang, S., Chen, G., Li, J.: Cube attack on reduced-round Quavium. ICMII-15
Adv. Comput. Sci. Res. (2015). doi:10.2991/icmii-15.2015.25

http://eprint.iacr.org/2007/378
http://dx.doi.org/10.1007/978-3-319-27179-8_18
http://eprint.iacr.org/2007/413
http://dx.doi.org/10.1007/978-3-319-27239-9_14
http://dx.doi.org/10.2991/icmii-15.2015.25

Related-Key Impossible-Differential Attack
on Reduced-Round SKINNY

Ralph Ankele1(B), Subhadeep Banik2, Avik Chakraborti3, Eik List4,
Florian Mendel5, Siang Meng Sim2, and Gaoli Wang6

1 Royal Holloway University of London, Egham, UK
ralph.ankele.2015@rhul.ac.uk

2 Nanyang Technological University, Singapore, Singapore
bsubhadeep@ntu.edu.sg, ssim011@e.ntu.edu.sg

3 NTT Secure Platform Laboratories, Tokyo, Japan
chakraborti.avik@lab.ntt.co.jp

4 Bauhaus-Universität Weimar, Weimar, Germany
eik.list@uni-weimar.de

5 Graz University of Technology, Graz, Austria
florian.mendel@iaik.tugraz.at

6 East China Normal University, Shanghai, China
glwang@sei.ecnu.edu.cn

Abstract. At CRYPTO’16, Beierle et al. presented SKINNY, a family
of lightweight tweakable block ciphers intended to compete with the NSA
designs SIMON and SPECK. SKINNY can be implemented efficiently
in both soft- and hardware and supports block sizes of 64 and 128 bits as
well as tweakey sizes of 64, 128, 192 and 128, 256, 384 bits respectively.
This paper presents a related-tweakey impossible-differential attack on
up to 23 (out of 36) rounds of SKINNY-64/128 for different tweak sizes.
All our attacks can be trivially extended to SKINNY-128/128.

Keywords: Symmetric Cryptography · Cryptanalysis · Tweakable
block cipher · Impossible differential · Lightweight cryptography

1 Introduction

SKINNY is a family of lightweight tweakable block ciphers recently proposed
at CRYPTO 2016 by Beierle et al. [3]. Its goal was to design a cipher that
could be implemented highly efficiently on both soft- and hardware platforms,
with performance comparable or better than the SIMON and SPECK families of
block ciphers [1]. Like the NSA designs SIMON and SPECK, SKINNY supports
a wide range of block sizes and tweak/key sizes – however, in contrast to the
And-RX and Add-RX based NSA proposals, SKINNY is based on the better
understood Substitution-Permutation-Network approach.

SKINNY offers a large security margin within the number of rounds for
each member of the SKINNY family. The designers show that the currently
best known attacks approach close to half of the number of rounds of the
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 208–228, 2017.
DOI: 10.1007/978-3-319-61204-1 11

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 209

cipher. To motivate third-party cryptanalysis, the designers of SKINNY recently
announced a cryptanalysis competition [2] for SKINNY-64/128 and SKINNY-
128/128 with the obvious challenge of attacking more rounds than the prelimi-
nary analysis, concerning both the single- and related-key models.

Table 1. Summary of our attacks and comparison to existing cryptanalysis of
SKINNY-64/128.

Instance Rounds Attack type Time Data Memory Ref

SKINNY-64/128 20 Impossible 2121.1 247.7 274.7 [9]

SKINNY-64/128 21 Rectangle 287.9 254.0 254.0 [7]

SKINNY-64/128 21 Impossible 271.4 271.4 b 268.0 Sect. 3.1

SKINNY-64/128 22 Rectangle 2109.9 263.0 263.0 [7]

SKINNY-64/128 22 Impossiblea 271.6 271.4 b 264.0 Sect. 3.2

SKINNY-64/128 23 Impossible 2124.2 262.5 2124 [7]

SKINNY-64/128 23 Impossiblea 279 271.4 b 264.0 Sect. 3.3
aThe data complexity of our 21-round attack is beyond codebook. Our attack is
more efficient than a full codebook attack in the case where SKINNY is used in a
tweak-updating mode (i.e. where the tweak changes every time, but the key stays
the same). This does not effect the 22/23 round attack as 48 bits of the tweakey
are public (i.e. data complexity for full codebook would be 264 from the state +
248 from the tweak).
bOur attack on 22/23 rounds uses the tweak against the recommendation of the
SKINNY designers but still conform to the specification in [3].

Related Work. Recently and independent of our analysis Liu et al. [7] ana-
lyzed SKINNY in the related-tweakey model, showing impossible-differential
and rectangle attacks on 19, 23, and 27 rounds of SKINNY-n/n, SKINNY-
n/2n and SKINNY-n/3n, respectively. In [9], Tolba et al. showed impossible-
differential attacks for 18, 20, 22 rounds of SKINNY-n/n, SKINNY-n/2n and
SKINNY-n/3n, respectively. Additionally, Sadeghi et al. [8] studied related-
tweakey impossible- differential and zero-correlation linear characteristics. In
comparison to the other attacks, our 23-round related-tweakey impossible-
differential attack on SKINNY-64/128 has the lowest time complexity so far.
Table 1 summarizes our attacks and compares them to existing attacks on
SKINNY-64/128.

Contributions and Outline. In this paper, we propose an impossible-differential
attack on SKINNY-64/128 reduced to 23 rounds in the related-key model. The
attack uses an 11-round impossible differential trail, to which six and four rounds
can be added for obtaining a 21-round attack. Later, we show that another round
can be appended leading to a 22-round attack, and even a 23-round attack.

The paper is organized as follows. In Sect. 2, we give a brief introduction
to the SKINNY family of block ciphers. In Sect. 3, we detail the attack on
SKINNY and provide time and memory complexities. Finally, Sect. 4 concludes
the paper.

210 R. Ankele et al.

2 Description of SKINNY

Each round of SKINNY consists of the operations SubCells, AddRoundCon-
stants, AddRoundTweakey, ShiftRows, and MixColumns. The round
operations are schematically illustrated in Fig. 1. A cell represents a 4-bit value
in SKINNY-64/* and an 8-bit value in SKINNY-128/*.

We concentrate on SKINNY-64/128, which has a 64-bit block size and a
128-bit tweakey size. The data is arranged nibble-by-nibble in a row-wise fashion
in a 4 × 4-matrix. SKINNY-64/128 recommends 36 rounds.

SubCells (SC) substitutes each nibble x by S(x), which is given below.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

AddRoundConstants (AC) adds LFSR-based round constants to Cells 0, 4,
and 8 of the state.

AddRoundTweakey (ART) adds the round tweakey to the first two state
rows.

ShiftRows (SR) rotates the ith row, for 0 ≤ i ≤ 3, by i positions to the right.
MixColumns (MC) multiplies each column of the state by a matrix M :

M =

⎡
⎢⎢⎣

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎤
⎥⎥⎦

Tweakey Schedule. The tweakey schedule of SKINNY, as illustrated in Fig. 2,
follows the TWEAKEY framework [5]. In contrast to the previous TWEAKEY
designs Deoxys-BC and Joltik-BC, SKINNY employs a significantly more
lightweight strategy. In each round, only the two topmost rows of each tweakey
word are extracted and XORed to the state. An additional round-dependent
constant is also XORed to the state to prevent attacks from symmetry.

The 128-bit tweakey is arranged in two 64-bit tweakey words, represented
by TK1 and TK2. In each round, the tweakey words are updated by a cell
permutation PT that ensures that the two bottom rows of a tweakey word in a

Fig. 1. Round function of SKINNY.

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 211

Fig. 2. Tweakey schedule of SKINNY.

certain round are exchanged with the two top rows in the tweakey word in the
subsequent round. The permutation is given as:

PT = {9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7}

The permutation PT has a period of 16, as visualized in Fig. 7 in the appendix.
Moreover, each individual cell in the two topmost rows of TK2 is transformed
by a 4-bit LFSR to minimise the cancellation of differences from TK1 and TK2;
TK1 employs no LFSR transformation. The LFSR transformation L is given by

L(x3, x2, x1, x0) := (x2, x1, x0, x3 ⊕ x2),

where x3, x2, x1, x0 represent the individual bits of every tweakey nibble.

3 Related-Key Impossible-Differential Attack

Impossible-differential attacks were introduced independently by Biham et al. [4]
and Knudsen [6]. They are widely used as an important cryptanalytic technique.
The attack starts with finding an input difference that can never result in an
output difference. By adding rounds before and/or after the impossible differ-
ential, one can collect pairs with certain plaintext and ciphertext differences. If
there exists a pair that meets the input and output values of the impossible dif-
ferential under some subkey, these subkeys must be wrong. In this way, we filter
as many wrong keys as possible and exhaustively search the rest of the keys.

Notations. Let us state a few notations that are used in the attack description:

Kr represents the rth round key. This is equal to TKr
1 ⊕TKr

2 . Similarly, kr[i] =
tkr

1[i] ⊕ tkr
2[i] represents the individual ith tweakey nibble in round r.

Ar represents the internal state before SC in round r.
Br represents the internal state after SC in round r.
Cr represents the internal state after AT in round r.
Dr represents the internal state after SR in round r.
Er represents the internal state after MC in round r. Furthermore, Er = Ar+1.
Lt represents the t-times composition of LFSR function L.
X represents the corresponding variable X in the related-key setting.
X[i] represents the ith nibble of the corresponding variable X.

212 R. Ankele et al.

Impossible-Differential Trail. Figure 3 presents the 11-round related-key dif-
ferential trail that we use. We introduce a nibble difference in Cell 8 of the com-
bined tweakey. Since the initial difference is in Cell 8, i.e. in one of the bottom
two rows in the tweakey, it does not affect the state in the first round, and will
be added to the state from the second round onwards. Similarly in the backward
trail, the difference in the 11th round-tweakey appears in Cell 11 (in a bottom
row), due to which we get an extra round in the backward direction.

Fig. 3. Related-key impossible-differential trail over 11 rounds of SKINNY-64/128.

Lemma 1. The equation S(x⊕Δi)⊕S(x) = Δo has one solution x on average
for Δi,Δo �= 0. Similar result holds for the inverse S-Box S−1.

Proof. The above fact can be deduced by analyzing the Differential-Distribution
Table (DDT) of the S-box S as illustrated in Table 2 in the appendix.
The average can be calculated as 1

225 · ∑
Δi,Δo �=0 DDT (Δi,Δo) ≈ 1. A simi-

lar exercise can be done for the inverse S-box yielding the same result.

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 213

Lemma 2. For random values of x and Δi,Δo �= 0, the equation S(x ⊕ Δi) ⊕
S(x) = Δo holds with probability around 2−4.

Proof. The above fact can also be deduced by analyzing the Differential-
Distribution Table (DDT) of the S-box S as illustrated in Table 2 in the appen-
dix. The probability can be calculated as (let Pr[(x, δi, δo) denote the probability
that the equation is satisfied for the triplet x, δi, δo)

Pr[(x,Δi,Δo)] =
∑

δi,δo �=0

Pr[(x, δi, δo)|Δi = δi,Δo = δo]Pr[Δi = δi,Δo = δo]

=
1

225
·

∑
Δi,Δo �=0

DDT (Δi,Δo) · 2−4 ≈ 2−4

Attack on 21 Rounds. The impossible differential trail described in Fig. 3 can
be extended by six and four rounds in backward and forward direction as will
be explained in the following two lemmas.

Lemma 3. It is possible to find plaintext pairs P, P and related-tweakey pairs
K,K such that if the tweakey pairs differ only in nibble position 11, then there is
no difference in the internal state after executing six rounds of SKINNY-64/128
with the plaintext-tweakey pairs (P,K) and (P ,K).

Proof. We will show how the required plaintext and tweakey pairs are generated.
We choose the nibble at Position 11 to introduce the initial difference because
after completing six rounds, the difference is shuffled to Cell 8 of the round key,
which coincides with the beginning of the impossible- differential trail, shown in
Fig. 3. It can be seen that the AddRoundTweakey in the first round can be
pushed behind the MixColumns operation by changing the first round key to
Lin(K1) where Lin = MC ◦ SR represents the linear layer (refer to Fig. 4).

Lin(K1) =

⎡
⎢⎢⎣

k1[0] k1[1] k1[2] k1[3]
k1[0] k1[1] k1[2] k1[3]
k1[7] k1[4] k1[5] k1[6]
k1[0] k1[1] k1[2] k1[3]

⎤
⎥⎥⎦

Furthermore, the initial difference between K = TK1
1 ⊕TK1

2 and K = TK1
1 ⊕

TK1
2 can be selected in a specific form, so that in Round 6, the tweakey difference

is zero. Let us denote δ1 = tk1
1[11]⊕tk1

1[11] and δ2 = tk1
2[11]⊕tk1

2[11]. In Round 6,
the difference will appear in Cell 0 of the round key and so we want:

k6[0] ⊕ k6[0] = tk6
1[0] ⊕ tk6

1[0] + tk6
2[0] ⊕ tk6

2[0]

= tk1
1[11] ⊕ tk1

1[11] ⊕ L3
(
tk1

2[11]
) ⊕ L3

(
tk1

2[11]
)

= δ1 ⊕ L3 (δ2) = 0

So, if the attacker chooses δ1, δ2 satisfying the equation δ1 ⊕ L3(δ2) = 0, then
there is no difference introduced via the round-key addition in Round 6. The
attacker should therefore follow the steps:

214 R. Ankele et al.

Fig. 4. Trail for the six forward rounds (the values of active nibbles in red are functions
of δ1, δ2, the dark gray cell visualises the tweakey cancelation). (Color figure online)

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 215

1. Take any Plaintext P and compute the state after the first round Mix-
Columns, i.e. E1.

2. Take any three-nibble difference Δ1,Δ3,Δ4 to construct E1 such that

E1 ⊕ E1 =

⎡
⎢⎢⎣

0 0 0 0
0 Δ1 0 Δ2

Δ3 0 0 0
0 0 0 Δ4

⎤
⎥⎥⎦

The value of Δ2 will be determined shortly. The attacker can recover P by
inverting the MC, SR, AC and SC layers on E1.

3. The attacker chooses the difference α in Cell 14 of E2. She calculates then
k1[1], k1[3], k1[7] so that

B2 ⊕ B2 = Lin−1(E2) ⊕ Lin−1(E2) =

⎡
⎢⎢⎣

0 0 0 0
0 α 0 β
α 0 0 0
0 0 0 α

⎤
⎥⎥⎦ .

For example, k1[1] is a solution of the equation:

S
(
E1[5] ⊕ k1[1]

) ⊕ S
(
E1[5] ⊕ Δ1 ⊕ k1[1]

)
= α.

Lemma 1 ensures that the equation above has one solution on average.
4. β needs to be equal to k2[7] ⊕ k2[7] = tk2

1[7] ⊕ tk2
2[7] ⊕ tk2

1[7] ⊕ tk2
2[7]. This is

equal to tk1
1[11]⊕L(tk1

2 [11])⊕tk1
1[11]⊕L(tk1

2 [11]) = δ1⊕L(δ2). So, the attacker
chooses δ1 and δ2 satisfying δ1 ⊕ L3(δ2) = 0 and calculates β = δ1 ⊕ L(δ2).
Δ2 can then be determined as a solution of the equation:

S
(
E1[7] ⊕ k1[3]

) ⊕ S
(
E1[7] ⊕ Δ2 ⊕ k1[3]

)
= β (1)

The attacker now has the values of Δ1, Δ2, Δ3, Δ4 and so, he can compute
E1, E1 and hence P, P .

5. However, the attacker still needs that in Round 4, the active nibble in B4[1]
is equal to δ1 ⊕ L2(δ2) to make all the state cells inactive in C4, D4, and E4.

6. The attacker needs to guess three roundkey values in Round 1 (i.e. k1[2], k1[4],
k1[6]) and three roundkey values in Round 2 (i.e. k2[1] = tk1

1[15]⊕L(tk1
2 [15]),

k2[2] = tk1
1[8] ⊕ L(tk1

2[8]), k2[6] = tk1
1[12] ⊕ L(tk1

2[12])).
If the attacker can guess these values, then he knows the actual values (marked
with v) of the state cells for the plaintext pair P, P as opposed to only differ-
ences (marked by 0) in both Figs. 4 and 5.

7. Guessing the tweakey nibbles mentioned above enables the attacker to cal-
culate the value of B3[1]. Then, she calculates k3[1] = tk1

1[7] ⊕ L(tk1
2[7]) as

follows. Since D3[1] = B3[1] ⊕ k3[1] holds, we have:

S
(
D3[1] ⊕ D3[9] ⊕ D3[13]

) ⊕ S
(
D3[1] ⊕ D3[9] ⊕ D3[13]

)
= δ1 ⊕ L2(δ2).

216 R. Ankele et al.

Since the knowledge of the guessed key nibbles already allows the attacker to
calculate D3[9], D3[13], and D3[13], k3[1] = tk1

1[7] ⊕ L(tk1
2[7]) is the solution

to the equation above. Again, Lemma 1 guarantees one solution on average.
Since the attacker has already determined k1[7] = tk1

1[7] ⊕ tk1
2[7], this also

determines the values of tk1
1[7] and tk1

2[7].
8. This guarantees that there are no more active nibbles after Round 4. The

key difference does not add to the state in Round 5, and due to the fact that
δ1 ⊕ L3(δ2) = 0, the tweak difference becomes 0 in Round 6.

Thus, by guessing six and calculating three key nibbles, we can construct
P, P and K,K so that the internal state after six rounds has no active nibbles.

Lemma 4. Given C,C as the two output ciphertexts after querying plaintext-
tweakey pairs (P,K) and (P ,K) to a 21-round SKINNY-64/128 encryption ora-
cle. Then for a fraction 2−40 of the ciphertext pairs, it is possible to construct a
backward trail for round 21 to round 18 by guessing intermediate tweakey nibbles
so that there are no active nibbles in the internal state at the end of round 17.

Proof. The attacker starts working backward from the ciphertext pairs C,C and
proceeds as follows (illustrated in Fig. 5):

1. The attacker rejects ciphertext pairs which do not have seven inactive cells in
Cells 3, 4, 5, 8, 9, 11, and 14) after peeling off the final MixColumns layer
(i.e. D21). Thus, a fraction of 2−28 pairs are filtered after this stage.

2. Furthermore, the attacker rejects ciphertext pairs which do not have the
difference δ1 ⊕ L10(δ2) in Cell 13 of A21, i.e. reject if A21[13] ⊕ A21[13] �=
δ1 ⊕ L10(δ2). Since calculating this cell does not require any key guess, she
can do this filtering instantly leaving a fraction of 2−4 pairs after this stage.

3. Since the two bottommost rows of the state are not affected by the tweakey
addition, and since tk1

1[7], tk1
2 [7] are already known, the attacker can calculate

the actual values in Cells 0, 8, and 12 in A21 for the ciphertext pairs. These
have to be equal since they are the output of the 20th-round MixColumns
operation on the leftmost column which had only one active nibble in its
input. If the active Cells 8 and 12 are different, the attacker can reject the
pair. This adds another filter with probability 2−4.

4. Since the actual values in Cell 0 in A21 for the ciphertext pairs were already
calculated in the previous step, the attacker checks if the value of the active
Cell 0 is equal to that of Cells 8 and 12, and rejects the pair otherwise. This
adds another filter of probability 2−4.

5. The attacker determines k21[5] = tk1
1[4]⊕L10(tk1

2[4]) so that the active nibble
in Cell 5 of A21 is δ1 ⊕ L10(δ2). Since A21[5] = S−1

(
k21[5] ⊕ C21[5]

)
, k21[5]

is a solution to the equation below:

S−1
(
k21[5] ⊕ C21[5]

) ⊕ S−1
(
k21[5] ⊕ C21[5]

)
= δ1 ⊕ L10(δ2).

6. The attacker determines k21[2] = tk1
1[1] ⊕ L10(tk1

2[1]) and k21[6] = tk1
1[2] ⊕

L10(tk1
2[2]) so that the active nibble in Cell 2 and 6 of A21 are equal to the

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 217

Fig. 5. Trail for the four backward rounds (the values of active nibbles in red are
functions of δ1 and δ2). (Color figure online)

218 R. Ankele et al.

active nibble in Cell 14. Again, this works since those cells are output of the
20th-round MixColumns operation on Column 2 which had only one active
nibble in its input.

7. Additionally, the attacker guesses k21[4] = tk1
1[0] ⊕ L10(tk1

2[0]). This enables
the attacker to compute the actual values for the entire leftmost column of
A21 and hence to compute the leftmost column of D20.

8. The value of the active nibble in cell 10 of A20 is given as:

A20[10] ⊕ A20[10] = S−1
(
B20[10]

) ⊕ S−1
(
B20[10]

)

= S−1
(
D20[8]

) ⊕ S−1
(
D20[8]

)
= η.

(2)

Since the leftmost column of D20 is known, the attacker can calculate η,
which must be equal to Cell 14 of A20 since they are output of the 19th-round
MixColumns operation with one active input nibble.

A20[14] ⊕ A20[14] = S−1
(
D20[13]

) ⊕ S−1
(
D20[13]

)

= S−1
(
A21[1] ⊕ A21[13]

) ⊕ S−1
(
A21[1] ⊕ A21[13]

)
.

(3)

It holds that A21[1] = S−1
(
C21[1] ⊕ k21[1]

)
and A21[1] = S−1(C21[1] ⊕

k21[1]). By calculating Eqs. (2) and (3), the attacker can solve for k21[1] =
tk1

1[3] ⊕ L10(tk1
2[3]). One solution on average is guaranteed by Lemma 1.

9. The values tk1
1[i] ⊕ tk1

2[i], for i = 1, 2, 3, 4, were already determined during
the calculation of the forward trail. So, using their values, the attacker can
determine the actual values tk1

1[i], tk1
2[i] for i = 1, 2, 3, 4.

10. The attacker calculates k20[2] = tk1
1[9] ⊕ L10(tk1

2[9]) so that the active nibble
in Cell 2 in A20 is equal to the active value η in Cells 10 and 14 since they
are output of the 19th-round MixColumns operation with one active input
nibble. This is done by solving

η = A20[2] ⊕ A20[2] = S−1
(
C20[2] ⊕ k20[2]

) ⊕ S−1
(
C20[2] ⊕ k20[2]

)
. (4)

11. The final condition to be satisfied is that the active nibble in Cell 8 of A19

has to be equal to δ1 ⊕ L9(δ2) = γ.

γ = S−1
(
D19[10]

) ⊕ S−1
(
D19[10]

)

= S−1
(
A20[6] ⊕ A20[14]

) ⊕ S−1
(
A20[6] ⊕ A20[14]

)
.

(5)

Note that A20[6] = S−1(C20[6] ⊕ k20[6]). And since A20[6] = A20[6], solving
Eq. (5) helps to determine k20[6] = tk1

1[10] ⊕ L10(tk1
2[10]).

The result follows since in the Steps 1–4, a total of 2−28−4−4−4 = 2−40 ciphertext
pairs are filtered.

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 219

3.1 First Attack

Now, we put together the findings of Lemmas 3 and 4 into an attack procedure
(see Fig. 8 in the appendix for details):

1. The attacker chooses the nibble values of the random base variable E1 in all
locations except Cells 5, 7, 8, and 15.

2. She chooses fixed differences δ1, δ2 satisfying δ1 = L3(δ2).
3. For each choice of (E1[5], E1[7], E1[8], E1[15]) (216 choices):

– Calculate P by inverting the first round.
– Query the 21-round encryption oracle for P,K and P,K.

So, for every choice of the base variable E1, we have 217 encryption calls. We can
pair related plaintext and tweakey pairs in the following way: For every plaintext
Pi, choose a plaintext Pj so that E1 for Pi and Pj have a non-zero difference in
all Cells 5, 7, 8, and 15. For every Pi, there exist (24 − 1)4 ≈ 215.6 such values
of Pj , and so 216+15.6 = 231.6 pairs to work with. The attack now proceeds as
follows. For each choice of Pi, Pj (231.6 choices):

– Denote P = Pi and P = Pj .
– The attacker can choose α and proceed with the steps of the above attack

with one exception: She can no longer choose Δ2 as in Step 4 of Lemma 3
since she has already chosen P, P ,K,K.

– With probability 2−4 (as per Lemma 2), the plaintext pair satisfies Eq. (1) in
Step 4 of Lemma 3 and proceeds; otherwise, she aborts.

– Request the ciphertext C for (P ,K) and the ciphertext C for (P,K).
– If C ⊕ C does not pass the 2−36 filter (Steps 1, 2, and 3 in Lemma4), then

abort and start again.
– If they pass the filter, the attacker can guess seven tweakey cells (228 guesses)

and calculate 17 key/tweak cells as follows:

Guessed Rnd Calculated Rnd

1 tk1
1[i] ⊕ tk1

2[i] for i = 2, 4, 6 1

2 tk1
1[i] ⊕ L(tk1

2[i]) for i = 8, 12, 15 2

3 tk1
1[i] ⊕ L10(tk1

2[i]) for i = 0 21

4 tk1
1 [i], tk1

2[i] for i = 7 3

5 tk1
1 [i], tk1

2[i] for i = 1, 2, 3, 4 21

6 tk1
1 [i] ⊕ L10(tk1

2 [i]) for i = 9, 10 20

The 17 tweakey nibbles used for elimination are therefore:
(a) tk1

1[i], tk1
2[i] for i = 1, 2, 3, 4, 7 (d) tk1

1[i] ⊕ L(tk1
2[i]) for i = 8, 12, 15

(b) tk1
1[i] ⊕ L10(tk1

2[i]) for i = 9, 10 (e) tk1
1[i] ⊕ tk1

2[i] for i = 6

(c) tk1
1[i] ⊕ L10(tk1

2[i]) for i = 0
– A fraction of 2−4 tweakeys fulfills the condition required in Step 4 of Lemma4.
– Therefore, the attacker has a set of 228−4 = 224 wrong key candidates.

220 R. Ankele et al.

The above procedure is repeated with 2x chosen plaintexts until a single key
solution remains for the 17 nibbles of the tweakey.

Complexity. For every base value of E1, the attacker makes 217 encryption
calls. Out of these, she has 231.6 pairs to work with. For each pair, the attacker
can then choose α in 24 −1 ways, which gives her around 235.6 initial guesses for
the forward key nibbles k1[1], k1[3], and k1[7], of which a fraction of 2−4 passes
the filter in Eq. (1). So, she has 231.6 pairs to work with. In fact, for every pair
(Pi, Pj) there is only one choice of α going forward on average.

Time complexity = max
{
2x+17 encryptions, 2x−4.4+24 guesses

}
= 2x+19.6.

The attacker gets wrong solutions for 2x−4.4+24 = 2x+19.6 incorrect solutions for
17 nibbles. To reduce the keyspace to 1 we need:

217×4 · (
1 − 2−17×4

)2x+19.6

≈ 217×4e−2x−48.4
= 1.

For this, we need x = 55. So, the total number of encryption calls to 21-round
SKINNY-64/128 is 255+17 = 272 and the total number of guesses is 274.6. We
also need 268 memory accesses, which are negligible in the total complexity. The
memory complexity is upper bounded by storing one bit per key candidate which
is therefore 268 bits. The memory for storing the approximately 2 ·217 plaintexts
and corresponding ciphertexts of a structure at each time is negligible.

3.2 22-Round Attack Under Partially Known Tweak

The attack above can be extended to 22-round SKINNY-64/128 under the
assumption that 48 of the 128 bits in the tweakey are publicly known tweak (see
Fig. 9 in the appendix for details). In particular, we assume that tk1

1[i], tk
1
2 [i] for

i = 8, 11, 12, 13, 14, 15 are reserved for the tweak. The remaining 80 bit constitute
the secret key.

In this case, the attacker can add a round at the end (see Fig. 6 for details).
Knowing six out of eight cells in the lower half of the tweakey blocks helps
in the following way. From the ciphertext (i.e. E22), one can revert the final
round to compute E21 if we guess k22[4, 5], i.e. tk1

1[9, 10] ⊕ L11(tk1
2[9, 10]). The

attack is almost the same as the previous attack, except that the tweakey indices
i = 8, 11, 12, 13, 14, 15 and their functions are known and need not be guessed.

1. Generate 231.6 plaintext/ciphertext pairs from every base choice of E1 and
217 encryption calls.

2. For each choice of Pi, Pj (231.6 choices):
– Denote P = Pi and P = Pj .
– The attacker can choose α and calculate k1[1], k1[3], and k1[7] as per

Step 3 of Lemma 3.
– She can no longer choose Δ2 as in Step 4 of Lemma 3 since she has already

chosen P , P , K, K.
– With probability 2−4, the plaintext pair satisfies Eq. (1) in Step 4 of

Lemma 3 and proceeds; otherwise, she aborts.

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 221

Fig. 6. Trail for the five backward rounds (the values of active nibbles in red are
functions of δ1, δ2, grey cells are the key, white cells are the tweak). (Color figure
online)

222 R. Ankele et al.

– The attacker doesn’t need to guess the Round 2 tweakey nibbles since
these are in the lower half of the tweakey blocks and therefore known.

– Retrieve the ciphertext C for (P ,K) and the ciphertext C for (P,K).
– Guess k22[4, 5] = tk1

1[9, 10] ⊕ L11(tk1
2[9, 10]) to get E21.

– If E21 ⊕ E21 does not pass the 2−36 filter, then abort and restart.
– After determining k20[2] = tk1

1[9] ⊕ L10(tk1
2[9]) and k20[6] = tk1

1[10] ⊕
L10(tk1

2[10]) in Steps 10 and 11 of Lemma 4, the attacker can uniquely
determine tk1

1[9, 10] since tk1
1[9, 10] ⊕ L11(tk1

2[9, 10]) is already guessed.
– If they pass the filter, the attacker can guess six tweakey cells (224 guesses)

and calculate 16 key cells as follows:

Guessed Rnd Calculated Rnd

1 tk1
1 [i] ⊕ tk1

2 [i] for i = 2, 4, 6 1

2 tk1
1 [i] ⊕ L10(tk1

2 [i]) for i = 0 21

3 tk1
1 [i] ⊕ L11(tk1

2 [i]) for i = 9, 10 22

4 tk1
1[i], tk

1
2 [i] for i = 7 3

5 tk1
1[i], tk

1
2 [i] for i = 1, 2, 3, 4 21

6 tk1
1[i], tk

1
2 [i] for i = 9, 10 20

The 16 tweakey nibbles used for elimination are therefore:

(a) tk1
1[i], tk

1
2 [i] for i = 1, 2, 3, 4, 7, 9, 10. (c) tk1

1[i] ⊕ tk1
2[i] for i = 6.

(b) tk1
1[i] ⊕ L10(tk1

2[i]) for i = 0.

– A fraction of 2−4 tweakeys fulfills the condition in Step 4 of Lemma4.
– Therefore, the attacker has a set of 224−4 = 220 wrong key candidates.

The procedure above is repeated with 2x chosen plaintexts until a single key
solution remains for the 16 nibbles of the tweakey.

Complexity. For every base value of E1, the attacker makes 217 encryption
calls. Out of these, she has 231.6 pairs to work with. For each pair, the attacker
can choose then α in 24 −1 ways, which gives her around 235.6 initial guesses for
the forward key nibbles k1[1], k1[3], k1[7], of which only a fraction of 2−4 passes
the filter in Eq. (1). So, the attacker has 231.6 pairs to work with. In effect, for
every pair (Pi, Pj) there is only once choice of α going forward on average.

Time complexity = max
{
2x+17 encryptions, 2x−4.4+20 guesses

}
= 2x+17.

The attacker gets wrong solutions for 2x−4.4+20 = 2x+15.6 incorrect solutions for
16 nibbles. To reduce the keyspace to 1 we need:

216×4 · (
1 − 2−16×4

)2x+15.6

≈ 216×4e−2x−48.4
= 1.

For this, we need x = 54. So, the total number of encryption calls to 22-round
SKINNY-64/128 is 254+17 = 271. We also need 264 memory accesses, which are
negligible in the total complexity. The memory complexity is upper bounded by
storing one bit per key candidate which is therefore 264 bits. The memory for
storing the approximately 2 · 217 plaintexts and corresponding ciphertexts of a
structure at each time is negligible.

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 223

3.3 23-Round Attack Under Partially Known Tweak

We can extend the 22 round attack to a 23 round attack by prepending one
round at the beginning. In order to not disturb the notation, we denote the
additonal round prepended at the beginning as the 0-th round. That is, the 23
rounds are labelled as rounds 0 to 22, and the variables A0, B0 etc. are defined
as above. The plaintext is denoted by A0 and the ciphertext by E22. Note that,
from the base value of E1, the plaintext can be calculated if we guess k0[9, 10].

There are two principal differences to the 22-round attack.

1. When the attacker guesses k22[4, 5] which is tk1
1[9, 10] ⊕ L11(tk1

2[9, 10]) to
invert the final round to get E21, he uniquely determines tk1

1[9, 10] and
tk1

2[9, 10]. This is because at the beginning of the outer loop k0[9, 10] has
already been guessed by the attacker to invert the initial round.

2. As the attacker can no longer determine k20[2] = tk1
1[9] ⊕ L10(tk1

2[9]) and
k20[6] = tk1

1[10] ⊕ L10(tk1
2[10]) using Steps 10 and 11 of Lemma 4. The prob-

ability that with the given values of tk1
1[9, 10] and tk1

2[9, 10], Eqs. (4) and (5)
are satisfied is 2−8. This decreases the probability of ciphertext filter from
2−36 to 2−44.

For each initial guess of k0[9, 10], the guessed and calculated key bytes are:

Guessed Rnd Calculated Rnd

1 tk1
1 [i] ⊕ tk1

2 [i] for i = 2, 4, 6 1

2 tk1
1 [i] ⊕ L10(tk1

2 [i]) for i = 0 21

3 tk1
1 [i] ⊕ L11(tk1

2 [i]) for i = 9, 10 22

4 tk1
1[i], tk

1
2[i] for i = 7 3

5 tk1
1[i], tk

1
2[i] for i = 1, 2, 3, 4 21

The 14 tweakey nibbles used for elimination are therefore:

(a) tk1
1[i], tk

1
2 [i] for i = 1, 2, 3, 4, 7. (c) tk1

1[i] ⊕ tk1
2[i] for i = 6.

(b) tk1
1[i] ⊕ L10(tk1

2[i]) for i = 0. (d) tk1
1[i] ⊕ L11(tk1

2[i]) for i = 9, 10

As before, a fraction of 2−4 tweakeys fulfills the condition in Step 4 of Lemma4.
Therefore, the attacker has a set of 224−4 = 220 wrong key candidates.

Complexity. For each iteration of the outer loop, the complexity is calculated
as follows: For every base value of E1, the attacker makes 217 encryption calls.
Out of those, she has 231.6 pairs to work with. For each pair, the attacker can
choose then α in 24 − 1 ways, which gives her around 235.6 initial guesses for
the forward key nibbles k1[1], k1[3], k1[7], of which only a fraction of 2−4 passes
the filter in Eq. (1). In effect, for every pair (Pi, Pj) there is only one choice of
α going forward on average.

Time complexity = max
{
2x+17 encryptions, 2x+31.6−44+20 guesses

}
= 2x+17.

224 R. Ankele et al.

The attacker gets 2x+31.6−44+20 = 2x+7.6 incorrect solutions for 14 nibbles. To
reduce the keyspace to 1 we need:

214×4 · (
1 − 2−14×4

)2x+7.6

≈ 214×4e−2x−48.4
= 1.

We need x = 54 leaving the total number of encryption calls to 22-round
SKINNY-64/128 with 254+17 = 271. Multiplying this by 28 for the outer loop
gives a total complexity of 271+8 = 279 which is just short of exhaustive search
for the 80-bit key. We also need 256+8 = 264 memory accesses, which are negligi-
ble in the total complexity. The memory complexity is upper bounded by storing
one bit per key candidate which is therefore 264 bits. The memory for storing
the approximately 2 · 217 plaintexts and ciphertexts of a structure is negligible.

4 Conclusion

In this paper, we outline related-key impossible-differential attacks against 21-
round SKINNY-64/128 as well as attacks on 22 and 23 rounds under the
assumption of having 48 of the 128-bit tweakey as public tweak. Our attacks are
based on an 11-round impossible differential trail, to which we prepend six and
append five rounds before and after the trail, respectively, to obtain an attack
on 22 rounds. Finally, we can prepend a 23-rd round under similar assumptions.

Acknowledgements. This work was initiated during the group sessions of the 6th
Asian Workshop on Symmetric Cryptography (ASK 2016) held in Nagoya, Japan.
Ralph Ankele is supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. H2020-MSCA-ITN-2014-643161
ECRYPT-NET. Gaoli Wang is supported by National Natural Science Foundation
of China (Grant Nos. 61572125, 61373142), Shanghai High-Tech Field Project (Grant
No. 16511101400). Siang Meng Sim is supported by the Singapore National Research
Foundation Fellowship 2012 (NRF-NRFF2012-06). This work has been supported in
part by the Austrian Science Fund (project P26494-N15).

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 225

Appendix

Fig. 7. The permutation PT in the tweakey schedule has a period of 16.

Fig. 8. Related-key impossible differential attack on 21-round SKINNY 64/128 (the
dark gray cell visualises the cancelation of the tweakeys).

226 R. Ankele et al.

Fig. 9. Related-key impossible differential attack on 22 round SKINNY 64/128 (grey
cells are the key, white cells are the tweak, the dark gray cell visualises the cancelation
of the tweakeys)

Related-Key Impossible-Differential Attack on Reduced-Round Skinny 227

Table 2. Difference-distribution table

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16

1 4 4 4 4

2 . 4 4 4 4

3 2 2 2 2 2 2 2 2

4 . . 4 . . . 2 2 4 2 2 . .

5 . . 4 . . . 2 2 . . 4 . 2 2 . .

6 . 2 . 2 2 . . 2 2 . 2 . . 2 2 .

7 . 2 . 2 2 . . 2 . 2 . 2 2 . . 2

8 4 4 2 2 2 2

9 4 4 2 2 2 2

a 4 4 . 2 2 2 2

b . 4 . 4 2 2 2 2

c . . 4 . . . 2 2 4 2 2

d . . 4 . . . 2 2 . 4 2 2

e . 2 . 2 2 . . 2 . 2 . 2 . 2 2 .

f . 2 . 2 2 . . 2 2 . 2 . 2 . . 2

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers (2013). Cryptology
ePrint Archive, Report 2013/404. http://eprint.iacr.org/

2. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: Cryptanalysis competition (2016). https://sites.google.com/
site/skinnycipher/cryptanalysis-competition

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 5

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds
using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol.
1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

5. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 15

6. Knudsen, L.: DEAL - A 128-bit Block Cipher. In: NIST AES Proposal (1998)
7. Liu, G., Ghosh, M., Ling, S.: Security Analysis of SKINNY under Related-Tweakey

Settings (2016). Cryptology ePrint Archive, Report 2016/1108. http://eprint.iacr.
org/2016/1108

http://eprint.iacr.org/
https://sites.google.com/site/skinnycipher/cryptanalysis-competition
https://sites.google.com/site/skinnycipher/cryptanalysis-competition
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://eprint.iacr.org/2016/1108
http://eprint.iacr.org/2016/1108

228 R. Ankele et al.

8. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of Reduced round SKINNY
Block Cipher (2016). Cryptology ePrint Archive, Report 2016/1120. http://eprint.
iacr.org/2016/1120

9. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanaly-
sis of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT
2017. LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). doi:10.1007/
978-3-319-57339-7 7

http://eprint.iacr.org/2016/1120
http://eprint.iacr.org/2016/1120
http://dx.doi.org/10.1007/978-3-319-57339-7_7
http://dx.doi.org/10.1007/978-3-319-57339-7_7

Faster Secure Multi-party Computation of AES
and DES Using Lookup Tables

Marcel Keller, Emmanuela Orsini, Dragos Rotaru(B), Peter Scholl,
Eduardo Soria-Vazquez, and Srinivas Vivek

Department of Computer Science, University of Bristol, Bristol, UK
{m.keller,emmanuela.orsini,dragos.rotaru,peter.scholl,

eduardo.soria-vazquez,sv.venkatesh}@bristol.ac.uk

Abstract. We present an actively secure protocol for secure multi-party
computation based on lookup tables, by extending the recent, two-party
‘TinyTable’ protocol of Damg̊ard et al. (ePrint 2016). Like TinyTable, an
attractive feature of our protocol is a very fast and simple online evalu-
ation phase. We also give a new method for efficiently implementing the
preprocessing material required for the online phase using arithmetic
circuits over characteristic two fields. This improves over the suggested
method from TinyTable by at least a factor of 50.

As an application of our protocol, we consider secure computation
of the Triple DES and the AES block ciphers, computing the S-boxes
via lookup tables. Additionally, we adapt a technique for evaluating
(Triple) DES based on a polynomial representation of its S-boxes that
was recently proposed in the side-channel countermeasures community.
We compare the above two approaches with an implementation. The
table lookup method leads to a very fast online time of over 230,000
blocks per second for AES and 45,000 for Triple DES. The preprocessing
cost is not much more than previous methods that have a much slower
online time.

Keywords: Multi-party computation · Block cipher · Implementation

1 Introduction

Secure multi-party computation (MPC) protocols allow useful computations to
be performed on private data, without the data owners having to reveal their

This work has been partially supported by EPSRC via grant EP/N021940/1; by
the Defense Advanced Research Projects Agency (DARPA) and Space and Naval
Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070;
by EPSRC via grant EP/M016803; and by the European Union’s H2020 Programme
under grant agreement number ICT-644209 (HEAT) and the Marie Sk�lodowska-
Curie grant agreement No. 643161 (ECRYPT-NET).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 229–249, 2017.
DOI: 10.1007/978-3-319-61204-1 12

230 M. Keller et al.

inputs. The last decade has seen an enormous amount of progress in the prac-
ticality of MPC, with many works designing more efficient protocols and imple-
mentations. There has also been a growing interest in exploring the possible
applications of MPC, with a number of works targeting specific computations
such as auctions, statistics and stable matching [6,7,23,29].

One promising application area that has recently emerged is the use of secure
computation to protect long-term secret keys, for instance, in authentication
servers or to protect company secrets [4]. Here, the secret key, sk, is split up
into n pieces, or shares, such that certain subsets of the n shares are needed
to reconstruct sk, and each share is stored on a different server (possibly in
a different location and/or managed by a separate entity). When the key is
needed by an application, say for a user logging in, the servers run an MPC
protocol to authenticate the user, without ever revealing sk. Typically, the type
of computation required here can be performed using a symmetric primitive such
as a block cipher or hash function.

Several previous works in secure computation have studied the above type
of application, and the AES function is even considered a standard benchmark
for new protocols [5,16,35,37,39]. A recent line of works has even looked at
special-purpose symmetric primitives, designed to have low complexity when
evaluated in MPC [1,2,27]. However, in industries such as banking and the wider
financial sector, strict regulations and legacy systems mean that switching to
new primitives can be very expensive, or even impossible. Indeed, most banking
systems today are using AES or Triple DES (3DES) to secure their data [24],
but may still benefit greatly from MPC technologies to prevent theft and data
breaches.

1.1 Our Contributions

In this work, we focus on the task of secure multi-party computation of the AES
and the (Triple) DES block ciphers, in the setting of active security against any
number of corrupted parties. We present a new technique for the preprocessing
phase of efficient, secure computation of table lookup (with a secret index), and
apply this to evaluating the S-boxes of AES and DES. In addition, we describe a
new method of secure MPC evaluation of the DES S-boxes based on evaluating
polynomials over binary finite fields, which reduces the number of non-linear
field multiplications.

Our protocol for secure table lookup builds upon the recent ‘TinyTable’ pro-
tocol for secure two-party computation by Damg̊ard et al. [18]. This protocol
requires a preprocessing phase, which is independent of the inputs, where ran-
domly masked (or ‘scrambled’) lookup tables on random data are created. In the
online phase, where the function is securely evaluated, each (one-time) masked
table can be used to perform a single table lookup on a private index in the
MPC protocol. The online phase of TinyTable is very efficient, as each party
only needs to send log2 N bits over the network, for a table of size N .

However, the suggested technique for creating the masked tables is far less
efficient: for secure computation of AES, it would take at least 256 times longer

Faster Secure Multi-party Computation of AES and DES 231

to create the masked lookup tables, compared with using standard methods with
a slower online time.

We extend and improve upon the TinyTable approach in two ways. Firstly, we
show that the technique can easily be generalized to the multi-party setting and
used in any SPDZ-like MPC protocol based on secret-sharing and information-
theoretic MACs. Secondly, we describe a new, general approach for creating
the masked tables using finite field arithmetic, which significantly improves the
preprocessing cost of the protocol. Concretely, for a lookup table of size N , we
can create the masked table using an arithmetic circuit over F2k with fewer than
N/k+log N multiplications. This provides a range of possible instantiations with
either binary or arithmetic circuit-based protocols. When using binary circuits,
we only require N − 2 multiplications. For arithmetic circuits over F28 , an AES
S-box can be preprocessed with 33 multiplications, improving on the method
in [18], which takes 1792 multiplications, by more than 50 times. With current
practical protocols, it turns out to be even more efficient to work over F240 , with
only 11 multiplications. We remark that standard methods for computing AES
based on polynomials or Boolean circuits can obtain better overall running times,
but with a much slower online phase. The main goal of this work is to reduce
the preprocessing cost whilst preserving the very fast online phase of TinyTable.

We also consider a new method for secure multi-party computation of DES
based on a masking side-channel countermeasure technique. The DES S-box can
be viewed as a lookup table mapping 6 bits to 4 bits, or as a polynomial over
F26 . A näıve method requires 62 field multiplications to evaluate a DES S-box
polynomial over F26 . There were many recent works that reduced the number
of non-linear multiplications required to evaluate polynomials over binary finite
fields, including the DES S-box polynomials [10,13,14,38,41]. A recent proposal
by Pulkus and Vivek [38] showed that the DES S-boxes, when represented over
a different field, F28 , can be evaluated with only 3 non-linear multiplications.
This is better than the best-known circuit over F26 , which needs 4 non-linear
multiplications. Applying the Pulkus–Vivek method in our context, we show how
1 round of the DES block cipher can be computed with just 24 multiplications
over F28 . This compares favorably with previous methods based on evaluating
polynomials over F26 and boolean circuits.

Analogous to the MPC protocols based on table lookups, there are also mask-
ing side-channel countermeasures based on random-table lookups [11,12]. This
analogy should not come as a surprise since the masking technique is also based
on secret-sharing. The state-of-the-art for (higher-order) masking seems to sug-
gest that the schemes based on evaluation of S-box polynomials usually outper-
form table-lookups based schemes in terms of time, RAM memory and random-
ness. We perform a similar comparison in the MPC context too. To this end,
we evaluate the complexity of the various methods for secure computation of
AES and 3DES, and present some implementation results. We implemented the
protocols using the online phase of the SPDZ [16,19] MPC protocol. The pre-
processing additionally requires some random multiplication triples and shared

232 M. Keller et al.

bits, for which we estimated costs using MASCOT [30] for arithmetic circuits,
and based on the recent optimized TinyOT protocol [35,43] for binary circuits.

Our experiments show that the fastest online evaluation is achieved using
lookup tables. The preprocessing for this method costs much less when using
arithmetic circuits over larger fields, compared with a binary circuit protocol
such as TinyOT [35,43], despite the quadratic (in the field bit length) communi-
cation cost of [30]. The polynomial-based methods for AES and DES still perform
slightly better in the preprocessing phase, but for applications where a low online
latency is desired, the lookup table approach is definitely preferred. If an applica-
tion is mainly concerned with the total running time, then the polynomial-based
methods actually lead to runtimes for AES that are comparable with the fastest
recent 2-PC implementations using garbled circuits.

Related Work. A recent, independent work by Dessouky et al. [22] presented
two different protocols for lookup table-based secure two-party computation in
the semi-honest security model. The first protocol, OP-LUT, offers an online
phase very similar to ours (and [18]), while the preprocessing stage, that is
implemented using 1-out-of-N oblivious transfer, is incomparable to ours as we
must work much harder to achieve active security.

The second protocol, SP-LUT, proposes a more efficient preprocessing phase,
which only requires random 1-out-of-N oblivious transfer computation, but a
slower online evaluation; however this protocol has a much lower overall commu-
nication compared to the previous one. These two protocols are also compared
with the OTTT (One-Time Truth-Table) protocol by Ishai et al. [28] with paral-
lel circuit based preprocessing [20]. More detailed comparisons with our protocols
are provided in Sect. 5.2.

This work also provides an FPGA-based synthesis tool that transforms a
high level function representation to multi-input/multi-output table-lookup rep-
resentation, which could also be used with our protocol.

2 Preliminaries

We denote by λ the computational security parameter and κ the statistical secu-
rity parameter. We consider the sets {0, 1} and F

k
2 endowed with the structure

of the fields F2 and F2k , respectively. We denote by F = F2k any finite field of
characteristic two. Finally, we use a

$← A as notation for a uniformly random
sampling of a from a set A.

Note that by linearity we always mean F2-linearity, as we only consider fields
of characteristic 2.

2.1 MPC Computation Model

Our protocol builds upon the arithmetic black-box model for MPC, represented
by the functionality FABB (shown in the full version). This functionality per-
mits the parties to input and output secret-shared values and evaluate arbitrary

Faster Secure Multi-party Computation of AES and DES 233

binary circuits performing basic operations. This abstracts away the underlying
details of secret sharing and MPC. Other than the standard Add and Mult
commands, FABB also has a BitDec command for generating the bit decompo-
sition of a given secret-shared value, two commands Random and RandomBit
for generating random values according to different distributions and an Open
command which allows the parties and the adversary to output values. BitDec
can be implemented in a standard manner by opening and then bit-decomposing
x + r, where r is obtained using k secret random bits.

We use the notation �x� to denote an authenticated and secret-shared value
x, which is stored by FABB. More precisely, this can be implemented with active
security using the SPDZ protocol [16,19] based on additive secret sharing and
unconditionally secure MACs. We also use the + and · operators to denote calls
to Add and Mul with the appropriate shared values in FABB.

More concretely, our protocols are in the so called preprocessing model and
consist of two different phases: an online computation, where the actual eval-
uation takes place, and a preprocessing phase that is independent of the par-
ties’ inputs. During the online evaluation, linear operations only require local
computations thanks to the linearity of the secret sharing scheme and MAC.
Multiplications and bit decompositions require random preprocessed data and
interactions. More generally, the main task of the preprocessing step is to produce
enough random secret data for the parties to use during the online computation:
other than multiplication triples, which allow parties to compute products, it
also provides random shared values. The preprocessing phase can be efficiently
implemented using OT-based protocols for binary circuits [8,25,43] and arith-
metic circuits [30].

Security Model. We describe our protocols in the universal composition (UC)
framework of Canetti [9], and assume familiarity with this. Our protocols work
with n parties from the set P = {P1, . . . , Pn}, and we consider security against
malicious, static adversaries, i.e. corruption may only take place before the pro-
tocols start, corrupting up to n − 1 parties.

3 Evaluating AES and DES S-box Polynomials

In this section, we recollect some of the previously known methods that aim to
reduce the number of non-linear operations to evaluate univariate polynomials
over binary finite fields, particularly, the AES and the DES S-boxes represented
in this form. Note here that, by a non-linear multiplication, we mean those
multiplications of polynomials that are neither multiplication by constants nor
squaring operations. Since squaring is a linear operation in binary fields, once a
monomial is computed, it can be repeatedly squared to generate as many more
monomials as possible without costing any non-linear multiplication.

Due to limited space, a more detailed discussion can found in the full version.

234 M. Keller et al.

3.1 AES S-box

The AES S-box evaluation on a given input (as an element of F28) consists
of first computing its multiplicative inverse in F28 (mapping zero to zero), and
then applying a bijective affine transformation. For the inverse S-box, the inverse
affine transformation is applied first and then the multiplicative inverse. Note
that the polynomial representation of the inverse function in F28 is X254.

BitDecompostion Method. This approach, described by Damg̊ard et al. [15],
computes the squares X2i

, for i ∈ [7], and then multiplies them to get X254.
This method needs 6 non-linear multiplications.

Rivain–Prouff Method. This method, as presented in Gentry et al. [26], is a
variant of the method of Rivain–Prouff [40] to evaluate the AES S-box polyno-
mial using only 4 non-linear multiplications in F28 [X]: {X,X2} ×→ {X3,X12} ×→
{X14} ×→ {X15,X240} ×→ X254.

3.2 Des S-boxes

Cyclotomic Class Method. Recall that DES has eight 6-to-4-bit S-boxes.
In this näıve method given by Carlet et al. [10], the DES S-boxes are repre-
sented as univariate polynomials over F26 . In particular, the 4-bit S-box outputs
are padded with zeros in the most significant bits and then identified with the
elements of F26 . It turns out that these polynomials have degree at most 62 [41].

Over F2m [X], define Cm
i :=

{
Xi·2j

: j = 0, 1, . . . ,m − 1
}

for 0 < i < 2m.

Now we need to compute C6
0 , C6

1 , C6
3 , C6

5 , C6
7 , C6

9 , C6
11, C

6
13, C

6
15, C

6
21, C

6
23, C

6
27,

C6
31, to cover all monomials up to degree 62, and this needs at most 11 non-

linear multiplications. The target polynomial is then simply obtained as a linear
combination of the computed monomials.

Pulkus–Vivek Method. This generic method to evaluate arbitrary polynomi-
als over binary finite fields was proposed recently by Pulkus and Vivek [38] as an
improvement over the method of Coron–Roy–Vivek [13,14]. In the PV method,
the DES S-boxes are represented as polynomials over F28 instead of F26 . The
6-bit input strings of the DES S-boxes are padded with zeroes in the two most
significant positions and then naturally identified with the elements of F28 . The
four most significant coefficient bits of the polynomial outputs are discarded to
obtain the desired 4-bit S-box output.

Firstly, a set of monomials L = C8
1 ∪ C8

3 ∪ C8
7 in F28 [X] is computed. Then

a polynomial, say P (X), representing the given S-box is sought as P (X) =
p1(X) · q1(X) + p2(X), where p1(X), q1(X), and p2(X) have monomials only
from the set L. In total, the PV method needs 3 non-linear multiplications in
F28 [X] to evaluate each of the S-box polynomial.

Faster Secure Multi-party Computation of AES and DES 235

3.3 MPC Evaluation of AES and DES S-box Polynomials

Here we detail the MPC evaluation of AES and DES S-boxes using the techniques
described above. We recall that since the S-boxes, in both the ciphers we are
considering, are the only non-linear components, they represent the only parts
which actually need interactions in an MPC evaluation.

AES Evaluation. As we mention before in Sect. 3.1, the straightforward way
to compute the S-box is using the BitDecomposition method, which requires 6
multiplications in 4+1 rounds. We are considering the case of active security, so
the AES evaluation is done in the field F240 instead of F28 , via the embedding
F28 ↪→ F240 . This follows from the fact that we are using the SPDZ protocol
which requires a field size of at least 2κ, where κ is the statistical security para-
meter. This permits to have only one MAC per data item [15].

The evaluation proceeds as follow: first X is bit-decomposed so that all the
squarings can be locally evaluated, and then X254 is obtained as described in
[15]:

X254 = ((X2 · X4) · (X8 · X16)) · ((X32 · X64) · X128).

This requires 4 rounds, out of which one is a call to BitDec. We also need an
extra round for computing the inverse of the field embedding F28 ↪→ F240 to
evaluate the S-box linear layer. We denote this method by AES-BD.

We denote by AES-RP the AES S-box evaluation that uses the Rivain–Prouff
method (cf. Sect. 3.1). It requires 6 + 1 rounds to compute the four powers
X3,X14,X15,X254. Furthermore, this can be done with three calls to BitDec
and four non-linear multiplications, but some of the openings can be done in
parallel which yields to a depth-6 circuit. As before, we need an extra round to
call BitDec and compute the S-box linear layer.

DES Evaluation. We denote by DES-PV the DES S-box evaluation using the
Pulkus–Vivek method. Note that, although in side-channel world computing the
squares is for free, since it is an F2-linear operation, in a secret-shared based
MPC with MACs this is no longer true and we need to bit-decompose.

The squares from C8
1 , C8

3 , C8
7 , are obtained locally after X,X3,X7 are bit-

decomposed. Here we need two multiplications, since X3 = X ·X2 and X7 = X3 ·
X4. The third multiplication occurs when computing the product p1(X) · q1(X),
resulting in an S-box cost of only 3 triples, 24 bits and 5 communication rounds.

The number of rounds is due to 3 calls to BitDec (on X3,X7 and p1(X) ·
q1(X) + p2(X)) and 3 non-linear multiplications. Although at a first glance
there seems to be six rounds, we have that BitDec(X7) is independent of the
BitDec(X3), as we can compute X7 without the call BitDec(X3), resulting in
only five rounds.

236 M. Keller et al.

4 MPC Evaluation of Boolean Circuits Using Lookup
Tables

In this section we describe an efficient MPC protocol for securely evaluating
circuits over extension fields of F2 (including boolean circuits) containing addi-
tional ‘lookup table’ gates. This protocol is in the preprocessing model and
follows the same approach proposed in [20], evaluating lookup table gates using
preprocessed, masked lookup tables.

The functionality that we implement is FABB−LUT (Fig. 1), which augments
the standard FABB functionality with a table lookup command. The concrete
online cost of each table lookup is just log2 N bits of communication per party,
where N is the size of the table. Note that the functionality FABB−LUT works over
a finite field F2k , and has been simplified by assuming that the size of the range
and domain of the lookup table T is not more than 2k. However, our protocol
actually works for general table sizes, and FABB−LUT can easily be extended
to model this by representing a table lookup result with several field elements
instead of one.

We now show how Protocol 1 implements the Table Lookup command of
FABB−LUT, given the right preprocessing material. For any non-linear function
T, with � input and m output bits, it is well known that it can be implemented
as a lookup table of 2� components of m bits each. To evaluate T(·) on a secret
authenticated value �x�, x ∈ F2� , the parties use a random authenticated T

Functionality FABB−LUT

This functionality has all the features of FABB, operating over F2k , plus the following
command.

Table Lookup: On command (T, id1, id2) from all parties, where T : {0, 1}
{0, 1}m, for ≤ k, and id1 is present in memory, retrieve (id1, x) and store
(id2,T(x)).

Fig. 1. The ideal functionality for MPC using lookup tables

Functionality FPrep−LUT

This functionality has all of the same features as FABB, with the following additional
command.

Masked Table: On input (MaskedTable,T, id) from all parties, where
T : {0, 1} {0, 1}m for ≤ k, sample a random value s, set
(Val[ids],Val[idT(s)], . . . ,Val[idT(s (2 −1))]) (s,T(s), . . . ,T(s (2 − 1)), and
return (ids, (idT(s), . . . , idT(s (2 −1)))).

Fig. 2. Ideal functionality for the preprocessing of masked lookup tables.

Faster Secure Multi-party Computation of AES and DES 237

Protocol 1. Secure online evaluation of SBox using lookup tables
Table Lookup: On input �x� compute �T(x)� as follows.

1. Call FPrep−LUT on input (MaskedTable,T), and obtain a precomputed masked
table (�s�, �Table(s)�).

2. The parties open the value h = x ⊕ s.
3. Locally compute �T(x)� = �Table(s)�[h], where �Table(s)�[h] is the hth compo-

nent of �Table(s)�.

evaluation from FPrep−LUT (Fig. 2). More precisely, we would like the preprocess-
ing to output values (�s�, �Table(s)�), where �s� is a random authenticated value
unknown to the parties and �Table(s)�) is the table

�Table(s)� =
(
�T(s)�, �T(s ⊕ 1)�, . . . , �T(s ⊕ (2� − 1))�

)
,

so that �Table(s)�[j], 0 ≤ j ≤ 2� − 1, denotes the element �T(s ⊕ j)�. Given such
a table, evaluating �T(x)� is straightforward: first the parties open the value
h = x ⊕ s and then they locally retrieve the value �Table(s)�[h] = �T(s ⊕ h)� =
�T(s ⊕ s ⊕ x)� = �T(x)�.

Correctness easily follows from the linearity of the �·�-representation and the
discussion above. Privacy follows from the fact that the value s used in Table
Lookup is randomly chosen and is used only once, thus it perfectly blinds the
secret value x.

4.1 The Preprocessing Phase: Securely Generating Masked Lookup
Tables

In this section we describe how to securely implement FPrep−LUT (see Fig. 2), and
in particular how to generate masked lookup tables which can be used for the
online phase evaluation.

Recall that the goal is to obtain the shared values:

�Table(s)� = (�T(s)�, �T(s ⊕ 1)�, . . . , �T(s ⊕ (2� − 1))�).

Protocol 2 begins by taking a secret, random �-bit mask �s� = (�s0�, . . . , �s�−1�).
Then, the parties expand s into a secret-shared bit vector (s′

0, . . . , s
′
2�−1) which

has a 1 in the s-th entry and is 0 elsewhere. We denote this procedure—the most
expensive part of the protocol—by Demux, and describe how to perform it in
the next section.

Once this is done, the parties can obtain the i-th entry of the masked lookup
table by computing:

T(i) · �s′
0� + T(i ⊕ 1) · �s′

1� + · · · + T(i ⊕ (2� − 1)) · �s′
2�−1�,

which is clearly �T(i⊕s)� as required. Note that since the S-box is public, this is
a local computation for the parties. In the following we give an efficient protocol
for computing Demux.

238 M. Keller et al.

4.2 Computing Demux with Finite Field Multiplications

We now present a general method for computing Demux using fewer than N/k+
log N multiplications over F2k , when k is any power of 2 and N = 2� is the
table size. Launchbury et al. [32] previously described a protocol with O(N)
multiplications in F2, but our protocol has fewer multiplications than theirs for
all choices of k.

As said before, Demux maps a binary representation (s0, . . . , s�−1) of an
integer s =

∑�−1
i=0 si · 2i into a unary representation of fixed length 2� that

contains a one in the position s and zeros elsewhere. A straightforward way to
compute Demux is by computing, over F2N

1:

�s′� =
�−1∏
i=0

(�si� · X2i

+ (1 − �si�)).

Notice that if si = 1 then the i-th term of the product equals X2i

, whereas the
term equals 1 if si = 0. This means the entire product evaluates to s′ = Xs,
where s is the integer representation of the bits (s0, . . . , s�−1). Bit decomposing
s′ obtains the demuxed output as required. Unfortunately, this approach does
not scale well with N , the table size, as we must exponentially increase the size
of the field.

We now show how to compute this more generally, using operations over F2k ,
where k is a power of two. We will only ever perform multiplications between
elements of F2 and F2k , and will consider elements of F2k as vectors over F2.
Define the partial products, for j = 1, . . . , �:

pj(X) =
j−1∏
i=0

(si · X2i

+ (1 − si)) ∈ F2N

and note that pj+1(X) = pj(X) · (sj · X2j

+ (1 − sj)), for j < �.
Note also that the polynomial pj(X) has degree < 2j , so pj(X) can be

represented as a vector in F
2j

2 containing its coefficients, and more generally, a

Protocol 2. Protocol to generate secret shared table lookup

Table: On input (Table, Pi) from all the parties, do the following:

1: Take � random authenticated bits �s0�, . . . , �s�−1�, where each si is unknown
to all the parties.

2: Compute (�s′
0�, . . . , �s

′
2�−1�) ← Demux(�s0�, . . . , �s�−1�)

3: ∀i = 0, . . . , 2� − 1, locally compute

�T(i ⊕ s)� = T(i) · �s′
0� + T(i ⊕ 1) · �s′

1� + · · · + T((2� − 1) ⊕ i) · �s′
2�−1�

1 A similar trick was used by Aliasgari et al. [3] for binary to unary conversion over
prime fields.

Faster Secure Multi-party Computation of AES and DES 239

Protocol 3. (�s′
0�, . . . , �s

′
N−1�) ← Demux(k, �s0�, . . . , �s�−1�)

Require: k a power of two, u = N/k, � = log2 N
Input: Bit decomposition of s ∈ {0, . . . , N − 1}, with LSB first
Output: Satisfies s′

s = 1 and s′
i = 0 for all i �= s

1: �p� = (1 − �s0�, �s0�) // p starts in F
2
2

2: for j = 1 to � − 1 do

3: �t� = �sj� · �p� // F2 × F
2j

2 multiplication, 1 round

4: �p� = (02j ‖�t�) + (�p� − �t�)‖02j

) // p now in F
2j+1

2

5: Write �p� = (�b0�, . . . , �bu−1�) // bi ∈ F
k
2

6: for i = 0 to u − 1 do
7: (�s′

ki�, . . . , �s
′
ki+k−1�) = BitDec(�bi�) // 1 round

8: return (�s′
0�, . . . , �s

′
N−1�)

vector pj containing �2j/k	 elements of Fk
2 . This is the main observation that

allows us to emulate the computation of s′ using only F2k arithmetic.
Given a sharing of pj represented in this way, a sharing of pj(X) · X2j

can
be seen as the vector (increasing the powers of X from left to right):

(02
j ‖pj) ∈ F

2j+1

2

and a vector representation of pj+1(X) is:
(
(02

j ‖sj · pj) + ((1 − sj) · pj‖02
j

)
)

∈ F
2j+1

2 .

Thus, given �pj� represented as �2j/k	 shared elements of F2k , we can com-
pute �pj+1� in MPC with �2j/k	 multiplications between �sj� and a shared F2k

element, plus some local additions.
Starting with p1(X) = s0 · X + (1 − s0) we can iteratively apply the above

method to compute p� = s′, as shown in Protocol 3. The overall complexity of
this protocol is given by

�−1∑
j=1

�2j/k	 < N/k + �

multiplications between bits and F2k elements.
Table 1 illustrates this trade-off between the field size and number of multi-

plications for some example parameters. We note that the main factor affecting
the best choice of k is the cost of performing a multiplication in F2k in the
underlying MPC protocol, and this may change as new protocols are developed.
However, we compare costs of some current protocols in Sect. 5.

4.3 MPC Evaluation of AES and DES Using Lookup Tables

We now show how to use the lookup table MPC protocol described above to
evaluate AES and DES.

240 M. Keller et al.

Table 1. Number of F2 × F2k multiplications for creating a masked lookup table of
size N , for varying k.

N k = 1 8 40 64 128

64 62 9 5 5 5

256 254 33 11 8 7

1024 1022 129 31 20 13

AES Evaluation. We require an MPC protocol which performs operations in
F28 . In practice, we actually embed F28 in F240 , since we use the SPDZ protocol
which requires a field size of at least 2κ, for statistical security parameter κ.
We implement the AES S-box using the table lookup method from Protocol 2
combined with Demux (Protocol 3) over F240 , since this yields a lower communi-
cation cost (see Table 4). Notice that the data sent is highly dependent on the
number of bits, triples and the field size.

In a naive implementation of this approach, we would have call BitDec on
�Table(s)�, in order to perform the embedding F28 ↪→ F240 . This is required
since the table output is not embedded, but the MixColumns step needs this to
perform multiplication by X ∈ F28 on each state.

With a more careful analysis we can avoid the BitDec calls by locally embed-
ding the bit shares inside Protocol 2. We store the masked S-box table in bit
decomposed form and then its bits are multiplied (in the clear) with Demux’s
output (secret-shared). This trick reduces the online communication by a factor
of 8, halves the number of rounds required to evaluate AES and gives a very
efficient online phase with only 10 rounds and 160 openings in F240 .

DES Evaluation. Using the fact that DES S-boxes have size 64, we chose to use
the Demux Protocol 3 with multiplications in F240 , based on the costs in Table 4.
Like AES, we try to isolate the input-dependent phase as much as possible with
no extra cost.

Every DES round performs only bitwise addition and no embedding is neces-
sary here. The masked table can be bit-decomposed without interaction, exactly
as described above for AES, by multiplying clear bits with secret shared values.
This yields a low number of openings, one per S-box look-up, so the total online
cost for 3DES is 46 rounds with 384 openings.

5 Performance Evaluation

This section presents timings for 3DES and AES using the methods presented in
previous sections. We also discuss trade-offs and different optimizations which
turn out to be crucial for our running-times. The setup we have considered is that
both the key and message used in the cipher are secret shared across two parties.
We consider the input format for each block cipher as already embedded into

Faster Secure Multi-party Computation of AES and DES 241

F240 for AES, or as a list of shared bits for DES. We implemented the protocols
using the SPDZ software,2 and estimated times for computing the multiplication
triples and random bits needed based on the costs of MASCOT [30].

The results, shown in Tables 2 and 3, give measurements in terms of latency
and throughput. Latency indicates the online phase time required to evaluate
one block cipher, whereas throughput (which we consider for both online and
offline phases) shows the maximum number of blocks per second which can be
evaluated in parallel during one execution. We also measure the number of rounds
of interaction of the protocols, and the number of openings, which is the total
number of secret-shared field elements opened during the online evaluation.

Benchmarking Environment. The experiments were ran across two machines
each with Intel i7-4790 CPUs running at 3.60 GHz, 16 GB of RAM connected over
a 1 GBps LAN with an average ping of 0.3 ms (roundtrip). For experiments with
3–5 parties, we used three additional machines with i7-3770 CPUs at 3.1 GHz. In
order to get accurate timings each experiment was averaged over 5 executions,
each with at least 1000 cipher calls.

Security Parameters and Field Sizes. Secret-sharing based MPC can be
usually split into 2 phases—preprocessing and online. In SPDZ-like systems,
the preprocessing phase depends on a computational security parameter, and
the online phase a statistical security parameter which depends on the field
size. In our experiments the computational security parameter is λ = 128. The
statistical security κ is 40 for every cipher except for 3DES-Raw which requires
an embedding into a 42 bit field.

Results. The theoretical costs and practical results are shown in Tables 2 and 3,
respectively. Timings are taken only for the encryption calls, excluding the key
schedule mechanism.

AES-BD is implemented by embedding each block into F240 , and then squaring
the shares locally after the inputs are bit-decomposed. In this manner, each S-box
computation costs 5 communication rounds and 6 multiplications. This method
was described in [15].

3DES-Raw represents the 3DES cipher with the S-box evaluated as a poly-
nomial of degree 62 over the field F26 = F2[x]/(x6 + x4 + x3 + x + 1). To
make the comparisons relevant with other ciphers in terms of active security
we chose to embed the S-box input in F242 , via the embedding F26 ↪→ F242 ,
where F242 = F2[y]/(y42 +y21 +1) and y = x7 +1. The S-boxes used for interpo-
lating are taken from the PyCrypto library [34]. 3DES-Raw is implemented only
for benchmarking purposes and it has no added optimizations. One S-box has a
cost of 62 multiplications and 62 rounds.

3DES-PV is 3DES implemented with the Pulkus-Vivek method from Section
3.2. Since it has only a few multiplications in F240 , the amount of preprocessing
data required is very small, close to AES-BD. It suffers in terms of both latency
and throughput due to the high number of communication rounds (needed for
bit decomposition to perform the squarings).
2 https://github.com/bristolcrypto/SPDZ-2.

https://github.com/bristolcrypto/SPDZ-2

242 M. Keller et al.

Table 2. Communication cost for AES and 3DES in MPC.

Cipher Online cost Preprocessing cost

Rounds Openings Field Triples Bits Field Comm. (MB)

AES-BD 50 2240 F240 960 2560 F240 4.3

AES-RP 70 1920 F240 640 5120 F240 2.9

AES-LT 10 160 F240 1760 42240 F240 8.4

3DES-Raw 2979 48024 F242 23808 2688 F242 112

3DES-PV 230 3456 F240 1152 9216 F240 5.2

3DES-LT 46 384 F240 1920 26880 F240 8.8

Table 3. 1 GBps LAN timings for evaluating AES and 3DES in MPC.

Cipher Online (single-thread) Online (multi-thread) Preprocessinga

Latency (ms) Batch size ops/s Batch size ops/s Threads ops/s

AES-BD 5.20 64 758 1024 3164 16 30.7

AES-RP 7.19 1024 940 64 3872 16 46.1

AES-LT 0.928 2048 53918 512 236191 32 16.79

3DES-Raw 270 512 130 - - - 1.24

3DES-PV 36.98 512 86 512 366 32 25.6

3DES-LT 4.254 1024 10883 512 45869 16 15.3
aExtrapolated from timings for a 128-bit field

Surprisingly, AES-RP (the polynomial-based method from Sect. 3.1) has a
better throughput than AES-BD although it requires 20 more rounds and 2 times
more shared bits to evaluate. The explanation for this is that in AES-RP there
are fewer openings, thus less data sent between parties.

AES-LT and 3DES-LT are the ciphers obtained with the lookup table protocol
from Sect. 4. AES-LT achieves the lowest latency and the highest throughput in
the online phase. The communication in the preprocessing phase is roughly twice
the cost of the previous method, AES-BD.

Packing Optimization. We notice that in the online phase of AES-LT each
opening requires to send 8 bit values embedded in F240 . Instead of sending 40
bits across the network we select only the relevant bits, which for AES-LT are 8
bits. This reduces the communication by a factor of 5 and gives a throughput of
236k AES/second over LAN and a multi-threaded MPC engine.

The same packing technique is applied for 3DES-LT since during the protocol
we only open 6 bit values from Protocol 1. These bits are packed into a byte and
sent to the other party. Here the multi-threaded version of 3DES-LT improves the
throughput only by a factor of 4.2x (vs AES-LT 4.4x) due to the higher number
of rounds and openings along with the loss of 2 bits from packing.

Faster Secure Multi-party Computation of AES and DES 243

General Costs of the Table Lookup Protocol. In Table 4, we estimate the
communication cost for creating preprocessed, masked tables for a range of table
sizes, using our protocol from Sect. 4.1. This requires multiplication triples over
F2k , where k is a parameter of the protocol. When k = 1, we give figures using a
recent optimized variant [43] of the two-party TinyOT protocol [35]. For larger
choices of k, the costs are based on the MASCOT protocol [30]. We note that
even though MASCOT has a communication complexity in O(k2), it still gives
the lowest costs (with k = 40) for all the table sizes we considered.

Table 4. Total communication cost (kBytes) of the F2 × F2k multiplications needed
in creating a masked lookup table of size N , with two parties. The k = 1 estimates are
based on TinyOT [43], the others on MASCOT [30].

N k = 1 40 64 128

64 35.01 21.8 43.52 112.64

256 143.45 47.96 69.63 157.7

1024 577.17 135.16 174.08 292.86

5.1 Multiparty Setting

We also ran the AES-LT protocol with different numbers of parties and mea-
sured the throughput of the preprocessing and online phases. Figure 3 indicates
that the preprocessing gets more expensive as the number of parties increases,
whereas the online phase throughput does not decrease by much. This is likely
to be because the bottleneck for the preprocessing is in terms of communication
(which is O(n2) in total), whereas the online phase is more limited by the local
computation done by each party.

5.2 Comparison with Other Works

We now compare the performance of our protocols with other implementations
in similar settings. Table 5 gives an overview of the most relevant previous works.
We see that our AES-LT protocol comes very close to the best online throughput
of TinyTable, whilst having a far more competitive offline cost.3 Our AES-RP
variant has a slower online phase, but is comparable to the best garbled circuit
protocols overall.

TinyTable Protocol. The original, 2-party TinyTable protocol [18] presented
implementations of the online phase only, with two different variants. The fastest
variant is based on table lookup and obtains a throughput of around 340 thou-
sand AES blocks per second over a 1Gbps LAN, which is 1.51x faster than our
3 The reason for the very large preprocessing cost of TinyTable is due to the need to

evaluate the S-box 256 times per table lookup.

244 M. Keller et al.

2 3 4 5
100

101

102

103

104

105

106

Number of parties

T
h
ro

u
g
h
p
u
t

(/
s)

Online AES-LT

Offline AES-LT

Fig. 3. Table lookup-based AES throughput for multiple parties.

Table 5. Performance comparison with other 2-PC protocols for evaluating AES in a
LAN setting.

Protocol Online Comms. (total) Notes

Latency (ms) Throughput (/s)

TinyTable (binary) [18] 4.18 24500 3.07 MB

TinyTable (optim.) [18] 1.02 339000 786.4 MB

Wang et al. [43] 0.93 1075 2.57 MB 10GBps

Rindal-Rosulek [39] 1.0 1000 1.6 MB 10GBps

OP-LUT [22] 5 41670 0.103 MB Passive

SP-LUT [22] 6 2208 0.044 MB Passive

AES-LT 0.93 236200 8.4 MB

AES-RP 7.19 940 2.9 MB

online throughput. The latency (for sequential operations) is around 1ms, the
same as ours. We attribute the difference in throughput to the additional local
computation in our implementation, since we need to compute on MACs for
every linear operation.

TinyTable does not report figures for the preprocessing phase. However, we
estimate that using TinyOT and the naive method suggested in the paper would
need would need over 1.3 million TinyOT triples for AES (34 ANDs for each S-
box, repeated 256 times to create one masked table, for 16 S-boxes in 10 rounds).
In contrast, our table lookup method uses around 160 thousand TinyOT triples,
or just 2080 triples over F240 (cf. Table 1), per AES block.

Faster Secure Multi-party Computation of AES and DES 245

Garbled Circuits. There are many implementations of AES for actively secure
2-PC using garbled circuits [33,36,39,42,43]. When measuring online throughput
in a LAN setting, using garbled circuits gives much worse performance than
methods based on table lookup, because evaluating a garbled circuit is much
more expensive computationally. For example, out of all these works the lowest
reported online time (even over a 10 GBps LAN) is 0.93 ms [43], and this does
not improve in the amortized setting.

Some recent garbled circuit implementations, however, improve upon our
performance in the preprocessing phase, where communication is typically the
bottleneck. Wang et al. [43] require 2.57 MB of communication when 1024 circuits
are being garbled at once, while Rindal and Rosulek [39] need only 1.6 MB. The
runtime for both of these preprocessing phases is around 5 ms over a 10 GBps
LAN; this would likely increase to at least 15–20 ms in a 1 GBps network, whereas
our table lookup preprocessing takes around 60 ms using MASCOT. If a very
fast online time is not required, our implementation of the Rivain–Prouff method
would be more competitive, since this has a total amortized time of only 23 ms
per AES block.

Secret-Sharing Based MPC. Other actively implementations of AES/DES
using secret-sharing and dishonest majority based on secret sharing include those
using SPDZ [15,31] and MiniMAC [17,21]. Our AES-BD method is the same
as [15] and obtains faster performance than both SPDZ implementations. For
DES, our TinyTable approach improves upon the times of the binary circuit
implementation from [31] (which are for single-DES, so must be multiplied by
3) by over 100 times. Regarding MiniMAC, the implementation of [17] obtains
slower online phase times than our work and TinyTable, and it is not known
how to do the preprocessing with concrete efficiency.

OP-LUT and SP-LUT. The proposed 2-party protocols by Dessouky et al.
[22] only offer security in the semi-honest setting. The preprocessing phase for
both the protocols are based on 1-out-of-N oblivious transfer. In particular, the
cost of the OP-LUT setup is essentially that of 1-out-of-N OT, while the cost
of SP-LUT is the cost of 1-out-of-N random OT, which is much more efficient
in terms of communication.

The online communication cost of OP-LUT is essentially the same as our
online phase, since both protocols require each party to send log2 N bits for a
table of size N . However, we incur some additional local computation costs and
a MAC check (at the end of the function evaluation) to achieve active security.
The online phase of SP-LUT is less efficient, but the overall communication of
this protocol is very low, only 0.055 MB for a single AES evaluation over a LAN
setting with 1 GB network.

The work [22] reports figures for both preprocessing and online phase: using
OP-LUT gives a latency of around 5 ms for 1 AES block in the LAN setting,
and a throughput of 42000 blocks/s. These are both slower than our online
phase figures using AES-LT. The preprocessing runtimes of both OP-LUT and

246 M. Keller et al.

SP-LUT are much better than ours, however, achieving over 1000 blocks per
second (roughly 80 times faster than AES-LT). This shows that we require a
large overhead to obtain active security in the preprocessing, but the online
phase cost is the same, or better.

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 7

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 430–454. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 17

3. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS 2013. The Internet Society, February 2013

4. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
805–817. ACM Press, October 2016

5. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 578–590. ACM Press, October
2016

6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5 13

7. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practi-
cal implementation of secure auctions based on multiparty integer computation. In:
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer,
Heidelberg (2006). doi:10.1007/11889663 10

8. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary cir-
cuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472
(2015). http://eprint.iacr.org/2015/472

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

10. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 21

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

12. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 25

http://dx.doi.org/10.1007/978-3-662-53887-6_7
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/11889663_10
http://eprint.iacr.org/2015/472
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/978-3-642-55220-5_25

Faster Secure Multi-party Computation of AES and DES 247

13. Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44709-3 10

14. Coron, J., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. J. Cryptogr. Eng. 5(2),
73–83 (2015). http://dx.doi.org/10.1007/s13389-015-0099-9

15. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES
via an actively/covertly secure dishonest-majority MPC protocol. In: Visconti, I.,
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32928-9 14

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 1

17. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the MiniMac protocol for secure computation. In: Abdalla, M., Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 398–415. Springer, Cham (2014). doi:10.1007/
978-3-319-10879-7 23

18. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: Gate-scrambling revisited -
or: the TinyTable protocol for 2-party secure computation. Cryptology ePrint
Archive, Report 2016/695 (2016). http://eprint.iacr.org/2016/695

19. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 38

20. Damg̊ard, I., Zakarias, R.W.: Fast oblivious AES a dedicated application of the
MiniMac protocol. In: Progress in Cryptology - AFRICACRYPT 2016–Proceedings
of 8th International Conference on Cryptology in Africa, Fes, Morocco, 13–15 April
2016, pp. 245–264 (2016). http://dx.doi.org/10.1007/978-3-319-31517-1 13

21. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 35

22. Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: 24th Annual Network and Distributed System Security Symposium (NDSS
2017). The Internet Society, 26 February–1 March 2017 (to appear). http://
thomaschneider.de/papers/DKSSZZ17.pdf

23. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS
2016, pp. 1602–1613. ACM Press, October 2016

24. EMVCo: EMVCo Security QA (2017). https://www.emvco.com/faq.aspx?id=38.
Accessed Feb 2017

25. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 29

26. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 49

http://dx.doi.org/10.1007/978-3-662-44709-3_10
http://dx.doi.org/10.1007/s13389-015-0099-9
http://dx.doi.org/10.1007/978-3-642-32928-9_14
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-319-10879-7_23
http://dx.doi.org/10.1007/978-3-319-10879-7_23
http://eprint.iacr.org/2016/695
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-319-31517-1_13
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://thomaschneider.de/papers/DKSSZZ17.pdf
http://thomaschneider.de/papers/DKSSZZ17.pdf
https://www.emvco.com/faq.aspx?id=38
http://dx.doi.org/10.1007/978-3-662-48797-6_29
http://dx.doi.org/10.1007/978-3-662-48797-6_29
http://dx.doi.org/10.1007/978-3-642-32009-5_49

248 M. Keller et al.

27. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 430–443. ACM Press, October 2016

28. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 34

29. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic com-
putation. In: 2008 IEEE Symposium on Security and Privacy, pp. 216–230. IEEE
Computer Society Press, May 2008

30. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 830–842. ACM Press, Octo-
ber 2016

31. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 549–560. ACM Press, November 2013

32. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ACM SIGPLAN International
Conference on Functional Programming, ICFP 2012, Copenhagen, Denmark, 9–15
September 2012, pp. 189–200 (2012). http://doi.acm.org/10.1145/2364527.2364556

33. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
pp. 579–590. ACM Press, October 2015

34. Litzenberger, D.C.: Pycrypto - the Python cryptography toolkit (2017). https://
www.dlitz.net/software/pycrypto

35. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 40

36. Nielsen, J.B., Schneider, T., Trifiletti, R.: Constant round maliciously secure 2PC
with function-independent preprocessing using LEGO. In: 24th NDSS Symposium.
The Internet Society (2017). http://eprint.iacr.org/2016/1069

37. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 15

38. Pulkus, J., Vivek, S.: Reducing the number of non-linear multiplications in masking
schemes. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813,
pp. 479–497. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2 23

39. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation
with online/offline dual execution. In: 25th USENIX Security Symposium,
USENIX Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 297–314
(2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/rindal

40. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

41. Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking
scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol.
8086, pp. 417–434. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1 24

http://dx.doi.org/10.1007/978-3-642-36594-2_34
http://dx.doi.org/10.1007/978-3-642-36594-2_34
http://doi.acm.org/10.1145/2364527.2364556
https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://eprint.iacr.org/2016/1069
http://dx.doi.org/10.1007/978-3-642-10366-7_15
http://dx.doi.org/10.1007/978-3-662-53140-2_23
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/rindal
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/rindal
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-642-40349-1_24

Faster Secure Multi-party Computation of AES and DES 249

42. Wang, X., Malozemoff, A.J., Katz, J.: Faster two-party computation secure against
malicious adversaries in the single-execution setting. In: EUROCRYPT 2017 Pro-
ceedings (2017)

43. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and communication-
efficient, constant-round, secure two-party computation. IACR Cryptology ePrint
Archive 2017, 30 (2017). http://eprint.iacr.org/2017/030

http://eprint.iacr.org/2017/030

Cryptographic Primitives

An Experimental Study of the BDD Approach
for the Search LWE Problem

Rui Xu1(B), Sze Ling Yeo2, Kazuhide Fukushima1, Tsuyoshi Takagi3,
Hwajung Seo2, Shinsaku Kiyomoto1, and Matt Henricksen4

1 KDDi Research Inc., Fujimino, Japan
ru-xu@kddi-research.jp

2 Institute for Infocomm Research (I2R), Singapore, Singapore
3 Institute of Mathematics for Industry (IMI), Kyushu University, Fukuoka, Japan

4 Huawei Technologies, Singapore, Singapore

Abstract. The proved hardness of the Learning With Errors (LWE)
problem, assuming the worst case intractability of classic lattice prob-
lems, has made it a standard building block in the recent design of lat-
tice based cryptosystems. Nonetheless, a thorough understanding of the
security of these schemes from the perspective of existing attacks remains
an open problem. In this manuscript, we report our implementation of
the Bounded Distance Decoding (BDD) approach for solving the search
LWE problem. We implement a parallel version of the pruned enumera-
tion method of the BDD strategy proposed by Liu and Nguyen.

In our implementation we use the embarrassingly parallel design so
that the power of multi-cores can be fully utilized. We let each thread
take a randomized basis and perform independent enumerations to find
the solution instead of parallelizing the enumeration algorithm itself.
Other optimizations include fine-tuning the BKZ block size, the enumer-
ation bound and the pruning coefficients and the optimal dimension of
the LWE problem. Experiments are done using the TU Darmstadt LWE
challenge. Finally we compare our implementation with a recent paral-
lel BDD implementation by Kirshanova et al. [18] and show that our
implementation is more efficient.

Keywords: Learning With Errors · Lattice based cryptography ·
Security evaluation · Bounded Distance Decoding

1 Introduction

Decades of development in the area of lattice-based cryptography have identified
two important primitive hard problems, namely, the Shortest Integer Solution
(SIS) problem [1] and the Learning With Errors (LWE) problem [24], to be
standard building blocks of modern lattice-based cryptosystems.

In this work, we focus on the LWE problem proposed by Regev [24]. LWE has
attracted more and more attention since its proposal. Initially LWE problem was
reduced to the GAPSVP (the decision version of the shortest vector problem) or
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 253–272, 2017.
DOI: 10.1007/978-3-319-61204-1 13

254 R. Xu et al.

SIVP (Shortest Independent Vector Problem) under the quantum setting. This
means that LWE is considered hard if there are no algorithms to efficiently solve
the GAPSVP or SIVP using a quantum computer. Subsequently, the hardness
reduction as been sharpened to accept a classic reduction to these standard
lattice problems [8]. As such, LWE-based schemes are widely studied as potential
primitives in the post-quantum era.

LWE. Let n be a positive integer, denoting the dimension of the lattice related
with the LWE problem, q an odd prime, and let D be an error distribution over
the integer ring modulo q, Zq. Denote by s a fixed secret vector in Z

n
q (in this

manuscript we adopt the row vector convention to be consistent with software
implementation) selected according to the uniform distribution on its support.
Let Ln,q,D be the probability distribution on Z

n
q × Zq generated by choosing

a ∈ Z
n
q uniformly at random, choosing an error e according to D and returning

(a, c) = (a, 〈a, s〉 + e)

in Z
n
q × Zq, where 〈·, ·〉 denotes the inner product of two vectors in Z

n
q . The

search LWE problem is to find the secret vector s given a fixed number of m
samples from Ln,q,D.

Although the intractability of LWE is well established by the reduction
proofs, its concrete hardness is far from clear. In this work we follow the app-
roach of Liu and Nguyen [21] to evaluate the performance of the BDD approach
for solving LWE problem.

1.1 Our Contribution

In this manuscript, our main contributions include:

– We implement a parallel version of the BDD approach for solving the LWE
problem. The implementation features an embarrassingly parallel design
where each thread takes a randomized basis and performs an independent
enumeration. The advantage of this design is that the power of multi-cores
can be fully utilized.

– We give heuristic analysis on how to choose the optimal sub-dimension of the
LWE instance. We use the Gaussian heuristic to estimate the cost of a pruned
enumeration tree to find better sub-dimension which can reduce the time to
solve an LWE instance.

– We compare our implementation with that of Kirshanova et al. [18] and show
the advantages of our implementation. Specifically we show that the perfor-
mance of our parallelization strategy is not limited by Amdahl’s Law and the
extreme pruning in our implementation brings huge speedup compared with
the linear pruning used in the implementation of [18].

– We demonstrate that our implementation solves a couple of instances from
the TU Darmstadt LWE challenge.

An Experimental Study of the BDD Approach for the Search LWE Problem 255

2 Preliminaries

2.1 Discrete Gaussian Distribution

We first describe the error distribution D in the LWE problem. In the general
situation, any error distribution with small variance is fine for the LWE problem
to be hard. However, in this work, similar to many other previous works regarding
LWE, we focus on the discrete Gaussian distribution over the ring Zq as the error
distribution. Let x ∈ Z. The discrete Gaussian distribution over Z with mean 0
and width parameter σ, denoted by DZ,σ assigns to each x ∈ Z the probability
proportional to exp(−x2/2σ2). The error distribution we consider for the LWE
problem is the discrete Gaussian distribution over Zq, denoted by DZq,σ, by
accumulating the values of the probability mass function over all integers in
each residue class mod q. In the original proposal of Regev, the width parameter
associated with the moduli q is σ = αq√

2π
, where α is the relative error rate. With

a slight abuse of notation, we also denote the discrete Gaussian distribution as
DZq,αq. When the error distribution of an LWE instance is DZq,αq, we express
the LWE instance as Ln,q,α.

2.2 Lattice

A lattice in R
m is a discrete additive subgroup generated by a (non-unique) basis

B = (b1, . . . ,bm)T . Equivalently, the lattice Λ(B) generated by B is given by
Λ(B) = {x|x =

∑m
i=1 zibi}, where zi’s are integers. Note that by our convention,

the vector bi in the basis matrix B is its row vector. The rank of the lattice Λ(B)
is defined as the rank of the basis matrix B. If the rank of Λ(B) equals m, we
say that the lattice is full rank. A fundamental notion that lies in various lattice
problems is the successive minimal λk(Λ) which is defined to be the smallest real
number r such that the lattice contains k linearly independent nonzero vectors
of Euclidean length at most r. Specifically, λ1(Λ) is the length of the shortest
nonzero vector of the lattice Λ.

The lattices we are interested in are a special type of lattices called q-ary
lattices which are lattices satisfying qZm ⊂ Λ ⊂ Z

m. Fix positive integers n ≤
m ≤ q, where n serves as the main security parameter, and q is an odd prime.
For any matrix A ∈ Z

m×n, define the following two lattices.

Λ⊥
q (A) = {x ∈ Z

m : xA = 0 mod q},

Λq(A) = {x ∈ Z
m : x = As mod q for some s ∈ Z

n
q }.

It is easy to check that both Λ⊥
q (A) and Λq(A) are q-ary lattices [23].

2.3 Lattice Reduction

As we have noticed in Sect. 2.2 that a lattice can be generated from different
bases, the property of the basis plays a central role in the difficulty of various
hard lattice problems. Informally, the more orthogonal the basis is, the easier

256 R. Xu et al.

the corresponding lattice problems are. As such, many attempts to solve hard
lattice problems try to alter (often called reduce in the literature) the given basis
in order to get basis which generates the same lattice while at the same time
achieves the highest orthogonality possible. We adopt the convention that the
first vector b1 in a reduced basis has the smallest length among the (reduced)
basis vectors. After the lattice reduction algorithm, we can use the vector b1

as an approximation of the shortest vector. Since the determinate of a lattice is
invariant under lattice reduction, when the basis is reduced, the length of each
basis vector decreases. The common measurement of the quality of a lattice basis
is called Hermite factor δm defined as: ||b1|| = δmvol(Λ)1/m. We also refer to
δ as the root-Hermite factor. A smaller root-Hermite factor typically implies a
reduced basis with higher quality.

Lattice reduction algorithms can be viewed as a hierarchy of BKZ [26] based
on the parameter blocksize β. The case when β = 2 is called LLL reduction,
which was invented by Lenstra et al. [20]. LLL reduction is proven to run in
polynomial time in the lattice dimension and outputs a short vector which is
within an exponential factor of the minimal length of a lattice Λ, i.e., λ1(Λ).
When β = m, i.e., the full size of the basis, the output basis is HKZ reduced
[17] which implies solving the SVP. The situation when k lies in between 2 and
m is known as the BKZ-β reduction which is the most referenced reduction
algorithm in practice. Chen and Nguyen observed that the running time of BKZ
reduction is mainly dominated by the root-Hermite factor δ and is less affected
by the dimension m. See Chen and Nguyen [11] for a detailed analysis and their
improvements over the standard BKZ as a collection of optimization known as
BKZ 2.0. See also Albrecht et al. [2] for a thorough comparison of different
estimations of the complexity of BKZ.

2.4 Pruned Enumeration

Gram-Schmidt Orthogonalization. Given a lattice basis B = (b1, . . . ,bm)T ,
the Gram-Schmidt Orthogonalization of B is denoted as B∗ = (b∗

1, . . . ,b
∗
m),

where b∗
i is computed as b∗

i = bi − σi−1
j=1μi,jb∗

j for i = 1, . . . , m, with μi,j =<

bi,b∗
j > /||b∗

j ||2 for all 1 ≤ j ≤ i ≤ m. Denote by πi(·) the orthogonal projection
onto (b1,b2, . . . ,bi−1)⊥. Then b∗

i = πi(bi). Also πi(Λ(B)) is an (m + 1 − i)-
dimensional lattice generated by the basis (πi(b1), πi(b2), . . . , πi(bi−1))T .

Lattice Enumeration. Given a target vector t, a lattice basis B =
(b1, · · · ,bm)T and a radius R, lattice enumeration algorithm enumerates over
all lattice vectors v ∈ L such that ||v − t|| ≤ R and finds the closest one. The
enumeration algorithm enumerates over a search tree leveled by the enumeration
depth k ∈ [m]. The root of the search is levelled using k = 0 and it represents
the target vector. And k = m corresponds to the leaves. The nodes at level k of
the search tree consist of all vectors v ∈ Λ(B) such that ||πm+1−k(t − v)|| ≤ R.
Gama et al. [14] use Gaussian heuristic to approximate the number of nodes in
the k-th level of the enumeration tree as

Hk =
Vk(R)

∏n
i=m+1−k ||b∗

i ||2
, (1)

An Experimental Study of the BDD Approach for the Search LWE Problem 257

where Vk(R) denotes the volume of a k-dimensional ball of radius R. Then the
total number of nodes in the enumeration tree is N =

∑m
k=1 Hk.

Gamma et al. also suggest to use extreme pruning to accelerate the enu-
meration algorithm. The idea of extreme pruning is by deliberately setting the
probability that the solution vector is in the tree after pruning to be very small
to cut lots of branches in the enumeration tree. Though the success proba-
bility of finding the desired solution becomes quite low, it is compensated by
the huge reduction of the enumeration time. Their experiments show an expo-
nential speed up over full enumeration. Formally, pruned enumeration bounds
the enumeration tree by limiting the k-level nodes to those vectors v ∈ Λ(B)
such that ||πm+1−k(v − t)|| ≤ Rk with Rk denoting the pruned radius and
R1 ≤ R2 ≤ . . . ≤ Rm = R.

3 Related Work

We consider the search version of the LWE problem in this work. There are
mainly three ways to solve the search LWE problem.

1. BKW approach: Blum, Kalai and Wasserman proposed BKW algorithm for
the LPN (learning with parity noise) problem. Since LWE can be viewed as
a generalization of LPN problem, BKW was also adapted to solve LWE by
Albrecht et al. [3].

2. Algebraic approach: Arora-Ge [6] proposed to set up a system of algebraic
equations over integers to describe the LWE problem and solve the search
problem by solving the equation system. Later, this method was improved by
using Gröbner basis techniques [4].

3. BDD approach: This approach views the search LWE problem as a decoding
problem in a lattice. We will explain this idea in more details in the following.

Bounded Distance Decoding (BDD): Given m samples (ai, ci) following the
given LWE distribution Ln,q,D, we organize the input into a matrix A ∈ Z

m×n
q

whose rows constitute the m samples of the vector ai, and a vector c ∈ Z
m
q whose

i-th element is ci from the i-th sample. Note that c = As + e, where e is the
error vector which follows the distribution Dn. When the error distribution of
the LWE problem is the discrete Gaussian distribution DZq,αq, we observe that
the length of e is relatively small since each of its entries is distributed according
to the discrete Gaussian. Consider the q-ary lattice

Λq(A) = {x ∈ Z
m : x = As mod q for some s ∈ Z

n
q },

induced by A. Then the vector c is bounded in distance from a vector v ∈ Λq(A).
Finding the vector v from the q-ary lattice is called the BDD problem.

One approach to solve the BDD problem is to reduce the BDD problem to
unique SVP problem by the embedding technique of Kannan [17] and solve the
corresponding SVP problem. Another more common approach is to adapt the
well-established Babai’s algorithm to solve the BDD problem directly. In this

258 R. Xu et al.

regard, Lindner and Peikert [22] proposed a variant of Babai’s nearest plane
algorithm to solve the BDD problem. Bischof et al. [10] and Kirshanova et al.
[18] have implemented parallel versions of this algorithm and investigated its
practical performance. Liu and Nguyen [21] observed that Lindner and Peickert
nearest plane algorithm can be viewed as a form of pruned enumeration where
in the former, the pruning strategy bounds the coefficients instead of the usual
way of bounding the projection lengths. Further, they propose to use the lattice
enumeration with GNR extreme pruning strategy to accelerate the speed of
finding the closest vector. This will be the approach we use in our experimental
study. We refer the readers to the excellent survey by Albrecht et al. [2] for a
comprehensive exploration of the concrete hardness of LWE.

4 Our Implementation

We choose to implement the Liu and Nguyen algorithm to study its practical
performance. This algorithm uses enumeration with extreme pruning to solve the
BDD problem. Given M samples {(ai, ci)}i=1,2,...,M from the LWE distribution
Ln,q,α, we use the matrix representation to express the LWE problem as As+e =
c. We outline the algorithm steps as follows:

Algorithm 1. LWE solver using BDD approach
Require: Inputs are n, M, α, q,A ∈ ZM×n

q , c ∈ ZM
q . The inputs satisfy As + e = c

mod q for some hidden secret vector s ∈ Zn
q and error vector e ∈ ZM with its

coefficients chosen independently according to the discrete Gaussian distribution
DZq,αq.

Ensure: Output the hidden secret vector s ∈ Zn
q with high probability.

1: Decide an appropriate sub-dimension m for the given LWE instance.
2: Choose m random rows from the matrix A as A′ ∈ Zm×n

q and the corresponding
m elements from the vector c′ ∈ Zm

q .
3: Compute the basis of the q-ary lattice Λq(A

′) generated by A′, denote it by B.
4: Choose an appropriate block size β and use BKZ-β to reduce the lattice basis B.
5: Choose an appropriate enumeration radius R.
6: Compute a set of pruning coefficients and use pruned enumeration to find the

closest vector v to the target vector c′ using the enumeration radius R.
7: If the closest vector v can be found, then compute the secret vector s by solving

the equation A′s = c′ − v mod q and return s. Otherwise, goto Step 2.

The red and underlined parameters sub-dimension m, BKZ block size β and
enumeration radius R in Algorithm 1 need to be optimized to achieve better
performance for our LWE solver. However, it is easy to see that these parameters
affect the running time and success probability of our LWE solver in an entangled
way. Thus it is a multi-object optimization problem. In general, it is not trivial
to solve such a multi-object optimization problem.

We give detailed explanation of the choice we make regarding each step of
the algorithm in subsequent subsections.

An Experimental Study of the BDD Approach for the Search LWE Problem 259

4.1 Compute the Basis

This is easy linear algebra. Given a matrix A of size m × n, we want to find
the matrix B which is the basis of the q-ary lattice Λq(A) = {x ∈ Z

m : x =
As mod q for some s ∈ Z

n
q }. Recall that we use the convention of row vec-

tors, so a lattice vector generated by the basis B can be represented by zB where
z is a row vector. If we forget for a moment that we are working on the modu-
lar ring Zq, then the basis for Λq(A) is simply AT , the transpose of A since all
lattice vectors except for those in qZm can be expressed by an integer linear com-
bination of rows in matrix AT . To include qZm in order to make it q-ary lattice,
we further compute the Hermite normal form of

[
AT

qIm

]
to get the basis of the

q-ary lattice Λq(A). In other words, B = HNF(
[
AT

qIm

]
), where HNF(A) denotes

the row Hermite normal form of a matrix A removing all zero rows. To see this,
first note that qZm itself can be viewed as a lattice with the (m dimensional)
identity matrix scaled by q as its basis. Thus, we get Λq(A) = Λ(AT) ∪ Λ(qIm).
The last step of our computation relies on the following fact:

Fact 1. Given two lattices Λ(B1) and Λ(B2) of the same dimension, the
basis for the lattice generated by the union of Λ(B1) and Λ(B2) is HNF(

[
B1
B2

]
).

4.2 Enumeration Radius and Basis Randomization

The enumeration radius only affects the running time and success probability of
the enumeration part. Consider an LWE instance Ln,q,α. Fix m samples from
it to get the equation A′s + e′ = c′ mod q. The exact BDD radius is the
length of the error vector e′ ∈ Zm. Though we do not know the exact value
of ||e′||2, we know that its coefficients are generated from the discrete Gaussian
distribution DZq,αq. According to the acceptance criteria of the LWE challenge,
the requirement is that ||e′|| ≤ 2

√
mαq for an LWE instance Ln,q,α with m

samples. Thus one option is to take R = 2
√

mαq as the BDD bound. More
generally, we set squared BDD bound R2 as c · mα2q2 for some fixed constant
c. To approximate the BDD bound R, we sampled error vectors according to
the discrete Gaussian distribution and record the squared length of the error
vector e′. See Fig. 1 for our experiment results. The figure shows the histograms
of the distribution of the squared norm of error vector e′ with the bins set as the
multiplier between ||e′||2 and mα2q2 (i.e., the scalar c). From Fig. 1 we can see
that c = 1.3 is an appropriate choice for making sure that the closest vector can
be found with overwhelming probability and the distribution of the scalar c does
not depend on the parameters n, α and m. However, if one chooses c = 1 so as
to reduce the running time of the enumeration algorithm, then with probability
about half, the closest vector can not be found within this radius.

Typical applications of pruned enumeration will first randomize the lattice
basis by multiplying the basis matrix with a random unimodular matrix and
then apply pruned enumeration to find the desired shortest vector or closest
vector. If we adopt this method in our LWE solver, two problems arise.

260 R. Xu et al.

1. The randomized basis usually has larger entries than the initial basis, thereby
adding some burden to the lattice reduction algorithm.

2. If we want to choose a smaller enumeration radius such as setting the scalar
c less than 1.3, we might miss the opportunity of finding the closest vector.
This is primarily due to the fact that we are working with different bases of
a fixed lattice and hence, the error norm is fixed.

Our randomization is natural and effective. We do not bother to do random-
ization over a fixed lattice but instead we choose a different lattice each time. In
most instances, the number of samples M is larger than the LWE dimension n.
It follows that after deciding on a sub-dimension m with n < m < M , we can
randomly choose m samples from the total M samples to form a different lattice
each time. This simple trick solves the two problems discussed above. First the
entries of the generated basis are all less than or equal than q. Second, since
we randomize over the different m-combinations of the samples, the error vector
e′ changes every time. Then we can choose a lower enumeration bound R and
be confident that a fixed portion of the trials contribute to error vectors within
the bound. For example, according to Fig. 1, if we choose R2 = mα2q2 then the
closest vector could be found within this bound with probability about 50 %.

Denote by penum the success probability of an enumeration algorithm given
that the length of the error vector ||e′|| is indeed within the enumeration bound
R. For simplicity we first consider ||e′|| ≤ 1.3·mα2q2. Let Tenum(c) be the time of
the enumeration algorithm when setting the enumeration radius to be c ·mα2q2.
We can estimate the total time of enumeration to find the closest vector (when
setting c = 1.3) as T (1.3) = Tenum(1.3)/penum. Further assuming that changing
the enumeration radius does not affect penum, we can approximate the success
probability of the enumeration algorithm using different enumeration scalars c.
For example if we choose c = 1 the probability that the error vector is within
1 · mα2q2 is about 0.5 so we get the total enumeration time of solving the BDD
problem as T (1) = 2∗Tenum(1)/penum. In particular, choosing c = 1 may lead to
a faster algorithm if Tenum(1) < Tenum(1.3)/2. Thus, by analyzing the impact
of the enumeration radius on the running time of enumeration algorithm, we
can choose nearly optimal enumeration radius. Finally, we can use the Gaussian
heuristic Eq. (1) to approximate Tenum(c) (see below).

4.3 Choose Sub-dimension

In the typical setting of LWE problem, the number of total samples M is bounded
by a polynomial of the LWE dimension n. When treating LWE as a lattice
problem, an important decision concerns a suitable choice for the dimension of
the lattice. The dimension of the lattice equals the number of samples we choose.
How many of the total M samples do we use to form the generating matrix A′?

First, we show that if the sub-dimension were chosen too small, the sub
LWE problem may not have a unique solution. Consider the following equation
A′s + e′ = c′. For any choice of s, we can find an error vector e′ satisfying
the above equation. However, the LWE problem restricts the length of e′. More

An Experimental Study of the BDD Approach for the Search LWE Problem 261

(a) n = 40, α = 0.005,
m = 100.

(b) n = 50, α = 0.010,
m = 120.

(c) n = 60, α = 0.015,
m = 140.

Fig. 1. Histograms of square length of e′ for different parameters.

precisely, each element of e′ is chosen from the discrete Gaussian distribution
with small variance and thus, it can not be too large. TU Darmstat University has
held an LWE challenge website1 similar to the famous SVP challenge. According
to Buchmann et al. [9], the acceptance criteria for the correct answer of the LWE
problem Ln,q,α with M samples is that ||e|| ≤ 2

√
Mαq. Based on this criteria,

when we choose the sub-dimension to be m, we would also expect to find a
secret vector s such that it leads to a error vector of length less than 2

√
mαq.

Following the argument of Buchmann et al. [9], we calculate the probability
that the sub LWE problem has more than one solution. For a chosen matrix
A′ of size m × n, let Λq(A′) denote the q-ary lattice generated by A′. Recall
that λ1(Λq(A′)) is the norm of the shortest non zero vector in Λq(A). Assume
that we have two solutions for the secret vector s1 and s2 satisfying the criteria
A′s1+e′

1 = c′ = A′s2+e′
2 and e′

i ≤ 2
√

mαq. Then by the triangle inequality, we
have ||A′(s1 − s2)|| ≤ 4

√
mαq. Since A′(s1 − s2) is actually a vector in the q-ary

lattice Λq(A′), the fact that the sub LWE problem has more than one solution
implies that λ1(Λq(A′)) ≤ 4

√
mαq. On the other hand, Gaussian heuristic tells

us that the expected length of the shortest vector of Λq(A′) is q1− n
m

√
m
2πe . In

view of this, in our implementation we choose the sub-dimension m such that
the corresponding Gaussian heuristic q1− n

m

√
m
2πe is larger than 4

√
mαq so that

the expected number of solutions is small.
The next question concerns how large the lattice sub-dimension m should be.

Note that a large dimension invariably increases the time for the basis reduction.
In [15], the authors experimentally showed that for a random input lattice, the
root Hermite factor δ after a BKZ-beta reduction is independent of the lattice
dimension. The following table shows the root Hermite factor obtained from
various m random samples taken from the LWE challenge with α = 0.005 under
a BKZ-20 reduction averaged over 20 experiments for each pair of m and n
(Table 1).

One sees that for each n, the value of δ is approximately 0.128 for the first
values of m but deviates from this value for larger values of m. A closer exam-
ination reveals that in the latter case, the shortest vectors produced by the

1 https://www.latticechallenge.org/lwe challenge/challenge.php.

https://www.latticechallenge.org/lwe_challenge/challenge.php

262 R. Xu et al.

Table 1. Average root hermite factor for LWE instances with sub-dimension m

n m

100 110 120 130 140 150 160 170 180 190 200

40 1.01272 1.01312 1.01291 1.01289 1.01308 1.01296 1.01160 1.01026 1.00915 1.00821 1.00741

45 1.01290 1.01276 1.01291 1.01301 1.01290 1.01298 1.01309 1.01193 1.01063 1.00954 1.00860

50 1.01282 1.01290 1.01282 1.01291 1.01301 1.01289 1.01309 1.01298 1.01215 1.01090 1.00983

55 1.01285 1.01298 1.01291 1.01291 1.01296 1.01310 1.01296 1.01296 1.01311 1.01229 1.01109

60 1.01281 1.01279 1.01287 1.01291 1.01296 1.01304 1.01301 1.01305 1.01309 1.01312 1.01236

65 1.01286 1.01280 1.01300 1.01304 1.01297 1.01303 1.01298 1.01312 1.01304 1.01322 1.01300

reduction algorithm are the unit vectors scaled by q. In general, we will like
to have the lattice reduction to produce vectors with length less than q which
tends to suggest that the input vectors are more well-mixed by the reduction
algorithm to produce short vectors. In view of this, for a given BKZ-beta reduc-
tion, we will select the sub-dimension m such that the predicted shortest vector
has length less than q, namely, δmq1−n/m ≤ q or, m ≤ √

n log q/ log δ, where δ is
the expected root Hermite factor. For δ = 1.0128, one checks that this gives the
pairs (n,m) to be (40, 152), (45, 164), (50, 175), (55, 186), (60, 196) and (65, 206).

Apart from the lattice reduction, the size of m also affects the enumeration
cost. Here, we examine the impact of m for the full enumeration tree. We propose
to use the Gaussian heuristic to estimate the enumeration cost, i.e., Eq. (1) to
estimate the (full) enumeration cost and to decide the optimal sub-dimension.
The total cost is N =

∑m
k=1 Hk. We however do not know how to systematically

solve the equation to find an optimal m which minimizes the total cost N . Instead
we use numerical calculation to determine the optimal sub-dimension m for fixed
BKZ block size β. We plot the total cost N =

∑m
k=1 Hk for an LWE instance

by varying the sub-dimension m. Figure 2 shows the estimated (logarithm of)
full enumeration cost for different parameters. We deploy a conversion that for
an LWE instance Ln,q,α, q is set to be the next prime of n2 which follows the
parameter setting of the LWE Challenge. Comparing Fig. 2a and b, we see that
for fixed n and BKZ block size β, the optimal sub-dimension m does not depend
on the relative error rate α. Figure 2a and c show the impact of BKZ block size β
on the optimal sub-dimension. As we can see, by increasing β, the optimal sub-
dimension m also increases and the full enumeration cost decreases for larger
β. However, the larger β requires more BKZ reduction time. There is still a
need for a trade-off between the BKZ reduction time and enumeration time
by setting an appropriate block size β. We discuss this in the next subsection.
Finally combining Fig. 2b and d, we can further get the impression that for fixed
relative error rate α and BKZ block size β, the larger the dimension of the LWE
instance n is, the larger sub-dimension we need to get an optimal performance.
One problem of the numerical method to decide on the optimal sub-dimension
is that we did not consider the BKZ reduction part. In practice we need to
consider the running time of BKZ reduction algorithm, so the actual optimal
sub-dimension is usually less than that viewed from the plot. However, the plot
can still act as a rough guide to find the optimal sub-dimension. Due to page

An Experimental Study of the BDD Approach for the Search LWE Problem 263

(a) n = 50, α = 0.005, β = 20. (b) n = 50, α = 0.015, β = 20.

(c) n = 50, α = 0.005, β = 10. (d) n = 60, α = 0.015, β = 20.

Fig. 2. Semi-log graph for full cost N . The parameters have the following reference: n
is the LWE dimension, α is the relative error rate of the LWE instance and β is the
block size for BKZ reduction algorithm used. Different colors stand for different trials.
(Color figure online)

constraints, we defer the details of the estimation of enumeration cost and the
relation between cost of full enumeration and that of enumeration with extreme
pruning in AppendixA.

4.4 Balancing Reduction and Enumeration

Since we use enumeration to solve the BDD problem, we want to first reduce the
lattice basis before applying enumeration. BKZ is now the de-facto standard of
lattice reduction algorithm in cryptanalysis. We use the BKZ implementation in
FPLLL [5] library to perform BKZ reduction.

The quality of the reduced basis and the running time of BKZ reduction
algorithm highly depend on the block size β. The choice of an appropriate block
size β affects the total running time of our LWE solver. Generally speaking, a
larger block size β leads to longer running time of BKZ reduction algorithm
but the highly reduced basis will decrease the running time of enumeration. So
the folklore is that the optimal block size β should balance the running time

264 R. Xu et al.

Fig. 3. Running time for BKZ reduction and pruned enumeration.

of BKZ reduction and enumeration. In other words, when the BKZ reduction
time and the enumeration time are close to each other, the total running time
is minimized. See Fig. 3 for an example. We plot the actual running time of
BKZ reduction algorithm and pruned enumeration time for the LWE instance
L40,1601,0.015 using sub-dimension m = 120. The enumeration radius is set to
be R2 = 0.8mα2q2. The figure confirms the folklore that the optimal block size
β should roughly balance the running time of BKZ reduction and enumera-
tion. However, finding such optimal block size is not easy, especially for extreme
pruning. In our experiments we manually tune the block size β by measuring
the running time of the BKZ reduction part and pruned enumeration part.

4.5 Parallelization

Parallelism is ubiquitous in today’s program design. We have multi-core CPUs
even in our laptops. It is natural to implement the LWE solver algorithm in
parallel. One option is to use parallel implementation of enumeration algorithm
and parallel implementation of lattice reduction algorithm. Alternatively, One
can use a sequential implementation of lattice reduction algorithm and enumer-
ation algorithm but instead launch several threads to solve the BDD problem
with different randomized basis. We choose the latter approach for its simplicity
and its embarrassing parallelism. Although there are parallel implementations of
lattice enumeration algorithms [12,13,16,19], we do not know any public avail-
able parallel implementation of BKZ reduction algorithm. Thus if we want to

An Experimental Study of the BDD Approach for the Search LWE Problem 265

use parallel implementation of enumeration we might have to use a sequential
implementation of BKZ reduction. Amdahl’s Law sets a bound on the potential
program speedup defined by the fraction of code (p) that can be parallelized as
speedup = 1

1−p . In using the combination of BKZ reduction and enumeration
to solve the SVP or CVP problem, it is common knowledge that when the run-
ning time of BKZ reduction part and the enumeration part are roughly equal,
the total running time is minimized (refer to the previous section and Fig. 3). If
we want optimal performance then the fraction of parallelizable code would be
about 1/2. It follows that regardless of how many threads are used, the speedup
can be at most 2. We can circumvent this by using a small block size for the
BKZ reduction, or plugging in the parallel enumeration into the BKZ reduction,
but those methods are either complicated or do not achieve optimal performance
gain.

In our implementation we use the embarrassingly parallel design to let each
thread work on a different randomized basis, and thus there is no load balance
issue. In order to achieve best performance we carefully choose the BKZ block
size so that the BKZ reduction time is comparable to the enumeration time.

5 Experimental Results

Our implementation is written in C++, using the library FPLLL for BKZ reduc-
tion and lattice enumeration. Our program is compiled using gcc 5.4.0 on a desk-
top running Ubuntu 14.04 LTS. We test our LWE solver using the instances from
the LWE challenge website. We use extreme pruning [14] for lattice enumeration
as suggested by Liu and Nguyen [21]. Gamma et al. [14] suggest using numerical
approximation to generate optimal pruning coefficients by fixing the successful
probability and seeking for minimum overhead. Aono [7] also describes how to
compute the optimal pruning coefficients. We follow Aono’s approach to com-
pute the optimal pruning coefficients in our implementation. We are preparing to
release the source code after further optimization. At this moment, it is available
upon request.

5.1 LWE Challenge

TU Darmstadt held a LWE challenge project. The challenge provides LWE
instances with different parameters. The LWE challenge instance is identified
by two parameters: the LWE dimension n and the relative error rate α. The
other parameters of an LWE instance are set as follows:

– Moduli q is set as the next prime of n2;
– Number of samples is set as M = n2;
– Error distribution is set as the discrete Gaussian distribution with width

parameter σ = αq, i.e., the distribution DZq,σ.

Using our implementation described in the preceding section, we solved sev-
eral instances from the LWE Challenge website. Please refer to Table 2 for the

266 R. Xu et al.

Table 2. Results on solving some instances from the LWE Challenge website

LWE parameters BKZ reduction Enumeration #Trials Total time

n α m β t c t

40 0.005 100 10 - 1.3 - 2 4 s

40 0.01 120 10 4 s 1.3 4 s 2 16 s

40 0.015 120 18 12 s 0.8 10 s 819 18403 s

40 0.02 140 32 10.9 d 1.3 27.1 d - 38 d

45 0.005 120 5 3 s 1.3 1 s 6 23 s

50 0.005 120 15 5 s 1.0 2 s 5 35 s

60 0.005 140 28 27 h 0.8 24 h - 51 h

Note that the instances L40,0.02 and L60,0.005 take quite long time thus
we use parallelized version of the solving algorithm, and we do not record
the number of trials for these two instances.

detailed recording of the LWE parameters, the block size we used for BKZ
and the running time for solving these instances. All the instances except two
are run using a single thread on a desktop with a 3.60 GHz Intel Core i7
processor with eight cores and 32 GB 1600 MHz DDR3 memory. The instance
(n = 60, α = 0.005) was run on a cluster consisting of 20 c4.8xlarge instances,
each having 36 cores with a 60 GB memory (720 threads in total), on the Ama-
zon EC2 platform. The instance (n = 40, α = 0.02) was solved on a cluster
consisting of 8 desktops with a 3.60 GHz Intel Core i7 processor with eight cores
and 32 GB 1600 MHz DDR3 memory (64 threads in total).

In the experiments we carefully choose the BKZ block size β to ensure the
BKZ reduction time is comparable with the enumeration time so as to achieve the
reduction on overall running time. Our experiments indeed confirm the folklore
that when BKZ reduction time roughly equals that of enumeration time the
total running time achieves the minimal. The squared BDD bound R2 was set
as c ·mα2q2. The successful probability in our pruning strategy is set to be 0.01.
From the results of our experiments we find that the relative error rate α plays
an important role in the hardness of the LWE problem.

5.2 Comparison with Other Implementations

Recently Kirshanova et al. [18] report a parallel implementation of BDD enumer-
ation for solving LWE. They implement both the Lindner-Peikert [22] nearest
planes algorithm and the pruned enumeration method2 proposed by Liu and
Nguyen [21]. They directly implement a pruned parallel enumeration algorithm.
Their experiments show that the enumeration algorithm can be nicely paral-
lelized. For example, they achieve a linear speedup by increasing the number
of threads even until 10. However, the BKZ reduction is not parallelized. We
can observe the impact of Amdahl’s Law from their experimental results. For
2 Kirshanova et al. use linear pruning instead of extreme pruning.

An Experimental Study of the BDD Approach for the Search LWE Problem 267

example in order to solve the LWE instance L80,4093,5 their serial implementa-
tion needs 4.3+13 = 17.3 h. Their parallel implementation using 10 threads can
reduce the enumeration time from 13 h to 1.5 h. Then the total running time is
4.3 + 1.5 = 5.8 h. That is a 3x speedup by using 10 threads. Even when they
increase the number of threads to 20, the total running time is 4.3+0.8 = 5.1 h,
which gives a 3.4x speedup by using 20 threads. Although one can circumvent
this by using a very small block size for the BKZ reduction part, as we discussed
in Sect. 4.4 this choice would increase the total running time of BKZ reduction
and pruned enumeration.

On the contrary, our strategy to use extreme pruning and to use many threads
working on different basis can scale quite well with respect to the number of
threads. Moreover, using extreme pruning can highly reduce the time used by enu-
meration and thus reduce the total time needed for solving the LWE instance. We
compare the running time of our implementation and that of Kirshanova et al.
in Table 3. In the table, the time t for BKZ and enumeration stands for the total
BKZ time and enumeration time for solving the corresponding LWE instance. In
Kirshanova et al.’s setting they fixed the number of samples for the LWE instance
and all their experiments use the fixed dimension. We try a different setting where
the number of LWE samples are a polynomial of n, say n2 so that we can use the
optimal sub-dimension to reduce the difficulty of the LWE instance.

Table 3. Comparison between Kirshoanova et al. and ours results.

LWE Kirshanova et al. Ours implementation

Sub-dim BKZ Enum Sub-dim BKZ Enum #Trials

n q s m β t #Treads t m β t c t

70 4093 6 140 20 65min 1 44min 140 20 19min 1.0 36 s 18

140 20 65min 10 5min 140 15 551 s 1.0 182 s 32

80 4093 5 150 25 4.3 h 1 13 h 150 15 2.8 h 0.8 2.4 h 347

150 25 1.3 h 10 1.5 h 180 8 6min 1.0 64min 12

150 25 1.3 h 20 50min 180 10 417 s 1.0 117s 12

The first row of Table 3 shows that extreme pruning can indeed speedup
the LWE solver. Kirshanova et al. need 109 min to solve the instance L70,4093,6

on a single thread, while our implementation can solve the instance using the
same sub-dimension and block size β = 20 within 20 min. Further more, their
implementation uses 70 min to solve the instance on 10 threads. Since our imple-
mentation uses 18 trials to solve the instance we can solve the instance within
the time of two rounds if given 10 threads. Basically, we only need less than
4 min to solve the same instance given 10 threads. We note that the block size
β = 20 is not optimal for our implementation. By changing β to 15, we solve the
instance L70,4093,6 in 12 min on a single thread.

To further demonstrate the effectiveness of extreme pruning, we compare the
performance of both our implementations for the instance L80,4093,5. When we
use the same sub-dimension as m = 150, the running time of our implementation

268 R. Xu et al.

on a single thread is 5.2 h which is much smaller than 17.3 h of Kirshanova et
al. But the advantage of our implementation lies also in another factor. Notice
that the algorithm uses 347 trials to find the correct solution, which means a
single trial uses on average only 1 min. Kirshanova et al. solve the instance in
more than 2 h using 20 threads. Our implementation is expected to solve the
instance in 347/20 = 18 min. If we have more than 400 threads, we can solve the
instance within 1 min. Moreover, if we apply the optimal sub-dimension trick
we do not need so many threads to achieve the speedup. For example when
we use 180 samples and BKZ block size β = 10, the total of 12 trials take
417 + 117 = 534 s. Then with 12 threads our implementation is expected to
solve the instance L80,4093,5 using 45 s. On the contrary, the BKZ reduction of
Kirshanova et al.’s implementation alone takes 1.3 h.

6 Conclusion and Future Work

This current work described our choice of strategy to solve the BDD problem,
namely the details of our implementation and our experimental results on sev-
eral LWE challenge instances. Our implementation features a embarrassingly
parallel design and the use of extreme pruning shows advantages over existing
implementations. Potential future work include:

– We choose the optimal BKZ block size β manually in our experiments. This
would be impossible for LWE instances with large dimension and/or large
relative error rate. Thus it would be useful to explore the relation between the
BKZ reduction time and (pruned) enumeration time and use some heuristics
to decide the optimal BKZ block size.

– The success probabilities from our experiments seem to be higher than those
estimated by Aono’s algorithm, thereby resulting in fewer threads. Since we
are using parallel implementations of the LWE solver, we have more room for a
lower success probability. Lower successful probability can reduce the running
time while we can simply add more threads to compensate the low probability
of success. In fact our current environment of 20 c4.8xlarge Amazon EC2
instances contains in total more than 700 threads. We can deal with this
problem in two ways: first, we can reduce the successful probability for the
pruning strategy; second, we can deploy a two-level parallelization by using
the first level to run the LWE solver in parallel and using the second level to
run the parallel enumeration algorithm.

A Estimate the Cost of BDD Enumeration

Recall that Gaussian heuristic suggests that the enumeration cost at level k of
the full enumeration tree is

Hk =
Vk(R)

∏m
i=m+1−k ||b∗

i ||2

and the total cost is N =
∑m

k=1 Hk.

An Experimental Study of the BDD Approach for the Search LWE Problem 269

In the case of BDD enumeration, we set the enumeration bound R =
√

mαq.
As for the Gram-Schmidt vector b∗

i , we use the GSA (Geometric Series Assump-
tion) to approximate their lengths.

Geometric Series Assumption (GSA): Schnorr [25] introduced GSA which
states that the Gram-Schmidt lengths ||b∗

i || in a BKZ-reduced basis decrease
geometrically with quotient r for some constant r related to the reduction algo-
rithm. Specifically ||b∗

i+1||/||b∗
i || = r. Using Gaussian heuristic for the length of

the shortest vector we approximate ||b∗
1|| as δmq

m−n
m where δ is the root Hermite

factor achieved by a BKZ reduction algorithm.
Combining Gaussian heuristic and GSA together, we can reformulate Eq. (1)

as

Hk =
(
√

mαq)kπk/2

r(2m−k−1)k/2δmkq(m−n)k/mΓ (k/2 + 1)
, (2)

where r is the GSA constant, δ is the root Hermite factor achieved by the
reduction algorithm and Γ (·) is the Gamma function. The total cost (number of
nodes in the enumeration tree) is then calculated as

N =
m∑

k=1

Hk. (3)

In the BDD case the enumeration cost behaves quite differently from that of the
SVP enumeration. In the SVP case, the enumeration radius R is set roughly as
||b∗

1|| and the terms Hk reaches maximum when k = m/2. But for BDD enu-
meration, the enumeration radius3 (bound) is set as R =

√
mαq. This difference

actually results in the fact that the cost may decrease as the sub-dimension m
increases.

We numerically evaluated the leveled cost Hk and the results are shown
in Fig. 4. Figure 4 displays the level cost Hk for different index k for an LWE
instance L50,2503,0.005. The basis are reduced by the BKZ-20 reduction algorithm,
while the enumeration radius is set as R =

√
mαq. Figure 4a uses sub-dimension

m = 120 and Fig. 4b uses sub-dimension m = 140. From the figures we can
observe that the index which maximize Hk is no longer m/2 and for the smaller
index the value of Hk may be less than 1. We next plot the total cost N =∑m

k=1 Hk for an LWE instance by varying the sub-dimension m.
In our experiments, we employ extreme pruning instead of the full enumera-

tion tree. Here, we verify that extreme pruning does not affect the shape of the
enumeration cost so that the estimation using full enumeration works effectively
for choosing the optimal sub-dimension. Comparing Fig. 5 with Fig. 2, we can
see that in the case of enumeration cost with extreme pruning the optimal sub-
dimension m is usually a little bigger than that for full enumeration cost. How-
ever, the estimated costs do not differ too much. Moreover, when using a larger
sub-dimension one has to take the cost of BKZ reduction into consideration. Our

3 In our implementation we set R2 = cm(αq)2 for some bound scalar c ranging from
0.8 to 1.3.

270 R. Xu et al.

(a) n = 50, α = 0.005, m = 120. (b) n = 50, α = 0.005, m = 140.

Fig. 4. Semi-log graph for level cost Hk.

(a) n = 50, α = 0.005, β = 20. (b) n = 50, α = 0.01, β = 20.

(c) n = 50, α = 0.012, β = 20. (d) n = 50, α = 0.015, β = 20.

Fig. 5. Semi-log graph for cost N of pruned enumeration. The parameters have the
following reference: n is the LWE dimension, α is the relative error rate of the LWE
instance and β is the block size for BKZ reduction algorithm used.

An Experimental Study of the BDD Approach for the Search LWE Problem 271

experiments in solving the LWE challenge confirms that the estimation using full
enumeration cost well serves our purpose to reduce the running time of the whole
solving process.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of 28th
Annual ACM Symposium on Theory of Computing, pp. 99–108. ACM (1996)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015)

3. Albrecht, M.R., Cid, C., Faugere, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2), 325–354 (2015)

4. Albrecht, M.R., Cid, C., Faugere, J., Perret, L.: Algebraic algorithms for LWE.
Cryptology ePrint Archive, Report 2014/1018 (2014)

5. Albrecht, M.R., Cadé, D., Pujol, X., Stehlé, D.: fplll-4.0, a floating-point LLL
implementation. http://perso.ens-lyon.fr/damien.stehle

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22006-7 34

7. Aono, Y.: A faster method for computing Gama-Nguyen-Regev’s extreme pruning
coefficients (2014). arXiv preprint arXiv:1406.0342

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of 45th Annual ACM Symposium on Theory
of Computing, STOC 2013, pp. 575–584. ACM, New York (2013)

9. Buchmann, J., Büscher, N., Göpfert, F., Katzenbeisser, S., Krämer, J., Micciancio,
D., Siim, S., van Vredendaal, C., Walter, M.: Computation, creating cryptographic
challenges using multi-party: the LWE challenge. In: Proceedings of 3rd ACM
International Workshop on ASIA Public-Key Cryptography (AsiaCCS 2016), pp.
11–20 (2016)

10. Bischof, C., Buchmann, J., Dagdelen, Ö., Fitzpatrick, R., Göpfert, F., Mariano, A.:
Nearest planes in practice. In: Ors, B., Preneel, B. (eds.) BalkanCryptSec
2014. LNCS, vol. 9024, pp. 203–215. Springer, Cham (2015). doi:10.1007/
978-3-319-21356-9 14

11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

12. Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating lattice reduction with
FPGAs. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol.
6212, pp. 124–143. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14712-8 8

13. Dagdelen, Ö., Schneider, M.: Parallel enumeration of shortest lattice vectors. In:
D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272,
pp. 211–222. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15291-7 21

14. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13190-5 13

15. Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78967-3 3

http://perso.ens-lyon.fr/damien.stehle
http://dx.doi.org/10.1007/978-3-642-22006-7_34
http://arxiv.org/abs/1406.0342
http://dx.doi.org/10.1007/978-3-319-21356-9_14
http://dx.doi.org/10.1007/978-3-319-21356-9_14
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-642-14712-8_8
http://dx.doi.org/10.1007/978-3-642-15291-7_21
http://dx.doi.org/10.1007/978-3-642-13190-5_13
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3

272 R. Xu et al.

16. Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel
shortest lattice vector enumeration on graphics cards. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 52–68. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12678-9 4

17. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

18. Kirshanova, E., May, A., Wiemer, F.: Parallel implementation of BDD enumeration
for LWE. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 580–591. Springer, Cham (2016). doi:10.1007/978-3-319-39555-5 31

19. Kuo, P.-C., Schneider, M., Dagdelen, Ö., Reichelt, J., Buchmann, J., Cheng, C.-M.,
Yang, B.-Y.: Extreme enumeration on GPU and in clouds. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 176–191. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23951-9 12

20. Lenstra, A., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261(4), 515–534 (1982)

21. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36095-4 19

22. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

23. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Post-Quantum Cryp-
tography, p. 147 (2009)

24. Regev, O.: On lattices, learning with errors, random linear codes, cryptography. J.
ACM (JACM) 56(6), 34:1–34:40 (2009)

25. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). doi:10.1007/3-540-36494-3 14

26. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994)

http://dx.doi.org/10.1007/978-3-642-12678-9_4
http://dx.doi.org/10.1007/978-3-319-39555-5_31
http://dx.doi.org/10.1007/978-3-642-23951-9_12
http://dx.doi.org/10.1007/978-3-642-36095-4_19
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/3-540-36494-3_14

Efficiently Obfuscating Re-Encryption Program
Under DDH Assumption

Akshayaram Srinivasan1(B) and Chandrasekaran Pandu Rangan2

1 University of California, Berkeley, USA
akshayaram@berkeley.edu, prangan55@gmail.com

2 Indian Institute of Technology, Madras, India

Abstract. The re-encryption functionality transforms a ciphertext
encrypted under a public key pk1 to a ciphertext of the same mes-
sage encrypted under a different public key pk2. Hohenberger et al.
(TCC 2007) proposed a pairing-based obfuscator for the family of cir-
cuits implementing the re-encryption functionality under a new notion
of obfuscation called as average-case secure obfuscation. Chandran et al.
(PKC 2014) proposed a lattice-based construction for the same.

The construction given by Hohenberger et al. could only support poly-
nomial sized message space and the proof of security relies on strong
assumptions on bilinear groups. Chandran et al.’s construction could
only satisfy a relaxed notion of correctness.

In this work, we propose a simple and efficient obfuscator for the
re-encryption functionality that satisfies the strongest notion of correct-
ness, supports encryption of messages from an exponential sized domain
and relies on the standard DDH-assumption. This is the first construc-
tion that does not rely on pairings or lattices. All our proofs are in the
standard model.

Keywords: Re-encryption functionality · Average-case secure obfusca-
tion · DDH assumption · Standard model

1 Introduction

The goal of program obfuscation [2,22] is to make a program “unintelligible”
while preserving its functionality. This security goal was formalized in the sem-
inal work of Barak et al. [2]. The strongest and the most intuitive notion of

A. Srinivasan—Work partially done while author was a student at IIT-Madras.
Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFE-
WARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, NSF CRII
Award 1464397, and research grants by the Okawa Foundation, Visa Inc., and Cen-
ter for Long-Term Cybersecurity (CLTC, UC Berkeley) of Prof. Sanjam Garg. The
views expressed are those of the author and do not reflect the official policy or posi-
tion of the funding agencies.
C. Pandu Rangan—Research partially supported by Information Security Educa-
tion and Awareness Program of Ministry of Information Technology, Government of
India and Microsoft Research, Bangalore, India.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 273–292, 2017.
DOI: 10.1007/978-3-319-61204-1 14

274 A. Srinivasan and C. Pandu Rangan

security considered in their work is known as the predicate black-box (also known
as virtual black-box) obfuscation. This definition requires any predicate that is
efficiently computable given access to the obfuscated program must also be effi-
ciently computable given black-box access to the same program. Unfortunately,
Barak et al. showed that a general program obfuscator satisfying the predicate
black-box property does not exist. In spite of the general impossibility result,
program obfuscators satisfying this strong security notion have been constructed
for simple function families in [10,12,29].

Average-Case Secure Obfuscation. Hohenberger et al. [24] noted that the predi-
cate black-box property does not give meaningful security guarantees when the
obfuscated functionality (like re-encryption) is a part of a larger cryptographic
system (like the underlying encryption scheme). They discussed a scenario where
having access to the obfuscated program could compromise the security of the
larger cryptographic system even if the obfuscator satisfied the predicate black-
box property.

To address this issue, Hohenberger et al. proposed a new definition of obfus-
cation which they termed as average-case secure obfuscation. This definition
guarantees that any adversary against a cryptographic scheme having access to
an obfuscated program can be transformed into an adversary with only black
box access to the program given that the cryptographic scheme has distinguish-
able attack property. Informally, a cryptographic scheme is said to have dis-
tinguishable attack property if there exists a distinguisher that can “test” if
a given algorithm can break the security of the scheme. Hohenberger et al. in
fact showed that several natural cryptographic functionalities like semantically
secure encryption and re-encryption have this property.

1.1 Prior Work

A cryptographic functionality that has been shown to be obfuscatable under
the average-case security notion is the re-encryption function. The re-encryption
functionality transforms a ciphertext encrypted under a public key pk1 to a
ciphertext of the same message encrypted under a different public key pk2.
Hohenberger et al. [24] designed an average case secure obfuscator for the re-
encryption functionality under Decision Linear and a variant of 3-party Deci-
sional Diffie-Hellman assumptions. However, this construction could only sup-
port a message space of polynomial size. The decryption algorithm in their work
performs an exhaustive search on the message space by computing a pairing
operation on each message and tests the output of the pairing against a specific
value. Thus, it has to compute a polynomial number of pairing operations in
the worst case. Moreover, the security of their construction is based on a strong
assumption, namely, Strong 3-party DDH.

Remark 1. We note that it is possible to extend the system of [24] to a message
space of arbitrary size by using their construction for the boolean space {0, 1}.
For an arbitrary message space M, one can encrypt each message bit by bit and

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 275

thus incurring a O(log(|M|)) overhead on encryption and decryption. For an
exponential (in the security parameter λ) sized message space, the overhead on
encryption and decryption algorithms would be poly(λ). But it is desirable to
have a system that performs constant number of operations (i.e., have a constant
overhead) in every algorithm.

Chandran et al. [13] designed average case secure obfuscators for the re-
encryption circuit assuming interactability of certain lattice problems. Their
construction could only satisfy certain relaxed notions of correctness. In par-
ticular, they considered three relaxations of the correctness property. The first
relaxation guarantees that the output of the original circuit and the obfuscated
circuit are statistically close only on a subset of the actual inputs. The next
relaxation guarantees that the output of the obfuscated program on a subset
of inputs is correct with respect to some algorithm (like decryption). The final
relaxation guarantees that the output of the obfuscated circuit and the origi-
nal circuit are computationally indistinguishable. A natural question that arises
from the prior work is:

Is there an efficient obfuscator for the re-encryption program under milder
assumptions that satisfies the strongest notion of correctness, has a con-
stant overhead in every algorithm and supports an exponential sized mes-
sage space?

1.2 Our Contributions

We highlight the main contributions of this work.

Main Result. In this work, we propose a new encryption - re-encryption system
that supports encryption of messages from an exponential (in security para-
meter) space, involves a constant number of group exponentiation operations
in all algorithms. We also design an average-case secure obfuscator for the re-
encryption program which achieves the strongest notion of correctness (as in
[23,24]). We prove the average case secure obfuscator property of our obfuscator
and the security of our encryption - re-encryption system under the standard
DDH assumption. All our proofs are in the standard model. Informally, the main
result in this work is:

Informal Theorem 1. Under the DDH-assumption, there exists an average-
case secure obfuscator for the family of circuits implementing the re-encryption
functionality.

Remark 2. We observe that our construction of obfuscator for the re-encryption
program is not secure when the holder of sk2 has access to the obfuscated circuit.
This is the case with all prior constructions of average-case secure obfuscators
for re-encryption [13,24] as well as encrypted signatures [23]. The construction
is secure as long as the obfuscated circuit is run by some (possibly malicious)
party other than delegatee. It would be interesting to investigate the possibility

276 A. Srinivasan and C. Pandu Rangan

of constructing average-case secure obfuscators which have “insider security.”
That is, they remain secure even when the delegatee has access to the obfuscated
circuit. We leave this as an open problem.

Strengthening the Black-Box Security Model. Recall that in the average-case
obfuscation paradigm, we must first design an encryption - re-encryption sys-
tem that is secure against adversaries that have black box access to the re-
encryption program. The security model considered by Hohenberger et al. [24]
for this purpose is as follows: the challenger samples two public key-secret key
pairs (pk1, sk1) and (pk2, sk2) and then provides pk1, pk2 to the adversary. The
adversary (with oracle access to re-encryption program from pk1 to pk2) chooses
two messages m0 and m1 and also gives information about the public key as well
as the ciphertext level on which it wishes to be challenged. More precisely, the
adversary can choose either to be challenged on a first level ciphertext1 under
pk1 or a first level ciphertext under pk2 or a second level ciphertext2 under
pk2. The scheme is secure if the adversary is unable to distinguish between the
corresponding encryptions of m0 and m1.

We observe that the above security model is insufficient in capturing the
full security notion of encryption - re-encryption system (See Remark 4). In
particular, the above security model allows the following trivial but insecure
encryption - re-encryption system to be secure. Consider any semantically
secure encryption scheme Π = (KeyGen,Encrypt,Decrypt). To obtain a first
level ciphertext of a message m under a public key pk, run the Encrypt algo-
rithm on m and pk. The re-encryption program from pk1 to pk2 has sk1, pk1
and pk2 hardwired into its description. When it is run with a first level cipher-
text c ← Encrypt(m, pk1), it decrypts the ciphertext using sk1 and outputs
(Encrypt(m, pk1)||Encrypt(sk1, pk2)) where || denotes concatenation. In order to
decrypt a second level ciphertext, one can first decrypt the second component
using sk2 to obtain sk1 and then decrypt the first component to obtain m. This
system has an obvious drawback as it reveals sk1 to the user with secret key
sk2. But one can prove that this system is secure under the security model con-
sidered in [24]. We also observe that it is possible to construct an average-case
secure obfuscator for the above re-encryption program when one instantiates Π
with a semantically secure encryption system which allows re-randomization of
ciphertexts (e.g., the standard El-Gamal encryption).

To address this issue, we strengthen the security model for encryption - re-
encryption system as follows. We consider the security of the system under two
different security games.

1. The first game called as Original Ciphertext Security proceeds exactly as in
[24] but the adversary is either challenged on a first level ciphertext under
pk1 or a first level ciphertext under pk2.

1 A first level ciphertext is the one which has not been re-encrypted. In other words,
a first level ciphertext is given as input to the re-encryption program.

2 A second level ciphertext under pk2 is the output of re-encryption program from pk1
to pk2 on a first level ciphertext under pk1.

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 277

2. In the second game called as the Transformed Ciphertext Security, in addition
to (pk1, pk2) the adversary is also provided with sk1. In the challenge phase,
the adversary obtains a second level ciphertext under pk2 as the challenge
ciphertext. The goal of the adversary in both the games is to distinguish
between encryptions of messages from encryptions of junk values.

Additionally, we require the encryption - re-encryption system to satisfy a special
property called as statistical independence. Statistical independence requires that
the output distribution of the re-encryption program (i.e., the distribution of the
second level ciphertext) to be statistically independent of sk1.

Note that the above trivial encryption - re-encryption system is not trans-
formed ciphertext secure as the adversary with access to sk1 can directly decrypt
the first component of the challenge ciphertext to obtain the hidden message.
We also stress that statistical independence property guarantees that the sec-
ond level ciphertext cannot “leak” any information (in an information theoretic
sense) regarding sk1. This in particular, disallows other contrived examples which
may reveal the secret key sk1 to Bob but possibly is still transformed ciphertext
secure.3

Remark 3. Though this security model was not explicitly considered, all prior
works [13,14,24] satisfy this security notion.

Remark 4. We consider a stronger model for encryption - re-encryption secu-
rity since the output of the re-encryption program (which we obfuscate in this
work) does not have the same probability distribution as a fresh encryption of
the message m under pk2 (i.e., as an output of another encryption algorithm
Encrypt2(m, pk2) as in [24]). If the output was distributed identically to a fresh
encryption under pk2 then the security model given by Hohenberger et al. is
sufficient for our purposes.4 The above discussion regarding the issues with the
security model is for the generalized case where the output distribution of the
re-encryption program and distribution of a freshly encrypted ciphertext under
pk2 are not identical.

1.3 Related Work

Proxy Re-Encryption. A paradigm in cryptography which is closely related to
re-encryption is proxy re-encryption. In a proxy re-encryption system, a semi-
trusted proxy transforms ciphertexts intended for Alice (delegator) to a cipher-
text of the same message for Bob (delegatee). Specifically, Alice provides the

3 For example, we could consider the output of the re-encryption functionality to be
(Encrypt(C, pk2)||Encrypt(sk1, pk2)) where C is the input ciphertext. This is trans-
formed ciphertext secure. However, the output of the re-encryption functionally is
dependent on sk1.

4 The counter example discussed above will not work since the output of the re-
encryption program is not identically distributed to a freshly generated ciphertext
under pk2.

278 A. Srinivasan and C. Pandu Rangan

proxy with a re-key RKA→B which is a function of her secret key sk1 and Bob’s
public key pk2. The proxy runs a specific algorithm (called as the re-encryption
algorithm in literature) which takes the ciphertext encrypted under Alice’s public
key and the re-key and outputs a ciphertext under Bob’s public key. A (non-
exhaustive) list of proxy re-encryption schemes under different notions of security
can be found in [1,5,11,15,25]. The security goal is that given the re-encryption
key, the proxy cannot learn any information about the underlying message from
the first level ciphertext. This is formalized as a game between the challenger and
the proxy. This must be contrasted with the simulation based security guarantee
provided by obfuscation of re-encryption program. In particular, obfuscation of
re-encryption circuit guarantees that no non-black-box information about the re-
encryption circuit is “leaked” to the proxy. On the other hand, it is not directly
evident if such guarantees can be given from proxy re-encryption systems as it
may be possible that the re-key could leak some non-black-box information. For
example, the re-key could reveal a function of the secret key that still does not
contradict the semantic security of the encryption scheme.

FHE. Fully Homomorphic Encryption (FHE) [26] allows arbitrary computations
to be performed on a ciphertext. The first construction of FHE was provided
in the breakthrough work by Gentry [20]. Following this result, there have been
several works constructing FHE from worst-case intractability of several lattice
problems [7–9]. We note that using re-randomizable (or circuit private) FHE,
it is possible to obfuscate the re-encryption program. However, all known con-
structions of FHE are from specific assumptions on lattices and there is still
someway to go before they become “truly” practical. In contrast, we propose an
obfuscation of re-encryption program from the standard DDH assumption and
our construction is very efficient as it involves only a (small) constant number
of group exponentiation operations.

Indistinguishability Obfuscation. Since the strongest notion of program obfus-
cation (namely, predicate black-box obfuscation) was shown to be impossible,
Barak et al. [2] proposed a weakened notion of obfuscation called as indistin-
guishability obfuscation or iO. Indistinguishability obfuscation guarantees that
for any two functionally equivalent circuits having the same size, obfuscations
of the circuits are indistinguishable. The first candidate construction of iO was
given in the recent breakthrough work of Garg et al. [17]. Subsequently, several
cryptographic primitives like functional encryption [17], deniable encryption [27],
non-interactive key exchange without a trusted setup [6], two-round multiparty
computation protocols [16], hard instances of the complexity class PPAD [3,18]
and trapdoor permutations [4,19] (to name a few) were constructed from iO
and other assumptions like one-way functions. We note that indistinguishability
guarantee provided by iO is strictly weaker than the security guarantee needed
in this work. In addition, our goal is to obfuscate a specific functionality namely,
the re-encryption functionality.

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 279

2 Preliminaries

A function μ(·) : N → R
+ is said to be negligible, if for every positive poly-

nomial p(·), there exists an N such that for all n ≥ N , μ(n) < 1/p(n). Given a
probability distribution D on a universe U , we denote x ← D as the process of
sampling an element x from U according to the distribution D. Given a finite set
X, we use the notation x

$← X for denoting the process of sampling x from the
set X uniformly. If two probability distributions D and D′ defined on a set X
are identical, we denote it by D ≈ D′. We use notation similar to [23] to denote
the following randomized process: given n probability distributions D1, · · · ,Dn,
let {x1 ← D1; · · · ;xn ← Dn : f(x1, . . . , xn)} be the probability distribution of
a (possibly randomized) function f . PPT machines refer to Probabilistic Poly-
nomial Time Turing machines. All PPT machines run in time polynomial in the
security parameter denoted by λ. We consider the non-uniform model of com-
putation to model the adversaries. These machines take an additional auxiliary
input z of length polynomial in λ. If p is a prime number then let Z∗

p denote the
set {1, 2, . . . , p − 1}.

We assume familiarity with the notion of computational indistinguishability
and statistical distance (a.k.a. variation distance) and skip the standard defin-
itions. We state the following simple lemma regarding statistical distance. The
proof can be derived directly from the definition.

Lemma 1. For all distributions Xn and Yn, for all PPT distinguishers D that
output a single bit and for all z ∈ {0, 1}poly(n) we have,

Δ(D(Xn, z),D(Yn, z)) =
∣
∣Pr[b ← D(Xn, z) : b = 1] − Pr[b ← D(Yn, z) : b = 1]

∣
∣

The above lemma implies that {Xn}n
c≈ {Yn}n if and only if D(Xn, z) and

D(Yn, z) are statistically close for all PPT distinguishers D and for all auxiliary
input z.

We now recall the Decisional Diffie-Hellman (DDH) assumption on prime
order groups. Let Gen be an algorithm which takes 1λ as input and randomly
generates the parameters (p,G, g) where p is a λ bit prime, G is a multiplicative
group of order p and g is a generator for G.

Definition 1 (DDH assumption). The DDH assumption states that the fol-
lowing distribution ensembles are computationally indistinguishable:

{(p,G, g) ← Gen(1λ); a, b
$← Z

∗
p : (g, ga, gb, gab)}λ

c≈
{(p,G, g) ← Gen(1λ); a, b, c

$← Z
∗
p : (g, ga, gb, gc)}λ

We assume the reader’s familiarity with the syntax and security notion (multi
message security) for a Public Key Encryption (PKE) system. We also assume
familiarity with the El-Gamal encryption system. We recall the theorem regard-
ing the multi-message security of El-Gamal encryption system and its variant.

280 A. Srinivasan and C. Pandu Rangan

Theorem 1 (Multi message security). Assuming the DDH-assumption
holds in the group G, the El-Gamal encryption system is multi-message secure.

We assume familiarity with of the concept of Pseudo Random Generator
(PRG) and refer the reader to [21] for a formal definition.

2.1 Average-Case Secure Obfuscation

Let C = {Cλ}λ∈N be a family of polynomial sized circuits. For a length parameter
λ, let Cλ be the set of circuits in C with input length pin(λ) and output length
pout(λ) where pin(·) and pout(·) are polynomials. The circuit family C has an
associated sampling algorithm Samp which takes 1λ as input and outputs a
circuit C chosen uniformly at random from Cλ. We also assume that there exists
efficient (Encode,Decode) algorithms which encodes and decodes a given circuit
C into binary strings when used as input/output of Turing machines. We make
implicit use of such encoding and decoding algorithms and do not mention them
explicitly.

We use similar notations (with some minor changes) as in [23] to denote
probabilistic circuits. A probabilistic circuit C (x; r) takes two inputs. The first
input is called as the regular input and the second input is termed as the ran-
dom input. The output of a probabilistic circuit on a regular input (denoted by
C (x; ·)) can be viewed as a probability distribution where the randomness in the
distribution comes from the random choice of r. We say that a machine A has
oracle access to a probabilistic circuit C (denoted by AO(C)) if during the oracle
queries, A can only specify the regular input x to the circuit and the random
input r is chosen uniformly at random from the corresponding sample space by
the oracle O. The output of a probabilistic machine A having oracle access to
a probabilistic circuit C (denoted by AO(C)(x1, · · · , xn)) is a probability distri-
bution where the randomness in the distribution comes from the random coins
used by A as well as the random coins used by O in answering A’s oracle queries.
We say that B evaluates a probabilistic circuit C (or in other words, B is an
evaluator of C) on regular input x, if B supplies the regular input as well as
the random input r chosen uniformly at random from the corresponding sample
space and outputs C (x; r). We use |C | to denote the size of a circuit C .

We recall the notion of average case secure obfuscation given in [24].

Definition 2 [23,24]. A PPT machine Obf that takes as input a (probabilistic)
circuit and outputs a new (probabilistic) circuit is an average-case secure obfus-
cator for the circuit family C = {Cλ}λ∈N with an associated sampling algorithm
Samp if it satisfies the following properties:

1. Preserving Functionality: For all length parameter λ ∈ N and for all C ∈ Cλ:

Pr[C ′ ← Obf(C) : ∃x ∈ {0, 1}pin(λ),Δ
(

C ′(x; ·),C (x; ·)) �= 0] = 0

2. Polynomial Slowdown: There exists a polynomial p(·) such that for sufficiently
large length parameters λ, for any C ∈ Cλ, we have

Pr[C ′ ← Obf(C) : |C ′| ≤ p(|C |)] = 1

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 281

3. Average-case Secure Virtual Black Box: There exists a PPT machine (sim-
ulator) Sim such that for every PPT distinguisher D, there exists a negli-
gible function neg(·) such that for every length parameter λ and for every
z ∈ {0, 1}poly(λ):

|Pr[C ← Samp(1λ);C ′ ← Obf(C); b ← DO(C)(C ′, z) : b = 1]−
Pr[C ← Samp(1λ);C ′ ← SimO(C)(1λ, z); b ← DO(C)(C ′, z) : b = 1]| ≤ neg(λ)

Remark 5. The definition given in [24] considers a relaxed notion of correctness.
Specifically, it allows a the output distribution of the obfuscated circuit and
the original circuit to have a negligible statistical distance with a negligible
probability. Here, as given in [23], we consider a stronger notion of correctness
where we require that the output distribution of the original circuit and the
obfuscated circuit to be identical.

3 Obfuscator for Re-Encryption Functionality

In this section, we describe our new encryption system, the re-encryption func-
tionality which is to be obfuscated and finally the construction of an average
case secure obfuscator for the functionality.

New Encryption Scheme. The new encryption system under consideration is a
variant of the El-Gamal system.

New Encryption Scheme

– Setup(1λ) : Let (p,G, g) ← Gen(1λ). Let H be a pseudo random generator
which takes as input an element from G and outputs an element in Z

∗
p.

a

Output the public parameters as params = (p, g,G,H) with message
space M = G.

– KeyGen(1λ, params) : Choose x
$← Z

∗
p and set the public key pk to be

(g, gx) and the secret key sk = x.

– Encrypt1(m, pk) : Parse pk as (g, gx). Choose a random r
$← Z

∗
p and

output (m · gr, (gx)r).
– Decrypt1(sk, [C1, C2]) : Parse the secret key sk as x. Output m = (C1) ·

((C2)1/x)−1.

a The standard definition of pseudo random generator assumes the domain and
the range to be bit strings. We note that it can be extended to any domain and
range assuming efficient encoding and decoding functions from the domain to
bit strings and from bit strings to range. The expansion factor of H depends
on the actual encoding and decoding schemes used.

Re-encryption Functionality. Let (pk1, sk1) and (pk2, sk2) be two key-pairs
which are obtained by running the KeyGen algorithm with independent ran-
dom tapes. Let h

$← G be an element chosen uniformly and independently at
random from the group G. The PPT algorithm performing re-encryption from
pk1 to pk2 (denoted by Re − Enc1→2) is described below.

282 A. Srinivasan and C. Pandu Rangan

Re − Enc1→2

Input: c1 = [Y1, Y2] or special symbol denoted by keysa

Constants:b sk1 = x, pk1 = (g, gx), pk2 = (g, gy) and h

1. If input = keys, output (pk1, pk2).
2. Else,

– Compute m = Decrypt1(sk1, c1).

– Choose r′, v, s
$← Z

∗
p.

– Output [X1,X2,X3,X4,X5] = [m · gr′
, (gH(h))r′ · (gy)s, h ·

(gy)v, gv, gs].

a keys �∈ G × G. We need this for a technical part in the proof.
b Constants in a program denotes those values which are hardcoded in the pro-

gram description.

Re-encryption Circuit Family. Let Csk1,pk1,pk2,h be the description of a proba-
bilistic circuit implementing the program Re − Enc1→2. We note that the con-
stants in the above program are hardwired in the circuit description. These
constants can be extracted when given the description of the circuit. Formally,
the class of circuits implementing the re-encryption functionality for a given
length parameter λ is,

Cλ ={Csk1,pk1,pk2,h : (pk1, sk1) ← KeyGen(1λ), (pk2, sk2) ← KeyGen(1λ), h $← G}
The circuit family implementing the re-encryption functionality is given by

C = {Cλ}λ∈N. The associated sampling algorithm Samp proceeds by choosing
(p,G, g,H) ← Setup(1λ). It then samples (pk1, sk1) ← KeyGen(1λ), (pk2, sk2) ←
KeyGen(1λ) and h

$← G. It finally outputs the circuit description of Csk1,pk1,pk2,h.
The evaluator of the circuit Csk1,pk1,pk2,h supplies the regular input which is

either the ciphertext c1 = [C1, C2] or the special symbol keys and also supplies
the random input rand chosen uniformly at random from {0, 1}3λ to the circuit
for sampling r′, v, s uniformly from Z

∗
p.

Decrypting the Circuit Output. The output of Re − Enc1→2 can be decrypted
using the following algorithm Decrypt2:

Decrypt2

Input: sk2, [X1,X2,X3,X4,X5] :

1. Parse sk2 as y.
2. Compute h = X3 · (X4

y)−1.
3. Compute X ′

2 = X2 · ((X5)y)−1

4. Output m = (X1) · ((X ′
2)

1/(H(h)))−1.

Correctness. We note that correctness of Decrypt1 algorithm directly follows
from the correctness of El-Gamal encryption scheme and correctness of Decrypt2
follows from inspection.

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 283

Obfuscator Construction. We now present the construction of an average-case
secure obfuscator (denoted by Obf) for the re-encryption circuit family defined
in Sect. 3.

Obf
Input: Csk1,pk1,pk2,h

1. Read sk1 = x, pk1 = (g, gx) , pk2 = (g, gy) and h from the description
of the circuit Csk1,pk1,pk2,h.

2. Select v
$← Z

∗
p.

3. Compute (Z1, Z2, Z3) = (h · (gy)v, gv,H(h)/x).
4. Output the description of a circuit implementing the program

Re − Enc′
1→2 described below with pk1, pk2, Z1, Z2, Z3 as the constants

in the program.

Re − Enc′
1→2

Input: c1 = [Y1, Y2] or special symbol denoted by keys.
Constants: pk1, pk2, Z1, Z2, Z3.

1. If input = keys, output (pk1, pk2).
2. Else,

– Choose two re-randomization values r′, v′ $← Z
∗
p.

– Re-randomize the input as X1 = Y1 · gr′
, X2 = (Y2 · (gx)r′

) and the
hardwired values as X3 = Z1 · (gy)v′

, X4 = Z2 · gv′
.

– Compute X2 = (X2)Z3 .

– Choose s
$← Z

∗
p.

– Compute X2 = X2 · (gy)s and X5 = gs

– Output [X1,X2,X3,X4,X5].

Let C ′ denote the circuit implementing Re − Enc′
1→2. The evaluator for the

circuit C ′ provides either c1 = [C1, C2] or special symbol keys as the regular

input and rand
$← {0, 1}3λ as the random input for sampling r′, v′, s uniformly

from Z
∗
p.

Remark 6. The obfuscated circuit C ′ is generated by the owner of sk1 but can be
evaluated by anyone. We assume (as described in Remark 2) that the evaluator
of C ′ and the owner of sk2 do not collude.

4 Security of New Encryption Scheme

We now describe the security model for semantic security of the encryption
scheme when the adversary is given black box access to re-encryption function-
ality. In view of discussion presented in Sect. 1.2, we modify the security model
given in [24] as follows.

284 A. Srinivasan and C. Pandu Rangan

4.1 Security Model

Let C ← Samp(1λ)5 be the re-encryption circuit from pk1 to pk2.

Original Ciphertext Security. Let A = (A1,A2) be an adversary against the
original ciphertext security.

Definition 3. Let Π be an encryption scheme and let INDb,ori(Π,A =
(A1,A2), λ, i) where b ∈ {0, 1} and i ∈ {1, 2}, denote the following experiment:

INDb,ori(Π,A = (A1,A2), λ, i)

1. params ← Setup(1λ). (pk1, sk1) ← KeyGen(params) and (pk2, sk2) ←
KeyGen(params). Choose h

$← G. Set C = Csk1,pk1,pk2,h
a.

2. (m0,m1, state) ← AO(C)
1 (pk1, pk2, params).

3. C∗ ← Encrypt1(mb, pki, params).
4. b′ ← AO(C)

2 (C∗, state). Output b′

a Note that setting C in this way is equivalent to sampling C using the Samp
algorithm.

The scheme Π is said to be original ciphertext secure with respect to the
oracle access to C if for all PPT adversaries A = (A1,A2) and for all i ∈ {1, 2},
there exists a negligible function μ(·) such that for all λ ∈ N,

Δ
(

IND0,ori(Π,A, λ, i), IND1,ori(Π,A, λ, i)
) ≤ μ(λ)

Transformed Ciphertext Security. Let A = (A1,A2) be an adversary against the
transformed ciphertext security.

Definition 4. Let Π be an encryption scheme and let INDb,tran(Π,A =
(A1,A2), λ) where b ∈ {0, 1} denote the following experiment:

INDb,tran(Π,A = (A1,A2), λ)

1. params ← Setup(1λ). (pk1, sk1) ← KeyGen(params) and (pk2, sk2) ←
KeyGen(params). Choose h

$← G. Set C = Csk1,pk1,pk2,h.
2. (m0,m1, state) ← AO(C)

1 (params, pk1, pk2, sk1).

3. rand
$← {0, 1}3λ. Compute C∗ ← C (Encrypt1(mb, pk1, params); rand).

4. b′ ← AO(C)
2 (C∗, state). Output b′

The scheme Π is said to be transformed ciphertext secure with respect to
the oracle access to C if for all PPT adversaries A = (A1,A2), there exists a
negligible function μ(·) such that for all λ ∈ N,

Δ
(

IND0,tran(Π,A, λ), IND1,tran(Π,A, λ)
) ≤ μ(λ)

5 For the ease of exposition, we drop the subscripts sk1, pk1, pk2, h.

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 285

Statistical Independence. Let us consider the following experiment.

Stat(Π,λ,m)

1. params ← Setup(1λ). (pk1, sk1) ← KeyGen(params) and (pk2, sk2) ←
KeyGen(params). Choose h

$← G. Set C = Csk1,pk1,pk2,h.

2. rand
$← {0, 1}3λ. Compute C∗ ← C (Encrypt1(m, pk1, params); rand).

3. Output C∗

We require the output of Stat(Π,λ,m) to be statistically independent of sk1.

4.2 Security Proof

We now show that the New Encryption Scheme is original ciphertext secure
(in Theorem 2), transformed ciphertext secure (in Theorem 3) and has statistical
independence property (in Lemma 2).

Theorem 2. The New Encryption Scheme is original ciphertext secure with
respect to the oracle Csk1,pk1,pk2,h under the DDH-assumption.

Proof. We give the proof of this theorem in the full version of our paper [28].

We now show the transformed ciphertext security of our construction.

Theorem 3. The New Encryption Scheme is transformed ciphertext secure
with respect to the oracle Csk1,pk1,pk2,h under the multi-message security (2 mes-
sages) of El-Gamal encryption system (Theorem1).

Proof. The proof of this theorem appears in the full version of the paper [28].

We note that the statistical independence property of the re-encryption func-
tionality directly follows from inspection of the output distribution of the re-
encryption circuit. We record the following lemma.

Lemma 2. The output distribution of Csk1,pk1,pk2,h where (pk1, sk1) ←
KeyGen(params), (pk2, sk2) ← KeyGen(params) and h

$← G is statistically inde-
pendent of sk1.

5 Average-Case Virtual Black Box Property

We note that obfuscator construction preserves functionality (the formal proof
appears in the full version). We note that the polynomial slowdown property of
our construction can be easily verified. It is interesting to note that the obfus-
cated circuit computes seven exponentiations whereas the original circuit com-
putes eight exponentiations.

We now show that Obf satisfies the average-case virtual black box property.

Lemma 3. Obf satisfies the average case secure virtual black-box property.

286 A. Srinivasan and C. Pandu Rangan

Proof. The proof techniques used here are similar to that of Hohenberger et al.
in [24] and the details follow.

Let C ← Samp(1λ) be a circuit chosen randomly from the set Cλ using the
Samp algorithm. Let D be any distinguisher with oracle access to C .

We first describe our simulator Sim which has oracle access to the circuit C
and takes as input the security parameter in unary form and auxiliary informa-
tion string denoted by z.

SimO(C)

Input: 1λ, z

1. Query the oracle O(C) with the special symbol keys and obtain pk1 and
pk2.

2. Parse pk2 as (g, gy).

3. Choose h
$← G, v

$← Z
∗
p and compute (Z ′

1, Z
′
2) = (h · (gy)v, gv). Choose

Z ′
3 uniformly at random from Z

∗
p.

4. Construct a circuit C ′ implementing the program Re − Enc′
1→2 with val-

ues (pk1, pk2, Z
′
1, Z

′
2, Z

′
3) hardcoded in the program description.

5. Output the circuit description of C ′.

It remains to show that the output distribution of the simulator is computation-
ally indistinguishable to the output distribution of Obf even to distinguishers
having oracle access to C .

We define two distributions Nice(DO(C), λ, z) and Junk(DO(C), λ, z) as fol-
lows:

Nice(DO(C), λ, z)

– (p, g,G,H) ← Setup(1λ). Choose x, y
$← Z

∗
p. Set pk1 = (g, gx) and pk2 =

(g, gy).

– Choose h
$← G and v

$← Z
∗
p.

– Compute Z1 = h · (gy)v, Z2 = gv and Z3 = H(h)/x.
– Output DO(C)(pk1, pk2, Z1, Z2, Z3, z).

Junk(DO(C), λ, z)

– (p, g,G,H) ← Setup(1λ). Choose x, y
$← Z

∗
p. Set pk1 = (g, gx) and pk2 =

(g, gy).

– Choose h
$← G and v

$← Z
∗
p.

– Compute Z ′
1 = h · (gy)v, Z ′

2 = gv and Z ′
3

$← Z
∗
p.

– Output DO(C)(pk1, pk2, Z
′
1, Z

′
2, Z

′
3, z).

We first observe that for all z ∈ {0, 1}poly(λ) and for all distinguishers D,
{

C → Samp(1λ);C ′ ← Obf(C) : DO(C)(C ′, z)
} ≈ Nice(DO(C), λ, z)

{

C → Samp(1λ);C ′ ← SimO(C)(1λ, z) : DO(C)(C ′, z)
} ≈ Junk(DO(C), λ, z)

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 287

In order to show that Obf satisfies the average case virtual black box property
it is enough to show that (from Lemma 1), for all PPT distinguishers D, there
exists a negligible function μ(·) such that for all z ∈ {0, 1}poly(λ),

Δ
(

Nice(DO(C), λ, z)}, Junk(DO(C), λ, z)
) ≤ μ(λ)

We show that for all PPT distinguishers D, there exists a negligible function
μ(·) such that for all z ∈ {0, 1}poly(λ),

Δ
(

Nice(DO(C), λ, z)}, Junk(DO(C), λ, z)
) ≤ μ(λ)

We start with an useful lemma.

Lemma 4.
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p, g,G,H) ← Setup(1λ);

x, y
$← Z

∗
p;

pk1 = (g, gx);
pk2 = (g, gy);

h
$← G;

Z ′
3, v

$← Z
∗
p :

(

pk1, pk2, h · (gy)v, gv, Z ′
3

)

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

λ

c≈

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p, g,G,H) ← Setup(1λ);

x, y
$← Z

∗
p;

pk1 = (g, gx);
pk2 = (g, gy);

h
$← G;

v
$← Z

∗
p :

(

pk1, pk2, h · (gy)v, gv,H(h)/x
)

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

λ

Proof. The proof of this lemma appears in the full version of the paper [28].

First, we consider two distributions which are similar to Nice and Junk except
that they consider a “dummy” distinguisher D∗ which outputs whatever is given
as input.

Proposition 1.
{

Nice(D∗, λ, z)
}

λ

c≈ {

Junk(D∗, λ, z)
}

λ

Proof. The proof for the this proposition follows directly from the proof of
Lemma 4. We note that left distribution in the lemma statement is identically
distributed to Junk(D∗, λ, z) and the right distribution is identically distributed
to Nice(D∗, λ, z). Hence,

Nice(D∗, λ, z)
c≈ Junk(D∗, λ, z)

�
We now consider two more distributions which proceed as Nice and Junk

except that they consider distinguishers DO(R) where R is a probabilistic circuit
which on any input [C1, C2], first checks if C1, C2 belong to G and if yes, outputs
[A,B,C,D,E] where A,B,C,D,E are chosen uniformly and independently from
G. Otherwise, it outputs ⊥.

Note that input to DO(R) is identically distributed to Nice(D∗, λ, z) in
Nice(DO(R), λ, z) and its input is identically distributed to Junk(D∗, λ, z)
in Junk(DO(R), λ, z). The following proposition is a direct consequence of
Proposition 1.

288 A. Srinivasan and C. Pandu Rangan

Proposition 2. For all PPT distinguihsers D, there exists a negligible function
μ(·) such that for all z ∈ {0, 1}poly(λ) and for all λ ∈ N, we have

Δ
(

Nice(DO(R), λ, z), Junk(DO(R), λ, z)
) ≤ μ(λ)

Proof. Assume for the sake of contradiction that there exists a distinguisher
DO(R) which can distinguish between Nice(D∗, λ, z) and Junk(D∗, λ, z) with non-
negligible advantage. We construct an distinguisher between D′ (without the
oracle access to R) which distinguishes between Nice(D∗, λ, z) and Junk(D∗, λ, z)
with the same advantage.

D′ runs D internally by giving its own input as input to D. When D requests
an oracle access to R, D′ can simulate the responses on its own (It will choose
five independent random elements from the group and return as the response for
any oracle query after checking whether the input belongs to G×G). D′ finally
outputs what D outputs.

It is easy to see that D′ as the same distinguishing advantage that D has
and hence we have arrived at a contradiction to Proposition 1.
�

Consider any distinguisher D. Let us define,

α(λ, z) = Δ
(

Nice(DO(C), λ, z), Junk(DO(C), λ, z)
)

β(λ, z) = Δ
(

Nice(DO(R), λ, z), Junk(DO(R), λ, z)
)

Let qD be the number of oracle queries that D makes during its execution.
Since D runs in polynomial time, qD is polynomial in λ.

Proposition 3. There exists an algorithm B against the multi-message (2qD

messages) security of El-Gamal encryption scheme with an advantage |α(λ, z)−
β(λ, z)|/2.

Proof. We prove the proposition by constructing an adversary B against the
El-Gamal challenger with advantage |α(λ, z) − β(λ, z)|/2.

B receives the public key gy from the El-Gamal challenger. It chooses x
$← Z

∗
p

and sets pk1 = (g, gx) and pk2 = (g, gy). It chooses two message vectors M 0

and M 1 each of length 2qD as follows. It sets M 0 = {1, 1, . . . , 1} (of length 2qD)
and M 1 = {m1,m2, . . . ,m2qD} where m1, . . . ,m2qD are chosen uniformly and
independently at random from G. It then receives the challenge ciphertext vector
C ∗ = {(gr1 , Q1), (gr2 , Q2), . . . , (grqD , Q2qD)} and auxiliary information z. Note
that for all i ∈ {1, 2, . . . 2qD}, ri is a random element in Z

∗
p and Qi = gyri or an

uniformly chosen element depending on whether M 0 was encrypted or M 1 was
encrypted (due to the random choice of m1, . . . ,m2qD).

B now uses D to determine whether the challenge ciphertext vector is an
encryption of M 0 or M 1. It first generates the tuples which are distributed
exactly as Nice(D∗, λ, z) and Junk(D∗, λ, z). It tosses a random coin c and runs
D with input Nice(D∗, λ, z) if c = 0 and with input Junk(D∗, λ, z) if c = 1. B
needs to answer the re-encryption oracle queries made by D. It uses the chal-
lenge ciphertext to answer those oracle queries. We show that if the challenge

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 289

ciphertext is an encryption of M 0, then the oracle responses given by B are
identically distributed to the output of the re-encryption circuit C . If the chal-
lenge ciphertext was an encryption of M 1, we show that the oracle responses
are identically distributed to the output of R. The exact details follow.

B chooses h
$← G and v

$← Z
∗
p and computes Z1 = h · (gy)v and Z2 =

gv. It then chooses Z3 = H(h)/x and Z ′
3

$← Z
∗
p. It tosses a random coin and

chooses c
$← {0, 1}. If c = 0, it runs DO(X)(pk1, pk2, Z1, Z2, Z3, z). Else it runs,

DO(X)(pk1, pk2, Z1, Z2, Z
′
3, z) where X is the circuit description of the program

Re − Enc′′
1→2 described below. Note that if c = 0, input to D is identical to

Nice(D∗, λ, z). Else, it is identical to Junk(D∗, λ, z).
When D makes ith oracle query [C1, C2], B runs the following program and

returns the output of the program to D as the response.

Re − Enc′′
1→2

Constants: pk1, pk2, Z1, Z2, Z3

Input: [C1, C2], i

1. Choose r′ $← Z
∗
p.

2. Compute C ′
1 = C1 · gr′

, C ′
2 = C2 · (gx)r′

.
3. Compute Z ′

1 = Z1 · (Qi), Z ′
2 = Z2 · (gri).

4. Compute C ′′
2 = C ′Z3

2 .
5. Compute D2 = C ′′

2 · Qi+qD

6. Output [C ′
1,D2, Z

′
1, Z

′
2, g

ri+qD].

D finally outputs its guess. Let c′ denote the output of D. If c = c′, B outputs
1. Else, it outputs 0.

We now prove the following two claims regarding the output of B.

Claim. If M 0 was encrypted, the probability that B outputs 1 is given by 1/2+
α(λ, z)/2.

Proof. We claim that if M 0 was encrypted, then B perfectly simulates
DO(C)

(

pk1, pk2, h · (gy)r, gr,H(h)/x, z
)

or DO(C)
(

pk1, pk2, h · (gy)r, gr, Z ′
3, z

)

depending upon the bit c. We already noted that the input to D is identi-
cally distributed to Nice(D∗, λ, z) or Junk(D∗, λ, z). It is enough to show that
X simulates the circuit C perfectly. Since Qi = (gy)ri for all i ∈ [1, 2qD] and
Z1, Z2, Z3 are properly generated as per the Obf algorithm, the output of X is
given by,

(m · gr+r′
, (gr+r′

)H(h) · (gy)ri+qD , h · (gy)v+ri , gv+ri , gri+qD)

which is identically distributed as the output of the re-encryption circuit since
r′, ri, ri+qD are chosen uniformly at random from Z

∗
p. Hence, the probability that

B outputs 1 in this case is same as the probability that DO(C) outputs c = c′

which is same as 1/2 + α(λ, z)/2.
�

290 A. Srinivasan and C. Pandu Rangan

Claim. If M 1 was encrypted, the probability that B outputs 1 is given by 1/2+
β(λ, z)/2.

Proof. We already noted that the input to D are perfectly generated according
to either Nice(D∗, λ, z) or Junk(D∗, λ, z). We claim that the response given by
B are same as the one given by R. The output of B is given by

(m · gr+r′
, (gr+r′

)H(h) · Qi+qD , h · (gy)v · Qi, g
v+ri , gri+qD)

Since Qi and Qi+qD are uniformly chosen random elements in G if M 1 was
encrypted and r′, ri, ri+qD are chosen uniformly at random from Z

∗
p, we can easily

see that all elements in the above distribution are random and independent for
every invocation of the oracle.

Hence, in this case B perfectly simulates DO(R)
(

pk1, pk2, h · (gy)r,

gr,H(h)/x, z
)

or DO(R)
(

pk1, pk2, h·(gy)r, gr, Z ′
3, z

)

depending on the bit c. Thus,
the probability that B outputs 1 in this case is same as the probability that DR

outputs c = c′ which is given by β(λ, z)/2 + 1/2.
�
Hence the advantage of B in the multi message security game of the El-Gamal

Encryption scheme is given by |α(λ, z) − β(λ, z)|/2.
�
We know from Proposition 2 that β(λ, z) is negligible. Hence from Proposi-

tion 3 we can infer that α(λ, z) is also negligible.
Hence, Obf satisfies the average case secure virtual black box property and

this concludes the proof of Lemma.

�

Since Obf satisfies the three requirements given in Definition 2, we conclude
that Obf is an average-case secure obfuscator.

References

1. Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

3. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a nash equilibrium. In: IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 1480–1498
(2015)

4. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 20

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-662-49096-9_20
http://dx.doi.org/10.1007/BFb0054122

Efficiently Obfuscating Re-Encryption Program Under DDH Assumption 291

6. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 50

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 97–106
(2011)

9. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Inno-
vations in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA, 12–14
January 2014, pp. 1–12 (2014)

10. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 28

11. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of 14th ACM Conference on Computer and Communications Security,
pp. 185–194. ACM (2007)

12. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane member-
ship. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11799-2 5

13. Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: a framework for achieving
obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0 6

14. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 404–421. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 23

15. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol.
6055, pp. 316–332. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12678-9 19

16. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 4

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
40–49. IEEE (2013)

18. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of find-
ing a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 20

19. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). doi:10.1007/
978-3-319-56617-7 6

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)

http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-540-78967-3_28
http://dx.doi.org/10.1007/978-3-642-11799-2_5
http://dx.doi.org/10.1007/978-3-642-54631-0_6
http://dx.doi.org/10.1007/978-3-642-54631-0_6
http://dx.doi.org/10.1007/978-3-642-28914-9_23
http://dx.doi.org/10.1007/978-3-642-12678-9_19
http://dx.doi.org/10.1007/978-3-642-54242-8_4
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://dx.doi.org/10.1007/978-3-319-56617-7_6
http://dx.doi.org/10.1007/978-3-319-56617-7_6

292 A. Srinivasan and C. Pandu Rangan

21. Goldreich, O.: The Foundations of Cryptography - Basic Techniques, vol. 1. Cam-
bridge University Press, Cambridge (2001)

22. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 34

23. Hada, S.: Secure obfuscation for encrypted signatures. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13190-5 5

24. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–
252. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 13

25. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78440-1 21

26. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, 31 May–03 June 2014, pp. 475–484 (2014)

28. Srinivasan, A., Rangan, C.P.: Efficiently obfuscating re-encryption program under
DDH assumption. IACR Cryptology ePrint Archive 2015:822 (2015)

29. Wee, H.: On obfuscating point functions. In: Proceedings of 37th Annual ACM
Symposium on Theory of Computing, pp. 523–532. ACM (2005)

http://dx.doi.org/10.1007/3-540-44448-3_34
http://dx.doi.org/10.1007/3-540-44448-3_34
http://dx.doi.org/10.1007/978-3-642-13190-5_5
http://dx.doi.org/10.1007/978-3-642-13190-5_5
http://dx.doi.org/10.1007/978-3-540-70936-7_13
http://dx.doi.org/10.1007/978-3-540-78440-1_21

Lattice-Based Group Signatures:
Achieving Full Dynamicity with Ease

San Ling, Khoa Nguyen(B), Huaxiong Wang, and Yanhong Xu(B)

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{lingsan,khoantt,hxwang,xu0014ng}@ntu.edu.sg

Abstract. Lattice-based group signature is an active research topic
in recent years. Since the pioneering work by Gordon et al. (Asi-
acrypt 2010), eight other schemes have been proposed, providing various
improvements in terms of security, efficiency and functionality. However,
most of the existing constructions work only in the static setting where
the group population is fixed at the setup phase. The only two excep-
tions are the schemes by Langlois et al. (PKC 2014) that handles user
revocations (but new users cannot join), and by Libert et al. (Asiacrypt
2016) which addresses the orthogonal problem of dynamic user enroll-
ments (but users cannot be revoked).

In this work, we provide the first lattice-based group signature that
offers full dynamicity (i.e., users have the flexibility in joining and leaving
the group), and thus, resolve a prominent open problem posed by previ-
ous works. Moreover, we achieve this non-trivial feat in a relatively simple
manner. Starting with Libert et al.’s fully static construction (Eurocrypt
2016) - which is arguably the most efficient lattice-based group signature
to date, we introduce simple-but-insightful tweaks that allow to upgrade
it directly into the fully dynamic setting. More startlingly, our scheme
even produces slightly shorter signatures than the former. The scheme
satisfies the strong security requirements of Bootle et al.’s model (ACNS
2016), under the Short Integer Solution (SIS) and the Learning With
Errors (LWE) assumptions.

Keywords: Lattice-based group signatures · Full dynamicity · Updat-
able Merkle trees · Stern-like zero-knowledge protocols

1 Introduction

Group signature, introduced by Chaum and van Heyst [14], is a fundamental
anonymity primitive which allows members of a group to sign messages on behalf
of the whole group. Yet, users are kept accountable for the signatures they issue
since a tracing authority can identify them should the need arise. There have
been numerous works on group signatures in the last quarter-century.

Ateniese et al. [2] proposed the first scalable instantiation meeting the secu-
rity properties that can be intuitively expected from the primitive, although
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 293–312, 2017.
DOI: 10.1007/978-3-319-61204-1 15

294 S. Ling et al.

clean security notions were not available yet at that time. Bellare et al. [4] filled
this gap by providing strong security notions for static groups, in which the group
population is fixed at the setup phase. Subsequently, Kiayias and Yung [23] and
Bellare et al. [5] established the models capturing the partially dynamic setting,
where users are able to join the group at any time, but once they have done so,
they cannot leave the group. Sakai et al. [44] strengthened these models by sug-
gesting the notion of opening soundness, guaranteeing that a valid signature only
traces to one user. Efficient schemes satisfying these models have been proposed
in the random oracle model [16,40] and in the standard model [20,32].

One essential functionality of group signatures is the support for membership
revocation. Enabling this feature in an efficient manner is quite challenging, since
one has to ensure that revoked users are no longer able to sign messages and the
workloads of other parties (managers, non-revoked users, verifiers) do not sig-
nificantly increase in the meantime. Several different approaches have been sug-
gested [6,10,11,39,46] to address this problem, and notable pairing-based con-
structions supporting both dynamic joining and efficient revocation were given
in [30,31,37]. Very recently, Bootle et al. [7] pointed out a few shortcomings of
previous models, and put forward stringent security notions for fully dynamic
group signatures. They also demonstrated a construction satisfying these notions
based on the decisional Diffie-Hellman (DDH) assumption, following a generic
transformation from a secure accountable ring signature scheme [8].

For the time being, existing schemes offering full dynamicity all rely on
number-theoretic assumptions which are vulnerable to quantum attacks. To
avoid putting all eggs in one basket, it is thus encouraging to consider instantia-
tions based on alternative, post-quantum foundations, e.g., lattice assumptions.
In view of this, let us now look at the topic of lattice-based group signatures.

Lattice-based group signatures. Lattice-based cryptography has been an
exciting research area since the seminal works of Regev [42] and Gentry et al. [18].
Along with other primitives, lattice-based group signature has received notice-
able attention in recent years. The first scheme was introduced by Gordon et al.
[19] whose solution produced signature size linear in the number of group users
N . Camenisch et al. [12] then extended [19] to achieve anonymity in the strongest
sense. Later, Laguillaumie et al. [24] put forward the first scheme with the signa-
ture size logarithmic in N , at the cost of relatively large parameters. Simpler and
more efficient solutions with O(log N) signature size were subsequently given by
Nguyen et al. [41] and Ling et al. [34]. Libert et al. [28] obtained substantial effi-
ciency improvements via a construction based on Merkle trees which eliminates
the need for GPV trapdoors [18]. More recently, a scheme supporting message-
dependent opening (MDO) feature [43] was proposed in [29]. All the schemes
mentioned above are designed for static groups.

The only two known lattice-based group signatures that have certain dynamic
features were proposed by Langlois et al. [25] and Libert et al. [26]. The former is
a scheme with verifier-local revocation (VLR) [6], which means that only the veri-
fiers need to download the up-to-date group information. The latter addresses the
orthogonal problem of dynamic user enrollments (but users cannot be revoked).

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 295

To achieve those partially dynamic functionalities, both of the proposals have to
incorporate relatively complicated mechanisms1 and both heavily rely on lattice
trapdoors.

The discussed above situation is somewhat unsatisfactory, given that the full
dynamicity feature is highly desirable in most applications of group signatures
(e.g., protecting the privacy of commuters in public transportation), and it has
been achieved based on number-theoretic assumptions. This motivates us to
work on fully dynamic group signatures from lattices. Furthermore, considering
that the journey to partial dynamicity in previous works [25,26] was shown not
easy, we ask ourselves an inspiring question: Can we achieve full dynamicity with
ease? At the end of the day, it is good to solve an open research question, but it
would be even better and more exciting to do this in a simple way. To make it
possible, we will likely need some new and insightful ideas.

Our Results and Techniques. We introduce the first fully dynamic group
signature from lattices. The scheme satisfies the strong security requirements
put forward by Bootle et al. [7], under the Short Integer Solution (SIS) and the
Learning With Errors (LWE) assumptions. As in all previous lattice-based group
signatures, our scheme is analyzed in the random oracle model.

For a security parameter λ and maximum expected number of group users N ,
our scheme features signature size ˜O(λ · log N) and group public key size
˜O(λ2 + λ · log N). The user’s secret key has bit-size ˜O(λ) + log N . At each
epoch when the group information is updated, the verifiers only need to down-
load an extra ˜O(λ) bits in order to perform verification of signatures2, while
each active signer only has to download ˜O(λ · log N) bits. In Table 1, we give a
detailed comparison of our scheme with known lattice-based group signatures,
in terms of efficiency and functionality. The full dynamicity feature is achieved
with a very reasonable cost and without having to rely on lattice trapdoors.
Somewhat surprisingly, our scheme even produces shorter signatures than the
scheme from [28] - which is arguably the most efficient lattice-based group sig-
nature known to date. Furthermore, these results are obtained in a relatively
simple manner, thanks to three main ideas/techniques discussed below.

Our starting point is the scheme [28], which works in the static setting.
Instead of relying on trapdoor-based ordinary signatures as in prior works, the
LLNW scheme employs on a SIS-based Merkle tree accumulator. For a group
of N = 2� users, the manager chooses uniformly random vectors x0, . . . ,xN−1;
hashes them to p0, . . . ,pN−1, respectively; builds a tree on top of these hash
values; and publishes the tree root u. The signing key of user i consists of xi

1 Langlois et al. considered users’ “tokens” as functions of Bonsai signatures [13] and
associated them with a sophisticated revocation technique, while Libert et al. used a
variant of Boyen’s signature [9] to sign users’ public keys. Both underlying signature
schemes require long keys and lattice trapdoors.

2 We remark that in the DDH-based instantiation from [7] which relies on the account-
able ring signature from [8], the verifiers have to periodically download public keys
of active signers. Our scheme overcomes this issue, thanks to the use of an updatable
accumulator constructed in Sect. 3.

296 S. Ling et al.

Table 1. Comparison of known lattice-based group signatures, in terms of efficiency
and functionality. The comparison is done based on two governing parameters: security
parameter λ and the maximum expected number of group users N = 2�. As for the
scheme from [25], R denotes the number of revoked users at the epoch in question.

Scheme Sig. size Group PK size Signer’s
SK size

Trap-
door?

Model Extra info
per epoch

GKV [19] ˜O(λ2 · N) ˜O(λ2 · N) ˜O(λ2) yes static NA

CNR [12] ˜O(λ2 · N) ˜O(λ2) ˜O(λ2) yes static NA

LLLS [24] ˜O(λ · �) O(λ2 · �) ˜O(λ2) yes static NA

LLNW [25] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ · �) yes VLR Sign: no

Ver: ˜O(λ)·R
NZZ [41] ˜O(λ + �2) ˜O(λ2 · �2) ˜O(λ2) yes static NA

LNW [34] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) yes static NA

LLNW [28] ˜O(λ · �) ˜O(λ2 + λ · �) ˜O(λ · �) FREE static NA

LLM+ [26] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) yes partially
dynamic

NA

LMN [29] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) yes MDO NA

Ours ˜O(λ · �) ˜O(λ2 + λ · �) ˜O(λ) + � FREE fully
dynamic

Sign:
˜O(λ·�)

Ver: ˜O(λ)

and the witness for the fact that pi was accumulated in u. When issuing sig-
natures, the user proves knowledge of a valid pair (xi,pi) and of the tree path
from pi to u. The user also has to encrypt the binary representation bin(i) of his
identity i, and prove that the ciphertext is well-formed. The encryption layer is
also lattice-trapdoor-free, since it utilizes the Naor-Yung double-encryption par-
adigm [38] with Regev’s LWE-based encryption scheme. To upgrade the LLNW
scheme directly into a fully dynamic group signature, we now let the user com-
pute the pair (xi,pi) on his own (for enabling non-frameability), and we employ
the following three ideas/techniques.

First, we add a dynamic ingredient into the static Merkle tree accumulator
from [28]. To this end, we equip it with an efficient updating algorithm with
complexity O(log N): to change an accumulated value, we simply update the
values at the corresponding leaf and along its path to the root.

Second, we create a simple rule to handle user enrollment and revocation effi-
ciently (i.e., without resetting the whole tree). Specifically, we use the updating
algorithm to set up the system so that: (i) If a user has not joined the group or
has been revoked, the value at the leaf associated with him is set as 0; (ii) When
a user joins the group, that value is set as his public key pi. Our setup guar-
antees that only active users (i.e., who has joined and has not been revoked at
the given epoch) have their non-zero public keys accumulated into the updated
root. This rule effectively separates active users who can sign from those who
cannot: when signing messages, the user proceeds as in the LLNW scheme, and
is asked to additionally prove in zero-knowledge that pi �= 0. In other words, the

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 297

seemingly big gap between being fully static and being fully dynamic has been
reduced to a small difference!

Third, the arising question now is how to additionally prove the inequality
pi �= 0 in the framework of the Stern-like [45] protocol from [28]. One would
naturally expect that this extra job could be done without losing too much in
terms of efficiency. Here, the surprising and somewhat unexpected fact is that we
can actually do it while gaining efficiency, thanks to the following simple idea.
Recall that, in [28], to prove knowledge of pi ∈ {0, 1}nk, an extension technique
from [33] is employed, in which pi is extended into a vector of dimension 2nk. We
note that, the authors of [33] also suggested a slightly modified version of their
technique, that allows to simultaneously prove that pi ∈ {0, 1}nk and pi is non-
zero while working only with dimension 2nk − 1. This intriguing tweak enables
us to obtain a zero-knowledge protocol with slightly lower communication cost,
and hence, group signatures with slightly smaller size than in [28].

To summarize, we solve a prominent open question in the field of lattice-based
group signatures. Moreover, our solution is simple and comparatively efficient.
Our results, while not yielding a truly practical scheme, would certainly help to
bring the field one step closer to practice.

Organization. In Sect. 2, we recall some background on fully dynamic group
signatures and lattice-based cryptography. Section 3 develops an updatable
Merkle tree accumulator. Our main scheme is constructed and analyzed in
Sect. 4.

2 Preliminaries

2.1 Fully Dynamic Group Signatures

We recall the definition and security notions of fully dynamic group signatures
(FDGS) presented by Bootle et al. [7]. A FDGS scheme involves the following
entities: a group manager GM that determines who can join the group, a tracing
manager TM who can open signatures, and a set of users who are potential group
members. Users can join/leave the group at the discretion of GM. We assume GM
will publish some information infoτ regularly associated with a distinct index τ
(referred as epoch hereafter). Without loss of generality, assume there is one-to-
one correspondence between information and the associated epoch. The infor-
mation describes changes of the group, e.g., current group members or members
that are excluded from the group. We assume the published group informa-
tion is authentic. By comparing current group information with previous one,
it allows any party to identify revoked users at current epoch. For simplicity
assume τ1 < τ2 if infoτ1 is published before infoτ2 , i.e., the epoch preserves the
order in which the corresponding group information was published. In existing
models, the keys of authorities are supposed to be generated honestly; while
in [7], Bootle et al. consider a stronger model where the keys of authorities can
be maliciously generated by the adversary.

298 S. Ling et al.

Syntax of Fully Dynamic Group Signatures. A FDGS scheme is a tuple of
following polynomial-time algorithms.

GSetup(λ) → pp. On input security parameter λ, this algorithm generates public
parameters pp.

〈GKgenGM(pp),GKgenTM(pp)〉. This is an interactive protocol between the group
manager GM and the tracing manager TM. If it completes successfully, algo-
rithm GKgenGM outputs a manager key pair (mpk,msk). Meanwhile, GM ini-
tializes the group information info and the registration table reg. The algo-
rithm GKgenTM outputs a tracing key pair (tpk, tsk). Set group public key
gpk = (pp,mpk, tpk).

UKgen(pp) → (upk, usk). Given public parameters pp, this algorithm generates
a user key pair (upk, usk).

〈Join(infoτcurrent , gpk, upk, usk); Issue(infoτcurrent ,msk, upk)〉. This is an interactive
algorithm run by a user and GM. If it completes successfully, this user becomes
a group member with an identifier uid and the Join algorithm stores secret
group signing key gsk[uid] while Issue algorithm stores registration information
in the table reg with index uid.

GUpdate(gpk,msk, infoτcurrent ,S, reg) → infoτnew . This is an algorithm run by
GM to update group information while advancing the epoch. Given gpk,msk,
infoτcurrent , registration table reg, a set S of active users to be removed from
the group, GM computes new group information infoτnew and may update the
table reg. If there is no change to the group, GM outputs ⊥.

Sign(gpk, gsk[uid], infoτ ,M) → Σ. This algorithm outputs a group signature Σ
on message M by user uid. It outputs ⊥ if this user is inactive at epoch τ .

Verify(gpk, infoτ ,M,Σ) → 0/1. This algorithm checks the validity of the signa-
ture Σ on message M at epoch τ .

Trace(gpk, tsk, infoτ , reg,M,Σ) → (uid,Πtrace). This is an algorithm run by TM.
Given the inputs, TM returns an identity uid of a group member who signed
the message and a proof indicating this tracing result or ⊥ if it fails to trace
to a group member.

Judge(gpk, uid, infoτ ,Πtrace,M,Σ) → 0/1. This algorithm checks the validity of
Πtrace outputted by the Trace algorithm.

Correctness and Security of Fully Dynamic Group Signatures. As put
forward by Bootle et al. [7], a FDGS scheme must satisfy correctness, anonymity,
non-frameability, traceability and tracing soundness.

Correctness demands that a signature generated by an honest and active user
is always accepted by algorithm Verify, and that algorithm Trace can always
identify that user, as well as produces a proof accepted by algorithm Judge.
Anonymity requires that it is infeasible for any PPT adversary to distinguish
signatures generated by two active users of its choice at the chosen epoch, even
if it can corrupt any user, can choose the key of GM, and is given access to the
Trace oracle.

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 299

Non-Frameability makes sure that the adversary cannot generate a valid signa-
ture that traces to an honest user even if it can corrupt all other users, and can
choose keys of both managers.
Traceability ensures that the adversary cannot produce a valid signature that
cannot be traced to an active user at the chosen epoch, even if it can corrupt
any user and can choose the key of TM.
Tracing Soundness requires that it is infeasible to produce a valid signature that
traces to two different users, even if all group users and both managers are fully
controlled by the adversary.

Formal definitions of correctness and security requirements are available in
the full version.

2.2 Background on Lattices

We recall the average-case lattice problems SIS and LWE, together with their
hardness results.

Definition 1 [1,18]. The SIS∞
n,m,q,β problem is as follows: Given uniformly ran-

dom matrix A ∈ Z
n×m
q , find a non-zero vector x ∈ Z

m such that ‖x‖∞ ≤ β and
A · x = 0 mod q.

If m,β = poly(n), and q > β · ˜O(
√

n), then the SIS∞
n,m,q,β problem is at least

as hard as worst-case lattice problem SIVPγ for some γ = β · ˜O(
√

nm) (see,
e.g., [18,36]). Specifically, when β = 1, q = ˜O(n), m = 2n�log q�, the SIS∞

n,m,q,1

problem is at least as hard as SIVPγ with γ = ˜O(n).
In the last decade, numerous SIS-based cryptographic primitives have been

proposed. In this work, we will extensively employ 2 such constructions:

– Our group signature scheme is based on the Merkle tree accumulator
from [28], which is built upon a specific family of collision-resistant hash
functions.

– Our zero-knowledge argument systems use the statistically hiding and com-
putationally binding string commitment scheme from [22].

For appropriate setting of parameters, the security of the above two constructions
can be based on the worst-case hardness of SIVP

˜O(n).
In the group signature in Sect. 4, we will employ the multi-bit version of

Regev’s encryption scheme [42], presented in [21]. The scheme is based on the
hardness of the LWE problem.

Definition 2 [42]. Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution

on Z. For s ∈ Z
n
q , let As,χ be the distribution obtained by sampling a $←− Z

n
q and

e ←↩ χ, and outputting (a, s� · a + e) ∈ Z
n
q × Zq. The LWEn,q,χ problem asks to

distinguish m samples chosen according to As,χ (for s $←− Z
n
q) and m samples

chosen according to the uniform distribution over Z
n
q × Zq.

300 S. Ling et al.

If q is a prime power, χ is the discrete Gaussian distribution DZ,αq, where αq ≥
2
√

n, then LWEn,q,χ is as least as hard as SIVP
˜O(n/α) (see [35,36,42]).

2.3 Stern-Like Protocols for Lattice-Based Relations

The zero-knowledge (ZK) argument systems appearing in this paper operate
in the framework of Stern’s protocol [45]. Let us now recall some background.
This protocol was originally proposed in the context of code-based cryptog-
raphy, and was later adapted into the lattice setting by Kawachi et al. [22].
Subsequently, it was empowered by Ling et al. [33] to handle the matrix-vector
relations associated with the SIS and LWE problems, and further developed to
design several lattice-based schemes: group signatures [25,26,28,29,34], policy-
based signatures [15] and group encryption [27].

Stern-like protocols are quite useful in the context of lattice-based privacy-
preserving systems, when one typically works with modular linear equations of
the form

∑

i Mi · xi = v mod q - where {Mi}i, v are public, and one wants to
prove in ZK that secret vectors {xi}i satisfy certain constraints, e.g., they have
small norms and/or have coordinates arranged in a special way. The high-level
ideas can be summarized as follows. If the given constraints are invariant under
certain type of permutations of coordinates, then one readily uses uniformly
random permutations to prove those constraints. Otherwise, one performs some
pre-processings with {xi}i to reduce to the former case. Meanwhile, to prove
that the modular linear equation holds, one makes use of a standard masking
technique.

The basic protocol consists of 3 moves: commitment, challenge, response. If
the statistically hiding and computationally binding string commitment scheme
from [22] is employed in the first move, then one obtains a statistical zero-
knowledge argument of knowledge (ZKAoK) with perfect completeness, constant
soundness error 2/3, and communication cost O(|w|·log q), where |w| denotes the
total bit-size of the secret vectors. In many applications, the protocol is repeated
κ = ω(log λ) times, for security parameter λ, to achieve negligible soundness
error, and then made non-interactive via the Fiat-Shamir heuristic [17]. In the
random oracle model, this results in a non-interactive zero-knowledge argument
of knowledge (NIZKAoK) with bit-size O(|w| · log q) · ω(log λ).

3 Updatable Lattice-Based Merkle Hash Trees

We first recall the lattice-based Merkle-tree accumulator from [28], and then, we
equip it with a simple updating algorithm which allows to change an accumulated
value in time logarithmic in the size of the accumulated set. This updatable hash
tree will serve as the building block of our construction in Sect. 4.

3.1 Cryptographic Accumulators

An accumulator scheme is a tuple of polynomial-time algorithms defined below.

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 301

TSetup(λ). On input security parameter λ, output the public parameter pp.
TAccpp. On input a set R = {d0, . . . ,dN−1} of N data values, output an accu-

mulator value u.
TWitnesspp. On input a data set R and a value d, output ⊥ if d /∈ R; otherwise

output a witness w for the fact that d is accumulated in TAcc(R). (Typically,
the size of w should be short (e.g., constant or logarithmic in N) to be useful.)

TVerifypp. On input accumulator value u and a value-witness pair (d, w), out-
put 1 (which indicates that (d, w) is valid for the accumulator u) or 0.

An accumulator scheme is called correct if for all pp ← TSetup(λ), we have
TVerifypp

(

TAccpp(R),d,TWitnesspp(R,d)
)

= 1 for all d ∈ R.
A natural security requirement for accumulators, as considered in [3,11,28],

says that it is infeasible to prove that a value d∗ was accumulated in a value u
if it was not. This property is formalized as follows.

Definition 3 [28]. An accumulator scheme (TSetup,TAcc,TWitness,TVerify) is
called secure if for all PPT adversaries A:

Pr
[

pp ← TSetup(λ); (R,d∗, w∗) ← A(pp) :

d∗ �∈ R ∧ TVerifypp(TAccpp(R),d∗, w∗) = 1
]

= negl(λ).

3.2 The LLNW Merkle-Tree Accumulator

Notations. Hereunder we will use the notation x
$←− S to indicate that x is

chosen uniformly at random from finite set S. For bit b ∈ {0, 1}, we let b̄ = 1−b.
The Merkle-tree accumulator scheme from [28] works with parameters n = O(λ),
q = ˜O(n1.5), k = �log2 q�, and m = 2nk. The set Zq is identified by {0, . . . , q−1}.
Define the “powers-of-2” matrix

G =

⎡

⎣

1 2 4 . . . 2k−1

. . .
1 2 4 . . . 2k−1

⎤

⎦ ∈ Z
n×nk
q .

Note that for every v ∈ Z
n
q , we have v = G · bin(v), where bin(v) ∈ {0, 1}nk

denotes the binary representation of v. The scheme is built upon the following
family of SIS-based collision-resistant hash functions.

Definition 4. The function family H mapping {0, 1}nk ×{0, 1}nk to {0, 1}nk is
defined as H = {hA | A ∈ Z

n×m
q }, where for A = [A0|A1] with A0,A1 ∈ Z

n×nk
q ,

and for any (u0,u1) ∈ {0, 1}nk × {0, 1}nk, we have:

hA(u0,u1) = bin
(

A0 · u0 + A1 · u1 mod q
)

∈ {0, 1}nk.

Note that hA(u0,u1) = u ⇔ A0 · u0 + A1 · u1 = G · u mod q.
A Merkle tree with N = 2� leaves, where is a positive integer, then can be

constructed based on the function family H as follows.

TSetup(λ). Sample A $←− Z
n×m
q , and output pp = A.

302 S. Ling et al.

TAccA(R = {d0 ∈ {0, 1}nk, . . . ,dN−1 ∈ {0, 1}nk}). For every j ∈ [0, N − 1], let
bin(j) = (j1, . . . , j�) ∈ {0, 1}� be the binary representation of j, and let
dj = uj1,...,j�

. Form the tree of depth = log N based on the N leaves
u0,0,...,0, . . . ,u1,1,...,1 as follows:

1. At depth i ∈ [], the node ub1,...,bi
∈ {0, 1}nk, for all (b1, . . . , bi) ∈ {0, 1}i,

is defined as hA(ub1,...,bi,0,ub1,...,bi,1).
2. At depth 0: The root u ∈ {0, 1}nk is defined as hA(u0,u1).

The algorithm outputs the accumulator value u.
TWitnessA(R,d). If d �∈ R, return ⊥. Otherwise, d = dj for some j ∈ [0, N − 1]

with binary representation (j1, . . . , j�). Output the witness w defined as:

w =
(

(j1, . . . , j�), (uj1,...,j�−1,j̄�
, . . . ,uj1,j̄2 ,uj̄1)

)

∈ {0, 1}� ×
(

{0, 1}nk
)�

,

for uj1,...,j�−1,j̄�
, . . . ,uj1,j̄2 ,uj̄1 computed by algorithm TAccA(R).

TVerifyA
(

u,d, w
)

. Let the given witness w be of the form:

w =
(

(j1, . . . , j�), (w�, . . . ,w1)
)

∈ {0, 1}� ×
(

{0, 1}nk
)�

.

The algorithm recursively computes the path v�,v�−1, . . . ,v1,v0 ∈ {0, 1}nk

as follows: v� = d and

∀i ∈ { − 1, . . . , 1, 0} : vi =

{

hA(vi+1,wi+1), if ji+1 = 0;
hA(wi+1,vi+1), if ji+1 = 1.

(1)

Then it returns 1 if v0 = u. Otherwise, it returns 0.

The following lemma states the correctness and security of the above Merkle
tree accumulator.

Lemma 1 [28]. The given accumulator scheme is correct and is secure in the
sense of Definition 3, assuming the hardness of the SIS∞

n,m,q,1 problem.

3.3 An Efficient Updating Algorithm

Unlike the static group signature scheme from [28], our fully dynamic construc-
tion of Sect. 4 requires to regularly edit the accumulated values without having
to reconstruct the whole tree. To this end, we equip the Merkle tree accumulator
from [28] with a simple, yet efficient, updating algorithm: to change the value at
a given leaf, we simply modify all values in the path from that leaf to the root.
The algorithm, which takes as input a bit string bin(j) = (j1, j2, . . . , j�) and a
value d∗ ∈ {0, 1}nk, is formally described below.

Given the tree in Sect. 3.2, algorithm TUpdateA((j1, j2, . . . , j�),d∗) performs
the following steps:

1. Let dj be the current value at the leaf of position determined by bin(j), and
let ((j1, . . . , j�), (wj,�, . . . ,wj,1)) be its associated witness.

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 303

2. Set v� := d∗ and recursively compute the path v�,v�−1, . . . ,v1,v0 ∈ {0, 1}nk

as in (1).
4. Set u := v0; uj1 := v1; . . . ;uj1,j2,...,j�−1 := v�−1; uj1,j2,...,j�

:= v� = d∗.

It can be seen that the provided algorithm runs in time O() = O(log N). In
Fig. 1, we give an illustrative example of a tree with 23 = 8 leaves.

Fig. 1. A Merkle tree with 23 = 8 leaves, which accumulates the data blocks d0, . . . ,d7

into the value u at the root. The bit string (101) and the pink nodes form a witness
to the fact that d5 is accumulated in u. If we replace d5 by a new value d∗, we only
need to update the yellow nodes. (Color figure online)

4 Our Fully Dynamic Group Signatures from Lattices

In this section, we construct our lattice-based fully dynamic group signature
and prove its security in Bootle et al.’s model [7]. We start with the LLNW
scheme [28], which works in the static setting.

While other constructions of lattice-based group signatures employ trapdoor-
based ordinary signature schemes (e.g., [9,13]) to certify users, the LLNW scheme
relies on a SIS-based Merkle tree accumulator which we recalled in Sect. 3.2. The
GM, who manages a group of N = 2� users, chooses uniformly random vectors
x0, . . . ,xN−1 ∈ {0, 1}m; hashes them to p0, . . . ,pN−1 ∈ {0, 1}nk, respectively;
builds a tree on top of these hash values; and lets the tree root u ∈ {0, 1}nk

be part of the group public key. The signing key of user i consists of xi and
the witness for the fact that pi was accumulated in u. When generating group
signatures, the user proves knowledge of a valid pair (xi,pi) and of the tree path
from pi to u. The user also has to encrypt the binary representation bin(i) of
his identity i, and prove that the ciphertext is well-formed. The encryption layer
utilizes the Naor-Yung double-encryption paradigm [38] with Regev’s LWE-based
cryptosystem, and thus, it is also lattice-trapdoor-free.

To upgrade the LLNW scheme directly into a fully dynamic group signature,
some tweaks and new ideas are needed. First, to enable the non-frameability

304 S. Ling et al.

feature, we let the user compute the pair (xi,pi) on his own. The second problem
we have to consider is that Merkle hash trees seem to be a static primitive. To
this end, we equip the accumulator with an efficient updating algorithm (see
Sect. 3.3). Now, the challenging question is how to handle user enrollment and
revocation in a simple manner (i.e., without having to reset the whole tree). To
tackle these issues, we associate each of the N potential users with a leaf in the
tree, and then use the updating algorithm to set up the system so that:

1. If a user has not joined the group or has been revoked, the value at the leaf
associated with him is set as 0;

2. When a user joins the group, that value is set as his public key pi.

Our setup guarantees that only active users (i.e., who has joined and has not
been revoked at the given epoch) have their non-zero public keys accumulated
into the updated root. This effectively gives us a method to separate active users
who can sign from those who cannot: when signing messages, the user proceeds
as in the LLNW scheme, and is asked to additionally prove in ZK that pi �= 0.

At this point, the arising question is how to prove the inequality pi �= 0 in the
framework of the Stern-like [45] protocol from [28]. One would naturally hope
that this extra job could be done without losing too much in terms of efficiency.
Here, the surprising and somewhat unexpected fact is that we can actually do
it while gaining efficiency, thanks to a technique originally proposed in [33].

To begin with, let BL
t denote the set of all vectors in {0, 1}L having Ham-

ming weight exactly t. In Stern-like protocols (see Sect. 2.3), a common tech-
nique for proving in ZK the possession of p ∈ {0, 1}nk consists of appending
nk “dummy” entries to it to obtain p∗ ∈ B2nk

nk , and demonstrating to the ver-
ifier that a random permutation of p∗ belongs to the “target set” B2nk

nk . This
suffices to convince the verifier that the original vector p belongs to {0, 1}nk,
while the latter cannot learn any additional information about p, thanks to the
randomness of the permutation. This extending-then-permuting technique was
first proposed in [33], and was extensively used in the underlying protocol of the
LLNW scheme. Now, to address our question, we will employ a modified ver-
sion of this technique, which was also initially suggested in [33]. Let us think of
another “target set”, so that it is possible to extend p ∈ {0, 1}nk to an element
of that set if and only if p is non-zero. That set is B2nk−1

nk . Indeed, the extended
vector p∗ belongs to B2nk−1

nk if and only if the original vector has Hamming
weight at least nk − (nk − 1) = 1, which means that it cannot be a zero-vector.
When combining with the permuting step, this modification allows us to addi-
tionally prove the given inequality while working with smaller dimension. As a
result, our fully dynamic scheme produces slightly shorter signatures than the
original static scheme.

Finally, we remark that the fully dynamic setting requires a proof of correct
opening, which boils down to proving correct decryption for Regev’s encryption
scheme. It involves modular linear equations with bounded-norm secrets, and
can be easily handled using Stern-like techniques from [26,33].

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 305

4.1 Description of the Scheme

Our scheme is described as follows.

GSetup(λ). On input security parameter λ, this algorithm specifies the following:
– An expected number of potential users N = 2� = poly(λ).
– Dimension n = O(λ), prime modulus q = ˜O(n1.5), and k = �log2 q�.

These parameters implicitly determine the “powers-of-2” matrix G ∈
Z

n×nk
q , as defined in Sect. 3.

– Matrix dimensions m = 2nk for the hashing layer, and mE = 2(n +)k
for the encryption layer.

– An integer β =
√

n · ω(log n), and a β-bounded noise distribution χ.
– A hash function HFS : {0, 1}∗ → {1, 2, 3}κ, where κ = ω(log λ), to be

modelled as a random oracle in the Fiat-Shamir transformations [17].
– Let COM : {0, 1}∗ × {0, 1}m → Z

n
q be the string commitment scheme

from [22], to be used in our zero-knowledge argument systems.
– Uniformly random matrix A ∈ Z

n×m
q .

The algorithm outputs public parameters

pp = {λ,N, n, q, k,m,mE , , β, χ, κ,HFS,COM,A}.

〈GKgenGM(pp),GKgenTM(pp)〉. The group manager GM and the tracing manager
TM initialize their keys and the public group information as follows.

– GKgenGM(pp). This algorithm samples msk
$←− {0, 1}m and computes

mpk = A · msk mod q, and outputs (mpk,msk). Here, we consider mpk
as an identifier of the group managed by GM who has mpk as his public
key. Furthermore, as in [7, Sect. 3.3, full version], we assume that the
group information board is visible to everyone, but can only be edited by
a party knowing msk.

– GKgenTM(pp). This algorithm initializes the Naor-Yung double-
encryption mechanism with the -bit version Regev encryption scheme.
It first chooses B $←− Z

n×mE
q . For each i ∈ {1, 2}, it samples Si

$←− χn×�,
Ei ←↩ χ�×mE , and computes Pi = S�

i · B + Ei ∈ Z
�×mE
q . Then, TM sets

tsk = (S1,E1), and tpk = (B,P1,P2).
– TM sends tpk to GM who initializes the following:

• Table reg := (reg[0][1], reg[0][2], . . . , reg[N − 1][1], reg[N − 1][2]),
where for each i ∈ [0, N−1]: reg[i][1] = 0nk and reg[i][2] = 0. Looking
ahead, reg[i][1] will be used to record the public key of a registered
user, while reg[i][2] stores the epoch at which the user joins.

• The Merkle tree T built on top of reg[0][1], . . . , reg[N − 1][1]. (Note
that T is an all-zero tree at this stage, but it will be modified when a
new user joins the group, or when GM computes the updated group
information.)

• Counter of registered users c := 0.
Then, GM outputs gpk = (pp,mpk, tpk) and announces the initial group
information info = ∅. He keeps T and c for himself.

306 S. Ling et al.

UKgen(pp). Each potential group user samples usk = x $←− {0, 1}m, and computes
upk = p = bin(A · x) mod q ∈ {0, 1}nk.
Without loss of generality, we assume that every honestly generated upk is a
non-zero vector. (Otherwise, the user would either pick x = 0m or accidentally
find a solution to the SIS∞

n,m,q,1 problem associated with matrix A - both
happen with negligible probability.)

〈Join, Issue〉. If the user with key pair (upk, usk) = (p,x) requests to join the
group at epoch τ , he sends p to GM. If the latter accepts the request, then
the two parties proceed as follows.
1. GM issues a member identifier for the user as uid = bin(c) ∈ {0, 1}�. The

user then sets his long-term signing key as gsk[c] = (bin(c),p,x).
2. GM performs the following updates:

– Update T by running algorithm TUpdateA(bin(c),p).
– Register the user to table reg as reg[c][1] := p; reg[c][2] := τ .
– Increase the counter c := c + 1.

GUpdate(gpk,msk, infoτcurrent ,S, reg). This algorithm is run by GM to update the
group information while also advancing the epoch. It works as follows.
1. Let the set S contain the public keys of registered users to be revoked. If

S = ∅, then go to Step 2.
Otherwise, S = {reg[i1][1], . . . , reg[ir][1]}, for some r ∈ [1, N] and some
i1, . . . , ir ∈ [0, N−1]. Then, for all t ∈ [r], GM runs TUpdateA(bin(it),0nk)
to update the tree T .

2. At this point, by construction, each of the zero leaves in the tree T cor-
responds to either a revoked user or a potential user who has not yet
registered. In other words, only active users who are allowed to sign in
the new epoch τnew have their non-zero public keys, denoted by {pj}j ,
accumulated in the root uτnew of the updated tree.
For each j, let wj ∈ {0, 1}� × ({0, 1}nk)� be the witness for the fact that
pj is accumulated in uτnew . Then GM publishes the group information of
the new epoch as:

infoτnew =
(

uτnew , {wj}j

)

.

We remark that the infoτ outputted at each epoch by GM is technically not
part of the verification key. Indeed, as we will describe below, in order to
verify signatures bound to epoch τ , the verifiers only need to download the
first component uτ of size ˜O(λ) bits. Meanwhile, each active signer only has
to download the respective witness of size ˜O(λ) · .

Sign(gpk, gsk[j], infoτ ,M). To sign message M using the group information infoτ

at epoch τ , the user possessing gsk[j] = (bin(j),p,x) first checks if infoτ

includes a witness containing bin(j). If this is not the case, return ⊥. Other-
wise, the user downloads uτ and the witness of the form

(

bin(j), (w�, . . . ,w1)
)

from infoτ , and proceeds as follows.
1. Encrypt vector bin(j) ∈ {0, 1}� twice using Regev’s encryption scheme.

Namely, for each i ∈ {1, 2}, sample ri
$←− {0, 1}mE and compute

ci = (ci,1, ci,2)

=
(

B · ri mod q, Pi · ri +
⌈q

2
⌋

· bin(j) mod q
)

∈ Z
n
q × Z

�
q.

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 307

2. Generate a NIZKAoK Πgs to demonstrate the possession of a valid tuple

ζ = (x,p, bin(j),w�, . . . ,w1, r1, r2) (2)

such that:
(i) TVerifyA

(

uτ ,p,
(

bin(j), (w�, . . . ,w1)
))

= 1 and A · x = G · p mod q;
(ii) c1 and c2 are both correct encryptions of bin(j) with randomness r1

and r2, respectively;
(iii) p �= 0nk.
Note that statements (i) and (ii) were covered by the LLNW protocol [28].
Meanwhile, statement (iii) is handled using the technique described at
the beginning of this Section. We thus obtain a Stern-like interactive
zero-knowledge argument system which is a slight modification of the one
from [28]. Due to space restriction, the details are presented in the full
version.
The protocol is repeated κ = ω(log λ) times to achieve negligible sound-
ness error and made non-interactive via the Fiat-Shamir heuristic as a
triple Πgs = ({CMTi}κ

i=1,CH, {RSP}κ
i=1), where

CH = HFS

(

M, ({CMTi}κ
i=1,A,uτ ,B,P1,P2, c1, c2

)

∈ {1, 2, 3}κ.

3. Output the group signature

Σ = (Πgs, c1, c2). (3)

Verify(gpk, infoτ ,M,Σ). This algorithm proceeds as follows:
1. Download uτ ∈ {0, 1}nk from infoτ .
2. Parse Σ as Σ =

(

{CMTi}κ
i=1, (Ch1, . . . , Chκ), {RSP}κ

i=1, c1, c2
)

.
If (Ch1, . . . , Chκ) �= HFS

(

M, ({CMTi}κ
i=1,A,uτ ,B,P1,P2, c1, c2

)

, then
return 0.

3. For each i = 1 to κ, run the verification phase of the protocol presented
in the full version to check the validity of RSPi with respect to CMTi

and Chi. If any of the conditions does not hold, then return 0.
4. Return 1.

Trace(gpk, tsk, infoτ , reg,M,Σ). This algorithm parses tsk as (S1,E1), parses Σ
as in (3), and performs the following steps.
1. Use S1 to decrypt c1 = (c1,1, c1,2) to obtain a string b′ ∈ {0, 1}� (i.e., by

computing
⌊

(c1,2 − S�
1 · c1,1)/(q/2)

⌉

.
2. If infoτ does not include a witness containing b′, then return ⊥.
3. Let j′ ∈ [0, N − 1] be the integer having binary representation b′. If the

record reg[j′][1] in table reg is 0nk, then return ⊥.
4. Generate a NIZKAoK Πtrace to demonstrate the possession of S1 ∈ Z

n×�,
E1 ∈ Z

�×mE , and y ∈ Z
�, such that:

⎧

⎪

⎨

⎪

⎩

‖S1‖∞ ≤ β; ‖E1‖∞ ≤ β; ‖y‖∞ ≤ �q/5�;
S�
1 · B + E1 = P1 mod q;

c1,2 − S�
1 · c1,1 = y + �q/2� · b′ mod q.

(4)

308 S. Ling et al.

As the statement involves modular linear equations with bounded-
norm secrets, we can obtain a statistical zero-knowledge argument by
employing the Stern-like interactive protocol from [26]. The protocol is
repeated κ = ω(log λ) times to achieve negligible soundness error and
made non-interactive via the Fiat-Shamir heuristic as a triple Πtrace =
({CMTi}κ

i=1,CH, {RSP}κ
i=1), where

CH = HFS

(

({CMTi}κ
i=1, gpk, infoτ ,M,Σ,b′) ∈ {1, 2, 3}κ. (5)

5. Set uid = b′ and output (uid,Πtrace).
Judge(gpk, uid, infoτ ,Πtrace,M,Σ). This algorithm consists of verifying the argu-

ment Πtrace w.r.t. common input (gpk, infoτ ,M,Σ, uid), in a similar manner
as in algorithm Verify.
If Πtrace does not verify, return 0. Otherwise, return 1.

4.2 Analysis of the Scheme

Efficiency. We first analyze the efficiency of the scheme described in Sect. 4.1,
with respect to security parameter λ and parameter = log N .

– The public key gpk contains several matrices, and has bit-size ˜O(λ2 + λ ·).
– For each j ∈ [0, N−1], the signing key gsk[j] has bit-size +nk+m = ˜O(λ)+.
– At each epoch, the signature verifiers downloads nk = ˜O(λ) bits, while each

active signer downloads ˜O(λ ·) bits.
– The size of signature Σ is dominated by that of the Stern-like NIZKAoK Πgs,

which is O(|ζ| · log q) · ω(log λ), where |ζ| denotes the bit-size of the witness-
tuple ζ in (2). Overall, Σ has bit-size ˜O(λ ·).

– The Stern-like NIZKAoK Πtrace has bit-size ˜O(2 + λ ·).

Correctness. We now demonstrate that the scheme is correct with overwhelm-
ing probability, based on the perfect completeness of Stern-like protocols, and
the correctness of Regev’s encryption scheme.

First, note that a signature Σ = (Πgs, c1, c2) generated by an active and hon-
est user j is always accepted by algorithm Verify. Indeed, such a user can always
compute a tuple ζ = (x,p, bin(j),w�, . . . ,w1, r1, r2) satisfying conditions (i),(ii)
and (iii) in the Sign algorithm. The completeness of the underlying argument
system then guarantees that Σ is always accepted by algorithm Verify.

Next, we show that algorithm Trace outputs bin(j) with overwhelming prob-
ability, and produces a proof Πtrace accepted by algorithm Judge. Observe that,
the decryption algorithm essentially computes

e = c1,2 − ST
1 c1,1 = E1 · r1 + �q/2� · bin(j) mod q,

and sets the j-th bit of b′ to be 0 if j-th entry of e is closer to 0 than to
�q/2� and 1 otherwise. Note that our parameters are set so that ‖E1 · r1‖∞ <

q/5, for E1 ←↩ χ�×mE and r1
$←− {0, 1}mE . This ensures that b′ = bin(j) with

overwhelming probability.

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 309

Further, as the user is active, infoτ must contain w = (bin(j),w�, . . . ,w1)
and reg[j][1] in table reg is not 0nk. Therefore, algorithm Trace will move to
the 4-th step, where it can always obtain the tuple (S1,E1,y) satisfying the con-
ditions (4). By the completeness of the argument system, Πtrace will be accepted
by the algorithm Judge.

Security. In Theorem 1, we prove that our scheme satisfies the security require-
ments of the Bootle et al.’s model [7].

Theorem 1. Assume that the Stern-like argument systems used in Sect. 4.1 are
simulation-sound. Then, in the random oracle model, the given fully dynamic
group signature satisfies the anonymity, traceability, non-frameability and tracing
soundness requirements under the LWEn,q,χ and SIS∞

n,m,q,1 assumptions.

In the random oracle model, the proof of Theorem 1 relies on the following facts:

1. The Stern-like zero-knowledge argument systems being used are simulation-
sound;

2. The underlying encryption scheme, which is obtained from Regev cryptosys-
tem [42] via the Naor-Yung transformation [38], is IND-CCA2 secure;

3. The Merkle tree accumulator we employ is secure in the sense of Definition 3;
4. For a properly generated key-pair (x,p), it is infeasible to find x′ ∈ {0, 1}m

such that x′ �= x and bin(A · x′ mod q) = p.

Due to space restriction, details of the proof of Theorem1 are provided in the
full version of the paper.

Acknowledgements. The authors would like to thank Benôıt Libert and the anony-
mous reviewers for helpful comments and discussions. The research was supported by
Research Grant TL-9014101684-01 and the Singapore Ministry of Education under
Research Grant MOE2013-T2-1-041.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996, pp. 99–108. ACM (1996)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 16

3. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 33

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 38

http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/3-540-69053-0_33
http://dx.doi.org/10.1007/3-540-39200-9_38

310 S. Ling et al.

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3 11

6. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
CCCS 2004, pp. 168–177. ACM (2004)

7. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). doi:10.1007/
978-3-319-39555-5 7. Full version: https://eprint.iacr.org/2016/368.pdf

8. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short account-
able ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). doi:10.
1007/978-3-319-24174-6 13

9. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully
secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 29

10. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001). doi:10.
1007/3-540-44586-2 15

11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 5

12. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32928-9 4

13. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 27

14. Chaum, D., Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.1007/
3-540-46416-6 22

15. Cheng, S., Nguyen, K., Wang, H.: Policy-based signature scheme from lattices.
Des. Codes Cryptogr. 81(1), 43–74 (2016)

16. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006). doi:10.1007/11958239 13

17. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)

19. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 23

20. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007). doi:10.1007/978-3-540-76900-2 10

21. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–
329. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71677-8 21

http://dx.doi.org/10.1007/978-3-540-30574-3_11
http://dx.doi.org/10.1007/978-3-319-39555-5_7
http://dx.doi.org/10.1007/978-3-319-39555-5_7
https://eprint.iacr.org/2016/368.pdf
http://dx.doi.org/10.1007/978-3-319-24174-6_13
http://dx.doi.org/10.1007/978-3-319-24174-6_13
http://dx.doi.org/10.1007/978-3-642-13013-7_29
http://dx.doi.org/10.1007/978-3-642-13013-7_29
http://dx.doi.org/10.1007/3-540-44586-2_15
http://dx.doi.org/10.1007/3-540-44586-2_15
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/978-3-642-32928-9_4
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/11958239_13
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-642-17373-8_23
http://dx.doi.org/10.1007/978-3-540-76900-2_10
http://dx.doi.org/10.1007/978-3-540-71677-8_21

Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease 311

22. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-89255-7 23

23. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and
separable authorities. Int. J. Secur. Netw. 1(1), 24–45 (2006)

24. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group sig-
natures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-42045-0 3

25. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme
with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 345–361. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 20

26. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6 13

27. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6 4

28. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 1

29. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). doi:10.
1007/978-3-319-39555-5 8

30. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 34

31. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 36

32. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Hei-
delberg (2015). doi:10.1007/978-3-662-48000-7 15

33. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36362-7 8

34. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 19

35. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 26

http://dx.doi.org/10.1007/978-3-540-89255-7_23
http://dx.doi.org/10.1007/978-3-540-89255-7_23
http://dx.doi.org/10.1007/978-3-642-42045-0_3
http://dx.doi.org/10.1007/978-3-642-42045-0_3
http://dx.doi.org/10.1007/978-3-642-54631-0_20
http://dx.doi.org/10.1007/978-3-662-53890-6_13
http://dx.doi.org/10.1007/978-3-662-53890-6_4
http://dx.doi.org/10.1007/978-3-662-49896-5_1
http://dx.doi.org/10.1007/978-3-319-39555-5_8
http://dx.doi.org/10.1007/978-3-319-39555-5_8
http://dx.doi.org/10.1007/978-3-642-32009-5_34
http://dx.doi.org/10.1007/978-3-642-29011-4_36
http://dx.doi.org/10.1007/978-3-662-48000-7_15
http://dx.doi.org/10.1007/978-3-642-36362-7_8
http://dx.doi.org/10.1007/978-3-662-46447-2_19
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-22792-9_26

312 S. Ling et al.

36. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 2

37. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00468-1 26

38. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437. ACM (1990)

39. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-30574-3 19

40. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT
2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30539-2 26

41. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46447-2 18

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

43. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group
signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pair-
ing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36334-4 18

44. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the security of
dynamic group signatures: preventing signature hijacking. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 715–732. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30057-8 42

45. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

46. Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-40061-5 16

http://dx.doi.org/10.1007/978-3-642-40041-4_2
http://dx.doi.org/10.1007/978-3-642-00468-1_26
http://dx.doi.org/10.1007/978-3-642-00468-1_26
http://dx.doi.org/10.1007/978-3-540-30574-3_19
http://dx.doi.org/10.1007/978-3-540-30539-2_26
http://dx.doi.org/10.1007/978-3-540-30539-2_26
http://dx.doi.org/10.1007/978-3-662-46447-2_18
http://dx.doi.org/10.1007/978-3-642-36334-4_18
http://dx.doi.org/10.1007/978-3-642-36334-4_18
http://dx.doi.org/10.1007/978-3-642-30057-8_42
http://dx.doi.org/10.1007/978-3-540-40061-5_16

Breaking and Fixing Mobile App Authentication
with OAuth2.0-based Protocols

Ronghai Yang(B), Wing Cheong Lau, and Shangcheng Shi

Department of Information Engineering, The Chinese University of Hong Kong,
Hong Kong, China

{yr013,wclau,ss016}@ie.cuhk.edu.hk

Abstract. Although the OAuth2.0 protocol was originally designed to
serve the authorization need for websites, mainstream identity providers
like Google and Facebook have made significant changes on this protocol
to support authentication for mobile apps. Prior research mainly focuses
on how the features of mobile operating systems can affect the OAuth
security. However, little has been done to analyze whether these signifi-
cant modifications of the protocol call-flow can be well understood and
implemented by app developers. Towards this end, we report a field-study
on the Android OAuth2.0-based single-sign-on systems. In particular, we
perform an in-depth static code analysis on three identity provider apps
including Facebook, Google and Sina as well as their official SDKs to
understand their OAuth-related transactions. We then dynamically test
600 top-ranked US and Chinese Android apps. Apart from various types
of existing vulnerabilities, we also discover three previously unknown
security flaws among these first-tier identity providers and a large num-
ber of popular 3rd-party apps. For example, 41% apps under study are
susceptible to a newly discovered profile attack, which unlike prior works,
enables remote account hijacking without any need to trick or interact
with the victim. The prevalence of vulnerabilities further motivates us
to propose/implement an alternative, fool-proof OAuth SDK for one of
the affected IdPs to automatically prevent from these vulnerabilities. To
facilitate the adoption of our proposed fixes, our solution requires min-
imal code changes by the 3rd-party-developers of the affected mobile
apps.

Keywords: OAuth2.0 · OpenID Connect · Mobile app authentication

1 Introduction

The OAuth2.0 protocol was originally designed to serve the authorization need
for 3rd-party websites. However, many major Identity Providers (IdPs) such as
Facebook, Google and Sina, have recently adapted the OAuth2.0-based protocols
to support Single-Sign-On (SSO) services for 3rd-party mobile apps (which take
the role of Relying Party under the context of OAuth2.0). When OAuth2.0 is
used as a SSO scheme, a user can log into the mobile Relying Party (RP), e.g.,
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 313–335, 2017.
DOI: 10.1007/978-3-319-61204-1 16

314 R. Yang et al.

IMDB, via the IdP without sharing the identity credential with the RP. In this
paper, we will focus on OAuth2.0 and OpenID Connect (which is built on top
of OAuth2.0), since they are the de facto SSO standards.

To support SSO services with 3rd-party mobile apps, the security of
the adapted OAuth2.0 protocol has been evaluated by the literature. Chen
et al. [12] first point out that some operating-system-provided components
(e.g., Intent/WebView for Android) are required to implement OAuth2.0 for
mobile platforms. As further shown by Chen, the features of these components,
if not well understood by mobile app developers, can be leveraged to compromise
mobile SSO systems. Following this work, Ye et al. [34] apply model checking
method to theoretically evaluate this modified protocol and Wang et al. [28,29]
summarize those known vulnerabilities among 15 Chinese IdPs over different
platforms.

Prior studies mainly focus on how the differences of mobile systems (i.e.,
vulnerabilities in the system-provided components) can compromise mobile SSO
systems. However, the security implications resulting from the major protocol
changes, when adapting the OAuth2.0-based protocols to mobile platforms, are
often left out. For example, the standard OAuth2.0 implicit flow has shown
to be insecure for authentication and thus a revised version, i.e., a variant of
OpenID Connect (OIDC), is recommended. Nevertheless, they do not consider
that the SSO results, even in the revised version, are passed through the user
device. Consequently, these security-critical results are subject to tampering and
further enable an adversary to infer the program logic of the RP server.

Towards this end, the goal of this research is to further the understanding of
(1) how the changes of OAuth1 protocol flow, if not well implemented, can lead
to nontrivial security flaws, (2) the overall security quality of mobile SSO systems
by checking whether existing vulnerabilities have been fixed or not. Our work
consists of two pillars: (1) We perform a standard static code analysis of three
first-tier Android IdP apps (Facebook, Google and Sina) and their corresponding
SDKs widely used by the RP to understand their client-side program logic. (2)
We develop a tool to dynamically test Top-600 US and Chinese Android apps to
see how well the RP/IdP servers perform the OAuth transactions. From these
studies, we have made the following technical contributions in this paper:

– We have identified the security-critical changes of the OAuth protocol call-
flow.

– We have examined the implementations of 3 first-tier IdPs and 600 top-ranked
US/Chinese Android Apps. In addition to different types of existing vulnera-
bilities, we have discovered three previously unknown vulnerabilities resulting
from the incorrect implementations of the protocol call-flow modification.

– We have designed and implemented a foolproof solution which prevents future
3rd party app developers from committing the same mistakes. To ease the
transition, our solution only requires minimal changes in the 3rd-party devel-
oped codes of a vulnerable mobile app.

1 We use OAuth to denote OAuth2.0 and OpenID Connect, if not specified otherwise.

Breaking and Fixing Mobile App Authentication 315

2 Background

In the OAuth ecosystem, four parties are involved to support SSO for 3rd-party
mobile apps, namely, the backend server of the 3rd-party mobile app (RP server,
for short), the backend server of the IdP (IdP server), the 3rd-party client-side
mobile app (RP app) and the client-side mobile app of the IdP (IdP app). For
ease of presentation, in the rest of this paper, we use notations in the parentheses
to denote these four parties and use OAuth to denote OAuth2.0 as well as OIDC,
if not specified otherwise.

The ultimate goal of SSO is for the IdP server to issue an identity proof, e.g.,
the access token for OAuth2.0 and the id token for OIDC, to the RP server.
With this identity proof, the RP server can determine the user’s identity and
then log the user in.

2.1 The Implicit Flow of OAuth 2.0 for Mobile Platforms

OAuth2.0 [18] defines four types of authorization flows, out of which the implicit
flow and authorization code flow2 are widely used by the mobile platform and
the website, respectively. Thanks to the demystification by Chen et al. [12],
the standard implicit flow has proven to be insecure for authentication under
mobile platforms. After revising the standard protocol, one believed-to-be-secure
realization is illustrated in Fig. 1, although neither the RFC nor the IdP provides
a complete call-flow diagram.

RP server
user device IdP server

1. app info 2.authentication &
authorization

3. AT + user info
4. AT+user

info
5. AT +
user info

 8. API request for user resource + AT

 9 . user resource in IdP
10. user data

 6. AT verify
 7. AT information

RP
app

IdP
app

e.g

Fig. 1. The implicit flow of OAuth2.0
for mobile platforms

RP server user device IdP server
e.g

1. app info 2.authentication &
authorization

3. AT+id_token
4. AT+

id_token
5. AT +
id_token

6. user data

 RP
 app

 IdP
 app

{“name”:”alice”,
“email”:”alice@gmail.com”,
 “user_id”:”1001”
}

Fig. 2. The implicit flow of OpenID
Connect

1. A user attempts to log into the RP with the IdP. The RP app sends its app
information (e.g., requested permissions) to the IdP app via a secure channel
provided by the mobile operating system, for example the Intent channel in
Android.

2 In fact, the authorization code flow can also be securely used for mobile apps, but
with the cost of worse performance.

316 R. Yang et al.

2. Thanks to the secure channel, the IdP app can verify whether the RP app
information is correct or not. If so, the IdP app then sends such information,
as the authorization request, to the IdP server.

3. The IdP server compares information of the authorization request and that
pre-registered by the RP developer. If it matches, the IdP server would
believe the validity of the authorization request and thus issue an access
token (AT) together with optional user information (e.g., uid) to its own
client-side app.

4. The IdP app returns the access token to the RP app via the secure channel
maintained by the operating system.

5. The RP app sends the access token and user information to the RP server.
6. The RP server should call the security-focused SSO-API provided by the

IdP to verify the access token.
7. If the access token is valid, the IdP server should respond the RP server with

authorization information including which RP this access token is issued to.
8. Only if the access token belongs to this RP can the RP server accept it.

Thereafter, the RP server can retrieve the user data with this verified access
token.

9. The IdP server returns the user data associated with the access token.
10. The RP server can then identify the user and return his sensitive data to

RP app.

2.2 The OpenID Connect Protocol

Since OAuth2.0 was originally designed to support authorization, to adapt it
for authentication, it involves multiple high-latency round trips, i.e., Step 6–
Step 9 of Fig. 1. To support authentication more efficiently, IdPs like Google
and Facebook have developed the OpenID Connect (OIDC) protocol [25] and
its variants, on top of OAuth2.0. In addition to the authorization code flow and
implicit flow, OIDC further supports another type of authorization flow, i.e.,
hybrid flow. Regardless, ALL the real-world OIDC-enabled apps under study
only implement the implicit flow. As such, we will focus the implicit flow in the
rest of this paper.

Regarding the implicit flow, OIDC is backward compatible with OAuth2.0.
The only difference is that, apart from the access token, IdPs also introduce a
new parameter, i.e., id token, which is digitally signed by the IdP server. As
illustrated in Fig. 2, the id token, which consists of the user profile, is then sent
to the RP server along with the original access token. Since the signature cannot
be tampered/forged by an attacker, the RP server can now directly identify the
user by extracting the user profile from the id token without the trouble to
retrieve the user profile from the IdP server.

2.3 Threat Model

The goal of an adversary is to break the mobile app authentication, i.e., log
into the RP app as the victim. Here, we trust the mobile operating system and

Breaking and Fixing Mobile App Authentication 317

assume it cannot be compromised. We assume the adversary can install the RP
app and IdP app in her own device so as to communicate with the RP server and
IdP server. The adversary, Eve, can act as a normal user and monitor/tamper
the network traffic through her own device. In addition, we consider that an
attacker can trick a user into installing a malicious app on her device. This app
does not have any permission considered to be dangerous.

3 Major Protocol Changes that Affect Mobile OAuth
Security

Although the above OAuth protocol seems simple, some security-related changes
(when adapting the protocol from the website) are often overlooked by mobile
app developers.

3.1 Untrusted Identity Proof

Websites typically employ the authorization code flow to support SSO services.
In this case, the identity proof is transmitted via a secure HTTPS channel
between the RP server and IdP server. On the contrary, mobile developers advo-
cate the implicit flow, which passes the identity proof through the user device.
Since the mobile device is untrustworthy (the attacker has full control of her own
device), the identity proof is subject to tampering. Therefore, such an identity
proof can only be accepted by the RP server for two reasons:

1. The RP server makes a direct server-to-server call to the IdP server to verify
the identity proof (i.e., Step 6–Step 9 in Fig. 1);

2. The identity proof is signed by the IdP server (i.e., id token in Fig. 2).

In other words, the RP server should establish a direct trust relationship with
the IdP server to correctly process the identity proof.

Furthermore, there are different types of the so-called identity proof including
the access token, the id token, the user profile (returned at Step 9 of Fig. 1) and
even the authorization code (if the authorization code flow is used). Since this
notion is neither covered by the protocol specification nor research studies, RP
developers need to determine which identity proof to use in which way, based
on their own understanding of the protocol.

3.2 Heavy Client-Side Logic

Another major difference is about the user-agent. In the web-based SSO services,
the user operates on the end-user’s browser. By contrast, in the mobile SSO
systems, the user interacts with the RP app and IdP app (the browser is split
into two parts). Since mobile apps are more powerful, the RP app and IdP app
are often responsible for more message exchange which instead is managed by
the backend server in the case of website. This seems reasonable at the first sight.
But some messages can only be processed at the server side, such as the user

318 R. Yang et al.

resource retrieved at Step 9 of Fig. 1. Otherwise, it can lead to the user-profile
attack, as presented in Sect. 5.

Meanwhile, both the IdP app and RP app store much more data on the
client side. For example, the IdP app keeps the user’s identity information and
the RP app stores the authorization information (e.g., the RP’s name), which is
displayed for the user to check/grant the permissions. Note that these security-
critical data need to be retrieved from the server during SSO transactions. How-
ever, with such information in the client side, it may be tempting for an app
developer to retrieve it from the phone directly. This can lead to the so-called
user-profile attack and inconsistent RP app identity as presented in Sect. 5.

4 Our Approach

To evaluate the security implications resulting from the above protocol changes,
we first perform dynamic testing on every RP/IdP app. The testing helps to
understand the program logic on the server side. Secondly, to better understand
the security practices on the client side, we conduct an in-depth static code analy-
sis on the IdP apps (i.e., Facebook, Google and Sina) and their corresponding
SDKs (used by RP apps). Given the limited number of IdP apps and SDKs, we
can afford for the manual code examination.

4.1 Dynamic Testing

We design a tool to automatically fuzz every OAuth-related message. As shown
in Fig. 3, we first set up a man-in-the-middle (MITM) proxy so that we can
observe and tamper the network traffic going into and leaving our phone. We
then manually operate the phone as a normal user and mimic the SSO process
to generate a series of OAuth requests. For every request, our tool replaces each
parameter with that from a different RP and user. Finally, the tool sends the
fuzzed request to the receiver and checks whether the response is normal or not.
Note that since the network traffic is typically protected by HTTPS, we employ
the SSL-enabled proxy like mitmproxy [3].

The analysis of the communication between the IdP app and IdP server is
straightforward, since such interactions share the same format for the same IdP.
Unfortunately, fuzzing the messages between the RP app and RP server, i.e.,
Step 5 (ii) in Fig. 3, is more challenging than expected. Firstly, there are numer-
ous interactions between the user mobile device and the RP server. It is there-
fore difficult to identify which request is used by the RP server to authenticate
the user. Secondly, besides being protected by HTTPS, the message exchanges
between the RP app and its backend server are often further encrypted or signed
by the RP developer. Although it is possible to extract the cryptographic key
from the Android app, such a practice may not be scalable. Therefore, it is usu-
ally easier to tamper the response from the IdP server to the IdP app, i.e., Step 3
(ii) instead. After all, all OAuth-related information received by the RP server
can only be derived from the IdP server3.
3 One exception is Google’s Android account management, as presented in Sect. 5.1.

Breaking and Fixing Mobile App Authentication 319

RP server attacker device IdP server
e.g

1. app info

3 i). AT + user info

4. AT+user
info 5 i). AT +

 user info

RP
app

 IdP
app

MITM Proxy

3 i
i).

AT +
us

er

inf
o

5 ii). AT +
user info

Domain under the attacker’s
control

Fig. 3. The platform to analyze the implementations on the IdP/RP server side

4.2 Static Code Analysis

To understand the client-side logic, we decompile the binary code of the latest
IdP app, and the official SDK (if it is compiled) widely used by the RP app.
Although the IdP app and SDK usually are heavily obfuscated, the names of
special activities and system APIs (e.g., startActivity, getCallingPackage, etc.)
are not changed. As such, we can identify the entry point of SSO services and
then build a partial call flow graph. This provides an opportunity for us to only
focus on the relatively small number of SSO-related security-critical activities.
We then manually examine these activities to identify potential vulnerabilities.
For example, we find that the SSO entry of Sina (i.e., SSOActivity) by default
verifies the received information, except when the information is from Sina itself.
This practice is seemingly sound at first. However, it may be leveraged by a
malicious RP app to bypass the security checking, if there is a “next Intent” [31]
in Sina app. Therefore, during the code examination process, we will try to check
the existence of the “next Intent”. To confirm these vulnerabilities, we then build
a toy RP app with the official SDK and launch the corresponding attacks on this
toy app. By this way, we have identified the problem of inconsistent RP identity,
as presented in Sect. 5.2.

5 Vulnerability Analysis

In addition to various existing vulnerabilities, the above method also helps to
discover three unknown security flaws resulting from the inaccurate understand-
ing/implementations of the protocol changes.

5.1 Profile Vulnerability

The identity proof is often incorrectly processed by the RP server and has led to
the profile vulnerability, which enables an attacker to log into a susceptible RP
as the victim by leveraging the victim’s public user profile only. Note that all the

320 R. Yang et al.

RP server IdP server RP app IdP app

4. AT +
id_token

5. AT+ id_token6.user info
query(user info)

7. user data

1. auth request
2. user info 3. auth request

query_db

(a) RP app returns user information obtained
via Android account management system

RP server IdP server RP app IdP app
1. AT + user info2. AT+ user info

3. AT
4. user info

query(user info)

6. user data
5. user info

(b) The RP app returns user information ob-
tained via API

Fig. 4. The RP app does not return correct identity proof of the user to the RP server

RP server IdP server RP app IdP app
1. AT + user info2. AT+ user info 3. AT+ user info

4. user data

query(user info)

(a) No verification of the access token by the
RP server

RP server IdP serverRP app IdP app

1. AT + id_token2. AT+ id_token3. AT + id_token

query(id_token.uid)

4. user data {“name”:”alice”,
“email”:”alice@xxx”,
 “uid”:”1001”
}

(b) No verification of the signature by the RP
server

Fig. 5. The RP server does not verify the identity proof of the user

prior findings [12,29,34] require different types of interactions with the victim.
In contrast, this newly discovered vulnerability can be exploited remotely and
solely by the attacker without any need to trick or interact with the victim, for
example via phishing attacks.

Different Types of Incorrect Implementations. We present two types of
common but widespread mistakes (but the real-world misuses do not limited to
these two types).
Return Incorrect Identity Proof to the RP Server. Some RP apps can directly
retrieve the user information from the mobile device it is running on, regardless
of the OAuth access token obtained from the IdP. Without the access token,
the RP app only sends the user profile (e.g., uid, email) to the RP server as the
identity proof. As a consequence, the RP server has no way to correctly identify
the user.

One interesting misuse is caused by Android Account Management System
(AMS) [2,15] when using Google as the identity provider. Android AMS provides
a centralized database (i.e., /data/system/users/0/accounts.db) for storing user
accounts. While the main goal of AMS is to support seamless access user data via
background synchronization, Google has integrated it to support SSO service.
Specifically, when a user logs into his/her Google account, Google Login Service
(i.e., IdP app) will store the user’s Google account information in the accounts
table as shown below.

INSERT INTO "accounts" VALUES(1, ’alice@gmail.com’, ’com.

google ’, ’password ’, NULL);

Breaking and Fixing Mobile App Authentication 321

With the Android permission of GET ACCOUNTS, an app can easily get the
user’s Google account (i.e., email address) by calling getAccounts() method. As
shown in Fig. 4(a), some RP developers (e.g., one antivirus app Psafe with 50+
million installs) directly return this email address (retrieved from the database)
to the RP server as the identity proof, regardless of the access token (or id token).
As such, an adversary can insert a forged entry, i.e., victim’s email address, into
the database on the adversary’s mobile device.

Another typical example is shown in Fig. 4(b) where an RP app immediately
retrieves the user data by calling the IdP API with the access token. How-
ever, this RP app only sends the user profile to its server as the identity proof.
Although such a proof is protected by encryption/signature techniques in addi-
tion to TLS, an attacker can simply feed incorrect user information at Step 4 of
Fig. 4(b).
The RP Server Does Not Verify the Identity Proof. As shown in Fig. 5(a), when
the IdP servers return the user identity information (e.g., user id/email address)
along with the access token via OAuth, many RP servers (e.g., Sohu with 80+
million monthly-active-user etc.) simply and incorrectly return sensitive user
information to its own client-side app based on the received user-id WITHOUT
verifying whether the received user-id is indeed bound to the issued access token
(i.e., lack of Step 6–Step 9 in Fig. 1).

Figure 5(b) shows another case where Facebook and Google adopt the OIDC-
like protocol and digitally sign the user identity information. However, most RP
servers just ignore this signature and insist on the traditional OAuth protocol.
Worse still, some RP servers (e.g., a free call/text app DingTong with 10+
million installs) even do not verify the signature but simply extract the user-id
from the payload of the signature and accept the user-id as is the way without
any authentication/validation.

Exploiting the Profile Vulnerability. Leveraging the same system setup of
Fig. 3, an attacker can log into a susceptible app as the victim by exploiting the
victim’s profile with the following steps4:

1. The attacker setups a SSL-enabled MITM proxy for her own mobile device to
monitor and tamper network traffic going into and leaving from her device.

2. The attacker installs the vulnerable RP app in her own mobile device.
3. The attacker signs into the vulnerable RP app with the attacker’s own IdP

login name and password.
4. When the IdP server returns the user profile to its client-side app, i.e., Step

3 (ii) of Fig. 3, the attacker substitutes her own user-id (public user id for the
case of Google+ and Sina users or guessable email address) with the victim’s
one using the MITM proxy. Although Facebook has started to issue private
per-app user-id for each RP since May 2014, for backward compatibility rea-
sons, to-date, Facebook still uses the public user-id to identify early adopters

4 For the case of Google Android AMS, an attacker just needs to insert a forged entry
in her own device and then follows the normal steps to complete the SSO procedure.

322 R. Yang et al.

of a RP app. As such, a user of a vulnerable RP of Facebook is still suscepti-
ble to our attack as long as he/she has signed into the RP app via Facebook
before May 2014.

5. Since the RP server directly uses the user identity information returned by its
client-side app to identify the user WITHOUT further validation, the attacker
can therefore successfully sign into the RP as the victim.

Additional Challenges for the Exploit. The above exploit involves additional chal-
lenges when the IdP client-side app, e.g., the one by Facebook, applies the certifi-
cate pinning. In this case, the message sent by the IdP server (and then tampered
by the attacker’s MITM proxy) to its client-side app will not be accepted by the
latter. As a workaround, the attacker can simply uninstall the IdP app so that
the IdP SDK (widely used by RP apps) would automatically downgrade to carry
out OAuth authentication via the built-in WebView browser. Being a general
built-in browser, the WebView does not support the certificate pinning for a
specific IdP.

But some IdPs do not support WebView. In this case, the attacker can-
not just use off-the-shelf tools like Xposed SSLUnpinning [6] module, since the
IdPs often use customized methods (instead of the native Android framework) to
implement the certificate pinning. For such IdPs, the attacker has to reverse engi-
neer the IdP app and manually remove the certificate pinning. To demonstrate
the feasibility of this approach, we have successfully implemented a proof-of-
concept hack on the Facebook app by reverse engineering the apk. But the RP
app (more precisely, the IdP SDK) will also compare the certificate of Facebook
with a previously hard-coded one (i.e., the real certificate of Facebook). As such,
we also need to bypass the certificate comparison function.

Vendor Responses. All of three IdPs under study acknowledged the security
issue and pledged to help to notify the affected third-party app developers. In
particular, Sina already sent a specific notification to ALL RP developers on its
platform to inform them about the problem. The company also granted us the
maximum amount of reward credits allowed by their bug-bounty program. It has
also updated the Single-Sign-On section of its programming guide accordingly.
Google has acknowledged our finding via their Google Security Hall of Fame and
indicated that they will modify the corresponding documentation for their 3rd
party app developers. Facebook has informed us that they are seeking a way to
make their RP developers aware of this problem.

5.2 Inconsistent RP App Identity for the User

After authenticating the user at Step 2 of Fig. 1, the IdP app should retrieve the
authorization information including the RP name, the requested permissions
from its backend server. From the perspective of the user, the IdP app will pop
up a dialog to indicate which RP requests what permissions from which user.
Here, the name of the RP represents the identity of the RP which is verified by
the IdP.

Breaking and Fixing Mobile App Authentication 323

Since this authorization information is also stored by the RP app on the
mobile device, we find that Google immediately retrieves such information from
the device. Specifically, Google presents the name of the RP according to the
value of android:label in the AndroidManifest file, when an RP app adopts the
Intent5 scheme (which is the default method used by Google’s official SDK)
to support SSO services. On one hand, Google in fact can correctly learn the
identity of the RP. On the other hand, the AndroidManifest file can be arbitrarily
defined by the RP app. As such, the displayed authorization page is inconsistent
with Google’s understanding.

Taking the advantage of this inconsistence, a malicious RP app can convince
the user that the interacting RP, as verified by Google, is a benign and privileged
app like IMDB. Due to the great trust placed on Google, the user is willing to
grant the permissions if Google verifies the RP app as IMDB rather than some
random app. As such, it would be easier for the malicious RP to obtain an access
token. This access token enables an attacker to retrieve the victim’s data hosted
by Google. When combined with other attacks, e.g., token hijacking, the attacker
can also log into the victim’s account on other Google-enabled benign apps.

Vendor Response. Google acknowledged this security bug. But as Google
security team claims, this security issue was found independently by another
concurrent work (but this issue is not fixed yet). Unfortunately, only the first
report is in the scope of Google vulnerability reward program.

5.3 Treat the IdP App as a Special RP

Some IdPs including Google and Sina treat their client-side app as a special
RP. If the user can successfully authenticate with the IdP, the IdP server would
issue an access token to its client-side app. Note that this access token has
higher privileges. It enables the IdP app to make sensitive transactions on behalf
of the user, for example, to issue access token for any other RPs, etc. Since
the adversary (acting as a normal user) can also obtain this access token, the
adversary can easily launch application impersonation attack [20]. For example,
the adversary can utilize this highly privileged access token to invoke sensitive
APIs (e.g., query the user information in a batch) with higher API quota. Note
that such APIs/quotas originally are not allowed by the adversary or users.

Worse still, this privileged access token is not protected by HTTPS for Sina
app. Therefore, an adversary can easily obtain it via eavesdropping. Using this
special access token, the attacker can pretend to be the victim and make any
transactions, for example, signing into any RP app on the Sina platform as the
victim.

Vendor Response. We have reported this issue to Sina. Sina directly acknowl-
edged this problem and have applied the corresponding fixes for their Android
app.

5 When an RP app chooses to use the WebView scheme, Google can correctly get the
RP name from its own server.

324 R. Yang et al.

6 Empirical Evaluation

We have studied the Android IdP apps and OAuth SDKs provided by three
top-tier IdPs, i.e., Facebook, Google and Sina. The number of registered users
in these IdPs ranges from more than 800 million to over 2.5 billion as depicted
in Table 1. We then comprehensively test the implementations of 600 top-ranked
Android applications in US and China. Since more Chinese RPs support OAuth,
we only select top 100 RPs (in overall category) and another top 100 apps in
different categories for Sina from one major Chinese app store [4]. By contrast,
we select 300 top-ranked RPs (in overall category) and 100 top-ranked RPs (in
different categories) for Facebook and Google from Google Play. The top 100
apps in different categories is selected as follows: top 30 free apps in social, top
30 free apps in travel and local, top 30 free apps in fitness, top 10 free apps in
communication. Out of these 600 apps, we identify that 182 apps use OAuth
authentication service provided by one or more of the 3 IdPs mentioned above.

Table 1. Statistics for the usage of the protocol

IdPs (# of
third-party RP)

of IdP users
(in Millions)

OAuth2.0 OpenID Connect

Insecure
usage

Correct
usage

Ignore
id token

Not verify
id token

Correct
usage

Facebook (59) >1,500 9 10 35 (20∗) 2 3

Google (40) >2,500 24 14 0+ 0 2

Sina (83) >8,00 78 5 N.A N.A N.A

– ∗: 20 out of 35 RPs are incorrectly implemented.
– +: Google customizes the OIDC protocol where typically only the id token is issued
to the RP. Therefore, this id token cannot be ignored. Otherwise, there is not a valid
identity proof.

In addition to different types of vulnerabilities, our studies also present
first-hand information regarding the adoption rate as well as the misuse rate
of OAuth2.0 and OIDC. As shown in Table 1, all of three IdPs support the
OAuth2.0 protocol. Facebook and Google additionally develop and advocate
OIDC-like protocols for SSO services. Since OIDC by default is supported by
Facebook SDK, 68% apps of Facebook, as opposed to only 2 RP apps of Google,
employ the OIDC protocol. Regardless, there are two types of misuses for these
OIDC-enabled RPs:

– Ignore id token: Some RPs ignore the id token, in which case these RPs revert
to the OAuth2.0 protocol and rely on the access token to authenticate the
user. As such, these RPs (20 out of 35) share the same security issues of
OAuth2.0 as illustrated in Table 2.

– Not verify id token: Some RPs indeed rely on the id token to verify the user.
But 29% of them do not check whether the id token is well signed.

Breaking and Fixing Mobile App Authentication 325

Table 2. Statistics of the vulnerabilities for OAuth

IdPs (# of 3rd-party RP)Profile attackToken

hijacking

Improper

user agent

Access token

disclosure

App secret

disclosure

of vulnerable

RPsa

Facebook (59) 9 (15%) 27 1 2 0 31 (53%)

Google (40) 8 (20%) 20 1 1 0 24 (60%)

Sina (83) 58 (70%) 15 7 13 4 78 (94%)

Summary (182) 75 (41%) 62 9 16 4 133 (73%)

– a: One RP may be susceptible to multiple vulnerabilities, e.g., the profile attack and token hijacking,

at the same time.

These observations show that OAuth2.0 is still the most popular SSO pro-
tocol. Unfortunately, the implementations of OAuth2.0 (including the ignore
id token case of OIDC) are also more susceptible: 75% OAuth2.0-enabled RPs
have at least one vulnerability whereas 29% OIDC-supported RPs are vulnera-
ble. Different OAuth security vulnerabilities are summarized in Table 2. Below
we first discuss the implication of the profile attack and then demonstrate the
pervasiveness of existing vulnerabilities.

6.1 The Implication of the Profile Attack

As illustrated in Table 2, 41% of the RP under test are found to be vulnerable to
the newly discovered profile attack. Table 3 depicts a partial list of the vulnerable
mobile apps we have identified so far. Notice that the total number of downloads
for this incomplete list of popular but vulnerable apps already exceeds 2.4 billion.
Based on the SSO-user-adoption-rate of 51% according to the recent survey by
Janrain [7], we conservatively estimate that more than one billion of different
types of mobile app accounts are susceptible to the profile attack as of this
writing.

After signing into the victim’s vulnerable RP app account using our exploit,
the attacker will have, in many cases, full access to the victim’s sensitive and
private information which is hosted by the vulnerable RP server. Just for the
vulnerable apps listed in Table 3 alone, a massive amount of extremely sensi-
tive personal information is wide-open for grab: this includes detailed travel
itineraries, personal/intimate communication archives, family/private photos,
personal finance records, as well as the viewing or shopping history of the victim.
For some RPs, the online-currency/service credits associated with the victim’s
account are also at the disposal of the attacker.

Although our current attack is demonstrated over the Android platform, the
exploit itself is platform-agnostic: any iOS or Android user of the vulnerable
mobile app is affected as long as he/she has used the OAuth SSO service with
the app before. As a proof of concept, we have conducted the same attack on
two vulnerable iOS apps.

6.2 Re-Discover Known Vulnerabilities

Table 2 shows that our testing also rediscovers different types of existing security
issues.

326 R. Yang et al.

Table 3. A Partial list of vulnerable apps and the sensitive information exposed

Type of apps IdP supported # of app

downloads (in

Millions)

Type of

private/sensitive

information

exposed

Feasible

transactions by

the attacker

Travel plan app Sina >270 Travel itineraries -

Hotel booking app Facebook, Google >5 Lodging history Pay for room

bookings

Private chat app Sina >10 Private

message/album

Send forged

messages

Dating app Google, Sina >5 Dating history,

preferences

Purchase gifts

Finance app1 Sina >25 Personal

income/expenses

-

Finance app2 Sina >50 Stock list of

interest

-

Call app Facebook >10 Contact list and

call history

Call for free

Live video app Sina >15 The host the

victim likes

Purchase gifts

Download app Sina >60 Download history Enjoy VIP speed

Shopping apps Facebook, Google >100 Shopping history -

Browser Sina >40 Browsing history -

Video apps Sina >700 Video watching

history

Purchase videos

Music apps Google, Sina >800 Playlist Purchase

sound-tracks

News apps Sina >350 News-reading

history

-

1. Token hijacking [1]: At Step 6–Step 7 of Fig. 1, the RP server must check that
the received access token is granted to the same RP. Unfortunately, 34% RPs
fail to do so, which enables an adversary to sign onto a victim’s benign RP
account by leveraging an access token issued to a malicious RP.

2. Improper user agent [12]: In addition to the infeasibility to identify the RP
app, the WebView, as a custom webkit browser embedded in the app, is also
untrustworthy to be a OAuth user-agent. Since the WebView is under the
control of the RP app, a malicious RP app is capable of stealing any infor-
mation submitted by the user in the WebView (e.g., the user’s IdP password)
and modifying authorization information displayed by the WebView. Unfor-
tunately, most RP apps support WebView, and worse still, 5% RP apps only
support this problematic scheme.

3. Access token disclosure [27]: An access token should be transmitted securely.
Thanks to the higher adoption rate of TLS, only 9% mobile RPs disclose their
access token whereas 32% 3rd-party websites made this mistake [27].

4. App secret disclosure [29]: The confidential app secret should only be shared
between the RP server and IdP server. There are 15 mobile RP apps deploy
the authorization code flow rather than the implicit flow. Unfortunately, 27%
of these apps inadvertently pass this secret through the user device. This
allows an attacker to make operations on behalf of the RP, e.g., changing the
RP’s security setting.

Breaking and Fixing Mobile App Authentication 327

7 Plausible Root Causes

Surprised by the prevalence of various incorrect implementations, we also try
to analyze the underlying reason by examining the SDKs and the OAuth APIs
provided by IdPs.

7.1 Unclear Developer Documentation

We found that many authentication-related security issues are caused by the lack
of clear guidelines. Since OAuth2.0 (RFC 6749 [18]) was not designed for mobile
app authentication, various IdPs have developed different home-brewed exten-
sions of OAuth2.0-based APIs and SDKs to support SSO for mobile apps. Unfor-
tunately, the implicit security assumptions and operational requirements of such
home-brewed adaptations are often not clearly documented or well-understood
by RP developers. For example, when Sina returns the user profile to the RP
app at Step 4 of Fig. 1, the only purpose is to allow the RP app to display the
user info (e.g., user name, avatar, etc.). Despite of this specific intention, Sina
makes the following confusing claim6 in its programming guide [5]:

For the convenience of app developers, the returned user information can
avoid calling the user-profile API, i.e., users/show.

As pointed out in Sect. 3, a server-to-server call is inevitable for the stan-
dard OAuth2.0 protocol to verify the untrusted identity proof. However, the
above claim can mislead RP servers not to make the user-profile API call to the
IdP server at Step 8 and Step 9. Instead, the RP server may directly use the
returned user information from its client-side app as the identity proof and thus
be vulnerable to the profile attack.

For another example, Google assumes the RP developers would adopt the
OIDC protocol, and thus only shows how an RP app can authenticate with its
backend server using the id token. Unfortunately, the majority of apps use the
OAuth2.0 protocol instead. For these apps, Google does not define the interac-
tions between the RP app and RP server. Therefore, the RP developers without
adequate security expertise have to implement the error-prone authentication
services by themselves.

After reporting the security issues to the three IdPs, all of them recognize
the need to improve their documentation by explicitly pointing out the implicit
security requirements. For example, Sina now updates its claim [5] as follows:

The third-party apps should not use uid to identify the logged-in user.
Note that the access token is the only valid identity proof.

6 Since Sina developers are not native English speakers, the statements are translated
by the author.

328 R. Yang et al.

7.2 Poor API Design of Sina

Since more Sina apps are vulnerable to the profile attack, we further examine its
SDK and API design. We find that the poor API design of Sina may compound
this problem. As an open social network, Sina by design allows any RP in pos-
session of a valid access token, no matter whom the access token is issued to, to
retrieve any user’s basic profile via the users/show API: https://api.weibo.com/
2/users/show.json?access token=x&uid=x. Even if the RP server does not trust
the user id and would like to use the access token to identify the user, it may
incorrectly use the above API. In this case, Sina server would return the victim’s
user profile only based on the value of uid in the URL. Without realizing the
exact semantic of the returned information, the RP developer may incorrectly
interpret that the returned user profile is bound to the access token, and thus,
log the user in.

In fact, Sina also provides a correct API (i.e., account/get uid) to get the
user-id of the one, whom the access token is bound to. But Sina never specifies
which API to use7. Due to the richer information provided by the inappropriate
users/show API8, we believe RP developers prefer the incorrect API. By con-
trast, Facebook and Google use the people/me API, which is more self-explained,
and more importantly, is typically handled by IdP SDKs. For example, the PHP
SDK of Facebook hard-encodes the user id me, and as such the uid fed by the
attacker would be ignored by the SDK.

8 Defense

The community has proposed the following Current Best Practices (CBPs):

1. IdPs should provide clearer, and more security-focused developer guidelines.
2. The RP server should not trust any information even if it is signed by its own

app. Trust should be anchored on the IdP server directly.
3. To implement OAuth2.0 for mobile apps, RP developers should use the autho-

rization code flow instead of implicit flow by strictly following [14].
4. Use OIDC for authentication whenever possible.

If these CBPs can be correctly followed, then most vulnerabilities will not exist.
Unfortunately, most RP developers never adhere these CBPs at all. Towards this
end, the crux of the defense is to enforce the defined security checks, which cannot
simply rely on the RP developers, but instead must be strongly enforced by the
IdPs, since the latter has adequate security expertise. Therefore, we develop a
general and foolproof solution, from the perspective of the IdP, to help the RP
developers to automatically handle the error-prone SSO services. Our solution
should achieve three goals:

7 Worse still, Sina seems to recommend the incorrect one in their unclear developer
documentation.

8 The other API only returns the uid of the user.

https://api.weibo.com/2/users/show.json?access_token=x&uid=x
https://api.weibo.com/2/users/show.json?access_token=x&uid=x

Breaking and Fixing Mobile App Authentication 329

1. All the identified vulnerabilities (including existing ones) can be prevented.
2. To ease the transition, the code changes by the RP developers should be as

few as possible.
3. The solution should be backward compatible in a sense that the RP server

can still support those users who use the older version of the RP app. After
all, it is difficult for every user to upgrade his/her RP app.

With these goals in mind, we first review the architecture of existing SSO
systems. As shown in Fig. 6, both the RP server and RP app can be split into
two modules: the SDKs provided by the IdP serve the interactions with the
IdP app/server and the upper layer codes implemented by the RP developer
manage its own business logic. Currently, the identity proof is also (incorrectly)
handled by the upper layer code. To prevent from SSO errors, we migrate such
functionality to the lower layer SDKs, with the belief that the SDKs provided by
IdPs can correctly process this security-critical identity proof. Specifically, upon
the reception of the identity proof at Step 4 of Fig. 1, the client-side SDK can
send it to the server-side SDK. The latter then performs the real authentication
task by utilizing this identity proof. Below we will discuss more details.

8.1 Defense on the Client-Side SDK

As shown in Fig. 4, when the RP apps only return user information, there is no
way for the RP servers to correctly identify the user. Therefore, the enforced
version of the client-side SDK should automatically send required information
including the access token (or the id token for OIDC) to its backend server. With
due consideration to the ease of transition, below we first discuss the design of
the existing client-side SDK.

API Design of the Existing Client-Side SDK. We only take Sina, 9 one
OAuth2.0 IdP, as the example. When authorization succeeds, the client-side
SDK (used by the RP app) will utilize Android API onActivityResult to receive
an access token along with a user id from Sina app. Before forwarding this result
to the upper layer, authorizeCallBack API is first invoked to check whether the
access token is in the correct format.

protected void onActivityResult (...){
mSsoHandler.authorizeCallBack(requestCode ,resultCode ,result);

}

Initial Attempt Using Cookie-Based Scheme. Without affecting the upper
layer behavior, we manage to authenticate the user in the SDK. Referring to the
scheme in websites, one natural attempt, as shown in Fig. 6, is to use cookie.

9 Our solution is applicable to OIDC protocol or other IdPs since they follow the same
flavor.

330 R. Yang et al.

Upper
layer

 RP server RP app IdP server

3. access token
4. access token information + uid + email

 SDK

SDK

Entry

API

8.
 c

oo
ki

eTA/diu
.9

db

6. AT+ uid

7. auth request:
cookie=xxx

10. user data

GetAT
API

2. AT
5. set_cookie=rand()

1. AT+ uid

Fig. 6. The cookie-based defense

Upper
layer

 RP server RP app IdP server

3. access token
4. access token information + uid + email

 SDK

SDK

Entry

API

8.
 u

id

TA/d iu.9

db

6. AT+ uid

7. auth request:uid

10. user data

GetAT
API

2. AT
5. set_uid=rand()

1. AT+ uid

Fig. 7. The refined defense

1. After the client-side SDK (i.e., authorizeCallBack) checks the format of the
access token, instead of forwarding it to the upper layer, the client-side SDK
first delivers the access token to the server-side SDK.

2. The server-side SDK exactly follows Step 3–Step 4 in Fig. 6 (corresponding
to Step 6–Step 9 in Fig. 1) to identify the user via the access token.

3. If the verification succeeds, the server-side SDK then sets a cookie to the
client-side app with a random nonce at Step 5 of Fig. 6. Only then would the
client-side SDK forward the access token and the user profile to the upper
layer code.

4. From the view of the upper layer, everything remains the same. Thus it can
follow its original logics to interact with the RP server. The only difference is
that a cookie would be automatically attached to the authentication request
at Step 7 of Fig. 6.

5. Regardless of other information sent by the RP app, the server-side SDK only
relies on the cookie to identify the user.

Unfortunately, this cookie-based solution is not applicable to every RP app:
Unlike websites where a central browser can help to manage cookies, the Android
app developers need to manage the cookies by themselves, for example using
the CookieManager. Therefore, the cookie set by the underlying SDK may not
be automatically used by the upper layer, if the latter adopts a customized
CookieStore.

Refined Defense. Nevertheless, the cookie-based scheme still provides great
insights. Note that the cookie is used to bind the requests of Step 2 and Step 7 in
Fig. 6. Towards this end, the client-side SDK and its upper layer code must share
some information like the cookie. Furthermore, the shared information must be
a secret. Otherwise, an adversary can easily guess/compute this information and
pretend to be anyone else.

Given these requirements, we revise the cookie-based solution. Referring to
the practice of Facebook which issues private user-id on a per-app basis, we will
randomly generate a one-time user id, instead of the cookie, as the secret to bind
these two requests. More specifically, if authentication succeeds, the server-side
SDK would return a randomly generated uid to its client-side SDK at Step 5 of
Fig. 7. This uid plays the same role as cookie. Note that this uid can only be

Breaking and Fixing Mobile App Authentication 331

used for once so that an adversary cannot guess/compute its value. The old uid
will be deleted once expired or used.

8.2 Defense on the Server-Side SDK

At Step 2 of Fig. 7, the server-side SDK can follow Step 3 and Step 4 in Fig. 7 (i.e.,
correspond to Step 6–Step 9 in Fig. 1) to identify the user. Once authentication
succeeds, the server-side SDK randomly generates a one-time uid with a specific
prefix and maintains the mapping of < uid, uidreal >. At Step 7 of Fig. 7, the
server-side upper layer should forward the authentication request to its SDK.
Our newly added function in the SDK can then handle this request according
to its content.

1. If the request only contains the user id, i.e., uid, we check whether this uid
starts with a specific prefix. If so, we check the mapping of < uid, uidreal >
and then get the user information uidreal. Otherwise, just abort the request.

2. If the request only contains the access token, we follow Step 3 and Step 4 in
Fig. 7 to identify the user.

3. If the request contains the access token and user id, we first follow Case (1)
to process the user id. If it fails, we then follow Case (2) to process the access
token.

Remark. The correctness of our defense is based on two assumptions. Firstly,
a correct implementation of OAuth, as shown in Figs. 1 and 2, is automatically
immune to all the existing attacks. In fact, a formal proof is presented by [34].
More precisely, this work utilizes the model checking method to analyze the
implementation-level protocol of Facebook and can only discover unauthorized
storage access if the malicious app has root privileges. However, such a strong
threat model is not considered in this paper. Secondly, the IdPs (i.e., SDKs) with
enough security expertise can accurately implement the protocol (as opposed to
the RP developers who often make mistakes). Therefore, the crux of our solution
is to enforce the IdP developers to correctly implement the OAuth protocol for
the RP developers.

Although the design of the defense seems complicated, we only add two more
requests (i.e., Step 2 and Step 5 at Fig. 7) into the current system. Note that the
other steps (e.g., Step 6, Step 8, etc.) already reside in the existing systems. For
the ease of presentation, we intentionally hide these detailed (SDK-level) steps
when discussing the protocol flow in Fig. 1. Note also that the proposed remedies
does not affect the authorization code flow, although we can use the same idea
to improve its security.

8.3 Implementation and Evaluation of the Proposed Defense

To demonstrate the feasibility of the proposed remedies, we implement the solu-
tion on a sample app provided by Sina. Like examples from the other IdPs, the
sample app is built on top of the Android SDK. Note that this SDK is in the

332 R. Yang et al.

form of executable Jar file. To modify it, we thereby need to decompile the Jar
file into Java code. While there are off-the-shelf Java decompiler tools like CFR
or JAD, the extracted source code is not well structured and contains various
errors, which requires non-trivial manual resolve.

We then follow the common practices to build a backend server on top of
the official PHP SDK. The only change in the server-side SDK is to add a
new function which performs the real authentication task. Meanwhile, we only
add 5 lines of code in the server-side upper layer, which demonstrates the least
programming efforts from the RP developers.

Table 4. The average running time under three different settings

Two types of app User info (in ms) Access token
(in ms)

Access token
& user info
(in ms)

Vulnerable app 4490 7604 5092

Fixed app 6414 9667 6009

Evaluation. To demonstrate the effectiveness, we have launched different
attacks listed in Table 2 on the sample app. It turns out that our solution can
prevent from (or alert for insecure transmission, e.g., token disclosure) all these
attacks. For example, the profile vulnerability becomes impossible since an adver-
sary cannot guess the randomly-generated one-time uid. Take token hijacking as
another example. Since our defense exactly follows Fig. 1, our server-side SDK
will verify whether this access token is issued to itself or not at Step 3 of Fig. 7
(corresponds to Step 6 of Fig. 1). Thus an access token of another RP will not
be accepted.

To show the efficiency of our solution, we measure the running time of a
complete SSO process. Specifically, we enumerate all three possible cases of the
authentication request, as mentioned in Sect. 8.2. For each case, we operate the
sample app to complete the OAuth2.0 process for 20 times under the same phone
and network environment. The average time is presented in Table 4. It shows that
the fixed app has only a small impact on the user performance.

The State-of-the-Art OAuth Defense. The Current Best Practices
(CBP) [14] suggests the usage of authorization code flow to prevent from many
existing problems. However, a correct implementation of these CBPs is still chal-
lenging for the RP developers (as is the case for the revised implicit flow). Fur-
thermore, it requires lots of efforts to migrate from implicit flow (the current de
fact standard) to authorization code flow. Xing et al. [32] develop invariants of
HTTP parameters to protect third-party web service integrations like OAuth2.0.
However, it cannot discover many attacks such as the profile attack. Another
defense [11] uses program verifier to check whether the sequence of method calls
satisfies the defined predicate. Despite its power, this method requires significant

Breaking and Fixing Mobile App Authentication 333

programming efforts for all involved parties. Compared to the state of the art,
our defense not only can prevent from all the existing attacks, but also requires
the minimal programming efforts from the RP developers.

9 Related Work

Security Analyses from the Protocol Perspective. IETF has presented
comprehensive security considerations and threat models in RFC6749 [18] and
RFC6819 [22] for OAuth2.0 protocol from the initial design. Additionally, the
authorization code flow has proven to be secure cryptographically [10] as long as
the TLS is properly used. Hu et al. [20] present the App Impersonation attack.
These works mainly prove the authorization security for the web from the pro-
tocol design standpoint. However, we consider whether the protocol is securely
implemented on mobile platforms for authentication.

Formal Security Proof for OAuth. The model checking method is exten-
sively used to analyze the protocol specification [18] by numerous works includ-
ing [8,9,16,24], just to name a few. Researchers also attempt to use the same
method to reason about the protocol implementations by modeling the com-
plex runtime platform, e.g., browser [16,17]. All of these works assume a correct
implementation of the protocol call-flow. However, we show that protocols are
often implemented incorrectly.

Real-World Study on the Web-Based SSO Systems. More efforts have
been contributed to the vulnerability detection of the website-based real-world
systems, including [13,23,27,30]. Another research direction is to conduct large-
scale testing on the web SSO systems, including SSOScan [26,35], OAuthT-
ester [21,33]. Nevertheless, all the works mentioned so far only study the OAu-
th/OIDC specification/implementations on the website. In contrast, we focus on
the mobile platforms.

Analyses of Mobile OAuth SSO Systems. There are relatively few secu-
rity analyses on OAuth under mobile environment. Chen et al. [12] shows how
real-world OAuth systems can fall into the common pitfalls when leveraging
the operating-system-provided components (e.g., Intent, WebView, etc.). Ye
et al. [34] utilize the model checking method to evaluate the OIDC-like protocol
implemented by Facebook on Android platform. Summarizing these works, Wang
et al. [19,29] collect the statistics of these known vulnerabilities. Prior works
mainly focus on how the classic vulnerabilities (or features) of mobile systems
can be leveraged to compromise SSO systems. In contrast, we analyze how the
modified protocol call-flow itself can be incorrectly implemented.

10 Conclusion

In this paper, we report a field-study of mobile OAuth2.0-based SSO systems.
We perform an in-depth static code analysis on three first-tier IdP apps and their

334 R. Yang et al.

official SDKs as well as dynamic testing on Top-600 Android apps in China and
US. Besides the discovery of three previously unknown security flaws, we also
demonstrate the prevalence of different types of existing vulnerabilities. The per-
vasiveness of these loopholes motivates us to design and implement a foolproof
defense for those susceptible RPs with the aim of minimizing the programming
efforts of RP developers. Our discoveries show that it is urgent for the various
parties to re-examine their OAuth implementations and apply the fixes accord-
ingly.

Acknowledgements. This project is supported in part by the Innovation and Tech-
nology Commission of Hong Kong (project no. ITS/216/15) and NSFC Grant (No.
61572415).

References

1. Access token hijacking. https://developers.facebook.com/docs/facebook-login/
security#tokenhijacking

2. Android account manager. http://developer.android.com/reference/android/
accounts/AccountManager.html

3. Man in the middle proxy. https://mitmproxy.org/
4. One major Chinese App store. http://sj.qq.com/myapp/category.htm
5. Sina access token API. http://open.weibo.com/wiki/OAuth2/access token
6. SSL unpinning. https://github.com/ac-pm/SSLUnpinning Xposed
7. Social login continues strong adoption (2014). http://janrain.com/blog/

social-login-continues-strong-adoption/
8. Bai, G., Lei, J., Meng, G., Venkatraman, S.S., Saxena, P., Sun, J., Liu, Y., Dong,

J.S.: AUTHSCAN: automatic extraction of web authentication protocols from
implementations. In: NDSS (2013)

9. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: IEEE CSF (2012)

10. Chari, S., Jutla, C.S., Roy, A.: Universally composable security analysis of OAuth
v2.0. Cryptology ePrint Archive, Report 2011/526 (2011)

11. Chen, E.Y., Chen, S., Qadeer, S., Wang, R.: Securing multiparty online services
via certification of symbolic transactions. In: IEEE S&P (2015)

12. Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: OAuth demystified
for mobile application developers. In: ACM CCS (2014)

13. Mainka, C., Vladislav Mladenov, J.S., Wich, T.: SoK: Single Sign-On security- an
evaluation of OpenID Connect. In: IEEE EuroS&P (2017)

14. Denniss, W., Bradley, J.: OAuth 2.0 for native apps (2016)
15. Elenkov, N.: Android Security Internals: An In-Depth Guide to Android’s Security

Architecture. No Starch Press, San Francisco (2014)
16. Fett, D., Küsters, R., Schmitz, G.: An expressive model for the web infrastructure:

definition and application to the browser ID SSO system. In: IEEE S&P (2014)
17. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of

OAuth 2.0. In: ACM CCS (2016)
18. Hardt, D.: The OAuth 2.0 authorization framework (2012)
19. Homakov, E.: The Achilles Heel of OAuth or Why Facebook Adds Special Fragment

(2013)

https://developers.facebook.com/docs/facebook-login/security#tokenhijacking
https://developers.facebook.com/docs/facebook-login/security#tokenhijacking
http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/reference/android/accounts/AccountManager.html
https://mitmproxy.org/
http://sj.qq.com/myapp/category.htm
http://open.weibo.com/wiki/OAuth2/access_token
https://github.com/ac-pm/SSLUnpinning_Xposed
http://janrain.com/blog/social-login-continues-strong-adoption/
http://janrain.com/blog/social-login-continues-strong-adoption/

Breaking and Fixing Mobile App Authentication 335

20. Hu, P., Yang, R., Li, Y., Lau, W.C.: Application impersonation: problems of OAuth
and API design in online social networks. In: ACM Conference on Online Social
Networks, COSN (2014)

21. Li, W., Mitchell, C.J.: Analysing the security of Google’s implementation of
OpenID Connect. In: SIG SIDAR Conference on Detection of Intrusions and Mal-
ware & Vulnerability Assessment, DIMVA (2016)

22. Lodderstedt, T., McGloin, M., Hunt, P.: OAuth 2.0 threat model and security
considerations (2013)

23. Mladenov, V., Mainka, C., Krautwald, J., Feldmann, F., Schwenk, J.: On
the security of modern Single Sign-On protocols: OpenID Connect 1.0. CoRR
abs/1508.04324 (2015)

24. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth
2.0 using Alloy framework. In: IEEE International Conference on Communication
Systems and Network Technologies, CSNT (2011)

25. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.: OpenID
Connect core 1.0. The OpenID Foundation (2014)

26. Shernan, E., Carter, H., Tian, D., Traynor, P., Butler, K.: More guidelines than
rules: CSRF vulnerabilities from noncompliant OAuth 2.0 implementations. In:
Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp.
239–260. Springer, Cham (2015). doi:10.1007/978-3-319-20550-2 13

27. Sun, S., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: ACM CCS (2012)

28. Wang, H., Zhang, Y., Li, J., Gu, D.: The achilles heel of OAuth: a multi-platform
study of OAuth-based authentication. In: ACM ACSAC (2016)

29. Wang, H., Zhang, Y., Li, J., Liu, H., Yang, W., Li, B., Gu, D.: Vulnerability
assessment of OAuth implementations in Android applications. In: ACM ACSAC
(2015)

30. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through Facebook
and Google: a traffic-guided security study of commercially deployed Single-Sign-
On web services. In: IEEE S&P (2012)

31. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized origin crossing on mobile
platforms: threats and mitigation. In: ACM CCS (2013)

32. Xing, L., Chen, Y., Wang, X., Chen, S.: InteGuard: toward automatic protection
of third-party web service integrations. In: NDSS (2013)

33. Yang, R., Lee, G., Lau, W.C., Zhang, K., Hu, P.: Model-based security testing: an
empirical study on OAuth 2.0 implementations. In: ACM ASIACCS (2016)

34. Ye, Q., Bai, G., Wang, K., Dong, J.S.: Formal analysis of a Single Sign-On pro-
tocol implementation for Android. In: International Conference on Engineering of
Complex Computer Systems, ICECCS (2015)

35. Zhou, Y., Evans, D.: SSOScan: automated testing of web applications for Single
Sign-On vulnerabilities. In: USENIX (2014)

http://dx.doi.org/10.1007/978-3-319-20550-2_13

Adaptive Proofs Have Straightline Extractors
(in the Random Oracle Model)

David Bernhard, Ngoc Khanh Nguyen(B), and Bogdan Warinschi

Computer Science Department, University of Bristol, Bristol, England
{csxdb,nn14160,csxbw}@bristol.ac.uk

Abstract. The concept of adaptive security for proofs of knowledge was
recently studied by Bernhard et al. They formalised adaptive security
in the ROM and showed that the non-interactive version of the Schnorr
protocol obtained using the Fiat-Shamir transformation is not adaptively
secure unless the one-more discrete logarithm problem is easy . Their only
construction for adaptively secure protocols used the Fischlin transfor-
mation [11] which yields protocols with straight-line extractors. In this
paper we provide two further key insights. Our main result shows that
any adaptively secure protocol must have a straight-line extractor: even
the most clever rewinding strategies cannot offer any benefits against
adaptive provers. Then, we show that any Fiat-Shamir transformed Σ-
protocol is not adaptively secure unless a related problem which we call
the Σ-one-wayness problem is easy. This assumption concerns not just
Schnorr but applies to a whole class of Σ-protocols including e.g. Chaum-
Pedersen and representation proofs. We also prove that Σ-one-wayness
is hard in an extension of the generic group model which, on its own
is a contribution of independent interest. Taken together, these results
suggest that the highly efficient proofs based on the popular Fiat-Shamir
transformed Σ-protocols should be used with care in settings where adap-
tive security of such proofs is important.

1 Introduction

Noninteractive zero knowledge proofs are a useful tool widely deployed in modern
cryptographic constructions. They allow a prover (e.g. the creator of a cipher-
text) to send a single message which will convince a verifier of the veracity of a
certain statement (e.g. that the plaintext underlying a ciphertext respects cer-
tain constraints), without revealing any further information. A particularly use-
ful variant are the so called “proofs of knowledge” where there exists an extractor
who can efficiently recover from the prover a witness that the statement is true.
Over parties in the system (who should obtain no information from the witness),
the extractor benefits from setup assumptions like the common reference string
model or the random oracle mode [3]. Our focus is on the latter model which
yields by far the most efficient noninteractive proofs of knowledge known to date.
In a nutshell, in this paper we study different extraction strategies afforded by

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 336–353, 2017.
DOI: 10.1007/978-3-319-61204-1 17

Adaptive Proofs Have Straightline Extractors 337

the random oracle model and identify fundamental efficiency limitations that
such proofs need to face in practically relevant scenarios.

Background. Recall that in the random oracle setting the extractor learns
the RO answers/queries that the prover makes. Here, we distinguish between
several extraction strategies. 1 An extractor is straight-line if it only sees a single
execution of the prover. An extractor is rewinding if it is allowed to launch and
interact with further copies of the prover (with the same coins used to produce
the statement) before returning a witness.

The distinction between straightline and rewinding extractors may be crucial
in applications since for a rewinding extractor it is not clear how many times does
it have to rewind to extract all witnesses from a prover who makes a sequence
of n proofs. Shoup and Gennaro [20] first encountered this problem in the con-
text of proving CCA security of a particular public-key encryption scheme; the
“obvious” approach ends up rewinding 2n times which leads to an inefficient
reduction. Clearly, this problem disappears for a straight-line extractor.

The notion of adaptive proofs which lie somewhere between proofs with inef-
ficient rewinding strategies and straight-line PoKs has been recently proposed
by Bernhard et al. [5]. A proof scheme is adaptively secure if there is an extrac-
tor that can rewind, but must efficiently extract even from provers who make
sequences of proofs. The notion is called adaptive because the extractor must
return a witness for the first proof to the prover before the prover makes the
second one, and so on.

As an application, Bernhard et al. study the Fiat-Shamir-Schnorr proofs:
a non-interactive proof of knowledge obtained by applying the popular Fiat-
Shamir [10] transform to the Schnorr [17] protocol for proving knowledge of
discrete logarithm. The main theorem of [5] shows the Fiat-Shamir-Schnorr proof
scheme is not an adaptive proof unless the one-more discrete logarithm problem
is easy. This result essentially separates the usual PoK notion from adaptive
proofs, but the separation has several shortcommings: (i) it relies on an inefficient
interactive assumption, (ii) it is specific to a proof system for a specific problem
(discrete logarithm), and (iii) it is specific to a class of proofs (those obtained
from Σ-protocols via the Fiat-Shamir transform). That is, it does not pinpoint
precisely the source of the difficulty and, in particular, it leaves open the question
whether any adaptive proofs exist that are not also straight-line2.

Our Contribution. In this paper we obtain a full characterization of adaptive
proofs in the random oracle model and we leverage this result to provide more
general results regarding the limitations of the Fiat-Shamir transform. Below we
outline our contributions.

Adaptive proofs ≡ proofs with straightline extractors. Our main
contribution is a negative answer to Bernhard et al.’s open question. It holds for

1 Recall that in the random oracle model hash functions can only be computed by
calling an oracle available to all parties (and which on a fresh input returns a truly
random output).

2 Straight-line proofs are trivially adaptively secure.

338 D. Bernhard et al.

all non-interactive proof schemes in the ROM, whether or not they are derived
from Σ-protocols:

Theorem 1 (Informal). Consider an arbitrary non-interactive proof of knowl-
edge system in the ROM. If the proof system has an efficient adaptive extractor
against adaptive provers then it also has a straight-line extractor.

The immediate consequence of this theorem is that when designing PoKs for
an adaptive setting, one cannot rely on rewinding and instead one should ensure
the existence of a straightline extractor. While a general strategy is to employ
Fischlin’s transformation [11], one may still want to rely on the more efficient
construction that uses the Fiat-Shamir transformation whenever possible – the
impossibility result of Bernhard et al. [5] only applies to Fiat-Shamir-Schnorr
proofs.

Limitations of the Fiat-Shamir transform. We show that the Fiat-Shamir
transformation has intrinsic limitations. In particular, we generalize the results of
[5] in two distinct directions. On the one hand, we show that it holds for arbitrary
Σ-protocols for proving knowledge of preimages of linear functions (including
Schnorr, Chaum–Pedersen and representation proofs). More interestingly, we
weaken the condition under which these proofs are not adaptively secure from
one-more discrete logarithm (resp. one-more one-wayness [1]) to the following
assumption: a dishonest verifier in a single execution of the Σ-protocol cannot
extract the witness. We call this assumption Σ-one-wayness. Our result thus
improves from a “q-type” assumption, which does not admit an efficient game,
to an efficient game with only three rounds.

This theorem answers the main open question of [5] and hints at a short-
coming of proofs based on the Fiat–Shamir transform: if used in a setting where
the prover gets to adaptively chosen statements, an extractor would have to be
(more or less) straight-line. However, if this is the case, the proof may not be
that interesting anyway as the underlying witness is not well-protected:

Theorem 2 (Informal). Suppose there is a straight-line extractor for a Fiat-
Shamir transformed Σ-protocol Σ (to prove knowledge of a preimage of some
linear function f). Then a dishonest verifier can extract a witness (a preimage
under f) in a single run of Σ.

Taken together, these results imply that Fiat-Shamir transformed Σ-
protocols are not adaptively secure in any setting in which they might be useful.
Take the Schnorr protocol as an example: if Fiat-Shamir-Schnorr is adaptively
secure then either discrete logarithms are easy in the relevant group, in which
case the Schnorr protocol is redundant, or the Schnorr protocol provably helps
a dishonest verifier to extract the discrete log of the statement — in which case
Schnorr is certainly not zero-knowledge.

The theorem of Bernhard et al. [5] contains an adaptive prover who makes
a sequence of n proofs such that each one depends on all previous ones. The
straightforward rewinding strategy — rewind on every proof to extract — ends
up rewinding 2n times since the rewound provers make new proofs which again

Adaptive Proofs Have Straightline Extractors 339

have to be rewound. A combinatorial argument then shows that any strategy
that rewinds fewer than 2n times must have taken a discrete logarithm to find
out the witness for one of the proofs output by the prover. The problem is that
we do not know where, and also if we inject a challenge in one proof then we
end up having to simulate all other proofs in the experiment. So far the solution
to this problem was to reduce to the one-more discrete logarithm problem.

Our proof technique for Theorem2 (formally, Theorem 14) is to take any
prover and turn it into an adaptive prover who makes a chain of n proofs,
together with some bookkeeping. We then show that any adaptive extractor
against this prover must either take exponential time or reduce to a straight-
line extractor against the original prover. Applying this theorem to the hon-
est prover, we get a reduction to Σ-one-wayness. We summarize these results
in the following table (FSS = Fiat-Shamir-Schnorr, DLOG= discrete logarithm,
OMDL= one-more discrete logarithm).

Property Breaks if FSS has

One-way (e.g. DLOG) Straight line extractor [18]

Σ-one-way Adaptive extractor (new)

One-more one-way (e.g. OMDL) Adaptive extractor [5]

In conclusion, we suggest that adaptive proofs are not a new class of proofs
but rather another description of the class of straight-line extractable proofs;
and Fiat-Shamir transformed Σ-protocols for “useful” functions are not in this
class.

Weaker assumptions. The obvious next question is whether one can improve
our results even further and only rely on one-wayness (e.g. in the case of Schnorr,
DLOG) rather than Σ-one-wayness. We show using a meta-metareduction that
no algebraic metareduction [16] from a programming extractor to one-wayness
(e.g. DLOG) can exist, unless one-wayness is already easy. All previous metare-
ductions in this area [5,18] including ours to Σ-one-wayness are algebraic: the
only operations they perform on elements of the target group are group opera-
tions.

A generalization of the Generic Group Model (GGM). To strengthen
trust in the Σ-one-wayness hypothesis on which our impossibility relies we pro-
vide a justification in the generic group model. Interestingly, the first problem
that one needs to face here is that the existing approaches to formalizing and
using GGM is not suitable: in brief, an adversary that interacts with the Σ
protocol for some problem gets to see not only group elements but also some
information related to the exponents of these group elements – this ability is not
considered the standard GGM formalizations. We suggest one approach to deal
with this issue and use the resulting model to formally justify Σ-one-wayness.

Related Work. One-more type assumptions were introduced by Bellare et al.
[1]. Their value in proving schemes secure is subject to some debate, as explained

340 D. Bernhard et al.

by Koblitz and Menezes [13] who also gave the first “weakened” one-more
assumption. Problems with forking-based proofs were first noted by Shoup
and Gennaro [20]; Paillier and Vergnaud [16] developed separation results for
Schnorr-based signatures using metareductions that formed the first formal proof
of a limitation of Schnorr-based techniques. Both Brown [8] and Bresson et al.
[9] concurrently applied separation techniques to one-more problems. Fischlin
and Fleischhacker [12] were the first to consider limitations of metareductions
via meta-metareductions. The most recent results that motivated this paper
are Seurin and Treger [18] who gave a very simple metareduction from a non-
programming extractor for Schnorr proofs to discrete log; and Bernhard et al.
[5] who introduced adaptive proofs.

2 Preliminaries

Notation. f : A → B is a function with domain A and range B; A : A � B
is a randomised algorithm on the same domain and range. We write security
games in a language based on Bellare and Rogaway’s code-based game-playing
[2]. y ← f(x) is assignment, x � R is uniform random sampling. T [i] is the
element at index i of table T .

An interactive, randomised algorithm A has access to a random string r and
an input/output interface. It maintains its state between calls. A security game
is such an algorithm that may at some point output “win” or “lose”, which
terminates the entire execution. We say that a security property is given by a
game, to mean that the property holds if no efficient adversary can cause the
game to output “win” with more than negligible probability in some underlying
security parameter.

Σ-protocols — Let k be a field. Let W,X be k-vector spaces and let φ : W →
X be a k-linear map, (i.e. linear map w.r.t. the field k). Suppose further that
one can sample uniformly from k and W.

Definition 3. The Σ-protocol Σφ is the following interactive protocol for a
prover P to prove knowledge of a preimage under φ to a verifier V .

P (w ∈ W, x = φ(w)) V

r � W; a ← φ(r)
(x,a)−−−→

c←−−− c � k

s ← r + c · w
s−−−→ φ(s) ?= a + c · x

We choose to let P transmit the statement x to V as part of the first round
of the proof — of course, V may also know x in advance. The verifier accepts
if the equation φ(s) = a + c · x holds in X , in which case we call (x, a, c, s) an
accepting transcript. Instances of this template protocol include:

– Schnorr: W = k = GF (p), X is some group G of order p with a generator g
(e.g. over an elliptic curve) and φ(w) = gw.

Adaptive Proofs Have Straightline Extractors 341

– Chaum-Pedersen: W = k, X = G × G for a group as above and φ(w) =
(gw, hw) for two different generators g, h of G.

– Representation: W = kn,X = G and φ(w1, . . . , wn) =
∏n

i=1 gi
wi for some

known set of generators {gi}i∈I of G.

Σ-protocols according to our definition automatically satisfy:

– Special soundness: if (x, a, c, s) and (x, a, c′, s′) are accepting transcripts with
c �= c′ then 1/(c − c′) · (s − s′) is a preimage3 of x under φ.

– Soundness: if x′ ∈ X \ Im[φ], then a cheating prover gets a verifier to accept
with probability at most 1/|k|.

– Honest-verifier zero-knowledge: a verifier who chooses c as prescribed (at least,
independently of a) gains no information from the protocol beyond the fact
that the prover knows a preimage of x under φ.

Proof schemes — A (non-interactive) proof scheme for a relation ρ on sets
X,W consists of a proof space Π and a pair of algorithms prove : X × W � Π
and verify : X × Π → {0, 1} (i.e. verify is deterministic). An element π ∈ Π
satisfying verify(x, π) = 1 is called a valid proof for x. For any (x,w) satisfying
ρ, if π ← prove(x,w) then we require verify(x, π) = 1. We further assume
that there is an algorithm sample :� X × W that produces elements uniformly
distributed in ρ (as a subset of X × W). In the random oracle model (ROM),
both prove and verify may call a function H that is modelled as a random
oracle in security proofs. The relation ρ itself does not use H.

Fiat-Shamir — The Fiat-Shamir transformation turns Σ-protocols into non-
interactive proof schemes that are full zero-knowledge proofs of knowledge in the
random oracle model. The idea is simply to replace the verifier’s challenge c by
a hash over the statement x and the commitment a.

Definition 4. Let φ : W → X be a k-linear function where W and k are effi-
ciently sampleable. Suppose that H is a function with domain (including) X ×X
and range k. Then the Fiat-Shamir transformed Σ-protocol Fφ is the following
proof scheme for sets (X ,W) and relation ρ(x,w) = 1 ⇐⇒ φ(w) = x. The
proof space is Π = X × W and the algorithms are

– sample(): pick w � W, set x ← φ(w) and return (x,w).
– prove(x,w): pick r � W, set a ← φ(r), c ← H(x, a) and s ← r + cw. The

proof is π = (a, s).
– verify(x, (a, s)): check that φ(s) = a + H(x, a) · x.

3 The inversion 1/(c − c′) is in the field k where it exists due to c �= c′; the dot in this
formula is field-vector multiplication.

342 D. Bernhard et al.

3 Variations on the Theme of One-Wayness

Σ-protocols are only useful when the function φ is hard to invert: otherwise, they
are trivially zero-knowledge proofs of knowledge, but so is the protocol in which
the prover just sends the statement x to the verifier. For the same reasons, if φ is
easy to invert then Fφ is adaptively secure too. This shows that we cannot hope
for a theorem of the form “Fiat-Shamir Schnorr is not adaptively secure”, since
it is adaptively secure e.g. in the group (Zp,+) where taking discrete logarithms
is easy. Consequently, limitation theorems take the form “if Schnorr is adaptively
secure then some property (e.g. OMDL) is easy to break”.

We discuss some possible security properties of the function φ and introduce
Σ-one-wayness. Later on we will show that Fiat-Shamir proofs cannot be adap-
tively secure unless Σ-one-wayness of φ is easy to break (in which case, their use
within protocols would be already questionable).

Σ-one-wayness. One-wayness is the first obvious candidate property. Recall
that a property defined by a game means that the property (in this case one-
wayness of φ) holds if it is hard to make the game output “win”. The game gives
the adversary a uniformly chosen image x; the adversary wins by recovering any
preimage w′ s.t. φ(w′) = x.

Definition 5. The one-wayness property for a function φ : W → X is given by
the following game.

1 w � W;x ← φ(w)
2 output x; input w′ ∈ W
3 if φ(w′) = x then return “win” else return “lose” end

We propose a new security notion that we call Σ-one-wayness (for linear func-
tions). This says that even a dishonest verifier (who chooses c arbitrarily, maybe
depending on x and a) cannot extract w from a single run of the protocol. We do
not claim that Σ-one-wayness is a sufficient security notion for Σ protocols (it
says nothing about extracting partial information on w) but we postulate that it
is only deployed if this condition is satisfied. Consequently, we are not proposing
a new scheme that is secure under the Σ-one-wayness assumption, but we will
claim that if the Fiat-Shamir proof scheme for a function φ is adaptively secure
then the Σ-one-wayness property for φ is easy to break too. Σ-one-wayness is
clearly stronger than one-wayness of the function φ, but it will turn out to be
weaker than one-more one-wayness (which we define in a moment).

Definition 6. The Σ-one-wayness property for a linear function φ : W → X is
defined by the following game.

1 w � W;x ← φ(w)
2 r � W; a ← φ(r)
3 output (x, a); input c ∈ k
4 s ← r + c · w
5 output s; input w′ ∈ W
6 if φ(w′) = x then return “win” else return “lose” end

Adaptive Proofs Have Straightline Extractors 343

If Σ-one-wayness of a function φ is easy to break but one-wayness is hard
to break, then running the protocol Σφ could leak a preimage to a dishonest
verifier, that said verifier could otherwise not compute by herself. In this case we
would discourage the use of the protocol Σφ (among other things it is certainly
not zero-knowledge). If both Σ-one-wayness and one-wayness of φ are easy to
break then Σφ is both harmless and useless. So, we think that Σ-one-wayness
of φ is a necessary condition for the protocol Σφ to be deployed. Under this
condition, we will show that the Fiat-Shamir transformed Σφ is not adaptively
secure.

Weak one-more one-wayness. For Schnorr, the one-wayness property of the
function φ(x) = gx is the discrete logarithm property. Bernhard et al. [5] use a
stronger assumption known as one-more discrete logarithm, which generalises to
one-more one-wayness [1,9].

One-more one-wayness assumes an invertible function φ. The adversary is
given two oracles which she can call in any order: a sampling oracle that picks
a random preimage wi ∈ W and reveals xi = φ(wi) and an opening oracle that
on input x outputs φ−1(x). To win the game, the adversary must recover the
preimages of all samples xi with fewer calls to the opening oracle than to the
sampling oracle.

One-more one-wayness was first discussed by Bellare et al. [1] although the
name first appears in a later paper [9]. Unlike the other properties here, it does
not admit an efficient security game: the game itself needs to be able to invert
φ on arbitrary inputs. Koblitz and Menezes [13] discussed a variant that only
allows the adversary to open challenges themselves; this is insufficient for our
applications. Instead we propose a new property: weak one-more one-wayness
fixes this problem by restricting the adversary to asking linear combinations of
the sampled challenges. Your task is still to recover all wi with fewer queries to
the linear combination oracle than to the sampling oracle. The requirement for
φ to be invertible can also be dropped again.

Definition 7. The weak and normal one-more one-wayness properties for a
bijection φ : W → X are given by the following games. In each game the adver-
sary can call the sample and open oracles many times, in any order. The adver-
sary wins the game if it can provide preimages under φ for all samples that it
had obtained and yet it made fewer opening queries than sample queries.

weak one-more one-wayness:

1 sample():
2 n ← n + 1
3 w[n] � W
4 return φ(w[n])
5

6 open(c1, . . . , cn ∈ kn):
7 return

∑n
i=1 ci · wi

one-more one-wayness:

1 sample():
2 (same as weak version)
3

4

5

6 open(x ∈ X):
7 return φ−1(x)

344 D. Bernhard et al.

The strong problem clearly reduces to the weak one. A weak adversary can
still obtain a preimage of a particular sample by submitting the vector with 1
at the appropriate position and 0 elsewhere.

The point of the weak one-more one-wayness property is that the theorem
by Bernhard et al. [5] can trivially be strengthened to show that Fiat-Shamir-
Schnorr is not adaptively secure even under the weak one-more discrete logarithm
property: their reduction only ever makes opening queries on elements that are
linear combinations of samples with known coefficients. This is not surprising
since their reduction is trying to “simulate” Schnorr proofs on sample elements.

Σ-one-wayness reduces to weak one-more one-wayness, even to a weaker ver-
sion where the number of samples is additionally bounded at 2 and only a single
linear combination query is allowed. Thus, we end up with a hierarchy of one-
wayness/Σ-one-wayness/weak one-more one-wayness/one-more one-wayness, in
order of increasing strength.

4 Adaptive Proofs

In this section we recall the notion of adaptive proofs and introduce templates
for a couple of provers that form the basis of the results we prove in the next
section.

Definition 8. A prover is an algorithm P that outputs a statement/proof pair
(x, π); in the ROM a prover may make random oracle calls. We assume that
there is a uniformly sampleable space of random strings R associated to each
prover and we write P(r) to mean running prover P on random string r ∈ R.
In the ROM, we write (x, π, l) ← P(r) to mean that we also return the list l of
random oracle queries made by this execution of the prover on random string r.

A proof scheme is sound with error ε if for any prover P, the probability
of producing a pair (x, π) such that verify(x, π) = 1 but no w exists making
ρ(x,w) hold, is at most ε.

A proof scheme in the random oracle model is straight-line extractable with
error ε if there is an extractor K as follows. For any prover P, pick r � R and
execute (x, π, l) ← P(r). If verify(x, π) = 1 w.r.t.4 l then with probability at
least 1− ε, K(x, π, l) returns a w such that ρ(x,w) holds. It follows immediately
that an extractable proof scheme with error ε is also sound with at most the
same error.

A straight-line extractor, has black-box access to further copies of the prover
in the following sense: it may start these copies and control all interaction with
them, including picking the random string and answering all random oracle
queries. As motivation for this (established) notion of straightline extractors,
consider an extractor who is trying to extract from an honest prover. The code

4 We say verify(x, π) = 1 w.r.t. l if all elements on which verify queries the oracle
on input (x, π) are contained in l, and verify outputs 1 on these inputs if given the
appropriate responses in l.

Adaptive Proofs Have Straightline Extractors 345

of the honest prover is known, so the extractor can always simulate the honest
prover on inputs of its choice. The extractor cannot see the random coins of the
“main” copy of the honest prover from which it is trying to extract, however.

A proof scheme in the ROM has a programming straight-line extractor with
error ε if there is a straight-line extractor K as follows. Let any prover P interact
with K in the sense that K answers P’s random oracle queries. If P outputs
(x, π) such that verify(x, π) = 1 w.r.t. the oracle queries made by P, then with
probability at least 1 − ε, K outputs a w such that ρ(x,w) holds.

A rewinding extractor can, in addition to the capabilities of a straight-line
extractor, launch further copies of the prover P with the same random string as
the one that the extractor is trying to extract from, and answer their random
oracle queries. The difference between straight-line and rewinding extractors is
thus that rewinding extractors can run further copies of the prover that behave
identically to the “main” one, as long as they receive the same inputs and out-
puts, and thus “fork” the prover instance from which they are trying to extract.

Adaptive proofs. We present the adaptive proof game of Bernhard et al. [5].
The game is an interactive algorithm with two interfaces for an adaptive prover
and an extractor. An adaptive prover for a proof scheme (Π, prove, verify)
w.r.t. (X,W, ρ) is an algorithm that can repeatedly output pairs (x, π) ∈ X ×Π
and expect witnesses w ∈ W in return. After a number of such interactions, the
adaptive prover halts. In the random oracle model, an adaptive prover may also
ask random oracle queries.

An adaptive extractor is an algorithm K that can interact with an adaptive
prover: it repeatedly takes pairs (x, π) ∈ X × Π such that verify(x, π) = 1
as input and returns witnesses w ∈ W such that ρ(x,w) = 1. In addition, an
adaptive extractor may be rewinding, i.e. launch further copies of the adaptive
prover that run on the same random string as the main one (managed by the
game) and answer all their queries. The adaptive proof game does not check the
correctness of witnesses for the other copies of the prover.

Definition 9. A proof scheme (Π, prove, verify) is an n-proof (with error ε)
in the random oracle model if there is an adaptive extractor K such that for any
adaptive prover P, the extractor wins the game in Fig. 1 (with probability at least
1 − ε). The adaptive extractor K may launch and interact with further copies of
the adaptive prover P on the same random string r as the main one, without the
game mediating between them.

In the n-proof game in Fig. 1, the prover P is trying to find a claim (x, π)
that verifies, but from which the extractor K cannot extract a witness w. The
extractor is trying to extract witnesses from all claims made by the prover.

The game uses three global variables. K stores the number of witnesses that
the extractor has found so far. If this counter reaches n, the extractor wins and
the scheme is an n-proof. Q stores a list of all the prover’s random oracle queries
so far. These are provided5 to the extractor along with each of the prover’s
5 The original definition gave the extractor an extra list oracle to query the prover’s

random oracle list. Our presentation is equivalent.

346 D. Bernhard et al.

Fig. 1. The adaptive proof game. The extractor also has access to further copies of
P(r) – to avoid cluttered notation we do not show this access explicitly.

claims. Ξ stores the last statement that appeared in one of the prover’s claims;
it is used to check the validity of a witness returned by the extractor.

A n-proof for n = 1 is simply a proof of knowledge in the ROM: the prover
makes a single claim (a pair containing a statement x and a proof π) and the
extractor wins if it can obtain a witness. A proof scheme is an adaptive proof if
there is an adaptive extractor that works for any polynomially bounded para-
meter n.

Canonical provers. The canonical prover PC samples a statement/witness
pair and creates a proof. We write RC for the randomness space of the canonical
prover and PC(r) to denote running the canonical prover on the random string
r ∈ RC .

Definition 10 (canonical prover). Let (Π, prove, verify) be a proof scheme
for (X,W, ρ) where r is uniformly sampleable via an algorithm sample. The
canonical prover PC for this scheme is the following algorithm.

(x,w) ← sample(); π ← prove(x,w); return (x, π)

If required, the canonical prover can also return the list l of all random oracle
queries made during its execution (by prove).

Since an extractor is supposed to work against any (efficient) prover, to argue
that an extractor cannot exist it is enough to show that one cannot extract from
the canonical prover. To deal with adaptive extractors, we propose the following
construction of an adaptive chain prover Pn from any prover P. It follows the
idea of Shoup and Gennaro [20] in making a chain of “challenges” (in this case

Adaptive Proofs Have Straightline Extractors 347

proofs) where each challenge depends on all previous ones and then asking queries
on them in reverse order. This way, the obvious rewinding extractor using special
soundness will take exponential time.

To make each challenge depend on previous ones, we use a function F to
update the random string for each of the n contained copies of P based on the
(random oracle) state of the previous copy. The final parameter l returned by
P is the list of all random oracle queries made by this copy. Recall that P(r)
means run prover P on random string r ∈ R where R is the randomness space
for this prover.

Definition 11 (adaptive chain prover). Let (Π, prove, verify) be a proof
scheme for (X,W, ρ). Let P be any prover (in the ROM) and let R be its random-
ness space. Let L be the space of possible random oracle input/output transcripts.
Let F : R×L → R be a function (which does not depend on the random oracle).
The adaptive chain prover Pn of order n w.r.t. function F is the algorithm in
Fig. 2, taking an r ∈ R as input.

Fig. 2. The adaptive chain prover Pn. The provder depends on function F which here
we assumed fixed. When F is a pseudorandom function, a key for F is sampled at the
beginning of the execution of Pn.

Later on, we will take F to be a (pseudo-)random function. This has the
effect that two copies of Pn that get identical answers to their random oracle
queries will behave identically, but two copies of Pn that “fork” will behave as
copies of P with independent random strings from the forking point onwards.

The intuition behind this construction is that having access to copies of P on
some uniformly random string r′ cannot help you extract from a copy P(r), as
long as r and r′ are independent — certainly, an extractor could always simulate
such copies herself if the code of P is known. We will use this idea to show that
forking a copy of Pn is no help in extracting from the proofs made later on by
another copy.

5 Limitations of the Fiat-Shamir Transformation

We recall the hierarchy of security definitions for functions (the last is the
strongest): one-way/Σ-one-way/weak one-more one-way/one-more one-way.

348 D. Bernhard et al.

Known limitations. Seurin and Treger [18] proved that Fiat-Shamir-Schnorr
cannot have a non-programming straight-line extractor unless the underlying
function is not one-way (i.e. one can take discrete logarithms). The following
theorem generalizes this result to the case of arbitrary Σ-protocols.

Theorem 12. Suppose there is a non-programming straight-line extractor K for
the proof scheme Fφ. Then φ is not one-way. Specifically, there is an algorithm
breaking one-wayness with approximately the same running time and success
probability as the extractor K has against the canonical prover PC .

Proof. Let x be a challenge from the one-way game for φ; we need to find a w′

such that φ(w′) = x. We simulate a proof: pick s � W, c � k and a ← φ(s)−c·x.
Then we give the extractor the statement x, proof (a, s) and a list of random
oracle queries consisting of the entry RO(x, a) = c. These elements are identically
distributed to what the extractor would see in an execution with the canonical
prover PC for Fφ. We pass any witness w′ returned by the extractor on to the
challenger to win with the same success probability. 	

Bernhard et al. [5] showed that substituting an adaptive extractor for a
straight-line one gets a similar result for the one-more one-wayness assump-
tion on the function φ — the proof of this theorem is nontrivial however. While
their original proof only concerned Fiat-Shamir-Schnorr, a close inspection of
the proof shows that it works for any Σ protocol and that the weak one-more
assumption is sufficient too. In summary:

Theorem 13. Suppose that there is an efficient adaptive extractor for Fφ. Then
φ is not weak one-more one-way.

We will not re-prove the theorem here. As to running time, as long as the
extractor makes fewer than 2n queries when running against a particular prover
then the reduction to weak one-more one-wayness runs in the same time as the
extractor, but its success probability is the inverse of the number of copies of
the prover that the extractor causes to be invoked. Although Bernhard et al. [5]
only prove the theorem for the case of the Fiat-Shamir-Schnorr protocol, their
reduction is “black box” in the sense that it only needs to be able to sample and
open instances of the underlying Σ-protocol. The exact same proof will work
for our generalisation. We can write the prover in the cited theorem as (PC)n,
the adaptive chain prover derived from the canonical prover. This will allow us
to conclude that any extractor against the chain prover implies a straight-line
extractor against the canonical prover PC .

New Results. If we switch to a programming straight-line extractor, we can
show a separation result under the Σ-one-wayness assumption.

Theorem 14. Suppose there is a programming straight-line extractor K for Fφ.
Then φ is not Σ-one-way. Specifically, there exists a reduction with approxi-
mately the same running time and the same success probability as the extractor
K against the canonical prover PC .

Adaptive Proofs Have Straightline Extractors 349

Proof. We simulate the canonical prover towards the extractor. Receive x, a from
the Σ-one-way challenger and ask the random oracle query c ← RO(x, a) (which
the extractor answers). Then send c to the Σ-one-way challenger to get s and
send (x, a, s) to the extractor. Again, whenever the extractor provides the correct
w′, we win against the challenger. 	

This result is new, but not surprising — Fiat-Shamir transformed Σ-protocols
are not supposed to be straight-line extractable and the Σ-one-wayness property
is constructed exactly to make this reduction work. The value of said property
is that we can also use it for adaptive extractors.

Our main contribution in this paper is a new theorem that says all adaptive
proofs in the ROM admit a straight-line extractor.

Theorem 15. Consider any non-interactive ROM proof scheme with an adap-
tive extractor K. Suppose that, running against any n-prover P̂, the extractor
K causes at most f(n) < 2n copies of the prover to be run in the experiment
and answers all extraction queries of the main run correctly with probability at
least p(n) > 0. Then there is a programming straight-line extractor against any
non-adaptive prover P with success probability p(n)/(n · f(n)).

Remark 16. The proof, which we provide in the full version, is information the-
oretic. It relies only on the number of copies of P instantiated by K and, in
particular, it makes no assumptions on the efficiency of P and K. It does not
establish a relationship between the running time of K and the success probabil-
ity; it is simply an application of the pigeonhole principle to derive a contradic-
tion that whenever f(n) < 2n then K must essentially have “guessed correctly”
rather than computed the preimage through interacting with P. For example, if
launching a new copy of P costs K one unit of time then the theorem provides
negative results even for subexponential-time extractors.

Applying this theorem to protocols obtained via the Fiat-Shamir transform
from Σ-protocols yields the following insight.

Corollary 17. Suppose that the Fiat-Shamir transformed Σ-protocol Fφ is
adaptively secure. Then φ is not Σ-one-way secure.

For the corollary, note that we have a programming straight-line extractor
against the canonical prover PC by applying Theorem15 to the prover (PC)n.
The result then follows from Theorem 14.

We sketch the proof here and provide the full argument in the full version of
this paper [7]. Let P be a non-adaptive prover. We construct a simulator Sn that
is indistinguishable from the black box providing “rewinding” access for multiple
copies of Pn. The point of the simulator is that it shares state “between the
copies”. We then guess which instance of the prover (specifically, which proof)
the extractor is going to answer without “forking” and inject the Σ-one-wayness
challenge into it. The same combinatorial argument as in the proof of Bernhard
et al. [5] shows that such an instance must exist if the extractor launches fewer
than 2n copies of the prover.

350 D. Bernhard et al.

The core of such a simulation argument is to keep track of a history of each
instance of the prover, since two copies of the prover with identical histories
must behave identically towards the extractor. In (PC)n, this history is implicitly
tracked in the randomness r used for each copy of PC , however a collision in the
random oracle could lead to two copies with different histories “merging”. Our
simulator computes an explicit history instead, namely the list of all random
oracle queries so far.

As in Bernhard et al. [5] we define an event E that occurs whenever a copy
of the prover gets its extraction query answered without having a “partner”
(another copy, from which the witness was extracted by forking and special
soundness). The novelty in our proof is that because we have cast the prover as
a chain (PC)n with suitable state tracking, we can show that event E implies
not only a “break” of the chain prover but also of one of the contained canonical
provers PC . We then show that, if the simulator guessed correctly, event E
implies that the simulator can solve its Σ-one-wayness challenge. This is a much
weaker assumption than one-more one-wayness.

6 Generic Hardness of Σ-One-Wayness

In this section we show that Fiat-Shamir transformed Σ-protocol Fφ is not
adaptively secure in the generic setting. Thus if we want to build a protocol
where we need an adaptively secure proof (such as to get CCA encryption), we
would not use Fφ. By Corollary 17 we just need to prove that φ is Σ−one-way
secure in the generic group model (GGM). Again, let X , W be vector spaces
over k and φ : W → X be a k-linear map. We assume that k is a finite field and
X ,W are finite dimensional, since sampling uniformly from an infinite set does
not make much sense. Let b1, b2, ..., bn be basis vectors of X , where dim(X) = n
and {b1, ..., bs} be a basis for Im(φ). For each 1 ≤ i ≤ s denote ai to be an
element of W so that φ(ai) = bi.

The generic group model is a model which analyses success of algorithms
against representations of groups which do not reveal any information to adver-
sary. There are many ways to formalise this idea [14,15,19]. We will follow the
definition provided by Shoup [19]. Here, adversary is given access to images of
elements of a group under a random injective map σ : X → S ⊂ {0, 1}∗, called an
encoding function. Group operations can be computed by making oracle queries.
The adversary is given access to two oracles ADD and INV :

ADD(σ(x), σ(y)) = σ(x + y), INV (σ(x)) = σ(−x).

Note that the adversary cannot get any information from the representation
σ(x) of element x. A generic algorithm A for X on S is a probabilistic algorithm
that takes as input an encoding list (σ(x1), σ(x2), ..., σ(xl)) where each xi ∈ X
and σ is an encoding function of X on S. As the algorithm executes, it makes
queries to ADD or INV oracles and then appends outputs of the queries to
the encoding list. The output of A is a bit string denoted as A(σ;x1, ..., xl). We
also want to extend the interface of the model and introduce the FSSr,w oracle:

Adaptive Proofs Have Straightline Extractors 351

FSSr,w(c) = r + cw for some r, w ∈ W and c ∈ k. We may assume that when
oracles encounter some σ1 �∈ Im(σ), they return an error message.

The next theorem establishes generic hardness of Σ−one-wayness; we provide
the proof in the full version of this paper [7].

Theorem 18. Let w, r be random elements of W and A be a generic algorithm
for X on S ⊂ {0, 1}∗ that makes at most m queries to ADD and INV oracles and
exactly one query to FSSr,w oracle. Then the probability that φ(A(σ; b1, ..., bn, x,
y)) = x is O((m + n)2/|X | + |ker(φ)|/|W|), where x = φ(w) and y = φ(r).

Note that Theorem 18 implies that every generic algorithm A, which wins
Σ−one-wayness with high probability, must perform at least Ω(α

√|X |) group
operations, where α =

√
1 − |ker(φ)|/|W|. In particular, if W is large then we

get the lower bound Ω(
√|X |) for IES (described in [6]) by choosing φ(w) = gw.

7 Reducing to DLOG?

Given a non-programming straight line extractor in the ROM for a Fiat-Shamir
transformed Σ-protocol Fφ we can break one-wayness of φ; for a programming
extractor or an adaptive extractor we can break Σ-one-wayness. This raises
the question, can we break one-wayness given a programming extractor? Our
answer is negative. We give the argument for the case of Schnorr proofs where
one-wayness is the discrete logarithm (DLOG) problem; this also implies that
there can be no generic metareduction to one-wayness for any Σ-protocol.

The metareductions in the theorems of Seurin and Treger [18], Bernhard
et al. [5] and this paper are all algebraic (in the sense of Paillier and Vergnaud)
[16] over the vector space6 X , the range of the function φ. We therefore consider
it a meaningful result to show that no algebraic metareduction to DLOG can
exist (unless DLOG is already easy).

Theorem 19. If there is an algebraic metareduction from a programming
straight-line extractor for Fiat-Shamir-Schnorr proofs to the DLOG problem then
there is also a meta-metareduction breaking the DLOG problem directly with
approximately the same success probability.

The proof is in [7]. The idea is that a metareduction M gets to see two bases in
the group: the generator g and the challenge h from its DLOG challenger. Since
we assumed a programming extractor, M must ask its random oracle queries
to its extractor interface where our meta-metareduction will answer them. Any
statement output by M (to the extractor) therefore has the form (gahb) for
some (a, b) which are available to our meta-metareduction by use of the algebraic
model. Proofs of the form (a, 0) are independent of the challenge h; intuitively
they should not help to compute the discrete logarithm of h so we just return
6 Paillier and Vergnaud defined the algebraic model for groups; one can interpret a

GF (p) vector space as an Abelian group to use their definition of the algebraic
model.

352 D. Bernhard et al.

the witness a. The first time M outputs a proof with a statement of the form
(a, b) with b �= 0, we fork M on the relevant random oracle query and use special
soundness to find the discrete logarithm of h to basis g.

8 Conclusions

Bernhard et al. introduced adaptive proofs, setting up a hierarchy of (1) proofs
of knowledge (2) adaptive proofs and (3) straight-line extractable proofs, with
a separation between (1) and (2). While useful for proving limitations of Σ-
protocols, we have showed that adaptive proofs are not a new class of proof
after all: all adaptively secure proofs admit a straight-line extractor against the
canonical prover.

Along the way we have generalised previous results from Schnorr’s protocol
to Σ-protocols. In addition, we have weakened the counter-assumption from one-
more one-wayness, which is a “q-type” interactive assumption (adversary gets
an unbounded number of sample queries) and is not efficiently realisable to Σ-
one-wayness, which both has a constant number of steps and an efficient security
game.

Our result shows that the Fiat-Shamir transformation and Σ-protocols in
general may be even weaker than previously thought. Namely, the non-interactive
proof scheme Fφ only achieves adaptive security if a single execution of the inter-
active protocol Σφ against a dishonest verifier already leaks the secret witness
with non-negligible probability.

In essence, this shows that using proofs derived from the Fiat-Shamir scheme
for some problem φ in a setting where adaptive security of such proofs is nec-
essary requires care: these should be replaced with proofs that have straightline
extractors. From a practice-oriented perspective, our results show that improv-
ing the efficiency of proofs that admit straightline extraction is an important
line of future research.

References

1. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. eprint
2001/002. Originally appeared as “The power of RSA inversion oracles and the
security of Chaum’s RSA-based blind signature scheme. In: Financial Cryptogra-
phy. LNCS, vol. 2339, pp. 319–338. Springer, Heidelberg (2001)

2. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/11761679 25. The
title cited is from the latest version on eprint at http://eprint.iacr.org/2004/331

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS 1993, pp. 62–73 (1993)

4. Bernhard, D.: Zero-knowledge proofs in theory and practice. Ph.D. thesis, Univer-
sity of Bristol (2014). www.cs.bris.ac.uk/bernhard/papers.html

http://dx.doi.org/10.1007/11761679_25
http://eprint.iacr.org/2004/331
www.cs.bris.ac.uk/ bernhard/papers.html

Adaptive Proofs Have Straightline Extractors 353

5. Bernhard, D., Fischlin, M., Warinschi, B.: Adaptive proofs of knowledge in the
random oracle model. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 629–649.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 28

6. Bernhard, D., Fischlin, M., Warinschi, B.: On the hardness of proving CCA-security
of signed ElGamal. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 47–69. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49384-7 3

7. Bernhard, D., Nguyen, N.K., Warinschi, B.: Adaptive Proofs have Straightline
Extractors (in the Random Oracle Model). Full version on eprint 2015/712

8. Brown, D.: Irreducibility to the One-More Evaluation Problems: More May Be
Less. eprint 2007/435

9. Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more”
computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
71–87. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79263-5 5

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

11. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). doi:10.1007/11535218 10

12. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 27. eprint 2013/140

13. Koblitz, N., Menezes, A.: Another look at non-standard discrete log and Diffie-
Hellman problems. J. Math. Cryptol. 2(4), 311–326 (2008). eprint 2007/442

14. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). doi:10.1007/11586821 1

15. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes 55(2), 165–172 (1994)

16. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005). doi:10.1007/11593447 1

17. Schnorr, C.P.: Efficient signature generation for smart cards. J. Cryptol. 4, 161–174
(1991). Springer

18. Seurin, Y., Treger, J.: A robust and plaintext-aware variant of signed ElGamal
encryption. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 68–83.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36095-4 5

19. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). doi:10.1007/3-540-69053-0 18

20. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). doi:10.1007/BFb0054113

http://dx.doi.org/10.1007/978-3-662-46447-2_28
http://dx.doi.org/10.1007/978-3-662-49384-7_3
http://dx.doi.org/10.1007/978-3-662-49384-7_3
http://dx.doi.org/10.1007/978-3-540-79263-5_5
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/11535218_10
http://dx.doi.org/10.1007/978-3-642-38348-9_27
http://dx.doi.org/10.1007/978-3-642-38348-9_27
http://dx.doi.org/10.1007/11586821_1
http://dx.doi.org/10.1007/11593447_1
http://dx.doi.org/10.1007/978-3-642-36095-4_5
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/BFb0054113

More Efficient Construction of Bounded KDM
Secure Encryption

Kaoru Kurosawa(B) and Rie Habuka

Ibaraki University, Hitachi, Japan
kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract. Let ski be the secret-key of user i for i = 1, . . . , �, and pkj be
the public-key of user j ∈ {1, . . . , �}. A bounded Key Dependent Mes-
sage (KDM) secure encryption scheme Eb−KDM provides security even
when one encrypts f(sk1, . . . , sk�) under pkj for any function f which
has arbitrarily fixed circuit size. An Eb−KDM is known to be constructed
from projection KDM seucrity. In this paper, we first show that it can
be obtained from much weaker KDM security than the projection KDM
security. We next present more efficient Eb−KDM than before under var-
ious assumptions.

Keywords: KDM · Key dependent message · Encryption · Garbling
scheme

1 Introduction

1.1 Background

Key dependent message (KDM) security has been studied by many researchers
recently. A KDM-secure encryption scheme provides security even when one
encrypts the secret-key sk under the corresponding public-key pk. More gen-
erally, a KDM-secure encryption scheme with respect to a set of functions F
provides security even when one encrypts f(sk1, . . . , sk�) under pkj for any func-
tion f ∈ F , where ski is the secret-key of user i for i = 1, . . . , �, and pkj is the
public-key of user j ∈ {1, . . . , �}.

Boneh et al. [5] showed the first KDM-secure public-key encryption scheme in
the standard model which is called BHHO encryption scheme. It is KDM-secure
with respect to the set of all “affine in the exponent” functions under the DDH
assumption.

Then a natural question is “can we construct a KDM-secure encryption
scheme with respect to the set of all functions ?” Barak et al. [4] affirma-
tively solved this problem by showing that there exists a KDM-secure encryption
scheme with respect to the set of all functions which have arbitrarily fixed cir-
cuit size. Such encryption schemes are called bounded KDM secure. Barak et al.
constructed a bounded KDM secure encryption scheme under either the DDH
assumption or the LWE assumption.
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 354–372, 2017.
DOI: 10.1007/978-3-319-61204-1 18

More Efficient Construction of Bounded KDM Secure Encryption 355

On the other hand, a function is called projection if each output bit depends
on at most one input bit. An encryption scheme is called projection KDM secure
if it is KDM secure with respect to the set of all projection functions. Applebaum
[1] showed that a bounded KDM secure encryption scheme can be obtained from
a projection KDM secure encryption scheme.

Bellare et al. [6] then showed a clean method to construct a bounded KDM
secure encryption scheme from a garbling scheme Ga and a projection KDM
secure encryption scheme E . Their scheme is more efficient than the schemes of
[1,4]. (See [6, Fig. 20] for comparison.)1 However, the size of ciphertexts is still
very large.

To summarize, it is known that bounded KDM security can be obtained from
projection KDM security. However, the size of ciphertexts is very large.

1.2 Our Contribution

In this paper, we first show that bounded KDM security can be obtained from
much weaker KDM security than the projection KDM security. Based on this,
we next present a more efficient construction of bounded KDM secure encryption
schemes than Bellare et al. [6] under various assumptions.

In the scheme of Bellare et al. [6], a ciphertext of f(sk1, . . . , sk�) consists
of (F, Y), where F is a garbled circuit and Y is a ciphertext of a projection
KDM secure encryption scheme E . Our scheme has the same structure, but E
is required to be more weakly KDM secure. (More precisely, our weak KDM
security is related to the underlying garbling scheme Ga.)

As a result, the size of our Y is k times smaller than that of Bellare et al. [6],
where k is the security parameter. Further suppose that the number of gates of
f(sk1, . . . , sk�) is O(k�). Then the total size of our ciphertexts is O(k3�) under
the DDH assumption while it is O(k4�) in the scheme of Bellare et al. [6], where
BHHO encryption scheme is used in both schemes.

A projection KDM secure encryption scheme can be constructed from any
KDM secure encryption scheme with respect to the set of affine (in the exponent)
functions, where the secret-key is viewed as a bit string.2 We can also construct
our weakly KDM secure encryption scheme from such encryption schemes.

– As stated above, BHHO encryption scheme is KDM-secure with respect to
the set of “affine in the exponent functions” under the DDH assumption.

– Brakerski and Goldwasser [3] showed a BHHO-like encryption scheme under
the subgroup indistinguishablity assumptions. In particular, they presented
a KDM secure encryption scheme with respect to the set of affine functions
under the Paillier’s decisional composite residuosity (DCR) assumption.

– Applebaum et al. [2] constructed a symmetric-key encryption scheme which
is KDM-secure with respect to the set of affine functions under the LPN
assumption.

1 In [6], Bellare et al. mainly formalized Yao’s garbled circuits as garbling schemes.
2 Therefore we cannot use the KDM secure encryption schemes of [2, Sect. 3] [7].

356 K. Kurosawa and R. Habuka

Hence we can construct a more efficient bounded KDM secure encryption
scheme than Bellare et al. [6] under the DDH assumption, the DCR assumption
and the LPN assumption respectively.

We also point out that the security proof of Bellare et al. [6] is not complete,
and show how to fix it.

2 Preliminaries

PPT means probabilistic polynomial time, and PT means polynomial time. If
A is a PPT algorithm, then y ← A(x1, . . ., xn; r) represents the act of running
the algorithm A with inputs x1, . . . , xn and coins r to get an output y, and
y ← A(x1, . . . , xn) represents the act of picking r at random and letting y ←
A(x1, . . . , xn; r).

If X is a set, then x
$← X represents the act of choosing x randomly from

X. |X| denotes the cardinality of X. If X is a string, then |X| denotes the bit
length of X, and lsb(X) denotes the least significant bit of X. If X and Y are
bit strings, X‖Y denotes the concatenation.

Let k be a security parameter.

2.1 DDH Assumption

Let G be a group of prime order p. The DDH assumption (on G) is that the distri-
butions (g, gx, gy, gxy) and (g, gx, gy, gz) are computationally indistinguishable,

where g is a random generator for G and x, y, z
$← Zq.

2.2 KDM Security

Let E = (K,E,D) be a public key encryption scheme, S = {Sk} be the space
of secret keys and M = {Mk} be the space of messages. For an integer � > 0,
define

ALL
(�)
k = {f | f : (Sk)� → Mk}.

We then define the KDM(�) attack game between a challenger and an adver-
sary A with respect to a function class F = {Fk} such that Fk ⊆ ALL

(�)
k as

follows.

Initialize. The challenger chooses b
$← {0, 1} and generates key pairs (ski, pki) ←

K(1k) for all i ∈ {1, . . . , �}. The challenger then sends (pk1, . . . , pk�) to the
adversary A.

Query. The adversary A makes adaptive queries of the form (j, f) ∈ {1, . . . , �}×
Fk. For each query, the challenger computes x = f(sk1, . . . , sk�) and sends
the following ciphertext to the adversary A.

c =
{

Epkj
(x) if b = 0

Epkj
(0|x|) if b = 1

More Efficient Construction of Bounded KDM Secure Encryption 357

Finish. The adversary A outputs a guess b′ ∈ {0, 1}.

Define Advkdm
E,� (A) = |2Pr[b′ = b] − 1|. We say that E is KDM(�) secure with

respect to F if Advkdm
E,� (A) is negligible for any PPT adversary A.

The KDM security of symmetric-key encryption schemes is defined similarly.

2.3 BHHO Encryption Scheme

Boneh et al. showed a KDM-secure public-key encryption scheme w.r.t. a class
of affine in the exponent functions under the DDH assumption [5]. Let G be a
group of prime order p and g be a generator of G.

Key Generation. Let t = �3 log2 p �. Choose (g1, . . . , gt)
$← G

t, (s1, · · · , st)
$←

{0, 1}t. Let h ← (gs1
1 · · · gst

t)−1 and define the public and secret keys as

pk = (g1, . . . , gt, h) and sk = (s1, . . . , st).

Encryption. For a plaintext m ∈ G, choose r
$← Zp and output a ciphertext

(gr
1, . . . , g

r
t , hr · m).

Decryption. For a ciphertext (c1, . . . , ct, d), output m = d · (cs1
1 · · · cst

t).

We say that f is an affine in the exponent function if f(x1, . . . , xn) =
ga0+

∑n
i=1 aixi , where xi ∈ {0, 1}n and ai ∈ Zp. Define Faffine = {Fk} in such

a way that Fk = ALL
(�)
k ∩ {f | f is an affine in the exponent function}.

Proposition 1 [5]. The above encryption scheme is KDM(�) secure w.r.t. Faffine

under the DDH assumption.

2.4 Bounded-KDM Security

Let q(k) be a polynomial in k. A function f is q(k)-bounded if it can be expressed
as a boolean circuit such that the number of gates is q(k). Define Fq−gates =
{Fk}, where Fk = ALL

(�)
k ∩{f | f is q(k)-bounded}. Then an encryption scheme

E is q-bounded KDM(�) secure if it is KDM(�) secure w.r.t. Fq−gates.

2.5 Projection KDM Security

A function f is called a projection if each output bit depends on at most
one input bit. Define Fproj = {Fk} in such a way that Fk = ALL

(�)
k ∩ {f |

f is a projection}. We then say that an encryption scheme E is projection
KDM(�) secure if it is KDM(�) secure w.r.t. Fproj.

358 K. Kurosawa and R. Habuka

3 Garbling Scheme [6]

3.1 Circuits

A boolean circuit is a 5-tuple f = (n,m, q,A, B,G). Here n ≥ 2 is the number of
inputs, m ≥ 1 is the number of outputs, and q ≥ 1 is the number of gates. We let
Inputs = {1, ..., n}, Gates = {n+1, ..., n+q}, Wires = {1, ..., n+q} and Outputs
= {n + q − m + 1, . . . , n + q}. Then A: Gates → Wires\Outputs is a function
to identify each gate’s first incoming wire, and B : Gates → Wires\Outputs is a
function to identify each gate’s second incoming wire. We require A(g) < B(g) <
g for each gate g ∈ Gates. Finally G : Gates ×{0, 1}2 → {0, 1} is a function that
determines the functionality of each gate.

Each gate has two inputs, one output and arbitrary functionality. The wires
are numbered 1 to n+q. The ith bit of the input is presented along wire i. Every
non-input wire is the outgoing wire of some gate. The outgoing wire of each gate
serves as the name of that gate. We denote the output of f on input x ∈ {0, 1}n

by y = f(x). See AppendixA for an example.
Let

Φtopo(f) = (n,m, q,A,B), Φsize(f) = (n,m, q)

We say that Φtopo(f) and Φsize(f) are side information functions.

3.2 Garbling Scheme

A garbling scheme is a three-tuple of algorithms Ga = (Gb,En,Ev) such as
follows.

– (F, e) ← Gb(1k, f), where f = (n,m, q,A, B,G) is a boolean circuit, F is its
garbled circuit and e is a key of En.

– X ← En(e, x), where x ∈ {0, 1}n is a real input and X is its garbled input.
– y ← Ev(F,X), where y is the output of F on input X.

The correctness condition requires that if (F, e) ← Gb(1k, f), then

Ev[F,En(e, x)] = f(x)

for any x ∈ {0, 1}n.

3.3 Security of Garbling Schemes

For a garbling scheme Ga = (Gb,En,Ev) and a side information function Φ, we
consider a game between a challenger and an adversary A as follows.

1. A chooses (f0, x0) and (f1, x1) such that f0(x0) = f1(x1) and Φ(f0) = Φ(f1),
and sends them to the challenger.

2. The challenger chooses b
$← {0, 1}, and computes (F, e) ← Gb(1k, fb) and

X ← En(e, xb). He then sends (F,X) to A.
3. A outputs a bit b′.

More Efficient Construction of Bounded KDM Secure Encryption 359

Define the advantage as Advgarble
Ga,Φ (A) = |2Pr(b′ = b) − 1|. We say that Ga is

Φ-secure if Advgarble
Ga,Φ (A) is negligible for every PPT adversary A.

Bellare et al. [6] showed a Φtopo-secure garbling scheme Ga = (Gb,En,Ev)
which is called Garble1. We illustrate it in Figs. 11 and 12 of AppendixB. We
also show how to construct Φsize-secure garbling schemes in Appendix C.

4 Bounded KDM Secure Encryption by Bellare et al.

4.1 Generic Construction

Bellare et al. [6] constructed a q-bounded KDM(�) secure encryption scheme
E ′ = (K ′, E′,D′) from

– a Φsize-secure garbling scheme Ga = (Gb,En,Ev) and
– a projection KDM(�) secure encryption scheme E = (K,E,D).

A ciphertext of f(sk1, . . . , sk�) under pkj is given by (F,Epkj
(X)), where

– F is a garbled circuit of an identity circuit ID, and
– X is a garbled input of a real input f(sk1, . . . , sk�)‖0�|sk|−L, where L =

|f(sk1, . . . , sk�)|.
The decryption is given by

F (X) = ID(f(sk1, . . . , sk�)‖0�|sk|−L) = f(sk1, . . . , sk�)‖0�|sk|−L.

More precisely, the key generation algorithm K ′ is the same as K, and it
outputs (pk, sk) ← K(1k). The encryption algorithm E′ and the decryption
algorithm D′ are given in Fig. 1. There ID is a circuit such that the number of
gates is q + n, and ID(z) = z for any z ∈ {0, 1}n, where n = max(|sk| · �, |x|).

Fig. 1. Generic construction of q-bounded KDM(�) secure encryption scheme.

360 K. Kurosawa and R. Habuka

Proposition 2 [6]. Suppose that

– Ga = (Gb,En,Ev) is Φsize-secure and En(e, ·) is a projection function.
– E = (K,E,D) is projection KDM(�) secure.

Then the above encryption scheme E ′ is q-bounded KDM(�) secure. (See Fig. 2.)

Fig. 2. q-bounded KDM secure E ′(Ga, E).

4.2 Instantiation Under DDH

Bellare et al. [6, Sect. 7.2] instantiated Proposition 2 by using Garble1 [6, Sect. 5]3

and BHHO encryption scheme [5]. (See Fig. 3.)

Fig. 3. q-bounded KDM(�) secure public-key encryption scheme E ′ of Bellare et al.

First construct a Φsize-secure garbling scheme Ĝarble1 = (Gb,En,Ev) from
(Φtopo-secure) Garble1= (Gb1,En1,Ev1) by using the method of AppendixC.
(See the comments of Fig. 20 of [6].) We need to show that En(e, ·) is a projection.
In Garble1,

e = (X0
1 ,X1

1 , . . . , X0
n,X1

n), X = En1(e, x) = (Xx1
1 , . . . , Xxn

n),

3 See Appendix B for Garble1.

More Efficient Construction of Bounded KDM Secure Encryption 361

where Xj
i ∈ {0, 1}k, x = (x1, . . . , xn) and xi ∈ {0, 1}. Therefore En1(e, ·) is a

projection. Hence En(e, ·) is also a projection because En = En1 the method of
AppendixC.

Note that
|X| = |Xx1

1 | + . . . + |Xxn
n | = kn. (1)

Next construct a projection KDM(�) secure encryption scheme E = (K,E,D)
as follows. To compute Y = Epk(X), encrypt each bit of X by using BHHO
encryption scheme. For more details, the key generation algorithm K is the
same as that of BHHO encryption scheme, and for X = (ε1, . . . , εkn), let

Epk(X) = (BHHOpk(gε1), . . . ,BHHOpk(gεkn)), (2)

where εi ∈ {0, 1} and BHHOpk(gεi) denotes a BHHO ciphertext of gεi for i =
1, . . . , kn. This E is projection KDM(�) secure under the DDH assumption.

The obtained encryption scheme E ′ from Ĝarble1 and the above E is q-
bounded KDM(�) secure under the DDH assumption from Proposition 2.

Now suppose that we want to encrypt f(sk1, . . . , sk�). In Fig. 1, X = En(e, z)
at line 05 has bit length kn from Eq. (1), where

n = max(|sk| · �, |f(sk1, . . . , sk�)|) (3)

Therefore Y = Epk(X) at line 06 consists of kn cihertexts of BHHO encryp-
tion scheme. The total ciphertext consists of a garbled circuit F of ID and kn
ciphertexts of BHHO encryption scheme. (See the third column of Fig. 20 of [6].)

5 How to Prove Proposition 2

In this section, we first point out that the proof of Proposition 2 by Bellare et al.
[6] is not complete. We next show how to fix it.

5.1 Proof by Bellare et al.

Bellare et al. [6] proved Proposition 2 as follows. Let A be an adversary attacking
E ′. To simplify the exposition, they first consider the case A makes only a single
query. Then they sketch how to extend it to the general case.

Single query case. Suppose that A makes a single query (j, f). Let C be a
circuit of n input wires, n output wires, and q + n gates such that

C(x) = f(the first |sk|� bits of x)‖0n−|f(sk1,··· ,sk�)|,

where n = max(|sk| · �, |f(sk1, . . . , sk�)|). Then we have

C(K) = f(sk1‖ · · · ‖sk�)‖0n−|f(sk1,··· ,sk�)| (4)

for K = sk1‖ · · · ‖sk�‖0n−|sk|·�.
We consider a series of Games G0, . . . , G4 as shown in Fig. 4, where G0 is

equivalent to the KDM attack game with b = 0 because C(K) is given by
Eq. (4). Each game changes lines 04–05 of Fig. 1 step by step. Let pi = Pr(b′ =
1 in Game Gi).

362 K. Kurosawa and R. Habuka

– |p0 − p1| is negligible because ID(C(K)) = C(K), Φsize(ID) = Φsize(C) and
the garbling scheme is Φsize-secure.

– |p1−p2| is negligible because En(e, ·) is a projection function, and E is KDM(�)

secure w.r.t. {all projection functions}.
– p2 = p3 because (F,Epkj

(X)) is the same in each game.
– |p3 − p4| is negligible because ID(C(0n)) = C(0n), Φsize(ID) = Φsize(C) and

the garbling scheme is Φsize-secure.

Their proof stops at this point. However, Game G4 is not the KDM attack
game with b = 1.

Fig. 4. Proof of Proposition 2.

5.2 How to Fix the Proof

To complete the proof, we use the following proposition.

Proposition 3 [5]. Suppose that the function class F contains all constant func-
tions. Then the KDM security w.r.t. F implies IND-CPA security.

Any constant function is a projection function. Therefore the set of all projection
functions contain all constant functions.

Now we add Game G5 and Game G6 which are shown in Fig. 5. Then

Fig. 5. Game G5 and Game G6.

– p4 = p5 because (F,Epkj
(0|X|)) is the same in each game.

– |p5 − p6| is negligible bacause E is IND-CPA secure from Proposition 3.

Game G6 is the KDM attack game with b = 1 because the output of Game G6

is E ′
pkj

(0|f(sk1‖···‖sk�)|). Finally |p0 − p6| is negligible form the above discussion.
This completes the proof.

More Efficient Construction of Bounded KDM Secure Encryption 363

6 Our Main Theorem

As shown above, bounded KDM security can be obtained from projection KDM
security. However, the size of ciphertexts is still very large. In this section, we
show that it can be obtained from a much weaker notion than the projection
KDM security.

The encryption scheme E ′ = (K ′, E′,D′) given in Fig. 1 consists of

– a garbling scheme Ga = (Gb,En,Ev) and
– an encryption scheme E = (K,E,D) such that K ′ = K.

We denote such E ′ by E ′(Ga, E).
For a garbling scheme Ga = (Gb,En,Ev), first define Ên as

Ênn,e(x) = En(e, x‖0n−|x|). (5)

Next define the set of functions F(Ga) = {Fk} as follows.

Fk = ALL
(�)
k ∩ {Ênn,e | (F, e) ← Gb(1k, C),where Φsize(C) = (n, n, n + q)}.

Then our main Theorem is as follows. (See Fig. 2.)

Theorem 1. E ′(Ga, E) is q-bounded KDM(�) secure if Ga is Φsize-secure, and E
is IND-CPA secure and KDM(�)-secure w.r.t. F(Ga).

The proof is the same as that of Proposition 2 which we fixed. In particular,

– |p1 − p2| is negligible because E is KDM(�) secure w.r.t. F(Ga).
– |p5 − p6| is negligible because E is IND-CPA secure.

Let Ĝa denote the Φsize-secure garbling scheme which is obtained from a
Φtopo-secure garbling scheme Ga by using the method of AppendixC. Then we
have the following corollary.

Corollary 1. E ′(Ĝa, E) is q-bounded KDM(�) secure if Ga is Φtopo-secure, and
E is IND-CPA secure and KDM(�)-secure w.r.t. F(Ga).

Proof. Let Ĝa = (Gb′,En′,Ev′) and Ga = (Gb,En,Ev). Then En′ = En in the
method of AppendixC. Hence we obtain this corollary from the definition of
F(Ga). ��

Let’s compare Theorem 1 with Proposition 2.

– In Proposition 2, E needs to be KDM(�) secure w.r.t. the set of “all projection
functions”. Therefore Bellare et al. had to encrypt each bit of X = En(e, z)
by using BHHO encryption scheme.

– In our theorem, on the other hand, E needs to be KDM(�) secure w.r.t. F(Ga)
only. Therefore we can construct a more efficient E with an appropriate gar-
bling scheme Ga as shown in the following sections.

Another difference is that in Theorem 1, E needs to be IND-CPA secure.
However, it is not a matter because any encryption scheme must be IND-CPA
secure anyway. See Table 1.

364 K. Kurosawa and R. Habuka

Table 1. Underlying primitive for bounded KDM security.

Scheme E must be KDM secure w.r.t En of Ga

BHR [6] The set of all projection functions Projection

Proposed F(Ga) −−

7 Our Instantiation Under DDH

In this section, we show a more efficient bounded KDM secure encryption scheme
E ′(Ĝa, E) than Bellare et al. [6] under the DDH assumption based on Corollary 1.
The encryption scheme E is based on BHHO encryption scheme [5], and the
garbling scheme Ga is a variant of Garble1 [6] which we call Garble1+.

Let G be a group of prime order p and g be a generator of G as required in
BHHO encryption scheme.

7.1 Garble1+

We define (Gb,Ev) of Garble1+ as shown in Figs. 6 and 7. Namely

e = (u0
1, u

1
1, . . . , u

0
n, u1

n), (6)

En(e, x) = (gu
x1
1 , . . . , guxn

n), (7)

where uj
i ∈ Zp, and

X0
i ← H(gu0

i), X1
i ← H(gu1

i) (8)

for i = 1, . . . , n in Gb, where H : G → {0, 1}k is a hash function such that H(v)

is uniformly distributed over {0, 1}k when v
$← G.

The rest is the same as Garble1 [6] which is shown AppendixB. Then
Garble1+ is Φtopo-secure similarly to Garble1.

Fig. 6. Garble1+ (1).

More Efficient Construction of Bounded KDM Secure Encryption 365

Fig. 7. Garble1+ (2).

7.2 KDM-Secure Encryption w.r.t. F(Garble1+)

We next show an efficient encryption scheme E = (K,E,D) which is KDM(�)-
secure w.r.t. F(Garble1+).

– The key generation algorithm K is the same as that of BHHO encryption
scheme. Let (sk, pk) ← K(1k).

– For a message (m1, . . . ,mn) ∈ G
n, let

Epk(m1, . . . ,mn) = (BHHOpk(m1), . . . ,BHHOpk(mn)). (9)

We stress that mi ∈ G
n in the above encryption scheme while mi ∈ {1, g} in

that of Bellare et al. [6].

Theorem 2. The above encryption scheme E = (K,E,D) is IND-CPA secure
and KDM(�) secure w.r.t. F(Garble1+) under the DDH assumption.

Proof. E is IND-CPA secure because BHHO encryption scheme is IND-CPA
secure. We will prove that it is KDM(�) secure w.r.t. F(Garble1+).

In the KDM(�) attack game, the challenger generates key pairs (ski, pki) ←
K(1k) for all i ∈ {1, . . . , �}. Define L = �|sk| and let

(sk1, . . . , sk�) = (s1, . . . , sL),

where si ∈ {0, 1} for i = 1, . . . , L.
Then for e = (u0

1, u
1
1, . . . , u

0
n, u1

n) of Eq. (6), we have

Ênn,e(sk1, . . . , sk�) = Ênn,e(s1, . . . , sL)

= (gu
s1
1 , . . . , gu

sL
L , gu0

L+1 , . . . , gu0
n)

from Eqs. (7) and (5). Further from Eq. (9), we have

Epk(Ênn,e(sk1, . . . , sk�)) = Epk(gu
s1
1 , . . . , gu

sL
L , gu0

L+1 , . . . , gu0
n)

= (BHHOpk(gu
s1
1), . . . ,BHHOpk(gu

sL
L),

BHHOpk(gu0
L+1), . . . ,BHHOpk(gu0

n)).

366 K. Kurosawa and R. Habuka

We note that

u0
i + (u1

i − u0
i) × si =

{
u0

i if si = 0
u1

i if si = 1

Therefore we have
usi

i = u0
i + (u1

i − u0
i) × si.

This means that usi
i is an affine function of (s1, . . . , sL) for fixed e =

(u0
1, u

1
1, . . . , u

0
n, u1

n). More precisely, let a0 = u0
i and

aj =
{

u1
i − u0

i if j = i
0 otherwise

Then usi
i is written as

usi
i = a0 +

L∑
j=1

ajsj .

Let
Expe(s1, . . . , sL)i = gu

si
i = ga0+

∑L
j=1 ajsj . (10)

Then Expe(s1, . . . , sL)i belongs to Faffine of Sect. 2.3 for i = 1, . . . , L. Further for
i = L + 1, . . . , n, gu0

i is a constant function. Hence they also belong to Faffine.
Now let A be an adversary who attacks E w.r.t. F(Garble1+). We construct

an adversary B who attacks BHHO encryption scheme w.r.t. Faffine as follows.
Upon receiving (pk1, . . . , pk�) from the challenger, B sends them to A. Sup-

pose that A queries (j, Ênn,e) such that e = (u0
1, u

1
1, . . . , u

0
n, u1

n). Then B does
the following.

1. For i = 1, . . . , L, B queries (j,Expe(·)i) to the challenger, and receives a
ciphertext ci, where Expe(·)i is defined by Eq. (10).

2. For i = L + 1, . . . , n, B queries (j, gu0
i) to the challenger, and receives a

ciphertext ci.
3. B returns C = (c1, . . . , cn) to A.

It is easy to see that C is a right challenge ciphertext for (j, Ênn,e). Finally B
outputs whatever A does. Then we have Advkdm

E,� (A) = Advkdm
BHHO,�(B). Therefore

Advkdm
E,� (A) is negligible under the DDH assumption because Advkdm

BHHO,�(B) is
negligible under the DDH assumption. ��

7.3 Final Construction

Finally, our q-bounded KDM(�)-secure encryption scheme E ′ is obtained by sub-
stituting Garble1+ and the encryption scheme E of Sect. 7.2 into Corollary 1
(Fig. 8).

Corollary 2. Let E be the encryption scheme given by Sect. 7.2. Then
E ′(̂Garble1+, E) is q-bounded KDM(�)-secure under the DDH assumption.

Proof. From Corollary 1 and Theorem 2. ��

More Efficient Construction of Bounded KDM Secure Encryption 367

Fig. 8. Proposed q-bounded KDM(�) secure public-key encryption scheme E ′.

8 Comparison

Let’s compare two q-bounded KDM(�)-secure encryption schemes under the
DDH assumption (namely, the schemes in Sects. 4.2 and 7). In both schemes,
E ′

pk(x1, . . . , xn) consists of (F, Y), where F is a garbled circuit of ID. We com-
pare Y = Epk(X) in Tables 2 and 3.

Table 2. Y = Epk(X) (1).

Scheme E = (K, E, D) X

BHR [6] Projection KDM secure (Xx1
1 , . . . , Xxn

n), where Xxi
i

$← {0, 1}k

Proposed F(Garble1+)-KDM secure (gu
x1
1 , . . . , guxn

n), where uxi
i

$← Zp

Table 3. Y = Epk(X) (2).

Scheme Y = Epk(X)

BHR [6] BHHO encryption of each bit of Xxi
i ∈ {0, 1}k for i = 1, . . . , n

Proposed BHHO encryption of gu
xi
i for i = 1, . . . , n

Our E is KDM secure w.r.t. only F(Garble1+) while it must be KDM secure
w.r.t. the set of all projection functions in the scheme of Bellare et al. Therefore

– Epk(X) encrypts gu
xi
i for i = 1, . . . , n in our scheme

– while it must encrypt each bit of Xxi
i ∈ {0, 1}k for i = 1, . . . , n in the scheme

of Bellare et al.

The size of each ciphertext of BHHO encryption scheme is O(k2) from
Sect. 2.3, where log p = O(k). Therefore

– |Y | = O(k2n) in our scheme and
– |Y | = O(k3n) in the scheme of Bellare et al.

Thus |Y | is reduced to 1/k in our scheme.
The circuit ID has gate size r = q+n from lines 101–105 of Fig. 1. Therefore

the universal circuit which realizes ID has the gate size O(r log r) from Eq. (12).
Hence |F | = O(kr log r) in both schemes because each gate of F has size O(k).
See Table 4 for the total size of ciphertexts |F | + |Y |.

368 K. Kurosawa and R. Habuka

Table 4. Size of ciphertexts (k is the security parameter.)

Scheme Garbled circuit F Y = Epk(X) Total size

BHR [6] O(kr log r) O(k3n) O(kr log r) + O(k3n)

Proposed O(kr log r) O(k2n) O(kr log r) + O(k2n)

When f(sk1, . . . , sk�) is encrypted, n = max(|sk| · �, |f(sk1, . . . , sk�)|). Sup-
pose that |f(sk1, . . . , sk�|) = O(|sk| · �) and q = O(n). Then n = O(|sk| · �) =
O(k�) and r = q + n = O(n) = O(k�).

In this case, O(k2n) = O(k3�), O(k3n) = O(k4�) and O(kr log r) =
O(k2� log k) because n = poly(k). Hence the total size of ciphertexts is O(k3�) in
our scheme, and O(k4�) in the scheme of Bellare et al. Thus it is k times smaller
in our scheme (Table 5).

Table 5. Size of ciphertexts for q = O(|sk| · �) and |f(sk1, . . . , sk�| = O(|sk| · �).

Scheme Garbled circuit F Y = Epk(X) Total size

BHR [6] O(k2� log k) O(k4�) O(k4�)

Proposed O(k2� log k) O(k3�) O(k3�)

9 Generalization

In general, we can construct

– a KDM secure encryption scheme w.r.t. F(Garble1) from any KDM secure
encryption scheme w.r.t. the set of affine functions, and

– a KDM secure encryption scheme w.r.t. F(Garble1+) from any KDM secure
encryption scheme w.r.t. the set of affine in the exponent functions,

where the secret-key is viewed as a bit string. By using each of them, we can
construct a bounded KDM secure encryption scheme based on Corollary 1.

If the message space of our weakly KDM secure encryption scheme is large
enough, then the size of our Y is k times smaller than that of Bellare et al. [6].
In this section, we show such examples.

9.1 Symmetric-Key Encryption Scheme

Proposition 2 holds for symmetric-key encryption schemes also as stated in [6].
Similarly, our Theorem 1 and Corollary 1 hold for symmetric-key encryption
schemes too. The proofs are the same.

Applebaum et al. [2] showed a symmetric-key encryption scheme which is
KDM(�) secure w.r.t. the set of affine functions (not in the exponent) under

More Efficient Construction of Bounded KDM Secure Encryption 369

the LPN assumption. We call it ACPS encryption scheme. We can construct
a bounded KDM(�) secure symmetric-key encryption scheme under the LPN
assumption as follows. We use Garble1. Then

e = (X0
1 ,X1

1 , . . . , X0
n,X1

n), X = En(e, x) = (Xx1
1 , . . . , Xxn

n),

where Xj
i ∈ {0, 1}k, x = (x1, . . . , xn) and xi ∈ {0, 1}. To compute Y = Epk(X)

at line 06 of Fig. 1, encrypt each Xj
i by using ACPS encryption scheme. Namely

E(X) = (ACPS(Xx1
1), . . . ,ACPS(Xxn

n)),

where ACPS(Xxi
i) denotes an ACPS ciphertext of Xxi

i . Now Xxi
i is written as

Xxi
i = X0

i + (X1
i − X0

i) × xi. (11)

This means that Xxi
i is an affine function of (x1, . . . , xn). Therefore we can show

that E is KDM(�) secure w.r.t. F(Garble1). Hence E ′(Ĝarble1, E) is q-bounded
KDM(�) secure under the LPN assumption from Corollary 1 (Fig. 9).

On the other hand, if we use Proposition 2, we must encrypt each bit of Xj
i

by ACPS encryption scheme.

Fig. 9. Proposed q-bounded KDM(�) secure symmetric-key encryption scheme E ′ .

9.2 Subgroup Indistinguishability Assumptions

Brakerski and Goldwasser [3] showed a BHHO-like encryption scheme under the
subgroup indistinguishablity assumptions. In particular, they presented a KDM
secure encryption scheme with respect to the set of affine functions under the
Paillier’s decisional composite residuosity (DCR) assumption. In this encryption
scheme, the message space is ZN , where N = pq.

Now we can construct a bounded KDM(�) secure public-key encryption
scheme under the DCR assumption by applying our technique to this encryption
scheme and Garble1.

A Example of Boolean Circuit

In an example of Fig. 10, n = 4,m = 1, q = 3, Inputs = {1, . . . , 4}, Gates
= {5, . . . , 7}, Wires = {1, . . . , 7}, Outputs = {7}, G5(x, y) = x ∧ y and

A(5) = 1, A(6) = 3, A(7) = 5,

B(5) = 2, B(6) = 4, B(7) = 6.

370 K. Kurosawa and R. Habuka

Fig. 10. A boolean circuit f .

B Garble1

Bellare et al. [6] showed a Φtopo-secure garbling scheme Ga = (Gb,En,Ev) which
is called Garble1.

For a k bit string A, let A[1 : k − 1] denote the first k − 1 bits of A. Define
B[1 : k − 1] similarly. For a pseudo-random function F, let

E
T
A,B(M) = FA[1:k−1](T) ⊕ FB[1:k−1](T) ⊕ M,

D
T
A,B(C) = FA[1:k−1](T) ⊕ FB[1:k−1](T) ⊕ C,

Then Garble1 is given in Figs. 11 and 12.

Fig. 11. Garble1 (1).

C How to Achieve Φsize-Security

In a topological circuit, only (n,m, q′, A,B) is specified, but not the gate function
G. A universal circuit UC(n,m,q) is a topological circuit (n,m, q′, A,B) which

More Efficient Construction of Bounded KDM Secure Encryption 371

Fig. 12. Garble1 (2).

can realize any boolean circuit f such that Φsize(f) = (n,m, q) by using an
appropriate gate function G. Valiant [8] constructed a universal circuit which
has asymptotically optimal gate size

q′ = O(q log q). (12)

Let UC(n,m,q)(G) denote a boolean circuit which is obtained from UC(n,m,q) and
G.

A Φsize-secure garbling scheme Ga = (Gb,En,Ev) can be obtained from a
universal circuit and any Φtopo-secure garbling scheme (Gb1,En1,Ev1) as follows.

– Gb(1k, f): Let Φsize(f) = (n,m, q). Find a gate function G such that
UC(n,m,q)(G) realizes f . Then output (F, e) ← Gb1(1k,UC(n,m,q)(G)).

– (En,Ev) = (En1,Ev1).

References

1. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 29

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03356-8 35

3. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 1

4. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 22

5. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 7

http://dx.doi.org/10.1007/978-3-642-20465-4_29
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-14623-7_1
http://dx.doi.org/10.1007/978-3-642-13190-5_22
http://dx.doi.org/10.1007/978-3-540-85174-5_7

372 K. Kurosawa and R. Habuka

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM
Conference on Computer and Communications Security, pp. 784–796 (2012). Cryp-
tology ePrint Archive, Report 2012/265

7. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public
key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20465-4 28

8. Valiant, L.G.: Universal circuits (preliminary report). In: STOC, pp. 196–203 (1976)

http://dx.doi.org/10.1007/978-3-642-20465-4_28
http://dx.doi.org/10.1007/978-3-642-20465-4_28

Signature Schemes with Randomized Verification

Cody Freitag1, Rishab Goyal1(B), Susan Hohenberger2, Venkata Koppula1,
Eysa Lee1, Tatsuaki Okamoto3, Jordan Tran4, and Brent Waters1

1 University of Texas at Austin, Austin, USA
{cody.freitag,eysa.lee}@utexas.edu,

{rgoyal,kvenkata,bwaters}@cs.utexas.edu
2 Johns Hopkins University, Baltimore, USA

susan@cs.jhu.edu
3 NTT Secure Platform Laboratories, Musashino, Japan

okamoto.tatsuaki@lab.ntt.co.jp
4 Princeton University, Princeton, USA

Abstract. A signature scheme consists of a setup, signing and verifi-
cation algorithms. In most existing works, the verification algorithm is
assumed to be deterministic. However, there could be signature schemes
where the verification algorithm is randomized. In this work, we study
signature schemes with randomized verification. Our results can be sum-
marized as follows.

First, we present a security definition for signature schemes with ran-
domized verification. The standard EUFCMA notion of security for sig-
nature schemes with deterministic verification is very restrictive when we
consider randomized verification. Therefore, we propose a new security
definition called χ-EUFCMA which captures a broad class of signature
schemes with randomized verification.

Next, we analyse the security of Naor’s transformation from Identity
Based Encryption to signature schemes. Such a transformation results in
a scheme with randomized verification. We show that this transforma-
tion can be proven χ-EUFCMA secure by choosing χ appropriately.

Finally, we show how a scheme with randomized verification can be
generically transformed to one with deterministic verification.

1 Introduction

Digital signatures [6] are one of the central primitives of modern cryptography,
both as an application, and as a building block for other primitives. A signature
scheme consists of three algorithms: a setup algorithm that outputs a secret
signing key and a public verification key, a signing algorithm that computes

S. Hohenberger—Supported by the National Science Foundation (NSF) CNS-
1228443 and CNS-1414023, the Office of Naval Research under contract N00014-
14-1-0333, and a Microsoft Faculty Fellowship.
B. Waters—Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare,
Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 373–389, 2017.
DOI: 10.1007/978-3-319-61204-1 19

374 C. Freitag et al.

signatures on messages using the signing key, and a verification algorithm that
uses the verification key to check if a signature corresponding to a message is
valid. Clearly, the setup algorithm must be probabilistic. The signing algorithm
can be transformed to a deterministic one by using a pseudorandom function
(PRF). In such a transformation, a PRF key can be included as part of the
secret key, and to sign a message, this PRF key can be used to generate the
randomness for the signing algorithm. However, such a transformation cannot
be applied to the verification algorithm, since verification is public.

Indeed, as noted by [8], “no generic transformation outside the random oracle
model is known that makes the verification deterministic”. As a result, when
describing or using signatures, the verification algorithm is often implicitly or
explicitly assumed to be deterministic. This is especially true for works which use
signatures as part of a larger protocol. Moreover, in certain applications [8,9], it
is important for the verification algorithm to be deterministic. This assumption
regarding the determinism of the verification algorithm is often justified by the
fact that most existing schemes have deterministic verification.

At the same time there are circumstances where a signature construction
with a randomized verification will naturally arise. The most popular one is the
transformation from identity based encryption (IBE) schemes to digital signa-
tures suggested by Naor (sketched in [2]). This transformation, popularly referred
to as Naor transformation, can be described as follows. The signing key consists
of the IBE master secret key and the verification key is the IBE public key.
To sign a message m, the signing algorithm generates an IBE secret key corre-
sponding to the identity m. This signature can be verified by first choosing a
random message x from the IBE message space, encrypting x for identity m and
checking if the secret key can decrypt this ciphertext correctly. We would like to
point out that the random coins used by verification algorithm consists of the
IBE message x and the randomness required to encrypt x.1

The signature schemes derived from IBE schemes have some nice proper-
ties (for instance shorter signatures) as compared to the traditional signature
schemes. Fortunately, for many IBE schemes, there are naturally derived signa-
ture schemes where the verification is deterministic. Boneh, Lynn and Shacham
showed how to modify the Boneh-Franklin IBE scheme to get a signature scheme
with deterministic verification [3]. Waters, in [10], showed an IBE scheme in the
standard model, and then showed how it can be modified to get a signature
scheme with deterministic verification. However, such signature scheme counter-
parts with deterministic verification do not exist for all IBE schemes. For exam-
ple, the dual system based Waters IBE scheme [11] did not give an immediate
signature with deterministic verification, and the generic Naor transformation
was the only known approach. More generally, in future, there could be signa-
ture schemes with desirable properties, but where the verification algorithm is
randomized.

1 In this work we define take the “Naor transformation” to be how it was originally
described in the Boneh-Franklin [2] paper. We empahsize that in this case there is
a single message x that is encrypted and tested for verification.

Signature Schemes with Randomized Verification 375

Our Goals and Contributions. With this motivation, we explore a broad notion
of signature schemes with randomized verification. We note that a few different
works have considered randomized verification with varying degrees of formality
(e.g., [7,8,11]). The main contributions of our work can be summarized as follows.
First, we propose a formal security definition for signature schemes with random-
ized verification security. This security notion, called χ-Existential Unforgeability
under Chosen Message Attack (χ-EUFCMA) security, captures a broad class of
signature schemes with randomized verification. Next, we give a formal proof of
Naor’s IBE to signatures transformation. The proof of Naor transformation also
illustrates the importance of our proposed security definition. Third, we show
how to amplify the security of a χ-EUFCMA secure scheme. Finally, we show
generic transformations from a signature scheme with randomized verification
to one with deterministic verification. Each of these contributions is described
in more detail below.

Defining a broad notion of security for signature schemes with randomized verifi-
cation. Our first goal is to define a broad notion of security for signature schemes
with randomized verification. Intuitively, a signature scheme is said to be secure
if no polynomial time adversary can produce a forgery that gets verified with
non-negligible probability. For deterministic verification, this can be easily cap-
tured via a security game [6] between a challenger and an adversary, where the
adversary can query for polynomially many signatures, and eventually, must
output a forgery σ∗ on a fresh (unqueried) message m∗. The adversary wins if
the verification algorithm accepts σ∗ as a signature on message m∗, and we want
that no polynomial time adversary wins with non-negligible probability.

Now one can achieve a standard notion of security for randomized verification
if we just take the same game and make the attacker’s success probability be over
the coins of the challenger’s verification algorithms (as well as the other coins in
the game). While this is the most natural extension of the security to randomized
verification, there are signature schemes that do not meet this definition, yet still
offer some meaningful notion of security. Looking ahead, signature schemes that
arise from the Naor transformation applied to IBE schemes with small message
space does not satisfy this strong notion but still provide some type of security
that we would like to be able to formally capture.

In order to capture a broad class of signature schemes with randomized verifi-
cation, we introduce a weaker notion called χ-EUFCMA security. In this security
game, the adversary receives a verification key from the challenger. It is allowed
to make polynomially many signature queries, and must finally output a forgery
σ∗ on message m∗ (not queried during the signature query phase). Informally, a
signature scheme is said to be χ-EUFCMA secure if for any forgery σ∗ on mes-
sage m∗ produced by a polynomially bounded adversary, the fraction of random
coins that accept σ∗, m∗ is at most χ. Ideally, we would want χ = 0 (or negligible
in the security parameter). However, as we will show below, this is not possible
to achieve for certain Naor transformed signature schemes.

Naor Transformation for IBE schemes with small message spaces. For simplic-
ity, let us consider the Naor transformation from IBE schemes with one bit

376 C. Freitag et al.

message space (for example the Cocks IBE scheme [4]). Here, the adversary
can send a malformed signature such that the adversary wins the game, but
the signature-to-IBE reduction algorithm has 0 advantage. In more detail, con-
sider an adversary that, with probability 1/2, outputs a valid IBE key σ∗ for
ID m∗, and with probability 1/2, outputs a malformed IBE key σ∗ for m∗.
This malformed key always outputs the incorrect decryption of the ciphertext.
Such an adversary would break the signature scheme security, but if a reduction
algorithm uses such a forgery directly to break the IBE security, then it has
advantage 0. To get around this problem, we use a counting technique which is
inspired by the artificial abort technique introduced by Waters [10]. The main
idea behind Waters’ artificial abort was to reduce the dependence between the
event in which adversary wins and the one where simulation aborts. However, we
require a technique which could efficiently test whether the forgery (i.e. IBE key)
is malformed or not. To this end, the reduction algorithm runs the IBE decryp-
tion multiple times, each time on freshly generated ciphertext, and counts the
number of correct decryptions. This helps the reduction in estimating whether
the key is malformed or not. If the key is malformed, then the reduction algo-
rithm simply aborts, otherwise it uses the forgery to break IBE security. The
analysis is similar to that in [10].

The above issue with small message space IBE schemes was also noted by the
work of Cui et al. [5]. They outlined a sketch of proof for large message spaces.
However, even in the case of large message spaces, the issue of artificial abort
needs to be addressed (although, unlike the small message case, the reduction
algorithm does not suffer a loss in the winning advantage).

Amplifying the soundness from χ = 1−1/poly(·) to χ = 0. Next, we show how to
amplify the soundness from χ = 1 − 1/poly(λ) to χ = 0. Such a problem closely
resembles that of transforming weak OWFs to strong OWFs. Therefore, the
direct product amplification technique [12] could be used. So, if the verification
algorithm is run sufficiently many times, each time with fresh randomness, and
the signature is accepted only if all verifications succeed, then we could achieve
χ = 0-EUFCMA security.

Derandomizing the verification algorithm. Finally, we show how to transform any
χ = 0-EUFCMA secure signature scheme with randomized verification algorithm
to a signature scheme with deterministic verification. We show two such trans-
formations, one in the random oracle model (ROM), and another in the standard
model. The transformation in the random oracle model is fairly straightforward.
Here, the verification algorithm uses a hash function H which will be modeled
as a random oracle in the proof. To verify a signature σ on message m, the ver-
ification algorithm computes r = H(m,σ) and uses r as the randomness for the
verification. To prove security, we first model the hash function H as a random
oracle. Suppose there exists an attacker on this modified signature scheme. After
the hash function is replaced with a random oracle, the attacker’s forgery can
be directly used as a forgery for the original χ = 0-EUFCMA secure signature
scheme. Here, note that it is crucial that the starting signature scheme with
randomized verification is χ = 0-EUFCMA secure, else the adversary’s forgery

Signature Schemes with Randomized Verification 377

may not be useful for the reduction as it will not translate to a forgery for the
original signature scheme.

In our standard model transformation, the setup algorithm chooses a suffi-
ciently large number of random strings r1, . . . , r� and includes them as part of the
public verification key. The verification algorithm uses each of these strings as its
randomness, and checks if m,σ verify in all cases. If so, it outputs 1, else it out-
puts 0. For security, suppose the adversary A sends a message m∗ and a forgery
σ∗ such that the verification algorithm accepts m∗, σ∗ when using r1, . . . , r� as
the random strings. The reduction algorithm simply forwards m∗, σ∗ as a forgery
to the original signature scheme’s challenger. To compute the winning probabil-
ity of the reduction algorithm, we need to consider the case when the adversary
A wins, but the reduction algorithm does not. This, in particular, can happen
if the set of ‘bad’ random strings that result in (m∗, σ∗) being accepted is a
negligible fraction of the total number of random strings. Suppose there exists
a message m∗ and forgery σ∗ such that the number of ‘bad’ randomness strings
that cause the verification algorithm to accept m∗, σ∗ is a negligible fraction of
the total number of randomness strings, and all strings r1, . . . , r� are in the bad
set. We argue that since r1, . . . , r� are chosen uniformly at random, and since
� is a suitably large polynomial in the security parameter, this probability is
negligible in the security parameter.

Conclusions. Many times in cryptography and security there is a concept that is
thought to be well understood, but has never been rigorously proven or explored.
Often when such an exploration takes place some new twists or facts will be dis-
covered. In this case when we first decided to dig into the IBE to signature trans-
formation we had an initial expectation that there would be a lossless connection
from IBE to signatures. We actually were surprised that our initial attempts did
not work out and that an artificial abort type mechanism was required for the
small message spaces. Besides formally proving the IBE to signature transforma-
tion, we also show how to derandomize any signature scheme with randomized
verification, both in the random oracle model as well as the standard model.

2 Definitions and Preliminaries

2.1 Signature Schemes with Deterministic Verification

A signature scheme S = (SetupDet,SignDet,VerifyDet) with message space M
consists of three algorithms, as follows:

1. SetupDet(1λ) is a randomized algorithm that takes security parameter λ as
input and returns a pair of keys (sk, vk), where sk is the signing key and vk
is the verification key.

2. SignDet(sk,m) is a possibly randomized algorithm that takes as input the
signing key sk, and a message m, and returns a signature σ.

3. VerifyDet(vk,m, σ) is a determistic algorithm that takes as input the verifi-
cation key vk, a message m, and a signature σ, and outputs 1 (accepts) if
verification succeeds, and 0 (rejects) otherwise.

378 C. Freitag et al.

Definition 1. A pair of polynomial time algorithms (SetupDet,SignDet,
VerifyDet) is a EUFCMA secure signature scheme if it satisfies the following
conditions

1. (Correctness) For all λ ∈ N, m ∈ M,

Pr

[
VerifyDet(vk,m, σ) = 1 :

(sk, vk) $← SetupDet(1λ)

σ
$← SignDet(sk,m)

]
= 1.

2. (Security) For every PPT attacker A there exists a negligible function negl(·)
such that for all λ ∈ N, AdvEUFCMA

A (λ) ≤ negl(λ), where advantage of A is
defined as

AdvEUFCMA
A (λ) = Pr

[
VerifyDet(vk, m

∗, σ∗) = 1 : (sk, vk)
$← SetupDet(1

λ)

(m∗, σ∗) = ASignDet(sk,·)(1λ, vk)

]
,

and A should never have queried m∗ to SignDet oracle.

2.2 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme E = (SetupIBE,KeyGenIBE,
EncIBE,DecIBE) with message space MIBE and identity space I consists of the
following polynomial time algorithms:

1. SetupIBE(1λ) is a randomized polynomial time algorithm that takes security
parameter λ as input and returns (pp,msk), where pp are public parameters
and msk is the master secret key.

2. KeyGenIBE(pp,msk, ID) is a randomized polynomial time algorithm that takes
as inputs the public parameters pp, the master secret key msk, and an identity
ID and returns a secret key skID for ID.

3. EncIBE(pp,m, ID) is a randomized polynomial time algorithm that takes as
inputs the public parameters pp, a message m, and an identity ID and returns
a ciphertext ct.

4. DecIBE(pp, skID, ct) is an polynomial time algorithm that takes as inputs the
public parameters pp, a secret key skID, and a ciphertext ct and returns a
message m or ⊥.

Definition 2. A pair of polynomial time algorithms (SetupIBE,KeyGenIBE,
EncIBE,DecIBE) is an adaptively-secure IBE scheme if it satisfies the following
conditions

1. (Correctness) For all λ ∈ N, m ∈ MIBE, ID ∈ I,

Pr

⎡
⎢⎣DecIBE(pp, skID, ct) = m :

(pp,msk) $← SetupIBE(1λ)

skID
$← KeyGenIBE(pp,msk, ID)

ct
$← EncIBE(pp,m, ID)

⎤
⎥⎦ = 1.

Signature Schemes with Randomized Verification 379

2. (Security) For every PPT attacker A = (A0,A1) there exists a negligible
function negl(·) such that for all λ ∈ N, AdvIBE

A (λ) ≤ negl(λ), where advantage
of A is defined as∣∣∣∣∣∣∣Pr

⎡
⎢⎣AOID∗

1 (st, ctb) = b :
(pp,msk) $← SetupIBE(1λ); b

$← {0, 1}
(ID∗,m∗

0,m
∗
1, st) = AO

0 (1λ, pp)

ctb
$← EncIBE(pp,m∗

b , ID
∗)

⎤
⎥⎦ − 1

2

∣∣∣∣∣∣∣ ,

Here oracle O behaves same as KeyGenIBE(pp,msk, ·), A should not have
queried O for ID∗ in the pre-challenge phase, and OID∗ behaves same as O,
except on input ID∗ it outputs ⊥.

3 Signatures Schemes with Randomized Verification

In traditional signature schemes (as defined in Sect. 2.1), the verification algo-
rithm is assumed to be deterministic. However, in certain scenarios, it might be
useful to consider verification algorithms that are randomized. In this section, we
propose a EUFCMA equivalent definition that captures a broad class of signature
schemes with randomized verification. Let χ be a fixed parameter. Intuitively,
a signature scheme with randomized verification is said to be χ secure if any
forgery produced by a PPT adversary is accepted by the verification algorithm
with probability at most χ. For example, if χ = 1/2, then in the security game,
the adversary first gets the verification key, then queries for q signatures, and
finally sends a forgery σ∗ on message m∗. The scheme is χ secure if (σ∗,m∗) is
accepted by the verification algorithm with probability at most 1/2.

More formally, a randomized verification signature scheme SRV = (SetupRV,
SignRV, VerifyRV) with message space M(λ) and verification coin space R(λ)
consists of three algorithms, as follows:

1. SetupRV(1λ) is a randomized polynomial time algorithm that takes security
parameter λ as input and returns a pair of keys (sk, vk), where sk is the signing
key and vk is the verification key.

2. SignRV(sk,m) is a possibly randomized polynomial time algorithm that takes
as input the signing key sk, and a message m, and returns a signature σ.

3. VerifyRV(vk,m, σ; r) is a randomized polynomial time algorithm that takes as
input the verification key vk, a message m, and a signature σ. It also uses
random coins r ∈ R, and outputs 1 (accepts) if verification succeeds, and 0
(rejects) otherwise.

Successful Verification Probability. We define a function over the tuple
(λ, vk,m, σ) for a randomized verification signature scheme which captures the
fraction of message-signature pairs (m,σ) which get verified under verification
key vk as follows.

VerifyProb(λ, vk,m, σ) =
|{r ∈ R : VerifyRV(vk,m, σ; r) = 1}|

|R| .

380 C. Freitag et al.

In our security proofs, we will use the notation Rm,σ to denote the set
{r ∈ R : VerifyRV(vk,m, σ; r) = 1}.

Definition 3. A pair of polynomial time algorithms (SetupRV,SignRV,VerifyRV)
is a χ(λ)-EUFCMA secure signature scheme with randomized verification if it
satisfies the following conditions

1. (Correctness) For all λ ∈ N, m ∈ M, r ∈ R,

Pr

[
VerifyRV(vk,m, σ; r) = 1 :

(sk, vk) $← SetupRV(1λ)

σ
$← SignRV(sk,m)

]
= 1.

2. (Security) For every PPT attacker A there exists negligible functions negl1(·)
and negl2(·) such that for all λ ∈ N, AdvRVA (λ) ≤ negl1(λ), where advantage
of A is defined as

Pr

[
VerifyProb(λ, vk, m∗, σ∗) > χ(λ) + negl2(λ) : (sk, vk)

$← SetupRV(1λ)

(m∗, σ∗) = ASignRV(sk,·)(1λ, vk)

]
,

and A should never have queried m∗ to SignRV oracle.

4 Signature Scheme with Randomized Verification
from IBE: Naor’s Transformation

In this section, we construct signature schemes with randomized verification from
IBE schemes using Naor’s transformation. Naor suggested a generic method to
construct signature schemes from IBE schemes, and a sketch of this transforma-
tion was given in [1]. At a high level, this transformation can be described as
follows. The message space of the signature scheme is the identity space of the
IBE scheme. To generate the signing key/verification key, the setup algorithm
runs the IBE setup algorithm to compute an IBE public key/master secret key
pair. The public key is set to be the verification key, while the master secret
key is the signing key. To sign a message m, the signing algorithm generates a
secret key corresponding to identity m. The verification algorithm chooses a uni-
formly random message x, encrypts it using the verification key for identity m.
It then decrypts the encryption using the signature, and checks if the decryption
is correct.

Intuitively, it appears that this signature scheme should be secure if the
underlying IBE scheme is secure. However, there are certain subtleties, especially
when the message space of the IBE scheme is small (see Sect. 1 for more details).

4.1 Construction

Let E = (SetupIBE,KeyGenIBE,EncIBE,DecIBE) be an IBE scheme with message
space MIBE and ID space I. We define a randomized verification signature
scheme SRV = (SetupRV,SignRV,VerifyRV) with message space M = I as follows:

Signature Schemes with Randomized Verification 381

1. SetupRV(1λ): It computes (pp,msk) $← SetupIBE(1λ) and returns (skRV, vkRV)
where skRV = msk and vkRV = pp.

2. SignRV(skRV,m): Let vkRV = pp, skRV = msk, and m = ID. It computes

skID
$← KeyGenIBE(pp,msk, ID) and returns σ = skID.

3. VerifyRV(vkRV,m, σ; r): Let vkRV = pp, m = ID, σ = skID, and r = d||r′. It
computes ct = EncIBE(pp, d, ID) passing r′ as the random coins to EncIBE. It
outputs 1 if DecIBE(pp, skID, ct) = d and 0 otherwise.

4.2 Correctness and Security

Theorem 1. If E = (SetupIBE,KeyGenIBE,EncIBE,DecIBE) is an adaptively-
secure IBE scheme (Definition 2) with message space MIBE such that |MIBE| =
M, then above construction forms a 1/M-secure randomized verification signa-
ture scheme as per Definition 3.

Proof. It is straightforward to verify the correctness as it follows directly from
the correctness of IBE scheme. To prove 1/M-EUFCMA security, consider a PPT
adversary A that wins the 1/M-EUFCMA security game described in Definition 3
with non-negligible advantage ε1. This could be equivalently stated as that with
probability ε2, A outputs (m∗, σ∗) such that VerifyProb(λ, vk,m∗, σ∗) > 1/M+ε2
where ε1 and ε2 are non-negligible functions in λ. We construct a reduction
algorithm B that acts as the challenger in the randomized verification signature
security game and is the attacker in the adaptive IBE security game. We define
algorithm B as follows:

1. The IBE challenger computes (msk, pp) $← SetupIBE(1λ) and sends pp to the
IBE attacker B.

2. B sets vk = pp and sends vk as the verification key to adversary A.
3. Attacker A submits signature queries on a polynomial number of messages

mi. On each message, B sets IDi = mi and sends a secret key query for
identity IDi to the IBE challenger. B receives skIDi

and sends σi = skIDi
to

attacker A as the signature for mi.
4. Attacker A submits a forgery (m∗, σ∗) to B where m∗ �= mi for any queried

mi.
5. B sets ID∗ = m∗ and chooses d∗

0, d
∗
1

$← MIBE uniformly at random such that
d∗
0 �= d∗

1. B sends ID∗ as the challenge identity and d∗
0, d

∗
1 as the challenge

messages to the IBE challenger. The IBE challenger chooses b
$← {0, 1} and

sends the challenge ciphertext ct∗ $← EncIBE(pp, d∗
b , ID

∗) to B.

6. B runs VerifyRV(vk,m∗, σ∗; r) q times, where q = O(λ · ε−2
2) and r

$← R is
freshly chosen for each run. Note that q is a polynomial when ε2 is non-
negligible. Let count be the number of times VerifyRV outputs 1. If count <

q (1/M + ε2/2), B aborts and chooses b′ $← {0, 1} at random as its guess. If
count ≥ q (1/M + ε2/2), B computes d′ = DecIBE(pp, σ∗, ct∗). If d′ = d∗

0, then
B sets b′ = 0. If d′ = d∗

1, B sets b′ = 1. Otherwise, d′ is a non-challenge

382 C. Freitag et al.

message or ⊥, so B guesses b′ $← {0, 1} uniformly at random and sends b′ to
IBE challenger as its guess.

We claim that B wins the IBE security game with non-negligible probability.
To prove our claim, we define the following events:

– Abort: count < q

(
1
M

+
ε2
2

)
.

– Bad: VerifyProb(λ, vk,m∗, σ∗) <
1
M

– Mid:
1
M

≤ VerifyProb(λ, vk,m∗, σ∗) <
1
M

+ ε2

– Good: VerifyProb(λ, vk,m∗, σ∗) ≥ 1
M

+ ε2

We say that B aborts when event Abort occurs and it chooses a random bit
b′ $← {0, 1} as its guess. Events Bad,Mid, and Good quantify the successful veri-
fication probability of the forgery (m∗, σ∗) that A produces. Event Bad signifies
that (m∗, σ∗) verifies with probability no greater than χ = 1/M. Event Good is
the case when the forgery produced by A verifies with non-negligible advantage
over χ = 1/M. Then, event Mid represents the case in between Bad and Good
such that Bad,Mid, and Good are mutually exclusive events.

The intuition behind running VerifyRV q times independently is to make sure
that the reduction does not use the forgery whenever A provides a forgery that
does worse than random guessing (of the encrypted message). This becomes
necessary when we try to visualize the IBE message space to be very small. For
instance, consider the scenario where A can win with advantage 1 in the ran-
domized verification signature security game, but instead of always outputting
a correct forgery it creates a bad forgery almost half the time. Therefore, if B
directly uses the forgery to decrypt the challenge ciphertext which contains only
one bit, then half the time it would be using a correct forgery and decrypting the
challenge correctly, while at other times it would be decrypting incorrectly, and
thus B’s advantage in a direct reduction would be zero despite A’s non-negligible
advantage. Therefore, we want B to accept the forgery and not abort only if A
produces a forgery such that verification succeeds with non-negligible probabil-
ity over 1/M. We provide a sketch of how these events relate to the probability
that B wins as follows.

Pr[B wins] = Pr[b = b′]

= Pr[b = b′ | Abort] · Pr[Abort] + Pr[b = b′ | Abort] · Pr[Abort]

≥ 1/2 · Pr[Abort] + Pr[b = b′ | Abort ∧ Bad] · Pr[Abort ∧ Bad]

+ Pr[b = b′ | Abort ∧ Good] · Pr[Abort ∧ Good]

+ Pr[b = b′ | Abort ∧ Mid] · Pr[Abort ∧ Mid]

Signature Schemes with Randomized Verification 383

We know that Pr[Good] = ε1. Using Chernoff bound, we can show that
Pr[Abort | Good] ≤ negl(λ), where negl(·) is a negligible function. Therefore,
Pr[Abort ∧ Good] ≥ ε1 − negl(λ). Similarly, we can show that Pr[Abort ∧
Bad] ≤ negl(λ).

As described before, we want B to have non-negligible advantage in the IBE
security game when A submits a forgery with high verification probability i.e.
in event Good. Also we show that if the forgery submitted by A is verifies with
at least 1/M probability i.e. event Mid, then B still wins the IBE security game
with probability at least 1/2. We consider the following three mutually exclusive
events describing a particular run of DecIBE on challenge ciphertext ct∗ given
that B does not abort:

1. Win: DecIBE outputs the challenge message d∗
b .

2. Lose: DecIBE outputs the incorrect challenge message d∗
1−b.

3. Split: DecIBE outputs a non-challenge message or ⊥

Note that B wins with probability 1 in event Win, probability 0 in event Lose,
and probability 1/2 in event Split. We use these different cases to analyze the
probability the B wins in the event Abort.

Claim 1. Pr[b = b′ | Abort ∧ Good] ≥ ε2
4

+
1
2

Proof. Let p = Pr[Win | Abort ∧ Good] ≥ 1/M + ε2/2 since in event Good,
VerifyProb(λ, vk,m∗, σ∗) ≥ 1/M + ε2/2. Then, Pr[Split | Abort ∧ Good] ≥
(1 − p) · (1 − 1/(M − 1)) since the challenge messages were chosen uniformly at
random from MIBE.

Pr[b = b′ | Abort ∧ Good]

= Pr[b = b′ | Abort ∧ Good ∧ Win] · Pr[Win | Abort ∧ Good]

+ Pr[b = b′ | Abort ∧ Good ∧ Lose] · Pr[Lose | Abort ∧ Good]

+ Pr[b = b′ | Abort ∧ Good ∧ Split] · Pr[Split | Abort ∧ Good]

≥ 1 · p + 0 +
1
2

·
(

1 − 1
M − 1

)
· (1 − p)

≥ ε2
4

+
1
2

Claim 2. Pr[b = b′ | Abort ∧ Mid] ≥ 1
2

Proof. The proof of the claim is the same as Claim 1 where p = Pr[Win |
Abort ∧ Mid] ≥ 1

M . Therefore, we get that Pr[b = b′ | Abort ∧ Mid] ≥ 1/2.
Now we can complete our analysis of the winning probability of the reduction

algorithm B in the IBE security game.

384 C. Freitag et al.

Pr[B wins]

≥ 1

2
· Pr[Abort] + Pr[b = b′ | Abort ∧ Good] · Pr[Abort ∧ Good]

+ Pr[b = b′ | Abort ∧ Mid] · (Pr[Abort] − Pr[Abort ∧ Bad] − Pr[Abort ∧ Good])

≥ 1

2
· Pr[Abort] +

(
ε2
4

+
1

2

)
· Pr[Abort ∧ Good]

+
1

2
· (Pr[Abort] − Pr[Abort ∧ Bad] − Pr[Abort ∧ Good])

=
1

2
+

ε2
4

· Pr[Abort ∧ Good] − 1

2
· Pr[Abort ∧ Bad]

=
1

2
+

ε1ε2
4

− negl(λ)

Thus, AdvIBE
B =

∣∣∣∣Pr[B wins] − 1
2

∣∣∣∣ =
∣∣∣∣12 +

ε1ε2
4

− negl(λ) − 1
2

∣∣∣∣ =
ε1ε2
4

−
negl(λ), which is non-negligible if ε1 and ε2 are non-negligible.

We conclude that if E is an adaptively-secure IBE scheme, then our construc-

tion is a
1
M

-secure randomized verification signature scheme.

5 Amplifying Soundness

Ideally we would want from a randomized verification signature scheme that
χ = 0, which could be equivalently stated as that the forgery does not get verified
with non-negligible probability. However not all constructions could be provably
χ = 0 secure, therefore we show a generic transformation from χ = 1 − 1/p to
χ = 0, where p is a polynomial in the security parameter λ.

5.1 Construction

Let S ′ = (Setup′,Sign′,Verify′) be a χ = 1 − 1/p secure randomized verification
signature scheme with message space M′ and verification coin space R′. We
construct a χ = 0 secure randomized verification signature scheme as follows:

1. SetupRV(1λ): It computes (sk′, vk′) $← Setup′(1λ) and returns (sk, vk) where
sk = sk′ and vk = vk′.

2. SignRV(sk,m): Let sk = sk′. It computes σ
$← Sign′(sk′,m) and outputs σ as

the signature.
3. VerifyRV(vk,m, σ; r): Let vk = vk′, n = Ω(pλ), and r = (r1, . . . , rn) ∈ (R′)n.

For all i ∈ [n], it runs Verify′(vk′,m, σ; ri). It outputs 1 if all n verifications
output 1, and 0 otherwise.

5.2 Correctness and Security

Theorem 2. If S ′ = (Setup′,Sign′,Verify′) be a χ = (1− 1/p)-EUFCMA secure
signature scheme (Definition 3) with message space M′ and verification coin

Signature Schemes with Randomized Verification 385

space R′, then above construction forms a χ = 0-EUFCMA secure signature
scheme as per Definition 3 with message space M′ and verification coin space
(R′)n, where n = Ω(pλ) and p is a polynomial in λ.

Proof. It is straightforward to verify the correctness as it follows directly from the
correctness of underlying randomized verification signature scheme. The proof
of soundness amplification is the standard direct product amplification [12]. For
completeness, we sketch the argument below.

Let R∗ =
{
r ∈ R′ : Verify′(vk′,m∗, σ∗; r) = 1

}
denote the set of random coins

on which verifier accepts the forgery (m∗, σ∗). Since, S ′ is χ = 1 − 1/p secure,
we know that VerifyProb(λ, vk′,m∗, σ∗) ≤ 1 − 1/p + μ′ with all but negligible
probability, where μ′ is a negligible function in λ. Therefore, we can write that
with all but negligible probability |R∗| ≤ (1−1/p+μ′) |R′|. After amplification,
VerifyRV runs Verify′ on n uniformly random coins from R′, thus set of random
coins in (R′)n on which VerifyRV accepts the forgery (m∗, σ∗) is (R∗)n. So,
substituting n = Ω(pλ), we can write that with all but negligible probability,

VerifyProb(λ, vk, m∗, σ∗) =
|R∗|n
|R′|n =

(|R∗|
|R′|

)n

≤
(
1 − 1

p
+ μ′

)n

≤ e
− n

p
+negl ≤ e−Ω(λ).

Therefore, we can conclude that if S ′ is a χ = (1 − 1/p)-EUFCMA secure
randomized verification signature scheme, then S is a χ = 0-EUFCMA secure
randomized verification signature scheme, where p is a polynomial in λ.

6 Derandomizing Verification in the Random Oracle
Model

In this section, we show how to generically transform a signature scheme with
randomized verification to a signature scheme with deterministic verification in
the Random Oracle Model (ROM). Consider any χ = 0-secure signature scheme
with randomized verification.2 Let � denote the number of random bits used by
the verification algorithm. To make the verification algorithm deterministic, we
will use a hash function H that maps (message, signature) pairs to � bit strings.
The deterministic verification algorithm takes as input a signature σ, message
m, computes H(σ,m), and uses this as the randomness. For our security proof,
the hash function H is modeled as a random oracle.

Let SRV = (SetupRV,SignRV,VerifyRV) be a χ = 0 secure randomized ver-
ification signature scheme with message space M(·), signature space Σ(·) and
verification coin space R(·). We construct a deterministic verification signature
scheme with identical message and signature space:

1. SetupDet(1λ): It computes (skRV, vkRV) $← SetupRV(1λ) and returns (sk, vk) =
(skRV, vkRV).

2 In the previous section, we showed how to amplify the security from χ = 1−1/poly(λ)
to χ = 0. Therefore, our starting point in the transformation will be a randomized
verification signature scheme with χ = 0.

386 C. Freitag et al.

2. SignDet(sk,m): Let sk = skRV. It computes σ
$← SignRV(skRV,m) and outputs

σ as the signature.
3. VerifyDet(vk,m, σ): Let vk = vkRV and r = H(m,σ). It outputs

VerifyRV(vkRV,m, σ; r).

Theorem 3. If SRV = (SetupRV,SignRV,VerifyRV) be a χ = 0-EUFCMA
secure randomized verification signature scheme (Definition 3) with message
space M(·), signature space Σ(·) and verification coin space R(·), then above con-
struction forms a EUFCMA secure deterministic verification signature scheme
as per Definition 1 with message space M(·) and signature space Σ(·).
Proof. It is straightforward to verify the correctness as it follows directly from the
correctness of underlying randomized verification signature scheme. For proving
security in the random oracle model, we will assume the hash function H is
modeled as a random oracle. Let q denote the number of queries made by the
adversary to the random oracle. Without loss of generality, we can assume that
the forgery (m∗, σ∗) is one of the q queries.

We can directly reduce an attack on our deterministic verification scheme
construction to an attack on SRV. Our reduction algorithm B will receive a
verification key vkRV from SRV challenger. It forwards vkRV to A. B relays all
signature queries made by A to SRV challenger. For answering hash queries B
maintains a lookup table, and for each new query (m,σ) it chooses a uniformly
random coin from R. Finally, when A submits the forgery (m∗, σ∗), B forwards
it to the challenger.

Suppose A wins with probability ε1, and let R∗ = Rm∗,σ∗ .

Pr[A wins] = Pr[A outputs (m∗, σ∗) and H(m∗, σ∗) ∈ R∗]

≤ Pr[A outputs (m∗, σ∗) and H(m∗, σ∗) ∈ R∗ and |R∗|/|R| ≤ negl(λ)]

+ Pr[A outputs (m∗, σ∗) and |R∗|/|R| ≥ 1/poly(λ)]

Now, note that Pr[A outputs (m∗, σ∗) and H(m∗, σ∗) ∈ R∗ and |R∗|/|R| ≤
negl(λ)] ≤ q · negl(λ). This is because for each of the random oracle queries, the
response is a uniformly random element in R. As a result, using union bound,
Pr[∃ RO query (mi, σi) such that |Rmi,σi

|/|R| ≤ negl(λ) and H(mi, σi) ∈
Rmi,σi

] ≤ q · negl(λ).

Therefore, Pr[B wins] = Pr[A outputs (m∗, σ∗) and |R∗|/|R| ≥ 1/poly(λ)]
≥ ε1 − negl(λ).

7 Derandomizing Verification in the Standard Model

In this section, we present a transformation from a χ = 0-EUFCMA secure
signature scheme with randomized verification to one that has a deterministic
verification algorithm, and prove it EUFCMA secure in the standard model. At
a high level, the transformed scheme can be described as follows. The verifi-
cation key consists of n uniformly random strings r1, . . . , rn from R, where n

Signature Schemes with Randomized Verification 387

is bounded by a sufficiently large polynomial in the security parameter. These
random strings are then used by the verification algorithm to check if σ is a valid
signature for message m. Note that the random strings r1, . . . , rn used during
verification are chosen during Setup and kept as part of the verification key. At
first sight, it might appear that, since the random strings are fixed during setup,
the reduction to the underlying verification scheme will not go through because
now the adversary’s forgery may depend on the random coins used to verify.
However, this is not the case because the underlying randomized verification
signature scheme satisfies χ = 0-EUFCMA security, therefore taking a union
bound over all possible message-signature pairs we could rule out this case as if
n is sufficiently large, then the probability that some bad message-signature pair
gets verified using all r1, . . . , rn (independently) is negligible. Below we describe
the transformation.

Let SRV = (SetupRV,SignRV,VerifyRV) be a χ = 0-EUFCMA secure random-
ized verification signature scheme with message space M(·), signature space
Σ(·) and verification coin space R(·). We construct a deterministic verification
signature scheme with identical message and signature space:

1. SetupDet(1λ): The setup algorithm first chooses (skRV, vkRV) $← SetupRV(1λ).
Next, it sets sk = skRV, n = Ω (log(|M| · |Σ|)), and chooses n coins

{r1, . . . , rn} where ri
$← R for i ≤ n. The verification key vk consists of

(vkRV, {r1, . . . , rn}).

2. SignDet(sk,m): Let sk = skRV. The signing algorithm computes σ
$←

SignRV(skRV,m) and outputs σ as the signature.
3. VerifyDet(vk,m, σ): Let vk = (vkRV, {r1, . . . , rn}). The verification algorithm

checks if VerifyRV(vkRV,m, σ; ri) = 1 for all i ≤ n. If so, it outputs 1, else it
outputs 0.

Theorem 4. Let SRV = (SetupRV,SignRV,VerifyRV) be a χ = 0-EUFCMA
secure randomized verification signature scheme (Definition 3) with message
space M(·), signature space Σ(·) and verification coin space R(·). The above con-
struction forms a EUFCMA secure deterministic verification signature scheme
as per Definition 1 with message space M(·) and signature space Σ(·).
Proof. It is straightforward to verify the correctness as it follows directly from
the correctness of underlying randomized verification signature scheme. To for-
mally describe our reduction we distinguish between two types of forgers that an
attacker A can emulate. Let Rm∗,σ∗ = {r ∈ R : VerifyRV(vkRV,m∗, σ∗; r) = 1}
denote the set of random coins on which verifier accepts the forgery (m∗, σ∗).
We distinguish between two types of forgers as follows:

Type 1 forger: A with non-negligible probability, outputs a forgery (m∗, σ∗)
such that |Rm∗,σ∗ |/|R| is non-negligible in λ.

Type 2 forger: A with non-negligible probability, outputs a forgery (m∗, σ∗)
such that |Rm∗,σ∗ |/|R| is negligible in λ.

388 C. Freitag et al.

Claim 3. If A emulates a Type 1 forger, then there exists a reduction algorithm
B that breaks χ = 0-EUFCMA security of randomized verification signature
scheme SRV.

Proof. In case of type 1 forgery, we can directly reduce an attack on our deter-
ministic verification scheme construction to an attack on SRV. Our reduction
algorithm B will receive a verification key vkRV from SRV challenger. It chooses
n coins {r1, . . . , rn} $← Rn and forwards (vkRV, {r1, . . . , rn}) to A. A relays all
signature queries made by A to SRV challenger. By assumption, |Rm∗,σ∗ |/|R|
is non-negligible for a type 1 forger, thus VerifyProb(λ, vkRV,m∗, σ∗) =
|Rm∗,σ∗ |/|R| is also non-negligible. Hence, if A emulates a type 1 forger, then
it also breaks χ = 0-EUFCMA security of randomized verification signature
scheme SRV.

Claim 4. If A emulates a Type 2 forger, then it does not break χ = 0-EUFCMA
security of randomized verification signature scheme SRV with all but negligible
probability.

Proof. In case of type 2 forgery, we show that if we set n = Ω (log(|M| · |Σ|)),
3 then (with all but negligible probability) there does not exists any (m,σ)
pair such that {r1, . . . , rn} ⊆ Rm,σ and |Rm,σ|/|R| is negligible. Let Bad
denote the set of (m,σ) pairs such that |Rm,σ|/|R| is negligible, and Rmax =

max
(m,σ)∈Bad

|Rm,σ|. The proof follows from union bound over all such (m,σ) pairs

in Bad. First, observe that

∀ (m,σ) ∈ Bad, Pr[VerifyDet(vk,m, σ) = 1] ≤
(

Rmax

|R|
)n

≤ (μ′)n,

where μ′ is a negligible function. Using union bound, we can write that

Pr

⎡
⎣ ∨
(m,σ)∈Bad

VerifyDet(vk,m, σ) = 1

⎤
⎦ ≤ |M| · |Σ| · (μ′)n.

Since we set n = Ω (log(|M| · |Σ|)), the above expression is negligible in λ.
Therefore, no type 2 forger can win with non-negligible probability over random
choice of n verification coins.

Therefore, reduction algorithm B always guesses A to be a Type 1 forger and
plays the standard reduction.

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

3 Setting n = Ω (log(|M| · |Σ|)/ log(1/μ′)) is sufficient where μ′ is a negligible func-
tion that depends upon the parameters of the randomized verification scheme.

http://dx.doi.org/10.1007/3-540-44647-8_13

Signature Schemes with Randomized Verification 389

2. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

3. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

4. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). doi:10.1007/3-540-45325-3 32

5. Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal security treatments
for IBE-to-signature transformation: relations among security notions. IEICE
Trans. 92–A(1), 53–66 (2009)

6. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

7. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 6

8. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 39

9. Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 380–397. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40084-1 22

10. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

11. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

12. Yao, A.C.: Theory and application of trapdoor functions. In: Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp.
80–91 (1982). http://dx.doi.org/10.1109/SFCS.1982.95

http://dx.doi.org/10.1007/3-540-45325-3_32
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-642-30057-8_39
http://dx.doi.org/10.1007/978-3-642-40084-1_22
http://dx.doi.org/10.1007/978-3-642-40084-1_22
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1109/SFCS.1982.95

Side Channel Attack

Trade-Offs for S-Boxes: Cryptographic
Properties and Side-Channel Resilience

Claude Carlet1, Annelie Heuser2, and Stjepan Picek1,3,4(B)

1 Universities of Paris VIII and Paris XIII, LAGA, UMR 7539, CNRS,
Saint-Denis, France

2 CNRS/IRISA, Rennes, France
3 Massachusetts Institute of Technology, CSAIL, Cambridge, USA
4 Cyber Security Research Group, Delft University of Technology,

Mekelweg 2, Delft, The Netherlands
stjepan@computer.org

Abstract. When discussing how to improve side-channel resilience of a
cipher, an obvious direction is to use various masking or hiding counter-
measures. However, such schemes come with a cost, e.g. an increase in the
area and/or reduction of the speed. When considering lightweight cryp-
tography and various constrained environments, the situation becomes
even more difficult due to numerous implementation restrictions. How-
ever, some options are possible like using S-boxes that are easier to mask
or (more on a fundamental level), using S-boxes that possess higher inher-
ent side-channel resilience. In this paper we investigate what properties
should an S-box possess in order to be more resilient against side-channel
attacks. Moreover, we find certain connections between those properties
and cryptographic properties like nonlinearity and differential unifor-
mity. Finally, to strengthen our theoretical findings, we give an extensive
experimental validation of our results.

1 Introduction

When designing a block cipher, one needs to consider many possible cryptanaly-
sis attacks and often give the best trade-off between the security, speed, ease of
implementation, etc. Besides the two main directions in the form of linear [1]
and differential [2] cryptanalyses, today the most prominent attacks come from
the implementation attacks group where side-channel attacks (SCAs) play an
important role. To protect against SCA, one common option is to use various
countermeasures such as hiding or masking schemes [3] where one well known
example is the threshold implementation [4]. However, such countermeasures
come with a cost when implementing ciphers. If considering more resource con-
strained environments, one often does not have enough resources to implement
standard ciphers like AES and therefore one needs to use lightweight cryptogra-
phy. However, even lightweight ciphers can be too resource demanding especially
when the cost of countermeasures is added. Therefore, although countermeasures

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 393–414, 2017.
DOI: 10.1007/978-3-319-61204-1 20

394 C. Carlet et al.

represent the way how to go when considering SCA protection, there is no coun-
termeasure (at least at the current state of the research) that offers sufficient
protection against any attack while being cheap enough to be implemented in
any environment.

In this paper, we consider how to improve SCA resilience of ciphers without
imposing any extra cost. This is possible by considering the inherent resilience
of ciphers. We particularly concentrate on block ciphers which utilize S-boxes
and therefore study the resilience of S-boxes against side-channel attacks.

In the case of SCA concentrating only on 1-bit of the S-box output, a theoret-
ical connection between the side-channel resistance and differential uniformity of
S-boxes has been found in [5]. In particular, the authors showed that the higher
the side-channel resistance, the smaller the differential resistance. However, as
we show, this extension does not straightforwardly hold when considering more
complex leakage models as the Hamming weight of the S-box output, which is
the most prominent leakage model in side-channel analysis when considering
Correlation Power Analysis (CPA) [6]. We therefore investigate S-box parame-
ters which may influence the side-channel resistance while still having good or
optimal cryptographic properties. The (almost) preservation of Hamming weight
and a small Hamming distance between x and F (x) are two properties each of
which could strengthen the resistance to SCA from an intuitive perspective. Our
theoretical and empirical findings show that notably in the case when exactly
preserving the Hamming weight, the SCA resilience is improved. Moreover, we
relax this assumption and investigate in S-boxes that almost preserve the Ham-
ming weight. For our study, we employ the confusion coefficient [7] as a metric
for side-channel resistance. Besides the signal-to-noise-ratio and the number of
observed measurements, the confusion coefficient is the factor influencing the
success rate of CPA and, moreover, it is the only factor that depends on the
underlying considered algorithm and thus on the S-box. More precisely our main
contributions are:

1. We calculate (resp. we bound above) the confusion coefficient value of a func-
tion F in the two scenarios where:
(a) x and F (x) have the same Hamming weight.
(b) in average, F (x) has a Hamming weight near that of x.

2. We observe that the S-boxes with no difference between the Hamming weights
of their input and output have nonlinearity equal to 0; more generally, the
same happens when the Hamming weight of x and the Hamming weight
of F (x) have always the same parity. Such functions are of course to be
avoided from a cryptanalysis perspective. Furthermore, we show that more
generally as well, for every S-box F , denoting by dwH

the number of inputs x
for which the Hamming weights of x and F (x) have different parities, F has
nonlinearity at most dwH

. This implies that if the number of inputs x such that
wH(x) �= wH(F (x)) is at most dwH

, the nonlinearity is at most dwH
. We show

in Example 2 that this does not make however the S-box necessarily weak. We
emphasize that although these observations could be regarded trivial, they
have practical consequences.

Trade-Offs for S-Boxes 395

3. We show the connection between the number of fixed points in a function F
and its nonlinearity.

4. We show that S-boxes such that F (x) lies at a small Hamming distance from x
(or more generally from an affine function of x) cannot have high nonlinearity
although the obtainable values are not too bad for n = 4, 8.

5. In the practical part, we confirm our theoretical findings about the connection
between (almost) preserving the Hamming weight and the confusion coeffi-
cient by investigating several S-boxes.

6. We investigate the relationship between the confusion coefficient of different
key guesses and evaluate a number of S-boxes used in today’s ciphers to show
that their SCA resilience can significantly differ.

2 Preliminaries

2.1 Generalities on S-Boxes

Let n,m be positive integers, i.e., n,m ∈ N
+. We denote by F

n
2 the n-dimensional

vector space over F2 and by F2n the finite field with 2n elements. The set of all
n-tuples of elements in the field F2 is denoted by F

n
2 , where F2 is the Galois field

with two elements. Further, for any set S, we denote S\{0} by S∗. The usual
inner product of a and b equals a · b =

⊕n
i=1 aibi in Fn

2 .
The Hamming weight wH(a) of a vector a, where a ∈ F

n
2 , is the number of

non-zero positions in the vector. An (n,m)-function is any mapping F from F
n
2

to F
m
2 . An (n,m)-function F can be defined as a vector F = (f1, · · · , fm), where

the Boolean functions fi : Fn
2 → F2 for i ∈ {1, · · · ,m} are called the coordinate

functions of F.
The component functions of an (n,m)-function F are all the linear combina-

tions of the coordinate functions with non all-zero coefficients. Since for every n,
there exists a field F2n of order 2n, we can endow the vector space F

n
2 with the

structure of that field when convenient. If the vector space F
n
2 is identified with

the field F2n then we can take a · b = tr(ab) where tr(x) = x + x2 + . . . + x2n−1

is the trace function from F2n to F2. The addition of elements of the finite field
F2n is denoted with “+”, as usual in mathematics. Since, often, we identify F

n
2

with F2n and if there is no ambiguity, we denote the addition of vectors of Fn
2

when n > 1 with “+” as well.
An (n,m)-function F is balanced if it takes every value of F

m
2 the same

number 2n−m of times.
The Walsh-Hadamard transform of an (n,m)-function F is (see e.g. [8]):

WF (a, v) =
∑

x∈F
m
2

(−1)v·F (x)+a·x, a, v ∈ F
m
2 . (1)

The nonlinearity nl of an (n,m)-function F equals the minimum nonlinearity
of all its component functions v · F , where v ∈ F

m∗
2 [8,9]:

nl = 2n−1 − 1
2

max
a ∈ F

n
2

v ∈ F
m∗
2

|WF (a, v)|. (2)

396 C. Carlet et al.

The nonlinearity of any (n,m) function F is bounded above by the so-called
covering radius bound:

nl ≤ 2n−1 − 2
n
2 −1. (3)

In the case m = n, a better bound exists. The nonlinearity of any (n, n) function
F is bounded above by the so-called Sidelnikov-Chabaud-Vaudenay bound [10]:

nl ≤ 2n−1 − 2
n−1
2 . (4)

Bound (4) is an equality if and only if F is an Almost Bent (AB) function, by
definition of AB functions [8].

Let F be a function from F
n
2 into F

m
2 with a ∈ F

n
2 and b ∈ F

m
2 . We denote:

DF (a, b) = {x ∈ F
n
2 : F (x) + F (x + a) = b} . (5)

The entry at the position (a, b) corresponds to the cardinality of the delta dif-
ference table DF (a, b) and is denoted as δ(a, b). The differential uniformity δF

is then defined as [11]:
δF = max

a�=0,b
δ(a, b). (6)

Functions that have differential uniformity equal to 2 are called the Almost
Perfect Nonlinear (APN) functions. Every AB function is also APN, but the
converse does not hold in general. AB functions exist only in an odd number
of variables, while APN functions also exist for an even number of variables.
When discussing the differential uniformity parameter for permutations, the best
possible (and known) value is 2 for any odd n and also for n = 6. For n even
and larger than 6, this is an open question. The differential uniformity value for
the inverse function F (x) = x2n−2 equals 4 when n is even and 2 when n is odd.

2.2 Side-Channel Resistance

Side-channel attacks analyze physical leakage that is unintentionally emitted
during cryptographic operations in a device (e.g., through the power consump-
tion [12] or electromagnetic emanation [13]). This side-channel leakage is sta-
tistically dependent on the intermediate processed values involving the secret
key, which makes it possible to retrieve the secret from the measured data. In
particular, as the attacker wants to retrieve the secret key, he makes predictions
(hypotheses) on a small enumerable chunk (e.g., byte) of an intermediate state
using all possible key values.

The side-channel resistance of implementations against Correlation Power
Attack (CPA) [6] depends on three factors: the number of measurement traces,
the signal-to-noise ratio (SNR) [14], and the confusion coefficient [7]. The rela-
tionship between the three factors is linear in case of low SNR [15]. The confusion
coefficient measures the discrepancy between the hypothesis of an intermediate
state using the correct (secret) key and any hypothesis made with a (wrong) key
assumption. Therefore, as one compares possible intermediate processed values,
the confusion coefficient depends on the underlying cryptographic algorithm and
thus, if the attacker targets an S-box operation, on the side-channel resistance of

Trade-Offs for S-Boxes 397

that S-box. More precisely, let us assume the attacker exploits an intermediate
processed value F (kc + t) during the first round that depends on the secret key
kc ∈ F

n
2 , an n-bit chunk of the plaintext t ∈ F

n
2 , and an S-box function F . More-

over, let us make the commonly accepted assumption that the device is leaking
side-channel information as the Hamming weight (see e.g., [14]) of intermediate
values with additive noise N :

wH(F (kc + t)) + N. (7)

As the secret key kc is unknown to the attacker, he computes for each key guess
kg ∈ F

n
2 a hypothesis about the intermediate state:

ykg,t = y(kg, t) = wH(F (kg + t)) (8)

of the deterministic part of the leakage in Eq. (7). Interestingly, these hypotheses
are not independent and their discrepancy is characterized by the confusion
coefficient. Originally in [7] the confusion coefficient has been introduced for
(n, 1) Boolean functions:

κ(kc, kg) = Pr[(y(kc, T)) �= (y(kg, T))], (9)

with T being the random variable whose realization is t. In [5], the authors
related κ(kc, kg) in Eq. (9) to δF and showed that the higher the side-channel
resistance, the smaller the differential resistance (that is, the higher δF). In fact,
κ(kc, kg) is represented as

1
2n

∑

t∈F
n
2

(F (t + kc) + F (t + kg)) , (10)

which can then be straightforwardly connected to δF for 1-bit models.
In [16] the authors extend κ(kc, kg) to the general multi-bit case for CPA

and thus to (n,m)-functions F . In this paper, we use the definition given in [15]
which is a standardized version of confusion coefficient given in [16] and thus a
natural extension of Eq. (9):

κ(kc, kg) = E

{(1
2
(y(kc, T) − y(kg, T))

)2}
, (11)

where y is assumed to be standardized (i.e., E(y(·, T)) = 0, V ar(y(·, T)) = 1).
More specifically, Eq. (11) enables us to compare confusion coefficients for dif-
ferent functions F . By substituting y(∗) with Eq. (8) and denoting x = t ⊕ kc

and a = kc + kg we can write κ(kc, kg) as

E

((
1

2

(
wH(F (x))√

m
4

− wH(F (x + a))√
m
4

))2)
= E

((
wH(F (x)) − wH(F (x + a))√

m

)2
)

.

(12)

Now, it is easy to see that from Eq. (12) we cannot straightforwardly derive a
connection to δF for (n,m) functions. More precisely, for m = 1 the square is
just 4 times the value of F (t)+F (t+a) and then the confusion coefficient equals

398 C. Carlet et al.

δ(a, 1). For m > 1 we have the square of the difference between the weights of
F (t) and F (t+a) which is not 4 times the weight of b = F (t)+F (t+a) because
the 1 − 0 and the 0 − 1 count with their signs in the sum. So there is no direct
connection with δF anymore.

As a decisive criterion for comparison between confusion coefficients, the
minimum value of κ(kc, kg) was specified in [15] as it relates to the success rate
when the SNR is low. Note that the higher is the minimum of the confusion
coefficient, the lower is the side-channel resilience. This comes from the fact
that the lower the confusion coefficient the smaller is the (Euclidean) distance
between the correct key kc and a key guess kg and thus the harder it is for an
attacker to distinguish if the leakage is arising due to a computation with kc or
kg. A detailed discussion on this will be given in Subsect. 5.2. On the other hand,
in [17] authors use var(κ(kc, kg)) as a criterion, where smaller values indicate
lower side-channel resilience. Our experiments in Sect. 5 show that both metrics
coincide with the empirical resilience using simulations.

In the case κ(kc, kg) = 0 or κ(kc, kg) = 1 for any kg �= kc, CPA is not able
to distinguish between kc and this key guess kg and will thus fail to reveal the
secret key exclusively even if the number of measurements goes to infinity. More
precisely, κ(kc, kg) = 0 means that for a key guess kg one observes exactly the
same intermediate values (see Eq. (8)) as for the correct key kc. Contrary for
κ(kc, kg) = 1 one observes the complementary value (can be seen from Eqs. (9)
and (11)), however, as CPA takes the absolute value of correlation (due to hard-
ware related properties [14]) an attacker again cannot distinguish between kc

and kg in this case. In general, normalized confusion coefficient values close to
0.5 indicate that kc and kg can be easily distinguished (see Eq. (9)). We will
show in Sect. 3 and empirically confirm in Sect. 5 that in case of preserving wH

there exists an key guess kg such that κ(kc, kg) = 1.

3 S-Boxes (Almost) Preserving the Hamming Weight

3.1 Relation to the Confusion Coefficient

To obtain, for an (n,m)-function F , a connection between the confusion coef-
ficient parameter and the Hamming weight preservation (i.e., the fact that, for
every x, F (x) has the same Hamming weight as x) or, more generally, a limited
average Hamming weight modification, we start with Eq. (12). For any function
F , we have:

1
m
E

(
m∑

i=1

Fi(x) −
m∑

i=1

Fi(x + a)

)2

=
1
m
E

(
m∑

i=1

(
1
2

− 1
2
(−1)Fi(x)

)

−
m∑

i=1

(
1
2

− 1
2
(−1)Fi(x+a)

))2

=
1

4m
E

(
m∑

i=1

(
(−1)Fi(x) − (−1)Fi(x+a)

)
)2

Trade-Offs for S-Boxes 399

=
1

4m

∑

1≤i,j≤m

E

(
(−1)Fi(x) − (−1)Fi(x+a)

) (
(−1)Fj(x) − (−1)Fj(x+a)

)

=
1

4m

∑

1≤i,j≤m

E

(
(−1)Fi(x)+Fj(x) − (−1)Fi(x)+Fj(x+a)−

(−1)Fi(x+a)+Fj(x) + (−1)Fi(x+a)+Fj(x+a)
)

=
1

2m

∑

1≤i,j≤m

E

(
(−1)Fi(x)+Fj(x) − (−1)Fi(x)+Fj(x+a)

)

=
1

2m
E

⎛

⎝

(
m∑

i=1

(−1)Fi(x)

)2

−
(

m∑

i=1

(−1)Fi(x)

)(
m∑

i=1

(−1)Fi(x+a)

)⎞

⎠ . (13)

Lemma 1 addresses the case where F preserves the Hamming weight, whereas the
scenario in which F modifies the Hamming weight in a limited way is described
in Lemma 2. Note that the first scenario is a particular case of the second.

Lemma 1. For an (n, n)-function such that, for every x, F (x) has the same
Hamming weight as x, the confusion coefficient equals wH(a)

n .

Proof. If F preserves the Hamming weight, that is, if wH(F (x)) = wH(x) for
every x (or more generally, if F is the composition of a function preserving
the weight by an affine isomorphism on the right), then the confusion coeffi-

cient κ(kc, kg) = E

((
wH(F (x))−wH(F (x+a))√

n

)2
)

, where a = kc + kg, becomes

E

((
wH(x)−wH(x+a)√

n

)2
)

, and by applying Eq. (13) (which is valid for every F)

to F = Id, we obtain:

1
2n

E

⎛

⎝

(
n∑

i=1

(−1)xi

)2

−
(

n∑

i=1

(−1)xi

) (
n∑

i=1

(−1)xi+ai

)⎞

⎠ (14)

=
1
2n

E

⎛

⎝
∑

1≤i,j≤m

(−1)xi+xj −
∑

1≤i,j≤m

(−1)xi+xj+aj

⎞

⎠ .

The expectations of all these sums for i �= j are null (since the character sums
of nonzero linear functions are null), and we obtain:

1
2n

E

⎛

⎝m −
∑

1≤i≤m

(−1)ai

⎞

⎠ =
1
n
E (wH(a)) =

wH(a)
n

. (15)

Example 1. For n = 4, Lemma 1 gives minkc �=kg
κ(kc, kg) = 0.25 and for

wH(a) = n we have κ(kc, kg) = 1, which means that the CPA distinguisher is
not able to distinguish between these two hypotheses kg and kc (see Subsect. 2.2).
Note that we give a more detailed discussion about the results and their ramifi-
cations in Sect. 5.

400 C. Carlet et al.

Lemma 2. For an (n, n)-function such that, on average, F (x) has a Hamming
weight near that of x, more precisely, where

∑
x |wH(F (x)) − wH(x)| ≤ dwH

,
where dwH

is some number, the standardized confusion coefficient is bounded
above by wH(a)

n + 4dwH

2n .

Proof. If E(|wH(F (x)) − wH(x)|) ≤ dwH

2n , then according to Lemma1 and its

proof the confusion coefficient κ(kc, kg) = E

((
wH(F (x))−wH(F (x+a))√

n

)2
)

is such

that

∣
∣
∣
∣
κ(kc, kg) − wH(a)

n

∣
∣
∣
∣

≤ E

(∣
∣
∣
∣
∣

(
wH(F (x)) − wH(F (x + a))√

n

)2

−
(

wH(x) − wH(x + a)√
n

)2
∣
∣
∣
∣
∣

)

= E

(∣
∣
∣
∣

(
wH(F (x)) − wH(F (x + a))√

n
− wH(x) − wH(x + a)√

n

)

(
wH(F (x)) − wH(F (x + a))√

n
+

wH(x) − wH(x + a)√
n

)∣
∣
∣
∣

)

≤ 2

n

(

max
x∈F

n
2

wH(F (x)) + max
x∈F

n
2

wH(x)

)

E (|wH(F (x)) − wH(x)|)

=
4dwH

2n
.

3.2 Relation to Cryptographic Properties

We study the cryptographic consequences of the preservation of the Hamming
weight. Again we first cover the specific case were the input and output of an
S-box always have the same Hamming weight, and then the second case where
the output has on average a Hamming weight close to that of the corresponding
input (see Lemma 3).

If for every x, we have wH(F (x)) = wH(x) then the sum (mod 2) of all
coordinate functions of F equals the sum (mod 2) of all coordinates of x. This
means that F has nonlinearity equal to zero since one of its component functions
is linear. Of course, the same happens under the much weaker hypothesis that
wH(F (x)) and wH(x) have always the same parity. Therefore, an S-box function
preserving the Hamming weight is cryptographically insecure.

However, if
∑

x |wH(F (x))−wH(x)| ≤ dwH
, then we have nl ≤ dwH

. Indeed,
this is a direct consequence of the following straightforward result, which has
however much importance in our context:

Lemma 3. If the Hamming weight of the Boolean function:

x �→ (wH(F (x)) − wH(x)) [mod 2],

that is,
∑

x((wH(F (x)) − wH(x)) [mod 2]), is at most dwH
, then we have nl ≤

dwH
.

Indeed, the Hamming distance between the component function
∑

i Fi [mod 2])
and the linear function

∑
i xi [mod 2]) is then at most dwH

.

Trade-Offs for S-Boxes 401

Example 2. For a (4, 4)-function F to have nonlinearity equal to 4 (optimal
nonlinearity), it means that dwH

must be at least 4. In order to construct
functions with such properties, we ran a genetic algorithm as given by Picek
et al. [17]. We use the same settings as there: 30 independent runs, popula-
tion size equal to 50, 3-tournament selection, and mutation probability 0.3 per
individual. The objective is the maximization of the following fitness function:

fitness = nl + Δnl,4(n × 2n − |wH(F (x)) − wH(x)|). (16)

Here, Δnl,4 represents the Kronecker delta function that equals 1 when nonlin-
earity is 4 and 0 otherwise. Notice we subtract the difference of the Hamming
weights of the inputs and outputs of an S-box from the summed Hamming weight
value for a (4, 4)-function since we work with the maximization problem while
that value should be minimized. Interestingly, we observed that finding S-boxes
with those properties is a relatively easy task and that the obtained S-boxes never
have more than 8 fixed points. We give examples of such S-boxes in Table 1, for
instance, S5 where nonlinearity equals 4 and dwH

is 4.

Next, inspired by our empirical results, we investigate whether it is theo-
retically possible to construct an S-box with even more fixed points while still
having the maximal nonlinearity.

Lemma 4. If an (n, n)-function has k fixed points then the maximal value of
WF (a, v) when v �= 0 is bounded below by (k − 1)/(1 − 2−n). If nl is the nonlin-
earity of an (n, n)-function, then its number k of fixed points is not larger than
2n − 	(2 − 21−n)nl
.
Proof. The number of fixed points k of an (n, n)-function F equals:

k = 2−n
∑

v∈F
n
2

WF (v, v) = 2−n
∑

x,v∈F
n
2

(−1)v·(x+F (x)), (17)

which follows from Eq. (1) when a = v and the property that
∑

v∈F
n
2
(−1)v·a

equals 2n if a = 0 and is null otherwise. The value of WF (0, 0) involved in
Eq. (17) equals 2n. We take it off and obtain:

k − 1 = 2−n
∑

v∈F
n∗
2

WF (v, v). (18)

Then the arithmetic mean of WF (v, v) when v �= 0 equals (k−1)/(1−2−n). This
implies that maxv WF (v, v) is at least (k − 1)/(1 − 2−n) and the nonlinearity
cannot be larger than 2n−1 − (k − 1)/(2 − 21−n). The inequality nl ≤ 2n−1 −
(k − 1)/(2 − 21−n) is equivalent to k ≤ 2n − 	(2 − 21−n)nl
.

4 S-Boxes Minimizing the Hamming Distance

4.1 Relation to the Confusion Coefficient

In real world applications, the device may not only leak in the Hamming weight,
but also in the Hamming distance, therefore we now extend our study to the

402 C. Carlet et al.

case were the leakage arises from the Hamming distance between x and F (x).
Again we first study the relation to the confusion coefficient and then give the
connection to cryptographic properties.

By the triangular inequality, we have |wH(F (x)) − wH(x)| ≤ dH(x, F (x)).
This implies that

∑
x |wH(F (x)) − wH(x)| ≤ ∑

x dH(x, F (x)).
Hence, if

∑
x dH(x, F (x)) ≤ ddH

, we can use Lemma 2 and deduce that also
in this scenario the confusion coefficient is bounded by wH(a)

n + 4ddH

2n .

4.2 Relation to Cryptographic Properties

From
∑

x dH(x, F (x)) ≤ ddH
, up to adding a linear function (which does not

change the nonlinearity nor the differential uniformity), considering S-boxes such
that, for every x, F (x) lies at a small distance from x corresponds to considering
functions which take a too small number of values. We show that such functions
have bad nonlinearity and bad differential uniformity.

Lemma 5. Let F be any (n,m)-function such that |F (Fn
2)| ≤ D, then δF ≥

2n

2m−1

(
2n

D − 1
)

and nl ≤ 2n−1 − 2n+m−1
D −2n−1

2m−1 .

Proof. By using the Cauchy-Schwartz inequality, we obtain
∑

a∈F
n∗
2

|DaF−1(0)|
=

∑
b∈F

m
2

|F−1(b)|2 − 2n ≥ (
∑

b∈F
m
2

|F −1(b)|)2
D − 2n = 22n

D − 2n, and there exists

then a ∈ F
m∗
2 such that |DaF−1(0)| ≥ 22n

D −2n

2m−1 . This proves the first assertion.
We have a partition of Fn

2 into at most D parts by the preimages F−1(b),
b ∈ F

m
2 , and there exists then b ∈ F

m
2 such that |F−1(b)| ≥ 2n

D ; for
such b, we have

∑
x∈F

n
2 ,v∈F

m
2

(−1)v·(F (x)+b) ≥ 2n+m

D , which is equivalent to
∑

v∈F
m
2 ,v �=0(−1)v·bWF (0, v) ≥ 2n+m

D − 2n, and then there exists v �= 0 such

that |WF (0, v)| ≥ 2n+m

D −2n

2m−1 , which implies that nl ≤ 2n−1 − 2n+m−1
D −2n−1

2m−1 . This
proves the second assertion.

If D is small with respect to 2m (so that 2n−1 is small with respect to 2n+m−1

D)
and D is small with respect to 2n/2 (so that 2n

D is large with respect to 2n/2), the
nonlinearity is bad with respect to the covering radius bound nl ≤ 2n−1−2n/2−1.
More precisely, if D ≤ 2m

λ with λ > 1, then nl ≤ 2n−1 − (λ−1)2n−1

2m−1 < 2n−1 − (λ−
1)2n−m−1 and if (λ−1)2n−m is significantly larger than 2n/2, the nonlinearity is
bad with respect to the covering radius bound. We have also that if D is small
with respect to 2m then δF is large with respect to 2n−m if m < n and with 2 if
m = n (which are the smallest possible values of δF).

If F is an (n, n)-function and x + F (x) has low weight for every x, say at
most tdH

, which is equivalent to saying that dH(x, F (x)) ≤ tdH
for every x, then

its number of values is at most D =
∑tdH

i=0

(
n
i

)
and we can apply the result above

to x + F (x), which has the same nonlinearity and the same δF as F . As far as
we know, these observations are new. Note that we also have the possibility of
applying Lemma 3 and then we have that nonlinearity is bounded by tdH

.

Trade-Offs for S-Boxes 403

Remark 3. Lemma5 applies to the case when dH(x, F (x)) ≤ tdH
for every x

where x equals t ⊕ kg. This represents a setting one would encounter when work-
ing for instance with software implementations. Now, if we consider a hardware
setting (e.g., FPGA), then we are interested in the case dH(t, F (t ⊕ kg)) ≤ tdH

for every key. However, this case leads to the same observation as before but now
with up to adding an affine function instead of up to adding a linear function as
given in Lemma 5.

5 Side-Channel Evaluation

5.1 Evaluation of S-Boxes with (Almost) wH Preservation

As cryptographically non-optimal examples of S-boxes (almost) preserving wH

we consider five different functions F : the identity mapping (S1), F not Id but
preserving wH (S2), the identity mapping with an exchange of the images at
position x = 3 and x = 12, i.e., F (3) = 12 and F (12) = 3, and as wH(3) = 2
and wH(12) = 3 we have dwH

= 2 (see Lemma 1) (S3), F (x) = 2n − x which
gives the complementary Hamming weight (S4). Finally, we investigate four S-
box functions S5 to S8 with the smallest possible distance dwH

that equals 4
and maximal possible nonlinearity equal to 4 (see Subsect. 3.2). S-box functions
S7 and S8 have furthermore optimal differential uniformity (=4). The mappings
are given in Table 1.

Table 1. Specifications of functions F , (x)wH(x)

S-box (0)0 (1)1 (2)1 (3)2 (4)1 (5)2 (6)2 (7)3 (8)1 (9)2 (10)2 (11)3 (12)2 (13)3 (14)3 (15)4

S1 (0)0 (1)1 (2)1 (3)2 (4)1 (5)2 (6)2 (7)3 (8)1 (9)2 (10)2 (11)3 (12)2 (13)3 (14)3 (15)4

S2 (0)0 (4)1 (8)1 (10)2 (1)1 (12)2 (3)2 (13)3 (2)1 (6)2 (9)2 (7)3 (5)2 (14)3 (11)3 (15)4

S3 (0)0 (1)1 (2)1 (12)3 (4)1 (5)2 (6)2 (7)3 (8)1 (9)2 (10)2 (11)3 (3)1 (13)3 (14)3 (15)4

S4 (15)4 (14)3 (13)3 (12)2 (11)3 (10)2 (9)2 (8)1 (7)3 (6)2 (5)2 (4)1 (3)2 (2)1 (1)1 (0)0

S5 (0)0 (4)1 (8)1 (10)2 (1)1 (2)1 (9)2 (6)2 (3)2 (5)2 (7)3 (13)3 (12)2 (11)3 (14)3 (15)4

S6 (0)0 (9)2 (2)1 (13)3 (8)1 (6)2 (5)2 (7)3 (1)1 (4)1 (12)2 (14)3 (3)2 (10)2 (11)3 (15)4

S7 (0)0 (2)1 (5)2 (13)3 (8)1 (4)1 (6)2 (7)3 (1)1 (12)2 (10)2 (14)3 (3)2 (9)2 (11)3 (15)4

S8 (0)0 (1)1 (10)2 (7)3 (2)1 (4)1 (5)2 (13)3 (8)1 (12)2 (3)2 (9)2 (6)2 (11)3 (14)3 (15)4

The confusion coefficients are illustrated in Fig. 1. Note that, the distribution
of κ(kc, kg) is independent on the particular choice of kc (in the case there are
no weak keys) and the values for κ(kc, kg) are only permuted when choosing
different value kc ∈ F

n
2 . For our experiments we choose kc = 0 and furthermore

we order κ(kc, kg) in an increasing order of magnitude for illustrative purpose.
The minimum value of κ(kc, kg) for kg �= kc is highlighted with a red cross as it
is one indicator of the side-channel resistance. Moreover, we mark κ(kc, kg) = 0
or κ(kc, kg) = 1 with a red circle which points out that CPA is not able to
distinguish between kc and the marked kg.

Figure 1a shows that, indeed, kc is indistinguishable from one key hypothe-
sis kg if wH is preserved. Or in other words, even if knowing t and observing
wH(F (t + kc)) + N with F equal to S1 the attacker can not exclusively gain

404 C. Carlet et al.

information about kc even if the number of measurements m → ∞. Moreover,
it confirms Lemma 1. Note that in our example a = kg, thus κ(kc, kg) = wH(kg)

4 .
Interestingly, when comparing our results to the study in [5], where the authors
investigated (n, 1)-functions, we observe that the confusion coefficient takes dif-
ferent values which indeed confirms that the Hamming weight model is not a
straightforward extension from 1-bit models. More precisely, in case of linear
(n, 1)-function the authors observed that the confusion coefficient only takes
values from {0,1}, whereas our examples illustrate (as well as our theoretical
findings in Sect. 3) that the confusion coefficient is not restricted to only {0,1},
and is equal to 1 for only one particular kg. Interestingly, for dwH

= 2 (see in
Fig. 1b) we also have that kc is indistinguishable for one kg. Moreover, apart
from κ(kc, kg) = 1, only two different values are taken, each 7 times. This means
that CPA is not able to distinguish between each of these 7 key guesses and
in total only produces three different correlation values. When considering a
complementary wH preservation (e.g. 4−wH) we achieve the same results as for
wH preservation (see also Fig. 1).

Note that, while being illustrative, these first four examples of F are not
cryptographically optimal and thus are not suitable in practice. We therefore
constructed four S-boxes (S5 to S8) with the smallest dwH

(= 4) while having
optimal nonlinearity. Note that S5, S6 have suboptimal differential uniformity,
while S7, S8 are cryptographically optimal (i.e. optimal nonlinearity and differ-
ential uniformity). Figures 1c to f show the confusion coefficient of S5 to S8. We
can observe that all S-boxes have a very low minimum confusion coefficient that
is even lower than for S1 to S4. Even more, as the previously investigated S-
boxes, S5 has κ(kc, kg) = 1. Therefore, we find an S-box with almost Hamming
weight preserving for which even with an infinity amount of traces the secret
key cannot exclusively be found. As the minimum value of the confusion coeffi-
cient of S5 is low (=0.125) there exists additionally other key hypotheses which
are harder to distinguish from the secret key. As a conclusion we can say that
indeed exact wH preserving results in a good side-channel resistance since we
have κ(kc, kg) = 1. Moreover, when the wH is almost preserved we present here
S-boxes which have a very low minimum confusion coefficient.

5.2 A Closer Look at the Confusion Coefficient

To understand the exact reason why some (one or more) key guesses result
in a smaller confusion coefficient than others and how this is related to F , we
concentrate on the connection between kc, kg, F , and κ(kc, kg). Loosely speaking,
we are iterating on key guesses influencing the input of F while calculating the
confusion coefficient on the measured output of F and being interested in the
properties of F . To better address these connections, we split the problem into
2 individual problems.

First, we take a deeper look at the input of F , i.e., t ⊕ kg where ∀t, kg ∈
F

n
2 (see Eq. (8)). Clearly, due to the ⊕ operation a particular permutation for

different key guesses kg is given. A 2-D representation for t ⊕ kg, where kg is
on the horizontal and t on the vertical axis, is given in Fig. 2, where again, for

Trade-Offs for S-Boxes 405

(a) Preserving wH (S1, S2) and comple-
ment (S4)

(b) Mostly preserving wH , d = 2 (S3)

(c) Mostly preserving wH , d = 4 (S5),
optimal nl

(d) Mostly preserving wH , d = 4 (S6),
optimal nl

(e) Mostly preserving wH , d = 4 (S7),
optimal nl and δF

(f) Mostly preserving wH , d = 4 (S8),
optimal nl and δF

Fig. 1. Confusion coefficients

406 C. Carlet et al.

simplicity reasons, t, kg ∈ F
4
2. In this figure we furthermore group t ⊕ kg into

4 boxes (n × n) together, each containing 4 × 4 values: blue (B0): t ⊕ kg ∈
[0, 3], yellow (B1): t ⊕ kg ∈ [4, 7], green (B2): t ⊕ kg ∈ [8, 11], and red (B3):
t ⊕ kg ∈ [12, 15]. Using this color representation we can easily see 4 different
permutations π0, π1, π2, π3 applied on (B0 B1 B2 B3). More precisely, when
considering a column representation1 among the key guesses kg, we have:

– for kg ∈ [0, 3]: no permutation (π0 =
(
0 1 2 3
0 1 2 3

)
),

– for kg ∈ [4, 7]: pairwise swap of elements in each half of matrix (π1 =(
0 1 2 3
1 0 3 2

)
),

– for kg ∈ [8, 11]: additionally reverse ordering of elements (π2 =
(
0 1 2 3
2 3 0 1

)
),

– for kg ∈ [12, 15] additionally a pairwise swap of elements in each half of matrix
(π3 =

(
0 1 2 3
3 2 1 0

)
).

Moreover, as highlighted by the zoom in on each box, within each box (i.e.,
Bi, 0 ≤ i ≤ 3) we have the same permutations π0, . . . , π3 on the 4 column entries.
Note that the order of permutations is equivalent for each box, or in other words,
regardless of the color and position of the box the same permutation is applied.
More formally, let bij ∈ [4i, 4i + 3]4 (for 0 ≤ i, j ≤ 3) denote the columns within
Bi, then bij equals πj applied on the column vector (4i 4i + 1 4i + 2 4i + 3).

Second, we examine the expression of the confusion coefficient in Eq. (11)
itself. Recall from Eq. (8), ykg,t = y(kg, t) = wH(F (kg + t)). Let

ykg
= (y(kg, 0), y(kg, 1), . . . , y(kg, 2n − 1))

denote the vector of hypotheses for one key guess kg over all texts t. Referring
to Fig. 2, ykg

relates to one column before its application to F and wH . The
confusion coefficient can be rewritten as

κ(kc, kg) =
1
4

∥
∥
∥ykc

− ykg

∥
∥
∥
2

2
(19)

with ‖·‖2 being the Euclidean norm. Let us recall that we are especially interested
in minkg �=kc

κ(kc, kg). Moreover, the elements of ykc
− ykg

are in [−4, 4]. Now,
as Eq. (19) considers not only the difference but its squared values, we may
conjecture that the minimum value is most likely reached when the elements of
ykc

− ykg
are in [−1, 1], which is discussed in more detail and confirmed using

several lightweight S-boxes in AppendixA. Roughly speaking, one difference of
±2 is equivalent to 4 changes with ±1 and so on.

Now let us put the observations of both parts together. Our previous findings
about the permutations can be straightforwardly applied to the Hamming weight
of the output of F . Let us assume w.l.o.g. kc = 0, then for kg = 4i + j (with
0 ≤ i, j ≤ 3) we have

ykg
= πi

⎛

⎜
⎜
⎜
⎝

πj

⎡

⎢
⎢
⎢
⎣

y0,0

y0,1

...
y0,3

⎤

⎥
⎥
⎥
⎦

T

πj

⎡

⎢
⎢
⎢
⎣

y0,4

y0,5

...
y0,7

⎤

⎥
⎥
⎥
⎦

T

πj

⎡

⎢
⎢
⎢
⎣

y0,8

y0,9

...
y0,11

⎤

⎥
⎥
⎥
⎦

T

πj

⎡

⎢
⎢
⎢
⎣

y0,12

y0,13

...
y0,15

⎤

⎥
⎥
⎥
⎦

T ⎞

⎠

T

, (20)

1 Note that we also have the same permutations on the row entries, however, we are
interested in particular in a column representation as they reflect the key hypotheses.

Trade-Offs for S-Boxes 407

Fig. 2. Illustration of permutations of t ⊕ kg ∀t, kg ∈ F
4
2 (input of F) (Color figure

online)

with y0 = (y0,0, y0,1, . . . , y0,15) and (·)T denoting the transpose. Thus, we are
looking for a function F such that the distance

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

y0 − πi

⎛

⎜
⎜
⎜
⎝

πj

⎡

⎢
⎢
⎢
⎣

y0,0

y0,1

...
y0,3

⎤

⎥
⎥
⎥
⎦

T

πj

⎡

⎢
⎢
⎢
⎣

y0,4

y0,5

...
y0,7

⎤

⎥
⎥
⎥
⎦

T

πj

⎡

⎢
⎢
⎢
⎣

y0,8

y0,9

...
y0,11

⎤

⎥
⎥
⎥
⎦

T

πj

⎡

⎢
⎢
⎢
⎣

y0,12

y0,13

...
y0,15

⎤

⎥
⎥
⎥
⎦

T ⎞

⎠

T
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

(21)

is as small as possible for any πi, πj ∈ {π0, π1, π2, π3}.
This finding indicates that the order of the Hamming weight of the output of

F plays a significant role. To be more precise, the minimum confusion coefficient
may depend not only on the distribution of values along the 4 boxes (Example 4),
but also on the order within each box (Example 5).

Example 4. Note that the elements of ykg
follow a binomial distribution due

to the application of wH . Therefore, 0 and 4 occur once, 1 and 3 occurs four
times, and 2 six times. In order to reach a mininum squared Euclidean distance
in Eq. (21) a natural strategy seems to be to distribute the values broadly among
the 4 sets [4i, 4i + 3] and to have a small difference between the values in one
set. Let us consider the S-box of Midori [18] and Mysterion [19]. From Table 2
one can observe that for Midori we have the following sets: 2,2,3,2 – 3,3,4,3 –
1,2,1,2 – 0,1,1,2. So, the maximal distance between values is 2. Moreover, the
first three sets only contain 2 different values and the last has 3. On the contrary,
when looking at Mysterion (0,1,2,3 – 2,4,3,2 – 1,3,1,2 – 2,1,3,2), the structure
looks less balanced. In particular, the maximal distance is 3 and we have always 3
different values within a set. When comparing the confusion coefficient in Fig. 3
we can observe that Midori has a much smaller minimum confusion coefficient
and is thus more SCA resilient.

Example 5. Let us consider the S-box of KLEIN [20] and a small modification
(S9) in which we swap F (1) with F (3) (see Table 2). Note that both functions

408 C. Carlet et al.

Table 2. Known S-boxes and one modification of KLEIN, (x)wH(x)

S-box (0)0 (1)1 (2)1 (3)2 (4)1 (5)2 (6)2 (7)3 (8)1 (9)2 (10)2 (11)3 (12)2 (13)3 (14)3 (15)4

Midori (12)2 (10)2 (13)3 (3)2 (14)3 (11)3 (15)4 (7)3 (8)1 (9)2 (1)1 (5)2 (0)0 (2)1 (4)1 (6)2

Mysterion (0)0 (1)1 (6)2 (11)3 (10)2 (15)4 (14)3 (3)2 (2)1 (7)3 (4)1 (12)2 (9)2 (8)1 (13)3 (5)2

KLEIN (7)3 (4)1 (10)2 (9)2 (1)1 (15)4 (11)3 (0)0 (12)2 (3)2 (2)1 (6)2 (8)1 (14)3 (13)3 (5)2

S9 (7)3 (9)2 (10)2 (4)1 (1)1 (15)4 (11)3 (0)0 (12)2 (3)2 (2)1 (6)2 (8)1 (14)3 (13)3 (5)2

(a) Midori (b) Mysterion

(c) KLEIN (d) Modified KLEIN S9

Fig. 3. Confusion coefficients of Midori, Mysterion, KLEIN, and KLEIN with a small
modification

consist of the same values among the sets: 3,1,2,2 – 1,4,3,0 – 2,2,1,2 – 1,3,3,2.
For both minkg �=kc

κ(kc, kg) is reached for kg = 11, thus π1 = 2 and π2 = 2. How-
ever, as Fig. 3d shows, for KLEIN we have minkg �=kc

κ(kc, kg) = 0.125, whereas
minkg �=kc

κ(kc, kg) = 0.185 for S9, which relates to a squared Euclidean distance
(see Eq. (21)) of 8 and 12, respectively.

Furthermore, in AppendixA we investigate several lightweight S-boxes in
terms of minimum confusion coefficient and provide empirical evaluations. Note
that, a preliminary study showing the difference of some lightweight S-boxes

Trade-Offs for S-Boxes 409

has been conducted in [21]2. Our extended results in AppendixA theoretically
and empirically confirm [21]. Moreover, the appendix provides details about the
minimum Euclidean distance and the permutations πi, πj . Additionally, we take
a deeper look at the expression of ykc

−ykg
for the key hypothesis kg that results

in the smallest confusion coefficient (i.e., arg minkc �=kg
κ(kc, kg)). We discover

that for S5 and the S-box proposed in [17], which has optimal properties of the
confusion coefficient while holding optimal differential properties, the difference
‖ykc

− ykg
‖22 has a special particular structure, which is not observed for any

other investigated 4-bit S-box.
Concluding, we derived specific criteria influencing the side-channel resis-

tance (in particular in Eq. (21) and our findings in AppendixA) that could be
exploited to optimize and find S-boxes in terms of side-channels resistance in
future work – especially when adapted for n > 4.

6 Conclusions

In this paper, we prove a number of bounds between various cryptographic prop-
erties that can be related also with the side-channel resilience of a cipher. Our
results confirm some well known intuitions that having an S-box more resilient
against SCA will make it potentially more vulnerable against classical crypt-
analyses. However, they also show that for the usual sizes of S-boxes, this weak-
ening is moderate and trade-offs are then possible.

Since in this work we concentrated in our practical investigations on the
Hamming weight model, in the future we plan to explore possible trade-offs for
the Hamming distance model and to extend our (empirical) analysis to larger
S-boxes using the theoretical findings in this paper.

Acknowledgments. This work has been supported in part by Croatian Science Foun-
dation under the project IP-2014-09-4882. The parts of this work were done while the
third author was affiliated with KU Leuven, Belgium.

A Investigation of Known S-Boxes

We already described properties of the S-boxes of KLEIN, Midori, and Mysterion
showing that Midori and KLEIN have both minkg �=kc

κ(kc, kg) = 0.125, whereas
for Mysterion it equals 0.3125. Thus, the side-channel resistance of Mysterion is
much smaller than that of KLEIN and Midori. Table 3 shows properties of several
well-known S-boxes, where πi and πj indicate the permutations (see Eq. (21)) for
the smallest squared Euclidean distance (min ‖ · ‖22) and thus smallest confusion
coefficient (min κ(kc, kg)).

Note that the squared Euclidean distance should not serve as a new metric
as it is in direct relation with the confusion coefficient, but its stated values
2 Note that, in [22] the authors compared S-boxes regarding another (not normalized)

version of the confusion coefficient and derived that their version is not aligned with
their empirical results.

410 C. Carlet et al.

Table 3. S-box properties of known ciphers

Name πi πj min ‖ · ‖2
2 min κ(kc, kg) var(κ(kc, kg)) PwH

KLEIN [20] 2 2 8 0.125 0.093 6

Midori [18] 0 1 8 0.125 0.096 4

Midori 2 [18] 2 3 16 0.250 0.059 5

Mysterion [19] 2 1 20 0.312 0.034 5

NOEKEON [23] 3 0 12 0.188 0.056 8

Piccolo [24] 1 0 24 0.375 0.028 4

PRESENT [25] 2 1 16 0.25 0.058 3

PRINCE [26] 1 3 12 0.188 0.059 3

RECTANGLE [27] 3 0 16 0.250 0.056 3

SKINNY [28] 1 0 16 0.250 0.037 8

S-box in [17] 0 1 8 0.125 0.104 4

should rather provide information how far ykg
is apart from ykc

in terms of the
squared Hamming weight values. Further, as used in [17], we give var(κ(kc, kg)),
where the higher the variance, the higher the side-channel resistance. Finally, we
specify the Hamming weights preserved (PwH). One can observe that Piccolo
has the highest minimum value of the confusion coefficient (and the highest min-
imum squared Euclidean norm) and thus its side-channel resistance is the lowest
among the evaluated one. Next, there is Mysterion followed by SKINNY, REC-
TANGLE, PRESENT, and Midori 2 that all have the same minimum value of the
confusion coefficient, but different variances thereof. Then, we have NOEKEON
and PRINCE. The lowest minimum confusion coefficient is reached by KLEIN,
Midori, and the S-box proposed in [17], which has been found under the con-
straint of optimal differential properties and the lowest confusion coefficient by
using genetic algorithms. Interestingly for the latter one, Fig. 4 illustrates that
for one key guess κ(kc, kg) = 1, which we do not observe for any other known
S-boxes with optimal differential properties. Moreover, it corresponds to the
confusion coefficient of S5.

Additionally, we take a deeper look at the expression of ykc
− ykg

for the
key hypothesis kg that results in the smallest confusion coefficient and we are
interested if the elements in |ykc

−ykg
| are in [−1, 1] (see remark in Subsect. 5.2).

Our investigations show that this does not hold for S-boxes with κ(kc, kg) ≥ 0.25,
but for the ones which are most side-channel resistant. In particular, Midori
2, Mysterion, PRESENT, RECTANGLE, and SKINNY contain two absolute
difference of 2 (resulting in a Euclidean distance of 4), whereas Piccolo even has
4 absolute differences of 2. However, we could not observe any absolute difference
greater than 2. On the contrary KLEIN, Midori, NOEKEON, PRINCE, and the
S-box in [17] only contain absolute differences of one, which is thus equivalent
to the Euclidean distance.

Trade-Offs for S-Boxes 411

Fig. 4. Confusion coefficient of S-box in [17]

When considering the sum of differences among the 4 sets [4s, 4s + 3] for
0 ≤ s ≤ 3, we observed interesting distinctions. In particular, let us denote

Δs =

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎢
⎣

y0,4s

y0,4s+1

...
y0,4s+3

⎤

⎥
⎥
⎥
⎦

− πi

⎛

⎜
⎜
⎜
⎝

πj

⎡

⎢
⎢
⎢
⎣

y0,4s

y0,4s+1

...
y0,4s+3

⎤

⎥
⎥
⎥
⎦

⎞

⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

2

, (22)

with πi and πj being the permutation resulting in the minimum confusion
coefficient.

Table 4 highlights that only for the S-box in [17] we have the same difference
among all four sets. Note that, in future work this property may additionally
help to detect and find S-boxes with better side-channel resistance for n > 4.

Table 4. Δ-property (Eq. (22)) of the most resilient known S-boxes

Name Δ0 Δ1 Δ2 Δ3

KLEIN 1 3 3 1

Midori 2 2 0 4

NOEKEON 2 4 2 4

PRINCE 4 2 4 2

S-box in [17] 2 2 2 2

Finally, an empirical evaluation of the studied S-boxes is given in Fig. 5.
To be reliable we conducted 5 000 independent simulation experiments (SNR
= 2) with random secret keys kc and texts t. Figure 5a shows the first-order
success rate (SR), i.e., the empirical probability that the correct secret key is
exclusively found. As found due to the properties of the confusion coefficient, the
S-box of Piccolo is the weakest, finding the correct key with a SR of 0.9 using

412 C. Carlet et al.

20 measurement traces, whereas KLEIN and Midori require around 35 and 40
traces to reach SR = 0.9. Since the S-box in [17] does not exclusively find the
correct key and thus has a SR = 0, we additionally plot the guessing entropy [29]
in Fig. 5b which confirms our findings that at least 2 key guesses have to be
made.

(a) Success rate (b) Guessing entropy

Fig. 5. Empirical evaluation of known S-boxes

References

1. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). doi:10.1007/3-540-47555-9 7

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 1

3. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York
Inc., Secaucus (2007)

4. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

5. Heuser, A., Rioul, O., Guilley, S.: A theoretical study of kolmogorov-smirnov distin-
guishers. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 9–28. Springer,
Cham (2014). doi:10.1007/978-3-319-10175-0 2

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

7. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 14

http://dx.doi.org/10.1007/3-540-47555-9_7
http://dx.doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/10.1007/11935308_38
http://dx.doi.org/10.1007/978-3-319-10175-0_2
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-642-33027-8_14

Trade-Offs for S-Boxes 413

8. Carlet, C.: Vectorial boolean functions for cryptography. In: Crama, Y., Hammer,
P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, 1st edn, pp. 398–469. Cambridge University Press, New York (2010)

9. Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg
(1993). doi:10.1007/3-540-47555-9 8

10. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis.
In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995). doi:10.1007/BFb0053450

11. Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991). doi:10.1007/
3-540-46416-6 32

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

13. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1 21

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, Heidelberg (2006). ISBN 0-387-30857-1.
http://www.dpabook.org/

15. Guilley, S., Heuser, A., Rioul, O.: A key to success. In: Biryukov, A., Goyal, V.
(eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 270–290. Springer, Cham (2015).
doi:10.1007/978-3-319-26617-6 15

16. Thillard, A., Prouff, E., Roche, T.: Success through confidence: evaluating the
effectiveness of a side-channel attack. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 21–36. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40349-1 2

17. Picek, S., Papagiannopoulos, K., Ege, B., Batina, L., Jakobovic, D.: Confused by
confusion: systematic evaluation of DPA resistance of various S-boxes. In: Meier,
W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 374–390.
Springer, Cham (2014). doi:10.1007/978-3-319-13039-2 22

18. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy (extended version). Cryp-
tology ePrint Archive, Report 2015/1142 (2015). http://eprint.iacr.org/

19. Journault, A., Standaert, F.X., Varici, K.: Improving the security and efficiency of
block ciphers based on LS-designs. Codes Crypt. Des. 82(1–2), 495–509 (2016)

20. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-25286-0 1

21. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight
ciphers: does lightweight equal easy? Cryptology ePrint Archive, Report 2017/261
(2017). http://eprint.iacr.org/2017/261

22. Lerman, L., Markowitch, O., Veshchikov, N.: Comparing Sboxes of ciphers from
the perspective of side-channel attacks. IACR Cryptology ePrint Archive 2016/993
(2016)

23. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: the block
cipher Noekeon. Nessie submission (2000). http://gro.noekeon.org/

http://dx.doi.org/10.1007/3-540-47555-9_8
http://dx.doi.org/10.1007/BFb0053450
http://dx.doi.org/10.1007/3-540-46416-6_32
http://dx.doi.org/10.1007/3-540-46416-6_32
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-44709-1_21
http://www.dpabook.org/
http://dx.doi.org/10.1007/978-3-319-26617-6_15
http://dx.doi.org/10.1007/978-3-642-40349-1_2
http://dx.doi.org/10.1007/978-3-642-40349-1_2
http://dx.doi.org/10.1007/978-3-319-13039-2_22
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://eprint.iacr.org/2017/261
http://gro.noekeon.org/

414 C. Carlet et al.

24. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 23

25. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

26. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

27. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. Chin. Inf.
Sci. 58(12), 1–15 (2015)

28. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. Cryptology ePrint Archive, Report 2016/660 (2016). http://
eprint.iacr.org/2016/660

29. Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of side-
channel key recovery attacks (extended version). IACR Cryptology ePrint Archive
2006/139 (2006)

http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://eprint.iacr.org/2016/660
http://eprint.iacr.org/2016/660

A Practical Chosen Message Power Analysis
Approach Against Ciphers with the Key

Whitening Layers

Chenyang Tu1,2, Lingchen Zhang1,2(B), Zeyi Liu1,2,3, Neng Gao1,2,
and Yuan Ma1,2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

{tuchenyang,zhanglingchen,liuzeyi,gaoneng,mayuan}@iie.ac.cn
2 Data Assurance and Communication Security Research Center, CAS,

Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. The key whitening is a technique intended to enhance the
strength of a block cipher. Although some research work involves DPA
attacks against the key whitening layer in the compact architecture, there
are no literatures dedicated in the influence of the key whitening layers
in the loop architecture from the standpoint of DPA. In this paper, we
propose a practical chosen message power analysis approach against the
loop architecture of ciphers with the key whitening layers, thus proving
that the key whitening technique does not enhance the security of ciphers
regard to DPA. Our approach follows a reduction strategy: we recover
the whitening key in the general cipher with the key whitening layer
and reduce other complicated key whitening layers to the general case.
In order to further manifest the validity of the new approach, we carry
extensive experiments on two ISO standardized ciphers CLEFIA and
Camellia implemented in loop architecture on FPGA, and the keys are
recovered as expected.

Keywords: DPA · Key whitening · Chosen message · Loop architecture

1 Introduction

Key whitening is a technique intended to enhance the strength of a block cipher
by adding key-relevant operations on plaintext and ciphertext without major
changes to the algorithm [15,16]. The key whitening layer consists of steps that
combine the data with portions of the key before the first round and after the last

C. Tu—This work is supported by the National Natural Science Foundation of China
(Nos. 61402470 and 61602476) and National Basic Research Program of China (No.
2013CB338001). Besides, the work is also supported by Youth Innovation Promotion
Association, CAS.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 415–434, 2017.
DOI: 10.1007/978-3-319-61204-1 21

416 C. Tu et al.

round. The most common operation is XORing or modular adding the whitening
key to the plaintext/ciphertext. The key whitening technique is adopted by many
block ciphers, such as the ISO standardized Feistel-SP ciphers CLEFIA [2] and
Camellia [3], and the lightweight ciphers DESL [15] and PRINCE [16].

Since first proposed by Kocher et al. in [1], DPA has proven to be a powerful
method of side channel attack against many ciphers. In general, DPA can only
deal with a small fraction of the long secret key (e.g. several round key bits)
through a divide-and-conquer strategy, and its validity is highly dependent on
the specific implementation. These traditional cryptographic implementations
(i.e., compact architecture [18]) are easily compromised by the conventional
DPA, where the hypothesis space of the secret key fraction is only 28 or less [17].
For instance, DES, AES and many other ciphers under the compact architecture
have shown to be vulnerable to DPA [1,4,7,9,10]. The ciphers with key whitening
layers under the same architecture are also easily compromised by DPA, because
key whitening layer is implemented independently of the substitution circuit [8].

With the advancement of circuit industry within recent years, a new archi-
tecture, i.e. loop architecture [18], is proposed, which computes a single round
function in one clock cycle. Ciphers under the loop architecture are adopted
in the higher computation speed and higher throughput application scenarios.
Therefore, the capability of the loop implementation against the side channel
attack has attracted researchers’ great attention. It has been proved that the
conventional DPA needs much more power traces to analyze ciphers under loop
architecture with very high computational complexity [13]. In order to deal with
the loop architecture efficiently and practically, the adversary usually launches
the chosen message DPA [12] instead.

However, it is quite a challenge to launch the DPA methodology against the
loop hardware implementations of ciphers with the key whitening layers. The
key whitening layer is usually implemented within the first or last round in the
loop architecture, which can increase the difficulty of the DPA methodology.
In this case, the power consumption of the whitening operation is hard to be
recognized from power traces, because the intermediate result of the whitening
operation does not appear in registers or on bus as the case in [8]. Following the
chosen message DPA [12], the adversary can only get the equivalent key (i.e. the
value of “the round key add/xor the whitening key” as a unity) on the first/last
round, but he would not be capable to directly determine either the whitening
key or the round key.

Unless the adversary is able to directly obtain the whitening key or the round
key in some way, the adversary has to peel off the first round with the equivalent
key and perform DPA with an adaptive manner on the subsequent rounds, which
means the adversary must solve one more round to deal with the key whitening
layer. Generally, the cost of performing DPA in such way increases 50% to 100%
than that without key whitening layer. In order to deal with the key whitening
layer without increasing the DPA cost, the core issue is how to reveal either the
whitening key or the round key directly in the first/last round. To the best of
our knowledge, no research about this issue has been reported in the literature.

A Practical Chosen Message Power Analysis on the Key Whitening Layers 417

In this paper, we propose a practical chosen message DPA approach to recover
the whitening key through a reduction strategy. First, by fully exploiting the rela-
tionship between the round key and the whitening key, we recover the whitening
key in the general cipher with the key whitening layer. Then we successfully
reduce other complicated key whitening layers to the general case. As a result,
we show that the key whitening technique does not enhance the security of
ciphers from the standpoint of DPA.

We take the Feistel-SP ciphers with the key whitening layers as an instance,
due to the most comprehensive cases of the key whitening layers in these ciphers
(i.e., the key whitening operation on the left branch, on the right branch, and
on both branches). According to the relationship in the round function, our
approach can launch chosen message DPA to efficiently reveal the whitening key
on the left branch. When the whitening key is on the right branch, we are able to
reduce the recovery of the whitening key on the right branch to the left branch
case through an adaptive chosen message manner. When the whitening keys are
on both branches, we can reduce the recovery of the whitening keys to the left
branch case and the right branch case respectively. Furthermore, we perform
extensive experiments on two ISO standardized ciphers CLEFIA and Camellia
with loop FPGA implementations. Experimental results show that all bits of the
keys in both ciphers can be recovered as expected.

The remainder of this paper is organized as follows. In Sect. 2, the preliminar-
ies are briefly described. Section 3 illustrates the practical chosen message power
analysis method on Feistel-SP ciphers with the key whitening layers. Section 4
elaborates the practical attacks on two loop FPGA implementations of CLEFIA-
128 and Camellia-128 in order to prove the effectiveness of our approach. We
discuss and summarize the paper in Sect. 5.

2 Preliminaries

2.1 The Compact and Loop Architecture

The hardware implementations of ciphers usually follow two architectures, com-
pact architecture and loop architecture [18], in order to adapt to different appli-
cation scenarios. In the embedded application scenario, the size, power consump-
tion, and cost of the cryptographic device are tightly restrained. On the other
hand, in the higher computation speed and higher throughput application sce-
nario, the performance and efficiency of the cryptographic device are the most
important indicators. The compact architecture usually takes several clock cycles
to accomplish a single round computation of the cryptographic algorithm, such
as reusing the single substitution circuit (e.g. Sbox) several times as a subloop
instead of using their duplications concurrently. Therefore, the compact archi-
tecture, which sacrifices performance to less circuit components, is often applied
to the embedded cryptographic device, such as smart cards and wireless sensor
nodes.

On the other hand, the loop architecture defines the round function of the
cryptographic algorithm as several consecutive operations, which means that a

418 C. Tu et al.

single round is computed in one clock cycle. Compared to the compact archi-
tecture, the loop architecture, which has higher throughput or less calculation
time, is usually applied to the higher computation speed and higher throughput
application scenario, such as the hardware security module in the cloud com-
puting environment, the instant messenger system, the network authentication
system and the network routing device. The loop architecture is implemented in
ASIC or FPGA chips in the hardware security module, with the advancement
of circuit industry within recent years.

2.2 DPA on Key Whitening Layer

The key whitening layers can be compromised by DPA, as long as the adversary
is able to locate the power consumption of the whitening operation on power
traces. In the compact scenario, the power consumption of the whitening oper-
ation is convenient to be observed due to the independent implementation of
the key whitening layer. Consequently, the adversary can reveal the whitening
key through direct analysis of the power consumption of the whitening opera-
tion [8,11]. Unfortunately, the above strategy seems hard to apply in the loop
scenario, because the whitening operations are implemented within the first/last
round. It leads to much lower signal-to-noise of the slight power consumption
which is too difficult to be detected. In this case, the adversary can only get the
equivalent key (i.e. the value of “the round key adding the whitening key” as
a unity) in DPA, but he would not be capable to directly determine either the
whitening key or the round key. Therefore, how to reveal the whitening key or
the round key in the loop architecture remains an open problem.

2.3 Feistel-SP Structure

The Feistel network is one of the most famous architectures in symmetric cryp-
tography. According to the classifications of [5], the Feistel network has sev-
eral derivatives, namely, the unbalanced Feistel network, the alternating Feis-
tel network, the numeric Feistel network, and the famous type-1, type-2, and
type-3 Feistel networks. Many practical block ciphers utilize the Feistel net-
works including DES (plain), Skipjack (unbalanced), BEAR/LION (alternat-
ing), CAST (type-1), CLEFIA(type-2) and MARS(type-3).

A typical SP type function often consists of three operations, i.e., subkey
addition, substitution, and permutation. In the subkey addition, a subkey is
XORed to the state. The substitution is applied by Sbox-like non-linear bijec-
tion. In the permutation, a linear bijection (generally an MDS multiplication)
is performed. Let S1, S2, · · · , St : {0, 1}s −→ {0, 1}s be non-linear bijections,
P : {0, 1}st −→ {0, 1}st be a linear bijection, k = (k1, k2, · · · , kt) is the round
key, then the round function F : {0, 1}st × {0, 1}st −→ {0, 1}st of SP type is
defined by F (x, k) = P (S1(x1 ⊕k1), S2(x2 ⊕k2), · · · , St(xt ⊕kt)). The notations
s and t represent the size of the non-linear bijection and the number of the
non-linear bijections, respectively.

A Practical Chosen Message Power Analysis on the Key Whitening Layers 419

Li Ri

Li+1 Ri+1

F
s1 s2 st···

···

x1 x2 xt···

P

z1 z2 zt···

rk1 rk2 rkt

y1 y2 yt

Fig. 1. The typical round function of the Feistel-SP structure

In the Feistel network, the core of the underlying round function is referred
to as the F-function. In order to combine the advantages of SPN structures,
the Feistel-SP ciphers use well-designed SPN functions as the F-functions. The
typical round function of the Feistel-SP structure is shown in Fig. 1.

3 The Design of Our Approach

In this section, we describe the details of our practical chosen message DPA
method on the loop architecture of Feistel-SP ciphers with the key whitening
layers. Firstly, sharing the similar idea of chosen message DPA [12], we put
forward the chosen message DPA which is also suitable for the case of Feistel-SP
structure without the key whitening layer. Secondly, we analyze the difficulty
to reveal the whitening key in the loop architecture directly. Then we propose
an efficient approach to recover the whitening key through a reduction strategy.
More precisely, we show how to recover the whitening key on the left branch,
and reduce the recovery of the whitening key on the right branch to the left
branch case through an adaptive chosen message manner. Combining these two
strategies, we manage to perform practical DPA on loop architecture of Feistel-
SP structure with the key whitening layer.

3.1 The Chosen Message DPA on the Loop Architecture of
Feistel-SP

The typical loop implementation of Feistel-SP is shown in Fig. 1. Let Li and Ri

denote the left and right branches of the i-th round input respectively, and the
size of the Sbox is 8-bit. The right branch Ri can be further split into t 8-bit
cells, namely, Ri = x1||x2|| · · · ||xt. Each 8-bit cell xj is first XORed with the
corresponding 8-bit round key rkj , then all t cells are processed with t parallel
Sboxes S1, S2, · · · , St

1. Let y1||y2|| · · · ||yt denote the output of the Sbox layer,
the linear permutation P (normally multiplication with an MDS matrix) updates
the state y1||y2|| · · · ||yt, and z1||z2|| · · · ||zt is the output. The right branch of the
i-th round output Ri+1 is then calculated by XORing Li and the output of P ,

1 The Sboxes can be identical or distinct.

420 C. Tu et al.

while the left branch Li+1 is updated by directly assigning the value of Ri. The
above procedures can be described as

Li+1 = Ri,

Ri+1 = F (Ri, rk) ⊕ Li (1)
= P (S1(x1 ⊕ rk1), S2(x2 ⊕ rk2), · · · , St(xt ⊕ rkt)) ⊕ Li.

In the scenario of loop architecture, Feistel-SP treats the round function as
several consecutive operations, thus no intermediate result except Ri+1 is written
into registers in the loop implementations. The power consumption of yj is much
less than Ri+1 and hard to be observed. Therefore, we are only able to attack at
this point when the data Ri+1 is being written into registers as shown in Fig. 2.

Li Ri

Li+1 Ri+1

F s1 s2 st···

···

y1 y2 yt

x1 x2 xt···

···

P

z1 z2 zt···

The a ack point in
loop scenarios

The a ack point in
compact scenarios

rk1 rk2 rkt

Fig. 2. Different DPA attack points of Feistel-SP

As shown in Fig. 2, regarding a specific cell yj , the linear permutation P can
be represented as follows:

P (y1, y2, · · · , yj−1, yj , yj+1, · · · , yt) = P (0, 0, · · · , 0, yj , 0, · · · , 0)⊕
P (y1, y2, · · · , yj−1, 0, yj+1, · · · , yt)

= WP j ⊕ CP j ,

where the superscript j indicates the function focusing on the cell yj , and WP j

and CP j denote the two components of the right half of the equation respectively.
The above equation can be rewritten in byte-wise form as follows:

P[1]||P[2]|| · · · ||P[t] = (WP j
[1]||WP j

[2]|| · · · ||WP j
[t]) ⊕ (CP j

[1]||CP j
[2]|| · · · ||CP j

[t])

where the subscript [k] indicates the k-th byte output, and WP j
[k] and CP j

[k]

denote the k-th bytes of WP j and CP j respectively. If we fix the values of all yk
where k �= j, and keep yj as a variable, then WP j

[j] can be seen as a function of

A Practical Chosen Message Power Analysis on the Key Whitening Layers 421

yj and CP j
[j] is a constant. For convenience, we use P ′

[j] and mask[j] to represent

WP j
[j] and CP j

[j] respectively.
Thus, the adversary chooses the specific byte of plaintext message, which

corresponds the j-th byte of the target intermediate variable, while fixing other
bytes of the plaintext message. The target byte is dependant on two unknown
one-byte constant parameters, i.e., the subkey rkj and the mask[j] generated
by P . Therefore, the size of guessed parameters from the whole round key is
decreased to a pair of 8-bit values, i.e., the hypothesis space of the secret value
falls to 216, and the input space of the plaintext message is decreased to 28,
which is suitable for practical DPA. Consequently, by alternately choosing the
corresponding plaintext message byte for all possible positions, we can use the
DPA attacking model shown in Fig. 3 to launch DPA and recover all t bytes of
the round key (for the sake of simplicity, we assume the size of the round key is
32 bits).

roundkey(32)

Intermediate variable(32)

(Register / Bus)

message(32)

(le branch)

message(32)

(right branch)

roundkey(8)

Sbox

Intermediate variable(8)

(Register / Bus)

mask(8)

message(8)

(le branch)

message(8)

(right branch)

Sbox Sbox SboxSbox

Permuta on

Fig. 3. DPA model of Feistel-SP in loop scenario

3.2 The Difficulty to Reveal the Whitening Key in the Loop
Scenario

The whitening keys are generally used before the first round and after the last
round. After the key whitening operations, the inputs (outputs) to the first
(last) round are covered by the unknown whitening key from the plaintexts
(ciphertexts). It seems that such operations would increase the size of unknown
parameters, and raise the difficulty to launch a DPA attack. However, since the
encryption and decryption of Feistel-SP ciphers follow similar procedures and
both the pre-whitening and the post-whitening keys are almost equivalent from
the perspective of DPA, we only discuss the encryption procedure in the first
round.

Let ML (resp. MR) denote the left (resp. right) message branch, and wkL
(resp. wkR) denote the left (resp. right) whitening key. As shown in Fig. 4, the
whitening keys can be applied on the left branch, the right branch or both
branches, which correspond to three types of whitening operations.

422 C. Tu et al.

L1 R1

L2 R2

F

(a) (b)

L1 R1

L2 R2

F

(c)

L1 R1

L2 R2

F

wkL
ML MR

wkR
ML MR

wkRwkL
ML MR

Fig. 4. The whitening key on (a) left branch (b) right branch (c) both branches

There are two main difficulties to apply DPA to reveal the whitening key in
loop scenario. The first difficulty is that the power consumption of the whitening
operation is hard to detect from power traces similar as Sect. 3.1. In the loop
hardware implementation, the whitening operation and the round key addition
operation are usually combined as one operation (i.e. Message ⊕ wk ⊕ rk),
which is implemented by 3-input XOR gate or LUT. More precisely, there is no
standalone whitening operation in the Feistel-SP computing procedure, thus the
power consumption of the whitening operation is hard to detect. Therefore, the
existing method against the whitening key as mentioned in [8] is not suitable.

Moreover, although we could choose Ri+1 as the attack point, the whiten-
ing key is difficult to be separated from the round key and other intermediate
variables by DPA. We assume that there are whitening keys on both branches.
Due to the effect of whitening keys wkL and wkR, the DPA attacking model of
Feistel-SP with whitening key in loop scenario is shown in Fig. 5(a). For the loop
scenario, we use rk⊕wkR as the equivalent key and mask⊕wkL as the equiva-
lent mask, thus the model is changed from Fig. 5(a) to (b). However, although we
can recover the equivalent key and the equivalent mask by DPA, we are unable
to directly determine the values of the whitening keys from the equivalent key
and the equivalent mask.

3.3 Recovery of wkL

When we choose Ri+1 as the attack point, the main drawback for DPA is the
difficulty to separate the whitening key from the equivalent key and the equiva-
lent mask. Luckily, we can achieve this goal through a reduction strategy. More
precisely, we can efficiently recover the whitening key on the left branch wkL,
and reduce the recovery of the whitening key on the right branch to the left
branch case.

The recovery of wkL is based on the full exploitation of the complex relation-
ship between the equivalent key and the equivalent mask with a chosen message
DPA method. Hereafter we use subscript [i] (1 ≤ i ≤ t) to indicate the i-th byte
of the corresponding variable or the output of one function, and use notation rkj
(j ≥ 1) to represent the round key in the j-th round of Feistel-SP. According to

A Practical Chosen Message Power Analysis on the Key Whitening Layers 423

rk(8)

Sbox

Intermediate variable(8)

(Register / Bus)

mask(8)

message(8)

(le branch)

wkR(8)

message(8)

(right branch)

wkL(8)

Sbox

Intermediate variable(8)

(Register / Bus)

equivalent mask(8)

message(8)

(le branch)

equivalent key(8)

message(8)

(right branch)

(a) (b)

Fig. 5. Chosen message DPA model of Feistel-SP whitening key in the loop scenario

Fig. 4(a), two branches of the first round input L1||R1 can be described by:

L1||R1 = (ML ⊕ wkL)||MR. (2)

Now, we will focus on the attack point R2 as shown in Fig. 2. Equation 1 can
be rewritten as:

R2 = F (R1, rk1) ⊕ L1

= P (S1(MR[1] ⊕ rk1,[1]), S2(MR[2] ⊕ rk1,[2]),
· · · , St(MR[t] ⊕ rk1,[t])) ⊕ wkL ⊕ ML. (3)

where MR = MR[1]||MR[2]|| · · · ||MR[t], and rk1 = rk1,[1]||rk1,[2]|| · · · ||rk1,[t].
We focus on the first byte of R2, and fix all MR[j] (2 ≤ j ≤ t) to constants,

that leads to the constant output of Sj . Thus, Eq. 3 can be rewritten in byte-wise
form:

R2,[1] = F[1](R1, rk1) ⊕ L1,[1]

= P[1](S1(MR[1] ⊕ rk1,[1]), S2(MR[2] ⊕ rk1,[2]),
· · · , St(MR[t] ⊕ rk1,[t])) ⊕ wkL[1] ⊕ ML[1]

= P ′
[1](S1(MR[1] ⊕ rk1,[1])) ⊕ mask1,[1] ⊕ wkL[1] ⊕ ML[1]

= P ′
[1](S1(MR[1] ⊕ rk1,[1])) ⊕ MASK1,[1] ⊕ ML[1], (4)

with ML = ML[1]||ML[2]|| · · · ||ML[t], wkL = wkL[1]||wkL[2]|| · · · ||wkL[t].
Moreover, mask1 = mask1,[1]||mask1,[2]|| · · · ||mask1,[t] is the intermediate vari-
able which is generated in the first round. According to Sect. 3.1, mask1,[j] is
a byte constant value if all MRk (k �= j) are fixed since the round key rk1 is
pre-assigned, and the equivalent mask MASK1 = mask1 ⊕ wkL.

At this time, R2,[1] is highly related to rk1,[1], and R2,[2], R2,[3], · · · , R2,[t] will
be treated as noise. Now, we can launch DPA against R2,[1] by enumerating 8-bit
MR[1] while fixing other bits of MR and ML. Thus, both 8-bit rk1,[1] and 8-bit

424 C. Tu et al.

MASK1,[1] are revealed by DPA, where the possible hypotheses space is 216 and
the possible input space of random test vector MR[1] is only 28. With the same
approach, we could analyze R2,[2], R2,[3], · · · , R2,[t] byte by byte, and reveal the
values of rk1,[2], rk1,[3], · · · , rk1,[t] and MASK1,[2],MASK1,[3], · · · ,MASK1,[t].

According to the complex relationship between rk1 and mask1,[j], we could
iteratively calculate each of mask1,[j] by all bytes of rk1. More precisely, accord-
ing to Eq. 4, mask1,[1] is calculated by:

mask1,[1] = P ′
[1](S1(MR[1] ⊕ rk1,[1])) ⊕ P[1](S1(MR[1] ⊕ rk1,[1]),

S2(MR[2] ⊕ rk1,[2]), · · · , St(MR[t] ⊕ rk1,[t])). (5)

mask1,[j] (j ∈ [2, t]) is calculated similarly. Then the values of all wkL[k] (k ∈
[1, t]) is iteratively calculated by wkL[k] = MASK1,[k] ⊕ mask1,[k]. Thus, the
whitening key wkL is recovered, and our method is suitable for launching DPA
to recover the whitening key on the left branch of Feistel-SP in loop architecture.

3.4 Recovery of wkR

According to Sect. 3.3, we reveal the round key rk1 and the equivalent mask
MASK1 in the first round, and then successfully derive the left branch whitening
key wkL from above two parameters. However, due to Figs. 4(b) and 5, the right
branch whitening key wkR is hard to be distinguished from the equivalent key,
because both wkR and rk1 have exactly the same effects on the SP type F-
function in the first round of Feistel-SP ciphers. More precisely, according to
Eq. 4, the first byte of R2 in this case would be rewritten as:

R2,[1] = F[1](R1, rk1) ⊕ L1,[1]

= P[1](S1(MR[1] ⊕ wkR[1] ⊕ rk1,[1]), S2(MR[2] ⊕ wkR[2] ⊕ rk1,[2]),
· · · , St(MR[t] ⊕ wkR[t] ⊕ rk1,[t])) ⊕ ML[1]

= P ′
[1](S1(MR[1] ⊕ wkR[1] ⊕ rk1,[1])) ⊕ mask1,[1] ⊕ ML[1]

= P ′
[1](S1(MR[1] ⊕ ek1,[1])) ⊕ mask1,[1] ⊕ ML[1]. (6)

with wkR = wkR[1]||wkR[2]|| · · · ||wkR[t], and the equivalent key ek1 = rk1 ⊕
wkR, and mask1,[1] is a byte constant value if MR[2],MR[3], · · · ,MR[t] are fixed
since the equivalent key ek1 is pre-assigned. In this scenario, we can only reveal
each byte of ek1 and mask1 with the approach proposed in Sect. 3.3, and we are
unable to split wkR from ek1.

Therefore, we have to find relations between the case of the whitening key on
the right branch and the case of the whitening key on the left branch in order to
recover wkR. We focus on the second round of Feistel-SP. As shown in Fig. 6(a),
the whitening key wkR is mixed up with mask2 in the second round of Feistel-
SP, and we choose R3 as the attack point in the second round. Equations 3 and
4 can be rewritten as:

A Practical Chosen Message Power Analysis on the Key Whitening Layers 425

R3 = F (R2, rk2) ⊕ L2

= P (S1(R2,[1] ⊕ rk2,[1]), S2(R2,[2] ⊕ rk2,[2]),
· · · , St(R2,[t] ⊕ rk2,[t])) ⊕ wkR ⊕ MR. (7)

R3,[1] = F[1](R2, rk2) ⊕ L2,[1]

= P[1](S1(R2,[1] ⊕ rk2,[1]), S2(R2,[2] ⊕ rk2,[2]),
· · · , St(R2,[t] ⊕ rk2,[t])) ⊕ wkR[1] ⊕ MR[1]

= P ′
[1](S1(R2,[1] ⊕ rk2,[1])) ⊕ mask2,[1] ⊕ wkR[1] ⊕ MR[1]

= P ′
[1](S1(R2,[1] ⊕ rk2,[1])) ⊕ MASK2,[1] ⊕ MR[1]. (8)

where mask2,[1] is a byte constant value if R2,[2], R2,[3], · · · , R2,[t] are fixed since
the round key rk2 is pre-assigned. Therefore, as shown in Fig. 6(b), if we can
control the input of the second round L2||R2 as the plaintext message ML||MR,
we will reduce the case of the whitening key on the right branch in the second
round to the case of the whitening key on the left branch in the first round.

L1 R1

L2 R2

F

wkR
ML MR

L3 R3

F

L2 R2

L3 R3

F

wkR
MR

(a) (b)

Fig. 6. The reduce from the right branch case to the left branch case

Fortunately, we can control the input of the second round L2||R2 in an adap-
tive chosen message manner. Firstly, we reveal ek1 in the first round. Then
based on the values of L2||R2 which meets the chosen message requirements,
we calculate the corresponding plaintext message with ek1 through the inverse
transformation of the Feistel-SP round function. Finally, we could establish the
chosen plaintext set which is suitable for the second round and reduce the case
of wkR to the case of wkL, and reveal wkR for the second round of Feistel-SP.

On Recovering the Whitening Keys on both Branches. Our approach is
also suitable for Feistel-SP ciphers with the key whitening layer on both branches,
as shown in Fig. 4(c). The specific procedures of this scenario are as follows:

426 C. Tu et al.

– Step 1. Reveal the Whitening Key wkL in the First Round. The first
step of our method is to reveal wkL in the first round. We establish the chosen
plaintext set which enumerates all possible values of the target bytes (MR[1]),
and fixes other bytes to constants. Then, we repeat the DPA attack against
R2 several times to recover all bytes of ek1 and MASK1. Finally, we calculate
mask1 by ek1 and reveal wkL with the equation wkL = MASK1 ⊕ mask1.

– Step 2. Reveal the Whitening Key wkR in the Second Round. The
second step of our method is to establish the chosen plaintext set which is used
for the second round, through an adaptive chosen message manner. According
to Sect. 3.4, it can be done with similar strategy of Step 1 to recover wkR.

4 Applications

We apply these techniques to two typical Feistel-SP ciphers, CLEFIA-128 [2] and
Camellia-128 [3], to verify the effectiveness of our method. We implement both
ciphers with the loop architecture on a Virtex-5 Xilinx FPGA on SASEBO-GII
board. Pearson Correlation Coefficient based Power Analysis (CPA) is applied
during the security analysis. The aim is to recover the master keys in CLEFIA-
128 and Camellia-128, and the master keys are recovered as expected in both
experiments, thus manifesting the correctness of our approach.

4.1 Application to CLEFIA-128

Specification of CLEFIA-128. CLEFI-128 is a type-2 Feistel-SP cipher pro-
posed at FSE 2007 by Shirai et al.. It is standardized by ISO [19] as a lightweight
cipher. It encrypts a 128-bit plaintext into a 128-bit ciphertext with a 128-bit
master key after applying the round function 18 times, as shown in Fig. 7.

F0

F0

··· ···

wk0

P0 P1

rk0

C0 C1

rk34

wk2

F1

F1

··· ···

wk1

P3

rk1

C3

rk35

wk4

P2

C2

0
0X 0

1X 0
2X 0

3X

1
3X1

2X1
1X1

0X

17
0X

18
0X

17
1X

18
1X

17
2X

18
2X

17
3X

18
3X

F0 F1

2
3X2

2X2
1X2

0X

rk2 rk3

Fig. 7. CLEFIA encryption algorithm for 128-bit key

A Practical Chosen Message Power Analysis on the Key Whitening Layers 427

Let P and K be the 128-bit plaintext and the master key respectively.
Thirty-six 32-bit round keys rk0, rk1, · · · , rk35 and four 32-bit whitening keys
wk0, wk1, wk2, wk3 are generated from K. These whitening keys are defined as
wk0||wk1||wk2||wk3 = K according to the key schedule.

Let Xi
0||Xi

1||Xi
2||Xi

3(0 ≤ i ≤ 17) be an internal input state in each round. The
plaintext is loaded into P0||P1||P2||P3. Next, X0

1 and X0
3 are updated by the pre-

whitening layer, that is (X0
0 ,X

0
1 ,X

0
2 ,X

0
3) = (P0, P1 ⊕wk0, P2, P3 ⊕wk1). Then,

the internal state is updated by the following computation up to the second last
round (for 1 ≤ i ≤ 17);

Xi
0 = Xi−1

1 ⊕ F0(Xi−1
0 , rk2i−2),Xi

1 = Xi−1
2 ,

Xi
2 = Xi−1

3 ⊕ F1(Xi−1
2 , rk2i−1),Xi

3 = Xi−1
0 .

Two SP type F-functions F0 and F1 consist of a 32-bit round key addition, an S-
box transformation, and a multiplication by an MDS matrix, as shown in Fig. 8.
Four parallel 8-bit Sboxes are applied, followed with an MDS multiplication in
each of SP type F-functions. In addition, the MDS matrices for two SP type
F-functions are different.

In the last round, X18
0 ||X18

1 ||X18
2 ||X18

3 is computed by

X18
0 = X17

0 ,X18
1 = X17

1 ⊕ F0(X17
0 , rk34),

X18
2 = X17

2 ,X18
3 = X17

3 ⊕ F1(X17
2 , rk35).

Finally, C1 and C3 are updated by the post-whitening layer,
i.e., (C0, C1, C2, C3) = (X18

0 ,X18
1 ⊕ wk2,X

18
2 ,X18

3 ⊕ wk3), and C0||C1||C2||C3

is the final ciphertext.

x2

x3

x4

x1

k1 k2 k3 k4

s0

s1

s0

s1

M0

y2

y3

y4

y1

x2

x3

x4

x1

k1 k2 k3 k4

s1

s0

s1

s0

M1

y2

y3

y4

y1

(a) (b)

Fig. 8. CLEFIA SP type F-functions for (a) F0 (b) F1

Attack of CLEFIA-128. CLEFIA adopts 4-branch Type-2 Feistel network
but uses two different diffusion matrices for the diffusion switching mechanism.
It has the key whitening layer and only the left branch of the plaintext blocks
is XORed with the whitening key. Our aim is to reveal the master keys through
the recovery of the whitening keys.

Hereafter we use the notations Pj and Cj for CLEFIA-128 to represent the
plaintext and ciphertext in the jth branch, Xi

j to represent the state in the jth

428 C. Tu et al.

branch immediately after the round operation in round i, X0
j to represent the

output of the key whitening layer before the first round. We use the notations
F0, F1, S0, S1, M0, and M1 to further distinguish the different round functions
of CLEFIA-128. The subscript [n] indicates the nth byte of the state.

To reveal the master key K of CLEFIA-128, we focus on the whitening key. As
shown in Fig. 7, the four 32-bit whitening keys wk0, wk1, wk2, wk3 are generated
from K. These whitening keys are defined as wk0||wk1||wk2||wk3 = K. Thus, we
do not need to calculate the inverse transformation of CLEFIA key schedule to
reveal K, if we get the whitening key value. There are two key whitening layers
in CLEFIA-128, the pre-whitening before the first round and the post-whitening
after the last round. According to the Sect. 3.3, CLEFIA-128 belongs to the case
of the whitening key on the left branch. Hence, our attack target is the first
round and the last round of CLEFIA-128.

In order to recover both the pre-whitening and the post-whitening keys, the
attack should be conducted in both the encryption and the decryption directions
respectively. However, since the encryption and decryption of CLEFIA follow
similar procedures and F0 and F1 are almost equivalent from the perspective
of DPA, the attack procedures for recovering the whitening keys are almost
identical. Thus we only describe the detailed process to recover wk0.

The whitening key wk0 is only XORed with 32-bit plaintext block P1, and
rk0 is the round key. According to the specification of CLEFIA-128 and Eq. 1,
the 32-bit output X1

0 is described by

X1
0 = F0(X0

0 , rk0) ⊕ X0
1

= M0(S0(P0,[1] ⊕ rk0,[1]), S1(P0,[2] ⊕ rk0,[2]),
· · · , S1(P0,[4] ⊕ rk0,[4])) ⊕ wk0 ⊕ P1. (9)

Focusing on the first byte of X1
0 , Eq. 9 could be rewritten as

X1
0,[1] = S0(P0,[1] ⊕ rk0,[1]) ⊕ mask0,[1] ⊕ wk0,[1] ⊕ P1,[1]

= S0(P0,[1] ⊕ rk0,[1]) ⊕ MASK0,[1] ⊕ P1,[1]. (10)

where mask0,[1] is generated by S1(P0,[2] ⊕ rk0,[2]), S0(P0,[3] ⊕ rk0,[3]), and
S1(P0,[4] ⊕ rk0,[4]), and MASK0 is defined as MASK0 = mask0 ⊕ wk0.

Therefore, we can reveal the values of rk0 and MASK0 by chosen message
DPA method as mentioned in Sect. 3.3. Then, we calculate mask0 by rk0 and
reveal wk0 with the equation wk0 = MASK0⊕mask0. Thus, wk1, wk2, and wk3
can be revealed by similar procedures. After deriving all the whitening keys, the
master key K can be easily derived since K = wk0||wk1||wk2||wk3.

We preset the master key K as four consecutive 32-bit words denoted in hex
form, FFEEDDCC-BBAA9988-77665544-33221100, in our FPGA implementation
with the loop architecture. Thus, it is obvious that wk0 = FFEEDDCC and rk0 =
F3E6CEF9. We use the attack result of the first Sbox (i.e., rk0,[1] and MASK1,[1])
as an example. In Fig. 9(a), there are two max points F3D4 and F32B whose
correlation coefficients are 0.0743 and −0.0743 respectively. According to the
knowledge of the FPGA platform, the power consumption of the FPGA platform

A Practical Chosen Message Power Analysis on the Key Whitening Layers 429

has a negative correlation with the Hamming distance power model. Thus, F32B
is the attack result (i.e., rk0,[1] = F3 and MASK1,[1] = 2B), which is revealed
within 10000 power traces as shown in Fig. 9(b).

The Nega ve Peak

The Posi ve Peak

0

-0.02

0.02

-0.04

-0.06

-0.08

0.04

0.06

0.08

0

-0.05

0.05

-0.10

-0.15

-0.20

0.10

0.15

0.20

0 0.5 1.0 1.5

The Correct Hypothesis

(a) (b)

0 1 2 63 4 5
410 410

Y-
ax

is:
 C

or
re

la
on

 C
oe

ffi
ci

en
t

X-axis: Guessed Parameter (rk0,[1]||MASK1,[1]) X-axis: Number of Measurements

Y-
ax

is:
 C

or
re

la
on

 C
oe

ffi
ci

en
t

× ×

Fig. 9. Correlation traces in different hypothesis and different number of measurements
on CLEFIA

We repeat the above procedure 3 times more, and all bytes of rk0 and
MASK1 are revealed as rk0 = F3E6CEF9 and MASK1 = 2BF18258. Thus,
the value of mask1 is D41F5F94, which is calculated by the round key rk0. And
the wk0 is FFEEDDCC, calculated by mask1 ⊕ MASK1. The remaining parts of
whitening keys are calculated by similar way. Now, we calculate K is FFEEDDCC-
BBAA9988-77665544-33221100, which is identical with the preset master key.

In our method, we only attack 2 rounds, i.e., the first round and the last
round. Due to the equivalent key of the second round, the conventional DPA
must be launched on the first 4 rounds for revealing enough consecutive round
keys. Therefore, the cost of our method (e.g., power traces or recovered round
key fractions) is only half of the conventional method.

4.2 Application to Camellia-128

Specification of Camellia-128. Camellia-128, proposed at SAC 2000 by Aoki
et al. [3], was jointly designed by NTT and Mitsubishi Electric Corporation.
It is widely acknowledged and recommended by ISO [20], NESSIE [21], and
CRYPTREC [22]. It encrypts a 128-bit plaintext into a 128-bit ciphertext with
a 128-bit master key after applying the round function 18 times, as shown in
Fig. 10.

Let P and K be a 128-bit plaintext and a secret key, respectively. Eigh-
teen 64-bit round keys rk1, rk2, · · · , rk18 and four 64-bit whitening keys
wk1, wk2, wk3, wk4 are generated from K. Let Lr and Rr (0 ≤ r ≤ 18) be
left and right 64-bit of the internal state in each round. According to the key
schedule, the pre-whitening keys are defined as wk1||wk2 = K. We omit the
descriptions of the FL and FL−1 layers after the 6th and 12th rounds, since
they have no impacts on our work.

430 C. Tu et al.

F

F

··· ···

F

F

··· ···P

wk1 wk2
L0 R0

rk1

rk2
L1 R1

L2 R2 C

wk3 wk4

rk17

rk18

L18 R18

L17 R17

L16 R16

(a) (b)

PL PR

Fig. 10. Camellia encryption algorithm for (a) First two rounds (b) Last two rounds

The round function consists of a 64-bit subkey addition, Sbox transforma-
tion, and a diffusion layer called P -layer, as shown in Fig. 11. Eight parallel
8-bit Sboxes are applied, followed with the P -layer which operates on a 64-bit
value (z1||z2|| · · · ||z8). The corresponding output (z′

1||z′
2|| · · · ||z′

8) is computed as
follows.

z′
1 = z[1, 3, 4, 6, 7, 8], z′

2 = z[1, 2, 4, 5, 7, 8],

z′
3 = z[1, 2, 3, 5, 6, 8], z′

4 = z[2, 3, 4, 5, 6, 7],

z′
5 = z[1, 2, 6, 7, 8], z′

6 = z[2, 3, 5, 7, 8],

z′
7 = z[3, 4, 5, 6, 8], z′

8 = z[1, 4, 5, 6, 7].

Here, z[s, t, u, · · ·] means zs ⊕ zt ⊕ zu ⊕ · · ·

rki

x2

x5

x3

x6

x4

x7

x8

x1 s1

s2

s3

s4

s2

s3

s4

s1

y2

y5

y3

y6

y4

y7

y8

y1

z2

z5

z3

z6

z4

z7

z8

z1

z'2

z'5

z'3

z'6

z'4

z'7

z'8

z'1

Fig. 11. Camellia SP type F-function

Attack of Camellia-128. Camellia is a Feistel-SP cipher but its P-layer does
not satisfy the maximum branch number. It has the key whitening layer and
the whole plaintext is XORed with the whitening key. Our aim is to reveal the
master keys through the recovery of the whitening keys.

A Practical Chosen Message Power Analysis on the Key Whitening Layers 431

We use the notations Li and Ri for Camellia-128 to represent the state imme-
diately after the round operation in the ith round, especially L0 and R0 to rep-
resent the output of the whitening layer before the first round, respectively. We
use the notations PL and PR to differentiate the left and right of plaintext, and
S1, S2, S3, S4, and M to further distinguish the different Sboxes and diffusion
operation of Camellia-128. The subscript [n] indicates the nth byte of the state.

Camellia-128 belongs to the case of whitening keys on both branches. To
reveal the master key K of Camellia-128, we focus on two 64-bit pre-whitening
key wk1 and wk2, which are defined as wk1||wk2 = K. The two whitening keys
are XORed with two plaintext blocks PL and PR respectively, before the first
round. Hence, our attack target is the first two rounds of Camellia-128. According
to the attack procedure in the first round of Camellia-128 which is similar to
that of CLEFIA-128, thus we only describe the detailed process to recover wk1
in the second round.

Now, we show how to recover the whitening keys wk1 by attacking the round
function F of the second round. The whitening keys wk1 and wk2 are parallel
XORed with two 64-bit plaintext blocks PL and PR respectively, and rk1 and
rk2 is the round keys as shown in Fig. 10. The equivalent key ek1 and the whiten-
ing key wk2 are recovered in the first round by the attack process. Therefore, we
focus on the second round.

According to the specification of Camellia-128 and Eq. 1, the 64-bit output
L2 is described by

L2 = F (L1, rk2) ⊕ R1

= M(S1(L1,[1] ⊕ rk2,[1]), S2(L1,[2] ⊕ rk2,[2]),
· · · , S1(L1,[8] ⊕ rk1,[8])) ⊕ wk1 ⊕ PL. (11)

Focusing on the first byte of L2, Eq. 11 could be rewritten as

L2,[1] = S1(L1,[1] ⊕ rk2,[1]) ⊕ mask2,[1] ⊕ wk1,[1] ⊕ PL[1]

= S1(L1,[1] ⊕ rk2,[1]) ⊕ MASK2,[1] ⊕ PL[1]. (12)

where
mask2,[1] is generated by S2(L1,[2] ⊕ rk2,[2]), S3(L1,[3] ⊕ rk2,[3]), · · · , S1(L1,[8]

⊕rk2,[8]) and MASK2 is defined as MASK2 = mask2 ⊕ wk1.
Before launch attack in the second round, we should calculate the correspond-

ing plaintext message with ek1 and wk2 through the inverse transformation of
Camellia round function, according to the value of L1 which meets the chosen
message requirements. Fortunately, we find that there is an one-to-one map-
ping relationship between PR and L1. Thus, we can control L2 by enumerating
PR, and reveal the value wk1 by the method as mentioned in Sect. 3.4. After
deriving all the whitening keys, the master key K can be easily derived since
K = wk1||wk2.

We preset the master key K as four consecutive 32-bit words denoted in hex
form, 01234567-89ABCDEF-FEDCBA98-76543210, in our FPGA implementation
with the loop architecture. Thus, it is obvious that wk1 = 01234567-89ABCDEF.

432 C. Tu et al.

The Nega ve Peak

The Posi ve Peak

0

-0.05

-0.10

0.05

0.10

0

-0.05

0.05

-0.10

-0.15

-0.20

0.10

0.15

0.20

0 0.2 0.4 0.6

The Correct Hypothesis

(a) (b)

0 1 2 63 4 5
410 410

0.8 1.0 1.2 1.4

Y-
ax

is:
 C

or
re

la
on

 C
oe

ffi
ci

en
t

X-axis: Guessed Parameter (rk2,[3]||MASK2,[3]) X-axis: Number of Measurements

Y-
ax

is:
 C

or
re

la
on

 C
oe

ffi
ci

en
t

× ×

Fig. 12. Correlation traces in different (a) hypothesis and (b) number of measurements
on Camellia

We use the attack result of the third Sbox (i.e., rk2,[3] and MASK2,[3]) as an
example. In Fig. 12(a), there are two max points 40B8 and 4047 whose cor-
relation coefficients are 0.107 and −0.107 respectively. According to the neg-
ative correlation between the power consumption of the FPGA platform and
the Hamming distance power model, 4047 is the attack result (i.e., rk2,[3] = 40
and MASK2,[3] = 47), which is revealed within 4000 power traces as shown in
Fig. 12(b).

We repeat the above procedure 7 times more, and all bytes of rk2, MASK2,
mask2 and are revealed as similar as the case of CLEFIA-128. Thus, the wk1
is 01234567-89ABCDEF, calculated by mask2 ⊕ MASK2. Now, we calculate K
is 01234567-89ABCDEF-FEDCBA98-76543210, which is identical with the preset
master key.

In our method, we only attack the first two rounds. Due to the equivalent
keys of the first two rounds, the conventional DPA must be launched on the first
four rounds for revealing enough consecutive round keys. Therefore, the cost of
our method is only half of the conventional method.

5 Conclusion and Discussion

In this paper, we propose a practical chosen message DPA approach to recover
the whitening key through a reduction strategy, and show that the key whitening
technique does not enhance the security of ciphers from the standpoint of DPA.
Then we apply our method to CLEFIA-128 and Camellia-128, and the master
keys are recovered as expected. Following the results presented in this work,
several problems which are worth further investigations:

– Optimizations. The first natural question emerges is whether our method
can be further optimized. One possible direction of improvement is taking
advantage of more powerful DPA method, such as the adaptive strategy in
[6,14] and the multiple CPA in [12], to discriminate the correct hypothesis
from the key candidates in a more efficient way. Other potential optimizations
are also possible directions for future research.

A Practical Chosen Message Power Analysis on the Key Whitening Layers 433

– Countermeasures. Next to optimality, another important question is to
determine the countermeasures against such attack. Our method is suitable
for the unprotected loop hardware implementations. Several common coun-
termeasures on the compact architecture [17], can be considered to apply to
the loop architecture in order to resist our approach, while the resource con-
sumption will have a corresponding increase. Moreover, the countermeasures
based on the mask methodology should be used with caution on the loop
implementations of ciphers, because the mask countermeasures usually lead
to slow computation speed. Considering the limitation of high computation
speed and high throughput in the application scenario, the loop implementa-
tions of ciphers must keep the high performance, when the countermeasures
against such attack are applied on these implementations. Thus, a trade-off
between performance and security should be considered by the vendor.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

2. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5 12

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
41–54. Springer, Heidelberg (2001). doi:10.1007/3-540-44983-3 4

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

5. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 33

6. Kopf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: Ning, P., De Capitani Vimercati di, S., Syverson, P.F. (eds.) Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
ACM-CCS 2007, pp. 286–296. ACM (2007)

7. Kim, Y., Ahn, J., Choi, H.: Power and electromagnetic analysis attack on a smart
card implementation of CLEFIA. In: International Conference on Security and
Management, SAM 2013 (2013)

8. Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power analysis, what is now
possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502.
Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3 38

9. Lu, Y., O’Neill, M.P., McCanny, J.V.: Differential power analysis resistance of
Camellia and countermeasure strategy on FPGAs. In: International Conference on
Field-Programmable Technology, pp. 183–189 (2009)

10. Xiao, L., Heys, H.: A simple power analysis attack against the key schedule of the
Camellia block cipher. Inf. Process. Lett. 95, 409–412 (2005). Elsevier

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/3-540-44983-3_4
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/3-540-44448-3_38

434 C. Tu et al.

11. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification
of software power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 293–310. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40349-1 17

12. Moradi, A., Schneider, T.: Improved side-channel analysis attacks on xilinx bit-
stream encryption of 5, 6, and 7 series. In: Standaert, F.-X., Oswald, E. (eds.)
COSADE 2016. LNCS, vol. 9689, pp. 71–87. Springer, Cham (2016). doi:10.1007/
978-3-319-43283-0 5

13. Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks highlight the
importance of countermeasures. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 1–18. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27954-6 1

14. Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel
attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2 12

15. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74619-5 13

16. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, New York (2007). ISBN: 978-0-387-30857-9

18. Rodŕıguez-Henŕıquez, F., Saqib, N.A., Dı́az-Pèrez, A., Koc, Ç.K.: Cryptographic
Algorithms on Reconfigurable Hardware (Signals and Communication Technol-
ogy). Springer, Heidelberg (2006)

19. ISO/IEC 29192–2:2011. Information technology - Security techniques - Lightweight
cryptography-Part 2: Block ciphers (2011)

20. ISO/IEC 18033–3:2010. Information technology - Security techniques - Encryption
Algorithms-Part 3: Block ciphers (2010)

21. New European Schemes for Signatures, Integrity, and Encryption (NESSIE).
NESSIE Project Announces Final Selection of Crypto Algorithms (2003)

22. Cryptography Research and Evaluation Committees (CRYPTREC). e-Government
recommended ciphers list (2003)

http://dx.doi.org/10.1007/978-3-642-40349-1_17
http://dx.doi.org/10.1007/978-3-642-40349-1_17
http://dx.doi.org/10.1007/978-3-319-43283-0_5
http://dx.doi.org/10.1007/978-3-319-43283-0_5
http://dx.doi.org/10.1007/978-3-642-27954-6_1
http://dx.doi.org/10.1007/978-3-642-13708-2_12
http://dx.doi.org/10.1007/978-3-540-74619-5_13
http://dx.doi.org/10.1007/978-3-642-34961-4_14

Side-Channel Attacks Meet Secure Network
Protocols

Alex Biryukov, Daniel Dinu(B), and Yann Le Corre

SnT, University of Luxembourg,
6, Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg

{alex.biryukov,dumitru-daniel.dinu,yann.lecorre}@uni.lu

Abstract. Side-channel attacks are powerful tools for breaking systems
that implement cryptographic algorithms. The Advanced Encryption
Standard (AES) is widely used to secure data, including the commu-
nication within various network protocols. Major cryptographic libraries
such as OpenSSL or ARM mbed TLS include at least one implementa-
tion of the AES. In this paper, we show that most implementations of the
AES present in popular open-source cryptographic libraries are vulnera-
ble to side-channel attacks, even in a network protocol scenario when the
attacker has limited control of the input. We present an algorithm for
symbolic processing of the AES state for any input configuration where
several input bytes are variable and known, while the rest are fixed and
unknown as is the case in most secure network protocols. Then, we clas-
sify all possible inputs into 25 independent evaluation cases depending
on the number of bytes controlled by attacker and the number of rounds
that must be attacked to recover the master key. Finally, we describe an
optimal algorithm that can be used to recover the master key using Cor-
relation Power Analysis (CPA) attacks. Our experimental results raise
awareness of the insecurity of unprotected implementations of the AES
used in network protocol stacks.

Keywords: Side-channel attack · Secure network protocol · CPA · AES

1 Introduction

Side-channel attacks use observations made during the execution of an imple-
mentation of a cryptographic algorithm to recover secret information. From the
multitude of side-channel attacks, Correlation Power Analysis (CPA) [5] stands
out as a very efficient and reliable technique. Its success is augmented by the
minimally invasive methods employed for the acquisition of the side-channel
information. Some of the most frequently used sources of side-channel leakage
are the power consumption or the electromagnetic (EM) emissions of a device
under attack.

Nowadays, the AES [23] is the most popular symmetric cryptographic algo-
rithm in use. It is widely deployed to secure data in transit or at rest. Various
network protocols rely on the AES in different modes of operation to provide
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 435–454, 2017.
DOI: 10.1007/978-3-319-61204-1 22

436 A. Biryukov et al.

security services such as confidentiality and authenticity. The usage spectrum
of the AES stretches from powerful servers and personal computers to resource
constrained devices such as wireless sensor nodes. While the security of the algo-
rithm and its implementations have been placed under scrutiny since it became
the symmetric cryptographic standard, with a few notable exceptions, most of
the previous work focused on the AES itself and less on the usage of the AES in
complex systems.

By far, most of the experimental results reported in the side-channel liter-
ature are for implementations of the AES. They usually assume the attacker
has full control of the AES input. This is not the case in a real world commu-
nication protocol, when often a major part of the input is fixed and only few
bytes are variable. Moreover, sometimes the attacker cannot control these vari-
able bytes and she has to passively observe executions of the targeted algorithm
without being able to trigger encryptions of her own free will. With the notable
exceptions of [16,24], the security of communication scenarios based on the AES
against side-channel attacks has not been thoroughly analyzed so far. Thus, in
this paper we analyze for the first time how much control of the AES input
does an attacker need to recover the secret key of the cipher by performing a
side-channel attack against a communication protocol.

Numerous standards for communication in the Internet of Things (IoT) such
as IEEE 802.15.4 [15] and LoRaWAN [21] use the AES to encrypt and authen-
ticate the Medium Access Control (MAC) layer frames. The 802.15.4 standard
uses a variant of the AES-CCM [9,34], while LoRaWAN uses AES-CMAC [31].
The same CCM mode is used with the AES to encrypt the IPsec Encapsulating
Security Payload (ESP) [14]. According to [29] the security architecture of IEEE
802.15.4 relies on four categories of security suites: none, AES-CTR, AES-CBC-
MAC, and AES-CCM. A typical input for the AES-CTR and AES-CCM modes
used in the IEEE 802.15.4 protocol is shown in Fig. 1. In this particular example,
an attacker can manipulate up to 12 bytes of the input (Source Address and
Frame Counter), while the other input bytes (Flags, Key Counter and Block
Counter) are fixed. The attack on IEEE 802.15.4 wireless sensor nodes described
in [24] assumes the control of only four input bytes (Frame Counter), while the
remaining input bytes are constant. Thus the following question arises: How
many input bytes should an attacker change in the injected messages in order
to fully recover the master key without triggering any network protection mech-
anism?

Flags Source Address Frame Ctr
Key
Ctr

Block Ctr

1 byte 8 bytes 4 bytes 1 byte 2 bytes

Fig. 1. The first input block for the AES-CTR and AES-CCM modes used in IEEE
802.15.4.

Side-Channel Attacks Meet Secure Network Protocols 437

While numerous network protocols use the AES to secure the communication
between end nodes, major cryptographic libraries such as OpenSSL [25] and
ARM mbed TLS [2] do not have a side-channel protected implementation of the
AES for devices that do not support the AES-NI [13] instruction set as is the
case with most IoT devices. Therefore, an elaborate analysis of the security of
the unprotected implementations of the AES used in communication protocols
is necessary. Only such a careful analysis can assess the impact of side-channel
attacks on the security of real world systems using unprotected implementations
of the AES.

In this work, we chose to focus on CPA attacks thanks to their efficiency and
reliability. We opted for a non-invasive measurement setup and hence we selected
the EM emissions of the target processor as source of side-channel leakage. The
target is an ARM Cortex-M3 processor mounted on a STM32 Nucleo [32] board
from STMicroelectronics. These processors are widely used for low-power appli-
cations and meet the requirements for use in the IoT.

The IoT will be a security nightmare if the whole ecosystem is not designed
with security in mind. While many communication protocols for the IoT are in
formative stages, the threat model of the IoT is less understood despite it is
widely accepted that its attack surface is large. Although we focus on a par-
ticular side-channel attack (i.e. power/EM), other side-channel attacks such as
timing, fault, cache or data remanence attacks might pose a similar or even a
higher threat for the security of the IoT ecosystem. Attacks that do not exploit
side-channel information, such as those used to compromise Internet-connected
computers, should not be neglected since they have certain advantages over side-
channel attacks. Thus, our work adds another piece to the security puzzle of the
IoT by showing the need for side-channel countermeasures to prevent a somehow
overlooked threat.

Research Contributions. This paper performs for the first time a thorough
analysis of all possible attack scenarios against software implementations of the
AES used to secure various communication protocols. Firstly, we present an algo-
rithm for symbolic processing of a given input state of the AES. The algorithm
outputs the number of rounds and the bytes that must be attacked to recover the
secret key. Then, using this algorithm we perform a classification of all possible
inputs depending on the number of rounds that must be attacked in order to
recover the master key. The result is a set of 25 independent evaluation cases.
Secondly, we describe an optimal algorithm that uses the above-mentioned sym-
bolic representation to recover the master key of the AES using CPA attacks. The
algorithm explores all possible combinations of input key bytes and discards the
invalid key candidates, thus yielding only the correct master key if enough power
traces with a good signal-to-noise ratio are provided. Afterwards, we evaluate
the results of the attack algorithm in each of the 25 evaluation cases identified
in the classification step using traces from an ARM Cortex-M3 processor.

Our results show that popular implementations of the AES found in well-
known and widely used cryptographic libraries can be broken using CPA attacks.

438 A. Biryukov et al.

The only requirement is that a part of the AES input is known and variable, while
the rest is constant, which is a common scenario in communication protocols.
Knowledge of the AES implementation strategy improves the attack results, but
it is not crucial. All software tools presented in this paper are in the public
domain1 to support reproducibility of results and to maximize reusability.

2 Preliminaries

2.1 Description of the AES

We give a brief description of the AES [23] to recall relevant aspects of the
algorithm and to introduce the notation used in this paper. For more details on
the AES algorithm, we refer the reader to the official specifications.

The AES standard uses the 128-bit block length version of the Rijndael
cipher [8] with three different key lengths: 128, 192, and 256 bits. The round
function is applied to the 4 × 4 byte state matrix 10, 12, or 14 times depending
on the key length. It comprises four transformations: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. The final round function does not include the
MixColumns transformation.

Let si,j be the state byte located at row i and column j (0 ≤ i, j ≤ 3), kl the
corresponding round key byte (l = 16 ·r+i+4 ·j) and r the round number. After
application of the AddRoundKey transformation, each byte of the state becomes
s′
i,j = si,j ⊕ kl, where the “⊕” symbol denotes bitwise exclusive or of two 8-bit

values. The non-linear SubBytes operation transforms each byte of the state
using an 8-bit S-box S as follows: s′

i,j = S[si,j]. The ShiftRows transformation
performs a rotation of row i by i bytes to the left. In the MixColumns transfor-
mation, a polynomial multiplication over GF (28) is applied to each column of
the state matrix. The symbol “•” is used for multiplication of two numbers in
GF (28), while {01}, {02}, and {03} are 8-bit vectors representing elements from
GF (28).

The key schedule expands the master key into the 16-byte round keys. The
round constant array Rcon contains the powers of {02} in GF (28) as described
in the specifications.

2.2 Correlation Power Analysis

Correlation Power Analysis (CPA) [5] is a side-channel attack in which the
attacker correlates the power model of a sensitive intermediate value of the
target cryptographic algorithm with the measured power consumption or elec-
tromagnetic emission (EM) of the device running the target algorithm. Then, she
chooses the key hypothesis that gives the maximum correlation coefficient as the
most likely key. Compared to classical Differential Power Analysis (DPA) [17]
attacks, CPA attacks have several advantages in terms of efficiency, robustness
and number of experiments, but are more resource demanding. Agrawal et al. [1]
1 https://github.com/cryptolu/aes-cpa.

https://github.com/cryptolu/aes-cpa

Side-Channel Attacks Meet Secure Network Protocols 439

introduced the electromagnetic emissions of a target device as a source of leakage
for side-channel attacks.

A CPA attack can be split into two phases: acquisition and attack. In the
acquisition phase, the attacker observes and records the leakage of the target
device (power consumption or electromagnetic emission) for different inputs.
While the acquisition of power consumption traces requires insertion of a resis-
tor into the circuitry of the target device to measure the voltage across it, the
observation of electromagnetic emission is non-invasive; it only requires an elec-
tromagnetic probe placed in the vicinity of the leaking spot. In the attack phase,
the attacker correlates these observations with the modeled power consumption
of the selection function to recover the secret key. A selection function combines
a known input with the secret material to be recovered.

In this work we focus on the electromagnetic emissions of an ARM Cortex-M3
processor clocked at 8 MHz running various software implementations of the AES.
The acquisition was performed from a spot above the chip using a Langer RF-K 7-
4 H-field probe. The signal was amplified by 30dB and fed into a Teledine LeCroy
WaveRunner 8254M-MS oscilloscope sampling at 500 MS/s. For more details on
the measurement setup we refer the reader to the full version of this paper.

2.3 Attacking Temporary Key Bytes

To attack the AES in counter mode, Jaffe introduced a technique that propagates
a DPA attack to later rounds. It can be used when just few key bytes of the
AES input are known and variable, while the others are fixed (constant) and
unknown [16]. Next we briefly describe how the unknown fixed bytes can be
incorporated into a round key byte to recover a temporary key byte. Then,
using these temporary key bytes the attack can be carried into later rounds
until enough round key bytes are recovered to reverse the key schedule.

Using a CPA attack an adversary can recover only those key bytes that are
XORed with variable and known state bytes in the AddRoundKey transformation.
The gist of Jaffe’s technique is that an attacker can still recover a temporary
key byte when an input byte of the AddRoundKey transformation is the result
of the MixColumns transformation applied to at least one known and variable
input byte while the other input bytes are unknown and constant.

To better illustrate how this technique works, let us consider the first state
byte s′

0,0 after performing the first round function:

s′
0,0 = ({02} • s0,0) ⊕ ({03} • s1,1) ⊕ ({01} • s2,2) ⊕ ({01} • s3,3) ⊕ k16

Suppose now that the input bytes s0,0 and s1,1 are known and variable (key
bytes k0 and k5 were successfully recovered using a side-channel attack on the
SubBytes transformation of the first round), while the other input bytes (s2,2
and s3,3) are unknown, but fixed. Thus s′

0,0 can be written as ({02} • s0,0) ⊕
({03} • s1,1)⊕ k′

16, where the constant part is included in the temporary key k′
16

that will be recovered by attacking the SubBytes transformation of the second
round; k′

16 = ({01}•s2,2)⊕({01}•s3,3)⊕k16. The temporary key k′
16 enables the

440 A. Biryukov et al.

computation of four state bytes in the following round. In this way, the attack
is carried into the next rounds until all state bytes are known; consequently, the
real key bytes can be recovered.

The technique works similarly when three input bytes are known and variable.
Though, when only one input byte is known and variable, the attacker will
recover the same two equally likely key candidates for two bytes of the same
column of the cipher state. For example, when only s3,3 is known and variable
while the other input bytes are unknown and fixed, then s′

0,0 = ({01}•s3,3)⊕k′
16

and s′
1,0 = ({01} • s3,3) ⊕ k′

17. Thus attacking either of the two, an attacker will
get two equally likely key bytes (k′

16 and k′
17). If the state bytes are not processed

in order by the SubBytes transformation, the attacker will not know which key
byte corresponds to s′

0,0 and which key byte corresponds to s′
1,0.

2.4 Software Implementations of the AES

There are various ways to implement the AES in software depending on the
execution time, code size and RAM consumption requirements. Other factors
that influence the implementation strategy are the cipher mode of operation
and the number of plaintext blocks to be encrypted. Schwabe and Stoffelen [30]
identified four different strategies to implement the AES in software: traditional,
T-tables, vector permute, and bit slicing. In this paper, we consider the follow-
ing two implementation approaches for the AES that are relevant for a secure
communication protocol:

– The straightforward implementation (S-box strategy) performs the four
round transformations as described above. The substitution layer is imple-
mented using a 256-byte lookup table based on S-box S. This implementation
approach is suitable for 8-bit architectures.

– The table based implementation (T-table strategy) uses four lookup tables
(T0, T1, T2, and T3) of 1024 bytes each to perform the SubBytes, ShiftRows,
and MixColumns operations at the cost of 16 table lookups, 16 masks and
16 XORs per round, except for the final round. A low memory alternative
uses just one T-table, but performs 12 additional rotations per round. This
strategy was initially described by the designers of Rijndael [8]. It leads to
very fast implementations on 32-bit platforms.

We did not analyze bit-sliced or vector permute implementations because
such implementations are uncommon in cryptographic libraries due to the fol-
lowing limitations. The bit-sliced implementations process at least two blocks
in parallel and thus they can be applied only to non-feedback modes of opera-
tion. The vector permute implementations require support for vector permute
instructions, but most of the resource constrained microcontrollers for the IoT
do not support such instructions.

An analysis of the existing AES implementations used by different open
source cryptographic libraries is given in Table 1. The default implementations of
the AES for platforms that do not support the AES-NI [13] instructions in popu-
lar cryptographic libraries such as OpenSSL [12,25] or mbed TLS [2,11] use the

Side-Channel Attacks Meet Secure Network Protocols 441

Table 1. A summary of the existing AES implementations used by open source cryp-
tographic libraries written in C/C++. All the T-table implementations are vulnerable
to the attack described in this paper.

Library Language Version Last update AES-NI T-table

Botan [27] C++ 2.1.0 Apr 2017 ✓ ✓

cryptlib [6] C 3.4.3 Feb 2017 ✓ ✓

Crypto++ [7] C++ 5.6.5 Oct 2016 ✓ ✓

Libgcrypt [18] C 1.7.6 Jan 2017 ✓ ✓

libtomcrypt [10] C 1.17 Apr 2017 ✗ ✓

libsodium [19] C 1.0.12 Mar 2017 ✓ ✗

mbed TLS [2] C 2.4.2 Mar 2017 ✓ ✓

Nettle [22] C 3.3 Oct 2016 ✓ ✓

OpenSSL [25] C 1.1.0e Feb 2017 ✓ ✓

wolfCrypt [35] C 3.10.2 Feb 2017 ✓ ✓

T-table approach. Except for libsodium [19], all other cryptographic libraries
analyzed have an implementation of the AES based on the T-table strategy.
Moreover, these implementations are not protected against side-channel attacks
such as DPA or cache attacks. It is well know that unprotected implementa-
tions of cryptographic algorithms are an easy target for DPA attacks. Recently,
researchers from Rambus Cryptography Research Division have shown that even
an unprotected software implementation based on AES-NI instructions can be
attacked with DPA [28]. The T-table implementations of the AES are vulner-
able to various cache attacks as shown in [20,26]. Although the unprotected
T-table implementations are vulnerable to side channel attacks, nine out of the
ten libraries considered in Table 1 have such an implementation of the AES.

3 Quantifying the Leakage

Biryukov et al. [4] introduced the correlation coefficient difference metric to
analyze the leakage of different selection functions in the context of CPA. The
correlation coefficient difference δ gives the difference between the correlation
coefficient of the correct key and the correlation coefficient of the most likely key
guess, where the most likely key is different from the correct key.

We use the correlation coefficient difference to quantify the leakages of two
selection functions: ϕ1 based on the AES S-box and ϕ2 based on the AES T-
table. The two selection functions are defined below:

ϕ1 : F8
2 �→ F

8
2, ϕ1(x ⊕ k) = S(x ⊕ k)

ϕ2 : F8
2 �→ F

32
2 , ϕ2(x ⊕ k) = T (x ⊕ k)

442 A. Biryukov et al.

Table 2. Correlation coefficient difference δ between the correlation of the correct
key and the correlation of the most likely key [4], for different Hamming weights of
the correct key; δ̄ and SEδ̄ are the mean and the standard error for a 95% confidence
interval, respectively. The leakages are acquired from an ARM Cortex-M3 processor.

Correct key δ̄ SEδ̄

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

ϕ1 0.146 0.126 0.108 0.156 0.126 0.960 0.153 0.140 0.084 0.126 0.020

ϕ2 0.104 0.072 0.143 0.074 0.070 0.126 0.078 0.044 0.028 0.082 0.028

(a) S-box (b) T-table

Fig. 2. Distribution of the Hamming weight of the output of the AES (a) S-box and
(b) T-table for all possible input combinations.

When using simulated leakages, the values of the correlation coefficient dif-
ference are 0.813 and 0.7 for ϕ1 and ϕ2, respectively. These values are the same
regardless of the correct key used. In the simulated environment, the leakages
of the two selection functions are very high and the difference between them is
about 14% of the first one. On the other hand, the mean correlation coefficient
difference δ̄ for different values of the correct key using leakages acquired from
an ARM Cortex-M3 processor is given in Table 2. The measurements were per-
formed at a sampling rate of 500 MS/s using assembly implementations of the
analyzed selection functions. Increasing the sampling rate to 1 GS/s does not
significantly improve the results. The mean correlation coefficient difference δ̄ is
positive for both selection functions, which means they leak enough information
about the secret key such that an attacker can recover the key byte using only
one key guess. In practice, the selection function based on the AES S-box leaks
about 50% more than the selection function based on the AES T-table. This
can be explained by the distribution of the Hamming weight of the two selection
functions for all possible input combinations (See Fig. 2).

The reader can easily observe in Fig. 2a that the distribution of values in
the case of the AES S-box follows a binomial distribution. On the other hand,
the distribution of values in the case of the AES T-table shown Fig. 2b does
not resemble a binomial distribution. Moreover, there are 14 out of 32 possible

Side-Channel Attacks Meet Secure Network Protocols 443

output values that never occur (i.e. 1, 2, 3, 4, 6, 7, 25, 26, 27, 28, 29, 30, 31, and
32). These differences between the distribution of the Hamming weights of the
output of the two selection functions ϕ1 and ϕ2 explain why the leakage of ϕ1

is greater than the leakage of ϕ2 as quantified using the correlation coefficient
difference. This means that a CPA attack against an implementation based on
the T-table strategy requires more effort (i.e. power traces) compared to a CPA
attack against an implementation based on the S-box strategy.

4 Generating the Evaluation Cases

In this section we describe the algorithm for symbolic processing of a given initial
state to determine the number of rounds required to recover the master key of
the AES. We used this algorithm to explore all possible attack cases and to
choose the relevant evaluation cases for our scenario. The algorithm relies on the
following symbolic representation of a byte situated at row i and column j of
the AES state at the start of round r:

sri,j =

⎧
⎪⎨

⎪⎩

0, the corresponding key byte can not be recovered
1, the corresponding key byte can be recovered
−n, n temporary key bytes can be recovered

Thus, the byte sri,j is variable if its symbolic representation is different
from 0 and fixed (constant) when its symbolic representation is 0. Due to the
MixColumns transformation, each column of the state at round r + 1 can be
expressed as a function of four bytes of the state at round r. At the start of
round r + 1 each byte of the state is updated using the following rules:

– if the number of variable input bytes is 0, then the symbolic representation
of the output byte is set to 0;

– if the number of variable input bytes is 1, then the symbolic representation
of the output byte is updated as follows:

• if the variable input byte is multiplied by {01} in the MixColumns trans-
formation, then the symbolic representation of the output byte is set to
−2p+1, where p is the number of independent input pairs. A new pair is
added to the output byte;

• else, the symbolic representation of the output byte is set to −2p;
– if the number of variable input bytes is 2 or 3, then the symbolic representa-

tion of the output byte is set to -1;
– if the number of variable input bytes is 4, then the symbolic representation

of the output byte is set to 1.

Besides updating the symbolic representation of the state, the algorithm
keeps a list of key pairs for each byte of the state and carries this list into
the next round. The algorithm stops when the symbolic representation of all
bytes in a round is 1. It outputs the symbolic representation of the state and
the associated key pairs. These can be used to compute the number of rounds

444 A. Biryukov et al.

State

Pairs

Round 1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

∅
∅
∅
∅

∅
∅
∅
∅

∅
∅
∅
∅

∅
∅
∅
∅

Round 2

−1

−2

−2

−1

0

0

0

0

0

0

0

0

0

0

0

0

∅
S1

S1

∅

∅
∅
∅
∅

∅
∅
∅
∅

∅
∅
∅
∅

Round 3

−1

−2

−2

−1

−2

−2

−1

−1

−4

−2

−2

−4

−2

−2

−4

−4

∅
S2

S2

∅

S3

S3

∅
∅

S4

S1

S1

S4

S1

S1

S5

S5

Round 4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

S6

S6

S6

S6

S6

S6

S6

S6

S7

S7

S7

S7

S7

S7

S7

S7

S1 = {1}; S2 = {2}; S3 = {3}; S4 = S1 ∪ {4} = {1, 4};

S5 = S1 ∪ {5} = {1, 5}; S6 = S3 ∪ S5 = {1, 3, 5}; S7 = S2 ∪ S4 = {1, 2, 4}

Fig. 3. Symbolic processing of an initial state.

required to recover the master key and the number of possible master keys. The
pseudocode for the algorithm is given in the full version of this paper.

Figure 3 gives a graphical representation of how the algorithm works when
only the first byte of the initial state is variable and known, while the other bytes
are fixed and unknown. By attacking the result of the SubByte transformation
applied to the first byte of the state in the first round, the key byte k0 is recovered.
This recovered key byte allows a carry of the attack into the second round where
four key bytes (k′

16, k
′
17, k

′
18, k

′
19) can be recovered by attacking the result of

the SubBytes transformation. Because the attacker cannot distinguish between
k′
17 and k′

18, a new pair S1 = {1} is added to the corresponding state bytes.
Then, the attacker targets the third round, where she can recover temporary
key bytes for all state bytes. The pair S1 from previous round affects all bytes
of the third and fourth column of the state and thus the corresponding pairs are

Table 3. Possible attack outcomes for different number of bytes (Bytes) controlled by
attacker. Rnds is the number of rounds that have to be attacked in order to recover
the master key. Prop. (%) is the proportion of a given evaluation case with respect
to all possible input configurations for a fixed number of bytes controlled by attacker.

Bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

min(Rnds) 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1

Prop. (%) 100 100 100 14.1 35.2 55.9 72.7 84.7 92.3 96.7 98.9 99.8 100 100 100 100

max(Rnds) 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 1

Prop. (%) 100 100 100 85.9 64.8 44.1 27.3 15.3 7.7 3.3 1.1 0.2 100 100 100 100

Trade-off ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Side-Channel Attacks Meet Secure Network Protocols 445

updated accordingly. In addition, new pairs are added when the attacker can
not distinguish between key candidates as shown in Fig. 3. In the fourth round,
the attacker is able to recover all round key bytes. Then, having all the round
key bytes of the fourth round, she can reverse the AES key schedule to get the
master key.

The attacker has to build 2p possible round keys, where p is the number of
independent pairs associated with the state bytes of the last attacked round.
For the example in Fig. 3, the number of possible keys is 25 because card(S) =
card(S6 ∪ S7) = card({1, 2, 3, 4, 5}) = 5. Thus, in addition to the number of
rounds to attack, the algorithm for symbolic processing of an initial state gives
the number of possible master keys to be recovered by an attacker. Though, the

Table 4. All evaluation cases with an example of a possible initial state for each
evaluation case. Bytes gives the number of bytes controlled by attacker; Rounds
gives the number of rounds that have to be attacked to recover the master key.

Case Bytes Rounds Possible initial state

0 1 4 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1 2 4 [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

2 3 4 [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3 4 3 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

4 4 4 [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

5 5 3 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

6 5 4 [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

7 6 3 [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

8 6 4 [1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

9 7 3 [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

10 7 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

11 8 3 [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

12 8 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0]

13 9 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

14 9 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0]

15 10 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

16 10 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

17 11 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

18 11 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0]

19 12 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

20 12 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1]

21 13 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]

22 14 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]

23 15 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

24 16 1 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

446 A. Biryukov et al.

attacker does not have to check all 2p candidates to see which one is the correct one
since she can discard the wrong candidates based on the difference between the
correlation coefficients of the first two key candidates as we will show in Sect. 5.

Using the algorithm for symbolic processing of an initial state we evaluated
all possible input combinations. More precisely, we considered all configurations
of the initial state when the attacker controls i bytes of the input for i ∈ [1, 16].
When the attacker controls i bytes, there are

(
16
i

)
possible input configurations.

This results in 216 − 1 possible configurations of the initial state in total. Then,
we classified these inputs into equivalence classes (evaluation cases) depending
on the number of rounds that must be attacked in order to recover the master
key. The results are summarized in Table 3. When the attacker controls between
four and eleven bytes of the input, a trade-off between the input configuration
and the number of rounds to be attacked is possible. When this is the case, the
proportion of possible input configurations shows which evaluation case is more
likely to appear if the initial state is chosen at random. Thus, when the attacker
controls only four or five bytes of the input, it is crucial to carefully choose an
input configuration from the limited set of possible input configurations that
minimize the number of rounds to be attacked.

We give an example of a possible initial state for each of the 25 distinct
evaluation cases identified after processing all possible input combinations in
Table 4. Any possible input configuration for the AES encryption falls into one
of these evaluation cases depending on the number of bytes controlled by attacker
and the number of rounds that must be attacked in order to recover the master
key.

5 The Attack

The attack we present in this section uses the symbolic representation of the AES
state (described in Sect. 4) in conjunction with CPA attacks to recover individual
bytes of the AES round keys. After executing Algorithm1, the attacker has all
round key bytes of round R. Thus, she is able to recover the master key of the
cipher by reversing the key schedule.

The algorithm follows the symbolic representation of the state to infer which
key bytes must be attacked and how many key candidates it should yield for
each attacked key byte. By tracking the pairs associated with the recovered key
bytes, the algorithm is able to discard all impossible round keys, thus saving
computational resources. Indeed, the algorithm uses an optimal number of CPA
attacks to recover the master key.

Initially, the set of known pairs is empty and all possible keys are considered
valid. The algorithm keeps track of 2p possible keys, where p is the total number
of independent pairs in the symbolic representation of the state at round R.

The main loop of the algorithm runs through all rounds that must be
attacked. At each round, the key bytes corresponding to variable state bytes
are attacked to recover one or more temporary key bytes or a round key byte.
Depending on the pairs associated with the byte to be attacked, there are three
possible cases:

Side-Channel Attacks Meet Secure Network Protocols 447

Algorithm 1. The attack
Require: state � Initial state: 0 – fixed byte, 1 – variable byte
Require: λ = (plaintexts, traces) � Recorded in the acquisition phase
1: state, pairs = Process(state) � Symbolic processing (Sect. 4)
2: known pairs = ∅, mapped pairs = ∅
3: keys[2p] = ∅, valid keys[2p] = True � p is the number of independent pairs
4: for r = 1 to R do � R is the number of rounds to be attacked
5: for i = 0 to 15 do
6: if state[r][i] �= 0 then
7: if pairs[r][i] == ∅ then � No pair
8: keys[0, · · · , 2p − 1][r][i] = CPA(λ, keys[0], r, i)
9: else if pairs[r][i] ⊆ known pairs then � Known pair(s)

10: if i /∈ mapped pairs[pairs[r][i]] then
11: mask = 0, temp keys = ∅, αmax = −1
12: for pair ∈ pairs[r][i] do
13: mask = mask ∨ 2pair−1

14: end for
15: for j ∈ [0, 2p − 1] do
16: if valid keys[j] and temp keys[j ∧ mask] == ∅ then
17: temp keys[j ∧ mask], α = CPA(λ, keys[j], r, i)
18: if α > αmax then
19: αmax = α
20: end if
21: end if
22: valid keys[j][r][i] = temp keys[j ∧ mask]
23: end for
24: for j ∈ [0, 2p − 1] do
25: if abs(state[r][i]) == 1 and α + β < αmax then
26: valid keys[j] = False
27: end if
28: end for
29: end if
30: else � New pair
31: mask = 2pairs[r][i]−new pair, k1 = k2 = ∅
32: for j ∈ [0, 2p − 1] do
33: if k1[j ∧ mask] == ∅ then
34: k1[j ∧ mask], k2[j ∧ mask] = CPA(λ, keys[j], r, i)
35: end if
36: if j ∧ 2new pair−1 then
37: keys[j][r][i] = k1[j ∧ mask], keys[j][r][i′] = k2[j ∧ mask]
38: else
39: keys[j][r][i′] = k2[j ∧ mask], keys[j][r][i′] = k1[j ∧ mask]
40: end if
41: end for
42: known pairs = known pairs ∪ new pair
43: Add (i, i′) to mapped pairs[new pair]
44: end if
45: end if
46: end for
47: end for
48: return keys[i], where valid keys[i] == True for i ∈ [0, 2p − 1]

448 A. Biryukov et al.

– No pair: If the symbolic representation does not have a pair associated with
the byte of the state to be used for the attack, then the algorithm will recover
a single key byte which is distributed to all possible keys.

– New pair: If one of the pairs associated with the byte under attack is not
present in the set of known pairs, then the algorithm will recover 2u possible
values for the corresponding key byte, where u is the number of known inde-
pendent pairs associated with the byte under attack. The number of known
pairs determines the number of CPA attacks to be performed. Using a mask
based on the existing pairs and a mask for the new pair, the algorithm cor-
rectly distributes the recovered key byte values to all possible keys. The new
pair is added to the set of known pairs and the two indexes of the state
affected by the recovered temporary keys are mapped to this new pair. This
mapping prevents the computation of the same temporary keys twice.

– Known pairs(s): In the case where the t independent pairs associated with
the key byte to be attacked are known but not mapped to the current state
byte, the algorithm performs 2t CPA attacks. Then, it distributes the attack
results (the recovered key and the difference between the correlation coef-
ficients of the first two most likely key candidates α) to the corresponding
bytes of all possible keys. Afterwards, the possible keys for which the value
of α is less than the maximum observed value αmax minus a threshold β are
marked as invalid. In this way, only the combination of keys yielding the high-
est correlation peak is selected. At this moment, the input pairs are solved
in the sense that the algorithm can uniquely assign each of the two tempo-
rary keys of a pair to the corresponding state bytes. As a consequence, the
algorithm will not further process the possible keys marked as invalid. Thus,
this optimization improves the algorithm efficiency by reducing the number
of performed CPA attacks.

Finally, the algorithm returns all possible keys which are marked as valid. If
the threshold β tends to zero, the algorithm will return only one possible key.
When the quality of the side-channel acquisition is good (i.e. high signal-to-noise
ratio) and there are enough power traces, the algorithm yields the correct key.

5.1 Optimality

We prove that our algorithm uses the minimum number of CPA attacks possible
to recover the master key and thus is optimal. Hence, the lower bounds provided
in Table 5 are optimal.

Theorem 1. Algorithm1 performs an optimal number of CPA attacks to recover
the 16-byte master key of the AES.

Proof. The only way an attacker can recover the 16-byte master key of the AES
is to recover all key bytes of a round r and then to reverse the key schedule.
Since the function that derives the round keys of round i from the round keys
of round i − 1 is bijective, knowledge of all round key bytes of a round r leads
to the knowledge of the master key.

Side-Channel Attacks Meet Secure Network Protocols 449

Let us assume that Algorithm 1 uses n individual CPA attacks for a given ini-
tial state and it is not optimal. Thus, there exists at least an algorithm that is
able to recover the master key using only m CPA attacks, with m < n. We show
next that such an algorithm does not exist. If there exists an algorithm that uses
less CPA attacks than Algorithm 1, then this algorithm attacks at least one key
byte less. But if it does so, then the attack can not be carried into later rounds any
more because the state byte corresponding to the unrecovered key yields unknown
and variable state bytes after MixColumns transformation. These bytes can not be
recovered using a CPA attack and thus the attack fails. As a consequence, there
is no algorithm that uses less CPA attacks than Algorithm1. �	

5.2 Choosing the Best Attack Strategy

For up to seven bytes controlled by attacker, our attack algorithm (Algorithm1)
is more efficient than the classic attack algorithm where all possible key bytes
are attacked to recover the master key. The gain varies between 15% and 68% of
the number of CPA attacks required by the classic attack. When an attacker has
control of more than seven input bytes, our algorithm performs the same number
of CPA attacks as the classic attack. At the same time, our algorithm gives a
unique master key, provided that there are available enough traces with a high
signal-to-noise ratio. This is not the case for a classic attack unless an additional
mechanism to discard invalid keys, as the one in Algorithm 1, is employed.

An attacker willing to reduce the duration of the offline phase of the attack
(without increasing the number of rounds that must be attacked) can use the
results in Table 5 in corroboration with the data in Table 3 to adjust the attack
accordingly. More precisely, if an attacker is able to control up to n bytes of the
AES input, she can choose to control m (m ≤ n) bytes of the input because
m variable bytes minimize the number of CPA attacks required to recover the
master key. This decision has to be made before performing the side-channel
acquisition since it influences the chosen inputs. Another argument in favor of

Table 5. The number of individual CPA attacks required to recover the master key for
different number of bytes (Bytes) controlled by attacker; min(Rnds)/max(Rnds)
and Bytes precisely identify the evaluation case. Classic attack does not use the
optimizations introduced in Algorithm1 to discard the invalid keys. Gain gives the
number of CPA attacks saved by an attacker using Algorithm1 over an attacker using
Classic attack.

Bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

min(Rnds) Clasic attack 150 104 188 80 66 52 46 40 41 42 43 44 45 46 47 16

Algorithm1 48 42 48 38 38 38 39 40 41 42 43 44 45 46 47 16

Gain 102 62 140 42 28 14 7 0 0 0 0 0 0 0 0 0

max(Rnds) Classic attack 150 104 188 110 72 50 51 52 53 54 55 56 45 46 47 16

Algorithm1 48 42 48 48 49 50 51 52 53 54 55 56 45 46 47 16

Gain 102 62 140 62 23 0 0 0 0 0 0 0 0 0 0 0

450 A. Biryukov et al.

using less variable input bytes is that the attack is much more difficult to detect
if the injected packets have fewer variable bytes and mimic the appearance of a
normal network traffic. For example, when n = 12, an attacker can choose m =
4, 5, or 6 to reduce the complexity of the offline attack from 44 to 38 individual
CPA attacks, while still attacking just three rounds. The result is an overall
improvement of the attack efficiency by 14% over the classic attack.

An even better decision can be made with the help of experimental results
for different configurations of the input from a similar target to the one to be
attacked in addition to the results presented so far. For this reason, in the next
section we determine experimentally the number of traces required to recover the
master key for each evaluation case using EM leakages from an ARM Cortex-M3
processor.

6 Results

For the experimental evaluation, we considered two unprotected implementa-
tions of the AES written in ANSI C. The first implementation uses the S-box
implementation strategy, while the second one uses the T-table implementa-
tion strategy. For each of the 25 evaluation cases we measured up to 2000 EM
traces. The acquisition took about 90 min for an evaluation case. The samples
were split into files corresponding to the AES round number. Then, we mounted
the attack presented in Algorithm 1 using an increasing number of traces in the
interval [100, 2000] with a step of 100 traces until the guessing entropy converged
to zero.

For each implementation we considered two selection functions based on the
AES S-box and T-table, respectively. The minimum number of traces for which
the guessing entropy becomes zero and remains stable is pictorially shown in
Fig. 4 for each evaluation case. All attacks recovered the full 16-byte master key
with less than 1600 EM traces. In general, the master key was recovered with
fewer traces when the selection function perfectly matched the implementation
strategy. Though, our results show that full key recovery is possible even when
the selection function does not perfectly match the attacked implementation. The
attacks on the S-box implementation using the T-table selection function needed
204 more traces on average to recover the master key compared to the attacks
on the same implementation using the S-box selection function. Similarly, using
the S-box selection function instead of the T-table selection function to attack
the implementation based on the T-table strategy required 354 more traces on
average. For details on the exact number of traces required to recover the master
key for each evaluation case and attack scenario we refer the reader to the full
version of this paper.

Countermeasures. Our experimental results show that side-channel coun-
termeasures such as masking must be employed in order to protect the AES
implementations based on lookup tables (S-box and T-table implementation
strategies) even in a communication protocol scenario, when the adversary has

Side-Channel Attacks Meet Secure Network Protocols 451

Fig. 4. The number of EM traces required to fully recover the master key. Scenarios:
(a) S-box implementation, S-box selection function; (b) S-box implementation, T-table
selection function; (c) T-table implementation, T-table selection function; (d) T-table
implementation, S-box selection function.

a limited control of the input. Masking non-linear lookup tables is a challeng-
ing task since it adds a considerable penalty on execution time and memory
usage [33].

Although not present in many cryptographic libraries due to their limitations
(i.e. can not be used in a feedback mode of operation such as CCM), the bitsliced
implementations have a lower CPA leakage than implementations using lookup
tables [4], but they are still vulnerable to DPA attacks [3].

A lightweight primitive (block cipher or authenticated encryption), particu-
larly one designed for efficient masking, is a good replacement for the AES-CCM
when considering side-channel protection.

Other countermeasures, such as a key refreshing mechanism, can support a
defense in depth approach. However, any additional countermeasure affects the
overall efficiency of an IoT protocol and consequently the most effective ones
(i.e. masking) must have priority given the resource constraints.

7 Conclusions

In this paper, we presented an extensive security analysis of AES software imple-
mentations against CPA attacks in the context of network protocols. In this sce-
nario the attacker has control of several input bytes, while the remaining input
bytes are fixed. To asses the resilience of AES implementations to all possible
input combinations, we presented an algorithm for symbolic processing of the
cipher state. Then, we classified all possible inputs into 25 independent evalua-
tion cases depending on the number of input bytes controlled by attacker and
the number of rounds that must be attacked to recover the master key. Finally,
we described an optimal algorithm that recovers the master key by mounting

452 A. Biryukov et al.

the minimum number of CPA attacks possible. It makes clever decisions based
on the set of key pairs that affects the key byte under attack and the correlation
coefficient of possible key candidates to discard impossible keys.

We showed that unprotected implementations of the AES based on the S-box
and T-table strategies can be broken even when the attacker controls only one
input byte of the cipher with less than 1600 electromagnetic traces acquired
from a 32-bit ARM Cortex-M3 processor in about one hour. Knowledge of the
implementation strategy does not significantly improve the attack outcome, nor
does it reduce the attack complexity. Thus, unprotected implementations of the
AES should not be used to secure the communication between end devices in
network protocols. Care must be taken when using implementations of the AES
from popular open-source cryptographic libraries since most of them are not
protected against side-channel attacks.

Acknowledgements. We would like to thank the ACNS 2017 reviewers for their
valuable feedback and Johann Großschädl for proofreading the final version of this
paper. The work of Daniel Dinu is supported by the CORE project ACRYPT (ID
C12-15-4009992) funded by the Fonds National de la Recherche (FNR) Luxembourg.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5 4

2. ARM. mbed TLS. https://tls.mbed.org/. Accessed Apr 2017
3. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-

ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293,
pp. 599–619. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 30

4. Biryukov, A., Dinu, D., Großschädl, J.: Correlation power analysis of lightweight
block ciphers: from theory to practice. In: Manulis, M., Sadeghi, A.-R., Schneider,
S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 537–557. Springer, Cham (2016). doi:10.
1007/978-3-319-39555-5 29

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

6. cryptlib. The cryptlib Security Software Development Toolkit. http://www.
cryptlib.com/. Accessed Apr 2017

7. Crypto++. Crypto++: a free C++ class library of cryptographic schemes. https://
www.cryptopp.com/. Accessed Apr 2017

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

9. Dworkin, M.J.: Recommendation for block cipher modes of operation: the CCM
mode for authentication and confidentiality. NIST Special Publication 800-38C
(2007)

10. GitHub. libtomcrypt: a fairly comprehensive, modular and portable cryptographic
toolkit. https://github.com/libtom/libtomcrypt. Accessed Apr 2017

11. GitHub. mbed TLS - An open source, portable, easy to use, readable and flexible
SSL library. https://github.com/ARMmbed/mbedtls/blob/development/library/
aes.c. Accessed Apr 2017

http://dx.doi.org/10.1007/3-540-36400-5_4
https://tls.mbed.org/
http://dx.doi.org/10.1007/978-3-662-48324-4_30
http://dx.doi.org/10.1007/978-3-319-39555-5_29
http://dx.doi.org/10.1007/978-3-319-39555-5_29
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://www.cryptlib.com/
http://www.cryptlib.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://github.com/libtom/libtomcrypt
https://github.com/ARMmbed/mbedtls/blob/development/library/aes.c
https://github.com/ARMmbed/mbedtls/blob/development/library/aes.c

Side-Channel Attacks Meet Secure Network Protocols 453

12. GitHub. OpenSSL - TLS/SSL and crypto library. https://github.com/openssl/
openssl/blob/master/crypto/aes/aes core.c. Accessed Apr 2017

13. Hofemeier, G., Chesebrough, R.: Introduction to intel AES-NI and intel secure key
instructions. Technical report. https://software.intel.com/sites/default/files/m/d/
4/1/d/8/Introduction to Intel Secure Key Instructions.pdf. Accessed Apr 2017

14. Housley, R.: Using Advanced Encryption Standard (AES) CCM Mode with IPsec
Encapsulating Security Payload (ESP). RFC 4309, December 2005. https://tools.
ietf.org/html/rfc4309

15. IEEE. IEEE Standard for Low-Rate Wireless Networks. https://standards.ieee.
org/about/get/802/802.15.html

16. Jaffe, J.: A first-order DPA attack against AES in counter mode with unknown
initial counter. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 1–13. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 1

17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

18. Libgcrypt. Libgcrypt: a general purpose cryptographic library based on the code
from GnuPG. https://www.gnu.org/software/libgcrypt/. Accessed Apr 2017

19. libsodium. The Sodium crypto library (libsodium). https://download.libsodium.
org/doc/. Accessed Apr 2017

20. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: Armageddon: cache
attacks on mobile devices. In: Holz, T., Savage, S. (eds.) 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 549–
564. USENIX Association (2016)

21. LoRa Alliance. Wide Area Networks for IoT. https://www.lora-alliance.org/.
Accessed Apr 2017

22. Nettle. Nettle - a low-level cryptographic library. http://www.lysator.liu.se/nisse/
nettle/. Accessed Apr 2017

23. NIST. Specification for the Advanced Encryption Standard (AES). Federal Infor-
mation Processing Standards Publication 197 (2001)

24. O’Flynn, C., Chen, Z.: Power Analysis Attacks Against IEEE 802.15.4 Nodes. In:
Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 55–70.
Springer, Cham (2016). doi:10.1007/978-3-319-43283-0 4

25. OpenSSL. Cryptography and SSL/TLS Toolkit. https://www.openssl.org/.
Accessed Apr 2017

26. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). doi:10.1007/11605805 1

27. Randombit. mbed TLS. https://botan.randombit.net/. Accessed Apr 2017
28. Saab, S., Rohatgi, P., Hampel, C.: Side-channel protections for cryptographic

instruction set extensions. Cryptology ePrint Archive, Report 2016/700 (2016).
http://eprint.iacr.org/2016/700

29. Sastry, N., Wagner, D.: Security considerations for IEEE 802.15.4 networks. In:
Jakobsson, M., Perrig, A. (eds.) Proceedings of the 2004 ACM Workshop on Wire-
less Security, Philadelphia, PA, USA, 1 October 2004, pp. 32–42. ACM (2004)

30. Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4. In: Selected
Areas in Cryptography-SAC (2016)

31. Song, J., Poovendran, R., Lee, J., Iwata, T.: The AES-CMAC algorithm. RFC
4493, June 2006. https://tools.ietf.org/html/rfc4493

32. STMicroelectronics. STM32 MCU Nucleo. http://www.st.com/en/
evaluation-tools/stm32-mcu-nucleo.html. Accessed Apr 2017

https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Introduction_to_Intel_Secure_Key_Instructions.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Introduction_to_Intel_Secure_Key_Instructions.pdf
https://tools.ietf.org/html/rfc4309
https://tools.ietf.org/html/rfc4309
https://standards.ieee.org/about/get/802/802.15.html
https://standards.ieee.org/about/get/802/802.15.html
http://dx.doi.org/10.1007/978-3-540-74735-2_1
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
https://www.gnu.org/software/libgcrypt/
https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
https://www.lora-alliance.org/
http://www.lysator.liu.se/ nisse/nettle/
http://www.lysator.liu.se/ nisse/nettle/
http://dx.doi.org/10.1007/978-3-319-43283-0_4
https://www.openssl.org/
http://dx.doi.org/10.1007/11605805_1
https://botan.randombit.net/
http://eprint.iacr.org/2016/700
https://tools.ietf.org/html/rfc4493
http://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html
http://www.st.com/en/evaluation-tools/stm32-mcu-nucleo.html

454 A. Biryukov et al.

33. Vadnala, P.K.: Time-memory trade-offs for side-channel resistant implementations
of block ciphers. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp.
115–130. Springer, Cham (2017). doi:10.1007/978-3-319-52153-4 7

34. Whiting, D., Housley, R., and N. Ferguson. Counter with CBC-MAC (CCM). RFC
3610, September 2003. https://tools.ietf.org/html/rfc3610

35. wolfSSL. wolfCrypt Embedded Crypto Engine. https://www.wolfssl.com/wolfSSL/
Products-wolfcrypt.html. Accessed Apr 2017

http://dx.doi.org/10.1007/978-3-319-52153-4_7
https://tools.ietf.org/html/rfc3610
https://www.wolfssl.com/wolfSSL/Products-wolfcrypt.html
https://www.wolfssl.com/wolfSSL/Products-wolfcrypt.html

Cryptographic Protocol

Lattice-Based DAPS and Generalizations:
Self-enforcement in Signature Schemes

Dan Boneh(B), Sam Kim, and Valeria Nikolaenko

Stanford University, Stanford, USA
dabo@cs.stanford.edu

Abstract. Double authentication preventing signatures (DAPS) is a
mechanism, due to Poettering and Stebila, for protecting certificate
authorities (CAs) from coercion. We construct the first lattice-based
DAPS signatures, thereby providing the first post-quantum DAPS sys-
tem. We go further and generalize DAPS to a more general mechanism
we call predicate authentication preventing signatures (PAPS). Here, for
a given k-ary predicate φ, a PAPS system for φ is regular signature
scheme. However, if the signer ever signs k messages m1, . . . , mk such
that φ(m1, . . . , mk) is true then these k signatures reveal the signer’s
secret key. This self-enforcement mechanism incentivizes the signer to
never sign conflicting messages, namely messages that satisfy the predi-
cate φ. The k conflicting messages can be signed at different times and
the signatures may be generated independently of one another. We fur-
ther generalize to the case when the signatures are generated by multiple
signers. We motivate these primitives, give precise definitions, and pro-
vide several constructions. These primitives are challenging to construct
and give rise to many new elegant open research questions.

1 Introduction

Suppose a web site such as facebook.com buys certificates for its domain from a
certificate authority (CA) called xyz. These certificates enable web browsers to
establish a (one-sided) authenticated session with facebook.com. Sometime later,
a law enforcement agency or a nation state that has jurisdiction over the CA com-
pels xyz to secretly issue a fresh certificate for facebook.com. The CA has no
choice but to comply. The agency can then use this issued certificate in a man-
in-the-middle attack on facebook.com. Web users have no way to detect that this
is happening and that their traffic is being intercepted. We emphasize that the
rogue certificate is issued by the same CA from which facebook.com normally buys
its certificates. The only user-side signal is that a previously unseen public-key is
being served in a facebook.com certificate, but this happens frequently under nor-
mal operation at a large site and would not generally look suspicious.

Some technologies, such as certificate transparency (CT) [LLK15] as well
as CONIKS [MBB+15], are designed to detect situations where a CA such as
xyz issues a fake certificate for a domain. These technologies empower an origin
domain, facebook.com in this case, to detect that a fake certificate was issued for
its domain.
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 457–477, 2017.
DOI: 10.1007/978-3-319-61204-1 23

http://facebook.com/
http://facebook.com/
http://facebook.com/
http://facebook.com/
http://facebook.com/
http://facebook.com/
http://facebook.com/

458 D. Boneh et al.

Poettering and Stebila [PS14] proposed a very different defense against the
scenario described above. Their idea, called double-authentication-preventing
signatures, or DAPS for short, is as follows: suppose xyz signs all its certificates
using a signature scheme where the signing algorithm uses the secret signing
key sk to sign a pair (subj, payload). Here subj is the domain-name to which the
certificate is issued and payload is all other fields in the certificate. The resulting
signature σ can be verified as a standard digital signature. The key property
of DAPS is the following: suppose xyz publishes two valid signatures σ1 and
σ2 for the same subj but for different payloads, say one on (subj, payload1) and
another on (subj, payload2). Then these two signatures enable anyone to expose
xyz’s secret signing key sk. The point is that xyz can argue that it should not
be forced to issue the rogue certificate for facebook.com because that would
expose its signing key thereby causing massive collateral damage to all of xyz’s
customers. Whether this argument is effective remains to be seen, but the idea
itself is interesting and, as we show below, leads to interesting and challenging
cryptographic questions.

How to Use DAPS. There are many practical holes in the basic DAPS proposal
described above that prevent it from being used as is, but with a bit of thought
they can be addressed. However, our goal here is not to argue that DAPS will be
deployed in practice, but rather to motivate this as an interesting cryptographic
question. Towards this goal, we examine broader applications of DAPS as well
as an elegant generalization.

Other Applications for DAPS. Beyond certificates, DAPS can be a useful
“self-enforcement” security mechanism. For example, suppose Eve owns a certain
patent and wants to sell the rights to the patent. Bob wants to buy the patent
from Eve, but he is worried that Eve will sell the patent to multiple people.
Using DAPS, Eve can use the patent number as the subject and use “owned
by Bob” as the payload. If she tries to sell the same patent to two different
people she will end up signing two pairs of messages with the same subject, but
different payload. The resulting two signatures can be combined to expose Eve’s
private key. If this private key is of high value to Eve then this self-enforcement
mechanism will prevent her from double-selling the same patent to two people.
This way, Bob has some confidence in the exclusivity of the deal with Eve.

PAPS: DAPS for General Predicates. The previous paragraph motivates a
more general elegant primitive which we call predicate-authentication-preventing
signatures, or PAPS for short. Let M be a message space and let φ : Mk → {0, 1}
be a predicate. A PAPS scheme for φ lets the signer sign any message m ∈ M,
just as in a regular signature scheme. However, if over the life of the secret key,
the signer signs messages m1, . . . , mk ∈ M such that φ(m1, . . . , mk) = 1 then
these k signatures can be combined to expose the signer’s secret signing key. This
secret key extraction should work no matter how the k signatures are generated: as
long as all k signatures are valid, it should be possible to extract the secret key. For
security, as long as the predicate φ is never satisfied, the signature scheme should be
existentially unforgeable under a chosen message attack, as for regular signatures.

http://facebook.com/

Lattice-Based DAPS and Generalizations 459

Notice that DAPS is a special case of PAPS: the key space M is a set of
pairs M = S × P and the predicate φdaps is simply the 2-ary predicate:

φdaps

(
(x1, y1), (x2, y2)

)
= 1 ⇔ x1 = x2 and y1 �= y2.

More general predicates come up naturally. For example, suppose a web site
owns k machines and it wants to generate a different key-pair for each machine,
necessitating a different certificate for each machine. The analogue of DAPS is
a k-way DAPS where the message space M is again M = S × P, but now the
predicate φ is the (k + 1)-ary predicate

φ
(

(x1, y1), . . . , (xk+1, yk+1)
)

= 1 ⇔
{

x1 = · · · = xk+1 and
y1, . . . , yk+1 are all distinct.

}

This lets the site use a different certificate for each of its k machines, but if
another certificate is issued then the CA’s secret key is exposed. We give a
construction for this predicate in Sect. 5 as well as for several other predicates.

Proving security of a PAPS construction is non trivial. For example, suppose
the message space is M = Fp for some prime p. Consider the 3-ary predicate
φ defined as φ(x, y, z) = 1 if and only if x + y + z = 0. That is, the secret key
should leak if the signer ever signs three messages whose sum is zero. However,
if the signer never signs three messages satisfying this condition, the signature
scheme should be existentially unforgeable. To prove existential unforgeability,
the simulator must interact with the adversary, answering all the adversary’s
adaptive signature queries, and using the adversary’s existential forgery to solve
a challenge problem. The problem is that, because the adversary’s first two
queries can be for arbitrary messages, the simulator must be prepared to provide
a signature for all messages m ∈ M. In particular, the simulator will know the
signature on three messages x, y, z satisfying x + y + z = 0. But then the
simulator can extract the secret signing key, and can produce any forgery by
itself, meaning that the adversary is not helping the simulator. Nevertheless, in
Sect. 5 we are able to prove security for several generalized predicates, though
not for the 3-way summation predicate.

A Further Generalization: Multi-signer PAPS. We can further generalize
the notion of PAPS to the setting of k signers where each signer has its own
signing/public key-pair. As before, let φ be a k-ary predicate φ : Mk → {0, 1}.
Suppose that for i = 1, . . . , k signer number i signs message mi ∈ M. Then, if
φ(m1, . . . , mj) = 1, then these k signatures (along with the k messages and k
public keys) can be used to expose some secret s chosen at setup time.

Multi-signer PAPS come up naturally when considering certificates. Sup-
pose that the agency, instead of asking xyz to issue the rogue certificate for
facebook.com, it asks a different CA to provide a certificate for facebook.com.
We are now in a 2-signer scenario. If the predicate φdaps can be made to work
on the two signatures, despite them being from different CAs, then going to a
different CA will not help the agency. We define multi-signer PAPS in Sect. 6
where we also give several constructions.

http://facebook.com/
http://facebook.com/

460 D. Boneh et al.

1.1 Contributions

In this work we build a lattice-based DAPS construction based on Short Integer
Solutions (SIS) problem and the Learning with Errors (LWE) problem. Our con-
struction builds upon the structure of the fully homomorphic signature scheme
of Gorbunov et al. [GVW15]. In their construction, a signature consists of a
preimage of a specially formed target matrix of a lattice trapdoor function. To
make key leakage a feature rather than a form of insecurity, we carefully hash the
messages to derive the target matrix such that two different message of the same
subject leads to two matrices for which two preimage matrices leak a trapdoor.
As in [PS14], we prove security in the random oracle model.

Also, as we discuss above, we extend DAPS to a more general primitive that
we call predicate authentication preventing signatures (PAPS). In this setting,
signatures of any messages that satisfy a certain predicate defined on these mes-
sages leak a signer’s secret key. To motivate the notion, we show that for certain
simple, but useful predicates, PAPS can already be constructed from DAPS.

Finally, we further extend PAPS to a multi-authority settings where signa-
tures from different signers can also leak some shared private information. We
give formal definitions in this setting and show that our lattice DAPS construc-
tion can be extended to this setting as well using the property that two short
preimages of a specifically formed target matrix of lattice trapdoor functions can
be merged to give a trapdoor of an extended lattice.

1.2 Related Work

Previous Works on DAPS. The notion of double-authentication-preventing sig-
natures was introduced by Poettering and Stabila [PS14]. They provide a con-
struction based on extractable trapdoor functions that can be constructed using
the group of quadratic residues modulo a Blum integer. Subsequently, Bellare,
Poettering, and Stebila [BPS15] gave a generic construction based on trapdoor
identification schemes where the private randomness committed by the prover
can be extracted using a trapdoor. We note that although lattice-based identi-
fication schemes have appeared in the literature [Lyu08,Lyu12], the construc-
tion from [PS14] does not directly give a lattice-based DAPS construction since
lattice trapdoors are randomized with multiple preimages. Constructing DAPS
from lattice-based assumptions is an interesting and important goal since they
provide hardness even against quantum computers, a setting for which the pre-
vious two works do not provide security.

Delegating Restricted Signing Keys. A number of works in the literature have
focused on schemes that allow an authority to delegate signing keys with
some restricted functionalities (with function privacy). These include attribute-
based signatures [MPR11], functional signatures [BGI14] and policy-based signa-
ture [BF14]. In these schemes, a signer is restricted to sign only certain messages
that satisfy a predicate requirement. One difference between these notions and
DAPS/PAPS is that in the former, the restriction is done by a central authority

Lattice-Based DAPS and Generalizations 461

to restrict other signers, while in the latter, the authority restricts itself as a
self-enforcement mechanism. Another major difference is that in the former, the
restriction is determined with respect to each individual message while in the
latter, the restriction is determined by all of the past messages that the signer
signs, which is what makes DAPS and PAPS an interesting theoretical notion.

Ring/Group Signatures. A similar notion of double-signing preventing mecha-
nism exists in the setting of group signatures [TX03] and ring signatures [RST01,
BKM06] called Revocable-iff-Linked (RiffL) signatures [ALSY06]. In this setting,
a signer can sign on behalf of a group; however, if it signs twice or more, then
the identity of the signer is leaked. As in the discussion of the previous para-
graph, one difference in the DAPS setting compared to RiffL is that DAPS is
a self-enforcing mechanism, which means that the linkability is not enforced by
another trusted authority of the system, but by itself. However, the more funda-
mental difference is that in DAPS, the act of double-signing immediately gives
away the signing key or private data rather than simply leaking the information
that it double signed. As was discussed in [PS14], there are instances where sim-
ply leaking the fact that a CA double signed may not be enough of a penalty
(i.e. the 2011 Comodo incident1) and DAPS is designed to cope with these type
of situations.

2 Preliminaries

Basic Notation. For an integer N , we write [N] to denote the set {1, ..., N}.
We use bold lowercase letters (e.g., x,w) to denote vectors and bold uppercase
letters (e.g., A,G) to denote matrices. For a matrix A, we use AT to denote
the trasnpose of A and for a vector x, we use ‖x‖ to denote its Euclidean norm.
In general, we write λ for the security parameters. We say a function ε(λ) is
negligible in λ, if ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ) to denote
a negligible function in λ. We say that an event occurs with negligible probability
if the probabilty of the event is negl(λ), and an event occurs with overwhelming
probability if its complement occurs with negligible probability.

Entropy and Statistical Distance. The statistical distance between two random
variables X and Y over a finite domain Ω is defined as

SD(X,Y) =
1
2

∑

ω∈Ω

|Pr[X = ω] − Pr[Y = ω]| .

We say that two distribution ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N

are

statistically indistinguishable, denoted
stat≈ , if it holds that SD(Xλ, Yλ) is negligi-

ble in λ. The min-entropy of a random variable X, denoted H∞(X|Y), is defined
as

H∞(X|Y) def= − log
(

E
y←Y

[
max

x
Pr[X = x|Y = y]

])

1 https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html.

https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

462 D. Boneh et al.

The optimal probability of an unbounded adversary guessing X given the cor-
related value Y is 2−H∞(X|Y).

2.1 Circular Security

In this section we briefly recall the notion of circular security. A public key encryp-
tion (PKE) consists of three algorithms Πpke = (PKE.KeyGen,PKE.Encrypt,
PKE.Decrypt) where PKE.KeyGen takes in a unary representation of the security
parameter λ and outputs a public and secret key pair (pk, sk). The encryption
algorithm takes in a public key pk and a message m and generates a ciphertext ct.
The decryption algorithm takes in a secret key sk and a ciphertext ct and out-
puts a message m. For correctness, we require that for all λ ∈ N, (pk, sk) ←
PKE.KeyGen(1λ), we have that PKE.Decrypt(sk,PKE.KeyGen(pk,m)) = m with
overwhelming probability.

Definition 1 (Circular Security [CL01,BRS02]). A public-key encryption
scheme Πpke is circular secure if for all efficient adversaries A, there is a negli-
gible function negl(λ) such that

AdvcircΠpke,A(λ) def=
∣
∣
∣Pr[Expt(0)PKE,A(λ) = 1] − Pr[Expt(1)PKE,A(λ) = 1]

∣
∣
∣ ≤ negl(λ),

where for each b ∈ {0, 1}, and λ ∈ N, the experient Expt
(b)
PKE,A(λ) is defined as

follows:

1. (pk, sk) ← PKE.KeyGen(1λ).
2. ct0 ← PKE.Encrypt(pk, 0|sk|).
3. ct1 ← PKE.Encrypt(pk, sk).
4. b′ ← A(pk, ctb).
5. Output b′ ∈ {0, 1}.

Circular security assumption on lattice-based cryptosystems have been used
extensively throughout the literature [Gen09,BV11,BV14,BGV12,GSW13] with
some positive results showing that some common forms of lattice-based encryp-
tion schemes can be shown to be circular secure [ACPS09,ASP12].

2.2 Broadcast Encryption

A broadcast encryption scheme BE [FN93] consists of a tuple of algorithms
Πbe = (BE.KeyGen,BE.Encrypt,BE.Decrypt) defined as follows:

1. BE.KeyGen(1λ, N) → ({ski}i∈[N] , pk): On input the security parameter λ and
a positive integer N ∈ N, the key generation algorithm outputs a set of secret
keys {ski}i∈[N] and a public key pk.

2. BE.Encrypt(pk,msg, T) → ctT : On input a public key pk, a message m, and
a set of intended recipients T ⊆ [N], the encryption algorithm outputs a
ciphertext ctT .

3. BE.Decrypt(ski, ct) → m′: On input a secret key ski and a ciphertext ct, the
decryption algorithm outputs a message m′.

Lattice-Based DAPS and Generalizations 463

Correctness. For correctness we require that for all λ ∈ N, N ∈ N, T ⊆ [N],
({ski}i∈[N] , pk) ← BE.KeyGen(1λ, N), we have BE.Decrypt(ski,BE.Encrypt(pk,
ct, T)) = m for all i ∈ T .

Security. For broadcast encryption scheme, we define the following security
notion.

Definition 2. A broadcast encryption scheme Πbe is secure if for all efficient
adversaries A, there is a negligible function negl(λ) such that

AdvΠbe,A(λ) def=
∣
∣
∣Pr[Expt(0)BE,A(λ) = 1] − Pr[Expt(1)BE,A(λ) = 1]

∣
∣
∣ ≤ negl(λ),

where for each b ∈ {0, 1}, and λ ∈ N, the experiment Expt
(b)
BE,A is defined as

follows:

– ({ski}i∈[N] , pk) ← BE.KeyGen(1λ, N).
– (T,m0,m1) ← A0(pk).
– ctb ← BE.Encrypt(pk,mb).
– b′ ← A1({ski}i∈[N]\T , ctb).
– Output b′ ∈ {0, 1}.

A number of constructions for broadcast encryption schemes have been pro-
posed in the literature [FN93,BGW05,BWZ14] with short ciphertext where the
length of the ciphertext scales sublinearly in the number of users in the system.
For linear length ciphertext, a broadcast encryption scheme can be constructed
generically from a regular public key encryption scheme by concatenating the N
instances of the public key encryption schemes.

2.3 Background on Lattices

In this section, we describe some of the results and notations for lattice-based
cryptography that are used throughout the paper.

Lattice and Gaussians. Let n, q,m be positive integers. For a matrix A ∈ Z
n×m
q ,

we let Λ⊥
q (A) denote the lattice {x ∈ Z

m : A · x = 0 mod q}. More generally,
for u ∈ Z

n
q , we let Λu

q (A) denote the shifted lattice {x ∈ Z
m : A · x = u mod q}.

Regev [Reg09] defined a natural distribution on Λu
q (A) called a discrete

Gaussian parameterized by a scalar s > 0. We use Ds(Λu
q (A)) to denote this dis-

tribution. For a random matrix A ∈ Z
n×m
q and s > Õ(

√
n), a vector x sampled

from Ds(Λu
q (A)) has Euclidean norm less than s

√
m with overwhelming probabil-

ity. For a matrix U = (u1| . . . |uk) ∈ Z
n×k
q , we let Ds(ΛU

q (A)) be a distribution
on matrices in Z

m×k where the i-th column is sampled from Ds(Λui
q (A)) for

i = 1, ..., k.

464 D. Boneh et al.

The SIS Problem. Let n,m, q, β be positive integers. In the SIS(n,m, q, β) prob-
lem, the adversary is given a uniformly random matrix A ∈ Z

n×m
q and its goal

is to find a vector u ∈ Z
m
q with u �= 0 and ‖u‖ ≤ β such that A · u = 0.

The SIS problem is known to be as hard as certain worst-case lattice prob-
lems. In particular, for any m = poly(n), any β > 0, and any sufficiently large
q ≥ β · poly(n), solving SIS(n,m, q, β) is at least as hard as approximating cer-
tain worst-case lattice problems such as the Shortest Vector Problem (GapSVP)
and the Short Independent Vectors Problem (SIVP) on n-dimensional lattices
to within β · poly(n) factor [Ajt96,Mic04,MR07,MP13]. The hardness of SIS is
also implied by the LWE problem.

The LWE Problem. Let n,m, q be positive integers and χ a noise distribution
over Zq. In the LWE(n,m, q, χ) problem, the adversary’s goal is to distinguish
between the two distributions:

(A,AT s + e) and (A,u)

where A $← Z
n×m
q , s $← Z

n
q , e ← χm, and u $← Z

m
q are uniformly sampled.

We say that a noise distribution χ is B-bounded if its support is in [−B,B].
For any fixed d > 0, and sufficiently large q, taking χ as a certain q/nd-bounded
distribution, the LWE(n,m, q, χ) problem is as hard as approximating certain
worst-case lattice problems such as GapSVP and SIVP on n-dimensional lattices
to within poly(n) factor [Reg09,Pei09,ACPS09,MM11,MP12,BLP+13].

Matrix Norms. For a matrix R ∈ Z
k×m, we define the matrix norms:

– ‖R‖ denotes the �2 length of the longest column of R.
– ‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that always ‖R‖ ≤ ‖R‖2 ≤ √
k‖R‖ and that ‖R · S‖2 ≤ ‖R‖2 · ‖S‖2.

Lattice Trapdoors. Here, we review the known results about lattice trapdoors
which make the SIS and LWE problems easy to solve with knowledge such trap-
door. For this work, it is convenient to work with the notion of “gadget” based
trapdoors as formalized in [MP12]. In such setting, there is a structured public
gadget matrix G ∈ Z

n×n�
q for � = log q�. A trapdoor for a matrix A ∈ Z

n×m
q is

an integer matrix R ∈ Z
n×n�
q such that AR = HG for some invertible matrix

H ∈ Z
n×n
q . The quality of a trapdoor is measured by the operator norm of R

where the smaller norm ‖R‖2 means higher quality. We will often use the symbol
TA to denote the trapdoor matrix R.

Since the exact constructions and algorithm details of such trapdoors are not
needed for this work, we abstract out these details and summarize the relevant
results in the lemma below.

Lemma 1 ([Ajt96,GPV08,AP11,MP12]). There exist polynomial time algo-
rithms TrapGen,SamPre,Sam, Invert such that the following holds. Given positive
integers n ≥ 1, q ≥ 2, there exists m∗ = O(n log q) such that for k = poly(n), we
have:

Lattice-Based DAPS and Generalizations 465

– TrapGen(1n, 1m, q) → (A,TA): A randomized algorithm that when m ≥ m∗,
outputs a full-rank matrix A ∈ Z

n×m
q and a trapdoor TA ∈ Z

m×n� such that
A is statistically close to uniform and ‖R‖2 = O(

√
m).

– SamPre(A,TA,V, s) → U: A randomized algorithm that on input A ∈ Z
n×m
q ,

a trapdoor TA of A, a matrix V ∈ Z
m×k
q , and s = Õ(‖TA‖2), outputs a

random sample U ∈ Z
m×k from the distribution Ds(ΛV

q (A)).
– Sam(1m, 1k, q, s) → U: A randomized algorithm that samples a matrix U ∈

Z
m×k such that each of its column is sampled from DZm,s. We have that for

s ≥ ω(
√

log m) the matrix V = A ·U is statistically close to a uniform matrix
in Z

n×k
q and furthermore, the distribution of U given V is Ds(ΛV

q (A)).
– Invert(A,TA,b) → s: A deterministic algorithm that on input A ∈ Z

n×m
q , a

trapdoor TA of A, and an LWE vector b = AT s+ e for ‖e‖ ≤ q/O(‖TA‖2),
outputs the unique secret vector s.

To simplify the notation, thoughout the paper, we will always assume that
the gadget matrix G has the same width m as the matrix A output by the
algorithm TrapGen.

2.4 FRD Encoding

In this section, we review an encoding function H : Z
n
q → Z

n×n
q that maps

vectors in Z
n
q to invertible matrices in Z

n×n
q with the property that for any two

distinct vectors u and v, the difference between the outputs H(u) and H(v) is
never singular, i.e., det(H(u) − H(v)) �= 0.

Definition 3. Let q be a prime and n a positive integer. We say that an effi-
ciently computable function H : Z

n
q → Z

n×n
q is a full-rank difference (FRD)

encoding scheme if for all distinct u,v ∈ Z
n
q , the matrix H(u) − H(v) ∈ Z

n×n
q

is full rank.

This notion was formalized in [ABB10] and an injective encoding function
satisfying the definition was explicitly constructed by generating an additive sub-
group GFRD of full-rank matrices by embedding ring multiplications into matrices
(similar techniques were used in [CD09,PR06,LM06]). We do not explicitly pro-
vide the construction here and mainly use the result as a black box throughout
this work.

3 Predicate-Authentication-Preventing Signatures

In this section, we formally define the notion of predicate authentication pre-
venting signatures (PAPS) which generalizes the notion of double authentication
preventing signatures (DAPS) that was introduced in [PS14].

466 D. Boneh et al.

3.1 PAPS Framework

The syntax for predicate-authentication-preventing signatures largely coincides
with the syntax for standard signature schemes with an additional extraction
algorithm that can extract some private information of the signer (i.e. the signing
key) given the signatures of messages that satisfy a particular predicate.

Definition 4 (PAPS). A predicate-authentication-preventing signature (PA
PS) on a corresponding message space M, and a predicate f : Mk →
{0, 1} is a tuple of efficient algorithms Πpaps = (PAPS.KeyGen,PAPS.Sign,
PAPS.Verify,PAPS.Extract) defined as follows:

– PAPS.KeyGen(1λ) → (sk, vk): On input a security parameter 1λ, the key gen-
eration algorithm PAPS.KeyGen outputs a signing key sk and a verification
key vk.

– PAPS.Sign(sk,msg) → σ: On input a signing key sk and a message msg ∈ M,
the signing algorithm PAPS.Sign outputs a signature σ.

– PAPS.Verify(vk,msg, σ): On input a verification key vk, a message msg ∈ M,
and a signature σ, the verification algorithm PAPS.Verify accepts/rejects.

– PAPS.Extract(vk, {(msgi, σi)}i∈[k]) → sk′: On input a verification key vk, and
a set of message and signature pairs, the extraction algorithm PAPS.Extract
outputs the secret key sk′.

Correctness. We say that a PAPS scheme is correct if, for all λ ∈ N, msg ∈ M,
and σ ← PAPS.Sign(sk,msg), we have that PAPS.Verify(vk,msg, σ) = 1.

3.2 Extraction

As in the case of [PS14], we can consider two notions of key extractability depend-
ing on whether the signer generates its keys at setup honestly or adversarially.
We call the scenario for which the keys are always generated honestly as the
trusted setup model and the scenario for which the keys can potentially be gener-
ated adversarially as the untrusted setup model. Before defining these two notions
formally, we first define the notion of a compromising set of signatures.

Definition 5 (Compromising set of signatures). Let f : Mk → {0, 1} be a
predicate defined on k messages. Then, for a fixed verification key vk, a set of k
message/signature pairs {(msgi, σi)}i∈[k] is f-compromising if each signature σi

is a valid signature of msgi and the k messages satisfy the predicate f ; that is,
if PAPS.Verify(vk,msgi, σi) = 1 for all i = 1, ..., k and f(msg1, ...,msgk) = 1.

We now define formally the two notions of key extractability.

Definition 6 (Extractability in trusted setup). Fix a predicate f : Mk →
{0, 1}. We say that a PAPS scheme on a message space M is f-extractable
in the trusted setup model if for all λ ∈ N, secret ∈ S, for all key pairs
(sk, vk) ← PAPS.KeyGen(1λ), and for all compromising set of signatures S =
{(msgi, σi)}i∈[k], we have that PAPS.Extract(vk, S) = sk with overwhelming
probability.

Lattice-Based DAPS and Generalizations 467

For the untrusted setup model, instead of running the honest key generation
algorithm, we allow an adversary to generate the keys along with a set of com-
promising set of signatures and require that the extraction algorithm succeeds
on recovering the signing key from these set of signatures. Formally, we define
extractability in the untrusted setup as follows.

Definition 7 (Extractability in untrusted setup). Fix a predicate f :
Mk → {0, 1}. We say that a PAPS scheme on a message space M is f-
extractable if for all efficient adversary A, we have that

Pr
(

(vk, S = {(msgi, σi)}) ← A(1λ)
sk′ ← PAPS.Extract(vk, S) :

S f-compromising
∧ sk′ = sk

)
= 1 − negl(λ)

Double-Authentication-Preventing Signatures. The notion of double-authenti-
cation-preventing signatures is a special case of PAPS. Specifically, in DAPS, the
data to be signed MDAPS is split into two parts: a subject and a payload. Then,
we consider the following 2-ary predicate in this message space

FDAPS((subj0, payload0), (subj1, payload1)) =

{
1 if subj0 = subj1, payload0 �= payload1
0 otherwise.

The predicate is designed specifically for the certificate authority setting where
a CA that signs two different messages pertaining to the same subject is penal-
ized by leaking the CA’s signing key. In this work, we will mainly focus on
constructing PAPS for this particular predicate function.

Remark. An alternative formulation of extractability is allowing some private
information of the signer to be extracted instead of the signing key. In this
case, the key generation algorithm can take in some secret information to be
leaked by a compromising set of signatures and generate the keys accordingly.
This formulation generalizes the notion above where extraction always leaks the
signing key and can be more befitting for certain applications (see Sect. 7).

3.3 Unforgeability

The security game for the unforgeability notion for PAPS is similar to the stan-
dard unforgeability notion for digital signatures where the adversary has access
to a signing oracle and wins if it forges a new signature. However, since PAPS
is designed precisely to leak the signing key on a compromising set of signa-
tures, we require that the adversary’s queries to the signing oracle is limited to
non-compromising sets of signatures.

Definition 8 (Unforgeability). An f-extractable PAPS scheme Πpaps =
(PAPS.KeyGen,PAPS.Sign,PAPS.Verify,PAPS.Extract) is unforgeable if for all
efficient adversary A, we have that

AdvufΠpaps,A(λ) def= Pr[ExptΠpaps,A,uf = 1] ≤ negl(λ)

where the experiment ExptΠpaps,A,uf is defined as follows:

468 D. Boneh et al.

1. (sk, vk) ← PAPS.KeyGen(1λ).
2. (msg∗, σ∗) ← AOSign(·)

1 (vk).
3. A wins if Verify∗(msg∗, σ∗) accepts.

where the signing oracle OSign(·) and Verify∗(·, ·) are defined as follows:

– Oracle OSign(·) maintains a list SignedList of all the previous valid queries
made by A. For a query msg, that the adversary makes, OSign(·) checks
whether there exists a compromising set of signatures in SignedList ∪
{msg}. If this is the case, then OSign(·) outputs ⊥. Otherwise, it outputs
PAPS.Sign(sk,msg).

– Verifier Verify∗(msg, σ) accepts if msg /∈ SignedList and
PAPS.Verify(vk,msg, σ) accepts.

4 DAPS from Lattices

In this section, we describe our DAPS construction. For clarity of exposition,
we first describe a variant of the dual-Regev encryption scheme [GPV08] which
we will use in our construction as a blackbox. This way, we can abstract out
the details of the encryption component and present our DAPS construction in
a simpler and more intuitive way. After presenting our DAPS construction, we
prove its extractable properties and also show that its security can be based on
the security of the encryption scheme and the SIS hardness assumption.

4.1 Trapdoor Dual-Regev Encryption

In this section, we describe a simple variant of the dual-Regev encryption
scheme [GPV08] that we will use as a blackbox for our DAPS construction.
We present the encryption scheme here mainly for clarity of exposition and the
only difference between the encryption scheme presented here and the original
dual-Regev encryption scheme is the use of full trapdoors as the secret key of
the scheme as opposed to a short preimage vector as is the case in [GPV08].

We use n as the security parameter λ. Let m, q be the trapdoor para-
meters dependent on n (Lemma 1). Let χ be a B-bounded noise distribution
where B = O(q/m). We construct a public key encryption scheme Πpke =
(PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) as follows:

– PKE.KeyGen(1n): On input the security parameters 1n, the key genera-
tion algorithm generates trapdoor (A,TA) ← TrapGen(1n, 1m, q) where
A ∈ Z

n×m
q . It sets the public key pk = A and sk = TA.

– PKE.Encrypt(pk,m): On input the public key pk and a message m ∈ {0, 1},

the encryption algorithm samples uniformly random vectors d, s $← Z
n
q , and

an error vector from the noise distribution e ← χm+1. It computes the vector

b = [A | d]T s + e + [0 | q/2� · m].

It outputs the ciphertext ct = (d,b) ∈ Z
n
q × Z

m+1
q .

Lattice-Based DAPS and Generalizations 469

– PKE.Decrypt(sk, ct): On input the secret key sk and a ciphertext ct =
(d,b), the decryption algorithm parses b = (b0, b1). It then computes
s ← Invert(A,TA,b) and m′ = b1 − dT s. It outputs m ∈ {0, 1} such that m′

is close to q/2� · m.

Correctness. Let b = (b0 = AT s + e0, b1 = dT s + e1). The TrapGen algorithm
outputs a trapdoor TA such that ‖TA‖2 = O(

√
m). This means that for B =

O(q/‖TA‖√
m) = O(q/m), the algorithm Invert(A,TA,b) for b = AT s + e

correctly outputs the secret vector s. Then, b1 −dT s = (dT s+ e1 + q/2� · m) −
dT s = q/2� · m + ·e1 which is correctly decoded for given bound on the error
distribution χ.

Remark. We note that the correctness still holds with a different trapdoor TA
′

for which TA �= TA
′ as long as TA

′ is of sufficient quality. In fact, we can
flexibly adjust the parameter B for the noise distribution χ of the scheme to
allow for correct decryption by a slightly lower quality trapdoor. For instance,
if we take the parameter to be B = O(q/m3/2), then a trapdoor TA

′ of quality
‖TA

′‖2 ≤ O(m) can correctly decrypt the ciphertext. This property will be used
for the extractability of our DAPS construction.

Security. The security reduction easily follows from the security proof of the
original dual-Regev encryption scheme and we do not reproduce it here.

Theorem 1. The PKE scheme above is IND-CPA secure assuming that the
LWE(n,m, q, χ) problem is hard.

For our DAPS construction, we will also assume that the dual-Regev PKE
scheme above is circular secure.

4.2 DAPS Construction

We present our construction for DAPS from lattices. Fix a security parameter
n ∈ N and let m, q, s be the corresponding trapdoor parameters. We use a hash
function Hmsg : {0, 1}∗ × {0, 1}∗ → Z

n×n
q that maps arbitrary messages to a full

rank matrix in GFRD and a hash function Hsubj : {0, 1}∗ → Z
n×m
q that maps

a subject to an SIS matrix for the scheme. We also use the dual-Regev pub-
lic key encryption scheme Πpke = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) as
decribed in Sect. 4.1 with a B-bounded noise distribution where B = O(q/m3/2).
We construct Πdaps = (DAPS.KeyGen,DAPS.Sign,DAPS.Verify,DAPS.Extract) as
follows:

– DAPS.KeyGen(1n): On the security parameter 1n, the key generation algo-
rithm first runs (A,TA) ← PKE.KeyGen(1n). It then encrypts ct ←
PKE.Encrypt(A,TA) and set sk = TA and vk = (A, ct).

470 D. Boneh et al.

– DAPS.Sign(sk, subj, payload): On input the signing key sk, a subject subj,
and a message payload, the signing algorithm hashes the message Hmsg ←
Hmsg(subj, payload) and also hashes the subject Bsubj ← Hsubj(subj). Then, it
computes

U ← SamPre(A,TA,Bsubj + Hmsg · G, s)

where G is the publicly known gadget matrix. Finally, it outputs U as the
signature.

– DAPS.Verify(vk, subj, payload, σ): On input the verification key vk, a subject
subj, a message payload, and a signature σ = U, the algorithm hashes the
message Hmsg ← Hmsg(subj, payload) and also derives the matrix Bsubj ←
Hsubj(subj). Then, the algorithm verifies that

A · U = Bsubj + Hmsg · G

and that ‖U‖ ≤ s · √m.
– DAPS.Extract(vk, (subj1, payload1, σ1), (subj2, payload2, σ2)): On input a veri-

fication key vk = (A, ct), and two subject/message pairs (subj1, payload1),
(subj2, payload2) and their signatures σ1 = U1, σ2 = U2, the extraction algo-
rithm runs sk′ ← PKE.Decrypt(U1 − U2) and outputs sk′.

Signing Correctness. The correctness follows easily from the correctness of the
trapdoor algorithm SamPre (Lemma 1) and the tail bounds of discrete Gaussian.

Security and Extrability. We now state the security and extractability of the
construction above.

Theorem 2. The DAPS construction above is unforgeable assuming the hard-
ness of SIS(n,m, q, β) for β = O(s) and circular security of Πpke modeling the
hash functions Hmsg and Hsubj as random oracles.

Theorem 3. Assuming Hmsg as a collision-resistant hash function, the DAPS
construction above is FDAPS-extractable.

5 Extensions of DAPS to Other Predicates

In this work, we provide sample PAPS constructions for a number of simple
predicates. Due to space limitations, we describe and prove our constructions in
the full version.

6 Multi-authority Setting

For many practical situations, there is not a single authority signer, but multiple
authorities who sign messages. For these type of situations, it is useful to extend

Lattice-Based DAPS and Generalizations 471

the PAPS framework to the multi-authority setting where any compromising set
of signatures by the different authorities reveals some private information of the
signers.

We note that in this scenario, allowing a compromising set of signatures to
reveal a secret key of a signer is not well-formulated in that any signer can
compute a compromising set of signatures itself using its own signing key and
extract another signer’s secret key. Therefore, for the multi-authority setting, we
let the extraction algorithm to reveal some predefined private data and define
an additional algorithm PAPS.CommGen that takes in this private information
that we denote by secret of a subset of the signers and generates a commitment
comm pertaining to secret. For correctness, we require that a compromising set of
signatures from these subset of signers along with the commitment comm allow
anyone to reveal the private information secret.

Definition 9 (Multi-authority PAPS). A multi-authority predicate-authen-
tication-preventing signature (MAPAPS) on a corresponding message space M,
secret space S, and a predicate f : Mk → {0, 1} is a tuple of efficient
algorithms consisting of the PAPS algorithms Πpaps = (PAPS.KeyGen,PAPS.Sign,
PAPS.Verify, PAPS.Extract) with two additional algorithms (PAPS.CommGen,
PAPS.CommExtract) defined as follows:

– PAPS.CommGen({vki} , secret) → commT : On input a set of verification keys
T = {vki} and some private data secret ∈ S, the commitment generation algo-
rithm generates a public commitment commT .

– PAPS.CommExtract(commT , {(msgi, σi)}i∈[k]) → secret′: On input a public
commitment commT , and a set of message and signature pairs, the extraction
algorithm outputs private date secret′.

Informally speaking, the PAPS.CommGen takes in a set of verification keys
of the signers and generates a hiding commitment of some private data that
belongs to these signers. On a compromising set of signatures produced by
any of these signers allows anyone to extract this private information using the
PAPS.CommExtract algorithm.

Correctness. As in the regular PAPS setting, we require that the algorithms
PAPS.KeyGen,PAPS.Sign,PAPS.Verify satisfies the signing correctness require-
ment as in Sect. 3.

6.1 Extractability

In addition to the extractability property of PAPS.Extract in the single authority
setting as in Sect. 3, we require an additional extractability in the multi-authority
case where it is required that PAPS.CommExtract extract private information
from the public commitment comm.

Definition 10. Let f : Mk → {0, 1} be a predicate defined on k messages and
T = {vki} be a set of verification keys. Then, a set of k message/signature pairs

472 D. Boneh et al.

{
(msgj , σj)

}
j∈[k]

is f-compromising with respect to T if each signature σj is a
valid signature of msgj by some verification key vki ∈ T , and the k messages
satisfy the predicate f ; that is, if for all j ∈ [k], PAPS.Verify(vki,msgj , σj) = 1
for some vki ∈ T and f(msg1, ...,msgk) = 1.

We define the standard extractability condition as follows.

Definition 11. Fix a predicate f : Mk → {0, 1}. We say that a
MAPAPS scheme on a message space M is f-commitment-extractable
if for all λ ∈ N , secret ∈ S, a set of verification keys T =
{vki}, commT ← PAPS.CommGen(T, secret) and for all compromising set
of signatures S =

{
(msgj , σj)

}
j∈[k]

with respect to T , we have that
PAPS.CommExtract(commT , S) = secret with overwhelming probability.

6.2 Security

Commitment Privacy. To prevent the extractability notion above from being
satisfied trivially, we require a privacy requirement on the secret data of
PAPS. Specifically, we require that an adversary with access limited to non-
compromising sets of signatures do not learn information about the secret data.
Let N be the number of authorities in the system.

Definition 12 (Privacy). An f-extractable PAPS scheme Πpaps =
(PAPS.KeyGen, PAPS.CommGen,PAPS.Sign,PAPS.Verify,PAPS.CommExtract) is
data-hiding if for any efficient adversary A, we have that

AdvdhΠpaps,A(λ) def=
∣
∣
∣Pr[Expt(0)Πpaps,A,dh(λ) = 1] − Pr[Expt(1)Πpaps,A,dh(λ) = 1]

∣
∣
∣ ≤ negl(λ)

where Expt
(b)
Πpaps,A,dh is defined as follows:

1. (ski, vki) ← PAPS.KeyGen(1λ) for i = 1, ..., N .
2. (T, secret0, secret1) ← A0({vk}i∈[N]).
3. commb ← PAPS.CommGen({vki}t∈T , secretb).

4. Output AOSign(·,·)
1 ({ski}i∈[N]\T , commb).

where the signing oracle OSign(·, ·) is defined as follows:

– Oracle OSign(·, ·) maintains a list SignedList of all the previous valid queries
made by A. For a query msg and an index i ∈ T , that the adversary makes
OSign(·, ·) checks whether there exists a compromising set of signatures with
respect to T in SignedList ∪ {msg}. If this is the case, the OSign(·, ·) outputs
⊥. Otherwise, it outputs PAPS.Sign(sk,msg).

Lattice-Based DAPS and Generalizations 473

7 Multi-authority DAPS

In this section we describe our construction of DAPS in the setting of multi-
authority. We describe the scheme for the DAPS predicate, but the extensions
in Sect. 5 translate directly to the multi authority setting since it uses the DAPS
predicate as a black box. As in Sect. 4, we first describe a broadcast encryption
scheme from the variant of the dual-Regev encryption scheme and then present
our MADAPS construction using the broadcast encryption scheme. We prove
that our scheme satisfies both the extractability and security requirements.

7.1 Broadcast Encryption

In this section, we present the broadcast encryption scheme. For clarity, we
slightly alter the syntax of broadcast encryption where the global public key
pk is divided into a number of public keys pki for each user in the system and
the encryption algorithm takes in a subset of these public keys. Fix a security
parameter n and let m, q, and χ be the corresponding parameter as in Sect. 4.1.
We construct Πbe = (BE.KeyGen,BE.Encrypt,BE.Decrypt) as follows:

– BE.KeyGen(1n, N): On input the security parameter 1n, the key gener-
ation algorithm generates trapdoors (Ai,TAi) ← TrapGen(1n, 1m, q) for
i = 1, ..., N . It outputs {(Ai,TAi)}i∈[N].

– BE.Encrypt({pki}i∈T ,m): On input a set of public keys {pki}i∈T = {Ai}i∈T

and a message m ∈ {0, 1}, the encryption algorithm first samples uniformly

random vectors d, s $← Z
n
q and error vector e0 ← χm and then computes

ct0 = dT s + e0 + q/2� · m

Then for t ∈ T , it generates a fresh error vector from the noise distribution
et ← χm and computes

ctt = AT
t s + et

It outputs ctT = (ct0, {ctt}t∈T).
– BE.Decrypt(ski, ctT): On input the secret key ski for i ∈ T and a

ciphertext ctT = (ct0, {ctt}t∈T), the decryption algorithm computes s ←
Invert(A,TA, cti). It then computes m′ = ct0 − dT s and output m ∈ {0, 1}
such that m′ is closest to q/2� · m.

We note that each ciphertext component (ct0, cti) makes up a regular cipher-
text of the dual-Regev encryption scheme. Therefore, the correctness of the BE
scheme above follows directly from the correctness of the dual-Regev scheme.
Also, the construction of the scheme above is a generic concatenation of the
regular public key encryption scheme and therefore, the security follows directly
from the security of the public key encryption scheme.

As in the case of the dual-Regev public key encryption scheme, one can
correctly decrypt the ciphertext even with a different trapdoor for the public

474 D. Boneh et al.

matrices Ai as long as it is of sufficient quality. Furthermore, any trapdoor of a
concatenated matrix [Ai | Aj] is sufficient to recover the encryption randomness
used in the encryption and therefore decrypt a ciphertext intended for users i
and j. More formally, there exists a decryption algorithm as follows:

– BE.Decrypt′(ski,j , ctT): On input a trapdoor ski,j = T[Ai|Aj] for i, j ∈ T , and
a ciphertext ctT = (ct0, {ctt}t∈T), the decryption algorithm computes s ←
Invert([Ai|Aj],TA, [cti|ctj]). It then computes m′ = ct0 − dT s and outputs
m ∈ {0, 1} such that m′ is closest to q/2� · m.

7.2 Multi-authority DAPS Construction

In this section, we extend the DAPS construction from Sect. 4.2 to the multi-
authority setting (MADAPS). In addition to the algorithms in Πdaps, we define
two additional algorithms DAPS.CommGen and DAPS.CommExtract as defined
in Sect. 6. Let Πbe = (BE.KeyGen,BE.Encrypt,BE.Decrypt) be the broadcast
encryption scheme as defined above with B-bounded noise distribution χ where
B = O(q/m3/2). Fix a security parameter n ∈ N and let m, q, s be the corre-
sponding trapdoor parameters. We define the algorithms DAPS.CommGen and
DAPS.CommExtract as follows:

– DAPS.CommGen({vki} , secret): On input a set of verification keys T =
{vki} = {Ai} and some private data secret ∈ S, the commitment genera-
tion algorithm computes ctT ← BE.Encrypt(T, secret) and sets comm = ctT .

– DAPS.CommExtract(commT , (subj0, payload0, σ0), (subj1, payload1, σ1)):
On input the parameters commT and a pair of compromising pair of sig-
natures σ0 = Ui and σ1 = Uj corresponding to vki and vkj respec-

tively, the extraction algorithm concatenates the keys Ũ =
[

Ui

−Uj

]
. It runs

secret′ ← BE.Decrypt′(Ũ, commT) and outputs the private data secret′.

Extractability and Privacy. We now state the extractability and privacy proper-
ties of the MADAPS construction above. We provide the proofs of the following
theorems in the full version.

Theorem 4. Assuming Hmsg is a collision-resistant hash function, the MADAPS
construction above is FDAPS-extractable.

Theorem 5. The MADAPS construction above is data-hiding assuming that the
broadcast encryption scheme Πbe is secure.

Acknowledgements. This work is supported by NSF, DARPA, the Simons founda-
tion, and a grant from ONR. Opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of DARPA.

Lattice-Based DAPS and Generalizations 475

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the standard
model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–
572. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 28

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03356-8 35

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)
[ALSY06] Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size ID-based link-

able and revocable-iff-linked ring signature. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 364–378. Springer, Heidelberg
(2006). doi:10.1007/11941378 26

[AP11] Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices.
Theory Comput. Syst. 48(3), 535–553 (2011)

[ASP12] Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 334–352. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30057-8 20

[BF14] Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54631-0 30

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom
functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS. ACM (2012)

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.
1007/11535218 16

[BKM06] Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and
constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). doi:10.1007/
11681878 4

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC. ACM (2013)

[BPS15] Bellare, M., Poettering, B., Stebila, D.: Double-authentication-preventing
signatures and trapdoor identification. Cryptology ePrint Archive, Report
2015/1157 (2015). http://eprint.iacr.org/

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC
2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). doi:10.1007/
3-540-36492-7 6

[BV11] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-22792-9 29

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/11941378_26
http://dx.doi.org/10.1007/978-3-642-30057-8_20
http://dx.doi.org/10.1007/978-3-642-30057-8_20
http://dx.doi.org/10.1007/978-3-642-54631-0_30
http://dx.doi.org/10.1007/978-3-642-54631-0_30
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/11681878_4
http://dx.doi.org/10.1007/11681878_4
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-36492-7_6
http://dx.doi.org/10.1007/3-540-36492-7_6
http://dx.doi.org/10.1007/978-3-642-22792-9_29

476 D. Boneh et al.

[BV14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

[BWZ14] Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption
from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 12

[CD09] Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge
protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 11

[CL01] Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation. In: Pfitz-
mann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer,
Heidelberg (2001). doi:10.1007/3-540-44987-6 7

[FN93] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 40

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–
178 (2009)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: STOC. ACM (2008)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: STOC. ACM (2015)

[LLK15] Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962,
(October 2015)

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are colli-
sion resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006).
doi:10.1007/11787006 13

[Lyu08] Lyubashevsky, V.: Lattice-based identification schemes secure under active
attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78440-1 10

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 43

[MBB+15] Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: bringing key transparency to end users. USENIX Secur. 15, 383–
398 (2015)

[Mic04] Micciancio, D.: Almost perfect lattices, the covering radius problem, and
applications to Ajtai’s connection factor. SIAM J. Comput. 34(1), 118–169
(2004)

[MM11] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22792-9 26

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.

http://dx.doi.org/10.1007/978-3-662-44371-2_12
http://dx.doi.org/10.1007/978-3-662-44371-2_12
http://dx.doi.org/10.1007/978-3-642-03356-8_11
http://dx.doi.org/10.1007/3-540-44987-6_7
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/11787006_13
http://dx.doi.org/10.1007/978-3-540-78440-1_10
http://dx.doi.org/10.1007/978-3-642-29011-4_43
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-22792-9_26

Lattice-Based DAPS and Generalizations 477

LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 41

[MP13] Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–
39. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 2

[MPR11] Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 24

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem. In: STOC. ACM (2009)

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). doi:10.1007/
11681878 8

[PS14] Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 436–
453. Springer, Cham (2014). doi:10.1007/978-3-319-11203-9 25

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM (JACM) 56(6), 34 (2009)

[RST01] Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg
(2001). doi:10.1007/3-540-45682-1 32

[TX03] Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-40061-5 16

http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-40041-4_2
http://dx.doi.org/10.1007/978-3-642-19074-2_24
http://dx.doi.org/10.1007/11681878_8
http://dx.doi.org/10.1007/11681878_8
http://dx.doi.org/10.1007/978-3-319-11203-9_25
http://dx.doi.org/10.1007/3-540-45682-1_32
http://dx.doi.org/10.1007/978-3-540-40061-5_16

Forward-Secure Searchable Encryption
on Labeled Bipartite Graphs

Russell W.F. Lai(B) and Sherman S.M. Chow

Department of Information Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{russell,sherman}@ie.cuhk.edu.hk

Abstract. Forward privacy is a trending security notion of dynamic
searchable symmetric encryption (DSSE). It guarantees the privacy of
newly added data against the server who has knowledge of previous
queries. The notion was very recently formalized by Bost (CCS ’16) inde-
pendently, yet the definition given is imprecise to capture how forward
secure a scheme is. We further the study of forward privacy by proposing
a generalized definition parametrized by a set of updates and restric-
tions on them. We then construct two forward private DSSE schemes
over labeled bipartite graphs, as a generalization of those supporting
keyword search over text files. The first is a generic construction from
any DSSE, and the other is a concrete construction from scratch. For the
latter, we designed a novel data structure called cascaded triangles, in
which traversals can be performed in parallel while updates only affect
the local regions around the updated nodes. Besides neighbor queries,
our schemes support flexible edge additions and intelligent node dele-
tions: The server can delete all edges connected to a given node, without
having the client specify all the edges.

1 Introduction

In searchable symmetric encryption (SSE), an encrypted database can be queried
with minimal leakage of information about the plaintext database to the host-
ing server. The client is additionally allowed to update the encrypted database
in dynamic SSE (DSSE) without reencrypting from scratch. Since its introduc-
tion [16], many SSE schemes with different trade-offs between efficiency, secu-
rity, and query expressiveness have been proposed [1]. Most earlier schemes
were not dynamic. The first sublinear dynamic SSE scheme was proposed by
Kamara et al. [11], but the query and update operations are inherently sequen-
tial. Some later schemes [8,10,17] feature parallelizable algorithms for queries
and updates. Parallelism made DSSE an attractive solution for outsourcing data
to cloud platform which fully leverages the multiprocessors.

Sherman Chow is supported in part by General Research Fund (Grant No. 14201914)
and the Early Career Award from Research Grants Council, Hong Kong; and Huawei
Innovation Research Program (HIRP) 2015 (Project No. YB2015110147).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 478–497, 2017.
DOI: 10.1007/978-3-319-61204-1 24

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 479

1.1 Security and Forward Privacy of SSE Schemes

Ideally, the knowledge of an encrypted database, together with a sequence of
adaptively issued queries and updates, should not reveal any information about
the plaintext database and the query results to the server. Although this can be
achieved theoretically through techniques involving obfuscation [4] or oblivious
RAM [7], the resulting solutions are not particularly efficient. Typically, a prac-
tical DSSE scheme tolerates the leakage of search and access patterns during
queries, and some internal structure of the encrypted database during updates.
Formally, the security is parametrized by a set of leakage functions describing
these leakages. While some leakages seem to pose no harm, some have been
exploited in attacks [9,18].

Forward privacy, advocated by Stefanov et al. [17], requires that newly added
data remains private against the server, who has knowledge about previous
queries. The property is arguably essential to all DSSE schemes, for otherwise,
the ability to update in DSSE is somewhat useless as future data are less pro-
tected. Indeed, one of the recent attacks by Zhang et al. [18] exploits the leakage
during updates in non-forward-private schemes.

Only a limited number of solutions [2,7,15,17] in the literature claimed to
have forward privacy. The notion is not well understood in the earlier works [7,
15,17], and is only formally defined recently by Bost [2]. However, we argue that
this definition cannot precisely describe in what sense a DSSE scheme is forward
private. (See discussion in Sect. 3.2 for details.)

1.2 Our Formulation

We consider DSSE over labeled bipartite graphs, where nodes can be partitioned
into two disjoint subsets X and Y , such that edges never connect two nodes from
the same partition, and each edge is labeled with data from the set W . A neighbor
query on node x ∈ X (or y ∈ Y), returns a sequence of (x, y, w) ∈ X × Y × W
tuples if (x, y) is an edge on the graph labeled with w.

This abstract setting captures typical DSSE queries such as keyword searches
over files (considering X and Y as the sets of keywords and files respectively),
and labeled subgraphs queries over general graphs (considering X and Y as sets
of nodes with outgoing and incoming edges respectively, and W as the set of edge
labels). To generalize, we also consider neighbor queries over the entire bipar-
tite graphs, i.e., both X and Y , which enables interesting bi-directional search-
ing applications. Bi-directional search is useful to efficiently support update in
DSSE [11] (since deleting a file in a DSSE supporting keyword searches implic-
itly requires finding all keywords the file contains). It also opens possibilities of
interesting new queries such as related keyword search (which first searches for
documents containing the queried keyword, then collects other keywords which
are also contained in many of the matching documents).

480 R.W.F. Lai and S.S.M. Chow

1.3 Update Functionalities of DSSE Schemes

While the query functionality of SSE for keyword search is somewhat standard,
the supported update types have large variations. Updates include additions
and deletions, and can be edge-based or node-based. Schemes supporting only
node additions are reasonable for some data type: e.g., x as keywords and y as
text files. Yet, edge updates allow fine-grained modification of existing data. In
particular, schemes supporting edge additions are superior to those supporting
only node additions, as the latter can be simulated by the former.

The benefits of supporting only edge deletions are however questionable, as
they require the client to know about the edge to be deleted. It is unrealistic for
the motivating application of SSE for keyword search: The client needs to know
all keywords of a given file to completely remove the file from the server. It is
desirable for a DSSE scheme to support node deletions: upon provided a node y
from the client, the server can intelligently remove all edges connecting y.

To the best of our knowledge, most existing schemes only support either edge-
based updates or node-based updates1. Supporting edge additions and node dele-
tions simultaneously, while confining leakage, poses some technical challenges.

1.4 SSE as a Data Structure Problem

With edge additions and node deletions in mind, it is not an easy task to devise a
parallel and dynamic (let alone forward private) SSE scheme. Intuitively, for data
structures supporting parallel traversal, maintaining the traversal efficiency after
an update often requires some global adjustment of the data structure. Consider
a balanced binary search tree. A series of deletions can degenerate the tree into
a linked list which requires sequential access; and balancing the tree may require
the rotation of multiple tree nodes. (That may explain why the first parallel
DSSE [10] utilizing a red-black tree which only stores all the files in the leaf
level, resulting in an efficiency loss when compared with storing some of them
in internal nodes.) In the context of DSSE, delegating the maintenance work to
the server often implies excessive leakage of the internal data structure.

A notable approach for (non-dynamic) SSE schemes is the invert-index used
by Curtmola et al. [5,6], in which the encrypted database consists of an index
mapping hashed keywords to sets of files containing the keywords. This inverted-
index allows the server to search in time linear in the number of matching
files, which is optimal. Many subsequent works follow this framework (explic-
itly or implicitly), which utilize some data structure to represent the sets of
data, pointed by the (hashed) queries in the index. The efficiency of queries and
updates correspond to the efficiency of traversing and updating the sets respec-
tively. On the other hand, the leakage of the internal structure of the encrypted
database during updates corresponds to the amount of information required or
changed to update the data structure storing the sets. Most efforts for designing
(D)SSE schemes is dedicated to choosing or designing this data structure.
1 A few exceptions include Lai-Chow [13] and a modified version of the one by

Kamara et al. [11]. However, these schemes leak substantial information during
updates.

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 481

1.5 Our Results

This work furthers the study of forward privacy of DSSE schemes over labeled
bipartite graphs. We present three technical results. First, we give another for-
mal, generalized definition of forward privacy. Specifically, our definition is para-
metrized by a set of updates and a restriction function on these updates. It gen-
eralizes the only existing one by Bost [2], by increasing the number of classes
of leakage functions allowed, yet making each class more specific. Our definition
still captures the essence of forward privacy even though the leakage in different
classes might vary substantially. Since different existing SSE schemes implicitly
assumed different flavors of forward privacy, we believe that our generalized,
parameterized definition of forward privacy is of particular interest.

Second, we propose a simple generic construction of forward private DSSE
from any DSSE, which preserves the efficiency of the base scheme. The forward
privacy obtained is for edge additions, such that the addition of an edge (x, y)
does not leak both x and y, hence hiding the edge. This generic transformation
provides insights of what constitutes forward privacy in DSSE. Since the result
applies on any DSSE, again we believe it is of independent interest.

Lastly, we construct a DSSE scheme from scratch which achieves a stronger
forward privacy for edge additions, such that the addition of an edge (x, y) does
not leak either x or y. Our construction utilizes a specially crafted data structure
named cascaded triangles2, which supports parallel queries and updates, and
has the property that adding or deleting data only affects a constant amount of
existing data. Thanks to cascaded triangles, our construction features minimal
leakage, and optimal query and update complexity in terms of both computation
and communication up to a constant factor.

Both of our constructions support flexible edge additions and intelligent node
deletions: The server can delete all edges connected to a given node, without
having the client specify all the edges. It is one of a few in the literature(See
footnote 1).

2 Definitions

We present the necessary definitions for data representation and DSSE. For more
detailed explanations, we refer the readers to the full version.

2.1 Data Representation

Let X , Y, and W be sets, where X and Y are disjoint, i.e., X ∩Y = φ. We denote
by G = G(X ,Y,W) a set of labeled bipartite graphs specified by these sets. For
a labeled bipartite graph G ∈ G, its edges are labeled with w ∈ W ⊆ W, and

2 While the design of cascaded triangles is original, we do not rule out the possibility
that there are similar data structures outside the literature of SSE. To the best of
our knowledge, we are unaware of any common similar data structure. There are
false relatives such as fractional cascading which solves totally different problems.

482 R.W.F. Lai and S.S.M. Chow

are running across X ⊆ X and Y ⊆ Y. Each edge can be uniquely represented
by the tuple (x, y, w) ∈ X × Y × W. The neighbor query function Qry maps a
node q = x (or q = y) and a graph G to a set of all edges connecting node x,
denoted by (x, ∗, ∗) (or a set of all edges connecting node y, denoted by (∗, y, ∗)).
Similarly, we use (x, y, ∗) to denote the set of edges in the form of (x, y, ·), which
should be a singleton. The update function Udt maps an update u and a graph G
to a new graph G′. The update u = (Op, ·, ·, ·) where Op = Add or Op = Del
takes one of the following forms:

1. Edge Addition: u = (Add, x, y, w) adds the edge (x, y, w) to G.
2. Node Deletion: u = (Del, q) deletes the set of edges (q, ∗, ∗) (or (∗, q, ∗))

from G. Since X and Y are disjoint, there is no ambiguity.

2.2 Dynamic Searchable Symmetric Encryption (DSSE)

We present a definition of DSSE for the labeled bipartite graphs defined above,
and briefly describe its security against adaptive chosen query attack (CQA2).

Definition 1. A dynamic symmetric searchable encryption (DSSE) scheme for
the space of labeled bipartite graphs specified by G is a tuple of algorithms and
interactive protocols DSSE.(Setup,Qrye,Udte) such that:

– (K,EDB) ← Setup(1λ): In the setup algorithm, the user inputs the security
parameter λ. It outputs a secret key K, and an (initially empty) encrypted
database EDB to be outsourced to the server. Alternatively, one can define a
setup algorithm which takes as input the security parameter λ, and a graph
G. In this case, the algorithm outputs a key K and an encrypted database
EDB encrypting G.

– ((K ′, R), (EDB′, R) ← Qrye((K, q),EDB): In the query protocol, the user
inputs a secret key K and a query q ∈ X ∪Y. The server inputs the encrypted
database EDB. The user outputs a possibly updated key K ′, while the server
outputs a possibly updated encrypted database EDB′. Both the user and the
server output a sequence of responses R. For non-interactive schemes, the
user first runs (K ′, τq) ← QryTkn(K, q) to generate a query token τq. The
server then runs (EDB′, R) ← Qrye(τq,EDB) and outputs the query results R.

– (K ′,EDB′) ← Udte((K,u),EDB): In the update protocol, the user inputs a
secret key K and an update u ∈ {Add,Del} × (X ∪ Y). The server inputs
the encrypted database EDB. The user outputs a possibly updated key K ′.
The server outputs an updated encrypted database EDB′. For non-interactive
schemes, the user first runs (K ′, τu) ← UdtTkn(K,u) to generate an update
token τu. The server then runs EDB′ ← Udte(τu,EDB) and outputs the
updated database EDB′.

A DSSE scheme for the space G is said to be correct if, for all λ ∈ N, all K and
EDB output by Setup(1λ), and all sequences of queries and updates, the responses
to the plaintext queries equal those to the corresponding encrypted queries.

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 483

Let Le, Lq, and Lu be stateful leakage algorithms. A DSSE scheme is said to
be (Le, Lq, Lu)-secure against adaptive dynamic chosen-query attacks (CQA2),
if there exists a simulator which, when given the leakages specified by the leak-
age algorithms, indistinguishably simulates the encrypted database, the query
results, and the updates. The formal definition can be found in the full version.

3 Forward Privacy in DSSE

Intuitively, forward privacy ensures that newly added data remains hidden to the
server who might have learned some secrets during previous queries, until it must
be revealed by a later query. To formalize, instead of tinkering with the CQA2-
security definition of DSSE, we define forward privacy based on the property of
the leakage function Lu. This is more convenient since the information leaked by
Lu is sufficient for the simulator in the CQA2-security definition to simulate the
updates. Similar to the semantic security of encryption schemes, we require that
the leakages Lu on a pair of updates are indistinguishable, capturing the idea
that not even a single bit about the update is leaked to the server. Note that
the definition does not limit the types of the update u. Indeed, we can consider
forward privacy for not only additions, but also deletions. In layman terms,
suppose that the server learns during the query protocol about the association
of q with some data, which is then deleted by the client. The server should not
notice that the data are deleted until q is queried again: By that time the server
can compare the query results and discover the deletion.

3.1 Our Definition

We first give a general definition of forward privacy parametrized by a set of
updates and a restriction function, then discuss useful ways to parameterize it.

Definition 2 (Forward Privacy). Let DSSE be a (Le,Lq,Lu)-CQA2 secure
DSSE scheme for labeled bipartite graphs specified by G. Let U be a set of updates
and restriction p : U2 → {0, 1} be a predicate function. We say that DSSE is:
(U , p)-forward private, if for any ub ∈ U where b ∈ {0, 1} such that p(u0, u1) = 1,
and any PPT distinguisher D, it holds that

|Pr[D(Lu(u0)) = 1] − Pr[D(Lu(u1)) = 1]| ≤ negl(λ).

Table 1 lists some useful combinations of U and p, denoted by Ui and pi

respectively for i ∈ [6]. One may also consider a set U which is a union of
some of the (disjoint) Ui’s, and a restriction p which is a composition of the
corresponding pi’s: For pi : U2

i → {0, 1}, define p = pi + pj : (Ui ∪ Uj)2 → {0, 1}
such that (pi + pj)(u) = 1 if u ∈ Ui and pi(u) = 1, or u ∈ Uj and pj(u) = 1.

Note that there might exist schemes which are (Ui, pi)- and (Uj , pj)-forward
private but not (Ui ∪ Uj , pi + pj)-forward private. For example, if Ui and Uj are
sets of additions and deletions respectively, while the distinguisher cannot tell
which addition or deletion is chosen, it can separate additions from deletions.

484 R.W.F. Lai and S.S.M. Chow

Table 1. Useful combinations of U and p as parameters for forward privacy. (See
Sect. 2.1 and the full version for details about the update operations.)

i Type Sets of updates Ui Updates ub ∈ Ui Possible conditions such that pi = 1

b ∈ {0, 1} (If there are no restrictions, pi ≡ 1)

1 Edge {(Add, x, y, w)} (Add, xb, yb, wb) x0 = x1 or y0 = y1

2 Node {(Add,x, y,w)} (Add,xb, yb,wb) y0 = y1

3 Node {(Add, x,y,w)} (Add, xb,yb,wb) x0 = x1

4 Edge {(Del, x, y)} (Del, xb, yb) x0 = x1 or y0 = y1

5 Node {(Del, x)} (Del, xb) |(x0, ∗, ∗)| = |(x1, ∗, ∗)|
6 Node {(Del, y)} (Del, yb) |(∗, y0, ∗)| = |(∗, y1, ∗)|

3.2 Bost’s Definition

The forward privacy definition of Bost [2] requires that the leakage function of
u = (Op, x, y, w) can be written as a function of the operation Op, the node
y, and |(∗, y, ∗)|, i.e., the number of edges connected to y, where Op can be
addition or deletion. We argue that the range of leakage functions which satisfy
this requirement is so wide, such that the definition does not precisely describe in
what sense a DSSE scheme is forward secure. At one extreme, consider a scheme
of which the leakage function is given by Lu(Op, x, y, w) = (Op, y, |(∗, y, ∗)|).
If Lu accurately (not overly) captures the leakage, then adding or removing
edges to or from a node y leaks the identity of the node y itself. Such scheme is
vulnerable to frequency attacks: The attacker keeps a table mapping each y to
the number of times y is updated. With the aid of external information, it can
possibly extract information about y, such as its importance. Similar attacks
have been demonstrated using search patterns [14]. At another extreme, Bost’s
construction [2] leaks nothing during updates, i.e., Lu(Op, x, y, w) = φ. On the
other hand, Bost’s definition is also not general enough. There are other types
of leakage functions, e.g., Lu(Op, x, y, w) = (Op, x, |(x, ∗, ∗)|), which intuitively
capture forward privacy, but are not covered by this definition. In contrast, our
definition of (U , p)-forward privacy classified different types of update in a more
fine-grained manner.

In the perspective of our model, Bost’s definition can be regarded as special
cases of (U1, p1) - (achieved by our generic construction in Sect. 4) and (U4, p4)-
forward privacy. Intuitively, the restrictions p1 and p4 mean that an update
u = (Op, x, y, w) is protected by hiding one end of the connection between x
and y. Therefore, similar to the above, it might be the case that the updates
u0 and u1, where ub = (Add, xb, y, w) for b ∈ {0, 1}, are linkable as they corre-
spond to the same node y, making the scheme vulnerable to the same frequency
attack. On the other hand, (U1, 1) - (achieved by our concrete construction in
Sect. 5) and (U4, 1)-forward privacy completely hides the relation (x, y), making
the addition and deletion of an edge (x, y, w) oblivious respectively (since w can
be hidden simply by symmetric key encryption). Whether or not the stronger
forward privacy is needed depends on the specific application scenarios.

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 485

3.3 Forward Privacy for Deletions

In the rest of this work, we focus on U = U1 = {(Add, x, y, w)}, with and with-
out restrictions, i.e., p = p1 and p ≡ 1, respectively. In other words, we do
not consider forward privacy for deletions. To argue for this design decision, we
observe that while the scheme of Bost [2] performs “lazy edge deletion” (adding
“deleted” edges rather than actually deleting), ours perform actual node deletion.
The former increases the size of the encrypted database (by one edge), hence it
is possible to make (edge) additions and deletions indistinguishable. The latter
allows immediate space reclamation. This makes edge additions (which usually
increase the size of the encrypted database) and node deletions easily distin-
guishable. Furthermore, since actual deletions of different nodes may result in a
shrink of the database size in varying degrees, they are also easily distinguish-
able. In effect, we trade “forward privacy for (lazy) deletions” for efficiency. If
forward privacy for deletions is a concern and lazy deletions are acceptable, using
a similar technique of maintaining another instance of encrypted database for
lazy deletions [2], schemes which are forward private for edge additions can be
generically transformed to provide forward privacy for both edge additions and
node deletions (simultaneously): To delete a node y ∈ Y , the client adds an
edge connecting y to a special “deleted” node in X. We leave the details to the
full version of this paper. In this sense, forward privacy for additions is a key
property. We also believe that it is sufficient for practical applications by itself.

4 Forward Privacy from Any DSSE

In this section, we will show that a DSSE scheme with (U1, p1)-forward privacy
can be constructed from any DSSE scheme E , where U1 and p1 are defined in
Table 1. For simplicity of our description below, we assume the base scheme to
be non-interactive, so that the resulting scheme is also non-interactive3. Our
transformation can be easily adapted to interactive schemes.

Our construction is inspired by that of Rizomiliotis and Gritzalis [15] which
uses fresh keys for newly added data. The main idea is to locally maintain a
table γ of pseudorandom function (PRF) keys Kx and counters cx for each
query q = x, so that adding an edge (x, y, w) is translated to adding another
edge (F (Kx, cx), y, w). Our scheme also adopts the technique of Hahn and Ker-
schbaum [8], who observe that when the set (x, ∗, ∗) is leaked upon querying
on x, there is no need to protect the set by encryption any longer. To speed
up subsequent queries, the server should thus transfer the set encrypted in the
scheme to a plaintext bipartite graph Ĝ. We assume an efficient data structure
for representing the graph Ĝ, so that neighbor queries, edge additions, and node
deletions in Ĝ are parallelizable and have time complexity linear in the num-
ber of affected nodes only. There might be many ways to construct such a data
structure. Cascaded triangles introduced in Sect. 5 is one example.

3 Candidate base schemes include [13] and a modified version of [11].

486 R.W.F. Lai and S.S.M. Chow

4.1 Our Construction

Let E be a DSSE scheme for G = G({0, 1}λ,Y,W), and F : {0, 1}λ × X →
{0, 1}λ be a pseudorandom function (PRF). We construct a DSSE scheme for
G′ = G′(X ,Y,W). The resulting scheme supports queries over X , assuming the
base scheme supports queries over {0, 1}λ. Figures 1 and 2 formally describe the
construction.

The setup algorithm initializes the base scheme E , which yields a secret key K̃
and encrypted database ˜EDB. It also initializes an empty dictionary γ and an
empty bipartite graph Ĝ ∈ G′. The new secret key K consists of K̃ and γ,
while ˜EDB and Ĝ are outsourced to the server. The dictionary γ maps a query
q = x ∈ X to a PRF key Kx and a counter cx.

To perform an update u = (Add, x, y, w), the client increments cx ← cx + 1,
and transforms the update into ũ = (Add, F (Kx, cx), y, w) of the base scheme.
To perform an update u = (Del, x), the client removes the x-th row of γ, and
sends to the server the update tokens for (Del, F (Kx, i)) for i ∈ [cx]. The update
u = (Del, y) is processed as in the base scheme.

Finally, to query q = x ∈ X , the client removes the x-th row of γ, and sends
to the server the query tokens of F (Kx, i) for i ∈ [cx]. Given these tokens, the
server retrieves the intended response R. Additionally, the client also sends the
update tokens for (Del, F (Kx, i)) for i ∈ [cx]. The server uses these tokens to
collect and remove the set of edges R = (x, ∗, ∗) from the base scheme, and
merge R to the plaintext graph Ĝ.

The correctness follows directly from that of the base scheme E .

(K,EDB) ← Setup(1λ)

(K̃, ˜EDB) ← E.Setup(1λ
)

γ = φ, Ĝ = φ

return K = (K̃, γ), EDB = (˜EDB, Ĝ)

(K′, τq) ← QryTkn(K, q)

if q = x ∈ X ∧ γ[x] �= ⊥ then

(Kx, cx) ← γ[x]

γ[x] ← ⊥
for i = 1, . . . , cx do

τ̃i ← E.QryTkn(K̃, F (Kx, i))

τ̃
−
i ← E.UdtTkn(K̃, (Del, F (Kx, i)))

endfor

τq ← (x, {τ̃i, τ̃
−
i }cx

i=1)

else

(q = x ∈ X) ? τq ← x : τq ← ⊥
endif

return (K, τq)

(EDB, R) ← Qrye(τq,EDB)

Parse τq as (x, {τ̃i, τ̃
−
i }cx

i=1)

R ← Qry(x, Ĝ)

for i = 1, . . . , cx do

R̃ ← E.Qrye(τ̃i, ˜EDB)

˜EDB ← E.Udte(τ̃
−
i , ˜EDB)

R ← R ∪ R̃

endfor

foreach (x̃, y, w) ∈ R do

R ← R \ {(x̃, y, w)} ∪ {(x, y, w)}
Ĝ ← Udt((Add, x, y, w), Ĝ)

endfor

return (EDB, R)

EDB′ ← Udte(τ
+
u ,EDB), u = (Add, . . .)

˜EDB ← E.Udt(τ̃+
u , ˜EDB)

return EDB

Fig. 1. Algorithms of generic construction for forward privacy

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 487

(K′, τ+
u) ← UdtTkn(K, u = (Add, . . .))

parse u as (Add, x, y, w)

if γ[x] = ⊥ then

Kx ← {0, 1}λ
, cx ← 1

else

(Kx, cx) ← γ[x], cx ← cx + 1

endif

γ[x] ← (Kx, cx)

τ
+
u ← E.UdtTkn(K̃, (Add, F (Kx, cx), y, w))

return (K, τ
+
u)

EDB′ ← Udte(τ
−
u ,EDB), u = (Del, ·)

if τ
−
u = (x ∈ X , {τ̃

−
i }cx

i=1) then

Ĝ ← Udt((Del, x), Ĝ)

for i = 1, . . . , cx do

˜EDB ← E.Udte(τ
−
i , ˜EDB)

endfor

elseif τ
−
u = (y ∈ Y, τ̃

−
) then

Ĝ ← Udt((Del, y), Ĝ)

˜EDB ← E.Udte(τ
−

, ˜EDB)

endif

return EDB

(K′, τ−
u) ← UdtTkn(K, u = (Del, ·))

if u = (Del, x) then

if γ[x] �= ⊥ then

(Kx, cx) ← γ[x]

γ[x] ← ⊥
for i = 1, . . . , cx do

ri ← F (Kx, i)

τ̃
−
i ← E.UdtTkn(K̃, (Del, ri))

endfor

τ
−
u ← (x, {τ̃

−
i }cx

i=1)

else

τ
−
u ← x

endif

elseif u = (Del, y) then

τ̃
− ← E.UdtTkn(K̃, (Del, y))

τ
−
u ← (y, τ̃

−
)

else

τ
−
u ← ⊥

endif

return τ
−
u

Fig. 2. Algorithms of generic construction for forward privacy (cont.)

4.2 Analysis

Efficiency. Our generic transformation almost preserves the efficiency of the
underlying DSSE scheme. For most algorithms, the preservation is apparent.
We highlight the slightly more complicated cases, namely, the query on x and
the update (Del, x). In the former, cx queries on F (Kx, i) for i ∈ [cx] are exe-
cuted, while in both cases cx deletions (Del, F (Kx, i)) for i ∈ [cx] are required.
We analyze their efficiency assuming the following operations of the underlying
DSSE scheme each takes constant time: the computation of the query token for
each F (Kx, i); the server computation for querying on each F (Kx, i) (since by
the pseudorandomness of F , the query should only return a single edge); the
computation of each delete token; and the server computation for deleting each
set (F (Kx, i), ∗, ∗) (since each set is actually a singleton). Overall, the resulting
scheme incurs O(cx) computation and communication costs for both the client
and the server where cx is the number of newly matched data item. These are
extra costs on top of the costs for retrieving the previously matched data (in
plaintext), i.e., constant computation cost of the client, sublinear computation
cost of the server, and sublinear communication cost of both. Since cx is reset

488 R.W.F. Lai and S.S.M. Chow

to zero whenever x is queried, the amortized extra costs of both the client and
the server are low.

Security. Let E be an (L̃e, L̃q, L̃u)-CQA2 secure DSSE scheme for labeled bipar-
tite graphs specified by G; and F : {0, 1}λ × N → {0, 1}λ be a pseudorandom
function. Our construction is CQA2-secure and forward private with respect to
the following leakage functions. The proof can be found in the full version.

– Le(G′) = L̃e(G),
– Lu(Add, x, y, w) = (x̃, L̃u(Add, x̃, y, w)) for dummy node x̃ ← {0, 1}λ,
– Lu(Del, x) = (x, {L̃u(Del, x̃i)}cx

i=1),
– Lu(Del, y) = (y, L̃u(Del, y)),
– Lq(x) = (x,APt(x), {L̃q(x̃i), L̃u(Del, x̃i)}cx

i=1), for dummy nodes x̃i defined by
Lu(Add, x, y, ·) for updates after the previous query on x.

Theorem 1. Assume that E is (L̃e, L̃q, L̃u)-CQA2 secure, and F is pseudoran-
dom, then the above construction is (Le,Lq,Lu)-CQA2 secure. Furthermore, let
p′
1 be a function such that p′

1(u0, u1) = 1 if and only if y0 = y1 and w0 = w1
4.

Then the construction is (U1, p
′
1)-forward private, where U1 is defined in Table 1.

5 Forward Privacy from Scratch

We next construct (interactive) DSSE which achieves forward privacy directly.
First, a new data structure, named cascaded triangles, is designed to represent
labeled bipartite graphs which supports neighbor queries, edge additions, and
node deletions efficiently. We then transform it into its encrypted version.

The construction of cascaded triangles is motivated by the following. Since
the neighbor queries and node deletions require traversing the sets (x, ∗, ∗) and
(∗, y, ∗), their data structure representations are critical for the efficiency, and
later the security of the resulting DSSE scheme. In particular, they determine
whether the desired operations can be executed in parallel, and how much infor-
mation has to be leaked to the server for performing such operations. For exam-
ple, linked list [11] traversal and updates are inherently sequential, yet updating
only has a local effect (on the previous and next nodes). However, random binary
search tree [12] exhibits parallel traversal and updates, yet updating affects (or
leaks) the subtree rooted from the altered node. Thus, cascaded triangles is
designed to support parallel traversal and local updates simultaneously.

5.1 Warm Up: Plaintext Cascaded Triangles

Overview. Our goal is to store the bipartite graph G so that neighbor queries
and deletions over X or Y can be executed in sublinear time. We can do so
by pre-computing the set of edges connected to each x (and y), and storing
the set by a data structure which allows efficient traversal. For any x, consider

4 We can drop the restriction w0 = w1 by simply encrypting w during additions.

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 489

the set of edges connecting x. We pack this set into multiple perfect binary
trees, called triangles, by first forming the largest triangle possible, subtracting
the edges which are already packed, then continuing to form the next largest
triangle. The resulting triangles thus have strictly decreasing (cascading) heights,
except for the last two which may have equal heights. This invariant is to be
maintained in any later updates. To add an edge connecting x, we check if the
two shortest triangles have the same height. If so, we add a new node representing
the new edge on top of the two triangles, merging them into one larger triangle.
Otherwise, the new node is added as a new triangle of height 1. To delete an
edge, we delete the node representing this edge by replacing it with the root
of the shortest triangle, splitting the latter into two smaller triangles. We can
see that the invariant is still maintained after each addition and each deletion.
Finally, to traverse the data structure, one may use any (parallel) tree traversal
algorithms.

Setup. Concretely, cascaded triangles consists of dictionaries γ, δ, and η. We can
think of γ as local states stored at the client side, while δ and η are outsourced
to the server. The dictionary η is the one to store the actual data. It maps an
address addr to a tuple (a, b), where b = (chd0, chd1) specifies the addresses of
the left and right child respectively. b is maintained so that nodes in η form
perfect binary trees (triangles). This means either both addresses (chd0, chd1)
are empty (⊥) or both are valid addresses occupied in η. To store an edge (x, y, w)
into η, the edge is copied twice into a� = a� = (x, y, w). The tuples (a�, b�) and
(a�, b�) are stored at random addresses addr� and addr� in η respectively. The
addresses addr� and addr� are said to be duals of each other, and are registered
in δ, i.e., δ[addr�] = addr� and δ[addr�] = addr�.

Globally, we describe how the nodes in η are connected to each other via the
addresses stored in b. We collect all η[addr] = (a, b) corresponding to the edges in
(q, ∗, ∗) (or (∗, q, ∗)). Let nq = |(q, ∗, ∗)| (or |(∗, q, ∗)|). We pack these tuples into
triangles of cascading heights h1 ≤ h2 < h3 < . . . < hk, where k ≤ �lg nq + 1.
Note the possible equality between h1 and h2 but not the others. The ordering
of the nodes is implicitly determined by the update algorithms, but does not
matter here. Using the procedures described in the overview, given the size nq,
the heights h1, . . . , hk are uniquely determined. It is possible to represent the
heights compactly by a trinary string h ∈ {0, 1, 2}
lg nq�, such that the i-th
trit (trinary digit) is set to t, if there are t triangles of height i. Due to the
constraints on the heights, only the least significant non-zero trit can be set
to 2. Finally, the addresses of the roots and the heights of these triangles are
stored in γ[q] = (addr1, . . . , addrk, h).

Queries and Traversal. Traversing the sets (q, ∗, ∗) and (∗, q, ∗) are straight-
forward with the above structure: First, retrieve the roots of the triangles from
γ[q] = (addr1, . . . , addrk, h). Then, use parallel tree-traversal algorithms to tra-
verse the trees from the root starting at each of these addresses. Notice that the

490 R.W.F. Lai and S.S.M. Chow

neighbor query function Qry on x and y are supported by traversing the sets
γ[x] = (x, ∗, ∗) and γ[y] = (∗, y, ∗) respectively.

Add. To add a new edge (x, y, w), we first retrieve γ[x] = (addr�1 , . . . , addr�k , h�)
and check whether the triangles rooted at addr�1 and addr�2 have the same height.

To do so, we take a detour to describe the +1 operation in h + 1. Recall
that only the least significant non-zero trit, say the i-th trit, in h can be set to
2. The operation h + 1 adds 1 to the i-th trit (instead of the least significant
trit as in normal addition), which sets the i-th trit to 0 and carries 1 to the
(i + 1)-trit. Denote this event by Carry(h + 1) = 1. Otherwise, h + 1 simply adds
1 to the least significant trit as in normal addition, denoted by Carry(h+1) = 0.
Later, for deletion, we would need the −1 operation which is the “reverse” of
+1. Concretely, h−1 subtracts 1 from the least significant non-zero trit, say the
i-th trit, and set the (i − 1)-th trit to 2 if i > 1.

With the above procedures, checking the heights of the first two triangles
can be done by simply checking whether the least significant non-zero trit in
h� equals 2, or equivalently whether Carry(h� + 1) = 1. If that is the case, we
add (a�, b�) where a� = (x, y, w) and b� = (addr�1 , addr�2) to a random address
addr� in η. We then update γ[x] ← (addr�, addr�3 , . . . , addr�k , h� + 1), where
the two addresses addr�1 and addr�2 are replaced by the new addr�. Otherwise,
we add (a�, b�) where a� = (x, y, w) and b� = (⊥,⊥) to a random address
addr� in η, and update γ[x] ← (addr�, addr�1 , . . . , addr�k , h� + 1). The difference
is highlighted in red.

Similarly, we retrieve (addr�1 , . . . , addr�k , h�) ← γ[y] and check whether
Carry(h� + 1) = 1. If so, we add ((x, y, w), (addr�1 , addr�2)) to a ran-
dom address addr� in η, and update γ[y] ← (addr�, addr�3 , . . . , addr�k , h� +
1). Otherwise, we add ((x, y, w), (⊥,⊥)) to addr�, and update γ[y] ←
(addr�, addr�1 , . . . , addr�k , h� + 1).

Delete. To delete node x, or equivalently the set of edges (x, ∗, ∗), we first
traverse the set (x, ∗, ∗) using the above traversal algorithm. We delete all the
traversed nodes in η as well as the row γ[x]. It remains to delete the dual nodes of
the traversed nodes. To do so, for each traversed address addr� with a = (x, y, w),
look up δ[addr�] = addr� and γ[y] = (addr�1 , . . . , addr�k , h�). We wish to replace
the content of η[addr�] = (a�, b�) located in the middle of some triangle by the
content of η[addr�1], the root of the smallest triangle, which splits the smallest
triangle into two smaller ones. In this way, the heights of the resulting triangles
still satisfy the required constraints.

Concretely, we perform the following steps. (1) Look up δ[addr�1] =
addr�1 . (2) Delete δ[addr�] and δ[addr�1]. (3) Update δ[addr�1] ← addr� and
δ[addr�] ← addr�1 . (4) Look up η[addr�1] = (a�

1 , b�
1), where b�

1 = (addr�0 , addr�1).
(5) Update η[addr�] ← (a�

1 , b�
1) and delete η[addr�1]. (6) Update γ[y] =

(addr�0 , addr�1 , addr�2 , . . . , addr�k , h� − 1), where h� − 1 is the reverse of h� + 1.
We omit the deletion of (∗, y, ∗) which is similar to the above.

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 491

Efficiency. The storage cost of cascaded triangles is O(|X| + |Y | + |G|) =
O(|G|). The complexity of querying (or deleting) x and y are O(|(x, ∗, ∗)|) and
O(|(∗, y, ∗)|) respectively. Addition of an edge can be computed in constant time.

5.2 Our Construction: Encrypted Cascaded Triangles

We now transform the plaintext cascaded triangles into its encrypted version.
Recall that the goal of the client is to encrypt a labeled bipartite graph G
into an encrypted database EDB which still supports neighbor queries, edge
additions, and node deletions. To do so, the client represents G using cascaded
triangles, stores γ locally, and outsources δ and the encrypted η to the server.
The encryption should be non-committing, such that there exists a simulator
which can simulate the ciphertexts for new data without any leakage. When
some data is to be returned upon queries or is deleted, the simulator is given
enough leakage so that it can “explain” the dummy ciphertexts. Furthermore,
when the sets (x, ∗, ∗) and (∗, y, ∗) are leaked upon querying x and y respectively,
there is no need to protect the sets by encryption any longer [8]. To speed up
subsequent queries, the server should transfer the set from the encrypted η to a
plaintext labeled bipartite graph Ĝ. Thus, we can conceptually split G into two
disjoint subgraphs G = G̃ ∪ Ĝ, where G̃ is encrypted and Ĝ is in plaintext.

Encrypted cascaded triangles are similar to the plaintext counterparts. We
highlight the differences and omit the identical parts.

Setup and Overview. Let NCE.(KGen,Enc,Dec) be a symmetric-key non-
committing encryption scheme5. The correctness of our scheme will follow
directly from that of NCE. For each edge (x, y, w) in the encrypted subgraph G̃,
η[addr�] stores the tuple (c�

a , c�
b), where c�

a and c�
b are non-committing cipher-

texts of a� = (x, y, w) and b� = (chd0, chd1) under the keys ak� and bk� respec-
tively. The keys ak� and bk� are independently generated for each x. Similarly,
η[addr�] stores the tuple (c�

a , c�
b) encrypted under ak� and bk� respectively. The

keys ak� and bk� are independently generated for each y. For each x, γ[x] addi-
tionally stores secret keys ak� and bk� associated to x. Similarly, for each y, γ[y]
additionally stores secret keys ak� and bk� associated to y. Formally, the setup
protocol in Fig. 3 shows the initialization of these dictionaries.

Queries. Queries are similar to the plaintext case. Apart from the addresses,
the client also sends ak and bk retrieved from γ[q] to the server. Using bk, the
server decrypts all b = (chd0, chd1) and traverses the sub-trees. Using ak, it
decrypts all a = (x, y, w) which are returned as query results. The server also
returns the previous query results R̂ stored in Ĝ.

5 For example, a ciphertext for message m with randomness r can be computed as
c = (r,PRF(K, r) ⊕ m), where PRF, modeling a random oracle, is a pseudorandom
function with secret key K. In practice, one may substitute PRF with an HMAC.

492 R.W.F. Lai and S.S.M. Chow

(K,EDB) ← Setup(1λ, |X |, |Y|, |W|)
γ = φ, = φ, η = φ, Ĝ = φ

return K = γ, EDB = (, η, Ĝ)

Trav(EDB, {addrj}k
j=1, ak, bk)

if k > 1 then

R = φ, D = φ

for j = 1, . . . , k do

(R
′
, D

′
) ← Trav(EDB, addrj , ak, bk)

R = R ∪ R
′
, D = D ∪ D

′

endfor

else

(ca, cb) ← η[addr1], η[addr1] ← ⊥
addr1 ← [addr1], [addr1] ← ⊥
if ak �= ⊥ then

Trav(EDB, {addrj}k
j=1, ak, bk) (cont.)

(x, y, w) ← NCE.Dec(ak, ca)

else

(x, y, w) ← ca

endif

(chd0, chd1) ← NCE.Dec(bk, cb)

if chd0 �= ⊥ (∨ chd1 �= ⊥) then

(R
′
, D

′
) ← Trav(EDB, chd0, ak, bk)

(R
′′

, D
′′
) ← Trav(EDB, chd1, ak, bk)

R = R
′ ∪ R

′′ ∪ {(x, y, w)}
D = D

′ ∪ D
′′ ∪ {addr1}

else

R = {(x, y, w)}, D = {addr1}
endif

endif

return (R, D)

Fig. 3. Setup and traverse algorithm of encrypted cascaded triangles

((K′, R), (EDB′, R)) ← Qrye((K, q),EDB)

revreStneilC

R = φ q R̂ ← Qry(q, Ĝ)

if γ[q] �= ⊥ then R̂

(ak, bk, {addrj}k
j=1, h) ← γ[q] ak, bk, {addrj}k

j=1 (R, D) ← Trav(EDB, {addrj}k
j=1, ak, bk)

γ[q] ← ⊥ R parse D as (addrj)j

if q = x ∈ X then

parse R as {(x, zj , wj)}j

else // q = y ∈ Y
parse R as {(zj , y, wj)}j

endif

(K, EDB) ← DelDual((K, {zj}j , (EDB, {addrj}j))

endif

R ← R ∪ ˆ RR ← R ∪ R̂

foreach (x, y, w) ∈ R̂ do

Ĝ ← Udt((Add, x, y, w), Ĝ)

endfor

return (K, R) return (EDB, R)

Fig. 4. Query protocol of encrypted cascaded triangles

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 493

(K′,EDB′) ← DelDual((K, {qj}j), (EDB, {addrj}j))

revreStneilC

for j = 1, . . . , n do

(akj , bkj , {addrj,i}�j
i=1, hj) ← γ[qj]

addrj := addrj,1 addr�j ← (addrj)

(chd0, chd1) ← NCE.Dec(bkj , η[addrj].cb)
η[addrj].cb (addrj) ← ⊥

if chd0 �= ⊥ (∨ chd1 �= ⊥) then (addr�j) ← addrj

addrj,0 ← chd0, addrj,1 ← chd1 (addrj) ← addr�j

γ[qj] ← (akj , bkj , {addrj,i}�j
i=0), hj − 1) η[addrj].ca = η[addrj].ca

else η[addrj] ← ⊥
γ[qj] ← (akj , bkj , {addrj,i}�j

i=2), hj − 1)

endif

endfor

Fig. 5. Dual deletion protocol of encrypted cascaded triangles

As mentioned before, for the efficiency of subsequent queries, the server
should remove revealed entries from η and add them to the plaintext sub-
graph Ĝ. Thus, the client and the server cooperates to delete the set (q, ∗, ∗)
or (∗, q, ∗) from η. This conceptually removes the set from the encrypted sub-
graph G̃. Finally, the server adds the set to Ĝ. Formally, the query protocol
is shown in Fig. 4, which utilizes the subroutine Trav and subprotocol DelDual
shown in Figs. 3 and 5 respectively.

Add. Instead of sending (a�, b�) in the clear, the client sends their cipher-
texts (c�

a , c�
b), encrypted under ak� and bk� retrieved from γ[x], to the server

respectively. In the case where γ[x] = ⊥, the client generates new secret keys
ak� and bk� using the key generation algorithm of the non-committing encryp-
tion scheme. Sending (a�, b�) requires a similar treatment. Figure 6 formally
describes the addition protocol.

Delete. Deletion of (x, ∗, ∗) is almost identical to querying x, except that the
client does not send out ak�. Instead, the server returns all c�

a so that the client
can decrypt them locally. After obtaining all the edges (x, y, w), the client and
the server cooperate to delete (x, ∗, ∗) from η as in the query algorithm. This
conceptually removes (x, ∗, ∗) from the encrypted subgraph G̃. Finally, the server
also removes (x, ∗, ∗) from the plaintext subgraph Ĝ. Deletion of (∗, y, ∗) is done
similarly. Figure 7 shows the deletion protocol, which also utilizes the subroutines
Trav and DelDual in Figs. 3 and 5 respectively.

494 R.W.F. Lai and S.S.M. Chow

(·,EDB′) ← Udte(·,EDB)

Receive (addr�, addr�, c
�
a , c

�
b , c

�
a , c

�
b)

[addr�] ← addr�, [addr�] ← addr�

η[addr�] ← (c
�
a , c

�
b), η[addr�] ← (c

�
a , c

�
b)

return EDB

(K′, ·) ← Udte((K, u = (Add, x, y, w)), ·)
addr�, addr� ← {0, 1}∗

for (q, ♦) ∈ {(x, �), (y, �)} do

if γ[q] = ⊥ then

ak, bk ← NCE.KGen(1λ
)

addr1, addr2 ← ⊥
γ[q] ← (ak, bk, {addr}, 1)

(cont.)

else

(ak, bk, {addrj}k
j=1, h) ← γ[q]

if Carry(h + 1) then

γ[q] ← (ak, bk, {addr, addrj}k
j=3, h + 1)

else

γ[q] ← (ak, bk, {addr, addrj}k
j=1, h + 1)

endif

endif

c
♦
a ← NCE.Enc(ak, (x, y, w))

c
♦
b ← NCE.Enc(bk, (addr1, addr2))

endfor

Send (addr�, addr�, c
�
a , c

�
b , c

�
a , c

�
b)

return K

Fig. 6. Addition protocol of encrypted cascaded triangles

(K′,EDB′) ← Udte((K, u = (Del, q)),EDB)

if γ[q] �= ⊥ then q Ĝ ← Udt((Del, q), Ĝ)

(ak, bk, {addri}i, h) ← γ[q] bk, {addri}i (R, D) ← Trav(EDB, {addri}i, ⊥, bk)

γ[q] ← ⊥ R parse D as (addrj)j

if q ∈ X then

{(q, zj , wj)}j ← NCE.Dec(ak, R)

else // q ∈ Y
{(zj , q, wj)}j ← NCE.Dec(ak, R)

endif

(K, EDB) ← DelDual((K, {zj}j), (EDB, {addrj}j))

endif

return K return EDB

Fig. 7. Deletion protocol of encrypted cascaded triangles

5.3 Analysis

Storage Cost. For each x, if nx = |(x, ∗, ∗) ∩ G̃| > 0, the client stores two λ-bit
keys of non-committing encryption, one �lg nx-trit string, and at most �lg nx+1
λ-bit addresses. Similar storage is required for each y. In the extreme case where
the client adds all possible data and never queries or deletes, the storage cost is
O(poly ·(|X | lg |Y|+ |Y| lg |X |)). However, querying and deleting x (or y) removes

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 495

(x, ∗, ∗) (or (∗, y, ∗)) from G̃, which waives the client local storage for x (or y).
Thus, the storage of a reasonable client would be much smaller.

The storage cost of the server is linear in the number of edges (x, y, w) added
to the server, which is optimal. Furthermore, if an edge (x, y, w) is revealed due
to a previous query, it is stored in plaintext instead of ciphertext, where the
former is much better in terms of locality [3].

Computation and Communication Cost. Both the client and the server perform
essentially no work during setup: They just initialize empty dictionaries.

During a query on q, the client first looks up its dictionary γ[q], which consists
of two λ-bit keys of NCE, one �lg nq-trit string, and at most (�lg nq + 1) λ-bit
addresses. The query q, the keys, and the addresses are sent to the server. The
server traverses the set (x, ∗, ∗) if q = x ∈ X , or the set (∗, y, ∗) if q = y ∈ Y. In
the former, the server needs to perform O(|(x, ∗, ∗)∩G̃|) decryption, and execute
Qry(q, Ĝ) which takes time |(x, ∗, ∗)∩ Ĝ|. It then returns the query result of size
|(x, ∗, ∗)| = |(x, ∗, ∗) ∩ G̃| + |(x, ∗, ∗) ∩ Ĝ| to the client. The client looks up and
sends |(x, ∗, ∗) ∩ G̃| addresses to the server, which performs the same amount
of I/O tasks, and returns O(|(x, ∗, ∗) ∩ G̃|) ciphertexts to the client. The client
finalizes by performing O(|(x, ∗, ∗)∩G̃|) decryption and the same amount of I/O
tasks. Overall, both computation and communication complexities for both the
client and the server are in the order of O(poly · |(x, ∗, ∗)|), which is optimal
for the server. In contrast to the presentation in the formal construction, the
number of rounds can be compressed into 4.

Since deletion is almost identical to querying except for local decryption,
their overall computation and communication complexities are identical.

For addition, the client performs a constant amount of I/O tasks to update γ,
while sending 2 λ-bit addresses and 4 ciphertexts to the server. The server simply
writes the ciphertexts to the specified addresses. Therefore, the overall computa-
tion, round, and communication complexities for both the client and the server
are constant, which is again optimal.

Note that our scheme supports batch operations (querying, addition, and
deletion) straightforwardly. In such case, the computation and communication
complexities increase linearly while the round complexity remains unchanged.

Security. In the full version, we prove that our scheme is secure against adap-
tive chosen query attack with very minimal leakage. In particular, our scheme
achieves (U1, 1)-forward privacy, where U1 is defined in Table 1. We begin by
defining the leakage functions. For setup, Lu only leaks the sizes of the spaces,
i.e., |X |, |Y|, and |W|. For addition, Lu only leaks the update type and the
time Time(x, y) of the addition as the new addresses are truly random and the
ciphertexts can be simulated by the simulator of the non-committing encryp-
tion scheme. For deletion of (x, ∗, ∗), Lu leaks the update type, x, and the time
Time(x, y) when each of the edges (x, y, w) ∈ (x, ∗, ∗) is added. It also leaks, for
each y such that (x, y, w) ∈ (x, ∗, ∗), the time Time(∗, y) when the last edge in
(∗, y, ∗) is added. Leakage for deleting (∗, y, ∗) is defined similarly. Finally, for
queries on q, Lq leaks all information leaked by Lu upon deletion of (x, ∗, ∗)

496 R.W.F. Lai and S.S.M. Chow

if q = x ∈ X , or (∗, y, ∗) if q = y ∈ Y, and the access patterns APt(q) of q,
assuming it is sorted by the time each response is added. Formally, we define:

– Le(G) = (|X |, |Y|, |W|)
– Lu(Add, x, y, w) = (Add,Time(x, y))
– Lu(Del, x) = (Del, x, {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)})
– Lu(Del, y) = (Del, y, {(Time(x, y),Time(x, ∗)) : (x, y, ·) ∈ (∗, y, ∗)})
– Lq(x) = (x,APt(x), {(Time(x, y),Time(∗, y)) : (x, y, ·) ∈ (x, ∗, ∗)})
– Lq(y) = (y,APt(y), {(Time(x, y),Time(x, ∗)) : (x, y, ·) ∈ (∗, y, ∗)})

The simulation is sketched as follows. The simulator first initializes empty
dictionaries δ and η, and the empty plaintext graph Ĝ. It maintains a table T
mapping time t to time-address tuples ((t0, addr), (t1, addr�).

For addition at time t, it samples random addresses addr and addr�, and reg-
isters them in δ. It sets T [t] ← ((t, addr), (t, addr�)). It simulates the ciphertexts
in η[addr] and η[addr�] using the simulator of NCE.

For deletion of (x, ∗, ∗), it is given x, which allows it to delete (x, ∗, ∗) from Ĝ.
It is also given the time Time(x, y) when each of the edges (x, y, w) ∈ (x, ∗, ∗) is
added, and for each y such that (x, y, w) ∈ (x, ∗, ∗) the time Time(∗, y) when the
last edge in (∗, y, ∗) is added. It recalls from the table T all addr and addr� pairs
which are created at time Time(x, y) and Time(∗, y). With the knowledge of these
addresses, the simulator can maintain δ and η as in the real scheme. It must also
output simulated bk and explain the ciphertexts cb encrypting the addresses.
To achieve this, the simulator passes the ciphertexts and the corresponding
addresses to the simulator of the non-committing encryption scheme, where the
latter outputs the simulated bk. Deletion of (∗, y, ∗) is simulated similarly.

Queries are simulated almost identically as in the simulation of deletions,
except that the simulator must now also output simulated ak and explain the
ciphertexts ca encrypting the query result. Similar to the above, this can be done
by calling the simulator of the non-committing encryption scheme.

Theorem 2. Assume that NCE.(KGen,Enc,Dec) is a symmetric-key non-
committing encryption scheme with message space {0, 1}max(lg |X |+lg |Y|+lg |W|,2λ),
the above construction is (Le,Lq,Lu)-CQA2 secure. Furthermore, the above con-
struction is (U1, 1)-forward private, where U1 is defined in Table 1.

References

1. Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. ACM Comput. Surv. 47(2), 18:1–18:51 (2014)

2. Bost, R.:
∑

oϕoς: forward secure searchable encryption. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016, pp. 1143–1154 (2016)

3. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 20

http://dx.doi.org/10.1007/978-3-642-55220-5_20

Forward-Secure Searchable Encryption on Labeled Bipartite Graphs 497

4. Chen, Y.-C., Chow, S.S.M., Chung, K.-M., Lai, R.W.F., Lin, W.-K., Zhou, H.-S.:
Cryptography for parallel RAM from indistinguishability obfuscation. In: Sudan,
M. (ed.) ITCS 2016, Cambridge, MA, USA, 14–16 January 2016, pp. 179–190.
ACM (2016)

5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., Sabrina De Capitani di Vimercati, (eds.) ACM CCS 2006, Alexandria, Vir-
ginia, USA, 30 October–3 November 2006, pp. 79–88. ACM Press (2006)

6. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: Improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

7. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53015-3 20

8. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, Scottsdale, AZ, USA, 3–7
November 2014, pp. 310–320. ACM Press (2014)

9. Islam, S.M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS 2012, San Diego, CA,
USA, 5–8 February 2012. The Internet Society (2012)

10. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39884-1 22

11. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, Raleigh, NC,
USA, 16–18 October 2012, pp. 965–976. ACM Press (2012)

12. Lai, R.W.F., Chow, S.S.M.: Structured encryption with non-interactive updates
and parallel traversal. In: 35th IEEE International Conference on Distributed
Computing Systems, ICDCS 2015, Columbus, OH, USA, 29 June–2 July 2015,
pp. 776–777 (2015)

13. Lai, R.W.F., Chow, S.S.M.: Parallel and dynamic structured encryption. In:
SECURECOMM 2016 (2016, to appear)

14. Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryp-
tion: attacks and new construction. Inf. Sci. 265, 176–188 (2014)

15. Rizomiliotis, P., Gritzalis, S.: ORAM based forward privacy preserving dynamic
searchable symmetric encryption schemes. In: Proceedings of the 2015 ACM Work-
shop on Cloud Computing Security Workshop, CCSW 2015, Denver, Colorado,
USA, 16 October 2015, pp. 65–76 (2015)

16. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp.
44–55. IEEE Computer Society Press, May 2000

17. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS 2014, San Diego, CA, USA, 23–26 February 2014.
The Internet Society (2014)

18. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the
power of file-injection attacks on searchable encryption. In: 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 707–
720 (2016)

http://dx.doi.org/10.1007/978-3-662-53015-3_20
http://dx.doi.org/10.1007/978-3-642-39884-1_22

Bounds in Various Generalized Settings
of the Discrete Logarithm Problem

Jason H.M. Ying(B) and Noboru Kunihiro

The University of Tokyo, Tokyo, Japan
jason ying@it.k.u-tokyo.ac.jp

Abstract. This paper examines the generic hardness of the generalized
multiple discrete logarithm problem, where the solver has to solve k out
of n instances for various settings of the discrete logarithm problem.
For generic k and n, we introduce two techniques to establish the lower
bounds for this computational complexity. One method can be shown
to achieve asymptotically tight bounds for small inputs in the classical
setting. The other method achieves bounds for larger inputs as well as
being able to adapt for applications in other discrete logarithm settings.
In the latter, we obtain the generalized lower bounds by applying par-
titions of n and furthermore show that our chosen method of partition
achieves the best bounds. This work can be regarded as a generalization
and extension on the hardness of the multiple discrete logarithm problem
analyzed by Yun (EUROCRYPT ’15). Some explicit bounds for various
n with respect to k are also computed.

Keywords: Discrete logarithm · Generalized multiple discrete loga-
rithm · Chebyshev’s inequality · Optimization · Gaussian elimination

1 Introduction

Discrete logarithms arise in many aspects of cryptography. The hardness of
the discrete logarithm problem is central in many cryptographic schemes; for
instance in signatures, key exchange protocols and encryption schemes. In fact,
many variants of the discrete logarithm problem have evolved over the years.
Some of these include the Bilinear Diffie-Hellman Exponent Problem [6], the
Bilinear Diffie-Hellman Inversion Problem [4], the Weak Diffie-Hellman Problem
[14] and the Strong Diffie-Hellman Problem [5]. We first describe the classical
discrete logarithm problem and its generalizations. Formal descriptions of the
statements are as follow.

Let G be a cyclic group such that |G| = p where p a prime and denote g to
be a generator of G so that G = 〈g〉.

The discrete logarithm problem (DLP) is defined as follows: Given G, p and
any h selected uniformly at random from G, find x ∈ Zp satisfying gx = h.

The k-Multiple Discrete Logarithm (k-MDL) is defined as follows:

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 498–517, 2017.
DOI: 10.1007/978-3-319-61204-1 25

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 499

Definition 1 (MDL). Given G, p and k elements h1, h2, . . . , hk selected uni-
formly at random from G, find non-negative integers x1, x2, . . . , xk satisfying
gxi = hi ∀ 1 ≤ i ≤ k.

In particular when k = 1, the 1-MDL is equivalent to DLP.
For k ≤ n, we define the (k, n)-Generalized Multiple Discrete Logarithm

((k, n)-GMDL) as follows:

Definition 2 (GMDL). Given G, p and n elements h1, h2, . . . , hn selected
uniformly at random from G, find k pairs (i, xi) satisfying gxi = hi where i ∈ S
and where S is a k-subset of {1, . . . , n}.

As the definition suggests, (k, n)-GMDL can be viewed as a generalization of
k-MDL. In particular when n = k, the (k, k)-GMDL is equivalent to the k-MDL.

Cryptographic constructions based on DLP are applied extensively. For
instance, an early application of the DLP in cryptography came in the form
of the Diffie-Hellman key exchange protocol [8] for which the security is depen-
dent on the hardness of the DLP. Among some of the others include the ElGa-
mal encryption and signature schemes [9] as well as Schnorr’s signature scheme
and identification protocol [16]. The multiple discrete logarithm problem mainly
arises from elliptic curve cryptography. NIST recommended a small set of fixed
(or standard) curves for use in cryptographic schemes [1] to eliminate the com-
putational cost of generating random secure elliptic curves. The implications for
the security of standard elliptic curves over random elliptic curves were analysed
based on the efficiency of solving multiple discrete logarithm problems [11].

In a generic group, no special properties which are exhibited by any spe-
cific groups or their elements are assumed. Algorithms for a generic group are
termed as generic algorithms. There are a number of results pertaining to generic
algorithms for DLP and k-MDL. Shoup showed that any generic algorithm for
solving the DLP must perform Ω(

√
p) group operations [17]. There are a few

methods for computing discrete logarithm in approximately
√

p operations. For
example, Shanks Baby-Step-Giant-Step method computes the DLP in Õ(

√
p)

operations. One other method is the Pollard’s Rho Algorithm which can be
achieved in O(

√
p) operations [15]. Since then, further practical improvements

to the Pollard’s Rho Algorithm have been proposed in [3,7,18] but the computa-
tional complexity remains the same. There exist index calculus methods which
solve the DLP in subexponential time. However, such index calculus methods
are not relevant in our context since they are not applicable for a generic group.

An extension of Pollard’s Rho algorithm was proposed in [13] which solves
k-MDL in O(

√
kp) group operations if k ≤ O(p1/4). It was subsequently shown

in [10] that O(
√

kp) can in fact be achieved without the imposed condition on k.
The former’s method of finding discrete logarithm is sequential in the sense that
they are found one after another. However in the latter’s method, all the discrete
logarithms can only be obtained towards the end. Finally, it was presented in
[19] that any generic algorithm solving k-MDL must require at least Ω(

√
kp)

group operations if k = o(p).

500 J.H.M. Ying and N. Kunihiro

Our Contributions. In the context of our work, suppose an adversary has
knowledge or access to many instances of the discrete logarithm problem either
from a generic underlying algebraic group or from a standard curve recommended
by NIST. Our work investigates how difficult it is for such an adversary to solve
subcollections of those instances. One of our result outcomes in this work shows
that an adversary gaining access to additional instances of the DLP provides
no advantage in solving some subcollection of them when k is small and for
corresponding small classes of n. Our techniques are also applicable to other
standard non-NIST based curves. For instance, the results in this work are rele-
vant to Curve25519 [2] which has garnered considerable interest in recent years.
Furthermore, we also establish formal lower bounds for the generic hardness of
solving the GMDL problem for larger k values. As a corollary, these results pro-
vide the lower bounds of solving the GMDL problem for the full possible range of
inputs k. Part of this work can be viewed as a generalization of the results in [19].

More specifically, we introduce two techniques to solve such generalized mul-
tiple discrete logarithm problems. The first we refer to as the matrix method
which is also shown to achieve asymptotically tight bounds when the inputs are
small. From this, we obtain the result that the GMDL problem is as hard as the
MDL problem for k = o

(
p1/3

log2/3 p

)
and kn2 = o

(
p

log2 p

)
. This strictly improves

the result of [13] where the equivalence is achieved for a smaller range of inputs
satisfying k = o(p

1
4) and k2n2 = o(p). The second technique is referred as the

block method which can be applied for larger inputs. We also show that the block
partitioning in this method is optimized. Moreover, when n is relatively small
with respect to k, the bounds that are obtained in this way are also asymptoti-
cally tight. Furthermore, we demonstrate that the block method can be adapted
and applied to generalized versions of other discrete logarithm settings intro-
duced in [12] to also obtain generic hardness bounds for such problems. For
instance, part of this work also shows that solving one out of n instances of the
Discrete Logarithm Problem with Auxiliary Inputs is as hard as solving a single
given instance when n is not too large. In addition, we also explain why the
matrix method cannot be extended to solve these problems.

2 Preliminaries

For generic groups of large prime order p, denote Tk, Tk,n to be the expected
workload (in group operations) of an optimal algorithm solving the k-MDL prob-
lem and (k, n)-GMDL problem respectively.

Lemma 1 and Corollary 1 for a special case k = 1 are attributed to [13].

Lemma 1. T1 ≤ T1,n + 2n log2 p

Proof. Given an arbitrary h ∈ G = 〈g〉, obtaining x such that gx = h can
be achieved in time T1. For all i, 1 ≤ i ≤ n, select integers ri uniformly at
random from the set {0, . . . , p − 1} and define hi := grih = gx+ri . All the hi

are random since all the ri and h are random. Apply a generic algorithm with

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 501

inputs of (h1, h2, . . . , hn) that solves the (1, n)-GMDL problem in time T1,n.
The resulting algorithm outputs (j, y) such that hj = gy, 1 ≤ j ≤ n. Therefore,
x ≡ y − rj mod p, thus solving the 1-MDL problem within T1,n +2n log2 p group
multiplications. 	

Corollary 1. For all n = o
(√

p

log p

)
, T1,n = Ω(

√
p).

Proof. Since T1 = Ω(
√

p) [17], when n = o
(√

p

log p

)
, it follows directly from

Lemma 1 that T1,n = Ω(
√

p). 	

It was also obtained in [13] that the GMDL problem is as hard as the MDL

problem if kn � √
p. Since k ≤ n, this equivalence is valid for k = o(p

1
4) and

k2n2 = o(p).

3 Generalized Bounds of Tk,n for Small k

The first method we introduce is to obtain an improved lower bound of Tk,n for
small k. We refer to this as the Matrix technique.

We seek to obtain an upper bound of Tk based on Tk,n. Given gxi = hi ∀
1 ≤ i ≤ k, Tk represents the time to solve all such xi. For all 1 ≤ i ≤ n, denote
yi by the following1:

⎛
⎜⎜⎜⎝

y1
y2
...

yn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 α1 α2
1 . . . αk−1

1

1 α2 α2
2 . . . αk−1

2
...

...
...

. . .
...

1 αn α2
n . . . αk−1

n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xk

⎞
⎟⎟⎟⎠

Next, multiply each gyi with a corresponding random element gri where 0 ≤
ri ≤ p − 1. By considering these randomized gyi+ri as inputs to a (k, n)-GMDL
solver, this solver outputs solutions to k out of n of such discrete logarithms.
These solutions are of the form yi + ri. As such, a total of k values of yi can be
obtained by simply subtracting from their corresponding ri. We claim that any
k collections of yi is sufficient to recover all of x1, x2, . . . , xk. Indeed, it suffices
to show that any k-by-k submatrices of

V =

⎛
⎜⎜⎜⎝

1 α1 α2
1 . . . αk−1

1

1 α2 α2
2 . . . αk−1

2
...

...
...

. . .
...

1 αn α2
n . . . αk−1

n

⎞
⎟⎟⎟⎠

has non zero determinant. This can be satisfied by simply letting αi = i since V
is a Vandermonde matrix.

1 This representation of yi came about from a suggestion by Phong Q. Nguyen.

502 J.H.M. Ying and N. Kunihiro

In this case, recovering x1, x2, . . . , xk from k number of yi requires solving
a k-by-k system of linear equations. This can be achieved in O(k3) arithmetic
operations using Gaussian elimination. Crucially, this does not involve any group
operations. On the other hand, group operations are incurred from the compu-
tations of all gyi = gx1+αix2+···+αk−1

i xk . Since αi = i, this process requires the
computations of each (gxj)ij−1 ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ k. Denote ai,j = (gxj)ij−1

.

By noting that ai+1,j = a
(i+1

i)j−1

i,j , it can be concluded that computing ai+1,j

given ai,j requires at most 2(j − 1) log2
i+1

i group multiplications. Moreover,
a1,j = gxj is already known. Hence the total number of groups multiplications
required to compute all (gxj)ij−1

is at most

k∑
j=1

n−1∑
i=1

2(j − 1) log2

(
i + 1

i

)
= k(k − 1) log2 n.

Furthermore, each addition in the exponent of gx1+αix2+···+αk−1
i xk+ri constitutes

a group multiplication. Therefore, kn group multiplications are necessary in this
step. Thus, the total number of group multiplications required to compute all of
gyi+ri is at most kn+ k(k − 1) log2 n. Since k ≤ n < p, the above expression can
be bounded from above by 2kn log2 p and so it follows that

Tk ≤ Tk,n + 2kn log2 p

Since Tk = Ω(
√

kp) [19], Tk,n is asymptotically as large as Tk if nk log p � √
kp.

Hence, Tk,n = Ω(
√

kp) if k = o
(

p1/3

log2/3 p

)
and n

√
k = o

(√
p

log p

)
. Moreover, this

bound is asymptotically tight since there exists an algorithm which solves k-MDL
in O(

√
kp).

4 Generalized Bounds of Tk,n for Larger k

The matrix technique has been shown to provide asymptotically tight bounds
required to solve k out of n of the multiple discrete logarithm in the classical
setting when the inputs are small. One main limitation of this technique is that
it is only applicable to the classical DLP and cannot be extended for other
variants or other settings of the DLP. This will be shown in further details in
the subsequent sections. Moreover, in light of the fact that the bound of Tk can
be achieved for large inputs extending to o(p), the matrix method is not sufficient
to obtain analogous bounds for larger such k values. In this section, we address
these issues by introducing the block method to evaluate lower bounds of Tk,n

for general k, including large k values. Moreover, the block technique can also
be applied to other variants or other settings in the MDLP. This will be also
described in the later sections.

Proposition 1. Suppose that n ≥ k2. Then,

Tk ≤ kTk,n + 2nHk log2 p

where Hk denotes the kth harmonic number, Hk =
∑k

i=1
1
i .

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 503

Proof. Given arbitraries h1, h2, . . . , hk ∈ G = 〈g〉, obtaining x1, x2, . . . , xk such
that gxi = hi ∀ 1 ≤ i ≤ k can be achieved in time Tk. Consider n elements
partitioned into k blocks each of size approximately sk, where sk = n

k . Each
block is labelled i where i ranges from 1 to k. For each i, 1 ≤ i ≤ k, select about
sk integers ri,j uniformly at random from Zp and define hi,j := gri,jhi = gxi+ri,j .
This generates n of hi,j which when applied to a generic algorithm for the (k, n)-
GMDL problem, outputs k pseudo solutions. Computing each hi,j requires at
most 2 log2 p group multiplications. Since each block is about size n

k ≥ k, these
k pseudo solutions might be derived from the same block. In which case, the
algorithm outputs k of ((i′, j), yi′,j) such that hi′,j = gyi′,j for some i′. As a
result, one can obtain xi′ ≡ yi′,j − ri′,j mod p but derive no other information
of other values of xi. This invokes at most Tk,n + 2n log2 p group operations.
Figure 1 illustrates an overview of the first phase.

Fig. 1. Overview of the first phase

The second phase proceeds as follows. Since 1 out of k discrete logarithms has
been obtained, discard the block for which that determined discrete logarithm
is contained previously. For each of i ∈ {1, . . . , k} \ {i′}, select about sk

k−1

integers ri,j uniformly at random from Zp and define hi,j := gri,jhi = gxi+ri,j .
Incorporate these new values of hi,j into the remaining k−1 blocks. Hence, each
of the remaining k − 1 unsolved discrete logarithms are contained separately in
k−1 blocks each of size approximately n

k−1 . This generates n of hi,j which when
applied to a generic algorithm for the (k, n)-GMDL problem, outputs k pseudo
solutions. Since each block is about size n

k−1 ≥ k, these k pseudo solutions might
once again be derived from the same block. In which case, the algorithm outputs
k of ((i′′, j), yi′′,j) such that hi′′,j = gyi′′,j for some i′′. As a result, one can obtain
xi′′ ≡ yi′′,j −ri′′,j mod p but derive no other information for the other remaining
values of xi. This second phase incurs at most Tk,n + 2sk log2 p group operations.

The third phase executes in a similar manner to the second phase as follows.
For each of i ∈ {1, . . . , k} \ {i′, i′′}, select about sk−1

k−2 integers ri,j uniformly
at random from Zp and define hi,j := gri,jhi = gxi+ri,j . Incorporate these new
values of hi,j into the remaining k −2 blocks. Hence, each of the remaining k −2
unsolved discrete logarithms are contained separately in k−2 blocks each of size
approximately n

k−2 . This generates n of hi,j which when applied to a generic

504 J.H.M. Ying and N. Kunihiro

algorithm for the (k, n)-GMDL problem, outputs k pseudo solutions. Since each
block is about size n

k−2 ≥ k, these k pseudo solutions might be derived from the
same block. In which case, the algorithm outputs k of ((i(3), j), yi(3),j) such that
hi(3),j = g

y
i(3),j for some i(3). As a result, one can obtain xi(3) ≡ yi(3),j − ri(3),j

mod p but derive no other information for the other remaining values of xi. This
second phase incurs at most Tk,n + 2sk−1 log2 p group operations.

During each phase of the process, a generic algorithm for the (k, n)-GMDL
problem can never guarantee outputs deriving from different blocks since n ≥ k2

implies n
k−i+1 ≥ k, ∀1 ≤ i ≤ k. In general for i ≥ 2, the maximum number of

group operations required in the ith phase is given by Tk,n + 2sk+2−i log2 p. The
process terminates when all k discrete logarithms have been obtained. Since each
phase outputs exactly 1 out of k discrete logarithms, all k discrete logarithms
can be determined after k phases. Therefore, the following inequality can be
obtained.

Tk ≤ Tk,n + 2n log2 p +
k∑

i=2

(Tk,n + 2sk+2−i log2 p)

Since sk = n
k ,

k∑

i=2

(Tk,n + 2sk+2−i log2 p) = (k − 1)Tk,n + (2 log2 p)

k∑

i=2

si = (k − 1)Tk,n + (2 log2 p)

k∑

i=2

n

i
.

Hence, it follows that

Tk ≤ kTk,n + 2n(1 +
k∑

i=2

1
i
) log2 p = kTk,n + 2nHk log2 p.

This completes the proof. 	

Remark 1. When k = 1, Proposition 1 corresponds to Lemma 1.

By regarding k = k(p) as a function of p such that limp→+∞ k(p) = +∞, the
asymptotic bounds of Tk,n can be obtained.

Theorem 1. Suppose k3 log2 k = o
(

p
log2 p

)
, then Tk,n = Ω

(√
p
k

)
for all n

satisfying n = k2 + Ω(1) and n = o
(√

kp
(log k)(log p)

)
.

Proof. Clearly k3 log2 k = o
(

p
log2 p

)
implies that k = o(p). Hence from [19],

Tk = Ω(
√

kp). It follows from Proposition 1 that if nHk log2 p � Tk, then Tk,n =
Ω(1

k

√
kp) = Ω

(√
p
k

)
. Moreover, since

lim
k→+∞

(Hk − log k) = lim
k→+∞

[(
k∑

i=1

1
i
) − log k] = γ

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 505

where γ is the Euler-Mascheroni constant, the condition nHk log2 p � Tk implies
that n = o

(√
kp

(log k)(log p)

)
. The lower bound n = k2 + Ω(1) is obtained by noting

that n has to be of size at least k2 from the condition of Proposition 1. Finally,
since the lower bound for n cannot be asymptotically greater than its upper
bound, k(p) has to satisfy k3 log2 k = o

(
p

log2 p

)
. This completes the proof of

Theorem 1. 	

Remark 2. Although Theorem 1 holds for a wide asymptotic range of n as given,
the Tk,n bound becomes sharper as n approaches

√
kp

(log k)(log p) . In essence, The-
orem 1 does not yield interesting bounds but is a prelude to the more essential
Theorem 2 which requires Proposition 1 and is hence included.

Proposition 2. Suppose that k < n < k2. Then,

Tk ≤ (r +
n

k
)Tk,n + 2rk log2 p + 2nH� n

k � log2 p

where r =
⌈

log(k2
n)

log(n
n−k)

⌉
.

Proof. The proof comprises two main phases. The former consists of the initializ-
ing phase followed by subsequent subphases. It utilizes the extended pigeon hole
principle to obtain more than one solution during each of the initial subphases.
The latter phase takes place after some point where the number of remaining
unknown discrete logarithms is small enough such that each subphase can only
recover one discrete logarithm. After this point, the method of determining all
other discrete logarithms essentially mirrors that of the method described in the
proof of Proposition 1. The formal proof and details are given as follows.

The initializing phase proceeds as follows. Given arbitraries h1, h2, . . . , hk ∈
G = 〈g〉, obtaining x1, x2, . . . , xk such that gxi = hi ∀ 1 ≤ i ≤ k can be
achieved in time Tk. Consider n elements partitioned into k blocks each of size
approximately sk, where sk = n

k . Each block is labelled i where i ranges from
1 to k. For each i, 1 ≤ i ≤ k, select about sk integers ri,j uniformly at random
from Zp and define hi,j := gri,jhi = gxi+ri,j . This generates n of hi,j which when
applied to a generic algorithm for the (k, n)-GMDL problem, outputs k pseudo
solutions. Computing each hi,j requires at most 2 log2 p group multiplications.
Since each block is about size n

k < k, by the extended pigeon hole principle, at
least k2

n out of these k solutions must be derived from distinct blocks. In other
words, at least k2

n correspond to distinct i values and as a result, k2

n discrete
logarithms out of k discrete logarithms can be obtained during this initializing
phase. This invokes at most Tk,n + 2n log2 p group operations.

The first subphase proceeds as follows. Since k2

n out of k discrete logarithms
have been obtained, discard all the blocks for which those determined discrete
logarithms are contained previously. Thus, about k− k2

n = k(n−k)
n blocks remain,

each of size approximately n
k . For each of the remaining blocks i, select about k

integers ri,j uniformly distributed across each i and uniformly at random from

506 J.H.M. Ying and N. Kunihiro

Zp. Define hi,j := gri,jhi = gxi+ri,j . Incorporate these new values of hi,j into the
remaining k(n−k)

n blocks. Hence, each of the remaining k(n−k)
n unsolved discrete

logarithms are contained separately in k(n−k)
n blocks each of size approximately

n2

k(n−k) . This generates n of hi,j which when applied to a generic algorithm for
the (k, n)-GMDL problem, outputs k pseudo solutions. This incurs a maximum
of Tk,n + 2k log2 p group operations.

If k ≤ n2

k(n−k) , these k pseudo solutions might be derived from the same block
and hence phase two begins in which the method described in Proposition 1 can
then be applied on this new set of blocks.

If k > n2

k(n−k) , the extended pigeon hole principle ensures that at least k2(n−k)
n2

of the k pseudo solutions correspond to distinct i values and a result, about
k2(n−k)

n2 discrete logarithms can be obtained in the first subphase.
Subsequent subphases are similar to the first subphase. In general for the

rth subphase, since about k2(n−k)r−1

nr solutions will have been obtained in the
(r − 1)th subphase, discard all the blocks for which those determined discrete
logarithms are contained previously. By a simple induction, it can be shown
that the number of remaining blocks in the rth subphase is about k(n−k)r

nr . The
induction proceeds as follows. The base case has already been verified in the
first subphase. Suppose the result holds for r = m − 1 for some m ≥ 2. By the
inductive hypothesis, the number of blocks remaining in the (m− 1)th subphase
is about k(n−k)m−1

nm−1 . During the mth subphase, since about k2(n−k)m−1

nm solutions
have already been obtained previously and are thus discarded, the number of
remaining blocks is given by

k(n − k)m−1

nm−1
− k2(n − k)m−1

nm
=

k(n − k)m

nm
.

This completes the induction. For each of the remaining blocks i, select about k
integers ri,j uniformly distributed across each i and uniformly at random from
Zp. Define hi,j := gri,jhi = gxi+ri,j . Incorporate these new values of hi,j into the
remaining k(n−k)r

nr blocks. Hence, each of the remaining k(n−k)r

nr unsolved discrete
logarithms are contained separately in k(n−k)r

nr blocks each of size approximately
nr+1

k(n−k)r . This generates n of hi,j which when applied to a generic algorithm for
the (k, n)-GMDL problem, outputs k pseudo solutions. Each of the rth subphase
requires at most Tk,n + 2k log2 p group operations.

When k ≤ nr+1

k(n−k)r , the k outputs can only guarantee one solution. Hence, as
soon as r satisfies the above inequality, the first main phase terminates at the
end of the rth subphase and the second main phase commences. That is

k ≤ nr+1

k(n − k)r
=⇒ r =

⌈
log(k2

n)
log(n

n−k)

⌉
.

At the beginning of second main phase, there are a total of about k(n−k)r

nr −1
unresolved discrete logarithms. The rest of the procedure follows starting from

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 507

the second phase of Proposition 1 until the end. Hence, it can immediately be
derived from the proof of Proposition 1 that the number of group operations
required to solve them all is at most 2[(k(n−k)r

nr −1)Tk,n + nH� k(n−k)r
nr �−n] log2 p.

Since

k ≤ nr+1

k(n − k)r
=⇒ k(n − k)r

nr
≤ n

k
,

the maximum number of group operations required in the second main phase
is given by (n

k − 1)Tk,n + 2(nH� n
k � − n) log2 p. The number of group operations

required during the first main phase is the sum of the number required for the
initializing phase and the number required for all the subphases. Therefore, the
maximum number of group operations required in the first main phase is given
by

Tk,n + 2n log2 p + r(Tk,n + 2k log2 p) = (r + 1)Tk,n + 2n log2 p + 2rk log2 p.

Thus the maximum number of group operations required to execute both the
first main phase and the second main phase is given by

(r + 1)Tk,n + 2(n + rk) log2 p + (
n

k
− 1)Tk,n + 2(nH� n

k � − n) log2 p.

Hence, Tk ≤ (r + n
k)Tk,n + 2rk log2 p + 2nH� n

k � log2 p. 	

Remark 3. One other approach is to replace the (k, n)-GMDL solver with the
(1, n)-GMDL solver during the second main phase. Both yield identical asymp-
totic results given in Sect. 7 as the computational bottleneck arises from the first
main phase.

By regarding k = k(p) as a function of p such that limp→+∞ k(p) = +∞, the
asymptotic bounds of Tk,n can be obtained.

Theorem 2. Suppose k, n satisfy the following conditions:

1 . k = o(p) 2 . n = k2 − Ω(1)

3 . n√
k

log(n
k) = o

(√
p

log p

)
4 .

log(k2
n)

log(n
n−k)

√
k = o

(√
p

log p

)

Then,

Tk,n = Ω

(√
k

n
k + r

√
p

)

where r = r(k, n) ≥ 1 is any function of k and n satisfying r(k, n) =

Ω

(
log(k2

n)

log(n
n−k)

)
.

508 J.H.M. Ying and N. Kunihiro

Proof. Condition 1 is necessary to utilize results in [19] for a lower bound of Tk.
Condition 2 is required in order to apply the result of Proposition 2. Conditions
3 and 4 can be obtained by requiring nH�n

k � log p � Tk and rk log p � Tk

respectively and noting that Tk = Ω(
√

kp). Hence from Proposition 2 and under
these conditions, Tk,n = Ω

(√
k

n
k +r

√
p
)
. 	

It should be mentioned that r(k, n) can be taken to be any function satisfying

r(k, n) = Ω

(
log(k2

n)

log(n
n−k)

)
. However, it is clear that Tk,n achieves sharper bounds

for asymptotically smaller choices of r. One other point of note is that when
n = k where k = o(p), all the 4 conditions are satisfied and r(k, n) can be taken
to be 1. In this case, Tk = Tk,k = Ω(

√
kp). which indeed corresponds to the

bound obtained in [19].

5 Optimizing the Partition of n

From the methods described in the proofs of Propositions 1 and 2, n is parti-
tioned into blocks of approximately equal size at each phase. There are many
ways to perform such partitions of n. The running time of each phase is partially
determined by the number of uniformly randomly chosen ri,j , which invariably
depends on the partition of n. In this section, we show that the method of par-
tition described in the proofs of the earlier Propositions minimizes the expected
number of chosen ri,j required and hence results in the fastest running time
among all other possible partitions. We first consider the case where a (k, n)-
GMDL solver output solutions derived from the same block so only one discrete
logarithm can be determined at each phase. We follow this up by considering
general scenarios where a (k, n)-GMDL solver outputs solutions derived from
multiple blocks.

5.1 Pseudo Solutions Deriving from the Same Block

Denote si to be the size of block i, k ≤ si, 1 ≤ i ≤ k. So that
∑k

i=1 si = n. Let
pi,k be the conditional probability that the k output solutions derive from block
i given that the k output solutions derive from the same block. Then, pi,k can
be expressed by the following.

pi,k =

(
si

k

)
∑k

j=1

(
sj

k

)

Suppose a solution is derived from block i. Upon discarding block i, si of ri,j

have to be randomly chosen to fill the remaining blocks so that they sum back
up to n. Let E

(1)
k be the expected number of randomly chosen ri,j required.

Then, E
(1)
k can be expressed by the following.

E
(1)
k =

k∑
i=1

pi,ksi =
∑k

i=1

(
si

k

)
si∑k

i=1

(
si

k

)

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 509

Our objective is therefore to minimize E
(1)
k given

∑k
i=1 si = n. We expand the

admissible values of si to the set of positive real numbers so that si ∈ R
+. In this

way,
(
si

k

)
is defined as

(
si

k

)
= si(si−1)...(si−k+1)

k! . We prove the following result.

Theorem 3. Given that
∑k

i=1 si = n,

∑k
i=1

(
si

k

)
si∑k

i=1

(
si

k

) ≥ n

k
.

Proof. Without loss of generality, assume that s1 ≤ s2 ≤ · · · ≤ sk. Thus,
(
s1
k

) ≤(
s2
k

) ≤ · · · ≤ (
si

k

)
. By Chebyshev’s sum inequality,

k
k∑

i=1

(
si

k

)
si ≥

(
k∑

i=1

si

) (
k∑

i=1

(
si

k

))
.

The result follows by replacing
∑k

i=1 si with n in the above inequality. 	

Hence, E
(1)
k ≥ n

k and it is straightforward to verify that equality holds if
s1 = s2 = · · · = sk. Therefore, the method of partitioning n into blocks of
equal sizes at each phase as described in the proof of the Proposition 1 indeed
minimizes the running time.

5.2 Pseudo Solutions Deriving from Multiple Blocks

Denote si to be the size of block i, 1 ≤ i ≤ k. so that
∑k

i=1 si = n. Let pi1,i2,...,im,k
be the conditional probability that the k output solutions derive from blocks
i1, i2, . . . , im given that the k output solutions derive from m distinct blocks.
Then, pi1,i2,...,im,k satisfies the following.

pi1,i2,...,im,k

∑

{i1...im}⊆{1,...,k}

∑

k1+···+km=k

(si1
k1

)
. . .
(sim
km

)
=

∑

k1+···+km=k

(si1
k1

)
. . .
(sim
km

)

A more concise representation can be expressed as follows.

pi1,i2,...,im,k

∑
{i1...im}⊆{1,...,k}

∑
k1+···+km=k

m∏
t=1

(
sit

kt

)
=

∑
k1+···+km=k

m∏
t=1

(
sit

kt

)
(1)

We can further simplify the above expression by the following lemma.

Lemma 2.

∑
k1+···+km=k

m∏
t=1

(
sit

kt

)
=

(
si1 + · · · + sim

k

)

510 J.H.M. Ying and N. Kunihiro

Proof. For brevity, denote s = si1 + · · · + sim .
Consider the polynomial (1 + x)s. By the binomial theorem, (1 + x)s =∑s

r=0

(
si1+···+sim

r

)
xr. On the other hand,

(1 + x)s = (1 + x)si1 . . . (1 + x)sim =
m∏

t=1

sit∑
rt=0

(
sit

rt

)
xrt .

In this instance, the coefficient of xr is the sum of all products of binomial
coefficients of the form

(
sit
rt

)
where the rt sum to r. Therefore,

m∏
t=1

sit∑
rt=0

(
sit

rt

)
xrt =

s∑
r=0

∑
r1+...rm=r

m∏
t=1

(
sit

rt

)
xr.

Hence,

s∑
r=0

(
si1 + · · · + sim

r

)
xr =

s∑
r=0

∑
r1+...rm=r

m∏
t=1

(
sit

rt

)
xr.

The result follows by equating the coefficients of xr on both sides of the above
equation. 	

Corollary 2.

pi1,i2,...,im,k

∑
{i1...im}⊆{1,...,k}

(
si1 + · · · + sim

k

)
=

(
si1 + · · · + sim

k

)

Proof. Follows directly from Eq. (1) and Lemma 2. 	

Suppose m solutions are derived from blocks i1, . . . , im. Upon discarding

blocks i1, . . . , im, si1 + · · · + sim of ri,j have to be randomly chosen to fill the
remaining blocks so that they sum back up to n. Denote E

(m)
k to be the expected

number of randomly chosen ri,j required. Then, a generalized form of E
(m)
k can

be expressed as follows.

E
(m)
k =

∑
{i1...im}⊆{1,...,k}

pi1,i2,...,im,k(si1 + · · · + sim)

From the result of Corollary 2, this implies that E
(m)
k satisfies

E
(m)
k

∑

{i1...im}⊆{1,...,k}

(si1 + · · · + sim

k

)
=

∑

{i1...im}⊆{1,...,k}

(si1 + · · · + sim

k

)
(si1 + · · · + sim).

Once again, we seek to maximize E
(m)
k given

∑k
i=1 si = n. As before, we expand

the admissible values of si to the set of positive real numbers so that si ∈ R
+.

In this way,
(
si

k

)
is defined as

(
si

k

)
= si(si−1)...(si−k+1)

k! . We prove the following
result.

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 511

Theorem 4. Given that
∑k

i=1 si = n,

∑

{i1...im}⊆{1,...,k}

(si1 + · · · + sim

k

)
(si1 + · · · + sim) ≥ mn

k

∑

{i1...im}⊆{1,...,k}

(si1 + · · · + sim

k

)
.

Proof. By Chebyshev’s sum inequality,
(

k

m

) ∑
{i1...im}⊆{1,...,k}

(
si1 + · · · + sim

k

)
(si1 + · · · + sim)

≥
⎛
⎝ ∑

{i1...im}⊆{1,...,k}

(
si1 + · · · + sim

k

)⎞
⎠

⎛
⎝ ∑

{i1...im}⊆{1,...,k}
(si1 + · · · + sim)

⎞
⎠ .

Since
∑k

i=1 si = n,

∑
{i1...im}⊆{1,...,k}

(si1 + · · · + sim) =
(

k − 1
m − 1

)
n.

Hence, we obtain
(

k

m

) ∑
{i1...im}⊆{1,...,k}

(
si1 + · · · + sim

k

)
(si1 + · · · + sim)

≥
(

k − 1
m − 1

)
n

∑
{i1...im}⊆{1,...,k}

(
si1 + · · · + sim

k

)
.

By elementary algebraic operations, it is straightforward to verify that (k−1
m−1)
(k
m) =

m
k from which the result follows. 	

Hence, E
(m)
k ≥ mn

k and it is straightforward to verify that equality holds
if s1 = s2 = · · · = sk. Therefore, the method of partitioning n into blocks of
equal sizes at each phase as described in the proof of the Proposition 2 indeed
minimizes the running time.

6 Applications in Other MDLP Settings

We demonstrate how the block method can be adapted to obtain bounds in
other generalized multiple discrete logarithm settings. We consider applications
to the (e1, . . . , ed)-Multiple Discrete Logarithm Problem with Auxiliary Inputs
(MDLPwAI) as well as the Fp-Multiple Discrete Logarithm Problem in the Expo-
nent (Fp-MDLPX). Let G = 〈g〉 be a cyclic group of large prime order p. Their
formal definitions are as follow.

512 J.H.M. Ying and N. Kunihiro

Definition 3 (MDLPwAI). Given G, g, p, ei and gxi
e1

, gxi
e2

, . . . gxi
ed ∀ 1 ≤

i ≤ k, find non-negative integers x1, x2, . . . , xk ∈ Zp.

Definition 4 (Fp-MDLPX). Let χ ∈ Fp be an element of multiplicative order
N . Given G, g, p, χ and gχxi ∀ 1 ≤ i ≤ k, find non-negative integers x1, x2,
. . . , xk ∈ ZN .

The computational complexity of MDLPwAI was analysed in [12]. In the
same paper, the authors introduced the Fp-MDLPX and also analysed its com-
plexity.

Here, we define the Generalized Multiple Discrete Logarithm Problem
(GMDLPwAI) with Auxiliary Inputs and the Generalized Fp-Multiple Discrete
Logarithm Problem in the Exponent (Fp-GMDLPX) to be solving k out of n
instances of the MDLPwAI and Fp-MDLPX respectively. We provide the formal
definitions below.

Definition 5 (GMDLPwAI). Given G, g, p, ei and gxi
e1

, gxi
e2

, . . . gxi
ed ∀

1 ≤ i ≤ n, find k pairs (i, xi), xi ∈ Zp, where i ∈ S such that S is a k-subset of
{1, . . . , n}.
Definition 6 (Fp-GMDLPX). Let χ ∈ Fp be an element of multiplicative
order N . Given G, g, p, χ and gχxi ∀ 1 ≤ i ≤ n, find k pairs (i, xi), xi ∈
ZN , where i ∈ S such that S is a k-subset of {1, . . . , n}.

6.1 Block Based GMDLPwAI

The block method can be adapted to obtain bounds for the GMDLPwAI by
randomizing the input elements in the following way. Given gxi

e1 , select random
integers ri,j ∈ Z

∗
p and compute values of (gxi

e1)ri,j
e1 = g(ri,jxi)

e1 as inputs into
the GMDLPwAI solver. For each ri,j , reduce re1

i,j modulo p and then g(ri,jxi)
e1

can be computed within 2 log2 p group operations. Repeat this procedure for
all e2, . . . , ed. We show how the xi can be recovered. For instance, suppose the
solver outputs solution (l, y) corresponding to some particular input g(ri,jxi)

e1 . In
which case, xi can thus be obtained by solving ri,jxi ≡ y mod p. Such congruence
equations are efficiently solvable since gcd(ri,j , p) = 1.

Let T ′
k and T ′

k,n denote the time taken in group operations for an optimal
algorithm to solve the MDLPwAI and GMDLPwAI problems respectively.

Suppose k < n < k2. Then by adapting the block technique applied to the
GMDL problem before, it can be shown that

T ′
k ≤ (r +

n

k
)T ′

k,n + 2d(rk + nH�n
k �) log2 p

where r =
⌈

log(k2
n)

log(n
n−k)

⌉
.

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 513

It has been conjectured in [12] that T ′
k = Ω(

√
kp/d) for values of ei = i.

Assuming this conjecture, we can conclude from our results that for all polyno-
mially bounded inputs with d = O(p1/3−ε), ε > 0, T ′

k,n is bounded by

T ′
k,n = Ω

(√
k

n
k + r

√
p

d

)

where r = r(k, n) ≥ 1 is any function of k and n satisfying r(k, n) =

Ω

(
log(k2

n)

log(n
n−k)

)
.

When k = 1, the above bound is not applicable since n ≥ k2 in this situ-
ation. Nevertheless, we show how an unconditional bound for T ′

1,n can still be
obtained in this specific case without the assumption of any conjecture. Similar
to the generalized case, randomize input elements of the form g(ri,jxi)

e1 . One of
the xi can then be computed by solving ri,jxi ≡ y mod p where y is a given
known output. The process terminates here since one of the xi has already been
obtained. Hence, we have the following inequality: T ′

1 ≤ T ′
1,n + 2nd log2 p. From

the results of [5], T ′
1 = Ω(

√
p/d). It follows that for n = o

(√
p

d3/2 log p

)
,

T ′
1,n = Ω(

√
p/d).

6.2 Matrix Based GMDLPwAI

In this section, our objective is to find values of ei for which the matrix method
can applied to solve the GMDLPwAI. We recall from Sect. 3 that the validity of
the method for the k-MDL problem necessitates gx1+x2+···+xk to be efficiently
computable from given values of gx1 , gx2 , . . . , gxk . Moreover, the GMDLPwAI
can be viewed as a generalization of the k-MDL problem (i.e. the GMDLPwAI
reduces to the k-MDL problem when d = 1 and e1 = 1). In a similar vein, it
is required that gfi(x1+x2+···+xk) to be efficiently computable, from the given
known values of the GMDLPwAI. In the instance of GMDLPwAI, fi(x) = xei .
In that regard, suppose gfi0(x1+x2+···+xk) = ga1fi1(x1)ga2fi2(x2) . . . gakfik(xk) ∀ xi

and for some integer constants ai so that it can be efficiently computed. We
prove the following result.

Theorem 5. Let fi(x) = xei , where ei ∈ Z are not necessarily distinct. If for
some integer constants ai such that

f0(x1 + x2 + · · · + xk) ≡ a1f1(x1) + a2f2(x2) + . . . akfk(xk) mod p

for all odd primes p and for all x1, x2, . . . , xk ∈ Zp, then the only solutions are
of the form fi = xci(p−1)+1 for some integer constants ci.

Proof. For each 1 ≤ i ≤ k, substitute xi = 1 and xi′ = 0 for i �= i′. We obtain
f0(1) = aifi(1) ∀ i. Hence, ai = 1 ∀ i. Upon establishing that all ai values have
to be 1, we proceed as follows.

514 J.H.M. Ying and N. Kunihiro

Let x2 = x3 = · · · = xk = 0. This implies that f0(x1) ≡ f1(x1) mod p for
all x1. Similarly, let x1 = x3 = · · · = xk = 0. This implies that f0(x2) ≡ f2(x2)
mod p for all x2. Continuing in this fashion, it can be deduced that f0(x) ≡
f1(x) ≡ . . . fk(x) mod p ∀ x. Next, let x3 = x4 = · · · = xk = 0. This implies
f0(x1+x2) ≡ f0(x1)+f0(x2) mod p. We claim that f0(x) ≡ xf0(1) mod p ∀ x. It
clear that the result holds true for x = 0, 1. By applying an inductive argument,

f0(x + 1) ≡ f0(x) + f0(1) ≡ xf0(1) + f0(1) ≡ (x + 1)f0(1) mod p

and the claim follows. Hence, p divides xe0 − x for all x ∈ Zp. Since (Z/pZ)× ∼=
Cp−1, there exists a generator of the cyclic group x0 ∈ Zp such that if p divides
xe0
0 − x0, then e0 ≡ 1 mod p − 1. Moreover, since we have earlier established

that f0(x) ≡ f1(x) ≡ . . . fk(x) mod p, it can be concluded that ei ≡ 1 mod p− 1
for all i. Hence, fi = xci(p−1)+1 and it is straightforward to verify that these are
indeed solutions to the original congruence equation. 	

From the result of Theorem 5, if ei is of the form ei = ci(p − 1) + 1, then
gfi(x1+x2+···+xk) be can efficiently computed. However, gxci(p−1)+1

= gx so such
ei values reduces to the classical multiple discrete logarithm problem. Therefore,
the matrix method is not applicable to solve the GMDLPwAI.

6.3 Block Based Fp-GMDLPX

The block method can be also adapted to obtain bounds for the Fp-GMDLPX
by randomizing the input elements with the computations (gχxi)χri,j = gχxi+ri,j

where ri,j ∈ Zp are selected randomly. For each ri,j , reduce χri,j modulo p and
then gχxi+ri,j can be computed within 2 log2 p group operations.

Suppose the solver outputs solution (l, y) corresponding to some particular
input gχxi+ri,j . In which case, xi can thus be obtained by solving ri,j + xi ≡ y
mod p. The analysis and obtained bounds in this case is similar to the classical
GMDL problem which was already discussed in Sect. 5 so we will omit the details
here.

Let T ′′
k and T ′′

k,n denote the time taken in group operations for an optimal
algorithm to solve the Fp-MDLPX and Fp-GMDLPX problems respectively. It
has been shown in [12] that T ′′

k can be achieved in O(
√

kN). If this is optimal,
then our results show that

T ′′
k,n = Ω

(√
k

n
k + r

√
N

)

where r = r(k, n) ≥ 1 is any function of k and n satisfying r(k, n) =

Ω

(
log(k2

n)

log(n
n−k)

)
, subject to the conditions given in Theorem2.

6.4 Matrix Based Fp-GMDLPX

The matrix method does not apply here since there is no known efficient method
to compute gχxi+xj given gχxi and gχxj if the Diffie-Hellman assumption holds.

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 515

7 Some Explicit Bounds of Tk,n

The conditions imposed in Theorem 2 might initially seem restrictive but in fact
they are satisfied by large classes of k and n. In this section, we present some
interesting explicit bounds of Tk,n by varying n relative to k. For the remainder
of this section, k can be taken to be any function satisfying k = O(p1−ε), for
some 0 < ε < 1 and c is a constant. The proofs of Proposition 3 and 4 are
straightforward applications of Theorem2.

Proposition 3.

Tk,k+c = Ω(
√

kp)

where c is a positive constant.

Proposition 4.

Tk,ck = Ω(

√
k

log k

√
p)

where c is a constant, c > 1.

Proposition 5.

Tk,k logc k = Ω(

√
k

log1+c k

√
p)

where c is a positive constant.

Proof.

log
n

n − k
= log

logc k

logc k − 1
.

Next, consider the function log logc k
logc k−1 , for k > e where e is the base of the

natural logarithm. For brevity, denote x = logc k so x > 1. By the Maclaurin
series expansion, for x > 1,

log
x

x − 1
= − log(1 − 1

x
) =

∞∑
i=1

1
ixi

>
1
x

.

In particular, this proves that log logc k
logc k−1 > 1

logc k when k > e. Hence for k > e,

log(k2

n)
log(n

n−k)
< (logc k) log(

k2

n
) = (logc k) log(

k

logc k
) < log1+c k.

Thus r(k, n) can be taken to be log1+c k when n = k logc k. From Theorem 2, we
obtain

Tk,k logc k = Ω(

√
k

logc k + log1+c k

√
p) = Ω(

√
k

log1+c k

√
p).

	

Table 1 provides a summary of the results for the lower bounds of Tk,n with

different n relative to k.

516 J.H.M. Ying and N. Kunihiro

Table 1. Some bounds of Tk,n

k n r Tk,n

o
(

p1/3

log2/3 p

)
{n : n

√
k = o

(√
p

log p

)
} N.A Ω(

√
kp)

Ω
(

p1/3

log2/3 p

)
k + c, c ≥ 0 constant Ω(

√
kp)

Ω
(

p1/3

log2/3 p

)
ck, c > 1 log k Ω(

√
k

log k

√
p)

Ω
(

p1/3

log2/3 p

)
k logc k, c > 0 log1+c k Ω(

√
k

log1+c k

√
p)

8 Conclusion

In this paper, we established rigorous bounds for the generic hardness of the
generalized multiple discrete logarithm problem which can be regarded a gener-
alization of the multiple discrete logarithm problem. Some explicit bounds are
also computed using both the matrix method and block method. Many instances
of Tk,n are shown to be in fact asymptotically optimal. The overall best bounds
obtained here require the union of results from both of these techniques. Fur-
thermore, we show that the block method can also be adapted to handle gen-
eralizations arising in other discrete logarithm problems. We similarly obtain
bounds for these generalizations. For instance, a consequence of our result high-
lights that solving an instance of the MDLPwAI problem is as hard as solving
the DLPwAI problem under certain conditions. We also demonstrated why the
matrix method is not applicable to these and other variants of DLP.

Acknowledgement. The authors wish to thank Phong Nguyen for valuable discus-
sions and all anonymous reviewers for their helpful comments. This research was par-
tially supported by JST CREST Grant Number JPMJCR14D6, Japan and JSPS KAK-
ENHI Grant Number 16H02780.

References

1. Digital signature standard (DSS). NIST (National Institute of Standards and Tech-
nology) FIPS, 186–4 (2013)

2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). doi:10.1007/11745853 14

3. Bernstein, D.J., Lange, T., Schwabe, P.: On the correct use of the negation map
in the Pollard Rho method. In: Public Key Cryptography, pp. 128–146 (2011)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

5. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24676-3 4

http://dx.doi.org/10.1007/11745853_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_4

Bounds in Various Generalized Settings of the Discrete Logarithm Problem 517

6. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

7. Cheon, J.H., Hong, J., Kim, M.: Accelerating Pollard’s Rho algorithm on finite
fields. J. Cryptol. 25(2), 195–242 (2012)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

9. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithm. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

10. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-Mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 22

11. Hitchcock, Y., Montague, P., Carter, G., Dawson, E.: The efficiency of solving
multiple discrete logarithm problems and the implications for the security of fixed
elliptic curves. Int. J. Inf. Secur. 3(2), 86–98 (2004)

12. Kim, T.: Multiple discrete logarithm problems with auxiliary inputs. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 174–188. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6 8

13. Kuhn, F., Struik, R.: Random walks revisited: extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001). doi:10.
1007/3-540-45537-X 17

14. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 85(2), 481–484 (2002)

15. Pollard, J.: Monte Carlo methods for index computations mod p. Math. Comput.
32(143), 918–924 (1978)

16. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
doi:10.1007/0-387-34805-0 22

17. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). doi:10.1007/3-540-69053-0 18

18. Teske, E.: On random walks for Pollard’s Rho method. Math. Comput. 70, 809–825
(2000)

19. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 817–836. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 27

http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-662-48797-6_8
http://dx.doi.org/10.1007/3-540-45537-X_17
http://dx.doi.org/10.1007/3-540-45537-X_17
http://dx.doi.org/10.1007/0-387-34805-0_22
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/978-3-662-46803-6_27

An Enhanced Binary Characteristic Set
Algorithm and Its Applications to Algebraic

Cryptanalysis

Sze Ling Yeo1, Zhen Li1(B), Khoongming Khoo2, and Yu Bin Low2

1 Infocomm Security Department, Institute for Infocomm Research,
1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore

slyeo@i2r.a-star.edu.sg, lizh0019@gmail.com
2 DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore

{kkhoongm,lyubin}@dso.org.sg

Abstract. Efficient methods to solve boolean polynomial systems
underly the effectiveness of algebraic attacks on cryptographic ciphers
and the security of multi-variate cryptosystems. Amongst various poly-
nomial solving algorithms, the binary characteristic set algorithm was
recently proposed to solve boolean polynomial systems including those
arising from ciphers. In this paper, we propose some novel techniques
to enhance the existing characteristic set solver. Specifically, we incor-
porate the ElimLin procedure and apply basic statistical learning tech-
niques to improve the performance of the characteristic set algorithm.
Our experiments show that our enhanced solver EBCSA performs bet-
ter than existing algebraic methods on some ciphers, including CANFIL
and PRESENT ciphers. We also perform the first algebraic cryptanalysis
on the PRINCE cipher and an algebraic attack on Toyocrypt in a more
practical/realistic setting as compared to previous attacks.

Keywords: Characteristic set algorithm · Algebraic cryptanalysis ·
ElimLin · Statistical learning

1 Introduction

1.1 Background

In the search for possible cryptographic algorithms in the post-quantum era,
multi-variate cryptography has emerged as one of the potential candidates. This
branch of cryptography comprises schemes based on the difficulty to solve multi-
variate polynomials over finite fields. While solving generic multi-variate poly-
nomial systems is known to be NP-hard, a number of polynomial systems aris-
ing from cryptographic constructions have been efficiently solved. A well-known
example is the polynomial system from the HFE cryptosystem [1]. As such, it
is important to have a better understanding of the existing methods to solve
multi-variate polynomial systems constructed from cryptosystems.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 518–536, 2017.
DOI: 10.1007/978-3-319-61204-1 26

An Enhanced Binary Characteristic Set Algorithm and Its Applications 519

Various methods to solve multivariate polynomial systems exist. The most
common approach to solve generic polynomial systems over finite fields is
Gröbner basis algorithms [2–4]. Typically, a Gröbner basis with respect to the
degree reverse lexicographical ordering is first computed via algorithms F4 or F5

[3,4]. It is then converted to a Gröbner basis with respect to the lexicographical
ordering by algorithms such as the FGLM algorithm [5] which contains equa-
tions where variables are eliminated. This enables the variables to be solved one
at a time. See [6] for more details.

Another approach to solve multivariate polynomial systems is the XL algo-
rithm and its variants [7–10]. This class of algorithms performs well when the
system under consideration is overdetermined, that is, the number of equations
far exceeds the number of variables. Briefly, this method works by considering
multiples of the generating polynomials bounded by some degree for which the
number of independent equations exceeds the number of monomials. Common
linear algebra techniques can then be applied to solve this resulting system.

In both the Gröbner basis and XL type approaches, new polynomials are
gradually added with degrees larger than the degree of the generating poly-
nomials. This often causes the number of monomials to increase very rapidly,
thereby resulting in excessive memory requirements. The ElimLin algorithm was
first proposed by Courtois to attack DES [11,12]. Essentially, the ElimLin algo-
rithm seeks to successively find linear equations in the vector space generated
by the original equations and subsequently, eliminating variables using these
linear equations. Observe that his process constructs new polynomial systems
with fewer variables without an increase in the degree. In fact, the “ElimLin”
subroutine is incorporated into most Gröbner basis implementations.

All the above methods have been exploited in algebraic cryptanalysis of
ciphers to solve for the unknown key variables in the polynomial system rep-
resenting the ciphers. In general, block ciphers are less vulnerable to algebraic
cryptanalysis as the polynomials usually have very high degrees or involve a
large number of variables. Nonetheless, some block ciphers had been broken by
algebraic attacks, including Keeloq [13]. As another example, ElimLin was used
in [14] to solve 5 rounds of Present with half of the keybits fixed and 5 known
plaintext/ciphertext pairs.

1.2 The Characteristic Set Algorithm

The characteristic set algorithm (or CSA for short) had been well-established
to analyze algebraic properties of polynomial systems over algebraically-closed
fields of characteristic 0, see [15,16]. In [17,18], the authors adapted this app-
roach to solve polynomial systems over any finite field. Specifically, CSA seeks
to decompose a polynomial system into monic triangular sets of polynomials
with disjoint solution sets. Thus, the problem now boils down to solving a monic
triangular set of polynomials which can be easily accomplished. In the case of a
binary field, they further refined the decomposition algorithm so that the degrees
of newly generated polynomials do not increase. The authors of [17] provided
some experimental evidence which demonstrated that CSA seems to be more

520 S.L. Yeo et al.

effective on sparse polynomial systems, particularly those exhibiting a block tri-
angular structure. Examples of such systems include polynomials arising from
linear feedback shift registers with nonlinear combining functions used in stream
ciphers.

1.3 Our Contributions

In this paper, we propose some novel techniques to further enhance the binary
CSA. The main features can be summarized as follows:

– we incorporate ElimLin into the binary CSA.
– we apply some statistical learning techniques to choose the next “splitting

polynomial”.
– we also adaptively choose the next polynomial set to process.
– we propose a preprocessing phase where the variables can be sorted.
– we allow for some flexibility in choosing the combination of features suitable

for each polynomial system.

We call our enhanced version the enhanced binary characteristic set algorithm
(EBCSA for short). In this paper, we present our experimental results on the
block ciphers Present and Prince, as well as the stream ciphers Canfil and Toy-
ocrypt. First, we benchmark EBCSA against prior versions of the characteris-
tic set algorithms on Canfil ciphers. For Present cipher, we show that EBCSA
outperforms previous algebraic methods as 5 rounds can be solved with fewer
fixed keybits and known plaintext/ciphertext pairs. Moreover, we provide the
first algebraic attack on 6 rounds of Present. As for the block cipher Prince,
we carried out the first algebraic attack and our results showed that EBCSA is
more effective than brute force search for 6 rounds of Prince-core (i.e. without
whitening). Finally, we show that the stream cipher Toyocrypt can be solved by
EBCSA in a more realistic setting compared to previous attacks, namely, using
re-synchronization with sufficient random IV’s for a small number of keystream
bits.

1.4 Organization of This Paper

This paper is organized as follows. In Sect. 2, we set out the notations and
terminologies. We then provide a general description of the binary characteristic
set algorithm [17] and its variant [18]. In Sect. 3, we describe our new techniques
and present our enhanced binary characteristic set algorithm. Our experimental
results are then provided in Sect. 4. Finally, we wrap up with some concluding
remarks and suggestions for future research.

2 A Description of the Characteristic Set Algorithm

2.1 Notations and the Set-Up

Let F = F2 denote the binary field. For a positive integer n, let R =
F [x0, x1, . . . , xn−1] be the multivariate polynomial ring in n variables. Since

An Enhanced Binary Characteristic Set Algorithm and Its Applications 521

x2 = x for all x ∈ F , we are interested in the quotient ring R = R/{x2
i + xi :

i = 0, 1, . . . , n − 1}. In particular, every polynomial in R is equivalent to a rep-
resentative p ∈ R such that the degree of each variable in p is at most 1. In the
following, we will represent all the polynomials in this form.

Definition 1. Fix σ to be a permutation on {0, 1, . . . , n − 1}. Let P be a poly-
nomial in R. We define the class of P with respect to σ to be the smallest i such
that xσ(i) occurs in P . We denote the class of P by clsσ(P). If σ is clear in the
context, we will simply denote it by cls(P).

Remark 1. – For a constant polynomial P = 0 or 1, we define cls(P) = −∞.
– Let σ be the identity permutation, that is, σ(i) = i for i = 0, 1, . . . , n − 1.

Then clsσ(P) is the smallest i such that xi occurs in P . On the other hand,
suppose that σ(i) = n−1−i for i = 0, 1, . . . , n−1. Then clsσ(P) is the largest
i such that xi occurs in P . This coincides with the definition in [17].

For a polynomial P ∈ R, let c be its class with respect to a permutation σ.
Then P can be expressed as P = Ixσ(c) +U , where xσ(c) does not occur in both
I and U . We term I and U as the left child and right child of P , respectively. By
the definition of c, it follows that both clsσ(I) and clsσ(U) are strictly greater
than c. Note that a monic polynomial is one in which I = 1.

Definition 2. Let A be a finite set of polynomials in R. A is called triangular
if the classes of the polynomials in A are all distinct. Moreover, A is monic
triangular if every polynomial in A is monic.

The Main Problem: Let P be a finite set of boolean polynomials from R. We
wish to find the zero set of P, that is, to find Z(P) = {(x0, x1, . . . , xn−1) ∈ Fn :
P (x0, x1, . . . , xn−1) = 0 for all P ∈ P}.

2.2 The Basic Structure of Binary CSA

In this section, we describe the main principles underlying binary CSA to help
solve the main problem stated above. Our description is more generic than that
in [17] in the sense that we allow for a variable ordering on the variables. Note
that we will focus on the multiplication-free CSA or MFCS presented in [17]
as it was already shown to result in the best performance for the binary case.
As such, CSA will refer to MFCS from now on. Throughout this section, we
fix a permutation σ and simply write cls(P) for the class of P . Essentially, the
approach of binary CSA is a result of the following lemma.

Lemma 1. Let P be a polynomial of R with class c and write P = Ixσ(c) + U .
Then Z({P}) can be split into Z({P}) = Z(P1) ∪ Z(P2) such that: (1) Z(P1)
and Z(P2) are disjoint; (2) One of P1 or P2 contains a monic polynomial with
class c.

Proof. As we are in the binary setting, the left child of P , namely I, can only
take values 0 or 1 and Z({I}) and Z({I + 1}) are disjoint. When I = 0, we

522 S.L. Yeo et al.

have U = P + Ixσ(c) = 0. On the other hand, if I = 1, we have xσ(c) + U =
Ixσ(c) + U = P = 0. Let P1 = {I, U} and P2 = {I + 1, xσ(c) + U}. The lemma
now follows.

Suppose that A is a monic triangular set of polynomials. Clearly, A cannot
contain more than n polynomials. Suppose that 0 ≤ c1 < c2 < . . . < ct ≤
n − 1 are the classes of the polynomials in A. Then, A contains the polynomials
Pi = xσ(ci) + Ui, i = 1, 2, · · · , t, where U1, U2, . . . , Ut represents the right child
of P1, . . . , Pt, respectively. Observe that since c1 < c2 < . . . < ct, Ut does not
contain the variables xσ(c1), . . . , xσ(ct). It follows that as long as the variables
of Ut are fixed to some values, xσ(ct) is determined. Similarly, Ut−1 does not
contain the variables xσ(c1), . . . xσ(ct−1) which allows one to compute xσ(ct−1). In
this way, we can determine the zeroes of A by letting xi, i �∈ {σ(c1), . . . , σ(ct)}
take values 0 or 1 and computing the corresponding values of xσ(c1), . . . , xσ(ct)

from the polynomials in A.
In view of the above, the main goal of binary CSA is to decompose Z(P)

into disjoint sets based on Lemma 1. Specifically, we have the following theorem:

Theorem 1. [17, Theorems 4.1, 4.2] Let P be a finite set of boolean polynomials
of R. The binary CSA decomposes Z(P), in a finite number of steps, into a
disjoint union of zero sets, namely,

Z(P) =
s⋃

j=1

Z(Aj),

where A1, . . . ,As are all monic triangular sets of boolean polynomials.

The main structure of CSA is described in Algorithm 1 in the Appendix. In
order to achieve the goal of Theorem 1, the main function of binary CSA is the
triset algorithm which takes in as input a finite set of boolean polynomials and
outputs a monic triangular set A (possibly empty) as well as a set P∗ of sets of
boolean polynomials.

Remark 2. Beginning with the set P, the whole CSA can be thought of as build-
ing a binary tree of sets (P∗) by adding Q∗ as a branch to the corresponding
input set to the triset function. The process stops when all the sets in the tree
are processed and the result is a set A∗ of monic triangular sets. Since the poly-
nomial splits by letting I = 0 or 1, the binary CSA is essentially a generalization
of brute force search where we split by letting the variables take 0 or 1.

Remark 3. Notice that we iteratively split polynomials to obtain sets with dis-
joint solutions. In this basic version of the triset function, we work on polynomials
according to their class, namely, we pick the polynomial with the smallest class.
In addition, the next input set to be fed into the triset function is generally taken
to be the last generated set in P∗.

An Enhanced Binary Characteristic Set Algorithm and Its Applications 523

2.3 BCSA

In [18], the authors proposed some additional features to improve the efficiency
of the binary CSA in [17]. We call it BCSA and briefly describe the techniques
here.

Linearization. The authors claimed that this technique was already imple-
mented in the experiments of [17] but it was not explicitly mentioned. This
technique applies to the triset function. Suppose that at a certain step, the poly-
nomial xσ(c) + L is generated, where deg(L) ≤ 1. Then we substitute xσ(c) with
L in the remaining polynomials and add xσ(c) +L to A. Observe that this forms
part of the ElimLin process (only the substitution part).

The Choose Function. As discussed in Remark 2, we continue to pick poly-
nomials to split until a monic triangular set is obtained or an inconsistency
is reached. In the triset function of CSA, we simply pick the next polynomial
to be one with the smallest class in the set. To improve efficiency, it was sug-
gested in [18] to sort the polynomials according to some complexity metric and
to choose the “simplest” polynomial among the remaining polynomials to split.
The rationale is to seek for more linear polynomials which will help to sim-
plify other polynomials by linearization described above. The complexity met-
ric proposed in BCSA orders the polynomials as follows: A polynomial P is
simpler than a polynomial P ′ if (deg(P),#I(P),#U(P), n − 1 − clsσ(P)) <
(deg(P ′),#I(P ′),#U(P ′), n − 1 − clsσ(P ′)) in a lexicographical manner, where
I(P) (resp. U(P)) and I(P ′) (resp. U(P ′)) represent the left child (resp. right
child) of P and P ′ respectively. Note that the description of the choose function
in [18] with respect to the class of the polynomials is in a reverse order due to
the difference in the definition of the class of a polynomial.

The Threshold Value. By Lemma (1), whenever we split a polynomial, we
obtain a monic polynomial with the same class. In the triset function of CSA,
we first split all the polynomials of the same class c to obtain all the monic
polynomials with class c. We choose one of the monic polynomials P0 to be in
A and then add P0 to all the monic polynomials to eliminate the class c from
the remaining polynomials (the adding step).

Since BCSA splits polynomials in order of their complexity instead of their
classes, it is not efficient to first obtain all the monic polynomials before adding
them. As such, the authors of [18] introduced a threshold value t such that
whenever t monic polynomials of the same class are obtained, the adding process
will be executed to eliminate the class from t − 1 of these polynomials.

3 The Enhanced Binary CSA

In this paper, we propose additional techniques to enhance BCSA. Our version
will be called EBCSA. Like BCSA, we keep the core of the structure, namely,
EBCSA comprises the EBCSA-triset function and the main EBCS function, as
shown in Fig. 1, where the new features introduced in EBCSA are marked in
bold. Its basic structure is described in Algorithm2 in the appendix. In the
subsequent sections, we will describe the main features of EBCSA.

524 S.L. Yeo et al.

p0

p1

...

pk1

p0

p1

...

pk2

...

p0

p1

...

pkm

P* : All Polynomial Sets

EBCSA-TriSet

Splitting

ElimLin

updated Polynomial Set

Append Add to new Polynomial Set

by set selection

new Polynomial set

P1 P2 Pm

Sorting by
Complexity

ElimLin

Polynomial Set P

ElimLin

monic?

No

Yes
Solution

p0

p1

...

pkm+1

EBCS

Fig. 1. Principles of the enhanced binary characteristic set algorithm

3.1 The ElimLin Technique

The first main feature of EBCSA is to integrate ElimLin into EBCSA-triset
[11,12]. Specifically, whenever a new polynomial is generated in P, we perform
the following as long as the generated set contains a linear polynomial. First,
order the monomials in decreasing order of degrees (for example, the Grevlex
ordering). With respect to this monomial ordering, represent each polynomial
as a vector of coefficients. Next, perform Gaussian elimination on the matrix of
these vectors. If 1 is obtained, one can terminate EBCSA-triset with A = ∅ and
P∗. Otherwise, obtain all the linear polynomials xi + Li and substitute xi with
Li in the remaining polynomials of P for all such i’s.

A key merit of this process is that it allows us to detect all the linear polyno-
mials in the vector space spanned by the polynomials [12], thereby simplifying
the remaining polynomials more quickly. At the same time, it detects an incon-
sistent set more rapidly. However, the main drawback is that it generally requires
more memory to construct the matrix and may not be feasible when our poly-
nomial set contains too many polynomials.

3.2 An Improved Complexity Metric

In BCSA, a complexity metric was introduced in order to sort the polynomials.
With respect to this metric, the next simplest polynomial will be picked to
perform the splitting. Their metric compares the degree of the polynomials, the

An Enhanced Binary Characteristic Set Algorithm and Its Applications 525

number of terms in the left child and the right child of the polynomials as well
as the classes of the polynomials in a linear manner. We propose a better metric
based on the Sigmoid function.

For a child p of a polynomial P, we define its complexity as

complex (x1, x2) = x1 + Sigmoid (x2,K) = x1 +
1 − e

x2
K

1 + e
x2
K

(1)

where x1 = deg (p) determines the overall complexity and x2 = #(p) counts the
number of terms in p and it is normalized by the Sigmoid function to the interval
(0, 1). Here K = −100 is a scaling parameter which is optimized experimentally.
Then the complexity of the polynomial P = I · xσ(c) + U is defined as

Complex(P) = Complex(I) + α (P) ·Complex(U) (2)

and

α (P) = ca·deg(P)−b = 103·deg(P)−8 (3)

where Complex(p) = complex(deg (p) ,#(p)), and a, b and c are set to be 3,
8 and 10, respectively. p is taken as either I or U. Note that as the degree of
the polynomial system increases, the complexity of the child U tends to be more
emphasized. Thus the coefficient α (P) is defined as an exponential function of
the degree. For instance, when deg (P) is 2, 3 and 4, the weighting coefficient
α (P) is 0.01, 10 and 10000, respectively.

In our model, the Sigmoid function is chosen as a candidate because it has
good properties, namely, it is a bounded differentiable real-valued function in
(0, 1) that is defined for all real input values and has a positive derivative at
each value. The standard Sigmoid model is Sigmoid (x) = 1

1+e
x−x0

K

, and we are

using a modified version Sigmoid (x) = 1−e
x
K

1+e
x
K

. The complexity model in Eq. 2 is

a combination of linear model and the modified Sigmoid model, and it preserves
the good properties of the standard model. Similar logistic functions have been
effectively used in population growth modelling, artificial neural networks and
distance measure.

To select the best model mentioned above, we have tried many possible para-
meters for each model. Preliminary experimental results show that the modified

Sigmoid model Sigmoid (x) = 1−e
x
K

1+e
x
K

exhibits the best overall performance on

our training sets. The training sets include 120 randomly selected polynomial
sets from more than 300 available polynomial sets generated from many differ-
ent ciphers with degrees ranging from 2 to 4, and the rest of the sets are the
testing sets. To determine the optimal parameters of each model, a 10-fold cross-
validation [19] is applied. Hence, the parameters are dependent on the specific
cipher as well as the selected features (degree and number of terms).

In order to reduce the computational cost when selecting the optimal parame-
ters, the parameters are confined to a limited range by preliminary observations.

526 S.L. Yeo et al.

Then the parameter setting (K, a, b, c) in Eqs. 1, 2 and 3 is determined by the
cross-validation procedure as follows: we split the training sets into 10 equal
sized parts; using 9 parts we fit the parameters, that is, record the parameter
setting that produces the best performance; calculate its performance on the
remaining 1 part as the validation set. We repeat these steps by using every part
as the validation set. We repeat the whole procedure 3 times. Finally we get an
average of the 3 solving times which corresponds to each parameter setting. We
choose the setting which corresponds to the minimum solving time. For each of
the models mentioned above, we repeat this procedure. As a result, the optimal
parameter setting is determined as (K, a, b, c) = (−100, 3, 8, 10). The parameters
are not very sensitive, that is, when they are modified by around 10%, the solv-
ing time remains within a 10% change. This parameter setting is not guaranteed
to be effective for all individual polynomial sets, but is optimal in the sense of
overall performance.

By contrast, the choose function in BCSA uses a layered linear model with
respect to the essential parameters. This model suffers from the following draw-
backs. (1) There are no parameters to control, limiting the possibility to optimize
the performance; (2) The “layered” comparison sometimes cannot get reasonable
results, e.g. a polynomial with a higher degree but very few terms is not necessar-
ily more complex than a polynomial with a lower degree but the number of terms
is huge. As such, the proposed EBCSA complexity model has more flexibility to
produce better performance by optimization over a number of polynomial sets.
Indeed, we have carried out extensive experiments using different functions and
the above function works well in general. We present our experimental results
for solving Canfil functions as comparison between using the modified Sigmoid
function and the choose function of BCSA in Subsect. 4.1.

3.3 The Set Metric

We introduce a set metric on the sets in the binary tree P∗ to help us find a
set with a solution more quickly. Hence, this feature is particularly useful if the
system admits a known number of solutions, as well as the case where only a
fixed number of solutions is required.

Observe that polynomial sets in the same branch may contain many identical
polynomials. Roughly speaking, once many sets in a certain branch terminate
without a solution, we like to choose sets from a different branch to increase
the chances of a solution. In other words, we will look for a set which is most
dissimilar to the previous terminated sets.

For the purpose of practical implementations, we propose the following sta-
tistical feature for a set P of polynomials: SP = (m1, s1,m2, s2), where m1,m2

(respectively s1, s2) represent the mean (respectively the standard deviation) of
the degrees and number of terms of the polynomials in P respectively. Suppose
that P1,P2, . . . ,Pl are inconsistent, that is, terminate without any solution. Let
a(P1, . . . ,Pl) = sP1+...+sPl

l , the average of the statistical features of the termi-
nated sets. Then we choose a set P such that the Euclidean distance between
sP and a(P1, . . . ,Pl) is the largest on the fly.

An Enhanced Binary Characteristic Set Algorithm and Its Applications 527

3.4 Sorting the Variables

In our description of binary CSA, we have introduced the permutation σ to allow
for the variables to be rearranged. In general, CSA tends to be more efficient if
σ is chosen so that the variables xσ(0), . . . , xσ(xn−1) occur in an increasing order
of frequency in the polynomial system. The underlying reasons are as follows:
recall that when performing linearization, we substitute a variable xi with a
linear polynomial Li. While this reduces the number of variables, it may result
in the polynomial system becoming more complex, particularly when L contains
many terms. Hence, it is more advisable to substitute those xi which do not occur
too frequently. In terms of implementation, we simply rename the variables so
that x0, x1, . . . , xn−1 occur in an ascending order of frequency in the polynomial
system.

3.5 Combining the Various Features

We observe from our experiments that not all polynomial systems behave equally
well with the same set of features. According to experimental results, some sets
may be more efficient with linearization alone while others perform much better
with the ElimLin technique. In addition, the set selection may not be necessary
if the system has many solutions and we seek to find all of them. In view of
the above, EBCSA allows for different combinations of features to yield the best
performance. In our current implementation of EBCSA, the following choices
are provided: (1) Linearization or ElimLin; (2) Set selection based on statistical
feature or set index; and (3) Terminate with one solution or all solutions.

Remark 4. Observe that unlike BCSA, we do not need a threshold value here as
whenever we obtain two monic polynomials with the same class, we add them
and choose the simpler polynomial according to our complexity metric to be in
the set A. In addition, in case the ElimLin option is turned on, polynomials with
the same leading term will automatically be added.

4 Experimental Results

We tested EBCSA with many different polynomial systems, specifically those
from block and stream ciphers. Our experiments show significant improvements
over existing algebraic methods. In this paper, we present three such exper-
iments, namely, the block ciphers Present and Prince as well as the stream
cipher Toyocrypt. Experiments on Canfil ciphers were also carried out to com-
pare the efficiency of EBCSA against CSA and BCSA. Since our goal is to find
the unknown key which is likely unique, we use the following configurations of
EBCSA for all the experiments: Linearization/ElimLin, set selection, and termi-
nation when one solution is obtained.

The platform for testing is a personal computer (Ubuntu 14.04, Intel Xeon
CPU E5640 2.67 GHz, 24 GB RAM). Only single-core CPU is used. In the follow-
ing, we further classify EBCSA into EBCSA and EBCSA-GE (short for EBCSA
with Gaussian Elimination), where the former refers to EBCSA with lineariza-
tion and the latter representing EBCSA with the ElimLin feature switched on.

528 S.L. Yeo et al.

4.1 Experiments on Our Complexity and Set Metrics

In order to benchmark EBCSA against BCSA and CSA, we performed experi-
ments on the Canfil functions similar to those carried out in [17,18]. The Canfil
polynomial sets are boolean polynomial systems arising from linear feedback
functions with nonlinear Canfil functions. In [17, Table 4], comparisons were
made between CSA and the Gröbner basis algorithm for 8 such functions and
the results showed that CSA outperformed the Gröbner basis method for these
polynomial sets. In [18, Table 2], the authors recorded the number of splits (or
branches) resulting from both CSA and BCSA for these same functions and
concluded that BCSA was more effective on these sets.

In this paper, we carry out the same experiments using EBCSA and the
number of splits (number of new non-terminating sets produced) for each of the
8 Canfil functions is recorded in Table 1. In addition, the timing on the Canfil
functions using the approach of EBCSA with set selection is also listed.

Table 1. Comparison between EBCSA and BCSA in terms of the number of splits

#Splits\system Canfil1 Canfil2 Canfil3 Canfil4 Canfil5 Canfil6 Canfil7 Canfil8

CSA 13719 23881 7251 1657 1086 3331 1551 180710

BCSA 11958 16074 3267 1316 574 671 1852 35547

EBCSA w.o set
selection

5218 24616 5402 782 408 400 3970 90040

EBCSA w. set
selection

5772 17299 3865 343 100 209 1046 35565

EBCSA time (s) 82.9 629.5 669.7 8.8 56.4 41.7 57.5 501.3

Observe that EBCSA performs better than BCSA in 5 out of the 8 Can-
fil experiments with significant improvements for Canfil1, Canfil4, Canfil5 and
Canfil6. For Canfil7, CSA outperforms BCSA but is less effective than EBCSA
(with set selection). Note that we have used a random key in our experiments
and it was not stated if a random or a specific key was used in the experiments
in [17,18].

The improvements of EBCSA suggest that our choice of a combined con-
tinuous Sigmoid function for polynomial complexity is more effective than the
layered linear model used in BCSA. In addition, the use of set selection results
in finding the unique solution more efficiently.

4.2 Experiments on Present Cipher

Present is a 31-round lightweight block cipher designed by Bogdanov et al.
announced in CHES 2007 [20]. It has a block length of 64-bits and key lengths
of either 80-bits or 128-bits. It is based on a permutation-substitution network
with 16 4-bit S-boxes in each round. In [14], algebraic cryptanalysis was applied

An Enhanced Binary Characteristic Set Algorithm and Its Applications 529

to Present with the 80-bit master key. This involves representing the interme-
diate text by variables and each S-box by 21 quadratic equations. The authors
claimed that with 5 known plaintext/ciphertext (KP) pairs, 40 key bits can be
recovered by the method of ElimLin.

In the report of [21], results on algebraic attacks on Present with ElimLin
and the Polybori Gröbner basis implementation were presented. Even though
ElimLin was implemented as a sub-routine in Polybori implementation, it was
demonstrated that the stand-alone ElimLin implementation was more effective
to solve Present. In addition, it was reported that 6 rounds of Present remained
resistant to algebraic cryptanalysis using either ElimLin or Polybori.

As EBCSA-GE incorporates ElimLin into EBCSA, we perform experiments
on round-reduced Present with EBCSA-GE. Once again, we consider the implicit
representation of each s-box with 21 quadratic equations. Note that we place all
the text variables as the front variables while the 80 key variables are placed
behind. We perform our experiments with either 1 or 2 KP. We considered r
rounds of Present for r = 5 and r = 6. For experiments with one KP, we
did some pre-processing on the polynomial systems before running them on
EBCSA-GE. Specifically, we rename the variables so that the text variables
and the key variables are sorted in an ascending order of frequency. In each of
the experiments, we fix xn−c−1, xn−c, . . . , xn−1, (that is, c most frequent key
variables) and record the time taken as well as the number of splits as c varies.

Table 2. 5-round and 6-round present with 1 KP on EBCSA-GE

r #FixedBits 64 60 56 54 52 50 48 44 40 38 36 34

5 Time (s) <1 <1 <1 <1 <1 3.89 5.46 58.6 237.3 161.8 2148.7 >4 h

5 #Splits 0 0 0 0 0 3 16 174 710 556 6200 –

6 Time (s) 7.1 81.0 378.9 1979.2 1489.0 >4 h >4 h >4 h >4 h >4 h >4 h >4 h

6 #Splits 24 216 1234 6163 2172 – – – – – – –

Table 3. 5-round present with 2 KP on EBCSA-GE

#FixedBits 40 36 34 32 30 28 26

Time (s) 9.5 300.1 282.9 1562.9 888.4 2120.8 >4 h

#Splits 6 191 172 974 563 1362 –

One sees that EBCSA-GE outperforms both ElimLin and the Polybori imple-
mentation of [21] in the following sense. From Table 4 with 40 keybits fixed,
EBCSA-GE requires only 1 KP to solve in 4 min, which is of comparable mag-
nitude to the timings of ElimLin and Polybori based on 5 KP’s. With just 2
KP’s, EBCSA-GE already outperforms ElimLin and Polybori, with a solving
time of 9.5s. Next with 36 keybits fixed, EBCSA-GE can solve the system in a
few minutes based on just 2 KP’s while ElimLin and Polybori both take longer
to solve (3 to 4 h) and need more plaintexts (16 KP’s). From Table 3 with 2

530 S.L. Yeo et al.

Table 4. A comparison of algebraic attacks on 5-round present

Polybori [22] Elimlin [22] EBCSA-GE

#FixedBits 40 36 40 36 40 40 36 36

#KP 5 16 5 16 1 2 1 2

Time (s) 241.2 >4 h 154.8 12.2 237.3 9.5 2148.7 300.1

KP, EBCSA-GE can solve up to 52 keybits (28 fixed keybits) for 5 rounds of
Present, which is more keybits than what ElimLin and Polybori can solve from
[21]. Finally from Table 2, EBCSA-GE can solve 6 rounds of Present with 1 KP
and 52 fixed keybits, while the ElimLin and Polybori experiments from [21] are
only conducted up to 5 rounds.

Recall that ElimLin essentially seeks to find linear polynomials in the space
spanned by the polynomials and then eliminating their leading variables from the
remaining polynomials via substitution. This method can only be successful if
there are sufficient linear polynomials in the spanning set. This implies that more
polynomials involving the key variables in the original set increases the chance
of finding enough linear polynomials and hence, leading to a greater number of
KPs as observed. In case there are insufficient linear polynomials, Gröbner basis
may not be effective as an increase in the degree of the polynomials with a large
number of variables will explode the memory. On the other hand, EBCSA-GE
executes the splitting process without a rapid increase in memory and continues
to find linear polynomials via ElimLin. By alternating between splitting and
ElimLin processes, one sees that EBCSA-GE is more effective for Present cipher.

4.3 Experiments on Prince Cipher

Prince is another lightweight block cipher published in Asiacrypt 2012 [22]. It is
a 12-round block cipher with a 64-bit block length and a 128-bit key length. It is
optimized with respect to latency for hardware implementations. Its construction
satisfies the reflection property and is symmetric about the middle layer. The
cryptanalysis of Prince has gained much attention, especially after a challenge
was posed by Ruhr-Universität Bochum [23] to find a practical attack for round-
reduced Prince. To date, it was shown that round-reduced Prince is vulnerable
to various attacks including Differential and Integral cryptanalysis as well as
time-memory trade-off and meet-in-the-middle attacks [24–28]. To the best of
our knowledge, no algebraic attack has been published on Prince.

We carry out the first algebraic attack on Prince. Specifically, we consider
Prince-core, that is, without whitening. Hence, only the key K1 is used. As in
all block ciphers, we consider the implicit representation of the s-boxes, thereby
resulting in 21 quadratic equations for each s-box. In addition, we introduce 64
intermediate variables for each round. Since whitening is not used, the variables
for the first round and the last two rounds can be omitted.

An Enhanced Binary Characteristic Set Algorithm and Its Applications 531

Now, consider the 6-round Prince-core. This system has 384 variables (320
text variables and 64 key variables) and 2016 quadratic equations. We place
the key variables behind (x320, . . . , x383). We generate 2 different systems using
different random keys. For each key, we fix some key bits and run the system
with our EBCSA solver. First, Table 5 records the results for Prince with both
EBCSA and EBCSA-GE.

Table 5. 6-round Prince-core: EBCSA vs EBCSA-GE

#Fixed bits 64 56 52 48 40

#Splits of EBCSA 53 533 11415 53147 –

EBCSA time (s) 4.3 54 1400 5900 >4 h

EBCSA-GE time (s) 2 266 784 >4 h >4 h

Observe that when more bits are fixed, both EBCSA and EBCSA-GE should
be executed in parallel to find the key as it is not certain which of the two versions
will be more efficient. However, when fewer bits are fixed, EBCSA-GE tends
to require much more memory to generate the large matrices, thereby slowing
down the process significantly. In the following tables, we show the results of
EBCSA for two random keys by varying the number of fixed keybits. By fitting
the results with a suitable graph, we extrapolate the results to estimate the
complexity without fixing any key bits. We conclude that the number of splits
of Prince-core is generally better than the brute force f = 2x, where x denotes
the number of unknown keybits, as shown in Fig. 2. The results are also listed in
Table 6, where the complexity of EBCSA is expected to provide an improvement
of more than half the key size over the brute force search. We remark that this
approach can be applied to test the complexity of other block ciphers as well.

Fig. 2. Splits of Prince-core. (a) f = 324.19 × 20.494x (b) f = 3287.44 × 20.337x

532 S.L. Yeo et al.

Table 6. Splits of Prince-core (a) f = 324.19 × 20.494x (b) f = 3287.44 × 20.337x

#Fixed bits 64 62 60 58 56 54 52 50 48 46

(a)

#Splits 45 105 167 301 1908 6415 17101 46994 74887 –

Linearization 3.51 6.89 11.66 21.44 138.27 471.83 1393.60 4010.22 5699.43 >4 h

(b)

#Splits 49 106 121 433 888 8012 11893 173878 133736 207162

Linearization 3.52 6.51 8.03 29.97 67.09 599.15 956.47 12309.5 10288.5 15156.6

The comparison with the existing attack on 6-round Prince core from [24] is
provided in Table 7. It is obvious that the proposed EBCSA algorithm is more
practical in terms of required number of chosen plaintext.

Table 7. Comparison of existing attacks on 6-round Prince-core

Source Data Time D × T Memory Attacks

FSE13 [24] 216 230 246 216 Integral

Proposed EBCSA 1 T × K ≈ 260 260 215 First algebraic attack
by EBCSA

Remark 5. Data: number of chosen plaintext; Time: equivalent Prince opera-
tions; complexity of attacks on Prince is measured by D × T < 2128; Memory:
Number of Prince 64-bit WORDs.

4.4 Experiments on the Stream Cipher Toyocrypt

The Toyocrypt [29] is a stream cipher comprising a 128-bit Galois linear feedback
shift register (GLFSR) passing through a nonlinear function f of degree 63.
Obviously, a naive application of algebraic cryptanalysis will not work due to
the high degree of f . In [30], the authors discovered that in fact, (x23 + 1)f
and (x42 + 1)f are cubic polynomials. Further, in [31], the authors showed that
with re-synchronization and 4 IV’s, the degrees of the equations can be further
reduced to 1. Note that in this case, the 4 IV’s must span a 2-D vector space.

Several algebraic attacks on Toyocrypt have been proposed. Table 8 summa-
rizes the assumptions and requirements needed to carry out existing algebraic
attacks on Toyocrypt.

The attack of [30] requires 218 keystream bits for one session, while the attack
of [31] requires 128 keystream bits from 4 chosen IV resynchronizations. These
attack scenarios may not be easy to achieve in practice. Here we consider a more
realistic scenario where only a few keystream bits can be deduced from some
known information about the plaintext. Besides, we allow the IV in different
sessions to be selected randomly. Finally, we apply our attack to Toyocrypt with
GLFSR as in the original specifications of the cipher unlike previous attacks
which only considered Toyocrypt with LFSR as a good approximation.

An Enhanced Binary Characteristic Set Algorithm and Its Applications 533

Table 8. Comparison of assumptions on algebraic attacks on Toyocrypt

Source Resynchronization
needed?

No. of keystream-bits Remarks on
IV

EUROCRYPT 2003 [30],
CRYPTO 2004 [32]

No 218 1 session with
random IV

SAC 2004 [33] Yes 213 Chosen IVs

CANS 2009 [31] Yes 128 Chosen IVs

Proposed EBCSA Yes ≤6 Random IVs

To be more precise, we fix a GLFSR with feedback taps 0, 1, 2, 7, 128. For any
2 IV’s,it follows from [31, Theorem 1] that the sum of (x23 + 1)f (or (x42 + 1)f)
at these two IV’s result in equations of degree 2. Instead of choosing some fixed
IV’s, we randomly choose k IV’s and construct the corresponding equations for
(x23 + 1)f + z(x23 + 1) and (x42 + 1)f + z(x42 + 1), where z represents the
keystream bit. Notice that these are degree 3 equations but the sum of any two
of them will give a degree 2 equation.

We perform our experiments with at most 6 keystream bits using EBCSA-
GE and record the results of our experiments in Table 9. In the preprocessing
stage, we once again arranged the 128 variables ascendingly of their frequencies.

Table 9. Performance of Toyocrypt with EBCSA-GE

#Key
stream

2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 6

#IV 128 120 112 104 96 128 120 112 104 96 92 128 120 112 104 96 92 88 84 80 80

#Poly 512 480 448 416 384 768 720 672 624 576 552 1024 960 896 832 768 736 704 672 640 960

#Splits 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 2 2 2

#Elim
Lin

6 9 8 7 11 4 8 8 6 8 7 4 6 5 8 5 9 9 13 13 11

Time
(s)

7.1 41.0 318.5 24.1 32.7 4.7 19.4 17.1 178.7 59.4 516.4 7.4 134.0 413.0 76.1 79.7 71.1 97.0 542.1 669.3 187.4

5 Conclusions and Future Work

In this paper, we enhanced the binary characteristic set algorithm to work more
effectively on both block ciphers and stream ciphers. Using EBCSA, we improve
algebraic attacks on various well-known ciphers including Prince, Present and
Toyocrypt. EBCSA uses CSA as its core and incorporates ElimLin and some
statistical features to improve its performance. In our current version, we can
turn ElimLin on or off for each input polynomial system. For future research,
we will seek to identify some characteristics of the polynomial system to choose
between EBCSA-GE or EBCSA. We can further integrate the criteria into the
main algorithm so that ElimLin can be turned on or off for each individual set
produced by EBCSA.

534 S.L. Yeo et al.

Acknowledgements. We are grateful to Dr. Matt Henricksen, Dr. Yap Wun She,
Dr. Lee Hian Kiat and Ms. Ivana Thng for their helpful contributions throughout the
project.

Appendix: Pseudocodes for CSA and EBCSA

Next, we present the main structure of EBCSA in Algorithm2. Note that pre-
processing of the input set can be carried out to sort the variables in a desired
order, that is, we fix a permutation σ beforehand.

Algorithm 1. The CSA (or MFCS) algorithm [17]

– Set P∗ = ∅ and A∗ = ∅.
– CSA-triset function – Feed P into triset function and let Q∗ and A be outputs:

• Set Q∗ = ∅ and A = ∅.
• For c = 0 to n − 1 do:

∗ If 1 ∈ P, return A = ∅ and Q∗.
∗ Let Q = {P ∈ P : cls(P) = c}, set P = P\Q, set Q1 = ∅.
∗ While Q �= ∅ do

· Pick P ∈ Q and set Q = Q\{P}.
Splitting step Write P = Ixσ(c) + U . Add P ∪ Q ∪ {I, U} to Q∗.

· Add I + 1 to P and add xσ(c) + U to Q1.
∗ Pick P ∈ Q1 and add P to A.

Adding step For every P ′ ∈ Q1, P
′ �= P , add P + P ′ to P.

– Set P∗ = P∗ ∪ Q∗ and add A to A∗.
– Repeat the whole procedure till P∗ is empty.

Algorithm 2. Algorithm EBCSA

– Input: a set of polynomials P = {p1, · · · , pk}.
– Outputs: A monic triangular set A and a super set P∗ for other potential solutions.
– EBCSA-triset function

• Begin with the simplest P , e.g. Pk = Ixck + U ∈ P.
• Let P

′ = P\ {Pk = Ixck + U}. Split Pk: P ← P
′ ∪ {I + 1}, A ← A ∪ {xck + U}

and Pnew ← P
′ ∪ I ∪ U , append Pnew to P

∗.
• Process each new generated Pnew or updated polynomial set P, and terminate

them as early as possible.
– Continue with every P until P is terminated or becomes the monic set A.
– Select a new set P from P

∗ to apply the above algorithm.

An Enhanced Binary Characteristic Set Algorithm and Its Applications 535

References

1. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

2. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassen-
rings nach einem nulldimensionalen polynomideal. Universitat Innsbruck, Austria,
Ph.D. thesis (1965)

3. Faugere, J.C.: A new efficient algorithm for computing gröbner bases (f4). J. Pure
Appl. Algebra 139(1), 61–88 (1999)

4. Faugere, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of ISSAC, ACM, pp. 75–83 (2002)

5. Faugere, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

6. Cox, D., Little, J., O’shea, D.: Ideals, Varieties, and Algorithms, vol. 3. Springer,
New York (1992)

7. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 2

8. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 27

9. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 17

10. Courtois, N.T., Patarin, J.: About the XL algorithm over GF (2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003). doi:10.
1007/3-540-36563-X 10

11. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77272-9 10

12. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin algorithm revis-
ited. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 306–325. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34047-5 18

13. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical
attack on KeeLoq. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
1–18. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 1

14. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and alge-
braic cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A.,
Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-10433-6 5

15. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb.
Comput. 28(1), 105–124 (1999)

16. Kalkbrener, M.: A generalized euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)

17. Fengjuan, C., Xiao-Shan, G., Chunming, Y.: A characteristic set method for solving
boolean equations and applications in cryptanalysis of stream ciphers. J. Syst. Sci.
Complex. 21(2), 191–208 (2008)

http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-48405-1_2
http://dx.doi.org/10.1007/3-540-45539-6_27
http://dx.doi.org/10.1007/3-540-36178-2_17
http://dx.doi.org/10.1007/3-540-36563-X_10
http://dx.doi.org/10.1007/3-540-36563-X_10
http://dx.doi.org/10.1007/978-3-540-77272-9_10
http://dx.doi.org/10.1007/978-3-642-34047-5_18
http://dx.doi.org/10.1007/978-3-540-78967-3_1
http://dx.doi.org/10.1007/978-3-642-10433-6_5

536 S.L. Yeo et al.

18. Huang, Z., Sun, Y., Lin, D.: On the efficiency of solving Boolean polynomial sys-
tems with the characteristic set method. arXiv preprint (2014). arXiv:1405.4596

19. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. Int. Jt. Conf. Artif. Intell. 14(2), 1137–1145 (1995)

20. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

21. Sepehrdad, P.: Statistical and algebraic cryptanalysis of lightweight and ultra-
lightweight symmetric primitives. Ph.D. thesis, ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE (2012)

22. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

23. Bochum, R.U.: The PRINCE Challenge. https://www.emsec.rub.de/research/
research startseite/prince-challenge/ (2014). Accessed 18 Jan 2017

24. Jean, J., Nikolić, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 92–111. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43933-3 6

25. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with
applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46800-5 10

26. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 10

27. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.-R.: Multiple
differential cryptanalysis of round-reduced PRINCE. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 591–610. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46706-0 30

28. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 222–240. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 13

29. Mihaljevic, M.J.: Cryptanalysis of toyocrypt-HS1 stream cipher. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 85(1), 66–73 (2002)

30. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 21

31. Zhang, A., Lim, C.-W., Khoo, K., Wei, L., Pieprzyk, J.: Extensions of the cube
attack based on low degree annihilators. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) CANS 2009. LNCS, vol. 5888, pp. 87–102. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10433-6 7

32. Hawkes, P., Rose, G.G.: Rewriting variables: the complexity of fast algebraic
attacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 24

33. Armknecht, F., Lano, J., Preneel, B.: Extending the resynchronization attack.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 19–38.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4 2

http://arxiv.org/abs/1405.4596
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
https://www.emsec.rub.de/research/research_startseite/prince-challenge/
https://www.emsec.rub.de/research/research_startseite/prince-challenge/
http://dx.doi.org/10.1007/978-3-662-43933-3_6
http://dx.doi.org/10.1007/978-3-662-46800-5_10
http://dx.doi.org/10.1007/978-3-662-46800-5_10
http://dx.doi.org/10.1007/978-3-662-48116-5_10
http://dx.doi.org/10.1007/978-3-662-46706-0_30
http://dx.doi.org/10.1007/978-3-662-46706-0_30
http://dx.doi.org/10.1007/978-3-642-40041-4_13
http://dx.doi.org/10.1007/3-540-39200-9_21
http://dx.doi.org/10.1007/978-3-642-10433-6_7
http://dx.doi.org/10.1007/978-3-540-28628-8_24
http://dx.doi.org/10.1007/978-3-540-30564-4_2

SCRAPE: Scalable Randomness Attested
by Public Entities

Ignacio Cascudo1 and Bernardo David2,3(B)

1 Aalborg University, Aalborg, Denmark
2 Aarhus University, Aarhus, Denmark

davidm.bernardo@gmail.com
3 IOHK, Hong Kong, Hong Kong

Abstract. Uniform randomness beacons whose output can be publicly
attested to be unbiased are required in several cryptographic protocols.
A common approach to building such beacons is having a number par-
ties run a coin tossing protocol with guaranteed output delivery (so that
adversaries cannot simply keep honest parties from obtaining random-
ness, consequently halting protocols that rely on it). However, current
constructions face serious scalability issues due to high computational
and communication overheads. We present a coin tossing protocol for
an honest majority that allows for any entity to verify that an output
was honestly generated by observing publicly available information (even
after the execution is complete), while achieving both guaranteed output
delivery and scalability. The main building block of our construction is
the first Publicly Verifiable Secret Sharing scheme for threshold access
structures that requires only O(n) exponentiations. Previous schemes
required O(nt) exponentiations (where t is the threshold) from each of
the parties involved, making them unfit for scalable distributed random-
ness generation, which requires t = n/2 and thus O(n2) exponentiations.

1 Introduction

The problem of obtaining a reliable source of randomness has been studied since
the early days of cryptography. Whereas individual parties can choose to trust
locally available randomness sources, it has been shown that local randomness
sources can be subverted [BLN16,DPSW16] and many applications require a
common public randomness source that is guaranteed to be unbiased by a poten-
tial adversary. This necessity inspired the seminal work on Coin Tossing by
Blum [Blu81], which allows two or more parties to generate an output that is
guaranteed to be uniformly random as long as at least one of the parties is honest
(and given that the protocol terminates).

I. Cascudo acknowledges support from the Danish Council for Independent Research,
grant no. DFF-4002-00367.
B. David—This project has received funding from the European research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 669255).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 537–556, 2017.
DOI: 10.1007/978-3-319-61204-1 27

538 I. Cascudo and B. David

The concept of a public randomness beacon that periodically issues fresh
unpredictable and unbiased random values was proposed by Rabin [Rab83]
in the context of contract signing and has found several other applica-
tions such as voting protocols [Adi08], generating public parameters for
cryptographic schemes [BDF+15,LW15], privacy preserving instant messag-
ing [WCGFJ12,vdHLZZ15], and anonymous browsing [DMS04,GRFJ14]. More
recently, blockchain [Nak08,GKL15] applications such as smart contracts
[KMS+16,B+14], sharding [CDE+16] and Proof-of-Stake based consensus pro-
tocols [KKR+16] have increased the need for randomness sources [BCG15].

Rabin’s concept of randomness beacons fits the above applications very nicely
but the proposed implementation in [Rab83] relies on a trusted third party. The
goal of this paper is to construct a distributed randomness beacon guaranteeing
output delivery and uniformly distributed randomness for the parties that use
the beacon as long as a majority of these parties are honest. Moreover, in many
of the aforementioned applications, parties that do not necessarily participate
in randomness generation but wish to audit the protocol execution must be
able to attest a posteriori that the randomness source is reliable and unbiased.
Hence, we aim at constructing a publicly verifiable randomness beacon and not
only a protocol that outputs randomness to the parties actively involved in its
execution.

1.1 Related Works

A natural solution for obtaining randomness beacons consists in using a coin toss-
ing protocol as proposed by Blum [Blu81] with its messages posted to a public
bulletin board for later verification (or broadcast among the parties). However,
it is known that in case half or more of the parties are corrupted, the adver-
sary can bias the output of the protocol or even prevent the honest parties from
obtaining any output at all by aborting protocol execution at a given point
[Cle86]. Assuming that a majority of the players are honest, it is possible to
guarantee output delivery [RBO89] through threshold verifiable secret sharing
(VSS) [CGMA85] given that a broadcast channel is available. Basically, given
that a majority of n parties are honest, each party can secret share its input
into n shares such that n/2 are enough to reconstruct the secret, sending one
share to each involved party before starting the coin tossing protocol. While the
adversary cannot recover any input (since it has at most n/2 − 1 shares of each
input), the honest parties collective know at least n/2 shares, which they can
use to reconstruct the inputs of parties who abort and then finish the protocol.

While a coin tossing protocol with guaranteed output delivery (G.O.D.) with
a honest majority based on VSS provides a reliable source of randomness, this
approach still has two main issues: 1. most VSS schemes require interaction
between the dealer and the other parties, which hinders scalability and 2. only
parties who actively participate in the protocol can verify that it was executed
correctly. While non-interactive VSS [Fel87] solves the interaction problem, it
does not allow the protocol execution to be independently verified by entities
that did not actively participate. A natural way to allow for any entity to verify

SCRAPE: Scalable Randomness Attested by Public Entities 539

that the outputs produced by such protocols is indeed honestly generated is to
substitute traditional VSS by publicly verifiable secret sharing (PVSS) schemes
[Sta96], which allow for anybody to verify the validity of shares and reconstructed
secrets through information that can be made publicly available without requir-
ing direct interaction between any of the parties. Variations of this approach
have been proposed in [KKR+16,SJK+16].

While [KKR+16] instantiates a plain [RBO89]-style G.O.D. coin tossing
protocol requiring communication among all parties (through a public ledger),
[SJK+16] reduces the communication complexity by partitioning parties into
committees that internally run a protocol with publicly verifiable outputs. Later
on, a client that only communicates to the leader of each committee (instead
of talking to all parties) can aggregate these outputs to obtain publicly veri-
fiable randomness. However, while the vanilla approach of [KKR+16] achieves
security assuming only an honest majority (meaning that the adversary corrupts
less than half of all parties), the communication efficient approach of [SJK+16]
only achieves security against an adversary that corrupts less than a third of
all parties. Moreover, provided that there is an honest majority, the protocol of
[KKR+16] guarantees that all parties get output regardless of which parties are
corrupted, while in the protocols of [SJK+16], even if only the client is corrupted,
it can abort and prevent all other parties from receiving randomness.

Even though coin tossing with G.O.D. built through PVSS can poten-
tially achieve scalability and public verifiability, current PVSS constructions
[Sta96,FO98,Sch99,BT99,RV05,HV09,Jha11,JVSN14] suffer from high compu-
tational overhead. In general, the parties are required to each compute O(nt)
exponentiations to verify n shares of a secret with threshold t, which translates
into O(n2) exponentiations since t = n/2 in our randomness beacon application1.
This computational overhead arises because the main idea behind these schemes
is to commit to the coefficients of a polynomial used for a Shamir Secret Sharing
[Sha79] and encrypt the shares, later using the commitments to the coefficients
to independently compute commitments to the shares, which are proven in zero-
knowledge to correspond to the encrypted shares. This approach was originally
put forth in [Sch99], which uses the Fiat-Shamir heuristic (and consequently the
random oracle model) to obtain the necessary non-interactive zero-knowledge
proofs. Later on, variations of this protocol in the plain model were proposed in
[RV05,JVSN14], which substitute the zero-knowledge proofs by checks based on
Paillier Encryption [Pai99], and in [HV09,Jha11], which propose a pairing based
method for checking share validity.

Other approaches for constructing public randomness beacons have been con-
sidered in [BCG15,BDF+15,LW15,BLMR14,BGM16]. Public verifiability (or

1 In fact [Jha11] provides an alternative solution where only O(n) exponentiations
and a constant number of pairings are required for verification but O(n) pairings are
required for setup and O(n2) exponentiations in the target group of a bilinear map
(more expensive than the other exponentiations performed in the source groups) are
required for reconstruction.

540 I. Cascudo and B. David

auditability) in the context of general multiparty computation protocol has been
previously considered in [BDO14,SV15].

1.2 Our Contributions

We introduce SCRAPE, a protocol that implements a publicly verifiable random-
ness beacon given an honest majority through a PVSS based guaranteed output
delivery coin tossing protocol. Our main result lies at the core of SCRAPE:
the first threshold PVSS scheme that only requires a linear number of expo-
nentiations for sharing, verifying and reconstruction, whereas previous schemes
only achieve quadratic complexity. This PVSS scheme can be instantiated both
under the Decisional Diffie Hellman (DDH) assumption in the Random Ora-
cle Model (ROM) and in the plain model under the Decisional Bilinear Square
(DBS) assumption [HV09]. While improving on the computational complexity
of previous schemes, our PVSS scheme retains a similarly low communication
overhead, making it fit for applications with large amounts of users. We remark
that our new PVSS schemes can also be used to improve the performance of
[SJK+16].

Model: As in previous works [BDO14], we assume that the parties can use a
“public bulletin board” to publish information that will be used for posterior
verification. In fact, in the applications we are interested in, a ledger where
messages can be posted for posterior verification is readily available, since the
Bitcoin Backbone protocol itself implements such a mechanism (i.e. the distrib-
uted ledger analysed in [GKL15]). Nevertheless, our protocols are compatible
with any public ledger, not only with that of [GKL15].

Our Techniques: We improve on Schoenmakers’ PVSS scheme [Sch99] and its
variants (which require O(nt) exponentiations to verify n shares) by designing
a share verification procedure that only requires O(n) exponentiations (or pair-
ings). Our procedure explores the fact that sharing a secret with Shamir Secret
Sharing [Sha79] is equivalent to encoding the secret (plus randomness) with a
Reed Solomon error correcting code, a fact which was first observed by McEliece
and Sarwate in [MS81]. Since shares from Shamir Secret Sharing form a code-
word of a Reed Solomon code, computing the inner product of a share vector
with a codeword from the corresponding dual code should yield 0 if the shares
are correctly computed. As in [Sch99], the dealer in our scheme shares the secret
using Shamir Secret sharing, encrypts the shares s1, . . . , sn in ciphertexts of the
form hskisi (where hski is a public key and ski is a secret key) but also commits
to all shares by computing vi = gsi , where g, h are two independently chosen
generators of a group where the DLOG problem is assumed to be hard. The
dealer also provides evidence that the shares in the ciphertexts are the same as
the shares in the commitments. To verify the validity of the shares, anybody
can sample a random codeword c⊥ = (c⊥

1 , . . . , c⊥
n) of the dual code of the Reed

Solomon code corresponding to the instance of Shamir Secret sharing that was
used, compute the inner product of c⊥ with the share vectors in the exponents

SCRAPE: Scalable Randomness Attested by Public Entities 541

of g (by computing
∏

i v
c⊥
i

i = g
∑

i sic
⊥
i) and check that it is equal to g0 = 1. If

the shares are not valid, this check fails with large probability. To prove that the
shares in the ciphertexts and in the commitments are the same, the dealer can
either use a non-interactive zero-knowledge (NIZK) proof constructed using the
Fiat-Shamir heuristic as in [Sch99] (resulting in a construction in the ROM under
the DDH assumption) or have the parties do pairing based checks as in [HV09]
(resulting in a construction in the plain model under the DBS assumption).

Concrete Efficiency: In the DDH based construction in the ROM, the dealer
is required to compute 5n exponentiations in the sharing phase, while verifi-
cation and reconstruction respectively require 4n and 5t + 3 exponentiations
(given that all n shares are verified but only t shares are used in reconstruc-
tion). In the DBS based construction in the plain model, the dealer is required
to compute 2n exponentiations in the sharing phase, while verification requires
2n pairings and reconstruction requires 2n pairings and t + 1 exponentiations
(given that n decrypted shares are verified but only t shares are used in recon-
struction). Previous results required nt extra exponentiations in the verification
phase, resulting in n2/2 extra exponentiations in the randomness beacon appli-
cation, which requires t = n/2. In the random oracle model construction, extra
NIZK data is needed, amounting to a total of 2n group elements and n + 1
ring elements published by the dealer. In the construction in the plain model,
the dealer saves on the NIZK data and only posts 2n group elements, while
requiring more expensive computation (i.e. pairings).

2 Preliminaries

In this section, we establish notation and introduce definitions that will be used
throughout the paper. We denote uniformly sampling a random element x from
a finite set D by x ← D. We denote vectors as x = (x1, . . . , xn). We denote
the inner product of two vectors x,y as 〈x,y〉 =

∑
1≤i≤n xi · yi. For the sake of

notation, the integer n will always be considered to be even, so that n/2 is an
integer. In this paper q will always denote a prime number. We denote by Zq

the ring of integers modulo q and by G a finite multiplicative group of order q.
Since q is prime, Zq is a finite field and G is a cyclic group where every element
g �= 1 is a generator. We denote by Zq[x] the ring of polynomials in one variable
with coefficients in Zq. We denote by logge the discrete logarithm of an element
e ∈ G with respect to generator g ∈ G.

2.1 Coding Theory

We define a [n, k, d] code C to be a linear error correcting code over Zq of length
n, dimension k and minimum distance d. Its dual code C⊥ is the vector space
which consists of all vectors c ∈ Z

n
q such that 〈c, c⊥〉 = 0 for all c in C. The

dual code C⊥ of an [n, k, d] code C is an [n, n − k, d⊥] code (for some d⊥). In
this work, we will use the following basic linear algebra fact.

542 I. Cascudo and B. David

Lemma 1. If v ∈ Z
n
q \ C, and c⊥ is chosen uniformly at random in C⊥ then

the probability that 〈v, c⊥〉 = 0 is exactly 1/q.

Proof. By linearity, a c⊥ ∈ C⊥ is orthogonal to v if only if it is also orthogonal
to every vector in the code D spanned by v and C, i.e., if and only if c⊥ ∈ D⊥.
Since v /∈ C, then the dimension of D is k + 1 and hence the space D⊥ has
dimension n − k − 1. Therefore if c⊥ is chosen uniformly at random in C⊥ the
probability that 〈v, c⊥〉 = 0 is

#(D⊥)
#(C⊥)

=
qn−k−1

qn−k
=

1
q
.

Moreover, in this work we will always be under the assumption n < q and
we will use Reed-Solomon codes C of the following form

C = {(p(1), p(2), . . . , p(n)) : p(x) ∈ Zq[x],deg p(x) ≤ k − 1}
where p(x) ranges over all polynomials in Zq[x] of degree at most k − 1. This is
an [n, k, n − k + 1]-code. Its dual C⊥ is an [n, n − k, k + 1]-code, which can be
defined as follows

C⊥ = {(v1f(1), v2f(2), . . . , vnf(n)) : f(x) ∈ Zq[x],deg f(x) ≤ n − k − 1}
for the coefficients vi =

∏n
j=1,j �=i

1
i−j .

2.2 Shamir Secret Sharing

An (n, t) threshold secret sharing scheme allows a dealer D to split a secret s
into n shares S = (s1, . . . , sn) distributed among n parties P1, . . . , Pn such that
it is possible to reconstruct the secret given t of the shares but no information at
all is revealed if less shares are known. We refer to S as the share vector of the
secret sharing scheme. The first threshold secret sharing scheme was introduced
by Shamir in [Sha79]. In order to split a secret s ∈ Zq, the dealer samples
t − 1 random coefficients c1, . . . , ct−1 ← Zq and constructs a polynomial p(x) =
s+c1x+c2x

2+· · ·+ct−1x
t−1. The shares are computed as si = p(i) for 1 ≤ i ≤ n.

A party who possesses t shares can use Lagrange interpolation to recover the
polynomial p(x) and thus obtain s. On the other hand, a party who knows less
than t shares has no information about the secret. McEliece et al. first observed
that sharing a secret into n shares with Shamir Secret Sharing is equivalent to
encoding the message (x, c1, . . . , ct−1) under a [n, t, n−t+1] Reed Solomon code,
implying that the share vector S is a codeword of such Reed Solomon code.

2.3 Assumptions

One of our constructions is proven in the Random Oracle Model [BR93], where
it is assumed that the parties are given access to a function H(x) that takes
inputs of any size and returns unique uniformly random outputs of fixed size

SCRAPE: Scalable Randomness Attested by Public Entities 543

(returning the same output every time the input is the same). Such a function
can be instantiated in practice by a cryptographic hash function. In this model
we prove security of our protocols under the DDH assumption, that states given
g, gα, gβ it is hard for a PPT adversary to distinguish between gαβ from gr,
where g is a generator of a group G of order q and α, β, r ← Zq.

We assume efficient non-degenerate bilinear groups described by Λ :=
(q,G,GT , e), where G and GT are groups of order q and G×G → GT is a bilin-
ear map. We use symmetric pairings to describe the construction for the sake of
clarity but remark that our construction can also be easily converted to asym-
metric bilinear groups [AHO16], for which state-of-the-art pairing friendly curves
[BN06] for which more efficient algorithms for computing pairings [AKL+11]
are known. We prove our pairings based protocol secure under the Decisional
Bilinear Square (DBS) assumption [HV09] that was shown in that paper to be
equivalent to the Decisional Bilinear Quotient assumption [LV08] and related to
the Decisional Bilinear Diffie Hellman assumption.

Assumption 1 Decisional Bilinear Square (DBS) [HV09]. Let Λ :=
(q,G,GT , e) be a bilinear group. For a generator g ∈ G, random values
μ, ν, s ← Zq and given u = gμ and v = gν , the following probability distrib-
utions are computationally indistinguishable: D0 = (g, u, v, T0 = e(u, u)ν) and
D1 = (g, u, v, T1 = e(u, u)s).

Adversarial Model. We prove the security of our protocols in the stand alone
setting against malicious adversaries, who may deviate from the protocol in any
arbitrary way. We consider static adversaries, who have to choose which parties
to corrupt before protocol execution begins.

Public Ledger and Broadcast Channel. We assume that the parties have access to
a public ledger with Liveness, meaning that an adversary cannot prevent honest
parties from adding information and agreeing on it, and Persistence, meaning
that the information cannot be modified or removed a posteriori. It is known that
such a ledger can be implemented by the Bitcoin backbone protocol assuming an
honest majority, digital signatures and a Random Oracle [GKL15]. However, we
remark that our protocols do not rely on any properties that are unique to the
ledger of [GKL15], meaning that our constructions can also be instantiated over
public ledgers in the plain model. Notice that access to a broadcast protocol is
commonly assumed in multiparty protocols for an honest majority [RBO89] and
that the same effect of broadcasting a messages can be achieved by writing it
to the ledger. We also remark that the availability of a public bulletin board has
been assumed in previous works on public verifiability for multiparty protocols
[BDO14,SV15].

2.4 Publicly Verifiable Secret Sharing

We adopt the general model for PVSS schemes of [Sch99] and the security defini-
tions of [RV05,HV09] (with some differences that we remark below). We consider

544 I. Cascudo and B. David

a set of n parties P = {P1, . . . , Pn} and a dealer D who shares a secret among
all the parties in P. We will construct schemes for (n, t)-threshold access struc-
tures, meaning that the secret is split in n shares in such a way that knowing at
most t − 1 shares reveals no information but a collection of t shares allows for
secret reconstruction. Additionally, any external verifier V can check that the D
is acting honest without learning any information about the shares or the secret.
A PVSS protocol has four phases described below:

– Setup: The dealer D generates and publishes the parameters of the scheme.
Every party Pi publishes a public key pki and withholds the corresponding
secret key ski.

– Distribution: The dealer creates shares s1, . . . , sn for the secret s, encrypts
share si with the public key pki for i = 1, . . . , n and publishes these encryp-
tions ŝi, together with a proof PROOFD that these are indeed encryptions
of a valid sharing of some secret.

– Verification: In this phase, any external V (not necessarily being a partic-
ipant in the protocol) can verify non-interactively, given all the public infor-
mation until this point, that the values ŝi are encryptions of a valid sharing
of some secret.

– Reconstruction: This phase is divided in two.
Decryption of the shares: This phase can be carried out by any set Q of t or
more parties. Every party Pi in Q decrypts the share si from the ciphertext ŝi

by using its secret key ski, and publishes si together with a (non-interactive)
zero-knowledge proof PROOFi that this value is indeed a correct decryption
of ŝi.
Share pooling: Any external verifier V (not necessarily being a participant in
the protocol) can now execute this phase. V first checks whether the proofs
PROOFi are correct. If the check passes for less than t parties in Q then V
aborts; otherwise V applies a reconstruction procedure to the set si of shares
corresponding to parties Pi that passed the checks.

A PVSS scheme must provide three security guarantees: Correctness, Verifi-
ability and IND1-Secrecy. These properties are defined below:

– Correctness: If the dealer and all players in Q are honest, then all verifica-
tion checks in the verification and reconstruction phases pass and the secret
can be reconstructed from the information published by the players in Q in
the reconstruction phase.

– Verifiability: If the check in the verification step passes, then with high
probability the values ŝi are encryptions of a valid sharing of some secret.
Furthermore if the check in the Reconstruction phase passes then the com-
municated values si are indeed the shares of the secret distributed by the
dealer.

– IND1-Secrecy: Prior to the reconstruction phase, the public information
together with the secret keys ski of any set of at most t − 1 players gives
no information about the secret. Formally this is stated as in the following
indistinguishability based definition adapted from [RV05,HV09]:

SCRAPE: Scalable Randomness Attested by Public Entities 545

Definition 1 Indistinguishability of secrets (IND1-secrecy). We say that
the PVSS is IND1-secret if for any polynomial time adversary APriv corrupting
at most t−1 parties, APriv has negligible advantage in the following game played
against a challenger.

1. The challenger runs the Setup phase of the PVSS as the dealer and sends all
public information to APriv. Moreover, it creates secret and public keys for
all uncorrupted parties, and sends the corresponding public keys to APriv.

2. APriv creates secret keys for the corrupted parties and sends the corresponding
public keys to the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets.
Furthermore it chooses b ← {0, 1} uniformly at random. It runs the Dis-
tribution phase of the protocol with x0 as secret. It sends APriv all public
information generated in that phase, together with xb.

4. APriv outputs a guess b′ ∈ {0, 1}.

The advantage of APriv is defined as |Pr[b = b′] − 1/2|.
The IND1-secrecy definition is the one used in [RV05,HV09], except for the

fact that we do not impose any privacy requirement after the Reconstruction
phase. The difference stems from the fact that in [RV05,HV09] it was required
that nobody learns the secret but the parties interacting during the reconstruc-
tion, while in our random beacon application the secret must be publicly recon-
structed and published. We remark that our scheme can achieve both the relaxed
definition required by the random beacon application and the stronger secrecy
guarantees of [RV05,HV09] (through the use of private channels between parties
or through the technique of [HV09] that requires extra data to be posted to
the ledger). We also remark that our schemes can achieve the stronger secrecy
notion formalized as IND2-secrecy in [RV05,HV09], which allows the adversary
to choose arbitrary secrets. This is done by a black box transformation to the
protocols that allows for sharing arbitrary secrets instead of random ones by
using the random shared secret as a “one time pad” to encrypt an arbitrary
secret, which is formally proven in [RV05,HV09].

2.5 Zero-Knowledge Proofs of Discrete Logarithm Knowledge

In our construction based on the DDH assumption in the random oracle model
we will need a zero-knowledge proof of knowledge of a value α ∈ Zq such that
x = gα and y = hα given g, x, h, y. We denote this proof by DLEQ(g, x, h, y).
Chaum and Pedersen constructed a sigma protocol to perform this proof in
[CP93], their protocol works as follows:

1. The prover computes a1 = gw and a2 = hw where w ← Zq and sends a1, a2

to the verifier.
2. The verifier sends a challenge e ← Zq to the prover.
3. The prover sends a response z = w − αe to the verifier.

546 I. Cascudo and B. David

4. The verifier checks that a1 = gzxe and a2 = hzye and accepts the proof if
this holds.

This proof has the properties of completeness, soundness and zero-knowledge.
In our proofs, we will specifically reference the soundness property, which means
that a prover cannot convince a verifier of a fake statement except with a negli-
gible soundness error ε. Notice that this sigma protocol can be transformed into
a non-interactive zero-knowledge proof of knowledge of α in the random oracle
model through the Fiat-Shamir heuristic [FS87,PS96]. We remark that, as in
[Sch99], we need to compute this proof in parallel for n distinct pairs of values
(x1, y1), . . . , (xn, yn). In this case, a single challenge e is computed by the prover
as e = H(x1, y1, . . . , xn, yn, a1,1, a2,1, . . . , a1,n, a2,n), where the values a1,i, a2,i

are computed according to xi, yi as described above and H(·) is a random oracle
(that can be of course substituted by a cryptographic hash function). The proof
then consists of the challenge e along with responses zi computed according
to each xi, yi. The verifier can check the proof by computing a′

1,i = gzixe
i and

a′
2,i = hziye

i , and verifying that H(x1, y1, . . . , xn, yn, a′
1,1, a

′
2,i, . . . , a

′
1,n, a′

2,n) = e.

3 PVSS Based on the DDH Assumption in the ROM

In this section, we construct a PVSS protocol secure under the DDH assump-
tion in the Random Oracle Model. Our general approach is similar to that of
Schoenmakers [Sch99] but differs significantly in the procedure used for share
verification, which represents the main overhead in Schoenmakers’ scheme.

3.1 Security Analysis

Notice that the Setup and Reconstruction phases are exactly equal to those of
[Sch99], while our protocol differs in the Distribution and Verification phases,
where we apply our new technique. The key observation is that maliciously
generated encrypted shares ŝ1, . . . , ŝn will only pass the verification procedure
with probability 1/q plus the soundness error of the DLEQ proof, while v1, . . . , vn

reveal no information about the secret hs under the DDH assumption (by an
argument similar to that of [Sch99]).

We formalize these observations below. First we consider IND1-secrecy. We
remark that while we use our relaxed IND1-secrecy notion or our randomness
beacon application (where no secrecy is preserved after reconstruction), Proto-
col πDDH achieves the original stronger IND1-secrecy notion of [RV05,HV09]
(where secrecy against parties outside the qualified set is guaranteed even after
the reconstruction) if the reconstruction is carried out through private channels
between the parties in the qualified set.

Theorem 1. Under the decisional Diffie-Hellman assumption, the protocol
πDDH is IND1-secret against a static PPT adversary (Fig. 1).

SCRAPE: Scalable Randomness Attested by Public Entities 547

Fig. 1. Protocol πDDH

Proof. We show that, if there exists an adversary APriv which can break the
IND1-secrecy property of protocol πDDH , then there exists an adversary ADDH

which can use APriv to break the decisional Diffie-Hellman assumption with the
same advantage. Without loss of generality we assume APriv corrupts the t − 1
first parties.

548 I. Cascudo and B. David

Let (g, gα, gβ , gγ) be an instance of the DDH problem. Obviously if α = 0 or
β = 0 then the problem is trivial, so we assume these values are nonzero. Now
ADDH, using APriv, can simulate an IND1 game as follows:

1. The challenger sets h = gα and runs the Setup phase of πDDH . For t ≤ i ≤ n,
ADDH selects uniformly random values ui ← Zp (these can be thought of
implicitly defining ski as ski = ui/α) and sends the values pki = gui to
APriv.

2. For 1 ≤ i ≤ t − 1, APriv chooses uniformly random values ski ← Zq and sets
pki = hski and sends this to the challenger.

3. For 1 ≤ i ≤ t − 1, the challenger chooses uniformly random values si ← Gq

and sets vi = gsi and ŝi = pksi
i .

For t ≤ i ≤ n, it generates the values vi = gp(i) where p(x) is the unique
polynomial of degree at most t determined by p(0) = β and p(i) = si for
i = 1, . . . , t−1. Note that ADDH does not know β, but it does know gβ = gp(0)

and gsi = gp(i) for 1 ≤ i ≤ t − 1, so it can use Lagrange interpolation in the
exponent to compute the adequate vi. It also creates the values ŝi = vui

i . Note
that then ŝi = gui·p(i) = pk

p(i)
i . From all the computed values, the challenger

now creates the DLEQ proofs as the dealer does in the PVSS protocol. Finally
it sends all this information together with the value gγ (which plays the role
of xb in the IND game) to APriv.

4. APriv makes a guess b′.

If b′ = 0, ADDH guesses that γ = α · β. If b′ = 1, ADDH guesses that γ is a
random element in Zp.

The information that APriv receives in step 3. is distributed exactly like a
sharing of the value hβ = gα·β with the PVSS. Consequently, γ = α · β if and
only if the value gγ sent to APriv is the secret shared by the PVSS. It is now
easy to see that the guessing advantage of ADDH is the same as the advantage
of APriv.

The following two theorems guarantee the verifiability property of πDDH .

Theorem 2. If the dealer does not construct values (vi, ŝi) of the right form
in the Distribution phase (i.e. either loggvi �= logpki

ŝi for some i, or loggvi =
logpki

ŝi = si for all i but the values si do not constitute a valid sharing of some
secret in Zq with the (n, t)-threshold Shamir secret sharing scheme), then this is
detected in the verification step with probability at least 1 − ε − 1/q, where ε is
the soundness error of the proof DLEQ.

Proof. If the verification of DLEQ passes, then we have that, except with prob-
ability ε, for every 1 ≤ i ≤ n, there exists si with vi = gsi and ŝi = pksi

i . Now
the values si are a valid sharing with the (n, t)-threshold Shamir secret sharing
scheme if and only if the vector v = (s1, . . . , sn) ∈ C. Suppose that (s1, . . . , sn) /∈
C. Then by Lemma 1, since c⊥ is sampled uniformly at random then 〈v, c⊥〉 �= 0

except with probability 1/q. But then
∏n

i=1 v
c⊥
i

i =
∏n

i=1 gsi·c⊥
i = g〈v,c⊥〉 �= 1.

Hence if the values si are not a valid Shamir sharing, then the check fails with
probability 1 − 1/q.

SCRAPE: Scalable Randomness Attested by Public Entities 549

Theorem 3. If a party in Q communicates an erroneous decryption share s̃i

in the Reconstruction phase, then this is detected by the verifier with probability
1 − ε, where ε is the soundness error of the DLEQ proof.

Proof. This is straightforward by definition since an adversary that succeeds in
providing a DLEQ proof for an invalid decrypted share breaks DLEQ’s soundness
property.

4 PVSS Based on Pairings in the Plain Model

In this section, we construct a PVSS scheme based on the DBS assumption
in the plain model (without requiring random oracles). This scheme uses the
techniques of [HV09] to eliminate the need for the random oracle based NIZKs
and instead use pairings to check that the encrypted shares ŝi correspond to the
committed shares vi and, later on, check that the decrypted shares correspond
to ŝi. We use the same information theoretical verification procedure as in the
DDH based scheme. The protocol is described in Fig. 2.

4.1 Security Analysis

As in the DDH based protocol, notice that the Setup and Reconstruction phases
are exactly equal to those of [HV09], while our protocol differs in the Distribution
and Verification phases. Maliciously generated encrypted shares ŝ1, . . . , ŝn will
only pass the verification procedure with probability of 1/q, while v1, . . . , vn

again reveal no information about the secret e(h, h)s but this time under the BDS
assumption. Again we remark that Protocol πDBS achieves the original stronger
IND1-secrecy notion of [RV05,HV09] (where secrecy against parties outside the
qualified set is guaranteed even after the reconstruction) if the reconstruction is
carried out through private channels between the parties in the qualified set. The
proofs of Theorems 4 and 5 are similar to those of Theorems 1 and 2, respectively,
and are presented in the full version of this work [CD17].

Theorem 4. Under the DBS assumption, protocol πDBS is IND1-secret against
a static PPT adversary.

Theorem 5. If the dealer does not construct values (vi, ŝi) of the right form
in the Distribution phase (i.e. either loggvi �= logpki

ŝi for some i, or loggvi =
logpki

ŝi = si for all 1 ≤ i ≤ n but the values si do not constitute a valid sharing
of some secret in Zq with the (n, t)-threshold Shamir secret sharing scheme),
then this is detected in the verification step with probability at least 1 − 1/q.

Theorem 6. If a party in Q communicates an erroneous decryption share s̃i in
the Reconstruction phase, then this is detected by the verifier with probability 1.

Proof. If s̃i = ha with a �= si then e(pki, s̃i) = e(pki, h)a �= e(pki, h)si = e(ŝi, h).

550 I. Cascudo and B. David

Fig. 2. Protocol πDBS

5 Building the SCRAPE Randomness Beacon

Publicly verifiable secret sharing schemes have a multitude of applications as
discussed in [Sch99], among them universally verifiable elections, threshold ver-
sions of El Gamal encryption and threshold software key escrow. However, we
are specially interested in constructing SCRAPE, a protocol that implements a
distributed randomness beacon that is guaranteed to be secure given an honest
majority, a PVSS scheme and a public ledger. SCRAPE is basically a coin tossing
protocol with guaranteed output delivery (G.O.D.), meaning that an adversary

SCRAPE: Scalable Randomness Attested by Public Entities 551

Fig. 3. Protocol πSCRAPE

cannot prevent honest parties from obtaining a correct output (e.g. by abort-
ing before the execution is finished). Moreover, SCRAPE is publicly verifiable,
meaning that anybody can analyse past (and current) protocol transcripts to
verify that the protocol is being correctly executed. The reason we aim at guar-
anteed output delivery is twofold: 1. Protecting against particularly adversarial
behavior and 2. Tolerating non-byzantine failures in users after the commitment
phase (e.g. power outage). When used to bootstrap blockchain based consensus
protocols such as in [KKR+16], πSCRAPE has to tolerate adversaries that can
force a temporary loss of consensus making the users end up with conflicting ran-
dom outputs or temporarily “disconnecting” users from the network or public
ledger. We follow the general approach of [RBO89] to obtain guaranteed output
delivery based on verifiable secret sharing, building on our PVSS schemes to
achieve public verifiability for the final coin tossing protocol. More specifically,
we use our PVSS protocols to instantiate the construction of [KKR+16], which
proposed to combine a PVSS scheme with a public ledger to obtain publicly
verifiable G.O.D. coin tossing. The protocol is described in Fig. 3. The security
of πSCRAPE follows from the security of the general construction of [KKR+16]
and the security of our protocols that was proven in the previous sections. We
refer the reader to [KKR+16] for a detailed discussion on the general protocol.

552 I. Cascudo and B. David

6 Concrete Complexity and Experiments

In this section, we discuss the concrete computational and communication com-
plexity of our schemes, comparing them with previous work. We first start by dis-
cussing the computational complexity of our PVSS protocols, which is compared
to that of the protocols of [Sch99,HV09] in terms of numbers of exponentiations
and pairings required for each phase in Table 1. Notice that for our randomness
beacon application we need t = n/2, which translates into an extra overhead of
n2/2 exponentiations required for the verification phase of previous protocols.
Our protocols eliminate this quadratic overhead, resulting in much better scal-
ability. For example, if 10000 users run SCRAPE based on [Sch99], 50004000
exponentiations are required in the verification phase, while our instantiation

Table 1. Concrete computational complexity in terms of numbers of exponentiations
(Exp.) and pairings (Pair.) needed for each phase, considering that n shares are gen-
erated and t shares are used in reconstruction.

Distribution Verification Reconstruction

Exp. Exp. Pair. Exp. Pair.

[HV09] n + t nt 2n t + 1 2t + 1

Protocol πDBS 2n n 2n t + 1 2t + 1

[Sch99] 3n + t nt + 4n - 5t + 3 -

Protocol πDDH 4n 5n - 5t + 3 -

0.2 0.4 0.6 0.8 1

·104

0

1,000

2,000

3,000

4,000

Number of shares n

V
er

ifi
ca

ti
o
n

ru
n
ti

m
e

(s
ec

o
n
d
s)

Verification runtime of πDDH vs. πDBS vs. [Sch99]

πDDH

πDBS

[Sch99]

Fig. 4. Execution time of the verification phases of πDDH vs. πDBS vs. Schoenmakers’
PVSS [Sch99] for a number of shares n from 1000 to 10000 and threshold t = n

2
.

SCRAPE: Scalable Randomness Attested by Public Entities 553

of SCRAPE would require only 50000 exponentiations, achieving a performance
gain of over 100 times. In terms of communication complexity, our protocols
match previous results [Sch99,HV09] in the reconstruction phase while requir-
ing 2n group elements to be published in the distribution phase. In the ran-
domness beacon application, this represents an overhead of only 0.5n in relation
to [Sch99,HV09]. In order to evaluate the concrete performance of our proposed
protocols, we have conducted experiments with implementations of πDDH , πDBS

and the PVSS scheme of [Sch99], all written in Haskell. The experiments were
run on a single core of a Linux machine with a Intel(R) Core(TM) i7-3770K
CPU @ 3.50 GHz and 32 GB of RAM. Figure 4 compares the runtime of the ver-
ification phases of πDDH and [Sch99], which represents the main improvement
of πDDH . Further discussion on concrete complexity and experimental results
can be found in the full version of this work [CD17].

Acknowledgements. We thank Vincent Hanquez and Andrzej Rybczak for imple-
menting πDDH and πDBS , respectively.

References

Adi08. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)
Proceedings of 17th USENIX Security Symposium, 28 July–1 August 2008,
San Jose, CA, USA, pp. 335–348. USENIX Association (2008)

AHO16. Abe, M., Hoshino, F., Ohkubo, M.: Design in type-I, run in type-III: fast and
scalable bilinear-type conversion using integer programming. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 387–415. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53015-3 14

AKL+11. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster
explicit formulas for computing pairings over ordinary curves. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-20465-4 5

B+14. Buterin, V., et al.: A next-generation smart contract and decentralized appli-
cation platform. White paper (2014)

BCG15. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness
source. Cryptology ePrint Archive, Report 2015/1015 (2015). http://eprint.
iacr.org/2015/1015

BDF+15. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain,
M.: Trap me if you can - million dollar curve. Cryptology ePrint Archive,
Report 2015/1249 (2015). http://eprint.iacr.org/2015/1249

BDO14. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-
party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014.
LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). doi:10.1007/
978-3-319-10879-7 11

BGM16. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work.
In: Clark et al. [CMR+16], pp. 142–157 (2016)

BLMR14. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending
bitcoin’s proof of work via proof of stake [extended abstract]y. SIGMETRICS
Perform. Eval. Rev. 42(3), 34–37 (2014)

http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-642-20465-4_5
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1249
http://dx.doi.org/10.1007/978-3-319-10879-7_11
http://dx.doi.org/10.1007/978-3-319-10879-7_11

554 I. Cascudo and B. David

BLN16. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back
door. In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Code-
breakers. LNCS, vol. 9100, pp. 256–281. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49301-4 17

Blu81. Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO 1981,
vol. ECE report 82-04, pp. 11–15. U.C. Santa Barbara, Department of Elec-
trical and Computer Engineering (1981)

BN06. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime
order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp.
319–331. Springer, Heidelberg (2006). doi:10.1007/11693383 22

BR93. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–
73. ACM Press, November 1993

BT99. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes
with fast or delayed recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS
1999. LNCS, vol. 1726, pp. 87–102. Springer, Heidelberg (1999). doi:10.1007/
978-3-540-47942-0 8

CD17. Cascudo, I., David, B.: Scrape: scalable randomness attested by public enti-
ties. Cryptology ePrint Archive, Report 2017/216 (2017). http://eprint.iacr.
org/2017/216

CDE+16. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A.E.,
Miller, A., Saxena, P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.:
On scaling decentralized blockchains - (a position paper). In: Clark et al.
[CMR+16], pp. 106–125 (2016)

CGMA85. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In:
26th FOCS, pp. 383–395. IEEE Computer Society Press, October 1985

Cle86. Cleve, R.: Limits on the security of coin flips when half the processors
are faulty (extended abstract). In: Hartmanis, J. (ed.) Proceedings of 18th
Annual ACM Symposium on Theory of Computing, 28–30 May 1986, Berke-
ley, California, USA, pp. 364–369. ACM (1986)

CMR+16. Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff,
K. (eds.): FC 2016 Workshops. LNCS, vol. 9604. Springer, Heidelberg (2016)

CP93. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg
(1993). doi:10.1007/3-540-48071-4 7

DMS04. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation
onion router. In: Proceedings of 13th Conference on USENIX Security Sym-
posium, SSYM 2004, Berkeley, CA, USA, vol. 13, p. 21. USENIX Association
(2004)

DPSW16. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors
in pseudorandom number generators: possibility and impossibility results. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 403–432.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 15

Fel87. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing.
In: 28th FOCS, pp. 427–437. IEEE Computer Society Press, October 1987

FO98. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for pub-
licly verifiable secret sharing and its applications. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg
(1998). doi:10.1007/BFb0054115

http://dx.doi.org/10.1007/978-3-662-49301-4_17
http://dx.doi.org/10.1007/978-3-662-49301-4_17
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/978-3-540-47942-0_8
http://dx.doi.org/10.1007/978-3-540-47942-0_8
http://eprint.iacr.org/2017/216
http://eprint.iacr.org/2017/216
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/978-3-662-53018-4_15
http://dx.doi.org/10.1007/BFb0054115

SCRAPE: Scalable Randomness Attested by Public Entities 555

FS87. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/
3-540-47721-7 12

GKL15. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46803-6 10

GRFJ14. Ghosh, M., Richardson, M., Ford, B., Jansen, R.: A torpath to torcoin:
proof-of-bandwidth altcoins for compensating relays. Technical report, DTIC
Document (2014)

HV09. Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret
sharing schemes. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 294–308. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04159-4 19

Jha11. Jhanwar, M.P.: A practical (non-interactive) publicly verifiable secret sharing
scheme. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 273–
287. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21031-0 21

JVSN14. Jhanwar, M.P., Venkateswarlu, A., Safavi-Naini, R.: Ayineedi venkateswarlu,
and reihaneh safavi-naini. paillier-based publicly verifiable (non-interactive)
secret sharing. Des. Codes Crypt. 73(2), 529–546 (2014)

KKR+16. Kiayias, A., Konstantinou, I., Russell, A., David, B., Oliynykov, R.: A prov-
ably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive,
Report 2016/889 (2016). http://eprint.iacr.org/2016/889

KMS+16. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the
blockchain model of cryptography and privacy-preserving smart contracts.
In: 2016 IEEE Symposium on Security and Privacy, pp. 839–858. IEEE Com-
puter Society Press, May 2016

LV08. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78440-1 21

LW15. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryp-
tology ePrint Archive, Report 2015/366 (2015). http://eprint.iacr.org/2015/
366

Mau96. Maurer, U.M. (ed.): EUROCRYPT 1996. LNCS, vol. 1070. Springer, Heidel-
berg (1996). doi:10.1007/3-540-68339-9

MS81. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes.
Commun. ACM 24(9), 583–584 (1981)

Nak08. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
Pai99. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

PS96. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer
[Mau96], pp. 387–398 (1996)

Rab83. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256–267 (1983)

RBO89. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85.
ACM Press. May 1989

http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1007/978-3-642-04159-4_19
http://dx.doi.org/10.1007/978-3-642-04159-4_19
http://dx.doi.org/10.1007/978-3-642-21031-0_21
http://eprint.iacr.org/2016/889
http://dx.doi.org/10.1007/978-3-540-78440-1_21
http://eprint.iacr.org/2015/366
http://eprint.iacr.org/2015/366
http://dx.doi.org/10.1007/3-540-68339-9
http://dx.doi.org/10.1007/3-540-48910-X_16

556 I. Cascudo and B. David

RV05. Ruiz, A., Villar, J.L.: Publicly verifiable secret sharing from Paillier’s cryp-
tosystem. In: Wolf, C., Lucks, S., Yau, P.-W. (eds.) WEWoRC 2005 - Western
European Workshop on Research in Cryptology. Leuven, Belgium, 5–7 July
2005. LNI, vol. 74, pp. 98–108. GI (2005)

Sch99. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 10

Sha79. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11),
612–613 (1979)

SJK+16. Syta, E., Jovanovic, P., Kokoris Kogias, E., Gailly, N., Gasser, L., Khoffi,
I., Fischer, M.J., Ford, B.: Scalable bias-resistant distributed randomness.
Cryptology ePrint Archive, Report 2016/1067 (2016). (To appear at IEEE
Security & Privacy 2017). http://eprint.iacr.org/2016/1067

Sta96. Stadler, M.: Publicly verifiable secret sharing. In: Maurer [Mau96], pp. 190–
199 (1996)

SV15. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computa-
tion from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov,
V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp.
3–22. Springer, Cham (2015). doi:10.1007/978-3-319-28166-7 1

vdHLZZ15. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable
private messaging resistant to traffic analysis. In: Proceedings of 25th Sym-
posium on Operating Systems Principles, SOSP 2015, pp. 137–152. ACM,
New York (2015)

WCGFJ12. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in num-
bers: making strong anonymity scale. In: Proceedings of 10th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI 2012, pp.
179–192. USENIX Association, Berkeley (2012)

http://dx.doi.org/10.1007/3-540-48405-1_10
http://dx.doi.org/10.1007/3-540-48405-1_10
http://eprint.iacr.org/2016/1067
http://dx.doi.org/10.1007/978-3-319-28166-7_1

cMix: Mixing with Minimal Real-Time
Asymmetric Cryptographic Operations

David Chaum1, Debajyoti Das2(B), Farid Javani3, Aniket Kate2,
Anna Krasnova4, Joeri De Ruiter4, and Alan T. Sherman3

1 Voting Systems Institute, Los Angeles, USA
das48@purdue.edu

2 Purdue University, West Lafayette, USA
3 Cyber Defense Lab, UMBC, Baltimore, USA

sherman@umbc.edu
4 Radboud University, Nijmegen, Netherlands

Abstract. We introduce cMix, a new approach to anonymous commu-
nications. Through a precomputation, the core cMix protocol eliminates
all expensive real-time public-key operations—at the senders, recipients
and mixnodes—thereby decreasing real-time cryptographic latency and
lowering computational costs for clients. The core real-time phase per-
forms only a few fast modular multiplications.

In these times of surveillance and extensive profiling there is a great
need for an anonymous communication system that resists global attack-
ers. One widely recognized solution to the challenge of traffic analysis is
a mixnet, which anonymizes a batch of messages by sending the batch
through a fixed cascade of mixnodes. Mixnets can offer excellent privacy
guarantees, including unlinkability of sender and receiver, and resistance
to many traffic-analysis attacks that undermine many other approaches
including onion routing. Existing mixnet designs, however, suffer from
high latency in part because of the need for real-time public-key oper-
ations. Precomputation greatly improves the real-time performance of
cMix, while its fixed cascade of mixnodes yields the strong anonymity
guarantees of mixnets. cMix is unique in not requiring any real-time
public-key operations by users. Consequently, cMix is the first mixing
suitable for low latency chat for light-weight devices.

Our presentation includes a specification of cMix, security arguments,
anonymity analysis, and a performance comparison with selected other
approaches. We also give benchmarks from our prototype.

1 Introduction

Digital messaging has become a significant form of human communication,
yet currently such systems do not provide basic protections of untraceability
and unlinkability of messages. These protections are fundamental to freedom
of inquiry, to freedom of expression, and increasingly to online privacy. Grave
threats to privacy exist from global adversaries who construct traffic-analysis
graphs detailing who communicates with whom.
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 557–578, 2017.
DOI: 10.1007/978-3-319-61204-1 28

558 D. Chaum et al.

We introduce cMix, a new approach to anonymous communications. cMix
is a new variant of fixed-cascade mixing networks (mixnets). cMix uses a pre-
computation phase to avoid computationally intensive public-key cryptographic
operations in its core real-time protocol. Senders/clients participate only in the
real-time phase. Thus, senders never perform any public-key operations. cMix
has drastically lower real-time cryptographic latency than do all other mixnets.
Through its use of precomputation, and through its novel key management,
cMix is markedly different from all previous mixnets. Due to its lack of public-
key operations in its core real-time phase, it is very well suited for applications
running on light-weight clients, including chat messaging systems running on
smartphones, and for applications on low-power devices.

To provide anonymity online, an alternative approach to mixnets is onion
routing, such as implemented in the widely used system TOR [46]. Onion-routing
systems, however, have limitations on the level of anonymity achievable: most
significantly, because they route different sessions of messages along different
paths and they do not perform random permutations of messages, they are
vulnerable to a variety of traffic-analysis attacks—for example [12,43], as well
as intersection attacks [6,13,14].

By contrast, mixnets hold fundamentally greater promise to achieve higher
levels of anonymity than can onion-routing systems because mixnets are resilient
to traffic-analysis attacks. Specifically, since all mixnet messages travel through
the same fixed cascade of mixnodes, observing the communication paths of mes-
sages within a mixnet is not useful to the adversary. Also, mixnets can process
larger batches of messages than can onion-routing systems, which is important
because the batch size is the size of the anonymity set. Using a fixed cascade
achieves resilience against intersection attacks [6]. The main disadvantage of cur-
rent mixnets is their performance, which is throttled by their use of real-time
public-key cryptographic operations, which are much slower than symmetric-key
operations.

cMix is a practical solution to the cryptographic latency problem. It also
provides resistance to traffic analysis and intersection attacks, as do other fixed-
route mixnet designs. cMix scales linearly in number of users. Our prototype
implementation on Android clients demonstrates the practicality of cMix.

The main novel and significant contribution of cMix is that, by using pre-
computation, cMix eliminates all expensive real-time public-key operations by
sender, receiver, and mixnodes in its core protocol. In cMix, the clients never per-
form any public-key operations when sending messages. By splitting the compu-
tational load over a computationally intensive precomputation phase and a fast
real-time phase, cMix’s approach can also increase throughput, when demand is
non-uniform. No other mixnet has achieved these performance characteristics.
Thus, cMix greatly improves real-time performance (especially latency) over all
existing traditional mixnets and all re-encryption mixnets, while enjoying their
strong anonymity properties.

Our main contributions are the design, preliminary analysis, and prototype
implementation of cMix, a new mixnet variant that, through precomputation,

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 559

achieves lower real-time computational latency than do all existing mixnets (tra-
ditional and re-encryption), while still benefiting from the strong anonymity
properties of mixnets over onion-routing systems.

In the rest of this paper we review related work, provide an overview of cMix,
describe the core cMix protocol, explain some protocol enhancements, provide
security arguments, compare cMix’s performance with that of other mixnets,
present benchmarks from our prototype implementation, discuss several issues
raised by cMix, and present our conclusions.

2 Related Work

We briefly review selected background and related work on mixnets, onion rout-
ing, and precomputation for mixnets.

Mix Networks. In 1981, Chaum [9] introduced the concept of mixnets (often
referred to as decryption mixnets) and gave basic cryptographic protocols
whereby messages from a set of users are relayed by a sequence of trusted inter-
mediaries, called mixnodes or mixes. A mixnode is simply a message relay (or
proxy) that accepts a batch of encrypted messages, decrypts and randomly per-
mutes them, and sends them on their way forward. The sender in a decryption
mixnet must perform a number of public-key operations equal to the number of
mixnodes. The length of the encrypted message is proportional to this number,
and the length of the plaintext message is restricted for performance reasons.

Hybrid mixnets allow plaintext messages to have arbitrary length, by com-
bining asymmetric and symmetric cryptography. First proposed in 1985 by
Pfitzmann and Waidner [37], hybrid mixnets share a session key in the first
message, and then use a stream cipher to encrypt further messages. Various
proposals based on block ciphers followed [26,33]. The recent system called Rif-
fle [31] provides both sender and receiver anonymity by using verifiable shuffles
and private information retrieval. Periodocially, a client and all servers perform
verifiable shuffles to exchange session keys, which are then used for several rounds
in a manner similar to that performed by other hybrid networks.

In 1994, Park et al. [36] introduced re-encryption mixnets. Taking advantage
of homomorphic properties of El-Gamal encryption, each mixnode re-encrypts
the incoming message instead of decrypting it as in the original mixnet. Doing so
reduces and fixes the size of the ciphertext message traveling through the mixnet.
Universal re-encryption mixnets [23] do not require mixnodes to know public keys
for re-encryption. Because the sender encrypts each message using the public
key of the receiver, only the receiver is able to read the plaintext. Consequently,
unlike other mixnets, universal re-encryption mixnets provide sender anonymity
only against external observers, and not against message recipients.

Precomputation mixnets introduce a precomputation phase to decrease
latency during message delivery. Jakobsson [25] introduced precompution to
reduce the cost of node operations in re-encryption mixnets, though client costs
remain the same. Adida and Wikström [1] considered an offline/online approach
to mixing. Their protocol still requires several public-key operations in the online

560 D. Chaum et al.

phase, and senders have to perform public-key operations. A notable distinction
of the cMix precomputation mixnet is its shifting of all public-key operations
in its core protocol to the precomputation phase. Moreover, only the mixnodes
perform these public-key operations; no sender is involved.

Onion Routing. Higher latency of traditional mixnets can be unsatisfactory for
several communication scenarios, such as web search or instant messaging. Over
the past several years, a significant number of low-latency anonymity networks
have been proposed [2,3,8,11,20,28,29,34,41], and some have been extensively
employed in practice [15,46].

Common to many of them is onion routing [21,35], a technique whereby
a message is wrapped in multiple layers of encryption, forming an onion. A
common realization of an onion-routing system is to arrange a collection of
onion routers (abbreviated ORs, also called hops or nodes) that relay traffic for
users of the system. Users then randomly choose a path with few edges through
the network of ORs and construct a circuit—a sequence of nodes that will route
traffic. After the OR circuit is constructed, each of the nodes in the circuit
shares a symmetric key with the anonymous user, which key is used to encrypt
the layers of future onions. Upon receiving an onion, each node decrypts one
of the layers, and forwards the message to the next node. Onion routing as it
typically exists can be seen as a form of three-node mixing.

Low-latency anonymous communication networks based on onion rout-
ing [18,27,32,45], such as TOR [46], are susceptible to a variety of traffic-analysis
attacks. By contrast, mixnet methodology ensures that the anonymity set of a
user remains the same through the communication route and makes our protocol
resistant to these network-level attacks.

There are similarities between our precomputation phase, which uses public-
key operations, and the circuit-construction phase of onion routing. Similarly,
there are similarities between our real-time phase, which uses symmetric-key
operations, and the onion wrapping and unwrapping phases.

Unlike onion routing, however, our precomputation phase requires no par-
ticipation from the senders. During enrollment, each of our senders establishes
a separate shared secret with each mixnode, but this key establishment is per-
formed infrequently. Furthermore, in contrast with onion routing, our senders
do not perform anonymous key agreement [3,15,20,29] using a telescoping app-
roach or layered public-key encryption; they can establish these keys using a
Diffie-Hellman key exchange. These differences result in a significant reduction
in the computation that the users need to perform and make our system more
attractive to energy-constrained devices such as smartphones.

3 System Overview

Before defining cMix’s core protocol, we first explain our architecture and com-
munication model, adversarial model, and security goals.

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 561

3.1 Architecture and Communication Model

cMix is a new mixnet protocol that provides anonymous communication for its
users (senders and receivers). The main goal is to ensure unlinkability of messages
entering and leaving the system, though it is known which users are active at
any given moment.

cMix has n mixnodes that compose a fixed cascade: all nodes are organized
in a fixed order from the first node to the last. Within the cMix system this
order can be systematically changed and rotated, without affecting users in any
way. Any message sent by a user is forwarded through all n servers. As with any
mixnet, cMix collects a certain number of messages in a batch before processing
them. Section 8 discusses our strategy for assembling batches, though details
may depend on the application.

To become a cMix user, one must first establish for each mixnode a shared
key. Section 4.2 provides more details on how these keys can be established.
Round keys derived from the shared keys are used in each round of communica-
tion. A round begins with the start of batch processing.

For each round, β messages are collected and randomly ordered. Each mes-
sage must have the same length, and all messages in a batch are processed
simultaneously. The other messages are not accepted and are sent in a subse-
quent round. To process messages quickly in real time, cMix performs precom-
putations that do not involve any user. The precomputations are performed in a
separate phase during which cMix executes all public-key encryptions, enabling
the real-time computations to be carried using only fast multiplications.

3.2 Adversarial Model

We assume authenticated communication channels between all mixnodes. Thus,
an adversary can eavesdrop, forward, and delete messages between mixnodes, but
not modify, replay, or inject new ones, without detection. For any communication
not among mixnodes, we assume the adversary can eavesdrop, modify, or inject
messages at any point of the network.

An adversary can also compromise users; however, we assume that at least
two users are honest. Mixnodes can also be compromised, but at least one of
them needs to be honest for the system to be secure. We assume compromised
mixnodes to be malicious but cautious: they aim not to get caught violating the
protocol.

The goal of the adversary is to compromise the anonymity of the commu-
nication initiator, or to link inputs and outputs of the system. As with other
mixnets [1,9,23,25,31,36,37], we do not consider adversaries whose sole purpose
is to launch denial-of-service (DoS) attacks.

We envision a deployment model in which there are dedicated trusted data
centers serving as the mixnodes (perhaps competitively awarded). As such, they
are incentivized not to be expelled. By contrast, some mixnets allow the mixn-
odes to enter and leave with low cost.

562 D. Chaum et al.

An implication of our deployment model is that it is sufficient to be able to
detect a cheating node with sufficient probability at some point. By contrast, in
more flexible deployment models, the nodes should prove more stringently that
they have computed correctly before the output is opened. cMix does require
that the exit node commit to its output prior to being able to read the system
output, which protects against certain adaptive attacks.

3.3 Security Goals

cMix aims to satisfy each of the following two security properties:

– Anonymity: A protocol provides anonymity if the adversary cannot map
any input message to the corresponding output message, with a probabil-
ity significantly better than that of random guessing, even if the adversary
compromises all but two users and all but one mixnode.

– Integrity: A protocol provides integrity if at the end of every run involving
β honest users:
1. either, the β messages from the honest users are delivered unaltered to

the intended recipients,
2. or, a malicious mixnode is detected with a non-negligible probability and

no honest party is proven malicious.

4 The Core Protocol

We now present the core cMix protocol, beginning with some preliminary nota-
tions and concepts, followed by a detailed specification.

4.1 Preliminaries

We introduce the primitives and notations used to describe the protocol. There
are n mixnodes that process β messages per batch. For simplicity we assume here
that the system already knows for each sender what slot to use out of the β slots.
When implementing the system this assignment can, for example, be achieved by
including the sender’s identity (possibly a pseudonym) when sending a message
to the system.

All computations are performed in a prime-order cyclic group G satisfying
the decision Diffie-Hellman (DDH) assumption. The order of the group is p, and
g is a generator for this group. Let G∗ be the set of non-identity elements of G.

cMix uses a multi-party group-homomorphic cryptographic system. We make
use of a system based on ElGamal, described by Benaloh [4], though any such
system could be used. This system works as follows:

– di ∈ Z
∗
p: the secret share for mixnode i of the secret key d.

– e: the public key of the system, based on the mixnode shares of the secret
key: e =

∏
i gdi .

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 563

– Ee(m) = (gx,m · ex), x ∈R Z
∗
p: encryption of message m under the system’s

public key e. We call gx the random component and m · ex the message
component of the ciphertext. When applying encryption on a vector of values,
each value in the vector is encrypted individually—each with a fresh random
value—and the result is a vector of ciphertexts.

– Ddi
(gx) = (gx)−di : the decryption share for mixnode i computed from the

random component of a ciphertext using the mixnode’s share of the secret
key. As with encryption, applying this function on a vector of random values
results in a vector of corresponding decryption shares.

To decrypt a ciphertext (gx,m · ex), all parties need to cooperate because the
decryption shares for all mixnodes are required to retrieve the original message:

m · ex ·
n∏

i=1

Ddi
(gx) = m · (

n∏

i=1

gdi)x ·
n∏

i=1

(gx)−di = m.

The cMix protocol uses the following values:

– ri,a, si,a ∈ G∗: random values (freshly generated for each round) of mixnode
i for slot a. Thus, ri = (ri,1, ri,2, . . . , ri,β) is a vector of random values for
the β slots in the message map at mixnode i. Similarly, si is also a vector of
random values for mixnode i.

– πi: a random permutation of the β slots used by mixnode i. The inverse of
the permutation is denoted by π−1

i .
– ki,j ∈ G∗: a group element shared between mixnode i and the sending user

for slot j. These values are used as keys to blind messages.
– Mj ∈ G∗: the message sent by user j. Like other values in the system, these

values are group elements. They can be easily converted from, for example, an
ASCII-encoded string. The group size determines the length of an individual
message that can be sent.

For readability we introduce the following shorthand notations:

– Ri: the product of all local random r values through mixnode i; i.e., Ri =∏i
j=1 rj .

– Si: the product and permutation of all local random s values:

Si =

{
s1 i = 1
πi(Si−1) × si 1 < i ≤ n.

– Πi(a): the permutation performed by cMix through mixnode i, i.e., the com-
position of all individual permutations:

Πi(a) =

{
π1(a) i = 1
πi(Πi−1(a)) 1 < i ≤ n.

– ki and k−1
i : the vector of keys shared between mixnode i and the users for all

β slots and their inverses, respectively; ki = (ki,1, ki,2, . . . , ki,β) and k−1
i =

(k−1
i,1 , k−1

i,2 , . . . , k−1
i,β).

564 D. Chaum et al.

– Kj : the product of all shared keys of the sending user for slot j: Kj =∏n
i=1 ki,j .

– K is a vector of products of shared keys for the β slots; K = (K1,K2, . . . , Kβ).

4.2 Protocol Description

We now present the core protocol. In this explanation we focus on simplicity and
clarity; see Sect. 5 and our extended paper [10] for a discussion of possible secu-
rity issues and enhancements. We separately discuss each of the three protocol
phases: setup, precomputation, and real time.

Setup. In the setup phase, the mixnodes establish their secret shares di and the
shared public key e, which are used for the multi-party homomorphic encryption
system.

The users also establish their keys ki,j , which they share with all mixnodes.
This can be done using any (offline) key distribution method. One way to derive
these keys is using a Diffie-Hellman key exchange. The resulting key can be used
as a seed to derive unique values for ki,j for every session. Depending on the
chosen key distribution protocol, this would be the only time a user is possibly
required to perform an asymmetric cryptographic operation. The key exchange
must be performed once for each user, and this exchange can be carried during
the user’s enrollment into the system.

Precomputation. The precomputation phase is performed only by the mixn-
odes, without any involvement from the users. It is performed once for each
real-time phase. The mixnodes establish shared values to circumvent the need
for public-key operations during the real-time phase. The precomputation phase
comprises three different steps given below. The goal of the precomputation
phase is to compute the values Πn(Rn) × Sn, which are used in the real-time
phase. Figure 1 shows a schematic example of the first two steps of the precom-
putation phase.

Step 1 - Preprocessing. The mixnodes start by generating fresh r, s, πππ values.
Then they collectively compute the product of all of their individual r values
under encryption using the public key e of the system, which was computed
during the setup phase. This computation takes place by each mixnode i sending
the following message to the next mixnode:

Ee(Ri) =

{
Ee(r1) i = 1
Ee(Ri−1) × Ee(ri) 1 < i ≤ n.

Each mixnode encrypts its own r values and uses the homomorphic property of
the encryption system to compute the multiplication of this ciphertext with the
input it receives from the previous mixnode. Eventually, the last mixnode sends
the final values Ee(Rn) to the first mixnode as input for the next step.

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 565

Node 1 Node 2 Node n Node 1 Node 2 Node n
Ee(r1,1)

Ee(r1,2)

Ee(r1,β)

Ee(r1,1 · r2,1)

Ee(r1,2 · r2,2)

Ee(r1,β · r2,β)

Ee(
∏n

i=1 ri,1)

Ee(
∏n

i=1 ri,2)

Ee(
∏n

i=1 ri,β)

Ee(
∏n

i=1(ri,1) · s1,4)

Ee(
∏n

i=1(ri,2) · s1,3)

Ee(
∏n

i=1(ri,β) · s1,1)

Ee(
∏n

i=1(ri,1) · s1,4 · s2,3)

Ee(
∏n

i=1(ri,2) · s1,3 · s2,1)

Ee(
∏n

i=1(ri,β) · s1,1 · s2,2)

Fig. 1. A schematic example of the first two steps of the precomputation phase, which
result in the values Ee(Πn(Rn) × Sn).

Node 1 Node 2 Node n Node 1 Node 2 Node n
m1 · ∏n

i=1(ki,1)

m2 · ∏n
i=1(ki,2)

mβ · ∏n
i=1(ki,β)

m1 · ∏n
i=2(ki,1) · r1,1

m2 · ∏n
i=2(ki,2) · r1,2

mβ · ∏n
i=2(ki,β) · r1,β

m1 · ∏n
i=1(ri,1)

m2 · ∏n
i=1(ri,2)

mβ · ∏n
i=1(ri,β)

m1 · ∏n
i=1(ri,1) · s1,4

m2 · ∏n
i=1(ri,2) · s1,3

mβ · ∏n
i=1(ri,β) · s1,1

Fig. 2. A schematic example of the first two steps of the real-time phase, which result
in the values Πn(M×Rn) × Sn.

Step 2 - Mixing. In the second step, the mixnodes together mix the values
and compute the results Πn(Rn)×Sn, under encryption. The mixnodes perform
this mixing by having each mixnode i send the following message to the next
mixnode:

Ee(Πi(Rn) × Si) =

{
π1(Ee(Rn)) × Ee(s1) i = 1
πi(Ee(Πi−1(Rn) × Si−1)) × Ee(si) 1 < i ≤ n.

As with the first step, the last mixnode sends the final encrypted values
Ee(Πn(Rn)×Sn) to the first mixnode. These final values now must be decrypted
together by all mixnodes, which happens in the last step of the precomputation.

Step 3 - Postprocessing. To complete the precomputation, the mixnodes
decrypt the precomputed values. Each mixnode i computes its decryption shares
Ddi

(x), where (x, c) = Ee(Πn(Rn) × Sn)). The message parts c are multiplied
with all the decryption shares to retrieve the plaintext values Πn(Rn)×Sn. This
computation can be carried out either using another pass through the network
(in which every mixnode multiplies in its own decryption share), or by having
all mixnodes send their encryption shares to the last mixnode, which can then

566 D. Chaum et al.

perform the multiplication. The last mixnode to be used in the real-time phase
stores the decrypted precomputed values.

Real Time. For the real-time phase, each user constructs its input by taking
its message m and multiplying it with its combined shared key k to compute the
blinded message m × k. This blinded message is then sent to the mixnet. One
option would be to send the blinded messages to the first mixnode. Once the
first mixnode receives enough blinded messages, it combines those messages to
yield the vector M × K. As in the precomputation phase, the real-time phase
can again be split into three steps. Figure 2 gives a schematic example of the
first two steps.

Step 1 - Preprocessing. During the preprocessing step, the mixnodes take
out the keys k they share with the users and add in their r values to blind the
original messages. This computation is performed by each mixnode i sending the
following to the next mixnode:

M × K × (
i∏

j=1

k−1
j × rj) = M × K × (

i−1∏

j=1

k−1
j × rj) × k−1

i × ri.

The last mixnode sends the final values M×Rn = M×K×∏n
j=1

(
k−1

i × ri

)
,

which are the blinded versions of the original messages, to the first mixnode as
input for the next step. Now the user-specific keys k are taken out and replaced
by the user-independent values r.

Step 2 - Mixing. The second step performs the mixing to hide the association
between sender and receiver. The s values are added in to hide which input
message corresponds to which output message. Each mixnode i (except the last
mixnode) sends the following message to the next mixnode:

Πi(M × Rn) × Si =

{
π1(M × Rn) × s1 i = 1
πi(Πi−1(M × Rn) × Si−1) × si 1 < i < n.

Finally, the last mixnode computes:

Πn(M × Rn) × Sn = πn(Πn−1(M × Rn) × Sn−1) × sn.

Now every mixnode has performed its mixing, destroying the associations
between senders and receivers.

Step 3 - Postprocessing. The last mixnode can perform the final step. This
mixnode retrieves the locally stored precomputed values Πn(Rn) × Sn. To
retrieve the permuted messages it now needs only to perform the following com-
putation, using the result from the previous mixing step:

Πn(M) = Πn(M × Rn) × Sn × (Πn(Rn) × Sn)−1.

How the messages are then delivered to the recipients depends on the application
and is independent from cMix. This step concludes the real-time phase, in which
no public-key operations are performed.

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 567

5 Protocol Integrity

The cryptographic construction presented in Sect. 4 expects the mixnodes and
users to be honest but curious. As for most mixnet protocols [9,26,33,36], cMix
requires additional measures to ensure that mixnodes cannot tamper with the
messages nor with the flow without detection. In this section, we augment the
protocol to protect its anonymity and integrity against malicious attacks by
users and by compromised mixnodes, which we shall call “adversarial mixnodes.”
The overall strategy relies on the assumption that compromised mixnodes are
malicious but cautious.

5.1 Integrity of Values and Messages

To enable honest mixnodes to verifiably detect any malicious mixnodes that
employ incorrect values or permutations in the precomputation or real-time
phase, cMix augments communications with proofs. To this end, all messages
exchanged between mixnodes are signed using a digital signature system with
existential unforgeability under an adaptive chosen-message attack [22]. In addi-
tion, during precomputation, each mixnode commits to the permutation πj it
applies to the incoming slot j using a perfectly hiding commitment (Commit)
scheme [24] and signs that commitment. Each node broadcasts its signed com-
mitment using a reliable broadcast (Broadcast) protocol [17,44]. Doing so makes
it possible to reconstruct and verify all individual values ri,j , si,j and πi,j that
mixnode j applies to slot i.

In the real-time phase, the users become involved, making the process more
complicated because they do not perform any public-key operations during the
real-time phase. The values that we need to verify that depend on the users are
the ki,j values (shared between a mixnode i and the user in slot j), and the
mj · Kj values (the blinded message that a user sends in slot j).

Because the k values are shared between a mixnode and a user, we need
them to agree on the commitments to these values. If we detect an anomaly
involving the k values, and a mixnode and user disagree on the value used, the
commitment needs to provide proof of who misbehaved.

For this task, the following procedure can be followed in case the k values are
derived from a seed that is agreed upon by a mixnode and user during the setup
phase. After establishing this seed, the mixnode will compute a commitment
of the seed and provide this commitment to the user. The mixnode generates
the commitment in a way that enables the user to reveal the commitment and
prove to other parties that the mixnode generated the commitment. The user
must verify the commitment during the setup phase. This verification requires an
additional public-key operation, though it will be performed only once provided
the protocol runs without any disturbance.

Message Integrity at Entry. Messages at entry to cMix need to arrive at cMix
and pass through the non-permuted part of the protocol without any undetected

568 D. Chaum et al.

modification. Providing integrity of messages at this point is a challenge if one
wishes to keep clients free from using any asymmetric cryptography during the
real-time phase. We propose a construction where message authentication codes
(MAC s) are generated over the input message to the cMix system. A shared-key
MAC is sufficient here because the communicants (sender, mixnode) do not need
to convince any third party.

To accomplish this goal, we introduce additional key values li,j , shared
between mixnode i and the user for slot j, established and committed to in
a similar way as for the k values. When the user sends the blinded message
mj · Kj to the system, the user also sends the following messages:

hj = Hash(mj · Kj) and (MAC l1,j (hj), . . . ,MAC ln,j
(hj)).

During the real-time phase, the first mixnode starts by checking its corre-
sponding MAC value in the list. If it is incorrect, the mixnode informs the other
mixnodes and does not forward the computed value for this slot. If the MAC
value is correct, it forwards the h values and the MAC values for the other
mixnodes, together with its basic computed values.

Each subsequent mixnode follows the same procedure. At the end of the first
step of the real-time phase, all mixnodes have checked their MAC values on the
received h values, or the value is not processed any further.

5.2 Message Tagging Detection

A message-tagging attack is an attack where the adversary can mark a message
at some point during the process, such that it is recognizable when it is output,
compromising unlinkability between the inputs and outputs [39]. To perform a
tagging attack unnoticed, the tag should also be removed before the messages
are output. Tagging attacks are a threat to all mixnets that use some form of
malleable encryption, such as homomorphic encryption or group multiplications,
where valid messages can be recognized when output by the mixnet. For example,
Pfitzmann [38] presents such an attack on re-encryption mixnets.

A simple example of a tagging attack is the following: The last mixnode
multiplies the blinded message in one of the slots j with an additional factor
t in the first step of the real-time phase. Now the blinded message in slot j
will be mj · ∏n

i=1 ri,j · t at the end of the first step, whereas the values in the
other slots stay the same. When the last mixnode performs Step 3, it will see
the final messages before it outputs them. If the messages are recognizable as
valid outputs, it will observe that one of the messages does not seem to be valid.
If this invalid message becomes valid when multiplied with t−1, this message
is likely the tagged one. The mixnode can now link the message, and possibly
the recipient, to the sender. The mixnode can remove the tag and output the
original messages, making it unobservable to the users and other mixnodes that
a tagging attack took place.

Detection. To protect against these kinds of attacks and make them detectable,
only small changes are needed to the protocol:

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 569

– Precomputation Phase - Step 3: The mixnodes no longer send out their
decryption shares to retrieve the precomputed values. Instead, they keep their
shares secret and publish only a commitment to them. The last mixnode also
publishes a commitment to the message component of the ciphertext. The
commitments can be computed, for example, using only one signature per
mixnode for the decryption shares for all slots simultaneously. The plaintext
results of the precomputation phase are thus no longer retrieved in that phase
itself.

– Real-Time Phase - Step 3: The output of the mixing step Πn(M ×
Rn) × Sn is published by the last mixnode. Afterwards, all mixnodes release
their decryption shares Ddi

(x) and the message component of the cipher-
text c. The output messages are then computed as follows, where (x, c) =
Ee(Πn(Rn) × Sn):

Πn(M × Rn) × Sn × c ×
n∏

i=1

Ddi
(x).

Because the mixnodes committed to all of the values necessary to retrieve
the precomputed value, they cannot change these values to take out a possible
tag anymore. The output of the mixing step does not reveal anything yet about
the messages, because the r and s values are still included. The precomputed
value to take out these values is retrieved only after the output of the mixing
step is made public. Therefore, the last mixnode would not know from which
output slot a possible tag should be removed before the output of the mixing
step is made public. Once the output is made public, the tag cannot be removed
because all computations for the third step are fixed and can be verified by
anyone.

5.3 Sending and Verifying Trap Messages

To ensure the protocol is functioning correctly, we let users send trap messages
with a certain probability, and request to open message paths of these traps.
Opening of a path includes verification of all messages exchanged between mixn-
odes, the incoming message from the user, as well as intermediate values and
permutations.

Sending Trap Messages and Requesting to Open Them: To send a trap,
a user starts by forming a string x with a round ID, user ID, and a statement
that this is the dummy message. She calculates a MAC of x with every key li,j
shared between mixnode i and the user for slot j. The trap message is then the
string together with its MAC values, i.e., m = (x,MAC l1,j (x), . . . ,MAC ln,j

(x)).
Note that these MAC values are different from the MAC values mentioned in
Sect. 5.1, even though we are using the same keys in both places.

After the round is over, the trap message appears at the output. Each mixn-
ode verifies the correctness of her associated user ID, round ID, and MAC li,j

570 D. Chaum et al.

values. If any mixnode i detects that any of these values is incorrect, she stops the
round. Otherwise, the mixnode sends an authenticated message to user j noti-
fying that the dummy message is received correctly, including an incremented
counter of all dummies received from this user.

If a user actually sent a dummy message, but she does not receive a notifi-
cation message from each mixnode, she initiates the verification procedure. The
verification procedure consists of the following steps:

(i) User j sends a request, tagged with MAC values, to open the path with her
dummy message to all mixnodes.

(ii) A mixnode can either agree to participate in the path opening, or can
dispute the MAC of the path-opening request.

(iii) If mixnode i disputes the MAC intended for her, both the user and mixnode
open their local li,j values to validate the MAC .

(iv) If both the user and the mixnode are using the same li,j value, then the
MAC li,j () values computed by them should be same, and the correctness
of the request sent by the user can be easily validated. If the user has sent
an invalid request, the request is dropped.

(v) If the user and the mixnode dispute over the li,j value, then the seed of li,j
and the commitment to that seed (made by the mixnode and verified by
the user during setup) are opened. The user and mixnode each recomputes
li,j from the seed. Two possibilities follow:

(a) If the recomputed li,j value is not equal to what the user claims, the
path-opening request is dropped.

(b) If the recomputed li,j value is not equal to what the mixnode claims, she
must either agree to participate in the path-opening, or be considered
malicious.

(vi) Once all the mixnodes agree to participate in the path-opening, they first
open the path of the precomputation phase, and then the real-time phase
(both are explained below).

Path Opening for the Precomputation Phase: For the input slot j that
we want to verify, the mixnodes have to decrypt exchanged messages for this
slot and compute the r values in the non-permuted part. For the permuted
part, mixnodes subsequently reveal the corresponding permutations and decrypt
exchanged messages to obtain the s values. Doing so we can follow the compu-
tation through the mixnet and verify whether the precomputed value that was
output was correctly computed.

To check, for example, whether mixnode i performed its computation cor-
rectly, that mixnode needs to present the signature from the previous mixnode on
the values it received. The next mixnode will also have to present the signature it
received from mixnode i to obtain proof what values mixnode i output. Once all
information about the input, output, and values used in the expected computa-
tion are known, due to the signatures, commitments, and threshold decryption,
it can be verified whether mixnode i performed the computation as expected
or not.

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 571

Path Opening for the Real-Time Phase: Malicious mixnodes can also
employ incorrect messages, values, and permutations in the real-time phase. We
wish to make the mixnodes accountable for their behavior. One challenge is
that malicious users may try to victimize some honest mixnodes by providing
inconsistent inputs and later deny having done so.

First, the mixing step is verified. This check is performed in a similar fashion
as for the precomputation phase. For the preprocessing step, a comparable app-
roach is followed. To verify whether the correct input from the user to the system
is used, all the keys l for the MAC values for the suspicious slot are output. The
purpose is to detect if a mixnode or user changed the input. Because the values
were processed in the mixing step, during the first step of the real-time phase, all
mixnodes accepted the MAC values and thus should be able to provide a correct
key. The mixnodes also reveal their r and k values for the corresponding slot,
and the mixnodes check whether they performed their computations correctly.
Although the mixnodes committed to the r values, they have not committed to
individual k values. Therefore the sender must be involved in this process. The
sender will also release all the k values it used for this message.

If a k value released by the sender does not match the one released by the
corresponding mixnode, either the mixnode or the sender is misbehaving. The
sender might do this to blame a mixnode of misbehaving to cause it to be
removed from the system. This dispute needs to be resolved by having the user
reveal the commitment by the mixnode on the shared keys. Doing so might also
reveal k values used in previous sessions, but these values are only one of the
components of K and therefore do not leak the original messages. There are two
possibilities: either the user was malicious, in which case we do not care about
his or her previous messages, or the mixnode was malicious, in which case we
consider the k values to be compromised already. This procedure will reveal who
acted maliciously and modified the output message.

5.4 Security Analysis

We now briefly highlight some of the security properties of cMix. For details, see
the extended version of our paper [10].

As described in Sect. 3.3, we intend our protocol to have the following prop-
erty: if any of the messages are altered by any node, (a) no honest party can
be proven malicious, and (b) at least one malicious mixnode is detected with
non-negligible probability. In [10], we argue how the above described integrity
measures (integrity of values and messages, message tagging detection, and trap
messages) achieve the integrity property.

We also claim: if E is a CPA-secure group-homomorphic encryption system,
and Commit is a perfectly-hiding non-interactive commitment scheme, and if
the protocol maintains integrity, then cMix offers anonymity. For a detailed
anonymity analysis, see [10].

In [10] we also explain how cMix resists well-known attacks on mixnets [6,9,
12–14,16,39,40,43].

572 D. Chaum et al.

Galteland et al. [19] propose a tagging attack and an insider attack against
the cMix protocol, as described in the preliminary cMix eprint. But security
mechanisms specified in this preliminary cMix eprint prevent both attacks, as
do alternative integrity mechanisms (e.g., trap messages) specified in the current
cMix paper and its extended version [10]. In particular, as presented in the pre-
liminary cMix eprint, cryptographic commitments enforced by Random Partial
Checking (RPC) [30] prevent both attacks. Thus, these purported “Norwegian
Attacks” do not work.

6 Comparison with Other Mixnets

We compare cMix with well-known fixed-cascade mixnet approaches based on
performance. Specifically, as summarized in Table 1, we compare the performance
of the core cMix protocol with that of each of the following three competing
approaches: original mixnet and hybrid mixnets, re-encryption mixnet, and re-
encryption mixnet with precomputation.

For each approach, we compare the precomputation and real-time costs, fur-
ther compared by number of single-party public-key operations, multi-party
public-key operations, and multiplications (each by client and by mixnodes).
Note that, when using ElGamal encryption, the multiplication of two cipher-
texts requires two multiplications.

Table 1. Performance comparison of the core cMix protocol with three competing
mixnet [9,36] approaches: number of multiplication (Mult) and public-key (PK) oper-
ations performed for a batch of β messages processed by an n-node mixnet. One multi-
party public-key operation (ops) requires all nodes to participate.

Precomputation (ops for
all mixnodes)

Real time (ops per client;
ops for all mixnodes)

PK ops Multi-party
PK ops

Mult PK ops Multi-party
PK ops

Mult

cMix (core) 2nβ β 4n − 2β 0; 0 0; 0 n; 3nβ

Original mix - - - n; nβ 0; 0 0; 0

Re-encryption mix - - - 1; nβ 0; β 0; 2nβ

Re-encryption mix
(precomputation)

nβ 0 0 1; 0 0; β 0; 2nβ

The original mixnet [9] requires each sender to perform n encryptions; each
of the n mixnodes in the cascade performs one decryption per message and β
decryptions per batch. In total, all mixnodes perform n decryptions per message
and βn decryptions per batch. Hybrid mixnets [26,33] require the same amount
of asymmetric encryptions, but on a smaller plaintext.

In re-encryption mixnets [36], each client performs one encryption of its mes-
sage using the mixnet’s shared public key. Each node re-randomizes every mes-
sage, instead of decrypting each one as with original mixnets, resulting in one

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 573

public-key operation and one multiplication of ciphertexts per message per node.
In addition, the nodes need to decrypt the output of the mixnet in a multi-party
computation.

Re-encryption mixnets can be improved in a straightforward way using
precomputation to perform the public-key operations necessary for the re-
randomization, similarly to cMix’s strategy. As shown in Table 1, however, with
regard to real-time computation, cMix outperforms re-encryption mixnets with
precomputation.

Universal re-encryption mixnets perform much more slowly because they
require senders to encrypt messages with public keys of their recipients.

7 Proof of Concept

We implemented a proof-of-concept protoype in Python, including tagging detec-
tion as discussed in Sect. 5.2. Towards reducing the communication latency, we
have also introduced a network handler.

Introducing an untrusted network handler reduces latency. In Steps 1 and 3
of the precomputation and real-time phases, only products of values known by
the individual nodes are computed (see Sect. 4.2). To compute these products, it
is not necessary to make a full pass through the mixnet. Instead, each node can
send its values to an untrusted third party, which we call the network handler,
who can compute the products and return the results to the mixnet. Doing so
reduces latency of the network significantly because each node can send its values
simultaneously to the handler, instead of forwarding its local result to the next
node sequentially. The network handler does not learn any secret value, and it
computes only values that would anyway become public. The network handler,
and each of the mixnodes, is a single point of failure. In the event of failure,
however, because the handler performs only public operations, it can be easily
replaced by another entity—for example, by one of the mixnodes.

Each mixnode includes a keyserver (to establish shared keys with the users)
and a mixnet server (to carry out the precomputations and real-time compu-
tations). We use Ed25519 [5] signatures to implement authenticated channels
between mixnodes. For the precomputation, each mixnode uses parallel processes
for the computation of the encryptions and the decryption shares. In the real-
time phase, all operations are performed in a single thread.

We performed experiments by running the protoype on Amazon Web Ser-
vices (AWS) instances, with each node comprising a c3.large with two virtual
processors and 3.75 GB of RAM. For all values, we used a prime-order group of
2048 bits.

On the AWS instances, each 2048-bit ElGamal encryption took approx-
imately 10 ms on average, and the computation of a decryption share took
approximately 5 ms. Multiplication of group elements took only a fraction of
a millisecond.

For our experiments we performed 100 precomputation and real-time phases
for selected batch sizes up to 1000 with five mixnodes. Table 2 gives observed

574 D. Chaum et al.

Table 2. Timings measured on the
network handler from the start of
the phases until the final values or
responses are computed. Timings
are in seconds (wall clock) for 100
runs of the precomputation and
real-time phases, for various batch
sizes using five mixnodes.

Batch Precomputation Real time

Size Mean Std. dev. Mean Std. dev.

10 0.48 0.07 0.07 0.02

50 1.99 0.04 0.21 0.04

100 4.00 0.30 0.38 0.06

200 7.74 0.09 0.75 0.08

300 11.46 0.13 1.09 0.08

400 15.24 0.11 1.44 0.08

500 19.08 0.23 1.80 0.11

1000 37.94 0.19 3.58 0.12

Table 3. Mean timings in sec-
onds (CPU and wall clock) for
100 runs of the real-time phase of
the cMix protocol measured on the
mixnodes and network handler, for
various batch sizes using five mixn-
odes. For the mixnodes the mean
time is taken over all mixnodes.

Batch Mixnode Network handler

Size CPU Wall CPU Wall

10 0.01 0.04 0.01 0.07

50 0.04 0.16 0.02 0.21

100 0.07 0.30 0.02 0.38

200 0.14 0.60 0.04 0.75

300 0.22 0.87 0.06 1.09

400 0.29 1.15 0.07 1.44

500 0.36 1.45 0.09 1.80

1000 0.73 2.88 0.19 3.58

timings on the network handler for selected batch sizes using five mixnodes,
without any enhanced security mechanisms mentioned in Sect. 5. We measured
elapsed time on the network handler from the time it instructed the nodes to
start until either the precomputation finished successfully, or until it computed
the final responses to be sent to the users in the real-time phase. Table 3 gives
timings for the real-time phase per node and for the network handler, in both
CPU and wall clock time. These timings show the low computational load on
the nodes during this phase.

These timings demonstrate the high performance of the system in the real-time
phase. The precomputation can be easily accelerated by performing more compu-
tations in parallel. Additional processors would significantly improve the time it
takes to compute all necessary encryptions and decryption shares. For the real-
time phase, a network connection with low latency would improve the timings.

8 Extensions, Discussion, and Future Work

Here, we first describe how receivers can send immediate responses. We then
briefly discuss how to arrange messages into batches and how to deal with node
failures. We also outline some of our future plans.

Return Path. It is easy to extend cMix to enable a receiver to send an imme-
diate response through the mixnet, for example, to acknowledge receiving a
message. To accomplish this goal, the nodes generate additional random values

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 575

s′ and compute the permuted products S′ during the precomputation phase.
The nodes and users also generate fresh keys k′, which will be used to encrypt
the return message.

For a return path, the mixnodes apply the inverse permutations π−1 so that
the responses will arrive at the original senders. Unless the recipient who sends a
response shares keys with the system, no fresh r′ values are needed because the
message would not enter the system blinded and hence Step 1 of the real-time
phase could be skipped. In Step 2, the system applies the inverse permutations
π−1 and fresh s′ values. In Step 3, to encrypt the response to the original sender,
instead of multiplying only with its decryption component, each node multiplies
with the product of its decryption component and k′ value.

Batch Strategy. cMix follows the “threshold and timed mixing strategy” from
Serjantov et al. [42], where a new round is started every t seconds only if there
are at least β messages in the buffer. We expect at least β users to be active
at any given time. When a smaller number of users is active, this strategy can
lead to increased latency or even disruption. At the cost of increased energy
consumption, one design choice is to inject dummy messages when needed to
ensure enough traffic to have β messages every t seconds. Alternatively, empty
slots can be used to verify if the precomputation was performed correctly, by
revealing all committed values for these slots, where empty slots to use should
be chosen at random.

Node Failure. Because cMix uses a fixed cascade of nodes, it is important to
consider what happens if a node fails. First, we consider a node failure to be a
highly rare event because we expect each node to be a highly reliable computing
service that is capable of seamlessly handling failures. Second, the system will
detect node failure and notify the senders and the other nodes; senders will be
instructed to resend using a new cascade (e.g., the old cascade without the failed
node). Each node can detect failures by listening for periodic “pings” from the
other nodes.

To minimize possible disruption caused by a single failure, at the cost of
increasing the precomputations, the following option can be deployed: Each node
can have a reserve of precomputations ready to use for certain alternative cas-
cades. For example, this reserve can include each of the alternative cascades
formed by removing any one node from the current cascade.

Future Steps. Tasks we plan to work on in the future include the following:
First, we would like to deploy cMix, including implementing and refining dif-
ferent applications. We would also like to carry out more performance studies.
Second, we plan to explore alternative and even more efficient approaches for
enforcing integrity of the nodes, to ensure that they cannot modify any message
without detection. Third, currently, message length is restricted by the group
modulus. We have begun to work out how to apply key-homomorphic pseudoran-
dom functions [7] and an appropriate additive homomorphic encryption system
to allow any length message. Fourth, we would like to explore possible ways of
reusing a precomputation in a secure way.

576 D. Chaum et al.

9 Conclusion

cMix offers a promising new approach to anonymous communications, building
on the strong anonimity properties of mixnets, and improving real-time crypto-
graphic performance by eliminating real-time public-key operations in its core
protocol. By replacing real-time public-key operations with precomputations,
and by avoiding the user’s direct involvement with the construction of the path
through the mixnodes, cMix scales well for deployment with large anonymity
sets and large numbers of mixnodes. Even though the adversary may know all
senders and receivers in each batch, she cannot link any sender and receiver
unless all mixnodes are compromised. cMix offers the potential for real-time
performance improvements over existing mixnets, without losing any of their
security guarantees.

Acknowledgments. We thank the anonymous reviewers for their comments. We
also thank the following people for helpful suggestions: David Delatte, Russell Fink,
Bryan Ford, Moritz Neikes, and Dhananjay Phatak.

Sherman was supported in part by the National Science Foundation under SFS
grant 1241576 and a subcontract of INSuRE grant 1344369, and by the Department
of Defense under CAE-R grant H98230-15-10294. Krasnova conducted this research
within the Privacy and Identity Lab (PI.lab, http://www.pilab.nl) funded by SIDN.nl
(http://www.sidn.nl/).

References

1. Adida, B., Wikström, D.: Offline/online mixing. In: Arge, L., Cachin, C., Jur-
dziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484–495.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-73420-8 43

2. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical
onion routing. In: Proceeding of the 25th IEEE Computer Security Foundations
Symposium (CSF), pp. 369–385 (2012)

3. Backes, M., Kate, A., Mohammadi, E.: Ace: an efficient key-exchange protocol
for onion routing. In: Proceeding of the 11th ACM Workshop on Privacy in the
Electronic Society (WPES), pp. 55–64 (2012)

4. Benaloh, J.: Simple verifiable elections. In: Proceeding of USENIX/Accurate Elec-
tronic Voting Technology Workshop (EVT), p. 5 (2006)

5. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

6. Berthold, O., Pfitzmann, A., Standtke, R.: The disadvantages of free MIX routes
and how to overcome them. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 30–45. Springer, Heidelberg (2001). doi:10.
1007/3-540-44702-4 3

7. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 23

8. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005).
doi:10.1007/11535218 11

http://www.pilab.nl
http://www.sidn.nl/
http://dx.doi.org/10.1007/978-3-540-73420-8_43
http://dx.doi.org/10.1007/3-540-44702-4_3
http://dx.doi.org/10.1007/3-540-44702-4_3
http://dx.doi.org/10.1007/978-3-642-40041-4_23
http://dx.doi.org/10.1007/978-3-642-40041-4_23
http://dx.doi.org/10.1007/11535218_11

cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic 577

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 4(2), 84–88 (1981)

10. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., Ruiter, J.D., Sherman,
A.T.: cMix: mixing with minimal real-time asymmetric cryptographic operations.
Cryptology ePrint Archive, Report 2016/008 (2016). https://eprint.iacr.org/2016/
008.pdf

11. Chen, C., Asoni, D.E., Barrera, D., Danezis, G., Perrig, A.: HORNET: high-speed
onion routing at the network layer. In: Proceeding of the 22nd ACM Conference
on Computer and Communications Security, pp. 1441–1454 (2015)

12. Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D., Serjan-
tov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 35–50. Springer, Heidelberg (2005).
doi:10.1007/11423409 3

13. Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In:
Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75551-7 3

14. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30114-1 21

15. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceeding of the 13th USENIX Security Symposium, pp. 303–320
(2004)

16. Dingledine, R., Shmatikov, V., Syverson, P.: Synchronous batching: from cascades
to free routes. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp.
186–206. Springer, Heidelberg (2005). doi:10.1007/11423409 12

17. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in byzantine agreement. J.
ACM 37(4), 720–741 (1990)

18. Evans, N.S., Dingledine, R., Grothoff, C.: A practical congestion attack on tor
using long paths. In: Proceeding of the 18th USENIX Security Symposium, pp.
33–50 (2009)

19. Galteland, H., Mjølsnes, S.F., Olimid, R.F.: Attacks on cMix - some small over-
looked details. Cryptology ePrint Archive, Report 2016/729 (2016). http://eprint.
iacr.org/2016/729

20. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in
key exchange protocols. Des. Codes Crypt. 67(2), 245–269 (2013)

21. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Onion routing. Commun. ACM
42(2), 39–41 (1999)

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1995)

23. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 14

24. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 16

25. Jakobsson, M.: Flash mixing. In: Proceedings of 18th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 83–89 (1999)

26. Jakobsson, M., Juels, A.: An optimally robust hybrid mix network. In: Proceedings
of 20th Annual ACM Symposium on Principles of Distributed Computing, pp. 284–
292 (2001)

https://eprint.iacr.org/2016/008.pdf
https://eprint.iacr.org/2016/008.pdf
http://dx.doi.org/10.1007/11423409_3
http://dx.doi.org/10.1007/978-3-540-75551-7_3
http://dx.doi.org/10.1007/978-3-540-30114-1_21
http://dx.doi.org/10.1007/11423409_12
http://eprint.iacr.org/2016/729
http://eprint.iacr.org/2016/729
http://dx.doi.org/10.1007/978-3-540-24660-2_14
http://dx.doi.org/10.1007/3-540-68697-5_16

578 D. Chaum et al.

27. Jansen, R., Tschorsch, F., Johnson, A., Scheuermann, B.: The sniper attack: anony-
mously deanonymizing and disabling the Tor network. In: Proceedings of Network
and Distributed System Security Symposium (NDSS 2014) (2014)

28. Kate, A., Goldberg, I.: Using Sphinx to improve onion routing circuit construction.
In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 359–366. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14577-3 30

29. Kate, A., Zaverucha, G.M., Goldberg, I.: Pairing-based onion routing with
improved forward secrecy. ACM Trans. Inf. Syst. Secur. 13(4), 29:1–29:32 (2010)

30. Khazaei, S., Wikström, D.: Randomized partial checking revisited. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 115–128. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36095-4 8

31. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communication
system with strong anonymity. PoPETs 2016(2), 115–134 (2016)

32. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: Proceedings of
26th IEEE Symposium on Security and Privacy, pp. 183–195 (2005)

33. Ohkubo, M., Abe, M.: A length-invariant hybrid mix. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 178–191. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 14

34. Øverlier, L., Syverson, P.: Improving efficiency and simplicity of tor circuit estab-
lishment and hidden services. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol.
4776, pp. 134–152. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75551-7 9

35. Øverlier, L., Syverson, P.F.: Locating hidden servers. In: Proceedings of 27th IEEE
Symposium on Security and Privacy, pp. 100–114 (2006)

36. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7 21

37. Pfitzmann, A., Waidner, M.: Networks without user observability – design options.
In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 245–253. Springer,
Heidelberg (1986). doi:10.1007/3-540-39805-8 29

38. Pfitzmann, B.: Breaking an efficient anonymous channel. In: Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 332–340. Springer, Heidelberg (1995).
doi:10.1007/BFb0053448

39. Raymond, J.-F.: Traffic analysis: protocols, attacks, design issues, and open prob-
lems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 10–29. Springer, Heidelberg (2001). doi:10.1007/3-540-44702-4 2

40. Reed, M., Syverson, P., Goldschlag, D.: Anonymous connections and onion routing.
IEEE J-SAC 16(4), 482–494 (1998)

41. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable Bitcoin
transactions. In: NDSS 2017 (2017)

42. Serjantov, A., Dingledine, R., Syverson, P.: From a trickle to a flood: active attacks
on several mix types. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp.
36–52. Springer, Heidelberg (2003). doi:10.1007/3-540-36415-3 3

43. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 116–131. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39650-5 7

44. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)

45. Sun, Y., Edmundson, A., Vanbever, L., Li, O., Rexford, J., Chiang, M., Mittal,
P.: Raptor: routing attacks on privacy in Tor. In: Proceedings of 24th USENIX
Security Symposium, pp. 271–286 (2015)

46. The Tor project (2003). https://www.torproject.org/. Accessed April 2017

http://dx.doi.org/10.1007/978-3-642-14577-3_30
http://dx.doi.org/10.1007/978-3-642-36095-4_8
http://dx.doi.org/10.1007/3-540-44448-3_14
http://dx.doi.org/10.1007/3-540-44448-3_14
http://dx.doi.org/10.1007/978-3-540-75551-7_9
http://dx.doi.org/10.1007/3-540-48285-7_21
http://dx.doi.org/10.1007/3-540-39805-8_29
http://dx.doi.org/10.1007/BFb0053448
http://dx.doi.org/10.1007/3-540-44702-4_2
http://dx.doi.org/10.1007/3-540-36415-3_3
http://dx.doi.org/10.1007/978-3-540-39650-5_7
https://www.torproject.org/

Almost Optimal Oblivious Transfer
from QA-NIZK

Olivier Blazy1(B), Céline Chevalier2, and Paul Germouty1

1 Université de Limoges, XLim, Limoges, France
{olivier.blazy,paul.germouty}@unilim.fr

2 CRED, Université Panthéon-Assas Paris II, Paris, France
celine.chevalier@u-paris2.fr

Abstract. We show how to build a UC-Secure Oblivious Transfer in the
presence of Adaptive Corruptions from Quasi-Adaptive Non-Interactive
Zero-Knowledge proofs. Our result is based on the work of Jutla and
Roy at Asiacrypt 2015, where the authors proposed a constant-size very
efficient PAKE scheme. As a stepping stone, we first show how a two-flow
PAKE scheme can be generically transformed in an optimized way, in
order to achieve an efficient three-flow Oblivious-Transfer scheme. We
then compare our generic transformations to existing OT constructions
and see that we manage to gain at least a factor 2 to the best known
constructions. To the best of our knowledge, our scheme is the first UC-
secure Oblivious Transfer with a constant size flow from the receiver,
and nearly optimal size for the server.

Keywords: OT · UC · QA-NIZK · Pairing-based cryptography

1 Introduction

Sharingdata securelyandefficiently is at the coreofmoderncryptography.Thecon-
cept ofObliviousTransferwas introduced in 1981byRabin [41]. It allows to retrieve
information from a database without privacy risk. Such protocols allow a receiver
to ask and have access to a single line of a database. This exchange is oblivious in
two ways. On the one hand, it allows to preserve the privacy of the receiver by pre-
venting the sender from learning which part of the database has been asked. On the
otherhand, it allows the receiver to recoveronlyone line, theonehepreviouslyasked
for. The receiver is said to be oblivious to the values he is not allowed to get and the
sender is oblivious to the information received. Several instantiations andoptimiza-
tions of such protocols have appeared in the literature, like [21,38]. More recently,
new instantiationshavebeenproposed, tryingto reachround-optimality [29], or low
communication costs [40]. Recent schemes like [1,9,10] manage to achieve round-
optimality while maintaining a small communication cost. Choi et al. [22] also pro-
pose a genericmethodandan efficient instantiation secure against adaptive corrup-
tions in the CRS model with erasures, but it is only 1-out-of-2 and it does not scale
to 1-out-of-nOT, for n > 2.
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 579–598, 2017.
DOI: 10.1007/978-3-319-61204-1 29

580 O. Blazy et al.

In Password-Authenticated Key Exchange (PAKE) protocols, proposed in
1992 by Bellovin and Merritt [7], authentication is done using a simple pass-
word, possibly drawn from a small space subject to exhaustive search. Since
then, many schemes have been proposed and studied in various models, and
ultimately proven in the UC framework.

Smooth Projective Hash Functions [23,26] have found several applications in
the context of UC Secure protocols [3,8,34], and also more particularly in the
context of Password Authenticated Key Exchange and Oblivious-Transfer Pro-
posals [1,9]. These functions are defined such that their output can be computed
in two different ways if the input belongs to a particular subset (the language),
either using a private hashing key or a public projection key along with a private
witness ensuring that the input belongs to the language. The value obtained is
indistinguishable from random when the input does not belong to the language
(this is called the smoothness) and in case the input does belong to the language
but no witness is known (this is called the pseudo-randomness).

[28] proposed a technique to achieve Non-Interactive Zero-Knowledge Proofs
of Knowledge. Since then, a tremendous amount of work has been dedicated to
improving those proofs [13,24,27]. And more recently, a trend studied Quasi-
Adaptive NIZK allowing more efficient protocols [2,30–32,35,36]. In this last
paper, the authors proposed one of the first PAKE UC-Secure even in the presence
of adaptive corruptions, that manages to have flows independent of the password
length.

Both Smooth Projective Hash Functions and Quasi-Adaptive Non-Interactive
Zero-Knowledge allow to produce very efficient protocols, with a very similar
structure, and thus security arguments.

Contributions: Our paper proposes a generic transformation from Password-
Authenticated Key Exchange to Oblivious Transfer. As the reverse transforma-
tion was already studied in [18], this allows to study one protocol for the other.
Our framework allows to transform a UC-secure PAKE into a UC-secure OT with
the same level of security (for instance resistance to adaptive corruptions).

We choose to focus on the transformation of a 2-round PAKE to a 3-round OT
since this kind of PAKE is the most commonly encountered and the most efficient
one. Furthermore, this allows us to give a generic optimization of our transfor-
mation in this specific case, exploiting the fact that the server does not need to
hide his “password”, since his password is a (public) number of line in the data-
base. Note that our generic transformation could allow to transform an m-round
PAKE into an (m + 1)-round OT, but the optimization would then have to be
tailored to the considered protocol.

After showing an application of our technique on an already existing PAKE
scheme from [1], which allows us to immediately recover the associated OT
scheme given in their article, we show that our transformation also applies to
the PAKE scheme from [32], allowing us to give a nearly optimal OT scheme.

Note that our technique works with every possible PAKE scheme, be they
elliptic-curve-based or not. Furthermore, also note that it also allows to trans-
form a BPR-secure PAKE [6] into an OT secure in a game-based security model.

Almost Optimal Oblivious Transfer from QA-NIZK 581

In order to illustrate these last two points, we apply our framework to a (non-
UC) secure lattice-based PAKE scheme proposed by [33], giving us a (non-UC)
secure lattice-based OT scheme (see the paper full version [12]).

Comparison with Other Existing OT Schemes: The table given in Fig. 1
shows the costs of various known OT schemes based on elliptic curves.

While Barreto-Naehrig curves [5] are considered less and less secure for effi-
cient parameters, we consider for the asymptotic scaling that elements in G2

are smaller than those in G1, hence, we switched some elements to G2 for big
enough values of n.

Thanks to the use of a QA-NIZK technique, we manage to get rid of the
extra logarithm overhead. And we end up being approximately four times more
efficient than existing solutions without this overhead.

Fig. 1. Comparison to existing Oblivious Transfer. 1It should be noted that the [9] OT
does not rely on pairings. Classical implementations suggest that the elements in one
of the groups in our scheme will be at least twice as big as those from the non-pairing
curve, which would give roughly the same efficiency between both schemes in the 1-out-
of-2 case, with an edge for the [9] construction in term of computational requirements.
However, the scaling in their paper is then worse when increasing the number of lines
(see the 1-out-of-n case).

Organization of the Paper: To present our fast Oblivious Transfer scheme
in 3 flows, we first recall basic definitions and security notions needed for the
understanding of the paper. Then, we propose our generic transformation from
a 2-round PAKE scheme to a 3-round OT scheme and show how it can be gener-
ically improved by some optimizations. We then apply our framework to the
PAKE from [1], and show it directly leads to their existing OT. We then recall

582 O. Blazy et al.

the PAKE scheme described in [32], and show how to construct from it our new
nearly optimal OT by applying our framework.

Finally, we sketch in the paper full version [12] a brief example to show
how our framework behave on a non-UC lattice-based PAKE and how we get a
game-based OT scheme from the BPR-secure PAKE scheme presented in [33].

2 Preliminaries

2.1 Definitions and Notations

In the following, in asymmetric protocols the sender is going to be called S while
the receiver will be noted R. For symmetrical ones like PAKE, we will rather use
Pi and Pj . We will note the security parameter K, and n the size of the database
(number of lines) for Oblivious Transfer schemes.

We are going to work in an asymmetric bilinear setting denoted as (p,G1,G2,
GT , e, g1, g2), where G1, G2, GT are cyclic groups of order p for a K-bit prime p,
g1 and g2 are generators of G1 and G2, respectively, and e : G1 ×G2 → GT is an
efficiently computable (non-degenerated) bilinear map. Define gT := e(g1, g2),
which is a generator in GT .

Definition 1 (DDH assumption). Assuming a multiplicative group G of prime
order p and generator g, we say that the DDH assumption is hard in G if, given
a tuple (gx, gy, gz) ∈ G

3, it is hard to decide whether z = xy or not.

Definition 2 (Symmetric External Diffie Hellman (SXDH [4]) assump-
tion). This variant of DDH, used mostly in bilinear groups (G1,G2) in which
no computationally efficient homomorphism exists from G2 to G1 or G1 to G2,
states that the DDH assumption is hard in both G1 and G2.

Definition 3 ((Labelled) Quasi Adaptive Non-Interactive Zero Knowl-
edge Argument). Assuming a randomness distribution Dparam (for a public set
of parameters param) and a set of languages {Lρ}ρ parameterized by a random-
ness ρ ← Dparam and associated with a relation Rρ (meaning that a word x
belongs to Lρ if and only if there exists a witness w such that Rρ(x,w) holds),
a QA-NIZK argument Π for this set of languages {Lρ}ρ consists of five proba-
bilistic polynomial time (PPT) algorithms Π = (Genparam,Gencrs,Prove,Sim,Ver)
defined as follows:

– Genparam(K) returns the public parameters param.
– Gencrs(param, ρ) returns a common reference string crs and a trapdoor tk. We

assume that crs contain the parameters param, a description of the language
Lρ and a description of a label space L.

– Prove takes as input crs, a label � ∈ L, a word x of the language Lρ and
a witness w corresponding to this word. If (x,w) /∈ Rρ, it outputs failure.
Otherwise, it outputs a proof π.

– Ver takes as input crs, a label �, a word x and a proof π. It outputs a bit b
(either 1 if the proof is correct, or 0 otherwise).

Almost Optimal Oblivious Transfer from QA-NIZK 583

– Sim takes as input crs, a trapdoor tk, a label � ∈ L and a word x. It outputs
a proof π for x (not necessarily in Lρ) with respect to the label �.

These algorithms must satisfy the following properties

Perfect Completeness: for all PPT adversary A, all security parameter K,
all public parameters param ← Genparam(K), all randomness ρ ← Dparam, all label
� ∈ L and all (x,w) ∈ Rρ, the following holds:

Pr[(crs, tk) ← Gencrs(param, ρ);π ← Prove(crs, �, x, w) : Ver(crs, �, x, π) = 1] = 1

Computational Adaptive Soundness: For a given security parameter K, a
scheme achieves computational adaptive soundness if for all PPT adversary A,
the probability

Pr[param ← Genparam(K); ρ ← Dparam; (crs, tk) ← Gencrs(param, ρ);
(�, x, π) ← A(param, crs, ρ) : x /∈ Lρ ∧ Ver(crs, �, x, π) = 1]

is negligible.

Perfect Zero-Knowledge: for all K, all param ← Genparam(K), all ρ ← Dparam,
all (crs, tk) ← Gencrs(param, ρ), all label � ∈ L and all (x,w) ∈ Rρ, the distribu-
tions Prove(crs, �, x, w) and Sim(crs, tk, �, x) are the same.

2.2 Security Models

UC Framework. The goal of the UC framework [16] is to ensure that UC-secure
protocols will continue to behave in the ideal way even if executed in a concur-
rent way in arbitrary environments. It is a simulation-based model, relying on
the indistinguishability between the real world and the ideal world. In the ideal
world, the security is provided by an ideal functionality F , capturing all the
properties required for the protocol and all the means of the adversary. In order
to prove that a protocol Π emulates F , one has to construct, for any polynomial
adversary A (which controls the communication between the players), a simula-
tor S such that no polynomial environment Z can distinguish between the real
world (with the real players interacting with themselves and A and executing
the protocol π) and the ideal world (with dummy players interacting with S
and F) with a significant advantage. The adversary can be either adaptive, i.e.
allowed to corrupt users whenever it likes to, or static, i.e. required to choose
which users to corrupt prior to the execution of the session sid of the proto-
col. After corrupting a player, A has complete access to the internal state and
private values of the player, takes its entire control, and plays on its behalf.

Simple UC Framework. Canetti et al. formalized a simpler variant in [17],
that we use here. This simplifies the description of the functionalities for the
following reasons (in a nutshell): All channels are automatically assumed to be
authenticated (as if we worked in the FAuth-hybrid model); There is no need
for public delayed outputs (waiting for the adversary before delivering a message

584 O. Blazy et al.

to a party), neither for an explicit description of the corruptions. We refer the
interested reader to [17] for details.

Password Authenticated Key Exchange. Before the UC framework, the
classical security model for PAKE protocols was the so-called BPR model [6].
The first ideal functionality for PAKE protocols in the UC framework [16,20]
was proposed by Canetti et al. [19], who showed how a simple variant of the
Gennaro-Lindell methodology [26] could lead to a secure protocol.

We present the PAKE ideal functionality FpwKE on Fig. 2. It was described
in [19].

Fig. 2. Ideal Functionality for PAKE FpwKE

The main idea behind this functionality is as follows: If neither party is
corrupted and the adversary does not attempt any password guess, then the two
players both end up with either the same uniformly-distributed session key if the
passwords are the same, or uniformly-distributed independent session keys if the

Almost Optimal Oblivious Transfer from QA-NIZK 585

passwords are distinct. In addition, the adversary does not know whether this is a
success or not. However, if one party is corrupted, or if the adversary successfully
guessed the player’s password (the session is then marked as compromised), the
adversary is granted the right to fully determine its session key. There is in fact
nothing lost by allowing it to determine the key. In case of a wrong guess (the
session is then marked as interrupted), the two players are given independently-
chosen random keys. A session that is nor compromised nor interrupted is
called fresh, which is its initial status.

Finally notice that the functionality is not in charge of providing the pass-
word(s) to the participants. The passwords are chosen by the environment which
then hands them to the parties as inputs. This guarantees security even in the
case where two honest players execute the protocol with two different passwords:
This models, for instance, the case where a user mistypes its password. It also
implies that the security is preserved for all password distributions (not neces-
sarily the uniform one) and in all situations where the passwords are related
passwords and/or used in different protocols. Also note that allowing the envi-
ronment to choose the passwords guarantees forward secrecy.

In case of corruption, the adversary learns the password of the corrupted
player; After the NewKey -query, it additionally learns the session key.

Oblivious Transfer. The ideal functionality of an Oblivious Transfer (OT)
protocol was given in [1,16,22]. We recall it in simple UC in Fig. 3 using the
functionality introduced in [11]. Note that the BPR model [6] given for PAKE
protocols can be adapted to give a game-based security model for OT schemes
but this is well beyond the scope of this paper.

The party Pi is the sender S, while the party Pj is the receiver R. The
former is provided with a database consisting of a set of n lines (L1, . . . , Ln),
while the latter is querying a particular line Ls (with s ∈ {1, . . . , n}). Since there
is no communication between them (the functionality deals with everything), it
automatically ensures the oblivious property on both sides (the sender does not
learn which line was queried, while the receiver does not learn any line other
than Ls).

3 Generic Construction of an Oblivious Transfer from a
UC-Secure PAKE

There is a trend in proven cryptography that consists in finding the link between
primitives and show which primitives can be used to build other ones. A well-
known example is the transformation of an IBE encryption scheme into a sig-
nature scheme, which was proposed by Naor as recalled in [15], and its reverse
transformation from an affine MAC or signature scheme into an IBE scheme
given in [14].

A neat result, presented by Canetti et al. in [18], shows how a UC-secure
Oblivious Transfer scheme can be transformed into a UC-secure PAKE scheme.
In this section we are going to go the other way, and show how a UC-secure
PAKE can be transformed into a UC-secure Oblivious Transfer scheme. While

586 O. Blazy et al.

Fig. 3. Ideal functionality for 1-out-of-n oblivious transfer F (1,n)-OT

considering this direction may seem like transforming a very strong primitive
into a weaker one, this will allow us to prepare a framework to propose the most
efficient Oblivious Transfer scheme to date. This also echoes to the results from
[39] on a simulation-based transform.

3.1 Description of a UC-Secure PAKE Scheme

As explained in the introduction, we are going to consider PAKE protocols in
two flows, since there already exists a multitude of PAKE schemes satisfying
this requirement, and since minimizing the number of flows is one of the most
important issues in modern instantiations. This allows us to generically give an
optimization, leading to more efficient protocols.

In order to present the framework or our transformation, we formally split a
PAKE scheme into the following four algorithms1.

– Setup: An algorithm that generates the initial crs.
– flow1(pwi; ρi, ρ

′
i): The algorithm run by the user Pi, using some randomness ρi

and ρ′
i and possessing the password pwi, to generate the first flow of the pro-

tocol. We note ρi the part of the randomness involved in hiding the password,
and ρ′

i the remainder.
– flow2(flow1, pwj ; ρj , ρ

′
j): The algorithm run by the user Pj , using some ran-

domness ρj and possessing the password pwj , after receiving the flow flow1,
to generate the second flow of the protocol. This algorithm also produces Pj ’s
view of the key: K

(j)
i .

– Decap(flow2, pwi, f(ρi, ρ
′
i)): The algorithm run by Pi when receiving the flow

flow2 from Pj , using his password pwi and a function f(ρi, ρ
′
i) of the random-

ness initially used and the remainder (which function can be anything from
the identity to the null function), to recover Pi’s view of the key: K

(i)
j .

1 Since it was shown in [19] that UC-secure PAKE is impossible in the plain model,
we focus on the CRS model for the ease of readability.

Almost Optimal Oblivious Transfer from QA-NIZK 587

3.2 Generic Construction of a UC-Secure OT Scheme

We denote by DB = (L1, . . . , Ln) the database of the server containing n lines,
and by s the line requested by the user in an oblivious way. We assume the
existence of a CPA-Secure encryption scheme, whose public parameters are going
to be included in the public common reference string crs generated by the setup
algorithm of the PAKE scheme. Such an encryption scheme E is described through
four algorithms (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa):

– Setupcpa(1K), where K is the security parameter, generates the global para-
meters paramcpa of the scheme;

– KeyGencpa(paramcpa) outputs a pair of keys: a (public) encryption key pk and
a (private) decryption key sk;

– Encryptcpa(pk,M ; ρ) outputs a ciphertext c = E(M) on the message M , under
the encryption key pk, using the randomness ρ;

– Decryptcpa(sk, c) outputs the plaintext M encrypted in the ciphertext c, or ⊥.

We also assume the existence of a Pseudo-Random Generator (PRG) F with
input size equal to the plaintext size, and output size equal to the size of the
messages in the database.

Using the PAKE scheme, the encryption scheme and the PRG, one can now
obtain an OT scheme from a PAKE scheme, as described in Fig. 4. The idea of
the protocol is as follows:

– First, a setup phase enables to generate the CRS, both for the PAKE and
encryption schemes.

– The pre-flow is a technical requirement for the UC proof.
– When querying for line s, the receiver proceeds in three steps. The first one

consists in generating a masking value R (technical requirement for the UC
proof), the second one consists in running the first flow of the PAKE scheme
for password s to generate the first flow denoted2 as flow0, and the third one
consists in erasing anything but the needed values, and sending flow0 to the
sender.

– When answering to this query, the sender also proceeds in three steps. The
first one consists in recovering the value R and the second one consists in
running, for each line k ∈ {1, . . . , n}, the second flow of the PAKE scheme to
generate the second flow denoted as flowk (using k as the password) as well as
S’s view of the session key, denoted as (Kk)(S)

R . Finally, in the third step, the
server computes a xor Qk of the line Lk and this session key and the value R
and sends the set (flowk, Qk) back to R.

– When receiving this set of values, the receiver uses flows to run the decapsu-
lation algorithm of the PAKE scheme (with password s) to recover his view
of the session key, denoted as (Ks)

(R)
S . He finally uses R, Qs and (Ks)

(R)
S to

recover the expected line Ls.
2 Note that we now denote as flow0 (and not flow1) the flow generated by the PAKE

algorithm flow1, in order to avoid the confusion with the flow1 message generated
by the sender (for line 1) during the database answer phase.

588 O. Blazy et al.

The correctness easily follows from the correctness of the PAKE protocol,
since the views of R and S of the session key for the PAKE scheme executed for
password s are the same. The scheme is oblivious with respect to S since the first
flow of the PAKE scheme executed by R does not reveal any information on s.
And it is oblivious with respect to R since the correctness of the PAKE scheme
gives him no information on the session keys (Kk)(S)

R for k �= s. The security is
stated in Theorem 4.

Fig. 4. UC-Secure 1-out-of-n OT from a UC-Secure PAKE

Theorem 4. Under the UC-security3 of the PAKE protocol, the existence of
a Pseudo-Random Generator (PRG) F with input size equal to the plaintext
size, and output size equal to the size of the messages in the database, and
the IND-CPA security of the encryption scheme, the transformation presented

3 Note that the transformation also allows to obtain an OT scheme from a BPR-secure
PAKE scheme in a game-based security model, but since this is of less interest, we
do not formally prove it due to lack of space.

Almost Optimal Oblivious Transfer from QA-NIZK 589

in Fig. 4 achieves a UC-secure 1-out-of-n Oblivious Transfer scheme, with the
same handling of corruptions as in the PAKE protocol.

The high-level idea of the proof is quite simple. Recall that in a UC proof,
one has to simulate one of the two players in front of a corrupted player. The
first flow allows the simulated server to extract the requested line. One will
then be able to send random noise on all the lines besides the correct one. The
PAKE functionality ensures that this is possible. Then again for honest users, the
simulator will replace the remaining line by a random noise. In case of corruptions
of the server, one relies on the security of the CPA encryption, to ensure that
everything was done honestly (the adversary is not able to test the validity of
the retrieved R, and so for the correct line as L⊕K ⊕R where L and K are the
honest values, and R is simply set as Q 	 (L ⊕ K)). In case of corruption of the
user, we rely on the PAKE handling of user corruption to adapt the memory.

A more detailed proof can be found in the paper full version [12].

3.3 Generic Optimization

It should be noted that in the previous transformation we never used the fact
that the first user in the PAKE scheme (here, the receiver) does not learn the
password from the second (here, the sender). This is a property required by
PAKE but not useful in the transformation (since the sender executes n parallel
PAKE schemes, using the (public) number k of the lines as the password). This
argument is the key of the optimization we now propose in Fig. 5. The difference
is that in the index query, the receiver does not pick the second randomness ρ′

and in the database answer, the randomness ρk is not used anymore. The proof
remains the same as the previous one.

4 Warm-Up: Applying the Framework on [1]

4.1 Notations

Since in [1], the authors proposed both a UC-secure PAKE and a UC-secure Obliv-
ious Transfer constructions, this section serves as an example of application of
our framework. More precisely, we apply here our (optimized) transformation to
their UC-secure PAKE and show that we obtain exactly their UC-secure Oblivious
Transfer.

There protocols make use of Commitment schemes and Smooth Projective
Hash Functions. Rigorous definitions can be found in the paper full version [12]
but we give here the notations used in the following.

A commitment scheme is a two-party primitive (between a committer and a
receiver) divided into two phases. In a first commit phase, the committer gives
the receiver an analogue of a sealed envelope containing a value m, while in the
second opening phase, the committer reveals m in such a way that the receiver
can verify it was indeed m that was contained in the envelope. It is required
that a committer cannot change the committed value (i.e., he should not be

590 O. Blazy et al.

Fig. 5. Optimized UC-Secure 1-out-of-n OT from a UC-Secure PAKE

able to open to a value different from the one he committed to), this is called
the binding property. It is also required that the receiver cannot learn anything
about m before the opening phase, this is called the hiding property.

Formally, a non-interactive labelled commitment scheme C is defined by three
algorithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global
parameters, passed through the CRS ρ to all other algorithms;

– Com�(x; ρ) takes as input a label �, a message x and a random ρ, and outputs
a pair (C, δ), where C is the commitment of x for the label �, and δ is the
corresponding opening data (a.k.a. decommitment information).

– VerCom�(C, x, δ) takes as input a commitment C, a label �, a message x, and
the opening data δ and outputs 1 (true) if δ is a valid opening data for C, x
and �. It always outputs 0 (false) on x = ⊥.

Smooth projective hash functions are defined such as their value can be
computed in two different ways if the input belongs to a particular subset (the
language), either using a private hashing key or a public projection key along

Almost Optimal Oblivious Transfer from QA-NIZK 591

with a private witness ensuring that the input belongs to the language. The
projection key is derived from the hashing key. The hash value obtained is indis-
tinguishable from random in case the input does not belong to the language
(property of smoothness) and in case the input does belong to the language but
no witness is known (property of pseudo-randomness).

Formally, a Smooth Projective Hash Function over a language L ⊂ X, onto
a set G, is defined by five algorithms (Setup,HashKG,ProjKG,Hash,ProjHash):

– Setup(1K) where K is the security parameter, generates the global parameters
param of the scheme, and the description of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp from the hashing

key hk.
– Hash(hk, (L, param),W), outputs a hash value v ∈ G, thanks to the hashing

key hk and W .
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the

projection key hp and the witness w that W ∈ L.

4.2 Description of Their UC-Secure PAKE Scheme

Description of the Scheme: Both parties (denoted as Pb and Pb) want to share
a key by using a common password pw. This will thus fix a language Lpw, which
is the set of valid commitments of pw, for a smooth projective hash function.
Both flows are done simultaneously. In flowb, each party Pb will generate a pair
of hash keys (hkb, hpb) and then commit to the password pwb in Cb. Note that
Pb stores the witness δb that this value Cb is a valid commitment of pwb and
sends (hpb, Cb) to the other party.

In the decapsulation phase, each party Pb then receives the commitment and
the projection key of the other party and computes two hash values: On the one
hand, the projected hash value using his own commitment Cb along with the
witness δb and the projected key hpb sent by the other party, and on the other
hand, the (regular) hash value using the received commitment Cb and the secret
hash key hkb. The shared session key is then defined as the product of these two
values.

The commitment scheme used has specific properties explained in [1] well
beyond the scope of the paper. It needs to be compatible with SPHF, and both
extractable and equivocable.

Completeness: If the two parties used the same password pw, then at the end
of the protocol they will share the same value. Thanks to the property of the
SPHF, the hash value and the projected value (on the same commitment Cb)
will be equal because the commitment belongs to the good language Lpw with
the good witness δb.

4.3 Applying the Framework to Obtain a UC-Secure OT Scheme

Applying our (optimized) framework, we manage to fall back directly to the
Oblivious Transfer that was proposed simultaneously in [1] (Fig. 6).

592 O. Blazy et al.

Fig. 6. UC-Secure PAKE from [1]

Fig. 7. UC-Secure 1-out-of-n OT from an SPHF-Friendly Commitment

Almost Optimal Oblivious Transfer from QA-NIZK 593

Theorem 5. As the PAKE was UC-Secure in presence of adaptive corruption
under SXDH, the Oblivious Transfer scheme presented in Fig. 7 is a secure 1-
out-of-n Oblivious Transfer, with the same handling of corruptions as the PAKE
protocol under SXDH and the IND-CPA security of the encryption scheme.

5 New Efficient Oblivious Transfer Based on QA-NIZK

5.1 Description of Their UC-Secure PAKE Scheme

We now consider the instantiation from [32] in which the UC-PAKE allows for
each party to hide his own password. As before, we first recall their protocol
and then show how to use it in order to instantiate a new UC-secure Oblivious
Transfer. This OT scheme ends up being the most efficient to date, as we show
by comparing to the recent [10] in Fig. 8.

Fig. 8. Comparison to previous schemes

Interestingly this protocol does not use Smooth Projective Hash Function,
but Quasi Adaptive Non-Interactive Zero Knowledge proofs. It is presented in
Fig. 9.

Fig. 9. UC secure PAKE from [32]

594 O. Blazy et al.

As explained in the original paper, the scheme is loosely-based on Quasi-
Adaptive NIZK, in the sense that the flows use computation very close to what
would be expected. In the Fig. 9, H is a family of hash functions.

5.2 Applying the Framework to Obtain a UC-Secure OT Scheme

Using the instantiation from [32] described in Fig. 9, we apply our framework
and directly obtain the protocol described in Fig. 10.

Fig. 10. UC secure OT from QA-NIZK

The function G is assumed to map line numbers to group elements, and it
should be collision-resistant and efficiently computable. One can use for example,
the G function from Lindell in [37].

Theorem 6. As the PAKE was UC-Secure in presence of adaptive corruption
under SXDH, and ElGamal is IND-CPA under SXDH too, the Oblivious Transfer

Almost Optimal Oblivious Transfer from QA-NIZK 595

scheme presented in Fig. 10 is a secure 1-out-of-n Oblivious Transfer, with the
same handling of corruptions as the PAKE protocol under SXDH.

The PAKE scheme directly fits in the framework, hence the security is inher-
ited from the initial PAKE proven secure in [32].

The same basic arguments apply: We first start by switching the crs so as
to be able to simulate password openings, which will allow an honest receiver
to commit to a dummy line value, and retroactively compute the opening value
for any possible line s. On the other hand, an honest server will extract the
committed line number, and provide dummy answers for all the other ones. If
the receiver is honest, then the server will also send a dummy answer for the
valid line, since the encrypted value S provides the extra degree of freedom to
open to any line value Lk provided belatedly by the environment.

6 Conclusion

We have just presented a framework for generically transforming any PAKE
protocol into an Oblivious Transfer protocol. While doing so, we achieved to
instantiate the most-efficient Oblivious-Transfer UC-Secure on elliptic curves.

We also propose an Oblivious-Transfer scheme on lattices in the paper full
version [12], showing that our framework is not limited to regular elliptic curve
cryptography. What remains now, is to find a UC-Secure Lattice based PAKE
scheme.

Acknowledgments. This work was supported in part by the French ANR EnBid
(ANR-14-CE28-0003) and ID-FIX (ANR-16-CE39-0004) Projects.

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42033-7 12

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6 3

3. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for condi-
tionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 671–689. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 39

4. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385
(2005). http://eprint.iacr.org/2005/385

5. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). doi:10.1007/11693383 22

http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-642-03356-8_39
http://eprint.iacr.org/2005/385
http://dx.doi.org/10.1007/11693383_22

596 O. Blazy et al.

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press, May 1992

8. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40041-4 25

9. Blazy, O., Chevalier, C.: Generic construction of UC-secure oblivious trans-
fer. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.)
ACNS 2015. LNCS, vol. 9092, pp. 65–86. Springer, Cham (2015). doi:10.1007/
978-3-319-28166-7 4

10. Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 339–369.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6 12

11. Blazy, O., Chevalier, C., Germouty, P.: Adaptive oblivious transfer and generaliza-
tion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp.
217–247. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53890-6 8

12. Blazy, O., Chevalier, C., Germouty, P.: Almost optimal oblivious transfer from QA-
NIZK. Cryptology ePrint Archive, Report 2017/358 (2017). http://eprint.iacr.org/
2017/358

13. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123,
pp. 218–235. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2 14

14. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from
affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 23

15. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 13

16. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

17. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 1

18. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30057-8 27

19. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005). doi:10.1007/11426639 24

20. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 22

http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://dx.doi.org/10.1007/978-3-319-28166-7_4
http://dx.doi.org/10.1007/978-3-319-28166-7_4
http://dx.doi.org/10.1007/978-3-662-53890-6_12
http://dx.doi.org/10.1007/978-3-662-53890-6_8
http://eprint.iacr.org/2017/358
http://eprint.iacr.org/2017/358
http://dx.doi.org/10.1007/978-3-642-13708-2_14
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-662-48000-7_1
http://dx.doi.org/10.1007/978-3-662-48000-7_1
http://dx.doi.org/10.1007/978-3-642-30057-8_27
http://dx.doi.org/10.1007/11426639_24
http://dx.doi.org/10.1007/3-540-46035-7_22

Almost Optimal Oblivious Transfer from QA-NIZK 597

21. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

22. Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and com-
posable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36362-7 6

23. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

24. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0 36

25. Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03356-8 30

26. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 33

27. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13013-7 11

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

29. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 7

30. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42033-7 1

31. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1 17

32. Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications to UC-
PAKE and more. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 630–655. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 26

33. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10366-7 37

34. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 18

35. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 4

http://dx.doi.org/10.1007/978-3-642-36362-7_6
http://dx.doi.org/10.1007/978-3-642-36362-7_6
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-54631-0_36
http://dx.doi.org/10.1007/978-3-642-54631-0_36
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/3-540-39200-9_33
http://dx.doi.org/10.1007/978-3-642-13013-7_11
http://dx.doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/978-3-540-74143-5_7
http://dx.doi.org/10.1007/978-3-642-42033-7_1
http://dx.doi.org/10.1007/978-3-662-44381-1_17
http://dx.doi.org/10.1007/978-3-662-44381-1_17
http://dx.doi.org/10.1007/978-3-662-48797-6_26
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-19571-6_18
http://dx.doi.org/10.1007/978-3-662-46803-6_4

598 O. Blazy et al.

36. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleabil-
ity: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption
from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 29

37. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 25

38. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM, January 2001

39. Nguyen, M.-H.: The relationship between password-authenticated key exchange
and other cryptographic primitives. In: Kilian, J. (ed.) TCC 2005. LNCS, vol.
3378, pp. 457–475. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7 25

40. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

41. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report
TR81, Harvard University (1981)

http://dx.doi.org/10.1007/978-3-642-55220-5_29
http://dx.doi.org/10.1007/978-3-642-55220-5_29
http://dx.doi.org/10.1007/978-3-642-20465-4_25
http://dx.doi.org/10.1007/978-3-540-30576-7_25
http://dx.doi.org/10.1007/978-3-540-85174-5_31

OnionPIR: Effective Protection of Sensitive
Metadata in Online Communication Networks

Daniel Demmler, Marco Holz(B), and Thomas Schneider

Technische Universität Darmstadt, Darmstadt, Germany
{daniel.demmler,thmomas.schneider}@cysec.de, onionpir@marcoholz.de

Abstract. While great effort has been put into securing the content
of messages transmitted over digital infrastructures, practical protection
of metadata is still an open research problem. Scalable mechanisms for
protecting users’ anonymity and hiding their social graph are needed.
One technique that we focus on in this work is private information
retrieval (PIR), an active field of research that enables private query-
ing of data from a public database without revealing which data has
been requested and a fundamental building block for private communi-
cation. We introduce two significant improvements for the multi-server
scheme RAID-PIR (ACM CCSW’14): precomputing queries using the
Method of four Russians and optimizing the database layout for parallel
queries. We then propose OnionPIR, an anonymous messaging service as
example application for PIR combined with onion routing that prevents
the leakage of communication meta-data. By providing and evaluating a
prototype, we show that OnionPIR is usable in practice. Based on our
results, we conclude that it is possible to build and deploy such a service
today, while its operating expenses are within the order of magnitude of
those of traditional messaging services that leak metadata.

Keywords: Private information retrieval · Tor · Privacy · Meta-data
protection

1 Introduction

Communication has never been more important for our society than it is today.
Large parts of our infrastructure depend on digital computer networks and would
collapse when online communication suddenly were not possible anymore. With
the rise of instant messengers and the availability of mobile devices, communica-
tion shifted from the offline world to online communication platforms. End-to-
end encryption is nowadays often deployed to protect the content of exchanged
messages such that it cannot be read by an adversary. However, these digi-
tal platforms produce large amounts of metadata, i.e., who communicates with
whom at what time. Electronic mass surveillance programs strengthen the need
for systems providing communication channels without leaking metadata, which
has shown to be of tremendous value [Lan15,MMM16], e.g., for people living in

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 599–619, 2017.
DOI: 10.1007/978-3-319-61204-1 30

600 D. Demmler et al.

suppressive regimes, for whom trying to contact government-critical organiza-
tions can be a tremendous risk. The right to remain anonymous is a fundamental
right in our modern society.

Developing systems that protect the users’ privacy and at the same time
scale to a large number of users is challenging and a very active research field.
Private information retrieval (PIR) can be used as a fundamental building block
for those systems and also has many other applications, e.g., private querying of
entries from patent registers or medical databases, or improving the scalability
of Tor, as proposed in PIR-Tor [MOT+11].

Moreover, building blocks of private and untraceable communication services
could potentially also be reused in other privacy-critical applications that are
currently under active research, such as electronic voting systems [BV14] or
privacy-preserving location-based services [MCA06,HCE11,DSZ14].

Outline and Our Contributions. In Sect. 2, we propose and implement
two optimizations for the multi-server PIR scheme RAID-PIR [DHS14] that
lead to significant performance improvements. The optimization reduces the
server’s computation time by using the Method of four Russians for precom-
putation (Sect. 2.2), thus increasing the overall throughput of the system. The
second optimization targets the process of privately retrieving multiple database
entries within a single PIR query by adjusting the database layout to increase the
number of entries that can be queried in parallel (Sect. 2.3). After introducing
multiple generic implementation enhancements (Sect. 2.4), we perform bench-
marks to evaluate our optimizations and measure speedups of up to factor 7x
over RAID-PIR for many cases when querying through a WAN connection and
a performance close to the theoretical optimum when using a DSL connection
for the queries (Sect. 2.5).

Based on our improved implementation of PIR, we propose OnionPIR, a
novel anonymous communication system that combines PIR with onion routing
to create a scalable way to privately exchange messages (Sect. 3). OnionPIR is
designed to be ready for deployment and provides a way to establish a secure
communication channel without the need of exchanging any type of crypto-
graphic keys out-of-band. We built a proof-of-concept implementation and our
evaluation demonstrates its practical performance. We will publish our imple-
mentations as open-source software upon acceptance of this paper.

Finally, we provide an overview and comparison with related work in Sect. 4.

2 Private Information Retrieval and Improvements

Private information retrieval (PIR) is an active research topic and enables the
querying of information from one or multiple servers without disclosing which
information was requested. Since this technique is a fundamental building block
for higher-level protocols and applications, its performance is of prime impor-
tance. In this section, we briefly summarize RAID-PIR [DHS14] and introduce
and implement two significant performance improvements.

OnionPIR: Effective Protection of Sensitive Metadata 601

2.1 PIR Background

PIR protocols can be grouped into information-theoretic schemes and compu-
tational schemes. RAID-PIR [DHS14], the work that we base our system on,
is a multi-server scheme based on the original information-theoretic design by
Chor et al. [CKGS95]. Its security guarantees rely on a non-collusion assump-
tion between multiple servers. By using fast XOR operations, it achieves great
performance. The alternatives are single-server PIR schemes that rely on com-
putational assumptions, as first introduced in [CGN98] and soon followed by
another approach [KO97]. These schemes are typically based on computation-
ally expensive, partially homomorphic encryption. A recent scheme using lattice-
based cryptography is presented in [AMBFK16]. Both approaches were combined
in [DG14] in a design called hybrid PIR.

Notation. Throughout the paper we use the following notation: The database
that may be queried by clients is divided into B blocks of size b bits each and
distributed to k servers. When a client wants to query the n-th block from the
database, it generates k − 1 random bitstrings, called queries, of length B and
constructs the k-th bitstring in a way that the XOR of all k queries results in a
bitstring where all bits except the n-th are zero. Each of the k queries is then sent
to a different server which will XOR all blocks whose corresponding bit i is set
in the query. Each server returns the resulting block of XORs of length b bits. To
recover the n-th block, the clients computes the XOR of all received blocks.

Fig. 1. RAID-PIR Query. The four queries qi that are sent to the k = 4 servers consist
of one (orange) flip chunk and three (black) randomly generated chunks so that the
XOR of all queries is the plaintext query e3 that retrieves the third database block.
(Color figure online)

RAID-PIR improves this scheme by splitting each query into k chunks, as
shown in Fig. 1. The queries are constructed in a way that all chunks sent to
the l-th server, except the l-th chunk are generated from a seed using a pseudo
random generator (PRG). In addition, a redundancy parameter r is introduced
as trade-off between security and performance and chosen such that 2 ≤ r ≤ k.
It allows reducing the downstream bandwidth and server-side computational
costs. For that matter, each server will only handle r chunks of the database.
This also reduces the number of servers that have to collude in order to retrieve
the plaintext of a query from k to r.

Another optimization provides the ability to request multiple blocks of the
database within a single query. This is achieved by XORing the requested blocks

602 D. Demmler et al.

only within a chunk at the server side and returning one block per chunk instead
of one block per query. However, this optimization has the limitation that the
requested blocks have to be in different chunks of the database.

In the following sections, we introduce two additional improvements to RAID-
PIR that further increase its efficiency.

The first one speeds up the generation of the PIR responses at the server-side
by using precomputations (Sect. 2.2), while the second one achieves a significant
speedup when querying multiple blocks in parallel by using a database layout
where blocks are uniformly distributed (Sect. 2.3).

2.2 Method of Four Russians

The Method of four Russians [ADKF70], is a technique for matrix multiplication
with a limited number of possible values per entry. Since RAID-PIR makes heavy
usage of such kinds of multiplications, this method can be used to reduce the
computation time of the RAID-PIR servers for generating responses for PIR
queries. This leads to lower latency and higher throughput and comes at the (low)
cost of a preprocessing phase for the servers and increased memory requirements.

The Method of four Russians bases on the assumption that the number of
possible values for the cells of a matrix is finite. Here, it is assumed that all
matrices in the multiplication X ·Y = Z are done over the field with two elements
(F2), i.e. only binary elements are being multiplied. Note, that this property is
not required for the algorithm (i.e., it is also applicable to numbers in Z) but it
reduces the complexity of the algorithm and is sufficient for our use case. In F2,
the multiplicative operation is AND and the additive operation is XOR.

Crucial for understanding the idea behind the four Russians algorithm, is the
fact that the indices of all non-zero elements in row r in the first matrix X indicate
a subset of rows in the second matrix Y that have to be XORed in order to produce
the r-th row of the output matrix Z. As a näıve approach, it would now be possible
to precompute all possible XOR combinations of all rows in Y, hereby creating a
lookup table (LUT) that returns the final results for the rows of Z. In other words,
a lookup could be performed using each row in X as key to the LUT, returning the
corresponding row in Z. This would reduce the computational complexity from
O(n3) to O(n) assuming the lookup is done in constant time for matrices of size
n × n. Unfortunately, this näıve approach is impractical due to the exponential
computational and memory complexity of the precomputation of O(n ·2n), which
is worse than the regular approach for n ≥ 4.

The reason why only n XOR operations have to be performed for each of the
2n possible combinations of rows of the matrix Y is, that it is possible to use a
Gray code to reorder the possible combinations in a way that two consecutive
combinations only differ by a single bit that corresponds to only one row of Y.
For each of the 2n combinations, it is now sufficient to XOR the last precomputed
result with the row of Y that changed in the Gray code. The binary Gray code
g of a number m can be calculated as g = (m ⊕ (m � 1)). In Fig. 2 we depict
the calculation of LUT entries for a given example matrix Y∗.

OnionPIR: Effective Protection of Sensitive Metadata 603

Fig. 2. Example LUT precomputation for matrix Y∗. Y∗[n, :] denotes the n-th row of
matrix Y∗.

Instead of precomputing a LUT for the full matrix Y, it is divided into groups
of t ∈ N rows each. The precomputation is then done within these n/t groups
using the Gray code as described above, resulting in a computational complex-
ity of O(

2t · n2/t
)
. If t = log2(n) the complexity simplifies to O(

n3/ log2(n)
)
,

resulting in a speedup of t, compared to traditional matrix multiplication, for
all queries that will be answered after the precomputation phase.

While the matrix Y is divided into groups horizontally, the matrix X has to
be divided into vertical groups of t columns. To multiply the two n×n matrices,
X is now traversed column-wise, grouped by t columns forming a group each.
For each group, the corresponding LUT can now be created by t rows of Y and a
lookup can be performed for all t-bit parts of the n rows of X in this group. This
procedure is depicted in Fig. 3. We note that this optimization is generic and
can potentially be used in any PIR scheme in which queries can be expressed as
matrix-matrix or vector-matrix multiplication, e.g., [CKGS95,LG15,Hen16].

Fig. 3. Precomputation in the PIR database for t = 4. A query vector is one row in
the matrix X. The first 4 bits of the query vector represent the index in the LUT for
the first group of Y (the PIR database).

Implementation: An efficient implementation of the Method of four Russians is
provided in [ABH10]. However, since it only offers full matrix-matrix multipli-
cations and uses different data structures than RAID-PIR, we implemented our

604 D. Demmler et al.

own version and directly integrate it into the RAID-PIR library1 to avoid costly
memory movements and exploit memory locality. While the traditional Method
of four Russians assumes the multiplication of two full matrices, this is not the
case in RAID-PIR. Often, only a single PIR request has to be answered, making
X effectively a vector. Several PIR queries could be batched to create matrix X
at the cost of increased latency of the individual queries, similar to [LG15].

In our implementation we do the LUT precomputation once while loading
the database and store the LUTs in main memory. For every query we achieve a
theoretical speedup of t. The downside of this approach is the increased memory
requirement. Without loss of generality, we now assume that Y is a RAID-PIR
database of size B × b, i.e., B blocks of b bits each. While a larger t decreases
the computation time for the generation of response vectors, it also excessively
increases the memory needed to store the LUTs. When t blocks of the PIR
database are put in a group, only B/t XOR operations have to be performed per
query, resulting in a speedup of factor t. On the other hand, each of the B/t LUTs
requires 2t ·b bits of memory, where b is the database block size. The choice of t =
4 gives a good trade-off between theoretical speedup and memory requirements
for larger databases (see Table 1) and is used in our implementation.

Table 1. Comparison of speedup and memory for the Method of four Russians

t (speedup) 2 3 4 5 6 8
1
t
· 2t (memory overhead) 2.00 2.66 4.00 6.40 10.67 32.00

The optimizations were implemented in C and integrated into the existing
RAID-PIR library. The precomputation only affects the calculation of the XOR
responses by the PIR servers and is completely transparent to PIR clients. This
means that clients do not have to be aware of the changes and can send the
same queries as before. Furthermore, different PIR server operators could decide
independently whether they want to enable the precomputation or not.

In [LG15] a related approach to speedup server computation, based on the
Strassen algorithm for matrix multiplication is introduced. This comes at the
expense of higher latency for each individual query, as multiple queries are col-
lected and processed together. Furthermore, this approach only introduces a
speedup of q/q0.80735 = q0.19265, where q is the number of queries that are
processed together, which is less efficient than our approach (constant speedup
t) when q is small (e.g., for q < 1334 and t = 4).

2.3 Uniform Distribution of Data Entries

In the following we present an optimization that is specific to so-called multi-
block (MB) queries as proposed in RAID-PIR, that enable a client to privately
request more than one block in a single query. The improvements of RAID-PIR,

1 https://github.com/encryptogroup/RAID-PIR.

https://github.com/encryptogroup/RAID-PIR

OnionPIR: Effective Protection of Sensitive Metadata 605

compared to the original CKGS scheme [CKGS95], base on the fact that the
PIR blocks are grouped into k chunks that divide the database into equally sized
parts. PIR servers receiving an MB query will reply with one block per chunk.
The XOR of the corresponding blocks is calculated as before, but only within
the boundaries of these chunks. Since only one block per chunk can be queried
in one multi-block query, the blocks to retrieve have to be located in different
chunks. The performance analysis of RAID-PIR showed that no speedup could
be achieved for a large consecutive file residing in a single chunk. However, a
large speedup could be measured when querying many smaller files that were
distributed among the database. In RAID-PIR, files larger than the block size b
are simply placed in adjacent blocks to build the database. While this does
not affect the performance of a query when retrieving the blocks consecutively,
querying multiple blocks in parallel is often not possible, as they most likely
happen to be located in the same chunk.

Fig. 4. Uniform distribution of the data entries in the PIR database. While the first file
(green) filled up only the first chunk in the original RAID-PIR database layout (left),
it is now uniformly distributed over the whole database (right). (Color figure online)

Implementation: To improve the performance of multi-block queries for files
larger than the block size b, we change the layout of the database. Instead of
placing files in consecutive blocks, they are now uniformly distributed over the
whole database, as shown in Fig. 4. For each file, the number of blocks n needed
to store its contents is calculated. The file is then placed such that between
two of its blocks B/n − 1 blocks are used for other files, where B is the total
number of blocks. If a chosen block is already assigned to another file, the next
possible free block of the database is used instead. The first bytes of the next
file will then fill the rest of the previous file’s last block. It is guaranteed that
all B blocks of the database contain data and no block, except the last, one is
only partially filled. Since both the PIR servers and the clients have to know
the new locations of the database entries, both client-side and server-side code
is extended to support the new layout.

2.4 Generic Implementation Improvements

We also introduced several implementation improvements in RAID-PIR, that
are included in all measurements in Sect. 2.5. We pipelined the communication

606 D. Demmler et al.

on the client side and decoupled the sending of queries and reception of answers.
Furthermore, only a single seed is sent from the client to the servers during a
session and a state is kept while the connection is alive. We also introduced SSE2
intrinsics on very wide data types. This feature is available in all x86 CPUs since
several years and leads to a more efficient bit-wise XOR computation, which is
one of the most crucial operations in RAID-PIR for both clients and PIR servers.

2.5 PIR Benchmark Results

In this section, we evaluate the performance of our modified implementation
of RAID-PIR [DHS14]. All measurements include the generic optimizations
from Sect. 2.4. We show the influence of the optimizations from Sects. 2.2 and 2.3.

Benchmark Setting. Three PIR servers were deployed as r3.xlarge instances
on Amazon EC2 with 30.5 GiB RAM, an Intel Xeon E5-2670 v2 processor and
a 1 Gbit/s ethernet connection. The PIR queries were performed by a t2.micro
instance with 1 GiB RAM, one core of an Intel Xeon E5-2676 v3 processor and a
250 Mbit/s ethernet connection (0.5 ms latency) in the WAN setup and a notebook
with 8 GiB RAM, an Intel Core i3-3120M processor and a consumer grade DSL
Internet connection (4.5 Mbit/s downstream, 400 kbit/s upstream, 30 ms latency)
in the DSL setup. The used database consists of 964 files of Ubuntu security
updates adding up to a total size of 3.8 GiB. All results are average runtimes of 5
iterations. Note that the y-axes in the figures are in logarithmic scale.

PIR Server Startup Duration. The time to load the database into the PIR
servers’ RAM is mostly independent of the block size and took ≈40 s for the
database of 3.8 GiB. The four Russian precomputation took between 5 s and 7 s.
The startup time scales linearly with the database size.

File Query via WAN. In the remainder of this section, the number of servers
is set to k = 3 and the redundancy parameter is r = 2. The block size is varied
from b = 16 kiB to b = 4MiB.

Small File Query via WAN: The results for querying 10 small files adding up to
2.9 MiB in the WAN setup are depicted in the left part of Fig. 5. Single-block
queries are abbreviated as SB, multi-block queries as MB, the Method of four
Russians as 4R and the uniform distribution of the data entries as UD. Here, the
multi-block queries are significantly faster than single-block queries even when no
optimizations are applied since the requested files are already distributed among
the whole database. Therefore, uniform distribution of the data entries does not
have a significant impact on the overall performance. Four Russians precompu-
tation improves the runtimes by factor 2 and does not introduce improvements
any more when the cache size of the processor is not sufficient for larger block
sizes. For a block size of b = 16 kiB, the runtime decreases from 10.1 s for the

OnionPIR: Effective Protection of Sensitive Metadata 607

Fig. 5. WAN Benchmarks: Runtimes for varying block size b with k = 3 servers,
redundancy parameter r = 2 for 10 small files (2.9 MiB, left) and a large file (8.5 MiB,
right). CKGS: [CKGS95], SB: Single-Block scheme, MB: Multi-Block scheme, 4R: Four
Russians precomputation, UD: Uniform distribution of data entries. DB size 3.8 GiB.

originally best performing multi-block queries to 4.1 s when all optimizations are
applied. The best performance is obtained for a block size of b = 256 kiB where
7 queries are performed to retrieve 18 blocks in 0.8 s.

Large File Query via WAN: In the right part of Fig. 5, one large 8.5 MiB file is
requested. As already observed in [DHS14], single-block and multi-block queries
take similar time when querying one large file in the WAN setup, where band-
width and latency typically are not the bottleneck. The four Russians precom-
putation leads to a significant speedup and effectively improves the runtime of
most test cases by factor 2. This is a good result even though the theoretical
speedup, that does not cover data locality and communication overhead, is 4.
When the CPU cache size is too small to store the precomputed LUTs and
all interim results for large block sizes, the Method of four Russians’ speedup
decreases and is not measurable any more for b = 4MiB.

The speedup gained by uniformly distributing the data entries in the data-
base is even greater and improves the overall runtime by approximately a factor
of 3 compared to the original multi-block queries for small block sizes. While
all blocks have to be queried from the first chunk for a non-uniformly distrib-
uted database, it is now possible to retrieve 3 blocks from 3 different chunks in
one multi-block query in parallel. When both optimizations are combined, the
runtime decreases from 64 s (or 100 s for the original CKGS scheme) to 10 s for
block size b = 16 kiB and reaches its minimum for b = 1MiB where the runtime
decreases from 1.9 s for the originally best performing single-block queries to
0.9 s for multi-block queries using both optimizations.

608 D. Demmler et al.

Fig. 6. Large File, DSL: Runtimes for varying block sizes b with k = 3 servers,
redundancy parameter r = 2 and one large file (8.5 MiB). CKGS: original PIR scheme
[CKGS95], SB: Single-Block scheme, MB: Multi-Block scheme, 4R: Four Russians pre-
computation, UD: Uniform distribution of data entries. DB size 3.8 GiB.

Large File Query via DSL. In Fig. 6, the results for querying one large
file (8.5 MiB, as in the first test case) over the consumer-grade DSL con-
nection are depicted. The first interesting observation is that the results for
single- and multi-block queries with a block size of b = 16 kiB do not differ
significantly. The reason for this is the low upstream bandwidth of the DSL
connection. For small block sizes, the required upstream bandwidth, which
depends on the number of blocks, has a larger impact than the downstream
bandwidth, which depends on the block size. To query a database containing
B = 246360 blocks of 16 kiB each, B/3 bits have to be transferred to each server
(plus additional 16 Bytes for the PRG seeds) resulting in a total transmission
time of 3 · (B/3 bit + 16Byte)/(400 kbit/s)≈ 602ms. This phenomenon can also
be observed in the benchmarks run in [DHS14].

Due to this high latency and communication overhead of the PIR queries,
the server-side four Russians precomputation does not significantly affect the
overall runtime of a client’s request. As in the first test case, single-block queries
provide better performance than multi-block queries without the uniform distri-
bution. However, when the data entries are distributed uniformly, a significant
speedup to multi-block queries can be observed and – as already expected – the
multi-block queries supersede the single-block approach because the number of
requests reduces by about a third. It was also shown in [DHS14] that larger block
sizes have the disadvantage that large parts of some requested blocks contain no
relevant data and therefore lead to a slower runtime.

For a redundancy parameter of r = 2, the data that needs to be sent to the
client is about twice the size of the raw data. The best results are achieved for
b = 1 MiB using both new optimizations. Retrieving the file without PIR, using
wget over an unencrypted HTTP connection takes 16.9 s and is only 2.1 times
faster, indicating that the runtime of 35.5 s for the PIR approach almost reached
the theoretically optimal results for the DSL setup, as we need twice the com-
munication. When the network is the bottleneck, computation has only a minor
influence on total runtime. Our results also show that the previously assumed

OnionPIR: Effective Protection of Sensitive Metadata 609

optimal block size of b = B =
√

DB size does not lead to good performance,
especially in the DSL setting with asymmetric up- and downstream bandwidth.
For a database size of 3.8 GiB that would be ≈22 kiB block size, which our results
show to be far worse than larger block sizes.

Query Time for Varying Database Size. To demonstrate how the size of
the database influences the query runtime we performed the same queries as
in Sect. 2.5 using multi block queries with four Russians precomputation and
uniformly distributed database blocks. We varied the size of the database and
depict our results in Fig. 7. The time that the clients needs to generate the
queries to the servers is almost constant and always around or below 50 ms. The
communication varies due to queries being sent over a public Internet connection
and also remains mostly constant between 200 ms and 300 ms. This is due to the
fact, that even though the database and thus the number of blocks increases,
the query size only grows from 250 Bytes to 4 kiB, which is negligible compared
to the block size b = 256 kiB, that the client receives. Server computation time
and thus total time increase linearly with the database size.

Fig. 7. Varying DB size: Runtimes for varying database size, k = 3 servers, redun-
dancy parameter r = 2 for querying one large file (8.5 MiB) and block size b = 256 kiB.
All queries are multi-block (MB) queries using four Russians precomputation and uni-
formly distributed database blocks. Note the logarithmic scale of the y-axis.

3 OnionPIR

As an application for our previously presented improvements, we introduce a pri-
vate communication system called OnionPIR for anonymous communication. We
use RAID-PIR with our optimizations as a building block for public key distrib-
ution, and onion routing to get a system efficient enough for practical use.

3.1 Motivation

When two parties register under pseudonymous identities to a classical messag-
ing service and connect to the service by using Tor [DMS04], a malicious server

610 D. Demmler et al.

can link those two pseudonyms together. Even if these pseudonyms do not reveal
information about the users behind them, it is possible to build a social graph iso-
morphic to the one built with information from other sources. These two graphs
can then be mapped together to reveal information about users. Therefore, Tor
alone is not enough to provide protection against metadata leakage. Addition-
ally, it has turned out that the assumption of users willing to establish a shared
secret is problematic. In order to provide protection against mass surveillance,
a system to establish private communication channels based on already existing
contact information such as phone numbers or email addresses is needed.

3.2 System Model and Goals

Existing privacy-preserving communication systems do often not scale for large
numbers of users or require the exchange of a shared secret out-of-band, which
is error-prone and leads to usability issues most users are not willing to accept.
The success of the popular messaging app Signal2 and the adaption of its pro-
tocol in WhatsApp and Facebook Messenger are significantly founded on the
combination of strong security and great usability. Since most users do not have
an in-depth knowledge of cryptography, it is necessary to build technologies that
provide privacy and usability by design and give reasonable defaults for its users.

To combine the strong privacy guarantees of PIR protocols with the efficiency
of onion routing protocols, such as Tor [DMS04], the interaction with the server
is divided into two phases: an initialization phase where the communication
channels are established and keys are exchanged via PIR and a communication
phase where the actual message exchange takes place through Tor.

In the initialization phase, PIR is used to privately exchange information
between two parties which want to communicate securely. The exchange happens
in a way that no one except these two parties will find out that the communication
between them happened. This procedure could theoretically be used to exchange
all kinds of data. However, when it comes to practical applicability, querying large
amounts of information via PIR does not scale well for a larger number of users.
Hence, in the communication phase no PIR techniques will be used.

Instead, the information retrieved from PIR is then used to place messages,
encrypted using Authenticated Encryption with Associated Data (AEAD), in
an anonymous inbox, called “dead drop”. This dead drop can only be read
and written at the OnionPIR control server in the communication phase by
clients that know its identifier. By using onion routing to hide the identity of
the communication partners, the server is not able to determine who sent and
received messages. For real-time communication, the users could also establish
direct connections using TCP streams or web sockets [FM11] through the server.

The OnionPIR system, depicted in Fig. 8, serves clients who want to com-
municate with each other and two types of servers. All honest clients form the
anonymity set among which a user is anonymous. That means that a potential

2 downloaded by 1–5Mio. users according to the Google Play Store, https://play.
google.com/store/apps/details?id=org.thoughtcrime.securesms.

https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms

OnionPIR: Effective Protection of Sensitive Metadata 611

Fig. 8. OnionPIR system. The OnionPIR control server handles user registrations,
distributes users’ public keys to the PIR servers and holds the dead drops. Clients
perform PIR queries to privately receive other users’ public keys from the PIR servers.
Clients connect to the OnionPIR control server directly or via Tor (dashed lines).

adversary cannot determine which users within this set communicate with each
other. The central OnionPIR control server handles user registration and serves
as a content provider for the PIR servers. It also acts as a database for the
“dead drops” in the communication phase. The PIR servers are used only in the
initialization phase to privately distribute the public keys of clients.

3.3 Protocol Description

In this section we describe the OnionPIR protocol. A (simplified) version is
depicted in Fig. 9. When a client A registers for the service, it first runs through
an account verification process and sends its public key to the OnionPIR control
server which will later distribute it to the PIR servers. Another client B, that
has an address book entry for A (e.g., a mobile number or e-mail address), will
later privately query A’s public key via PIR. In addition, each user periodically
queries for his or her own public key to make sure the OnionPIR control server
does not distribute bad keys to the PIR servers (see Sect. 3.4 for details). Note,
that a single PIR server is never able to replace keys unless it colludes with
other PIR servers because the responses of multiple servers will be combined to

Fig. 9. Simplified OnionPIR protocol. The registration, dead drop and PIR servers
were abstracted into one server. Key renewal and the answer of client B are not shown.

612 D. Demmler et al.

retrieve the public key. B will then use his own private key and the received
public key to generate a shared secret KAB between A and B by performing an
Elliptic Curve Diffie-Hellman (ECDH) key agreement. Since no communication
with the server is required to derive the shared secret, this type of key agreement
protocols is often also called private key agreement. In the same way, A is also
able to derive the shared secret KAB using her own private key and the public
key of B.

Symmetric Keys. The shared secret KAB and both parties’ public keys are
used to derive identifiers of the dead drops and keys used to exchange messages.
Client A generates two different symmetric keys derived from the initial shared
secret KAB and the respective public keys by a keyed-hash message authen-
tication code (HMAC): KA→B = HMACKAB

(pkB) for sending messages to B
and KB→A = HMACKAB

(pkA) for receiving messages from B. These secrets
constantly get replaced by new ones, transmitted alongside every message to
provide forward secrecy.

Dead Drop IDs. The identifiers of the dead drop for sending from A to
B is built by computing an HMAC with the key KA→B of a nonce NA→B

that increases after a given time period. Hence, the identifier IDA→B =
HMACKA→B

(NA→B) changes in a fixed interval, even if no messages were
exchanged at all. This prevents the server from identifying clients that discon-
nect for several days and would otherwise reconnect using the same identifiers.
However, a fixed point in time at which the nonce changes (i.e. a unix timestamp
rounded to the current day) is not a good choice. Assuming synchronized clocks
often is error-prone3. If all clients would update their identifiers at a given point
in time, e.g., at midnight, the server could detect a correlation between all iden-
tifiers of a user whose clock is out of sync. Thus, the nonces will be handled per
contact and the secret key KA→B is used to generate a point in time at which
the nonce NA→B will be increased. This leads to a different update time for all
identifiers of dead drops.

Sending Messages. When a client A wants to send a message m to B, it
encrypts the message using Authenticated Encryption with Associated Data
(AEAD) using KA→B so that only B can read it. Note, that the ciphertext of
the message m does not reveal any information about the sender or the receiver
as explained in [Ber09, Sect. 9]. A then stores the encrypted message in the dead
drop IDA→B , which A accesses via Tor. B is now able to fetch and decrypt A’s
message from this dead drop. The shared secret will only be replaced by a new
one transmitted alongside a message when B acknowledges the retrieval of the

3 The need for secure time synchronization protocols lead to a number of secure
time synchronization concepts such as ANTP [DSZ16], NTS (https://tools.ietf.org/
html/draft-ietf-ntp-network-time-security-14) or Roughtime (https://roughtime.
googlesource.com/roughtime).

https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-14
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-14
https://roughtime.googlesource.com/roughtime
https://roughtime.googlesource.com/roughtime

OnionPIR: Effective Protection of Sensitive Metadata 613

new secret in a dead drop derived from the existing shared secret. Until then,
A will not store any messages in a dead drop derived from the new secret and
will retransmit messages until B sends the acknowledgment. This procedure will
guarantee that no messages will be lost. Note, that IDA→B may still change
over time because of the used nonce NA→B which is known by both parties.

Querying for new public keys using PIR is done in a fixed interval, e.g. once a
day, to discover new users of the system. It is mandatory not to write to the dead
drop specified by the shared secret immediately after receiving a new public key.
This would allow an adversary to correlate a PIR request of a given user with
(multiple) new requests to the dead drop database, even if the server does not
know which public keys were queried. Instead, the first access to the dead drop
database for new identifiers is delayed until a random point in time between the
current query and the next one derived from the shared key KA→B . This ensures
that the server cannot correlate the dead drop access to the PIR request because
it could also have been initiated by any other clients that did a PIR request in
the fixed interval. Note, that this delay is only necessary when a new contact is
discovered. New users joining the service will therefore also have to delay their
first interaction with other users.

Initial Contact. If B wants to contact A without A knowing about that (and
thus not checking the associated dead drop at IDB→A), an anonymous signal-
ing mechanism is required. We propose a per-user fixed and public dead drop
that all other users write to, to establish contact. The fixed dead drop ID is
IDA = HMAC0(pkA). Messages into this dead drop are encrypted using hybrid
encryption, similar to PGP, where A’s public key pkA is used to encrypt an
ephemeral symmetric key, which encrypts the request message. This reveals how
many contact requests A receives, which we consider as non-critical. However,
this number could be obscured by sending dummy requests.

3.4 Analysis

Correctness. Correctness of RAID-PIR is shown in [DHS14], correctness of Tor
is explained in [DMS04] and has already been well-proven in practice. Messages
are acknowledged and retransmitted if identifiers change and the message has not
been read yet. Therefore it is guaranteed that messages will reach their desired
destination. Correctness of the ECDH key exchange is shown in [Ber09]. All
operations involved in the private establishment of identifiers for the dead drops
are deterministic and therefore result in the same identifiers for both parties.

Security. OnionPIR’s security is based on the security guarantees of the under-
lying protocols and their assumptions. First, we assume that RAID-PIR is secure
and does not leak any metadata about the queried information. A security argu-
mentation for this is given in [DHS14]. In particular, it is important that the
PIR servers are run by different non-colluding operators. Note, that the security

614 D. Demmler et al.

guarantees are still fulfilled if less than r servers collude, where r is the redun-
dancy parameter. A good choice for the operators would be a number of NGOs
located in different legal territories. It is also mandatory that the different PIR
servers are not in (physical) control of the same data center operator.

Next, we assume that Tor provides anonymity for the users that tunnel their
connections through this anonymity network. This assumption implies that there
is no global passive adversary which is able to monitor and analyze user traffic
and colludes with the operator of the PIR servers or gains unauthorized access
to them. Note, that it is necessary to at least de-anonymize two specific Tor
connections in order to learn if two users are communicating with each other.
Therefore, an attacker would have to be able to de-anonymize all users of the
service to gain the full social graph of a given user. OnionPIR does not put any
effort in hiding the fact that a user is using the service at all.

Anonymity is guaranteed among all honest users. A malicious user that
announces its list of requests to the dead drops, would effectively remove himself
from the anonymity set. Note, that no user is able to gain information about
communication channels it is not participating in. In addition, no user is able
to prove that a communication took place because the used AEAD guarantees
repudiability.

OnionPIR relies on a Trust On First Use (TOFU) strategy to lessen the bur-
den of manually exchanging keys. For the purpose of detecting the distribution of
faulty keys, a client queries not only for the public keys of its contacts, but also for
its own public key. This query can be performed at nearly no cost when querying
together with other contacts using RAID-PIR’s multi-block query. Since the PIR
servers are not able to determine which PIR blocks are being requested, they are
not able to manipulate the resulting response in a meaningful way, unless they
collude. Of course, additional security can be achieved by adding out-of-band
key verification, e.g., by announcing public keys on personal websites. Another
interesting option are plausibility checks for the updates of the PIR database in
the PIR servers and thereby extending the existing anytrust model.

Access to the dead drops is not protected against any type of manipulation
by third parties since identifiers are only known to the involved parties. An
adversary that is interested in deleting the messages for a specific client would
have to brute-force the identifier of the dead drop which is impossible in practice.
Protection against a server deleting messages or blocking access to the system is
out of scope of this work and would require a federated or decentralized system.

Protection against malicious clients trying to flood the dead drops with large
amounts of data could be achieved by making use of blind signatures [Cha83].
A client could encrypt a number of random tokens and authenticate against
the server who will then blindly sign them. The tokens can then be decrypted
by the client and sent to the server with each write access to the dead drops.
While the server is able to determine that these tokens have a valid signature, it
cannot identify the client who generated them. Since a server only signs a fixed
number of tokens in a given time interval per client, this approach rate-limits
write requests to the database.

OnionPIR: Effective Protection of Sensitive Metadata 615

Complexity and Efficiency. OnionPIR aims at providing efficient anonymous
communication. Many existing systems (see Sect. 4) require a high communica-
tion overhead or high computational costs. The dead drop database is therefore
combined with scalable onion routing and can be implemented as simple key-
value storage. The servers needed in the communication phase can be deployed
with low operating costs, comparable to traditional communication services.

The initialization phase in which the PIR requests are performed is crucial for
the scalability of the system. As shown in Sect. 2.5, PIR is a valid choice that offers
reasonable performance and allows users to detect malicious actions of the servers.
The 3.8 GiB PIR database used for the benchmarks in Sect. 2.5 is sufficient to store
public keys of 127 Mio. users, using 256 bit elliptic curve public keys.

The database size and the server’s computation will grow linearly in the
number of users. The PIR servers’ ingress traffic for PIR queries depends on the
number of blocks B in the database and therefore also scales linearly. Thanks
to the PRG used in [DHS14], the size of a PIR query is 	B/8
 Bytes for all
servers combined (excluding PRG seeds and overhead for lower level transport
protocols). The egress bandwidth is constant since the size of the response only
depends on the block size b (and the number of chunks for multi-block queries).

3.5 Implementation

We implemented a desktop application for secure messaging with metadata pro-
tection based on OnionPIR. Our implementation is written in Python and C,
using our version of RAID-PIR including the optimizations from Sect. 2 for PIR,
the Networking and Cryptography library (NaCl) [BLS12] for cryptographic
operations, and Stem4 as controller library for Tor. The system is divided into
a client, the OnionPIR control server and PIR servers. The client offers a GUI
as depicted in Fig. 10. Our open-source implementation is publicly available.5

Fig. 10. Screenshot of the OnionPIR client GUI.

4 https://stem.torproject.org/.
5 https://github.com/encryptogroup/onionPIR.

https://stem.torproject.org/
https://github.com/encryptogroup/onionPIR

616 D. Demmler et al.

4 Related Work

Nowadays, end-to-end encryption is available and deployed at large scale. In
the past, these technologies were not accessible to a large user base because
they required expert knowledge or were just not convenient, and thus only
used by enthusiasts. For example, users of OpenPGP [CDF+07] have to man-
ually build a web of trust and should be familiar with public key cryptogra-
phy, while S/MIME [Ram99] requires certificate management. When the Sig-
nal Protocol was integrated into popular messaging services like WhatsApp6

or Facebook Messenger7 in 2016, private messaging became available to an
extremely large user base. However, protecting not only communication content
but also its metadata are still under active research. OnionPIR currently relies on
RAID-PIR [DHS14] for public key distribution, but could also employ different
PIR schemes. PIR is an active research area and there are other viable candi-
dates [DG14,Hen16,AMBFK16]. Similarly, we rely on Tor to provide anonymity,
which can also be achieved by using alternative techniques such as mixing net-
works [Cha81].

Next, we present system proposals that are related to OnionPIR. Redphone
was one of the first applications that tackled metadata leakage using Bloom
filters [Blo70] for private contact discovery. Redphone’s encrypted call features
were integrated into Textsecure/Signal, however, without anonymity due to scal-
ability [Ope14]. With DP5 [BDG15] users can anonymously exchange online
presence information based on PIR. DP5 divides time in long-term and short-
term epochs which are in the order of days and minutes respectively, which
makes it impractical for real-time communication. Users must share symmetric
keys before the protocol run, which can be hard to achieve in practice. Recently,
Alpenhorn [LZ16] was proposed, which is based on identity-based encryption
(IBE) for key distribution, a mix network [CJK+16,Cha81] for privacy and
a so called keywheel construct for forward secrecy. Alpenhorn was integrated
into Vuvuzela [vdHLZZ15], which supports 10 Mio. users using three Alpenhorn
servers with an average dial latency of 150 s and a client bandwidth overhead of
3.7 KiB/s. Riposte [CGBM15] enables a large user base to privately post public
messages to a message board. Its security is based on distributed point functions
that are evaluated by a set of non-colluding servers. Time is divided into epochs,
in which all users who post messages form an anonymity set. Ricochet (https://
ricochet.im) is a decentralized private messaging service based on Tor hidden ser-
vices, whose addresses must be exchanged out-of-band to establish connections.
Recent research showed that HSDirs are used to track users [SN16], which might
be problematic for Ricochet’s privacy. Riffle [KLDF16] provides scalable low-
latency and low-bandwidth communication through mix networks [Cha81] using
verifiable shuffles [BG12] for sender anonymity and PIR for receiver anonymity.
In Riffle, time is divided into epochs and each client sends and receives messages

6 https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf.
7 https://fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper

-1.pdf.

https://ricochet.im
https://ricochet.im
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf

OnionPIR: Effective Protection of Sensitive Metadata 617

even if they do not communicate. The Pynchon Gate [SC05] is an anonymous
mail system that guarantees only receiver anonymity by using PIR.

Acknowledgments. We thank the anonymous reviewers for their valuable feedback
on our paper. This work has been co-funded by the German Federal Ministry of Edu-
cation and Research (BMBF) and by the Hessen State Ministry for Higher Education,
Research and the Arts (HMWK) within CRISP, and by the DFG as part of project S5
within the CRC 1119 CROSSING.

References

[ABH10] Albrecht, M., Bard, G., Hart, W.: Efficient multiplication of dense matri-
ces over GF(2). ACM Trans. Math. Softw. 37, 9:1–9:14 (2010)

[ADKF70] Arlazarov, V., Dinic, E., Kronrod, M., Faradzev, I.: On economical con-
struction of the transitive closure of a directed graph. USSR Acad. Sci.
134, 1209–1210 (1970)

[AMBFK16] Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.-O.: XPIR: pri-
vate information retrieval for everyone. In: Privacy Enhancing Technolo-
gies Symposium (PETS 2016), no. 2, pp. 155–174 (2016)

[BDG15] Borisov, N., Danezis, G., Goldberg, I.: DP5: a private presence service.
In: Privacy Enhancing Technologies Symposium (PETS 2015), no. 2, pp.
4–24 (2015)

[Ber09] Bernstein, D.J.: Cryptography in NaCl (2009). https://cr.yp.to/
highspeed/naclcrypto-20090310.pdf

[BG12] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of
a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 17

[Blo70] Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors.
Commun. ACM 13(7), 422–426 (1970)

[BLS12] Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new
cryptographic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT
2012. LNCS, vol. 7533, pp. 159–176. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33481-8 9

[BV14] Budurushi, J., Volkamer, M.: Feasibility analysis of various electronic
voting systems for complex elections. In: International Conference for
E-Democracy and Open Government 2014 (2014)

[CDF+07] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP
message format. RFC 4880, RFC Editor, November 2007. http://www.
rfc-editor.org/rfc/rfc4880.txt

[CGBM15] Corrigan-Gibbs, H., Boneh, D., Maziàres, D.: Riposte: an anonymous
messaging system handling millions of users. In: IEEE Symposium on
Security and Privacy (S&P 2015), pp. 321–338 (2015)

[CGN98] Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords.
IACR Cryptology ePrint Archive, Report 1998/003 (1998). http://eprint.
iacr.org/1998/003

[Cha81] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24, 84–90 (1981)

https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://dx.doi.org/10.1007/978-3-642-29011-4_17
http://dx.doi.org/10.1007/978-3-642-29011-4_17
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://eprint.iacr.org/1998/003
http://eprint.iacr.org/1998/003

618 D. Demmler et al.

[Cha83] Chaum, D.: Blind signature systems. In: Advances in Cryptology -
CRYPTO 1983, p. 153 (1983)

[CJK+16] Chaum, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sherman,
A.T., Das, D.: cMix: anonymization by high-performance scalable mixing.
IACR Cryptology ePrint Archive, Report 2016/008 (2016). http://eprint.
iacr.org/2016/008

[CKGS95] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. In: Foundations of Computer Science (FOCS 1995), pp. 41–50
(1995)

[DG14] Devet, C., Goldberg, I.: The best of both worlds: combining information-
theoretic and computational PIR for communication efficiency. In: Cristo-
faro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 63–82.
Springer, Cham (2014). doi:10.1007/978-3-319-08506-7 4

[DHS14] Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: practical multi-
server PIR. In: ACM Cloud Computing Security Workshop (CCSW
2014), pp. 45–56 (2014)

[DMS04] Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation
onion router. In: USENIX Security Symposium 2004, p. 21 (2004)

[DSZ14] Demmler, D., Schneider, T., Zohner, M.: Ad-hoc secure two-party com-
putation on mobile devices using hardware tokens. In: USENIX Security
Symposium 2014, pp. 893–908 (2014)

[DSZ16] Dowling, B., Stebila, D., Zaverucha, G.: Authenticated network time syn-
chronization. In: USENIX Security Symposium 2016, pp. 823–840 (2016)

[FM11] Fette, I., Melnikov, A.: The websocket protocol. RFC 6455, RFC Editor,
December 2011. http://www.rfc-editor.org/rfc/rfc6455.txt

[HCE11] Huang, Y., Chapman, P., Evans, D.: Privacy-preserving applications on
smartphones. In: USENIX Workshop on Hot Topics in Security (HotSec
2011), p. 4 (2011)

[Hen16] Henry, R.: Polynomial batch codes for efficient IT-PIR. In: Privacy
Enhancing Technologies Symposium (PETS 2016), pp. 202–218 (2016)

[KLDF16] Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communica-
tion system with strong anonymity. In: Privacy Enhancing Technologies
Symposium (PETS 2016), pp. 115–134 (2016)

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single data-
base, computationally-private information retrieval. In: Foundations of
Computer Science (FOCS 1997), pp. 364–373 (1997)

[Lan15] Landau, S.: Mining the metadata: and its consequences. In: International
Conference on Software Engineering (ICSE 2015), pp. 4–5 (2015)

[LG15] Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private
information retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015.
LNCS, vol. 8975, pp. 168–186. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47854-7 10

[LZ16] Lazar, D., Zeldovich, N.: Alpenhorn: bootstrapping secure communica-
tion without leaking metadata. In: USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2016), pp. 571–586 (2016)

[MCA06] Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new Casper: query process-
ing for location services without compromising privacy. In: International
Conference on Very Large Data Bases (VLDB 2006), pp. 763–774 (2006)

[MMM16] Mayer, J., Mutchler, P., Mitchell, J.C.: Evaluating the privacy properties
of telephone metadata. Natl. Acad. Sci. 113(20), 5536–5541 (2016)

http://eprint.iacr.org/2016/008
http://eprint.iacr.org/2016/008
http://dx.doi.org/10.1007/978-3-319-08506-7_4
http://www.rfc-editor.org/rfc/rfc6455.txt
http://dx.doi.org/10.1007/978-3-662-47854-7_10
http://dx.doi.org/10.1007/978-3-662-47854-7_10

OnionPIR: Effective Protection of Sensitive Metadata 619

[MOT+11] Mittal, P., Olumofin, F., Troncoso, C., Borisov, N., Goldberg, I.: PIR-tor:
scalable anonymous communication using private information retrieval.
In: USENIX Security Symposium 2011, p. 31 (2011)

[Ope14] Open Whisper Systems. The difficulty of private contact discovery (2014).
https://whispersystems.org/blog/contact-discovery/

[Ram99] Ramsdell, B.: S/MIME version 3 message specification. RFC 2633, RFC
Editor, June 1999. http://www.rfc-editor.org/rfc/rfc2633.txt

[SC05] Sassaman, L., Cohen, B., Gate, T.P.: A secure method of pseudonymous
mail retrieval. In: Workshop on Privacy in the Electronic Society (WPES
2005), pp. 1–9 (2005)

[SN16] Sanatinia, A., Noubir, G.: HOnions: towards detection and identification
of misbehaving tor HSDirs. In: Hot Topics in Privacy Enhancing Tech-
nologies Symposium (HotPETS 2016) (2016)

[vdHLZZ15] van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scal-
able private messaging resistant to traffic analysis. In: Symposium on
Operating Systems Principles (SOSP 2015), pp. 137–152 (2015)

https://whispersystems.org/blog/contact-discovery/
http://www.rfc-editor.org/rfc/rfc2633.txt

Data and Server Security

Accountable Storage

Giuseppe Ateniese1, Michael T. Goodrich2, Vassilios Lekakis3,
Charalampos Papamanthou5, Evripidis Paraskevas5(B),

and Roberto Tamassia4

1 Department of Computer Science, Stevens Institute of Technology, Hoboken, USA
gatenies@stevens.edu

2 Department of Computer Science, University of California, Irvine, USA
goodrich@uci.edu

3 Department of Computer Science, University of Maryland, College Park, USA
lex@cs.umd.edu

4 Department of Computer Science, Brown University, Providence, USA
rt@cs.brown.edu

5 Department of Electrical and Computer Engineering, University of Maryland,
College Park, USA

cpap@umd.edu, evripar@terpmail.umd.edu

Abstract. We introduce Accountable Storage (AS), a framework ena-
bling a client to outsource n file blocks to a server while being able
(any time after outsourcing) to provably compute how many bits were
discarded or corrupted by the server. Existing techniques (e.g., proofs of
data possession or storage) can address the accountable storage problem,
with linear server computation and bandwidth. Instead, our optimized
protocols achieve O(δ log n) complexity (where δ is the maximum num-
ber of corrupted blocks that can be tolerated) through the novel use of
invertible Bloom filters and a new primitive called proofs of partial stor-
age. With accountable storage, a client can be compensated with a dollar
amount proportional to the number d of corrupted bits (that he can now
provably compute). We integrate our protocol with Bitcoin, supporting
automatic such compensations. Our implementation is open-source and
shows our protocols perform well in practice.

1 Introduction

Cloud computing is revolutionizing our digital world, posing new security and
privacy challenges. E.g., businesses and individuals are reluctant to outsource
their databases for fear of having their data lost or damaged. Thus, they would
benefit from technologies that would allow them to manage their risk of data
loss, just like insurance allows them to manage their risk of physical or financial
losses, e.g., from fire or liability.

As a first step, a client needs a mechanism for verifying that a cloud provider
is storing her entire database intact, and fortunately, Provable Data Possession
(PDP) [3,11,13] and Proofs of Retrievability (POR) [10,19,26–28], have been
conceived as a solution to the integrity problem of remote databases. PDP and
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 623–644, 2017.
DOI: 10.1007/978-3-319-61204-1 31

624 G. Ateniese et al.

POR scheme can verify whether the server possesses the database originally
uploaded by the client by having the server generate a proof in response to a
challenge.

However, they leave unsettled several risk management issues. Arguably, an
important question is

What happens if a PDP or POR scheme shows that a client’s outsourced
database has been damaged?

The objective of this work is to design new efficient protocols for Accountable
Storage (AS) that enable the client to reliably and quickly assess the damage
and at the same time automatically get compensated using the Bitcoin protocol.

To be precise, suppose Alice outsources her file blocks b1, b2, . . . , bn to a
potentially malicious cloud storage provider, Bob. Since Alice does not trust Bob,
she wishes, at any point in time, to be able to compute the amount of damage,
if any, that her file blocks have undergone, by engaging in a simple challenge-
response protocol with Bob. For instance, she wishes to provably compute the
value of a damage metric, such as

d =
n∑

i=1

wi · ||bi ⊕ b′
i||, (1)

where b′
i is the file currently stored by Bob at the time of the challenge, ||.||

denotes Hamming distance and wi is a weight corresponding to file bi. If d = 0,
Alice is entitled to no dollar credit. Bob can easily prove to Alice that this is the
case through existing protocols, as noted above. If d > 0, however, then Alice
should receive a compensation proportional to the damage d, which should be
provided automatically.1

Naive Approaches for AS. A PDP protocol [3,4,11,13,29] enables a server
to prove to a client that all of the client’s data is stored intact. One could design
an AS protocol by using a PDP protocol only for the portion of storage that the
server possesses. This could determine the damage, d (e.g., when all weights wi

are equal to 1). However this approach requires using of PDP at the bit level,
and in particular computing one 2048-bit tag for each bit of our file collection
which is very storage-inefficient.

To overcome the above problem, one could use PDP at the block level, but at
the same time keep some redundancy locally. Specifically, before outsourcing the
n blocks at the server, the client could store δ extra check blocks locally (e.g.,
computed with an error-correcting code). The client could then verify through
PDP that a set of at most δ blocks have gone missing and retrieve the lost blocks
by executing the decoding algorithm on the remote intact n− δ data blocks and

1 We highlight that such fine-grained compensation models, which work at the bit
level as opposed to at the file block level, allow Alice to better manage her risk for
damage even within the same file. For example, compensation for an unusable movie
stored by Bob could be larger than that for a usable movie whose resolution has
deteriorated by just 5%.

Accountable Storage 625

the δ local check blocks (then the recovered blocks can be used to compute d).
This procedure has O(n) communication, since the n − δ blocks at the server
must be sent to the client. IRIS [28] is a system along these lines, requiring the
whole file system be streamed over to the client for recovery.

Finally we note here that while PDP techniques combined with redundant
blocks stored at the client can be used to solve the accountable storage problem
(even inefficiently, as shown above), POR techniques cannot. This is because
POR techniques (e.g., [26]) cannot provide proofs of retrievability for a certain
portion of the file (as is the case with PDP), but only for the whole file—this is
partly due to the fact that error-correcting codes are used on top of all the file
blocks.

Our AS Protocol. Our protocol for assessing damage d from Relation 1 is
based on recovering the actual blocks b1, b2, . . . , bδ and XORing them with the
corrupted blocks b′

1, b
′
2, . . . , b

′
δ returned by the server. For recovery, we use the

invertible Bloom filter (IBF) data structure [12,15]. An IBF is an array of t
cells and can store O(t) elements. Unlike a Bloom filter [7], its elements can be
enumerated with high probability.

Let B = {b1, b2, . . . , bn} be the set of outsourced blocks and let δ be the
maximum number of corrupted blocks that can be tolerated. In preprocessing,
the client computes an IBF TB with O(δ) cells, on the blocks b1, . . . , bn. TB is
stored locally. Computing TB is similar to computing a Bloom filter: every cell
of TB is mapped to a XOR over a set of at most n blocks, thus the local storage
is O(δ). To outsource the blocks, the client computes homomorphic tags, Ti (as
in [3]), for each block bi. The client then stores (bi, Ti) with the cloud and deletes
b1, b2, . . . , bn from local storage. In the challenge phase, the client asks the server
to construct an IBF TK of O(δ) cells on the set of blocks K the server currently
has—this is the “proof” the server sends to the client. Then the client takes the
“difference” TL = subtract(TB ,TK) and recovers the elements of the difference
B − K (since |B − K| ≤ δ and TL has O(δ) cells). Recovering blocks in B − K
enables the client to compute d using Relation 1. Clearly, the bandwidth of this
protocol is proportional to δ (due to the size of the IBFs), and not to the total
number of outsourced blocks n. Our optimized construction in Sect. 5 achieves
sublinear server and client complexities as well.

Fairness Through Integration with Bitcoin. The above protocol assures
that Bob (the server) cannot succeed in persuading Alice that the damage of
her file blocks is d′ < d. After Alice is persuaded, compensation proportional
to d must be sent to her. But Bob could try to cheat again. Specifically, Bob
could try to give Alice a smaller compensation or even worse, disappear. To
deal with this problem, we develop a modified version of the recently-introduced
timed commitment in Bitcoin [2]. At the beginning of the AS protocol, Bob
deposits a large amount, A, of bitcoins, where A is contractually agreed on and
is typically higher than the maximum possible damage to Alice’s file blocks.
The Bitcoin-integrated AS protocol of Sect. 6 ensures that unless Bob fully and
timely compensates Alice for damage d, then A bitcoins are automatically and
irrevocably transferred to Alice. At the same time, if Alice tries to cheat (e.g.,

626 G. Ateniese et al.

by asking for compensation higher than the contracted amount), our protocol
ensures that she gets no compensation at all while Bob gets back all A of his
bitcoins.

Structure of the Paper. Section 2 presents background on IBFs and Bitcoin,
Sect. 3 gives definitions, and Sects. 4 and 5 present our constructions. We present
our Bitcoin protocol in Sect. 6, our evaluation in Sect. 7 and conclude in Sect. 8.

2 Preliminaries

Let τ denote the security parameter, δ denote an upper bound on the number
of corrupted blocks that can be tolerated, n denote the number of file blocks,
and b1, b2, . . . , bn denote the file blocks. Each block bi has λ bits. The first log n
bits of each block bi are used for storing the index i of the block, which can be
retrieved through function index(). Namely i = index(bi). Let also h1, h2, . . . , hk

be k hash functions chosen at random from a universal family of functions H [9]
such that hi : {0, 1}λ → {1, 2, . . . , t} for some parameter t.

Invertible Bloom Filters. An Invertible Bloom Filter (IBF) [12,15] can be
used to compactly store a set of blocks {b1, b2, . . . , bn}: It uses a table (array) T
of t = (k + 1)δ cells. Each cell of the IBF’s table T contains the following two
fields2: (1) dataSum: XOR of blocks bi mapped to this cell; (2) hashSum: XOR of
cryptographic tags (to be defined later) Ti for all blocks bi mapped to this cell.
As in Bloom filters, we use functions h1, . . . , hk to decide which blocks map to
which cells.

An IBF supports simple algorithms for insertion and deletion via algorithm
update in Fig. 1. For B ⊆ A, one can also take the difference of IBFs TA and
TB, to produce an IBF TD ← subtract(TA,TB) representing the difference set
D = A−B. Finally, given TD, we can enumerate its contents by using algorithm
listDiff from [12]:

Lemma 1 (Adjusted from Eppstein et al. [12]). Let B ⊆ A be two sets
having ≤ δ blocks in their difference A − B, let TA and TB be their IBFs
constructed using k hash functions and let TD ← subtract(TA,TB). All IBFs
have t = (k + 1)δ cells and their hashSum field is computed using a function
mapping blocks to at least k log δ bits. Then there is an algorithm listDiff(TD)
that recovers A − B with probability 1 − O(δ−k).

Bitcoin Basics. Bitcoin [23] is a decentralized digital currency system where
transactions are recorded on a public ledger (the blockchain) and are verified
through the collective effort of miners. A bitcoin address is the hash of an
ECDSA public key. Let A and B be two bitcoin addresses. A standard trans-
action contains a signature from A and mandates a certain amount of bitcoins
be transferred from A to B. If A’s signature is valid, the transaction is inserted
into a block which is then stored in the blockchain.
2 Note that we do not use the count field, as in [12,15].

Accountable Storage 627

Fig. 1. Update and subtraction algorithms in IBFs.

Bitcoin allows for more complicated transactions (as we are using here),
whose validation requires more than just a signature. In particular, each
transaction can specify a locktime containing a timestamp t at which the
transaction is locked (before time t, even if a valid signature is pro-
vided, the transaction is not final). Slightly changing the notation from [2],
a Bitcoin transaction Tx can be represented as the table below, where

Prev :
InputsToPrev :
Conditions :
Amount :
Locktime :

Prev is the transaction (say Ty) that Tx is redeeming,
InputsToPrev are inputs that Tx is sending to Ty so that Ty’s
redeeming can take place, Conditions is a program written in
the Bitcoin scripting language (outputting a boolean) con-
trolling whether Tx can be redeemed or not (given inputs
from another transaction), Amount is the value in bitcoins,
and Locktime is the locktime. For standard transactions,
InputsToPrev is a signature with the sender’s secret key, and Conditions imple-
ments a signature verification with the recipient’s public key. Also, standard
transactions have locktime set to 0, meaning they are locked and final.

3 Accountable Storage Definitions

We now define an AS scheme. An AS scheme does not allow the client to compute
damage d directly. Instead, it allows the client to use the server’s proof to retrieve
the blocks L that are not stored by the server any more (or are stored corrupted).
By having the server send the current blocks he stores in the position of blocks
in L (in addition to the proof), computing the damage d is straightforward.

Definition 1 (δ-AS scheme). A δ-AS scheme P is the collection of four PPT
algorithms:

1. {pk, sk, state, T1, . . . , Tn} ← Setup(b1, . . . , bn, δ, 1τ) takes as inputs file blocks
b1, . . . , bn, a parameter δ and the security parameter τ and returns a public
key pk, a secret key sk, tags T1, . . . , Tn and a client state state.

2. chal ← GenChal(1τ) generates a challenge for the server;
3. V ← GenProof(pk, βi1 , . . . , βim , Ti1 , . . . , Tim , chal) takes as inputs a public key

pk, a collection of m ≤ n blocks and their corresponding tags. It returns a
proof of accountability V;

4. {reject,L} ← CheckProof(pk, state,V, chal) takes as inputs a public key pk
and a proof of accountability V. It returns a list of blocks L or reject.

628 G. Ateniese et al.

Relation to Proofs of Storage. A δ-AS scheme is a generalization of proof-of-
storage (PoS) schemes, such as [3,19]. In particular, a 0-AS scheme (i.e., where
we set δ = 0) is equivalent to PoS protocols, where there is no tolerance for
corrupted/lost blocks.

Definition 2 (δ-AS scheme correctness). Let P be a δ-AS scheme. Let
{pk, sk, state, T1 , . . . , Tn} ← Setup(b1, . . . , bn, δ, 1τ) for some set of blocks B =
{b1, . . . , bn}. Let now L ⊆ B such that |L| ≤ δ, chal ← GenChal(1τ) and
V ← GenProof(pk, B − L, T(B − L), chal), where T(B − L) denotes the tags cor-
responding to the blocks in B − L. A δ-AS scheme is correct if the probability
that L ← CheckProof(pk, state,V, chal) is at least 1 − neg(τ).3

To define the security of a δ-AS scheme, the adversary adaptively asks for
tags on a set of blocks B = {b1, b2, . . . , bn} that he chooses. After the adversary
gets access to the tags, his goal is to output a proof V, so that if L is output by
algorithm CheckProof, where |L| ≤ δ, then (a) either L is not a subset of the
original set of blocks B; (b) or the adversary does not store all remaining blocks
in B − L intact.

Such a proof is invalid since it would allow the verifier to either recover the
wrong set of blocks (e.g., a set of blocks whose Hamming distance from the
corrupted blocks is a lot smaller) or to accept a corruption of more than δ file
blocks.

Definition 3 (δ-AS security). Let P be a δ-AS scheme as in Definition 1 and
A be a PPT adversary. We define security using the following steps.

1. Setup. A chooses δ ∈ [0, n), blocks B = {b1, b2, . . . , bn} and
is given T1, . . . , Tn and pk output by {pk, sk, state, T1, . . . , Tn} ←
Setup(b1, . . . , bn, δ, 1τ).4

2. Forge. A is given chal ← GenChal(1τ) and outputs a proof of accountability
V.

Suppose L ← CheckProof(pk, state,V, chal). We say that the δ-AS scheme P is
secure if, with probability at least 1 − neg(τ): (i) L ⊆ B; and (ii) there exists
a PPT knowledge extractor E that can extract all the remaining file blocks in
B − L.

Note here that if the set L is empty, then the above definition is equivalent to
the original PDP security definition [3]. Also note that the notion of a knowledge
extractor is similar to the standard one, introduced in the context of proofs
of knowledge [5]. If the adversary can output an accepting proof, then he can
execute GenProof repeatedly until it extracts the selected blocks.

3 Function λ : N → R is neg(τ) iff ∀ nonzero polynomials p(τ) there exists N so that
∀τ > N it is λ(τ) < 1/p(τ).

4 A could also choose blocks adaptively, after seeing tags for already requested blocks.
Our proof of security handles that.

Accountable Storage 629

4 Our Basic Construction

We now give an overview of our basic construction: On input blocks B =
{b1, . . . , bn} in local storage, the client decides on a parameter δ (meaning that
he can tolerate up to δ corrupted files) and computes the local state, tags, public
and secret key by running {pk, sk, state, T1, . . . , Tn} ← Setup(b1, . . . , bn, δ, 1τ). In
our construction the tag Ti is set to (h(i)gbi)d mod N , as in [3], where h(.) is
a collision-resistant hash function, N is an RSA modulus and (e, d) denote an
RSA public/private key pair. The client then sends blocks b1, . . . , bn and tags
T1, . . . , Tn to the server and locally stores the state state, which is an IBF of the
blocks b1, b2, . . . , bn.

At challenge phase, the client runs chal ← GenChal(1τ) that picks a random
challenge s and sends it to the server. To generate a proof of accountability (see
Fig. 2-left) with GenProof, the server computes an IBF TK on the set of blocks
that he (believes he) stores, along with a proof of data possession [3] on the
same set of blocks. The indices of these blocks are stored in a set Kept. For the
computation of the PDP proof, the server uses randomness derived from the
challenge s.

To verify the proof, the client takes the difference TL = subtract(TB,TK)
and executes algorithm recover from Fig. 2-right, which is a modified version of
listDiff from [12]. Algorithm recover adds blocks whose tags verify to the set of
lost blocks L. Then it checks the PDP proof for those block indices corresponding
to blocks that were not output by recover. If this PDP proof does not reject, then
the client is persuaded that the server stores everything except for blocks in L.
To make sure recover does not fail with a noticeable probability, our construction
sets the parameters according to the following corollary. The detailed algorithms
of our construction are in Fig. 3.

Corollary 1. Let τ be the security parameter and B and K be two sets such
that K ⊆ B and |B −K| ≤ δ. Let TB and TK be IBFs constructed by algorithm

Fig. 2. (Left) On input b1, b2, . . . , b9, the client outputs an IBF TB of three cells
using two hash functions. The server loses blocks b1 and b9. TK is computed on blocks
b2, b3, . . . , b8 and TL contains the lost blocks b1 and b9. (Right) The algorithm for
recovering the lost blocks.

630 G. Ateniese et al.

Fig. 3. Our δ-AS scheme construction.

update of Fig. 1 using τ/ log δ hash functions. The IBFs TB and TK have t =
(τ/ log δ + 1)δ cells and employ tags in the hashSum field that map blocks to τ
bits. Then with probability at least 1−2−τ , algorithm recover(subtract(TB ,TK))
will output L = B − K.

Our detailed proof of security is given in the Appendix. The local state that
the client must keep is an IBF of t = (k +1)δ cells, therefore the asymptotic size
of the state is O(δ). For the size of the proof V, the tag T has size O(1), the sum
S has size O(log n + λ) and the IBF TK has size O(δ). Overall, the size of V is
O(δ+log n). For the proof computation, note that algorithm GenProof must first
access at least n−δ blocks in order to compute the PDP proof and then compute
an IBF of δ cells over the same blocks, therefore the time is O(n + δ). Likewise,
the verification algorithm needs to verify a PDP proof for a linear number of
blocks and to process a proof of size O(δ + log n), thus its computation time is
again O(n + δ).

Accountable Storage 631

Theorem 1 (δ-AS scheme). Let n be the number of blocks. For all δ ≤ n,
there exists a δ-AS scheme such that: (1) It is correct according to Definition 2;
(2) It is secure in the random oracle model based on the RSA assumption and
according to Definition 3; (3) The proof has size O(δ+log n) and its computation
at the server takes O(n + δ) time; (4) Verification at the client takes O(n + δ)
time and requires local state of size O(δ); (5) The space at the server is O(n).

We now make two observations related to our construction. First, note that
the server could potentially launch a DoS attack, by pretending it does not store
some of the blocks so that the client is forced to spend cycles retrieving these
blocks. This is not an issue, since as we will see later, the server will be penalized
for that, so it is not in its best interest. Second, note that the tags that the
client initially uploads are publicly verifiable so anyone can check their validity—
therefore the client cannot upload bogus tags and blame the server later for that.

Streaming and Appending Blocks. Our construction assumes the client has
all blocks available in the beginning. This is not necessary. Blocks bi could come
one at a time, and the client could easily update its local state with algorithm
update(bi,T, 1), compute the new tag Ti and send the pair (bi, Ti) to the server for
storage. This also means that our construction is partially-dynamic, supporting
append-only updates. Modifying a block is not so straightforward due to replay
attacks. However techniques from various fully-dynamic PDP schemes could be
potentially used for this problem (e.g., [13]).

5 Sublinear Construction Using Proofs of Partial Storage

In the previous construction, the server and client run in O(n + δ) time. In this
section we present optimizations that reduce the server and client performance
to O(δ log n). Recall that the proof generation in Fig. 3 has two distinct, linear-
time parts: First, proving that a subset of blocks is kept intact (in particular
the blocks with indices in Kept), and second, computing an IBF on this set of
blocks. We show here how to execute both these tasks in sublinear time using
(i) partial proofs of storage; (ii) a data structure based on segment trees that
the client must prepare during preprocessing.

Proofs of Partial Storage. In our original construction, we prove that a subset
of blocks is kept intact (in particular the blocks with indices in Kept) using
a PDP-style proof, as originally introduced by Ateniese et al. [3]. In our new
construction we will replace that part with a new primitive called proofs of
partial storage. To motivate proofs of partial storage, let us recall how proofs of
storage [26] work.

Proofs of storage provide the same guarantees with PDP-style proofs [3] but
are much more practical in terms of proof construction time. In particular, one
can construct a PoS proof in constant time as follows. Along with the origi-
nal blocks b1, b2, . . . , bn the client outsources an additional n redundant blocks
β1, β2, . . . , βn computed with an error-correcting code such as Reed-Solomon,

632 G. Ateniese et al.

such that any n out of the 2n blocks b1, b2, . . . , bn, β1, β2, . . . , βn can be used
to retrieve the original blocks b1, b2, . . . , bn. Also, the client outsources tags Ti

(as computed in Algorithm Setup in Fig. 3) for all 2n blocks. Now, during the
challenge phase, the client picks a constant-sized subset of random blocks to
challenge (out of the 2n blocks), say τ = 128 blocks. Because the subset is cho-
sen at random every time, the server, with probability at least 1−2−τ , will pass
the challenge (i.e., provide verifying tags for the challenged blocks) only if he
stores at least half of the blocks b1, b2, . . . , bn, β1, β2, . . . , βn—which means that
the original blocks b1, b2, . . . , bn are recoverable.

Unfortunately, we cannot use proofs of storage as described above directly,
since we want to prove that a subset of the blocks is stored intact, and the above
construction applies to the whole set of blocks. In the following we describe how
to fix this problem using a segment-tree-like data structure.

Our New Construction: Using a Segment Tree. A segment tree T is a
binary search tree that stores the set B of n key-value pairs (i, bi) at the leaves
of the tree (ordered by the key). Let v be an internal node of the tree T . Denote
with cover(v) the set of blocks that are included in the leaves of the subtree
rooted on node v. Let also |v| = |cover(v)|. Every internal node v of T has a
label label(v) that stores:

1. All blocks b1, b2, . . . , b|v| contained in cover(v) along with respective tags Ti.
The tags are computed as in Algorithm Setup in Fig. 3;

2. Another |v| redundant blocks β1, β2, . . . , β|v| computed using Reed-Solomon
codes such that any |v| out of the 2|v| blocks b1, b2, . . . , b|v|, β1, β2, . . . , β|v|
are enough to retrieve the original blocks b1, b2, . . . , b|v|. Along with every
redundant block βi, we also store its tag Ti.

3. An IBF Tv on the blocks contained in cover(v);

By using the segment tree, one can compute functions on any subset of n− δ
blocks in O(δ log n) time (instead of taking O(n − δ) time): For example, if
i1, i2, . . . , iδ are the indices of the omitted δ blocks, the desired IBF TK can
be computed by combining (i.e., XORing the dataSum and hashSum fields and
adding the count fields):

– The IBF T1 corresponding to indices from 1 to i1 − 1;
– The IBF T2 corresponding to indices from i1 + 1 to i2 − 1;
– . . .
– The IBF Tδ+1 corresponding to indices from iδ + 1 to in.

Each one of the above IBFs can be computed in O(log n) time by combining
a logarithmic number of IBFs stored at internal nodes of the segment tree and
therefore the total complexity of computing the final IBF TK is O(δ log n). Sim-
ilarly, a partial proof of storage for the lost blocks with indices i1, i2, . . . , iδ can
be computed by returning.

Accountable Storage 633

– A proof of storage corresponding to indices from 1 to i1 − 1;
– A proof of storage corresponding to indices from i1 + 1 to i2 − 1;
– . . .
– A proof of storage corresponding to indices from iδ + 1 to in.

Again, each one of the above proofs of storage can be computed by returning
O(log n) partial proofs of storage so in total, one needs to return O(δ log n) proofs
of storage. Note however that our segment tree increases our space to O(n log n)
and also setting it up requires O(n log n) time. Therefore we have the following:

Theorem 2 (Sublinear δ-AS scheme). Let n be the number of blocks. For
all δ ≤ n, there exists a δ-AS scheme such that: (1) It is correct according to
Definition 2; (2) It is secure in the random oracle model based on the RSA
assumption and according to Definition 3; (3) The proof has size O(δ log n) and
its computation at the server takes O(δ log n) time; (4) Verification at the client
takes O(δ log n) time and requires local state of size O(δ); (5) The space at the
server is O(n log n).

6 Bitcoin Integration

After the client computes the damage d using the AS protocol described in
the previous section, we would like to enable automatic compensation by the
server to the client in the amount of d bitcoins. The server initially makes a
“security deposit” of A bitcoins by means of a special bitcoin transaction that
automatically transfers A bitcoins to the client unless the server transfers d
bitcoins to the client before a given deadline. Here, the amount A is a parameter
that is contractually established by the client and server and is meant to be
larger than the maximum damage that can be incurred by the server.5

We have designed a variation of the AS protocol integrated with Bitcoin that,
upon termination, achieves one of the following outcomes within an established
deadline:

1. If both the server and the client follow the protocol, the client gets exactly d
bitcoins from the server and the server gets back his A bitcoins.

2. If the server does not follow the protocol (e.g., he tries to give fewer than d
bitcoins to the client, fails to respond in a timely manner, or tries to forge an
AS proof), the client gets A bitcoins from the server automatically.

3. If the client requests more than d bitcoins from the server by providing invalid
evidence, the server receives all A deposited bitcoins back and the client
receives nothing.

5 Of course, this is just a simple setting, a proof of concept. Clearly other technical
and financial instruments can be used to improve this approach if committing such
a large amount of A bitcoins is too demanding.

634 G. Ateniese et al.

Primitives Used in Our Protocol. Our protocol is using two primitives,
which we describe informally in the following.

– A trusted and tamper-resilient channel between the client and the server, e.g.,
a bulletin board. This can be easily implemented by requesting all messages
exchanged between the server and the client be posted on the blockchain
(note that it is easy for a party P to post arbitrary data D on the blockchain
by making a transaction to itself and by including D in the body of the
transaction). From now on, we will assume that all messages are posted to
the blockchain creating a history hist.

– A trusted bitcoin arbitrator BA. This is a trusted party that only intervenes
in case of disputes. BA will always examine the history of transactions hist
to assess the situation and determine whether to help the server. In all other
cases it can remain offline.

Bitcoin Transactions. Our protocol uses three non-standard bitcoin transac-
tions:

1. safeGuard(y): This transaction is posted by the server S and it effectively
“freezes” A bitcoins to a hash output y. It can be redeemed by a transaction
(called retBtcs) posted by the server S which provides the preimage x of
y = H(x) or by a transaction (called fuse(t)) signed by both the client and the
server. For the needs of our protocol, fuse(t) has a locktime t. The safeGuard
transaction is the following:

Prev : aTransaction

InputsToPrev : sigS([safeGuard])

Conditions : body, σ1, σ2, x :

H(x) = y ∧ verS(body, σ1)

∨
verS(body, σ1) ∧ verC(body, σ2)

Amount : A B

Locktime : 0

We note here that transaction safeGuard(y) is based on the timed commit-
ment over Bitcoin by Andrychowicz et al. [2], with an important difference: the
committed value x (where y = H(x)) is chosen by the verifier (client) and not
by the committer (server). The server just uses y.

2. retBtcs: Once the server gets a hold of value x, it can post the following
transaction to redeem safeGuard and retrieve his A bitcoins.

Accountable Storage 635

Prev : safeGuard

InputsToPrev : [retBtcs], sigS([retBtcs]), ⊥, x

Conditions : body, σ :

verS(body, σ)

Amount : A B

Locktime : 0

3. safeGuard can also be redeemed by fuse(t), as mentioned before:

Prev : safeGuard

InputsToPrev : [fuse], sigS([fuse]), sigC([fuse]), ⊥
Conditions : body, σ :

verC(body, σ)

Amount : A B

Locktime : t

Protocol Details. We now describe our protocol in detail, as depicted in Fig. 4.
Let S denote the server and C the client. For each step i = 1, . . . , 10, there is a
deadline, ti, to complete the step, where timelock t of the fuse(t) transaction is
>> t10. We recall that, as mentioned in the beginning of this section, all messages
exchanged between the client and the server are recorded on the blockchain,
creating the history hist.

– Step 1: C picks a random secret x and sends the following items to S: (i)
a hash hash = H(TB) of the IBF of the original blocks he stores; (ii) an
encryption EncP(x) of x under BA’s public key, P; (iii) a cryptographic hash
of x, y = H(x); and (iv) a zero-knowledge proof, ZKP1, that H(x) and EncP(x)
encode the same secret x. If ZKP1 does not verify or is not sent within time
t1, S aborts the protocol.

– Step 2: S posts bitcoin transaction safeGuard(y) for A bitcoins. It also sends
to the client a signature of the Fuse(t) transaction, σS = sigS([fuse]). If this
transaction is not posted within time t2 or the signature is not valid or is not
sent within time t2, C aborts the protocol.

– Step 3: S and C run the AS protocol from the previous section. S returns
proof V = {T, S,TK} and blocks b′

1, b
′
2, . . . , b

′
δ for the current blocks he stores,

in the position of the original blocks b1, b2, . . . , bδ that he lost. The client C
computes now the damage d using CheckProof. If CheckProof rejects or S
delays it past time t3, C jumps to Step 9.

– Step 4: C notifies S that the damage is d and sends a zero-knowledge
proof, ZKP2, to S for that. If C fails to do so by t4 or ZKP2 fails to
verify, S jumps to Step 6. We note here that ZKP2 is for the statement
(hash,V, b′

1, b
′
2, . . . , b

′
δ, d, chal): ∃ secret TB such that

636 G. Ateniese et al.

Fig. 4. Integration of the AS protocol with Bitcoin. The dotted lines indicate what
happens when a party is trying to cheat. The rhomboid indicates the safeGuard(y)
transaction (at the bottom of the rhomboid we show the server signature σS on the
fuse(t) transaction) that is redeemed either by retBtcs (arrow 7) or by fuse (arrow 9),
depending on the flow of the protocol.

hash = H(TB)& {bi}δ
i=1 ← CheckProof(pk,TB ,V, chal)& d =

δ∑

i=1

||bi ⊕ b′
i||.

The zero-knowledge proof ZKP2 is needed here since the recovery algorithm
takes as input the sensitive state of the client TB, which we want to hide
from the server—otherwise the server can recover the original blocks himself
and claim that there was no damage.

– Step 5: S sends d bitcoins to C. If S has not done so by time t5, C jumps
to Step 9.

– Step 6: C sends secret x to S. If S has not received x by t6, S contacts BA
and asks the BA to examine the history hist up to that moment. BA checks
hist and if it is valid, BA sends x to S.

– Step 7: If S has secret x, S posts transaction retBtcs.
– Step 8: If transaction retBtcs is valid, S receives A bitcoins before timelock t.
– Step 9: C waits until time t, computes σC = sigS([fuse]) and posts transac-

tion fuse(t) using σC and σS .
– Step 10: If transaction fuse is valid, C receives A bitcoins.

It is easy to see that when the above protocol terminates, one of the three
outcomes described in the beginning of this section is achieved. We emphasize
that BA can determine whether C properly followed the protocol by analyzing
hist. If C has not done so and S reports it, BA will reveal x to S at any point
in time. Also, we note here that for the zero-knowledge proofs ZKP1 and ZKP2,

Accountable Storage 637

we can use a SNARK with zero-knowledge [25], that was recently implemented
and shown to be practical.

Global safeGuard. The protocol above protects the client at each AS challenge.
But the cloud provider could stop interacting, simply disappear, and never be
reachable by the client. Instead of the client aborting, we can use a global safe-
guard transaction at the time the client and the server initiate their business
relationship (i.e., when the client uploads the original file blocks and they both
sign the SLA). This global transaction is meant to protect the client if the server
cannot be reached at all or refuses to collaborate, but creates a scalability prob-
lem given that the server has to escrow a large amount of bitcoins for every
client/customer. We do not address this problem technically but we expect it
can be mitigated through financial mechanisms (securities, commodities, credit,
etc.) typically deployed for traditional escrow accounts.

Removing the Bitcoin Arbitrator. Even though BA is only involved in case
of disputes, it is preferable to remove it completely. Unfortunately, this seems
impossible to achieve efficiently given the limitations of the Bitcoin scripting
language. We sketch in this section two possible approaches to remove the BA.
These will be further explored in future work.

The first approach relies on a secure two-party computation protocol. In a
secure two-party computation protocol (2PC), party A inputs x and party B
inputs y and they want to compute fA(x, y) and fB(x, y) respectively, without
learning each other’s input other than what can be inferred from the output
of the two functions. Yao’s seminal result [31] showed that oblivious transfer
implies 2PC secure against honest-but-curious adversaries. This result can be
extended to generically deal with malicious adversaries through zero-knowledge
proofs or more efficiently via the cut-and-choose method [20] or LEGO and
MiniLEGO [14,24] (other efficient solutions were proposed in [18,30]).

To remove the BA, it is enough to create a symmetric version of our original
scheme where both parties create a safeGuard transaction and then exchange the
secrets of both commitments through a fair exchange protocol embedded into
a 2PC. The secrets must be verifiable in the sense that the fair exchange must
ensure the secrets open the initial commitments or fail (as in “committed 2PC”
by Jarecki and Shmatikov [18]). Unfortunately, generic techniques for 2PC results
in quite impractical schemes and this is the reason why we prefer a practical
solution with an arbiter. An efficient 2PC protocol with Bitcoin is proposed in
[22] but it does not provide fairness since the 2PC protocol can be interrupted
at any time by one of the parties. In the end, since this generic approach is too
expensive in practice, we will not elaborate on it any further in this paper.

Another promising approach to remove the BA is to adopt smart contracts.
Smart contracts are digital contracts that run through a blockchain. Ethereum [1]
is a new cryptocurrency system that provides a Turing-complete language to
write such contracts, which is expected to enable several decentralized appli-
cations without trusted entities. Smart contracts will enable our protocol to
be fully automated without any arbitrators or trusted parties in between. To
use a smart contract to run our protocol, the contract is expected to receive a

638 G. Ateniese et al.

deposit from the server, inputs from both parties, and then it will decide the
money flow accordingly based on the CheckProof result. The contract in that
case will maintain some properties to ensure fair execution, for example both
parties should be incentivized to follow the protocol, and if any party does not
follow the protocol (by aborting for example), there should be a mechanism
to end the protocol properly for the honest party. To make our protocol fit in
the smart contract model, we will need to address the fact that the CheckProof
computation would be too expensive to be performed by the contract, due to
its overhead. In Ethereum for example, the participants must pay for the cost
of running the contract, which is run by the miners.

In order to address the points above, zero knowledge SNARKs [6] could be
employed to help reduce miners’ overhead, and thus reduce the computational
cost of the verification algorithm running on the network, while preserving the
secrecy of the inputs.

7 Evaluation

We prototyped the proposed Accountable Storage (AS) scheme in Python 2.7.5.
Our implementation is open-source6 and consists of 4 K lines of source code. We
use the pycrypto library 2.6.1 [21] and an RSA modulus N of size 1024 bits. We
serialize the protocol messages using Google Protocol Buffers [16] and perform
all the modulo exponentation operations using GMPY2 [17], which is a C-coded
Python extension module that supports fast multiple precision arithmetic (the
use of GMPY2 gave us 60% speedup in exponentiations in comparison with the
regular python arithmetic library).

We divide the prototype in two major components. The first is responsible
for data pre-processing, issuing proof challenges and verifying proofs (including
recover process). The second produces proof every time it receives a challenge.
Both modules utilize the IBF data structure to produce and verify proofs. Our
prototype uses parallel computing via the Python multiprocessing module to
carry out many of the heavy, but independent, cryptographic operations simul-
taneously. We used a single-producer, many-consumers approach to divide the
available tasks in a pool of [8–12] processes-workers. The workers use message
passing to coordinate and update the results of their computations. This app-
roach significantly enhanced the performance of preprocessing as well as the
proof generation and checking phase of the protocol. Our parallel implementa-
tion provides an approximate 5x speedup over a sequential implementation.

Finally note that since it can be easily estimated, we have not evaluated
the Bitcoin part of our protocol which is dominated by the time it takes for
transactions to be part of the blockchain. Nowadays this latency is approximately
10 min.

Experimental Setup: Our experimental setup involves two nodes, one imple-
menting the server and another implementing the client functionality. The two

6 https://github.com/vlekakis/delta-AccountableStorage.

https://github.com/vlekakis/delta-AccountableStorage

Accountable Storage 639

nodes communicate through a Local Area Network (LAN). The two machines
are equipped with an Intel 2.3 Ghz Core i7 processor and have 16 GB of RAM.

Our data are randomly generated filesystems. Every file-system includes dif-
ferent number of equally-sized blocks. The number of blocks ranges from 100 to
500000 and the different sizes of blocks used are 1 KB, 2 KB, 4 KB and 8 KB.
The total filesystem size varies from 100 KB to 4.1 GB. Our experiments consist
of 10 trials of challenge/proof exchanges between the client and the server for
different filesystems. Throughout the evaluation we report the average values
over these 10 trials. For some of the large filesystems consisting of 100000 and
500000 number of blocks, we have estimated the results based on the experiments
in lower filesystems due to computational power limitations.

In our experiments, we select the tolerance parameter δ, which indicates the
maximum amount of data blocks that can be lost, to be equal to log2(n). One
other possible choice of δ is to set it equal to

√
n. We select the logarithm of the

number of blocks as δ, because this provides a harder condition on how many
blocks can be lost or corrupted from the cloud server.

For the IBF construction, we have used the blocks and their generated tags.
The selected number of hash functions used for the IBF construction is k = 6.
This choice of hash functions leads to a very low probability of failure of the
recovery algorithm, which depends on the values of k and δ.

Preprocessing Overheads: We first examine the memory overhead of the pre-
processing phase, which is shown in Table 1. The first column describes the avail-
able number of blocks in a filesystem and the second represents the estimated
total size of the tags needed. The preprocessing memory overhead is proportional
to the number of blocks in a filesystem.

Figure 5 shows the CPU-time-related overheads of the preprocessing of the
protocol. These overheads are divided to tag generation and the creation of
the client state represented by the IBF TB . The tag generation time (Fig. 5a)
increases linearly with both the available number of blocks and the size of each
block. While this cost is significant for large file systems, it is an operation that
client performs only once at the setup phase. On the other hand, the cost of con-
struction of the IBF (Fig. 5b) is estimated to be negligible; the IBF construction
of our biggest filesystem is estimated to take around 42 s.

Table 1. Memory footprint of the AS scheme (KB)

n Tag size (KB) Proof size (KB)

1KB 2KB 4 KB 8 KB

102 32 353 692 1369 2722

103 236 528 1035 2048 4073

104 2644 762 1493 2593 5875

105 24895 937 1898 3526 7226

5 ∗ 105 118326 1077 2182 4054 8308

640 G. Ateniese et al.

Fig. 5. Preprocessing overheads

Fig. 6. Proof generation and proof check (including recover) time

Challenge-Proof Overheads: We now examine memory and CPU-related
overheads for the challenge-proof exchange and the recovery phase. The last
four columns of Table 1 show the proof sizes (in KB) for δ = log2(n), which
increase proportionally to the block size.

Every subgraph of Fig. 6 shows how different block sizes affect the perfor-
mance of the challenge-proof exchange for a given number of blocks. The left bar
in the figure shows the proof generation time and the right bar the proof check

Accountable Storage 641

along that includes the time recover the lost blocks. We notice that larger block
sizes are estimated to increase the time-overhead of challenge-proof exchange. We
also notice that the proof check and in particular the recover process introduces
higher time overhead in comparison to proof generation for small size filesystems
(100 and 1000 number of blocks). This is expected, because the tag verification
(publicly verifiable) in the recover process (in Fig. 2) introduces significant time
overhead compared to proof generation (in Fig. 3) for a small number of blocks.
However, in higher size filesystems, we observe from Fig. 6 that the time over-
head of proof generation increases exponentially and overcomes the proof check
time (including recover process) overhead. This is also expected, because the
number of blocks (denoted by Kept set) used in the proof generation process is
much higher than the number of blocks used in the recover process.

8 Conclusions

In this paper we put forth the notion of accountability in cloud storage. Unlike
existing work such as proof-of-storage schemes and verifiable computation, we
design protocols that respond to a verification failure, enabling the client to
assess the damage that has occurred in a storage repository. We also present a
protocol that enables automatic compensation of the client, based on the amount
of damage, and is implemented over Bitcoin. Our implementation shows that our
system can be used in practice.

Acknowledgments. Research supported in part by an NSF CAREER award CNS-
1652259, NSF grants CNS-1525044, CNS-1526950, CNS-1228639 and CNS-1526631, a
NIST award and by the Defense Advanced Research Projects Agency (DARPA) under
agreement no. AFRL FA8750-15-2-0092. The views expressed are those of the authors
and do not reflect the official policy or position of the Department of Defense or the
U.S. Government.

Appendix

RSA Assumption

Definition 4. Let N = pq be an RSA modulus, where p and q are τ -bit primes.
Given N , e and g, where g is randomly chosen from Z

∗
N and e is a prime of

Θ(τ) bits, there is no PPT algorithm that can output y1/e mod N , except with
probability neg(τ).

Proof of Security of Construction in Fig. 3.

Setup. A chooses parameter δ ∈ [0, n), blocks B = {b1, b2, . . . , bn}
and is given pk and T1, . . . , Tn as output by {pk, sk, state, T1, . . . , Tn} ←
Setup(b1, . . . , bn, δ, 1τ). The random oracle is programmed so that it returns
re
i g

−bi on input i for some random ri, i.e., h(i) = re
i g

−bi mod N .

642 G. Ateniese et al.

Forge. A is given chal ← GenChal(1τ), computes proof of accountability V and
returns V. Suppose L ← CheckProof(pk, sk, state,V, chal). We must show that
with probability ≥ 1 − neg(τ) it is (i) L ⊆ B; and (ii) there exists a PPT
knowledge extractor E that can extract all the remaining file blocks in B − L.

1. Showing L ⊆ B. Note that all blocks in L are output by Algorithm recover
of Fig. 2. In this algorithm a block b′

i can enter L only if its tag verifies.
Suppose now b′

i /∈ B (namely b′
i �= bi) and tage/h(i) = gb′

i for some arbitrary
tag computed by the adversary. But since h(i) = re

i g
−bi , this can be written

as tage/re
i g

−bi = gb′
i which gives gb′

i−bi = (tag/ri)e. Since e is a prime and
bi − b′

i �= 0, there exist α and β such that (b′
i − bi) × α + e × β = 1, giving

g1/e = g−β(tag/ri)e×α, breaking the RSA assumption—see Definition 4.
2. Showing there exists a PPT knowledge extractor E that can extract

all the remaining file blocks in B − L. We now show how to build
an extractor that, after 	 = |B − L| interactions with the adversary, he
can extract the blocks {bi : i ∈ B − L}. The extractor will challenge
the adversary exactly 	 times, each time with different randomness. Let
S1, S2, . . . , S�, T(1), T(2), . . . , T(�) be the sums and tags he receives by A during
each challenge, as in Eq. (2). We have two cases:
(a) Sj =

∑
i∈B−L aijbi, for j ∈ B − L (aij denotes the randomness of the

j-th challenge corresponding to the i-th block). In this case, the extractor
can solve a system of 	 linear equations and retrieve the original blocks
{bi : i ∈ B − L}.

(b) Suppose there exists j ∈ B − L such that Sj �= ∑
i∈B−L aijbi = S.

For simplicity of notation, let’s set T(j) = T and Sj = S̄. Then by the
CheckProof algorithm we have

Te

∏
i∈B−L h(i)ai

= gS̄ .

But since h(i) = re
i g

−bi we have that

gS̄−S =
(

T∏
i∈B−L rai

i

)e

= Ze.

Therefore we have Ze = gS̄−S . Again, since e is prime and S �= S̄ we can
use the same trick as before, and break the RSA assumption. �

References

1. Ethereum: A platform for decentralized applications. www.ethereum.org/
2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-

party computations on bitcoin. In: IEEE SSP (2014)
3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,

D.: Provable data possession at untrusted stores. In: ACM CCS (2007)
4. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-

able data possession. In: SecureComm (2008)

www.ethereum.org/

Accountable Storage 643

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). doi:10.
1007/3-540-48071-4 28

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verify-
ing program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40084-1 6

7. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Comm.
ACM 13, 422–426 (1970)

8. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 15

9. Carter, I.L., Wegman, M.N.: Universal classes of hash functions. In: ACM STOC
(1977)

10. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 279–295. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 17

11. Curtmola, R., Khan, O., Burns, R.C., Ateniese, G.: MR-PDP: multiple-replica
provable data possession. In: ICDCS (2008)

12. Eppstein, D., Goodrich, M.T., Uyeda, F., Varghese, G.: What’s the difference?
Efficient set reconciliation without prior context. In: SIGCOMM (2011)

13. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: ACM CCS (2009)

14. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:
MiniLEGO: efficient secure two-party computation from general assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
537–556. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 32

15. Goodrich, M.T., Mitzenmacher, M.: Invertible Bloom Lookup Tables. ArXiv e-
prints, January 2011

16. Google. Google protocol buffers. www.developers.google.com/protocol-buffers/
17. Van Horsen, C.: Gmpy2: Mupltiple-precision arithmetic for python. www.gmpy2.

readthedocs.org/en/latest/intro.html/
18. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-

ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 6

19. Juels, A., Kaliski Jr. B.S.: PORs: proofs of retrievability for large files. In: ACM
CCS (2007)

20. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 4

21. Litzenberger, D.C.: Pycrypto - the python cryptography toolkit. www.dlitz.net/
software/pycrypto/

22. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via the bitcoin deposits. In: FC (2014)

23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. www.bitcoin.org/
bitcoin.pdf

24. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 22

http://dx.doi.org/10.1007/3-540-48071-4_28
http://dx.doi.org/10.1007/3-540-48071-4_28
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/978-3-642-38348-9_17
http://dx.doi.org/10.1007/978-3-642-38348-9_32
www.developers.google.com/protocol-buffers/
www.gmpy2.readthedocs.org/en/latest/intro.html/
www.gmpy2.readthedocs.org/en/latest/intro.html/
http://dx.doi.org/10.1007/978-3-540-72540-4_6
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
www.dlitz.net/software/pycrypto/
www.dlitz.net/software/pycrypto/
www.bitcoin.org/bitcoin.pdf
www.bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1007/978-3-642-00457-5_22

644 G. Ateniese et al.

25. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: IEEE SSP (2013)

26. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89255-7 7

27. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability.
In: ACM CCS (2013)

28. Stefanov, E., van Dijk, M., Oprea, A., Juels, A.: Iris: a scalable cloud file system
with efficient integrity checks. In: ACSAC (2012)

29. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04444-1 22

30. Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In:
Naor,M. (ed.) EUROCRYPT2007. LNCS, vol. 4515, pp. 79–96. Springer,Heidelberg
(2007). doi:10.1007/978-3-540-72540-4 5

31. Yao, A.C.-C.: How to generate and exchange secrets. In: SFCS (1986)

http://dx.doi.org/10.1007/978-3-540-89255-7_7
http://dx.doi.org/10.1007/978-3-642-04444-1_22
http://dx.doi.org/10.1007/978-3-540-72540-4_5

Maliciously Secure Multi-Client ORAM

Matteo Maffei1, Giulio Malavolta2, Manuel Reinert3(B),
and Dominique Schröder2

1 TU Wien, Wien, Austria
matteo.maffei@tuwien.ac.at

2 Friedrich-Alexander Universität Erlangen-Nürnberg, Nürnberg, Germany
{giulio.malavolta,dominique.schroeder}@fau.de

3 CISPA, Saarland University, Saarbrücken, Germany
reinert@cs.uni-saarland.de

Abstract. Oblivious RAM (ORAM) has emerged as an enabling tech-
nology to secure cloud-based storage services. The goal of this crypto-
graphic primitive is to conceal not only the data but also the access
patterns from the server. While the early constructions focused on a sin-
gle client scenario, a few recent works have focused on a setting where
multiple clients may access the same data, which is crucial to support
data sharing applications. All these works, however, either do not con-
sider malicious clients or they significantly constrain the definition of
obliviousness and the system’s practicality. It is thus an open question
whether a natural definition of obliviousness can be enforced in a mali-
cious multi-client setting and, if so, what the communication and com-
putational lower bounds are.

In this work, we formalize the notion of maliciously secure multi-client
ORAM, we prove that the server-side computational complexity of any
secure realization has to be Ω(n), and we present a cryptographic instan-
tiation of this primitive based on private information retrieval techniques,
which achieves an O(

√
N) communication complexity. We further devise

an efficient access control mechanism, built upon a novel and generally
applicable realization of plaintext equivalence proofs for ciphertext vec-
tors. Finally, we demonstrate how our lower bound can be bypassed by
leveraging a trusted proxy, obtaining logarithmic communication and
server-side computational complexity. We implemented our scheme and
conducted an experimental evaluation, demonstrating the feasibility of
our approach.

1 Introduction

Oblivious RAM. Cloud storage has rapidly become a central component in
the digital society, providing a seamless technology to save large amounts of
data, to synchronize them across multiple devices, and to share them with
other parties. Popular data-sharing, cloud-based applications are e.g., personal
health record management systems (PHRs), like those employed in Austria [22]
and Estonia [20], collaborative platforms (e.g., Google Docs), and credit score

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 645–664, 2017.
DOI: 10.1007/978-3-319-61204-1 32

646 M. Maffei et al.

systems (e.g., Experian, Equifax, and TransUnion in US) are just a few popu-
lar data-sharing, cloud-based applications taking advantage of such features. A
stringent and well-understood security requirement is access control : read and
write access should be granted only to authorized clients.

While access control protects user’s data from other clients, encryption on
the server’s side is needed to obtain privacy guarantees against cloud administra-
tors. Encryption is, however, not enough: as shown in the literature [28,39], the
capability to observe which data are accessed by which users allows the cloud
administrator to learn sensitive information: for instance, it has been shown
that the access patterns to a DNA sequence allow for determining the patient’s
disease. The property of hiding data accesses is called obliviousness and the
corresponding cryptographic construction Oblivious RAM (ORAM): while the
first constructions were highly inefficient [23], recent groundbreaking research
paved the way for a tremendous efficiency boost, exploiting ingenious tree-based
constructions [2,3,8,14,15,24,32,39,44,45,47], server side computations [26,35],
and trusted hardware [5,27,31,42,48].

Except for a few recent noticeable exceptions, discussed below, a fundamental
limitation of all these constructions is that they target a single-client architec-
ture, where the data owner is the only party allowed to read outsourced data,
which does not make them suitable for data sharing services. The fundamental
challenge to solve is to enforce access control and obliviousness simultaneously.
These properties are seemingly contradictory: can the server check the correct-
ness of data accesses with respect to the access control policy at all, if it is not
allowed to learn anything about them?

Multi-Client ORAM. A few recent constructions gave positive answers to
this question, devising ORAM constructions in the multi-client setting, which
specifically allow the data owner to share data with other clients while impos-
ing fine-grained access control policies. Although, at a first glance, these con-
structions share the same high-level goal, they actually differ in a number of
important aspects. Therefore we find it interesting to draw a systematic com-
parison among these approaches (cf. Table 1). First of all, obliviousness is nor-
mally defined against the server, but in a multi-client setting it is important to
consider it against the clients too (MC), since they might be curious or, even
worse, collude with the server. This latter aspect is important, since depending
on the application, the cloud administrator might create fake clients or just have
common interests with one of the legitimate clients. Some constructions allow
multiple data owners to operate on the same ORAM (MD), while others require
them to use disjoint ORAMs: the latter are much less efficient, since if the client
does not want to reveal the owner of the accessed entry (e.g., to protect her
anonymity, think for instance of the doctor accessing the patient’s record), then
the client has to perform a fake access to each other ORAM, thereby introducing
a multiplicative factor of O(m), where m is the number of data owners. Some
constructions require the data owner to periodically access the dataset in order
to validate previous accesses (PI), some others rely on server-side client syn-
chronization, which can be achieved for instance by a shared log on the server,

Maliciously Secure Multi-Client ORAM 647

a gossiping protocol among clients, etc. (CS), while others assume a trusted
proxy (Pr). Among these, gossiping is the mildest assumption since it can be
realized directly on the server side as described by [30]. Another aspect to con-
sider is the possibility for the data owner to specify fine-grained access control
mechanisms (AC). Finally, some constructions enable concurrent accesses to
the ORAM (P). The final three columns compare the asymptotic complexity of
server-side and client-side computations as well as communication.

Table 1. Comparison of the related work supporting multiple clients to our construc-
tions. The abbreviations mean: MC: oblivious against malicious clients, MD: supports
multiple data owners sharing their data in one ORAM, PI: requires the periodic inter-
action with the data owner, CS: requires synchronization among clients, AC: access
control, Pr: trusted proxy, P: parallel accesses, S comp.: server computation complex-
ity, C comp.: client communication complexity, Comm.: communication complexity.

Franz et al. pioneered the line of work on multi-client ORAM, introducing
the concept of delegated ORAM [21]. The idea of this construction, based on
simple symmetric cryptography, is to let clients commit their changes to the
server and to let the data owner periodically validate them according to the
access control policy, finally transferring the valid entries into the actual data-
base. Assuming periodic accesses from the data owner, however, constrains the
applicability of this technique. Furthermore, this construction does not support
multiple data owners. Finally, it guarantees the obliviousness of access patterns
with respect to the server as well as malicious clients, excluding however the
accesses on data readable by the adversary. While excluding write operations is
necessary (an adversary can clearly notice that the data has changed), exclud-
ing read operations is in principle not necessary and limits the applicability of
the obliviousness definition: for instance, we would like to hide the fact that an
oncologist accessed the PHR of a certain patient even from parties with read
access to the PHR (e.g., the pharmacy, which can read the prescription but not
the diagnosis).

648 M. Maffei et al.

More recently, Maffei et al. [33] proposed the notion of group ORAM, in which
the server performs access control by verifying client-provided zero-knowledge
proofs: this approach enables direct client accesses without any interaction with
the data owner and more generic access control policies. The scheme relies on
a gossiping protocol, but malicious clients are considered only in the context of
access control and, indeed, obliviousness does not hold against them.

Another line of work, summarized in the lower part of Table 1, focuses on
the parallelization of client accesses, which is crucial to scale to a large number
of clients, while retaining obliviousness guarantees. Most of them [5,31,42,48]
assume a trusted proxy performing accesses on behalf of users, with TaoS-
tore [42] being the most efficient and secure among them. These constructions do
not formally consider obliviousness against malicious clients nor access control,
although a contribution of this work is to prove that a simple variant of TaoS-
tore [42] guarantees both. Finally, instead of a trusted proxy, BCP-OPRAM [7]
and CLT-OPRAM [10] rely on a gossiping protocol while PrivateFS [49] assumes
a client-maintained log on the server-side, but they do not achieve obliviousness
against malicious clients nor access control. Moreover, PrivateFS guarantees con-
current client accesses only if the underlying ORAM already does so.

To summarize, the progress in the field does not answer a few foundational
questions, which touch the core of the application of ORAM technologies in
cloud-based data-sharing applications. First, is it possible at all to enforce the
obliviousness of data accesses without constraining the security definition or
placing severe system assumptions? If the answer is positive, it would be inter-
esting to know at what computational cost.

Our Contributions. This work answers the questions above, providing a foun-
dational framework for multi-client ORAM. In particular,

– We give for the first time a formal definition of obliviousness against malicious
clients in the multi-client setting. Intuitively, none should be able to determine
which entry is read by which client. However, write operations are oblivious
only with respect to the server and to those clients who cannot read the
modified entry, since clients with read access can obviously notice that the
entry has changed.

– We establish an insightful computational lower bound : in a multi-client setting
where clients have direct access to the database, the number of operations on
the server side has to be linear in the database size. Intuitively, the reason
is that if a client does not want to access all entries in a read operation,
then it must know where the required entry is located in the database. Since
malicious clients can share this information with the server, the server can
determine for each read operation performed by an honest client, which among
the entries the adversary has access to might be the subject of the read, and
which certainly not.

– We present PIR-MCORAM, the first cryptographic construction that ensures
the obliviousness of data accesses as well as access control in a malicious
multi-client setting. Our construction relies on Private Information Retrieval
(PIR) [11] to achieve obliviousness and uses new accumulation technique

Maliciously Secure Multi-Client ORAM 649

based on an oblivious gossiping protocol to reduce the communication band-
width in an amortized fashion. Moreover, it combines public-key cryptography
and zero-knowledge proofs for access control.

– We present a novel technique based on universal pair-wise hash functions [9]
in order to speed up the efficiency of Plaintext Equivalence Proofs, a com-
putationally demanding cryptographic building block of PIR-MCORAM. This
construction is generally applicable and we show that it improves solutions
recently adopted in the multi-client ORAM literature [33] by one order of
magnitude.

– To bypass the aforementioned lower bound, we consider the recently proposed
proxy-based Setting [5,31,42,48,49], which assumes the presence of a trusted
party mediating the accesses between clients and server. We prove, in partic-
ular, that a simple variant of TaoStore [42] guarantees obliviousness in the
malicious setting as well as access control.

– We implement PIR-MCORAM and conduct an experimental evaluation of
our schemes. PIR-MCORAM constitutes a practical solution for databases of
modest size: for instance, DNA encoded in VCF files requires approximately
125MB [40]. Thus, an extended personal health record fits without problems
in a 256MB database, for which a read or write operation in PIR-MCORAM
takes approximately 14 seconds amortized. TaoStore offers much better per-
formance as well as support for parallel accesses, but it assumes a trusted
proxy.

2 A Lower Bound for Maliciously Secure Multi-Client
ORAM

In this section, we study how much computational effort is necessary to securely
realize ORAM in the malicious multi-client setting. Our result shows that any
construction, regardless of the underlying computational assumptions, must
access the entire memory (up to a constant factor) in every operation. Our lower
bound can be seen as a generalization of the result on history independence of
Roche et al. [41], in the sense that they consider a “catastrophic attack” where
the complete state of the client is leaked to the adversary, whereas we allow only
the corruption of a certain subset of clients. Note that, while the bound in [41]
concerns the communication complexity, our result only bounds the computation
complexity on the server side.

Before stating our lower bound, we formalize the notion of Multi-Client
ORAM in the malicious setting. We follow the definitional framework introduced
by Maffei et al. [33], refining the obliviousness definition in order to consider
malicious clients possibly colluding with the server.

2.1 Multi-Client Oblivious RAM

In a Multi-Client ORAM scheme the parties consist of the data owner O, several
clients C1, . . . , Ck, and the server S. The data owner outsources its database DB

650 M. Maffei et al.

to S while granting access to the clients C1, . . . , Ck in a selective manner. This
is expressed by an access control matrix ACM which has an entry ACM(i, idx)
for every client Ci and every entry idx in the database, characterizing which
access right Ci has for entry idx: either no access (⊥), read-only access (R), or
read-write access (RW). We treat ACM as a global variable for the data owner
so as to ease the presentation. Moreover, ACM is only accessible to the data
owner and not to any client. We write o ← A(. . .) to denote that algorithm A on
some input generates output o. Likewise, we write 〈oC , oS〉 ← 〈A(. . .),SA(. . .)〉
to denote that the protocol A executed between the client and the server yields
client output oC and server output oS .

Definition 1 (Multi-Client ORAM [33]). A Multi-Client ORAM scheme Θ
is composed of the following (interactive) ppt algorithms:

(capO,DB) ← gen(1λ, n). The generation algorithm initializes a database DB
of size n and an empty access control matrix ACM. Finally, the algorithm
returns the data owner’s capability capO.

capi ← addCl(capO, i). The input of the add client algorithm is the data owner’s
capability capO and a client identifier i. It appends a row corresponding to
i in ACM such that for all j ∈ {1, . . . , n} : ACM(i, j) = ⊥. The algorithm
outputs the capability for client Ci.

〈⊥,DB′〉 ← 〈addE(capO, idx, data),SaddE(DB)〉. The add entry algorithm takes
as input the data owner’s capability capO , an index idx, and a data data in
interaction with S that takes DB as input. It appends a column corresponding
to idx in ACM such that for all i ∈ {1, . . . , k} : ACM(i, idx) = ⊥, writes data
at position idx in DB, and outputs the modified database DB′ on S.

〈⊥,DB′〉 ← 〈chMode(capO, idx, i, p),SchMode(DB)〉. The change mode algorithm-
takes as input the data owner’s capability capO, some index idx, a client iden-
tifier i, and a permission p ∈ {R,RW,⊥} in interaction with S that takes DB
as input. It updates the entry ACM(i, idx) to p and returns the modified data-
base DB′ on S.

〈data,⊥〉 ← 〈read(idx, capi),Sread(DB)〉. The read algorithm takes as input an
index idx and a client capability capi on the client side and the database DB
on S and returns a data data on the client and generates no output on the
server.

〈data′,DB′〉 ← 〈write(idx, capi, data),Swrite(DB)〉. The write algorithm takes as
input an index idx, a client capability capi, and a data data on the client side
and the database DB on S. Let data′ be the data stored at idx in DB. The
protocol modifies DB at index idx to data. Finally, it returns data′ on the
client side as well as the modified database DB′ on S.

Attacker Model. The data owner is assumed to be trusted, since she is inter-
ested to protect her data. We allow the server to be fully compromised and to
corrupt an arbitrary subset of clients. As explained below, this attacker model
is relaxed when it comes to the integrity of outsourced data, which can only be
achieved by assuming an honest-but-curious server (while still allowing for client
compromise), as discussed below.

Maliciously Secure Multi-Client ORAM 651

Security. A Multi-Client ORAM has four fundamental security properties. The
first three concern access control and are intuitively described below.

Secrecy: only users with at least read permissions on an entry can learn its
content.

Integrity: only users with write permissions on an entry can change its content.
Tamper Resistance: only users with write permissions on an entry can change

its content in a way that the updated entry is considered valid by honest
clients.

The difference between integrity and tamper-resistance is that integrity prevents
unauthorized changes and thus requires an honest-but-curious server to perform
access control, while tamper resistance is a weaker property that allows clients to
detect unauthorized changes a-posteriori and thus can in principle be achieved
even if the server is malicious.

Obliviousness Against Malicious Clients. Intuitively, a Multi-Client
ORAM is secure if the server and an arbitrary subset of clients cannot get
any information about the access patterns of honest clients, other than what
is trivially leaked by the entries that the corrupted clients have read access to.
The original obliviousness definition [33] does not allow the server to corrupt
honest clients: here we extend it to handle static corruption of the clients and,
in order to avoid trivial attacks, we restrict the queries of the adversary to the
write oracle to indices that the set of corrupted clients cannot read.

Definition 2 (Obliviousness against Malicious Clients). A Multi-Client
ORAM Θ is secure against malicious clients, if for all ppt adversaries A the
success probability of A in the following experiment is negligibly close to 1/2.

1. A commits to a set of client identifiers ID.
2. The challenger samples b ∈ {0, 1}, executes (ACM,DB) ← gen(1λ, n) and

forwards DB to A and hands over the capabilities of all the clients ∈ ID to A.
3. The adversary has access to the following interfaces that he can query adap-

tively and in any order.
addClcapO (i): The challenger adds an empty row entry to ACM corresponding

to i.
addEcapO (idx, data): The challenger runs 〈addE(idx, data, capO),A〉 in inter-

action with A.
chModecapO (idx, i, {R,RW,⊥}): The challenger runs 〈chMode(capO, idx, i,

{R,RW,⊥}),A〉 in interaction with A.
read(idx, i): The challenger runs 〈read(idx, capi),A〉 in interaction with A.
write(idx, i, data): The challenger runs 〈write(idx, capi, data),A〉 in interac-

tion with A.
query((op0, op1), (idx0, idx1), (i0, i1), (data0, data1)): The challenger checks in

case that op0 = write or op1 = write if there is an i ∈ ID such that
ACM(i, idx0) �= ⊥ and ACM(i, idx1) �= ⊥, if this is the case the challenger
aborts. Otherwise it executes 〈read(idxb, capib

),A〉 (or 〈write(idxb, capib
,

652 M. Maffei et al.

datab),A〉, depending on the operation) in interaction with A. In case
op0 = write or op1 = write, from this moment on, the queries of A to the
interface chMode on any i ∈ ID and idx0 or idx1 are forbidden.

4. A outputs a bit b′, the challenger returns 1 if b′ = b.

2.2 Formal Result

In the following we state a formal lower bound on the computational complexity
of any ORAM secure against malicious clients. We denote by physical addresses
of a database the memory addresses associated with each storage cell of the
memory. Intuitively, the lower bound says that the server has to access a constant
fraction of the dataset for any read and write operation.

Theorem 1. Let n be the number of entries in the database and Θ be a multi-
client ORAM scheme. If Θ accesses on average o(n) physical addresses for each
read and write operation (over the random coins of the read or write operation,
respectively), Θ is not secure against malicious clients (see Definition 2).

We formally prove this theorem in our full version [34].

2.3 Discussion

Given the lower bound established in the previous section, we know that any
multi-client ORAM scheme that is secure against malicious clients must read and
write a constant fraction of the database on every access. However, the bound
does not impose any restriction on the required communication bandwidth. In
fact, it does not exclude constructions with sublinear communication complexity,
where the server performs a significant amount of computation. In particular,
the aforementioned lower bound calls for the deployment of private information
retrieval (PIR) [11] technologies, which allow a client to read an entry from a
database without the server learning which entry has been read.

The problem of private database modification is harder. A näıve approach
would be to let the client change each entry in the database DB upon every
access, which is however too expensive. Homomorphic encryption might be a
natural candidate to outsource the computation to the server and to reduce
the required bandwidth: unfortunately, Ostrovsky and Skeith III [37] showed
that no private database modification (or PIR writing) scheme with sublinear
communication (in the worst case) can be implemented using algebraic crypto-
graphic constructions, such as linearly homomorphic encryption schemes. This
result does not apply to schemes based on fully-homomorphic encryption, which
is however hardly usable in practice due to the high computation cost associated
with the currently known schemes.

The following sections describe our approach to bypass these two lower
bounds. First we show how to integrate non-algebraic techniques, specifically
out-of-band communication among clients, in order to achieve sublinear amor-
tized communication complexity (Sect. 3). Second, we show how to leverage a

Maliciously Secure Multi-Client ORAM 653

trusted proxy performing the access to the server on behalf of clients in order
to reach a logarithmic overhead in communication and server-side computation,
with constant client-slide computation (Sect. 5).

3 PIR-MCORAM

In this section, we present a high-level description of PIR-MCORAM, a Multi-
Client ORAM scheme based on PIR. The full details can be found in our full
version [34]. Our construction is inspired by Franz et al. [21], who proposed to
augment the database with a stack of modified entries, which is periodically
flushed into the database by the data owner. In our construction, we let each
client Ci maintain its own temporary stack of entries Si that is stored on the
server side in addition to the regular database DB. These stacks contain recent
changes to entries in DB and to entries in other clients’ stacks, which are not
yet propagated to DB. In contrast to the approach by Franz et al. [21], clients
themselves are responsible to flush their stack once it is filled (i.e., after |Si|
many operations), without requiring any intervention of the data owner. An
oblivious gossiping protocol, which can be realized using standard techniques [16,
30], allows clients to find the most up-to-date entry in the database, thereby
obtaining a sublinear communication bandwith even for write operations and
thus bypassing the impossibility result by Ostrovsky and Skeith III [37].

More precisely, when operating on index j, the client performs a PIR read on
DB and on all stacks Si, which can easily be realized since all stacks are stored
on the server. Thanks to the oblivious gossiping protocol, the client knows which
index is the most current one. At this point, the client appends either a dummy
entry (read) or a real entry (write) to its personal stack. If the stack is full, the
client flushes it. Flushing means to apply all changes in the personal stack to the
database. To be oblivious, the client has to ensure that all entries in DB change.
Moreover, for guaranteeing correctness, the client has to ensure that it does not
overwrite entries which are more recent than those in its stack.

After explaining how to achieve obliviousness, we also need to discuss how
to realize access control and how to protect the clients against the server. Data
secrecy (i.e., read access control) is obtained via public-key encryption. Tamper-
resistance (i.e., a-posteriori detection of illegal changes) is achieved by letting
each client sign the modified entry so that others can check that this entry
was produced by a client with write access. Data integrity (i.e., write access
control) is achieved by further letting each client prove to the server that it is
eligible to write the entry. As previously mentioned, data integrity is stronger
than tamper-resistance, but assumes an honest-but-curious server: a malicious
server may collude with malicious clients and thus store arbitrary information
without checking integrity proofs.

3.1 Analysis

We elaborate on the communication complexity of our solution. We assume that
|DB| = N , that there are M clients, and we set the stack length lenS =

√
N

654 M. Maffei et al.

for every client. The worst case for an operation, hence, happens every
√

N -th
operation for a client Ci, meaning that besides extracting the data from the
database and adding an entry to the personal stack, Ci has also to flush the
stack. We analyze the four algorithms independently: extracting data requires
two PIR reads, one on DB and the other on the concatenation of all stacks. Thus,
the overall cost is PIR(N) + PIR(M

√
N). Adding an entry to the personal stack

always requires to upload one entry, independently of whether this replacement
is real or dummy.

Our flushing algorithm assumes that Ci holds
√

N entries and then down-and-
uploads every entry of DB. Thus, the overall complexity is 2N +

√
N . A similar

analysis shows that if the client holds only O(1) many entries, then Ci down-and-
uploads DB but additionally performs a PIR step for every downloaded entry
in its own stack to retrieve a potential replacement, resulting in a complexity of
2N + N · PIR(

√
N).

To conclude, the construction achieves a worst-case complexity of
O(PIR(N) + PIR(M

√
N) + N) and O(PIR(N) + PIR(M

√
N) + NPIR(

√
N))

for O(
√

N) and O(1) client-side memory, respectively. By amortizing the
flush step over

√
N many operations, we achieve an amortized complexity of

O(PIR(N) + PIR(M
√

N) +
√

N) or O(PIR(N) + PIR(M
√

N) +
√

NPIR(
√

N)),
respectively. Since our construction is parametric over the specific PIR proto-
col, we can leverage the progress in this field: at present, the best PIR(N) is
O(log log(N)) [17] and, hence, the amortized cost becomes O(log log(M

√
N) +√

N) or O(log log(M
√

N) +
√

N log log(N)), respectively. Since, in most scenar-
ios, M

√
N < 22

N/2
, we get O(

√
N) and O(

√
N log log(N)).

3.2 Discussion

The construction presented in this section leverages PIR for reading entries and
an accumulated PIR writing technique to replace old entries with newer ones.
Due to the nature of PIR, one advantage of the construction is its possibility
to allow multiple clients to concurrently read from the database and to append
single entries to their stacks. This is no longer possible when a client flushes
her personal stack since the database is entirely updated, which might lead to
inconsistent results when reading from the database. To overcome this draw-
back, we present a fully concurrent, maliciously secure Multi-Client ORAM in
Sect. 5. Another drawback of the flush algorithm is the cost of the integrity
(zero-knowledge) proofs. Since we have to use public-key encryption as the top-
layer encryption scheme for every entry to allow for proving properties about
the underlying plaintexts, the number of proofs to be computed, näıvely imple-
mented, is proportional to the block size. Varying block sizes require us to split
an entry into chunks and encrypt every chunk separately since the message space
of public-key encryption is a constant amount of bits. The zero-knowledge proof
has then to be computed on every of these encrypted chunks. To overcome this
linear dependency, we present a new proof paradigm to make the number of
computed zero-knowledge proofs independent of the block size in Sect. 4.

Maliciously Secure Multi-Client ORAM 655

4 Integrity Proof Revised: The Hash-and-Proof Paradigm

In this section, we focus on the integrity proofs employed in our construction,
presenting a novel and generally applicable cryptographic technique to boost
their efficiency.

Plaintext Equivalence Proofs. To guarantee the integrity of the database,
our construction requires extensive use of proofs showing that the ciphertexts
were correctly rerandomized. In the literature, these proofs are called plaintext-
equivalence-proofs (PEPs) and are the main efficiency bottleneck of our writing
algorithm. Since the block size of an entry is in general much larger than the
message space of the encryption scheme, we have to compute zero-knowledge
proofs over vectors of ciphertexts. In this case, the integrity proof shows for
each of these ciphertext vectors that they have been correctly rerandomized.
The computational cost for these proofs scales linearly with the block size, which
is clearly an undesirable dependency. In fact, this problem is not unique to our
setting but affects any system deploying PEPs over long entries, among others
verifiable secret shuffling [4,25,36] and mix networks [29].

In the following, we put forward a general technique to improve the computa-
tional efficiency of PEPs over ciphertext vectors. Our approach is fully black-box,
non-interactive, and its proof size is independent of the number of ciphertexts
of each entry. Thus, our technique can be used to boost the efficiency of not
only PIR-MCORAM, but also any system based on PEPs. The basic idea behind
our solution is to homomorphically compute a pairwise independent hash func-
tion [9] over the plaintexts of the two vectors and a PEP over the two resulting
ciphertexts. Intuitively, a pairwise independent hash function is a collection of
compressing functions such that the probability of two inputs to yield the same
output is negligibly small in the size of the output domain (over the random
choice of the function). This property ensures that the soundness of the proof is
preserved.

General Problem Description. Let ΠPKE = (GenPKE,E,D,Rnd) be a random-
izable, additively homomorphic public-key encryption scheme and (P,V) be a
zero-knowledge proof system (ZKP) that takes as input two instances of cipher-
texts (c, b) ∈ E(ek ,m)2 for some m ∈ M and outputs a proof π for the statement
∃r : b = Rnd(ek , c, r). Construct a zero-knowledge proof system (P∗,V∗) that
takes as input two vectors of ciphertexts of length n, (c,b) ∈ E(ek ,m)n×2 for
some vector m and a vector r of randomnesses of the same length and outputs a
proof π∗ of the following statement: for all i ∈ {1, . . . , n} there exists a value ri

such that bi = Rnd(ek , ci, ri). The efficiency goal is to make the size of the proof
as well as the invocations of (P,V) independent of n. Knowing the decryption
key dk , this statement is equivalent to the following one: for all i ∈ {1, . . . , n}
we have D(dk , bi) = D(dk , ci).

Our Solution. Let M = Fp be the message space of ΠPKE for some field Fp,
such as the ElGamal or the Paillier encryption scheme [18,38]. We describe our
solution as an honest-verifier Σ-protocol which can be made non-interactive and

656 M. Maffei et al.

resilient against any malicious verifier by applying the Fiat-Shamir heuristic [19].
In the following, E(ek , z0; z1) denotes the encryption of z0 with key ek and ran-
domness z1.

(1) P∗ sends the vectors (c,b) to V∗.
(2) V∗ samples a vector z ∈ F

n+2
p uniformly at random and sends it to P∗.

(3) P∗ computes c′ ← E(ek , z0; z1)
⊗n

i=1 zi+1 ·ci and b′ ← E(ek , z0; z1)
⊗n

i=1 zi+1 ·
bi and runs P on inputs (c′, b′) to obtain π; P∗ sends π to V∗, who can
recompute (c′, b′) and run V on ((c′, b′), π). V∗ returns the output of V.

Security Analysis. In the following we state the formal guarantees of our
techniques.

Theorem 2 (Hash-and-Proof). Let ΠPKE be an additively homomorphic
CPA-secure public-key encryption scheme and let (P,V) be a ZKP for PEPs
over ΠPKE. Then (P∗,V∗) is a ZKP for PEPs over ΠPKE.

Proof. The correctness of ΠPKE and of the ZKP (P,V) imply the correctness of
the protocol described above. The zero-knowledge of the protocol follows from the
zero-knowledge of (P,V). Arguing about the soundness requires a more accurate
analysis: we define as cheat(P∗,V∗) the event where a malicious P∗ fools V∗ into
accepting a proof over a false statement. This event happens with probability

Pr
[
cheat(P∗,V∗)

]
=Pr

[
cheat(P,V) | D(dk , c′) = D(dk , b′)

]

· Pr [D(dk , c′) = D(dk , b′)] +

Pr
[
cheat(P,V) | D(dk , c′) �= D(dk , b′)

]

· Pr [D(dk , c′) �= D(dk , b′)]

where the probabilities are taken over the random coins of P∗ and V∗. By the
soundness of (P,V) we get

Pr
[
cheat(P∗,V∗)

] ≤ 1 · Pr [D(dk , c′) = D(dk , b′)] + μ · Pr [D(dk , c′) �= D(dk , b′)]
≤ μ + Pr [D(dk , c′) = D(dk , b′)]

where μ is a negligible function in the security parameter. Therefore, to prove
soundness, it is sufficient to show that when cheat(P∗,V∗) happens, then the
probability Pr [D(dk , c′) = D(dk , b′)] is a negligible function in the security
parameter. We shall note that, due to the homomorphic properties of ΠPKE,
the resulting plaintext of c′ and b′ are z0 +

∑n
i=1 zi+1D(dk , ci) ∈ Fp, and

z0 +
∑n

i=1 zi+1D(dk , bi) ∈ Fp, respectively. It is easy to see that this corresponds
to the computation of the universal pair-wise hash function h(z) as described
by Carter and Wegman in [9] (Proposition 8). It follows that for all c �= b
the resulting plaintexts of c′ and b′ are uniformly distributed over Fp, thus
Pr [D(dk , c′) = D(dk , b′)] = p−2, which is a negligible function in the security
parameter. This concludes our proof. ��

Maliciously Secure Multi-Client ORAM 657

5 Proxy-Based Realization

Driven by the goal of building an efficient and scaleable Multi-Client ORAM
that is secure against malicious users, we explore the usage of a trusted proxy
mediating accesses between clients and the server, an approach advocated in
recent parallel ORAM constructions [5,42,48]. In contrast to previous works, we
are not only interested in parallel accesses, but also in handling access control
and providing obliviousness against multiple, possibly malicious, clients.
TaoStore [42]. In a nutshell, trusted proxy-based ORAM constructions imple-
ment a single-client ORAM which is run by the trusted entity on behalf of
clients, which connect to it with read and write requests in a parallel fashion.
We leverage the state of the art, TaoStore [42], which implements a variant of
a Path-ORAM [46] client on the proxy and allows for retrieving multiple paths
from the server concurrently. More specifically, the proxy consists of the proces-
sor and the sequencer. The processor performs read and write requests to the
untrusted server: this is the most complex part of TaoStore and we leave it
untouched. The sequencer is triggered by client requests and forwards them to
the processor which executes them in a concurrent fashion.
Our Modifications. Since the proxy is trusted, it can enforce access control.
In particular, we can change the sequencer so as to let it know the access control
matrix and check for every client’s read and write requests whether they are
eligible or not. As already envisioned by Sahin et al. [42], the underlying ORAM
construction can be further refined in order to make it secure against a mali-
cious server, either by following the approach based on Merkle-trees proposed by
Stefanov et al. [46] or by using authenticated encryption as suggested by Sahin
et al. [42]. In the rest of the paper, we call the system TAO-MCORAM.

6 Security and Privacy Results

In the following we report the security results for PIR-MCORAM: those for TAO-
MCORAM follow along the same lines. For the formal definition of the security
properties we refer to [33]. Note that in our proofs we consider the adaptive
version of each definition where the attacker is allowed to spawn and corrupt
clients without restrictions. As a consequence, our instantiation requires us to fix
in advance the number of clients M supported by the construction. Alternatively,
one could consider the selective versions of the security definitions where the
attacker is required to commit in advance to the client subset that he wants to
corrupt. We postpone full proofs to our full version [34].

Theorem 3 (Secrecy). Let ΠPKE be a CPA-secure encryption scheme, then
PIR-MCORAM achieves secrecy.

Theorem 4 (Integrity). Let ΠDS be an existentially unforgeable digital signa-
ture scheme, ZKP be a zero-knowledge proof of knowledge protocol, and ΠPKE be
a CCA-secure encryption scheme, then PIR-MCORAM achieves integrity.

658 M. Maffei et al.

Theorem 5 (Tamper Resistance). Let ΠDS be an existentially unforgeable
digital signature scheme and let ΠPKE be a CCA-secure encryption scheme, then
PIR-MCORAM achieves tamper resistance.

Theorem 6 (Obliviousness against mal. clients). Let PIR be a private
information retrieval scheme, let ΠPKE be a CPA-secure encryption scheme, let
ΠDS be an existentially unforgeable digital signature scheme, and let ZKP be a
zero-knowledge proof of knowledge protocol, then PIR-MCORAM is secure against
malicious clients.

7 Evaluation

In this section, we describe our implementation and report on the experimental
results. We start by reviewing the cryptographic schemes that we deploy: all of
them are instantiated with a security parameter of 128 bits [6].
Cryptographic Instantiations. We deploy ElGamal encryption [18] in a
hybrid fashion to construct an entry in the database. Using the hybrid tech-
nique, we decrease the entry size from O(MB) to O(M + B) since the data
is encrypted only once and the corresponding secret key is encrypted for all
clients with read access. In contrast, we encrypt the signing keys of the Schnorr
signature scheme [43] using the Cramer-Shoup encryption scheme [13]. We use
XPIR [1], the state of the art in computational PIR.

Finally, in order to construct integrity proofs, we use an OR-proof [12] over
a conjunction of plaintext-equivalence proofs [29] (PEP) on the ElGamal cipher-
texts forming one entry and a standard discrete logarithm proof [43] showing that
the client knows the signing key corresponding to the authenticated verification
key. In the homomorphic hash version, the conjunction of PEPs reduces to the
computation of the homomorphic hash plus one PEP. As a matter of fact, since
the public components necessary to verify a proof (the new and old ciphertexts and
the verification key) and the secret components necessary to compute the proof
(the randomness used for rerandomization or the signing key) are independent of
the number of clients, all deployed proofs solely depend on the block size.
Implementation and Experiments. We implemented the cryptographic com-
ponents of PIR-MCORAM in Java and we use a wrapper to GMP to speed up
computations.

We used an Intel Xeon E5-4650L with 2.60 GHz, 8 cores, and 20 MB cache
for the client and server experiments. We performed micro-benchmarks for PIR-
MCORAM while varying the storage size from 32 MB to 2 GB and the block size
from 4 KB to 1 MB, both for the solution with and without the homomorphic
hash computation. We measured partial computation times as well as the end-
to-end access time where we assume a network with 100 Mbit/s downstream
and 10 Mbit/s upstream. In order to show the efficiency of our homomorphic
hash construction and demonstrate its generic applicability, we also compare
GORAM [33] with batched shuffle proofs, as originally presented, with a variant
thereof where we replace the batched shuffle proofs with our homomorphic hash
plus one shuffle proof.

Maliciously Secure Multi-Client ORAM 659

32 128 512 2K
0.1

1

10

Storage in MB

T
im

e
in

se
co

n
d
s

PIR Entry upload

End-to-end

(a) Access without flush, 1
MB block size.

32 128 512 2K

101

102

103

104

Storage in MB

T
im

e
in

se
co

n
d
s

DB download Prove

DB upload Verify

End-to-end

(b) Flush, 1 MB block size.

4 8 16 64 256 1024

11
15

31

132
198

395

Block size in KB

T
im

e
in

se
co

n
d
s

1 GB 256 MB

128 MB

(c) Amortized time, varying
block size.

Fig. 1. The end-to-end running time of an operation in PIR-MCORAM.

Discussion. Figures 1 and 2 report the results for PIR-MCORAM. Figure 1a
shows the end-to-end and partial running times of an access to the ORAM
when the flush algorithm is not executed, whereas Fig. 1b depicts the worst case
running time (i.e., with flush operation). For the example of the medical record
which usually fits into 128 MB (resp. 256 MB for additional files such as X-ray
images), the amortized times per access range from 11 (resp. 15) seconds for 4
KB up to 131 (resp. 198) seconds for 1 MB sized entries (see Fig. 1c).

Figure 2 shows the improvement as we compare the combined proof compu-
tation and proof verification time in the flush algorithm of PIR-MCORAM, first
as described in Sect. 3 and then with the integrity proof based on the universal
homomorphic hash (see Sect. 4). We observe that our expectations are fulfilled:
the larger the block size, the more effect has the universal hash computation
since the number of proofs to compute decreases. Concretely, with 1 MB block
size we gain a speed-up of about 4% for flush operations with respect to the
construction without homomorphic hash.

To demonstrate its general applicability, we instantiate our proof technique
into GORAM [33], which uses so-called batched shuffle proofs, achieving much
better results. In GORAM, clients have to compute integrity proofs, which are
proofs of shuffle correctness–a much more expensive primitive than PEPs. To
overcome the efficiency problem, the authors have developed batched shuffle
proofs: the idea is to homomorphically sum up half of the columns of the data-
base matrix at random and to perform a shuffle proof on the resulting list of
ciphertexts. To achieve soundness, the protocol has to be repeated k = 128 times.
We observe that we can replace batched shuffle proofs by our protocol: clients
compute the homomorphic hash on the old and the new ciphertexts and then
one shuffle proof on the resulting lists of ciphertexts. As shown in Table 2, this
modification speeds up GORAM by one order of magnitude (14x on the client
and 10.8x on the server).

660 M. Maffei et al.

32 128 512 2K 8K
128K 1M4

16
64

256
1024−2

0

2

4

Storage size in MB Block size in KB

Im
p
ro

v
em

en
t

(%
)

Fig. 2. The improvement in percent when comparing the combined proof computation
time on the client and proof verification time on the server for varying storage and
block sizes, once without and once with the universal homomorphic hash.

Table 2. Comparison of GORAM [33] with batched shuffle proofs and GORAM instan-
tiated with our homomorphic hash (HH) variant for 10 users, 1 GB storage, and 8 KB
block size.

Construction Client time Server time

GORAM with k = 128 91.315 s 39.213 s

GORAM with HH 5.980 s 3.384 s

Improvement 14x 10.8x

Finally, our solution TAO-MCORAM only adds access control to the actual
computation of TaoStore’s trusted proxy [42]. Interestingly enough, TaoStore’s
bottleneck is not computation, but communication. Hence, our modifications do
not cause any noticeable slowdown on the throughput of TaoStore. Consequently,
we end up with a throughput of about 40 operations per second when considering
an actual deployment of TAO-MCORAM in a cloud-based setting [42].

8 Conclusion

This work studies the problem of obliviousness in multi-client outsourced storage.
We establish a lower bound on the server-side computational complexity, showing
that any secure realization has to involve at least Ω(n) computation steps. We
further present a novel cryptographic instantiation, which achieves an amortized
communication overhead of O(

√
n) by combining private information retrieval

technologies, a new accumulation technique, and an oblivious gossiping protocol.
Access control is enforced by efficient integrity proofs, which leverage a new
construction for Plaintext Equivalence Proofs based on a homomorphic universal
pair-wise hash function. Finally, we showed how to bypass our lower bound by
leveraging a trusted proxy [42], thereby achieving logarithmic communication
and server side computational complexity.

Maliciously Secure Multi-Client ORAM 661

This work opens up a number of interesting research directions. Among those,
it would be interesting to prove a lower bound on the communication complex-
ity. Furthermore, we would like to relax the obliviousness property in order to
bypass the lower bound established in this paper, coming up with more efficient
constructions and quantifying the associated privacy loss.

Acknowledgements. This research is based upon work supported by the German
research foundation (DFG) through the collaborative research center 1223, by the
German Federal Ministry of Education and Research (BMBF) through the Center
for IT-Security, Privacy and Accountability (CISPA), and by the state of Bavaria
at the Nuremberg Campus of Technology (NCT). NCT is a research cooperation
between the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Tech-
nische Hochschule Nürnberg Georg Simon Ohm (THN). Dominique Schröder is sup-
ported by the German Federal Ministry of Education and Research (BMBF) through
funding for the project PROMISE. Finally, we thank the reviewers for their helpful
comments.

References

1. Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR : private infor-
mation retrieval for everyone. In: Proceedings of the Privacy Enhancing Technolo-
gies Symposium (PETS 2016), pp. 155–174. De Gruyter (2016)

2. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: Proceedings
of ACM Symposium on Theory of Computing (STOC 2010), pp. 181–190. ACM
(2010)

3. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54631-0 8

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 17

5. Bindschaedler, V., Naveed, M., Pan, X., Wang, X., Huang, Y.: Practicing obliv-
ious access on cloud storage: the gap, the fallacy, and the new way forward. In:
Proceedings of the Conference on Computer and Communications Security (CCS
2015), pp. 837–849. ACM (2015)

6. BlueKrypt: Cryptograhpic Key Length Recommendation. www.keylength.com
7. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications. In:

Kushilevitz, E., Malkin, T. (eds.) TCC 2016 Part II. LNCS, vol. 9563, pp. 175–204.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 7

8. Carbunar, B., Sion, R.: Regulatory compliant oblivious RAM. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 456–474. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13708-2 27

9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions (extended
abstract). In: Proceedings of the ACM Symposium on Theory of Computing
(STOC 1977), pp. 106–112. ACM (1977)

10. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 205–234. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 8

http://dx.doi.org/10.1007/978-3-642-54631-0_8
http://dx.doi.org/10.1007/978-3-642-29011-4_17
www.keylength.com
http://dx.doi.org/10.1007/978-3-662-49099-0_7
http://dx.doi.org/10.1007/978-3-642-13708-2_27
http://dx.doi.org/10.1007/978-3-662-49099-0_8

662 M. Maffei et al.

11. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

12. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 19

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

14. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 10

15. Dautrich, J., Stefanov, E., Shi, E.: Burst ORAM: minimizing ORAM response
times for bursty access patterns. In: Proceedings of the USENIX Security Sympo-
sium (USENIX 2014), pp. 749–764. USENIX Association (2014)

16. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proceedings of the Symposium on Principles of Distributed Computing (PODC
1987), pp. 1–12. ACM (1987)

17. Dong, C., Chen, L.: A fast single server private information retrieval protocol
with low communication cost. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014 Part I. LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). doi:10.1007/
978-3-319-11203-9 22

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

20. The EH Foundation. http://www.e-tervis.ee
21. Franz, M., Williams, P., Carbunar, B., Katzenbeisser, S., Peter, A., Sion, R.,

Sotakova, M.: Oblivious outsourced storage with delegation. In: Danezis, G. (ed.)
FC 2011. LNCS, vol. 7035, pp. 127–140. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27576-0 11

22. GmbH, E.: ELGA. https://www.elga.gv.at
23. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
24. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data

via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8 46

25. Groth, J.: A verifiable secret shuffe of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003).
doi:10.1007/3-540-36288-6 11

26. Huang, Y., Goldberg, I.: Outsourced private information retrieval with pricing and
access control. In: Proceedings of the Annual ACM Workshop on Privacy in the
Electronic Society (WPES 2013). ACM (2013)

27. Iliev, A., Smith, S.W.: Protecting client privacy with trusted computing at the
server. IEEE Secur. Priv. 3(2), 20–28 (2005)

http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/978-3-642-19571-6_10
http://dx.doi.org/10.1007/978-3-319-11203-9_22
http://dx.doi.org/10.1007/978-3-319-11203-9_22
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/3-540-47721-7_12
http://www.e-tervis.ee
http://dx.doi.org/10.1007/978-3-642-27576-0_11
http://dx.doi.org/10.1007/978-3-642-27576-0_11
https://www.elga.gv.at
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/3-540-36288-6_11

Maliciously Secure Multi-Client ORAM 663

28. Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: Proceedings of the Annual
Network & Distributed System Security Symposium (NDSS 2012). Internet Society
(2012)

29. Jakobsson, M., Juels, A.: Millimix: mixing in small batches. Technical report, pp.
99–33. DIMACS (1999)

30. Kim, B.H., Lie, D.: Caelus: verifying the consistency of cloud services with battery-
powered devices. In: Proceedings of the IEEE Symposium on Security & Privacy
(S&P 2015), pp. 880–896. IEEE Press (2015)

31. Lorch, J.R., Parno, B., Mickens, J., Raykova, M., Schiffman, J.: Shroud: ensuring
private access to large-scale data in the data center. In: Proceedings of the USENIX
Conference on File and Storage Technologies (FAST 2013), pp. 199–214. USENIX
Association (2013)

32. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: PHANTOM: practical oblivious computation in a secure processor. In:
Proceedings of the Conference on Computer and Communications Security (CCS
2013), pp. 311–324. ACM (2013)

33. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Privacy and access control for
outsourced personal records. In: Proceedings of the IEEE Symposium on Security
& Privacy (S&P 2015). IEEE Press (2015)

34. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Maliciously Secure Multi-
Client ORAM. Cryptology ePrint Archive, Report 2017/329 (2017). eprint.iacr.org

35. Mayberry, T., Blass, E.O., Chan, A.H.: Efficient private file retrieval by combining
ORAM and PIR. In: Proceedings of the Annual Network & Distributed System
Security Symposium (NDSS 2014). Internet Society (2013)

36. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceedings
of Conference on Computer and Communications Security (CCS 2001), pp. 116–
125. ACM (2001)

37. Ostrovsky, R., III, W.E.S.: Algebraic Lower Bounds for Computing on Encrypted
Data. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 14,
no. 022 (2007)

38. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

39. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 27

40. Robinson, R.J.: How big is the human genome? https://medium.com/
precision-medicine/how-big-is-the-human-genome-e90caa3409b0

41. Roche, D.S., Aviv, A., Choi, S.G.: A practical oblivious map data structure with
secure deletion and history independence. In: Proceedings of the IEEE Symposium
on Security & Privacy (S&P 2016). IEEE Press (2016)

42. Sahin, C., Zakhary, V., Abbadi, A.E., Lin, H.R., Tessaro, S.: TaoStore: overcoming
asynchronicity in oblivious data storage. In: Proceedings of the IEEE Symposium
on Security & Privacy (S&P 2016). IEEE Press (2016)

43. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 68

44. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 11

http://www.eprint.iacr.org
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-14623-7_27
http://dx.doi.org/10.1007/978-3-642-14623-7_27
https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0
https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0
http://dx.doi.org/10.1007/3-540-46885-4_68
http://dx.doi.org/10.1007/978-3-642-25385-0_11

664 M. Maffei et al.

45. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: Proceedings
of the Annual Network & Distributed System Security Symposium (NDSS 2012).
Internet Society (2012)

46. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of the
Conference on Computer and Communications Security (CCS 2013). ACM (2013)

47. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: Proceedings of the Confer-
ence on Computer and Communications Security (CCS 2013), pp. 247–258. ACM
(2013)

48. Stefanov, E., Shi, E.: ObliviStore: high performance oblivious cloud storage. In:
Proceedings of the IEEE Symposium on Security & Privacy (S&P 2013), pp. 253–
267. IEEE Press (2013)

49. Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file system. In:
Proceedings of the Conference on Computer and Communications Security (CCS
2012), pp. 977–988. ACM (2012)

Legacy-Compliant Data Authentication
for Industrial Control System Traffic

John Henry Castellanos(B), Daniele Antonioli, Nils Ole Tippenhauer,
and Mart́ın Ochoa

Singapore University of Technology and Design, Singapore, Singapore
{john castellanos,daniele antonioli}@mymail.sutd.edu.sg,

{nils tippenhauer,martin ochoa}@sutd.edu.sg

Abstract. Industrial Control Systems (ICS) commonly rely on unen-
crypted and unauthenticated communication between devices such as
Programmable Logic Controllers, Human-Machine-Interfaces, sensors,
and actuators. In this work, we discuss solutions to extend such environ-
ments with established cryptographic authentication schemes. In partic-
ular, we consider schemes that are legacy compliant in the sense that
authentication data is embedded as additional payload for domain spe-
cific protocols, for example the industrial EtherNet/IP protocol. To that
end, we propose a selective protocol (that signs every critical packet
sent) and a protocol that aggregates groups of packets based on real-time
requirements and the available throughput, for various realistic hardware
configurations. We evaluate our analysis by implementing an authenti-
cated channel in a realistic Water Treatment testbed.

Keywords: Industrial Control Systems · Authentication · Network
security

1 Introduction

Industrial Control Systems (ICS) commonly rely on unencrypted and unauthen-
ticated communication between the industrial devices such as Programmable
Logic Controllers (PLC), Human-Machine-Interfaces (HMI), sensors, and actua-
tors. The use of cryptographic schemes in such devices is often hindered by their
long lifetime, compatibility issues, low processing power of the embedded devices,
and real-time requirements in the communication [9]. Most common industrial
communication protocols do not feature any built-in capabilities for authen-
tication (e.g., Modbus/TCP, EtherNet/IP). In the past, critical infrastructure
control networks’ were isolated from the office and corporate networks, and thus
malware and other advanced attacks did not pose a realistic threat to such con-
trol networks.

Nowadays, with the increased connectivity to general IT infrastructures such
as a LAN, and the Internet itself, attacks such as the well-known Man-in-the-
Middle between ICS devices are more realistic [29]. For ICS communications,
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 665–685, 2017.
DOI: 10.1007/978-3-319-61204-1 33

666 J.H. Castellanos et al.

message integrity is paramount, while confidentiality of messages exchanged is
less important. In particular, if an attacker can alter the values of the sensors or
the commands being sent to the actuators, he could effectively alter the control
of the ICS and potentially cause the malfunctioning of the physical system.

A number of works (e.g., [2,3,5,23,26,31] to name a few) highlight the impor-
tance of securing the networks of ICS. Most of them also remark that by using
cryptography a non negligible overhead can be introduced, and that such systems
usually have strict timing constraints. However, to the best of our knowledge,
no detailed analysis on cryptography-enabled authentication has been reported
so far for ICS under realistic constraints. In particular, data in ICS is also often
passing through intermediate gateways and other industrial network appliances.
For that reason, the solution must be legacy-compliant (which can prevent solu-
tions such as TLS encapsulation).

In this paper, we explore the application of well-known cryptographic prim-
itives to verify authenticity of communication between devices in modern ICS,
embedded as payload in legacy industrial protocols. In particular, we are inter-
ested in solutions that would either be feasible to implement in constrained
legacy devices, or could be provided by low-cost additional devices. The focus
of the paper is to detect manipulations of legitimate traffic by the attacker, and
the presence of new messages introduced by the attacker. If confidentiality is
required, an additional suitable encryption scheme should be used. In addition,
the discussion of consequences of successful detection of message manipulation
attacks is out of scope of this work. The mitigation to such an attack is a subject
on its own, since in general one cannot simply drop incorrectly signed packets:
on one hand, even a single missing packet could have unforeseen consequences in
controlling physical processes, on the other hand if packets are dropped attackers
could easily implement denial of service attacks [15].

In order to maximize the efficiency of legacy-compliant authentication while
preserving security, we propose a basic authentication protocol that signs a sub-
set of critical packets. This is in contrast to closely related work, that usu-
ally focuses on authenticating all of the communication between nodes in ICS
[18,25,28,33]. In addition, we propose a second protocol that aggregates groups
of packets based on the real-time requirements, network throughput, and the
processor capacity for various realistic hardware configurations. We evaluate our
analysis experimentally in an industrial Water Treatment testbed [11] (Secure
Water Treatment, SWaT) by means of additional network components. How-
ever our protocols can be deployed by controller manufacturers as a firmware
modification of existing Ethernet modules.

We summarize our contributions as follows. In this work we: (a) discuss
design options for legacy-compliant basic authentication protocols in the con-
text of ICS networks; (b) perform an experimental performance evaluation of a
number of cryptographic primitives on several hardware platforms; (c) propose
a novel aggregated authentication protocol, adapted to requirements of ICS; (d)
empirically evaluate the proposed protocol in a Water Treatment testbed.

Legacy-Compliant Data Authentication for ICS Traffic 667

2 Preliminaries

In the following we introduce some fundamental notions on Industrial Control
Systems, and introduce the attacker model and the expected security guarantees
of our solution.

Fig. 1. SWaT network architecture.

2.1 Industrial Control Systems

ICSs are a subset of Cyber-Physical Systems that monitor industrial infrastruc-
tures such as Water Treatment systems, nuclear power plants, smart grids, and
electric power distribution systems [22]. Securing a safety-critical ICS against
malicious attackers is crucial to avoid catastrophic events that may result in
natural disasters, economical crises, and loss of human life. The threat model of
ICS often assumes a strong attacker, the system under attack provides a large
attack surface because an ICS may be vulnerable both to cyber-attacks and
physical attacks. Unfortunately, a combination of cyber and physical attacks can
result in a severe damage of the system even without physical access to the
system, e.g., [2,32].

Figure 1 shows an example of the architecture of an ICS network. The network
is layered to logically separate devices and monitored processes. Compared to a
standard corporate network, an ICS network includes a wider range of devices.
The ICS has to connect several older legacy hardware and new hardware, and it
has to manage software with different capabilities and interfaces. In addition, a
traditional ICS network is expected to have a long life time (e.g., twenty years),
and many of its components are unlikely to change or be upgraded over the years.
That is why the protocols we propose in the remainder of the paper target both
high-end ICS devices (able to tolerate the computation overhead), and low-end
ICS devices (with the introduction of an external module that is able to tap into
the ICS network).

Different industrial protocols have been used in ICS. They evolved from
serial communication networks (e.g., RS-485, RS-232) to bus systems (e.g.,

668 J.H. Castellanos et al.

Fieldbus), and then to Ethernet-based communications such as EtherNet/IP
(ENIP) [6]. ENIP is a modern, object-oriented application layer industrial pro-
tocol, that implements the Common Industrial Protocol (CIP) specifications [24]
over the TCP/IP protocol stack. ENIP can be extended to support custom com-
mands and device profiles, and it provides a native compatibility with traditional
TCP/IP based IT corporate network. It is important to notice that our authen-
tication scheme does not depend on the underlying industrial protocol. We use
ENIP as an example protocol as we have a local Water Treatment testbed that
uses ENIP. However, the same scheme should easily translate to other modern
industrial protocols.

2.2 Security Guarantees

In this work, we discuss solutions to provide authenticity of network traffic for
ICS. The solution is not designed to provide confidentiality, and does not prevent
denial of service attacks. The attacker is assumed to be able to eavesdrop, insert,
drop, and manipulate messages on the network. The attacker does not have
access to pre-shared keys, and he is constrained by polynomial computational
power on the size of the key, where the computational hardness assumption are
simular to the ones proposed in [27].

Moreover, one key observation of this work is that not all packets being
transmitted by nodes in ICS need to be authenticated: in the following we will
discuss (using ENIP as an example) how to select a subset of critical packets
that need to be protected, whereas we argue that other packets are less critical
and do not necessarily need to be authenticated since their manipulation does
not pose a threat to ICS.

3 Traffic Authentication for ICS: The SPA Protocol

In this section we introduce a first efficient protocol to guarantee authenticity of
critical communication in ICS. In addition to providing authenticity, the solu-
tion also needs to integrate well into existing systems. In particular, the solution
needs to fulfill real-time requirements and legacy-compliance integration. Note
that as stated in the previous section, we will use ENIP as a running example
to illustrate our protocol, since it is the protocol used in our evaluation set-
ting. Our idea can be applied to other industrial network protocols (i.e. Modbus
TCP [19] and PROFINET [10]), however the implementation details will vary,
essentially because a signature must be appended to certain packets, which is
easily accomplished in ENIP as we will discuss later.

Our solution must be computationally efficient enough to allow resource-
constrained devices (such as PLCs) to sign and verify packets fast enough. In
particular, the solution should be able to handle high volume traffic loads, with-
out introducing high queuing, and processing delay. We start by proposing a
first solution we called SPA (Selective Packet Authentication). The SPA proto-
col relies on a simple algorithm: we assume a setting where two devices, that

Legacy-Compliant Data Authentication for ICS Traffic 669

want to communicate, possess a common pre-shared key, and we propose to sign
only selected outgoing packets using well-known cryptographic algorithms, such
as authenticated signatures schemes [12,14].

This solution is conceptually simple, however it potentially conflicts with the
real-time constraints outlined earlier. In Sect. 4, we discuss our refinement of
this idea, we present a mathematical analysis able to capture the constraints, in
order to guarantee the normal operation of the ICS.

3.1 Legacy-Compliance

ICS often integrate devices that cannot easily be replaced or updated. As a
result, a number of legacy industrial protocols are established that are widely
supported, but do not feature any security capabilities by design. In general, such
protocols allow the reading of distinct memory locations (e.g., in Modbus/TCP)
or tags (in EtherNet/IP) that represent sensor values or similar. We argue that
an upgrade of all such devices in an ICS is costly; therefore an authentication
system needs to impact the existing system as little as possible. In particular,
the use of TLS tunnels to transmit data would not only incur computational
overhead, but could also fail to pass through industrial network appliances or
intermediate gateways. Therefore, we propose to embed the authentication data
as additional payload in the existing industrial protocols. This will ensure that
receivers that are not aware of the authentication scheme can at least process the
normal payload without benefiting from the authentication data. Intermediate
devices that are unaware of the authentication scheme could also just pass along
the authentication data as normal payload. As result, our authentication solution
can be integrated in legacy systems, e.g., by introducing external modules to data
sources, or through firmware modification of Network modules.

3.2 SPA Protocol Description

The intuition behind the SPA protocol is that (a) only a subset of transmitted
messages is security relevant, and (b) selective signing of that subset is more
efficient than signing all messages in the stream. For simplicity, we will refer to
sign as the process of generating a Message Authentication Code using a pre-
shared key for the case of symmetric key cryptography or, a signature using the
counterpart’s public key for the asymmetric case.

Let p be a critical data packet (we discuss how to identify them later in
the context of ENIP). The SPA protocol, shown in Fig. 2, calculates a signature
Sigk{p} of the packet p, generates a new packet p′ = (p,Sigk{p}), and sends it
to B. By using the inverse function VerK (where K = k in the symmetric case
or the corresponding public key otherwise), B verifies the authenticity of the
message as p = Verk{Sigk{p}}. Note that the signature scheme Sig guarantees
that a computationally constrained adversary cannot forge a signature (with
high probability).

We note that to prevent replay attacks, the payload should contain a
timestamp or a counter to identify the ENIP session or packet. Therefore, if

670 J.H. Castellanos et al.

an active adversary replays the message in a future ENIP session, the applica-
tion layer will check the nonce and mark it as invalid. On the other hand, since we
do not sign non-critical packets in the data stream (nor e.g., TCP synchronisa-
tion packets) an attacker could manipulate the content of those messages. Such
an attack is easily detected by orthogonal means [7]. By design, ICS systems
will trigger alarms in case of problems in network connectivity. In particular, we
cannot prevent against denial of service attacks by means of authenticity and
such attacks are out of scope.

Fig. 2. SPA protocol overview: p is a critical message that is signed by the signature
module. q is a non-critical message, which is simply forwarded; δ is the delay introduced
by authentication and verification.

Real-Time Requirements and Backlogs. ICS operate under very strict real-time
operation conditions, with maximal critical response time, very high availability
requirements, and low tolerance for high delay or jitter conditions. As described
before, in order to guarantee the authenticity of messages, we authenticate out-
going packets using a Signature module, and verify incoming packets using a
Verification module respectively. We define g(Δ) as the number of packets gen-
erated by a device in an interval of time Δ, and s(Δ) as the rate at which packets
are being signed. As an example, g(Δ) can be 1000 packets per second if Δ = 1
second, while s(Δ) generally depends on the processing speed, e.g., 300 packets
per second. Similarly we denote r(Δ) the number of packets received by a node
and v(Δ) the number of verifications performed.

In order to be compliant with the real-time requirements of a given system,
essentially one needs to authenticate/verify packets at least as fast at the rate
they are being produced/received, that is g ≤ s and r ≤ v (see Appendix A).

3.3 Application to ENIP-CIP

We now discuss the application of the SPA protocol to Common Industrial Pro-
tocol (CIP) traffic to ensure legacy compliance, leveraging its extension possi-
bilities. SPA payload is given by p = (payload ,ENIPsequencenr ,ENIPsessionid)
based on a critical ENIP packet from A to B. The ENIP session ID is a randomly
generated 32-bit integer and will serve as a counter as discussed in Sect. 3.2. Note
that although 32-bit is a relatively small search space, in this context we do not

Legacy-Compliant Data Authentication for ICS Traffic 671

rely on it for security, but merely to prevent replay attacks. An attacker still
needs to forge a secure MAC or cryptographic signature to bypass verification,
as we will illustrate in Sect. 5.

When replacing the original p with p′ of SPA, we increase the length of any
packet p that we sign. The packet extension must conform to the ENIP standard.
The structure is defined as follows: Type ID : 0x00c1. Length: size of the signature
specified in Bytes. Data: the signature Sigk{p}.

The device receiving p′ will search for the Type ID 0x00c1, verify the content
of the payload, and then remove the signature. In the case of a mismatch, i.e.,
p �= Verk{Sigk{p}} the device will raise an alarm.

Identification of Critical Data. The integrity of messages exchanged in an ICS
system can be protected in different layers of the OSI network stack. We identi-
fied critical data from the pool of CIP services observed in the traffic captures.
In particular, protection is required for data that can affect the normal operation
of the control of a physical process.

The identified critical services are: Read Data (Service 0x4C), Write Data
(Service 0x4D), and Read Tag Fragmented Data (Service 0x52). In Sect. 5, we
discuss in more detail this choice in the context of other CIP services observed
in our Water Treatment testbed. By authenticating critical packets only, we
increase security and minimise the computation overhead.

3.4 Ad-Hoc Protocols vs TLS

We have chosen to focus on ad-hoc protocols at the application layer, rather than
of using TLS [4], for various reasons. Firstly, we want to reduce the computation
overhead, by only authenticating packets that contain critical payloads (such
as commands to actuators and values from sensors). In comparison, while TLS
would sign every packet in a ENIP connection, SPA protocol would only sign
and verify a comparatively small amount of those ignoring packets such as TCP
handshake, EtherNet/IP communication control messages and CIP non critical
service messages, as shown in Fig. 3. We believe that integrity attacks on TCP
handshake and ACK messages can be detected by orthogonal methods. On the
other hand, we want to be backwards compatible with devices that do not sup-
port message authentication, a feature that we achieve by using the extension
capabilities of ENIP. Such a feature would not be achievable by using TLS.

We now discuss performance of SPA vs TLS. Let v the speed in packets
per second that a given cryptographic signature can provide for a given average
packet size. For simplicity we assume that both TCP packets and ENIP packets
are about the same size, although in practice TCP will be slightly bigger. Then
if the number of critical packets is c, then the actual throughput on the total
of generated packets g will be higher, since we only need to sign c · g. Thus,
effectively we will increase the tolerance on the generated packets g by a factor
of c, allowing a maximum of v

c packets per second. This is illustrated in Fig. 3.

672 J.H. Castellanos et al.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Percentage of critical packets to sign

P
k/
s

Min Pk/s required for
CPS correct operation

TLS

SPA

c

v

g

v/c

Fig. 3. The y-axis represents the tolerance to a network constraint’s in packets/second.
The x-axis represents the percentage of critical packets authenticated.

Example. In practice, the amount of sent and received packets is symmetric, as
we will discuss in the following sections. In addition, the signature and verifica-
tion time are similar. Let g = r be 103 packets per second, and let c = 0.4. Let
s = v be 105 packets per second. In this case, cryptography-enabled authenti-
cation does not create backlogs neither for TLS (signing every packet) nor for
SPA since g + r = 2 · 103 < s + v = 2 · 105. This example is based in the
real-time communication constraints of SWaT and the signature and verification
rates for SHA-256 based HMAC on a virtualized ARM similar to the one used
in the SWaT PLCs. A deeper analysis and discussion is presented in Sect. 5.

In sum, the proposed SPA protocol has both advantages and drawbacks in
terms of the authentication goals. We briefly summarized them as:

Advantages. The protocol is conceptually simple and easy to implement and
to integrate into legacy systems by means of an external component as we will
discuss in Sect. 5. Moreover, it gives fine-granularity detection capabilities, since
it can be pointed out which packet was altered in transit with almost instanta-
neous detection times. Additionally, by using the extension capabilities of ENIP,
the protocol is backwards compatible with devices that do not implement a
verification module.

Disadvantages. The main disadvantage of the SPA protocol is that although it is
designed to sign critical packets only, the overheads might still be unacceptable
for devices and/or algorithms with low signature/verification rates. This is the
main motivation for proposing an extended protocol, as we will discuss in the
following section.

4 Extensions: The ASPA Protocol

The SPA protocol presented in the previous section and the constraint analysis,
give us guidelines to determine whether the scheme is feasible, depending on

Legacy-Compliant Data Authentication for ICS Traffic 673

the packet generation rate, packet size, and signature algorithm performance on
links that have a reliable connectivity. However, there exist two limitations to
the practical application of this protocol: first, we would like the protocol to be
used even in scenarios where (for legacy or cost reasons) the underlying hardware
is not as fast as necessary (i.e. in the sense of the signature rate s vs generation
rate g as discussed in the previous section), and second, even faster hardware
might be insufficient for stronger signature algorithms, that are computationally
more expensive.

In particular, strong signature algorithms would enable the use of asym-
metric cryptography, that has several advantages in terms of key management.
For example, the use of public/private keys in asymmetric cryptography allows
dynamic addition of new devices to the system if centrally signed certificates are
used. In addition, the compromise of a single device will only expose a single
private key, instead of exposing a secret key shared between many devices.

Our protocol can be extended to deal with more expensive cryptographic
algorithms and slower CPUs. The intuition behind this extension, called ASPA
(Aggregated Selective Packet Authentication) is the following: typically, authen-
ticated signature schemes are relatively inefficient for short amount of data, but
they get more efficient for large amounts of data. Thus, on average, it is usually
faster to perform an aggregate signature over multiple packets instead of signing
them individually, and as a result the aggregate signature increases the signing
rate s.

4.1 The ASPA Protocol

Let P (T) be the sequence of outgoing packets in the time interval T . Let n
be the expected number of packets in this time E[|P (T)|] = n such that the
typical set is P (T) = {p1, . . . , pn}. In the ASPA protocol, shown in Fig. 4, the
Signature module simply forwards packets pi to B, and in addition accumulates
their payload in a queue. After time T has passed, it signs the accumulated
queue, and sends the aggregated signature together with the sequence number
of the first and the last element of the queue. The Verification module will
forward all received messages to the original destination (without immediately
validating a signature), and in addition store the received messages in a queue

Fig. 4. ASPA overview. pi are critical messages which are aggregated. q is a non-critical
message, thus not authenticated. δ is the delay introduced by authentication.

674 J.H. Castellanos et al.

until the aggregated signature arrives. Then, the verification module can check
whether the signature matches the content of the respective packets received. If
the Verification module cannot validate the signature, an attack was detected.
For example values of T and P (T), we refer to Sect. 5. We note that the ASPA
protocol relies on lower layers (i.e., TCP) to ensure that no message gets lost
during transmission. That will ensure that the verification and signature modules
always have the same view of exchanged messages.

Security Trade-Off. In the first proposed protocol, an attack can be detected
as soon as a spoofed packet with an invalid signature is received. In the ASPA
protocol, we can only detect an attack after T time has passed, and an invalid
signature is received. Depending on the value of T , and the particular ICS sys-
tem, this could be problematic (or not). This is related with the problem of ICS
resilience and reaction time in case of failure, and therefore we see it as orthog-
onal. For most practical applications (see Sect. 5), the values of T will be small
and thus the reaction time will not differ much from the reaction time of the
first protocol.

4.2 Performance Advantage

Symmetric Authentication. Let δ(size, cpu, alg) be the time needed to sign a
packet of size size with algorithm alg on CPU cpu. The signature scheme is
typically based on HMAC and an underlying hash function (such as SHA-256).
In that case, there is a constant b such that δ(b′, cpu, alg) ≈ δ(b, cpu, alg) for
b′ ≤ b. However, for B > b: δ(B, cpu, alg) = δ(b, cpu, alg) +

⌈
B−b

b

⌉
· c where c <

δ(b, cpu, alg). Therefore, given an expected packet number of a certain expected
size, it is more efficient to sign multiple packets instead of just one, in terms of
the rate per interval s. As we will discuss in the next section, the optimization
value converges after a certain number of packets, as is to be expected.

Asymmetric Authentication. In the case of signatures based on asymmetric cryp-
tography (such as ECDSA [12]), typically the payload is first hashed and then an
operation involving the private key is performed on the digest (such as decryp-
tion). Since the cryptographic operation is orders of magnitude slower than the
hashing operation (i.e., hundreds of ms vs. μs in some cases), signing multiple
packets takes almost as long as signing a single packet.

The above described effects on the signing rate s can be observed in the
plotted values for different algorithms and values of n of Fig. 6. Note that a
similar discussion about the signing rate s and the packet generation rate g,
presented in the previous section, also applies for the ASPA protocol. In practise,
a device might have active connections (TCP streams) to m devices at the same
time. As result, there will be m queues QS

Δ,i, possibly signed with different keys.
In that case, the constraint becomes ∀i gi < si, where g =

∑m
i=1 gi. In the

case of ICS such as SWaT, devices typically communicate only with one or two
devices (e.g., m = 2). For the sake of simplicity we assume a single queue in the
following.

Legacy-Compliant Data Authentication for ICS Traffic 675

0 200 400 600 800 1000
Aggregated Packets

P
k/
s

100%

80%

60%

40%

g

v

CPS constraints
SPA
TLS

Fig. 5. The x-axis represents chunks of packets, y-axis tolerance in terms of packets per
second. The step functions represent different percentages of critical packets, segmented
lines various CPS communication constraints. CPU power and packet size are constant.

ASPA vs TLS. In Fig. 5, we illustrate the general case comparison against TLS.
Let v = 1

δ the number of packets per second an ideal implementation of TLS
could sign. By using ASPA to aggregate n packets we can tolerate approximately:
v′ = n

δ+(n−1)·δ′ packets per second, which will be faster than v and will converge
to a constant since: limn→∞ n

δ+(n−1)·δ′ = 1
δ′ . We will discuss empirically this

phenomenon in the evaluation section for various hardware configurations.

Example. Let p = r be 103 packets/second as in the previous example (as
observed by us in SWaT). Let s = v be 300 packets/second using the SPA
protocol of the previous section and ECDSA and a Raspberry Pi3 (for more
details see Sect. 5). In that case, cryptography-enabled authentication clearly
causes backlogs since g + r = 2 · 103 > s + v = 600. As discussed above, signing
one packet takes almost as much time as signing multiple packets, and then we
can implement the ASPA protocol by accumulating chunks of 50 packets (for
T ≈ 30 ms), thus augmenting s to about 1, 5 · 104 s packets per second. This
implies a minimum reaction time to attacks of about 60 ms.

In sum, the ASPA protocol improves the signing and verification rates per
packet (s and v), while at the same time providing good reaction time.

Advantages. The ASPA protocol is useful in situations where signing each packet
individually is not feasible due to slow hardware or constraints of the ICS net-
work. In particular, it offers a significant advantage when signing multiple pack-
ets with ECC based authentication. The ASPA protocol can be used selectively
for critical messages (as in the SPA protocol). Alternatively, it could be used to
provide delayed authentication for all messages, as the amount of data included
in the aggregated signature has a negligible impact on the overall time of creating
the signature.

676 J.H. Castellanos et al.

Disadvantages. The coarse granularity of the authentication potentially can
delay reaction times to attacks, depending on the size T of the signing window.
However in our evaluation we have found that the ideal window for authenti-
cation is a few dozens of packets for most signing algorithms/hardware, which
allows for a fast reaction time in practice. In our experience, actual attacks
require a relatively long interaction with the system in order to influence its
physical state. However, we stress that the subject of reaction to attacks is out
of the scope of this paper and is left for future work.

5 Validation

In this section, we use a real SWaT [11] to obtain realistic examples of real-time
constraints. We investigate the amount of critical traffic shared between devices
in the network, in order to approximate the expected number of packets per
time interval, and the expected size of those packets. Furthermore, we bench-
mark symmetric and asymmetric signature algorithms for a variety of hardware
platforms, and discuss the feasibility of their implementation with respect to
the constraints derived in the previous sections. We use standard algorithms
such as SHA (instead of light-weight algorithms specifically designed for embed-
ded systems) to allow better comparison against TLS. When using light-weight
algorithms, the presented numbers are expected to improve.

5.1 SWaT

SWaT [11] (see Fig. 1) consists of an ICS with a process made up of six stages.
In a nutshell, the process begins by collecting the incoming water in a tank,
then it performs a chemical treatment stage, it filters the treated water through
an Ultrafiltration (UF) system. Afterwards, the water is de-chlorinated using
a combination of chemicals and Ultraviolet lamps, and then fed to a Reverse
Osmosis (RO) stage. A backwash process cleans the membranes in UF using
the water produced by RO. The cyber portion of SWaT consists of a layered
communications network, PLCs, HMIs, SCADA, and a Historian.

The validation focuses on benchmarking integrity, and authenticity controls
in the plant network, that connects the PLCs, the HMI and the SCADA system.
The network is using the EtherNet/IP industrial protocols on top of an (Ether-
net based) TCP/IP network. We performed several network capture by setting
up a mirroring port on the plant network industrial switch. From those cap-
tures we identified ENIP-CIP communications among 21 hosts, through implicit
and explicit messages. Implicit messages (UDP/2222) are used in our plant for
keep-alive signals, while explicit messages (TCP/44818) are used for configuring,
monitoring and controlling the plant stages. The plant performs its communi-
cation to a rate of 16.000 ENIP-CIP messages per second on average over all
stages. About 14,3% of ENIP-CIP connections belong to UDP/2222, and the
rest 85,7% to TCP/44818. We can split TCP connections between TCP session
traffic (42,7%), and CIP explicit messages (42,9%).

Legacy-Compliant Data Authentication for ICS Traffic 677

We focused on CIP explicit messages, and we tried to extract a subset of CIP
services that deals with critical data. Manipulation of those services could affect
the state of the controlled physical process. We selected the following services as
critical: Read Data (Service 0x4C); Write Data (Service 0x4D); Read Tag
Fragmented Data (Service 0x52).

Read Data and Read Tag Fragmented Data. CIP services are classified as critical
data since an attacker might rise a fake alarm in the SCADA system or he might
hide a safety-related event modifying its data on the fly. The Write Data CIP
service is classified as critical because an attacker might directly modify the
behavior of actuators pushing data into PLCs. By selecting CIP services with
critical data, our proposal only signs around 42% of SWaT’s traffic (including
TCP and UDP), avoiding processing and bandwidth overheads for non-critical
data CIP services such as the Get all attributes service.

We performed an in-depth analysis of the capture file in order to estimate
the frequency, and the size of the packets received per second, by an arbitrary
testbed’s device. Table 1 shows a summary of the results targeting PLC2. We
decided to use PLC2 as an upper bound because we estimated that it is the
“busiest” device in our testbed. As you can see from the table, PLC2 sends
1127 packets per second on average, and it receives 1168 packets per second on
average.

Table 1. Frequency and size of critical packets shared by host PLC2 to others.

Sent Received

ENIP message Request 561 Pk/s 607 Pk/s

μ = 63B, σ = 3.36 μ = 69B, σ = 5.32

Response 566 Pk/s 561 Pk/s

μ = 75B, σ = 58.16 μ = 86B, σ = 9.42

Total Pk/s 1127 1168

5.2 Hardware Benchmark

In order to evaluate the efficiency of the underlying primitives, and therefore the
packet signing rate s(t, cpu, alg), we used different types of hardware platforms.

Controllino is an open source Hardware PLC, based on Arduino Mega 2560
board, with an ATmega2560 CPU (16 MHz), 256 KB of flash memory, an Eth-
ernet connector, and two serial interfaces. For our experiments, we used the
spaniakos cryptographic library [8]. ARM We used the QEMU emulator with
the following settings: ARM926EJ-S rev 5 processors family at 530MHz, 256MB
of RAM, Debian 3.2.51 32 bit Operating System, and the libgcrypt-1.6.5 cryp-
tographic library. Raspberry Pi is a single-board computer of credit card-size.
It was initially developed for educational purposes, but because of its low energy

678 J.H. Castellanos et al.

consumption and low cost, it has become into a popular multipurpose hard-
ware. We choose it as a possible hardware to implement the authentication and
integrity mechanism. The characteristics of the Raspberry Pi model 2 (RPi2)
are: Quad-core ARM Cortex-A7 processor at 900 MHz, 1 GB of RAM, 4 USB
ports, 40 GPIO pins and an Ethernet port. The cryptographic library used was
again libgcrypt-1.6.5 [17]. PC We used a workstation with the following spec-
ifications: Intel Core i5-5300U processor at 2.30GHz, 3 GB of RAM, Xubuntu
15.10 64 bit OS, and libgcrypt-1.6.5 as cryptographic library.

Table 2. Benchmark of HMAC-SHA256 and ECDSA signature process for different
packet sizes over 5 types of hardware (rounded values). Times are in μs.

HMAC - Time

Size Controllino ARM RPi2 RPi3 PC

64 B 2.2 · 104 76 53 15 2

128 B 3.3 · 104 78 58 16 2

256 B 5.5 · 104 84 69 18 3

512 B 1 · 105 117 89 32 4

1 KB 1.8 · 105 171 130 35 6

2 KB 3.6 · 105 252 211 58 10

4 KB 7 · 105 474 374 104 18

ECDSA - Time

4 KB N/A 1.5 · 105 1 · 105 3.2 · 104 3.1 · 103

Table 3. Benchmark of performance of HMAC-SHA256 and ECDSA authentication
for different packet sizes and hardware. Average size per packet 73 Bytes from Table 1.

HMAC - Average Pkt/s

Size Contr. ARM RPi2 RPi3 PC

64 B 40 1.1 · 104 1.6 · 104 5.8 · 104 4.4 · 105

128 B 53 2.2 · 104 3 · 104 1.1 · 105 8.8 · 105

256 B 64 4.2 · 104 5 · 104 1.9 · 105 1.2 · 106

512 B 70 6 · 104 7.9 · 104 2.2 · 105 1.7 · 106

1 KB 78 8.2 · 104 1.1 · 105 4 · 105 2.3 · 106

2 KB 78 1.1 · 105 1.3 · 105 4.8 · 105 2.8 · 106

4 KB 80 1.2 · 105 1.5 · 105 5.4 · 105 3 · 106

ECDSA - Average Pkt/s

4 KB N/A 3.7 · 102 5.6 · 102 1.7 · 103 1.8 · 104

We also benchmarked the elliptic curve based ECDSA signing standard. As
discussed previously, the cryptographic operation dominates the execution time

Legacy-Compliant Data Authentication for ICS Traffic 679

of the hashing component of the algorithm. This makes the times for signing
payloads of up to 4KB almost identical to small payloads of 32B. The results
are reported in the last row of Table 2. The resulting s for ASPA for aggregated
signatures of about 58 packets (4KB) is reported in Table 3.

5.3 Discussion

We now provide a summary of our empirical results using different hardware
platforms and cryptographic algorithms combination over our SWaT. In Table 4,
we compare the SPA protocol (first two columns) with the ASPA protocol for
n = 58 packets. As we can see, with a processor such as the one in the Controllino
(16MHz), it is infeasible to cope with the real-time requirements of the SWaT
networks for all algorithms considered. As shown in Fig. 6, and taking as reference
our plant constraints, a symmetric signature is supported by most hardware. On
the other hand, ECC signatures are possible in Raspberry Pi2, Pi3 and PCs
thanks to our extension.

From a communications cost perspective, a signature in HMAC would add
an overhead of 28% in size for an average ENIP packet, while ECDSA would
add about 57%. Since we are only signing critical data, which corresponds to
42% of total traffic, our overhead in bandwidth will be 12% and 24% for HMAC
and ECDSA respectively.

In sum, we have shown that in some cases, there is an advantage on using
aggregation and selectiveness over traditional authenticated tunnels in terms
of efficiency. Although we have shown an example for a concrete testbed and
some hardware configurations, the possible configurations in practice could vary

0 20 40 60 80 100 120
Aggregated Signature

100

101

102

103

104

105

106

107

C
rit
ic
al

P
k/
s

Min Pk/s required for
busiest PLC in Testbed

Controllino
ARM-HMAC
ARM-ECDSA
RPI2-HMAC
RPI2-ECDSA
RPI3-HMAC
RPI3-ECDSA
PC-HMAC
PC-ECDSA

Fig. 6. ASPA performance on various hardware. PLC2, as the busiest, requires 1000
Pk/s for implementing a multi-link authentication process, y-axis is in log scale.

680 J.H. Castellanos et al.

Table 4. Feasibility of algorithms vs. hardware in the SWaT. Slow hardware does not
tolerate the minimum required signing rate even for ASPA. However, thanks to ASPA
we can use RPi2, RPi3 and PCs to implement ECC based authentication.

Sequential Parallel

HMAC ECC HMAC-
ASPA

ECC-
ASPA

HMAC ECC HMAC-
ASPA

ECC-
ASPA

Controllino × × × × × × × ×
ARM � × � × � × � ×
RPi2 � × � � � × � �
RPi3 � × � � � × � �
PC � × � � � × � �

highly. For instance, in a full scale water plant the number of sensors and actu-
ators could be one order of magnitude higher (g = 104), whereas the available
hardware could range between the Controllino (16 MhZ) and the ARM processor
(500 MhZ). Moreover, the underlying cryptographic algorithm could also vary,
thus affecting the concrete performance.

Implementation in SWaT. We have successfully tested the proposed approach
in a link between two PLCs of SWaT using Raspberry PIs and summarize our
implementation efforts in Appendix B.

6 Related Work

In [23], the authors analyze different attacks on PLCs and several protection
techniques. The authors state that the bulk of the security issues in ICS is the
lack of security in the network communications. A public key based authentica-
tion protocol is proposed. However, the authors mention that their techniques
could degrade the performance of the system, and they do not provide any fur-
ther analysis.

A detailed analysis on cryptography-enabled authentication is reported
in [31]. The authors analyze the security of electric power grids and identify
authenticity and integrity as the most important security properties after avail-
ability. Some constraints on the message delays are considered during the analysis
based on the expected message frequency as discussed in industrial standards.

In [1], the authors discuss integrity, authenticity, and authorization policies
of ENIP and CIP. Two security profiles (providing integrity and confidential-
ity) for the ENIP are described and two for CIP (providing authorization and
integrity) are proposed as a future extension. Authors define security profile as a
set of well-defined capabilities to facilitate device interoperability, and end-user
selection of devices with the appropriate security capability. In particular, the

Legacy-Compliant Data Authentication for ICS Traffic 681

CIP authorization profile will provide secure communications between CIP end-
points, to ensure device and user authenticity. Authors describe ENIP over TLS
(for TCP-based communication) and DTLS (for UDP).

Authors propose to implement confidentiality and integrity checks between
paired devices called SCADA Cryptographic Modules (SCM) [33]. They are fea-
tured with two ports (plaintext and ciphertext). While it receives plaintext mes-
sages from a device through the plaintext port, it encrypts the message using
AES and send it to its remote SCM through the ciphertext port. The message
includes a MAC code (HMAC-SHA-1 or CBC-MAC) for integrity verification.
In [28], authors propose a bump-in-the-wire solution to add security features such
as Data privacy and authenticity to ICS communication. The solution suggests
adding two devices (each per peer) into the communication channel (YASIR
transmitter and YASIR receiver). YASIR Transmitter encrypts the message
using AES-CTR, and attach an HMAC-SHA-1 signature. A YASIR Receiver
decrypts and checks the message’s integrity. In the case of integrity violation,
YASIR Receiver adds an error byte to the frame; it guarantees that destination
device discards the final message.

In IP-based communications, authors at [18] introduce a DNP protocol mod-
ification. They propose to assure confidentiality using DES cryptographic prim-
itive and Integrity-Authenticity with HMAC-MD5-96 or HMAC- SHA-1-96.
Their work suggests a change in the DNP’s data structure. It could thwart
their adoption by industry. Recently, researchers create a new MODBUS secu-
rity development module (NMSDM) [25] that replaces MODBUS message. They
propose to use cryptographic algorithms such as RSA, AES and SHA-2 to guar-
antee security properties as confidentiality, integrity, authentication and non-
repudiation. Their proposal is to add a cryptographic buffer on top of PDU,
as part of the TCP payload. Like ours, it allows adding security properties to
the communication without modifying the protocol by itself. Both works [18,25]
search to protect every message in an ICS, and computing overhead of crypto-
graphic implementation are not taken into account.

In automotive applications, authors at [21,30] present authentication tech-
niques called CANAuth and LeiA for CAN bus protocol. Similarly to ICS, CAN
bus systems relies on hard real-time constraints. The authors shows that state of
the art authentication mechanisms for broadcast networks cannot be used due
to time (and storage) constraints. LeiA and CANAuth, however, are specifically
designed for CAN bus systems. A low encryption overhead is also of paramount
importance in Wireless Sensor Network (WSN), e.g., [13,20]. This is mainly due
to bandwidth, latency and energy cost introduced by encryption. Solutions such
as [13] provide authentication, but are not analyzed in the context of real-time
constraints.

To the best of our knowledge, we are the first to propose the aggregated selec-
tive packet authentication protocol in the context of ICS. The idea is inspired
by a delayed authentication scheme for GPS proposed in [16].

682 J.H. Castellanos et al.

7 Conclusions

In this work, we discussed the introduction of efficient legacy-compliant authen-
tication in ICS networks. By design, our protocols are backward compatible with
devices not implementing them, as they transmit authentication data as payload
in legacy industrial protocols.

We have shown that with the advent of inexpensive and fast hardware (such
as the Raspberry Pi), it is feasible to enhance legacy plants with constraints
similar to the ones of SWaT with authentic channels for strong signature algo-
rithms with simple protocols. However, introducing state of the art asymmetric
algorithms (which are advantageous from the key management point of view),
or implementing our solution in slower hardware requires careful performance
trade-offs. In future work, we plan to compare the real-time constraints of SWaT
with constraints found in other ICS test-beds (i.e. smartgrid).

A Appendix: Real-Time Requirements and Backlogs

The delay produced by the signature module can be represented as a queue of
packets pending to be signed after a time interval Δ: QS

Δ = g(Δ) − s(Δ). We
assume an empty queue at the beginning of the time interval Δ. To avoid an
avalanche effect on the packet queue QS

Δ the queue must remain below a certain
constant threshold C: ∀ Δ. QS

Δ < C. In particular, since Δ is arbitrary C ≈ 0
(i.e., ∀ Δ. QS

Δ < 0) and thus: ∀ Δ. g(Δ) < s(Δ). Similarly, if r(Δ) is the number
of expected packets in a time interval Δ, then the number v of verified packets in
this interval must be v(Δ, cpu, alg) > r(Δ) to avoid backlogs of the verification
queue QV

Δ.
s(Δ) depends not only on the time but also on the algorithm used, the CPU

capacity, and the size of the packets. In a fraction of time Δ, the device will
produce not only packets at different rates, but will also nondeterministically
produce packets of different sizes. To simplify our analysis, and without loss
of generality, we thus set Δ = 1 s, and s(cpu, alg) the rate at which packets
of a certain constant expected size can be signed using a certain cpu and a
given signature algorithm alg . We use s, v, g and r to abbreviate the rates per
second of the signing, verification, outgoing (or generated) and incoming packets
respectively.

Parallel versus Sequential Signature and Verification. We are assuming an archi-
tecture where network communications are handled by dedicated hardware. This
avoids sharing the main device CPU (such as the main PLC computing unit),
which is busy computing other control and communication related tasks. In
practice this is usually the case, since communications are often handled by a
dedicated network module. For a parallel implementation of the protocol, where
the signature and verification components have at least a single core each, then
we have effectively two queues that we can consider separate, QS

Δ and QV
Δ. Oth-

erwise, for a sequential implementation of the protocol, an incoming packet that

Legacy-Compliant Data Authentication for ICS Traffic 683

needs to be verified has to potentially wait until an outgoing packet is signed; and
vice versa, an outgoing packet has to wait until a verification is finished. We have
thus the constraints: ∀ Δ. QS

Δ < C ∧ QV
Δ < C ′ which we can simplify by consid-

ering a single queue QΔ = QS
Δ ∪QV

Δ = (g(Δ)− s(Δ))+ (r(Δ)− v(Δ)) < C +C ′.
As above, C + C ′ ≈ 0 and thus: g(Δ) + r(Δ) < s(Δ) + v(Δ). In other words,
the rate of signature and verification in a time interval has to be faster than the
amount of packets sent and received in that same time interval.

B Appendix: Authenticated Link Using Raspberry Pi

We used two (paired) Raspberry Pi3, (as shown in Fig. 7) each with two Ethernet
adapters. We choose a link between two PLCs in our SWaT to perform the test.
The devices were configured as Ethernet bridges and placed as physical Man-in-
the-Middle over the link. This choice was motivated because the source code of
the Network Adapter in the SWaT was unavailable to us (as such proprietary
code is confidential), and we could not directly implement our solution without
additional hardware. However, a vendor could easily deploy our solution.

Fig. 7. Raspberry Pi3 connected between
PLCs.

Once connected, the devices pas-
sively listen to packets from and to the
PLCs. When a critical-data packet
is identified, it is captured and the
ENIP payload is signed with HMAC-
SHA256 algorithm using a pre-shared
key. The concatenation of the cap-
tured packet and its signature is
injected back into the communication
channel.

Similarly, the remote Raspberry
Pi3 is placed as a verification mod-
ule in front of the destination PLC.
Once the verification module identi-
fies a packet coming from its counter-
part, the packet is analysed looking for an attached signature, the signature
is extracted and verified against the ENIP payload using HMAC-SHA256 algo-
rithm with the pre-shared key. The packet is converted back to its original version
and it is delivered to its destination.

We configured four additional variables in the PLCs to store information
about the authentication processes: Signed messages: Number of signed messages
by its cryptographic module; Checked messages: Number of signed message cor-
rectly verified by its cryptographic module; Wrong-signature messages: Number
of signed messages which signature does not correspond to its payload detected
by its cryptographic module; No-signed messages: Messages with critical data
from a peered host with no-attached signature detected by its cryptographic
module.

684 J.H. Castellanos et al.

References

1. Batke, B., Wiberg, J., Dubè, D.: CIP security phase 1 secure transport for Ether-
net/IP. In: ODVA Industry Conference (2015)

2. Cárdenas, A.A., Amin, S.M., Sinopoli, B., Giani, A., Perrig, A., Sastry, S.S.: Chal-
lenges for securing cyber physical systems. In: Workshop on Future Directions in
Cyber-physical Systems Security, DHS, July 2009

3. Cárdenas, A.A., Baras, J.S.: Evaluation of classifiers: practical considerations for
security applications. In: AAAI Workshop on Evaluation Methods for Machine
Learning (2006)

4. Dierks, T.: The transport layer security (TLS) protocol version 1.2 (2008). https://
www.ietf.org/rfc/rfc5246.txt

5. Fletcher, K.K., Liu, X.: Security requirements analysis, specification, prioritization
and policy development in cyber-physical systems. In: Secure Software Integration
Reliability Improvement Companion (SSIRI-C), pp. 106–113 (2011)

6. Galloway, B., Hancke, G.: Introduction to industrial control networks. Commun.
Surv. Tutor. 15(2), 860–880 (2013). IEEE

7. Gomes, N., Mattos, L.: Attacks detection based on IP and TCP protocols violation.
Int. J. Forensic Comput. Sci. 1, 49–56 (2006)

8. Hash libraries for arduino. http://spaniakos.github.io/Cryptosuite/
9. Igure, V.M., Laughter, S.A., Williams, R.D.: Security issues in scada networks.

Comput. Secur. 25(7), 498–506 (2006)
10. P. Inc.: Profinet and it. Technical report, PROFIBUS Nutzerorganisation e.V.

(2008)
11. iTrust: Center for Research in Cyber Security. Secure water treatment test-bed.

http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
12. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-

rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)
13. Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture

for wireless sensor networks. In: Proceedings of the International Conference on
Embedded Networked Sensor Systems, SenSys 04, pp. 162–175. ACM (2004)

14. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: keyed-hashing for message authen-
tication (1997). https://www.ietf.org/rfc/rfc2104.txt

15. Krotofil, M., Cárdenas, A.A., Manning, B., Larsen, J.: CPS: driving cyber-physical
systems to unsafe operating conditions by timing DoS attacks on sensor signals.
In: Proceedings of the Computer Security Applications Conference (ACSAC), pp.
146–155. ACM (2014)

16. Kuhn, M.G.: An asymmetric security mechanism for navigation signals. In:
Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 239–252. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30114-1 17

17. Gnu cryptographic library. https://www.gnu.org/software/libgcrypt/
18. Majdalawieh, M., Parisi-Presicce, F., Wijesekera, D.: DNPSec: distributed network

protocol version 3 (DNP3) security framework. In: Elleithy, K., Sobh, T., Mah-
mood, A., Iskander, M., Karim, M. (eds.) Advances in Computer, Information,
and Systems Sciences, and Engineering, vol. 3, pp. 227–234. Springer, Dordrecht
(2007). doi:10.1007/1-4020-5261-8 36

19. Modbus-IDA. Modbus messaging on tcp/ip implementation guide v1.0b. Technical
report, Modbus Organization (2006)

https://www.ietf.org/rfc/rfc5246.txt
https://www.ietf.org/rfc/rfc5246.txt
http://spaniakos.github.io/Cryptosuite/
http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
https://www.ietf.org/rfc/rfc2104.txt
http://dx.doi.org/10.1007/978-3-540-30114-1_17
https://www.gnu.org/software/libgcrypt/
http://dx.doi.org/10.1007/1-4020-5261-8_36

Legacy-Compliant Data Authentication for ICS Traffic 685

20. Nie, P., Vähä-Herttua, J., Aura, T., Gurtov, A.: Performance analysis of HIP diet
exchange for wsn security establishment. In: Proceedings of the ACM Symposium
on QoS and Security for Wireless and Mobile Networks, Q2SWinet 11, pp. 51–56.
ACM (2011)

21. Radu, A.I., Garcia, F.D.: LeiA: a lightweight authentication protocol for CAN.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9879, pp. 283–300. Springer, Cham (2016). doi:10.1007/
978-3-319-45741-3 15

22. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: 2010 47th ACM/IEEE on Design Automation Confer-
ence (DAC), pp. 731–736, June 2010

23. Sandaruwan, G., Ranaweera, P., Oleshchuk, V.A.: PLC security and critical
infrastructure protection. In: Industrial and Information Systems (ICIIS), pp. 81–
85. IEEE (2013)

24. Schiffer, V., Vangompel, D., Voss, R.: The common industrial protocol (CIP) and
the family of CIP networks. ODVA, Ann Arbor (2006)

25. Shahzad, A., Lee, M., Lee, Y.-K.K., Kim, S., Xiong, N., Choi, J.-Y.Y., Cho, Y.:
Real time MODBUS transmissions and cryptography security designs and enhance-
ments of protocol sensitive information. Symmetry 7(3), 1176–1210 (2015)

26. Slay, J., Miller, M.: Lessons learned from the maroochy water breach. In: Goetz,
E., Shenoi, S. (eds.) ICCIP 2007. IIFIP, vol. 253, pp. 73–82. Springer, Boston, MA
(2008). doi:10.1007/978-0-387-75462-8 6

27. Smart, N., Babbage, S., Catalano, D., Cid, C., Weger, B. d., Dunkelman, O., Ward,
M.: Ecrypt ii yearly report on algorithms and keysizes (2011–2012). In: European
Network of Excellence in Cryptology (ECRYPT II) (2012)

28. Tsang, P.P., Smith, S.W.: YASIR: a low-latency, high-integrity security retrofit
for legacy SCADA systems. In: Jajodia, S., Samarati, P., Cimato, S. (eds.) SEC
2008. ITIFIP, vol. 278, pp. 445–459. Springer, Boston, MA (2008). doi:10.1007/
978-0-387-09699-5 29

29. Urbina, D., Giraldo, J., Tippenhauer, N.O., Cárdenas, A.: Attacking fieldbus com-
munications in ICS: applications to the SWaT testbed. In: Proceedings of Singapore
Cyber Security Conference (SG-CRC), January 2016

30. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth-a simple, backward
compatible broadcast authentication protocol for CAN bus. In: ECRYPT Work-
shop on Lightweight Cryptography, vol. 2011 (2011)

31. Wang, W., Lu, Z.: Cyber security in the smart grid: survey and challenges. Comput.
Netw. 57(5), 1344–1371 (2013)

32. Weinberger, S.: Computer security: is this the start of cyberwarfare? Nature 174,
142–145 (2011)

33. Wright, A.K., Kinast, J.A., McCarty, J.: Low-latency cryptographic protection for
SCADA communications. Acns 3089, 263–277 (2004)

http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-0-387-75462-8_6
http://dx.doi.org/10.1007/978-0-387-09699-5_29
http://dx.doi.org/10.1007/978-0-387-09699-5_29

Multi-client Oblivious RAM Secure Against
Malicious Servers

Erik-Oliver Blass1, Travis Mayberry2(B), and Guevara Noubir3

1 Airbus Group Innovations, Munich, Germany
erik-oliver.blass@airbus.com

2 US Naval Academy, Annapolis, MD, USA
mayberry@usna.edu

3 Northeastern University, Boston, MA, USA
noubir@ccs.neu.edu

Abstract. This paper tackles the open problem whether an Oblivious
RAM can be shared among multiple clients in the presence of a fully mali-
cious server. Current ORAM constructions rely on clients knowing the
ORAM state to not reveal information about their access pattern. With
multiple clients, a straightforward approach requires clients exchanging
updated state to maintain security. However, clients on the internet usu-
ally cannot directly communicate with each other due to NAT and fire-
wall settings. Storing state on the server is the only option, but a mali-
cious server can arbitrarily tamper with that information.

We first extend the classical square-root ORAM by Goldreich and the
hierarchical one by Goldreich and Ostrovsky to add multi-client secu-
rity. We accomplish this by separating the critical portions of the access,
which depend on the state of the ORAM, from the non-critical parts
(cache access) that can be executed securely in any state. Our second
contribution is a secure multi-client variant of Path ORAM. To enable
secure meta-data update during evictions in Path ORAM, we employ
our first result, small multi-client secure classical ORAMs, as a building
block. Depending on the block size, the communication complexity of our
multi-client secure construction reaches a low O(log N) communication
complexity per client, similar to state-of-the-art single-client ORAMs.

1 Introduction

The main metric of an ORAM’s performance, communication overhead, has
improved by orders of magnitude over the last few years. However, at least one
significant hurdle to actual adoption remains: security of modern ORAMs relies
on there being only a single client at all times. While there already exist multi-
client ORAMs secure in the face of a semi-honest server [18], existence of an
ORAM secure against a fully malicious server is still an open question. The
main challenge here stems from the fact that today’s ORAMs modify some of
the data on the server after every access. If a malicious server “rewinds” the data
and presents an old version to a client, further interactions may reveal details
about the access pattern. In single client scenarios, this is typically solved by
c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 686–707, 2017.
DOI: 10.1007/978-3-319-61204-1 34

Multi-client Oblivious RAM Secure Against Malicious Servers 687

storing a small token on the client, such as the root of a hash tree [22]. This
token authenticates and verifies freshness of all data retrieved from the server,
ensuring that no such rewind attack is possible.

In this paper, we address the fundamental problem how multiple clients
can share data stored in a single ORAM. With multiple clients, an authentica-
tion token is not sufficient. Data may not pass one client’s authentication, simply
because it has been modified by one of the other clients. If clients could commu-
nicate with each other using a secure out-of-band channel, then it becomes trivial
to continually exchange and update each other with the most recent token. How-
ever, existence of secure out-of-band communication is often not a reasonable
assumption for modern devices. As we will see, it is the absence of out-of-band-
communication which makes multi-client ORAM technically challenging.

Current solutions for multi-client ORAM work only in the presence of semi-
honest (honest-but-curious) adversaries, which cannot perform rewind attacks
on the clients. Often, this is not a very satisfying model, since rewind attacks
are very easy to execute for real-world adversaries and would be difficult to
detect. Consequently, we only address fully malicious servers. Goodrich et al.
[12], in their paper examining multi-client ORAM, recently proposed as an open
question whether one could be secure for multiple clients against a malicious
server.

Technical Highlights. We introduce the first construction for a multi-client
ORAM and prove access pattern indistinguishability, even if the server is fully
malicious. Our contribution is twofold, specifically:

– We start by focusing on two ORAM constructions that follow a “classi-
cal” approach, the square-root ORAM by Goldreich [8] and the hierarchical
ORAM by Goldreich and Ostrovsky [9]. We adapt these ORAMs for multi-
client security. Our approach is to separate client accesses into two parts:
non-critical portions, which can be performed securely in the presence of a
malicious server and critical portions, which cannot but contains efficient
integrity checks which will reveal any malicious behavior and allow the client
to terminate the protocol.

– The “classical” ORAM constructions have been largely overshadowed by more
recent tree-based ORAMs [23,25]. Consequently, we go on to demonstrate
how a multi-client secure Path ORAM [25] can be constructed. We solve the
key challenge of realizing a multi-client secure version of the read protocol by
storing Path ORAM’s metadata using small “classical” ORAMs as building
blocks. For block sizes in Ω(log4 N), this results in a multi-client ORAM
which has overall communication complexity of O(φ · log N).

Table 1 summarizes asymptotic behavior for our new multi-client ORAMs
and compares them to their corresponding single-client ORAMs.

2 Motivation: Multi-client ORAM

Instead of a single ORAM accessed by a single client, we envision multiple clients
securely exchanging or sharing data stored in a single ORAM. For example, imag-

688 E.-O. Blass et al.

Table 1. Communication and storage worst-case complexity for existing single-client
ORAMs and our new multi-client versions. φ is the number of different clients supported
by the ORAM. Ô denotes amortized complexity.

Communication Storage
Single client Multi client Single client Multi client

Square-root [8] Ô(
√

N) Ô(φ · √
N) O(N) O(φ · N)

(Deamortized)
Hierarchical [9,
15]

O(log3 N) O(φ · log3 N) O(N · log N) O(φ · N · log N)

Tree-based [25] O(log N) O(φ · log N) O(N · log N) O(φ · N · log N)

ine multiple employees of a company that read from and write into the same
database stored at an untrusted server. Similar to standard ORAM security,
sharing data and jointly working on the database should not leak the employees’
access patterns to the server. Alternatively, we can also envision a single per-
son with multiple different devices (laptop, tablet, smartphone) accessing the
same data hosted at an untrusted server (e.g., Dropbox). Again, working on the
same data should not reveal access patterns. Throughout this paper, we con-
sider the terms “multi-client” and “multi-user” to be equivalent. As suggested
by Goodrich et al. [12], we assume that clients all trust each other and leave
expansion of our results for more fine-grained access control as future work. In
the multi-device scenarios above, it is reasonable that clients trust each other
since they belong to a single user.

To provide security, ORAM protocols are stateful. Hiding client accesses to a
certain data block is typically achieved by performing shuffling or reordering of
blocks, such that two accesses are not recognizable as being the same. An obvious
attack that a malicious server can do is to undo or “rewind” that shuffling after
the first access and present the same, original view (state) of the data to the
client when they make the second access. If the client was to blindly execute
their access, and it was the same block of data as the first access, it would result
in the same pattern of interactions with the server that the first access did. The
server would immediately have broken the security of the ORAM scheme. This
is a straightforward attack that can be easily defeated in case of a single client:
as an internal state, the client stores and updates a token for authentication and
freshness, see Ren et al. [22].

However, with two or more clients sharing data in an ORAM, this attack
becomes a new challenge. After watching one client retrieve some data, the
adversary rewinds the ORAM’s state and present the original view to the second
client. If the second client accesses the same data (or not) that the first client
did, the server will recognize it, therefore violating security. Without having
some secure side-channel to exchange authentication tokens after every access,
it is difficult for clients to detect such an attack.

Multi-client Oblivious RAM Secure Against Malicious Servers 689

2.1 Technical Challenges

A multi-client ORAM has to overcome a new technical challenge. Roughly speak-
ing, the server is fully malicious and can present different ORAM states to dif-
ferent clients, i.e., different devices of the same user. As different clients do not
have a direct communication channel to synchronize their state, it is difficult for
them to synchronize on an ORAM state. We expand on this challenge below.

Adversary Model: This paper tackles the scenario of φ trusted clients sharing
storage on a fully malicious server (the adversary). Other works such as Maffei
et al. [18] have addressed the problem against a semi-honest server, but in many
scenarios that may not be sufficient. Real-world attacks that clients need to
defend against include, e.g., insider attacks from a cloud provider hosting the
server and outside hackers compromising the server. Such attacks would allow
for malicious adversarial behavior. In general, there is no strong line between
the two adversarial models that suggests that one is more reasonable to defend
against. To cope with all possible adversaries, it is therefore important to protect
against malicious adversaries, too.

No Out-of-Band Communication: We assume that beyond a single cryp-
tographic key (possibly derived from a password) the clients do not share any
long-term secrets and cannot communicate with each other except through the
malicious server. This matches with existing cloud settings, since most consumer
devices are behind NAT and cannot be directly contacted from the Internet.
Major real-world cryptographic applications, for instance WhatsApp [26] and
Semaphor [24], have all messages between clients relayed through the server for
this reason.

We emphasize that in the malicious setting the server always has the option
to simply stop responding or send purposefully wrong data as a denial-of-service
attack. This cannot be avoided, but is also not a significant problem since it will
be easily detected by clients. In contrast, the attacks we focus on in this paper
are those where the server tries to compromise security without being detected.

2.2 Other Applications

A major application of this work is in supporting private cloud storage that
is accessible from multiple devices. In reality, this is one of the most com-
pelling use cases for cloud storage a la Dropbox, Google Drive, iCloud, etc.
and is a good target for a privacy-preserving solution. Beyond simple storage,
Oblivious RAM is used as a subroutine in other constructions, such as dynamic
proofs of retrievability [3]. Any construction which uses ORAM and wishes to
support multiple clients must rely on an ORAM that is secure for multiple
clients.

Finally, an interesting application comes from the release of Intel’s new SGX-
enabled processors. SGX enables a trusted enclave to run protected code which
cannot be examined from the outside, even by the operating system or hypervisor

690 E.-O. Blass et al.

running on the machine. The major remaining channel for leakage in this system
is in the pattern of accesses that the enclave code makes to the untrusted RAM
lying outside the processor. It has already been noted that Oblivious RAM may
be a valuable tool to eliminate that leakage [5]. Furthermore, it is expected
that systems may have multiple enclaves running at the same time which wish
to share information through the untrusted RAM. This scenario corresponds
exactly with our multi-client ORAM setting, so the solution here could be used
to securely offer that functionality.

2.3 Related Work

Most existing work on Oblivious RAM assumes only a single client. Franz
et al. [7] proposed an solution for multiple clients using the original square-
root ORAM, but relies on a semi-honest server. Goodrich et al. [12] extend that
work to more modern tree-based ORAMs, still relying on a semi-honest server.
Recent work by Maffei et al. [18] supports multiple clients with read/write access
control, but again requires a semi-honest server. Other efficient solutions are pos-
sible with an even weaker security model by using trusted hardware on the server
side [13,17].

There is also a concurrent line of work in Parallel ORAMs which tar-
get ORAMs running on multi-core or multi-processor systems [2,4,20]. These
schemes either do not target malicious adversaries or require constant and con-
tinuous communication between clients to synchronize their state. As stated
above, this is not a viable solution for clients which are not always on or may
be across different networks.

Currently, no solution exists that allows for multiple clients interacting with
a malicious server and without direct client-to-client communication, or constant
polling to create the same effect.

3 Security Definition

We briefly recall standard ORAM concepts. An ORAM provides an interface to
read from and write to blocks of a RAM (an array of storage blocks). It supports
Read(x), to read from the block at address x, and Write(x, v) to write value v to
block x. The ORAM allows storage of N blocks, each of size B.

To securely realize this functionality, an ORAM interacts with a malicious
storage device. Below, we use Σ to represent the interface between a client
and the actual storage device. A client with access to Σ issues Read and Write
requests as needed. We stress that we make no assumptions about how the stor-
age device responds to these requests, and allow for arbitrary malicious behav-
ior. For instance, an adversary could respond to a Read request with old or
corrupt data, refuse to actually perform a Write correctly etc. As related work,
the (untrusted) storage device is part of a server as in envisioned applications
for a (multi-client) ORAM such as outsourced cloud storage.

Multi-client Oblivious RAM Secure Against Malicious Servers 691

Definition 1 (ORAM Operation OP). An operation OP is defined as OP =
(o, x, v), where o = {Read,Write}, x is the virtual address of the block to be
accessed and v is the value to write to that block. v = ⊥ when o = Read.

We now present our multi-client ORAM security definition which slightly
augments the standard, single-client ORAM definition. We emphasize that
clients only interact with the server by read or write operations to a mem-
ory location; there are no other messages sent. Therefore the “protocol” is fully
defined by these patterns of accesses.

Definition 2 (Multi-client ORAM Π). A multi-client ORAM Π =
(Init,ClientInit,Access) comprises the following three algorithms.

1. Init(λ,N,B, φ) initializes Π. It takes as input security parameter λ, total
number of blocks N , block size B, and number of clients φ. Init initializes the
storage device represented by Σ and outputs a key κ.

2. ClientInit(λ,N,B, j, κ) uses security parameter λ, number of blocks N , block
size B, and a secret key κ to initialize client uj. It outputs a client state stuj

.
3. Access(OP, Σ, stuj

) performs operation OP on the ORAM using client uj’s
state stuj

and interface Σ. Access outputs a new state stuj
for client uj.

In contrast to single-client ORAM, a multi-client ORAM introduces the
notion of clients. This is modeled by different per-client states, stui

for client
ui. After initializing the multi-client ORAM with Init, Algorithm ClientInit is
run by each client (with no communication between them) separately and out-
puts their initial local states stui

. The ClientInit function only requires that each
client have a shared key κ, which could be derived from a password. Whenever
client ui executes Access on the multi-client ORAM, they can attempt to update
the multi-client ORAM represented by Σ, and update their own local state stui

,
but not the other clients’ local states.

Finally, we define the security of a multi-client ORAM against malicious
servers. Consider the game-based experiment SecORAM

A,Π (λ) below. In this game,
A has complete control over the storage device and how it responds to client
requests. For ease of exposition, we model this as A outputting their own com-
promised version ΣA of an interface to the storage device. It is this malicious
interface ΣA that clients will subsequently use for their Access operations. Inter-
face ΣA is controlled by the adversary and updates state stA. That is, A learns
all clients’ calls to the interface, therewith the clients’ requested access pattern,
and can adaptively react to clients’ interface requests. To initialize the ORAM,
φ time steps are used to do the setup for each client, then the game continues for
poly(λ) additional steps where the adversary interactively specifies operations
and maliciously modifies the storage.

692 E.-O. Blass et al.

Experiment 1 (Experiment SecORAM
A,Π (λ))

1 b
$← {0, 1}

2 (κ, Σ) ← Init(λ, B, N, φ)
3 for i = 1 to φ do
4 stui ← ClientInit(λ, N, B, κ, i)
5 end
6 (OPφ+1,0, OPφ+1,1, i, stA, ΣA) ← A(λ, N, B, φ, Σ)
7 for j = φ + 1 to poly(λ) do
8 stui ← Access(OPj,b, ΣA, stui)
9 (OPj+1,0, OPj+1,1, i, stA) ← A(P, stA)

10 end
11 b′ ← A(stA)
12 output 1 iff b = b′

In summary, A gets oracle access to the ORAM and can adaptively query
it during poly(λ) rounds. In each round, A selects a client ui and determines
two operations OPj,0 and OPj,1. The oracle performs operation OPb as client ui

with state stui
, interacting with the adversary-controlled ΣA using protocol Π.

Eventually, A guesses b.

Definition 3 (Multi-client ORAM security). An ORAM Π = (Init,Access)
is multi-client secure iff for all PPT adversaries A, there exists a function ε(λ)
negligible in security parameter λ such that

Pr[SecORAM
A,Π (λ) = 1] <

1
2

+ ε(λ).

Our game-based definition is equivalent to ORAM’s standard security defin-
ition with two exceptions: we allow the adversary to arbitrarily change the state
of the on-server storage Σ, and we split the ORAM algorithm into φ different
“pieces” which cannot share state among themselves.

As discussed above, this work assumes that all clients trust each other and
do not conspire. For ease of exposition, we assume that all client share key κ
used for encryption and MAC computations that we will introduce later.

Consistency: An orthogonal concern to security for multi-client schemes is con-
sistency, whether the clients each see the same version of the database when they
access it. Because the clients in our model do not have any way of communicating
except through the malicious adversary, it is possible for A to “desynchronize”
the clients so that their updates are not propagated to each other. Our multi-
client ORAM guarantees that in this case the clients still have complete security
and access pattern privacy, but consistency cannot be guaranteed. This is a well
known problem with the only solution being fork consistency [16], which we
achieve.

4 Multi-client Security for Classical ORAMs

We start by transforming two classical ORAM constructions, the original square-
root solution by Goldreich [8] and the hierarchical one by Goldreich and

Multi-client Oblivious RAM Secure Against Malicious Servers 693

Ostrovsky [9], into multi-client secure versions, retaining the same communi-
cation complexity per client. Our exposition focuses in the beginning on details
for the multi-client square-root ORAM, as the hierarchical ORAM is borrowing
from the same ideas.

Recall that the square-root ORAM algorithm works by dividing the server
storage into two parts: the main memory and the cache, which is of size O(

√
N)).

The main memory is shuffled by a pseudo-random permutation π. Every access
reads the entire cache, plus one block in the main memory. If the block the client
wants is found in the cache, a “dummy” location is read in the main memory,
otherwise the actual location of the target block is read and it is inserted into
the cache for later accesses. After

√
N accesses, the cache is full and the client

must download the entire ORAM and reshuffle it into a fresh state.

Specific Challenge: When considering a multi-client scenario, it becomes easy
for a malicious server to break security of the square-root ORAM. For example,
client u1 can access a block x that is not in the cache, requiring u1 to read
π(x) from main memory and insert it into the cache. The malicious server now
restores the cache to the state it was in before u1’s access added block x. If a
second client u2 also attempts to access block x, the server will now observe that
both clients read from the same location π(x) in main memory and know that u1

and u2 have accessed the same block (or not). Without the clients having a way
to communicate directly with each other and pass information that allows them
to verify the changes to the cache, the server can always “rewind” the cache
back to a previous state. This will eventually force one client to leak information
about their accesses.

Rationale: Our approach for multi-client security is based on the observation
that the cache update part of the square-root solution is secure by itself. Updating
the cache only involves downloading the cache, changing one element in it, re-
encrypting, and finally storing it back on the server. Downloading and later
uploading the cache implies always “touching” the same

√
N blocks. This is

independent of what the malicious server presents to a client as Σ and also
independent of the block being updated by the client. Changing values inside
the cache cannot leak any information to the server, as its content is always newly
IND-CPA encrypted. Succinctly, being similar to a trivial ORAM, updating a
cache is automatically multi-client secure.

However, reading can leak information. Reading from the main ORAM is
conditional on what the client finds in the cache. We call this part the criti-
cal part of the access, and the cache update correspondingly non-critical. To
counteract this leakage, we implement the following changes to enable multiple
clients for the square-root ORAM:

1. Separate ORAMs: Instead of a single ORAM, we use a sequence of
ORAMs, Σ = ORAM1,ORAM2, . . . ,ORAMφ, one for each client. Client ui

will perform the critical part of their access only on ORAMi’s main memory

694 E.-O. Blass et al.

Input: Storage interface Σ, Security parameter λ, number of blocks in each
ORAM N , block size B, client number i, key κ

Output: Client state stui

1 Generate permutation πi,0 from key κ;

2 Initialize
√

N + N main memory blocks (size B, shuffled with πi,0) and
√

N
cache blocks;

3 Set cache counter χi = 0; Set epoch counter γi = 0;
4 datai = Encκ(main memory)||Encκ(cache||χi||γi);
5 maci = MACκ(Encκ(cache||χi||γi));
6 ORAMi = datai||maci;

7 On Σ, replace the ith ORAM by ORAMi;
8 output stui = {κ, χi};

Algorithm 1. ClientInit(Σ,λ,N,B, i, κ), initialize client square-root ORAM

and cache. Thus, each client can guarantee they will not read the same address
from their ORAM’s main memory twice. However, any change to the cache
as part of ORAM Read(x) or Write(x, v) operations will be written to every
ORAM’s cache. Updating the cache on any ORAM is already guaranteed to
be multi-client secure and does not leak information.

2. Authenticated Caches: For each client ui to guarantee that they will not
repeat access to the main memory of ORAMi, the cache is stored together
with an encrypted access counter χ on the server. Each client stores locally
a MAC over both the cache and the encrypted access counter χ of their
own ORAM. Every access to their own cache increments the counter and
updates the MAC. Since clients read only from their own ORAMs, and they
can always verify the counter value for the last time that they performed a
read, the server cannot roll back beyond that point. Two reads will never be
performed with the cache in the same state.

4.1 Details

We detail the above ideas in two algorithms: Algorithm1 shows the per client
initialization procedure ClientInit, and Algorithm2 describes the way a client
performs an Access with our multi-client secure square-root ORAM. The Init
algorithm is trivial in our case, as it initializes Σ to φ empty arrays ORAMj .
Each array is of size N + 2 · √

N blocks, each block has size B bits.
Before explaining ClientAccess, we first introduce the notion of an epoch. In

general, after
√

N accesses to a square-root ORAM, its cache is “full”, and the
whole ORAM needs to be re-shuffled. Re-shuffling requires computing a new
permutation π. Per ORAM, a permutation can be used for

√
N operations,

i.e., one epoch. The next
√

N operations, i.e., the next epoch, will use another
permutation and so on. In the two algorithms, we use an epoch counter γi.
Therewith, πi,γi

denotes the permutation of client ui in ORAMi’s epoch γi. For

Multi-client Oblivious RAM Secure Against Malicious Servers 695

Input: Mult-client ORAM Σ, address x, new value v, client ui, stui = {κ, χi}
Output: Value of block x, new state stui

1 From ORAMi in Σ: read ci = Encκ(cache||χi||γi) and maci;
2 mac′

i = MACκ(ci);
3 if mac′

i �= maci then output Abort;
4 Decrypt ci to get cache and counter χ′

i;
5 if χ′

i < χi then output Abort;
6 if block x �∈ cache then
7 Read and decrypt block πi,γi(x) from ORAMi’s main memory;
8 else
9 Read next dummy block from ORAMi’s main memory;

10 if v = ⊥ then // operation is a Read
11 ν ← existing value of block x;
12 else // operation is a Write
13 ν ← v ;
14 Append block (x, ν) to cache;
15 if cache is full then
16 γi = γi + 1; Compute new permutation πi,γi ;
17 Read and decrypt ORAMi’s main memory;
18 Shuffle cache and main memory using πi,γ ;
19 Update ORAMi with Encκ(main memory);

20 χi = χ′
i + 1; maci = MACκ(Encκ(cache||χi||γi));

21 Update ORAMi with Encκ(cache||χi||γi) and maci;
22 for j �= i do // for all ORAMj �= ORAMi

23 Read and decrypt cache and χj from ORAMj ; Read and verify maci from
ORAMj ;

24 Append block (x, ν) to cache;
25 if cache is full then
26 γj = γj + 1; Compute new permutation πj,γj ;
27 Read and decrypt ORAMj ’s main memory;
28 Shuffle cache and main memory using πj,γj ;
29 Update ORAMj with Encκ(main memory);

30 macj = MACκ(Encκ(cache||χj ||γj));
31 Update ORAMj with Encκ(cache||χj ||γj) and macj ;

32 end
33 output (ν, stui = {κ, χi});

Algorithm 2. Access(OP, Σ, stui
), Read,Write for multi-client square-root

ORAM

any client, to be able to know the current epoch of ORAMi, we store γi together
with the ORAM’s cache on the server.

On a side note, we point out that there are various ways to generate pseudo-
random permutations πi,γi

on N elements in a deterministic fashion. For exam-
ple, in the a cloud context, one can use PRFκ(i||γi) as the seed in a PRG
and therewith perform Knuth’s Algorithm P (Fisher-Yates shuffle) [14]. Alter-
natively, one can use the idea of random tags followed by oblivious sorting by
Goldreich and Ostrovsky [9].

696 E.-O. Blass et al.

In addition to the epoch counter, we also introduce a per client cache counter
χi. Using χi, client ui counts the number of accesses of ui to the main memory
and cache of their own ORAMi. After each access to ORAMi by client ui, χi

is incremented. Each client ui keeps a local copy of χi and therewith verifies
freshness of data presented by the server. As we will see below, this method
ensures multi-client ORAM security. Note in Algorithm2 that a client uj never
increases χi of another client ui. Only ui ever updates χi.

In our algorithms, Encκ is an IND-CPA encryption such as AES-CBC. For
convenience, we only write Encκ(main memory), although the main memory
needs to be encrypted block by block to allow for the retrieval of specific
blocks. Also, for the encryption of main memory blocks, Encκ offers authen-
ticated encryption such as encrypt-then-MAC.

A client can determine whether a cache is full in Algorithm 2 by the conven-
tion that empty blocks in the cache decrypt to ⊥. As long as there are blocks in
the cache remaining with value ⊥, the cache is not full.

ClientInit: Each client runs the ClientInit algorithm to initialize their ORAM.
The server stores the ORAMs (with MACs) computed with a single key κ. Each
client receives their state from the ClientInit algorithm, comprising the cache
counter. Note that although not captured in the security definition, our scheme
also allows for dynamic adding and removing of clients. Removing is as simple as
just asking the server to delete one of the ORAMs, and adding could be done by
running ClientInit, but instead of initializing the blocks to be empty, the client
first downloads a copy of another client’s ORAM to get the most recent version
of the database.

Access: After verifying the MAC for ORAMi and whether its cache is not from
before ui’s last access, ui performs a standard Read or Write operation for block
x on ORAMi. If the cache is full, ui re-shuffles ORAMi updating π. In addition,
ui also adds block x to all other clients’ ORAMs. Note that for this, ui does not
read from the other ORAMs, but only completely downloads and re-encrypts
their cache.

Our scheme is effectively running φ traditional square-root ORAMs in par-
allel, making the overall complexity O(φ

√
N). Due to limited space, see the full

version of this paper [1] for a detailed security analysis.

Fork Consistency: When a client makes an access, they add an element to
the cache for all φ clients. Therefore, at any given timestep, if the server is not
maliciously changing caches, all caches will have the same number of elements in
them. Since each cache is verified by a MAC, the server cannot remove individual
elements from a cache. The only viable attack is to present an old view of a cache
which was at one point valid, but does not contain new updates that have been
added by other clients. If the server chooses to do this, he creates a fork between
the views of the clients which have seen the update and those that have not.
Since the server can never “merge” caches together, but only present entire
caches that have been verified with a MAC by a legitimate client, there is no

Multi-client Oblivious RAM Secure Against Malicious Servers 697

way to reconcile two forks that were created without a client finding out. This
achieves fork consistency for our scheme.

Complexity: Making the square-root solution multi-client secure does not
induce any additional asymptotic complexity, per client. Each access requires
downloading the cache of size

√
N and accessing one block from the main mem-

ory. Every
√

N accesses, the main memory and cache must be shuffled, requiring
N communication if the client has enough storage to temporarily hold the data-
base locally. If not, then Goldreich and Ostrovsky [9] noticed that one can use
a Batcher sorting network to obliviously shuffle the database with complexity
O(N log2 N), or the AKS algorithm with complexity O(N log N). One can also
reduce the hidden constant using a more efficient Zig-Zag sort [10]. In the first
scenario, the amortized overall complexity is then O(φ

√
N), while the second is

O(φ
√

N log N).
Goodrich et al. [11] also propose a way to deamortize the classical square-root

ORAM such that it obtains a worst-case overhead factor of
√

N · log2(N). Their
method involves dividing the work of shuffling over the

√
N operations during an

epoch such that when the cache is full there is a newly shuffled main memory to
swap in right away. Since the shuffling is completely oblivious (does not depend
on any pattern of data accesses) and memoryless (the clients only need to know
what step of the shuffle they are on in order to continue the shuffle), it can be
considered a “non-critical” portion of the algorithm and no special protections
need to be added for malicious security.

Note on Computational Complexity: While Algorithm 1 returns the whole
updated state Σ, in practice a client only needs to update the other clients’
caches (up to

√
N times). In addition to the communication complexity involved,

there is also computation the client must perform in our scheme. Fortunately,
the computation is exactly proportional to the communication and easily quan-
tifiable. Every block of data retrieved from the server has a MAC that must be
verified and a layer of encryption that must be removed. Since modern ciphers
and hash functions are very efficient, and can even be done in hardware on many
computers, communication is the clear bottleneck. For comparison, encryption
and MACs are common on almost every secure network protocol, so we consider
only the communication overhead in our analysis.

Unified Cache: A natural optimization to this scheme is to have one single
shared cache instead of a separate one for each user. If the server behaves hon-
estly, then all caches will contain the same blocks and be in the same state
anyway, so a single cache can save some communication and storage. To still
protect against a malicious server, one must be careful in this case to store φ dif-
ferent counters with the cache and have each client only increment their counter
when they do an access. This ensures that if a client inserts a block into the cache
it cannot be “rolled back” past the point that they inserted that block without

698 E.-O. Blass et al.

them noticing. Since the cost to reshuffle the ORAMs dominates complexity of
our scheme, this optimization does not change asymptotic performance. Result-
ing in only a small constant improvement and making the presentation and proof
unnecessary difficult, we omit full discussion of this technique.

4.2 Hierarchical Construction

In addition to the square-root ORAM, Goldreich and Ostrovsky [9] also propose
a generalization which achieves poly-log overhead. In order to do this, it has a
hierarchical series of caches instead of a single cache. Each cache has 2j slots in
it, for j from 1 to log N , where each slot is a bucket holding O(log N) blocks. At
the bottom of the hierarchy is the main memory which has 2 · N buckets.

The reader is encouraged to refer to the original paper [9] for full details, but
the main idea is that each level of the cache is structured as a hash table. Up to
2j−1 blocks can be stored in cache level j, half the space is reserved for dummies
like in the previous construction. After accessing 2j−1 blocks, the entire level
is retrieved and shuffled into the next level. Shuffling involves generating a new
hash function and rehashing all the blocks into their new locations in level j +1,
until the shuffling percolates all the way to the bottom, and the client must
shuffle main memory to start again. Level j must be shuffled after 2j−1 accesses,
resulting in an amortized poly-logarithmic cost.

To actually access a block, a client queries the caches in order using the
unique hash function at each level. When the block is found, the remainder of
the queries will be on dummy blocks to hide that the block was already found.
After reading, and potentially changing the value of the block, it is added back
into the first level of the cache and the cache is shuffled as necessary.

Multi-client Security: As this scheme is a generalization of the square-root
one, our modifications extend naturally to provide multi-client security. Again,
each client should have their own ORAM which they read from. Writing to other
clients’ ORAMs is done by inserting the block into the top level of their cache
and then shuffling as necessary. The only difference this time is that each level
of the cache must be independently authenticated. Since the cache levels are
now hash tables, and computing a MAC over every level for each access would
require downloading the whole data structure, we can instead use a Merkle
tree [19]. This allows for efficient verification and updating of pieces of the cache
without having access to the entire thing, and it maintains poly-logarithmic
communication complexity. The root of the Merkle tree will contain the counter
that is incremented by the ORAM owner when they perform an access.

Deamortizing: Other authors have proposed deamortized versions of the hier-
archical construction that achieve worst-case poly-logarithmic complexity, such
as Kushilevitz et al. [15] and Ostrovsky and Shoup [21]. We will use as an exam-
ple the “warm-up” construction from Kushilevitz et al. [15], Sect. 6.1. This is a
direct deamortization of the original hierarchical scheme described above. They

Multi-client Oblivious RAM Secure Against Malicious Servers 699

deamortize by using three separate hash tables at each level of the ORAM,
labelled “active”, “inactive”, and “output”. Instead of shuffling all at one time
after 2j−1 accesses (which would lead to worst case O(N) complexity), their
approach is now different. When the cache fills up at level j, it is marked “inac-
tive”, and the old “inactive” buffer is cleared and marked “active”. The idea will
be that the “inactive” buffer is shuffled over time with each ORAM access, so
that no worst-case O(N) operations are required. As it is shuffled, the contents
are copied into the “output” buffer. Accesses can continue while the “inactive”
buffer is being shuffled, as long as a read operation searches both the “active”
and “inactive” buffers (since a block could be in either one).

When the shuffle completes, the “output” buffer will contain the newly shuf-
fled contents that go into level j + 1. This buffer is marked as “active” for level
j + 1, the “active” buffer on level j is marked “inactive” and the “inactive”
buffer is cleared and marked “active”, restarting the whole process. Since the
shuffle is spread out over 2j−1 accesses, and the shuffling was the only part that
was worst-case O(N), this makes a full construction that now has worst-case
O(log3 N) communication complexity.

In terms of multi-client security, the only important aspects of this process is
that no elements be removed from “active” or “inactive” buffers that the owner
of the ORAM has put there – until a shuffle is complete, starting a new epoch.
The shuffling itself is automatically data oblivious and therewith “non-critical”,
in the terms we have established in this paper. Using a Merkle tree and counters,
as described in the amortized version, will assure that the server cannot roll back
the cache to any state prior to the last access by the owner, guaranteeing security.

Kushilevitz et al. [15] also propose an improved hierarchical scheme that
achieves O(log2 N/ log log N) complexity, which is substantially more involving.
As the deamortized hierarchical ORAM as described above is sufficient for our
main contribution in Sect. 5, we leave it to future research to adapt Kushilevitz
et al. [15]’s scheme for multi-client security.

5 Tree-Based Construction

While pioneering the research, classical ORAMs have been outperformed by
newer tree-based ORAMs which achieve better average and worst-case com-
plexity and low constants in practice. We now proceed to show how these con-
structions can be modified to also support multiple clients. Our strategy will
be similar to before, but with one major twist: in order to avoid linear worst
case complexity, tree-based ORAMs do only small local “shuffling,” which turns
out to make separating a client access into critical and non-critical parts much
more difficult. When writing, one must not only add a new version of the block
to the ORAM, but also explicitly mark the old version as obsolete, requiring a
conditional access. This is in contrast with our previous construction where old
versions of a block would simply be discarded during the shuffle.

700 E.-O. Blass et al.

5.1 Overview

For this section, we will use Path ORAM [25] as the basis for our multi-client
scheme, but the concepts apply similarly to other tree-based schemes.

Although the interface exposed to the client by Path ORAM is the same
as other ORAM protocols, it is easiest to understand the Access operation
as being broken down into three parts: ReadAndRemove, Add, and Evict [23].
ReadAndRemove, as the name suggests, reads a block from the ORAM and
removes it, while Add adds it back to the ORAM, potentially with a different
value. These two operations used together form the basis of the Access operation,
but it begins to illustrate the difficulty we have making this scheme multi-client
secure: changing the value of a block implicitly requires reading it, meaning that
both reading and writing are equally critical and not easily separated as our
previous construction. The third operation, Evict, is a partial shuffling that is
done after each access in order to maintain the integrity of the tree.

The RAM in Path ORAM is structured as a tree with N leaf nodes. Each node
in the tree holds up to Z blocks, where Z is a small constant. Each block is tagged
with a value uniform in the range [0, N). As an invariant, blocks will always be
located on the path from the root of the tree to the leaf node corresponding to
their tag. Over the lifecycle of the tree, blocks will enter at the root and filter
their way down toward the leaves, making room for new blocks to in turn enter
at the root. The client has a map storing for every block which leaf node the
block is tagged for.

ReadAndRemove: To retrieve block x, the client looks up in the map which leaf
node it is tagged for and retrieves all nodes from the root to that leaf node,
denoted P(x). By the tree invariant, block x will be found somewhere on the
path P(x). The client then removes block x from the node it was found in,
reencrypts all the nodes and puts them back in the RAM.

Add: To put a block back in the ORAM, the client simply retrieves the root
node and inserts the block into one of its free slots, reencrypting and writing
the node back afterwards. The map is updated with a new random tag for this
block in the interval [0, N). If there is not enough room in the root node, the
client keeps the block locally in a “stash” of size Y = O(log N), waiting for a
later opportunity to insert the block into the tree.

Evict: So that the stash does not become too large, after every operation the
client also performs an eviction which moves blocks down the tree to free up
space. Eviction consists of picking a path in the tree (using reverse lexicographic
order [6]) and moving blocks on that path as far down the tree as they can
go, without violating the invariant. Additionally, the client inserts any matching
block from the stash into the path.

Recursive Map: Typically, the client’s map, which stores the tag for each block,
has size O(N · log N) bit and is often too large to store locally. Yet, if block size
B is at least 2 · log N bit, the map can itself be stored recursively in an ORAM
on the server, inducing a total communication complexity of O(log2 N) blocks.

Multi-client Oblivious RAM Secure Against Malicious Servers 701

Additionally, Stefanov et al. [25] show that if B = Ω(log2 N) bit, communication
complexity can be reduced to O(log N) blocks.

Integrity: Because of its tree structure, it is straightforward to ensure integrity
in Path ORAM. Similar to a Merkle tree, the client can store a MAC in every
node of the tree that is computed over the contents of that node and the respec-
tive MACs of its two children. Since the client accesses entire paths in the tree
at once, verifying and updating the MAC values when an access is done incurs
minimal overhead. This is a common strategy with tree-based ORAMs, which we
will make integral use of in our scheme. We will also include client ui’s counter
χu in the root MAC as before, to prevent rollback attacks (see below).

Challenge. Looking at Path ORAM, there exist several additional challenges
when trying to add multi-client capabilities with our previous strategy. First,
recursively storing the map into ORAMs imposes a problem. To resolve a tag,
each path accessed in the recursive ORAMs has to be different for each client.
If we separate the map into φ separate ORAMs (which we will do), the stan-
dard recursive lookup results in a large blowup in communication costs. At the
top level of the recursion, we would have φ ORAMs, one for each client. Yet,
each of those will fan out to φ ORAMs to obliviously support the next level of
recursion, each of which will have φ more, going down log n levels. The overall
communication complexity for the tag lookup would be φlog N ∈ Ω(N).

Second, an Add in Path ORAM cannot be performed without
ReadAndRemove, so we cannot easily split the access into critical and non-critical
parts like before.

Rationale. To remedy these problems, we institute major changes to Path
ORAM:

1. Unified Tagging: Instead of separately tagging blocks in each of the ORAMs
and storing the tags recursively, we will have a unified tagging system where
the tag for a block can be computed for any of the separate ORAMs from
a common “base tag.” This is crucial to avoiding the O(N) communication
overhead that would otherwise be induced by the recursive map as described
above. For a block x, the map will resolve to a base tag value t. This same tag
value is stored in every client’s recursive ORAM. Let h be a PRF mapping
from [0, 2λ) × [1, φ] to [0, N). The idea is now that the leaf that block x will
be percolating to in the recursive ORAM tree differs for every ORAM of
every client ui and is pseudo-randomly determined by value h(t, i). This way,
(1) the paths accessed in all recursive map ORAMs for all clients differ for
the same block x, and (2) only one lookup is necessary at each level of the
recursive map to get the leaf node tag for all φ ORAMs.

2. Secure Block Removal: The central problem with ReadAndRemove is that
it is required before every Add so that the tree will not fill up with old, obsolete
blocks which cannot be removed. Unlike the square-root ORAM, the shuffling
process (eviction) happens locally and cannot know about other versions of

702 E.-O. Blass et al.

a block which exist on different paths. We solve this problem by including
metadata on each bucket. For every node in the tree, we include an encrypted
array which indicates the ID of every block in that node. Removing a block
from the tree can then be performed by simply changing the metadata to
indicate that the slot is empty. It will be overwritten by the eviction routine
with a real block if that slot is ever needed. If B is large, this metadata
is substantially smaller than the real blocks. We can then store it in a less
efficient classical ORAM described above which is itself multi-client secure.
This allows us to take advantage of the better complexity provided by tree-
based ORAMs for the majority of the data, while falling back on a simpler
ORAM for the metadata which is independent of B.

We also note that Path ORAM’s stash concept cannot be used in a multi-
client setting. Since the clients do not have a way of communicating with each
other out of band, all shared state (which includes the stash) must be stored in
the RAM. This has already been noted by Goodrich et al. [12], and since the
size of the stash does not exceed log N , storing it in the RAM (encrypted and
integrity protected) does not affect the overall complexity. As before, we also
introduce an eviction counter e for each ORAM. Client ui will verify whether,
for each of their recursive ORAMs, this eviction counter is fresh.

5.2 Details

To initialize the multi-client ORAM (Algorithm3), φ separate ORAMs are cre-
ated and the initial states (containing the shared key) are distributed to each
client. For each client ui, the ORAM takes the form of a series of trees Tj,i. The
first tree stores the data blocks, while the remaining trees recursively store the
map which relates block addresses to leaf nodes. In addition to this, as described
above, each tree has its own sub-ORAM to keep track of block metadata. The
stash of each (sub-)ORAM is called S0,i, and the metadata (classical) ORAM
Mj,i.

To avoid confusion between different ORAM initialization functions, MInit
is a reference to Algorithm 1, i.e., initialization of a multi-client secure classical
ORAM.

For simplicity, we assume that Encκ encrypts each node of a tree sepa-
rately, therewith allowing individual node access. Also, we assume authenticated
encryption, using the per node integrity protection previously mentioned.

As noted above, the functions (ReadAndRemove,Add) can be used to imple-
ment (Read,Write), which in turn can implement a simple interface (Access).
Because our construction introduces dependencies between ReadAndRemove and
Add, in Algorithm 4 we illustrate a unified Access function for our scheme. The
client starts with the root block and traverses the recursive map upwards, finds
the address of block x, and finally retrieves it from the main tree. For each
recursive tree, it retrieves a tag value t allowing to locate the correct block in
the next tree. After retrieving a block in each tree, the client marks that block
as free in the metadata ORAM so that it can be overwritten during a future

Multi-client Oblivious RAM Secure Against Malicious Servers 703

Input: Security parameter λ, number of blocks in each ORAM N , block size B,
number of clients φ, initialization sub-routine for multi-client classical
ORAM MInit

Output: Initial ORAM state Σinit, initial per client states {stu1 , . . . , stuφ}
1 κ

$←− {0, 1}λ;
2 for j = 1 to φ do
3 i = 0;
4 N0 = N ;
5 while Ni > 1 do
6 Initialize a tree Tj,i with Ni leaf nodes;
7 Set eviction counter ej,i = 0;

// The stash must also be stored on the server

8 Create array Sj,i with Y blocks;
// Use a sub-ORAM to hold block metadata

9 Mj,i = MInit(λ, 2ni · Z, Z · log ni, φ);
10 Ni+1 = Ni · �log Ni/B�;
11 i = i + 1;

12 end
// Let m be number of recursive trees made in previous loop

13 m = i;
14 Create a root block Rj ;
15 Set ORAM counter χj = 0;
16 ORAMj = Encκ((Tj,0, Mj,0, Sj,0, ej,0)|| . . . ||(Tj,m, Mj,m, Sj,m, ej,m)||χj ||Rj);
17 Send stuj = {κ, χj , ej,0, . . . , ejm} to client uj ;

18 end
19 Initialize Σ to hold {ORAM1, . . . ,ORAMφ};

Algorithm 3. Init(λ,N,B, φ), initialize multi-client tree-based ORAM

eviction. This is necessary to maintain the integrity of the tree and ensure that
it does not overflow. At the same time, the client also marks that block free in
the metadata of each other client and inserts the new block value into the root
of their trees. This is analogous to the previous scheme where a client reads from
their own ORAM and writes back to the ORAMs of the other clients. We use
a straightforward MAC technique for paths MACPath, which we present in the
extended version of this paper [1].

Again, we avoid confusion between different ORAM access operations
by referring to the multi-client secure classical ORAM access operation of
Algorithm 2 as MAccess.

Algorithm 5 illustrates the eviction procedure. Since eviction does not take
as input any client access, it is non-critical. The client simply downloads a path
in the tree which is specified by eviction counter e and retrieves it in its entirety.
The only modification that we make from the original Path ORAM scheme is
that we read block metadata from the sub-ORAM that indicates which blocks
in the path are free and can be overwritten by new blocks being pushed down
the tree.

704 E.-O. Blass et al.

Input: Address x, client ui, stui = {κ, χi}, sub-routine for multi-client classical
ORAM MAccess

Output: The value of block x
// Let m be recursion depth, nj the number of blocks in tree j

1 Retrieve root block R;
2 pos = x/n; xm = 	pos · (B/λ)
; tm = R[xm]// Find tag tm of address x;

3 t′
m

$← [0, 2λ)// Compute new tag t′
m for x;

4 for j = m to 0 do
5 leafj = h(tj , ui)// Compute leaf of client ui’s ORAMi;
6 Read path P(leafj) and Si,j from Ti,j , locating block xj ;
7 Retrieve MAC values for P(leafj) as V and the stored counter as χ′

i;
8 if V �= MACPath(Σ, stui , P(leafj), S, χ′

i) ∨ χ′
i �= χi then Abort ;

9 Re-encrypt and write back P(leafj) and Si,j to Ti,j ;
// Let (a, b) be the node and slot that xj was found at

10 MAccess(Mj , (write, a · Z + b, ⊥), ui);
11 if j �= 0 then

12 t′
j

$← [0, 2λ) // Sample a new value for t;
// Block xj contains multiple t values

13 Extract tj−1 from block xj ;
14 Update block xj with new value t′

j−1 and new leaf tag t′
j ;

15 else
16 Set v to the value of block xj ;
17 If OP is a write, update xj with new value;

18 Insert block xj into the stash Si,j ;
19 χi = χi + 1;
20 Update MAC of stash to MACκ(Si,j , MAC of root bucket, χi, ei,j);

// Update the block in other client’s ORAMs

21 for p �= i do
22 Retrieve path P(h(tj , up)) from Tp,j and update metadata so block xj is

removed;
23 Insert block xj into the stash Sp,j of Tp,j ;
24 Update MAC of root bucket in Tp,j ;

25 end
26 output (v, stui = {κ, χi, ei,0, . . . , ei,m});

27 end

Algorithm 4. Access(OP, Σ, stui
), Read or Write on multi-client tree-based

ORAM

The overhead from the additional metadata ORAMs that we have in our
construction is fortunately not dependent on the block size B. Therefore, if B
is large enough, we can achieve as low as the overhead of single-client Path
ORAM, O(log N), or a total complexity of O(φ log N) for φ users. However, this
only applies if the block size B is sufficiently large, at least Ω(log4 N). Otherwise,
for smaller B, the complexity can be up to O(φ log5 N). Due to limited space,
we refer to the extended version of this paper [1] for a detailed security analysis.

Multi-client Oblivious RAM Secure Against Malicious Servers 705

Input: Address x, new value v, client ui, stui = {k, χi}, the number of
recursive trees m

Output: The value of block x
1 for j = 1 to φ do
2 for r = 1 to m do
3 Retrieve eviction counter ej,r for Tj,r;
4 Retrieve path P(ej,r), Sj,r and MAC chain V ;

// Verify integrity of the path and eviction counter

5 if V �= MACPath(Σ, stui , P(leafj), Sj,r, χ
′
i, ej,r) then Abort ;

6 Read metadata for path from Mj,r;
7 Move blocks out of the stash and down the path as far as possible;
8 Reencrypt P(ej,r) and Sj,r and write back to server;
9 Update metadata for path Mj,r;

10 ej,r = ej,r + 1;

11 end

12 end

Algorithm 5. Evict(Σ, stui
) – Perform Evict on multi-client tree-based ORAM

Complexity: The complexity of our scheme is dominated by the cost of an
eviction. For a client to read a path in each of O(log N) recursive trees, for each
of the φ different ORAMs, it takes O(φ · B · log2 N) bits of communication.
Additionally, the client must make O(φ · log2 N) accesses to a metadata ORAM.
If μ(N,B) denotes the cost of a single access in such a sub-ORAM, the overall
communication complexity is then O(φ · log2 N · [B + μ(N, log N)]) bit. The
deamortized hierarchical ORAM by Kushilevitz et al. [15] has O(log3 N) blocks
communication complexity, where each block is of size log N bit (the meta-data
we need for our construction). Taking this hierarchical ORAM as a sub-ORAM,
the total communication complexity computes to O(φ · log2 N [B + log4 N]) bits.
If B ∈ Ω(log4 N) then the communication complexity, in terms of blocks, is
O(φ log2 N), otherwise it is at most O(φ log5 N), i.e., with the assumption B ∈
Ω(log N) (the minimal possible block size for Path ORAM to work).

Additionally, if we use the recursive optimization trick from Stefanov et al.
[25] to reduce the overhead from the Path ORAM part of the construction from
O(log2 N) to O(log N), we can achieve a total complexity of O(log N) for blocks
of size Ω(log4 N).

Although a complexity linear in φ may seem at first to be expensive, we
stress that this is a substantial improvement over naive solutions which achieve
the same level of security. The only straightforward way to have multi-client
security against malicious servers is for each client to append their updates to a
master list, and for clients to scan this list to find the most updated version of
a block during reads. This is not only linear in the size of the database, but in
the number of operations performed over the entire life of the ORAM.

One notable difference in parameters from basic Path ORAM is that we
require a block size of at least c ·λ, where c ≥ 2. Path ORAM only needs c · log n,
and for security parameter λ, λ > log N holds. In our scheme, the map trees do
not directly hold addresses, but t values which are of size λ. In order for the map

706 E.-O. Blass et al.

recursion to terminate in O(log N) steps, blocks must be big enough to hold at
least two t values of size λ. If the block size is Ω(λ2), we can also take advantage
of the asymmetric block optimization from Stefanov et al. [25] to reduce the
complexity to O(φ · (log6 n + B · log N). Then, if additionally B ∈ Ω(log5 N),
the total complexity is reduced to O(log N) per client.

6 Conclusion

We have presented the first techniques that allow multi-client ORAM, specif-
ically secure against fully malicious servers. Our multi-client ORAMs are rea-
sonably efficient with communication complexities as low as O(log N) per client.
Future work will focus on efficiency improvements, including reducing worst-case
complexity to sublinear in φ. Additionally, the question of whether tree-based
constructions are more efficient than classical ones is not as clear in the multi-
client setting as it is for a single client. Although tree ORAMs are more efficient
for a number of parameter choices, they incur substantial overhead from using
sub-ORAMs to hold tree metadata. This is not required for the classical construc-
tions. Future research may focus on achieving a “pure” tree-based construction
which does not depend on another ORAM as a subroutine. Finally, it may be
interesting to investigate whether multiple clients can be supported with a more
fine-grained access control, secure against fully malicious servers.

References

1. Blass, E.-O., Mayberry, T., Noubir, G.: Multi-client oblivious ram secure against
malicious servers. Cryptology ePrint Archive, Report 2015/121 (2015). http://
eprint.iacr.org/2015/121

2. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 175–204.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 7

3. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 279–295. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 17

4. Chan, T.-H.H., Shi, E.: Circuit OPRAM: a (somewhat) tight oblivious parallel
RAM. Cryptology ePrint Archive, Report 2016/1084 (2016). http://eprint.iacr.
org/2016/1084

5. Costan, V., Devadas, S.: Intel SGX explained. Technical report, Cryptology ePrint
Archive, Report 2016/086 (2016). https://eprint.iacr.org/2016/086

6. Fletcher, C.W., Ren, L., Kwon, A., Van Dijk, M., Stefanov, E., Devadas, S., Tiny,
O.: A Low-Latency, Low-Area Hardware ORAM Controller. Cryptology ePrint
Archive, Report 2014/431 (2014). http://eprint.iacr.org/

7. Franz, M., Williams, P., Carbunar, B., Katzenbeisser, S., Peter, A., Sion, R.,
Sotakova, M.: Oblivious outsourced storage with delegation. In: Danezis, G. (ed.)
FC 2011. LNCS, vol. 7035, pp. 127–140. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27576-0 11

8. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Symposium on Theory of Computing, pp. 182–194, New York, USA
(1987)

http://eprint.iacr.org/2015/121
http://eprint.iacr.org/2015/121
http://dx.doi.org/10.1007/978-3-662-49099-0_7
http://dx.doi.org/10.1007/978-3-642-38348-9_17
http://eprint.iacr.org/2016/1084
http://eprint.iacr.org/2016/1084
https://eprint.iacr.org/2016/086
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-27576-0_11
http://dx.doi.org/10.1007/978-3-642-27576-0_11

Multi-client Oblivious RAM Secure Against Malicious Servers 707

9. Goldreich, O., Ostrovsky, R.: Software protection, simulation on oblivious RAMs.
J. ACM 43(3), 431–473 (1996). ISSN 0004–5411

10. Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in o(n log n) time. In: Proceedings of the 46th Annual ACM Sym-
posium on Theory of Computing, STOC 2014, pp. 684–693 (2014). ISBN 978-1-
4503-2710-7

11. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: Proceedings of Workshop
on Cloud Computing Security Workshop, pp. 95–100, Chicago, USA (2011)

12. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 157–167 (2012)

13. Iliev, A., Smith, S.W.: Protecting client privacy with trusted computing at the
server. IEEE Secur. Priv. 3(2), 20–28 (2005)

14. Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, 2nd
edn., vol. 2, chap. 3.4.2, pp. 139–140. Addison Wesley 1981. ISBN 978-0201896848

15. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivious
RAM and a new balancing scheme. In: Proceedings of Symposium on Discrete
Algorithms, pp. 143–156, Kyoto, Japan (2012)

16. Li, J., Krohn, M.N., Mazières, D., Shasha, D.: Secure untrusted data repository
(SUNDR). In: Proceedings of Operating System Design and Implementation, pp.
121–136, San Francisco, USA (2004)

17. Lorch, J.R., Parno, B., Mickens, J., Raykova, M., Schiffman, J.: Shroud: ensuring
private access to large-scale data in the data center. In: USENIX Conference on
File and Storage Technologies, pp. 199–213 (2013)

18. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Privacy and access control
for outsourced personal records. In: IEEE Symposium on Security and Privacy, pp.
341–358. IEEE (2015)

19. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2 32

20. Nayak, K., Katz, J.: An oblivious parallel RAM with o(log2 n) parallel runtime
blowup. Cryptology ePrint Archive, Report 2016/1141 (2016). http://eprint.iacr.
org/2016/1141

21. Ostrovsky, R., Shoup, V.: Private information storage. In: Proceedings of Sympo-
sium on Theory of Computing, pp. 294–303. ACM (1997)

22. Ren, L., Fletcher, C.W., Yu, X., van Dijk, M., Devadas, S.: Integrity verification
for path oblivious-RAM. In: Proceedings of High Performance Extreme Computing
Conference, pp. 1–6, Waltham, USA (2013)

23. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 11

24. SpiderOak. Semaphor (2016). https://spideroak.com/solutions/semaphor
25. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S., Path,

O.: An extremely simple oblivious RAM protocol. In: Proceedings of Conference
on Computer & Communications Security, pp. 299–310, Berlin, Germany (2013).
ISBN 978-1-4503-2477-9

26. WhatsApp. Whatsapp encryption overview (2016). https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf

http://dx.doi.org/10.1007/3-540-48184-2_32
http://eprint.iacr.org/2016/1141
http://eprint.iacr.org/2016/1141
http://dx.doi.org/10.1007/978-3-642-25385-0_11
https://spideroak.com/solutions/semaphor
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Author Index

Abudahi, Laila 83
Aguilar-Melchor, Carlos 3
Albrecht, Martin R. 3
Ankele, Ralph 208
Antonioli, Daniele 665
Ateniese, Giuseppe 623

Banik, Subhadeep 208
Berg, Bruce 124
Bernaschi, Massimo 184
Bernhard, David 336
Biryukov, Alex 435
Blass, Erik-Oliver 686
Blazy, Olivier 579
Boneh, Dan 457

Carlet, Claude 393
Cascudo, Ignacio 537
Castellanos, John Henry 665
Chakraborti, Avik 208
Chaum, David 557
Chen, Yi-Ruei 165
Chevalier, Céline 579
Chow, Sherman S.M. 478
Cianfriglia, Marco 184
Conti, Mauro 83

Das, Debajyoti 557
David, Bernardo 537
De Ruiter, Joeri 557
Demmler, Daniel 599
Dinu, Daniel 435

Freitag, Cody 373
Fukushima, Kazuhide 253

Gao, Neng 415
Germouty, Paul 579
Goodrich, Michael T. 623
Goyal, Rishab 373
Guarino, Stefano 184

Habuka, Rie 354
Hale, Britta 20
Henricksen, Matt 253
Heuser, Annelie 393
Hohenberger, Susan 373
Holz, Marco 599

Inoue, Akiko 59

Jager, Tibor 20
Jarecki, Stanisław 39
Javani, Farid 557
Jiang, Lijun 145

Kaczmarek, Tyler 124
Kate, Aniket 557
Kawahara, Yuto 59
Keller, Marcel 229
Khoo, Khoongming 518
Kiayias, Aggelos 39
Kim, Sam 457
Kiyomoto, Shinsaku 253
Kiyomura, Yutaro 59
Kobayashi, Tetsutaro 59
Kobsa, Alfred 124
Koppula, Venkata 373
Krasnova, Anna 557
Krawczyk, Hugo 39
Kunihiro, Noboru 498
Kurosawa, Kaoru 354

Lai, Russell W.F. 478
Lau, Wing Cheong 313
Lauer, Sebastian 20
Le Corre, Yann 435
Lee, Eysa 373
Lee, Wang Hao 145
Lekakis, Vassilios 623
Li, Wenjuan 145
Li, Xiaopeng 103
Li, Zhen 518

Ling, San 293
List, Eik 208
Liu, Zeyi 415
Lombardi, Flavio 184
Low, Yu Bin 518

Ma, Yuan 415
Maffei, Matteo 645
Malavolta, Giulio 645
Mayberry, Travis 686
Mendel, Florian 208
Meng, Weizhi 145
Moonsamy, Veelasha 83

Nguyen, Khoa 293
Nguyen, Ngoc Khanh 336
Nikolaenko, Valeria 457
Noubir, Guevara 686

Ochoa, Martín 665
Okamoto, Tatsuaki 373
Orsini, Emmanuela 229

Pandu Rangan, Chandrasekaran 273
Papamanthou, Charalampos 623
Paraskevas, Evripidis 623
Pedicini, Marco 184
Picek, Stjepan 393
Poovendran, Radha 83

Qu, Xianshan 103

Reinert, Manuel 645
Ricosset, Thomas 3
Rotaru, Dragos 229

Schneider, Thomas 599
Scholl, Peter 229

Schröder, Dominique 645
Schwenk, Jörg 20
Seo, Hwajung 253
Sherman, Alan T. 557
Shi, Shangcheng 313
Sim, Siang Meng 208
Soria-Vazquez, Eduardo 229
Spolaor, Riccardo 83
Srinivasan, Akshayaram 273

Takagi, Tsuyoshi 59, 253
Tamassia, Roberto 623
Tippenhauer, Nils Ole 665
Tran, Jordan 373
Tsudik, Gene 124
Tu, Chenyang 415
Tzeng, Wen-Guey 165

Vivek, Srinivas 229

Wang, Gaoli 208
Wang, Huaxiong 293
Wang, Song 103
Warinschi, Bogdan 336
Waters, Brent 373

Xu, Jiayu 39
Xu, Rui 253
Xu, Wenyuan 103
Xu, Yanhong 293

Yang, Ronghai 313
Yasuda, Masaya 59
Yeo, Sze Ling 253, 518
Ying, Jason H.M. 498

Zhang, Lingchen 415
Zhou, Jianying 145

710 Author Index

	Preface
	ACNS 2017 The 15th International Conference on Applied Cryptography and Network Security
	Contents
	Applied Cryptography
	Sampling from Arbitrary Centered Discrete Gaussians for Lattice-Based Cryptography
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Discrete Gaussian Distributions on Z
	2.2 Floating-Point Arithmetic
	2.3 Taylor Expansion

	3 Variable-Center with Polynomial Number of CDTs
	3.1 Twin-CDT Algorithm
	3.2 Lazy-CDT Algorithm

	4 A More Flexible Time-Memory Tradeoff
	4.1 Taylor-CDT Algorithm

	5 Lookup Tables
	6 Experimental Results
	References

	Simple Security Definitions for and Constructions of 0-RTT Key Exchange
	1 Introduction
	2 Preliminaries
	2.1 Digital Signatures
	2.2 Secure Non-interactive Key Exchange

	3 0-RTT Key Exchange Protocols: Syntax and Security with Server-Only Authentication
	3.1 Syntax and Correctness
	3.2 Execution Environment
	3.3 Composing a 0-RTT KE Protocol with Symmetric Encryption

	4 Generic Construction of 0-RTT KE from NIKE
	4.1 Generic Construction

	References

	TOPPSS: Cost-Minimal Password-Protected Secret Sharing Based on Threshold OPRF
	1 Introduction
	2 Universally Composable Threshold OPRF
	3 Threshold OPRF Protocol from OMDH and T-OMDH
	3.1 T-OPRF Protocol Based on T-OMDH Assumption
	3.2 Threshold OMDH Assumption
	3.3 Security Analysis of 2HashTDH

	4 TOPPSS: A PPSS Scheme Based on T-OPRF
	5 Concrete Instantiation of TOPPSS Using 2HashTDH
	References

	Secure and Efficient Pairing at 256-Bit Security Level
	1 Introduction
	2 Overview of Pairing
	2.1 Definition and Properties
	2.2 Optimal Ate Pairing

	3 Candidate Pairing-Friendly Curves at 256-Bit Security Level
	3.1 How to Choose Candidate Pairing-Friendly Curves
	3.2 Selection of Candidate Pairing-Friendly Curves

	4 Overview of Number Field Sieve and Its Variants
	4.1 Extended TNFS and Special-NFS Algorithms
	4.2 Larger Norm Implies Higher Complexity
	4.3 Comparing Norms of NFS Algorithms by Using Kim and Barbulescu's Estimation Method

	5 Revise the Bitlength for Candidate Pairing-Friendly Curves
	5.1 Revised Estimation of Bitlength for BLS-48
	5.2 Revised Bitlength at 256-Bit Security Level

	6 Comparison of Timing Among Candidate Pairing-Friendly Curves
	6.1 Specific Parameter for Implementation
	6.2 Our Implemented Algorithms
	6.3 Timing and Comparison
	6.4 Impact on Timing by Revised Bitlength

	7 Conclusion
	A Norm Plots of BLS-24, KSS-32, KSS-36 and BLS-42
	References

	Data Protection and Mobile Security
	No Free Charge Theorem: A Covert Channel via USB Charging Cable on Mobile Devices
	1 Introduction
	2 Related Work
	3 Background Knowledge
	3.1 Android System and Permissions
	3.2 Signal Transmission and Processing

	4 Covert Channel Using Mobile Device Energy Consumption
	4.1 Overview of Attack
	4.2 Terminology and Transmission Parameters
	4.3 PowerSnitch App: Implementing the Attack on Android
	4.4 Analysis of Energy Traces

	5 Experimental Evaluation
	5.1 Experiment Settings
	5.2 Results

	6 Discussion and Optimizations
	7 Conclusion
	References

	Are You Lying: Validating the Time-Location of Outdoor Images
	1 Introduction
	2 Overview
	2.1 Threat Model
	2.2 Overview of AYL
	2.3 Research Challenges

	3 Background
	3.1 Sun Position Definition
	3.2 How Does the Sun Move

	4 Shadow-Inferred Sun Position
	4.1 Estimate Altitude
	4.2 Estimate Azimuth
	4.3 Sensitivity Analysis

	5 Metadata-Inferred Sun Position and Validation
	5.1 Metadata-Inferred Sun Position
	5.2 Consistency Validation

	6 Evaluation
	6.1 Sun Position Estimation
	6.2 Consistency Validation
	6.3 Discussions and Limitations

	7 Conclusion
	References

	Lights, Camera, Action! Exploring Effects of Visual Distractions on Completion of Security Tasks
	1 Introduction
	2 Background and Related Work
	2.1 Automated Experiments
	2.2 User Studies of Secure Device Pairing
	2.3 Effects of Sensory Stimulation
	2.4 Unique Effects of Visual Stimuli

	3 Methodology
	3.1 Apparatus
	3.2 Procedures
	3.3 Prior Results with a Similar Setup
	3.4 Initial Hypotheses
	3.5 Recruitment

	4 Results
	4.1 Data Cleaning
	4.2 Task Failure Rate
	4.3 Task Completion Times

	5 Discussion of Observed Effects
	6 Unattended Setup: Limitations
	7 Study Shortcomings
	7.1 Homogeneous Subjects
	7.2 Sufficiently Diverse Stimuli
	7.3 Synthetic Environment
	7.4 Ideal Setting

	8 Conclusions and Future Work
	References

	A Pilot Study of Multiple Password Interference Between Text and Map-Based Passwords
	1 Introduction
	2 Related Work
	2.1 Graphical Passwords
	2.2 Map-Based Graphical Passwords
	2.3 Multiple Password Interference

	3 User Study
	3.1 Implementation of Map-Based Graphical Passwords
	3.2 Session-1: Procedure and Steps
	3.3 Session-2: Procedure and Steps

	4 Results and Analysis
	4.1 Recall Success Rates
	4.2 Recall Errors

	5 Discussion
	5.1 User Feedback
	5.2 Comparison with Map-Based GPs and PassPoints

	6 Limitations
	7 Conclusion
	References

	Security Analysis
	Hierarchical Key Assignment with Dynamic Read-Write Privilege Enforcement and Extended KI-Security
	1 Introduction
	2 Preliminaries
	2.1 Hierarchical Access Control (HAC) Policy
	2.2 Identity-Based Broadcast Encryption (IBBE) Scheme
	2.3 Strong One-Time Signature Scheme

	3 The Proposed RW-HKA Scheme
	3.1 An Overview
	3.2 Notion of RW-HKA Scheme with EKI-Security
	3.3 A Generic Construction of RW-HKA Scheme
	3.4 Supporting Dynamic Access Hierarchies and User Privileges
	3.5 Security Analysis
	3.6 Efficiency Analysis

	4 Our Concrete Construction of IBBE Scheme
	5 Conclusions
	A D07's IBBE Scheme
	References

	A Novel GPU-Based Implementation of the Cube Attack
	1 Introduction
	2 Preliminaries
	3 The Proposed GPU Implementation of the Attack
	3.1 Practical Cube Attack
	3.2 The Setting
	3.3 The Attack
	3.4 Performance Analysis

	4 Results
	4.1 Summary of Results
	4.2 Further Discussion

	5 Related Work
	6 Conclusions and Future Work
	A Trivium Specifications
	B Tables of Maxterms and Superpolys
	References

	Related-Key Impossible-Differential Attack on Reduced-Round SKINNY
	1 Introduction
	2 Description of SKINNY
	3 Related-Key Impossible-Differential Attack
	3.1 First Attack
	3.2 22-Round Attack Under Partially Known Tweak
	3.3 23-Round Attack Under Partially Known Tweak

	4 Conclusion
	References

	Faster Secure Multi-party Computation of AES and DES Using Lookup Tables
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 MPC Computation Model

	3 Evaluating AES and DES S-box Polynomials
	3.1 AES S-box
	3.2 Des S-boxes
	3.3 MPC Evaluation of AES and DES S-box Polynomials

	4 MPC Evaluation of Boolean Circuits Using Lookup Tables
	4.1 The Preprocessing Phase: Securely Generating Masked Lookup Tables
	4.2 Computing Demux with Finite Field Multiplications
	4.3 MPC Evaluation of AES and DES Using Lookup Tables

	5 Performance Evaluation
	5.1 Multiparty Setting
	5.2 Comparison with Other Works

	References

	Cryptographic Primitives
	An Experimental Study of the BDD Approach for the Search LWE Problem
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Discrete Gaussian Distribution
	2.2 Lattice
	2.3 Lattice Reduction
	2.4 Pruned Enumeration

	3 Related Work
	4 Our Implementation
	4.1 Compute the Basis
	4.2 Enumeration Radius and Basis Randomization
	4.3 Choose Sub-dimension
	4.4 Balancing Reduction and Enumeration
	4.5 Parallelization

	5 Experimental Results
	5.1 LWE Challenge
	5.2 Comparison with Other Implementations

	6 Conclusion and Future Work
	A Estimate the Cost of BDD Enumeration
	References

	Efficiently Obfuscating Re-Encryption Program Under DDH Assumption
	1 Introduction
	1.1 Prior Work
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Average-Case Secure Obfuscation

	3 Obfuscator for Re-Encryption Functionality
	4 Security of New Encryption Scheme
	4.1 Security Model
	4.2 Security Proof

	5 Average-Case Virtual Black Box Property
	References

	Lattice-Based Group Signatures: Achieving Full Dynamicity with Ease
	1 Introduction
	2 Preliminaries
	2.1 Fully Dynamic Group Signatures
	2.2 Background on Lattices
	2.3 Stern-Like Protocols for Lattice-Based Relations

	3 Updatable Lattice-Based Merkle Hash Trees
	3.1 Cryptographic Accumulators
	3.2 The LLNW Merkle-Tree Accumulator
	3.3 An Efficient Updating Algorithm

	4 Our Fully Dynamic Group Signatures from Lattices
	4.1 Description of the Scheme
	4.2 Analysis of the Scheme

	References

	Breaking and Fixing Mobile App Authentication with OAuth2.0-based Protocols
	1 Introduction
	2 Background
	2.1 The Implicit Flow of OAuth 2.0 for Mobile Platforms
	2.2 The OpenID Connect Protocol
	2.3 Threat Model

	3 Major Protocol Changes that Affect Mobile OAuth Security
	3.1 Untrusted Identity Proof
	3.2 Heavy Client-Side Logic

	4 Our Approach
	4.1 Dynamic Testing
	4.2 Static Code Analysis

	5 Vulnerability Analysis
	5.1 Profile Vulnerability
	5.2 Inconsistent RP App Identity for the User
	5.3 Treat the IdP App as a Special RP

	6 Empirical Evaluation
	6.1 The Implication of the Profile Attack
	6.2 Re-Discover Known Vulnerabilities

	7 Plausible Root Causes
	7.1 Unclear Developer Documentation
	7.2 Poor API Design of Sina

	8 Defense
	8.1 Defense on the Client-Side SDK
	8.2 Defense on the Server-Side SDK
	8.3 Implementation and Evaluation of the Proposed Defense

	9 Related Work
	10 Conclusion
	References

	Adaptive Proofs Have Straightline Extractors (in the Random Oracle Model)
	1 Introduction
	2 Preliminaries
	3 Variations on the Theme of One-Wayness
	4 Adaptive Proofs
	5 Limitations of the Fiat-Shamir Transformation
	6 Generic Hardness of -One-Wayness
	7 Reducing to DLOG?
	8 Conclusions
	References

	More Efficient Construction of Bounded KDM Secure Encryption
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 DDH Assumption
	2.2 KDM Security
	2.3 BHHO Encryption Scheme
	2.4 Bounded-KDM Security
	2.5 Projection KDM Security

	3 Garbling Scheme
	3.1 Circuits
	3.2 Garbling Scheme
	3.3 Security of Garbling Schemes

	4 Bounded KDM Secure Encryption by Bellare et al.
	4.1 Generic Construction
	4.2 Instantiation Under DDH

	5 How to Prove Proposition2
	5.1 Proof by Bellare et al.
	5.2 How to Fix the Proof

	6 Our Main Theorem
	7 Our Instantiation Under DDH
	7.1 Garble1+
	7.2 KDM-Secure Encryption w.r.t. F(Garble1+)
	7.3 Final Construction

	8 Comparison
	9 Generalization
	9.1 Symmetric-Key Encryption Scheme
	9.2 Subgroup Indistinguishability Assumptions

	A Example of Boolean Circuit
	B Garble1
	C How to Achieve size-Security
	References

	Signature Schemes with Randomized Verification
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Signature Schemes with Deterministic Verification
	2.2 Identity-Based Encryption

	3 Signatures Schemes with Randomized Verification
	4 Signature Scheme with Randomized Verification from IBE: Naor's Transformation
	4.1 Construction
	4.2 Correctness and Security

	5 Amplifying Soundness
	5.1 Construction
	5.2 Correctness and Security

	6 Derandomizing Verification in the Random Oracle Model
	7 Derandomizing Verification in the Standard Model
	References

	Side Channel Attack
	Trade-Offs for S-Boxes: Cryptographic Properties and Side-Channel Resilience
	1 Introduction
	2 Preliminaries
	2.1 Generalities on S-Boxes
	2.2 Side-Channel Resistance

	3 S-Boxes (Almost) Preserving the Hamming Weight
	3.1 Relation to the Confusion Coefficient
	3.2 Relation to Cryptographic Properties

	4 S-Boxes Minimizing the Hamming Distance
	4.1 Relation to the Confusion Coefficient
	4.2 Relation to Cryptographic Properties

	5 Side-Channel Evaluation
	5.1 Evaluation of S-Boxes with (Almost) wH Preservation
	5.2 A Closer Look at the Confusion Coefficient

	6 Conclusions
	A Investigation of Known S-Boxes
	References

	A Practical Chosen Message Power Analysis Approach Against Ciphers with the Key Whitening Layers
	1 Introduction
	2 Preliminaries
	2.1 The Compact and Loop Architecture
	2.2 DPA on Key Whitening Layer
	2.3 Feistel-SP Structure

	3 The Design of Our Approach
	3.1 The Chosen Message DPA on the Loop Architecture of Feistel-SP
	3.2 The Difficulty to Reveal the Whitening Key in the Loop Scenario
	3.3 Recovery of wkL
	3.4 Recovery of wkR

	4 Applications
	4.1 Application to CLEFIA-128
	4.2 Application to Camellia-128

	5 Conclusion and Discussion
	References

	Side-Channel Attacks Meet Secure Network Protocols
	1 Introduction
	2 Preliminaries
	2.1 Description of the AES
	2.2 Correlation Power Analysis
	2.3 Attacking Temporary Key Bytes
	2.4 Software Implementations of the AES

	3 Quantifying the Leakage
	4 Generating the Evaluation Cases
	5 The Attack
	5.1 Optimality
	5.2 Choosing the Best Attack Strategy

	6 Results
	7 Conclusions
	References

	Cryptographic Protocol
	Lattice-Based DAPS and Generalizations: Self-enforcement in Signature Schemes
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Circular Security
	2.2 Broadcast Encryption
	2.3 Background on Lattices
	2.4 FRD Encoding

	3 Predicate-Authentication-Preventing Signatures
	3.1 PAPS Framework
	3.2 Extraction
	3.3 Unforgeability

	4 DAPS from Lattices
	4.1 Trapdoor Dual-Regev Encryption
	4.2 DAPS Construction

	5 Extensions of DAPS to Other Predicates
	6 Multi-authority Setting
	6.1 Extractability
	6.2 Security

	7 Multi-authority DAPS
	7.1 Broadcast Encryption
	7.2 Multi-authority DAPS Construction

	References

	Forward-Secure Searchable Encryption on Labeled Bipartite Graphs
	1 Introduction
	1.1 Security and Forward Privacy of SSE Schemes
	1.2 Our Formulation
	1.3 Update Functionalities of DSSE Schemes
	1.4 SSE as a Data Structure Problem
	1.5 Our Results

	2 Definitions
	2.1 Data Representation
	2.2 Dynamic Searchable Symmetric Encryption (DSSE)

	3 Forward Privacy in DSSE
	3.1 Our Definition
	3.2 Bost's Definition
	3.3 Forward Privacy for Deletions

	4 Forward Privacy from Any DSSE
	4.1 Our Construction
	4.2 Analysis

	5 Forward Privacy from Scratch
	5.1 Warm Up: Plaintext Cascaded Triangles
	5.2 Our Construction: Encrypted Cascaded Triangles
	5.3 Analysis

	References

	Bounds in Various Generalized Settings of the Discrete Logarithm Problem
	1 Introduction
	2 Preliminaries
	3 Generalized Bounds of Tk,n for Small k
	4 Generalized Bounds of Tk,n for Larger k
	5 Optimizing the Partition of n
	5.1 Pseudo Solutions Deriving from the Same Block
	5.2 Pseudo Solutions Deriving from Multiple Blocks

	6 Applications in Other MDLP Settings
	6.1 Block Based GMDLPwAI
	6.2 Matrix Based GMDLPwAI
	6.3 Block Based Fp-GMDLPX
	6.4 Matrix Based Fp-GMDLPX

	7 Some Explicit Bounds of Tk,n
	8 Conclusion
	References

	An Enhanced Binary Characteristic Set Algorithm and Its Applications to Algebraic Cryptanalysis
	1 Introduction
	1.1 Background
	1.2 The Characteristic Set Algorithm
	1.3 Our Contributions
	1.4 Organization of This Paper

	2 A Description of the Characteristic Set Algorithm
	2.1 Notations and the Set-Up
	2.2 The Basic Structure of Binary CSA
	2.3 BCSA

	3 The Enhanced Binary CSA
	3.1 The ElimLin Technique
	3.2 An Improved Complexity Metric
	3.3 The Set Metric
	3.4 Sorting the Variables
	3.5 Combining the Various Features

	4 Experimental Results
	4.1 Experiments on Our Complexity and Set Metrics
	4.2 Experiments on Present Cipher
	4.3 Experiments on Prince Cipher
	4.4 Experiments on the Stream Cipher Toyocrypt

	5 Conclusions and Future Work
	References

	SCRAPE: Scalable Randomness Attested by Public Entities
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	2.1 Coding Theory
	2.2 Shamir Secret Sharing
	2.3 Assumptions
	2.4 Publicly Verifiable Secret Sharing
	2.5 Zero-Knowledge Proofs of Discrete Logarithm Knowledge

	3 PVSS Based on the DDH Assumption in the ROM
	3.1 Security Analysis

	4 PVSS Based on Pairings in the Plain Model
	4.1 Security Analysis

	5 Building the SCRAPE Randomness Beacon
	6 Concrete Complexity and Experiments
	References

	cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic Operations
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Architecture and Communication Model
	3.2 Adversarial Model
	3.3 Security Goals

	4 The Core Protocol
	4.1 Preliminaries
	4.2 Protocol Description

	5 Protocol Integrity
	5.1 Integrity of Values and Messages
	5.2 Message Tagging Detection
	5.3 Sending and Verifying Trap Messages
	5.4 Security Analysis

	6 Comparison with Other Mixnets
	7 Proof of Concept
	8 Extensions, Discussion, and Future Work
	9 Conclusion
	References

	Almost Optimal Oblivious Transfer from QA-NIZK
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Security Models

	3 Generic Construction of an Oblivious Transfer from a UC-Secure PAKE
	3.1 Description of a UC-Secure PAKE Scheme
	3.2 Generic Construction of a UC-Secure OT Scheme
	3.3 Generic Optimization

	4 Warm-Up: Applying the Framework on
	4.1 Notations
	4.2 Description of Their UC-Secure PAKE Scheme
	4.3 Applying the Framework to Obtain a UC-Secure OT Scheme

	5 New Efficient Oblivious Transfer Based on QA-NIZK
	5.1 Description of Their UC-Secure PAKE Scheme
	5.2 Applying the Framework to Obtain a UC-Secure OT Scheme

	6 Conclusion
	References

	OnionPIR: Effective Protection of Sensitive Metadata in Online Communication Networks
	1 Introduction
	2 Private Information Retrieval and Improvements
	2.1 PIR Background
	2.2 Method of Four Russians
	2.3 Uniform Distribution of Data Entries
	2.4 Generic Implementation Improvements
	2.5 PIR Benchmark Results

	3 OnionPIR
	3.1 Motivation
	3.2 System Model and Goals
	3.3 Protocol Description
	3.4 Analysis
	3.5 Implementation

	4 Related Work
	References

	Data and Server Security
	Accountable Storage
	1 Introduction
	2 Preliminaries
	3 Accountable Storage Definitions
	4 Our Basic Construction
	5 Sublinear Construction Using Proofs of Partial Storage
	6 Bitcoin Integration
	7 Evaluation
	8 Conclusions
	References

	Maliciously Secure Multi-Client ORAM
	1 Introduction
	2 A Lower Bound for Maliciously Secure Multi-Client ORAM
	2.1 Multi-Client Oblivious RAM
	2.2 Formal Result
	2.3 Discussion

	3 PIR-MCORAM
	3.1 Analysis
	3.2 Discussion

	4 Integrity Proof Revised: The Hash-and-Proof Paradigm
	5 Proxy-Based Realization
	6 Security and Privacy Results
	7 Evaluation
	8 Conclusion
	References

	Legacy-Compliant Data Authentication for Industrial Control System Traffic
	1 Introduction
	2 Preliminaries
	2.1 Industrial Control Systems
	2.2 Security Guarantees

	3 Traffic Authentication for ICS: The SPA Protocol
	3.1 Legacy-Compliance
	3.2 SPA Protocol Description
	3.3 Application to ENIP-CIP
	3.4 Ad-Hoc Protocols vs TLS

	4 Extensions: The ASPA Protocol
	4.1 The ASPA Protocol
	4.2 Performance Advantage

	5 Validation
	5.1 SWaT
	5.2 Hardware Benchmark
	5.3 Discussion

	6 Related Work
	7 Conclusions
	A Appendix: Real-Time Requirements and Backlogs
	B Appendix: Authenticated Link Using Raspberry Pi
	References

	Multi-client Oblivious RAM Secure Against Malicious Servers
	1 Introduction
	2 Motivation: Multi-client ORAM
	2.1 Technical Challenges
	2.2 Other Applications
	2.3 Related Work

	3 Security Definition
	4 Multi-client Security for Classical ORAMs
	4.1 Details
	4.2 Hierarchical Construction

	5 Tree-Based Construction
	5.1 Overview
	5.2 Details

	6 Conclusion
	References

	Author Index

