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Preface MCV 2016

The MICCAI 2016 Workshop on Medical Computer Vision: Algorithms for Big Data
(MCV 2016) was held in conjunction with the 19th International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016) on
October 21, 2016, in Athens, Greece. It succeeded the workshops on Medical Com-
puter Vision that were held in September 2010 in conjunction with MICCAI 2010 in
Beijing, in June 2012 in conjunction with CVPR 2012 in Providence, in October 2012
in conjunction with MICCAI 2012 in Nice, in September 2013 in conjunction with
MICCAI 2013 in Nagoya, in September 2014 in conjunction with MICCAI 2014 in
Boston, and in June 2015 in conjunction with CVPR 2015 in Boston.

Modern learning algorithms make the promise of bridging the semantic gap between
images and diagnoses and even reaching superhuman performance. The goal of this
workshop is to explore the use of “big data” algorithms for harvesting, organizing and
learning from large‐scale medical imaging data sets and for general‐purpose automatic
understanding of medical images. This includes modern, scalable, and efficient algo-
rithms for automatic localization, segmentation, registration, and characterization of
anatomical features and anomalies. We are especially interested in new methodology
strongly motivated by a clinical application with a contribution at the interface of big
data algorithms, computer vision, machine learning, and medical image analysis.

Our call for papers resulted in 15 submissions of up to 12 pages. Each paper
received two to four reviews. Based on these peer reviews, we accepted 13 papers to
the workshop among which six were assigned a long and seven a short oral
presentation.

Six invited speakers (Wiro Niessen, Kevin Zhou, Geert Litjens, Mert Sabuncu,
Sandy Wells, Ben Glocker) also made major contributions to the program. The many
questions and discussions showed the quality of the talks and the posters. Particularly
the use of large data sets was much discussed, something that is not easy to obtain with
annotations in the medical field. The large participation reflected the interest of the
public in the workshop topics.

October 2016 Henning Müller
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Preface BAMBI 2016

BAMBI 2016 was the Third International Workshop on Bayesian and Graphical
Models for Biomedical Imaging. It was held at the Intercontinental Athenaeum,
Arcade I, Athens, Greece, on October 21, 2016. The goal of this event was to highlight
the potential of using Bayesian or random field graphical models for advancing sci-
entific research in biomedical image analysis. The BAMBI 2016 proceedings, pub-
lished in the Lecture Notes in Computer Science series together with the Medical
Computer Vision workshop, contain state-of-the-art original and highly methodological
research selected through a rigorous peer-review process. Every full paper went
through a double-blind review process by at least three members of the international
Program Committee composed of several renowned scientists in the field of Bayesian
image analysis. The result of this stringent selection process was a set of six articles in a
single-track single-day event.

The scientific program was augmented by our two invited speakers, Mark Jenkinson
(Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK) and
Ben Glocker (Imperial College London, London, UK). Both presented exciting
advances during their keynote lectures, covering a large scope of methodologies and
applications in Bayesian and graphical models. We warmly thank the members of our
Program Committee and all the participants of the event who made this workshop an
exciting venue to share the latest methodological advances in this expanding research
area.
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Constructing Subject- and Disease-Specific
Effect Maps: Application to Neurodegenerative

Diseases

Ender Konukoglu1(B) and Ben Glocker2

1 Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
ender.konukoglu@vision.ee.ethz.ch

2 Biomedical Image Analysis Group, Imperial College London, London, UK
b.glocker@imperial.ac.uk

Abstract. Current statistical methods in neuroimaging identify effects
of neurodegenerative diseases on the brain structure by detecting group
differences. Results are detailed maps showing population-wide effects.
Although useful for better understanding the disease, these maps provide
little subject-specific information. Furthermore, since group assignments
have to be known prior to analysis, resulting maps have limited diagnos-
tic value for new subjects. This article proposes a method to construct
subject- and disease-specific effect maps prior to diagnosis. The method
combines techniques from binary classification and image restoration to
identify the effects of a disease of interest on the measurements. Exper-
imental evaluation is carried out with synthetically generated data and
real data selected from the ADNI cohort. Results demonstrate the capa-
bility of the proposed method in generating subject-specific effect maps.

1 Introduction

Statistical analysis of neuroimaging data has been instrumental in identifying
structural variations of the human brain due to neurodegenerative diseases.
Methods that can process high-dimensional image-based measurements allow
constructing detailed volumetric [1] and surface maps [2,3] that highlight disease-
affected areas in the brain. Such disease-effect maps have been studied for various
neurodegenerative conditions in the literature [4–6]. These maps provide insights
into conditions’ characteristics and progression, guide histopathological studies
and help developing image-based biomarkers.

Although immensely useful, current statistical methods that identify disease-
specific effect-maps compute population-wide maps but they cannot compute
diagnostic subject-specific maps that highlight disease-affected areas specific to a
given subject prior to diagnosis. Inference-based models, whether univariate [1]
or multivariate [7,8], detect condition-related differences in image-based mea-
surements between two groups of subjects, one composed of patients and the
other composed of controls. Detected differences are “averages” across the pop-
ulation and methods need diagnostic information for all subjects. Predictive

c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 3–13, 2017.
DOI: 10.1007/978-3-319-61188-4 1



4 E. Konukoglu and B. Glocker

modeling approaches use machine-learning tools to identify measurements that
are highly informative for diagnosing the condition [9–12]. Although the predic-
tions of diagnosis are prospective, the identified areas are not and they are still
population-wide.

Outlier detection is currently the only alternative for constructing maps that
are subject-specific. Methods estimate normative (univariate or multivariate) dis-
tributions from a population consisting only of controls. The measurements of the
subject under-investigation is then compared to the respective normative distribu-
tions and outliers are identified.This approach has been applied to brain lesion [13–
16] and recently to neurodegenerative diseases [17]. It is however difficult to use
outlier detection in constructing disease-specific maps because the methods them-
selves are not disease-specific. Given a new image, outlier detection methods will
identify all abnormalities without specificity with respect to a disease of interest.

Why is it important to be able to construct diagnostic subject- and disease-
specific maps? There are numerous applications for such a tool. First, it would
enable studying variations of conditions’ effects across the population to iden-
tify subgroups within the patients [18] and develop biomarkers of progression.
Second, such maps would help analyzing cases where machine-learning tools
fail, which would facilitate model improvements and possibly identifying mis-
diagnosis in the validation data. Lastly, subject- and disease-specific maps can
complement “black-box” machine learning tools in their clinical application by
providing reasonings and interpretation to the automatically generated decisions.

In this article we present a method to compute subject-specific and disease-
specific diagnostic maps and show its application on neurodegenerative diseases.
We focus on localized image-based measurements, such as widely used voxel-wise
gray matter densities [1] and surface-based cortical thickness maps [3], as such
measurements can be used to construct detailed maps of disease effects. The
proposed method uses principles from binary classification and image denoising
in a univariate setting. We present experiments evaluating the proposed tech-
nique on a synthetically generated dataset and on a cohort selected from the
ADNI dataset. We compare the proposed tool to other methods including uni-
variate general linear model [19] (GLM), support vector machines (SVM) [20]
and random forests (RF) [21].

2 Method

Let us represent the image-based measurements extracted from a given subject’s
image with f = [f1, ..., fd] ∈ R

d. The goal of the method is to use f to construct
a map q ∈ {0, 1}d that at each element indicates whether the corresponding
measurement shows a condition effect (1) or not (0). To this end the method uses
a training database {fn, yn}n=1,...,N , where yn is a binary variable representing
diagnostic information. We note that the method does not use the diagnostic
information for the test image. We assume that all fn and f are aligned and
comparisons between corresponding elements are feasible1.
1 see http://www.fil.ion.ucl.ac.uk/spm/ or https://freesurfer.net to this end.

http://www.fil.ion.ucl.ac.uk/spm/
https://freesurfer.net
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Intuition: The basis of the proposed method is that each element in f pro-
vides an independent probabilistic prediction on whether the subject has the
condition, y = 1, or not, y = 0. This prediction, a simple element-wise clas-
sification result, indicates whether this element is affected by the condition of
interest. The underlying intuition, and the novelty, of the proposed method is
that element-wise classification results are viewed as noisy observations of under-
lying an “true” condition-effect map and the method aims to restore. To this
end, there are two important components that can help the restoration process.
First, prediction accuracy at each element can be estimated using the training
dataset. Prediction estimate for an element indicates whether it shows consis-
tent condition-effect throughout the population. This estimation can help cor-
rectly interpret (in other words down weigh) the predictions of measurements
in a test image that does not show consistent condition-effect in the training
set. Second, there is a topological relationship between the measurements in f
when we consider surface meshes, images and volumes. Combining this with a
smoothness assumption on the condition-effects on biological tissue, we utilize
theory from Markov Random Fields and enforce consistency of estimated effect
between neighboring measurements. Below we formulate this intuition and the
two components.

We denote the independent element-wise predictions with p ∈ [0, 1]d and
model it with a Gaussian mixture model that has one component for each con-
dition. We use equal priors for the components and compute the posterior prob-
ability with

pj = p(y = 1|fj) =
N (fj ;μ

(j)
1 , (σ(j)

1 )2)
∑

g=0,1 N (fj ;μ
(j)
g , (σ(j)

g )2)
, j = 1, . . . , d, (1)

where μ
(j)
0,1 and σ

(j)
0,1 are the mean and standard deviations for the different groups

empirically estimated from the training dataset. We model p as a noisy observa-
tion with logit-normal distribution where the noise is iid additive Gaussian noise
in the logit domain, i.e. Φ̂j = log(pj/(1−pj) and Φ̂j = Φj+ε where ε ∼ N (0, σ2).
In this formulation Φ = [Φ1, . . . , Φd] is the underlying noise-free disease-effect
map we are aiming to restore. We further model the prior distribution of Φ with:

p(Φ) =
1
Z

exp

⎧
⎨

⎩
−1

2

⎛

⎝
∑

j

κjΦ
2
j + λ

∑

j

∑

k∈N(j)

(Φj − Φk)2

(dμj − dμk)2

⎞

⎠

⎫
⎬

⎭
,

where N(j) is the neighborhood of the measurement j, dμj = μ
(j)
1 /σ

(j)
1 −

μ
(j)
0 /σ

(j)
0 , λ is the pairwise strength term, κj = tan(ηjπ) where ηj is the pre-

diction error rate of pj (with thresholding at 0.5) estimated from the training
dataset and max-limited at 0.5, and Z is the normalization constant. The role
of the unary term is to enforce Φj to 0 for measurements that do not show
predictive power in the training dataset. The tan(x) function is used because
it is 0 when x = 0 and goes to ∞ as x → π/2. The role of the pairwise term
is to enforce consistency between neighboring measurements that show similar
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group-differences in the z-normalized GMM means. For localized image based
measurements N(j) is the set of immediate neighbors in the image domain or on
the surface. For global measurements where neighborhood is not well-defined,
such as volumes of anatomical structures, N(j) can be an empty set or fully
connected, however, here we only focus on the localized measurements.

Based on the prior and the observation model, the method computes the
maximum-a-posteriori (MAP) estimate of Φ by solving

(σ2κj + 1)Φj + σ2λ
∑

k∈N(j)

Φj − Φk

(dμj − dμk)2
= Φ̂j , j = 1, · · · , d (2)

This system of linear equations can be solved efficiently even for large d using
sparse routines for limited neighborhood sizes.

The MAP estimate Φ∗ is a continuous valued map. In order to determine
the q map, i.e. final regions that are affected by the condition, we would need to
threshold Φ∗, i.e. qj = 1 if Φ∗

j > τ and 0 otherwise. The threshold τ could have
been determined to maximize detection accuracy if the qn maps were available
for the training samples. Since this information is not available, instead, we
assume that the control samples are subjects that should not have any disease-
affected areas and q maps for these samples should be all zeros. Based on this
we determine the τ threshold by limiting the false-positive-rate (FPR) on the
control samples in the training dataset using

τ = min t, such that,
1

dNy=0

∑

n with yn=0

∑

j

δ(Φ∗
n,j > t) ≤ τFPR, (3)

where Ny=0 is the number of training control subjects and τFPR is the desired
FPR limit. This optimization is one dimensional and can be solved efficiently
with golden section search. Equation 3 allows the model to control the number
of false positives over the entire set of measurements.

Estimating parameters with cross-validation and bootstrap: The para-
meters of the Gaussian mixture model, error rate estimates η and the threshold
τ are estimated empirically using the training dataset. We implement a K-fold
cross validation loop where at each fold Φn of control samples in the test par-
tition are computed and τ is determined based on the cross-validation results.
Within each fold we also use bootstrap sampling (sampling with replacement)
on the training partition of the fold. μ0,1 and σ0,1 are estimated by averaging
bootstrap samples. η is estimated as the average of out-of-bag sample accura-
cies in each bootstrap experiment. This procedure avoids contamination between
estimation of τ and the other parameters. For the σ parameter, we note that in
Eq. 2 it is a multiplicative factor in front of κj and λ. Therefore, its effect on
Φ will be through its interaction with the other terms. In order to reduce the
number of tuning parameters of the model, in this work we set σ = 1.

Tuning parameters: λ and τFPR are the tuning parameters of the method. λ
implements the strength of interaction between the neighboring measurements
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and it is related to the smoothness of the final maps. FPR is the amount of
false positives a user is willing to accept in the resulting maps. Increase in FPR
extends the detected areas at the expense of higher false detections.

Contributions: The novelties of the proposed method is the restoration for-
mulation applied to element-wise binary classification results and the automatic
determination of the threshold τFPR based on limiting false positive rates. To the
best of our knowledge, this is the first work that produces subject and condition
specific effect maps. It is also the first work that combines image restoration,
binary classification and generalization accuracy estimation for this purpose.
Lastly, this is the first work that predicts condition-affected areas in a diagnos-
tic setting, i.e. without any information on the diagnosis of the test subject.

We note that q maps are subject-specific and they can vary drastically across
subjects, which we demonstrate in Sect. 3. Furthermore, information they carry
can be relevant for making subject-specific diagnosis.

3 Experiments

We evaluated the proposed method both with synthetically generated dataset
and a cohort selected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset.

Synthetic Data: Ground truth information for disease-affected areas are often
not available for in-vivo datasets. We generated a synthetic dataset that had
two different types of disease effects with which we quantitatively analyze the
retrieval and false positive rates of the proposed method. We generated 200
images, each of size 100 × 100, where 100 of them belong to the case (patient)
group, with y = 1, and the other 100 to the control group. Images in the control
group contained only stationary noise with spatial covariance and no underlying
disease effect. We generated these images by assigning iid Gaussian noise at
each pixel with 0 mean and σn = 50 standard deviation, and then blurring the
image with a Gaussian kernel of standard deviation 2.5. Case images had the
same noise but there were two different types of underlying disease effects, shown
in Fig. 1. The effects shared the center white square but differed in the corner
ones. The case group consisted of 50 images for each types of disease effects. We
experimented with different effect-sizes, i.e. intensities of the squares, but in each
experiment squares in the same image had the same effect-size. We generated the
case images by adding blurred iid noise with σn to the images with white squares,
where the blurring was done with the same Gaussian kernel as before. Examples
of a control image and two case images of different types are shown in Fig. 1.
The image-based measurements were simply taken as the image intensities.

We first applied GLM, RF and SVMs to identify population-wide disease-
affected areas. For GLM we extracted p-value maps and corrected for multiple
comparisons with Bonferroni’s method. For both RF and SVM, we trained the
methods with all the data and computed feature importances for RF and weights
for SVM using scikit-learn package [22]. We converted importance values and
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Ground Truth Effects of Two Types Image Examples: 1 control and 2 cases

Type I Type II Control Type I Type II

Population-Wide Effect Maps Corresponding Subject-Specific Maps

GLM RF SVM p: Element-wise predictions

p ≤ 5e − 6 p ≤ 0.05 p ≤ 0.05 q: Proposed restoration results

Fig. 1. Synthetic dataset visual results. LEFT: Two different types of disease effects
were generated (top row). Second and third rows show group-wise identified areas by
GLM, SVM and RF (second row: coefficients, third row: thresholded p-value maps).
As can be seen in these images, population-wide results do not capture subject-specific
effects. RIGHT: Top row shows three example images with noise std σn = 50 and
underlying effect size 1.0∗σn. Second row shows corresponding thresholded map based
on element-wise predictions, i.e. p maps computed with Eq. 1, before the proposed
restoration is applied. Third row shows the output of the proposed method q maps,
which are restored versions of the element-wise predictions with Eq. 2 and thresholded
using the value given by Eq. 3. Observe that the method indeed captures subject-specific
disease effects. λ = 0.5 and τFPR = 0.01 for these results.

weights to p-values with permutation testing [9,23] and thresholded the p-values
manually. The results are shown in Fig. 1. We observe that all these methods
detect population-wide disease-effects but the resulting maps do not provide
subject-specific information.

We then tested the proposed method using 5-fold cross validation (CV).
Parameters were estimated with an inner 5-fold CV loop as described in Sect. 2.
In addition to q maps we also computed p maps that have independent element-
wise predictions at each point before restoration. For p maps we also determined
the optimal threshold by limiting FPR with Eq. 3. We repeated the experiment
for different λ values, FPR thresholds 0.01 and 0.001, and five effect sizes 0.60σn,
1.0σn, 1.40σn, 2.0σn and 3.0σn.

Figure 1 shows visual examples of q and thresholded p maps obtained using
λ = 0.5 and τFPR = 0.01. q maps show that the method detects the underly-
ing subject-specific effects. Differences between p and q maps demonstrate the
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τFPR = 0.001 τFPR = 0.01

Fig. 2. Quantitative results on the synthetic dataset. Dashed curves are for thresholded
p maps, i.e. measurement-wise binary classification results, and solid curves are for q
maps, i.e. results of the proposed restoration method.
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benefits of the proposed restoration formulation for identifying disease-affected
areas. We also quantified the performance of the proposed method. We used
Dice scores between q maps and the ground truth effects for case subjects,
false positive rates for controls and specificity and sensitivity scores over the
entire dataset. We computed the same scores for the thresholded p maps as
well. Graphs in Fig. 2 plot the results for all experiments and for p (dashed)
and q maps (solid). Plots suggest that q maps can accurately identify underly-
ing disease effects in case subjects while keeping the false positive rates at the
desired limits for controls. The improvement of q over p maps is higher for lower
τFPR and lower effect sizes. Specificity values are very similar in both p and q
maps. Observing sensitivity plots we see why q maps provide higher Dice scores:
they are more sensitive to condition effects. We also notice that lower λ value
achieve higher Dice scores as the effect size increase. This is expected, since as
the effect-size increases need for restoration also drops.

ADNI Data: We selected 145 patients with Alzheimer’s Disease (AD) diagnosis
and 145 age and sex matched controls from the ADNI database. The structural
T1-weighted magnetic resonance images of the subjects were processed with
the Freesurfer software package [3] to construct surface-based cortical thickness
maps. These maps are triangulated surface meshes of the cortex and each ver-
tex also holds the underlying local thickness measurement. Maps from different
individuals were all aligned to a common reference surface mesh on the MNI
atlas and decimated down to 10242 vertices for faster computation.

On the selected ADNI cohort we performed 5-fold CV experiment to con-
struct subject-specific AD-effect maps. The parameters of the model were esti-
mated using an inner 5-fold CV loop. We set the tuning parameters λ as 0.15
and experimented with two different τFPR = 0.01 and 0.001. In the pairwise
term the neighborhood of each point was set as the set of vertices that share a
mesh triangle with the point. Simultaneously, we used the same folds to train
and evaluate an RF classifier to predict AD diagnosis using the cortical thickness
measures as previously done in the literature [24]. We used the implementation
in the scikit-learn package [22].

Left part of Fig. 3 shows four examples of subject-specific AD-effect maps.
We chose these examples based on comparing classification results of the RF
classifier and ground truth diagnosis: 2 true positives, a true negative and a
false negative. q maps of true positives differ in the extent of the effect and RF
based probabilities of positive AD diagnosis reflected this (0.77 and 0.91 top-
down). q map for the true negative show presence of some AD effects but the
detections are not around the hippocampal area. The RF probability was 0.46
and the q map may explain this relatively high value. In the false negative q
map most of the cortex does not show AD effect. This explains RF classifier’s
low AD probability (0.25) and the discrepancy with the ground truth diagnosis.

At the right of Fig. 3 we show a frequency map of AD effect per vertex, where
each vertex shows the portion of the patient cohort for which cortical thickness
at that vertex showed AD effect in the q map. Not surprisingly, the pattern
resembles previous group-analysis results for AD [25]. However, the crucial point



Subject-Specific Effect Maps 11

Subject-Specific AD-Effect Maps Effect Frequency

True Positive 1 True Negative

True Positive 2 False Negative

Fig. 3. Results on the ADNI dataset: Subject-specific effect maps of four subjects.
Note the variation. Naming is based on comparing RF classification result and ground
truth diagnosis. MIDDLE: Portion of patient cohort affected at each vertex.

is that the values correspond to number of patients not correlations. This makes
this output much more interesting than correlations which cannot be trivially
linked to concrete numbers. We note that most of the areas that are believed to
be AD-related only show effect in less than 50% of the patient cohort.

Lastly, the proposed method is univariate in essence. Each measurement per-
forms an independent prediction and MAP formulation “denoises” these predic-
tions. This approach would be blind to multivariate interactions if they exist.
To quantify the effect of this blindness in the ADNI cohort, we evaluated the
value of q maps for AD versus control classification. We used 10 randomly shuf-
fled 5-fold cross validation experiments to train and evaluate an RF classifier
using thickness measures and q maps. Classification accuracies (ACC) and area-
under-the-curve (AUC) scores are given in the Table 1. Results suggest that q
maps retain the predictive information in the thickness measurements and blind-

Table 1. Classification results: AD versus control classification using thickness mea-
surements and q maps with Random Forest. q maps retain the information in thickness
measures.

Cortical thickness q @ τFPR = 0.01 q @ τFPR = 0.001

ACC 0.827 ± 0.007 0.833 ± 0.009 0.810 ± 0.010

AUC 0.908 ± 0.002 0.891 ± 0.004 0.858 ± 0.010
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ness to multivariate effects is not crucial for this cohort. More conservative τFPR

decreased prediction accuracies of q maps.

4 Conclusions

We proposed a method for constructing subject-specific disease-effect maps. The
method does not require the diagnosis information to detect the affected areas for
a given subject. Hence, it can be used in a diagnostic scenario to identify possible
affected areas of a subjects. The focus of the article was on neurodegenerative
diseases and in particular on AD. However, the method is generic enough to be
applied to other disorders of the brain and possibly of other body parts. Future
work focuses on extending the method to multivariate interactions and global
image-based measurements.
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Abstract. Most available 3D human brain atlases provide information only at a
macroscopic level, while 2D atlases are often at a microscopic level but lack 3D
integration. A 3D atlas defined upon fine-grain anatomical detail of cortical
layers and cells is necessary to fully understand neurobiological processes.
“BigBrain,” a high-resolution 3D model of a human brain at nearly cellular
resolution, was released in 2013. This unique dataset enables the extraction of
microscopic data for utilization in brain mapping, modeling and simulation. We
propose an automated 3D cortical parcellation of the BigBrain volume into
functionally-meaningful areas in order to create a modern high-resolution 3D
cytoarchitectural atlas that will complement existing brain atlases. We use a
distance metrics-based framework for BigBrain parcellation, and perform
comparative analyses of our results with existing atlases (Brodmann and JuBrain
atlases). This work has immediate application in teaching, neurosurgery, cog-
nitive neuroscience, and imaging-based brain mapping.

Keywords: Brain atlases � Cortical cytoarchitecture � Segmentation and
parcellation � Brain mapping � Image registration � Computational neuroscience

1 Introduction

Reference brains in human brain mapping are indispensable tools, enabling integration
of multimodal data into a common framework. However, most presently available
human brain atlases do not provide information beyond the macroscopic level.
Fine-grain anatomical resolution of cortical layers, columns, microcircuits, and cells is
necessary to fully understand neurobiological processes.

In 2013 “BigBrain” [1], a high-resolution digital 3D model of a human brain
reconstructed from 7,404 histological sections at a nearly cellular isotropic resolution
of 20 lm, was created. The dataset is publicly available and includes 3D tissue clas-
sification as well as cortical surface extraction.

In this paper, we propose a 3D automated cortical parcellation of the BigBrain
volume into functionally-meaningful areas, which should complement existing brain
atlases such as the Brodmann atlas [2] and JuBrain atlas [3]. Although the 3D Brod-
mann atlas is widely used in neuroimaging, it is not a gold standard, neither validated
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nor based on robust cytoarchitectural boundaries. The JuBrain atlas is, like our current
work, a high resolution cytoarchitectural atlas; however it consists of an initial 2D
partial manual segmentation prior to its reconstruction in 3D. The 2D manual seg-
mentation is guided by algorithms which utilize a local gray level index [4]. Due to the
intensive manual nature of this segmentation, there are many areas of the JuBrain atlas
that are not yet complete.

Previous work on 3D automated methods to parcellate brain images has been done
using different imaging modalities of standard resolution such as MRI [5], fMRI [6],
DTI [7] and SPECT [8]. These methods have been designed to operate at the
macroscopic scale and most of them [5, 7, 8] propose parcellation schemes based on
Mahalanobis and Euclidean distance metrics. While our parcellation framework is
designed to operate on cytoarchitecture at the microscopic scale, it is similarly based on
distance metrics including Mahalanobis and Euclidean distances.

Although parcellation of brain cytoarchitectural histology data has been addressed
previously, in most cases the parcellation is done on 2D sections, and only afterwards
are the segmented structures reconstructed in 3D [9, 10]. This approach restricts the
definition of cytoarchitectural boundaries to two dimensions, on a single section at a
time. Our new method overcomes this restriction and allows the detection of bound-
aries in 3D. Moreover, in contrast to previous work where cytoarchitectural boundaries
are typically manually delineated by experts, our proposed method is automated.

It should be noted that recent work has also been done on the manual segmentation
of the BigBrain volume in specific areas such as substructures of basal ganglia [11], with
immediate clinical applications in neurosurgery [12]. The new cytoarchitectural brain
atlas that we are currently proposing (again, which is automated and extends across the
entire cortex) will be additionally useful for many applications in clinical and funda-
mental brain research, in all areas where the ubiquitous 3D Brodmann atlas is used.

The nature of the BigBrain dataset is unique. On the one hand, previous automated
parcellation methods proposed for macroscopic MR images were not designed to assess
cytoarchitectural boundaries. On the other hand, manual and semi-automated methods
proposed to parcellate 2D cellular-level cytoarchitectural sections are not suited for the
3D volume of the BigBrain at near-cellular resolution. Therefore, the parcellation
method described in this paper is especially designed for the BigBrain and inspired
from previous work in both fields.

Derived from the BigBrain dataset, the goal of the proposed atlas is therefore two-
fold; (1) to provide a much more modern, high level of resolution, and (2) to be defined
upon cytoarchitectural boundaries truly detected in 3D. In order to compare our par-
cellation of the BigBrain to other existing atlases, we used the method described in [13],
which proposes a comprehensive set of measures for quantitative comparison of
anatomical parcellations of brain atlases. This method allows the evaluation of atlases
with differing numbers of regions. It is an interesting feature for the analysis of our results
that the generated parcellations are likely to have different numbers of final regions. To
perform our analysis, we selected a subset of the measures proposed in that method.
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2 Materials and Methods

2.1 Material: BigBrain Volume, Brodmann and JuBrain Atlases

The BigBrain volume is available in various file formats and reference spaces (https://
bigbrain.loris.ca). In this work, in order to avoid any distortion that may be introduced
by additional processes such as registration into stereotaxic space, we used the 2015
version of the BigBrain 3D reconstructed volume in its native histological space. Such
distortion could otherwise have a negative impact on parcellation results. To define the
cortical mantle, which consists of voxels labeled as gray matter, we used the available
3D classified volume image and gray and white matter surfaces, extracted at 200 µm.

Additionally, we used the 3D Brodmann atlas provided with MRIcron software
(available at http://www.mccauslandcenter.sc.edu/mricro/mricron). The atlas was reg-
istered to the BigBrain volume in order to compare our parcellations of the BigBrain to
the projected Brodmann areas. We focused our work on the left hemisphere of the brain
since the Brodmann atlas was initially defined on the left hemisphere. The right
hemisphere of the atlas is a symmetric copy of the left.

For specific regions such as visual cortex, we also chose to compare our parcel-
lation results with the JuBrain atlas (available at http://www.fz-juelich.de/inm/inm-1/
EN/Forschung/JuBrain/Jubrain_Webtools/Jubrain_Webtools_node.html). The ongoing
construction of this atlas is performed using a semi-automated parcellation method [4]
previously introduced to assist experts in delineation of cytoarchitectural boundaries
upon 2D slices. This method uses distance metrics to capture differences between
cytoarchitectural profiles.

We adapted this method for the BigBrain dataset, but because this method was
designed to operate at a cellular resolution of 1 µm, we failed to obtain significant
parcellations. Image processing tools provided by this method count individual cell
bodies in a region of interest. At the resolution of the BigBrain (20 µm), individual
cells are not visible; therefore this method was not appropriate to achieve our goal.

2.2 Methods: Multilevel Parcellations Algorithm Approach (Overview)

Our analysis consisted of an initialization phase followed by a tri-level parcellation
approach (Fig. 1). At the initialization phase, described in Sect. 2.3 below, initial
profiles (163,842 3D bars) were defined and dropped across the cortical mantle,
maximizing coverage while avoiding overlap. Using a Scale-Invariant Feature Trans-
form (SIFT) algorithm these initial profiles were triaged down to 1,071 starting profiles
that represented the maximally homogenous centers within groups of profiles
exhibiting similar information (while being maximally distant from borders of profiles
exhibiting different information). The tri-level parcellation approach is based on a
distance metric framework, which is described in Sect. 2.4 below.
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At the first level of parcellation, described in Sect. 2.5 below, distances between the
starting profiles and their neighbors were computed. Similar neighboring profiles were
collapsed together to form 3D clusters in a data-driven, region-growing process which
yielded 1,071 clusters. The second (intermediate) level of parcellation, described in
Sect. 2.6 below, was introduced in order to bridge the gap between the first and third
levels of parcellation. The entropy of the previously obtained 3D clusters was used to
merge similar ones, reducing these 1,071 clusters to *400 parcels (entropy thresholds
were user-defined and adjusted to target a number that is one order of magnitude higher
than the final target in the third level). At the third level of parcellation, described in
Sect. 2.7 below, distance metrics were again employed, this time onto the histograms
of the previously obtained *400 parcels in order to reduce them to *40 final regions
(distance metric thresholds were also user-defined and adjusted to target a comparable
number of regions as the Brodmann atlas).

2.3 Methods: Initial Profiles and Algorithm Starting Points
(Initialization)

First, initial profiles were created over the entire cortical mantle of the BigBrain.
A profile is a column which begins with a voxel on the gray matter surface, transversing
down through the cortical layers in the direction of the gray matter surface normal
vector, and ends with a voxel on the white matter surface, as schematized in Fig. 2. By
applying the Laplace equation as proposed in [14], we determined that using a 3D
18-connected neighborhood for voxels along the path would provide maximum density
of profiles without overlap. Next, in order to assure robustness of profiles to effects of
curvature on layer compression, we used an equivolumic cortical depth model [15].
Finally, all profiles were normalized to straight vectors of identical length, with values
corresponding to voxel intensities across cortical layers.

Fig. 1. Multilevel parcellation algorithm divided into three levels from fine to coarse.

BigBrain: Automated Cortical Parcellation and Comparison 17



The process outlined above yielded a total of 163,842 initial profiles. Next, it was
necessary to reduce this number to a biologically representative set of key points
(1,071) to be used as input to the parcellation algorithm.

To choose this set of key points, first, we used the SIFT (Scale-Invariant Feature
Transform) algorithm [16], which identifies features of interest in a 2D image, and
adapted it to determine 3D key points of interest. We used Eq. (1) to compute in 3D the
gradient amplitude and angles of each voxel.
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Then we constructed an orientation histogram as proposed in [17] for the 3D
neighborhood around a given interest point by dividing h and / into bins of equal size.
While working in 3D, it was also necessary to normalize the values added to each bin
by the area of the bin as described in [18]. This corresponds to the solid angle X
computed using Eq. (2). The values added to the histogram were computed using
Eq. (3) where (xn, yn, zn) represented the location of the voxel being added to the
histogram of the interest point.
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In this manner, we were able to obtain preliminary key points that were more likely
to be close to the parcels’ borders (where information was most heterogeneous).

Second, we performed an additional step to shift those key points away from each
border and instead more centrally, toward profiles exhibiting maximally homogeneous
information. Accordingly, our starting points would be in the presumed center of a
given region. To accomplish this, we tessellated the key points by generating a tetra-
hedral mesh based on a 3D Delaunay triangulation algorithm [19]. Then, we computed
its dual mesh (also known as the Voronoi diagram). The set of voxels located in the
center of the tetrahedrons (corresponding to the Voronoi diagram vertices) were used as
the starting points of our parcellation algorithm.

Fig. 2. Initial profiles creation: 3D bars across cortical layers of the BigBrain volume.
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2.4 Methods: Distance Metrics Definitions (Used at First
and Third Levels)

Our parcellation algorithm is based upon measurements of distance metrics, assessed
between initial profiles (first level) and then again between 3D parcels (third level).
Distance metrics serve as similarity criteria, comparing the (dis)similarity of intensity
properties. In this analysis, we tested a subset of the distance metrics surveyed in [20]
in order to identify the most suitable metric for our parcellation task. Our goal was to
select those metrics that were most informative about different, complementary fea-
tures, while disregarding those that were redundantly informative about similar fea-
tures. The distance metrics tested are listed in Table 1.

In the first column of Table 1, we selected widely used distances of the same Lp
family, with City block and Euclidean distances being particular cases of the Min-
kowski distance when p = 1 and p = 2, respectively. For Minkowski distance, we
selected p = 3 in order to obtain better results. In the second column of Table 1, we
selected other distances among the most used in their respective families: Canberra
distance belongs to L1 family, Squared chord to Fidelity family, and Squared Chi to
Squared L2 family. In addition to the six Table 1 distance metrics that we obtained
from [20], we additionally tested the Mahalanobis distance [21], defined by Eq. (4).

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞTS�1 x� yð Þ

q
where : S ¼ covariance matrix ð4Þ

It is worth noting that if the elements of x and y are independents, then the
covariance matrix will be the identity one, and in that case the Mahalanobis distance
would be equal to the Euclidean distance. In two dimensions, equal distances from a
center point are represented by circles for the Euclidean distance, and for the Maha-
lanobis distance they are represented by ellipses.

2.5 Methods: Distance Metrics (First Level)

For each of the seven distance metrics selected, the following procedure (schematized
in Fig. 1) was independently performed. As already described, the initialization phase
considered all initial profiles (163,842), using the adapted 3D SIFT algorithm in order
to select the starting profiles (1,071).

Table 1. List of distance metrics used in the parcellation algorithm

City block
dðx; yÞ ¼ Pn

i¼1
xi � yij j Canberra

d x; yð Þ ¼ Pn
i¼1

xi�yij j
xi þ yij j

Euclidean
dðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � yið Þ2
s

Squared chord
d x; yð Þ ¼ Pn

i¼1

ffiffiffiffi
xi

p � ffiffiffiffi
yi

p� �2
Minkowski

dðx; yÞ ¼ Pn
i¼1

xi � yij jp
� �1=p Squared Chi

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi�yið Þ2
xi þ yij j

s
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Next, distances between starting profiles and their neighbors were computed.
Neighboring profiles with distances under a predefined threshold were labeled and
collapsed together to form 3D clusters. In a region-growing process, the scope moved
from starting profiles to the labeled neighbor ones. Distances were then computed
between labeled profiles and their nearest neighbors. This process terminated when all
of the initial profiles had ultimately been assigned to an existing cluster. The distance
threshold was initially set at a low value. If initial profiles remained unlabeled, the
process iterated with an increased threshold until all profiles belonged to a cluster.

Of additional interest, this highly detailed parcellation (1,071 clusters) may be
advantageously combined with recently emerging new atlases at high-resolution such
as [22], which defines *900 neuroanatomically precise subdivisions based on geno-
mic transcriptome distributions of the brain.

2.6 Methods: Entropy Measurements (Second Level)

In the second level of parcellation, using entropy measurements, the 1,071 3D clusters
were input as seeds to grow *400 parcels. This intermediate level of parcellation was
introduced in order to bridge the gap between the first and third level. In practice, this is
useful to target a specific number of final regions with unit increment. Our entropy
measurement [23] was defined by Eq. (5).

E p xð Þð Þ ¼
X

x2X p xð Þ log p xð Þð Þwhere : p xð Þ ¼ histogram of x ð5Þ

By definition this measure is not a metric because it does not satisfy some of the
metric conditions such as symmetry and triangle inequality. Entropy is a statistical
measure used to characterize the texture of our clusters obtained after the first level of
parcellation. It gives a quantitative appreciation of homogeneity of a cluster in terms of
intensities of its voxels. In order to compute the entropy measurement, we used 256
bins to construct the histogram counts of the clusters.

If two neighboring clusters exhibited similar entropy, they were regrouped together
as a parcel, and the algorithm continued moving outward. If not, the algorithm stopped
and it was defined as an edge or boundary of the parcel. The level of similarity required
to merge clusters was set in such a way to obtain a number of parcels which is an order of
magnitude higher than the number of final regions targeted. As shown in Fig. 1, since
we were ultimately targeting close to 40 final regions for comparison with Brodmann
areas (41 in the atlas used), the intermediate number was set to *400 parcels.

2.7 Methods: Distance Metrics (Third Level)

At the third level of parcellation, histograms were constructed to characterize the
distribution of the intensities of voxels across cortical layers in all previously obtained
parcels (*400). Then, the same distance metric (used on single voxels of initial
profiles at first level, described above in Sect. 2.5) was used in a similar way on the
histograms of parcels. Here, the distance threshold between neighbor parcels was set to
obtain the targeted number of final regions (*40).

20 M. Fournier et al.



3 Results

The proposed parcellation pipeline was processed with each metric. Results were
selected based upon global similarity of parcellations in comparison to the Brodmann
atlas, using a similarity index value yielded by a region-level concordance analysis
proposed in [13]. The obtained results do not necessarily have exactly 41 regions;
rather, the similarity index was used to target the best matches compared to Brodmann
areas. The Mahalanobis distance metric obtained the highest similarity index score, and
was therefore identified as the metric to best map the Brodmann parcellation scheme
onto the BigBrain volume. Accordingly, its similarity index was used to normalize the
similarity index of all other metrics in order to compare their results. Figure 3 shows
the normalized indices and the number of regions for each metric result.

In Fig. 3, the metrics are ranked in decreasing order of similarity index. The second
one in line is the Squared chord metric, which is very close to the Mahalanobis metric,
and thus does not provide substantially different information. Both have different
numbers of regions which do not exactly correspond to the number of Brodmann areas.
The average number of regions for all metrics is 39, which is two regions less than the
Brodmann atlas. The Canberra and City block metrics have 41 regions (same as the
Brodmann atlas) and both have very similar indices, ranked third and fourth.

Figure 4 shows the parcellation result of the Mahalanobis metric, which was found
to be the most similar to the Brodmann atlas based on the previous analysis. Figure 4(a)
shows the Brodmann areas registered to the BigBrain left hemisphere, while Fig. 4(b)
shows the Mahalanobis parcellation result. Both color codes are similar but they do not
exactly match since the number of regions/areas are not the same. Figure 4(c) shows a
quantitative analysis of volume concordance between Brodmann areas and our par-
cellation results. Mutual overlapping volume distribution is quantified between our
result and the Brodmann atlas.

In Fig. 4(c), the blue columns show the fraction of the volume of a Brodmann area
which is overlapped by the BigBrain parcellation region covering most of that area’s
volume. Likewise, the orange columns show the fraction of the volume of the BigBrain
parcellation region (previously identified) which is overlapped by that same Brodmann

Fig. 3. Evaluation of the distance metrics tested based on their similarity indices.
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area. If a perfect match were to be attained for a specific Brodmann area, the value of
both blue and orange columns for that area would be 1. The stars below selected
Brodmann areas denote areas with high concordance, represented by higher values in
both (blue and orange) columns.

Figure 5 shows (a) Mahalanobis and (b) Canberra results compared to JuBrain atlas
in the visual cortex (Squared Chord was omitted because it demonstrated high simi-
larity to Mahalanobis). These parcellations have been adapted by targeting a higher
number of final regions in order to match the level of detail of the JuBrain segmentation
in the visual cortex. In Fig. 5, the numbered arrows designate boundaries successfully
detected by the parcellation algorithm compared to JuBrain areas, while lettered circles
designate where the distance metrics have failed to detect some JuBrain areas.

This qualitative analysis highlights the complementarity of the distance metric
results. For example, both failures with Mahalanobis (circles A and B, Fig. 5(a)) were
successfully detected with Canberra (arrows 1 and 2, Fig. 5(b)) and inversely the
failure with Canberra (circle A, Fig. 5(b)) was successfully detected with Mahalanobis
(arrow 2, Fig. 5(a)). This observation demonstrates that, according to the JuBrain atlas,
combining these two metrics may lead to a better parcellation. Ongoing work focuses
on automated linear combination of metrics in order to optimize the results.

Fig. 4. Comparison of BigBrain parcellation with Brodmann atlas using Mahalanobis distance.
(a) BigBrain left hemisphere with Brodmann areas. (b) BigBrain parcellation results using color
coding similar to Brodmann areas in (a) to highlight concordance. (c) Chart of concordance
between Brodmann areas and BigBrain parcellation regions. (Color figure online)
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4 Conclusion

We have proposed an automated parcellation of the BigBrain volume in order to
provide a unique high-resolution modern cytoarchitectural 3D atlas. This work has
immediate value across a broad range of applications, including teaching, neuro-
surgery, cognitive neuroscience, and imaging-based brain mapping. Our parcellation
framework is based upon distance metrics, and we performed comparative analyses of
our results with existing brain atlases. Future work will include refinement of the
parcellation using consensus between complementary distance metrics, and validation
of results from a functional neuroanatomy perspective.

Acknowledgements. We acknowledge funding support from the Canadian Institutes of Health
Research (CIHR) and from Canada’s Advanced Research and Innovation Network (CANARIE).
We thank Compute Canada for continued support accessing the Compute Canada HPC grid
through the CBRAIN software portal. We also thank Svenja Caspers for helpful discussion and
providing expertise in neuroanatomy as well as Katrin Amunts and Karl Zilles from the Jülich
Research Centre in Germany.

References

1. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.E., Bludau,
S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., Shah, N.J., Lippert, T., Zilles, K.,
Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340,
1472–1475 (2013)

2. Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius
Bart, Leipzig (1909)

Fig. 5. Comparison of BigBrain parcellation with JuBrain atlas with focus on the visual cortex.
(a) Mahalanobis distance compared to JuBrain. (b) Canberra distance compared to JuBrain.

BigBrain: Automated Cortical Parcellation and Comparison 23



3. Mohlberg, H., Eickhoff, S.B., Schleicher, A., Zilles, K., Amunts, K.: A new processing
pipeline and release of cytoarchitectonic probabilistic maps – JuBrain. In: 18th Annual
Meeting of the Organization for Human Brain Mapping, Beijing, China (2012)

4. Schleicher, A., Palomero-Gallagher, N., Morosan, P., Eickhoff, S.B., Kowalski, T., de Vos,
K., Amunts, K., Zilles, K.: Quantitative architectural analysis: a new approach to cortical
mapping. Anatomy Embryol. 210, 373–386 (2005)

5. Hemanth, D.J., Selva Vijila, C.K., Selvakumar, A.I., Anitha, J.: Distance metric-based
time-efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation.
Neural Comput. Appl. 22, 1013–1022 (2013)

6. Sanchez-Panchuelo, R.M., Besle, J., Beckett, A., Bowtell, R., Schluppeck, D., Francis, S.:
Within-digit functional parcellation of brodmann areas of the human primary somatosensory
cortex using functional magnetic resonance imaging at 7 tesla. J. Neurosci. 32, 15815–15822
(2012)

7. Kong, Y., Wang, D., Shi, L., Hui, S.C.N., Chu, W.C.W.: Adaptive distance metric learning
for diffusion tensor image segmentation. PLoS ONE 9, e92069 (2014)

8. Chaves, R., Ramírez, J., Górriz, J.M., Illán, I., Segovia, F., Olivares, A.: Effective diagnosis
of alzheimer’s disease by means of distance metric learning and random forest. In:
Ferrández, J.M., Álvarez Sánchez, J.R., Paz, F., Toledo, F.J. (eds.) IWINAC 2011. LNCS,
vol. 6687, pp. 59–67. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21326-7_7

9. Uylingsa, H.B.M., Sanz-Arigita, E.J., de Vos, K., Pool, C.W., Evers, P., Rajkowska, G.: 3-D
cytoarchitectonic parcellation of human orbitofrontal cortex correlation with postmortem
MRI. Psychiatry Res. Neuroimaging 183, 1–20 (2010)

10. Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., Zilles, K.: The human
inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability.
NeuroImage 33, 430–448 (2006)

11. Altinkaya, A., Lepage, C., Lewis, L.B., Toussaint, P.J., Amunts, K., Zilles, K., Evans, A.C.,
Sadikot, A.F.: Ultrahigh resolution 3-d volumetric atlas of the human basal ganglia. In: 21st
Annual Meeting of the Organization for Human Brain Mapping, Honolulu, USA (2015)

12. Altinkaya, A., Lepage, C., Ferreira, M., Pike, G.B., Evans, A.C., Sadikot A.F.: Registration
of the bigbrain basal ganglia atlas to MNI space with surgical applications. In: 21st Annual
Meeting of the Organization for Human Brain Mapping, Honolulu, USA (2015)

13. Bohland, J.W., Bokil, H., Allen, C.B., Mitra, P.P.: The brain atlas concordance problem:
quantitative comparison of anatomical parcellations. PLoS ONE 4, e7200 (2009)

14. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness
using laplace’s equation. Hum. Brain Mapping 11, 12–32 (2000)

15. Leprince, Y., Poupon, F., Delzescaux, T., Hasboun, D., Poupon, C., Riviere, D.: Combined
laplacian-equivolumic model for studying cortical lamination with ultra high field MRI (7T).
In: 12th IEEE International Symposium on Biomedical Imaging, pp. 580–583. IEEE Press,
New York (2015)

16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60, 91–110 (2004)

17. Toews, M., Wells, W.M.: Efficient and robust model-to-image alignment using 3D
scale-invariant features. Med. Image Anal. 17, 271–282 (2013)

18. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to
action recognition. In: Proceedings of the 15th ACM International Conference on
Multimedia, pp. 357–360. AMC Press, New York (2007)

19. Golias, N.A., Dutton, R.W.: Delaunay triangulation and 3D adaptive mesh generation. Finite
Elements Anal. Des. 25, 331–341 (1997)

20. Cha, S.H.: Comprehensive survey on distance/similarity measures between probability
density functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)

24 M. Fournier et al.

http://dx.doi.org/10.1007/978-3-642-21326-7_7


21. Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2,
49–55 (1936)

22. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A.,
van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al.: An anatomically
comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)

23. Shannon, C.E.: A mathematical theory of communication. Bell Labs Tech. J. 27, 379–423
(1948)

BigBrain: Automated Cortical Parcellation and Comparison 25



LATEST: Local AdapTivE and Sequential
Training for Tissue Segmentation of Isointense

Infant Brain MR Images

Li Wang1, Yaozong Gao1,2, Gang Li1, Feng Shi1, Weili Lin3,
and Dinggang Shen1(&)

1 IDEA Lab, Department of Radiology and BRIC,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

dinggang_shen@med.unc.edu
2 Department of Computer Science, University of North Carolina at Chapel Hill,

Chapel Hill, NC, USA
3 MRI Lab, Department of Radiology and BRIC,

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract. Accurate segmentation of isointense infant (*6 months of age)
brain MRIs is of great importance, however, a very challenging task, due to
extremely low tissue contrast caused by ongoing myelination processes. In this
work, we propose a novel learning method based on Local AdapTivE and
Sequential Training (LATEST) for segmentation. Specifically, random forest
technique is employed to train a local classifier (a single decision tree) for each
voxel in the common space based on the neighboring training samples from
atlases. Then, for each given voxel, all trained nearby individual classifiers
(decision trees) are grouped together to form a forest. Moreover, the estimated
probabilities are further used as additional source images to train the next set of
local classifiers for refining tissue classification. By iteratively training the
subsequent classifiers based on the updated tissue probability maps, a sequence
of local classifiers can be built for accurate tissue segmentation.

1 Introduction

The first year of life is the most dynamic phase of the postnatal human brain devel-
opment, with rapid tissue growth and development of a wide range of cognitive and
motor functions. Accurate tissue segmentation of infant brain MR images into white
matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) in this phase is of great
importance for studying both normal and abnormal early brain development [1].
However, the segmentation of infant brain MRI is very challenging, due to reduced
tissue contrast [2], increased noise [3], severe partial volume effect [4], and the ongoing
white matter myelination [2, 5]. Especially, due to the ongoing myelination, at around 6
months of age, which is often referred to as isointense phase [6], the infant brain image
appears isointense and exhibits the extremely low tissue contrast in both T1- and
T2-weighted MR images, thus posing significant challenges for automatic tissue
segmentation.
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Although many methods have been proposed for infant brain MR image segmen-
tation, most of them focused on segmentation of neonatal brain images in the infantile
phase (� 5 months) [2, 4, 5, 7, 8], where images have the relatively distinguishable
contrast between WM and GM in T2-weighted MR images. In contrast, there are only
few works [9–11] focusing on segmentation of isointense (at *6 months of age) infant
brain images. In recent work [9], the convolutional neural networks (CNN) method [9]
was proposed to segment the isointense infant brain images; however, it can only be
applied to 2D image slices, instead of 3D data. In the work of [10], a learning-based
method was proposed to integrate information from both multi-modality images and the
tentatively-estimated tissue probability maps for infant brain image segmentation.
Specifically, random forest [12] was first used to train a multi-class tissue classifier
based on the training subjects with multiple imaging modalities. This trained classifier
provided initial tissue probability maps for each training subject. Inspired by the
auto-context model [13, 14], the estimated tissue probability maps were further used as
additional input images to train the next classifier, by combining the high-level
multi-class context features (calculated from the estimated tissue probability maps) with
the appearance features (calculated from multi-modality images) for refining tissue
classification. By iteratively training the subsequent classifiers based on the updated
tissue probability maps, a sequence of classifiers were obtained for tissue segmentation.
However, the classifiers were trained globally, i.e., the training samples extracted from
the entire atlases were mixed for training, and the same classifiers were applied for every
voxel. As demonstrated in [15, 16], local spatially-adaptive classifiers can significantly
improve the performance of global classifiers. However, only one-layer classifiers were
trained in [15, 16]. Inspired by both of these works [10, 15, 16], we propose to train
spatially-adaptive sequential classifiers for segmentation of isointense infant brain MR
images, by taking advantage of both sequential [10] and spatially-adaptive [15, 16]
training. Specifically, all the atlases are first registered into a common template space.
Then, for each voxel in the common space, an individual tree is trained via random
forest based on the spatially-neighboring training samples from the aligned atlases.
Then, for each given voxel, all the nearby trained individual trees are grouped together
to form a forest for estimating its tissue probabilities. The estimated probabilities are
further used as additional source images to train the next-layer local classifiers, by
combining the high-level multi-class context features (calculated from the previously
estimated tissue probability maps) with the appearance features (calculated from
multi-modality MR images) for refining tissue classification. Finally, these sequential
and spatially-adaptive classifiers can be built for accurate tissue segmentation.

2 Method

2.1 Dataset and Image Preprocessing

T1- and T2-weighted MR images of 20 infants were acquired on a Siemens head-only
3T scanners with a circular polarised head coil. During the scan, infants were asleep,
unsedated, and fitted with ear protection, with their heads secured in a vacuum-fixation
device. T1-weighted MR images were acquired with 160 sagittal slices using
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parameters: TR/TE = 2000/3 ms and resolution = 1 � 1 � 1 mm3. T2-weighted MR
images were obtained with 160 sagittal slices using parameters: TR/TE = 4000/299 ms
and resolution = 1 � 1 � 1 mm3. For image preprocessing, T2 images were linearly
aligned onto their corresponding T1 images. Afterwards, standard image preprocessing
steps were performed before tissue segmentation, including intensity inhomogeneity
correction [17] and histogram matching.

Accurate manual segmentation is of great importance for training classifiers in the
learning-based segmentation methods. Due to low contrast and huge number of voxels
in brain images, manual segmentation is very difficult and time-consuming. Hence, to
generate reliable manual segmentations for isointense infant subjects, we first obtained
automatic segmentation results using a publicly available software iBEAT (http://www.
nitrc.org/projects/ibeat/). Then, based on these obtained automatic segmentation
results, manual editing was carefully performed by an experienced neuroradiologist to
correct errors by using ITK-SNAP [18]. Manual editing of each subject took
approximately 3 h. The intra-rater reliability (3 repeats) for WM, GM and CSF is 0.
932, 0.931, and 0.960, respectively, in terms of Dice ratio. These 20 images with their
edited tissue segmentation maps were used as multiple infant brain atlases.

2.2 Local AdapTivE and Sequential Training (LATEST)

In this paper, random forest [12] is adopted as a multi-class classifier to produce a tissue
probability map for each tissue type (i.e., WM, GM, and CSF) by voxel-wise classifi-
cation. As a supervised learning method, our method consists of training and testing
stages. In the training stage, all the atlases are first linearly registered to a common
template space. Then, an individual tree is independently trained at each voxel in the
common space. Specifically, for a given voxel (i.e., a red point in Fig. 1(a)), all its nearby
samples in a specified neighborhood (i.e., blue square) are used together as training
samples. In the testing stage, to estimate tissue probability at a given voxel (i.e., a red point
in Fig. 1(b)), all the neighboring trained individual trees (i.e., within red square) are
grouped together to form a forest for classification. To deal with the challenges of low
tissue contrast, inspired by [10], an auto-context model [13, 14] is further adopted to
iteratively refine the tissue probability maps, by including context information calculated
from the previously-estimated tissue probability maps. By iteratively training local trees
with random forest and auto-context model on both the multi-modalities (T1 and T2) and
the updated tissue probability maps, we can train a sequence of local classifiers for infant
brain segmentation. All these training steps are detailed below.

• Step 1: Registration to a common template space. In the training stage, all the
atlases are linearly registered to a common template space. Their corresponding
tissue labels are also warped into the common space. In the testing stage, the target
image is similarly registered to the same common space. Therefore, the rough
correspondences between atlases and target image are established, based on which
the trained sequential and spatially-adaptive classifiers can be mapped into the
target image for testing.

• Step 2: Extraction of appearance and context features. For each voxel in the
common space, all its nearby samples from each aligned atlas are randomly selected
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as training samples. Then, we extract various features from each selected training
sample for training the classifiers. Specifically, we extract appearance features from
multi-modality MR images. Based on these extracted appearance features, we train
the first-layer local classifier (with a single decision tree) for each voxel. Then, all
the neighboring trained individual local classifiers are grouped together to form a
forest for classification of each training sample, thus providing the initial tissue
probability maps for each training atlas. Inspired by the auto-context model [14], we
further extract context features from these initial tissue probability maps. Note that
these context features are used to coordinate segmentations across different parts of
multi-modality images, which have been shown effective in both computer vision
and medical image analysis fields [19–22].

• Step 3: Training of random-forest based local classifiers. We train a local
classifier to learn the complex relationship between local appearance/context fea-
tures and the corresponding (manual ground-truth) tissue label on each selected
training sample. Although many advanced classifiers have been developed, herein
we adopt random forest [12] because of (1) its effectiveness in handling a large
number of training data with high dimensionality and also (2) its fast speed in
testing. Besides, random forest also allows us to explore a large number of image
features to select the most suitable ones for accurate classification [23].

• Step 4: Repeating Steps 2 and 3 until convergence. Note that we train our local
classifiers in a serial manner. Specifically, based on the local classifier trained in
Step 3, all the neighboring individual trees are grouped together to form a forest for
classification of each training voxel. By visiting each training voxel, we can update
the tissue probability maps for each training atlas. Then, according to Step 2, we
extract context features from the updated tissue probability maps, and further
employ them along with the appearance features to train the next-layer local clas-
sifier for each voxel in the common space. Eventually, we will train and obtain
sequential and spatially-adaptive classifiers for infant brain segmentation.

Fig. 1. Illustration of training stage (a) and testing stage (b). In (a), the blue region denotes a
neighborhood, within which all the voxels are used as training samples for the center red point. In
(b), the red region denotes a neighborhood, where all trained individual trees are grouped
together to form a forest in the testing stage. Note that the blue and red regions in (a) and (b) can
have different sizes. (Color figure online)
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Given a new target image, the testing stage is similar to the training stage.
Specifically, the target image is first registered to the same common space. Then, for
each voxel in the target image, the corresponding trained sequential and
spatially-adaptive classifiers will be identified and used for classification. In the first
iteration, three tissue probability maps (for WM, GM and CSF) are estimated by the
first-layer spatially-adaptive local forest, using only the image appearance features
calculated from target multi-modality images. In the later iterations, the tissue proba-
bility maps estimated from the previous iteration are also fed into the next-layer
classifier for refinement. An example is shown in Fig. 3, in which the input images are
T1 and T2 images. In a local region indicated by a red square, its tissue probability
maps estimated by sequentially local forests are gradually improved with iterations and
become more and more accurate. It is worth noting that the result of first iteration can
be regarded as the result obtained using only local classifiers in [15].

3 Experimental Results

We have evaluated the proposed method on 20 isointense infant subjects using
leave-one-out cross-validation. The manual segmentation for each subject is considered
as the “ground truth” for quantitative comparison. In our implementation, we use 3D
random Haar-like features to compute both image appearance features and multi-class
context features. Also, for each voxel, its neighborhood is defined as a 3D cube with
size of 15 � 15 � 15 for training, and 5 � 5 � 5 for testing. For each tissue type, we
select 2,000 training samples from the neighborhood for each training atlas. Then, for
each training sample with the patch size of 7 � 7 � 7, 10,000 random Haar-like
features are extracted from all source images, i.e., T1- and T2-weighted MR images
and also three probability maps of WM, GM, and CSF. As mentioned, for each voxel in
the common space, we train one individual decision tree with conservative parameters
setting, such as we stop the tree growth with maximal depth 50, or with a minimum of
8 sample numbers in each leaf node. We set the maximal iteration as 3 since we find the
performance typically increases dramatically in the first 3 iterations, and then gradually
after 3 iterations. In the following, we compare mainly with [10], since it achieves the
state-of-the-art segmentation results on the 6-month infant brain MRIs.

Figure 3 shows the estimated probability maps by the proposed sequentially local
classifiers in 3 iterations (#1–#3). As mentioned before, the classifiers in the first
iteration of the proposed method can be considered as the local (one-step) classifiers
(namely random forest based label fusion, RFLF) proposed in [15], and the corre-
sponding results are shown in the third column (#1). Due to the absence of sequential
training based on the intermediate tissue probabilities, the results by local (one-step)
classifiers are noisy. The last column shows the result by sequential (global) classifiers
(namely LINKS) proposed in [10]. Although the result by LINKS is free of noise, it is
not accurate due to missing of local details. By contrast, the result by our proposed
sequentially local classifiers is more accurate via visual observation, compared with the
results by both local (one-step) classifiers [15] and sequential (global) classifiers [10].

Figure 2 shows the Dice ratios of WM, GM and CSF by sequentially applying the
learned classifiers. It can be seen that the Dice ratios are improved with the iterations
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and become stable after a few iterations (i.e., 5 iterations), as reflected by the reduced
standard deviation. These results demonstrate the importance of using iterative training.

In the following, we will make comparisons with (a) local (one-step) classifiers
[15], (b) sequential (global) classifiers [10], and (c) manual segmentations. Figure 4
shows the segmentation results for a typical isointense infant subject by different
methods. The first row shows the original T1 and T2 MRIs with manual segmentation.
The second, third and fourth rows show the segmentation results by local (one-step)
classifiers [15], sequential (global) classifiers [10], and our proposed sequentially local
classifiers, respectively. For a fair comparison, we have trained sequential (global)
classifiers [10] with optimised parameters on the warped atlases. As we can see, the
result by the proposed method is more accurate than all other methods, particularly for
the places indicated by dashed circles. Last two columns of Fig. 4 also show the
segmented WM/GM rendering results (along with zoomed views) by different methods.
As we can see, our result is more consistent with manual segmentations. Then, we
further employ Dice ratios to evaluate the performances of different methods on 20
subjects, as given in Table 1. Besides Dice ratio, we also measured the modified
Hausdorff distance (MHD), which is defined as the 95th percentile Hausdorff distance.
It can be clearly seen that our proposed method outperforms all other methods.

4 Discussion and Conclusion

We have presented a novel learning method based on local adaptive and sequential
training (LATEST) for tissue segmentation of isointense infant brain MR images. The
key idea is to train spatially-adaptive and sequential classifiers. Specifically, a
first-layer local classifier was first trained for each voxel in the common space. The
classification results from neighboring classifiers are average to generate intermediate
tissue probability maps, which were further used as additional source images to train
the next-layer classifier. By iteratively training the subsequent classifiers based on the
updated tissue probability maps, a sequence of local classifiers were built for accurate
tissue segmentation. Experimental results on 20 isointense infant subjects show that the
proposed method achieves better performance than the state-of-the-art methods.

It is worth noting that the neighborhood size is important for training. In our
experiments, we found the performance dropped when using larger size of neighborhood.
This is mainly because the use of larger neighborhood complicates the classification
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Fig. 2. Changes of Dice ratios of WM, GM and CSF with respect to the iteration number.
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problem by including more irrelevant samples into training set. This observation also
shows the importance of training local classifiers for accurate segmentation.

There are still some limitations for the proposed work. First, the proposed work
cannot guarantee a correct topology result. Thus the post processing such as topology

Fig. 4. Comparison of segmentation results on (a) a typical subject by (b) local (one-step)
classifiers (RFLF [15]), (c) sequential (global) classifiers (LINKS [10]), and (d) our sequential &
local classifiers (Proposed). The first row shows the T1 and T2 MR images and also manual
segmentation. From left to right, the figure shows estimated the probabilities of WM, GM, and
CSF, entire brain segmentation, 3D rendering, and zoomed 3D rendering, by three methods.

Fig. 3. The estimated probability maps by the proposed sequentially local forests along the
iterations (#1–#3). #1 can also be considered as the result by using only local classifiers [15]. The
last column shows the result by LINKS which uses sequentially global classifiers [10].
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correction may be needed. Second, during the training, more samples should be
selected from these incorrectly labeled voxels. Third, the Haar-like features are selected
from one scale (patch size), which is not optimal since different structures have dif-
ferent scales.
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Abstract. In this paper, we propose a landmark-based feature extrac-
tion method for AD diagnosis using longitudinal structural MR images,
which requires no nonlinear registration or tissue segmentation in the
application stage and is robust to the inconsistency among longitudinal
scans. Specifically, (1) the discriminative landmarks are first automati-
cally discovered from the whole brain, which can be efficiently localized
using a fast landmark detection method for the testing images; (2) High-
level statistical spatial features and contextual longitudinal features are
then extracted based on those detected landmarks. Using the spatial and
longitudinal features, a linear support vector machine (SVM) is adopted
for distinguishing AD subjects from healthy controls (HCs) and also mild
cognitive impairment (MCI) subjects from HCs, respectively. Experimen-
tal results demonstrate the competitive classification accuracies, as well
as a promising computational efficiency.

1 Introduction

Structural MRI has been proven to be an effective tool for Alzheimer’s disease
(AD) diagnosis [1]. Compared with cross-sectional study at a single time point,
longitudinal study is more sensitive to early pathological changes by focusing on
both the spatial structural abnormalities and the longitudinal variations of tissues.

So far, researches that focus on cross-sectional study have obtained several
achievements on AD or mild cognitive impairment (MCI) diagnosis [2,3]. For
example, Liu et al. investigated the AD diagnosis using multi-template repre-
sentation [4–6]. Hinrichs et al. proposed to use spatially augmented LPboosting
for AD classification [7]. Zhu et al. focused on selecting informative features
from redundant region-based features [8–10]. Gerardin et al. extracted features
based on hippocampal shape for the purpose of classifying AD and MCI [11].
Gao et al. proposed to use hypergraph learning for MCI classification and index-
ing [12,13]. Kloppe et al. proposed to use voxel-based gray matter features for
AD classification [14].

On the other hand, existing longitudinal studies largely focus on the degen-
eration of well-known representative biomarkers including hippocampal volume,
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 35–45, 2017.
DOI: 10.1007/978-3-319-61188-4 4
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ventricular volume, whole brain volume and cortical thickness. For example,
Chincarini et al. proposed four image analysis strategies based on hippocam-
pal volume by integrating longitudinal atrophy rate as a measurement for AD
diagnosis [15]. Jack et al. investigated the changing rates of four structures (i.e.,
hippocampus, entorhinal cortex, whole brain and ventricle), and supported the
idea of using changing rates as biomarkers for AD diagnosis [16]. Aguilar et al.
analyzed the longitudinal atrophy changes in cortical thickness measures and
subcortical volumes, and pointed out that the use of two time points data yielded
better index result compared with using the cross-sectional data only [17]. Kim
et al. adopted 93 ROI features for longitudinal analysis [18]. However, there are
still several challenges in existing longitudinal analysis: (1) Limited measure-
ments may be incapable of capturing the full pattern of morphological abnor-
malities from the whole brain; (2) Time-consuming nonlinear registration or
tissue segmentation step is required, and the longitudinal study exacerbates the
computational time since more scans are involved; (3) Longitudinal scans across
subjects are usually inconsistent, since some time points might be missing during
the data collection.

In this study, a landmark-based feature extraction framework is proposed
for AD diagnosis using longitudinal structural MR images. Different from tradi-
tional longitudinal studies, our method (1) does not require the time-consuming
nonlinear registration or tissue segmentation, (2) can cover the representative
morphological abnormalities from the whole brain, and (3) is able to handle the
inconsistency among longitudinal scans. Specifically, the discriminative land-
marks which have significant morphological group differences are automatically
discovered from the whole brain. By using a regression forest-based landmark
detection method, these landmarks can be efficiently detected in the applica-
tion stage. Based on these detected landmarks, high-level spatial features and
contextual longitudinal features are further extracted respectively, as below. (a)
A bag-of-words strategy is used to extract high-level spatial features, by cal-
culating the frequency of low-level landmark-based morphological features from
different scanning time points. In this way, the significant spatial abnormalities
from all scanning time points are aggregated together, which are also invari-
ant to the number of longitudinal scans. (b) To extract contextual longitudinal
features, an interpolation step is used to generate a Jacobian map from lon-
gitudinal landmark displacements. Then, contextual features can be extracted
around the landmarks from the Jacobian map. Finally, a linear support vector
machine (SVM) is adopted to perform AD/MCI classification using these spatial
and longitudinal features.

2 Materials and Image Processing

2.1 Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 is a 5-year public-
private partnership to test whether serial MRI, positron emission tomography
1 www.adni-info.org.

http://www.adni-info.org
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Table 1. Demographic information of selected subjects in the ADNI database

Male/Female Age (years) (Mean ± SD) Edu. (years) (Mean ± SD)

AD 81/73 75.10 ± 7.50 14.82 ± 3.08

MCI 219/127 74.33 ± 9.91 15.53 ± 3.29

HC 111/96 75.83 ± 4.98 16.10 ± 2.86

Table 2. Number of scans for the selected subjects in the ADNI database

3 scans 4 scans 5 scans 6 scans

AD 63 91 - -

MCI 57 97 170 22

HC 46 145 16 -

(PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment and
early Alzheimer’s disease. One goal of ADNI is to develop improved methods
that will lead to uniform standards for acquiring longitudinal, multi-site MRI
and PET data on subjects with AD, MCI, and elderly healthy controls (HCs).

Subjects used in this study are from the ADNI-1 database. In this paper,
we selected the subjects with at least three scanning time points of structural
MRI, thus resulting in 207 age-matched HCs, 154 AD, and 346 MCI subjects.
The demographic information (i.e., gender, age, and education) of the studied
subjects used in this study are summarized in Table 1. The statistics of scans for
the studied subjects is summarized in Table 2.

2.2 Image Processing

The image processing includes two major steps: linear alignment and landmark
discovery.

Linear Alignment: All images are linearly aligned to a common template,
namely Colin27, which was created by averaging 27 registered scans of a single
subject [19]. In order to achieve high efficiency, we adopt a landmark-based affine
registration method. Specifically, five pre-defined landmarks (i.e., anterior com-
missure (AC) and posterior commissure (PC) landmarks, and the other three
representative landmarks in mid-sagittal plane) are automatically detected by
a pre-trained regression forest-based landmark detection model. A global simi-
larity transformation matrix, which encodes 7 degree of freedom (DOF), can be
estimated between the landmarks from the moving image to the template. Since
each landmark has 3 coordinate values, 5 landmarks are enough to estimate the
transformation matrix.

Landmark Discovery: Our target is to identify the regions with group differ-
ences in local structures between patients and HCs. To this end, we intend to
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perform a voxel-wise group comparison between those two groups. However, the
linearly aligned images are not voxel-wisely comparable. In order to build the
correspondence among voxels from different images, all images are nonlinearly
aligned to the Colin27 template after linear alignment. In general, the warped
images are very similar to each other so that the subject-specific structural
information in different images may not be significant. Therefore, we extract
patch-based morphological features (i.e., 3D histogram of orientation (HOG)
features [20]) from the linearly aligned images to describe the local structures.
By using the deformation field from nonlinear registration, we can build the
correspondence between voxels in the template and all linearly aligned images.
Therefore, for each voxel in the template, we can extract two groups of HOG fea-
tures from its corresponding voxels in all training patients and HCs, respectively.
We then perform the multivariate test, namely Hotelling’s T2 statistic [21], on
the two groups, through which a p-value can be calculated for each voxel in the
template. Accordingly, a p-value map can be obtained according to the tem-
plate. Finally, the local minima from the p-value map are identified as locations
of discriminative landmarks in the template space. More details on landmark
discovery can be found in our previous work [22].

Then, these landmarks, which are located in the template space, can be
directly projected to all training images using their deformation fields. For testing
images, in order to avoid the time-consuming nonlinear registration, we train a
regression forest-based landmark detector [23,24] to detect these landmarks. In
this way, both training images and testing images would have same landmarks,
and particularly, the landmarks for the testing images can be obtained efficiently,
thanks to the fast landmark detector.

3 Feature Extraction

Based on the identified landmarks, we propose a landmark-based framework
for extracting features from longitudinal MR images. Specifically, two types
of landmark-based features, i.e., spatial features and longitudinal features, are
extracted to describe the spatial structural abnormalities and longitudinal land-
mark variations, respectively. In the following, we explain the details about the
extraction process for each feature type.

3.1 Landmark-Based Spatial Feature Extraction

Intuitively, in cross-sectional study, the morphological features (e.g., 3D HOG)
for all landmarks can be extracted and concatenated as strong features for clas-
sification. However, there are two challenges in longitudinal study: (1) The num-
bers of scanning time points across subjects are inconsistent due to missing time
points, and thus, it is difficult to extract a unified feature representation from
different number of scans. (2) It is difficult to identify the corresponding base-
line images across subjects, which means a baseline scanning time point of one
subject may not correspond to that of another subject. How to extract a unified
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Fig. 1. Landmark-based feature extraction steps. (a) Spatial features. (b) Longitudinal
features.

spatial feature representation from those inconsistent longitudinal scans is a very
challenging task.

To address these two problems, we propose to use a bag-of-words strategy
to extract statistical high-level spatial features. The bag-of-words strategy has
demonstrated impressive performance on text, language, and image classifica-
tion [25–28]. Specifically, Fig. 1(a) shows the procedure of our spatial feature
extraction method, where each landmark is treated independently. As shown in
Fig. 1(a) I, we first extract the 3D HOG feature vector for each landmark, as
well as 3D HOG feature vectors for the supplementary voxels (i.e., the neigh-
boring voxels within a small spherical patch of the landmark). After extracting
features from all training images and aggregating them together, we have a
set of 3D HOG feature vectors. Then, we perform K-means clustering [29] on
this set of feature vectors, and build a dictionary (i.e., D) with its words (i.e.,
w1,w2, . . . ,wM ) being the clustering centers. Then, for each individual subject,
we can first extract the 3D HOG feature vectors (denoted by a feature set F) for
each landmark and its supplementary voxels in all longitudinal scans. The sta-
tistical histogram representation is then calculated by counting the occurrence
frequencies of the clustering centers in these HOG features (i.e., F), as shown
in Fig. 1(a) II. Mathematically, the histogram representation (i.e., R) for one
landmark can be defined as

R(j) =
∑

f∈F
δ(( argmin

i∈{1,...,M}
‖f − wi‖22) = j), j = 1, . . . ,M, (1)
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where δ(·) is the Kronecker delta function defined as

δ(A) =
{

1 if A is true;
0 otherwise.

(2)

In order to achieve the invariance to the number of longitudinal scans, the
histogram representation is �1 normalized. Finally, we extract the statistical
features for all landmarks, regardless of differences in the number of scanning
time points, as shown in Fig. 1(a) III. Here, the reasons for using supplementary
voxels in neighborhood of landmarks are two-fold: (1) The HOG feature set can
be expanded to get statistical features by using the bag-of-word strategy; (2) It
is also helpful to relieve potential errors in localizing landmark positions.

3.2 Landmark-Based Longitudinal Feature Extraction

In order to solve the problem of inconsistent longitudinal scans, we generate the
normalized 3D longitudinal displacement at the beginning of feature extraction.
Specifically, we first define the longitudinal displacement between two scans for
one specific landmark as follows:

di,j = Lti − Ltj , (3)

where Lti is the landmark location of the i -th scan from all longitudinal scans
and ti is the corresponding relative scanning time point with respect to the first
scan. Then, the normalized 3D displacement d̄ (mean displacement per year) is
calculated from all possible combinations between two scans in different scanning
time points, as shown in Fig. 1(b) I. Mathematically, d̄ is defined as follows:

d̄ =
1∑

1≤j<i≤n 1

∑

1≤j<i≤n

di,j
ti − tj

, (4)

where n is the number of existing scans. As shown in Fig. 1(b) II, a normalized
deformation field can be built by applying thin plate splines (TPS) interpola-
tion to the normalized 3D longitudinal displacement d̄ of all landmarks. Based
on this normalized deformation field, a Jacobian map is further calculated to
describe the longitudinal volume variations. Finally, as shown in Fig. 1(b) III,
we can extract morphological features (i.e., 3D HOG) for the landmarks in the
Jacobian map. Therefore, longitudinal volume variations on these discriminative
landmarks can be captured by these morphological features. It is worth noting
that, instead of treating each landmark individually, the neighboring landmarks
are jointed together with interpolation during the generation of the normalized
deformation field. In this way, although the morphological features from Jaco-
bian map are extracted for each landmark individually, the contextual infor-
mation about the neighboring landmarks is automatically embedded into the
calculated features.



Longitudinal AD Diagnosis 41

4 Experiments

4.1 Parameter Setup

Using a 10-fold cross validation strategy, we conducted experiments for two
classification tasks, i.e., AD vs. HC and MCI vs. HC. The parameters in our
approach were defined as follows: For 3D HOG feature extraction, we used 9
orientations, 2 × 2 × 2 cells, and a size of 8 × 8 × 8 for each cell. Therefore,
the dimensionality of 3D HOG features was 72. In the bag-of-words strategy,
the number of clustering centers was set to 50, and thus, the dimensionality of
spatial features for each landmark was 50. The radius of spherical patch for sam-
pling supplementary voxels was 5. For SVM classification, we fixed the margin
parameter C = 1. Due to the data-driven property of our method, the number of
landmarks was determined by the training images. In our method, we searched
the local minima within a 7 × 7 × 7 cubic patch, and obtained roughly 1500
identified landmarks for each fold in the cross validation.

4.2 Experimental Results

Five classification performance measures were used, namely (1) accuracy (ACC):
the number of correctly classified samples divided by the total number of sam-
ples; (2) sensitivity (SEN): the number of correctly classified positive samples
(patients) divided by the total number of positive samples; (3) specificity (SPE):
the number of correctly classified negative samples (controls) divided by the total
number of negative samples; and (4) balanced accuracy (BAC): the mean value
of sensitivity and specificity; (5) area under receiver operating characteristic
(ROC) curve (AUC).

For comparison, we also report the classification results of two baseline strate-
gies based on our landmarks. The baseline spatial features are the HOG features
that are directly extracted according to the landmarks only from the baseline
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Fig. 2. ROC curves for classification. (a) AD vs. HC. (b) MCI vs. HC.
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Table 3. Classification results achieved by methods using different features.

AD vs. HC (%) MCI vs. HC (%)

ACC SEN SPE BAC AUC ACC SEN SPE BAC AUC

Baseline spatial features 84.40 74.34 91.79 83.06 91.98 74.86 84.68 58.45 71.5 80.78

Spatial features 86.35 77.63 92.75 85.19 92.52 76.49 86.13 60.39 73.26 84.57

Baseline longitudinal features 78.83 72.37 83.57 77.97 84.64 69.08 78.32 53.62 65.97 73.04

Longitudinal features 80.78 77.63 83.09 80.36 87.69 72.88 85.55 51.69 68.62 77.26

Spatial+Longitudinal features 88.30 79.61 94.69 87.15 94.01 79.02 90.46 59.90 75.18 85.19

MR image (first scan). The baseline longitudinal features refer to the features
obtained by directly using normalized displacements (i.e., d̄) of the landmarks.

Table 3 reports the classification results, and Fig. 2 shows their corresponding
ROC curves. These results demonstrate that, in both classification tasks, the pro-
posed spatial features consistently outperform the baseline spatial features, and
our longitudinal features generally achieve better performance than the baseline
longitudinal features. Moreover, the combination of the proposed spatial and
longitudinal features can further improve the classification performance.

In a related work, Chincarini et al. [15] used hippocampal volume and
hippocampal volume atrophy rate as measurements for longitudinal AD clas-
sification. The reported AUC for AD vs. HC on ADNI-1 is 93.00%, which
is slightly lower than ours (94.01%). Moreover, they used multi-atlas based
method to obtain the hippocampal segmentations which is time-consuming. As
we know, it usually takes hours to get accurate hippocampal segmentation. For
our landmark-based method (e.g., using four longitudinal scans), it takes less
than 3 min to complete all feature extraction steps, including linear registration,
landmark detection, and spatial and longitudinal feature extraction.

5 Discussions and Conclusions

Landmark-based Framework: The major advantages of using landmark-
based framework are two folds: (1) The identified discriminative landmarks can
cover all possible abnormalities from the whole brain without using several pre-
defined biomarkers; (2) The use of landmarks makes it possible to integrate a
fast landmark detection model to the diagnosis framework such that both time-
consuming nonlinear registration and tissue segmentation are avoided. It is worth
noting that, although each landmark is a weak descriptor that only covers the
information from a small local patch, thousands of landmarks can well describe
the brain structure and thus leading to a stable classification performance.

Spatial Features: In the bag-of-words representation, words in the dictionary
can be regarded as representative local spatial structures. Thus, the calculation
of their occurrence frequency can be regarded as labeling the spatial structure of
each landmark with its similarities to all words. This high-level statistic ignores
both the numbers and the orders of scanning time points and only focuses on
the spatial abnormalities, which is suitable for extracting unified spatial features
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from inconsistent longitudinal scans. As can be seen in Table 3 and Fig. 2, the
method of using bag-of-words based spatial features achieves better classification
performance, compared with that using baseline spatial features.

Longitudinal Features: Intuitively, one type of longitudinal information is the
trajectory of landmarks along time. However, the coherence among neighboring
landmarks is ignored if we just simply use the mean longitudinal displacements
(d̄) as features. In our method, we generate a normalized deformation field by
interpolation, through which the contextual information can be employed by
jointly using the neighboring landmarks. Moreover, it is also well known that the
Jacobian determinant can indicate the volume variation. Therefore, the morpho-
logical features from the Jacobian map comprehensively capture the longitudinal
volume variation around landmarks. The experimental results show that using
the longitudinal features from Jacobian map achieves 2% to 4% improvement in
terms of accuracy as compared with the baseline longitudinal features.

Limitations and Future Work: Since each landmark has 72 spatial features
and 50 longitudinal features, the concatenation of the features from all landmarks
would be high dimensional, with respect to the number of training subjects. Also,
there may be some redundant or noisy features that can adversely affect the
classification model learning. Therefore, selecting most discriminative landmarks
and features is important and will provide a reasonable solution for further
performance improvement, which is our future work.
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Abstract. Computing similarity between all pairs of patients in a
dataset enables us to group the subjects into disease subtypes and
infer their disease status. However, robust and efficient computation of
pairwise similarity is a challenging task for large-scale medical image
datasets. We specifically target diseases where multiple subtypes of
pathology present simultaneously, rendering the definition of the simi-
larity a difficult task. To define pairwise patient similarity, we charac-
terize each subject by a probability distribution that generates its local
image descriptors. We adopt a notion of affinity between probability
distributions which lends itself to similarity between subjects. Instead
of approximating the distributions by a parametric family, we propose
to compute the affinity measure indirectly using an approximate nearest
neighbor estimator. Computing pairwise similarities enables us to embed
the entire patient population into a lower dimensional manifold, map-
ping each subject from high-dimensional image space to an informative
low-dimensional representation. We validate our method on a large-scale
lung CT scan study and demonstrate the state-of-the-art prediction on
an important physiologic measure of airflow (the forced expiratory vol-
ume in one second, FEV1) in addition to a 5-category clinical rating
(so-called GOLD score).

1 Introduction

As the size of an image dataset grows, the chance of observing more pheno-
typically similar patients increases. This premise makes analysis of large-scale
image datasets attractive: subject similarities can reveal subtypes or the under-
lying biology of disease. In addition to the computational challenges of large
datasets, defining robust image similarity measures in the presence of significant
anatomical variation is a difficult task. Our approach targets heterogeneous dis-
eases where the pathology in each patient can be thought of as a superposition
of different processes, or subtypes of a disease. We propose a method that is
computationally efficient and statistically robust. Our motivation comes from
a study of Chronic Obstructive Pulmonary Disease (COPD), but the resulting
model is applicable to a wide range of heterogeneous disorders.
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 49–57, 2017.
DOI: 10.1007/978-3-319-61188-4 5
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A common method to compute similarities is based on image registration.
Gerber et al. [5] applied pairwise registrations and defined similarity based on
geodesic distance on the Riemannian manifold of diffeomorphic transformations.
Hamm et al. [6] proposed a similar method except they restricted their analysis
to a smaller subset of transformations and incorporated the residual of the reg-
istration into the similarity measure. Both methods rely on pairwise registration
which is computationally demanding in large-scale settings and less applica-
ble in the presence of large variations in anatomy. Unlike brain abnormalities
in Alzheimers disease, the lung abnormalities in COPD are scattered and less
localized [10]. This renders the definition of similarity between two images more
challenging.

One approach to this challenge is to model image content as a set of local
features. More specifically in the context of lung disease, Sorensen et al. [16] use
histogram and texture features of local patches to create a binary ab/normal
classification and suggest aggregation of the posterior probabilities to a subject-
level score. Similarly Toews et al. [17] propose to represent images as collections
of scale-invariant features and construct an approximate nearest neighbor graph
of local features. To infer the subject-level score, they sum the log-likelihood
function of the class associated with observed image features. In both cases, the
presence of the patch-level labels [16] or subject-level labels [17] is required to
infer the patient score. It is not clear how those methods can be applied in an
unsupervised fashion.

We propose a general method that aggregates similarities from local-level
image descriptors to infer subject-level similarities. The local descriptors are
viewed as samples from subject-specific probability distributions; therefore the
similarity between subjects is naturally reduced to a notion of similarity between
probability distributions which should be estimated from their observed samples.
Although a parametric approach can be used to infer the distributions for each
subject [1], estimating those parameters can be computationally expensive if only
pairwise similarities are of interest. Also, a misspecified parametric family biases
the similarity estimation. We adopt a non-parametric approach proposed by
Wang et al. [19] where the computation of similarity only depends on distances
of each local feature from its k-nearest neighbors and does not require kernel
density estimators (KDE). Using fast methods to approximate a nearest neighbor
graph [12] enables us to achieve computational efficiency comparable to that of
Toews et al. [17]. Another advantage is that no patch- or subject-level labels are
required hence the method can be applied in an unsupervised fashion (e.g., for
sub-typing).

We illustrate an application of the method on a large-scale study of COPD.
Our method outperforms the state-of-the-art approach in predicting clinical val-
ues related to COPD. We show how this method is used to embed the patient
population in a lower dimensional space and its effectiveness in capturing disease
structure in the embedding space.
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Fig. 1. (a) Feature extraction procedure for each subject. We extract local image
descriptors (e.g., xn,j) from each super-pixel.Xn denotes the set of all local features from
subject n. We model each subject with its corresponding probability density (e.g., pn).
(b) Similarity graph between subjects. k(pi, pj) denotes the similarity strength (affinity)
between subjects i and j.

2 Method

In this section, we first describe the notation and the general setting. Then, we
explain the algorithm to compute the pairwise patient similarities. Finally, we
will explain how we use the similarity measurements to embed the patient pop-
ulation into a lower dimensional representation which is used to predict clinical
values.

General Setting: Let each of X1, · · · ,XN denote the set of local image features
extracted from images of subjects 1, · · · , N in the dataset. More specifically, we
use an over-segmentation approach [7] to subdivide areas of a lung into groups
of homogeneous super-pixels while preserving the boundaries of objects in the
image. Xn = {xn,1, · · · , xn,mn

} is a set of image signatures extracted from mn

super-pixels where xn,i ∈ R
d are local image descriptors extracted from region

i of subject n. We will explore different options for the local descriptors in the
experiment section of the paper. Following so-called “bag-of-words” represen-
tation [15], we model Xn as sample points from an unknown subject-specific
distribution, Xn ∼ pn (i.e., xn,i ∼ pn). We define similarity between subject i
and subject j by defining a similarity measure between the corresponding dis-
tributions k(pi, pj). We aim to estimate this quantity without estimating the
underlying distribution. The general scheme is shown in Fig. 1.

Distance between Distributions: To define similarity between images of two
subjects given their observed bags of local descriptors X ∼ p, X ′ ∼ q, we need to
define similarity between their corresponding distributions. We first define the
distance between distributions and convert it to a similarity measure. We use
Kullback Leibler (KL) as the distance between distributions:

KL(p‖q) =
∫
Rd

log
p(x)
q(x)

p(x)dx. (1)
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There is no closed-form for KL even for a mixture of two density distributions.
We adopt a non-parametric approach proposed by Wang et al. [19] that does
not require an explicit density estimation and estimates KL directly using a
k-nearest neighbor graph.

Given sets of observations X,X ′ from the two probability distributions p, q,
X = {xi|xi ∼ p; i = 1, · · · , N} and X ′ = {x′

i|x′
i ∼ q; i = 1, · · · ,M}, a k−nearest

neighbor estimator of a point z only depends on the distance from z to the
elements of X and X ′ [9]:

p̂k(z) =
k/N

vol(z, ρk(z))
=

k

Ncρdk(z)
, q̂k(z) =

k/M

vol(z, νk(z))
=

k

Mcνd
k(z)

, (2)

where vol(x,R) is the volume of a ball of radius R centered at z, ρk(z) and
νk(z) are the distance from the k’th nearest neighbor of z in the sets X and X ′

respectively, and c stands for the volume of a d-dimensional unit ball.
An unbiased estimator for the KL(p‖q) from the corresponding set of

observed local descriptors, X and X ′ is the following:

K̂LN,M (p‖q) =
d

N

N∑
n=1

log
νk(xn)
ρk(xn)

+ log
M

N − 1
. (3)

Notice that the method directly estimates KL without estimating p and q
and it only depends on the k−nearest neighbor distances (i.e., ρk(·), νk(·)).
The approximate k−nearest neighbor graph is constructed efficiently
using [12]. Wang et al. [19] proved the estimator is asymptotically unbiased:
limN,M→∞ E

[
K̂LN,M (p‖q)

]
→ KL(p‖q).

Subject-level Score Vector and Prediction: Let matrix L denote expo-
nentiated symmetric KL distance; i.e., Lij = exp

(−KLsym(Xi,Xj)/σ2
)

where
KLsym(Xi,Xj) = K̂L(Xi‖Xj)+ K̂L(Xj‖Xi). K̂L(Xi‖Xj) is estimated using (3).
We form the similarity kernel by projecting L on the positive definite cone as
suggested by Chen et al. [4]. As suggested by Chang et al. [3], we set σ to the
median value of the KLsym in the dataset in all of our experiments.

Computing the similarity matrix enables us to employ an embedding method
and project each subject to a lower dimensional space by unfolding the manifold
space of the subjects. To do that, we apply the Cholesky decomposition on
the similarity matrix and feed the resulting factorization to a Linear Embedding
(LLE) [20] algorithm and derive a lower dimensional subject-specific score vector.
The resulting vector will be used for prediction of clinical measurements and
visualization.

3 Experiments

In this section, we apply our method to a large-scale study of a COPD. We
validate our method by predicting clinical measurements related to COPD and
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characterizing the disease continuum. The goal of this experiment is to compare
the proposed method with classical baselines and investigate its robustness with
respect to different choices of local image descriptors.

We apply our method on various local image descriptors and compare our
performance with a global baseline feature and a classical representation method.
As a baseline feature, we use two clinically important CT measurements of lung
density, INSP950 and EXP950. INSP950, the percentage of voxels < -950HU, is a
quantitative measure of emphysema. EXP950, the percentage of voxels < -950HU
after exhalation, reflects the degree of gas trapping [11,14]. We also compare our
approach with a classical representation method, Bag-of-Words (BoW), where
images are represented by a histogram of words; words are clustered features
from super-pixels. We used k-means clustering for BoW.

Data Preparation and Experimental Setting: We apply the method to CT
images of lungs on 7292 subjects from the COPDGene study [13]. After auto-
matic segmentation of the lung, we employ an over-segmentation approach [7]
to subdivide areas of a lung into groups of spatially homogeneous super-pixels.
We extract the following local features:

Histogram: Local histogram have been shown to be effective in characterizing
emphysema [1,2,16]. We follow two procedures to extract histogram features.
In the first, we extract a 32-bin histogram from each super-pixel (ref. as
Hist32); 32 is roughly the third root of the average number of pixels in
the super-pixel as suggested [16]. In the second procedure, we divide the
histogram into 400 bins, followed by a PCA to reduce the dimensions to 30
(ref. as HistPCA) as suggested [1].

Texture: Texture features are shown to be important in characterizing lung
tissue [16,18]. Sorensen et al. [16] suggested using rotational invariant texture
features. We adopt a rotation invariant histogram of gradient descriptors as
proposed by Liu et al. [8]. Their method considers a gradient histogram as
a continuous angular signal represented by the spherical harmonics (ref. as
sHOG). We also extract Harilick features from the Gray-Level Co-occurrence
Matrix (GLCM) following the pipeline [18] where the histogram information
is already incorporated.

Evaluation: After computing the similarity matrix and the embedding vector
scores (see Sect. 2), the resulting vectors are used as features in the following
experiments. We use the Random Forest method to predict the GOLD score and
linear Ridge regression (with the regularization weight set to 1) to estimate
the continuous respiratory score (FEV1). Since neither of these clinical scores
are derived from images, this experiment independently validates how well the
embedding coordinates computed from the image similarity measure characterize
the underlying disease process. We report r2 and the Mean Squared Error (MSE)
of the prediction of FEV1 and accuracy for GOLD score. We train on 99%, test on
1%, and repeat this process 50 times.
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The results are reported in Table 1. All similarity-based predictions outper-
form the traditional threshold-based approach (i.e., Baseline) irrespective of
the local descriptors. To be comparable, we set the number of clusters in BoW
to the dimensionality of our embedding method (d = 100). Our similarity-based
representation outperforms BoW in r2 and MSE and ties on accuracy. We com-
puted p-values of the performance differences using a paired t-test. Our method
is significantly better than the clinical image feature with − log p-value� 5.
The − log p-values of the difference between the best performances of BoW and
our method for r2, MSE, and accuracy are 3.4, 3.2, and 0.01 respectively. The
significant performance difference between BoW and our method for Harilick
descriptor demonstrates robustness of the method with respect to choice of tex-
ture feature.

Table 1. Mean and bootstrap 95% confidence interval width (in parentheses) of the
prediction performance for GOLD score and FEV1. The best results are shown in bold.
The six first rows are the baseline methods: global feature and the traditional Bag-of-
Words representation respectively.

FEV1 GOLD

Image feature r2 MSE % Accuracy

Baseline 0.50 (0.03) 0.018 (0.001) 42.8 (1.5)

BoW Hist32 0.51 (0.03) 0.018 (0.001) 47.2 (1.7)

HistPCA 0.51 (0.04) 0.018 (0.001) 47.3 (1.5)

Hist32+sHOG 0.56 (0.03) 0.016 (0.001) 47.2 (1.7)

HistPCA+sHOG 0.51 (0.04) 0.018 (0.001) 47.2 (1.3)

Harilick 0.33 (0.03) 0.025 (0.002) 39.6 (1.6)

Ours Hist32 0.57 (0.03) 0.016 (0.001) 45.7 (1.5)

HistPCA 0.57 (0.03) 0.015 (0.001) 47.1 (1.7)

Hist32+sHOG 0.59 (0.03) 0.015 (0.001) 47.0 (1.8)

HistPCA+sHOG 0.57 (0.03) 0.015 (0.001) 47.3 (1.7)

Harilick 0.56 (0.03) 0.016 (0.001) 45.4 (1.6)

Figure 2 reports the effect of dimensionality of the representation on the pre-
diction performance. Figure 2a shows the projection of patients on a 2D embed-
ding space. A dot represents a patient and its color denotes FEV1. Even 2D
embedding captures the structure of the disease; subjects on the bottom right
are healthier than subjects on top left of the embedding space. Figure 2b reports
the r2 for FEV1 with respect to dimensionality of the representation (i.e., clus-
ter size for BoW and embedding dim.) for Hist32+sHOG features. Both methods
stabilize quickly in terms of performance and our method outperforms BoW.
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(a) (b)

Fig. 2. (a) Embedding patients on a 2D space. A dot represents a patient and its
color denotes FEV1 (severity of COPD). Hotter colors indicate more severe disease.
(b) Prediction performance (r2) of FEV1 with respect to the dimensionality of the
embedding.

4 Conclusion

In this paper, we proposed to embed subject images into a manifold using an
efficient pairwise similarity between probability distributions. We adopted a non-
parametric approach requiring very few assumptions about the probability dis-
tributions that scales well as shown in our large-scale study. The entire process
of computing similarities and the embedding takes less than few hours for all
subjects (Python implementation). The experimental results showed that even
projection on a two dimensional space can capture the continuum of the dis-
ease. This was evaluated quantitatively by predicting two clinical scores, none
of which are derived from images, thus validating the benefits of the similarity-
based method in characterizing the underlying disease process. Our approach can
be used in longitudinal analysis to study disease exacerbation since we can asso-
ciate coordinates in the embedding space to the clinical phenotype. Although we
focus on COPD, our approach can be widely used in other scenarios particularly
for heterogeneous diseases and when the bag-of-words model applies.
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Abstract. This article presents a novel graph–model approach encod-
ing the relations between the perfusion in several regions of the lung
extracted from a geometry–based atlas. Unlike previous approaches that
individually analyze regions of the lungs, our method evaluates the entire
pulmonary circulatory network for the classification of patients with pul-
monary embolism and pulmonary hypertension. An undirected weighted
graph with fixed structure is used to encode the network of intensity
distributions in Dual Energy Computed Tomography (DECT) images.
Results show that the graph–model presented is capable of characteriz-
ing a DECT dataset of 30 patients affected with disease and 26 healthy
patients, achieving a discrimination accuracy from 0.77 to 0.87 and an
AUC between 0.73 and 0.86. This fully automatic graph–model of the
lungs constitutes a novel and effective approach for exploring the various
patterns of pulmonary perfusion of healthy and diseased patients.

Keywords: Lung graph–model · Lung atlas · Computer–aided
diagnosis · Pulmonary perfusion

1 Introduction

In an emergency department, a patient with a pulmonary vascular pathology
requires a quick and reliable diagnosis to proceed with the corresponding treat-
ment and symptoms for many diseases are often unspecific. Currently, health
professionals face a difficult task to distinguish between the different types of
pathologies, such as pulmonary embolism (PE) and pulmonary hypertension
(PH) [9]. Both pathologies present similar symptoms and visual radiological
defects but require completely different treatments. The current gold standard
for diagnosing pulmonary hypertension requires an invasive catheterism proce-
dure [11,12,22]. In addition, most patients in the emergency department undergo
c© Springer International Publishing AG 2017
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a routine Computed Tomography (CT) thorax scan with contrast agent. The
visual interpretation of the latter is challenging as it involves a holistic analy-
sis of the pulmonary perfusion. Schickert et al. [18] confirmed that CT image
analysis allows detection of chronic thromboembolism. PE and PH have similar
visual signs, showing in some cases mosaic patterns due to the hypo– and hyper–
perfused regions as a consequence of clots in the vascular tree. Dual Energy CT
(DECT) scans have shown to allow quantifying perfusion defects of the lung
parenchyma [2,13,14,19,20] using iodine components derived from CT attenu-
ation at two energy levels of 80 and 140 keV. Several studies have presented
region–based approaches to analyze the parenchyma [6,7]. However, to the best
of our knowledge, no work has tried to detect pulmonary vascular diseases based
on the comparison of the regions, allowing a holistic analysis of the pulmonary
system. This article is based on the hypothesis that when a region is hypo–
perfused due to a clot, another region or regions may absorb the excess of blood–
flow, creating hyper–perfused regions [1]. Our method consists of dividing the
lungs into 36 geometrical regions and comparing the perfusion of each pair of
regions. In the case of healthy patients, the hypothesis is that the distribution of
the perfusion should be similar across patients, presenting a radial pattern with
maximum perfusion in regions close to the heart and minimum perfusion in the
peripheral regions.

The selected technique to characterize these relations is an undirected
weighted graph with a fixed structure. Graph–models have been widely used
in medical imaging [15,17,21,24], particularly in functional brain analysis. Some
graph–methods on brain image analysis consist of dividing the brain into fixed
functional regions. Then, the relations between the activation of these regions
are compared [16]. In this work, we use a similar approach for the lungs where
geometric regions are used instead of the functional regions, and instead of ana-
lyzing the co–activation of different zones, we compare their perfusion. To the
best of our knowledge, this work constitutes a first attempt to provide holistic
characterizations of the lung perfusion based on anatomical graph models from
CT image analysis.

2 Methods

2.1 Dataset

Experiments were carried out on contrast–enhanced chest DECT images of 56
patients, 17 with diagnosed PE, 13 with diagnosed PH and 26 control cases (CC).
The institutional ethics committee agreed on the study. PH patients were taken
from an ongoing PH study, PE and control cases were taken from clinical routine
cases in the emergency department and control cases were chosen to be similar in
terms of age distribution to the other categories. DECT images were obtained with
a Discovery CT750 HD from General Electric Medical Systems. 11 energy levels
were chosen from each DECT image, from 40 keV to 140 keV in steps of 10 keV,
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yielding 4D data with intensities measured in Hounsfield Units (HU). The reso-
lution of the DECT slices varied from 0.6289 to 0.9766 mm, while the inter–slice
distance was 1.00 mm.

2.2 Graph–Model

The lung volumes were automatically segmented from the DECT images using
the method explained in [8]. This method achieved the best results in the
lung–segmentation task for CT images in the VISCERAL Anatomy Challenge
2015 [10]. Only the 70 keV level of the DECT images was used to compute the
lung segmentation. Once the lungs were segmented, the atlas presented in [6] was
computed on the segmented lung mask (see Fig. 1). The same atlas mask was
used for all the energy levels of the DECT image. The atlas contains 36 geomet-
ric regions produced by intersecting four axis segmentations: coronal (right/left),
sagittal (anterior/posterior), vertical (apical/central/basal), and axial (periph-
eral/middle/central). These locations are based on the 3D model of the lung pre-
sented by Zrimec et al. [25]. This atlas provides adequate partitioning, grouping
areas with vessels of similar size, and thus, similar texture. Moreover, it considers
the peripheral regions separately, which are mainly affected by PH. An anatomic
separation based on lobes would be another possibility but it is sometimes dif-
ficult and error prone in patients with strong pathologies, such as the patients
we are analyzing. It is also much slower to compute.

Fig. 1. Three axial views of the same DECT image at different heights showing the
36–geometrical–region atlas used to divide the lungs. The example corresponds to the
70 keV energy level of a PH patient DECT scan. Please refer to Fig. 2a for a 3D
visualization of the atlas.

Every region was characterized using the first four statistical moments of
the HU distribution, i.e. mean, variance, skewness and kurtosis. The mean and
the variance have a direct interpretation considering our hypothesis. Hypo– and
hyper–perfused areas have high and low mean HU, respectively. A region with a
clot has a vessel partially well perfused, and hence, a high variance in the region.

These measures were computed for each of the 11 energy levels of the DECT
images. Each energy level corresponds to a reconstructed image generated from
two mother images acquired at 80 and 140 keV. However, since the attenua-
tion curve of each component is not linear, the information contained in the
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(a) (b)

Fig. 2. Prototype visualization of the graph–model based on the 36–region atlas. (a) 3D
visualization of the 36–region atlas corresponding to the same PH patient as in Fig. 1.
Six regions are not visible in the visualization to show the interior atlas divisions. (b)
Undirected complete graph built from the 36–region atlas. The color of the vertices
correspond to the color of the respective region in Figs. 1 and 2a. vi and vj are the
vertices corresponding to regions ri and rj respectively. ei,j is the edge connecting
the vertices vi and vj . As it is an undirected weighted graph, ei,j = ej,i. The edge
weights are defined in the adjacency matrix A as Ai,j = d(f(ri), f(rj)), where f(r) is
the statistics–based feature vector of the region r (see Eq. 2). All the edges between
vertices are shown in light gray.

11 levels cannot be reduced to two single values. The feature vector describ-
ing a single region was defined as the 44 dimensional vector (11 energy levels
×4 statistics) containing the concatenation of the four statistical moments of
every energy level. Let HU (r) be the HU in a region r, m(r) = Mean(HU (r)),
v(r) = Var(HU (r)), s(r) = Skew(HU (r)), and k(r) = Kurt(HU (r)). The fea-
ture vector of a region (f(r)) is defined as

f(r) = (m40(r), v40(r), s40(r), k40(r), . . . ,m140(r), v140(r), s140(r), k140(r)) , (1)

where the sub–index corresponds to the energy level in keV.
The 36 regions of the atlas were considered as a fixed set of vertices V allowing

comparisons between patients. The Euclidean distances between the respective
feature vectors of region pairs (ri, rj) were considered as weights on a set of
edges E. This allows the construction of an undirected complete weighted graph
G = (V,E), with adjacency matrix A ∈ R

36×36 defined as

Ai,j = d(f(ri), f(rj)) = ‖f(ri) − f(rj)‖. (2)

A is symmetric because Euclidean distances were used (Ai,j = Aj,i). Figure 2
contains a 3D visualization of the construction of the graph from the 36–region
atlas. A visualization of five adjacency matrices for each class in the dataset
(CC, PE, and PH) is shown in Fig. 3.

The use of a complete graph provides a full holistic characterization of the
lungs. This is particularly useful when only one lung is healthy and the other
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CC-01 CC-02 CC-03 CC-04 CC-05

PE-01 PE-02 PE-03 PE-04 PE-05

PH-01 PH-02 PH-03 PH-04 PH-05

Fig. 3. Patient–wise graph adjacency matrices A containing the Euclidean distances
between feature vectors of each region pair. Five matrices per class (CC, PE, and PH)
are shown. The distances were normalized between 0 and 1 according to the maximum
and minimum distance found in the 12 example matrices. In some cases, it is possible to
see patterns characteristic of each class (e.g., PE–02 and PE–04 present a characteristic
red cross), but visually it is difficult to find a common discriminative pattern across
entire classes.

one is homogeneously affected. The edges between regions on different lungs will
highlight the affectation in this case.

2.3 Graph Classification

As we are working with graphs with a fixed number of vertices, we do not require
any graph–specific measure. The comparison between two graphs can be reduced
to the comparison of the edge–weights encoded in the adjacency matrix. Since
the vertex ordering is the same for all patients and the adjacency matrices are
symmetric, they are fully characterized by their upper triangles. Hence, we use
the vectorized upper triangle of the adjacency matrix as a descriptor vector
of the patient. The diagonal is not used as it contains only zeros (see Eq. 2).
The resulting vector is then 35 + · · · + 1 = 630 dimensional. The vectors are
subsequently used in a 2–class support vector machine (SVM) [4] classifier with
a linear kernel. The LIBSVM library [3] is used in all our tests. The feature space
spans R

630, where every dimension corresponds to one edge in the graph.
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Four experiments are described in this article: (a) CC vs. PE, (b) CC vs.
PH, (c) PE vs. PH, and (d) CC vs. non–CC, where the non–CC were composed
of PH and PE.

2.4 Experimental Setup

Linear SVMs only have the cost parameter C requiring optimization. The opti-
mization phase is not straightforward when working with small datasets due to
the high influence of the random division of the patient set into train, valida-
tion, and test sets. Experiment (a) contained 43 patients, experiment (b) 39,
experiment (c) 30, and experiment (d) 56. For each experiment, a global leave–
one–patient–out (LOPO) cross–validation (CV) was used. For each fold of the
LOPO, an inner 10–fold CV was used to find the optimal value of C with a grid–
search on C = [2−10, 210] and a logarithmic step of 0.5. At the end of the LOPO
loop, all patients were classified. The accuracy and the area under the receiver
operating characteristic (ROC) curve (AUC) based on the decision function of
the SVM are used as performance measures.

3 Results

Figures 4 and 5 show the results for the four experiments performed. For every
experiment, the accuracy and the AUC are shown in each image respectively.
Because the dimension of the feature space (630) with respect to the size of the
dataset is relatively high, the performance when using a randomly–generated
630–dimensional feature vector was evaluated to test the bias linked to the large
feature space. The method called “Random” in Figs. 4 and 5 corresponds to
10 Monte–Carlo (MC) repetitions of every experiment using random feature
vectors and then the same learning procedure. In this case, the measures shown
correspond to the accuracy and AUC values averaged over the 10 executions,
and are referred to as random accuracy and random AUC, respectively. The
ROC curves corresponding to each experiment are shown in Fig. 5a. Moreover,
Fig. 4b shows the one tailed p–values when comparing our method against the
random experiment.

The best accuracy was achieved in experiment (b), PE vs. PH, with an accu-
racy of 0.87, while the random accuracy of this experiment was the lowest.
Moreover, the p–value in this case is 2.9e−10, highlighting statistically signifi-
cant results. In experiment (a), CC vs. PE, the difference between the random
and the graph–model accuracies was smaller, from 0.57 to 0.79, but it is still sig-
nificant with a standard confidence interval of 5% (0.0025). Finally, experiments
(b) and (d) had low accuracy when compared to the random accuracy, achieving
0.77 and 0.61 respectively. In these cases, the p–values are of 0.0632 and 0.0651
and are thus not significant with a confidence interval of 5%. The small data set
makes it harder to reach significance. In addition, the AUC provided information
about the reliability of the classification. In this case, experiments (a), (b) and
(c) had a high AUC with respect to the random AUC. When comparing PE
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Fig. 4. Results obtained in the four experiments: (a) CC vs. PE, (b) CC vs. PH, (c) PE
vs. PH, and (d) CC vs. non–CC (PE+PH). (a) Accuracy for all four experiments. The
results of the graph–model are depicted in green while the performance of a random
approach is in red. The random accuracy corresponds to the accuracy averaged over
of 10 executions with randomly generated feature vectors. In this case, the standard
error is also shown. (b) One tailed p–values when comparing our method against the
random approach. (Color figure online)

vs. PH and vs. CC, the graph–model achieved an AUC of 0.86 in both cases,
while experiment (b), PH vs. CC, achieved 0.73. As expected from the results,
experiment (d) was the least reliable achieving an AUC of 0.65.

4 Discussion

Basic statistical features were used to encode HU distributions as regional
descriptors of the perfusion. Features were extracted from 4D DECT images,
containing the attenuation of 11 energy levels for each voxel and providing rich
information of HU intensity distributions. Results show that the analysis of the
relation between these statistical descriptors contained sufficient information to
build a graph–model able to differentiate between PE, PH, and healthy patients.
The 36–geometrical–region atlas shows to be a suitable division of the lungs
to build the graph. The advantage of using a geometrical atlas instead of an
anatomical atlas, e.g., based on lobes, is the possibility to build it automatically,
quickly and reliably. Although some anatomical atlases based on lung lobes can
be computed automatically [23], the methods often do not work for all kind of
patients (i.e., with diseases or older patients).

The presented technique describes the relations between regions, not consid-
ering the absolute perfusion of the region. This property can be an advantage
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Fig. 5. Results obtained in the four experiments: (a) CC vs. PE, (b) CC vs. PH,
(c) PE vs. PH, and (d) CC vs. non–CC (PE+PH). (a) ROC curves. (b) AUC for
all four experiments. The results of the graph–model are depicted in green while the
performance of a random approach is in red. The random AUC correspond to AUC
values averaged over of 10 MC executions with randomly–generated feature vectors. In
this case, the standard error is also shown. (Color figure online)

when comparing CT scans acquired with different protocols because it provides
a holistic analysis of the lungs. Moreover, any other perfusion descriptor, such
as texture, can easily be added as a property of a region (graph vertex).

Every patient was described with only one single vector, the vectorized upper
triangle of the adjacency matrix A (Sect. 2.3). Due to this procedure, the small
size of the dataset was an inconvenience when splitting the dataset during the
evaluation step (Sect. 2.4). However, DECT is not the most common imaging
diagnostic choice for PE and PH patients and finding specific patients was not
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an easy task. To the best of our knowledge, there is no previous automatic
classification–work using PH patients and no comparison with previous work
was easily possible. The results of this article are an initial step in the automatic
classification of PH patients based on image data alone. In the case of PE, other
classification–approaches have been presented but the methods usually provided
classification of local regions and the methods were designed based only on PE,
while the graph–model presented may be applied to any pulmonary vascular
disease.

PH experts are currently unable to identify PH patients only using DECT.
A catheterization to diagnose/discard PH is required but invasive and thus not
always done, missing to find the correct diagnosis for several patients. Therefore,
comparing the performance of our approach against randomly generated feature
vectors is a viable baseline of human diagnosis by visual inspection. We gen-
erated random vectors with the same dimensionality and with the same range
of values as the features used and classify them using the same SVM. This is
a reasonable comparison to learn on random feature vectors as this takes into
account potential bias linked to the large feature space.

5 Conclusions and Future Work

In this article we present a novel, fully automatic graph–model of the lungs capa-
ble of discriminating between PE, PH, and healthy patients with an accuracy
above 0.77, and an AUC above 0.73. The results confirmed the initial hypothe-
sis that a graph–model encoding the perfusion distribution across lung regions
characterizes PE and PH patients effectively. Graph–modeling is a complete
framework widely studied that opens new possibilities for lung modeling. First
of all, graphs enable inclusion of other regional features such as texture to encode
the local morphological properties of lung tissue. It is also possible to generate
3D colored graph–models to help physicians in their diagnosis (Fig. 2b). These
3D models can reveal information about the abnormal relations and localize the
regions affected.

The method presented is simple and with very small computational cost and
it therefore scales well. The small number of patients is a limitation of this work
and we intent to further validate our model on a larger cohort. As a next step,
we plan to analyze which relations in the graph best characterize each patient–
class, providing more synthetic graphs for each pathology. We also plan to use
the graph models to differentiate interstitial lung disease, where holistic image
analysis of thoracic CT showed promising results in [5].
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8. Dicente Cid, Y., Jiménez-del Toro, O.A., Depeursinge, A., Müller, H.: Efficient
and fully automatic segmentation of the lungs in CT volumes. In: Goksel, O.,
et al. (eds.) Proceedings of the VISCERAL Challenge at ISBI. No. 1390 in CEUR
Workshop Proceedings, April 2015

9. Farber, H.: Pulmonary circulation: diseases and their treatment. Eur. Respir. Rev.
21(123), 78 (2012). 3rd Edition
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Abstract. Pulmonary emphysema is traditionally subcategorized into
three subtypes, which have distinct radiological appearances on com-
puted tomography (CT) and can help with the diagnosis of chronic
obstructive pulmonary disease (COPD). Automated texture-based quan-
tification of emphysema subtypes has been successfully implemented via
supervised learning of these three emphysema subtypes. In this work,
we demonstrate that unsupervised learning on a large heterogeneous
database of CT scans can generate texture prototypes that are visually
homogeneous and distinct, reproducible across subjects, and capable of
predicting accurately the three standard radiological subtypes. These
texture prototypes enable automated labeling of lung volumes, and open
the way to new interpretations of lung CT scans with finer subtyping of
emphysema.

1 Introduction

Chronic obstructive pulmonary disease (COPD), characterized by limitation of
airflow, is a leading cause of morbidity and mortality [1]. Pulmonary emphysema,
defined by a loss of lung tissue in the absence of fibrosis, overlaps considerably
with COPD.

Pulmonary emphysema is traditionally subcategorized into three standard
subtypes, which were initially defined at autopsy, and can be visually assessed
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 69–80, 2017.
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on computed tomography (CT), according to the following definitions [2]: cen-
trilobular emphysema (CLE), defined as focal regions of low attenuation sur-
rounded by normal lung attenuation; panlobular emphysema (PLE), defined as
diffuse regions of low attenuation involving entire secondary pulmonary lobules;
and paraseptal emphysema (PSE), defined as regions of low attenuation adjacent
to visceral pleura (including fissures). Given that these subtypes are associated
with distinct risk factors and clinical manifestations [3,4], they are therefore
likely to represent different diseases and can help with the diagnosis of COPD.

Radiologists’ interpretation of standard subtypes is labor-intensive, and
has modest inter-rater agreements [2,5]. Automated texture-based analysis of
emphysema offers the potential of automated COPD diagnosis and catalyzing
research (e.g. discovering emphysema subtypes), and is receiving increasing inter-
est [6–10]. However, most existing approaches are limited to supervised emphy-
sema subtype classification using manually annotated scans in local regions of
interest (ROIs), which are very costly and time-consuming to obtain. Further-
more, it is unclear if the supervised classifiers generalize to other datasets with
varying in-plane resolutions and scanner types.

A recent clinical study [2] demonstrated the reliability and clinical signif-
icance of global (rather than local) labeling of lung volumes using the three
standard subtypes. Global labeling generates weakly labeled data that was used
for the classification of COPD subjects with multiple instance learning (MIL)
[11]. However, MIL has only been demonstrated so far for binary labeling of
emphysema versus normal tissue, rather than to distinguish the three subtypes,
and can generate unreliable local ROI labeling.

In this work, we present a novel framework to discover unsupervised fine-
grained prototypes that go beyond but still have the power of encoding the three
standard emphysema subtypes. Our method clusters local ROIs of lung volumes
into texture prototypes in an unsupervised manner, and builds signatures of lung
volumes with texture prototype histograms. The extent of standard emphysema
subtypes can be predicted from these prototype histograms with a constrained
multivariate regression on global labels. To our knowledge, this is the first study
whereby texture-based predictions are used to globally characterize the standard
emphysema subtypes.

Three types of texture features were tested, extracted from 3D or 2D local
ROIs, to generate the emphysema prototypes: (1) frequency histograms of tex-
tons (called texton-based features), used in [8,9]; (2) soft histograms of intensities
and difference of Gaussian (DoG) responses (called DOG2 features), used in [12];
and (3) joint histograms of local binary patterns (LBP) and intensities (called
LBP2 features), used in [7].

2 Method

2.1 Framework Overview

Our framework is divided into a learning stage in an unsupervised sense,
and a prediction stage of radiological emphysema subtypes using globally
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Fig. 1. Illustration of the pipeline for generating texture prototype histograms.

annotated data. The intensity of lung voxels, inside lung masks generated using
the APOLLO R© software (VIDA Diagnostics, Coralville, Iowa), are rescaled
from [−1024,−400] HU to [0, 1] via either linear or sigmoidal mapping in pre-
processing.

In the learning stage, texture prototypes are learned and prototype his-
tograms Hp are built for each training lung volume.

Figure 1 illustrates the pipeline for generating prototype histograms. Sample
points are randomly extracted uniformly within the lung volumes. 2D or 3D
neighborhoods of sampled points are used as local ROIs, with a size of 25mm2

or 25mm3, approximating the diameter of secondary pulmonary lobules. Our
target number of sample points per scan is N = (lung volume)/25mm3. Since
we discard ROIs with more that 50% of non-lung field, we adjust the sample
ratio α so that α · N − Ndiscarded = N . The value α = 5 is suitable for the
population of scans, leading to an average of 1,512 sample points per CT scan.
ROIs are characterized with texture features (texton-based, DOG2 or LBP2),
and are clustered into K texture prototypes in an unsupervised manner. For
interpretation, prototypes are ordered according to the average intensity value
of training ROIs belonging to each prototype. Each sample point is labeled with
the prototype centroid most similar to its ROI (i.e. with least distance in feature
space). Finally, other voxels within the lung volumes are labeled by assigning
the prototype label of the nearest sample point.

In the prediction stage, sample points and ROIs are extracted from test lung
volumes and ROI texture features are generated. ROIs are labeled by assigning
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the most similar prototype centroid. Prototype histograms are then generated
for test lung volumes following the same procedure as in the training stage.

To evaluate our texture prototypes, we regressed their occurrence against
global emphysema labels in [2] on training scans, with a constrained multivariate
model. Global labels Hg encode the extent of standard emphysema subtypes
referred to as %CLE, %PLE, %PSE. The residual, denoted %NE, corresponds
to tissue without emphysema (but maybe with some lung diseases).

In the following sections, we detail the texture features, the unsupervised
learning of prototypes and the regression model.

2.2 Texture Features

Texton-Based Features: Texton-based features characterize ROIs with the
help of a texton codebook. The texton codebook is formed by the cluster centers
of intensity values (after linear mapping) from small-sized local patches (here
3 voxels in each dimension) randomly extracted from ROIs in the training set.
Clustering is performed with K -means. By projecting all small-sized patches onto
the codebook, the texton-based feature of the ROI is the normalized histogram
of texton frequencies. Targeting 4 classes and 10 textons per class [8], the feature
vector length is set to 40, using a codebook with 40 textons.

Note that our texton prototype histogram uses the bag-of-words (BoW) [13]
model on two scales: (1) building of ROI-level texture features based on a tex-
ton dictionary; (2) building subject-level lung CT signatures based on texture
prototypes. To our knowledge, BoW has not been exploited for subject-level
signatures before.

DOG2 Features: The DOG2 feature of a ROI is a concatenation of four nor-
malized soft histograms: one intensity histogram, and three histograms of DoG
responses at three octaves. Using 10 bins for each histogram, following the setting
in [12], leads to a feature vector of length 40.

Intensity values in CT scans encode X-ray attenuations in Hounsfield units
(HU) and their range is very large. To focus the texture learning process on the
intensity range of interest (lung parenchyma and air), a sigmoid function is used,
as in [12], to map values to the interval [0 1] with the highest contrast assigned
to the range [−1000−900] HU where textural characteristics due to emphysema
are presumed to be present.

LBP2 Features: The LBP2 feature of a ROI is the joint histogram of LBP
codes and intensity values (after linear mapping) of each voxel within the ROI.
The LBP codes are obtained by thresholding samples in a local neighborhood
around center voxel x. Formally:

LBP (x;R,P ) =
P−1∑

p=0

H(I(xp) − I(x))2p (1)
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where I(x) is the intensity of center voxel, xp are P voxels sampled around
x at a given radial distance R, and H(·) is the Heaviside function. Rotational
invariance is achieved by rotating the radial sampling until the lowest possible
LBP (x;R,P ) value is found. We use 10 uniform rotational invariant LBP codes
with R = 1 and P = 8, and 4 bins for the intensity histogram to match with
other feature length, making the total feature length also 40 (4 × 10).

2.3 Prototype Clustering

The number of prototypes K should be large enough to handle the diversity
of textures encountered in the lung volumes (i.e. good intra-prototype homo-
geneity), but small enough to avoid redundancy (i.e. good inter-prototype dif-
ferences). Our strategy is to first select an empirically large number K so as
to generate homogenous prototypes and then trim the set to a smaller number
of sufficient prototypes (number likely different for different texture features)
according to a dedicated metric. We choose K -means for the clustering task
because of its efficiency at dealing with a large number of ROIs over scans.

To trim the number of prototypes, instead of testing smaller K values with
K -means, which tends to decrease all intra-cluster homogeneity, we propose to
merge prototypes iteratively according to their inter-prototype distance and spa-
tial co-occurrence.

The inter-prototype distance is measured by averaging the χ2 distance (com-
mon for histogram-based features) between each pair in feature space. The spa-
tial co-occurrence of two prototypes i and j (i �= j) is measured as:

S(i, j) =
q(i, j) + q(j, i)

∑K
k=1 q(i, k) +

∑K
k=1 q(j, k)

(2)

where q(i, j) is the frequency of prototypes i and j appearing together in a
pre-defined small neighborhood (here 10 voxels in each dimension).

At each iteration of the pruning process, each pair of prototypes is given a
rank Rf

i,j in inter-prototype distance (smallest ranks first), and a rank RS
i,j in

spatial similarity (largest ranks first). The pair of prototypes to merge is the
first one according to the rank: Ri,j = Rf

i,j + RS
i,j .

2.4 Constrained Multivariate Regression

The probability of voxel x belonging to a lung tissue class can be modeled as:

P (L(x) = Ci) =
K∑

k=1

P (L(x) = Ci|F (x) = pk)P (F (x) = pk) (3)

where L(x) is the label of voxel x as Ci ∈ {CLE,PLE,PSE,NE}, and F (x) is
the voxel prototype label pk with k ∈ 1, ...,K. If prototypes are homogeneous,
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P (L(x) = Ci|F (x) = pk) can be assumed to be consistent throughout ROIs and
subjects. We therefore infer the relation as:

YN×4 = XN×KAK×4 (4)

where N is the number of training scans. Each row in Y is the global label Hg =
[P (L(x) = CLE), P (L(x) = PSE), P (L(x) = PLE), P (L(x) = NE)] for one scan,
each row in X is the prototype histogram Hp = [P (F (x) = p1), ..., P (F (x) =
pK)] for the same scan, and A is the matrix of regression coefficients with Ak,i =
P (L(x) = Ci|F (x) = pk), i = 1, ..., 4 and k = 1, ...,K. We propose to learn A
with the following constrained multivariate regression model:

argminA‖XtrainA − Ytrain‖2, subject to 0 < Ak,i < 1 and
4∑

i=1

Ak,i = 1 (5)

3 Results and Discussions

3.1 Data

The dataset includes 321 full-lung CT scans from the Multi-Ethnic Study of
Atherosclerosis (MESA) COPD Study [2], among which 4 scans are discarded
due to excessive motion artifact or incomplete lung field of view. All CT scans
were acquired at full inspiration with either a Siemens 64-slice scanner or a
GE 64-slice scanner, and reconstructed using B35/Standard kernels with axial
resolutions within the range [0.58, 0.88] mm, and 0.625 mm slice thickness. All
scans were acquired at 120 kVp, 0.5 s, with milliamperes (mA) set by body mass
index following the SPIROMICS protocol [14].

Global labels of standard emphysema subtypes are available for each scan,
corresponding to the average of visually assessed scores by four experienced
radiologists [2]. Inter-rater intraclass correlations, evaluated on 40 random scans,
are reported in Fig. 2. The clinically-evaluated prevalence of emphysema in this
dataset is 27%, with 14% CLE-predominance, 9% PSE-predominance, and 4%
PLE-predominance.

3.2 Quality of Predictions

The quality of the predictions is evaluated using intraclass correlation (ICC) with
ground truth global labels. To achieve a balance between the number of training
scans (large enough to learn lung textures) and the number of test scans (large
enough so that the prediction performance is not biased by extreme points), we
used a 4-fold cross validation setup, with 3/4 of scans used for training, and 1/4
used for testing. All features were computed within 3D ROIs. Texton-based fea-
tures were also extracted in 2D ROIs for comparison. We select K = 100 as our
benchmark value, from which we iteratively merge prototypes. We report the evo-
lution of prediction capabilities as K is reduced in Fig. 2 (all p-values < 0.01).
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Fig. 2. Intraclass correlation (ICC) between predicted global labels and ground truth
versus number of merged prototypes (dashed line: 95% confidence interval).

Overall, texton-based and DOG2 features give robust prediction that out-
perform the intra-rater agreement, while LBP2 features have poor to modest
prediction capabilities. One reason might be that intensity information in LBP2
is compressed with our current feature length, while intensities improved the
discriminative capability of the original LBP code in [7]. However, we observed
that a feature length over 50 decreases the robustness and drastically increases
the convergence time for unsupervised prototype clustering. This makes LBP2
less favorable in our unsupervised learning context.

The comparison of 2D versus 3D ROIs with texton-based features indicates
that the richer information in 3D neighborhood is helpful for modeling emphysema
subtypes, at the price of additional computational cost for feature extraction.

Regarding the effect of prototype merging, ICC values remain steady when
K > 60 for texton-based features. Merging is capable of reducing model com-
plexity with little sacrifice in prediction performance. For DOG2 features, the
performance begins to decrease only after K < 50. For LBP2 features, however,
the performance degrades immediately after merging, which may be because the
LBP2-based prototypes are not sufficiently homogeneous from the beginning.

Note that using a high number of K, much larger than the number of standard
emphysema subtypes or than required for predictive power of these subtypes,
is driven by our goal to be able to discover finer emphysema subtypes. The
current arbitrary number K = 100 will be further trimmed with an optimization
metric incorporating respiratory symptoms and generalization capabilities to
other datasets, which is ongoing work of our study.
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Fig. 3. (a) Reproducibility metric versus number of merged prototypes. (b) Examples
of axial cuts from ROIs in six prototypes with three feature types. The texton-based
prototypes are selected as the 1st, 5th, 20th, 40th, 80th and 95th benchmark prototypes.
The DOG2 and LBP2-based prototypes are those having the most overlap with texton-
based prototypes for ROI labeling. Window level: [−1000,−700] HU.

3.3 Reproducibility of Prototypes

Reproducibility of prototypes is measured by computing the overlap of prototype
labeling with two distinct training sets (by randomly dividing the subjects into
two groups), in a manner similar to [15]. Formally, we measure:

R(L,L′) = maxπ
1
K

K∑

k=1

1(L(Xk) = π(L′(Xk))) (6)

where L and L′ are prototype labeling with two different training sets, 1 is the
0–1 loss function, Xk denotes ROIs labeled with prototype k, and π denotes the
permutations of the K prototypes using the Hungarian method [15] for optimal
matching.

Figure 3(a) plots R versus number of prototypes. For K < 50, reproducibility
is high (R > 0.7) for all types of features. When K > 60, 3D texton-based
prototypes are more reproducible (R > 0.6 with K as large as 100).

3.4 Visualization of Sample Prototypes

Visual examples of prototypes generated with three different types of features
using 3D ROIs are provided in Fig. 3 (b). Texton and DOG2-based prototypes
have high intra-class similarity and show clearly distinct lung tissue patterns,
while LBP2-based prototypes have lower intra-class homogeneity, which agrees
with the poorer prediction results.

We also provide in Fig. 4 visual examples of prototypes that are likely to
encode emphysematous lung tissues.
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a)  Texton-based prototypes

b)  DOG2-based prototypes

c)  LBP2-based prototypes

Fig. 4. Axial cuts of 3D ROIs from subsets of prototypes generated with either texton-
based, DOG2 or LBP2 features and that have higher occurrence in subjects with
emphysema than in normals. Window level: [−1000 − 700] HU.

First, subjects in the dataset were separated into two groups: disease (visually
assessed extent of emphysema [2] larger than 0) and normal (visually assessed
extent of emphysema equals to 0).
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Out of the K = 100 benchmark prototypes, we selected the ones for which
occurrence within the disease population was 3 times higher than in the normal
population. This lead to subsets of n = 16, 17, 4 disease prototypes when using
respectively texton-based, DOG2 and LBP2 features, in 3D ROIs. These subsets
are illustrated in Fig. 4 on group of 9 patches of size of 50mm3 from random
disease subjects. The large patch size (twice the length of the ROIs used for
prototype generation) is used to reveal the presence of nearby lung borders.

4 Conclusions

In this work, we presented a novel framework to generate unsupervised lung
texture prototypes that can be used to predict the overall extent of standard
emphysema subtypes from a heterogeneous database of lung CT scans, using
standard radiological global labels as the ground truth. We cluster unlabeled
local ROIs into texture prototypes, and encode lung CT scans with prototype
histograms. Labeling of ROIs is tested in 2D or 3D, and using three types of
features.

The intraclass correlations between prediction and ground truth labeling indi-
cate that texton and DOG2 features are capable of learning homogenous pro-
totypes and lead to very robust predictions of standard emphysema labels that
outperform the inter-rater agreement, while LBP2 feature is less discriminative
(at least with similar feature vector length).

We tested model reduction via prototype merging based on inter-prototype
distance and spatial co-occurrence. Results show that robust prediction can be
achieved with at least K = 60 merged prototypes for texton-based features
and K = 50 for DOG2 features. Reproducibility of texton-based prototypes is
superior when K > 60. These homogeneous and reproducible texture prototypes
show potential in new interpretations of lung CT scans with finer subtyping.
Since texture prototypes link image analysis-based discovery with radiological
prior knowledge, and enable automated labeling of lung volumes and generation
of scan signatures, they can be used for multiple tasks such as correlation with
omic measures, sub-phenotyping of emphysema or image indexing and retrieval.
Our future work will focus on two aspects: (1) As texton-based feature and
DOG2 feature both demonstrated good capability at discovering lung texture
prototypes, we would like to explore their combination to boost robustness and
discovery power, which can be achieved by either feature concatenation followed
by feature dimension reduction (to reduce the computational complexity, as in
[9]), or post-clustering ensembling [16]; (2) The number of prototype K will be
further trimmed to find clinically significant sub-categories of emphysema, with
an optimization metric incorporating clinical data and generalization capability.
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Abstract. MRI segmentation is a challenging task due to low anatomi-
cal contrast and large inter-patient variation. We propose a feature-driven
automatic segmentation framework, combining voxel-wise classification
with a Random-Walker (RW) based spatial regularization. Typically, such
steps are treated independently, i.e. classification outcome is maximized
without taking into account the regularization to follow. Herein we present
a method for selective sampling of training patches, in view of the poste-
rior spatial regularization. This aims to concentrate training samples near
desired anatomical boundaries, around which the gain from a subsequent
RW regularization will potentially be minimal. This trades off a lower clas-
sification accuracy for a higher joint segmentation performance. We com-
pare our proposed sampling strategy to conventional uniform sampling on
20 full-body MR T1 scans from the VISCERAL dataset, both with RW
and Markov Random Fields regularizations, showing Dice improvements
of up to 12× with the proposed approach.

1 Introduction

Segmentation of abdominal organs in medical images plays an important role in
therapy planning and diagnosis. In the clinics, manual segmentation is currently
still a common practice; leading to long processing times, subjectivity in the
resulting segmentations, and high time and cost expenditure of trained physi-
cians. Therefore, there is a need and significant interest for reliable automatic
segmentation methods. In recent years a number of multi-organ segmentation
methods have achieved promising results for both contrast-enhanced and non-
contrast-enhanced computed tomography (CT), e.g. [1–7]. The majority of these
methods use a form of multi-atlas segmentation [1,2,4,6,8]. Alternatively, in [5]
multi-boost learning and statistical shape models are used, and in [7] active
appearance models, live-wires and graph-cuts are used.

Unlike CT, magnetic resonance imaging (MRI) does not use ionizing radia-
tion for data acquisition, making it an attractive alternative where applicable. Its
segmentation, however, is a challenging task due to high variability in anatomy
appearance, low contrast across structures, and large inter-patient and inter-
scan variation. Thus, state-of-the-art in abdominal MRI segmentation is also
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often significantly inferior to that of CT segmentation. In [9], an MRI multi-
organ segmentation method is presented by combining kernel graph-cuts with
shape-priors. The multi-atlas segmentation methods in [3,4] are invariant to
image modality and thus have been evaluated also on MR images. Nevertheless,
these results for MRI are not satisfactory for most clinical applications.

Typically, methods developed for MRI segmentation are optimized for one
specific abdominal organ, structure, or condition. One example of specialized
segmentation is [10], which proposes a method for renal compartment segmenta-
tion. Another example is the unsupervised myocardial segmentation presented
in [11]. Some of these methods exploit the characteristics of a specific organ
appearance or MR acquisition type such as DCE-MRI in [10] or CINE/CP-
BOLD in [11]. Nevertheless, there are not many techniques that apply to the
problem of multi-organ abdominal MRI segmentation with high accuracy.

In this paper, we propose an automatic multi-organ segmentation method
for abdominal organs, which we test on unenhanced full-body T1 MRI from
the VISCERAL Anatomy organ segmentation dataset [12]. Our method consists
of random forest (RF) [13] based voxel classification followed by random walker
(RW) based spatial regularization. The main contribution of this paper lies in the
holistic analysis of a selective sampling strategy for classifier training, considering
the subsequent spatial regularization.

2 Methods

2.1 Features

For training and applying the classification, we extract image features that
encode absolute normalized positions, statistical properties, anisotropic prop-
erties, and spatial neighborhood information of anatomical structures. Prior to
feature extraction, we normalize all MRI intensity ranges to [0, 1], where 1 is
assigned to the mean of the highest 5% intensity values of each MR image. The
features are explained in detail below.

Location Features. Spatial position of each segmented voxel in three axes,
normalized within the given volume, yield 3 location features.

Intensity Features. We extract statistical intensity features from cubic patches
with edge length τint centered at each voxel. We compute intensity mean at two
different τint scales, as well as variance, skewness, and kurtosis at a single τint
scale, yielding a total of 5 intensity features.

Texture and Curvature Maps. Using the image itself (hereafter called the
intensity map Mint) we extract texture and curvature maps as in [14].

The texture map Mtex is generated through convolution of the MRI volume
with Gabor filters, which are realized as a combination of a Gaussian filter and a
complex sinusoid. The parameters of this texture filter are filter frequency ftex,
filter orientation ψtex, horizontal variance σtex,h, and vertical variance σtex,v. We
include Mtex as a dimension to our feature space.
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For a gray-scale 3D MRI volume, curvature is calculated as the divergence
of the normalized intensity gradient. Due to high noise sensitivity of the diver-
gence operation, the intensity map is initially smoothed with a Gaussian kernel
with variance σcurv, followed by the removal of gradient values with magnitude
smaller than a threshold τcurv. The curvature map Mcurv is then calculated as
the divergence of this smoothed volume.

Anisotropy Features. Anisotropy along an orientation can provide discrim-
inant information. Thus, we compute the anisotropy of both Mtex and Mcurv

in the main 7 orientations in 3D (i.e., 4 diagonal and 3 along main axes) using
entropy as:

anid = −
∑

γ

pd
γ log pd

γ (1)

where pd
γ is the probability distribution of a texture or curvature value γ within

neighborhood Nd with direction d ∈ {1, .., 7}; thus creating 14 features.

Context Features. The presence of one anatomical structure usually allows for
the inference of its neighboring structures. In order to capitalize on the regular-
ity of spatial relationships within the human body, we use context features as
shifts of intensity, texture and curvature maps in a total of 14 directions (i.e., 8
diagonal and 6 for the main three axes). In order to represent information from
a neighborhood of voxels rather than one single point, the image map is initially
averaged over a μ×μ×μ neighborhood. Context features are extracted from all
image maps (Mint, Mtex, and Mcurv) at multiple scales of shifts (ηcont) around a
given center voxel, such that both proximal and distant anatomical relationships
can be captured; resulting in a total of (14 directions × 3 maps × 3 shifts =) 126
context features.

The above lead to a total number of 149 features, a sample subset of which
is shown in Fig. 1.

2.2 Sampling

In order to alleviate any bias, an equal number of foreground and background
voxels is often sampled for classifier training. However, for full-body MRI vol-
umes, there exist a severe imbalance between the numbers of foreground and
background voxels. Conventionally, uniform sampling (UnS) is used, where sam-
ple locations are determined with a uniform probability, as illustrated in Fig. 2a.
While UnS aims at maximizing classification accuracy, it is not optimal with
regard to the final segmentation, as it puts undue emphasis on correctly classi-
fying irrelevant regions further away from the foreground structure; potentially,
at the cost of classification accuracy around the anatomical borders, where accu-
racy is often needed. We therefore choose a sampling approach which is more
apt to capturing relevant information needed for the exact delineation of an
anatomical structure. We refer to this approach as selective sampling (SeS). In
SeS, foreground and background samples are chosen with a probability of

p(x) =
1
α

exp (−x/βSeS) (2)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Example slices of (a) original image Mint, (b) mean intensity (τint = 2 mm),
(c) mean intensity (τint = 20 mm), (d) intensity variance (τint = 20 mm), (e) intensity
skewness (τint = 20 mm), (f) intensity kurtosis (τint = 20 mm), (g) texture map Mtex,
(h) curvature map Mcurv, (i) texture anisotropy, and (j) curvature anisotropy.

where α is a normalizing factor, x is the distance to the target structure border
and βSeS regulates the exponential decay. Figures 2b and c show examples of SeS
sample locations for kidney for two different numbers of total samples (ns).

2.3 Automatic ROI Selection

While learning algorithms can be highly accurate within a local region-of-interest
(ROI), with regard to large fields of view, atlas-based segmentation often has the
advantage of reliably detecting the approximate position of an organ (leveraging
the info from a larger region and hence the entire anatomical appearance). To
leverage such approximate localization in our framework, we use a multi-atlas
registration framework to transfer atlas annotations to define a ROI for the
subsequent classification to work. We use an MRF-based registration approach as
in [8]. For a given testing MRI volume, we register several training MR volumes.
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(a) (b) (c)

Fig. 2. Cropped example slices of (a) UnS locations with ns = 6000, (b) SeS locations
with ns = 6000, and (c) SeS locations with ns = 600. Red pixels indicate sampled
foreground locations, while green indicates sampled background. Note that in (a) many
green dots are out of the displayed region. (Color figure online)

A sample superposition of such registered volumes is shown in Fig. 3b, for a test
image in Fig. 3a. Accordingly, we also combine the registered annotations for
each organ to effectively limit our classification task to a smaller ROI compared
to full-body MRI. For a given organ i, the ROI is determined by first finding a
bounding box of size nx×ny×nz around the registered training annotations, and
then enlarging it to a size of 2nx × 3ny × 2nz determined empirically. Figure 3c
shows the superposition of thyroid training annotations within a constructed
ROI, and Fig. 3d shows the ground-truth annotation for this case.

2.4 Random Walker

Mere classification of pixels is likely to create speckled results, with holes and
islands of false negatives and positives. These artifacts can be minimized via
spatial regularization by incorporating the assumption that neighboring vox-
els are likely to belong to the same anatomical structure, such as using Markov
Random Fields (MRF). Nevertheless, when multiple regions are returned as pos-
itives, even regularization cannot determine which one(s) are the desired organ.
A common approach is then a post-processing step to select the largest connected
component, which however presents no guarantees on the correct selection as the
solution of the previous MRF problem is simply taken as a hard-decision (i.e.
the probabilities of locations are ignored during the component searching of the
final labeling). Random Walker (RW) instead is designed inherently to return a
single connected component, which is a an anatomical constraint known in most
clinical segmentation tasks. Therefore, in this work we choose RW for spatial
regularization.

RW is known to perform successfully, given seed locations inside (FG) and out-
side (BG) the target structure. Alas, segmentation results can be sensitive to seed
selection. We hereby propose an automatic seed selection method based on mean-
shift clustering (MSC) [15]. We initialize nc clusters centered at voxels with the
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(a) (b) (c) (d)

Fig. 3. Example slices of (a) the test volume, (b) superposition of registered atlas
images, (c) superposition of registered training thyroid annotations within the deter-
mined ROI, and (d) test volume ground-truth thyroid annotation.

highest classification scores. Any voxel with a classification score below tMSC is
removed from this selection,which leaves ñ

(i,s)
c points for organ i andMRI sequence

s. Using the annotated organs from the training set, we calculate the average vol-
ume vavg for a given organ. The MSC algorithm is then initiated with ñ

(i,s)
c spheres

of volume vavg centered at the selected points. Spheres with mean points closer
than half the radius (r(i,s)/2) are merged. After MSC convergence, only voxels
within the largest cluster are kept and assigned as FG seeds for the RW. BG seeds
are placed at a regular interval along the borders of the defined ROI.

3 Results

Data Set. To evaluate the proposed method, the publicly available VISCERAL
Anatomy3 data set [12] with 20 full-body T1 sequence MRI images was used.
Each of which contains up to 20 annotated anatomical structures. In this paper,
we evaluated all structures with six or more available annotations. All results
presented in this paper are based on six-fold cross-validation.

Features and Classification. While the method described above does not call
for a specific type of classifier and may easily be extendable to other learning
methods, we have used RF classifiers for all experiments presented in this paper.
This choice was based on preliminary experiments with RF and linear support
vector machines. We have trained separate RF classifiers for each organ, with
feature and classifier parameters determined empirically with a set of preliminary
experiments on smaller image/organ sets. RF tree size was set to 50, as derived
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Fig. 4. Out-of-bag error vs. forest size for random forests trained on MRI of anatomical
structures.

from the out-of-bag error shown in Fig. 4. Similarly, 3000 foreground and 3000
background samples were used for training each RF classifier. Different types of
features were analyzed using RF variable-importance scores. We set the feature
extraction parameters as follows: Intensity features: Mean with neighborhood
size τint = 2 mm and τint = 20 mm, variance, skewness, and kurtosis with neigh-
borhood size τint = 20 mm. Texture map: Horizontal variance σtex,h = 2, vertical
variance σtex,v = 4, frequency ftex = 16, and orientation ψtex = π

2 . Curva-
ture map: Variance σcurv = 16 and threshold τcurv = 0.01. Anisotropy features:
Neighborhood size ηani = 20 mm. Context features: Averaging neighborhood size
μcont = 3 mm, extraction scales ηcont = 4 mm, ηcont = 8 mm and ηcont = 16 mm.

Registration for ROI Selection. For multi-atlas ROI selection, an MRF-
based registration framework as in [8] was used, which yields successful ROI
definitions for larger organs. For some organs (in particular, gallbladder and
adrenal glands), for which shape and anatomical surrounding are not good indi-
cators and for which such atlas-based segmentations typically fail, we switched
to affine transformation of the entire anatomy for the multi-atlas approach for
a less precise but robust location prior.

Sampling and Spatial Regularization. In order to analyze the influence of
sampling and spatial regularization on segmentation performance, we performed
experiments with the proposed SeS sampling and RW spatial regularization as
well as the corresponding standard approaches: UnS sampling as well as MRF
spatial regularization. The SeS sampling probability decay factor βSeS = 12 mm
was optimized in preliminary experiments using a subset of anatomical struc-
tures. For MRF evaluation, RF classifier scores were used as MRF unary costs
and the pairwise costs were constructed by Potts model from MR intensity
images. The proposed RW spatial regularization was parameterized empirically
as nc = 10000 and tMSC = 0.92.

The average of 6-fold cross-validation Dice scores per organ for all four combi-
nations UnS-MRF, UnS-RW, SeS-MRF, and SeS-RW as well as the classification
F1 scores (rows labeled as RF) prior to spatial regularization for both UnS and
SeS are presented in Table 1 along with the inter annotator median Dice score
reported in Fig. 4 of [12]. The highest scores per anatomical structure for UnS
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and SeS separately are indicated in bold, while the highest score for both is high-
lighted in gray. Methods presented in this paper as novel combinations for MRI
segmentation are shaded in light blue. Out of these, we propose in particular SeS-
RW, selective sampling with random-walker. Accordingly, in Table 2 we present
the relative Dice score comparison of SeS-RW over other method combinations,
where UnS-MRF is taken as the state-of-the-art of similar classification-based
methods not utilizing the techniques proposed herein.

Table 1. Organ Dice scores before spatial regularization and after RW/MRF when
trained with UnS and SeS vs. inter annotator median (inAmed) from [12].
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RF 0.05 0.10 0.12 0.06 0.05 0.17 0.14 0.51 0.49 0.62 0.15 0.13 0.21 0.05 0.09 0.21
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MRF 0.05 0.08 0.13 0.06 0.05 0.16 0.14 0.57 0.56 0.68 0.16 0.14 0.23 0.09 0.13 0.26

U
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Table 2. Relative Dice improvement of the proposed SeS-RW over other methods for
each anatomical structure given in the same order as Table 1.

SeS-RW/UnS-MRF 12.80 9.38 3.00 2.33 12.00 3.62 4.21 1.33 1.36 1.16 4.12 4.50 2.96 5.00 3.85 2.81

SeS-RW/UnS-RW 7.11 4.41 2.44 1.40 12.00 3.62 3.47 1.73 1.21 1.14 2.54 3.00 2.43 3.75 2.50 1.97

SeS-RW/SeS-RF 1.05 1.50 6.50 1.56 0.95 4.83 7.37 2.53 4.00 3.16 6.00 5.25 5.67 2.05 7.14 24.33

SeS-RW/SeS-MRF 2.46 2.59 0.89 1.17 0.88 1.32 1.69 1.23 1.85 1.61 1.22 1.24 1.42 1.29 1.04 1.22

4 Discussion

Quantitative results presented in Table 1 show that, for the given data set, RW
with the proposed automatic seed selection outperforms the commonly used
MRF regularization. Furthermore, comparative results in Table 2 indicate that
the proposed approach provides on average over 12× Dice improvement for some
smaller organs such as gallbladder and adrenal gland, with a minimum aver-
age improvement being 16% for the right lung. Prior to spatial regularization,
UnS outperforms SeS for 11 out of 16 anatomical structures. This is due to the
boundary-focus of SeS, which leads to a large number of false positives outside
the organ to segment. However, after spatial regularization, methods based on
SeS prevail for all anatomical structures. It can be seen that the best results are
achieved by combining SeS sampling with RW. These scores indicate that the
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false positives outside the target anatomical structure, caused by the focus of the
classifier on organ border regions, were successfully recovered by the proposed
spatial regularization strategy.

As seen in Table 1, for some anatomical structures, such as the aorta or the
first lumbar vertebra, our resulting Dice scores are relatively low. We attribute
this to the large amount of contextual information necessary to successfully
segment these structures. Clinical protocols for aorta segmentation, for example,
define the extents of the organ in relation to other structures. In such cases an
atlas-based segmentation as expected performs better through leveraging the
mutual contextual information from other anatomical structures.

While there currently is no atlas-based segmentation baseline for the VIS-
CERAL Anatomy3 full-body MR T1 modality, [3] lists such scores for the pre-
decessor challenges Anatomy1 and Anatomy2. Comparing the results in [3] to
SeS-RW confirms that atlas-based segmentation is superior for organs such as
first lumbar vertebra or aorta. On the other hand, however, SeS-RW is more
promising for smaller or irregularly shaped organs such as both adrenal glands,
gallbladder, spleen and urinary bladder. Atlas-based segmentation as used in [3]
tends to achieve higher scores for the right lung as opposed to the left, which
we assume to be caused by the larger portion of heart located on a person’s left
side. In contrast, SeS-RW’s scores for left and right lung are almost identical.

In the future, we will integrate atlas-segmentation priors, which we now
already use for the ROI selection, as a probabilistic location prior into our SeS-
RW framework in order to combine the benefits of both frameworks. Neverthe-
less, our current SeS-RW approach stands out for high performance in segment-
ing some difficult organs, e.g. adrenal glands and gallbladder, even in comparison
to CT segmentations. For the adrenal glands, we are at a level of accuracy com-
parable to inter annotator variability.

In Fig. 5a, we show the Dice score distribution of some representative anatom-
ical structures with our SeS-RW method. Additionally, a sample segmentation
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Fig. 5. (a) Distribution of Dice scores with SeS-RW segmentation, where AG is adrenal
gland and UB is urinary bladder. (b) A sample SeS-RW segmentation and (c) its
ground-truth annotation.
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result of our SeS-RW algorithm on one case is shown in Fig. 5b for qualitative
comparison with the corresponding ground-truth annotations shown in Fig. 5c
for this particular plane.

5 Conclusions

In this paper, we presented an automatic segmentation framework for abdominal
organs. We demonstrated the significance of choosing our sampling method in
accordance with the proposed spatial regularization. While all our experiments
were performed on MRI images, due to the complexity of MRI, we believe that
this approach can be generalized for other imaging modalities and anatomical
structures (i.e. bones) which were not part of our experiment data. Our future
work will focus on combining atlas-based registration (i.e. from [8]) with our
framework in a probabilistic manner to further improve segmentation accuracy.
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Abstract. In this study, we developed a novel system, called
Gaze2Segment, integrating biological and computer vision techniques to
support radiologists’ reading experience with an automatic image seg-
mentation task. During diagnostic assessment of lung CT scans, the
radiologists’ gaze information were used to create a visual attention
map. Next, this map was combined with a computer-derived saliency
map, extracted from the gray-scale CT images. The visual attention map
was used as an input for indicating roughly the location of a region of
interest. With computer-derived saliency information, on the other hand,
we aimed at finding foreground and background cues for the object of
interest found in the previous step. These cues are used to initiate a
seed-based delineation process. The proposed Gaze2Segment achieved a
dice similarity coefficient of 86% and Hausdorff distance of 1.45 mm as a
segmentation accuracy. To the best of our knowledge, Gaze2Segment is
the first true integration of eye-tracking technology into a medical image
segmentation task without the need for any further user-interaction.

Keywords: Eye tracking · Local saliency · Human computer interface ·
Medical image segmentation · Visual attention

1 Introduction

Designing interactive workstations for radiologists, in order to assist them per-
forming radiology tasks efficiently, is very important [1]. It is becoming popular
to use eye gaze information to allow interaction between human and computers
specifically for performing image analysis tasks, as it is the most natural and
fastest way of interaction. These image analysis tasks can help disease moni-
toring in clinics. Eye-tracking based research in radiology can be categorized
into two main groups. First group of research focuses on psychological viewpoint
c© Springer International Publishing AG 2017
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(e.g. examining attentional behaviour) such as the early work of Just et al. [7].
The second group consideres eye-tracking as an interaction tool with computers.
For instance, Ware et al. [11] used eye-tracker information as an input to perform
a predefined task in the computer. In a different study, Sadeghi et al. [10] showed
the advantage of using eye-tracking over using mouse clicks as an interaction
tool for segmentation task in general. Relevant to medical imaging field, most of
these studies have been accomplished to understand radiologists’ visual search
patterns, differences of search patterns, and expert and non-expert visual search
discriminations [8]. Despite significant advances in human-computer interaction,
the use of eye-tracking technology to perform image analysis tasks in radiology
remains largely untouched.

In this study, we propose a pilot system that uses gaze information from the
eye-tracker as an input to perform an image segmentation for radiology scans
in a fully automated way. To the best of our knowledge, this is the first study
integrating biological and computer vision methods synergistically to conduct
a quantitative medical image analysis task. The proposed algorithm is called
Gaze2Segment and the integration of the proposed algorithm into the eye-
tracker system is illustrated in Fig. 1. Our motivation for the use of eye-tracking
in medical image segmentation task lies in the following facts. The segmentation
process includes two relevant (and complementary) tasks: recognition and delin-
eation [2]. While delineation is the act of defining the spatial extent of the object
boundary in the image, recognition (i.e., localization or detection) is the neces-
sary step for determining roughly where the object is. Automatic recognition
is a difficult task; hence, manual or semi-automated methods are often devised
for this purpose. Available automatic recognition methods usually employ an
exhaustive search or optimization. We postulate herein that eye-tracking can
be used as an effective recognition strategy for the medical image segmentation
problems. Towards this aim, we developed the Gaze2Segment consisting of the
following five major steps (steps are illustrated in Fig. 2):

Radiologist

Gaze2Segment

Mobile Unit (DTU)

MobileEye XG on Worksta on
Eye-Tracking Data

Images

MIPAV

Glasses 

Fig. 1. Overview of the integrated eye-tracking and Gaze2Segment system
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Fig. 2. Gaze2Segment has five steps to perform a segmentation task. Input is inferred
from the eye-tracking data (see Fig. 1).

– Step 1: Real-time tracking of radiologists’ eye movements for extracting gaze
information and mapping them into the CT scans (i.e., converting eye tracker
data into image coordinate system).

– Step 2: Jitter Removal for filtering out the unwanted eye movements and
stabilization of the gaze information.

– Step 3: Creating visual attention maps from gaze information and locating
object of interest from the most important attention points.

– Step 4: Obtaining computer-derived local saliency and gradient information
from gray-scale CT images to identify foreground and background cues for
an object of interest.

– Step 5: Segmenting the object of interest (identified in step 3) based on the
inferred cues (identified in Step 4).

2 Method

Step 1: Eye-Tracking and Extracting Gaze Information

We have used MobileEye XG eye-tracker technology (ASL, Boston, MA) to build
our system (Fig. 1). This device has eye and scene cameras that attach to the
glasses (or an empty frame in case the participating radiologist already has eye
glasses). The two cameras are adjustable to fit different users’ settings. While
the eye camera records the eye movements, the scene camera (second camera,
directed forward) records the monitor being observed by the radiologist at 60Hz
of data rate. The eye camera monitors the pupil orientations and reflective angle
using corneal reflection of 3-infrared dots on the eye from a reflective mirror.
These dots are transparent to visible spectrum and nothing obscures the radi-
ologists’ field of view. The data from these two cameras were transferred to a
workstation through a mobile display/transmit unit using an ethernet cable in
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real-time. Then, points of gaze were computed on the scene video, which was
recorded at 60 frames per second. A calibration needs to be performed by the
radiologist before every image reading experiment to match the eye movement
data and the 640 × 480 scene video. The system outputs gaze coordinates with
respect to the scene camera’s Field Of View (FOV) and pupil diameter on a
.csv file with timestamp (Fig. 1). Once the calibrated gaze coordinates, scene
video, and timestamp were created, gaze coordinates on the scene video (gv)
were converted onto the gaze coordinates on the stimulus (gs).

Our pilot study focuses on a realistic scan evaluation by a radiologist without
inserting any environmental or psychological constraints. As a part of this real-
istic experiment in a dark reading room, we have collected chest CTs pertaining
to patients diagnosed with lung cancer. Unlike relatively simpler experiments
with X-Rays, there are numerous slices to evaluate in 3D CTs. In addition, radi-
ologists may visit the same slice more than once during their reading, including
changing the image views into axial, coronal, and sagittal sections. To mitigate
these, an image viewer plugin was developed to be integrated into the open
source MIPAV image analysis software [9]. The plugin simply records mouse
manipulations including scrolling, contrast change, and button clicks with the
associated timestamp.

Step 2: Jitter Removal and Gaze Stabilization

Eye-tracking data naturally contains jittery noises. While looking at a single
object, users normally believe that they look at the object steadily. However,
eyes have small jittery movements that causes the gaze location to be unstable.
Using such a noisy data can create uncertainties in image analysis tasks. In
order to remove jitter, while preserving global gaze patterns, a new smoothing
operator (J) was formulated as follows. Since gaze coordinates on the stimulus
(gs) include a set of points on xy-coordinate system (i.e., planar), Euclidean
distance between any consecutive coordinate points can be used for smoothing
as values that fall within the small distance neighborhood were eliminated:

if ||gs(i) − gs(i + 1)|| ≤ ε,

then, gs(i) is set to gs(i + 1), where i indicates the gaze points in an order they
have been looked at by the user, and ε was a pre-defined distance (based on
the empirical evaluation of experimental data) and set as 7.5 mm, meaning that
all the pixels within ε-neighborhood of i are considered to be pertaining to the
same attention regions.

Step 3: Visual Attention Maps

There are two major visual search patterns identified so far that radiologists nor-
mally follow for reading volumetric radiology scans: drilling and scanning [3].
While drillers spend less time on a single area in an image slice and tend to
scroll fast between slices (backward and forward), scanners spend more time
on examining a single slice and then move to the next slice. Thus, it’s a valid
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hypothesis that radiologists spend more time on the regions that are more sus-
picious to them. Hence, the possibility of presence of abnormality in those areas
is higher compared to the other regions. This fact can be used to perform an
image analysis task in suspicious areas of radiology scans.

Considering the above mentioned information, as well as the theory of Von
Helmholtz, claiming that eye movements reflect the will to inspect interesting
objects in fine detail although visual attention can still be consciously directed
to peripheral objects [6]. We used the time information (from timestamp on the
data) to create visual attention map by encoding the regions to which radiologists
divert their attention more than other regions. The numerical value of time spent
on a specific area might be different between drillers and scanners and even from
user to user. However, the time that is spent on potentially abnormal areas is still
relatively higher than other areas for a specific user regardless of the method of
search. These reasons make the time a reliable factor to derive an attention map.

For each gaze point on the stimulus gs(i), an attention value a(i) ∈ [0, 1] was
created by mapping the corresponding timestamp t(i) of the gaze coordinate in
piece-wise linear form as follows:

a(i) =

{
t(i)−t̂

tmax−t̂
, t(i) > t̂,

0, otherwise,
(1)

where tmax = argmaxi t(i) and t̂ can be set into 0 in order to assign an attention
value for every gaze coordinate. However, for practical reasons, since many gaze
coordinates may have very small timestamps (for instance, in milliseconds), we
can remove those gaze coordinates from our analysis by setting a larger t̂.

Step 4: Local Saliency Computation for sampling
Foreground/Background Cues

In biological vision, humans tend to capture/focus on most salient regions of
an image. In computer vision, many algorithms have been developed to imitate
this biological process by defining a saliency concept with different context. The
mostly used definition of saliency is based on the distinctiveness of regions with
respect to their both local and global surroundings. Although this definition
is plausible for many computer vision tasks, it alone may not be suitable for
defining salient regions in radiology scans where object of interests are not often
as distinctive as expected. In addition, radiologists use high level knowledge or
contextual information to define regions of interest. Due to all these reasons,
we propose to use a context-aware saliency definition that aims at detecting
the image regions based on contextual features [4]. In our implementation, we
extracted image context information by predicting which point attracts the most
attention. This step combines radiologist’s knowledge with image context. The
context-aware saliency explains the visual attention with feature-driven four
principles, three of which were implemented in our study: (1) local low-level
considerations, (2) global considerations, (3) visual organization rules, and (4)
high-level factors.
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(1) For local low-level information, image was divided into local patches (pu)
centered at pixel u, and for each pair of patches, their distance (dposition) and
normalized intensity difference (dintensity) were used to assess saliency of a pixel
u, as formulated below:

d(pu, pv) = dintensity/(1 + λdposition), (2)

where λ is a weight parameter. Pixel u was considered salient when it was highly
dissimilar to all other image patches, d(pu, pv) is high ∀v.

(2) For global considerations, a scale-space approach was utilized to suppress
frequently occurring features such as background and maintain features that
deviate from the norm. Saliency of any pixel in this configuration was defined
as the average of its saliency in M scales {(r1, r2, ..., rM ), r ∈ R} as S̄u:

S̄u = (1/M)
∑
r∈R

Sr
u (3)

Sr
u = 1 − exp{−(1/K)

K∑
k=1

d(pru, prv)} for (r ∈ R). (4)

This scale-based global definition combined K most similar patches for the
saliency definition and indicated more salient pixel u when Sr

u was large.
(3) For visual organization rules, saliency was defined based on the Gestalt

laws suggesting areas that were close to the foci of attention should be explored
significantly more than far-away regions. Hence, assuming dfoci(u) is the Euclid-
ean distance between pixel u and the closest focus of attention pixel, then the
saliency of the pixel was defined as Ŝu = S̄u(1−dfoci(u)). A point was considered
as a focus of attention if it is salient.

(4) High-level factors such as recognized objects can be applied as a post
processing step to refine saliency definition. In our current implementation, we
did not apply this consideration.

Since we inferred where information of object of interest from visual attention
map (Step 3), we only explored what part of object of interest from saliency
definition. Once saliency map is created, we confined our analysis into the regions
indicated by corresponding visual attention maps (a(u)). Since saliency map
includes object of interest information, we extracted foreground information from
this map (called foreground cues/seeds) by simply setting the most salient pixel
in this region as a foreground cue. This step helped relocating the attention gaze
exactly to the center of the closest most salient object and allowed a perfect seed
selection.

Furthermore, we defined the background cues for a given local region indi-
cated by the visual saliency map as follows. We first computed the gradient
information ∇I from a gray-scale CT image I. For a given visual attention map
a(u) and saliency map S(u) at a pixel u, we employed a search starting from
∇I(u) and moving into 4 perpendicular directions. Our search was stopped soon
after we passed through a high intensity value on gradient image because object
boundary locations show high gradient values due to abrupt intensity changes.
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Fig. 3. Foreground (FG) regions are obtained from visual attention maps processed
from gaze information. After this recognition step, we identify most distinct FG seed
by using the corresponding regions of saliency map. Once FG seeds are allocated,
background (BG) seeds are found by using gradient information of the gray-scale CT
image. For each FG seed, four perpendicular directions are searched and edge locations
indicating the intensity value changes are used to select BG seeds.

Those four pixels defined outside the object boundary are considered as back-
ground cues. This process is illustrated in Fig. 3.

Step 5: Lesion Segmentation

After identifying background and foreground seeds, any seed-based segmentation
algorithm such as graph-cut, random walk (RW), and fuzzy connectivity, can be
used to determine precise spatial extent of the object of interest (i.e., lesion). In
our work, we choose to implement RW as it is fast and robust, and offers optimal
image segmentation for a given set of seed points. Details of the conventional
RW image segmentation algorithm can be found in [5].

3 Results

We tested our system on four chest CT volumes pertaining to patients diag-
nosed with lung cancer, evaluated by three radiologists having different levels
of expertise. In-plane resolution of the image is 512 × 512 with a voxel size of
0.58 × 0.58 × 1.5 mm3. Imaging data and corresponding lesion labels as well
as annotations were obtained from Lung Tissue Research Consortium (LTRC)
(https://ltrcpublic.com/) with an institutional agreement. Blind to diagnostic
information of the chest CT scans, the radiologists read the scan once, and

https://ltrcpublic.com/
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interpret the results in routine radiology rooms. Participating radiologists have
more than 20, 10, and 3 years of experiences, respectively. This variability in
experience levels allowed us to test robustness our system. As shown by results
regardless of user experience and pattern of gaze and attention, our system per-
fectly captured the attention gaze locations and performed the segmentation
successfully.

Figure 4 shows the proposed system’s visual attention map, saliency map, and
segmentation results at different anatomical locations. Quantitatively, we used
reference standards from LTRC data set and independently re-evaluated by one
of the participating radiologists. We have used dice similarity coefficient (DSC)
and Haussdorff Distance (HD) to evaluate accuracy of segmentation results over
two reference standards. The average DSC was found to be 86% while average
HD found to be 1.45 mm. We did not find statistically significant difference
between segmentation results when manual seeding and interactive RW were
used (p > 0.05).

CT Image A en on Map Segmenta on ResultsSaliency Map

Fig. 4. Qualitative evaluation of medical image segmentation through Gaze2Segment
system is illustrated. Last column shows the segmentation results zoomed in for better
illustration.

Figure 5 shows a comparison of gaze and attention maps for two sample slices
of the chest CT volume read by participating radiologists. How the attentional
points are distributed over the lung CT volume is arguable based on the differ-
ence in experience levels of the radiologists. As Fig. 5 illustrates, the less expe-
rienced radiologist (radiologist 3), the larger the volume of search compared to



102 N. Khosravan et al.

Radiologist 1 Radiologist 2 Radiologist 3

Attention map 2

Gaze map 2

Attention map 1

Gaze map 1

Fig. 5. Qualitative comparison of attention and gaze maps is illustrated.

the expert radiologists (radiologist 1 and 2). For the selected slices, radiologists’
gaze patterns are mapped on the images to compare radiologists’ search patterns
in Fig. 6. While search patterns seem to be distinct in first image, pathological
regions (in second image) generally have overlapped attentional points among
radiologists.

4 Discussion

Since our work is a pilot study, there are several limitations that should be noted.
First, we used a limited number of imaging data to test our system. It should
also be noted that gathering a large number of imaging data with corresponding
eye-tracking information is a time consuming task. However, due to the nature
of this pilot study, and also considering the involvement of three radiologists
with different levels of experience in our evaluation, the current proof of concept
study with the results presented herein is sufficient for the system evaluation.
With that said, our team is working on gathering more imaging and eye-tracking
data to extend experiments for our future works. Second, there were several
region of interests (non-lesion based) identified and segmented with the proposed
system as potential lesion locations. It is because the visual attention information
indicated that the radiologists spent several seconds on those regions, and our
system naturally considered those regions as potential lesion locations.
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Image 1

Radiologist 3 Radiologist 2 Radiologist 1

Image 2

Fig. 6. Comparisons of gaze patterns pertaining to participating radiologists. Second
image has district pathological regions, having overlapped attentional points by all
radiologists while first image has distinct attentional patterns.

Third, although the proposed system is derived from the solid theory of
biological and computer vision, there may be additional computational tunings
necessary. When different organs and imaging modalities are in consideration
for a similar radiology reading experience, methods presented herein should be
trained and tuned based on the imaging characteristics and saliency definition.
In spite of the challenges that might be induced due to modality changes our
system has the potential for addressing those difficulties as well. Fourth, the
system parameters such as ε or t̂ are selected empirically. A more reliable and
data-driven approach could replace this manual step. Fifth, the segmentation
is performed off-line after the data is recorded. Performing the whole process
online and during the reading experience in radiology rooms is the future goal.
Our initial results add sufficient evidences towards this realistic and innovative
goal.

5 Conclusion

In this paper, an automated eye-tracking system was integrated into a medical
image segmentation process. For this task, we have successfully combined biolog-
ical and computer vision techniques for the first time in radiology scan reading
setting. We used radiologist’s gaze information to extract visual attention map
and then complement this information with the computer derived local saliency
information from radiology images. By utilizing these two information, we first
sampled object and background cues from a region of interest indicated by the
eye-tracking and performed a medical image segmentation task. By this way, we
proved that gaze information can be used effectively to address the recognition
problem of image segmentation, causing a real-time quantification of radiology
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scans. Our main contribution is to combine biological vision and attention infor-
mation with image context through saliency map. This has been achieved to
perform a quantitative analysis of medical scans during the reading experience
and without the need for any further interaction from the user side.
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Abstract. A major challenge in automatic registration, alignment and
3-D reconstruction of conventionally processed mouse brain slice images
is the presence of histological artifacts, like tissue tears and losses. These
artifacts are often produced from manual sample preparation processes,
which are ubiquitous in most neuroanatomical laboratories. We present a
novel geometric algorithm to automatically detect these artifacts (dam-
age regions) in mouse brain slice images. Our algorithm is guided by our
observation that the tears and tissue loss in brain slice images result in
external geometric medial axis of the outer contours to go deep inside
the tissue. We tested our algorithm on 52 mouse brain slice images
with major histological artifacts and successfully detected all the dam-
age regions in the dataset. Our algorithm also demonstrated much lower
errors when quantitatively evaluated by performing feature based reg-
istration between all 52 slices and their corresponding Allen Reference
Atlas (ARA) images.

1 Introduction

An annotated virtual 3D mouse brain populated with accurate neuronal recon-
struction from In-Situ Hybridization (ISH) images is important for brain circuit
mapping research [8,14,19]. The ability to reconstruct such virtual brain mod-
els and perform quantitative analysis on them requires automatic registration
of thin, high-resolution, artifact-free mouse brain slice images [14]. However,
brain slice images produced from conventional processing techniques are often
present with severe histological artifacts, making it extremely difficult for fur-
ther processing such as automatic alignment of adjacent slices and annotation
of regions of the slices [20].

For common analyses of brain section images, we register these sections with
a standardized reference atlas like the Allen Reference Atlas (ARA) maps. Such
registration will also become difficult in the presence of histological artifacts
introduced during manual sectioning of mouse brain tissues. All these artifacts
can be broadly categorized either as global 3D deformations, which may happen
during extraction of the brain from the skull, physical effects like gravity during
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 105–115, 2017.
DOI: 10.1007/978-3-319-61188-4 10
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mounting, etc. or as slice specific 2D deformations, which are very common
tissue artifacts introduced during sample preparations including serial sectioning
of the brain (shearing and tearing) and mounting slices on glass slides (tearing,
folding, absence or displacement of small parts from some sections). Though most
of the above artifacts have been addressed by complex non-linear registration
techniques [18], slice-specific 2D artifacts such as tissue tears and tissue loss are
extremely difficult to automatically detect and resolve [13]. Hence, slices with
such artifacts are typically discarded, thereby, losing precious data.

There have been previous works on detection and correction of these slice-
specific 2D artifacts. However, as most of them are either semi-automatic or
use information from neighbouring slices, they are not scalable. For example,
Qiu et al. [21] proposed to automatically detect slices with artifacts by looking
for unexpected differences between a specified slice and its neighbouring slices.
Hence, artifacts in an isolated slice cannot be detected and corrected. Further,
such a method also requires slices to be close enough and the adjacent slice to
be devoid of any artifacts, such that the difference between slices will imply
the artifact. This sometimes poses restriction on the neuroanatomists who may
want slices only from specific regions of the brain or want to slice the brain at
larger intervals. Kindle et al. [13], on the other hand, proposed a semi-automatic
method where they manually identify small tissue tears and fill them by warping
neighboring regions around the tear. This approach only works well when the
tear is small, horizontal and smooth. Moreover, one needs to be careful about
obtaining undesirable warping effects while fixing these tears, especially when
they are severe as shown in Fig. 2.

While the above techniques aim to detect and correct slices which have arti-
facts, many researchers try to overcome them. The most popular approach among
these is performing cryosectioning of frozen mouse brain tissues [3,7,16]. The
rationale behind it is that frozen tissues are much easier to slice into thin sec-
tions without tearing or significant deformation. Another technique often used is
the introduction of quality control checks [16]. After sectioning the mouse brain,
highly damaged slices are manually removed from the registration pipeline. Fur-
ther, to aid in registration of such highly damaged slices, manual landmarks
are often placed [7] or even manual initial registration is performed [25,26]. All
the above measures which mitigate the 2D slice-specific artifacts and help its
registration, in addition to being time consuming and expensive, require a lot
of planning of the process. Although, slicing thicker sections may be a plausible
solution to avoid tissue tears [2], it constrains the subsequent staining and imag-
ing procedures. One needs to ensure that the slicing thickness is in accordance
with the penetration depth of the stain and depth of focus of the light microscope
used. Serial two-photon tomography (STPT), though produces artifact-free, well-
aligned, high-resolution 3D datasets, which makes the registration process much
easier [14,16,22], neural circuit mapping based on conventional processed brain
sections continues to have technical challenges in standardized registration with
highly deformed and damaged brain slices. We present a method to automati-
cally detect and handle damages in such mouse brain microscopic slice images
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Fig. 1. Overview of our damaged region detection algorithm: (i). Dominant edges (MEI)
extracted from the mouse brain microscopic slice image on the left. (ii). Outermost
contour of MEI, which serves as the input to our algorithm. (iii). Constrained Delau-
nay Triangulation of vertices V & edges E using the outermost contour of MEI. (iv).
Exterior Voronoi vertices (magenta) and edges (brown). (v). Three candidate damage
regions whose medial axis (Voronoi edge sequence) length was above α. Points corre-
sponding to only the 2nd candidate area were classified as damage region points as
they were not vertically symmetric. (please zoom in for details) (Color figure online)

in order to achieve an accurate registration. Furthermore, since we detect arti-
facts on individual slices without using information from neighbouring slices, our
method can be easily scaled to handle very large datasets without imposing any
restrictions to the conventional neuroanatomical procedures.

In this paper we introduce a novel geometric algorithm to automatically
detect major histological artifacts such as tears and tissue loss (missing data) in
thin, high-resolution mouse brain slice images. We not only provide qualitative
analysis by visual verification from subject experts but also perform quantitative
evaluation of our method. We register 52 conventionally processed mouse brain
slice images with major histological artifacts to their corresponding annotated
atlas slice images from ARA with and without our damage detection algorithm
and compare various registrations errors.

2 Proposed Method

Our algorithm to detect damage regions (tissue tears and tissue loss) in mouse
brain slice images is motivated by two key observations. First, the contours
of most of the damaged regions have long exterior medial axis creating deep
concavity into the tissue (Fig. 2). It is quite rare that the tear happens in the
interior of the tissue directly without affecting the boundary of the tissue.
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Fig. 2. Results of our automatic damage region detection algorithm: A sample of eight
high-resolution mouse brain slice images with single or multiple histological artifacts
(tears and missing data) are shown in the first column. Exterior Voronoi vertices
(magenta) and edges (brown) are shown in the middle column. Detected contours
of the damage regions (yellow) in all eight images are shown in right column. All
the sample images were obtained from different datasets spanning different regions of
the mouse brain and we successfully identified all the damage regions in all the eight
images. (please zoom in for details) (Color figure online)
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Second, the damage region exhibits vertical asymmetry between left and right
regions of the mouse brain. It is also very rare that the same type and shape of
tear or missing region happens on both lobes of the brain tissue slice.

Input. Given a high-resolution mouse brain microscopic slice image, we first
compute a microscopic-edge image (MEI) by extracting the dominant edges
using a variant of Canny edge detector. Our dominant edge detection algorithm
automatically computes the threshold for hysteresis to suppress the edges with
low gradient magnitude as shown in Fig. 1(i). The automatic threshold compu-
tation uses the idea of persistence of edges from the histogram of the gradient
magnitude. We skip its details as its beyond the focus of this paper. We then
compute the outermost contour of MEI, which serves as the input to our damage
region detection algorithm (Fig. 1(ii)).

Construction of Constrained Delaunay Triangulation. Using the vertices
V and edges E of the outermost contour of MEI, we first construct a Constrained
Delaunay Triangulation (CDT) [5]. All edges of E are a part of this triangulation
as shown in Fig. 1(iii). We then remove all the triangles lying inside the contour
and retain only the exterior Delanuay triangles. As the outermost contour of
MEI is a simple closed curve, we use the Jordan curve theorem to compute
whether a triangle is inside or outside the contour [10]. If the winding number of
a point inside the triangle is zero, the triangle lies outside the contour, else it lies
inside. In order to obtain reliable Voronoi vertices and edges that can be used
in computations downstream, we further clean the remaining exterior triangles
by removing all “skinny” triangles – any triangle whose circumcenter does not
lie within the triangle.

Computing Voronoi vertices and edges. From the vertices V ′ and edges E′

of the remaining Delaunay triangles, we represent the exterior medial axis as the
sequence of Voronoi edges that do not intersect the edges of the original contour
of the image [1]. Since this would create many small medial axes as shown in
Fig. 1(iv), we threshold them (remove edge sequence <α; we use α = 20) and
retain only those medial axes corresponding to deep concavities. The vertices
of the Delaunay triangles corresponding to the retained medial axis Voronoi
vertices serve as candidates for the damaged regions as shown in Fig. 1(v).

Checking for Asymmetry and Damage Region Detection. There may be
important features of the brain that may also have long medial axis, but these
features are also symmetric on both sides of the brain. Hence, as the final step
of our algorithm, we check whether the damage region candidate edge points are
symmetric between the left and right half of the mouse brain. For this we first
divide mouse brain into two halves by splitting its oriented bounded box (OBB)
equally into left and right regions [9]. Popular methods for OBB estimation
such as principal component analysis (PCA) [12] will fail when used on highly
damaged microscope slices (Fig. 2) because the spurious edge points produced
in damaged areas of the tissues images bias the PCA. Hence, we compute the
convex hull of edge points in MEI and resample it such that we have a fixed
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Fig. 3. A. Correspondences used during feature based non-linear registration: Dense
correspondences before (left) and after (right) our damage region detection algorithm
between MEI (bottom) and its corresponding atlas from ARA maps (top). Correspon-
dences are shown using similarly colored curve segments. B. Computation of registration
errors: 20 manually selected points (magenta) are uniformly distributed and overlayed
on the atlas from ARA maps (background). Error between their corresponding points
in the matching microscopic slice is computed and reported in Table. 1. (please zoom
in for details) (Color figure online)

number of points uniformly sampled along the convex hull. We then use PCA on
the resampled convex hull curves to compute the OBB of the microscopic image
slice. The combination of PCA on the resampled convex hull curve eliminates
the edge effects including bias due to noise, tissue damage and other artifacts
caused during sample preparation.

We then check for symmetry of the candidate edges of the damaged region
by reflecting those edge points about the vertical axis dividing the OBB in
half and using a small neighborhood to search for points having similar normal
vectors around the expected region of symmetry. Normal vectors of edge points
are computed using moving least squares [17] as it smoothly interpolates the
normal vectors, diminishing the effect of noise, sharp features and topological
foldings. Candidate edge points, which are asymmetric between the left and
right regions of the brain are classified as damage region points. For example,
as shown in Fig. 1, out of the three candidate damage regions, only the points
corresponding to the 2nd candidate damage region were classified as damage
region points. Points corresponding to the remaining two (1st & 2nd) candidate
damage regions form important features of the mouse brain slice images and
hence are also vertically symmetric.

3 Results and Discussion

We evaluate our algorithm on 52 conventionally processed microscopic images of
coronal mouse brain slices (5000× 8000 pixels) with a resolution of 0.6µm per
pixel. These images were manually identified by subject experts from different
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Fig. 4. Results from feature based registration techniques with and without our algo-
rithm: The figure shows results of a standard feature based non-linear registration
with corresponding ARA (overlayed in white) without (left) and with (right) our dam-
age region detection algorithm. Incorrect registration is shown using yellow marked
regions. (please zoom in for details) (Color figure online)

mouse brain datasets to contain severe histological artifacts such as tears and
missing data. These artifacts were produced either during serial sectioning of the
mouse brain tissue or mounting of the thin slices on glass slides. Among the 52
slices, 45 slices had single tears or missing regions while 7 slices had multiple tears
or missing regions. We ran our automatic damage region detection algorithm on
all 52 microscopic images and successfully identified the damage regions in all
of them as shown in Fig. 2. Our damage region detection results were found
qualitatively quite accurate by the subject experts.

We also quantitatively evaluate our algorithm by comparing results from
standard feature based registration techniques when used with and without our
damage region detection algorithm. Feature based registration algorithms have
been quite popular in the past for registration of microscopic images [4,6,15,23].
However, the presence of edges due to the damage regions misleads and corrupts
the correspondence finding (Fig. 3A), resulting in bad registration. Hence, it is
important to first accurately identify and remove points in the damage regions
before performing feature based registration.

We perform an inter-stack feature based registration where we align all 52
microscopic images with their corresponding annotated atlases from ARA maps1

with and without damage region detection. In both cases, for registration, we first
perform global affine alignment using a variant of iterative closest point (ICP)
[24]. This is followed by a final non-linear alignment by solving the Laplace’s
equation with Dirichlet boundary conditions [11] (Fig. 4). The only difference
between the two cases is our damage region detection algorithm where the
detected damage region points are excluded from the correspondence finding
as shown in Fig. 3A. For statistical analysis we compared the root-mean-squared

1 Publically available from the Allen Brain Atlas Project.
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Table 1. Comparison of registration errors (in pixels) with and without our damage
detection algorithm after affine and final non-linear (affine+elastic) transformations.

With our algorithm Without our algorithm

Average
RMSE

Average
MEE

Average
MAE

Average
RMSE

Average
MEE

Average
MAE

After affine
transformation

13.37 10.66 25.27 16.28 13.30 30.79

After non-linear
transformation

3.91 2.53 4.36 5.51 4.47 11.90

error (RMSE), the median error (MEE) and the maximal error (MAE) of 20
corresponding points which were manually picked and distributed uniformly in
the microscopic and atlas image pair (Fig. 3B). Table 1 summarizes the regis-
tration errors after both affine and non-linear transformation with and without
our damage region detection algorithm. We found lower registration errors when
alignment was performed with our algorithm than without it.

We have developed and demonstrated a completely automatic algorithm
to not only identify but accurately locate and handle slice-specific histologi-
cal artifacts such as tissue tears and tissue loss in high-resolution microscopic
mouse brain slice images. As these artifacts are very common in conventionally
processed slices, our algorithm will have wide applicability and usefulness in
broad range of experiments and neuroanatomical laboratories. We show results
of one such application where we perform accurate registration of highly damage
slices with their corresponding annotated atlas from ARA maps. Such applica-
tions play a vital role in reconstruction of mouse brain datasets. Another advan-
tage of our algorithm is that it can locate multiple such artifacts that may be
present in single slice images as shown in Fig. 2(vi) and (vii). This enables and
facilitates extremely thin sectioning of the mouse brain tissue, which is necessary
for an accurate 3D mouse brain model reconstruction. To further illustrate the
difficulty and the effectiveness of our method, we also show the results of our
damage region detection algorithm on a synthetically damaged slice image with
more than three tissue tears, which are deep and randomly placed (Fig. 5).

However, there are still some extreme artifacts, which cannot be handled by
our algorithm. For example, slices in which the tear goes all the way through will
have more than one component. Such tissues are very difficult to mount since
multiple components have to be accurately placed in their original positions onto
the glass slide. In such cases, our algorithm will fail as it detects multiple com-
ponents, and hence we do not process such slices any further. Few other extreme
deformations are folding of the tissue and overlap of adjacent tissue regions. For
such artifacts, a more complicated or semi-automatic approach might be helpful.
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Fig. 5. Results of our automatic damage region detection algorithm on a synthetically
damaged mouse brain slice image: To show the variety of damages our algorithm can
handle, we ran our algorithm on a synthetically created damage slice image with four
different types of tissue tears at different locations. (i). Original mouse brain micro-
scopic slice image. (ii). Synthetically damaged slice image with four tissue tears. (iii).
Exterior Voronoi vertices (magenta) and edges (brown). (iv). Detected contours of all
the damage regions (yellow) overlayed on the damaged slice image. We successfully
detected all the four different types of tears in the mouse brain slice image. (please
zoom in for details) (Color figure online)

4 Conclusion

To the best of our knowledge the presented work is the first that automati-
cally detects slice-specific histological artifacts such as tissue tears and tissue
loss in high-resolution mouse brain slice images without using information from
neighbouring slices. Our robust damaged region detection algorithm condones
histological artifacts that occur in standard procedures to produce brain slice
images. We believe that this work will have a major impact on brain circuit
mapping by facilitating conventional neuroanatomical image registration and
creation of 3-D whole brain map databases.
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Abstract. Classifying benign and malignant lung nodules using the thoracic
computed tomography (CT) screening is the primary method for early diagnosis
of lung cancer. Despite of their widely recognized success in image classifica-
tion, deep learning techniques may not achieve satisfying accuracy on this
problem, due to the limited training samples resulted from the all-consuming
nature of medical image acquisition and annotation. In this paper, we jointly use
the texture and shape descriptors, which characterize the heterogeneity of
nodules, and the features learned by a deep convolutional neural network, and
thus proposed a combined-feature based classification (CFBC) algorithm to
differentiate lung nodules. We have evaluated this algorithm against four
state-of-the-art nodule classification approaches on the benchmark LIDC-IDRI
dataset. Our results suggest that the proposed CFBC algorithm can distinguish
malignant lung nodules from benign ones more accurately than other four
methods.

Keywords: Lung nodule classification � Computed tomography � Deep
convolutional neural network � Texture descriptor � Shape descriptor

1 Introduction

Lung cancer is the number one cause of cancer deaths in both men and women
worldwide [1, 2]. The most effective way to improve survival of patients is the early
diagnosis and treatment, since the 5-year survival rate is approximately 54% if the
pathology is detected in initial stages and only 4% if detected in advanced stages [3, 4].
Computed Tomography (CT), especially high resolution CT, is one the most important
imaging modalities for lung cancer diagnosis. In chest CT scans, a “spot” on the lung
that is less than 3 cm in diameter is called a lung nodule, which can be either benign
(non-cancerous) or malignant (cancerous). The overall chance that a lung nodule is
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cancer is 40%, but that risk varies a lot depending on what the nodule looks like.
Therefore, it is critically important to classify lung nodules into benign and malignant
ones.

The enormous number of chest CT images produced globally are currently ana-
lyzed almost entirely through visual inspection on a slice-by-slice basis. This requires a
high degree of skill and concentration, and is time-consuming, expensive, and prone to
operator bias. Computer-aided lung nodule classification using CT would not only
enable radiologists and researchers to bypass these issues, but to provide effective and
timely diagnosis with unprecedented social benefits. It, therefore, has drawn more and
more researches attention in the medical imaging community during the past two
decades, resulting in many lung nodule classification approaches in the literature, most
of which consist of two steps: extracting numerical features to characterize lung
nodules and applying the features to a trained classifier.

The features used for nodule classification can be roughly categorized into two
groups: texture descriptors and shape descriptors. The most commonly used texture
descriptor is estimated based on the gray level co-occurrence matrix (GLCM) [5]. Wu
et al. [6] extracted 13 gray level co-occurrence matrix textural features and 12 radio-
logical features for the differentiation of malignant from benign solitary pulmonary
nodules. Aggarwal et al. [7] calculated GLCM features and applied them to the linear
discriminate analysis (LDA) for lung nodule detection and classification in chest CT
scans. Mabrouk et al. [8] extracted the 80-dimensional GLCM features and adopted a
feature selection procedure to identify the most effective components before applying
them to the support vector machine (SVM) [9] classifier for automated lung nodule
classification. Anand [10] calculated GLCM features and fed them as the input of a
back propagation (BP) neural network for lung nodule classification. Wei et al. [4]
proposed multi-scale convolutional neural networks to capture lung nodule hetero-
geneity by learning a set of class-specific features from each input scale before
applying them to SVM and random forest (RF). Several features, such as the Feret
shape measure, roundness, moment invariants, point distance histogram and Fourier
descriptor, can be applied to shape description. Frejlichowski [11] proved that the
Fourier descriptor has an excellent performance in general shape analysis. Sokic and
Konjicija [12] extracted one-dimensional Fourier descriptor for content-based image
retrieval. Zhang and Lu [13] extended this descriptor to 2D for regional shape
description.

Once features are extracted, most classification technique, such as SVM [8, 14, 15],
BP neural network [10, 16] and RF [4, 17, 18], can be applied to solve this problem.
Recently, deep learning [19] has become a powerful tool in a number of areas,
including image generation, annotation and classification. Deep models provide a
uniform framework for learning-based joint feature extraction and classification,
avoiding the hand-crafted feature extraction that may lead to less accurate classifica-
tion. Hua et al. [20] applied both the deep convolutional neural network (DCNN) and
deep belief network (DBN) to lung nodule classification and confirmed that deep
learning can achieve better discrimination between benign and malignant nodules.
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Despite of the improved accuracy, deep learning techniques may suffer from
over-fitting when applied to lung nodule classification, since there usually is only a
relatively small set of training samples due to the all-consuming nature of medical
image acquisition and annotation. We suggest that the texture descriptors and shape
descriptors derived under the guidance of the heuristics that the heterogeneity in shape
and voxel values is a major characteristic of malignant nodule may complement the
features learned by deep models and hence alleviate the inaccuracy caused by
over-fitting.

In this paper, we propose a combined-feature based classification (CFBC) algo-
rithm to differentiate malignant lung nodules from benign ones by jointly using the
texture and shape descriptors, which characterize the nodule heterogeneity, and the
features learned by deep neural networks for lung nodule classification. We employ a
nine-layer DCNN to extract deep features, adopted the GLCM features and Fourier
descriptors to characterize the texture and shape of each nodule, respectively, and apply
the combined features to a BP neural network. We have evaluated the proposed
algorithm against four state-of-the-art lung nodule classification approaches on the
benchmark LIDC-IDRI dataset [21].

The paper is organized as follows: in Sect. 2, we introduce the LIDC-IDRI dataset
and preprocess data. The proposed CFBC algorithm is described in Sect. 3. In Sect. 4,
a set of feature combination experiments are carried out and the properties of the
considered operators are assessed using the classification result comparison method.
The paper is concluded with a discussion in Sect. 5. Finally, conclusions are given in
Sect. 6.

2 Data and Materials

LIDC-IDRI [21] is an open database in the cancer imaging archive (TCIA) for lung
cancer diagnosis. It consists of 1010 clinical chest CT scans, each having an associated
XML file that records not only location information of nodules on each slice but also
nine characters, i.e. malignancy, texture, speculation, lobulation, margin, sphericity,
calcification, internal structure, and subtlety. The appraisal value of each character is
affected by up to four experienced thoracic radiologists. The malignancy rating of all
nodules were evaluated from 1 to 5. Rating 1 denotes highly unlikely to be malignant,
whereas rating 5 is highly suspicious. Please refer to [21] for more information about
the database, such as the methods and protocols used in image acquisition.

We adopt the software tool in [22] to extract the lung nodule region and malignancy
of a single 2D image slice. Once the lung nodule regions on all of the 2D slices were
determined, the 3D volume of the nodule can be gained by superimposing all the 2D
combination areas. We chose the diagnosis given by the only one experienced thoracic
radiologist as the ground truth. Since the nodules with malignancy rating from 1 to 3
are regarded as benign and others as malignant, we have totally 1181 benign nodules
and 387 malignant nodules.
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3 CFBC Algorithm

The proposed CFBC nodule classification algorithm consists of four steps: (1) ex-
tracting DCNN features; (2) extracting texture and shape features; (3) using combined
features to train a BP neural network as a slice-based classifier; and (4) classifying each
lung nodule. The diagram of this algorithm is summarized in Fig. 1.

3.1 DCNN-Based Feature Extraction

By identify a squared bounding box of lung nodules on a slice-by-slice basis, we obtain
9073 image patches from 1568 nodules. After resizing them into a dimension of
32� 32 using the nearest interpolation algorithm, we apply these patches to train a
nine-layer DCNN, which is constructed based on the LeNet-5 model [23].

As shown in Fig. 2, this DCNN consists of three convolution layers, three
max-pooling layers and three full connected layers. Each convolution layer uses the
ReLu activation function to implement a non-linear transformation from input to
output. The parameters used in each layer are summarized in Table 1. In this study, we
empirically set the learning rate to 0.001 and the maximum iteration number to 100,
and chose the batch training style with the batch size of 100. As for other parameters,
we adopted the default settings suggested in the MatConvNet Toolbox [24]. We define
the output of the 7th layer of the trained network as the 64 dimensional DCNN feature
extracted for the corresponding image patches.
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Fig. 1. Diagram of proposed CFBC nodule classification algorithm (Color figure online)
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Fig. 2. Architecture of the DCNN in this study
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3.2 Texture and Shape Descriptor Extraction

GLCM is a statistical method of extracting texture feature and considers the spatial
relationship of the pixels. The algorithm of extracting the texture features is outlined as
follows.

Algorithm: GLCM texture descriptor calculation
1. Quantize the gray value of each pixel to 16 levels; 
2. Count four GLCMs at 0°, 45°, 90° and 135°, respectively;
3. Calculate four Haralick features on each GLCM on each direction separately for 

four directions in total. 

Although Haralick et al. [25] defined fourteen textural features based on GLCM to
quantify the spatial dependence of gray levels, it is recognized that those fourteen
features are highly correlated and only the energy, contrast, entropy and inverse dif-
ference are irrelevant and effective enough for image classifications [26]. Hence, we
calculated those four texture features on each GLCM and the calculation formulas can
be found in paper [25]. Eventually, we obtained a 16-dimensional GLCM texture
descriptor.

Fourier descriptor has an excellent performance in general shape analysis [11]. On
each image patch, the Fourier descriptor is computed in four steps:

Algorithm: Fourier texture descriptor extraction
1. Identify the center of gravity on the binary image patch;
2. Move a point along the nodule counter and plot the distance between the point and 

gravity center versus the geodesic distance that the point moves;
3. Apply the Fourier transform to this plot.
4. Select 52 low frequency coefficients as the Fourier descriptor.

Table 1. Parameter settings of each layer in the DCNN shown in Fig. 2

C1 P2 C3 P4 C5 P6 F7 F8

Filter number 32 / 32 / 64 / 64 64
Filter size 5 � 5 / 5 � 5 / 5 � 5 / 5 � 5 1 � 1
Pooling size / 3 � 3 / 3 � 3 / 3 � 3 / /
Feature map 32 � 32 16 � 16 16 � 16 8 � 8 8 � 8 4 � 4 1 � 1 1 � 1
Pad 2 [0 1 0 1] 2 [0 1 0 1] 2 [0 1 0 1] 0 0
Stride 1 2 1 2 1 2 1 1
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3.3 Patch Classification

Combing the DCNN feature, GLCM feature and Fourier descriptor, we have a
132-dimensional feature for each image patch. Then, we apply the combined features
obtained on training samples to train a BP neural network, which contains one input
layer with 132 neurons, one hidden layer with 132 neurons and one output layer with
two neurons.

Since the DCNN model has already learned the best parameters, including the
weights in the last three fully connected layers, we attempt to utilize those weights in
the BP neural network [27] by dividing the BP weights into two groups. As shown in
Fig. 1, the weights highlighted in red are directly copied from the DCNN and keep
fixed, and only the weights in black will be adjusted during the training of the BP
neural network. We set the maximum number of convergence to 50, learning rate to
0.001 and convergence error to 0.0004. As for other parameters, we adopted the default
settings suggested in the BP neural network toolbox in Matlab. The trained BP neural
network can predict the class label of each patch.

3.4 Nodule Classification

Each lung nodule appears on multiple slices. We first extract the DCNN feature,
GLCM feature and Fourier descriptor with a squired bounding box on each slice. Then,
we apply the combined feature to the trained BP neural network for label prediction.
Finally, the class label of the nodule is determined by using majority voting based on
the labels of it slices.

3.5 Evaluation

We evaluated the proposed CFBC nodule classification algorithm against those using
one or two groups of features only. The LIDC-IDRI dataset consists of 1181 benign
nodules and 387 malignant nodules. We evaluated the proposed nodule classification
algorithm in four-fold cross validation. Each of the first three folds has 295 benign
nodules and 97 malignant nodules for testing and others for training. The fourth fold
has 296 benign nodules and 96 malignant nodules for testing and others for training.
Such partition of the dataset ensures that each case will be tested once and only once.
The nodule classification performance is assessed in terms of accuracy, sensitivity and
specificity, which represent the rate of correctly classified cases, true positive rate and
true negative rate, respectively [28].

4 Experimental Result

Table 2 gives the classification accuracy, sensitivity and specificity obtained by using
DCNN features, GLCM features, Fourier shape descriptor alone or a combination of
them. It shows that combining the DCNN features with either of the other two features
can improve the classification accuracy, and the proposed algorithm that combines all
three groups of features achieves the highest accuracy, sensitivity and specificity.
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Table 3 gives the performance of our algorithm and four state-of-the-art lung
nodule classification approaches published in the literature. It reveals that our algorithm
is substantially more accurate than other algorithms.

However, when compared to the method proposed by Hua [11], our method
achieves higher specificity but lower sensitivity. It means that our method is more
likely to diagnose a malignant nodule to be benign than Hua’s method, and Hua’s
method is much more likely to diagnose a benign nodule to be malignant than our
method. The poor sensitivity achieved by our method can be largely ascribed to its
vulnerability to the unbalance in training data, i.e. 1181 benign versus 387 malignant
nodules. In our future work, we will address this issue by adopting unbalance data
analysis strategies used in traditional pattern classification, such as abandoning some
data in the large group, resampling the small group and using penalty terms.

5 Discussion

It is straightforward to use a combination of different types of features to classify
images. In our previous work, we have jointly used texture features and colour features
for effective image classification and achieved relatively good results. However, when
it comes to deep features, it seems not necessary to combine them with traditional
visual features to attack large scale image classification problems, since deep models
have already achieved remarkable success in these problems. However, when applied
to medical image classification problems, where there usually is a small training
dataset, deep models can hardly achieve a satisfying accuracy. The inaccuracy can be

Table 2. Classification accuracy of different feature combinations

DCNN
feature

GLCM
feature

Fourier
descriptor

BP neural network
Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

✓ 82.92 53.85 92.21
✓ 83.65 47.44 95.42

✓ 83.02 53.85 92.50
✓ ✓ 85.09 53.85 95.01

✓ ✓ 86.16 58.97 95.00
✓ ✓ 85.22 58.97 93.75
✓ ✓ ✓ 86.79 60.26 95.42

Table 3. Performance comparison of classification methods of lung nodules.

Accuracy (%) Sensitivity (%) Specificity (%)

Arai et al. (2012) [29] 78.00 / /
Hua et al. (2015) [20] / 73.30 78.70
Kumar et al. (2015) [4] 75.01 83.35 /
Orozco et al. (2015) [30] 82 90.90 /
Our method 86.79 60.26 95.42
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ascribed to the small training dataset, which leads deep models to over-fitting and
cannot generate a representation that has the optimal discriminatory power. Therefore,
we suggested that traditional visual features, particularly those extracted under the
guidance of prior domain knowledge, may complement the features learned by deep
models. Our experimental results demonstrate that this is true. In our next step, we will
investigate if the performance improvement resulted from such feature combination
becomes more significant when the training dataset gets even smaller.

Due to the use of DCNN, the proposed CFBC nodule classification algorithm has
very high computation complexity during the off-line training. In our experiments, it
costs us almost 24 h to train the proposed model (NVIDIA Tesla K40c GPU, 128 G
RAM and Matlab 2012). However, applying the trained model to nodule classification
is relatively fast, costing less than 0.5 s to classify each nodule on average. Therefore,
we believe the proposed algorithm is applicable in clinical practices.

Another disadvantage of neural network-based approach is the involvement of a
large number of parameters. Actually, tuning those parameters and the network
structure remains an open problem, which becomes particularly difficult and
time-consuming when the network gets deep. In this study, we adopted the suggested
default settings for most of the parameters. Tuning those parameters will very likely
further improve the performance of the proposed algorithm, but is obviously beyond
the scope of this paper.

6 Conclusion

This paper proposes a novel CFBC nodule classification algorithm, which jointly uses
the GLCM texture descriptor, Fourier shape descriptor and the features learned by a
DCNN to differentiate malignant lung nodules from benign ones. Our experimental
results on the benchmark LIDC-IDRI dataset suggest that combining the DCNN feature
with traditional visual features can improve the accuracy of nodule classification and
produce more accurate results than four state-of-the-art approaches. Our future work
will focus on extending this slice-based approach to directly processing 3D data
volumes.
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Abstract. Differences in scanning parameters or modalities can com-
plicate image analysis based on supervised classification. This paper
presents two representation learning approaches, based on autoencoders,
that address this problem by learning representations that are similar
across domains. Both approaches use, next to the data representation
objective, a similarity objective to minimise the difference between rep-
resentations of corresponding patches from each domain. We evaluated
the methods in transfer learning experiments on multi-modal brain MRI
data and on synthetic data. After transforming training and test data
from different modalities to the common representations learned by our
methods, we trained classifiers for each of pair of modalities. We found
that adding the similarity term to the standard objective can produce
representations that are more similar and can give a higher accuracy in
these cross-modality classification experiments.

Keywords: Representation learning · Transfer learning · Autoen-
coders · Deep learning · Multi-modal image analysis

1 Introduction

Most classification techniques assume that they will be applied to data that
comes from the same domain as the training data. In practice it may be nec-
essary to use training data from a different domain. In medical image analysis,
for example, it may happen that annotated training data is available but comes
from a different scanner, or was made with different scanning protocols or differ-
ent imaging modalities. Transfer learning methods handle these differences by
transferring the knowledge learned in one domain and applying it to data from
another domain. Some approaches do this by transforming the feature spaces,
while others use instance weighting to give larger weights to training samples
that look more similar to the target data (see [1] for a recent overview).

This paper proposes two representation learning approaches for transfer
learning and applies those to a medical imaging problem. Representation learn-
ing [2] methods learn efficient, data-driven representations of the training data
c© Springer International Publishing AG 2017
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and have shown good results in same-domain applications. We use these tech-
niques to learn cross-domain representations that are not just efficient descrip-
tions of the data, but are also similar across domains.

There is an obvious trade-off between learning a representation that provides
efficient descriptions of data from one domain and learning a representation
that is similar between domains. We discuss a hybrid learning objective that
combines a standard representation learning objective, which tries to learn an
efficient representation, with a similarity objective that minimises cross-domain
differences. We use a weighted combination to find an optimal trade-off.

We suggest two models: a set of domain-specific autoencoders and an axial
neural network. Both approaches learn a common representation, with a separate
transformation for each domain. With autoencoders, this is achieved by training
a separate autoencoder for each domain, whereas the axial neural network uses
a single network that combines inputs from all domains. For both models, we
include a similarity term in the learning objective to minimise the representation
difference between corresponding samples from each domain.

Previous work on the combination of representation learning and transfer
learning in medical image analysis can be separated in several groups. A popu-
lar approach is to transfer feature descriptors. These approaches reuse features
that were learned from images from another domain, such as natural images or
a different medical image dataset, and apply those to the target data with data-
specific fine-tuning (e.g., [3,4]), but do not generally train cross-domain classi-
fiers. Another group of approaches does train on data from different domains,
but does so with a single feature transformation for all domains. Siamese net-
works [5], neural networks that are trained on data from different domains in
parallel, fall in this category. These models are somewhat similar to the networks
discussed in this paper, since both types of models are trained on paired samples.
However, our methods learn a different transformation for each domain, which
may work better if the domains are dissimilar.

We performed our experiments on data from the BRATS tumor segmentation
challenge [6]. This multi-modal dataset contains brain scans made with four MRI
sequences and manual annotations. In addition, we present experiments on a syn-
thetic dataset derived from the BRATS images. Using the representations learned
by our methods as the features, we measured the classification performance of ran-
dom forest classifiers trained on data from one sequence and applied to another.

The rest of this paper is organised as follows. Section 2 describes our methods.
The data and experiments are discussed in Sects. 3 and 4 and the results in
Sect. 5. We end with a discussion and conclusion.

2 Methods

In order to learn the similarities between the different modalities, we assume
that our dataset has corresponding samples from each modality. In practical
terms: we apply our methods to registered scans of the same subjects scanned
with each modality. This allows us to define learning objectives that minimise
the representation difference between corresponding patches from each modality.
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Fig. 1. We train a separate autoen-
coder for each modality, with a sim-
ilarity term that connects the central
hidden layers across modalities.
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Fig. 2. The axial neural network con-
nects all modalities in a central axis,
combining all inputs to get a common
representation.

2.1 Autoencoders

Autoencoders [7] are multi-layer neural networks that consist of an input layer, a
number of hidden layers and an output layer, with weighted directed connections
between nodes in subsequent layers (Fig. 1). The input of the network is an image
patch, with each node in the input layer representing one voxel. The first few
hidden layers, the encoding part, compute an increasingly small representation of
the input. The remaining layers form the decoding part and have an increasing
number of nodes, up to the output layer that has the same number of nodes
as the input. The network is trained to reconstruct the input, and because the
number of nodes in the smallest hidden layer is limited, the model is forced to
learn a concise representation of the data. This representation in the central
hidden layer can be used as the feature vector for a classifier.

We used autoencoders with rectified linear units (ReLUs) [8] as the hidden
nodes and nodes with a linear activation function for the final output layer. The
connection weights of the encoding layers were shared by the decoding layers,
but the biases of the encoding and decoding parts were independent.

For our experiments on multi-modal data, we trained a separate autoencoder
for each of the M modalities. We have corresponding patches in each modality
such that sample xm,i contains the voxel values for patch i in modality m. We
denote the values of the central hidden layer of the network for modality m given
sample i by fm (xm,i). Denote the values at the output layer by gm (fm (xm,i)).
The network for modality m is trained to minimise the mean reconstruction
error over all of the N training samples:

Lerr, m =
N∑

i=1

|gm (fm (xm,i)) − xm,i| . (1)
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2.2 Learning Similar Representations

Training a separate autoencoder for each modality makes it possible to learn a
different transformation for each modality, but does not learn a common repre-
sentation across modalities. We extend the standard learning objective (1) with
a similarity term that minimises the difference between the representation of a
patch in one modality and its mean representation across modalities. We define
the similarity objective for modality m as

Lsim, m =
N∑

i=1

∣∣∣∣∣fm (xm,i) − 1
M

M∑

m′=1

fm′ (xm′,i)

∣∣∣∣∣ . (2)

We combine this similarity objective with the standard autoencoder objective
(1) to form a hybrid learning objective

Lcombined, m = αLsim, m + (1 − α)Lerr, m (3)

where the similarity weight α determines the trade-off between the representation
error and the similarity objective. We vary this parameter in our experiments.

2.3 Axial Neural Networks

The axial neural network (Fig. 2) is a single model that combines all modalities.
It has separate encoding layers for each modality, which are joined at a cen-
tral hidden layer where the incoming representations are averaged into a single,
shared representation. This shared representation is used as the input for the
decoding part, which is again separate for each modality. For modality m, given
the modality-specific encodings fm′ , the output is defined as

gm

(
1
M

M∑

m′=1

fm′ (xm′,i)

)
. (4)

Averaging over the representations encourages the model to learn a common
representation that is similar across modalities. The network is trained using a
learning objective that minimises the reconstruction error for each modality:

Lerr =
N∑

i=1

M∑

m=1

∣∣∣∣∣gm

(
1
M

M∑

m′=1

fm′ (xm′,i)

)
− xm,i

∣∣∣∣∣ . (5)

Similar to the approach with multiple autoencoders (3), the standard learning
objective (5) can be combined with an additional similarity objective to explicitly
minimise the differences between the representations coming from each modality:

Lsim =
N∑

i=1

M∑

m=1

∣∣∣∣∣fm (xm,i) − 1
M

M∑

m′=1

fm′ (xm′,i)

∣∣∣∣∣ and (6)

Lcombined = αLsim + (1 − α)Lerr. (7)
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3 Data

We use data of 30 subjects from the BRATS tumor segmentation challenge [6]
with four MRI sequences: T1, T1 post-contrast (T1+c), T2 and FLAIR (Fig. 3).
The scans of each subject are rigidly registered to the T1+c scan and resam-
pled to 1mm isotropic resolution. The dataset contains brain masks and labels
for four tumor components, some of which can only be identified on one spe-
cific sequence or by comparing multiple sequences [9]. Because our experiments
require classes that can be identified on any single sequence, we grouped the four
components in one foreground class and used the other parts of the brain mask
as the background. For each subject we selected a balanced subset of 10 000
patches (11 × 11 × 5 voxels) for each class, taken at random positions inside
the brain mask and at the same position for each sequence. We normalised each
patch to zero mean and unit variance. We used the patches from 20 subjects
for training, 5 subjects for validation of the random forest parameters and 5 for
testing.

T1 T1+c T2 FLAIR

Fig. 3. One slice of the BRATS dataset shown in the four MRI sequences.

We also present experiments with an artifical dataset derived from the
BRATS T1+c scans. Using four different MRI sequences makes it harder to
see whether a low across-sequence performance is due to the different intensity
distribution or simply because some structures are just not visible in one of the
sequences. We therefore constructed an artificial dataset by transforming the
T1+c scans with the exponential function f (I) = Iγ , where I is the voxel-wise
intensity. Because each of the alternative views is derived from the same origi-
nal scan, each view provides exactly the same information, but with a different
distribution of intensity values. Before applying the transformation, we scaled
the intensity values to fit between 0 and 1. We used the original intensities from
the T1+c scan (γ = 1) and generated three alternative views computed with
γ = {1.5, 2, 3}. After the transformation, each patch was normalised to zero
mean and unit variance. We used the same set of training and test scans as in
the other experiments.

4 Experiments

In our experiments we trained the autoencoders and axial neural networks on the
patches in the BRATS dataset and the dataset with synthetic transformations.
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For both scenarios, we trained the models to learn a joint representation for the
four modalities. We evaluated multiple values for the weight of the similarity term
in the learning objective. Using the learned representation as the feature vector,
we then trained random forest classifiers and evaluated these by computing the
classification accuracy on the test set. We did this for each pair of training and
testing modalities.

We tried several network configurations for the autoencoders and axial neural
networks. We used networks with three or five hidden layers, with 100 or 200
nodes in the central layer and 200 to 500 in the others. The number of nodes in
the input and output layers was equal to the patch size, i.e., 11 × 11 × 5 = 605
nodes. We trained networks for each combination of these parameters and used
the performance on a held-out validation set to select the optimal combination.

As a baseline, we show the results of an approach that does not use differ-
ent transformations for data from different modalities: we combined the patches
from all modalities in one heterogeneous dataset and applied principal compo-
nent analysis (PCA). We selected the 100 or 200 most important components,
depending on the size of the network we compared with, to give the PCA baseline
the same number of features as our models.

The networks were implemented in Python using Theano [10]. We trained
the networks using stochastic gradient descent with a minibatch size of 50, for
300 epochs with various learning rates (0.0001, 0.001, 0.01 or 0.02). Based on
our observations of the reconstruction and similarity objectives, we selected the
networks with learning rates 0.001 and 0.01 for our classification experiments. We
used the random forest implementation from Scikit-learn [11] for classification,
with the number of trees (50, 75 or 100) optimised on the validation set.

5 Results

5.1 Synthetic Transformations

First, we present the results on the T1+c data with synthetic transformations.
Figures 4 and 5 show the results averaged over the learning rates 0.02 and 0.01,
which gave the best results on the training and validation sets. Choosing a sim-
ilarity weight that is too large leads to suboptimal results, indicating that the
networks learn uninformative representations if the similarity term is too strong
and the reconstruction term too weak. For the smaller similarity weights, the pat-
terns are different for the same-modality and different-modality scenarios. For
same-modality training and test sets, learning representations that are similar
across modalities is not important. For different-modality training and test data,
the similarity term allows the models to learn similar representations for both
datasets. Choosing the right weight for the similarity term brings the performance
of different-modality training close to that of the same-modality baseline. This
shows that the models learn representations that are similar across modalities.



132 G. van Tulder and M. de Bruijne

test on γ = 1

tr
.

γ
=

1

53.4

61.7
64.1

test on γ = 1.5

49.1

61.3
63.0

test on γ = 2.0

49.5

60.9
62.7

test on γ = 3.0

49.6

60.5
61.6

tr
.

γ
=

1
. 5

49.3

62.3
63.9

53.4

61.9
63.7

49.0

61.7
63.0

49.4

61.0
62.1

tr
.

γ
=

2
.0

48.9

62.3
63.9

49.3

62.0
63.5

53.4

61.6
63.6

49.0

61.2
62.6

tr
.

γ
=

3
.0

0
.0

0
.0

2
5

0
.0

5

0
.1

0
.2

0
.5

0
.7

5

1
.0

48.8

62.6
63.8

0
.0

0
.0

2
5

0
.0

5

0
.1

0
.2

0
.5

0
.7

5

1
.0

49.3

62.4
63.6

0
.0

0
.0

2
5

0
.0

5

0
.1

0
.2

0
.5

0
.7

5

1
.0

49.9

62.3
63.2

0
.0

0
.0

2
5

0
.0

5

0
.1

0
.2

0
.5

0
.7

5

1
.0

53.4

61.9
63.3

Fig. 4. Results with autoencoders and synthetic transformations of the T1+c scans.
Classification accuracies (vertical axes) with features from autoencoders, for different
modality pairs (rows and columns) and different weights of the similarity term (hori-
zontal axes, 0 = no similarity). Dashed lines indicate the PCA result.
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5.2 Four MRI Modalities

The results of the experiments on true multi-modal MRI data are shown in
Figs. 6 and 7. We show the results averaged over the network sizes and learning
rates (0.01 and 0.001). The results of the larger networks tended to be slightly
better than those of the smaller networks, but the overall trends were similar to
those shown here.

The best classification accuracy was found when the training and testing
modalities were the same (the plots on the top-left to bottom-right diagonal). In
these scenarios, using a larger weight for the similarity term and a lower weight
for the reconstruction error resulted in a lower classification accuracy. With
autoencoders, the performance remained relatively stable when the similarity
term was added with a small weight (0.1 or less). Overall, the best learned
representation often performed equal to or slightly better than the PCA baseline.

The performance in the cross-modality experiments was not as good as in
the single-modality experiments. However, adding the similarity term improved
the classification accuracy: a mixed learning objective with a small weight for
the similarity term performed better than just the representation objective.

In scenarios with different training and testing modalities, the representations
learned by our models usually gave a better classification accuracy than the
representations made with PCA. PCA worked better for the pairings T1/T1+c
and T2/FLAIR, perhaps because those sequences were more similar.

For the autoencoders, for certain modality pairs, the classification accuracy
peaked at a similarity weight of 0.05 or 0.1, which corresponds to the plateau
of the single-modality experiments. For other modality pairs, a larger similarity
component gave a better classification accuracy. A similar pattern appears in
the results for the axial neural networks.

6 Discussion and Conclusion

This paper introduced two representation learning approaches for learning sim-
ilar representations from dissimilar data, using an additional learning objective
that minimises representation differences for corresponding patches from differ-
ent modalities. Our experiments on multi-modal MRI data showed that, when
brain and test modalities are different, the representations learned with the sim-
ilarity objective could produce better classification results than with just the
normal learning objective. This effect was strongest in our experiments with
simulated modalities derived from a single image, but was also visible in exper-
iments on real multi-modal data.

Although adding the similarity objective can improve results, the weight of
the objective should be chosen carefully. Giving a large weight to the similar-
ity component favours learning a representation that is similar over learning a
representation that is good at describing the data. This might cause the model
to learn a trivial representation, such as all zeros, that may be similar across
modalities but is not very useful for classification.
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When training and testing on data from the same modality, adding the sim-
ilarity objective may also lead to a lower performance, especially if the weight
of the similarity objective is too large. For the autoencoders in our experiments,
adding the similarity objective in a same-domain problem did not significantly
decrease the accuracy if the weight of the similarity objective was small enough.
This is useful when training a single model for use with multiple modalities.

While training and testing on different modalities may be less relevant in
complete, multi-modal datasets such as BRATS, this scenario does have many
practical applications. For example, approaches such as those proposed here
allow data from different scanning protocols to be used for training a single
model. The methods could also be used to suppress differences between scans
made with scanners from different vendors. In multicenter studies it is possible
to pool data from different modalities in a single model, avoiding the variability
that may result from using separate models.

Cross-domain learning can only extract information that is visible in all
domains and will have problems learning a common representation for struc-
tures visible in only one domain. The methods will therefore be most useful if
the domains provide similar information but have different appearances. This is
visible in the two sets of experiments in this paper. In the synthetic experiments,
the modalities were all derived from the same post-contrast T1 image. This
meant that each modality provided the same information – albeit with different
intensity distributions – and the models could learn a shared representation that
gave a good classification accuracy. In the experiments with real MRI modalities,
on the other hand, performance depended on the modality pair. For example,
post-contrast T1 was analyzed best by models trained on that modality. T2 and
the FLAIR appear to have more in common, but the cross-domain accuracy was
still below the same-domain accuracy. This suggests that each modality provides
additional information that is not available in the other modalities, which makes
it harder to learn a shared representation.

We compared our methods with a fairly simple baseline, principal component
analysis (PCA): by extracting the strongest variations in the data, PCA will
likely extract common features that are shared between sources. PCA performed
quite well for all modality pairs in our experiments on the synthetic dataset,
which suggests that PCA is able to learn the artificial transformation that we
applied there. This was not the case in our experiments on real multi-modal
data, where the differences between the modalities are much more intricate. The
power of PCA is limited because it has to use the same transformation for all
modalities. This makes it impossible to learn, for instance, if the contrast of one
of the modalities is inverted. In contrast, the methods proposed in this paper
would be able to model these more complex transformations.

A conceptual advantage of axial neural networks is that they combine data
from all domains in a single model, whereas autoencoders require an explicit
similarity objective. However, in our experiments we found that autoencoders
gave slightly better results, and that the performance of axial neural networks
improved if we added an explicit similarity term.
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Although the methods in this paper are unsupervised – the classifiers in
our experiments were trained after the transformations had been learned – the
general approach might also be applied with supervised methods, such as convo-
lutional neural networks. In our axial neural network, for example, the decoding
layers could be replaced by a set of output layers that compute class labels.

Using corresponding samples across domains is a powerful and efficient way
to learn common representations, but it requires paired training samples. This
data is available when, after introducing a new scanner, the same subject is
scanned on the old and the new scanner. If there is no paired data, but there is
labelled data from both domains, the class labels might provide a weaker form
of correspondence between samples from the same class. Without class labels it
may be possible to match the feature distribution of each domain.

In this paper we have shown two representation learning models that exploit
sample correspondences to learn a common representation for samples from dif-
ferent domains. Using the common representation, a classifier can be trained
on data from one domain and applied to data from another. Our experiments
showed that classifiers trained on this common representation can, depending on
the combination of modalities, achieve a higher accuracy than classifiers trained
without the common representation.
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Abstract. The extraction of six standard planes in 3D cardiac ultrasound plays
an important role in clinical examination to analyze cardiac function. This paper
proposes a guideline-based machine learning method for efficient and accurate
standard plane extraction. A cardiac ultrasound guideline determines appropriate
operation steps for clinical examinations. The idea of guideline-based machine
learning is incorporating machine learning approaches into each stage of the
guideline. First, Hough forest with hierarchical search is applied for 3D feature
point detection. Second, initial planes are determined using anatomical regu-
larities according to the guideline. Finally, a regression forest integrated with
constraints of plane regularities is applied for refining each plane. The proposed
method was evaluated on a 3D cardiac ultrasound dataset. Compared with other
plane extraction methods, it demonstrated an improved accuracy with a sig-
nificantly faster running time of 0.8 s per volume.

1 Introduction

3D cardiac ultrasound has become an increasingly common topic regarding imaging
modalities. 3D ultrasound provides more cardiac information for evaluations compared
with conventional 2D cardiac ultrasound. In a routine cardiac examination, clinicians
usually use six standard planes, apical four chamber (A4C), apical two chamber (A2C),
apical three chamber (A3C), parasternal short-axis mitral valve (PSX MV), parasternal
short-axis papillary muscle (PSX PM), and parasternal short-axis apex (PSX AP) [1], to
evaluate the structure and function of the heart. However, manual plane extraction
suffers from inefficiency problems, such as user dependency and complex operational
procedures. Therefore, an efficient and robust method for automatic plane extraction is
extremely important in improving the cardiac examination workflow.

Previous works have proposed automatic extraction in 3D cardiac ultrasound
volume. In [2], a database-driven knowledge-based approach is proposed for plane
extraction. The method extracts image features from each standard plane and creates a
probabilistic model [3]. During searching, a series of detectors are applied to estimate
plane parameters, i.e., translation, orientation, and scale. False hypotheses at the earlier
stages are removed, while right hypotheses are propagated to the final stage. However,
large computational complexity for obtaining all plane parameters is still a problem,
and the correct plane might also be missed at an earlier stage during search. In [4], the
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locations of planes are considered as continuous parameters, and a regression voting
approach is used to solve it. Regression forest [5] incorporated with voxel class
information is used to train classifiers. During testing, every voxel of the cardiac
volume provides votes on the parameters of each plane. The votes from all voxels are
collected to produce a probability distribution, and the location of the plane is deter-
mined by the parameter with maximum probability. However, each plane is extracted
independently in this approach, which means each voxel of the volume should pass
through the classifier repeatedly (six times for six standard planes). This causes large
computational complexity and is time consuming. In addition, anatomical regularities
of standard planes, i.e., three apical planes should pass through the same center axis
(apical long axis) [1], were not considered in [4]. Such knowledge is important in
diagnosis and should also be incorporated into the process of plane extraction.

This paper proposes a new machine learning framework based on the cardiac
ultrasound guideline (presented by the American Society of Echocardiography [1]) for
standard plane extraction. The guideline has been established for clinicians to learn
appropriate operation procedures for high quality cardiac examination. The proposed
method is completely based on the guideline. Each stage in the guideline is achieved
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Fig. 1. Framework of guideline-based machine learning for standard plane extraction.
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using an appropriate machine learning approach that yields guideline-based machine
learning. The framework of the proposed method is shown in Fig. 1, and the process is
as follows.

1. [Feature point detection] The guideline indicates searching the A4C plane using
mitral annulus and apical features. Three anatomical feature points are selected
correspondingly, and a Hough forest classifier [6, 7] with a hierarchical search is
applied for detecting these points.

2. [Plane Initialization] The guideline indicates the anatomical regularities between
A4C and the other five planes. Correspondingly, the initial locations of the other
five planes are determined using these regularities.

3. [Plane refinement] Refinement is needed considering individual differences around
the initial location. A regression forest method with locations constraints is applied
for plane refinement.

This work makes three main contributions. First, it presents guideline-based
machine learning that incorporates machine learning approaches into each stage of the
guideline. This can also be applied to various measurements in medical images.
Second, it presents a method using a Hough forest with hierarchical search for effi-
ciently and accurately detecting 3D feature points. Third, location constraints are
integrated into the regression forest for plane refinement, further improving the accu-
racy of plane extraction.

2 Standard Plane Initialization

According to the guideline, the A4C plane is first extracted by using mitral annulus and
apical features. In the proposed method, three anatomical feature points, including the
apex, left mitral annulus (left MA), and right mitral annulus (right MA), are selected
correspondingly to localized plane A4C. Feature point detection is achieved using a
Hough forest classifier, which is presented in Sect. 2.1. Moreover, a hierarchical
search, presented in Sect. 2.2, is applied for improving the accuracy and speed. Then,
as presented in Sect. 2.3, the initial locations of the six planes can be determined using
the detected points and anatomical regularities all at once.

2.1 Hough Forest

Hough forest is used for detecting feature points. This method provides a way to map
from image patches to anatomical locations. In this work, Hough forest is extended for
3D point detection using 3D image features and 3D Hough voting.

Training process: Each tree T of Hough forest is constructed based on a set of patches
fPi ¼ ðIi; ci; diÞg, where Ii is the appearance of the 3D patch, ci is the class label that
includes the positive class and negative class, and di is the offset from the patch center
to the object center. The proportion between object patches and background patches CL

and the list DL = {di} of the offset vectors are stored for each leaf node L. Hough forest
classifier is constructed from the root using the input patches. A key point of Hough
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forest is the evaluation of the binary test. To conduct an optimal test, the uncertainties
in both the class labels and the offset vectors should decrease towards the leaves. A set
of patches is defined as A= fPi ¼ ðIi; ci; diÞg, and class label uncertainty U1ðAÞ and
offset uncertainty U2ðAÞ are defined as:

U1ðAÞ ¼ � Aj j �
X

pðc Aj Þ lnðpðc Aj ÞÞ; ð1Þ

U2ðAÞ ¼
X

i

ðdi � dAÞ2; when ci ¼ 1; ð2Þ

where Aj j is the number of patches, pðc Aj Þ is the proportion of patches with label c in
set A, and dA is the mean offset vector over all object patches. Given a training set of
patches, a pool of pixel tests tkf g is generated by randomly choosing one feature
channel and two pixel locations inside a patch. The randomized decision is made as to
whether the node should minimize the class-label uncertainty or the offset uncertainty.
The process can be represented as:

argminðU�ðfPi t
kðIiÞ ¼ 0

�� gÞþU�ðfPi t
kðIiÞ ¼ 1

�� gÞÞ; ð3Þ

where * is either the class label uncertainty or offset uncertainty.

Testing process: Testing can be considered as regression and voting steps. The
regression process is as follows. (1) For each voxel location p, a patch is extracted and
starts regression from the root; (2) when passing each node, this patch is sorted into the
left or right child node in accordance with the binary test. All pixels in the image go
through the forest until they reach the leaves. During the voting process, the infor-
mation stored in leaves is used to cast the probabilistic Hough votes to the location of
the object center. The leaf information consists of proportion CL and offset vectors DL,
so CL=DL is defined as a weight value for a vote. Each pixel in leaves carries a location
p, and it votes to all locations p� d d 2 Dj L

� �
with a weight value CL=DL. After all

votes from each voxel have been summed up, the 3D Hough image can be obtained.
Finally, the feature points are the locations with the maximum number of votes.

2.2 Hough Forest with Hierarchical Search

In Hough forest, the whole image is used during the testing step to cast the probabilistic
Hough votes to the location of the object. When dealing with volume data, the
regression of a huge number of 3D patches through forest will cause massive com-
putations. In this work, a coarse-to-fine strategy is applied to accelerate the detection
process. Feature points are detected serially through a multi-scale hierarchical search.

In the coarse-to-fine strategy, the whole image is first used to provide an estimate of
the region of interest, which is then refined by using only local information. The
framework is shown in Fig. 2. A coarse-level classifier and a fine-level classifier need
to be trained before testing. The coarse classifier is trained using low-resolution images
that are down-sampled from original images. Positive patches are chosen from a
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bounding box region around ground-truth, and negative patches are chosen from the
whole image except the positive region. The fine-level classifier is trained on a
high-resolution image (original image) with a sampling region narrowed down. During
the testing step, first, the input image is down-sampled, and a coarse position is
localized using Hough forest coarse-level classifier. In coarse-level detection, every
pixel in a low-resolution image provides a vote (Hough voting) to a potential target
location. Second, in the refinement step, only pixels in the neighborhood of the coarse
position are used to predict the existence of the object. By applying a coarse-to-fine
strategy, the searching region has largely been cut down, so the running time is suc-
cessfully shortened. Moreover, refinement searching that only uses the region closest to
the target can reduce the irrelevant information and provide higher accuracy.

2.3 Plane Initialization Using Anatomical Regularity

The initial locations of six standard planes can be determined using three feature points
and the anatomical regularity defined in [1], shown in Fig. 1. First, the A4C plane
passes through three feature points. The long-axis can also be localized by A and the
center of B and C. A3C and A2C are intersected with the A4C plane at angles of
approximately 53 ° and 129 °, respectively. Three short-axis planes (PSX MV, PM,
and AP) are perpendicular to A4C and can be localized by translating along the
long-axis with proportional intervals of 1/6, 3/6, and 5/6, respectively.

Fig. 2. Coarse-to-fine strategy applied for the Hough forest classifier.
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3 Regression Forest for Plane Refinement

The average anatomical regularities defined in [1] are estimated. Because the plane
location has individual differences, each plane around the initial location needs
refinement. This work proposes a method that incorporates location constraints into
regression forest for plane refinement. The refinement can be categorized into two types
according to the location constraints: (1) three long-axis planes (A4C, A3C, and A2C)
should pass through the long-axis; (2) three short-axis planes (MV, PM, and AP)
should be perpendicular to the long-axis. Correspondingly, either angle or distance of
the initial plane will be refined, as shown in Fig. 3. To reduce the inference of irrel-
evant image information, background and object regions are also set in regression
forest, similar to Hough forest.

Training process
Some important planes and parameters are first defined. The center of the 3D volume is
set as an original point O, and x, y, z coordinates are defined with the center of point O.
The original plane is the xz plane, and the ground-truth plane is annotated by clinicians.
In addition, the sampling plane is defined as the plane passing through the center of a
sampling patch. For the long-axis planes, the sampling plane also passes through the
long-axis, shown as the blue planes in Fig. 3(a), while for the short-axis planes, the
sampling plane is perpendicular to the long-axis, shown as the blue planes in Fig. 3(b).
An offset parameter Uðh; cÞ is then defined, where h is the angle between the sampling
plane and the ground-truth plane, and c is the distance between the sampling plane and
the ground-truth plane.

The training dataset comprises a set of patches fPi ¼ ðIi; ci; Uðh; cÞÞg sampled
from background and objective regions, where Ii is the appearance of the patch, and ci
is the class label. The positive training set is collected from a range with an angle less
than hs degrees and a distance less than cs around the ground-truth plane. The negative
training set is from a range with an angle between hs � 2hs degrees and a distance
cs � 2cs between around the ground-truth plane. Each tree of the regression forest is
constructed recursively using the input patches. During the binary test for node
training, the uncertainties in the class labels V1ðAÞ and the offset angle V2ðAÞ

Fig. 3. Examples of standard plane refinement. (a) Angle refinement is applied for three
long-axis planes. (b) Distance refinement is applied for three short-axis planes.
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are defined as:

V1ðAÞ ¼ � Aj j �
X

pðc Aj Þ; ð4Þ

V2ðAÞ ¼
X

i

ðUi � UAÞ2; when ci ¼ 1; ð5Þ

where UA is the mean offset parameter over all sampled patches. For obtaining an
optimal test, the node should minimize the class-label uncertainty or the offset
parameter uncertainty, which can be represented as

argminðV�ðfPi t
kðIiÞ ¼ 0

�� gÞþV�ðfPi t
kðIiÞ ¼ 1

�� gÞÞ; ð6Þ

where * is either class label uncertainty or offset uncertainty. Finally, for each leaf
node, the proportion of the object patches and the background patches CL, and the list
Uif g of the offset angle are stored.

Testing process.
The refinement regions are first defined. For the long-axis planes, the refinement region
is set as an angle of ð�2hs; 2hs Þ around the initial planes, shown in Fig. 3(a). For the
short-axis planes, the refinement region is set as a distance of ð�2cs; 2cs Þ centered at
the initial planes, as shown in Fig. 3(b). Given a new unseen volume, all voxels of the
refinement regions are pushed through each tree of forest until they reach leaf nodes.
Leaf information consists of the proportion CL, and the offset parameter fUig. The
proportion can be used for determining a threshold s to control the minimum presence
of the class label at each leaf and for use as a probability for the votes this leaf
generates.

The voxel then votes for the location of the target plane Utðht; ctÞ using the pro-
portion CL and the offset parameter fUig stored in the leaf. The process is as follows.
First, the plane passing through the sampling voxel and the long-axis is calculated.
Upðhp; cpÞ is marked as the angle and distance difference between this plane and the
original plane. Therefore, a vote on the location of the target plane Ut ¼ Up � Ui is
generated. All votes generated by the voxels can be summed up, and the final angle of
the plane can be determined by the mean value Ut ¼

P
L2F Ut � CL=N, where L 2 F

means all leaves in the forest, and N is the total number of votes. Finally, the target plane
can determine the original plane and the voted parameter Ut.

4 Experiments

The proposedmethodwas evaluated on a 3D cardiac ultrasound dataset that was available
in [8]. The dataset included cardiac cycle volumes from 15 volunteers. Volume dimen-
sions were around 320 � 347 � 241 with a resolution of 0.5 mm3. The end diastole
frame from each of the volunteers was used. A 5-fold cross-validation scheme was
applied for the evaluation. In addition, a data augmentation schemewas also applied with
artificially rotating and scaling of the original volume. Therefore, 120 volumes were used
for training, and 30 volumes were used for testing in each validation.
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4.1 Evaluation of Feature Point Detection

The performance of the feature point detection was first evaluated. The point detection
was conducted using two methods to compare the performance: (1) Hough forest and
(2) Hough forest with hierarchical search (proposed method). The following parameter
settings were used for all the classifiers: maximum tree depth D ¼ 15, number of trees
T ¼ 10, and the threshold for separating the objective leaf and background leaf was
s ¼ 0:95. In addition, the image features used in this work include intensity, difference,
and gradient features.

Distance error was used as a standard for the evaluation. Ground-truth points were
annotated by a clinical expert manually. The distance error is the Euclidean distance
between the ground-truth and the detected points. The comparison results of two
methods are shown in Table 1. The distance error of each of the feature points and the
mean distance error of all three points were calculated, and they are shown in
mean ± standard deviation format. The comparison results demonstrated that the
proposed method reduced the mean distance error of the three points by about 23.6%
and also improved the speed by about 10 times. The improvement in the accuracy and
speed was attributed to a coarse-to-fine strategy. The searching region was largely
reduced, enabling a significantly shorter running time. Moreover, only regions that
were close to the target were used. This reduced the irrelevant information and pro-
vided higher accuracy. Examples of detection images by Hough forest, the proposed
method, and a ground-truth image are shown in Fig. 4. The images are the A4C plane
localized using three feature points. The proposed method showed improved accuracy
for all of the feature points.

Table 1. Comparison of point detection between Hough forest and proposed method.

Distance error (mm) Run time (s)
Apex Left MA Right MA Mean –

Hough forest [6] 12.2 ± 4.3 8.1 ± 3.9 6.5 ± 3.8 8.9 ± 4.0 4.5
Proposed method 10.5 – 4.2 4.9 – 3.5 5.1 – 3.3 6.8 – 3.7 0.45

(a) Hough forest          (b) Proposed method           (c) Ground-truth

Fig. 4. Examples of feature point detection by Hough forest and proposed method. Ground-truth
has manually annotated points for comparison.
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4.2 Evaluation of Plane Extraction

Two evaluation standards were introduced, angle error and distance error, to measure
the difference between the ground-truth plane and the extracted plane [2]. The angle
error between two planes was defined as the angle between the normal vector of the
ground-truth plane and the normal vector of the extracted plane. The distance error
between two planes was measured as the distance from an anchor on one plane to the
other plane, where the anchor was the LV center. The ground-truth planes were all
annotated by clinical experts manually. During the manual annotation, the standard
planes were determined by image features and anatomical regularities. For example, the
PSX MV plane is at the base cardiac left ventricle, and a common feature of this plane
is the so-called “goldfish mouth” look of the mitral valve leaflets.

Comparison results between applying the refinement before and after are shown in
Table 2. Six standard planes were categorized into two types. The long-axis planes
include A4C, A3C, and A2C, and the short-axis planes include PSX MV, PSX PM, and
PSX AP. The mean angle error and distance error of both types were calculated. The
results show that improved accuracy was achieved after refinement. The mean angle
error of the long-axis planes and mean distance error of short-axis planes were reduced
by about 16.9% and 46.9%, respectively. The results demonstrate the effectiveness of
the angle and distance refinement using the proposed method. Examples of standard
plane extraction are shown in Fig. 5. The extraction results before refinement, after
refinement, and the ground-truth were compared. Using the refinement obviously
improved detailed information such as the region near the aortic valve on plane A3C.

In another experiment, the performance of the proposed method was compared to
that of other plane extraction methods. The results are shown in Table 3. The average
angle and the distance error of all six planes were calculated. All kinds of error are
shown in mean ± standard deviation format. The running time was all measured as the
total extracting time of six planes, and all the experiments were run on an Intel core i7
3.6 GHz computer with 16 GB of RAM. The proposed method was compared with
marginal space learning (MSL) [2] and class-specific regression forest (RF) [4], which
were all introduced in Sect. 1. As shown in Table 3, the angle and distance error of
the proposed method was reduced by about 30% compared with those of MSL, while
the running time of the proposed method was significantly shorter than that of the
class-specific RF.

Table 2. Comparison results of standard plane extraction between applying the refinement
before and after.

Three long-axis planes Three short-axis planes
Angle (degrees) Distance (mm) Angle (degrees) Distance (mm)

Before refinement 11.8 ± 6.2 2.8 ± 2.5 6.9 ± 4.0 4.9 ± 3.1
After refinement 9.8 ± 5.8 2.8 ± 2.3 6.8 ± 4.0 2.6 ± 2.3
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4.3 Discussion

The following factors can be attributed to the improved performance: (1) the proposed
method is based on the guideline, where the anatomical regularities are incorporated
into determining the initial plane locations. The search regions of each plane were
largely cut down. (2) In feature point detection, a coarse-to-fine strategy is proposed for
Hough forest classifier, and it also reduces the search region and cuts down noises.
(3) The refinement around the initial location using regression forest further improves
the extraction accuracy. The proposed method can be further accelerated by using
parallel processing on both Hough forest and regression forest. However, the problems
remained in the work are the small number of the evaluation data and the lack of the
inter-observer variability. In the future, more data will be collected for evaluation.
Moreover, more than two experts will be asked to annotate the standard planes from
same image to improve the inter-observer variability.

(a) Before refinement

(b) After refinement

(c) Ground-truth

Fig. 5. Examples of standard plane extraction. The six planes from left to right are: A4C, A3C,
A2C, PSX AP, PSX PM, and PSX MV. From top to bottom: (a) Before refinement: initialization
planes determined by feature points and anatomical regularity. (b) After refinement: planes with a
refinement around the initial location. (c) Ground-truth: manually annotated planes.

Table 3. Comparison results of standard plane extraction between proposed method and other
plane extraction methods.

Angle (degrees) Distance (mm) Run time (s)

MSL [2] 11.3 ± 8.0 3.7 ± 2.1 2
Class-specific RF [4] 6.4 ± 4.3 4.2 ± 3.8 30
Proposed method 8.3 – 4.9 2.7 – 2.3 0.8
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5 Conclusions

This paper proposed a new machine learning framework based on the cardiac ultra-
sound guideline for standard-plane extraction. Each stage in the guideline is achieved
using an appropriate machine learning approach. Hough forest with hierarchical search
was proposed for detecting efficient and robust feature points. After six planes are
extracted by anatomical regularity, a refinement step using regression forest is applied
to improve the accuracy further. Experimental results demonstrated that the proposed
method improved performance in both accuracy and speed compared with other
methods.
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Abstract. Template estimation plays a crucial role in computational
anatomy since it provides reference frames for performing statistical
analysis of the underlying anatomical population variability. While build-
ing models for template estimation, variability in sites and image acqui-
sition protocols need to be accounted for. To account for such variability,
we propose a generative template estimation model that makes simulta-
neous inference of both bias fields in individual images, deformations for
image registration, and variance hyperparameters. In contrast, existing
maximum a posterori based methods need to rely on either bias-invariant
similarity measures or robust image normalization. Results on synthetic
and real brain MRI images demonstrate the capability of the model to
capture heterogeneity in intensities and provide a reliable template esti-
mation from registration.

1 Introduction

Brain template estimation is becoming increasingly important since it facili-
tates a variety of applications such as segmentation, registration, or provid-
ing common coordinate systems for statistical analysis of shape models for a
given population. At the core of template estimation methods is image registra-
tion. In a statistical setting, conventional image registration methods are often
approached from a Bayesian viewpoint where one maximizes the posterior given
the image data and a regularizing prior [1]. To avoid choosing parameters for
controlling the deformation (regularization) in an ad-hoc fashion, recent methods
have employed Bayesian models where parameters are estimated in a data-driven
fashion by treating them as latent random variables drawn from a distribution
with a smooth covariance structure [2,3]. These methods employ L2 similarity
measures that are fragile towards deviations in model assumption; for instance,
bias fields. To achieve reasonable results under model deviations, strong penal-
ization on the variation in deformation parameters can be imposed, or similarity
measures that are invariant to bias fields (e.g. mutual information) can be used
instead of the L2 data terms.
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 151–159, 2017.
DOI: 10.1007/978-3-319-61188-4 14
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In this paper, we propose a statistical mixed-effects model where deformation
and spatially correlated variation in intensity are modeled as random effects.
This way, effects from deformations and variations in intensities due to scanners
can be separately handled, and hyperparameters can be estimated in a data-
driven fashion using maximum likelihood. We perform simultaneous estimation
and prediction in the model to avoid bias in the estimation that can result from
treating warping as a preprocessing step [4]. In addition, we propose a different
estimation procedure in comparison to existing Bayesian methods. While current
methods use non-linear sampling for marginalizing over the latent variables, we
propose to use successive linearization around predictions of the latent variables
allowing estimation with linear mixed-effect theory. This paper is built on the
methods proposed by Raket et al. [4] for analysis of 1D functional data.

Current probabilistic template estimation methods do not model multi-scale
behavior of the deformations. Although innumerable multi-scale deformation
models have been proposed for image registration, their application in template
estimation still needs maturity. To this end, we propose to model deformations
at different scales as latent variables that are drawn from different distributions
with different covariance structure. Concretely, we utilize the kernel bundle struc-
ture [5,6] to model velocity fields, and the multi-scale nature is interleaved in
the covariance structure of the distribution of parameters at each kernel bundle
level.

The contributions of the paper are as follows:

– We demonstrate the utility of a computationally feasible class of non-linear
mixed effect models in 3D brain template estimation.

– We propose a model that handles effects from deformation and intensity varia-
tions separately and allows simultaneous estimation of template and variance
hyperparameters and prediction of deformation and bias fields.

– We propose an iterative linearization of the model in the non-linear random
effects that enables efficient maximum likelihood estimation of variance para-
meters.

– Finally, we propose the incorporation of scales in the deformation distribution
via the kernel bundle representation.

2 Background

A number of registration-based approaches to template estimation have been
proposed where the central aspect addressed was the choice of target co-ordinate
system. Initial approaches, which include the popular minimum deformation
template [7], choose a random image as a target co-ordinate system, and is
iteratively updated by registering other images to it. This approach has been
shown to be significantly biased towards the choice of the random image [8].

As an alternate approach, several papers have proposed the strategy of reg-
istering several images to a template, which is simultaneously estimated via an
alternating optimization scheme [9,10]. In a probabilistic formulation, the image
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matching term can be viewed as a log likelihood and the regularization as a log
prior. In this direction, recent methods like [3] have employed tools such as non-
linear mixed effects models to deal with the population effects (template or the
fixed effect) and individual effects (deformations or the random effect). Methods
have moved towards simultaneously modeling the template and inferring para-
meters of the deformation such as the regularization factor with expectation-
maximization [2]. All the aforementioned methods rely on bias-invariant sim-
ilarity measures or robust image normalization methods. To address intensity
bias factors, Hromatka et al. [11], proposed to use a hierarchical Bayesian model
for template estimation where two transformations are concatenated; one taking
an individual image to an atlas of a site and the other that takes this warped
image to the global atlas. However, this model takes into consideration very little
about intra-site bias variations.

3 Statistical Model

Consider a population of images Ii : R3 → R, i = 1 . . . k and let θ be a template of
these images; both measured on a discrete grid Ω ∈ Z

3. The individual observed
image may be then defined in terms of the fixed and random effects as

Ii = θ(Exp(v(wi)) + xi + εi (1)

where the template θ is the fixed effect. More control over the smoothness of θ
may be incorporated by specifying a parametric subspace for θ. However, such
constructions will not be entertained in this paper. The remaining effects are all
random: The deformation Exp(v(wi)) (Sect. 3.2) is a random field controlled by
latent random deformation parameters wi. A key contribution of this paper is
the incorporation of the random spatially correlated effect xi that models a bias
field. Note that xi is defined in the frame of the individual image and not the
template. Converse constructions are also possible. Finally, εi is the i.i.d noise.

Following [4] and assuming that θ is smooth, we can linearize (1) around
deformation parameters w0

i resulting in the linear model

Ii ≈ θw0
i + Zi(wi − w0

i ) + xi + εi, where,

θw0
i = θ(Exp(v(w0

i ))), Zi = ∇xθ(Exp(v(w0
i )))

T |x=Exp(v(w0
i ))

JwExp(v(w0
i )) ∈ R

n×nw ,

wi ∼ N (0, σ2Ci), Ci = Ii ⊗ C0, xi ∼ N (0, σ2Si), Si = Ii ⊗ S0,

εi ∼ N (0, σ2
Ii).

Here σ2 is the noise variance, and the spatial covariance of the deformations
and bias fields are controlled by the matrices C and S. Note that ∇x denotes
derivatives with respect to spatial coordinates. Also, note that deformations in
the linear model are parameters of w while the linearization point w0 is iteratively
optimized for during the estimation process. The model here is a single scale
model where the covariances are constructed with only one scale of the kernel.
Multi-scale version of this will be discussed in Sect. 3.2.
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The first step of the analysis is to estimate θ with an initial guess of lineariza-
tion point w. θ is computed by back-warping the images with the velocity field
as θw0 = 1

k

∑k
i=1 Ii(Exp(−v(w0))). This simplified formulation of the conditional

maximum-likelihood is a result of Henderson’s mixed-model [12] that simplifies
when all observations are on a common grid. With this estimate of θ, we estimate
the variance parameters by minimizing the double negative log-likelihood of the
linearized model

L(σ2, S, C) = nk log σ2 +
k∑

i=1

log detVi+

1
σ2

k∑

i=1

(Ii − θw0 + Ziw
0)TV −1

i (Ii − θw0 + Ziw
0).

(2)

where Vi = ZT
i CiZi + S + Ii. Computing (2) directly is computationally

intractable. This is because the dimensionality of S, V is m2, where m is the
number of voxels in the image. We handle this by two assumptions: (a) The
support of the kernel used to construct the covariance matrix of the spatial cor-
relation effect is sufficiently large that the inverse of the covariance matrix resem-
bles a block-diagonal matrix, see e.g. assumption [13]; and (b) the interaction
between the blocks is negligible. This allows the likelihood to be approximated
by an integral over smaller computationally tractable patches over the image.
Therefore, (2) can be rewritten as:

L(σ2, S, C) ≈ nk log σ2 +
k∑

i=1

p∑

j=1

log detVi,j+

1
σ2

k∑

i=1

p∑

j=1

(Ii,j − θw0 + Zi,jw
0)TV −1

i,j (Ii,j − θw0
j + Zi,jw

0).

(3)

where Vi,j = ZT
i,jCiZi,j + Sj + Ij . Here j = 1 . . . p is the patch number of

the image with total p patches. The estimation process is now repeated: Given
the current estimate of the template θ and the variance estimates, the new
deformation parameters w0 for the linearization point are chosen as the most
likely predictions in the original non-linear model (1). That is, they are given by
minimizing the negative log posterior of the deformation given the image data
in model (1):

P(w) =
k∑

i=1

p∑

j=1

(Ii,j − θwi
j )T (Sj + Ij)−1(Ii,j − θwi

j ) + wT
i Ciwi. (4)

To reconstruct the bias field for a given iteration, the conditional expectation of
the spatially correlated effect xi given the data Ii and the most likely deformation
parameters w0

i are computed under the maximum likelihood estimates for the
model parameters:

E[xi|w0
i , Ii] = S(S + I)−1(Ii − θwi

j ). (5)
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Note that the best linear unbiased predictor (BLUP) [14] of wi in the linearized
model given the image data Ii is realized by E[wi|Ii] which is computed as
(C−1

i + ZT
i (Ii + S)−1Zi)−1ZT (Ii + S)−1(Ii − θw

0
i + Zwi

0).

3.1 Covariance Matrices

A key aspect of this statistical model is the choice of covariance matrices for the
spatially correlated effects and the deformation effects. Current Bayesian meth-
ods model the inverse of the covariance matrix directly by the means of an oper-
ator; typically of the Cauchy-Navier type which takes the form, L = −α∇ + β
where ∇ is the Laplace operator. The parameter α here controls the smoothness
of the covariance. In this paper, since we work with patches, it is more intuitive
to model the covariance matrix directly. We model the covariance matrices for
both the deformation parameters and the spatial correlation using Wendland ker-
nels [15] that are compactly supported reproducing kernels. The covariance matri-
ces are constructed using C = λ2K(ci, cj) , λ ∈ (0,∞), K(a, b) = r4(4r + 1),
r = (1 − t, 0)+, t = ||a−b||

s , where ci are the kernel centers.
For the spatially correlated effect (S = βK), a similar representation is cho-

sen. However, we choose the parametric subspace to be the same size as that of
the image i.e., a kernel is centered at every voxel as opposed to the much smaller
subspace spanned by the deformation kernels. The amplitude of these covariance
matrices are controlled by parameters λ, β. These parameters are estimated by
optimizing the likelihood (2). The smoothness of the deformation is controlled
by C. We here keep C fixed though parameters of C, e.g. range and scale, can
also be optimized for in (2).

3.2 Multi-scale Deformation Model

We model deformation fields as path of diffeomorphisms generated by integrating
stationary velocity fields (SVFs). Let G ⊂ Diff(Ω) be a Lie subgroup of the group
of diffeomorphic transformations ϕ : Ω → Ω, and let φ : Ω × R → Ω be a path
in G. Let V be the tangent space of G at identity Id containing velocity fields
v : Ω → R

d. In SVFs, the governing differential equation can be written as:

∂φ(x, t)
∂t

= v(φ(x, t)), ϕ = φ(x, 1) = Exp(v). (6)

The final transformation φ is the Lie group exponential Exp(v). The integration
in (6) can be numerically realized as an Euler integration. We use the kernel
bundle framework [5,6] in this paper. In short, the concept of the space of velocity
fields V is extended to a family V̂ of spaces of velocity fields. The velocity fields
are linear sums of individual kernels at R levels

v(x) =
R∑

m=1

vm =
R∑

m=1

Nm∑

i

Km(cmi ,x)wm
i . (7)
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Here K is an interpolating Wendland kernel, R is the total number of kernel
bundle levels, Nm is the number of kernels at each level and c is center of each
kernel at the kernel bundle level. The parameter wm is associated with the mth
kernel bundle level, and we assume that wm

i ∼ N (0, σ2Cm), where Cm is the
covariance matrix for each kernel bundle level with its distinct support and
smoothness.

4 Experiments and Results

We perform an evaluation on the MGH10 dataset1. The dataset contains 10
images each with the dimension of 182× 218× 182 and a voxel resolution of 1,
1.33, 1 mm. The images are initially co-registered rigidly. For bias recovery only
a subset of 5 subjects is used. One of the major challenges in the field of image

Fig. 1. An illustration of the image with bias field (left) and the recovered image
(right).

template estimation is validation. Since the underlying geometry of the space of
images is unknown, the definition of modes of populations is difficult. Therefore,
the validation needs to be tied to specific applications of template estimation
like image segmentation or even validation of the underlying image registrations.
For the 2 experiments in this paper, we chose 3 kernel bundle levels each with
a control point spacing of 20, 10, 6 mm respectively. The support of the kernel
used to construct the covariance matrix for the deformations is fixed to 4 across
the kernel bundle levels. The support of the spatial correlation variance kernel
was set to 40. We perform 2 experiments to validate our template estimation
method.

4.1 Bias Field Recovery

We select a subset of 5 images from the database and add artificial multiplicative
bias to the image of form bias = 1 + exp(−x2+y2+z2

2∗302 ) ∗ 0.05. We then apply our
statistical model to estimate the template and inspect whether the corrupted
image can be recovered. As illustrated in Fig. 1 the image recovered is free of
the bias field illustrating the robustness of the method towards scanner-related
artifacts.
1 www.mindboggle.info.

www.mindboggle.info
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4.2 Template Estimation

In this paper, we evaluate the overlaps of segmentations of images mapped to
the estimated template. This experiment was chosen to illustrate the perfor-
mance of the underlying registration method in the paper. Figure 2 illustrates
the mean and target overlaps estimated by mapping the 10 individual images to
the template space and measuring pairwise overlaps. The overlaps are compa-
rable to what state-of-the-art registration methods have obtained on the same
dataset [16]. The kernel bundle scales are sequentially optimized. However, if one
switches to a parallel optimization across scales, a significant improvement in the
overlaps may be expected. Also in the illustration is the non-aligned template
image and aligned template image. The sharpness of the template is particularly
visible in corpus collosum.

To further demonstrate the effectiveness of the proposed template estimation
method and benefits of multi-scale deformation, we visually inspect the atlas
estimated in key regions like hippocampus and putamen. As illustrated in Fig. 2,
as the kernel bundle resolution becomes finer, the sharper are the boundaries of
the anatomical structure.

Fig. 2. Pairwise mean and target overlaps; Unaligned template and aligned template;
Evolution of the appearance of hippocampus and putamen across kernel bundle scales
(2 scales) with leftmost being the unaligned template.

5 Discussion and Conclusion

We presented a class of non-linear mixed effect models for estimating 3D brain
templates, and we proposed to simultaneously estimate both bias field and defor-
mation parameters in a data-driven maximum likelihood setting. In addition, we
proposed to incorporate the kernel bundle framework in the random deformation
effects to account for deformations occurring at different scales. We illustrated
the application of our in both bias field correction and template estimation. The
basis for the simultaneous estimation of the deformation and spatially correlated



158 A. Pai et al.

bias was results of [4] where the authors showed that estimation of deformation
parameters is biased if the data is preprocessed first followed by the prediction of
deformation parameters. We modeled deformations as random geodesics on the
diffeomorphism group and estimated variance parameters of both the deforma-
tion and bias field from data instead of setting them ad-hoc. In future work, we
will investigate replacing random geodesics by more geometrically natural dis-
tributions on the space of diffeomorphism [17]. An important next step for this
work will be to extend the method to account for multiple population means.
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Abstract. In this paper, we present a novel Bayesian model for manifold
learning, suitable for data that are comprised of multiple modes of obser-
vations. Our data are assumed to be lying on a non-linear, low-dimensional
manifold, modelled as a locally linear structure. The manifold local struc-
ture and the manifold coordinates are latent stochastic variables that are
estimated from a training set. Through the use of appropriate prior dis-
tributions, neighbouring points are constrained to have similar manifold
coordinates as well as similar manifold geometry. A single set of latent
coordinates is learned, common for all views. We show how to solve the
model with variational inference. We also exploit the multiview aspect of
the proposed model, by showing how to estimate missing views of unseen
data. We have tested the proposed model and methods on medical imag-
ing data of the OASIS brain MRI dataset [6]. The data are comprised of
four views: two views that correspond to clinical scores and two views that
correspond to hippocampus shape extracted from the OASIS MR images.
Our model is successfully used to map the multimodal data to probabilis-
tic embedding coordinates, as well as estimate missing clinical scores and
shape information of test data.

1 Introduction

Using low-dimensional structures to model data is a widely used and studied
practice in the context of a vast range of problems. Methods that deal with
low-dimensional modeling may assume either a linear or a non-linear structure
of data. Linear models like principal component analysis (PCA), are naturally
simpler and more straightforward in their application. Non-linear models on
the other hand, allow a more accurate and flexible representation of the data
structure. A wealth of models exists for non-linear dimensionality reduction, or
otherwise known as (non-linear) manifold learning [4].

Manifold modeling techniques typically treat data and model parameters as
deterministic (in the sense of being non-probabilistic). The linear PCA algo-
rithm, as well as the closely related canonical correlation analysis (CCA), have
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 160–171, 2017.
DOI: 10.1007/978-3-319-61188-4 15
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been shown to be expressible as equivalent probabilistic models [1,2]. In terms
of probabilistic PCA/CCA, the latent variable acts as an embedding coordinate
vector. In [1], a graphical model was introduced that was proved to be equivalent
to CCA. Both models can be solved with Expectation-Maximization (EM) [2].
Interestingly, in both probabilistic models a single set of normally distributed
latent variables is defined, while they differ in that probabilistic CCA defines
two, instead of a single one, sets of observed variables (views in CCA parlance)
and two sets of projections from the common latent space to the view spaces.

Non-linear manifold learning schemes are typically deterministic in the way
they treat data and parameters, with few extensions to probabilistic models.
One exception to this rule is the recently proposed locally linear latent vari-
able model (LL-LVM) [7]. LL-LVM employs a probabilistic graphical model to
describe observations, manifold coordinates and tangents [7]. The manifold is
defined in terms of a patchwork of locally linear subspaces, that are represented
using the tangent space to each point. The model is solved with standard vari-
ational inference (VI) [2]. LL-LVM is closely related to the Gaussian Process
Latent Variable Model (GP-LVM) [5].

Manifold modeling has been extensively used in medical imaging in the recent
years [4,10]. In [4], manifolds are learned on sets of brain structural MR images.
New brain images are projected onto the manifold and a regression model is
proposed, linking the MRI structure with subject clinical scores. In [10], an
embedding is learned over brain MRIs that is used for atlas propagation. Regis-
tering one image to another is broken down to a set of subsequent registrations,
following the shortest path over the learned manifold.

In this paper, we present a novel Bayesian model for manifold learning that
can handle multiple observed views. Views here are to be understood as different
sets of observations or different modes of measurements per observed datum,
with each view typically having different dimensionality and statistics. This setup
is in contrast to standard manifold learning techniques that typically assume a
single source of observations and a non-probabilistic setup. In the same way that
probabilistic CCA can be viewed as probabilistic PCA with multiple outputs
[1], hence generalizing linear manifold learning to multiple views, the current
model extends the LL-LVM model of [7]. Under this consideration we name
the proposed model multiview locally linear latent variable model (MLL-LVM),
underpinning its relation with LL-LVM. The proposed model is solved using
variational inference. We show that a set of useful operations like out-of-sample
extensions, predicting missing views, and generating new observations given the
embedding coordinates, are all naturally defined in terms of the Bayesian model.

In a nutshell, from a theoretical point of view the novel characteristics of the
proposed model compared to LL-LVM [7] are: (a) An extension of the model
to handle more than a single view/mode of observation, (b) derivation of VI
updates for the extended model and (c) derivation of the required formulae to
estimate missing views given observed views. Note that the latter point is only
compatible with the present model and not with LL-LVM or other single-view
models, since it applies only to a scenario where we have more than one view.
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The proposed model is successfully applied in a medical imaging context,
where various shape data and clinical ratings from a set of Alzheimer’s Disease
(AD) and controls are used to learn common latent manifold coordinates. Brain
MR images are used to extract shape information about subject left and right
hippocampi, which alongside clinical scores make up the set of observed views.
All views, despite being heterogenous and following different statistics, are hence
treated in a unified manner with our model. Also importantly, all estimates (out-
of-sample coordinates, missing views) are computed in the form of posterior
probability density functions, since the model is fully Bayesian.

The remainder of this paper is structured as follows. In Sect. 2, we present the
proposed multi-view Bayesian model, we show how to solve it using variational
inference, and show how to estimate missing views. In Sect. 3, we train our model
on the OASIS data set and estimate unknown clinical scores and hippocampus
shapes given the observed subject views. In Sect. 4, we discuss final conclusions
and thoughts about the perspective of the proposed work.

2 Methods

The basis of the proposed method is a novel Bayesian model, trained on a set
multimodal data of N observations and V views. After training, the model can
be used on new data in order to estimate one or more of their views that may be
missing. In this section, we present the proposed observational model, we show
how to solve it with VI, and derive the formulae required to predict missing
views.

2.1 Generative Model

Observed data: The input to our model is a set of observations y and a graph G.
Each observation yn of the observation set y is itself a set of V observed views
yn = {yn

1 , yn
2 , · · · , yn

V }, with each view being a set of elements with corresponding
per-view dimensionality dy1, dy2, · · · , dyV . N observed elements correspond to
each of the V views, and for view v we have {y1

v , y2
v , · · · , yN

v }.
The graph G contains one node for each observation, and an edge exists

between nodes (n,m) if and only if yn and ym are neighbours. A symmetric N×N
adjacency matrix G corresponds to the graph structure of G, with G=[ηnm]. Ele-
ment [ηnm]n=1..N,m=1..N is equal to one if observations n and m are neighbours,
otherwise it is zero.

In the assumed application context, each patient appears as a single obser-
vation yn for the model, and each view corresponds to a different type of mea-
surement for the patient. For example, for the nth patient, yn

1 may contain brain
MRI T1 data, yn

2 a scalar clinical rating and yn
3 a brain connectogram. Patients

that are similar enough with respect to the available measurements are recorded
as neighbours in G.

The graphical representation for the proposed generative model can be exam-
ined in Fig. 1. Note that a single set of embedding coordinates x are defined,
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Fig. 1. The graphical model for the proposed MLL-LVM. V views are assumed for
N observed data points. The latent variables x are embedding coordinates, common
for all views. Latent variables C model the relation of the embedding coordinates x
with each separate observed view. G is the fixed neighbourhood structure. γ and α are
deterministic parameters that control the form of the likelihood function and the form
of the prior on latent embedding coordinates respectively.

common for all views, while manifold geometry C and observations y are view-
specific. In terms of the graphical model, this is the basic difference between the
proposed model and LL-LVM [7]. The latter can be seen as a special case of our
model, for V = 1.

Assumed distributions and relations with latent variables: Embedding coordi-
nates can be concatenated to a single vector x = [x1T x2T · · · xNT ]T , where
x ∈ RdxN . The prior on latent variables x constraints elements that are neigh-
bours to have embedding coordinates that lie close to each other:

log p(x|G,α) = −1
2

N∑

n=1

(α‖xn‖2 +
N∑

m=1

ηnm‖xn − xm‖2) + const. (1)

The set of linear projections that correspond to the vth view can be concate-
nated to a single matrix Cv = [C1

vC2
v · · · CN

v ], where Cv ∈ Rdyv×dxN . For all sets
of linear maps Cv, a prior is defined that constrains neighbouring maps to be
close to each other in the sense of the Frobenius norm:

log p(Cv|G) = − ε

2
‖

N∑

n=1

Cn
v ‖2F − 1

2

N∑

n=1

N∑

m=1

ηnm‖Cn
v − Cm

v ‖2F + const. (2)

where ε is set to a constant, small value. Local manifold tangents of neighbouring
points are equivalently constrained to be similar, favouring smooth solutions with
low-curvature for all views.

Observed views are assumed to be conditionally independent given x. Hence
the model likelihood is defined as the sum of V terms, each corresponding to a
different view:
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log p(y|C, x, γ,G) =
V∑

v=1

log p(yv|Cv, x, γv, G) (3)

where γ = γ1, γ2, · · · , γV is a set of scale parameters. The log-likelihood compo-
nent specific to each view is given by:

log p(yv|Cv, x, γv, G) = − ε

2
‖

N∑

n=1

y
n
v ‖2 − 1

2

N∑

n=1

N∑

m=1

η
nm

γv‖Δ
m,n
yv

− C
n
v Δ

m,n
x ‖2

+ const. (4)

where Δm,n
x = xm −xn and Δm,n

yv
= ym

v −yn
v . The double-summation term in the

above equation encodes the assertion that Cn
v Δm,n

xv
≈ Δm,n

yv
, or that the assumed

manifolds are locally linear.
Following [7], it is straightforward to show that x and yv ∀v ∈ [1..V ] are

normally distributed, and Cv ∀v ∈ [1..V ] follow the matrix-normal distribution.
More specifically,

x|G,α ∼ N (0, Σ0
x), (5)

Cv|G ∼ MN (0, Idyv
, Σ0

Cv
),∀v ∈ [1..V ], (6)

yv|Cv, x, γv, G ∼ N (μ0
yv

, Σ0
yv

),∀v ∈ [1..V ], (7)

where for Σ−1
x = αIdxN + 2L ⊗ Idx

and L = diag(G1N ) − G is the graph
Laplacian matrix of G. The prior covariance Σ0

C
−1 = εJJT + 2L ⊗ Idx

is the
same for all view distributions. The likelihood parameters are Σ0

yv

−1 = (ε1N1T
N +

2γvL) ⊗ Idyv
, μ0

yv
= Σ0

yv
ev, where ev = [e1T

v , e1T
v , · · · , eNT

v ]T ∈ RdyvN , en
v =

−∑N
m=1 ηmnγv(Cm

v + Cn
v )Δm,n

x .

2.2 Solution with Variational Inference

Solving the model amounts to calculating the posterior distributions for the
shared coordinates x and the sets of linear projections Cv,∀v ∈ [1..V ], as well
as the non-stochastic parameters {γv}V

v=1 and α. As an exact calculation of the
posterior is intractable, we employ variational inference [2] to approximate it.
In VI, the model is solved by iterating between optimizing the Kullback-Leibler
divergence KL(q||p) of the posterior estimate q and the actual posterior p, and
optimizing a lower bound L of the model likelihood. In our model, the variational
lower bound L is defined as

L(q, C, x, γ, α) =
∫

C,x

q(C, x) log
p(y, C, x|G, γ, α)

q(C, x)
dCdx. (8)

According to VI theory, the posteriors of the latent variables are estimated
by taking expectations of the model joint distribution, in our case p(C, x|G, γ, α),
over all latent variables except the one that is being computed. Formally, for the
approximate posteriors q∗(x), q∗(C1), q∗(C2), · · · , q∗(CV ) we have

log q∗(x) =<log p(y, C, x|G, γ, α)>C +const. (9)
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log q∗(Cv) =<log p(y, C, x|G, γ, α)>x,C1,··· ,Cv−1,Cv+1,··· ,CV +const., ∀v ∈ [1..V ] (10)

Key to model tractability with VI is the fact that the log-likelihood term
(Eq. 4) can be written as a quadratic function in both x and C. More specifically,

log p(y|C, x, γ,G) = −1
2
[xT {

V∑

v=1

Av}x − 2xT {
V∑

v=1

bv}] + Zx, (11)

= −1
2

V∑

v=1

Tr[ΓvCT
v Cv − 2γvCT

v H] + ZC (12)

where we followed [7] in a related calculation, and Zx,ZC contain terms not
depending on x or C respectively. Matrix Av is of size Ndx × Ndx and bv is of
size Ndx ×1. Matrix Γv is of size Ndx ×Ndx. Hence all priors x, C1, C2, · · · , CV

are conjugate to the likelihood and VI is tractable.
Variational E step update of q(x): Equation (9) can be further decomposed

to
log q∗(x) =<log p(y|C, x, γ,G)>C + log p(x|G,α) + const.

= −1
2

V∑

v=1

[xT Avx − 2xT bv] − 1
2
[xT Σ−1(0)

x ] + const.

where we have used Eqs. (5) and (11). As the non-constant terms are quadratic in
x, the approximate posterior of x is Gaussian. Thus we have q∗(x) = N (x|μx, Σx)
with

Σ−1
x = Σ−1(0)

x +
V∑

v=1

<Av>Cv
, (13)

μx =<x>= Σx

V∑

v=1

<bv>Cv
. (14)

We also calculate the expectation <xxT>, useful for some later updates,

<xnxmT>= Σnm
x + <xn><xm>T , (15)

where Σnm
x is the (n,m)th chunk of size dx ×dx of this matrix. Expectations for

Av and bv can be derived following a related calculation in [7]. We show updates
for all dx × dx-sized chunks of the Ndx × Ndx-sized matrix Av, and updates for
all dx-sized chunks of the Ndx-sized matrix bv:

<Anm
v >Cv

= γ2
v

N∑

p=1

N∑

q=1

{[L̂pq
v − L̂pm

v − L̂nq
v + L̂nm

v ]ηpnηqm

× <CpT
v Cq

v + CpT
v Cm

v + CnT
v Cq

v + CnT
v Cm

v >Cv
}, (16)

<bn
v>Cv

= γv

N∑

m=1

ηnm{<Cm
v >T (yn

v − ym
v )− <Cn

v >T (ym
v − yn

v )}, (17)
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where the quantity L̂v for each v is equal to (ε11T + 2γvL)−1.
Variational E step update of q(Cv), v ∈ [1..V ]: We decompose Eq. (10) as:

log q∗(Cv) = −1
2

V∑

v=1

Tr[ΓvCT
v Cv −2γvCT

v H]+MN (0, Idyv
, Σ0

C)+const., (18)

where we wrote the likelihood function in terms of Cv using Eq. (12). The approx-
imate posterior distribution for the vth view projection matrix Cv can thus be
written as a matrix normal distribution q∗(Cv) = MN (μCv

, Idyv
, ΣCv

) with

Σ−1
Cv

= Σ
−1(0)
Cv

+ <Γv>x, (19)

<CnT
v Cm

v >x=<Cn
v >T

x <Cm
v >x +dyΣnm

Cv
, (20)

where Σnm
Cv

is the (n,m)th chunk of size dx × dx, and Cn
v is the nth chunk of the

respective matrices. Also,

μCv
=<Cv>x= γ <Hv>x ΣCv

. (21)

Finally, expectations for quantities Γv and Hv are given as:

<Γnm
v >x= γ2

v

N∑

p=1

N∑

q=1

{[L̂pq
v − L̂pm

v − L̂nq
v + L̂nm

v ]ηpnηqm

× <xpxqT − xpxmT − xnxqT + xnxmT>x}, (22)

<Hn
v >x=

N∑

m=1

ηnm(ym
v <xm>T

x −ym
v <xn>T

x −ym
v <xm>T

x +ym
v <xn>T

x ).

(23)
Variational M step update of α, γv, ∀v ∈ [1..V ]: In the maximization step we
optimize the variation lower bound with respect to non-stochastic parameters α
and γv, ∀v ∈ [1..V ]. The update of α is identical to the one for the single-view
case [7]. The update for γv is similar to the update for γ of [7], save that for
each view it is now calculated over yv and the statistics of Cv instead of y and
C respectively.

We alternate the aforementioned E-step updates for the approximate poste-
rior of x (Eqs. 13–17), the approximate posterior of C (Eqs. 19–23) and M-step
updates until convergence.

2.3 Estimation of Missing Views for New Data

Given a previously unseen datum ynew for which only part of all the V views are
observed, we can use the trained model to estimate the missing views. In order
to do this, first we add the new datum to the training set and re-compute the
E-step for the new datum only, keeping posteriors for the original trained data
and deterministic parameters fixed. The new observation is added to the previous
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graph structure by computing its nearest neighbours. Using the E-step equations
gives us an estimate of the posterior distributions q(xnew) and q(Cnew) for the
new datum. These steps let us effectively project the new observation onto the
manifold, a process known in the literature as out-of-sample projection [7].

The set of missing views v̂ of ynew are treated also as latent variables,
for which we require their approximate posterior distribution q(y). Hence the
joint posterior now also includes q({ynew

v }v∈v̂), decomposed using the mean field
approximation [2] into {q(ynew

v )}v∈v̂. In order to estimate the posterior for miss-
ing view v, we compute the expectation of the model evidence. This is formally
written as

logq∗(ynew
v ) =<logp(yv, Cv, x|G, γv, α)>x,Cv

+const. (24)

The above equation, combined with the likelihood formula (Eq. 4), where we have
kept all observations fixed except ynew, gives a posterior Normal distribution
N (ynew

v |mnew
v , Snew

v ) with statistics given by

Snew
v = (2γv

N∑

m=1

ηm,new + ε)−1Idyv
(25)

m
new
v = S

new
v (2γv

N∑

m=1

{η
m,new

[y
n
+ 1/2(<C

new
v > + <C

m
v >) <Δ

new,m
x >]} − ε

2

N∑

m=1

y
m
v ) (26)

In summary, in order to estimate the missing views of an unseen datum ynew

we iterate through the E- step updates for the approximate posterior of xnew

(Eqs. 13–17), the approximate posterior of Cnew (Eqs. 19–23) and the approxi-
mate posterior for ynew (Eqs. 25 and 26), keeping fixed the deterministic model
parameters and all other point posteriors1.

3 Experiments

3.1 Dataset

We have experimented with data from the OASIS database [6]. In our evaluation
we have included the 198 subjects aged 60 or more found in the cross-sectional
set of OASIS. 100 of these subjects have been diagnosed with very mild to
moderate AD. The rest of the subjects are used as controls. We have used in total
4 views/modes for each subject. The two first views are the clinical scores Mini-
mental State Exam (MMSE) and Clinical Dementia Rating (CDR). The other
two views correspond to shape information for the left and the right hippocampus
of each subject respectively. The volumetric characteristics of the hippocampus
are known to be correlated with the advance of AD [9].

In order to create the shape views, we have first segmented the OASIS T1-
modulated MR images with Freesurfer [3]. We have then computed deformation
1 MATLAB code that implements training and missing view estimation using the
presented model is available at https://github.com/sfikas/mll-lvm/.

https://github.com/sfikas/mll-lvm/
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fields for each volume, given as the output of matching with an in-set template
image. The template, one for each hippocampus, was chosen as the medoid image
within the sets of left and right hippocampi. The medoid was taken with respect
to a distance metric that is analogous to the total magnitude of the deformation
field required to perform a matching non-rigid deformation between volumes [4].
Deformation fields are subsampled to 25% of the original length of each axis,
resulting in 11× 15× 8 and 12× 14× 9-sized fields of R3 vectors. These volumes
are further vectorized into descriptors of 3960 and 4536 dimensions respectively.

We partitioned our dataset into a training set and a test set. The training
set was used to learn the parameters of our model, and the test set was used
to evaluate the model. We assigned the first 80% of the data (first in the sense
of lexicographical OASIS id order) to the training set, and the rest to the test
set. Mean clinical scores for both training and test differ by less than 10−2

(CDR) and 0.5 (MMSE) to the respective statistics of the full set (CDR = 0.2
and MMSE = 27 respectively).

3.2 Experimental Setup

Before proceeding to any tests we computed the neighbourhood structure G. To
this end, a distance ζnm for all pairs of subjects (n, m) in the training set was first
calculated. This distance fusions view-specific distances are ζnm =

∑V
v=1 ζnm

v .
The view-specific distances are Euclidean distances over normalized view data.
We computed embeddings with dx = 2, which can be examined in Fig. 2, along
with an overlay of clinical score values.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

Fig. 2. Computed embedding given clinical score and shape information of the training
data (N = 158 subjects). Approximate posterior mean values for x are shown, per
subject. Point colours correspond to (a) CDR scores (b) MMSE scores. (Color figure
online)

Estimating clinical scores given shape data: In the first experiment, we assumed
that only shape information (views 3 and 4) was known for the test set subjects. For
each test subject, we estimate the posterior distribution of its clinical scores (views
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Table 1. Clinical score estimation given hippocampus shape data. We show the
moments of the Gaussian posterior distribution of the clinical scores (mean ±
st.deviation) for all the 40 test set subjects. Significant statistical correlation is reported
between estimate means and ground truth for both CDR and MMSE (bottom row).

OASIS id CDR MMSE

Estimate Actual Estimate Actual

Control subjects

363 0.16 ± 0.32 0.00 28.3 ± 4.0 30.0

365 0.41 ± 0.32 0.00 24.4 ± 4.0 30.0

369 0.23 ± 0.05 0.00 27.3 ± 0.7 28.0

371 0.22 ± 0.07 0.00 27.6 ± 0.9 30.0

373 0.16 ± 0.32 0.00 28.4 ± 4.0 30.0

374 0.16 ± 0.32 0.00 28.3 ± 4.0 29.0

380 0.16 ± 0.32 0.00 28.3 ± 4.0 29.0

382 0.16 ± 0.32 0.00 27.8 ± 4.0 28.0

388 0.27 ± 0.09 0.00 26.8 ± 1.1 29.0

390 0.16 ± 0.32 0.00 27.3 ± 4.0 28.0

398 0.21 ± 0.10 0.00 27.9 ± 1.2 29.0

399 0.41 ± 0.32 0.00 26.9 ± 4.0 29.0

400 0.23 ± 0.07 0.00 27.0 ± 0.8 30.0

402 0.22 ± 0.11 0.00 27.4 ± 1.3 29.0

404 0.18 ± 0.10 0.00 28.0 ± 1.2 28.0

405 0.16 ± 0.32 0.00 28.4 ± 4.0 30.0

411 0.41 ± 0.32 0.00 27.4 ± 4.0 26.0

AD subjects

418 0.66 ± 0.32 1.00 20.8 ± 4.0 20.0

422 0.16 ± 0.09 0.50 27.8 ± 1.1 29.0

423 0.16 ± 0.32 0.50 26.3 ± 4.0 18.0

424 0.28 ± 0.23 1.00 25.9 ± 2.8 15.0

425 0.41 ± 0.13 1.00 26.1 ± 1.6 22.0

426 0.24 ± 0.19 0.50 28.0 ± 2.3 24.0

428 0.66 ± 0.32 1.00 24.4 ± 4.0 29.0

430 0.41 ± 0.32 0.50 23.4 ± 4.0 25.0

432 0.67 ± 0.32 0.50 26.3 ± 4.0 30.0

438 0.16 ± 0.32 1.00 27.9 ± 4.0 23.0

440 0.32 ± 0.10 0.50 27.4 ± 1.2 29.0

441 0.18 ± 0.10 0.50 27.7 ± 1.2 28.0

445 0.29 ± 0.23 1.00 28.3 ± 2.8 20.0

446 0.41 ± 0.32 1.00 24.8 ± 4.0 23.0

447 0.41 ± 0.32 1.00 22.3 ± 4.0 17.0

449 0.23 ± 0.12 0.50 27.0 ± 1.5 26.0

451 0.32 ± 0.19 0.50 26.0 ± 2.3 27.0

452 0.41 ± 0.32 0.50 28.4 ± 4.0 29.0

453 0.41 ± 0.32 0.50 26.4 ± 4.0 24.0

454 0.16 ± 0.32 0.50 28.4 ± 4.0 27.0

455 0.25 ± 0.19 1.00 27.9 ± 2.3 22.0

456 0.16 ± 0.23 0.50 28.1 ± 2.8 29.0

457 0.16 ± 0.32 0.50 27.9 ± 4.0 23.0

r p-value r p-value

corr.coeff. 0.43 0.006 0.44 0.004
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Left hippocampus Right hippocampus Right hippocampus
reconstruction

id 363
(control subject)

id 428
(probable AD patient)

Fig. 3. Estimation of the right hippocampus given the left hippocampus shape data.
We show reconstructions for a probable AD patient as well as for a control subject.
Left column: Left hippocampus shapes on which the estimate is conditioned. Middle
column: Right hippocampus ground truth data, shown here for comparison. Right
column: Right hippocampus posterior mean, calculated with the proposed algorithm.

1 and 2), using the method described in Sect. 2.3. In order to fit the new datum onto
the neighbourhood structure G, we assigned neighbours according to a distance
threshold chosen so that the mean number of neighbours is closest to k = 5. Data
without neighbours are assigned their nearest neighbour to their neighbourhood.

We can see an overview of the results in Table 1. Note that all estimates
are computed as posterior probability density functions. The moments of the
posterior Gaussians are reported for all test set subjects, alongside with the
ground truth values. The correlation coefficient between estimate mean values
and ground truth is also computed. The results clearly indicate that there is sta-
tistically significant correlation between estimates and actual values. This result
agrees with the fact, known from the related literature, that hippocampus shape
and the progression of neurogenerative diseases such as AD are correlated [4],
hence validating the usefulness of the proposed MLL-LVM model. Furthermore,
our results come all in the form of pdfs, measuring estimation uncertainty in a
natural and principled manner, in line with the model assumptions.

Estimating shape data given shape data: We have experimented with using the
proposed model to calculate an estimate of missing shape data given existing
shape data. To this end, we have trained our model with the set of left and
right hippocampus shape data. We have assumed that the test set now contains
information only about the left hippocampus. In other words, for the 40 images
of the test we now assume only the right hippocampus shape view as available,
while the left hippocampus shape is missing. We have calculated posterior dis-
tribution approximations of the right hippocampus shape given the model and
the observed test left hippocampus. We show visual results in Fig. 3. The results
show that the estimate right hippocampus is reasonably similar to the ground
truth right hippocampus. Again, estimates are computed in the form of pdfs.
Here however we show only mean volumes, due to visualization constraints.
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4 Conclusion

We have presented a novel Bayesian model for manifold learning, and tested it on
a set of medical data. The model assumes that observed values are comprised of
a number of heterogenous views. The solution has been shown to be feasible with
approximate inference. The proposed model also allows new test data to have
one or more of their views missing; we have shown how to compute estimates
of these views, in a manner that is consistent with the definition of model. All
estimates are computed in the form of posterior probability distributions.

In perspective, the model can be used with any number and combination of
modes. Other imaging modalities could be used as modes, or other descriptors
that characterize other parts of the brain. Extensions of the probabilistic model
could also be considered. For example, replacing the binary neighbourhood graph
with a more flexible alternative could be envisaged, in the spirit of the continuous
line process model of [8].
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Abstract. Rigid slice-to-volume registration is a challenging task, which
finds application in medical imaging problems like image fusion for image
guided surgeries and motion correction for volume reconstruction. It is
usually formulated as an optimization problem and solved using stan-
dard continuous methods. In this paper, we discuss how this task be
formulated as a discrete labeling problem on a graph. Inspired by previ-
ous works on discrete estimation of linear transformations using Markov
Random Fields (MRFs), we model it using a pairwise MRF, where the
nodes are associated to the rigid parameters, and the edges encode the
relation between the variables. We compare the performance of the pro-
posed method to a continuous formulation optimized using simplex, and
we discuss how it can be used to further improve the accuracy of our
approach. Promising results are obtained using a monomodal dataset
composed of magnetic resonance images (MRI) of a beating heart.

1 Introduction

Slice-to-volume registration has received increasing attention during the last
decades within the medical imaging community. Given a tomographic 2D slice
and a 3D volume as input, this challenging problem consists in finding the slice
(extracted from the input volume and specified by an arbitrary rigid transfor-
mation) that best matches the 2D input image. We stress the fact that we are
working with 2D slices (e.g. ultrasound (US)) as opposed to projective 2D images
(e.g. X-ray images). This is important since both problems are usually refereed
as 2D/3D registration, even if they are intrinsically different. In slice-to-volume
registration, every pixel from the 2D image corresponds to a single voxel in 3D
space. However, in a projective 2D image every pixel represents a projection of
voxels from a given viewpoint.

One can formulate different versions of slice-to-volume registration, depend-
ing on several aspects of the problem such as the matching criterion used to
determine the similarity between the images, the transformation model we aim
at estimating, the optimization strategy used to infer the optimal transformation
model (continuous or discrete) and the number of slices given as input. In this
work, we propose an iconic method (where the matching criterion is defined as
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 172–185, 2017.
DOI: 10.1007/978-3-319-61188-4 16
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a function of the image intensity values) to infer rigid transformation models
(specified using 6-DOF). The input consists of a single slice and a single volume,
and we formulate it as a discrete optimization problem.

Discrete methods, where the tasks are usually formulated as a discrete label-
ing problem on a graph, have become a popular strategy to model vision prob-
lems [24] (and particularly, biomedical vision problems [19]) thanks to their
modularity, efficiency, robustness and theoretical simplicity. This paper presents
a graph-based formulation (inspired by the work of [26,27]) to solve rigid
(only) slice-to-volume registration using discrete methods. As we will discuss in
Sect. 1.2, other works have tackled similar problems. However, to date, no work
has shown the potential of discrete methods to deal with rigid slice-to-volume
registration. Our main contribution is to put a new spin on graph-based registra-
tion theory, by demonstrating that discrete methods and graphical models are
suitable to estimate rigid transformations mapping slice-to-volume. We validate
our approach using a dataset of magnetic resonance images (MRI) of the heart,
and we compare its performance with a state-of-the-art approach based on con-
tinuous optimization using simplex method. Moreover, in the spirit of encour-
aging reproducible research, we make the source code of the application pub-
licly available at the following website: https://gitlab.com/franco.stramana1/
slice-to-volume.

1.1 Motivation

In the extensive literature of medical image registration, it is possible to identify
two main problems which motivated the development of slice-to-volume registra-
tion methods during the last decades. The first one is the fusion of pre-operative
high-definition volumetric images with intra-operative tomographic slices to per-
form diagnostic and minimally invasive surgeries. In this case, slice-to-volume
registration is one of the enabling technologies for computer-aided image guid-
ance, bringing high-resolution pre-operative data into the operating room to
provide more realistic information about the patient’s anatomy [17]. This tech-
nique has been used when dealing with several scenarios such as liver surgery
[1], radio-frequency thermal ablation of prostate cancer [5], minimally invasive
cardiac procedures [12], among many others.

The second problem is the correction of slicewise motion in volumetric acqui-
sitions. In a variety of situations, inter slice motion may appear when capturing
a volumetric image. For example, in case of fetal brain imaging (essential to
understand neurodevelopmental disabilities in childhood and infancy) [21], fetus
motion generates inconsistencies due to the slice acquisition time. Another case is
related to functional magnetic resonance images (fMRI), usually acquired as time
series of multislice single-shot echoplanar images (EPI). Patient head motion
during the experiments may introduce artifacts on activation signal analysis.
Slice-to-volume registration can be used to alleviate this problem by register-
ing every slice to an anatomical volumetric reference following the well-know
map-slice-to-volume (MSV) method [13].

https://gitlab.com/franco.stramana1/slice-to-volume
https://gitlab.com/franco.stramana1/slice-to-volume
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1.2 Previous Work

Graph-based image registration, where the task is conceived as a discrete labeling
problem on a graph, constitutes one of the most efficient and accurate state-of-
the-art methods for image registration [22]. Even if they have shown to be partic-
ularly suitable to estimate deformable non-linear transformations [10,11], they
were also adapted to the linear case [27]. Most of the publications on the field
focus on registering images which are in dimensional correspondence (2D/2D or
3D/3D). In case of projective 2D/3D image registration, only linear transforma-
tions were estimated using discrete methods by [26,27]. More recently, several
graph-based approaches to perform deformable slice-to-volume registration were
introduced in [6–8]. In these works, rigid transformations were computed as a
by-product of the deformable parameters, leading to unnecessary computational
burden (since rigid transformations are by far lower dimensional than deformable
ones). To the best of our knowledge, rigid (only) slice-to-volume registration has
not been formulated within this powerful framework. To date, all the methods
focusing on this challenging problem are based on continuous (e.g. simplex [5],
gradient descent [21], Powell’s method [9], etc.) or heuristic approaches (evo-
lutionary algorithms [23], simulated annealing [2]), missing the aforementioned
advantages offered by discrete optimization. Based on the work of [26], we pro-
pose a discrete Markov Random Field (MRF) formulation of this problem, deliv-
ering more precise results than the state-of-the-art continuous approaches. More-
over, inspired by the work of [16] in the context of vector flow estimation, we
discuss how continuous state-of-the-art approaches can be used to further refine
the rigid transformations obtained through discrete optimization, resulting in
more accurate solutions.

2 Rigid Slice-to-Volume Registration Through Markov
Random Fields

We formulate rigid slice-to-volume registration as an optimization problem.
Given a 2D image I : ΩI ∈ �2 → �, and a 3D image J : ΩJ ∈ �3 → �, we aim
at recovering the rigid transformation specified by π = (rx, ry, rz, tx, ty, tz) that
better aligns both images, by solving:

π̂ = argmin
π

M(I, π[J ]), (1)

where π[J ] corresponds to the slice extracted from image J (using trilinear inter-
polation) and specified by the rigid transformation π (as explained in Fig. 1).
M is the so-called matching criteria, that quantifies the dissimilarity between
the 2D image I and the slice π[J ]. Alternative matching criteria can be adopted
depending on the type of images we are registering. For example, in monomodal
cases where intensities tend to be linearly correlated in both images, simple func-
tions such as sum of absolute differences (SAD) or sum of squared differences
(SSD) may make the job. However, for more complicated cases like multimodal
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Fig. 1. Interpretation of the components of Eq. 1. (a) Image I corresponds to the
input 2D image, which is moved by different rigid transformations π. (b) Image J
corresponds to the 3D image. Given a rigid transformation π, a slice π[J ] is extracted
(using trilinear interpolation). In that way, it is possible to explore the space of solutions
by sampling several rigid transformations π. (c) The matching criterion M quantifies
the dissimilarity of both 2D images, I and π[J ]. Higher values indicate dissimilar images
while lower values indicate better alignment.

registration (where the relation between intensity values in both images is usu-
ally non-linear), more elaborated functions like mutual information (MI) are
applied.

This optimization problem is commonly solved through continuous (gradient
or non-gradient based) methods, which are considerably sensible to initialization
and may be stuck in local minima. As discussed in Sect. 1.2, in this work we
model rigid slice-to-volume registration as a discrete labeling problem following
the discretization strategy proposed by [27].

2.1 Rigid Slice-to-Volume Registration as a Discrete Labeling
Problem

Rigid slice-to-volume registration, as well as many other problems in computer
vision, can be formulated as a discrete labeling problem on a pairwise Markov
Random Field (MRF) [24]. Formally, a discrete pairwise MRF is an undirected
graph G = 〈V, E〉, where each node vi ∈ V, i = 1...|V| represents a discrete vari-
able. Any two variables vi, vj depend on each other if there is an edge (vi, vj) ∈ E
linking the corresponding nodes. The range of values that can be assigned to a
discrete variable is determined by the label space L. A discrete labeling problem
on a pairwise MRF consists on assigning a label li ∈ L to every vi ∈ V, such
that the following energy is minimized:

P(x;G,F ) =
∑

vi∈V

gi(li) +
∑

(vi,vj)∈E
fij(li, lj), (2)
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where x = {l1, ..., ln} is a labeling assigning a label li to every vi ∈ V, G =
{gi(·)} are the unary potentials associated to vi ∈ V and F = {fij(·, ·)} are the
pairwise potentials associated to edges (vi, vj) ∈ E . These functions return scalar
values when labels li are assigned to variables vi. Since we pose the optimization
as a minimization problem, potentials must associate lower values to labelings
representing good solutions, and higher values otherwise.

In the formulation presented in Eq. 1, one would like to explore the space of
parameters π and chose the values giving the best matching. Since we are model-
ing it as a discrete problem, we must adopt a discretization strategy for the (nat-
urally) continuous space of rigid transformations π. In [27], authors proved that
it is possible to estimate linear (an particularly, rigid body) transformations by
solving a discrete and approximated version of this formulation. Following their
proposal, we model rigid slice-to-volume registration through a graph G = 〈V, E〉,
associating every parameter of the rigid transformation π = (rx, ry, rz, tx, ty, tz)
to a variable vi ∈ V, giving a total of 6 variables (nodes in the graph). G is a
fully connected pairwise graph where E = {(vi, vj)},∀i �= j, meaning that all
variables (parameters) depend on each other. Note that this pairwise model is
clearly an approximation, since the real dependency between the parameters is
not pairwise but high-order. However, as stated in [27], similar approximations
have shown to be good enough to estimate linear transformations, while making
the problem tractable.

In our discrete strategy, every parameter vi is updated through a dis-
crete variation dli associated to the label li. Given an initial transformation
π0 = (r0x, r0y, r0z , t0x, t0y, t0z), we explore the space of solutions by sampling dis-
crete variations of π0, and choosing the one that generates the slice π[J ]
best matching image I. Therefore, for a maximum size ωi and a quantiza-
tion factor κi, we consider the following variations to the initial estimate of vi:
{0,±ωi

κi
,± 2ωi

κi
,± 3ωi

κi
, ...,±κiωi

κi
}. The total number of labels results |L| = 2κ + 1.

Note that 0 is always included since we give the possibility of keeping the current
parameter estimate. For example, in case that v0 corresponds to rx, ω0 = 0.2
and κ0 = 2, the label space of v0 will correspond to {r0x, r0x ± 0.1, r0x ± 0.2}.

Ideally, we would like to explore the complete search space around π0 given
by all possible combinations of labels. Since we have an exponential number of
potential solutions, we adopt a pairwise approximation where only variations
for pairs of variables are considered. This variations are encoded in the pairwise
terms of the energy defined in Eq. 2 as fij(li, lj) = M(I, πli,lj [J ]). Here πli,lj

denotes the updated version of π0, where only vi and vj were modified according
to the labels li and lj , while the rest of the parameters remained fixed. Unary
potentials gi are not considered since we are only interested in the interaction
between variables. Therefore, the discrete version of the optimization problem
introduced in Eq. 1 becomes:

x̂ = argmin
x

P(x;F ) = argmin
x

∑

(vi,vj)∈E
M(I, πli,lj [J ]), (3)

where the optimal labeling x̂ represents the final rigid transformation π̂ used to
extract the solution slice π̂[J ].
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2.2 Discrete Optimization

We solve the discrete multi-labeling problem from Eq. 3 using FastPD. FastPD
is a discrete optimization algorithm based on principles from linear program-
ming and primal dual strategies, which at the same time generalizes the well
known α-expansion [15]. One of the main advantages of FastPD is its modu-
larity/scalability, since it deals with a much wider class of problems than α-
expansion, being an order of magnitude faster while providing the same opti-
mality guarantees when performing metric labeling [14]. Our problem does not
fulfill the conditions to be considered a metric labeling problem (we refer the
reader to [4] for a complete discussion about metric labeling); however, FastPD
has shown promising results for similar formulations [27].

FastPD solves a series of max-flow min-cut [3] problems on a graph. In that
sense, it is similar to α-expansion which also performs discrete inference on
multi-label problems by solving successive binary max-flow min-cut problems.
The main difference between these approaches is the construction of the graph
where max-flow min-cut algorithm is applied. α-expansion constructs the binary
problem by restricting the label space, so that the only options for a given
variable are to remain in its current assignment, or to take a label α (which
varies in every iteration). Instead, FastPD constructs these binary problems by
performing a Linear Programming Relaxation (LPR) of the integer program that
represents the discrete MRF formulation.

2.3 Incremental Approach

Discrete approximations of continuous spaces usually suffer from low accuracy
(since it is bounded by the quality of the discretization). Thus, we adopt an
incremental approach to explore the space of solutions in a finer way. The idea
is to successively solve the problem from Eq. 3, using the solution from time t as
initialization for time t + 1, keeping a fixed number of labels but decreasing the
maximum sizes ωi in a factor αi. Moreover, we also adopt a pyramidal approach,
where we generate a Gaussian pyramid for both input images I and J , and we
run the complete incremental approach on every level of the pyramid. In that
way, we increase the capture range of our method.

2.4 Simplex Refinement Step

Let us advance one of the conclusions of this work, so that we can motivate the
last step of our approach. In Sect. 3.1, we compare the performance of our dis-
crete approach with a continuous method based on simplex [18] algorithm. As we
will see, when the initialization π0 is good enough, both continuous and discrete
approaches perform well. In fact, in some cases, simplex is delivering more accu-
rate solutions than discrete. However, as we move away from the initialization,
discrete optimization gives more and more significant improvements, thanks to
its wider capture range. In order to improve the accuracy of our proposal, and
inspired by similar conclusions discussed by [16] in the context of vector flow
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Fig. 2. Visual results for two slices of the individual tests. The first column corresponds
to the input 2D slice. The second column shows the difference between the input 2D
slice and the initial slice. The other columns show the difference between the input and
the one resulting slices applying simplex, discrete and refined approaches. Grey values
indicate no difference, while white and black value indicate inconsistencies. As it can
be observed, the solution given by the refined approach is outperforming the others.

estimation, we refine the results obtained with our approach by optimizing Eq. 1
through simplex, using the discrete solution as initialization.

3 Experiments and Results

In this section, we present the results obtained using the proposed method (con-
sidering also the refined version), and we compare them with a state-of-the-art
approach based on continuous optimization trough downhill simplex [18] (also
known as Nelder-Mead or amoeba method). Simplex is one of the most popu-
lar optimization algorithms used to deal with rigid slice-to-volume registration
(some examples are [2,13,20,25]). It is a continuous and derivative-free method,
which relies on the notion of simplex (which is a special polytope of n+1 vertices
living in a n-dimensional space) to explore the space of solutions in a systematic
way. We used a dataset composed of MRI images of a beating heart. Given an
initial sequence of 3D images Mi, i = 0..19 of a beating heart (with a resolution
of 192 × 192 × 11 voxels and a voxel size of 1.25 × 1.25 × 8mm), we generated
slices which were used for two different experiments.

3.1 Implementation Details and Parameters Setting

We implemented the three versions of the algorithms discussed in this paper
(simplex, discrete and refined) mainly using Python and ITK for image
manipulation1. For simplex optimization we used the method implemented
1 The source code can be downloaded from https://gitlab.com/franco.stramana1/

slice-to-volume.

https://gitlab.com/franco.stramana1/slice-to-volume
https://gitlab.com/franco.stramana1/slice-to-volume
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in scipy.optimize package, while discrete optimization was performed using a
Python wrapped version of the standard C++ implementation of FastPD. In
all the experiments, we used a pyramidal approach with 4 Gaussian levels (3D
images where not downsampled in z axis because of the low resolution of the
images in this direction). The matching criterion adopted in all the experiments
was the sum of squared differences, since pixel intensities are equivalent in both
2D and 3D images. The matching criterion M based on SSD is simply defined
as:

M(I1, I2) =
∑

i∈Ω

(I1(i) − I2(i))2, (4)

For the discrete case, at every pyramid level we decreased the maximum
label size for both, rotation (ωrot = [0.02, 0.015, 0.0125, 0.01]rad) and transla-
tion (ωtrans = [7, 6.5, 6, 5] mm) parameters. Starting from these maximum sizes,
we solved Eq. 3 running FastPD several times per level until no improvement is
produced or a maximum number of iterations is achieved ([200, 100, 150, 600]),
using different label space decreasing factors at every pyramid level (α = [0.08,
0.07, 0.05, 0.03]). The total number of labels was fixed to 5 (κ = 2) for all the
experiments. For the continuous case (where Eq. 1 was optimized using simplex),
we used again a 4-levels pyramidal approach, with simplex running until conver-
gence in every level. Finally, for the refined experiment, we just ran the simplex
experiment initialized with the solution estimated with the discrete method.
For every registration case, continuous approach took around 30secs while the
discrete version took 9mins, running on a laptop with an Intel i7-4720HQ and
16 GB of RAM.

3.2 Experiments

We performed two different type of experiments, considering individual registra-
tion cases as well as image series. For validation, we measured three different
indicators: the distance in terms of translation and rotation parameters between
the estimated and ground truth transformations, together with the mean of
absolute differences (MAD) between the input 2D image and the slice specified
by the estimated rigid transformation.

Individual tests. The first set of experiments measures the accuracy of the
three approaches using individual tests, where 100 random slices extracted from
the 20 volumes are considered as single images (independently of the series), and
registered to the first volume M0. We run the same experiment for every slice
using three different initializations (resulting in 300 registration cases), where
ground truth parameters were randomly perturbed in three different ranges ([5,
12), [12, 18), [18, 25) millimeters for translation and [0.1, 0.2), [0.2, 0.3), [0.3,
0.4) radians for rotation parameters) to guarantee that both, good and bad
initializations, are considered for every slice. Quantitative results are reported in
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Fig. 3. Individual tests where 100 2D slices (extracted at locations specified using
random rigid transformations) are considered as independent registration cases. Every
point form the scatter plot represents the mean of absolute differences (MAD) between
the input 2D image and the slice extracted at the initial position (X axis) vs the
estimated position (Y axis). We also include a linear trend estimation (fitted using
least squares method) to compare the robustness of the method to bad initializations.

Table 1. Average error estimated in terms of rotation (expressed in radians), transla-
tion (expressed in millimeters) and MAD for the three alternative approaches discussed
in this paper. As it can be observed, the discrete and refined methods outperform the
standard continuous approach optimized through simplex.

Method Rx Ry Rz Tx Ty Tz MAD

Simplex 0,14 0,13 0,12 8,46 9,62 10,69 51,88

Discrete 0,12 0,08 0,09 5,87 6,72 6,18 42,36

Refined 0,10 0,07 0,08 5,09 5,96 4,92 36,45

Figs. 3 and 4 and summarized in Table 1. Visual results for qualitative evaluation
are reported in Fig. 2.

Results in the scatter plot from Fig. 3 indicate that, as we go farther away
from the initialization (in this case, it is quantified by the MAD between the
input 2D image and the slice corresponding to the initialization), discrete and
refined methods tend to be more robust. This robustness is clearly reflected by
the slope of the trend lines: the refined method presents the trend line with
the lower slope, meaning that even for bad initializations it converges to better
solutions. The boxplot from Fig. 4 and the numerical results from Table 1 confirm
that discrete and refined methods perform better not only in terms of MAD, but
also with respect to the distance between the rotation/translation estimated and
ground truth parameters.
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Fig. 4. Boxplot corresponding to the estimated error (in terms of rotation and trans-
lation parameters) for the 300 individual tests. As it can be observed, discrete and
refined approaches are reducing both the mean error (shown as a dotted line in every
box) and the dispersion.

Temporal series test. The idea behind the second experiment is to simulate an
image guided surgery (IGS) scenario, where a fixed pre-operative volume must
be fused with consecutive intra-operative 2D images suffering deformations (in
this case, due to heart beating). Given the temporal sequence of 20 volumetric
MRI images Mi, i = 0..19, we generated a sequence of 20 2D slices to validate
our method. It was extracted as in [8]: starting from a random initial translation
T0 = (Tx0 , Ty0 , Tz0) and rotation R0 = (Rx0 , Ry0 , Rz0), we extracted a 2D slice
I0 from the initial volume M0. Gaussian noise was added to every parameter
in order to generate the position used to extract the next slice from the next
volume. We used σr = 3◦ for the rotation and σt = 5mm for the translation para-
meters. All the slices were registered to the first volume M0. The solution of the
registration problem for slice Ii was used as initialization for the slice Ii+1. The
first experiment was initialized randomly perturbing its ground truth transfor-
mation with the same noise parameters. As it can be observed in Fig. 5, discrete
and refined approaches manage to keep a good estimation error while simplex
can not. Note that different strategies could be used in real scenarios to obtain
good initializations for the first slice. For example, in IGS, physicians could start
from a plane showing always the same anatomical structure, or identify land-
mark correspondences in the first slice and the 3D image useful to estimate an
initial transformation.
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Fig. 5. Results for the temporal series experiment. In this case, the transformation
estimated for the slice i was used as initialization for the next slice of the series. We
reported results in terms of MAD and rotation/translation error for the estimated
transformations using the three approaches.

4 Discussion, Conclusions and Future Works

In this paper we presented a strategy to solve rigid slice-to-volume registration
as a discrete graph labeling problem, following the discretization strategy intro-
duced by [27]. We validated our proposal using a MRI dataset of a beating heart,
where arbitrary 2D slices are fused with a 3D volume. The experimental results
showed that our discrete approach produces more accurate and robust estimates
for the rigid transformations than a continuous method based on simplex. More-
over, they also reflected that results obtained using such a method can be further
refined using a continuous approach like simplex, leading to even more accurate
estimations. This is coherent with the conclusions presented by [16] for the case
of optical flow estimation.

An interesting discussion about the limitations of our approach, emerges
when we observe the results obtained in previous work by [6–8] using similar
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images. In these works, both rigid and local deformable parameters are esti-
mated in a one-shot discrete optimization procedure, delivering results which
are considerably better than ours, even for the refined approach. Since we are
dealing with 2D images which are deformed with respect to the static 3D vol-
ume (due to heart beating), estimating both rigid and deformable parameters
at the same time seems to be the correct solution since there is a clear mutual
dependence between them. However, if we look at the results corresponding to
the first slices of the temporal series in Fig. 5 (where there is almost no defor-
mation, and even null deformation for the 1st slice), we can see that the quality
of the solution is significantly better than in the other cases. In fact, the error is
almost 0. It suggests that when the 2D image is not deformed with respect to the
input volume, our method is enough to capture slice-to-volume mapping. This
limitation is somehow inherent to the model we are using: rigid transformations
can not deal with local deformations. To improve the results in these cases, we
plan to extend our approach to linear transformations where also anisotropic
scaling and shearing can be considered. Following the strategy by [27], it will
result straightforward.

Finally, a future line of research has to do with applying discrete rigid (or
linear) slice-to-volume registration to other problems. As discussed in Sect. 1.1
motion correction for volume reconstruction is another problem requiring map-
ping slice-to-volume. It would be interesting to explore how our approaches per-
forms in this case.
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Abstract. Modern datasets are often multiway in nature and can
contain patterns common to a mode of the data (e.g. space, time,
and subjects). Multiway decomposition such as parallel factor analysis
(PARAFAC) take into account the intrinsic structure of the data, and
sparse versions of these methods improve interpretability of the results.
Here we propose a variational Bayesian parallel factor analysis (VB-
PARAFAC) model and an extension with sparse priors (SP-PARAFAC).
Notably, our formulation admits time and subject specific noise modeling
as well as subject specific offsets (i.e., mean values). We confirmed the
validity of the models through simulation and performed exploratory
analysis of positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) data. Although more constrained, the
proposed models performed similarly to more flexible models in approx-
imating the PET data, which supports its robustness against noise. For
fMRI, both models correctly identified task-related components, but were
not able to segregate overlapping activations.

1 Introduction

One of the most widely used tool for dimensionality reduction of large datasets is
the Principal Component Analysis (PCA) [1], as well as its probabilistic formu-
lation (PPCA) [2]. PCA finds orthogonal components describing the directions
of maximum variance. Selecting the number of components to retain can be
problematic and usually requires a post-processing step if the number is not
known beforehand. Furthermore, even components explaining a large portion of
the variance can include small, non-informative weights making them difficult
to interpret. Sparse versions of the PCA algorithms deal with these issues by
pruning whole components or individual weights [3].

Neuroscience data are multi-modal in nature and although PCA can be per-
formed on data concatenated along one mode (e.g. time) to identify (e.g. spa-
tial) components common to another mode (e.g. subjects), this approach discards
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mode-specific information (e.g. subject specific scaling). Instead using a multiway
decomposition method, such as Parallel Factor Analysis (PARAFAC) also called
Canonical Decomposition or Canonical Polyadic Decomposition (CP) [4–6], main-
tains the intrinsic structure of the data while having substantially less degrees of
freedom and thereby being less sensitive to noise, given model assumptions are
met. Furthermore, the PARAFAC model is unique (up to scaling and permutation)
under mild conditions [7] providing a more interpretable representation, as com-
ponents cannot be arbitrarily rotated. Exploiting these properties, the PARAFAC
model has successfully been applied to the modeling of neuroimaging data such as
EEG and fMRI (for reviews see also [8–10]). Similar to PCA, the amount of small
non-informativeweights canminimized by inducing sparsity on individualweights.
A sparse PARAFAC based on least-squares optimization was discussed in [11].

Sparse multiway models have a high relevance in fields such as neuroscience.
The brain has been demonstrated to be organized in networks, and for some
specific tasks, e.g. motor tasks, distinct regions of the brain are active, hence a
spatially sparse pattern can be expected. When this type of task is performed
across multiple subjects it is possible to leverage the intrinsic structure of the
data by performing multiway decomposition.

In this paper, we develop a fully bayesian sparse probabilistic PARAFAC
(SP-PARAFAC) model with time-dependent and subject specific isotropic noise.
We show how a simple change to the sparsity prior allows for easy transition
between SP-PARAFAC and probabilistic PARAFAC (VB-PARAFAC). Approx-
imate solution are given based on variational Bayesian inference [12] and we
investigate the applicability of the models to PET and task-based fMRI data.
While probabilistic PARAFAC has previously been investigated (cf. [13–16])
none impose sparsity on individual elements nor model time-dependent noise.

2 Review of Probabilistic PCA

The initial formulation of probabilistic PCA [2] defines a model relating obser-
vations x to latent variables z projected on a K dimensional hyperplane W of
origin m with additive Gaussian noise ε, such that x = Wz + m + ε. Here,
the latent variable and the noise are assumed to follow an isotropic Gaussian:
z ∼ N (0, I) and ε ∼ N (0, τ−1I), where τ is the precision of the noise.

In subsequent work [17], the authors formulated a fully Bayesian treatment
of PCA solved through variational inference (VB-PCA) and with hierarchical
ARD priors P (W |α) over the columns of the matrix W , allowing for automatic
selection of the number of components. Here P (W |α) was defined to follow a
multivariate Gaussian specific to each column where α is defined as the precision:
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P (W |α) =
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where wk is the kth column of W . To complete the Bayesian specification, the
remaining parameters are associated with broad priors: m ∼ N (0, β−1I) and
τ ∼ Γ (aτ , bτ ).

The investigation of alternative priors on W by [3] lead to the a fully sparse
formulation of PCA (SP-PCA) where a sparsity inducing prior is imposed on
elements of W rather than columns. In theory this allows the model to identify
both the model order (true K) and disregard noisy or irrelevant voxels (features).
Among the different priors studied, Jeffrey’s prior was shown to give sparse
components with the highest cumulative explained variance. With Jeffrey’s prior,
the conditional distribution of P (W |α) and the prior on α becomes:
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3 Probabilistic Parallel Factor Analysis

Multiway data can be viewed as a tensor structure. In this paper we are consid-
ering 3-way tensors of dimension V × T × S, where for ease of correspondence
with the PET and fMRI datasets V will be referred to as voxels, T as time and
S as subjects. Similar to PCA, the PARAFAC model seeks to identify a matrix
W of size V × K, for which the columns are common components across the S
subjects. In contrast to PCA the PARAFAC model allows for individual scaling
of the components, which can be used to characterize inter-subject variability
and it also accounts for subject specific temporal noise. A graphical model of
the proposed model is illustrated in Fig. 1. Each timepoint t for each subject s
is reconstructed by,

x
(s)
t = Wdiag(δ(s))zt + m(s) + ε

(s)
t (5)

where W and z are now common across subjects, but where we model time
dependent noise specific to each subject ε

(s)
t (with precision τ

(s)
t ), subject specific

mean m(s) and subject specific scaling of the components δ(s). Note that here
ε, m, δ and τ are matrices and ·(s) denotes the sth column. The likelihood of a
model with a given set of parameters is assess by,

P (X |W ,Z,m, τ , δ) =
S∏

s
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t
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t |Wdiag(δ(s))zt + m(s), τ

(s)−1
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Fig. 1. Graphical model for probabilistic PARAFAC.

To complete the Bayesian framework, prior distributions are defined for the
parameters:
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t
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The choice of priors for W and α determines the pruning and sparsity capa-
bility of the model. If the priors are chosen to be Eqs. (1) and (2) then VB-
PARAFAC is obtained. Which seeks to identify active and inactive components
using ARD. However, if the priors are chosen to be Eqs. (3) and (4) then Sparse
Probabilistic (SP-)PARAFAC is obtained. Seeking to identify both dimension-
ality (model order) and active voxels (features).

The general complexity of the VB- and SP-PCA and the proposed VB- and
SP-PARAFAC models differ. Notably, the PCA models with temporally con-
catenated data have KT (S − 1) more degrees of freedom for the latent variable
z compared to the PARAFAC models, which for a dataset with large T and K
could be a potential source of overfitting, whereas PARAFAC have KS more
parameters for δ and V (S − 1) more parameters for m.

4 Variational Inference

In order to maximize the likelihood function the marginal distribution P (X) =∫
P (X, θ)dθ must be estimated. However, the marginalization of this distribu-

tion with respect to the prior distributions is most often analytically intractable.
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Variational inference solves this problem by approximating the desired distrib-
ution with another distribution Q, called the variational distribution. The chal-
lenge in a variational approach is to choose a sufficiently simple distribution Q
so that the log marginal likelihood can be approximated by a tractable lower
bound L(Q) and at the same time is sufficiently flexible in order to make this
bound tight. A common choice for Q is a distribution which factorizes over the
model parameters such that Q =

∏
i Qi(θi). For the VB-PARAFAC model, the

distribution Qi(θi) were defined as follow:
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It can be shown that the log marginal probability is equivalent to lnP (X) =
L(Q) + KL(Q||P ), where KL is the Kullback-Leibler divergence. By fixing Qj

and maximizing L(Q) with respect to the remaining Qi�=j we obtain the general
expression ln Q∗

j = Ei�=j [ln p(X,θ)]+ const which minimizes the KL divergence.
By applying and normalizing this, the update rules for Q can be derived and
are shown in Eqs. 17 – 27. Note that wv denotes a row of W , 〈·〉 denotes the
expectation and that the operator • is the Hadamard product.
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By changing the prior on W to Jeffrey’s prior shown in Eq. 4 we
obtain the solution for SP-PARAFAC. The Qi distributions remain the
same except for Q(α) which now factorizes over elements, i.e. Q(α) =∏V

v
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k Γ (αv,k|ãαv,k
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). These changes are reflected in the update rules for
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2
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〈
w2

v,k

〉

2
(29)

The lower bound L(Q) can be easily derived to monitor the convergence of the
algorithm. Although convergence is guaranteed, the solution will not necessarily
arrive at a global maximum. This is typically addressed by running the algorithm
multiple times and keeping the solution with the largest lower bound.
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5 Results

In this section, we present a validation of our model with simulation and perform
the analysis of PET and fMRI data. The parameters β−1, aα, bα, aτ and bτ were
set to 10−3 to obtain broad priors. In all cases, W was initialized using PCA,
which in practice consistently lead to a higher lower bound compared to random
initialization and mitigated the need for multiple restarts in the case of VB- and
SP-PCA. For VB- and SP-PARAFAC, PCA was performed on the data from
individual subjects, hence the algorithm was restarted for each subject and the
solution with the highest lower bound was kept. To assess stability of the solution
across model initializations the RV coefficient [18] between the estimated W for
two different initializations was calculated. This was done for all unique pairwise
combinations, (#repeats−1)!, and the average RV coefficient is reported. The RV
coefficient is a multivariate generalization of the Pearson correlation coefficient
which measure subspace overlap and is invariant to rotation and translation. The
RV coefficient is one if the subspaces overlap completely and zero if they have no
overlap. Similarly, we also computed an average correlation: first, for each pair
of estimated W , components were matched based on correlation and an average
correlation computed. Then, the average of all unique pairs was computed.

Results were also compared to solutions obtained with the PARAFAC func-
tion from the N-way toolbox 3.21 [19], which evaluates the standard PARAFAC
model without modeling of the mean or the noise. As PARAFAC does not model
the mean, the data was centered when using this algorithm. Due to memory
limitation, the PCA initialization for N-way PARAFAC did not work for large
datasets, hence we used the default initialization as it consistently resulted in
lower reconstruction error compared to random initialization. Furthermore, the
number of components was determined by performing the decomposition for a
range of varying number of components and keeping the solution with the most
components and a core-consistency of a 100.

5.1 Simulation

This section presents a comparison between VB-PCA [17], SP-PCA [3],
PARAFAC [20] and the proposed VB-PARAFAC and SP-PARAFAC through
simulation. We created a 3-way dataset using the following procedure. Three
sparse vectors of length V = 10 were created and concatenated to form matrix
W ; this is shown in Fig. 2 as ground truth. Then random latent variables zt

of length T = 100, random mean values m(s) and random scaling factors δ(s)

for S = 5 subjects were sampled from the distribution N (0, I) and linearly
mixed according to Eq. 5. The additive noise was sampled from N (0, τ

(s)
t I),

with the precision τ
(s)
t sampled from Γ (1, 1). The resulting data was concate-

nated along the time dimension for the PCA algorithms and as a 3-way tensor
for the PARAFAC models.

Figure 2 shows the components identified by the algorithms. All models iden-
tified the ground truth components to varying degrees of accuracy and pruned
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Fig. 2. Hinton diagram of W identified by the algorithms (green is positive and red is
negative). Average RV and Pearson’s correlation coefficients between the ground truth
W and the identified solutions are reported. (Color figure online)

non-informative components. Both PCA models were more confounded by noise
and their inability to account for subject specific means compared to their
PARAFAC counter parts. Furthermore, SP-PCA and SP-PARAFAC performed
better than their VB version at pruning individual non-related weights, although
this is not reflected by the RV coefficient. These results indicate that the VB-
and SP-PARAFAC models benefit by having PARAFAC structure and by mod-
eling time and subject varying noise as well as subject specific means when these
effects are present in the data and that fully sparse priors are more efficient at
identifying sparsity structure from the data compared to priors inducing sparsity
on whole components.

5.2 Positron Emission Tomography

Here we performed an exploratory data decomposition of PET data. The syn-
chronized nature of PET experiments, the time-depend noise associated with the
radioactive isotope decay and subject specific scaling of the time-activity curves
(TAC) due to variation in injected dose and body weight make multiway model
in theory well suited for the analysis of PET data.

The PET data for the radioligand [11C]CUMI-101 and matching T1-weighted
structural magnetic resonance images (MRI) were obtained from the Cimbi
database [21] for 4 healthy subjects. Dynamic PET images (34 frames; 2× 5 s,
10× 15 s, 4 × 30 s, 5 × 120 s, 5× 300 s, 8× 600 s) were acquired on a HRRT scan-
ner with approximate in-plane resolution of 2 mm and the structural images
were acquired on a 3T Siemens Trio scanner at 1 mm isotropic resolution. The
structural images were processed within FreeSurfer [22]. PET images were coreg-
istered to the structural MRI [23], transferred to a common space (MNI152)
and smoothed using a 5 mm FWHM 3d Gaussian kernel. The data was finally
concatenated along subjects, forming a 3-way tensor, and processed with VB-
PARAFAC and SP-PARAFAC with an initial dimensionality of 30.

VB-PCA, VB-PARAFAC and SP-PARAFAC identified 7, 24 and 19 non-
null components, respectively; SP-PCA did not prune any component. Only two
components were commonly identified by all five methods. The first one loaded
on all brain space (Fig. 3A), whereas the second loaded on regions of high and
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Fig. 3. All algorithms identified at least two similar components, one weighted over the
whole brain (A) and one distributed over high and low binding regions (B). Correspond-
ing components for VB-PCA, SP-PCA and PARAFAC are not shown, but exhibited
similar patterns. All other components displayed random patterns with no underlying
anatomical correspondence. The average RV and Pearson’s correlation coefficients for
VB- and SP-PARAFAC were (0.5302, 0.5655) and (0.2635, 0.2752).

low binding regions with corresponding weights (Fig. 3B). The others exhibited
random patterns across the whole brain and adjusted for small, random variation
in the data. There was no component which loaded uniquely on specific brain
regions indicating that a set of basis function common to all brain voxel is the
more appropriate model. This results is reasonable as the kinetic across all brain
voxels is highly similar compared to other modalities, e.g. fMRI. Consequently,
although both VB- and SP-PARAFAC algorithms pruned non-informative com-
ponents, the SP-PARAFAC model introduced seemingly random spatial spar-
sity which left the components difficult to interpret. Although sparsity is often
a desired property, this result indicate that a fully sparse model may not always
be appropriate for the identification of global patterns.

Fig. 4. TACs from individual voxels of selected brain regions and their approximation.

Another interesting application of data decomposition methods applied to
PET imaging is the denoising of the data. We compared the approximation
performed by the different algorithms and the results were surprisingly similar
for all brain regions (see Fig. 4). These results indicate that our constrained
PARAFAC models is able to identify noise structure comparable to what a more
flexible model like VB and SP-PCA can discover and performed similarly well
in approximating the underlying data.
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5.3 Functional MRI

The analysis of multiway fMRI data is routinely performed using independent
component analysis (ICA) [24]. One of the most common model used to perform
ICA decomposition of fMRI data is the probabilistic ICA (PICA) [25] and its
tensorial extension for multi-subject analysis. We here aim to demonstrate a
side-by-side comparison of the components identified by tensor PICA and the
other five methods.

Eight healthy right-handed subjects performed a visually cued reaction fist-
closure fMRI task. Subjects performed 10 blocks of a duration of 10 sec, inter-
leaved with 10 sec rest, were they were instructed with a visual cue to open and
close their right or left hand at a frequency of approximately 1 Hz; the pattern
of left and right blocks was random but fixed across subjects. This task leads to
significant activation of the visual, motor and premotor cortex on the contralat-
eral side of the movement, and relatively weaker activation on the ipsilateral
side. For each subject, 210 axial echo-planar volumes (TE = 30 ms, TR = 2.25
s, 64 × 64 × 32 voxels at 3.6 × 3.6 × 3.8 mm) were acquired on a 3-T Siemens
Prisma together with a T1-weighted anatomical image at 1 mm isotropic res-
olution. The fMRI was motion corrected (MCFLIRT [26]), coregistered to the
structural image using (FLIRT [26]), transformed to common MNI152 space
(FNIRT [20]) and finally smoothed using a 8 mm FWHM 3d Gaussian kernel.
The fMRI data was finally processed using tensor PICA in Melodic [25] and the
five methods. VB-PARAFAC and SP-PARAFAC had an initial dimensionality
of 50. Significance maps were estimated as in [25] by creating Z-scores maps
by dividing each components by the residual voxel variance and modeling the
associated histograms using a Gaussian/Gamma mixture modeling approach in
Melodic.

For PICA, the estimated dimensionality was 47. No component was com-
pletely pruned by VB-PARAFAC, whereas SP-PARAFAC identified only 4 com-
ponents. The components identified by all the models corresponding to motor or
visual activation are presented in Fig. 5. The different functional aspect of the
task are clearly segregated in the components identified by PICA; component
1 is has strong visual activation (but also contains weaker motor activation),
where as components 2 and 3 have strong motor activation corresponding to left
and right fist-closure, respectively. For the other methods, all relevant compo-
nents contained both motor and visual activation, however the significance was
relatively lower. This is surprising as we would have expected that by enforcing
spatial sparsity and modeling time-dependent noise, which is particularly prob-
lematic in fMRI (e.g. physiological artifacts, motion), the identifiability of the
signal would have improved. As the activation of the visual and motor areas
are synchronized in this task, the visual and motor cortex exhibit similar, but
non identical, temporal profile which may be difficult to isolate given our model
assumptions. Furthermore, this task also illicits both contralateral and (weaker)
ipsilateral activation of the motor and premotor cortex, hence left and right hand
squeeze will have overlapping activation which may be difficult to segregate in a
sparse model. The SP-PCA and the PARAFAC model clearly underperformed in
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Fig. 5. Motor and visual components (columns) identified by the six methods. The
axial slice for the motor and visual views correspond respectively to Z = 55.75 mm and
Z = −10.50 mm in MNI152 space. The average RV and Pearson’s correlation coefficients
for VB- and SP-PARAFAC were (0.9130, 0.6815) and (0.5633, 0.5965).

identifying the motor and visual components. Interestingly, the SP-PARAFAC
model was able to prune most of the non task-related components and estab-
lished a model dimensionality much closer to what is expected from the task
compared to the other models.

6 Summary

In this work we presented a VB-PARAFAC model with time-dependent model-
ing of the noise and a fully sparse extension, the SP-PARAFAC model. We val-
idated these models and compared them to VB-PCA, SP-PCA and PARAFAC
through simulation and applied them to PET and task-based fMRI data. For
PET, the models identified two common components and performed equally well
at approximating the data. The spatial sparsity enforced by SP-PCA and SP-
PARAFAC appeared unfortunately random, rendering the components difficult
to interpret. We also compared the models to tensor PICA in the identification
of task-related fMRI components. Tensor PICA identified functionally segre-
gated motor and visual components where as the other models only identified
components with both motor and visual activation and with lower significance.
However, the dimensionality of the SP-PARAFAC model was much closer to
the what expected given the task, suggesting that this model performs bet-
ter at pruning non task-related components. Although we solely investigated



Sparse Probabilistic Parallel Factor Analysis for the Modeling 197

neuroimaging modalities in this report, these models have a strong relevance for
other types of data for which PARAFAC is commonly used.
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Abstract. Deformable image registration aims to deliver a plausible
spatial transformation between two or more images by solving a highly
dimensional, ill-posed optimization problem. Covering the complexity
of physiological motion has so far been limited to either generic phys-
ical models or local motion regularization models. This paper presents
an alternative, graphical regularization model, which captures well the
non-local scale of motion, and thus enables to incorporate complex reg-
ularization models directly into deformable image registration. In order
to build the proposed graph-based regularization, a Minimum Spanning
Tree (MST), which represents the underlying tissue physiology in a per-
ceptually meaningful way, is computed first. This is followed by a fast
non-local cost aggregation algorithm that performs regularization of the
estimated displacement field using the precomputed MST. To demon-
strate the advantage of the presented regularization, we embed it into
the widely used Demons registration framework. The presented method
is shown to improve the accuracy for exhale-inhale CT data pairs.

1 Introduction

Deformable image registration (DIR) algorithms developed for medical imag-
ing applications generally suffer a trade-off between computational complexity
and medical plausibility [1]. From a biomedical standpoint, it is a fundamental
requirement that DIR delivers a geometrical transformation that is plausible in
an anatomical, physiological, or functional sense, whichever is appropriate to the
application. From a mathematical standpoint, DIR is a (very) high-dimensional,
ill-posed problem with several millions of degrees of freedom. Many widely-used
regularization models are based on a generic physical model such as diffusion [2],
while more challenging applications may require additional global constraints,
e.g. that the deformation field be a diffeomorphism [3].

Alternatively, in order to accurately model local deformations, a number of
local structure or motion preservation models have been proposed [4–6]. However,
the deformations within or between human organs are often highly complex and
c© Springer International Publishing AG 2017
H. Müller et al. (Eds.): MCV/BAMBI 2016, LNCS 10081, pp. 199–207, 2017.
DOI: 10.1007/978-3-319-61188-4 18
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do not occur at a single spatial scale. For example, respiratory-induced motion
differs for each lung lobe (usually greater in the lower lobes), while the action of
the diaphragm and respiratory muscles produces sliding motion at the pleural
cavity boundaries. Increasing the plausibility of DIR has to accommodate such
complex physiological motions. However, extending the spatial range of the reg-
ularization of the deformations to become less local is usually computationally
prohibitive.

To overcome these limitations, this paper proposes an alternative, graph-
based framework within which such non-local motion constraints, by using a
range of spatial scales, can be captured naturally. Previous work in applying
graph-based methods to DIR [7,8] has been primarily motivated by the use of
efficient discrete optimization for minimizing the data term cost, with less focus
on the regularization aspects, which are generally reduced to a fixed scale in
a local regularization term. In contrast, here we show how graphical methods
enable complex regularization constraints to be incorporated easily and natu-
rally, thus improving on the plausibility of DIR algorithms in general. To intro-
duce our approach in a familiar setting, we show how it can be applied to the
classic Thirion’s Demons registration [2,3], as an exemplar. Furthermore, the
proposed method can easily perform non-local regularization using a minimum
spanning tree (MST) derived from a graph representing the desired properties.

This work presents the use of a novel graph-based regularization model for con-
tinuous image registration based on Demons as an exemplar [2,3]. The motivation
for the use of graphs stems from their ability to represent complex connected struc-
tures in a perceptually meaningful way. Such structures and connections between
them can be represented for example by a MST, which has been shown to replicate
well the underlying tissue properties and structure of anatomical connectivity [8].
In contrast to recently proposed anisotropic filter [4], bilateral filter [9], and guided
image filter [6] models, the proposed new regularization model implicitly extends
local filter kernels to their non-local counterparts by simultaneous consideration
of spatial and intensity proximity together with the connectivity of voxel-based
nodes. The new MST-based model replaces the Gaussian smoothing originally
incorporated in Thirion’s Demons [2,3] via employing an efficient MST non-local
cost aggregation algorithm [10] to perform regularization on the estimated dis-
placement field. The results achieved by our method on benchmark lung CT data
[11] are compared against the best performing Demons [4–6], and a discrete MST
optimization framework (deeds) [8].

2 Methods

2.1 Deformable Image Registration

Deformable image registration (DIR) is generally formulated as the minimization
problem of a global energy ξ:

û = arg min
u

(ξ(u) = Sim (R,S,u) + αReg (u)) (1)
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where the (optimal) displacement field û describes the geometrical transforma-
tion between two images: the reference image R and the source image S. Here,
Sim measures similarity between S and R, while the regularization term Reg
encourages the plausibility of the estimated displacement field u, and α≥0 bal-
ances the contribution between those two terms. As an example of many, the
Demons framework [2] solves the energy given in Eq. (1) in an iterative man-
ner by alternating between minimizing similarity Sim, and regularization Reg,
which performs Gaussian smoothing on the estimated displacement field. For a
number of medical applications, the Demons algorithm, including the Gaussian
regularization, provides very reasonable transformations [3]. However, it has been
found less suitable in situations with more complex deformations. Therefore, the
anisotropic [4], bilateral-like [5], and guided filter [6] regularization models have
been proposed. Although the use of such regularizers considerably improves per-
formance, it remains the case that such approaches perform regularization con-
sidering only the predefined local neighborhood around the point of interest,
despite the fact that some organs can also deform in a non-local manner. In
such cases, neither global nor local regularization models are sufficiently versa-
tile to handle the complexity of the organ motion. To the best of our knowledge,
incorporating connections between different anatomical structures has not been
considered so far for registration regularization except for the case of registering
each presegmented region separately [12].

In the next section, we show how graph-based regularization provides a math-
ematical framework within which local, semi-local, and global constraints can
be accommodated in a natural manner. To introduce the method, we use as an
exemplar the widely known and used Demons algorithm [2,3]. However, it is
important to note that the method would also apply to other DIR algorithm
that can be formulated as an energy minimization as above.

2.2 Graph-Based Regularization for the Demons Algorithm

The overall algorithmic approach may be summarized as follows:

1. calculate the Demons force term (classic step [2,3])
2. create a graph-based representation for the regularization model
3. find a minimum spanning tree (MST) for this graph
4. perform regularization based on MST via fast tree-cost-aggregation

Step 1 is the classic step, and is described in [2,3]. Steps 2, 3, and 4 form the
new contributions of this work and will be described in detail in the following
sections.

Step 2: Graph-Based Representation for Regularization. In analogy
to [8], we represent the image as a graph, to accommodate the complexity of
anatomical structures and connections between them. For this purpose, a graph
G = (V,E) is defined comprising a set of nodes V and a set of edges E. In
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this paper, for clarity of exposition, the nodes p, q ∈ V are assumed to cor-
respond to voxels of the image volume IG, and the edges e ∈ E connect all
nearest neighbor nodes (simple 6-connected graph for a 3D volume) with the
edge weight given as the absolute difference between the intensity of the node p
and the respective voxel in node q. However, it has to be understood that the
method applies far more generally. An exemplar graph generated for a coronal
slice of a lung CT is illustrated in Fig. 1. Although only the nearest neighbor
connections are considered, it will be shown later in this work that such connec-
tions can extend regularization to a non-local scale in contrast to conventional
regularization methods.

Fig. 1. Visualization of (a) graph derived from image, (b) minimum spanning tree
extracted from graph (a), and (c) shortest paths between two nodes in the same (red)
and different (magenta) anatomical structures. (Color figure online)

Step 3: Finding a Minimum Spanning Tree. To find a minimum span-
ning tree (MST) for the weighted graph G constructed in the previous section,
a greedy Prim-Jarnik (P-J) algorithm is used. The P-J algorithm successively
removes any unwanted edges with underlying high intensity differences from the
graph, while leaving the edges connecting all nodes in the graph in the form of
a tree. In practice, edges with large weights often mark edges crossing different
organs, and removing them is thus advantageous in order to avoid regularization
across organ boundaries. An exemplar of MST is shown in Fig. 1(b), generated
from the graph presented in Fig. 1(a) of a 2D coronal slice of a lung CT. Fig. 1(c)
shows the shortest path between different nodes of the graph. As can be seen,
the nodes inside the same structure (red) have a short tree distance, whereas
nodes within two different structures have a long tree distance despite being
spatially close (magenta). Effectively, tree distance is intrinsically more relevant
to regularization and deformable registration than is a spatial distance metric
such as Euclidean or city block. The tree distance δ(p, q) in the constructed MST
is the sum of lengths of the edges between node p and q, where the length of an
edge is the Euclidean distance between the two connected nodes (for simplicity
the distance between neighbor nodes is defined to be 1).
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Step 4: Regularization Based on MST via Fast Tree-Cost-Aggregation.
The final step of incorporating the new graph-based regularization model to the
exemplar Demons framework combines a fast guided image filtering procedure
[13] with an efficient non-local cost aggregation algorithm for MST [10]. First, a
minimum spanning tree average operator μt (where t refers to tree) of variable
X is defined as follows:

μt
p[X] =

∑
q∈V w(p, q)X(q)
∑

q∈V w(p, q)
(2)

where w (p, q) = exp
(
− δ(p,q)

σ

)
denotes a spatial tree similarity (or weight), and

σ is a weighting parameter. Direct implementation of the MST average operator
μt (Eq. (2)) is impractical due to the computational cost required to compute the
distances between all nodes in the graph. For this reason, Yang [10] proposed
an efficient MST cost aggregation algorithm, which requires only two passes
through the MST (two additions and three multiplications in total) in order to
calculate

∑
q∈V w(p, q)X(q). In this paper, we employ this MST cost-aggregation

algorithm to perform regularization of the estimated displacement field u. In this
way, the MST average operator μt replaces the standard mean operation in the
guided image filter. The guided filter is a local linear model between the guidance
image IG and the filter output uout as in our case we consider displacement field
uout to be the output, and uin to be the input (we refer a reader to [13] for the
detailed derivation of A and B given in Eq. 4). The guided filter is defined as
follows [13]:

uout(p) = μt
p [A] IG(p) + μt

p [B] (3)

where:

A(p) =
μt

p [IGuin] − μt
p [IG] μt

p [uin]
σt

p [IG] + ε
, B(p) = μt

p [uin] − A(p)μt
p [IG] (4)

σt
p [IG] = μt

p

[
I2G

] − (μt
p [IG])2 is a minimum spanning tree variance, and ε > 0

is a guided filter parameter. Considering the guidance image IG, the output
displacement field uout can be filtered with respect to the registered image (self-
guidance), or sparse image representation based on supervoxel clustering of the
entire thoracic cage [6]. Note that unlike anisotropic [4], guided [6] or bilateral
[5] filters, our graph-based method evaluates contributions from all nodes in
the graph (volume) to the estimated displacement field during the MST cost
aggregation. This substantially improves the regularization model as non-local
MST contributions can be captured simply and naturally for the whole structure
of interest, whereas the local regularization methods are limited to the (explicit)
predefined region of interest only. Although, in theory, we could extend the
predefined local patch in [4–6] to cover the full volume (however in practice
this would be computationally expensive), here the MST provides an implicit
support region without decreasing the overall efficiency.

To visualize the key differences between the local regularization models and
the proposed non-local MST method, exemplar kernels for the bilateral model
[5], and the proposed non-local MST model are shown in Fig. 2.
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Fig. 2. Comparison between two different kernels based on input image for the local
model [5], and the proposed non-local regularization model for two distinctive areas
selected inside (red cross) and outside the thoracic cage (magenta cross). The implicit
support region for the proposed method can efficiently present the structure of an
image contrary to the predefined local region support of [5]. (Color figure online)

3 Evaluation and Results

Data. The presented method is evaluated using a publicly available 4D CT
data set [11]. The Dir-Lab data set consists of 10 consecutive respiratory
cycle phase volumes with spatial resolution varying between 0.97×0.97×2.5 and
1.16×1.16×2.5 mm3. To quantify the registration accuracy, the Target Registra-
tion Error (TRE) was calculated for the well-distributed set of landmarks, which
are provided with this data set (300 landmarks per case for inhale and exhale
volumes). In all cases, the end-inhale image was selected as the target image and
the end-exhale image as the moving image.

Implementation. For quantitative evaluation of the proposed regularization
model, the Demons approach with an update composition scheme and Thirion’s
symmetric force was implemented (see [3] for details). For simplicity, the pro-
posed method used the Sum of Squared Differences as a similarity measure (also
used in [3–6]). The following parameters were used for the proposed registration
method: σ = 2.5 (Eq. (2)), and ε = 0.1 (Eq. (4)).

Quantitative Results and Comparison. Table 1 shows the TRE based on
300 well-populated, manually annotated landmarks for all ten cases included in
the Dir-Lab data set [11]. The initial TRE is 8.46 ± 5.5 mm and the transfor-
mations estimated by the proposed method reduce the TRE to 1.44 ± 1.4 mm,
achieving the best result in our comparison. The task of registering these lung CT
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Fig. 3. Visualization of the image intensity differences (top) and 2D projection of
the Target Registration Error (bottom) before registration (a), and after performing
(b) classic Demons [3], and (c) the presented method for the most challenging case 8
from Dir-Lab. Color overlay is given for the coronal view of inhale (green) and exhale
(magenta) volumes. TRE is projected on the coronal plane and denoted by the size
and color of circles. A clear improvement after registration using the presented method
is visible. (Color figure online)

Table 1. Results achieved by the proposed method (MST) and four other most relevant
methods for 3D registration of CT lung from Dir-Lab data set. The proposed method
shows the lowest average Target Registration Error (TRE) among all methods.

Before dem [3] bil [5] deeds [8] gui [6] ani [4] MST

c1 3.89± 2.9 1.08± 0.6 1.05± 0.5 0.98± 0.5 1.08± 0.5 1.06± 0.6 0.83± 0.9

c2 4.34± 3.9 1.11± 0.6 1.08± 0.6 0.95± 0.5 1.06± 0.5 1.45± 1.0 0.87± 0.9

c3 6.94± 4.1 1.51± 0.9 1.46± 0.9 1.18± 0.7 1.16± 0.6 1.88± 1.4 1.10± 1.1

c4 9.83± 4.9 2.21± 1.8 2.05± 1.5 1.60± 1.4 2.11± 2.2 2.04± 1.4 1.96± 2.0

c5 7.48± 5.5 2.21± 1.9 2.02± 1.7 1.72± 1.5 1.40± 1.2 2.73± 2.1 1.36± 1.4

c6 10.9± 7.0 2.98± 2.6 2.48± 1.8 1.72± 1.1 2.21± 2.6 2.72± 2.0 1.77± 1.6

c7 11.0± 7.4 3.58± 3.5 2.78± 2.3 1.79± 1.4 1.48± 1.1 4.59± 3.4 1.58± 1.3

c8 15.0± 9.0 7.62± 8.1 3.96± 3.8 2.24± 2.6 2.29± 2.7 6.22± 5.7 2.08± 2.4

c9 7.92± 4.0 2.29± 1.7 1.89± 1.2 1.45± 0.8 1.37± 0.8 2.32± 1.4 1.50± 1.2

c10 7.30± 6.4 2.54± 3.1 2.35± 2.5 1.59± 1.6 1.46± 1.3 2.82± 2.5 1.40± 1.4

¯TRE 8.46± 5.5 2.71± 1.9 2.11± 0.9 1.52± 1.4 1.56± 1.4 2.78± 2.9 1.44± 1.4
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data has been also addressed by several methods e.g. deeds with the MST-based
optimization [8] and Demons with guided image filtering [6], which are the most
relevant methods for comparison, achieving a higher TRE of 1.52± 1.4 mm, and
1.56 ± 1.4 mm, respectively. Moreover, the proposed method achieved a signifi-
cantly lower TRE (p < 0.01) when compared to the classic Demons registration,
which only achieved a TRE of 2.71 ± 1.9 mm. Finally, Demons using anisotropic
[4] and bilateral filtering [5] obtained a TRE of 2.79± 2.9 mm and 2.11 ± 0.9 mm,
which is also inferior to the TRE obtained by the presented method. Visualiza-
tion of the results for the presented method is shown in Fig. 3. Red arrows depict
regions of interest where the presented method outperformed the classic Demons.

4 Discussion and Conclusions

In this paper, we have presented a new class of regularization model, a graph-
based model, that can be easily incorporated into deformable image registration.
The new graph-based regularization replicates well complex connected anatom-
ical structures, and therefore improves the accuracy of image registration by
implicitly estimating plausible transformations. Furthermore, the use of the effi-
cient minimum spanning tree cost aggregation algorithm extends the predefined
local support for regularization to its non-local counterpart. The quantitative
evaluation on a publicly available lung CT data set confirmed superiority of
the presented registration framework compared to the competing methods in
the literature. Future work will include incorporation of prior knowledge com-
bining both structural and functional imaging data coming from PET/CT or
PET/MRI system to construct more complex graphs representing underlying
characteristics of different organs.

Acknowledgments. We would like to acknowledge funding from the CRUK/EPSRC
Cancer Imaging Centre in Oxford.
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Abstract. Quantification of white matter lesion changes on brain mag-
netic resonance (MR) images is of major importance for the follow-up
of patients with Multiple Sclerosis (MS). Many automated segmentation
methods have been proposed. However, most of them focus on a single
time point MR scan session and hence lack consistency when evaluating
lesion changes over time. In this paper, we present MSmetrix-long, an
unsupervised method that incorporates temporal consistency by jointly
segmenting MS lesions of two subsequent scan sessions. The method
is formulated as a Maximum A Posteriori model on the FLAIR image
intensities of both time points and the difference image intensities, and
optimised using an expectation maximisation algorithm. Validation is
performed on two different data sets in terms of consistency and sensi-
tivity to MS lesion changes. It is shown that MSmetrix-long outperforms
MSmetrix-cross for the quantification of MS lesion evolution over time.

Keywords: Longitudinal analysis · Lesion segmentation · Expectation
- maximisation · Magnetic resonance imaging

1 Introduction

Accurate and reliable quantification of lesion evolution over time in patients suf-
fering from Multiple Sclerosis (MS) is valuable for monitoring the disease activity
in patient follow-up [1]. Although expert manual delineation of lesions is con-
sidered as gold standard, it is time consuming and often suffers from intra- and
inter-observer variability. To alleviate these problems, automated methods for
MS lesion segmentation have been proposed in literature [2–5,7]. Many methods
focus on segmentation of the lesions at a specific time point using images from
a single scan session [2]. Although these methods might produce accurate lesion
segmentations, they are often not suited for detecting lesion changes due to their
lack of temporal consistency.

Several different longitudinal methods have also been proposed [3–7]. A first
group of such methods detects longitudinal changes by time series analysis,

c© Springer International Publishing AG 2017
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assuming long-time follow-up of the same patient (e.g. [3]). A second group
of methods is also suited for follow-up between only two subsequent time points
[4–7]. In [4] a registration-based approach is proposed to evaluate lesion changes
between subsequent scans. However, the method requires a locally very accu-
rate nonrigid registration as the registrations are evaluated in small regions, i.e.
the lesions. Moreover, such registration-based approaches are not ideally suited
in the presence of new or disappearing lesions. In [5], a method is proposed for
change detection based on logistic regression models and subtraction images from
consecutive time points. This method focuses, however, purely on the changes
and does not allow identification of the total lesion load at both time points.
More recently, two methods were proposed that focus on temporal evolution
of MS lesions, including new and disappearing lesions, while also providing the
segmentation of the individual time points [6,7]. The method proposed in [6]
performs spectral clustering of a graph that represents spatial and temporal
affinities. This method is mainly based on the image intensities and does not
include information of the underlying anatomy within the segmentation process.
The underlying anatomy contains however important information that can fur-
ther improve the segmentation process, e.g. different intensities in juxta-cortical
lesions, typical regions of pulsation artefacts on the FLAIR image, etc. More-
over, the method requires the determination of the size of spatial and temporal
neighbourhoods, which may have an important impact on its performance. The
method proposed in [7] focuses on the detection of new lesions using a two-step
classification process, (1) a Bayesian classifier for the tissue classification and (2)
final identification of new lesions based on a random-forest classification. How-
ever, this method is supervised as it requires prior learning of different aspects,
such as an intensity likelihood and transition model of the lesions, from a training
data set. Such a training data set needs to be representative for the population
under study for these different aspects.

In this paper, we present a fully automated, unsupervised method for MS
lesion evolution between two time points. The method uses both intensity infor-
mation and information of the underlying anatomy. It allows the detection and
segmentation of new, enlarging, disappearing, shrinking and static lesions. The
method builds on an untrained cross-sectional (i.e. single time point) method,
called MSmetrix-cross, that was indicated as the best untrained method in the
ISBI challenge [2] and was comparable to top supervised methods.

2 Method

Our method jointly segments MS lesions of two time points based on 3D T1-
weighted and 3D FLAIR images acquired at each time point. A difference image
is generated to detect similar regions and changes, and as such to introduce
temporal consistency or to allow flexibility between the segmentations of both
time points. Prior knowledge on the tissue classes and MS lesions will be included
by performing first a cross-sectional segmentation method per time point, called
MSmetrix-cross. In the next sections, we describe the pipeline of MSmetrix-long,
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i.e. (1) a preprocessing step, including (a) generation of tissue prior probabilities
based on MSmetrix-cross, and (b) the difference image, (2) joint segmentation
formulated by a Maximum a Posteriori (MAP) problem and (3) a pruning step.

All steps will be performed in two spaces, i.e. first for the image of time point
1 which is used as reference space and subsequently for the image of time point
2. Our method iterates three times between both spaces taking each time the
lesion segmentation from the previous iteration as input for the new iteration.
These iterations are performed to avoid bias towards one of both time points.
An overview of the method is shown in Fig. 1.

Fig. 1. Schematic representation of the MSmetrix-long pipeline. Notations: TP is time
point, AR is affine registration.

2.1 Preprocessing

Cross-sectional analysis: Image segmentation is performed independently for
each time point using a cross-sectional segmentation pipeline [8]. First, the
FLAIR image is resampled towards the space of the T1-weighted image using
a rigid registration. The cross-sectional method then segments the T1-weighted
image into the normal brain tissue classes, i.e. grey matter (GM), white matter
(WM) and cerebro-spinal fluid (CSF) using an Expectation Maximisation (EM)
algorithm. Subsequently, it segments the WM lesions in the FLAIR image as
outliers to the intensities of the normal brain tissue classes obtained from the
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T1-weighted image segmentation. A pruning step [8] is performed to distinguish
FLAIR WM lesions from other outliers. Finally, a lesion filling of the T1-weighted
image is performed. These steps are iteratively performed until convergence. As
such, probabilistic segmentations for GM, WM, CSF and the FLAIR WM lesions
are obtained. In addition, the method produces bias field corrected T1-weighted
and FLAIR images.

Difference image: A difference image of the bias field corrected FLAIR images
is created by image co-registration and intensity normalisation. Co-registration
between the images of both time points is performed, as described in [9], using a
symmetric affine registration with the scaling step based on the extracted skull.
The matched bias corrected FLAIR images are then corrected for a differential
bias field as described in [10] and thereafter, intensity normalised using a cumu-
lative histogram matching technique [11]. A difference image is now created in
the reference space.

Propagation: The segmentations obtained from the cross-sectional analysis are
resampled towards the reference space using the same affine registration as used
to create the difference image.

2.2 Joint Lesion Segmentation

We now define a model that aims at joint tissue class label segmentation based
on the co-registered FLAIR images of both time points and the difference image.

Notations: Denote Y (1) = {y
(1)
j |j ∈ {1, . . . , NJ}}, Y (2) = {y

(2)
j |j ∈

{1, . . . , NJ}} and Y (D) = {y
(D)
j |j ∈ {1, . . . , NJ}} the sets of image intensities of

resp. the FLAIR image of time point 1, the FLAIR image of time point 2 and
the difference image, with y

(1)
j , y

(2)
j and y

(D)
j the image intensities corresponding

to voxel j in the corresponding image and NJ the voxel size (assumed to be the
same in every image after co-registration). We assume that the total number of
tissue classes in both images is equal and denoted by NK . The tissue class labels
for resp. image 1 and 2 can be denoted by L(1) = {l

(1)

j,k(1)} and L(2) = {l
(2)

j,k(2)}
with k(1)and k(2)∈ {1, . . . , NK} the tissue class indices. In this paper, the tissue
classes will be GM, WM, CSF and lesions.

Model assumptions: The intensities of image 1 can be modelled as a Gaussian
mixture model over the tissue classes with parameter set θ(1) representing the
set of means (μ(1)

k(1)) and variances (σ2(1)

k(1) ) of all Gaussians:

P (Y (1)|L(1), θ(1)) =
∏

j,k(1)

N
(
y
(1)
j |μ(1)

k(1) , σ
2(1)

k(1)

)l
(1)

j,k(1)
(1)

Analogously, we can model the intensities of the image 2 as:

P (Y (2)|L(2), θ(2)) =
∏

j,k(2)

N
(
y
(2)
j |μ(2)

k(2) , σ
2(2)

k(2)

)l
(2)

j,k(2)
(2)
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We make the underlying assumption that the “difference image” might be
independently generated as an image that captures anatomical changes including
new lesions or atrophy. The image created by subtracting image 1 from image 2
or vice-versa (after intensity normalisation) is one such instance of the difference
image. The intensity model of image 1 and image 2 can therefore be improved
by including a transition model defined on the difference image. As our major
interest is in the WM lesion segmentation, we only model the transitions between
WM and lesions and hence assume a uniform distribution for transitions between
all other tissue classes. For the transitions between WM and lesions, we use a
Gaussian mixture model on the intensities with three different classes, i.e. static,
lesion growth and lesion shrinkage. The static transition class is defined as a set
of voxels in the difference image that are either labeled as WM in both images
or as lesions in both images. The lesion growth class is defined as the transition
between the WM label in image 1 and the lesion label in image 2. The lesion
shrinkage class is defined as the transition between the lesion label in image 1
and the WM label in image 2. Hence, our transition model P (Y (D)|L(1), L(2), ζ)
can be defined as:

P (Y (D)|L(1), L(2), ζ) =

⎧
⎪⎨

⎪⎩

∝ 1 ,with k(1) and k(2) ∈ {GM, CSF}
∏

j,k(1),k(2)

N
(
y
(D)
j |μ(D)

k(1),k(2) , σ
2(D)

k(1),k(2)

)l
(1)

j,k(1) , l
(2)

j,k(2)
,with k(1) and k(2) ∈ {WM, lesion}

(3)
where ζ = {θstatic, θgrowth, θshrinkage} the set of Gaussian mixture parame-

ters of the three transition classes with

θstatic = {μ
(D)

k(1),k(2) , σ
2(D)

k(1),k(2)}, if

{
k(1) = k(2) = WM or
k(1) = k(2) = lesion

θgrowth = {μ
(D)

k(1),k(2) , σ
2(D)

k(1),k(2)}, if k(1) = WM, k(2) = lesion

θshrinkage = {μ
(D)

k(1),k(2) , σ
2(D)

k(1),k(2)}, if k(1) = lesion, k(2) = WM

Finally, we assume that we have no prior knowledge on the relationship on the
tissue class labels between both images. Therefore, we define the prior probabil-
ities independently for each image. Often these prior probabilities are given by
a probabilistic atlas. However, our cross-sectional model provided us with more
specific knowledge and hence, we use the probabilistic cross-sectional tissue class
segmentations. The prior probabilities on tissue class labels for image 1 is denoted
by P (L(1)) and for the image 2 is denoted by P (L(2)), are defined as:

P (L(1)) =
∏

j,k(1)

(
α

(1)

j,k(1)

)l
(1)

j,k(1)
, P(L(2)) =
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α
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)l
(2)

j,k(2)
(4)
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Maximum A Posteriori (MAP) problem: We want to optimise our model
P (γ|Y (1), Y (2), Y (D)) with parameters γ = {θ1, θ2, ζ} to fit the observed image
intensities Y (1), Y (2) and Y (D). Hence, we aim to optimise the following MAP:

γMAP = argmax
γ

ln P (γ|Y (1), Y (2), Y (D)) = argmax
γ

ln P (Y (1), Y (2), Y (D), γ)

(5)

= argmax
γ

ln
∑

L(1),L(2)

P (Y (1), Y (2), Y (D), L(1), L(2), γ) (6)

≥ argmax
γ

∑

L(1),L(2)

P (L(1), L(2)|Y (1), Y (2), Y (D), γ) ln P (Y (1),Y (2),Y (D),L(1),L(2),γ)
P (L(1),L(2)|Y (1),Y (2),Y (D),γ)

(7)

where

P (Y (1), Y (2), Y (D), L(1), L(2), γ) = P (Y (1)|L(1), θ(1)). P (Y (2)|L(2), θ(2))
. P (Y (D)|L(1), L(2), ζ). P (L(1))
. P (L(2)) (8)

and Eq. (6) is introduced as knowledge of tissue class labels (hidden variables)
contributes to the estimation of the model parameters. To optimise this model
with hidden variables, a lower bound (Eq. (7)) is derived using Jensen’s inequal-
ity. The Q-function can now be written as:

Q(γ|γ) = EL(1),L(2)|Y (1),Y (2),Y (D),γ [ ln P (Y (1), Y (2), Y (D), L(1), L(2), γ)] (9)

with the joint posterior distribution P (L(1), L(2)|Y (1), Y (2), Y (D), γ), which can
be formulated in every voxel j for tissue class k(1) and k(2) as:

pj,k(1),k(2) =
p(y(1)

j , y
(2)
j , y

(D)
j , l

(1)

j,k(1) = 1, l
(2)

j,k(2) = 1, γ)
∑

k(1),k(2)

p(y(1)
j , y

(2)
j , y

(D)
j , l

(1)

j,k(1) , l
(2)

j,k(2) , γ)
(10)

for a specific estimate γ of γ. Marginalisation of the joint posterior over all
possible tissue classes k(2) provides us an estimate of the soft tissue class seg-
mentations at time point 1, referred to as pj,k(1) . Analogously, marginalisation
over all k(1) of the joint posterior provides us the soft tissue class segmentations
at time point 2, referred to as pj,k(2) .

pj,k(1) =
∑

k(2)

pj,k(1),k(2) (11)
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pj,k(2) =
∑

k(1)

pj,k(1),k(2) (12)

The EM algorithm iteratively optimises the posterior distribution in the
expectation step based on a parameter estimation obtained from the maximisa-
tion step. In the maximisation step, the parameters are updated by maximisa-
tion of the lower bound in Eq. (9) for the current estimate of the joint posterior.
Closed form solutions for all parameters are found.

2.3 Pruning

The obtained segmentations from the EM algorithm are evaluated to check
whether they fulfil the criteria for MS lesions: (1) the lesion intensities should
be hyper-intense compared to the WM intensities on the bias field corrected
FLAIR image, (2) the lesions are in the WM region, and (3) the lesion needs to
have a minimum volume of 0.005 ml (empirically determined) to avoid spurious
lesion detection. In addition, a priori defined binary mask that consists of the
cerebral cortex and WM in-between the ventricles is warped to the subject space
to remove lesion candidates from these regions as they are likely to result in a
false lesion segmentation.

3 Experiments and Results

The longitudinal pipeline (MSmetrix-long) is compared to the cross-sectional
pipeline (MSmetrix-cross) in terms of consistency and sensitivity in lesion evo-
lution. In-house data sets are used as the publicly available ISBI challenge is
not ideally suited for evaluating consistency (as no test-retest data available) or
sensitivity (as almost no new lesions present in the follow-up data). Two tailed
paired Wilcoxon signed-rank test is performed to detect significant differences
between the results of both methods.

3.1 Consistency Experiment

The consistency of the lesion segmentation is validated on test-rest data of 10
MS patients. Each patient was scanned two times, with re-positioning, on each
of three different 3T scanners (i.e. Philips, Siemens and GE). Each scan ses-
sion contained a 3D FLAIR and a 3D T1-weighted image with voxel resolution
close to 1 mm3. No expert segmentations are available. The consistency of both
MSmetrix-cross and MSmetrix-long is evaluated by the Dice overlap of the lesion
segmentations of both times points. Moreover, we calculate the estimated num-
ber of new lesions and the absolute total lesion volume difference from the first
towards the second scan, which are both expected to be zero.
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All quantitative results are visualised in Table 1. MSmetrix-long shows a sig-
nificant improved Dice overlap as well as a better estimate of the number of new
lesions (p-values < 0.01) compared to MSmetrix-cross. Also, the absolute vol-
ume difference between the time points is improved in the longitudinal method,
although this is not significant (p-value > 0.05). Figure 2(a) shows an example
of improved temporal consistency of the lesion segmentation.

Table 1. The Dice overlap, the number (nr.) of new lesions and the absolute volume
difference (abs. vol. diff.) between both time points for MSmetrix-cross and MSmetrix-
long. All metrics are reported as median (first quartile − third quartile).

Method Dice Nr. new lesions Abs. vol. diff. (ml)

MSmetrix-cross 0.69 (0.56 − 0.73)∗ 3.5 (1 − 5)∗ 0.30 (0.17 − 0.54)

MSmetrix-long 0.89 (0.85 − 0.91) 0 (0 − 1) 0.13 (0.04 − 0.39)

* Values significantly different from MSmetrix-long (paired Wilcoxon
signed-rank test with p < 0.01 significance level).

3.2 Sensitivity Experiment

This experiment is based on a baseline and a one-year follow-up scan from 12
MS patients on a GE 3T scanner. Each time point contained a 3D FLAIR
and 3D T1-weighted image with voxel resolution close to 1 mm3. Expert MS
lesion segmentations are available and the number of new lesions for the data
set according to the ground truth equals 4 (2.75 − 7.25) (median (first quartile −
third quartile)). These new lesions (number and location) were used to evaluate
the sensitivity. Hence we calculate the lesion-wise true positive rate (LTPR)
and lesion-wise false positive rate (LFPR) for new lesions with respect to the
ground truth [2]. LTPR is defined as the ratio of the total number of new lesions
where the ground truth and the automatic segmentation intersect to the total
number of new lesions in the ground truth segmentation. LFPR is defined as the
ratio of the total number of new lesions that are present only in the automatic
segmentation to the total number of new lesions in the automatic segmentation.

For completeness, we also compute the Dice overlap between the overall lesion
segmentation of each methods and the ground truth per time point. Table 2
summarises the results. No significant differences (p-value > 0.05) are found
for LTPR and the Dice scores between both methods, although the Dice scores
seem slightly better for MSmetrix-long. The LFPR is significantly improved
for MSmetrix-long compared to MSmetrix-cross (p − value < 0.01). Figure 2(b)
shows a representative example of lesion segmentation obtained by both meth-
ods, illustrating the consistency of MSmetrix-long, while still detecting the lesion
changes.
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(a) Bias corrected FLAIR image with lesion segmentation from MSmetrix-cross (red)
and MSmetrix-long (green).

(b) Bias corrected FLAIR image with lesion segmentation from the expert (yellow),
MSmetrix-cross (red) and MSmetrix-long (green).

Fig. 2. (a) Consistency and (b) sensitivity of the lesion segmentations on 2 represen-
tative examples. The first row are the time point 1 images and the second row time
point 2. (Color figure online)
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Table 2. The Dice overlap, LTPR and LFPR for MSmetrix-cross and MSmetrix-long
with respect to expert segmentations. All metrics are reported in median (first quartile
− third quartile).

Method LTPR LFPR Dice TP 1 Dice TP 2

MSmetrix-cross 0.25 (0.25 − 0.38) 0.78 (0.67 − 0.93)∗ 0.65 (0.52 − 0.68) 0.58 (0.45 − 0.63)

MSmetrix-long 0.21 (0 − 0.38) 0.23 (0 − 0.29) 0.65 (0.54 − 0.69) 0.59 (0.47 − 0.66)

LTPR=lesion-wise true positive rate for new lesions, LFPR=lesion-wise false positive rate for new

lesions, Dice=voxel-wise overlap between automated method and the ground truth lesion segmenta-

tion per time point.

* Values significantly different from MSmetrix-long (paired Wilcoxon signed-rank test with p < 0.01

significance level).

4 Discussion and Conclusion

We have presented MSmetrix-long: a longitudinal method for lesion joint seg-
mentation over two time points, optimised using an EM algorithm. The proposed
method is unsupervised and can segment new, enlarging, disappearing, shrinking
and static lesions. The method combines both spatial and temporal relationships
of lesions for accurate and consistent lesion segmentation. The spatial relation-
ship is based on Markov Random Field and is incorporated in MSmetrix-cross.
The temporal relationship is modelled in a joint lesion segmentation, which uses
difference image and cross-sectional lesion segmentations of two time points.
The difference image models the growth and shrinkage of lesions and thus helps
in recovering those lesions that are missed in the MSmetrix-cross. In addition,
if a lesion is present in both time points but has been segmented in only one
of the time point, then the joint lesion segmentation facilitates the recovery of
that lesion at the other time point. Moreover, brain atrophy has also minimal
impact on the performance of MSmetrix-long because (1) atrophy is generally
small and global in nature (2) it occurs near the CSF boundary and these tran-
sitions i.e. (CSF → GM and CSF → WM) are excluded in the difference image
GMM model, (3) we tested global non-rigid registration i.e. non-rigid regis-
tration only on a coarse level, to accommodate for the atrophy and we found
out that it has a minimal impact on the final lesion segmentation. Therefore,
to gain computational efficiency we excluded this global non-rigid registration
from MSmetrix-long pipeline.

Among the methods proposed in the literature for longitudinal lesion segmen-
tation, our approach has some similarities to [5] and [7]. As opposed to [5], which
uses four MRI sequences and their respective difference images of two consecutive
time points in a logistic regression model to detect lesion changes, our method is
unsupervised and works with only two clinically acquired MRI sequences. In con-
trast with [7], which is also based on EM framework, our method is unsupervised
and can segment new, enlarging, disappearing and shrinking lesions.

One important aspect of MSmetrix-long is that its performance is depen-
dent on the cross-sectional lesion segmentation. This suggests that if MSmetrix-
cross has either consistently missed a lesion, or segmented a non-lesion at both
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time points, then it will be either missed or retained by MSmetrix-long, respec-
tively. As presented in the result section, MSmetrix-long is more consistent than
MSmetrix-cross and sensitive in terms of detecting lesion changes. The increase
in consistency is due to the reduction in false positives using the lesion segmen-
tation information from the other time point. A slight decrease in the sensitivity
in detecting lesion changes is due to the elimination of a few lesions that are close
to the cerebral cortex. Interestingly, in spite of substantial reduction in the false
positive rate of new lesions, the Dice overlap for both methods remains the same
(see Table 2). This can be explained by the fact that new lesions are very small
and thus their impact on the overall (global) lesion segmentation Dice overlap
is minimal.

We have presented MSmetrix-long: a longitudinal method for lesion joint seg-
mentation over two time points, optimised using an EM algorithm. The proposed
method is unsupervised and can segment new, enlarging, disappearing, shrink-
ing and static lesions. The method was evaluated on two data sets in terms
of temporal consistency and sensitivity to MS lesion changes. It is indicated
that MSmetrix-long is more consistent than MSmetrix-cross and as sensitive in
terms of detecting lesion changes. As such, MSmetrix-long allows an improved
quantification of MS lesion evolution.
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