
Rigid Slice-To-Volume Medical Image
Registration Through Markov Random Fields

Roque Porchetto1, Franco Stramana1, Nikos Paragios2, and Enzo Ferrante2(B)

1 UNICEN University, Tandil, Argentina
2 CVN, CentraleSupelec-INRIA, Universite Paris-Saclay,
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Abstract. Rigid slice-to-volume registration is a challenging task, which
finds application in medical imaging problems like image fusion for image
guided surgeries and motion correction for volume reconstruction. It is
usually formulated as an optimization problem and solved using stan-
dard continuous methods. In this paper, we discuss how this task be
formulated as a discrete labeling problem on a graph. Inspired by previ-
ous works on discrete estimation of linear transformations using Markov
Random Fields (MRFs), we model it using a pairwise MRF, where the
nodes are associated to the rigid parameters, and the edges encode the
relation between the variables. We compare the performance of the pro-
posed method to a continuous formulation optimized using simplex, and
we discuss how it can be used to further improve the accuracy of our
approach. Promising results are obtained using a monomodal dataset
composed of magnetic resonance images (MRI) of a beating heart.

1 Introduction

Slice-to-volume registration has received increasing attention during the last
decades within the medical imaging community. Given a tomographic 2D slice
and a 3D volume as input, this challenging problem consists in finding the slice
(extracted from the input volume and specified by an arbitrary rigid transfor-
mation) that best matches the 2D input image. We stress the fact that we are
working with 2D slices (e.g. ultrasound (US)) as opposed to projective 2D images
(e.g. X-ray images). This is important since both problems are usually refereed
as 2D/3D registration, even if they are intrinsically different. In slice-to-volume
registration, every pixel from the 2D image corresponds to a single voxel in 3D
space. However, in a projective 2D image every pixel represents a projection of
voxels from a given viewpoint.

One can formulate different versions of slice-to-volume registration, depend-
ing on several aspects of the problem such as the matching criterion used to
determine the similarity between the images, the transformation model we aim
at estimating, the optimization strategy used to infer the optimal transformation
model (continuous or discrete) and the number of slices given as input. In this
work, we propose an iconic method (where the matching criterion is defined as
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a function of the image intensity values) to infer rigid transformation models
(specified using 6-DOF). The input consists of a single slice and a single volume,
and we formulate it as a discrete optimization problem.

Discrete methods, where the tasks are usually formulated as a discrete label-
ing problem on a graph, have become a popular strategy to model vision prob-
lems [24] (and particularly, biomedical vision problems [19]) thanks to their
modularity, efficiency, robustness and theoretical simplicity. This paper presents
a graph-based formulation (inspired by the work of [26,27]) to solve rigid
(only) slice-to-volume registration using discrete methods. As we will discuss in
Sect. 1.2, other works have tackled similar problems. However, to date, no work
has shown the potential of discrete methods to deal with rigid slice-to-volume
registration. Our main contribution is to put a new spin on graph-based registra-
tion theory, by demonstrating that discrete methods and graphical models are
suitable to estimate rigid transformations mapping slice-to-volume. We validate
our approach using a dataset of magnetic resonance images (MRI) of the heart,
and we compare its performance with a state-of-the-art approach based on con-
tinuous optimization using simplex method. Moreover, in the spirit of encour-
aging reproducible research, we make the source code of the application pub-
licly available at the following website: https://gitlab.com/franco.stramana1/
slice-to-volume.

1.1 Motivation

In the extensive literature of medical image registration, it is possible to identify
two main problems which motivated the development of slice-to-volume registra-
tion methods during the last decades. The first one is the fusion of pre-operative
high-definition volumetric images with intra-operative tomographic slices to per-
form diagnostic and minimally invasive surgeries. In this case, slice-to-volume
registration is one of the enabling technologies for computer-aided image guid-
ance, bringing high-resolution pre-operative data into the operating room to
provide more realistic information about the patient’s anatomy [17]. This tech-
nique has been used when dealing with several scenarios such as liver surgery
[1], radio-frequency thermal ablation of prostate cancer [5], minimally invasive
cardiac procedures [12], among many others.

The second problem is the correction of slicewise motion in volumetric acqui-
sitions. In a variety of situations, inter slice motion may appear when capturing
a volumetric image. For example, in case of fetal brain imaging (essential to
understand neurodevelopmental disabilities in childhood and infancy) [21], fetus
motion generates inconsistencies due to the slice acquisition time. Another case is
related to functional magnetic resonance images (fMRI), usually acquired as time
series of multislice single-shot echoplanar images (EPI). Patient head motion
during the experiments may introduce artifacts on activation signal analysis.
Slice-to-volume registration can be used to alleviate this problem by register-
ing every slice to an anatomical volumetric reference following the well-know
map-slice-to-volume (MSV) method [13].

https://gitlab.com/franco.stramana1/slice-to-volume
https://gitlab.com/franco.stramana1/slice-to-volume
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1.2 Previous Work

Graph-based image registration, where the task is conceived as a discrete labeling
problem on a graph, constitutes one of the most efficient and accurate state-of-
the-art methods for image registration [22]. Even if they have shown to be partic-
ularly suitable to estimate deformable non-linear transformations [10,11], they
were also adapted to the linear case [27]. Most of the publications on the field
focus on registering images which are in dimensional correspondence (2D/2D or
3D/3D). In case of projective 2D/3D image registration, only linear transforma-
tions were estimated using discrete methods by [26,27]. More recently, several
graph-based approaches to perform deformable slice-to-volume registration were
introduced in [6–8]. In these works, rigid transformations were computed as a
by-product of the deformable parameters, leading to unnecessary computational
burden (since rigid transformations are by far lower dimensional than deformable
ones). To the best of our knowledge, rigid (only) slice-to-volume registration has
not been formulated within this powerful framework. To date, all the methods
focusing on this challenging problem are based on continuous (e.g. simplex [5],
gradient descent [21], Powell’s method [9], etc.) or heuristic approaches (evo-
lutionary algorithms [23], simulated annealing [2]), missing the aforementioned
advantages offered by discrete optimization. Based on the work of [26], we pro-
pose a discrete Markov Random Field (MRF) formulation of this problem, deliv-
ering more precise results than the state-of-the-art continuous approaches. More-
over, inspired by the work of [16] in the context of vector flow estimation, we
discuss how continuous state-of-the-art approaches can be used to further refine
the rigid transformations obtained through discrete optimization, resulting in
more accurate solutions.

2 Rigid Slice-to-Volume Registration Through Markov
Random Fields

We formulate rigid slice-to-volume registration as an optimization problem.
Given a 2D image I : ΩI ∈ �2 → �, and a 3D image J : ΩJ ∈ �3 → �, we aim
at recovering the rigid transformation specified by π = (rx, ry, rz, tx, ty, tz) that
better aligns both images, by solving:

π̂ = argmin
π

M(I, π[J ]), (1)

where π[J ] corresponds to the slice extracted from image J (using trilinear inter-
polation) and specified by the rigid transformation π (as explained in Fig. 1).
M is the so-called matching criteria, that quantifies the dissimilarity between
the 2D image I and the slice π[J ]. Alternative matching criteria can be adopted
depending on the type of images we are registering. For example, in monomodal
cases where intensities tend to be linearly correlated in both images, simple func-
tions such as sum of absolute differences (SAD) or sum of squared differences
(SSD) may make the job. However, for more complicated cases like multimodal
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Fig. 1. Interpretation of the components of Eq. 1. (a) Image I corresponds to the
input 2D image, which is moved by different rigid transformations π. (b) Image J
corresponds to the 3D image. Given a rigid transformation π, a slice π[J ] is extracted
(using trilinear interpolation). In that way, it is possible to explore the space of solutions
by sampling several rigid transformations π. (c) The matching criterion M quantifies
the dissimilarity of both 2D images, I and π[J ]. Higher values indicate dissimilar images
while lower values indicate better alignment.

registration (where the relation between intensity values in both images is usu-
ally non-linear), more elaborated functions like mutual information (MI) are
applied.

This optimization problem is commonly solved through continuous (gradient
or non-gradient based) methods, which are considerably sensible to initialization
and may be stuck in local minima. As discussed in Sect. 1.2, in this work we
model rigid slice-to-volume registration as a discrete labeling problem following
the discretization strategy proposed by [27].

2.1 Rigid Slice-to-Volume Registration as a Discrete Labeling
Problem

Rigid slice-to-volume registration, as well as many other problems in computer
vision, can be formulated as a discrete labeling problem on a pairwise Markov
Random Field (MRF) [24]. Formally, a discrete pairwise MRF is an undirected
graph G = 〈V, E〉, where each node vi ∈ V, i = 1...|V| represents a discrete vari-
able. Any two variables vi, vj depend on each other if there is an edge (vi, vj) ∈ E
linking the corresponding nodes. The range of values that can be assigned to a
discrete variable is determined by the label space L. A discrete labeling problem
on a pairwise MRF consists on assigning a label li ∈ L to every vi ∈ V, such
that the following energy is minimized:

P(x;G,F ) =
∑

vi∈V

gi(li) +
∑

(vi,vj)∈E
fij(li, lj), (2)
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where x = {l1, ..., ln} is a labeling assigning a label li to every vi ∈ V, G =
{gi(·)} are the unary potentials associated to vi ∈ V and F = {fij(·, ·)} are the
pairwise potentials associated to edges (vi, vj) ∈ E . These functions return scalar
values when labels li are assigned to variables vi. Since we pose the optimization
as a minimization problem, potentials must associate lower values to labelings
representing good solutions, and higher values otherwise.

In the formulation presented in Eq. 1, one would like to explore the space of
parameters π and chose the values giving the best matching. Since we are model-
ing it as a discrete problem, we must adopt a discretization strategy for the (nat-
urally) continuous space of rigid transformations π. In [27], authors proved that
it is possible to estimate linear (an particularly, rigid body) transformations by
solving a discrete and approximated version of this formulation. Following their
proposal, we model rigid slice-to-volume registration through a graph G = 〈V, E〉,
associating every parameter of the rigid transformation π = (rx, ry, rz, tx, ty, tz)
to a variable vi ∈ V, giving a total of 6 variables (nodes in the graph). G is a
fully connected pairwise graph where E = {(vi, vj)},∀i �= j, meaning that all
variables (parameters) depend on each other. Note that this pairwise model is
clearly an approximation, since the real dependency between the parameters is
not pairwise but high-order. However, as stated in [27], similar approximations
have shown to be good enough to estimate linear transformations, while making
the problem tractable.

In our discrete strategy, every parameter vi is updated through a dis-
crete variation dli associated to the label li. Given an initial transformation
π0 = (r0x, r0y, r0z , t0x, t0y, t0z), we explore the space of solutions by sampling dis-
crete variations of π0, and choosing the one that generates the slice π[J ]
best matching image I. Therefore, for a maximum size ωi and a quantiza-
tion factor κi, we consider the following variations to the initial estimate of vi:
{0,±ωi

κi
,± 2ωi

κi
,± 3ωi

κi
, ...,±κiωi

κi
}. The total number of labels results |L| = 2κ + 1.

Note that 0 is always included since we give the possibility of keeping the current
parameter estimate. For example, in case that v0 corresponds to rx, ω0 = 0.2
and κ0 = 2, the label space of v0 will correspond to {r0x, r0x ± 0.1, r0x ± 0.2}.

Ideally, we would like to explore the complete search space around π0 given
by all possible combinations of labels. Since we have an exponential number of
potential solutions, we adopt a pairwise approximation where only variations
for pairs of variables are considered. This variations are encoded in the pairwise
terms of the energy defined in Eq. 2 as fij(li, lj) = M(I, πli,lj [J ]). Here πli,lj

denotes the updated version of π0, where only vi and vj were modified according
to the labels li and lj , while the rest of the parameters remained fixed. Unary
potentials gi are not considered since we are only interested in the interaction
between variables. Therefore, the discrete version of the optimization problem
introduced in Eq. 1 becomes:

x̂ = argmin
x

P(x;F ) = argmin
x

∑

(vi,vj)∈E
M(I, πli,lj [J ]), (3)

where the optimal labeling x̂ represents the final rigid transformation π̂ used to
extract the solution slice π̂[J ].
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2.2 Discrete Optimization

We solve the discrete multi-labeling problem from Eq. 3 using FastPD. FastPD
is a discrete optimization algorithm based on principles from linear program-
ming and primal dual strategies, which at the same time generalizes the well
known α-expansion [15]. One of the main advantages of FastPD is its modu-
larity/scalability, since it deals with a much wider class of problems than α-
expansion, being an order of magnitude faster while providing the same opti-
mality guarantees when performing metric labeling [14]. Our problem does not
fulfill the conditions to be considered a metric labeling problem (we refer the
reader to [4] for a complete discussion about metric labeling); however, FastPD
has shown promising results for similar formulations [27].

FastPD solves a series of max-flow min-cut [3] problems on a graph. In that
sense, it is similar to α-expansion which also performs discrete inference on
multi-label problems by solving successive binary max-flow min-cut problems.
The main difference between these approaches is the construction of the graph
where max-flow min-cut algorithm is applied. α-expansion constructs the binary
problem by restricting the label space, so that the only options for a given
variable are to remain in its current assignment, or to take a label α (which
varies in every iteration). Instead, FastPD constructs these binary problems by
performing a Linear Programming Relaxation (LPR) of the integer program that
represents the discrete MRF formulation.

2.3 Incremental Approach

Discrete approximations of continuous spaces usually suffer from low accuracy
(since it is bounded by the quality of the discretization). Thus, we adopt an
incremental approach to explore the space of solutions in a finer way. The idea
is to successively solve the problem from Eq. 3, using the solution from time t as
initialization for time t + 1, keeping a fixed number of labels but decreasing the
maximum sizes ωi in a factor αi. Moreover, we also adopt a pyramidal approach,
where we generate a Gaussian pyramid for both input images I and J , and we
run the complete incremental approach on every level of the pyramid. In that
way, we increase the capture range of our method.

2.4 Simplex Refinement Step

Let us advance one of the conclusions of this work, so that we can motivate the
last step of our approach. In Sect. 3.1, we compare the performance of our dis-
crete approach with a continuous method based on simplex [18] algorithm. As we
will see, when the initialization π0 is good enough, both continuous and discrete
approaches perform well. In fact, in some cases, simplex is delivering more accu-
rate solutions than discrete. However, as we move away from the initialization,
discrete optimization gives more and more significant improvements, thanks to
its wider capture range. In order to improve the accuracy of our proposal, and
inspired by similar conclusions discussed by [16] in the context of vector flow
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Fig. 2. Visual results for two slices of the individual tests. The first column corresponds
to the input 2D slice. The second column shows the difference between the input 2D
slice and the initial slice. The other columns show the difference between the input and
the one resulting slices applying simplex, discrete and refined approaches. Grey values
indicate no difference, while white and black value indicate inconsistencies. As it can
be observed, the solution given by the refined approach is outperforming the others.

estimation, we refine the results obtained with our approach by optimizing Eq. 1
through simplex, using the discrete solution as initialization.

3 Experiments and Results

In this section, we present the results obtained using the proposed method (con-
sidering also the refined version), and we compare them with a state-of-the-art
approach based on continuous optimization trough downhill simplex [18] (also
known as Nelder-Mead or amoeba method). Simplex is one of the most popu-
lar optimization algorithms used to deal with rigid slice-to-volume registration
(some examples are [2,13,20,25]). It is a continuous and derivative-free method,
which relies on the notion of simplex (which is a special polytope of n+1 vertices
living in a n-dimensional space) to explore the space of solutions in a systematic
way. We used a dataset composed of MRI images of a beating heart. Given an
initial sequence of 3D images Mi, i = 0..19 of a beating heart (with a resolution
of 192 × 192 × 11 voxels and a voxel size of 1.25 × 1.25 × 8mm), we generated
slices which were used for two different experiments.

3.1 Implementation Details and Parameters Setting

We implemented the three versions of the algorithms discussed in this paper
(simplex, discrete and refined) mainly using Python and ITK for image
manipulation1. For simplex optimization we used the method implemented
1 The source code can be downloaded from https://gitlab.com/franco.stramana1/

slice-to-volume.

https://gitlab.com/franco.stramana1/slice-to-volume
https://gitlab.com/franco.stramana1/slice-to-volume
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in scipy.optimize package, while discrete optimization was performed using a
Python wrapped version of the standard C++ implementation of FastPD. In
all the experiments, we used a pyramidal approach with 4 Gaussian levels (3D
images where not downsampled in z axis because of the low resolution of the
images in this direction). The matching criterion adopted in all the experiments
was the sum of squared differences, since pixel intensities are equivalent in both
2D and 3D images. The matching criterion M based on SSD is simply defined
as:

M(I1, I2) =
∑

i∈Ω

(I1(i) − I2(i))2, (4)

For the discrete case, at every pyramid level we decreased the maximum
label size for both, rotation (ωrot = [0.02, 0.015, 0.0125, 0.01]rad) and transla-
tion (ωtrans = [7, 6.5, 6, 5] mm) parameters. Starting from these maximum sizes,
we solved Eq. 3 running FastPD several times per level until no improvement is
produced or a maximum number of iterations is achieved ([200, 100, 150, 600]),
using different label space decreasing factors at every pyramid level (α = [0.08,
0.07, 0.05, 0.03]). The total number of labels was fixed to 5 (κ = 2) for all the
experiments. For the continuous case (where Eq. 1 was optimized using simplex),
we used again a 4-levels pyramidal approach, with simplex running until conver-
gence in every level. Finally, for the refined experiment, we just ran the simplex
experiment initialized with the solution estimated with the discrete method.
For every registration case, continuous approach took around 30secs while the
discrete version took 9mins, running on a laptop with an Intel i7-4720HQ and
16 GB of RAM.

3.2 Experiments

We performed two different type of experiments, considering individual registra-
tion cases as well as image series. For validation, we measured three different
indicators: the distance in terms of translation and rotation parameters between
the estimated and ground truth transformations, together with the mean of
absolute differences (MAD) between the input 2D image and the slice specified
by the estimated rigid transformation.

Individual tests. The first set of experiments measures the accuracy of the
three approaches using individual tests, where 100 random slices extracted from
the 20 volumes are considered as single images (independently of the series), and
registered to the first volume M0. We run the same experiment for every slice
using three different initializations (resulting in 300 registration cases), where
ground truth parameters were randomly perturbed in three different ranges ([5,
12), [12, 18), [18, 25) millimeters for translation and [0.1, 0.2), [0.2, 0.3), [0.3,
0.4) radians for rotation parameters) to guarantee that both, good and bad
initializations, are considered for every slice. Quantitative results are reported in
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Fig. 3. Individual tests where 100 2D slices (extracted at locations specified using
random rigid transformations) are considered as independent registration cases. Every
point form the scatter plot represents the mean of absolute differences (MAD) between
the input 2D image and the slice extracted at the initial position (X axis) vs the
estimated position (Y axis). We also include a linear trend estimation (fitted using
least squares method) to compare the robustness of the method to bad initializations.

Table 1. Average error estimated in terms of rotation (expressed in radians), transla-
tion (expressed in millimeters) and MAD for the three alternative approaches discussed
in this paper. As it can be observed, the discrete and refined methods outperform the
standard continuous approach optimized through simplex.

Method Rx Ry Rz Tx Ty Tz MAD

Simplex 0,14 0,13 0,12 8,46 9,62 10,69 51,88

Discrete 0,12 0,08 0,09 5,87 6,72 6,18 42,36

Refined 0,10 0,07 0,08 5,09 5,96 4,92 36,45

Figs. 3 and 4 and summarized in Table 1. Visual results for qualitative evaluation
are reported in Fig. 2.

Results in the scatter plot from Fig. 3 indicate that, as we go farther away
from the initialization (in this case, it is quantified by the MAD between the
input 2D image and the slice corresponding to the initialization), discrete and
refined methods tend to be more robust. This robustness is clearly reflected by
the slope of the trend lines: the refined method presents the trend line with
the lower slope, meaning that even for bad initializations it converges to better
solutions. The boxplot from Fig. 4 and the numerical results from Table 1 confirm
that discrete and refined methods perform better not only in terms of MAD, but
also with respect to the distance between the rotation/translation estimated and
ground truth parameters.
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Fig. 4. Boxplot corresponding to the estimated error (in terms of rotation and trans-
lation parameters) for the 300 individual tests. As it can be observed, discrete and
refined approaches are reducing both the mean error (shown as a dotted line in every
box) and the dispersion.

Temporal series test. The idea behind the second experiment is to simulate an
image guided surgery (IGS) scenario, where a fixed pre-operative volume must
be fused with consecutive intra-operative 2D images suffering deformations (in
this case, due to heart beating). Given the temporal sequence of 20 volumetric
MRI images Mi, i = 0..19, we generated a sequence of 20 2D slices to validate
our method. It was extracted as in [8]: starting from a random initial translation
T0 = (Tx0 , Ty0 , Tz0) and rotation R0 = (Rx0 , Ry0 , Rz0), we extracted a 2D slice
I0 from the initial volume M0. Gaussian noise was added to every parameter
in order to generate the position used to extract the next slice from the next
volume. We used σr = 3◦ for the rotation and σt = 5mm for the translation para-
meters. All the slices were registered to the first volume M0. The solution of the
registration problem for slice Ii was used as initialization for the slice Ii+1. The
first experiment was initialized randomly perturbing its ground truth transfor-
mation with the same noise parameters. As it can be observed in Fig. 5, discrete
and refined approaches manage to keep a good estimation error while simplex
can not. Note that different strategies could be used in real scenarios to obtain
good initializations for the first slice. For example, in IGS, physicians could start
from a plane showing always the same anatomical structure, or identify land-
mark correspondences in the first slice and the 3D image useful to estimate an
initial transformation.
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Fig. 5. Results for the temporal series experiment. In this case, the transformation
estimated for the slice i was used as initialization for the next slice of the series. We
reported results in terms of MAD and rotation/translation error for the estimated
transformations using the three approaches.

4 Discussion, Conclusions and Future Works

In this paper we presented a strategy to solve rigid slice-to-volume registration
as a discrete graph labeling problem, following the discretization strategy intro-
duced by [27]. We validated our proposal using a MRI dataset of a beating heart,
where arbitrary 2D slices are fused with a 3D volume. The experimental results
showed that our discrete approach produces more accurate and robust estimates
for the rigid transformations than a continuous method based on simplex. More-
over, they also reflected that results obtained using such a method can be further
refined using a continuous approach like simplex, leading to even more accurate
estimations. This is coherent with the conclusions presented by [16] for the case
of optical flow estimation.

An interesting discussion about the limitations of our approach, emerges
when we observe the results obtained in previous work by [6–8] using similar
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images. In these works, both rigid and local deformable parameters are esti-
mated in a one-shot discrete optimization procedure, delivering results which
are considerably better than ours, even for the refined approach. Since we are
dealing with 2D images which are deformed with respect to the static 3D vol-
ume (due to heart beating), estimating both rigid and deformable parameters
at the same time seems to be the correct solution since there is a clear mutual
dependence between them. However, if we look at the results corresponding to
the first slices of the temporal series in Fig. 5 (where there is almost no defor-
mation, and even null deformation for the 1st slice), we can see that the quality
of the solution is significantly better than in the other cases. In fact, the error is
almost 0. It suggests that when the 2D image is not deformed with respect to the
input volume, our method is enough to capture slice-to-volume mapping. This
limitation is somehow inherent to the model we are using: rigid transformations
can not deal with local deformations. To improve the results in these cases, we
plan to extend our approach to linear transformations where also anisotropic
scaling and shearing can be considered. Following the strategy by [27], it will
result straightforward.

Finally, a future line of research has to do with applying discrete rigid (or
linear) slice-to-volume registration to other problems. As discussed in Sect. 1.1
motion correction for volume reconstruction is another problem requiring map-
ping slice-to-volume. It would be interesting to explore how our approaches per-
forms in this case.
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