
Giovanni Livraga
Sencun Zhu (Eds.)

 123

LN
CS

 1
03

59

31st Annual IFIP WG 11.3 Conference, DBSec 2017
Philadelphia, PA, USA, July 19–21, 2017
Proceedings

Data and Applications
Security and Privacy XXXI

Lecture Notes in Computer Science 10359

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Giovanni Livraga • Sencun Zhu (Eds.)

Data and Applications
Security and Privacy XXXI
31st Annual IFIP WG 11.3 Conference, DBSec 2017
Philadelphia, PA, USA, July 19–21, 2017
Proceedings

123

Editors
Giovanni Livraga
Università degli Studi di Milano
Crema
Italy

Sencun Zhu
Pennsylvania State University
Philadelphia, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-61175-4 ISBN 978-3-319-61176-1 (eBook)
DOI 10.1007/978-3-319-61176-1

Library of Congress Control Number: 2017943855

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-2661-8573

Preface

This volume contains the papers selected for presentation at the 31st Annual IFIP WG
11.3 Conference on Data and Applications Security and Privacy (DBSec 2017), held in
Philadelphia, PA, USA, on July 19–21, 2017.

In response to the call for papers of this edition, 59 submissions were received, and
all submissions were evaluated on the basis of their significance, novelty, and technical
quality. The Program Committee, comprising 45 members, performed an excellent task
and with the help of additional reviewers all submissions went through a careful
anonymous review process (three or more reviews per submission). The Program
Committee’s work was carried out electronically, yielding intensive discussions. Of the
submitted papers, 21 full papers and nine short papers were selected for presentation at
the conference.

The success of DBSec 2017 depends on the volunteering effort of many individuals,
and there is a long list of people who deserve special thanks. We would like to thank all
the members of the Program Committee and all the external reviewers, for all their hard
work in evaluating the papers and for their active participation in the discussion and
selection process. We are very grateful to all people who gave their assistance and
ensured a smooth organization process, in particular Krishna Kant and Peng Liu for
their efforts as DBSec 2017 General Chairs; Sabrina De Capitani di Vimercati (IFIP
WG11.3 Chair) for her guidance and support; and Fengjun Li (Publicity Chair) for
helping with publicity. A special thanks goes to the keynote speaker, who accepted our
invitation to deliver a keynote talk at the conference.

Last but certainly not least, thanks to all the authors who submitted papers and all
the conference attendees. We hope you find the proceedings of DBSec 2017 inter-
esting, stimulating, and inspiring for your future research.

July 2017 Giovanni Livraga
Sencun Zhu

Organization

IFIP WG 11.3 Chair

Sabrina De Capitani
di Vimercati

Università degli Studi di Milano, Italy

General Chairs

Krishna Kant Temple University, USA
Peng Liu Pennsylvania State University, USA

Program Chairs

Giovanni Livraga Università degli Studi di Milano, Italy
Sencun Zhu Pennsylvania State University, USA

Publicity Chair

Fengjun Li The University of Kansas, USA

Program Committee

Alessandro Armando FBK and Università di Genova, Italy
Vijay Atluri Rutgers University, USA
Marina Blanton SUNY Buffalo, USA
Soon Ae Chun CUNY, USA
Frédéric Cuppens Telecom Bretagne, France
Nora Cuppens-Boulahia Telecom Bretagne, France
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Carmen Fernandez-Gago University of Málaga, Spain
Simon Foley Telecom Bretagne, France
Sara Foresti Università degli Studi di Milano, Italy
Joaquin Garcia-Alfaro Telecom SudParis, France
William Garrison University of Pittsburgh, USA
Stefanos Gritzalis University of the Aegean, Greece
Ehud Gudes Ben-Gurion University, Israel
Yuan Hong University at Albany, USA
Sushil Jajodia George Mason University, USA
Sokratis Katsikas Giøvik University College, Norway
Florian Kerschbaum University of Waterloo, Canada

Yingjiu Li Singapore Management University, Singapore
Javier Lopez University of Málaga, Spain
Fabio Martinelli IIT-CNR, Italy
Catherine Meadows NRL, USA
Aziz Mohaisen SUNY Buffalo, USA
Martin Olivier University of Pretoria, South Africa
Stefano Paraboschi Università degli Studi di Bergamo, Italy
Günther Pernul Universität Regensburg, Germany
Silvio Ranise FBK Security and Trust Unit, Italy
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Pierangela Samarati Università degli Studi di Milano, Italy
Ravi Sandhu University of Texas at San Antonio, USA
Andreas Schaad WIBU-SYSTEMS AG, Germany
Scott Stoller Stony Brook University, USA
Tamir Tassa The Open University of Israel, Israel
Mahesh Tripunitara University of Waterloo, Canada
Jaideep Vaidya Rutgers University, USA
Cong Wang City University of Hong Kong, Hong Kong, SAR China
Lingyu Wang Concordia University, Canada
Edgar Weippl Vienna University of Technology, Austria
Yi Yang Fontbonne University, USA
Meng Yu University of Texas at San Antonio, USA
ShengZhi Zhang Florida Institute of Technology, USA
Yuqing Zhang Chinese Academy of Sciences, China
Quanyan Zhu New York University, USA

Additional Reviewers

Isaac Agudo
Hafiz Asif
Anis Bkakria
Daniel Borbor
Juntao Chen
Luis Del Vasto
Philip Derbeko
Sebastian Groll
Panagiotis Kintis
Michael Kunz
Giovanni Lagorio
Costas Lambrinoudakis
Suryadipta Majumdar
Sergio Martínez

Rudolf Mayer
Alessio Merlo
Georg Merzdovnik
Meisam Mohamady
David Nuñez
Javier Parra
Alexander Puchta
Stefan Rass
Johannes Sänger
Ankit Shah
Jordi Soria-Comas
Tanay Talukdar
Iman Vakilinia
Andrea Valenza

VIII Organization

Sridhar Venkatesan
Akrivi Vlachou
Wei Wang
Xingjie Yu

Wanyu Zang
Mengyuan Zhang
Rui Zhang
Tao Zhang

Organization IX

Contents

Access Control

Cryptographically Enforced Role-Based Access Control
for NoSQL Distributed Databases . 3

Yossif Shalabi and Ehud Gudes

Resilient Reference Monitor for Distributed Access Control
via Moving Target Defense . 20

Dieudonne Mulamba and Indrajit Ray

Preventing Unauthorized Data Flows . 41
Emre Uzun, Gennaro Parlato, Vijayalakshmi Atluri, Anna Lisa Ferrara,
Jaideep Vaidya, Shamik Sural, and David Lorenzi

Object-Tagged RBAC Model for the Hadoop Ecosystem 63
Maanak Gupta, Farhan Patwa, and Ravi Sandhu

Identification of Access Control Policy Sentences from Natural
Language Policy Documents. 82

Masoud Narouei, Hamed Khanpour, and Hassan Takabi

Fast Distributed Evaluation of Stateful Attribute-Based Access
Control Policies . 101

Thang Bui, Scott D. Stoller, and Shikhar Sharma

Privacy

Gaussian Mixture Models for Classification and Hypothesis Tests
Under Differential Privacy . 123

Xiaosu Tong, Bowei Xi, Murat Kantarcioglu, and Ali Inan

Differentially Private K-Skyband Query Answering Through Adaptive
Spatial Decomposition . 142

Ling Chen, Ting Yu, and Rada Chirkova

Mutually Private Location Proximity Detection with Access Control 164
Michael G. Solomon, Vaidy Sunderam, Li Xiong, and Ming Li

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys - With
an Application on Biomarker Discovery. 185

Jun Zhang, Meiqi He, and Siu-Ming Yiu

http://dx.doi.org/10.1007/978-3-319-61176-1_1
http://dx.doi.org/10.1007/978-3-319-61176-1_1
http://dx.doi.org/10.1007/978-3-319-61176-1_2
http://dx.doi.org/10.1007/978-3-319-61176-1_2
http://dx.doi.org/10.1007/978-3-319-61176-1_3
http://dx.doi.org/10.1007/978-3-319-61176-1_4
http://dx.doi.org/10.1007/978-3-319-61176-1_5
http://dx.doi.org/10.1007/978-3-319-61176-1_5
http://dx.doi.org/10.1007/978-3-319-61176-1_6
http://dx.doi.org/10.1007/978-3-319-61176-1_6
http://dx.doi.org/10.1007/978-3-319-61176-1_7
http://dx.doi.org/10.1007/978-3-319-61176-1_7
http://dx.doi.org/10.1007/978-3-319-61176-1_8
http://dx.doi.org/10.1007/978-3-319-61176-1_8
http://dx.doi.org/10.1007/978-3-319-61176-1_9
http://dx.doi.org/10.1007/978-3-319-61176-1_10
http://dx.doi.org/10.1007/978-3-319-61176-1_10

Privacy-Preserving Community-Aware Trending Topic Detection in Online
Social Media . 205

Theodore Georgiou, Amr El Abbadi, and Xifeng Yan

Privacy-Preserving Outlier Detection for Data Streams. 225
Jonas Böhler, Daniel Bernau, and Florian Kerschbaum

Undoing of Privacy Policies on Facebook . 239
Vishwas T. Patil and R.K. Shyamasundar

Cloud Security

Towards Actionable Mission Impact Assessment in the Context
of Cloud Computing . 259

Xiaoyan Sun, Anoop Singhal, and Peng Liu

Reducing Security Risks of Clouds Through Virtual Machine Placement 275
Jin Han, Wanyu Zang, Songqing Chen, and Meng Yu

Firewall Policies Provisioning Through SDN in the Cloud 293
Nora Cuppens, Salaheddine Zerkane, Yanhuang Li, David Espes,
Philippe Le Parc, and Frédéric Cuppens

Budget-Constrained Result Integrity Verification of Outsourced
Data Mining Computations. 311

Bo Zhang, Boxiang Dong, and Wendy Wang

Searchable Encryption to Reduce Encryption Degradation
in Adjustably Encrypted Databases . 325

Florian Kerschbaum and Martin Härterich

Efficient Protocols for Private Database Queries . 337
Tushar Kanti Saha, Mayank, and Takeshi Koshiba

Toward Group-Based User-Attribute Policies in Azure-Like Access
Control Systems . 349

Anna Lisa Ferrara, Anna Squicciarini, Cong Liao, and Truc L. Nguyen

Secure Storage in the Cloud

High-Speed High-Security Public Key Encryption with Keyword Search 365
Rouzbeh Behnia, Attila Altay Yavuz, and Muslum Ozgur Ozmen

HardIDX: Practical and Secure Index with SGX . 386
Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn,
Florian Kerschbaum, and Ahmad-Reza Sadeghi

XII Contents

http://dx.doi.org/10.1007/978-3-319-61176-1_11
http://dx.doi.org/10.1007/978-3-319-61176-1_11
http://dx.doi.org/10.1007/978-3-319-61176-1_12
http://dx.doi.org/10.1007/978-3-319-61176-1_13
http://dx.doi.org/10.1007/978-3-319-61176-1_14
http://dx.doi.org/10.1007/978-3-319-61176-1_14
http://dx.doi.org/10.1007/978-3-319-61176-1_15
http://dx.doi.org/10.1007/978-3-319-61176-1_16
http://dx.doi.org/10.1007/978-3-319-61176-1_17
http://dx.doi.org/10.1007/978-3-319-61176-1_17
http://dx.doi.org/10.1007/978-3-319-61176-1_18
http://dx.doi.org/10.1007/978-3-319-61176-1_18
http://dx.doi.org/10.1007/978-3-319-61176-1_19
http://dx.doi.org/10.1007/978-3-319-61176-1_20
http://dx.doi.org/10.1007/978-3-319-61176-1_20
http://dx.doi.org/10.1007/978-3-319-61176-1_21
http://dx.doi.org/10.1007/978-3-319-61176-1_22

A Novel Cryptographic Framework for Cloud File Systems and CryFS,
a Provably-Secure Construction . 409

Sebastian Messmer, Jochen Rill, Dirk Achenbach,
and Jörn Müller-Quade

Secure Systems

Keylogger Detection Using a Decoy Keyboard . 433
Seth Simms, Margot Maxwell, Sara Johnson, and Julian Rrushi

The Fallout of Key Compromise in a Proxy-Mediated Key
Agreement Protocol. 453

David Nuñez, Isaac Agudo, and Javier Lopez

Improving Resilience of Behaviometric Based Continuous Authentication
with Multiple Accelerometers . 473

Tim Van hamme, Davy Preuveneers, and Wouter Joosen

Security in Networks and Web

A Content-Aware Trust Index for Online Review Spam Detection 489
Hao Xue and Fengjun Li

Securing Networks Against Unpatchable and Unknown Vulnerabilities
Using Heterogeneous Hardening Options . 509

Daniel Borbor, Lingyu Wang, Sushil Jajodia, and Anoop Singhal

A Distributed Mechanism to Protect Against DDoS Attacks 529
Negar Mosharraf, Anura P. Jayasumana, and Indrakshi Ray

Securing Web Applications with Predicate Access Control 541
Zhaomo Yang and Kirill Levchenko

Author Index . 555

Contents XIII

http://dx.doi.org/10.1007/978-3-319-61176-1_23
http://dx.doi.org/10.1007/978-3-319-61176-1_23
http://dx.doi.org/10.1007/978-3-319-61176-1_24
http://dx.doi.org/10.1007/978-3-319-61176-1_25
http://dx.doi.org/10.1007/978-3-319-61176-1_25
http://dx.doi.org/10.1007/978-3-319-61176-1_26
http://dx.doi.org/10.1007/978-3-319-61176-1_26
http://dx.doi.org/10.1007/978-3-319-61176-1_27
http://dx.doi.org/10.1007/978-3-319-61176-1_28
http://dx.doi.org/10.1007/978-3-319-61176-1_28
http://dx.doi.org/10.1007/978-3-319-61176-1_29
http://dx.doi.org/10.1007/978-3-319-61176-1_30

Access Control

Cryptographically Enforced Role-Based Access
Control for NoSQL Distributed Databases

Yossif Shalabi and Ehud Gudes(B)

Ben-Gurion University, 84105 Beer-Sheva, Israel
shalabiyossif@gmail.com, ehud@cs.bgu.ac.il

Abstract. The support for Role-Based Access Control (RBAC) using
cryptography for NOSQL distributed databases is investigated. Cassan-
dra is a NoSQL DBMS that efficiently supports very large databases,
but provides rather simple security measures (an agent having physical
access to a Cassandra cluster is usually assumed to have access to all
data therein). Support for RBAC had been added almost as an after-
thought, with the Node Coordinator having to mediate all requests to
read and write data, in order to ensure that only the requests allowed
by the Access Control Policy (ACP) are allowed through.

In this paper, we propose a model and protocols for cryptographic
enforcement of an ACP in a cassandra like system, which would ease the
load on the Node Coordinator, thereby taking the bottleneck out of the
existing security implementation. We allow any client to read the data
from any storage node(s) – provided that only the clients whom the ACP
grants access to a datum, would hold the encryption keys that enable
these clients to decrypt the data.

1 Introduction

Security has been a notable weakness in almost every NoSQL database, a fact
that was highlighted in a 2012 InformationWeek special report entitled “Why
NoSQL Equals No Security.” [2] Since the inception of NoSQL databases, their
whole point was seen as guaranteeing rapid, unfettered access to big data. Thus,
naturally, enforcing access control was seen by the Big Data community mainly as
a hindrance in the way of fast data access: At the same time, NoSQL databases
are now used by big financial institutions, healthcare companies, government
services, and even by millitary intelligence – so, these systems must be able
to handle sensitive data, providing the necessary security guarantees. “And yet,
the NoSQL ecosystem is woefully behind in incorporating even basic security,” [2]
This shortcoming affects all aspects of data security: users authentication, access
control, transport-level security of inter-node communication, etc., so, an ever-
growing deployment of NoSQL systems can subject them to many attacks which
are likely to catch these systems entirely unprepared.

Recognizing this situation, a major focus on security had been put in Cas-
sandra since version 3.0, even though the security subsystem is not enabled by

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-61176-1 1

4 Y. Shalabi and E. Gudes

default. Cassandra’s built-in authorization module does not use encryption, and
instead enforces the Access Control Policy (ACP) by relying on security moni-
tors, i.e. privileged components that handle a client’s requests for access [1,14].
At the same time, Cassandra 3.0 introduced data encryption, applicable to whole
tables. The encryption keys are stored on the server, and are not directly related
to an ACP; the same keys may be used for all encrypted tables, irrespective of the
access permissions for these tables. Data encryption in Cassandra is designed to
protect the data from an attacker bypassing the system’s security monitor, e.g.
by getting a root access to one of the nodes, or by physically stealing the disks
from one of the nodes; the assumption is that the server would only decrypt data
as part of a granted access. None of the existing modules for Cassandra, how-
ever, implement cryptographic access control, which would allow all read requests
unconditionally, and use the centralized security monitors to mediate only the
write requests. The benefit of such access control system for a distributed data-
base is to avoid the bottleneck of the security monitor when most requests are
to read data – which is indeed the case for most NoSQL deployments.

In this paper we present a model and protocols for enforcing cryptographi-
cally based RBAC using Cassandra. Cassandra was chosen as the platform for
our proof-of-concept implementation owing to the following reasons:

– It is a popular NoSQL database. It is used by many companies, including
Facebook and Twitter, and recently Cassandra is also being used by Cisco
and Platform64 for personalized television streaming.

– It is open-source and well-documented; – although, as a mature industrial-
quality DBMS, its code is very sophisticated and not easy to modify;

– “Out of the box”, it includes at least the basic support for RBAC, whereas
less mature open-source NoSQL DBMSs, such as Druid or Voldemort, which
are considerably simpler and therefore easier to modify, don’t include any
support for any sort of access control, so that implementing RBAC in these
DBMSs would require a major redesign of their core.

In this paper we suggest to enforce cryptography based RBAC using Predicate
encryption [9] and adapt it especially to a distributed architecture like that of
NoSQL Cassandra. The main contribution of the paper lies in the novelty of the
protocol and the detailed description of its proposed implementation.

The rest of this paper is organized as follows. Section 2 provides a more
detailed background on cryptographic access control and the various access con-
trol systems suggested for cloud storage, including a survey of the related work.
Section 3 discusses the proposed protocol and its implementation. Section 4 con-
cludes the paper and outlines future research.

2 Background and Related Work

Whereas the classic schemes for private-key and public-key encryption were con-
cerned with privacy of transmission, with a predefined recipient or set of recipi-
ents that must hold the relevant encryption key to be able to decrypt the mes-
sage, – attribute-based encryption (ABE) [6] extends it to privacy of data storage,

Cryptographically Enforced Role-Based Access Control 5

where different users may have access to different subsets of the stored data. It
would be inefficient to store multiple copies of the data, one copy for each user
that must have access to the data, each copy encrypted with its user’s personal
key; furthermore, it would be inconvenient for each user to keep a separate key
for each file that he’s authorized to access. Instead, ABE operates on a set of
attributes held by the users; each datum would be encrypted only once, with the
encryption key derived from the ACP, expressed as a conjunction of attribute
equalities or attribute ranges that a user must satisfy to be able to decrypt the
data. Predicate encryption (PE) [9] generalizes ABE by allowing policy expres-
sions consisting of conjunctions, disjunctions, and more complicated equations
on the users’ attributes. A user can decrypt data only if the data’s access predi-
cate, evaluated on the user’s attribute(s), is logically true.

An alternative approach [7] based on symmetric-key encryption (e.g. DES),
is to store each user’s set of keys, known as the user’s key-chain, in the file
system, encrypted with the user’s master key. To access a file, the user will have
to first read his key-chain file, and to decrypt the relevant data key with his
master key. Such a scheme is, in fact, used in most modern web browsers and
personal operating systems. Another option for a symmetric-key-based system
is to store the keys corresponding to each file together with the file, in a keys
record ; once again, each data key is encrypted with the corresponding user’s
master key. The advantage of this option over the first one is that when deleting
a file, all corresponding keys are deleted together with the file.

The conventional cloud systems impose certain trade-offs [5]: the users can
either get advanced functionality, but will have to trust the cloud service provider
(CSP), giving it unrestricted access to the data; or, conversely, they can use
advanced security systems, withholding the encryption keys from the CSP, –
but will then get limited functionality and/or performance, as the CSP cannot
perform any local data processing. To help strike a balance between privacy
and performance, one may use ABE, and split the ACP into two layers: the
inner encryption layer (IEL), with keys unknown to the CSP, ensures that the
data remain protected from the CSP; and then the CSP itself applies the outer
encryption layer (OEL) on top. If an ACP update conforms to the access restric-
tions set by the IEL, then the affected data may be re-encrypted in the cloud,
eliminating the need for the data owner to download and to re-upload the data.

The benefits of such two-layer encryption (TLE) [11] depend entirely on the
decomposition of the ACPs into sub-ACPs for the IEL and the OEL: the more
of the future ACP updates are restricted to the OEL sub-ACPs, the better.
This dynamic aspect of the two layers policy, i.e. setting it up in anticipation of
future ACP updates, is more fully addressed in a TLE scheme when the ACP is
an access control matrix, [15] instead of a set of predicates. Our own proposed
scheme is based on such a policy, named Delta SEL, in which the initial ACP
is translated into the IEL, and the OEL is initially empty. An example of an
ACP update in a Delta SEL system is as follows: suppose user u1 has access
permissions for files f1 and f2, so that the IEL encrypts both with a key k1,2,
known to u1, and another user u2 is granted access to f1. This is handled by

6 Y. Shalabi and E. Gudes

granting u2 the IEL key k1,2, and at the same time, encrypting f2 in the OEL
with a new key k′

2, issued only to u1. Revocation is handled in a similar way:
if u1 is now revoked access to f1, a new OEL key k′′

1 is issued to u2, and f1
is re-encrypted with k′′

1 . A major advantage of this TLE scheme is that the
IEL keys never change, and therefore ACP updates never require the expensive
retransmission and re-encryption by the data owner.

Another relevant paper presents a formal model for analyzing cRBAC (cryp-
tographically enforced RBAC) systems [3]. A subsequent paper [4] describes an
automated tool for verification of role reachability in RBAC systems by con-
verting them into formally-verifiable imperative programs, and then applying a
combination of abstract approximation and precise simulation of ACP updates,
both of them operating heuristically and non-deterministically. The authors pro-
vide a formal analysis of their approach, however, they do not analyze any spe-
cific cRBAC protocols, especially implemented in the context of a distributed
system like Cassandra. We present such detailed protocols in the next section,
and the longer version of this paper includes a semi-formal analysis. Another
recent paper by Garrison et al. [8] discusses the use of ABE/IBE cryptography
for enforcing cloud based policies like RBAC, but does not address a distributed
architecture like that of Cassandra which we focus on.

The main goal of our own work is implementing cRBAC in a distributed
cloud environment using Predicate encryption PE. The scheme we’re using for
PE [9] allows attributes from Z

n
N , for some N = p · q · r, where p, q, r are

three distinct primes; and equality predicates on inner (dot) products of the
attribute vectors. Alternatively, the scheme allows scalar attributes from ZN , and
equality predicates on polynomials over ZN . A “dual” of the latter construction
allows the attributes to be polynomials, and the predicates to correspond to
evaluation at a fixed point. Access predicates expressed as DNF or CNF formulae
are easily convertible into the polynomial form. A detailed discussion of predicate
encryption is out of scope for this paper.We just depict the main steps involved:

Setup: The setup algorithm takes a security parameter and outputs a public
key PK and a secret master key MSK

Key Derivation: Key derivation takes as input the master secret key and a
vector of predicate values (X1,X2,...Xn) and outputs a secret key SK associ-
ated with this vector

Encryption: Encrypt takes as input the public key PK, a set of attribute values
(Y1,Y2,...Yn) and the message M and generates an encrypted message M’

Decryption: Decrypt takes the encrypted message M’, the secret key SK and
the list of attributes values Y. The decryption succeeds only if the scalar
product of the two vectors X and Y is zero

This encryption scheme for polynomial predicates can be extended to boolean
formulae, as follows: (x = a1) ∨ (x = a2) is converted into the polynomial
predicate (x − a1) (x − a2) = 0; (x1 = b1) ∧ (x2 = b2) is converted into the
polynomial predicate r · (x1 − b1) + (x2 − b2) , for a random r ∈ ZN . These
ideas extend to more complex combinations of disjunctions and conjunctions,

Cryptographically Enforced Role-Based Access Control 7

meaning that the predicate encryption scheme can handle arbitrary CNF or
DNF formulae.

Cassandra is a distributed storage system for managing very large amounts
of structured data spread out across many commodity servers, while providing
highly available service with no single point of failure [10]. Cassandra aims to
run on top of an infrastructure of hundreds of nodes. In Cassandra, columns are
grouped together into sets called column families, which may be nested. The
rows are dynamically partitioned over a set of storage nodes in the cluster, using
an order preserving hash function on the row ID. The output range of the hash
function is treated as a ring, and each storage node is assigned a random position
on the ring. The hash based distribution is done by the node coordinator while
each storage node is responsible for its share of the range of records. The location
of a row (record) can be computed easily by the node coordinator. and the read
or write of a record is directed to one of the storage nodes containing it. The
support for RBAC was added in recent releases of Cassandra [14]. In Cassandra
syntax, users are represented as roles that have a permission to log in, i.e. a
user is a special kind of role. Cassandra roles are first-class database objects,
and so they have permissions defined on themselves, too: a role may be assigned
permissions (Alter, Drop, Grant, Revoke) on other roles, or equally on
itself. As was mentioned, there is no connection between Cassandra’s support
for RBAC and Cassandra’s support for encryption, which is a major motivation
to this paper.

3 Proposed Design

In our design, we apply the ideas from cryptographically based RBAC [3], Pred-
icate encryption [9], the two layers encrypton of [5], and Cassandra specific
distributed architecture [10]. The main principles of the design is that the ACP
is implemented by encryption at the storage node level. Thus once the location
of the record is determined, the information requested is sent directly to the
client by the node storage manager, and the client can decrypt it only if it has
the correct decryption key. The new cRBAC component supply the built-in data
encryption module with the relevant encryption keys, based on the user iden-
tity. Nodes send the requested data directly to the client, and do not require the
coordinator to relay the data; this avoids a possible bottleneck in data through-
put. The role of the coordinator in handling read requests is limited to finding a
node which has a copy of the data, and referring the client to that node. This is
performed in the same way as normally, by maintaining a (key → nodes) map-
ping; our changes to the access control do not affect this in any way. Another
principle employed by our scheme is the ability to verify written records by
any client. This will be detailed later. In summary the main principles of our
model are:

1. Read can be performed by any client, but the content is meaningful only for
a client authorized by the ACP

8 Y. Shalabi and E. Gudes

Fig. 1. Handling read requests

2. Write can be performed by any client, but only ACP authorized users will
have a valid signature on the written record.

3. Any client can verify the validity of a written record even if it cannot decrypt
its content

3.1 Read/Write Access

Handling read requests is illustrated in Fig. 1. We use the cRBAC predicate
encryption scheme described earlier. We employ a combination of a master key,
from which multiple encryption keys and decryption keys are derived according
to the ACP. The encryption keys (one per data file) are used to encrypt the
data initially, and the same encryption keys are distributed to the clients who
have write access to the corresponding files. The decryption keys (one per role)
are distributed to all clients according to their role: each client’s decryption key
allows him to decrypt the data that he has read access to, according to the ACP.

Handling of write requests, in a way that does not require the coordi-
nator to mediate each request, is slightly more complicated. Our proposal
relies on the fact that most cloud storage systems (including Cassan-
dra) only support appending to existing data, but not deleting or over-
writing them. In our cRBAC-based system, any user may append new
records, by sending them directly to the storage node, and only involv-
ing the coordinator for looking up the relevant node for his key value(s).
Each written record must include the writer’s encrypted signature; and a subse-
quent reader, upon receiving the data from a storage node, needs to perform a

Cryptographically Enforced Role-Based Access Control 9

little extra work in order to verify the signature of the record, and discard any
invalid records. The signature is simply an encrypted hash of the record data; all
that matters is that any client can easily tell whether it’s valid or not. The key
derivation for encrypting these signatures is done similarly as for the read access
keys, but distributed in a different way: the decryption keys (one per data file)
are known to all readers (who can use them for verification), and the encryption
keys (one per role) are private to each writer.

Example. In this example, there are three roles A,B,C and three files X,Y,Z.
The access control policy is shown below in matrix form:

X Y Z

A
B
C

Initially, the server generates a master key mk and random numbers a, b, c.
Then, the server derives encryption keys

kX = derivee(mk, (a · c,−a − c, 1)),
kY = derivee(mk, (b · c,−b − c, 1)),
kZ = derivee(mk, (c,−1, 0))

for the three files, and decryption keys

kA = derived(mk, (1, a, a2)),
kB = derived(mk, (1, b, b2)),
kC = derived(mk, (1, c, c2))

for the three roles. Each client gets a decryption key according to his role. Pred-
icate encryption [9] guarantees that

decrypt(kA, encrypt(kX ,X)) = decrypt(kC , encrypt(kX ,X)) = X,

and so on for the other two files; it also guarantees that decrypt(kB ,
encrypt(kX ,X)) is a random bit string that does not reveal any information
about the contents of X; and so are decrypt(kA, encrypt(kY , Y)),
decrypt(kA, encrypt(kZ , Z)), and decrypt(kB , encrypt(kZ , Z)). This is because

(1, a, a2) · (a · c,−a − c, 1) = (1, c, c2) · (a · c,−a − c, 1) = 0, while
(1, a, a2) · (b · c,−b − c, 1) �= 0,
(1, b, b2) · (a · c,−a − c, 1) �= 0,

(1, a, a2) · (c,−1, 0) �= 0,
(1, b, b2) · (c,−1, 0) �= 0.

10 Y. Shalabi and E. Gudes

For the purpose of write access control, the server generates a separate master
key wk, and derives encryption keys

wA = derivee(mk, (1, a, a2)),
wB = derivee(mk, (1, b, b2)),
wC = derivee(mk, (1, c, c2))

for the three roles, and decryption keys

wX = derived(wk, (a,−1, 0)),
wY = derived(wk, (b · c,−b − c, 1)),
wZ = derived(wk, (c,−1, 0))

for the three files. Each client gets an encryption key according to his role, as well
as a complete set of decryption keys (for write validation). Predicate encryption
guarantees that decrypt(wX , encrypt(wA, hash(X))) = hash(X), and therefore
any client can, by using the publicly known wX , validate that X had indeed
been written and signed by A. Furthermore, predicate encryption guarantees
that decrypt(wX , encrypt(wC , hash(X))) �= hash(X), and therefore an attempt
by C to write and sign X will be detected by a subsequent reader, and ignored.
These guarantees can be demonstrated in the same way as before, by computing
the dot-products of derivation vectors for the keys.

The data are stored (possibly by different nodes) in the following manner,
with the encrypted data of each file preceded by the writer’s signature:

encrypt(wA, hash(X)) encrypt(kX , X)

encrypt(w?, hash(Y)) encrypt(kY , Y)

encrypt(wC , hash(Z)) encrypt(kZ , Z)

A has kA, wA, kX , wX , wY , wZ ;
B has kB , wB , kY , wX , wY , wZ ;
C has kC , wC , kY , kZ , wX , wY , wZ .

Additional Notes:

– In the illustration above, w? could be either wB or wC : when several roles
have write access to a file, the signature does not disclose which one of them
performed the write – only that the write was valid. There is a privacy problem
here in case there is only one writer to a file. This will be dealt with in future
work.

Cryptographically Enforced Role-Based Access Control 11

– A client who does not have read access to a file cannot validate whether it
had been written legally or not, since the validation requires knowing the
hash of the file contents. Every client needs validation keys for all files that
he can read; validation keys for files that he cannot read are useless to him,
but there’s no harm and no waste in distributing all validation keys to all
users, and this is simpler to manage.

– A signature cannot be “reused” for a file with different contents, or for a
different file; however, it can be “reused”, by a client without write access to
a file, to revert the file to its earlier valid version. If this is undesirable, then
a version number or a timestamp must be stored inside the file contents.

– The computational overhead for the cryptographic operations does not
directly depend on the number of files or roles (each file has either one or
two layers of encryption [11,15]), and this overhead is expected to remain
far below the data transmission latency. When there are many files or many
roles, the task of traversing a user’s key-chain and looking up the correct key
for a file may appear computationally demanding; but in fact, storing these
in a sufficiently big hash table, indexed either by file ID, user ID or any func-
tional equivalent will make looking up a key a very efficient operation, with
effectively a constant time complexity.

3.2 Write Access Issues

In the proposed system, there is no central authority to decide, for each write
request, whether to allow or to deny it; instead, the clients themselves decide,
for each written record, whether it had been written legally. This is similar to
how the Blockchain [12] operates – anybody can issue a write, but any invalid
writes will be ignored by the readers. Blockchain is a “distributed ledger” which
keeps a verifiably immutable (but appendable) record of all transactions since
the system’s initialization, with the integrity preserved via a “proof of work”,
via signatures by trusted parties, or by other means. Originally implemented in
2008 for the Bitcoin cryptocurrency, the blockchain is public and permissionless,
allowing any user to submit new blocks.

There are, however, some difficulties associated with cryptographic access
control on write. One such difficulty is the coherence of access policy updates: as
there is no central authority to handle all write requests and policy updates, it’s
impossible to tell which “happened” earlier, a revocation of a write permission, or
a write request relying on the same permission. In the simplest (and most secure)
case, the readers verify the signatures using their present signature validation
keys (SVKs) – discarding all records whose writers don’t currently have the write
access, whether or not they had write access at the time the records were written.
A more complicated implementation would have to keep track of historic SVKs,
and correlate each signature with an SVK which could be in effect at the time
of the writing.

A further difficulty with cryptographic access control on write is a possibility
for a DoS attack, where a user with no write access appends excessive amounts
of invalid records, running the system out of storage capacity. However, the

12 Y. Shalabi and E. Gudes

traditional security model for NoSQL databases [2] had always assumed that the
cluster operates deep in the back-end of a high-load system, and is not exposed to
any external agents which could be malicious; and that some of the security can
be sacrificed in order to improve the cluster performance. This is also the reason
why the NoSQL databases have adopted the append-only data model, where an
excessive amount of data updates can run the system out of storage capacity.
Even though readers may report the occurrence of invalid writes to the nodes
coordinator, this is of no help against a DoS attack, since the written records
(whether valid or invalid) are anonymous, and therefore, it’s impossible to track
down and block a client which writes excessive amounts of records (whether
valid or invalid). Once again, this is not a defect in our proposed system, but a
deliberate design decision upon which the NoSQL DBMSs are built.

3.3 ACP Updates

ACP updates require the data to be re-encrypted with new keys. We want to min-
imize the coordinator’s involvement in this; therefore, the re-encryption should
be performed locally to the data, by the nodes. This requires the new cRBAC
component to plug into the node daemon as well, which seems to be rather
uncommon for an authorizer implementation, and may require some adaptation
of the core Cassandra node daemon to accept the plug-in. The biggest part of the
cRBAC component, however, would run at the coordinator server to implement
the keys management, i.e. to handle the changes to the ACP by generating new
encryption keys and issuing them to the relevant users, as well as instructing the
nodes to re-encrypt the affected data with the new keys. It is important to note
that reencryption is done mostly at the second level of encryption, and the
content itself is not re-encrypted.

Examples. Suppose that in the example above, C is revoked access to Y :

X Y Z

A
B
C

For this, the server derives a new key k′
Y = derivee(mk, (b,−1, 0)), and orders

over-encryption of Y with the new key:

encrypt(wA, hash(X)) encrypt(kX , X)

encrypt(w?, hash(Y)) encrypt(k′
Y , encrypt(kY , Y))

encrypt(wC , hash(Z)) encrypt(kZ , Z)

(1, c, c2) · (b,−1, 0) �= 0, and therefore C can no longer read Y :
Since decrypt(kC , encrypt(k′

Y , encrypt(kY , Y))) results with a random bit string

Cryptographically Enforced Role-Based Access Control 13

that does not reveal any information about the contents of encrypt(kY , Y) –
which, in turn, C would still be able to decrypt.

To make sure C’s signature on Y will no longer be accepted, the server
derives a new decryption key w′

Y = derived(wk, (b,−1, 0)), and distributes it to
all clients, so that:

A has kA, wA, kX , wX , (wY), w′
Y , wZ ;

B has kB , wB , (kY), k′
Y , wX , (wY), w′

Y , wZ ;
C has kC , wC , (kY), kZ , wX , (wY), w′

Y , wZ .

(the keys which are no longer of any use to the holding client are parenthe-
sized).

The existing signatures remain valid: e.g., if Y had been written and signed
by B, then

decrypt(w′
Y , encrypt(wB , hash(Y))) = decrypt(wY , encrypt(wB , hash(Y))) = hash(Y)

even though the decryption key had been updated; this is because

(b,−1, 0) · (1, b, b2) = 0.

However, a signature made by C will now be detected as invalid:

decrypt(w′
Y , encrypt(wC , hash(Y)) �= hash(Y)

Now suppose that A is granted read/write access to Y :

X Y Z

A
B
C

In this case, no over-encryption is necessary: since access of A is strictly wider
than the access of B, the server simply hands over B’s keys to A, so that:

A has kA, kB , wA, wB , kX , k′
Y , wX , (wY), w′

Y , wZ ;
B has kB , wB , (kY), k′

Y , wX , (wY), w′
Y , wZ ;

C has kC , wC , (kY), kZ , wX , (wY), w′
Y , wZ .

The effect is that A acquires all of the permissions that B had. However, if B is
subsequently granted new permissions that A does not have, then B will need
to be issued a new set of private keys (k′

B , w
′
B). For example, suppose that B is

granted read/write access to Z:

X Y Z

A
B
C

14 Y. Shalabi and E. Gudes

The server now has to generate new random numbers b′ and c′, and derive
the new keys for B and C:

k′
B = derived(mk, (1, b′, b′2)),

k′
C = derived(mk, (1, c′, c′2)),

w′
B = derivee(mk, (1, b′, b′2)),

w′
C = derivee(mk, (1, c′, c′2)).

Then the server derives new decryption keys

w′′
Y = derived(wk, (a · b′,−a − b′, 1)),

w′
Z = derived(wk, (b′ · c′,−b′ − c′, 1)),

– and distributes them to the clients; next, the server derives a new encryption
key for X:

k′
X = derivee(mk, (a · c′,−a − c′, 1)),

– and orders over-encryption of X with the new key:1

encrypt(wA, hash(X)) encrypt(k′
X , encrypt(kX , X))

encrypt(w?, hash(Y)) encrypt(k′
Y , encrypt(kY , Y))

encrypt(wC , hash(Z)) encrypt(kZ , Z)

(1, b′, b′2) · (b′ ·c,−b′ −c, 1) = 0, but (1, b′, b′2) · (c,−1, 0) �= 0; therefore, B can
read encrypt(kY , Y) with his new key k′

B , but cannot yet read Y . To complete
the grant of read access to Y , the server hands over kC to B; this is secure
because the only files that kC enables decrypting are X and Z, and X has been
over-encrypted with k′

X to protect it from B. Finally, the server sends k′
X to A

because it has the write access. After the grant is complete:

A has kA, kB , wA, (wB , kX), k′
X , k′

Y , wX , (wY , w
′
Y), w′′

Y , (wZ), w′
Z ;

1 It may appear wasteful that granting B read access for Z requires a re-encryption of
X, and possibly of many other files that C has read access to. Local re-encryption of
Z by the storage node (decryption with kC and encryption with a new key) would
be the most efficient alternative, but it would have compromised the privacy of Z
by disclosing its plain-text to the storage node; therefore, this is not an option for
our proposed system. Therefore, B has to be given kC , since the encryption with
kZ can only be decrypted using kC ; and if X is not re-encrypted, then B would
be able to read X using kC . This overhead (switching from one-layer encryption
to TLE) may only happen once for each file; and the possible alternatives (either
downloading Z, decrypting it, encrypting it with a new key, and uploading it again;
or double-encrypting all files at system initialization time, paying all of the possible
overhead upfront) are in fact much less efficient.

Cryptographically Enforced Role-Based Access Control 15

B has kB , k
′
B , kC , (wB), w′

B , (kY), k′
Y , wX , (wY , w

′
Y), w′′

Y , (wZ), w′
Z ;

C has kC , k
′
C , (wC), w′

C , (kY , kZ), wX , (wY , w
′
Y), w′′

Y , (wZ), w′
Z .

Note that A no longer needs wB , as the updated w′′
Y allows him to sign his writes

to Y using his own encryption key wA. Also note that k′
X had to be derived using

the new value of c′ in order to protect X from B, who had been given kC as
part of granting read access for Z.

Management of Keys. As shown in the examples above, each user has to keep
a large set of keys:

– To read a file, a user needs his own key to decrypt the data, and also one key
per file he has read access to, to validate the writers’ signatures;

– To write a file, a user needs one key per file he has write access to, to encrypt
the data; and also his own key to create a valid signature.

Managing so many keys may be inconvenient to the user. To facilitate the keys
management, we can use any of the techniques from [7], such as key-chain files,
keys records attached to the files, or hierarchical keys management. For our
implementation, we chose the key-chain technique, since it involves less overhead
or knowledge on behalf of the ACP manager.

3.4 Formal Description of the Protocol

To simplify the description, we’re presenting here a variant of our system where
all files are double-encrypted at system initialization time (Full SEL), instead
of incrementally as part of the ACP updates (Delta SEL) [15].

– Involved parties:
1. data owner/ACP manager Mgr

2. user belonging to Role (the client)
3. nodes coordinator Ctr

4. data storage node Node

– Note that key management and distribution is done by the Mgr, while second
layer encryption is done by the Ctr. The Ctr never has to relay any data
transmission.

1. Setup:
(a) Mgr derives (from the ACP) the initial encryption keys
(b) Mgr encrypts the initial data
(c) Mgr issues an “initialize” request to Ctr, and receives the ID(s) of

Node(s) where to upload the initial data
(d) Mgr uploads the (encrypted) initial data to Node(s)
(e) Mgr distributes the encryption keys to Roles, according to the ACP

2. Read:
(a) Role issues a “lookup” request to Ctr, and receives the ID of the Node

where the data is stored

16 Y. Shalabi and E. Gudes

(b) Role downloads the encrypted data from Node

(c) For each record, starting from the latest:
i. Role validates the signature item on the record
ii. If the record’s signature is valid, Role proceeds to (d)
iii. Otherwise, Role proceeds to the next record read

(d) Role decrypts the data
3. Write:

(a) Role encrypts the data with his read key
(b) Role signs the data with his write key
(c) Role issues a “lookup” request to Ctr, and receives the ID of Node

where the data is stored
(d) Role uploads the encrypted data to Node

4. Grant read access for X to ROLE U
(a) If U ’s role key kU had been shared with another Role V , who does not

have read access to X, then
i. Mgr derives a new role key k′

U and sends it to U
ii. Mgr derives a new encryption key k′

X , forming the derivation vector
as described earlier, based on the identities of all Roles (including
U ’s new identity) which are to have read access to X

iii. Mgr proceeds to step (d) as described below
(b) Otherwise, if another Role W already has read access to X, and U

already has read access to all data that W has read access to, then
– no re-encryption is necessary: instead, Mgr hands over W ’s role key
kW to U

(c) Otherwise, [i.e. if kU had not been shared with any Role V which does
not have read access to X, and there’s no such Role W which already
has read access to X, and for which U already has read access to all
data that W has read access to], Mgr derives a new encryption key k′

X ,
forming the derivation vector as described earlier, based on the identities
of all Roles (including U) which are to have read access to X

(d) Mgr distributes k′
X to all Roles which have write access to X

(e) If U ’s role key kU does not allow decrypting the 1st layer encryption on
X (i.e. if U didn’t have read access to X at setup time, and had not been
given a role key of a Role which had read access to X at setup time),
then
i. Mgr chooses any role key kU ′ which allows decrypting the 1st layer

encryption on X (i.e. U ′ had read access to X at setup time),
ii. Mgr hands over kU ′ to U

(f) Mgr issues an “update ACP” request to Ctr, passing k′
X as part of the

request
(g) Ctr handles the request by relaying k′

X to Node(s) where X is stored
(h) Node(s) Ctr re-encrypt the data locally, using k′

X for the 2nd layer
encryption

5. Revoke read access from X
(a) Mgr derives a new encryption key k′

X , forming the derivation vector as
described earlier, based on the identities of all Roles which still have
read access to X

Cryptographically Enforced Role-Based Access Control 17

(b) Mgr distributes k′
X to all Roles which have write access to X

(c) Mgr issues an “update ACP” request to Ctr, passing k′
X as part of the

request
(d) Ctr handles the request by relaying k′

X to Node(s) where X is stored
(e) Node(s) Ctr re-encrypt the data locally, using k′

X for the 2nd layer
encryption

6. Grant write access for X to ROLE U
(a) Mgr sends the encryption key kX to U
(b) If U ’s role key wU had been shared with another Role V , who does not

have write access to X, then
i. Mgr derives a new encryption key w′

U and sends it to U
ii. Mgr derives a new decryption key w′

X , forming the derivation vector
as described earlier, based on the identities of all Roles which are to
have write access to X

iii. Mgr distributes w′
X to all Roles which have read access to X

(c) Otherwise, if another Role W already has write access to X, and U
already has write access to all data that W has write access to, then
– there’s no need to derive new keys: instead, Mgr hands over W ’s

encryption key wW to U
(d) Otherwise, Mgr derives a new decryption key w′

X , forming the deriva-
tion vector as described earlier, based on the identities of all Roles
(including U) which are to have write access to X

(e) Mgr distributes w′
X to all Roles which have read access to X

(f) No re-encryption is necessary
7. Revoke write access from X

(a) Mgr derives a new decryption key w′
X , forming the derivation vector as

described earlier, based on the identities of all Roles which still have
write access to X

(b) Mgr distributes w′
X to all Roles which have read access to X

(c) No re-encryption is necessary
8 Granting ROLE membership

(a) Mgr sends the new Role member all keys held by other Role members
9. Revoking ROLE membership

(a) Mgr re-issues keys for all remaining Role members
(b) Mgr orders re-encryption of all data accessible by the remaining Role

members
(c) Mgr updates its local representation of the ACP, which for each user

lists the effective access permissions, with all role memberships expanded
(d) Mgr handles the changes in effective access permissions, as detailed

above

To prove correctness of the protocols above, one has to show formally that every
ACP change results only with the intended Read or Write permissions. This will
be included in the longer version of this paper.

18 Y. Shalabi and E. Gudes

4 Conclusions

This paper proposes a scheme for cryptographic enforcement of RBAC, using
Cassandra for the proof-of-concept implementation. It combines several pre-
existing techniques and algorithms, such as: Predicate encryption, Second level
encryption and Cassandra’s distributed architecture, for providing a flexible and
efficient scheme to apply cRBAC for ACP enforcement in NoSQL databases. It
presents a formal description of the resulting protocol, and presents examples of
its operation. Currently we are implementing the protocols as part of a real-life
Cassandra database. Results of this experimental evaluation will be reported in
the future. We also plan to investigate further some of the issues mentioned,
such as Privacy or DDOS attacks.

References

1. DataStax: Securing Cassandra (2015). https://docs.datastax.com/en/cassandra/
3.0/cassandra/configuration/secureIntro.html

2. Davis, M.A.: Why NoSQL equals NoSecurity. InformationWeek (2012)
3. Ferrara, A.L., Fuchsbauer, G., Warinschi, B.: Cryptographically enforced RBAC.

In: 2013 IEEE 26th Computer Security Foundations Symposium (CSF), pp. 115–
129. IEEE (2013)

4. Ferrara, A.L., Madhusudan, P., Nguyen, T.L., Parlato, G.: Vac - verifier of
administrative role-based access control policies. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 184–191. Springer, Cham (2014). doi:10.1007/
978-3-319-08867-9 12

5. Foresti, S.: Data security and privacy in the cloud. In: 29th Annual IFIP WG 11.3
Working Conference on Data and Applications Security and Privacy (2015)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, 30 October–3 November 2006, pp. 89–98 (2006)

7. Gudes, E.: The design of a cryptography based secure file system. IEEE Trans.
Softw. Eng. 5, 411–420 (1980)

8. Iii, W.C.G., Shull, A., Myers, S., Lee, A.J.: On the practicality of cryptographically
enforcing dynamic access control policies in the cloud. In: IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016, pp. 819–838
(2016)

9. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

10. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
Oper. Syst. Rev. 44(2), 35–40 (2010)

11. Nabeel, M., Bertino, E.: Privacy preserving delegated access control in public
clouds. IEEE Trans. Knowl. Data Eng. 26(9), 2268–2280 (2014)

12. Pilkington, M.: Blockchain technology: principles and applications. In: Research
Handbook on Digital Transformations (2015)

https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureIntro.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureIntro.html
http://dx.doi.org/10.1007/978-3-319-08867-9_12
http://dx.doi.org/10.1007/978-3-319-08867-9_12
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9

Cryptographically Enforced Role-Based Access Control 19

13. MIT Csail Computer Systems Security Group: Crypto tutorial (2010). http://css.
csail.mit.edu/security-seminar/cryptoslides.ppt

14. Tunnicliffe, S.: Role based access control in Cassandra (2015). http://www.
datastax.com/dev/blog/role-based-access-control-in-cassandra

15. Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryp-
tion policies for regulating access to outsourced data. ACM Trans. Database Syst.
(TODS) 35(2), 12 (2010)

http://css.csail.mit.edu/security-seminar/cryptoslides.ppt
http://css.csail.mit.edu/security-seminar/cryptoslides.ppt
http://www.datastax.com/dev/blog/role-based-access-control-in-cassandra
http://www.datastax.com/dev/blog/role-based-access-control-in-cassandra

Resilient Reference Monitor for Distributed
Access Control via Moving Target Defense

Dieudonne Mulamba and Indrajit Ray(B)

Department of Computer Science,
Colorado State University, Fort Collins, CO 80523, USA

{indrajit,mulamba}@cs.colostate.edu

Abstract. Effective access control is dependent not only on the exis-
tence of strong policies but also on ensuring that the access control
enforcement subsystem is adequately protected. Protecting this subsys-
tem has not been adequately addressed in the literature. In general, it
is assumed to be implemented as a reference monitor in a trusted com-
puting base (TCB) that is tamper-proof. However, in distributed access
control, ensuring TCB security kernel to be tamper proof is not always
feasible. It needs to be implemented in software and on platforms that
can potentially have vulnerabilities. We posit that allowing a very limited
opportunity to the attacker to enumerate exploitable vulnerabilities in
the access control subsystem can considerably facilitate its protection.
Towards this end we propose a moving target defense framework for
access control in a distributed environment. In this framework, access
control is provided by cooperation of several distributed modules that
materialize randomly, announce their services, enforce access control and
then disappear to be replaced by another module randomly. As a result,
the attacker does not know which process can be targeted to compromise
the access control system.

1 Introduction

Many emerging distributed applications rely on on-demad network-enabled
access to a shared pool of computing resources. Examples of such applications
are IoT applications, sensor networks or enterprise level distributed workflow
systems. This distributed computing model brings with it some unique chal-
lenges to access control that require re-visiting the traditional TCB approach
[3]. In traditional systems, access control is implemented by the cooperation of
four functional modules that are part of the trusted computing base:

1. Policy Administration Point (PAP): The PAP is a repository for the autho-
rization policies that are expressed in terms of the actions that subjects
(human users, devices, processes, organizations etc.) can take on various
objects in the system. The authorization policies are essentially an instan-
tiation of the access control model tailored towards the organization. It is the
main component for the authorization portion of access control.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 20–40, 2017.
DOI: 10.1007/978-3-319-61176-1 2

Resilient Reference Monitor for Distributed Access Control 21

2. Policy Information Point (PIP): The PIP is the component that gathers
together all the attribute information that are needed to evaluate an autho-
rization policy.

3. Policy Decision Point (PDP): The PDP gets relevant information from the
PIP and consults the PAP to arrive at a decision whether to grant or deny
an access request.

4. Policy Enforcement Point (PEP): The PEP receives access requests from sub-
jects in the external world, hands them to the PDP for evaluation, and after
receiving the grant or deny response from the PDP, ensures the appropriate
action is taken.

One of the requirements of a TCB is that it implements the concept of ref-
erence monitor [3]; that is, the TCB mediates all access to objects by subjects,
is tamper-proof and cannot be bypassed, and is small enough to be thoroughly
tested and analyzed. In the newer distributing computing environments however,
making the TCB small and tamper-proof is very difficult. This is because access
control in such environment needs to be achieved via the cooperation of both
local as well as remote access control engines. To remain within the confines of
the TCB paradigm, not only all of these separate components need to be made
tamperproof, but also all communications and coordinations among the compo-
nents. As a result, the trusted computing base needs to be enlarged in scope and
functionality, which violates the principles of reference monitor. Moreover, the
sheer size of these distributed systems, the degree of heterogeneity among the
different devices (potentially virtual machines), and the dynamicity of the whole
system, compound the problem many fold. It appears, therefore, that it is next
to impossible to rely on a single TCB to provide access control in these environ-
ments. The access control subsystem should try to satisfy as many properties of
a TCB as possible but should also incorporate certain self-defending strategies
to make it secure.

In this work, we treat access control in such a distributed environment as a
service that needs to be proactively protected. From a functional perspective,
this service is achieved by the four functional units – PAP, PIP, PDP and PEP.
We assume that like any other service the access control service can be attacked
by an attacker and hence needs to be protected. An attacker intent on damaging
the access control service will launch reconnaissance efforts seeking exploitable
vulnerabilities for this subsystem. We propose being proactive and allow only
limited opportunity to the attacker to enumerate exploitable vulnerabilities, thus
reducing the attack surface of the access control subsystem. Towards this end,
we propose employing a Moving Target Defense (MTD) paradigm for the access
control subsystem. The four functional modules are effectuated by randomly
materializing processes that announce their services, enforce access control and
then disappear to be replaced by another module randomly. As a result, the
attacker does not know which processes can be targeted to compromise the
system. Moreover, the window of opportunity for targeting processes is varied
to further reduce opportunities of attack. We describe an implementation of this
system to handle RBAC policies using COTS components.

22 D. Mulamba and I. Ray

The rest of the paper is organized as follows: Sect. 2 reviews previous works
on access controls, leader election protocols, moving target as well as on service
discovery protocols. In Sect. 3 we first present the reference architecture for access
control in distributed environments. We then give an overview of our moving
target defense approach for protecting the access control subsystem. Section 4
presents the moving target defense architecture. We present our implementation
in Sect. 5 as well as an analysis of the security of the proposed approach. Finally,
we conclude this paper in Sect. 6 and give some directions for future works.

2 Background and Related Works

2.1 Protection of Access Control Subsystems

One of the most important aspect of security is ensuring that users access only
resources to which they are authorized. Research on designing and deploying
access control in computers and networks can be traced back several decades [43].
Early standards of access control included discretionary and mandatory access
control [13,17,34,42]. However, Role based Access Control (RBAC) represented
a major leap forward in term of flexibility. RBAC is built on the principle that
users do not have discretionary access to enterprise objects. In a RBAC model,
roles are created and users belong administratively to these roles, while per-
missions are administratively assigned to the roles. This arrangement provides
more flexibility and simplicity to the management of authorization [13]. RBAC
has been traditionally implemented for centralized systems. In recent years, sev-
eral works have been done to provide the capabilities of this access control model
to distributed systems and the cloud. For instance, in [21] authors present an
access control tailored for distributed control systems. [41] explains how one can
provide access control to anonymous users while verifying their authorization in
a decentralized manner.

In several works, including recently in [14], researchers have worried that a
malicious program may tamper with the operation of an access control system.
The notion of a trusted computing base implementing the reference monitor con-
cept was proposed by Anderson [3], in order to address this problem. Security
kernels such as Scomp [15] and GEMSOS [45], included a reference validation
mechanism to satisfy the reference monitor concept of the TCB. Other oper-
ating systems such as Trusted Solaris [36], the Linux Security Modules (LSM)
framework [52], TrustedBSD [49], Mac OS X, and the Xen hypervisor provide
various degree of support for reference validation so as to enable some shade
of reference monitor. However, the major problem with these systems is that
the tamperproof property that needs to be ensured for provably implementing a
reference monitor, is hard to achieve. Tamperproofing requires the TCB to have
a very small footprint. It can be shown that a general algorithm to prove that
an arbitrary program behaves correctly reduces to solving the Halting problem.
While current algorithms can prove correctness properties of specific programs,
the variety of reference validation code and the complexity of correctness prop-
erties preclude verification for all but the smallest, most specialized systems.

Resilient Reference Monitor for Distributed Access Control 23

Unfortunately, for most of these systems, the TCB is too large to determine
whether tampering is prevented. Moreover, for practicality and functionality,
many systems allow user-level processes to modify the kernel. However, none of
these user-level processes are immune to tampering, thus becoming one of the
weakest links. In this work, we are interested in the protection of the access con-
trol subsystem where ensuring the tamperproof property of a reference monitor
is challenging.

2.2 Moving Target Defense

Several works have been done on Moving Target Defense (MTD). In order to
improve the understanding of MTD, [54] presents key concepts and their basic
properties. Other works on MTD are mainly focused on network-based MTD
[2,4,10]. In addition, in [12], the effectiveness of MTD using low-level tech-
niques to defend a computing system has been studied. Those low-level tech-
niques include Address Space Randomization, Instruction Set Randomization,
and Data Randomization. In [19] two measures are designed that allow a defender
to quantify its gain in security while deploying a MTD system. In order to chose
a particular MTD technique, one needs to know its effectiveness. For that pur-
pose, [53] proposes a comparison of different MTD techniques based on their
effectiveness. However, none of these techniques are applicable for the problem
we are addressing.

2.3 Leader Election

In a distributed system, leader election is a fundamental problem that requires
that a unique leader be elected from among a set of given nodes. The goal of
a leader election algorithm is to elect a good processor as a leader in a setting
where there are n processors among which a certain number m < n are bad,
while ensuring that no bad processor get elected as a leader [27].

A distributed computing system often requires that active nodes continue
performing their task after a failure has occurred. This reorganization or recon-
figuration necessitate that a coordinator be elected in the first place [16]. This
is the reason of the wide interest the leader election problem [31] has received.
Several works have been done on Leader Election [1,6,16,44,47].

2.4 Consensus Algorithms

One approach for building fault-tolerant applications is the Lamport’s approach.
The core of this approach involves two primitives: consensus and atomic broad-
cast [28]. Leader election protocols are generally used to solve the consensus
problem.

Bully algorithm [5] and Ring algorithm [48] are among the most used algo-
rithms for solving the consensus problem. A hugely popular algorithm is the

24 D. Mulamba and I. Ray

Paxos algorithm proposed by Lamport [30]. Another popular algorithm, consid-
ered even superior to Paxos due to its simplicity, is the Raft consensus algorithm
[20]. Raft provides the capabilities for Leader election and log replication.

ZooKeeper [22], an open-source replicated service for coordinating web appli-
cations, and Chubby [7] are some practical systems exploiting these algorithms.
Recently, GIRAFFE [46] has been proposed to provide a coordination service in
scalable distributed system. Another practical system is the Apache Kafka [51]
which allows the building of a replicated logging system. However, these algo-
rithms and protocols do not take into account Byzantine failures. In addition,
their approach for electing a new leader does not prevent a malicious host from
being elected as a leader.

2.5 Byzantine Fault Tolerance

A computer system can be affected by a type of failure that can cause it to behave
in an arbitrary way. After being affected, the computer system can be led either
to process requests incorrectly, to corrupt their local state, and/or to produce
incorrect or inconsistent outputs. This type of failure is called Byzantine failures.
The problem for coping with this type of failure is known as the Byzantine
Generals Problem [29]. The goal of Byzantine fault tolerance is to allow computer
system to be immune against Byzantine failures.

Several works have been proposed to reach a consensus in the face of
Byzantine failures. Building on Paxos, the authors in [9] have proposed an
improvement that allows Paxos to support Byzantine fault tolerance with a
modest latency. Castro and Liskovs proposed the Practical Byzantine Fault-
tolerance protocol [8] that reduces the number of messages exchanged to only
four messages. [33] looked at improving the number of communications in the
Byzantine Paxos protocols. In [11], authors took the task of improving Raft to
support Byzantine fault-tolerance. They reach their goal by combining the ideas
from the original Raft algorithm and from Practical Byzantine Fault-tolerance
protocol [9].

2.6 Service Location Protocol

A zero configuration approach is a self-management networking approach that
allows network devices to be automatically configured, discover services auto-
matically, and to access service without the involvement of a network specialist
[Intelligent Self-Management Home Multimedia Service System]. Three major
self-management technologies have been proposed. The Internet Engineering
Task Force (IETF) promoted SLP [18,38] as an intranet standard for automatic
network resource discovery. Intel and Microsoft, on their part, proposed the Uni-
versal Plug and Play (UPnP) [39] as a standard for automatic communication
between network devices using XML messages. Apple Inc. proposed a protocol
called Bonjour [23] as its zero configuration networking standard. Recently, z2z
[32] has been proposed for the discovery of network services beyond the local
network.

Resilient Reference Monitor for Distributed Access Control 25

In this work, our contribution includes the development of a system that
leverages these existing concepts into a single framework so as to address the
problem of protecting a reference monitor.

3 Architecture Overview

We assume that the access control model is Role-Based Access Control. We
start with a high level operational architecture of access control (AC) in the
distributed setup. The resources we are concerned about are the shared resources.
The AC architecture is composed of four functional entities. Each entity has
specific functions and participates in the communication as a client, as a server
or both.

3.1 Access Control Architecture Components

The four entities are:

1. A users client: It is an endpoint entity whose main objective is to access
protected resources. It is responsible to initiate or terminate a session with
the Resource Access Server. It resides on the individual devices running the
applications that require access to shared resources.

2. Resource Access Service (RAS): It is an entity that manages the various
distributed resources and controls the access to it. It acts as both client and
server when receiving or replying to access requests from the client. The
decision to grant or deny the access to protected resources is received from
the Authorization Control Server. The Resource Access Server is responsible
for reinforcing that decision.

3. Authorization Control Service (ACS): It is an endpoint entity that governs
the access to each protected resource. It hosts the Access Control engine. The
access control engine is based on RBAC model (other models are also possible)
and is designed to prevent unauthorized access to protected resources. The
policies defining the access to protected resources are also managed by the
Authorization Control Service. This service receives any client request and
replies with the decision to grant or deny the access to the needed resources.

4. Discovery Service: Since the protection of the Authorization Control Service
requires this later to be moved to a different location in a non predictable
manner, the clients need to be able to discover the new location of the Autho-
rization Control Service. The Discovery Service provides such capability.

Using these entities, the distributed access enforcement proceeds as follows.
When a client needs to access a protected resource, it sends a request to the
Authorization Control Service (ACS). The ACS verifies the policy governing
the access to the needed resources, and replies with a decision to grant or deny
access to the requested resource. If the decision was to grant access, the request
is forwarded to the Resource Access Service along with a limited life-time token
given to the client allowing it to access that particular resource. The occurrence

26 D. Mulamba and I. Ray

of an election triggers the Authorization Control Service to be Switched to a
different location. In this case, the ACS will register its new location with the
Discovery Service. In addition, the client will need to consult the Discovery
Service in order to find the new location of the ACS.

3.2 Threat Model

In our architecture, we consider access control (AC) as a service and we assume
that the Access Control Service can be attacked and compromised. To mitigate
the vulnerability of the open network in which an attacker passively listens to
various communications, we make all access related communications go over
secure channels. This makes the communication secure, but does not protect
the endpoints, particularly the Resource Access Server and the Authorization
Control Server where the AC engine components reside. We assume that an
attacker can masquerade as one of these servers. Alternately, some numbers
of these servers can themselves be compromised by malware and behave in a
Byzantine manner. An attacker masquerading as a valid server or corrupting a
server are treated similarly.

To protect these two entities, we propose the Moving Target Defense strategy.
Our motivation for this approach follows from the observation that an attacker
needs a reconnaissance window to explore the vulnerabilities in a system before
attacking it. The moving target defense strategy reduces this window of oppor-
tunity. It requires both the Resource Access Server and the Authorization Con-
trol Server to be replicated. At each instance there is only one Resource Access
Server and one Authorization Control Server that is responsible to handle access
requests. These are called respectively, RAS leader and ACS leader servers. In
addition, both leader servers are periodically replaced by a pair of leader servers
randomly chosen by following a Byzantine consensus process executed by the
existing candidate RAS and ACS servers. The replacement is achieved through
a migration process that relies on a secure service discovery process.

Using moving target defense in this manner to protect the Access Control
Engine raises several challenges. Those challenges are as follows.

1. How does one avoid migrating a leader server to a malicious server during
the migration process?

2. Which access control component is going to be migrated? And,
3. After the migration process, how does one discover which server is currently

providing the services?

In the following sections we are going to address these challenges (Figs. 1 and 4).

4 Distributed Access Control Architecture

We present an architecture that provides access control services. In order to
protect the access control service against certain attacks, we have proposed to
implement a Moving Target Defense strategy on the access control service archi-
tecture. In this section, we present the different components that constitute our
Moving Target Defense architecture.

Resilient Reference Monitor for Distributed Access Control 27

Fig. 1. Moving Target Defense architecture

4.1 The Client

It is an endpoint entity whose main objective is to access protected resources. It
is responsible to initiate or terminate a session with the Resource Access Service.
It resides on the individual devices running the applications that require access
to shared resources.

4.2 The Authorization Control Service

In this section we present the different components that allow the Authorization
Control Service to provide access control service, to be elected as a leader, and
to announce its services once elected as a leader.

Access Control Engine. The access control engine is based on RBAC model
(other models are also possible) and is designed to prevent unauthorized access
to protected resources. It comprises the Policy Enforcement Point (PEP), the
Policy Decision Point (PDP), the Policy Administration Point (PAP), and the
Policy Information Point (PIP).

Fault Detector Module (FD). The Fault Detector Module is designed to
detect the byzantine faults occurring in the server providing the Access Control
service. The failure and the compromise of the current leader server are reasons
to trigger the Moving Target Defense. The Fault Detector is able to detect any
kind of byzantine faults that are local to the leader server. The unavailability of
the leader server is detected by the Fault Detector of any other server that probes
the aliveness of the leader server. The occurrence of either failure, compromise,
or unavailability is used to trigger the election of a new leader server that will
be responsible to provide access control services.

28 D. Mulamba and I. Ray

Election Module (EM). The Election Module is responsible for processing
the election of a new leader server. Several causes can trigger this election. Since
the leader server is assuming this function for a limited time, called here a term,
the expiration of this term is a cause that triggers the election of a new leader
server. We add randomness to the duration of this term in order to prevent an
attacker from correctly guessing the occurrence of the next leader election. At
the expiration of his term, the current leader server proceeds to the election of
a new leader. In other circumstances, the first server noticing the failure of the
current leader server, is responsible to proceed to a new election.

Leader Election Protocol. In our system, after having opted to replicate the
Authorization Control Service among several servers, a single server is respon-
sible to provide this service at any given time. We call this server the leader.
At any instance, this leader may be the subject of attacks or of failures. Thus
to realize the moving target defense, the leader is required to be periodically
changed. This change can occur at the expiration of the current leader’s lifetime
or when the current leader fails. Moreover, the next server is not pre-determined
but is elected by existing servers, each of which is a candidate. All this is done in
an environment where we assume that some servers may be malicious attackers.
Thus, we need a leader election algorithm that can ensure that a malicious server
cannot be elected as leader. Once a server is elected, it sets a random lifetime
for itself.

For the sake of maintaining our distributed system in a good functioning
state, it becomes crucial to prevent faulty nodes from becoming leader. We adapt
the algorithm from [26] in order to realize a leader election. The election process
proceeds in the form of a distributed protocol as follows.

The election algorithm proceeds in rounds and in each round there is a node
that is coordinating the consensus, called the coordinator. For each round r
there is a coordinator c known a priori by each participating node by computing
c ≡ (r mod n) + 1 with n being the total number of nodes. At each node,
there are several local variables that are maintained, among which there is the
estimate value which is an input value selected by the node, its current election
round, its current coordinator cp, and a timestamp tsp. The consensus algorithm
runs by exchanging messages between nodes participating in the distributed
system. These messages include the types ESTIMATE, SELECT, CONFIRM,
READY/NREADY, and SUSPECT. The algorithm runs in a sequence of five
tasks that are concurrently executed.

The consensus algorithm, (see Algorithm 1), works as follows. The algorithm
starts with each node p picking its estimate of the input value, and sending
an ESTIMATE message to all nodes. The coordinator, after receiving n − k
ESTIMATE messages that it was waiting for, selects a value es based on all the
estimate values received. It then sends a SELECT message carrying the es value
to all nodes. Each node p, upon receiving SELECT message from the coordinator,
sends a CONFIRM message carrying the es value to all other nodes. The es value
should be the same for a given round r. After receiving a CONFIRM message
from �(n + k)/2� + 1 distinct nodes, each node p updates its local variables.

Resilient Reference Monitor for Distributed Access Control 29

It then sends a READY message or a NREADY message depending on whether
it had received the same es value or not from �(n+k)/2�+1 CONFIRM messages.
It should be noted that if the CONFIRM messages received by a node p did not
contain the same es value, p will assume that the coordinator had deviated from
the algorithm. The node p will therefore add the coordinator to its list of Suspect,
and will send a SUSPECT message containing the id of the suspected coordinator
to all. After a node p received the same es value as content of READY message
from �(n + k)/2� + 1 distinct nodes, it will decide on that value. A node q is
confirmed to be malicious by a node p and added to Output(D)p if and only if
node q have been reported malicious by at least k + 1 nodes. Output(D)p is the
final list of malicious nodes. Any round in which the coordinator has not been
reported with malicious nodes will end with a consensus on the input value and
the coordinator being confirmed as the new leader. Otherwise, a new round will
start with a new coordinator.

Migration Module (MM). The Migration Module is responsible for executing
the migration protocol. The Migration Module receives a notification from the
Election Module that a new leader has been elected. This notification contains
the identity of the new leader server. Upon receiving the notification from the
Election Module, this module executes the migration protocol, which transfers
the Access Control service to the new elected leader server.

Service Migration Protocol. In our architecture, replacing the current leader
server by a new one necessitates the migration of the Authorization Control
Service provided by the current leader server to the new one. For this purpose,
we need to put in place a service migration protocol that can handle this task.

Process migration is the movement of a running process from one host to
another. A process migration protocol can have several components like the
transfer policy, the selection policy, and the location policy. Since we are inter-
ested with the migration of an access control service, we define these policies in
terms of the requirements of the access control service.

1. The Transfer Policy: This policy determines when a host needs to send a
process to another host. In our case, it determines when the current leader
server needs to send the access control services to a newly elected leader
server. In our architecture, this decision is triggered by the successful com-
pletion of the leader election protocol.

2. The Location Policy: This policy determines the destination host to which to
transfer the process to be migrated. In our architecture, this information is
provided by the leader election protocol that communicates the identity of
the new elected leader server to all the hosts. This new Authorization Control
Service is the destination host for the migration protocol.

3. The Selection Policy: Determines which resource to transfer. It is question
here to determine which component of the access control service needs to
be migrated. We have designed the Authorization Control Server to be fully
replicated. We assume the existence of a replicated protocol. Therefore, the

30 D. Mulamba and I. Ray

Algorithm 1. Leader Election

1: /* Each node p executes the following */
2: /* Initialization */
3: ep = VP {Chosen value}
4: rp = 0 {Initial round}
5: tsp = 0 {Initial timestamps}
6: Estimatesp = ∅ {list of estimate msg}
7: Confirmsp = ∅ {list of comfirm msg}
8: Suspectedp = ∅ {list of suspected nodes}
9: Outputp = ∅ {blacklisted nodes}
10: for r in listnode do
11: Suspectingp[r] = ∅
12: end for
13: COBEGIN {Concurrent tasks}
14: {Task 1:}
15: while true do
16: rp ← rp + 1

17: {Select a Coordinator cp}
18: cp ← (rp mod n) + 1

19: {Task 1, Phase 1 : each node creates esti-
mate msg}

20: estimatep = (ESTIMATE, p, rp, ep, tsp)

21: Send estimatep to all

22: {Task 1, Phase 2: Coordinator counts
received estimate msg}

23: if [p = cp] then

24: [Wait until received (n − k) distinct
estimateq messages from q nodes]

25: Estimatesp ← estimateq
26: ts = largest tsq : estimateq ∈

Estimatesp
27: if [ts = 0 and (at least (k + 1) distinct

estimateq ∈ Estimatesp have common
value e)] then

28: es ← e
29: else
30: es ← ep
31: end if
32: {Coordinator creates select msg}
33: selectp = ((SELECT, p, rp, es)p)

34: Send selectp to all

35: end if
36: {Task 1, Phase 3 : receiving confirm msg}
37: [Wait until received [(n+k)/2]+1 distinct

confirmq messages or cp ∈ Outputp]

38: confirmp = ((SELECT, p, rp, es)p)

39: if [[(n + k)/2] + 1 distinct confirmq ∈
Confirmsp have common value e] then

40: tsp ← rp
41: ep ← e

42: Confirmp ← (CONFIRM, q, rp, e)q
43: readyp = (READY, p, rp, e)p)

44: Send readyp to all

45: else
46: nreadyp = (NREADY, p, rp, e)p
47: Send nreadyp to all

48: end if
49: end while
50: {Task 2: }
51: while true do
52: if [p received selectp msg from c =

(rp mod n) + 1 and p has not sent
confirmq msg] then

53: Selectsp ← ((SELECT, c, r, e, ts)c)

54: confirmp = (CONFIRM, p, r, e)p
55: send confirmp to all

56: end if
57: end while
58: {Task 3:}
59: while true do
60: [Wait until received [(n + k)/2] + 1 dis-

tinct readyq messages from q nodes with
common r,e]

61: decide(e)
62: end while
63: {Task 4:}
64: while true do
65: {Send list of suspected nodes}
66: Suspectedp ← D1

67: suspectp = (SUSPECT, p, Suspectedp)p
68: Send suspectp to all

69: end while
70: {Task 5:}
71: for r in S do
72: When p receives Suspectq from q

73: if r in Suspectedq then

74: Suspectingp[r] ← Suspectingp[r] ∪ (q)

75: else
76: Suspectingp[r] ← Suspectingp[r]− (q)

77: end if
78: if |Suspectingp[r]| � k + 1 then

79: Outputp = Outputp ∪ (r)

80: else
81: Outputp = Outputp − (r)

82: end if
83: end for

discussion about the replication protocol is beyond the scope of this paper.
Being fully replicated, each Authorization Control Service has the same PDP,
PAP, and PEP. There is no need to migrate those entities. However, only the
current leader server has the information about the granted access requests
in addition to having the most up to date policy database. Granted access
requests information is stored in the session history of the current Authoriza-
tion Control Service. Therefore, the session history and the policy database

Resilient Reference Monitor for Distributed Access Control 31

need to be migrated to the new Authorization Control Service to allow users
with granted access a continuous use of the allowed resources.

4.3 The Discovery Service

Implementing a Moving Target Defense for an Access Control service requires
switching frequently but randomly the server that is responsible for offering
the Access Control service. Once the Authorization Control service has been
switched to a newly elected leader server, users need a way to rediscover the
new server offering the service. In this section, we adapt the Service Location
Protocol or SLP in order to enable users to discover the new location of the
services they need.

SLP Module. The SLP Module is responsible for running the service discovery
protocol. This service is provided to clients that need to consult the SLP Module
in order to discover the new Authorization Control Service location.

SLP Overview. Service Location Protocol (SLP) is a protocol designed by
the Internet Engineering Task Force to eliminate the need of a manual con-
figuration from users of communication networks in order to discover services,
applications, and devices available in those networks. Since users, mainly mobile
users, increasingly experience changing environments and the fact that the Inter-
net has became more service oriented, service location is becoming more helpful
in today’s complex networks [18,50].

SLP Architecture. The SLP framework includes three main components
called “Agents” to process SLP information. These agents are: User Agents (UA),
Service Agents (SA), and Directory Agents (DA).

– User Agents (UA): They are responsible for requesting services on behalf of
the users or applications.

– Service Agents (SA): They are entities that advertise the location and descrip-
tion of services on behalf of services. To advertise services, the SAs embed the
service information into an URL. These information include the IP address,
the port number, the service type and the path. Each service type is charac-
terized by specific attributes along with their default values. All of these are
specified by the Service Templates.

– Directory Agents (DA): They are central repositories that aggregate SLP
information. Since service information are embedded in a URL, these URL
are stored by the DA which provides them to any UA that have issued a
request which matched some attributes in the URL.

At the beginning of the protocol, any service provider needs to advertise
its services. For that purpose, its SA registers the service with the DA. This
step is known as the Service Registration. The DA acknowledges the regis-
tration by issuing a service ACK message to the SA. A user that needs to use

32 D. Mulamba and I. Ray

Fig. 2. Service discovery flow

the given service needs to have his UA issuing a query with the appropriate
attributes to the DA. This is known as the Service Request step. The DA
may reply back to the UA with the address and characteristics of the desired
service (Service Replay). This is the general approach of the SLP protocol as
illustrated on Fig. 2.

There is a major issue with the general approach of the SLP protocol as
explained above. No one from both the UA and the SA knows the address of
the DA. Before registering a service with the DA, the SA needs to discover
the existence of the DA. The same thing applies to the UA.

Three different methods are used to discover the location of the DA: static,
active, and passive. When using the static discovery method, both the UA
and the SA learn the address of the DA from a DHCP server. In case of an
active discovery, SLP agents contact the DA by sending service requests to the
SLP multicast address on which the DA is configured to listen to for incoming
communications. Upon receiving a service request, DA responds directly to
the requesting agent via the agent’s unicast address. The passive discovery
method involves DAs periodically advertising their existence through the SLP
multicast address. The other SLP agents discover the DAs location after lis-
tening the multicast advertisements. They can then contact the DAs directly
through their unicast addresses for other operations [37].

Besides the basic SLP architecture involving SAs, DAs, and UA, it is possible
to set a SLP architecture without DAs. In this case, UAs and SAs need to
communicate directly to each other. In order to discover available services, UAs
repeatedly send out their service requests to the SLP multicast address. On the
other hand, SAs are listening for incoming requests on the SLP multicast address.
Upon receiving a request corresponding to a service they are advertising, SAs
reply through unicast address to UAs.

4.4 The Resource Access Service

It is a server that manages the various protected resources. It acts as both
client and server when receiving or replying to access requests from clients. The
decision to grant the access to those resources is received from the Authorization
Control Service.

Resilient Reference Monitor for Distributed Access Control 33

5 Implementation

In this section, we introduce the proof-of-concept implementation of our pro-
posed architecture. We have designed a test case to exemplify the functioning of
the protocol.

5.1 Clients and Resource Access Service

We assume that we have a set of users represented by client applications. Those
users are grouped into a set of roles (Undergraduate, Graduate, and Faculty).
We also have a set of resources, in this case files stored on a file server. This
file server constitutes our Resource Access Service. We have also defined a set
of actions to be performed on those files by users. We have chosen basic Linux
actions: Read, Write, and Execute. The different permissions given to users over
those files are represented on Fig. 3.

Fig. 3. Roles-Permissions assignment

5.2 Authorization Control Server

Using socket programming, we have implemented five Authorization Control
Services named ACS1, ACS2, ACS3, ACS4, and ACS5. Those have been imple-
mented as Java client-servers. Each of those Authorization Control Services has
an Access Control Module that is responsible for verifying user’s authorization to
resources that are stored on the Resource server. At each time, only one Autho-
rization Control Service is responsible for providing the access control service.

Access Control. We start our process with the Authorization service being
provided by, let us say, the Authorization Control Server ACS1. We consider that
user Tom submits a request to read a file named certificate.txt. This request is
intercepted by ACS1 which run the Access Control Module. The Access Control
Module has been implemented using the Balana [24] open source implementation
of XACML. Tom’s query will be a tuple user-id, action, resource-name where in
this particular case user-id is Tom, action is read, and resource-name is the file
certificate.txt requested by Tom.

Policy Enforcement Point. Tom’s query is intercepted by the Policy Enforcement
Point (PEP). In fact, the PEP intercepts all queries sent to the Resource Access
Service [40]. We have developed a wrapper that converts the original query into
a XACML request. The request is then sent to the PDP for verification. Figure 5
illustrates the form of the XACML request.

34 D. Mulamba and I. Ray

Fig. 4. XACML architecture

Fig. 5. User request sample

Policy Decision Point. The Policy Decision Point (PDP) receives Tom’s request
coming from the PEP. It needs to analyse if Tom fulfills the required conditions
to read the file certificate.txt. The PDP will consult the Policy file to determine
what actions Tom is allowed to perform on the file certificate.txt. Balana [24]
provides us with an API call that allows us to create a PDP.

Policy Administration Point. To write policies, we have made use of the Simple
Policy Editor. This policy editor is part of WSO2 Identity Server [25]. Simple
Policy Editor allows anyone to create XACML 3.0 policies without an extensive
knowledge of XACML language. However, an understanding of access control
rules is required. Figure 6 is a sample of our policy file.

In addition to the Policy file, the PDP also consults the user-role assignment
table. After determining Tom’s role, which is undergraduate, and consulting the
Policy file, the PDP reaches the conclusion to authorize Tom to read the desired
file. The PDP passes that decision back to the PEP. That response is represented
as a XACML file. A sample of the response XACML file is exhibited on Fig. 7.

The PEP then replies to Tom with a response granting him access to the file.
Tom can now access the file server.

Resilient Reference Monitor for Distributed Access Control 35

Fig. 6. Policy file sample

Fig. 7. Response sample

Leader Election. Our objective is to protect the Access Control Module by
regularly switching the Authorization Control Service providing the Access Con-
trol service at any given time. For the sake of demonstrating, we have chosen
to switch the Authorization Control Service after every 10 min plus a random
number of seconds. The random time is added to cancel the predictability of the
time when the election takes place. An attacker knowing when the new leader is
elected can schedule his attack accordingly.

An election is called after the end of term of the current Leader. In this
instance, that term is set to ten minutes and some random seconds. The current
leader being ACS1, it is the one responsible to call for an election. Using Java,
the Leader Election is implemented according to the adaptation of the protocol
presented in Sect. 4.2. At the end of the protocol a new leader is elected. This
leader is different from ACS1, for instance ACS3 has been selected a the new
leader. This is the server that is going to be responsible of providing the Autho-
rization Control Service until next election. We made all Authorization Control
Services probe the leader after every ninety seconds by sending a IsAlive message
to it. This is done in order to detect the failure of the current leader.

Tom want to request another file stored on the file server, but the Authoriza-
tion Control Service has been moved from ACS1 to ACS3. Any attacker who was
in the middle of preparing an attack against ACS1 will be attacking the wrong
Authorization Control Service, which is the intended goal of our architecture.
However, Tom will also be sending his authorization request to the wrong server.

36 D. Mulamba and I. Ray

Migration. We have implemented the Migration Module as a mechanism to
simply transfer the session history file and the policy file from the previous leader
ACS1 to the elected leader ACS3. As stated in Sect. 4.2, the other access control
modules are the same across all Authorization Control Services. The reason for
transferring ACS1 Policy file to ACS3 is that while ACS1 was providing the
Authorization service, policies, resources and users may have been updated. To
avoid disruption in the access control service, ACS3 needs to have the most
recent policy file.

Other alternatives to this migration can be envisioned. One option is to
store the policies in a Policy Database, and replicate the database across all the
Authorization Control Services accordingly. Another option would be to migrate
the database from the current leader to the new leader at the end of an election.
An additional option would be to use a single Policy database that would be
shared by all the Authorization Control Services. This last option can create a
potential issue by making that single policy database a single point of failure
attractive for would be attacker.

5.3 Discovery Service

We need to let Tom know that the Authorization Control Server ACS3 has been
elected as the new leader, and therefore he should send his request to ACS3.
The Discovery Service allows us to achieve that goal through the adaptation of
SLP protocol.

We have implemented the Discovery Service using a tool called OpenSLP
[35] which is an open source implementation of the Service Location Protocol.
OpenSLP can be used either in a three components mode or in a two components
mode. In the first mode, we can have a User Agent (UA), a Service Agent (SA)
and Directory Agent (DA). The User Agent is the Agent requesting services. The
Service Agent is the Agent providing the services, while the Directory Agent is
the repository of services. In a two component mode, we can have only the User
Agent and the Service Agent. In this case, the Service Agent plays also the
role of a Directory Agent (DA). For the sake of this demonstration, we have
implemented the later option. We have installed OpenSLP and made sure that
slpd, which is the OpenSLP daemon, is running.

Service Agent. Since our setting do not use a Directory Agent, the new leader will
have to register its services with slpd upon being elected. The old Authoriza-
tion Control Service, previously registered, is unregistered to avoid confusing
users. The new leader registers its access control service by issuing a query
in the form of a ServiceURL. The ServiceURL has the following form: ser-
vice:ServiceName://IPAddress:PortNo, where ServiceName is the Authorization
Service, IPAddress is the IP address of the new leader, and PortNo is the port
where the Authorization Service is running.

User Agent. In our setting, the User Agent is Tom who needs to find the loca-
tion of the new leader which is providing the access control service. In order to
discover the Authorization Service, Tom’s client sends a multicast packet with

Resilient Reference Monitor for Distributed Access Control 37

a ServiceURL. The Service Agent, which is the new leader, will verifies if Tom’s
query matches the registered service. In case of a match, the Service Agent
replies to Tom with the ServiceURL informing him how to access the access
control service.

6 Conclusion and Future Work

We have sketched a Moving Target Defense architecture aiming at defending
an Access Control Reference Monitor. The design allows a master Resource
Access Server and a master Authorization Control Server to be periodically
and randomly switched to other ones. This mechanism allows the disruption of
any ongoing attack on the Access Control Reference Monitor. This work opens
a new direction in research on Moving Target Defense of an Access Control
Reference Monitor. This architecture can benefit from some improvements. For
instance, we do not believe that the election algorithm is an optimal one in
term of computation and the number of messages exchanged during the election
process.

Acknowledgement. This work was partially supported by funding from CableLabs,
the US National Science Foundation under grant number 1650573, and the US Depart-
ment of Energy under contract DE-NE0008571. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of CableLabs, the National Science Foundation, or the
Department of Energy.

References

1. Abu-Amara, H., Lokre, J.: Election in asynchronous complete networks with inter-
mittent link failures. IEEE Trans. Comput. 43(7), 778–788 (1994)

2. Al-Shaer, E.: Toward network configuration randomization for moving target
defense. In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.)
Moving Target Defense, vol. 54, pp. 153–159. Springer, New York (2011)

3. Anderson, J.: Computer Security Technology Planning Study. Technical report
ESD-TR-73-51, Electronic Systems Division, Hanscom Air Force Base, Hanscom,
MA (1974)

4. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against
hitlist worms using network address space randomization. Comput. Netw. 51(12),
3471–3490 (2007)

5. Arghavani, A., Ahmadi, E., Haghighat, A.: Improved bully election algorithm in
distributed systems. In: 2011 International Conference on Information Technology
and Multimedia (ICIM), pp. 1–6. IEEE (2011)

6. Brunekreef, J., Katoen, J.P., Koymans, R., Mauw, S.: Design and analysis of
dynamic leader election protocols in broadcast networks. Distrib. Comput. 9(4),
157 (1996)

7. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th Symposium on Operating systems design and implementa-
tion, pp. 335–350. USENIX Association (2006)

38 D. Mulamba and I. Ray

8. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. (TOCS) 20(4), 398–461 (2002)

9. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI 1999,
pp. 173–186 (1999)

10. Compton, M.D.: Improving the quality of service and security of military networks
with a network tasking order process (2010)

11. Copeland, C., Zhong, H.: Tangaroa: a byzantine fault tolerant raft
12. Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of moving target defenses.

In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.) Moving
Target Defense, vol. 54, pp. 29–48. Springer, New York (2011)

13. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): features
and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241–48 (1995)

14. Ferreira, A., Chadwick, D., Farinha, P., Correia, R., Zao, G., Chilro, R., Antunes,
L.: How to securely break into RBAC: the BTG-RBAC model. In: Annual Com-
puter Security Applications Conference, ACSAC 2009, pp. 23–31. IEEE (2009)

15. Fraim, L.J.: Scomp: a solution to the multilevel security problem. IEEE Comput.
16(7), 26–34 (1983)

16. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Com-
put. 31(1), 48–59 (1982)

17. Gilbert, M.D.M.: An examination of federal and commercial access control pol-
icy needs. In: National Computer Security Conference, 1993 (16th) Proceedings:
Information Systems Security: User Choices, p. 107. DIANE Publishing (1995)

18. Guttman, E.: Service location protocol: Automatic discovery of IP network ser-
vices. IEEE Internet Comput. 3(4), 71–80 (1999)

19. Han, Y., Lu, W., Xu, S.: Characterizing the power of moving target defense via
cyber epidemic dynamics. In: Proceedings of the 2014 Symposium and Bootcamp
on the Science of Security, p. 10. ACM (2014)

20. Howard, H., Schwarzkopf, M., Madhavapeddy, A., Crowcroft, J.: Raft refloated: do
we have consensus? ACM SIGOPS Oper. Syst. Rev. 49(1), 12–21 (2015)

21. Huh, J.H., Bobba, R.B., Markham, T., Nicol, D.M., Hull, J., Chernoguzov, A.,
Khurana, H., Staggs, K., Huang, J.: Next-generation access control for distributed
control systems. IEEE Internet Comput. 20(5), 28–37 (2016)

22. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: USENIX Annual Technical Conference, vol. 8, p. 9
(2010)

23. Inc, A.: Bonjour. https://support.apple.com/bonjour. Accessed: 26 Feb 2017
24. Info, X.: Balana. http://xacmlinfo.org/2012/12/18/getting-start-with-balana.

Accessed: 26 Feb 2017
25. Info, X.: Wso2 identity server. http://xacmlinfo.org/category/wso2is/. Accessed:

26 Feb 2017
26. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: Proceedings

of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, Miami, FL,
USA (2006)

27. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
990–999. Society for Industrial and Applied Mathematics (2006)

28. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2),
133–169 (1998)

29. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

https://support.apple.com/bonjour
http://xacmlinfo.org/2012/12/18/getting-start-with-balana
http://xacmlinfo.org/category/wso2is/

Resilient Reference Monitor for Distributed Access Control 39

30. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
31. Le Lann, G.: Distributed systems-towards a formal approach. In: IFIP Congress,

Toronto, vol. 7, pp. 155–160 (1977)
32. Lee, J.W., Schulzrinne, H., Kellerer, W., Despotovic, Z.: z2z: discovering zeroconf

services beyond local link. In: 2007 IEEE Globecom Workshops, pp. 1–7. IEEE
(2007)

33. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secure
Comput. 3(3), 202–215 (2006)

34. Mohammed, I., Dilts, D.M.: Design for dynamic user-role-based security. Comput.
Secur. 13(8), 661–671 (1994)

35. OpenSLP: Service location protocol. http://www.openslp.org/. Accessed: 26 Feb
2017

36. ORACLE: Trusted Solaris Operating System. http://www.oracle.com/
technetwork/server-storage/solaris/overview/index-136311.html

37. Perkins, C., Kaplan, S.: Service location protocol. In: ACTS Mobile Networking
Summit/MMITS Software Radio Workshop (1999)

38. Perkins, C.E., et al.: Dhcp options for service location protocol (1999)
39. Presser, A., Farrell, L., Kemp, D., Lupton, W.: UPnP device architecture 1.1. In:

UPnP Forum, vol. 22 (2008)
40. Rissanen, E., et al.: Extensible access control markup language (xacml) version 3.0

(2013)
41. Ruj, S., Stojmenovic, M., Nayak, A.: Decentralized access control with anonymous

authentication of data stored in clouds. IEEE Trans. Parallel Distrib. Syst. 25(2),
384–394 (2014)

42. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

43. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40–48 (1994)

44. Sayeed, H.M., Abu-Amara, M., Abu-Amara, H.: Optimal asynchronous agreement
and leader election algorithm for complete networks with byzantine faulty links.
Distrib. Comput. 9(3), 147–156 (1995)

45. Schell, R., Tao, T., Heckman, M.: Designing the GEMSOS security kernel for
security and performance. In: Proceedings of the 8th National Computer Security
Conference, Gaithersburg, MD (1985)

46. Shi, X., Lin, H., Jin, H., Zhou, B.B., Yin, Z., Di, S., Wu, S.: Giraffe: a scalable dis-
tributed coordination service for large-scale systems. In: 2014 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 38–47. IEEE (2014)

47. Singh, G.: Leader election in the presence of link failures. IEEE Trans. Parallel
Distrib. Syst. 7(3), 231–236 (1996)

48. Soundarabai, P.B., Thriveni, J., Manjunatha, H., Venugopal, K., Patnaik, L.:
Message efficient ring leader election in distributed systems. In: Chaki, N.,
Meghanathan, N., Nagamalai, D. (eds.) Computer Networks & Communications
(NetCom), pp. 835–843. Springer, New York (2013)

49. The TrustedBSD Project: Trustedbsd. http://www.trustedbsd.org
50. Veizades, J., Perkins, C.E.: Service location protocol (1997)
51. Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede,

N., Rao, J., Kreps, J., Stein, J.: Building a replicated logging system with apache
kafka. Proc. VLDB Endowment 8(12), 1654–1655 (2015)

52. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux security
modules: general security support for the linux kernel. In: Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA (2002)

http://www.openslp.org/
http://www.oracle.com/technetwork/server-storage/solaris/overview/index-136311.html
http://www.oracle.com/technetwork/server-storage/solaris/overview/index-136311.html
http://www.trustedbsd.org

40 D. Mulamba and I. Ray

53. Xu, J., Guo, P., Zhao, M., Erbacher, R.F., Zhu, M., Liu, P.: Comparing different
moving target defense techniques. In: Proceedings of the First ACM Workshop on
Moving Target Defense, pp. 97–107. ACM (2014)

54. Zhuang, R., DeLoach, S.A., Ou, X.: Towards a theory of moving target defense.
In: Proceedings of the First ACM Workshop on Moving Target Defense, pp. 31–40.
ACM (2014)

Preventing Unauthorized Data Flows

Emre Uzun1(B), Gennaro Parlato2, Vijayalakshmi Atluri3, Anna Lisa Ferrara2,
Jaideep Vaidya3, Shamik Sural4, and David Lorenzi3

1 Bilkent University, Ankara, Turkey
emreu@bilkent.edu.tr

2 University of Southampton, Southampton, UK
gennaro@ecs.soton.ac.uk, al.ferrara@soton.ac.uk

3 MSIS Department, Rutgers Business School, Newark, USA
{atluri,jsvaidya,dlorenzi}@cimic.rutgers.edu

4 Department of Computer Science and Engineering,
IIT Kharagpur, Kharagpur, India
shamik@cse.iitkgp.ernet.in

Abstract. Trojan Horse attacks can lead to unauthorized data flows
and can cause either a confidentiality violation or an integrity violation.
Existing solutions to address this problem employ analysis techniques
that keep track of all subject accesses to objects, and hence can be expen-
sive. In this paper we show that for an unauthorized flow to exist in an
access control matrix, a flow of length one must exist. Thus, to eliminate
unauthorized flows, it is sufficient to remove all one-step flows, thereby
avoiding the need for expensive transitive closure computations. This
new insight allows us to develop an efficient methodology to identify and
prevent all unauthorized flows leading to confidentiality and integrity
violations. We develop separate solutions for two different environments
that occur in real life, and experimentally validate the efficiency and
restrictiveness of the proposed approaches using real data sets.

1 Introduction

It is well known that access control models such as Discretionary Access Control
(DAC) and Role Based Access Control (RBAC) suffer from a fundamental weak-
ness – their inability to prevent leakage of data to unauthorized users through
malware, or malicious or complacent user actions. This problem, also known
as a Trojan Horse attack, may lead to an unauthorized data flow that may
cause either a confidentiality or an integrity violation. More specifically, (i) a
confidentiality violating flow is the potential flow of sensitive information from
trusted users to untrusted users that occurs via an illegal read operation, and

The work of Parlato and Ferrara is partially supported by EPSRC grant no.
EP/P022413/1.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 41–62, 2017.
DOI: 10.1007/978-3-319-61176-1 3

42 E. Uzun et al.

(ii) integrity violating flow is the potential contamination of a sensitive object
that occurs via an illegal write operation by an untrusted user. We now give an
example to illustrate these two cases.

Table 1. Access control matrix

Subject o1 o2 o3 o4 o5 o6 o7

s1 r r w w w

s2 r r w w w

s3 r r r w w

s4 r r r w w

s5 r

Example 1. Consider a DAC policy represented as an access control matrix given
in Table 1 (r represents read , and w represents write).

Confidentiality Violating Flow: Suppose s3 wants to access data in o1. s3 can
simply accomplish this (without altering the access control rights) by exploiting
s1’s read access to o1. s3 prepares a malicious program disguised in an application
(i.e., a Trojan Horse) to accomplish this. When run by s1, and hence using her
credentials, the program will read contents of o1 and write them to o3, which s3
can read. All this is done without the knowledge of s1. This unauthorized data
flow allows s3 to read the contents of o1, without explicitly accessing o1.

Integrity Violating Flow: Suppose s1 wants to contaminate the contents of
o6, but she does not have an explicit write access to it. She prepares a malicious
program. When this is run by s3, it will read from o3, that s1 has write access
to and s3 has read access, and write to o6 using s3’s credentials, causing o6 to
be contaminated by whatever s1 writes to o3. This unauthorized flow allows s1
to write to o6 without explicitly accessing o6.

Such illegal flows can occur in the many of the most common systems that we
use today because they employ DAC policies instead of a more restrictive MAC
policy [2]. For example, in UNIX, the key system files are only readable by root,
however, the access control rights of the other files are determined solely by the
users. If a Trojan horse program is run with the root user’s privileges, the data
in the system files, such as the user account name and password hashes could be
leaked to some untrusted users. As another example, a similar flow might occur
in Social Networks as well. For instance, Facebook offers a very extensive and
fine-grained privacy policy to protect the data posted on user profiles. However,
this policy is under the user’s control. A Trojan horse attack is likely when the
users grant access to third party Facebook applications, that usually request

Preventing Unauthorized Data Flows 43

access to user profile data. An untrusted application could violate the user’s
privacy settings and access confidential information.

The first step for eliminating occurrences like the ones depicted in the exam-
ple above is to perform a security analysis. To date, existing solutions to address
such problems give the impression that such unauthorized flows could only be
efficiently prevented in a dynamic setting (i.e., only by examining the actual
operations), while preventing them in a static setting (i.e., by examining the
authorization specifications) would require the computation of the transitive
closure and therefore be very expensive. However, in this paper, we show that
a transitive closure is not needed for the static case and less expensive analy-
ses can be used to solve this problem. More precisely, we have discovered that
merely identifying and then restricting a single step data flow, as opposed to
the entire path, is sufficient to prevent the unauthorized flow. This new insight
has significantly changed the dimensions of the problem and allows us to offer a
variety of strategies that fit different situational needs.

Consider the following situations which have differing solution requirements.
For example, in embedded system environments complex monitors cannot be
deployed due to their computation or power requirements and therefore existing
dynamic preventive strategies are not applicable. Similarly, there are solutions
for cryptographic access control [8,13], where accesses are not mediated by a
centralized monitor and therefore easily offer distributed trust. In such cases,
the access control policy needs to be “data leakage free” by design. In other sit-
uations, when there are no special computational or power constraints, a monitor
can be used, and therefore can be utilized to prevent data leakages. However,
there may also be situations where access needs to be granted even if a data
leakage may occur and then audited after the fact. This would happen in emer-
gencies, which is why break-glass models exist [5,23,25].

Therefore, in this paper, we develop different solutions to address both the
confidentiality and integrity violations. Specifically, we propose a data leak-
age free by design approach that analyzes the access control matrix to identify
“potential” unauthorized flows and eliminates them by revoking necessary read
and write permissions. Since this eliminates all potential unauthorized flows,
regardless of whether they actually occur or not, this could be considered too
restrictive. However, it is perfectly secure in the sense that no data leakages can
ever occur, and of course this is the only choice when monitoring is not feasible.
Although it may seem very restrictive in the first place, we apply this only to
the untrusted sections of the access control system. It is important to note that
in all potential unauthorized flows one can only be sure of a violation by per-
forming a content analysis of the objects. This is outside the scope of the paper.
We also develop a monitor based approach, in which object accesses are tracked
dynamically at each read and write operation. Thus, any suspicious activity that
could lead to an unauthorized data flow can be identified and prevented at the
point of time that it occurs. Thus, this approach only restricts access if there is
a signal for an unauthorized data flow.

44 E. Uzun et al.

The fact that it is adequate to identify and eliminate one-step flows allows
us to identify a limited set of accesses that are both necessary and sufficient to
prevent all confidentiality and integrity violations. On the other hand, earlier
approaches proposed in the literature [17,21,32] keep track of all the actions
and maintain information relevant to these to eliminate unauthorized flows, and
therefore are more expensive than our proposed approach. Moreover, while Mao
et al. [21] and Zimmerman et al. [32] address the issue of integrity violation,
Jaume et al. [17] address the issue of confidentiality violation, however, none of
them tackle both of these problems.

This paper is organized as follows. In Sect. 2, we present preliminary back-
ground for our analysis, and in Sects. 3 and 4 we present the details of the two
strategies. In Sect. 5, we present the results of our empirical evaluation. In Sect. 6,
we review the related work. In Sect. 7, we give our concluding remarks and pro-
vide an insight into our future work on this problem. Some of the proofs of the
theorems and lemmas are presented in the Appendix.

2 Preliminaries

Access Control Systems. An access control system (ACS for short) C is a
tuple (S,O,→r,→w), where S is a finite set of subjects, O is a finite set of
objects, →r⊆ O × S, and →w⊆ S × O. We always assume that O and S are
disjoint. A pair (o, s) ∈→r, also denoted o →r s, is a permission representing
that subject s can read object o. Similarly, a pair (s, o) ∈→w, denoted s →w o, is
a permission representing that subject s can write into object o. For the sake of
simplicity, we consider only read and write permissions as any other operation
can be rewritten as a sequence of read and write operations.

Graph Representation of ACS. An ACS can be naturally represented with a
bipartite directed graph [30]. The graph of an ACS, C = (S,O,→r,→w), denoted
GC , is the bipartite graph (S,O,→) whose partition has the parts S and O with
edges →= (→r ∪ →w). Figure 1 shows the graph representation of the ACS
shown in Table 1.

o1

s1

o2 o3 o4 o5 o6 o7

s2 s3 s4 s5

Fig. 1. Graph representation of the ACS given in Table 1

Preventing Unauthorized Data Flows 45

Vulnerability Paths. In an access control system C, a flow path from object
o to object o′, denoted o � o′, is a path in GC from o to o′, which points out
the possibility of copying the content of o into o′. The length of a flow path
corresponds to the number of subjects along the path. For example, o1 →r

s1 →w o3 (denoted as o1 � o3) is a flow path of length 1, while o1 →r s1 →w

o3 →r s3 →w o6 (denoted as o1 � o6) is a flow path of length 2 of the ACS
shown in Fig. 1. In all, there are 12 flow paths of length 1, while there are 4 flow
paths of length 2 in the ACS shown in Fig. 1.

Confidentiality Vulnerability: An ACS C has a confidentiality vulnerability, if
there are two objects o and o′, and a subject s such that o � o′ →r s (confi-
dentiality vulnerability path or simply vulnerability path), and o �→r s. A confi-
dentiality vulnerability, shows that subject s (the violator) can potentially read
the content of object o through o′, though s is not allowed to read directly from
o. We represent confidentiality vulnerabilities using triples of the form (o, o′, s).
For example, the ACS depicted in Fig. 1 has the confidentiality vulnerability
(o1, o3, s3) since o1 � o3 and o3 →r s3 but o1 �→r s3. Similarly, (o2, o6, s5) is
another confidentiality vulnerability since o2 � o6 and o6 →r s5 but o2 �→r s5.
In total, there are 15 confidentiality vulnerabilities:
(o1, o3, s3), (o1, o3, s4), (o1, o4, s3), (o1, o4, s4), (o1, o5, s3), (o1, o5, s4), (o2, o3, s3),
(o2, o3, s4), (o2, o4, s3), (o2, o4, s4), (o2, o5, s3), (o2, o5, s4), (o5, o6, s5), (o1, o6, s5),
(o2, o6, s5).

Integrity Vulnerability: An ACS C has an integrity vulnerability, if there exist a
subject s, and two objects o and o′ such that s →w o, o � o′ (integrity vulnera-
bility path or simply vulnerability path) and s �→w o′. An integrity vulnerability,
shows that subject s (the violator) can indirectly write into o′ using the path
flow from o to o′, though s is not allowed to write directly into o′. We represent
integrity vulnerabilities using triples of the form (s, o, o′). For example, the ACS
depicted in Fig. 1 has the integrity vulnerability (s1, o3, o6) since o3 � o6 and
s1 →w o3 but s1 �→w o6. In total, there are 12 integrity vulnerabilities:
(s1, o3, o6), (s1, o3, o7), (s1, o4, o6), (s1, o4, o7), (s1, o5, o6), (s1, o5, o7), (s2, o3, o6),
(s2, o3, o7), (s2, o4, o6), (s2, o4, o7), (s2, o5, o6), (s2, o5, o7).

When an ACS has either a confidentiality or an integrity vulnerability, we
simply say that C has a vulnerability, whose length is that of its underlying
vulnerability path. Thus, for the ACS depicted in Fig. 1, there are 15 + 12 = 27
vulnerabilities.

Data Leakages. A vulnerability in an access control system does not necessarily
imply that a data leakage (confidentiality or integrity violation) occurs. Rather,
a leakage can potentially happen unless it is detected and blocked beforehand,
using for example a monitor. Before we define this notion formally, we first
develop the necessary formalism.

46 E. Uzun et al.

A run of an ACS C is any finite sequence π = (s1, op1, o1) . . . (sn, opn, on)
of triples (or actions) from the set S × {read ,write} × O such that for every
i ∈ [1, n] one of the following two cases holds:

(Read) opi = read , and oi →r si;
(Write) opi = write, and si →w oi.

A run π represents a sequence of allowed read and write operations executed
by subjects on objects. More specifically, at step i ∈ [n] subject si accomplishes
the operation opi on object oi. Furthermore, si has the right to access oi in
the opi mode. A run π has a flow from an object ô1 to a subject ŝk pro-
vided there is a flow path ô1 →r ŝ1 →w ô2 . . . ôk and ôk →r ŝk such that
(ŝ1, read , ô1)(ŝ1,write, ô2) . . . (ŝk, read , ôk) is a sub-sequence of π. Similarly, we
can define flows from subjects to objects, objects to objects, and subjects to
subjects.

Confidentiality Violation: A run π of an ACS C has a confidentiality violation,
provided there is a confidentiality vulnerability path from an object o to a subject
s and π has a flow from o to s. An ACS C has a confidentiality violation if there
is a run of C with a confidentiality violation.

Thus, for example, in the ACS depicted in Fig. 1, a confidentiality violation
would occur if there was a sequence (s1, read , o1)(s1,write, o3)(s3, read , o3) which
was a sub-sequence of π.

Integrity Violation: A run π of an ACS C has an integrity violation, provided
there is an integrity vulnerability path from a subject s to an object o and π
has a flow from s to o. An ACS C has an integrity violation if there is a run of
C with an integrity violation.

As above, in the ACS depicted in Fig. 1, a integrity violation would occur, for
example, if there was a sequence (s2,write, o4)(s3, read , o4)(s3,write, o7) which
was a sub-sequence of π.

An ACS has a data leakage if it has either a confidentiality or an integrity vio-
lation. From the definitions above it is straightforward to see that the following
property holds.

Proposition 1. An access control system is data leakage free if and only if it
is vulnerability free.

The direct consequence of the proposition above suggests that a vulnerability
free access control system is data leakage free by design, hence it does not require
a monitor to prevent data leakages.

Fundamental Theorem. We now prove a simple and fundamental property of
ACS that constitutes one of the building blocks for our approaches for checking
and eliminating vulnerabilities/data leakages as shown later in the paper.

Theorem 1. Let C be an access control system. C has a vulnerability only if C
has a vulnerability of length one. In particular, let ρ = o0 →r s0 →w o1 . . . sn−1

→w on be vulnerability path of minimal length. Then, if ρ is a confidentiality

Preventing Unauthorized Data Flows 47

(resp., integrity) vulnerability then o0 →r s0 →w o1 (resp., o0 →r s0 →w on) is
a confidentiality (resp., integrity) vulnerability of length one.

Proof. The proof is by contradiction. Assume that n is greater than one by
hypothesis. We first consider the case of confidentiality vulnerability. Let s be
the violator. Since ρ is of minimal length, all objects along ρ except o0 can
be directly read by s (i.e., oi →r s for every i ∈ [1, n]), otherwise there is
an confidentiality vulnerability of smaller length. Thus, o0 →r s0 →w o1 is a
confidentiality vulnerability of length one, as s can read from o1 but cannot read
from o0. A contradiction.

We give a similar proof for integrity vulnerabilities. Again, since ρ is of min-
imal length, all objects along ρ, except o0, can be directly written by s0, i.e.,
s0 →w oi for every i ∈ {1, . . . , n}. But, this entails that o0 →r s0 →w on is an
integrity vulnerability of length one (as s can write into o0 but cannot directly
write into on). Again, a contradiction.

We now present two alternative strategies for preventing data flows, which
fit different environments.

3 Access Control Systems Data Leakage Free by Design

When a monitor is not possible or even doable the only solution to get an access
control that is free of data leakages is that of having the ACS free of vulnerabil-
ities (see Proposition 1). In this section, we propose an automatic approach that
turns any ACS into one free of vulnerabilities by revoking certain rights.

This can be naively achieved by removing all read and write permissions. How-
ever, this would make the whole approach useless. Instead, it is desirable to mini-
mize the changes to the original access control matrix so as not to disturb the users’
ability to perform their job functions, unless it is absolutely needed. Furthermore,
the removal of these permissions should take into account the fact that some of
them may belong to trusted users (i.e. subjects), such as system administrators,
and therefore we want to prevent the removal of these permissions.

We show that this problem is NP-complete (see Sect. 3.1). Therefore, an effi-
cient solution is unlikely to exist (unless P = NP). To circumvent this compu-
tational difficulty, we propose compact encodings of this optimization problem
into integer linear programming (ILP) by exploiting Theorem1 (see Sects. 3.2
and 3.3). The main goal is that of leveraging efficient solvers for ILP, which
nowadays exist. We show that this approach is promising in practice in Sect. 5.

Maximal Data Flow Problem (MDFP). Let C = (S,O,→r,→w) be an
access control system, and T = (→t

r,→t
w) be the sets of trusted permissions

where →t
r⊆→r and →t

w⊆→w. A pair Sol = (→sol
r ,→sol

w) is a feasible solution
of C and T , if →t

r⊆→sol
r ⊆→r, →t

w⊆→sol
w ⊆→w and C′ = (S,O,→sol

r ,→sol
w) does

not have any threat. The size of a feasible solution Sol , denoted size(Sol), is the
value | →sol

r | + | →sol
w |. The MDFP is to maximize size(Sol).

48 E. Uzun et al.

3.1 MDFP is NP-complete

Here we show that the decision problem associated to MDFP is NP-complete.
Given an instance I = (C, T) of MDFP and a positive integer K, the decision
problem associated to MDFP, called D-MDFP, asks if there is a feasible solution
of I of size greater or equal to K.

Theorem 2. D-MDFP is NP-complete.

See Appendix 7.2 for the proof.

3.2 ILP Formulation

Here we define a reduction from MDFP to integer linear programming (ILP).
In the rest of this section, we denote by I = (C, T) to be an instance of MDFP,
where C = (S,O,→r,→w) and T = (→t

r,→t
w).

The set of variables V of the ILP formulation is:

V = {ro,s | o ∈ O ∧ s ∈ S ∧ o →r s} ∪ {ws,o | s ∈ S ∧ o ∈ O ∧ o →r s}
The domain of the variables in V is {0, 1}, and the intended meaning of these

variables is the following. Let ηI : V → {0, 1} be an assignment of the variables in
V corresponding to an optimal solution of the ILP formulation. Then, a solution
for I is obtained by removing all permissions corresponding to the variables
assigned to 0 by ηI . Formally, SolηI

= (→sol
r ,→sol

w) is a solution for I, where

→sol
r = { (o, s) | o ∈ O ∧ s ∈ S ∧ o →r s ∧ ηI(ro,s) = 1 }

→sol
w = { (s, o) | s ∈ S ∧ o ∈ O ∧ s →w o ∧ ηI(ws,o) = 1 }.

The main idea on how we define the ILP encoding, hence its correctness,
derives straightforwardly from Theorem1: we impose that every flow path of
length one, say o →r ŝ →w o′, if these permissions remain in the resulting access
control system C′ = (S,O,→sol

r ,→sol
w), then it must be the case that for every

subject s ∈ S if s can read from o′ in C′, s must also be able to read from o in
C′ (Confidentiality), and if s that can write into o in C′, s must be also able
to write into o′ in C′ (Integrity). Formally, the linear equations of our ILP
formulation is the minimal set containing the following.

Confidentiality Constraints: For every sequence of the form o →r ŝ →w ô →r s,
we add the constraint: ro,ŝ +wŝ,ô +rô,s −G ≤ 2 where G is ro,s in case o →r s,
otherwise G = 0. For example, for the sequence o1 →r s1 →w o3 →r s2, in the
ACS depicted in Fig. 1(a), we have ro1,s1 + ws1,o3 + ro3,s2 − 0 ≤ 2.

Integrity Constraints: For every sequence of the form s →w o →r ŝ →w ô, we
add the constraint: ws,o + ro,ŝ +wŝ,ô −G ≤ 2 where G is ws,ô in case s →w ô,
otherwise G = 0. As above, for the sequence s2 →w o4 →r s3 →w o7, in the ACS
depicted in Fig. 1(a), we add the constraint ws2,o4 + ro4,s3 + ws3,o7 − 0 ≤ 2.

Trusted Read Constraints: For every o →t
r s, we have the constraint: ro,s = 1.

Preventing Unauthorized Data Flows 49

Trusted Write Constraints: For every s →t
w o, we have the constraint: ws,o = 1.

It is easy to see that any variable assignment η that obeys all linear con-
straints defined above leads to a feasible solution of I.

Objective Function: Now, to maximize the number of remaining permissions (or
equivalently, minimize the number of removed permissions) we define the objec-
tive function of the ILP formulation as the sum of all variables in V. Compactly,
our ILP-formulation(C, T) is as shown in Fig. 2.

max
v∈V

v

subject to

ro,ŝ + wŝ,ô + rô,s − ro,s≤ 2,∀ o →r ŝ →w ô →r s, o →r s

ro,ŝ + wŝ,ô + rô,s ≤ 2,∀ o →r ŝ →w ô →r s, o �→r s

ws,ô + rô,ŝ + wŝ,o − ws,o≤ 2,∀ s →w ô →r ŝ →w o, s →w o

ws,ô + rô,ŝ + wŝ,o ≤ 2,∀ s →w ô →r ŝ →w o, s �→w o

ro,s = 1, ∀ o →t
r s; ws,o = 1, ∀ s →t

w o; v ∈ {0, 1}, ∀v ∈ V

Fig. 2. ILP formulation of MDFP.

We now formally state the correctness of our ILP approach, which is entailed
from the fact that we remove the minimal number of permissions from C resulting
in a new ACS that does not have any threat of length one, hence from Theorem1
does not have any threat at all.

Theorem 3. For any instance I of MDFP, if ηI is an optimal solution of ILP -

formulation(I) then SolηI
is an optimal solution of I.

We note that while the ILP formulation gives the optimal solution, solving
two subproblems (one for confidentiality followed by the one for integrity each
with only the relevant constraints) does not give an optimal solution.

For example, for the ACS depicted in Fig. 1(a), if we only eliminate the 15
confidentiality vulnerabilities, the optimal solution is to revoke 5 permissions
(o1 →r s1, o2 →r s1, o1 →r s2, o2 →r s2, and o6 →r s5). This eliminates
all of the confidentiality, while all of the original integrity vulnerabilities still
exist. No new vulnerabilities are added. Now, if the integrity vulnerabilities are
to be eliminated, the optimal solution is to revoke 4 permissions (s3 →w o6,
s3 →w o7, s4 →w o6, s4 →w o7). Thus, the total number of permissions revoked
is 9. However, if both confidentiality and integrity vulnerabilities are eliminated
together (using the composite ILP in Fig. 2), the optimal solution is to simply
revoke 6 permissions (o3 →r s3, o4 →r s3, o5 →r s3, o3 →r s4, o4 →r s4,
o5 →r s4), which is clearly lower than 9.

50 E. Uzun et al.

3.3 Compact ILP Formulation

We now present an improved encoding that extends the ILP formulation
described in Sect. 3.2 by merging subjects and objects that have the same per-
missions. This allows us to get a much reduced encoding, in terms of variables,
with better performances in practice (see Sect. 5).

Equivalent Subjects: For an instance I = (C, T) of MDFP with
C = (S,O,→r,→w) and T = (→t

r,→t
w), two subjects are equivalent if they

have the same permissions. Formally, for a subject s ∈ S, let readI(s) (respec-
tively, read t

I(s)) denote the set of all objects that can be read (respectively,
trust read) by s in C, i.e., readI(s) = {o ∈ O | o →r s} (respectively,
read t

I(s) = {o ∈ O | o →t
r s}). Similarly, we define writeI(s) = {o ∈ O | s →w o}

and writet
I(s) = {o ∈ O | s →t

w o}. Then, two subjects s1 and s2 are
equivalent, denoted s1 ≈ s2, if readI(s1)readI(s2), read t

I(s1) = read t
I(s2),

writeI(s1) = writeI(s2), and writet
I(s1) = writet

I(s2).
For every s ∈ S, [s] is the equivalence class of s w.r.t. ≈. Moreover, S≈

denotes the quotient set of S by ≈. Similarly, we can define the same notion of
equivalent objects, with [o] denoting the the equivalence class of o ∈ O, and O≈

denoting the quotient set of O by ≈.
Given a read relation →r⊆ O×S and two subjects s1, s2 ∈ S, →r [s1/s2] is a

new read relation obtained from →r by assigning to s2 the same permissions that
s1 has in →r: →r [s1/s2] = (→r \ (O×{s2}))∪ {(o, s2) | o ∈ O ∧ o →r s1}.

Similarly, →w [s1/s2] = (→w \ ({s2}×O))∪ {(s2, o) | o ∈ O ∧ s1 →w o}.
A similar substitution can be defined for objects.

The following lemma states that for any given optimal solution of I it is
always possible to derive a new optimal solution in which two equivalent subjects
have the same permissions.

Lemma 1. Let I = (C, T) be an instance of the MDFP problem, s1 and s2 be
two equivalent subjects of I, and Sol ′ = (→sol

r ,→sol
w) be a optimal solution of I.

Then, Sol ′′ = (→sol
r [s1/s2],→sol

w [s1/s2]) is also an optimal solution of I.

See Appendix 7.1 for the proof.
The following property is a direct consequence of Lemma 1.

Corollary 1. Let I = (C, T) with C = (S,O,→r,→w) be an instance of the
MDFP problem that admits a solution. Then, there exists a solution Sol =
(→sol

r ,→sol
w) of I such that for every pair of equivalent subjects s1, s2 ∈ S, s1

and s2 have the same permissions in C = (S,O,→sol
r ,→sol

w).

Lemma 1 and Corollary 1 also hold for equivalent objects. Proofs are similar
to those provided above and hence we omit them here.

Compact ILP formulation. Corollary 1 suggests a more compact encoding of the
MDFP into ILP. From C, we define a new ACS C≈ by collapsing all subjects and
objects into their equivalence classes defined by ≈, and by merging permissions
consequently (edges of GC). Formally, C≈ has S≈ as set of subjects and O≈ as set

Preventing Unauthorized Data Flows 51

max
[o]→≈

r [s]

| [o] | · | [s] | · r[o],[s] +
[s]→≈

w [o]

| [s] | · | [o] | · w[s],[o]

subject to

r[o],[ŝ] + w[ŝ],[ô] + r[ô],[s] − r[o],[s] ≤ 2, ∀[o] →≈
r [ŝ] →≈

w [ô] →≈
r [s] ∧ [o] →r [s]

r[o],[ŝ] + w[ŝ],[ô] + r[ô],[s] ≤ 2, ∀[o] →≈
r [ŝ] →≈

w [ô] →≈
r [s] ∧ [o] �→r [s]

w[s],[ô] + r[ô],[ŝ] + w[ŝ],[o] − w[s],[o] ≤ 2, ∀[s] →≈
w [ô] →≈

r [ŝ] →≈
w [o] ∧ [s] →w [o]

w[s],[ô] + r[ô],[ŝ] + w[ŝ],[o] ≤ 2, ∀[s] →≈
w [ô] →≈

r [ŝ] →≈
w [o] ∧ [s] �→w [o]

r[o],[s] = 1, ∀[o] →t
r [s]; w[s],[o] = 1, ∀[s] →t

w [o]; v ∈ {0, 1}, ∀v ∈ V≈

Fig. 3. ILP formulation of MDFP based on equivalence classes.

of objects, where the read and write permission sets are defined as follows: →≈
r =

{ ([o], [s]) | o ∈ O ∧ s ∈ S ∧ o →r s },→≈
w= { ([o], [s]) | s ∈ S ∧ o ∈ O ∧

s →w o }. Similarly, we define the trusted permissions of C≈ as T≈ = (→t
r
≈

,→t
w

≈)
where →t

r
≈ = { ([o], [s]) | o ∈ O ∧ s ∈ S ∧ o →t

r s },→t
w

≈ = { ([o], [s]) |
s ∈ S ∧ o ∈ O ∧ s →t

w o }.
We now define a new ILP encoding, Compact-ILP-formulation(I), for

MFDP on the instance (C≈, T≈), which is similar to that of Fig. 2 with the
difference that now edges may have a weight greater than one; reflecting the
number of edges of C it represents in C≈. More specifically, each edge from a
node x1 to x2 in GC≈ represents all edges from all nodes in [x1] to all nodes in
[x2], i.e., its weight is |[x1]| · |[x2]|. Figure 1(b) shows the compact representation
of Fig. 1(a), where the edges have the appropriate weights.

Figure 3 shows Compact-ILP-formulation(I) over the set of variables V≈.
The set of linear constraints is the same as those in Fig. 2 with the difference
that now they are defined over C≈ rather than C. Instead, the objective function
is similar to that of Fig. 2, but now captures the new weighting attributed to
edges in GC≈ .

Let η≈
I : V → {0, 1} be a solution to the ILP instance of Fig. 3. Define ̂Solη≈

I
=

(→̂r
sol

, →̂w
sol) where →̂r

sol={ (o, s) ∈ O × S | o →r s ∧ η≈
I (r[o],[s]) ≥ 1 }

and →̂w
sol={ (s, o) ∈ S × O | s →w o ∧ η≈

I (w[s],[o]) ≥ 1 }.
We now prove that Solη≈

I
is an optimal solution of I.

Theorem 4. For any instance I of MDFP, if η≈
I is an optimal solution of

Compact-ILP-formulation(I) then ̂Solη≈
I

is an optimal solution of I. Fur-
thermore, if I admits a solution then η≈

I also exists.

See Appendix 7.3 for the proof.

4 Preventing Data Leakages with Monitors

A data-leakage monitor or simply monitor of an access control system C is a
computing system that by observing the behaviors on C (i.e., the sequence of read

52 E. Uzun et al.

and write operations) detects and prevents data leakages (both confidentiality
and integrity violations) by blocking subjects’ operations. In this section, we
present a monitor based on a tainting approach. We first define monitors as
language acceptors of runs of C that are data leakage free. We then present a
monitor based on tainting and then conclude with an optimized version of this
monitor that uses only 2-step tainting, leading to better empirical performances.

Monitors. Let C = (S,O,→r,→w) be an ACS, Σ = S × {read ,write} × O be
the set of all possible actions on C, and R = {accept , reject}. A monitor M of
C is a triple (Q, qst , δ) where Q is a set of states, qst ∈ Q is the start state, and
δ : (Q × R × Σ) → (Q × R) is a (deterministic) transition function.

A configuration of M is a pair (q, h) where q ∈ Q and h ∈ R. For a word
w = σ1 . . . σm ∈ Σ∗ with actions σi ∈ Σ for i ∈ [1,m], a run of M on w is a
sequence of m + 1 configurations (q0, h0), . . . (qm, hm) where q0 is the start state
qst , h0 = accept , and for every i ∈ [1,m] the following holds: hi−1 = accept and
(qi, hi) = δ(qi−1, hi−1, σi), or hi−1 = hi = reject and qi = qi−1.

A word w (run of C) is accepted by M if hm = accept . The language of M,
denoted L(M), is the set of all words w ∈ Σ∗ that are accepted by M.

A monitor M is maximal data leakage preserving (MDLP, for short) if L(M)
is the set of all words in Σ∗ that are confidentiality and integrity free. For any
given ACS C, it is easy to show that an MDLP monitor can be built. This can be
proved by showing that L(M) is a regular language: we can easily express the
properties of the words in L(M) with a formula ϕ of monadic second order logic
(MSO) on words and then use an automatic procedure to convert ϕ into a finite
state automaton [14]. Although, this is a convenient way of building monitors
for regular properties, it can lead to automata of exponential size in the number
of objects and subjects. Hence, it is not practical for real access control systems.

Building Maximal Data-Leakage Preserving Monitors. A monitor based
on tainting can be seen as a dynamic information flow tracking system that is
used to detect data flows (see for example [17,21,22]).

An MDLP monitor Mtaint based on tainting associates each subject and
object with a subset of subjects and objects (tainting sets). Mtaint starts in a
state where each subject and object is tainted with itself. Then, Mtaint progres-
sively scans the sequence of actions on C. For each action, say from an element
x1 to an element x2, Mtaint updates its state by propagating the tainting from
x1 to x2. These tainting sets can be seen as a way to represent the endpoints
of all flows: if x2 is tainted by x1, then there is a flow from x1 to x2. Thus, by
using these flows and the definitions of confidentiality and integrity violations,
Mtaint detects data leakages.

More formally, an Mtaint state is a map taint : (S ∪ O) → 2(S∪O). A state
taint is a start state if taint(x) = {x}, for every x ∈ (S ∪ O). The transition
relation δ of Mtaint is defined as follows. For any two states taint , taint ′, h, h′ ∈ R
and σ = (s, op, o) ∈ Σ, δ(taint , h, σ) = (taint ′, h′) if either h = h′ = reject and
taint ′ = taint , or h = accept and the following holds:

Preventing Unauthorized Data Flows 53

(Data Leakage) h′ = reject iff either (Confidentiality Violation) op = read
and ∃ô ∈ taint(o) such that ô �→r s, or (Integrity Violation) op = write and
∃ŝ ∈ taint(s) such that ŝ �→w o.

(Taint Propagation) either (Read Propagation) op = read , taint ′(s) =
(taint(s) ∪ taint(o)), and for every x ∈ (S ∪ O) \ {s}, taint ′(s) = taint(s);
or (Write Propagation) op = write, taint ′(o) = (taint(o) ∪ taint(s)), and for
every x ∈ (S ∪ O) \ {o}, taint ′(x) = taint(s).

Theorem 5. Mtaint is an MDLP monitor.

MDLP Monitor Based on 2-Step Tainting: The tainting sets of Mtaint progres-
sively grow as more flows are discovered. In the limit each tainting set potentially
includes all subjects and objects of C. Since for each action the time for checking
confidentiality and integrity violations is proportional to the size of the tainting
sets of the object and subject involved in that action, it is desirable to reduce
the sizes of these sets to get better performances. We achieve this, by defining
a new tainting monitor M2

taint that keeps track only of the flows that across at
most two adjacent edges in GC . The correctness of our construction is justified
by the correctness of Mtaint and Theorem 1.

The 2-step tainting monitor M2
taint is defined as follows. A state of M2

taint

is (as for Mtaint) a map taint : (S ∪ O) → 2(S∪O). Now, a state taint is a start
state if taint(x) = ∅, for every x ∈ (S ∪ O).

The transition relation δ2 of M2
taint is defined to guarantee that after reading

a violation free run π of C:

– for every s ∈ S, x ∈ taint(s) iff either (1) x ∈ O, (o, s) is an edge of GC , and
there is a direct flow from x to s in π, or (2) x ∈ S, for some subject ô ∈ O,
(x, ô, s) is a path in GC , and there is a 2-step flow from x to s in π;

– for every o ∈ O, x ∈ taint(o) iff either (1) x ∈ S, (s, o) is an edge of GC , and
there is a direct flow from x to o in π, or (2) x ∈ O, for some subject ŝ ∈ S,
(x, ŝ, o) is a path in GC , and there is a 2-step flow from x to o in π.

Formally, for any two states taint , taint ′, h, h′ ∈ R and σ = (s, op, o) ∈ Σ,
δ2(taint , h, σ) = (taint ′, h′) if either h = h′ = reject and taint ′ = taint , or
h = accept and the following holds:

(Data Leakage) same as for Mtaint ;

(Taint Propagation) either (Read Propagation) op = read , taint ′(s) =
taint(s) ∪ {o} ∪ (taint(o) ∩ S), and for every x ∈ (S ∪ O) \ {s}, taint ′(s) =
taint(s); or (Write Propagation) op = write, taint ′(o) = taint(o) ∪ {s} ∪
(taint(s) ∩ O), and for every x ∈ (S ∪ O) \ {o}, taint ′(x) = taint(s).

From the definition of M2
taint it is simple to show (by induction) that the fol-

lowing property holds.

Theorem 6. M2
taint is an MDLP monitor. Furthermore, for every C run π ∈

Σ∗, if (taint0, h0), . . . (taintm, hm) and (taint ′
0, h

′
0), . . . (taint

′
m, h′

m) are, respec-
tively, the run of Mtaint and M2

taint on π, then taint ′
i(x) ⊆ taint i(x), for every

i ∈ [1,m] and x ∈ (S ∪ O).

54 E. Uzun et al.

Therefore, in practice we expect that for large access control systems M2
taint

is faster than Mtaint as each tainting sets of M2
taint will be local and hence much

smaller in size than those of Mtaint . To show the behavior of the monitor the based
approach, consider again the access control system shown in Table 1, along with
the potential sequence of operations shown in Table 2. Table 2 shows the taints
and monitor’s action for each operation in the sequence. Note that the monitor
blocks a total of six permissions (2 each on operations (2), (3), and (5)).

Table 2. Sample sequence of actions and monitor’s behavior

User’s operation Actions taken

1 s1, r, o1 taint(s1) = {o1}
2 s1, w, o3 taint(o3) = {s1, o1} Monitor will block o3 →r s3 o3 →r s4

to remove the confidentiality vulnerabilities

3 s1, w, o4 taint(o4) = {s1, o1} Monitor will block o4 →r s3 o4 →r s4
to remove the confidentiality vulnerabilities

4 s2, w, o4 taint(o4) = {s1, o1, s2}
5 s4, r, o4 taint(s4) = {s1, s2, o4} Monitor will block s4 →w o6 and

s4 →w o7 to remove the integrity vulnerability

6 s3, r, o3 Access denied

7 s4, w, o7 Access denied

5 Experimental Evaluation

We now present the experimental evaluation which demonstrates the perfor-
mance and restrictiveness of the two proposed approaches. We utilize four real
life access control data sets with users and permissions – namely, (1) fire1, (2)
fire2, (3) domino, (4) hc [12]. Note that these data sets encode a simple access
control matrix denoting the ability of a subject to access an object (in any access
mode). Thus, these data sets do not have the information regarding which par-
ticular permission on the object is granted to the subject. Therefore, we assume
for all of the datasets that each assignment represents both a read and a write
permission on a distinct object.

For the data leakage free by design approach, we use the reduced access con-
trol matrices obtained by collapsing equivalent subjects and objects, as discussed
in Sect. 3. The number of subjects and objects in the original and reduced matri-
ces are given in Table 3. Note that collapsing subjects and objects significantly
reduces the sizes of the datasets (on average the dataset is reduced by 93.99%).
Here, by size, we mean the product of the number of subjects and objects. Since
the number of constraints is linearly proportional to the number of permissions
which depends on the number of subjects and objects, a reduction in their size
leads to a smaller ILP problem.

Preventing Unauthorized Data Flows 55

Table 3. Dataset details

Dataset Name Original size Reduced size Percentage

Subjects Objects Subjects Objects Reduction

1 fire1 365 709 90 87 96.97 %

2 fire2 325 590 11 11 99.94 %

3 domino 79 231 23 38 95.21 %

4 hc 46 46 18 19 83.84 %

We implement the solution approaches described above. For the data leakage
free by design approach (Sect. 3), we create the appropriate ILP model as per
Fig. 3. The ILP model is then executed using IBM CPLEX (v 12.5.1) running
through callable libraries within the code. For the monitor based approach, the
M2

taint monitor is implemented. The algorithms are implemented in C and run
on a Windows machine with 16 GB of RAM and Core i7 2.93 GHz processor.

Table 4 presents the experimental results for the Data Leakage Free by Design
approach. The column “Orig. CPLEX Time”, shows the time required to run
the ILP formulation given in Fig. 2, while the column “Red. CPLEX Time” gives
the time required to run the compact ILP formulation given in Fig. 3. As can be
seen, the effect of collapsing the subjects and objects is enormous. fire1 and fire2
could not be run (CPLEX gave an out of memory error) for the original access
control matrix, while the time required for hc and domino was several orders
of magnitude more. Since we use the reduced datasets, as discussed above, the
column “Threats” reflects the number of threats in the reduced datasets to be
eliminated. The next three columns depict the amount of permission revocation
to achieve a data leakage free access matrix. Note that, here we list the number
of permissions revoked in the original access control matrix. On average, 25.28%
of the permissions need to be revoked to get an access control system without
any data leakages.

When we have a monitor, as discussed in Sect. 4, revocations can occur on the
fly. Therefore, to test the relative performance of the monitor based approach,
we have randomly generated a set of read/write operations that occur in the
order they are generated. The monitor based approach is run and the number of

Table 4. Results for data leakage free access matrix

Dataset Orig. CPLEX
Time (s)

Red. CPLEX
Time (s)

Threats # Perm.
Init. Assn

Perm.
Revoked

% Revoked

1 - 2582 34240 63902 14586 22.83 %

2 - 0.225 514 72856 12014 16.49 %

3 8608.15 6.01 3292 1460 421 28.84 %

4 1262.82 0.27 1770 2972 980 32.97 %

56 E. Uzun et al.

Table 5. Results for monitor based approach

Dataset # Perm. Init. Assn. Number permissions blocked % Finally
blocked

10% 50% 100% 1000% 5000% 10000%

1 63902 0 140 532 14221 24031 26378 41.28 %

2 72856 0 13 26 3912 8129 9025 12.39 %

3 1460 0 36 41 130 283 364 24.93 %

4 2972 0 0 0 557 1123 1259 42.36 %

permissions revoked is counted. Since the number of flows can increase as more
operations occur, and therefore lead to more revocations, we actually count the
revocations for a varying number of operations. Specifically, for each dataset, we
generate on average 100 operations for every subject (i.e., we generate 100 ∗ |S|
number of random operations). Thus, for hc, since there are 46 subjects, we
generate 4600 random operations, where as for fire1 which has 365 subjects, we
generate 36500 random operations. Now, we count the number of permissions
revoked if only 10% ∗ |S| operations are carried out (and similarly for 50% ∗ |S|,
100% ∗ |S|, 1000% ∗ |S|, 5000% ∗ |S|, and finally 10000% ∗ |S|). Table 5 gives the
results. Again, we list the number of permissions revoked in the original access
control matrix. As we can see, the number of permissions revoked is steadily
increasing, and in the case of fire1 and hc the final number of permissions revoked
is already larger than the permissions revoked in the data leakage free method.
Also, note that in the current set of experiments, we have set a window size of
1000 – this means that if the gap between a subject reading an object and then
writing to another object is more than 1000 operations, then we do not consider
a data flow to have occurred (typically a malicious software would read and then
write in a short duration of time) – clearly, the choice of 1000 is arbitrary, and
in fact, could be entirely removed, to ensure no data leakages. In this case, the
number of permission revocations would be even larger than what is reported,
thus demonstrating the benefit of the data leakage free approach when a large
number of operations are likely to be carried out.

6 Related Work

The importance of preventing inappropriate leakage of data, often called the
confinement problem in computer systems, first identified by Lampson in early
70’s [20], is defined as the problem of assuring the ability to limit the amount
of damage that can be done by malicious or malfunctioning software. The need
for a confinement mechanism first became apparent when researchers noted an
important inherent limitation of DAC – the Trojan Horse Attack, and with the
introduction of the Bell and LaPadula model and the MAC policy. Although
MAC compliant systems prevent inappropriate leakage of data, these systems
are limited to multi-level security.

Preventing Unauthorized Data Flows 57

While MAC is not susceptible to Trojan Horse attacks, many solutions pro-
posed to prevent any such data leakage exploit employing labels or type based
access control. Boebert et al. [3], Badger et al. [1] and Boebert and Kain [4]
are some of the studies that address confidentiality violating data flows. Mao et
al. [21] propose a label based MAC over a DAC system. The basic idea of their
approach is to associate read and write labels to objects and subjects. These
object labels are updated dynamically to include the subject’s label when the
subject reads or writes to that object. Moreover, the object label is a monoton-
ically increasing set of items, with the cardinality in the order of the number
of users read (wrote) the object. Their approach detects integrity violating data
flows. Zimmerman et al. [32] propose a rule based approach that prevents any
integrity violating data flow. Jaume et al. [17] propose a dynamic label updating
procedure that detects if there is any confidentiality violating data flow.

Information Flow Control (IFC) models [10,18] are closely related to our
problem. IFC model is a fine-grained information flow model which is also based
on tainting and utilizes labels for each piece of data that is required to be pro-
tected using the lattice model for information flow security by [9]. The models
can be at software or OS level depending on the granularity of the control and
centralized or decentralized depending on the authority to modify labels [24].
However, these models do not consider the permission assignments, which makes
them different than our model.

Dynamic taint analysis is also related to our problem. Haldar et al. [16]
propose a taint based approach for programs in Java, and Lam et al. [19] propose
a dynamic taint based analysis on C. Enck et al. [11] provide a taint based
approach to track third party Android applications. Cheng et al. [6], Clause
et al. [7] and Zhu et al. [31] propose software level dynamic tainting.

Sze et al. [26] study the problem of self-revocation, where a revocation in the
permission assignments of any subject on an object while editing it might cause
confidentiality and integrity issues. They also study the problem of integrity
violation by investigating the source code and data origin of suspected malware
and prevent any process that is influenced from modifying important system
resources [27]. Finally, the work by Gong and Qian [15] focuses on detecting
the cases where confidentiality and integrity flows occur due to interoperation
of distinct access control systems. They study the complexity to detect such
violations.

7 Conclusions and Future Work

In this paper, we have proposed a methodology for identifying and eliminating
unauthorized data flows in DAC, that occur due to Trojan Horse attacks. Our
key contribution is to show that a transitive closure is not required to elim-
inate such flows. We then propose two alternative solutions that fit different
situational needs. We have validated the performance and restrictiveness of the
proposed approaches with real data sets. In the future, we plan to propose an
auditing based approach which eliminates unauthorized flows only if the flows

58 E. Uzun et al.

get realized. This might be useful to identify the data leakage channels that are
actually utilized. We also plan to extend our approach to identify and prevent
the unauthorized flows in RBAC, which is also prone to Trojan Horse attacks.
Analysis on RBAC is more challenging since there is an additional layer of com-
plexity (roles) that must be taken into account. The preventive action decisions
must overcome the dilemma of whether to revoke the role from the user or revoke
the permission from the role.

Appendix

7.1 Proof of Lemma 1

Proof. Assume that S and O are the set of subjects and objects of C, respectively.
Let C′ = (S,O,→sol

r ,→sol
w) and C′′ = (S,O,→sol

r [s1/s2],→sol
w [s1/s2]).

We first prove (by contradiction) that Sol ′′ is a feasible solution of I. Assume
that C′′ has a threat. This threat is witnessed by a flow path, say ρ, that must
contain s2. If ρ does not involve s2 then ρ would also be a threat in C′, which
cannot be true as Sol ′ is a feasible solution of I. Now, observe that s2 can
always be replaced by s1 along any flow path of C′′, as s2 and s1 have the same
neighbor in GC′′ . Thus, the flow path obtained by replacing s2 with s1 along ρ,
also witnesses a threat in C′. Again a contradiction. Therefore, Sol ′′ is a feasible
solution of I.

We now prove that Sol ′′ is also optimal (that is, size(Sol ′) = size(Sol ′′))
by showing that s1 and s2 have the same number of incident edges in GC′ . Let
n1 (respectively, n2) be the number of incident nodes of s1 (respectively, s2) in
GC′ . By contradiction, and w.l.o.g., assume that n1 > n2. Since C′′ is obtained
from C′ by removing first the permissions of s2 and then adding to s2 the same
permissions of s1, it must be the case that size(Sol ′′) > size(Sol ′). This would
entail that Sol ′ is not an optimal solution, which is a contradiction.

7.2 Proof of Theorem2

NP-membership. Let Sol = (→′
r,→′

w) such that →′
r,→′

w⊆ S × O. To check
whether Sol is a feasible solution of I, we need to check that (1) →t

r⊆→′
r⊆→r,

(2) →t
w⊆→′

w⊆→w, (3) | →′
r | + | →′

w | ≥ K, and more importantly, (4) that
(S,O,→′

r,→′
w) is an ACS that does not contain any threat. The first three

properties are easy to realize in polynomial time. Concerning the last property,
we exploit Theorem 1. To check that there is no confidentiality threat, we build
all sequences of the form o0 →′

r s0 →′
w o1 →′

r s1 and then verify the existence
of the read permission o0 →′

r s1. Similarly, for integrity threat we build all
sequences such that s0 →′

w o0 →′
r s0 →′

w o1 and then check the existence of
the write permission s0 →′

w o1. Note that, all these sequences can be built in
O(O2 · S2) and these checks can all be accomplished in polynomial time. This
shows that D-MDFP belongs to NP.

NP-hardness. For the NP-hardness proof, we provide a polynomial time reduc-
tion from the edge deletion transitive digraph problem (ED-TD) to D-MDFP.

Preventing Unauthorized Data Flows 59

The ED-TD asks to remove the minimal number of edges from a given directed
graph such that the resulting graph corresponds to its transitive closure. ED-TD
problem is known to be NP-complete (see [28] Theorem 15, and [29]).

The reduction is as follows. Let G = (V,E) be a directed graph with set of
nodes V = {1, 2, . . . n} and set of edges E ⊆ (V × V). We assume that nodes of
G do not have self-loops. We now define the instance IG = (CG, TG) of D-MDFP
to which G is reduced to. Let CG = (S,O,→r,→w) and TG = (→t

r,→t
w). CG

has a subject si and an object oi, for each node i ∈ V . Moreover, there is a
read permission from oi to si, and a write permission from si to oi, for every
node i ∈ V . These permissions are also trusted, i.e., belonging to →t

r and →t
w,

respectively; and no further permissions are trusted. Furthermore, for every edge
(i, j) ∈ E, there is a read permission from oi to sj , and a write permission from
si to oj . Formally, S = {si | i ∈ V } and O = {oi | i ∈ V }; →t

r = {(oi, si) |
i ∈ V }; →t

w = {(si, oi) | i ∈ V }; →r = →t
r ∪ {(oi, sj) | (i, j) ∈ E};

→w = →t
w ∪ {(si, oj) | (i, j) ∈ E}.

Lemma 2. Let G be a directed graph with nodes V = {1, 2, . . . , n}, and Sol =
(→′

r,→′
w) be a feasible solution of IG. For any i, j ∈ V with i �= j, oi →′

r sj if
and only if si →′

w oj.

Proof. The proof is by contradiction. Consider first the case when oi →′
r sj and

si �→′
w oj . Observe that, si →′

w oi and sj →w oj exist as both of them are
trusted permissions of IG. Thus, si →′

w oi →′
r sj →w oj is an integrity threat,

leading to a contradiction. The case when oi �→′
r sj and si →′

w oj is symmetric,
and we omit it here.

We now show that the transformation defined above from G to IG is indeed
a polynomial reduction from ED-TD to D-MDFP. The NP-hardness directly
follows from the following lemma.

Lemma 3. Let G be a directed graph with n nodes. G contains a subgraph G′

with K edges whose transitive closure is G′ itself if and only IG admits a feasible
solution Sol of size 2 · (n + K).

Proof. Let G = (V,E) with V = {1, 2, . . . , n}, G′ = (V,E′), IG = (CG, TG)
where CG = (S,O,→r,→w) and TG = (→t

r,→t
w), and Sol = (→′

r,→′
w).

“only if” direction. Assume that G′ is the transitive closure of itself and |E′| = K.
We define Sol as follows: →′

r = →t
r ∪ {oi →r sj | (i, j) ∈ E′} and →′

w = →t
w

∪ {si →w oj | (i, j) ∈ E′}. From the definition of IG, it is straightforward to see
that size(Sol) = 2·(n+K). To conclude the proof we only need to show that Sol is
a feasible solution of IG. Since →t

r⊆→′
r and →t

w⊆→′
w we are guaranteed that Sol

contains all trusted permissions of TG. We now show that C′ = (S,O,→′
r,→′

w)
does not contain any threat. Assume that there is a threat in C′. By Theorem 1,
there must be a threat of length one. If it is a confidentiality threat, then oi →′

r

sk →′
w oz →′

r sj and oi �→′
r sj , for some i, k, z, j ∈ V with i �= j. From the

definition of IG, it must be the case that there is a path from node i to node j in G′

60 E. Uzun et al.

and (i′, j) /∈ E which leads to a contradiction. The case of integrity vulnerabilities
is symmetric.

“if” direction. Assume that Sol is a feasible solution of IG of size 2 · (n+K). We
define E′ = {(i, j) | i �= j ∧ oi →′

r sj}. Note that, in the definition of E′ using
permission si →′

w oj rather than oi →′
r sj would lead to the same set of edges

E′ (see Lemma 2). By the definition of IG and Lemma 2, it is direct to see the
G′ is a subgraph of G and |E′| = K. We now show that the transitive closure
of G′ is again G′. By contradiction, assume that there is a path from node i to
node j in G′ and there is no direct edge from i to j. But this implies that in the
access control system (S,O,→′

r,→′
w) there is a sequence of alternating read and

write operations from object oi to subject sj and oi �→′
r sj , which witnesses a

confidentiality threat. This is a contradiction as Sol is a feasible solution of IG.

7.3 Proof of Theorem4

Proof. Let I = (C, T), ̂Solη≈
I

= (→̂r
sol

, →̂w
sol), C′ = (S,O, →̂r

sol
, →̂w

sol), and

C≈ = (S≈, O≈,→≈
r ,→≈

w). We first show that ̂Solη≈
I

is a feasible solution of
I. Assume by contradiction that C′ has a one-step confidentiality threat, say
o →sol

r ŝ →sol
w o′ →sol

r s ∧ o �→sol
r s. It is easy to see that [o] →≈

r [ŝ] →≈
w

[o′] →≈
r [s] ∧ [o] �→≈

r [s] holds, but this is not possible since Compact-ILP-

formulation(I) contains a constraint that prevents that these relations hold
conjunctly. A similar proof exists for integrity vulnerabilities. Therefore, ̂Solη≈

I

is a feasible solution of I.
Now, we show that ̂Solη≈

I
is also optimal. Assume by contradiction that

̂Solη≈
I

is not optimal, and Sol = (→sol
r ,→sol

w) is an optimal solution of I where
all equivalent subjects/objects have the same permissions. The existence of Sol
is guaranteed by Corollary 1. Now, we reach a contradiction showing that ηI

is not optimal for Compact-ILP-formulation(I). For every s ∈ S, o ∈ O,
η(r[o],[s]) = 1 (respectively, η(w[s],[o]) = 1) if and only if o →sol

r s (respectively,
s →sol

w o) holds. Notice that η is well defined because all subjects/objects in
the same equivalent class have the same permissions in Sol . It is straightfor-
ward to prove that η allows to satisfy all linear constraints of Compact-ILP-

formulation(I), and more importantly leads to a greater value of the objective
function. Note that, for the variable assignment η the objective function has a
value nη = size(Sol) whereas has value nηI

= size(̂Solη≈
I

) for the assignment η≈
I .

Now, nη > nηI
, and it cannot be true because η≈

I is an optimal assignment. The
definition of η and the fact that it satisfies all linear constraints shows that if I
admits a solution then it shows that Compact-ILP-formulation(I) admits a
solution. Therefore, η≈

I also exists.

Preventing Unauthorized Data Flows 61

References

1. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: Practical
domain and type enforcement for UNIX. In: IEEE S&P, pp. 66–77 (1995)

2. Bell, D.E., LaPadula, L.J.: Secure computer systems: mathematical foundations.
Technical report, DTIC Document (1973)

3. Boebert, W., Young, W., Kaln, R., Hansohn, S.: Secure ADA target: issues, system
design, and verification. In: IEEE S&P (1985)

4. Boebert, W.E., Kain, R.Y.: A further note on the confinement problem. In: Pro-
ceedings Security Technology, pp. 198–202. IEEE (1996)

5. Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In:
SACMAT, pp. 197–206. ACM (2009)

6. Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: Tainttrace: efficient flow tracing with
dynamic binary rewriting. In: ISCC, pp. 749–754. IEEE (2006)

7. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: ISSTA, pp. 196–206. ACM (2007)

8. Crampton, J.: Cryptographic enforcement of role-based access control. In: Degano,
P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 191–205.
Springer, Heidelberg (2011)

9. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

10. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazieres, D., Kaashoek, F., Morris, R.: Labels and event processes in the asbestos
operating system. In: SOSP, vol. 5, pp. 17–30 (2005)

11. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI, vol. 10, pp. 255–270 (2010)

12. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: SACMAT, pp.
1–10 (2008)

13. Ferrara, A., Fuchsbauer, G., Warinschi, B.: Cryptographically enforced RBAC. In:
CSF, pp. 115–129, June 2013

14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, New York (2006)

15. Gong, L., Qian, X.: The complexity and composability of secure interoperation.
In: 1994 IEEE Computer Society Symposium on Research in Security and Privacy
1994, Proceedings, pp. 190–200. IEEE (1994)

16. Haldar, V., Chandra, D., Franz, M.: Dynamic taint propagation for Java. In:
ACSAC, pp. 303–311 (2005)

17. Jaume, M., Tong, V.V.T., Mé, L.: Flow based interpretation of access control:
detection of illegal information flows. In: ICISS, pp. 72–86 (2011)

18. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Mor-
ris, R.: Information flow control for standard OS abstractions. In: ACM SIGOPS
Operating Systems Review, vol. 41, pp. 321–334. ACM (2007)

19. Lam, L.C., Chiueh, T.: A general dynamic information flow tracking framework
for security applications. In: ACSAC, pp. 463–472 (2006)

20. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

21. Mao, Z., Li, N., Chen, H., Jiang, X.: Trojan horse resistant discretionary access
control. In: SACMAT, pp. 237–246. ACM (2009)

62 E. Uzun et al.

22. Mao, Z., Li, N., Chen, H., Jiang, X.: Combining discretionary policy with manda-
tory information flow in operating systems. ACM TISSEC 14(3), 24:1–24:27 (2011)

23. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: a flexible break-glass access
control model. In: SACMAT, pp. 73–82. ACM (2011)

24. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
SIGOPS Operating Systems Review, vol. 31, pp. 129–142. ACM (1997)

25. Petritsch, H.: Break-Glass: Handling Exceptional Situations in Access Control.
Springer, Heidelberg (2014)

26. Sze, W.K., Mital, B., Sekar, R.: Towards more usable information flow policies for
contemporary operating systems. In: SACMAT (2014)

27. Sze, W.K., Sekar, R.: Provenance-based integrity protection for windows. In:
ACSAC 2015, New York, NY, USA, pp. 211–220. ACM, New York (2015)

28. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) STOC, pp. 253–
264. ACM (1978)

29. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)
30. Zhang, D., Ramamohanrao, K., Ebringer, T.: Role engineering using graph opti-

misation. In: SACMAT, pp. 139–144 (2007)
31. Zhu, Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Privacy scope: a precise

information flow tracking system for finding application leaks. Ph.D. thesis, UC,
Berkeley (2009)

32. Zimmermann, J., Mé, L., Bidan, C.: An improved reference flow control model for
policy-based intrusion detection. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS
2003. LNCS, vol. 2808, pp. 291–308. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39650-5 17

http://dx.doi.org/10.1007/978-3-540-39650-5_17
http://dx.doi.org/10.1007/978-3-540-39650-5_17

Object-Tagged RBAC Model
for the Hadoop Ecosystem

Maanak Gupta(B), Farhan Patwa, and Ravi Sandhu

Department of Computer Science, Institute for Cyber Security,
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

gmaanakg@yahoo.com, {farhan.patwa,ravi.sandhu}@utsa.edu

Abstract. Hadoop ecosystem provides a highly scalable, fault-tolerant
and cost-effective platform for storing and analyzing variety of data for-
mats. Apache Ranger and Apache Sentry are two predominant frame-
works used to provide authorization capabilities in Hadoop ecosystem.
In this paper we present a formal multi-layer access control model
(called HeAC) for Hadoop ecosystem, as an academic-style abstraction
of Ranger, Sentry and native Apache Hadoop access-control capabilities.
We further extend HeAC base model to provide a cohesive object-tagged
role-based access control (OT-RBAC) model, consistent with generally
accepted academic concepts of RBAC. Besides inheriting advantages of
RBAC, OT-RBAC offers a novel method for combining RBAC with
attributes (beyond NIST proposed strategies). Additionally, a proposed
implementation approach for OT-RBAC in Apache Ranger, is presented.
We further outline attribute-based extensions to OT-RBAC.

Keywords: Access control · Hadoop ecosystem · Big Data · Data lake ·
Role based · Attributes · Groups hierarchy · Object Tags

1 Introduction

Over the last few years, enterprises have started harvesting data from ‘anything’
to discover business and customer needs. It is estimated that 163 zettabytes of
data will be generated annually by year 2025 as quoted by IDC [5]. Such mas-
sive and varied collections of data, referred to as Big Data, are considered 21st

century gold for data miners. Enterprises gain useful insights from analysis to
offer targeted marketing, fraud detection, accident forecasting, traffic patterns
and even strong love matching. With volume, variety and velocity of data bur-
geoning, massive storage and compute clusters are required for analysis.

Apache Hadoop [1] has established itself as an important open-source frame-
work for cost-efficient, distributed storage and computing of data in timely
fashion. The platform offers resilient infrastructure for sophisticated analytical
and pattern recognition techniques for multi-structured data. Hadoop ecosys-
tem includes several open-source and commercial tools (Apache Hive, Apache

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 63–81, 2017.
DOI: 10.1007/978-3-319-61176-1 4

64 M. Gupta et al.

Storm, Apache HBase, Apache Ambari etc.) built to leverage the full capabil-
ities of Hadoop framework. These tools along with Apache Hadoop 2.x core
modules (Hadoop Common, Hadoop Distributed File System (HDFS), YARN
and MapReduce) empower users to harness the potential of data assets.

As Hadoop is widely used in government and private sector, its security has
been a major concern and widely studied. Multi-tenant Data Lake offered by
Hadoop, stores and processes sensitive information from several critical sources,
such as banking and intelligence agencies, which should only be accessed by legit-
imate users and applications. Threats—including denial of resources, malicious
user killing YARN applications, masquerading Hadoop services like NameNode,
DataNode etc.—can have serious ramifications on confidentiality and integrity of
data and ecosystem resources. The distributed nature and platform scale makes
it more difficult to protect the infrastructure assets.

Apache Ranger [3] and Apache Sentry [4] are two important software systems
used to provide fine-grained access across several Hadoop ecosystem components.
In this paper we present the multi-layer access control model for Hadoop ecosys-
tem (referred as HeAC), formalizing the authorization model in Apache Ranger
(release 0.6) and Sentry (release 1.7.0) in addition to access controls capabilities
in core Hadoop 2.x. We further propose an Object-Tagged Role Based Access
Control (OT-RBAC) model which leverages the merits of RBAC and provides a
novel approach of adding object attribute values (called object tags) in RBAC
model. We also outline extensions to OT-RBAC to incorporate NIST proposed
strategies [27] for adding attributes in RBAC. To our knowledge this is the first
work to consider formal authorization models specific to Hadoop ecosystem.

The remainder of this paper is as follows. Section 2 discusses current autho-
rization capabilities in Hadoop ecosystem. In Sect. 3, we present a formal Hadoop
ecosystem access control model called HeAC. We introduce the Object-Tagged
Role Based Access Control (OT-RBAC) model in Sect. 4, followed by proposed
implementation in Sect. 5. In Sect. 6, we present attributes-based authorization
extensions to OT-RBAC. Section 7 reviews previous related work, followed by
Sect. 8 which gives our conclusions.

2 Multi-layer Authorization in Hadoop Ecosystem

The most critical assets required to be secured in Hadoop ecosystem involve ser-
vices, data and service objects, applications and cluster infrastructure resources.
In this section we discuss the multi-layer authorization capabilities provided in
Hadoop ecosystem in line with Apache Hadoop 2.x, along with access control
features offered by Apache Ranger, Apache Sentry and Apache Knox.

Service Access: The first layer of defense is provided by service level autho-
rization which checks if a user or application is allowed to access the Hadoop
ecosystem services and Hadoop core daemons. This check is done before data
and service objects permissions are evaluated, thereby preventing unauthorized
access early in the access request lifecycle. ACLs (Access Control Lists) are
specified with users and groups to restrict access to services. For example, ACL

Object-Tagged RBAC for the Hadoop Ecosystem 65

security.job.client.protocol.acl is checked to allow a user to commu-
nicate with YARN ResourceManager for job submission or application status
inquiry. This layer also restricts cross-service communication to prevent mali-
cious processes interaction with Hadoop daemon services (NameNode, Resource-
Manager etc.). Another ACL security.datanode.protocol.acl is checked for
interaction between DataNodes and NameNode for heartbeat or task updates.
A user making API requests to individual ecosystem services like Apache Hive,
HDFS, Apache Storm etc., is restricted by implementing single gateway (e.g.
Apache Knox [2]) access point—which enforces policies to allow or deny users
to access ecosystem services before operating on underlying objects.

Data and Service Objects Access: Hadoop Distributed File System (HDFS)
enforces POSIX style model and ACLs for setting permissions on files and direc-
tories holding data. Multiple other ecosystem services require different objects
to be secured. For example, Apache Hive requires table and columns, whereas
Apache Kafka secures topic objects from unauthorized operations by users. Some
services like Apache Hive or Apache HBase also have native access control capa-
bilities to secure different data objects. Security frameworks like Apache Ranger
or Sentry provide plugins for individual ecosystem services, where centralized
policies are set for different data and service objects. In Apache Ranger, autho-
rization policies can also be formulated on Tags, which are attribute values
associated with objects. For example, a tag PII can be associated with table
SSN and a policy is created for tag PII. Such tag-based policy will then control
access to table SSN. Tags allow controlling access to resources along several ser-
vices without need to create separate policies for individual services. It should be
noted that data access allowed at one service may be restricted by permissions
at underlying HDFS, thereby requiring user to have multiple object permissions
at different services.

Application and Cluster Resources Access: Multi-tenant Hadoop cluster
requires sharing of finite resources among several users, controlled by Apache
YARN capacity (or fair) scheduler queues in Hadoop 2.x. Queue level authoriza-
tion enables designated users to submit or administer applications in different
queues. This restricts user from submitting applications in cluster and prevents
rogue users from deleting or modifying other user applications. Further, clus-
ter resources are not consumed by certain applications requiring more resources
as queues have limited resources allocated. It should be noted that applica-
tion owner and queue administrator can always kill or modify jobs in queue.
These queues support hierarchical structure where permissions to parent queues
descend to all child queues. Hadoop implements these authorization configura-
tions using ACL’s. Configuration file can also be associated with applications to
specify users who can modify or kill an application. Access to cluster nodes can
be restricted by assigning node labels. Each queue can be associated with node
labels to restrict nodes where applications submitted to queues can run.

Figure 1 reflects multi-layer authorization architecture provided in Hadoop
ecosystem. An authenticated user passes through several access control mecha-
nisms to operate on objects and services in Hadoop cluster. Gateway (such as

66 M. Gupta et al.

Fig. 1. Example Hadoop Ecosystem Authorization Architecture

Apache Knox) offers single access point to all REST APIs and provides first layer
of access control to check if services inside the cluster are allowed access by out-
side users. Once user is approved through the gateway policy plugin, ecosystem
services apply policies cached from central policy manager to validate requests
of user. User trying to access objects (files, tables etc.) in ecosystem services
like HDFS or Apache Hive (shown as ES in Fig. 1) is checked by policy plugins
attached to the services to enforce access decisions. A user wanting to submit
an application or to get submitted application status should be allowed through
gateway policies to communicate with YARN ResourceManager. Apache YARN
queue permissions are then checked and enforced by plugin to know if a user
is allowed to submit or administer application in queues. Cross-services access
(between Hadoop daemons) for information passing or task status update is
mainly enforced using core Hadoop service ACLs.

As shown in Fig. 1, security frameworks like Apache Ranger provides central-
ized Policy adminstration (1-PAP) and information point (2-PIP). Enforcement
and decision points (3-PEP, 4-PDP) are plugins attached to each service which
cache policies periodically from central server and enforce access decisions.

3 Hadoop Ecosystem Access Control Model

In this section we present the formal multi-layer access control model (HeAC) for
Hadoop ecosystem based on Apache Hadoop 2.x. The model also covers access
capabilities provided by two predominant Apache projects, Ranger (release 0.6)
and Sentry (release 1.7.0). Apache Ranger supports permissions through users
and groups, while Sentry assigns permissions to roles which are assigned to
groups and via groups to member users. We will now discuss the formal defini-
tions of HeAC model as specified in Table 1 and shown in Fig. 2.

The basic components of HeAC include: Users (U), Groups (G), Roles (R),
Subjects (S), Hadoop Services (HS), Operations (OPHS) on Hadoop Services,

Object-Tagged RBAC for the Hadoop Ecosystem 67

Fig. 2. A Conceptual Model of HeAC

Ecosystem Services (ES), Data and Service Objects (OB) belonging to Ecosys-
tem Services, Operations (OP) on objects, and Object Tags (Tag).

Users, Groups, Roles and Subjects: A user is a human who interacts with
computer to access services and objects inside the Hadoop ecosystem. A group
is a collection of users in the system with similar organizational requirements. A
role is a collection of permissions which can be assigned to different entities in the
system. Permissions are assigned to users, groups or roles. In the current model
roles can only be assigned to groups, thereby giving permissions to member users
of groups indirectly. A subject is an application running on behalf of the user to
perform operations in the Hadoop ecosystem. In HeAC model subjects always
run with full permissions of the creator user.

Hadoop Services: These services are background daemon processes, like HDFS
NameNode, DataNode, YARN ResourceManager, ApplicationMaster etc., which
provide core functionalities in Hadoop 2.x framework. User access these ser-
vices to submit applications, data block recovery or application status updates.
Besides interaction with end user, these daemon services also communicate with
each other for resource monitoring or task updates. It should be noted that these
services do not have objects associated with them.

Operations on Hadoop Services: These are actions allowed on Hadoop
services. In most cases, the general action allowed is to access a service.

68 M. Gupta et al.

For example, ACL security.client.protocol.acl is used to determine
which user is allowed to access HDFS NameNode service. These ACLs are
part of Hadoop native access control capabilities (referred as service level
authorization).

Ecosystem Services: Data and objects inside the Hadoop ecosystem are
accessed through different platforms which we consider as Ecosystem Services.
Example of such services include Apache HDFS, Apache Hive, Apache HBase,
Apache Storm, Apache Kafka etc. These services can either have data objects
(tables, columns) or other type of resources (queues, topics) which they support.
Access to the ecosystem services is first required before operation on supported
objects. We consider Data Services as one instance of Ecosystem Services.

Data and Service Objects: Ecosystem services manage different types of
resources (objects) inside the cluster. For example, Apache HDFS supports files
and directories, while Apache HBase has data objects like column-family, cells
etc. YARN manages queue objects and Apache Solr has collections. These are
resources which are protected from unauthorized operations from users.

Operations on objects: Multiple data and service objects support different
operations to perform actions on them. Apache Hive has select, create, drop,
alter for tables and columns while Apache HBase data objects (column family,
column) support read, write, create etc. YARN queues have operations to submit
applications or administer the queue.

Object Tags: Objects inside ecosystem can be assigned attributes based on
sensitivity, content or expiration date. Such classification is done using attribute
values called Tags. An object can have multiple tags associated with it and vice
versa. For example, PII tag can be attached to sensitive data table SSN.

As shown in Table 1, a user can be assigned to multiple groups defined
by directUG function. Groups are also assigned to multiple roles as reflected
by function directGR. Relation object-tag denotes a many-to-many relation
between objects and associated attribute values called tags. Hadoop ecosystem
has two different sets of permissions to perform actions on services and objects.
OBJECT-PRMS is the set of data and service object permissions which is power
set of the cross product of ecosystem services (ES), objects (OB) or object tags
(Tag), and operations (OP). Here permissions can be set either on object or
object tags, and policies can allow or deny operations on the object based on
its associated tags or the object itself. OBJECT-PRMS also include ecosystem
service as part of permission thereby taking into account the requirement of ser-
vice access before object operations. Another set of permissions called Hadoop
service permissions (HS-PRMS) is the power set of the cross product of HS and
OPHS. These are required for application submission or other non-data or object
operations. Depending on the type of operations to be performed, a user may
require either one or both type of permissions.

A many-to-many relation PAHS specifies the assignment of HS-PRMS to
users or groups. In this way a user can be assigned HS-PRMS directly or through
group membership. OBJECT-PRMS can be assigned to users, groups or roles

Object-Tagged RBAC for the Hadoop Ecosystem 69

Table 1. Hadoop Ecosystem Access Control (HeAC) Model Definitions

Basic Sets and Functions
– U, G, R, S (finite set of users, groups, roles and subjects respectively)
– HS, OPHS (finite set of Hadoop services and operations respectively)
– ES, OB (finite set of ecosystem services and objects respectively)
– OP, Tag (finite set of object operations and object tags respectively)
– directUG : U → 2G, mapping each user to a set of groups, equivalently UGA ⊆ U × G
– directGR : G → 2R, mapping each group to a set of roles, equivalently GRA ⊆ G × R
– object-tag ⊆ OB×Tag, relation between object and object tags

– OBJECT-PRMS = 2ES×(OB ∪ Tag)×OP, set of data and service object permissions
– HS-PRMS = 2HS×OPHS , set of Hadoop services permissions

Permission Assignments
– PAHS ⊆ (U ∪ G)×HS-PRMS, mapping entities to Hadoop service permissions. Alternatively,

hsprms : (x) → 2HS-PRMS, defined as hsprms(x) = {p | (x,p) ∈ PAHS, x ∈ (U ∪ G)}
– PAES ⊆ (U ∪ G ∪ R)×OBJECT-PRMS, mapping entities to object permissions. Alternatively,

esprms : (x) → 2OBJECT-PRMS, defined as esprms(x) = {p | (x,p) ∈ PAES, x ∈ (U ∪ G ∪ R)}

Hadoop Cross Services Access
– PAHS-HS ⊆ HS × HS-PRMS, mapping Hadoop service to Hadoop service access.

Alternatively, hs-hsprms : (hs:HS) → 2HS-PRMS, defined as
hs-hsprms(hs) = {p | (hs,p) ∈ PAHS-HS }

Effective Roles of Users (Derived Functions)
• effectiveR : U → 2R, defined as effectiveR(u) =

⋃

∀g ∈ directUG(u)

directGR(g)

Effective Permissions of User
• effectiveHSprms : U → 2HS-PRMS, defined as

effectiveHSprms(u) = hsprms(u) ∪ ⋃

∀g ∈ {directUG(u)}
hsprms(g)

• effectiveESprms : U → 2OBJECT-PRMS, defined as
effectiveESprms(u) = esprms(u) ∪ ⋃

∀x ∈ {directUG(u) ∪ effectiveR(u)}
esprms(x)

User Subject
• userSub : S→ U, mapping each subject to its creator user, where the subject

gets all the permissions of the creator user.

Ecosystem Service Object Operation Decision
A subject s ∈ S is allowed to perform an operation op ∈ OP on an object ob ∈ OB
in ecosystem service es ∈ ES if the effective object permissions of userSub(s) include
permissions for object ob or for tag t ∈ Tag associated with object ob. Formally,
(es,ob,op) ∈ effectiveESprms (userSub(s)) ∨
(∃ t) [(ob,t) ∈ object-tag ∧ (es,t,op) ∈ effectiveESprms (userSub(s))]

(shown by PAES). A group can get the object permissions directly or through
roles, which will then enable it to the member users. It should be noted that a
user may need multiple data object permissions across several data services to
operate on a data object. For example, in case of Apache Hive table, besides
having permission on the table, a user may be required to have permissions on
the underlying data file in HDFS. PAHS-HS encapsulates the access requirement
between several Hadoop services inside the cluster for task updates or resource

70 M. Gupta et al.

monitoring (e.g. communication between DataNodes and NameNode). The effec-
tive roles of user are covered by effectiveR which is union of roles assigned to all
member groups. The effective permissions on Hadoop services attained by user
(reflected by effectiveHSprms) is the direct permissions on HS and permissions
inherited through group membership. The final set of ES object permissions for
a user is union of direct permission and permissions assigned through group
membership and effective roles as shown in effectiveESprms.

A subject is created by a user as expressed by userSub. It inherits all the
permissions assumed by the user to perform actions. In last section of Table 1, a
subject is allowed to perform operations on objects in ES service depending on
either direct permission on objects or permission on tags associated with objects.

It should be noted that Apache Ranger provides context enrichers, which
are used to add contextual information to user request based on location, IP
address or other attribute. We treat such information as environment attributes
and include these in attribute-based model in Sect. 6. It should also be mentioned
that data ingestion into Hadoop cluster is beyond the scope of this paper and
for the access control points discussed, we assume data already present inside
the cluster. Further, we ignore deny access request, for the sake of simplicity.

4 Object-Tagged RBAC for Hadoop Ecosystem

In this section we propose Object-Tagged Role-Based Access Control model for
the Hadoop Ecosystem, which we denote as OT-RBAC. With respect to HeAC
model, this model assigns both objects and Hadoop service permissions to users
only through roles, consistent with the basic principle of RBAC. The model
presents a novel approach for combining attributes and RBAC [33] besides
NIST proposed approaches (i.e., Dynamic Roles, Attribute-Centric and Role
Centric) [27]. Hence the convenient administrative benefits of RBAC, along with
a finer-grained attributes authorization, are incorporated in this model.

The conceptual model for OT-RBAC is shown in Fig. 3 followed by formal
definitions in Table 2. The remainder of this section discusses the new and modi-
fied components introduced in OT-RBAC model (marked∗∗ and †† respectively)
with respect to HeAC model. In OT-RBAC model users are directly assigned
to multiple roles specified by function directUR. Group hierarchy (GH) is intro-
duced into the system, defined by a partial order relation on G and written as
�g. The inheritance of roles is from low to high, i.e., g1 �g g2 means g1 inherits
roles from g2. In such cases, we say g1 is the senior group and g2 is the junior
group. The HS-PRMS and OBJECT-PRMS permissions are assigned to roles
only, specified by many-to-many relations PAHS and PAES respectively. This is
modified with respect to the original HeAC, where HS-PRMS were assigned to
users or groups and OBJECT-PRMS to user, groups or roles also. This reflects
the advantage of RBAC model where permissions are allotted or removed from
users by granting or revoking their roles. Both OBJECT-PRMS and HS-PRMS
can be assigned to same role in the Hadoop ecosystem. With group hierarchy
(GH), the effective roles of a group (expressed by effectiveGR) is the union of

Object-Tagged RBAC for the Hadoop Ecosystem 71

Fig. 3. Conceptual OT-RBAC Model for Hadoop Ecosystem

direct roles assigned to group and effective roles of all its junior groups. It should
be noted that this definition is recursive where the junior-most groups have same
direct and effective roles. The effective roles of the user (defined by effectiveR)
is then the union of direct user roles and effective roles of the groups to which
the user is directly assigned. For example, assuming group Grader is assigned
roles Student and Graduate and a senior group TA is assigned to role Doctoral.
Then the effective roles of group TA would be Student, Graduate and Doctoral.
A user u1 can be directly assigned to role Staff. If u1 also becomes a member of
group TA, u1 has the effective roles of Student, Graduate, Doctoral and Staff.
The important advantage of user group membership is convenient assignment
and removal of multiple roles from users with single administrative operation.

A subject S (similar to sessions in RBAC [17]) created by the user can have
some or all of the effective roles of the creator user. The effective permissions
available to a subject (expressed by effectiveESprms and effectiveHSprms) will
then be the object and Hadoop service permissions assigned to all the effective
roles activated by the subject. A subject might need to have multiple permis-
sions to access different services or objects inside Hadoop ecosystem which may
result in requiring multiple roles. The prime advantage of OT-RBAC model over
HeAC model is the assignment of permissions only to roles instead of assigning
directly to users and groups. Further it introduces the concept of group hierarchy

72 M. Gupta et al.

Table 2. Formal OT-RBAC Model Definitions

Basic Sets and Functions
– U, G, R, S (finite set of users, groups, roles and subjects respectively)
– HS, OPHS (finite set of Hadoop services and operations respectively)
– ES, OB (finite set of ecosystem services and objects respectively)
– OP, Tag (finite set of object operations and object tags respectively)
– directUG : U → 2G, mapping each user to a set of groups, equivalently UGA ⊆ U × G

– **directUR : U → 2R, mapping each user to a set of roles, equivalently URA ⊆ U × R
– directGR : G → 2R, mapping each group to a set of roles, equivalently GRA ⊆ G × R

– **GH ⊆ G×G, a partial order relation 	g on G
– object-tag ⊆ OB×Tag, relation between object and object tags

– OBJECT-PRMS = 2ES×(OB ∪ Tag)×OP, set of data and service object permissions
– HS-PRMS = 2HS×OPHS , set of Hadoop services permissions

††Role Permission Assignments
– PAHS ⊆ R×HS-PRMS, mapping roles to Hadoop service permissions. Alternatively,

hsprms : (r:R) → 2HS-PRMS, defined as hsprms(r) = {p | (r,p) ∈ PAHS }
– PAES ⊆ R×OBJECT-PRMS, mapping roles to object permissions. Alternatively,

esprms : (r:R) → 2OBJECT-PRMS, defined as esprms(r) = {p | (r,p) ∈ PAES }

Hadoop Cross Services Access
– PAHS-HS ⊆ HS × HS-PRMS, mapping Hadoop service to Hadoop service access.

Alternatively, hs-hsprms : (hs:HS) → 2HS-PRMS, defined as
hs-hsprms(hs) = {p | (hs,p) ∈ PAHS-HS }

††Effective Roles of Users (Derived Functions)
• effectiveGR : G → 2R, defined as

effectiveGR(gi) = directGR(gi) ∪ (
⋃

∀g ∈ {gj|gi �g gj}
effectiveGR(g))

• effectiveR : U → 2R, defined as
effectiveR(u) = directUR(u) ∪ (

⋃

∀g ∈ directUG(u)

effectiveGR(g))

††Effective Roles and Permissions of Subjects
• userSub : S→ U, mapping each subject to its creator user
• effectiveR : S → 2R, mapping of subject s to a set of roles. It is required that :

effectiveR(s) ⊆ effectiveR(userSub(s))
• effectiveHSprms : S → 2HS-PRMS, defined as effectiveHSprms(s) =

⋃

∀r ∈ effectiveR(s)

hsprms(r)

• effectiveESprms : S → 2OBJECT-PRMS, defined as effectiveESprms(s) =
⋃

∀r ∈ effectiveR(s)

esprms(r)

Ecosystem Service Object Operation Decision
A subject s ∈ S is allowed to perform an operation op ∈ OP on an object ob ∈ OB in
ecosystem service es ∈ ES if the effective object permissions of subject s include permissions
to object ob or to tag t ∈ Tag associated with object ob. Formally,
(es,ob,op) ∈ effectiveESprms (s) ∨
(∃ t) [(ob,t) ∈ object-tag ∧ (es,t,op) ∈ effectiveESprms (s)]

** and †† highlight new and modified components respectively with respect to HeAC

which results in roles inheritance and eases administrative responsibilities of the
security administrator. Also including group hierarchy makes OT-RBAC model
easier to fit into attributes based models where role is one of the other attributes.
In such case group hierarchy can be very useful in attributes inheritance offering

Object-Tagged RBAC for the Hadoop Ecosystem 73

Fig. 4. Proposed Implementation in Apache Ranger and Sample JSON Policy

convenient administration by assigning or removing multiple attributes to users
with single administrative operation [35].

The proposed OT-RBAC model presents a novel approach for adding
attributes to RBAC (besides NIST strategies [27]), by introducing object tags.
The model represents object permissions (OBJECT-PRMS) as union of permis-
sions on attribute values (reflected as tags) associated with objects and regular
permissions as discussed in RBAC [33]. In the following section, we propose an
implementation approach for OT-RBAC using open-source Apache Ranger.

5 Proposed Implementation

One approach to implement OT-RBAC model is by extending open-source
Apache Ranger which provides centralized security administration to multiple
Hadoop ecosystem services. It offers REST API to create security policies which
are enforced using plugins appended to each secured service. These plugins inter-
cept a user access request, and check against policies cached sporadically from
policy server to make access decisions. Apache Ranger 0.5 and above provide
extensible framework to add new authorization functionalities by offering con-
text enricher and condition evaluator hooks. Context enricher is a Java class
which appends user access request with additional information used for pol-
icy evaluation. Condition evaluator enables a security architect to add custom
conditions to policies. These hooks can be used to extend plugins to enforce
OT-RBAC.

Proposed Apache Ranger architecture for Hive service authorization is shown
in Fig. 4. Users and groups are stored in LDAP, which are synced to Ranger pol-
icy manager to create policies. A text file is added which stores current users to
roles assignment. This file is used by context enricher implemented, to add roles

74 M. Gupta et al.

Fig. 5. Adding Attributes to OT-RBAC model

of user to access request along with objects and actions. A condition evaluator
should also be implemented to include roles in policy used for evaluation. A
sample policy in JSON format is shown in Fig. 4. This policy includes roles in
condition which specifies the roles allowed to perform select operation on table
foodmart. Hive service definition should be updated with new context and con-
dition hooks information using REST API. Access decision and enforcement is
done in Ranger plugin embedded with Hive service whereas policy administra-
tion and information is through central policy server as shown in Fig. 4. Similar
implementation approach can be adopted in other ecosystem services also. This
proposed implementation requires roles addition at two places, one in text file
and other in policy conditions which requires extra effort by administrator.

6 Attributes Based Extensions to OT-RBAC

We outline some approaches for adding attributes in OT-RBAC model to achieve
finer-grained access control. OT-RBAC model incorporates tags for objects,
which is further generalized by introducing set of object attributes along with
attributes for other entities. As shown in Fig. 5, UA is a set of attributes for users
and groups, and OA is a set of attributes for data and service objects. HSA and
ESA are set of attributes for HS and ES. An attribute is a function which takes

Object-Tagged RBAC for the Hadoop Ecosystem 75

Fig. 6. Dynamic Roles and Object Permissions in OT-RBAC

as input an entity and returns values from a specified range [24]. Attribute-based
authorization policies are used to determine access permissions of users on ser-
vices and objects. With group hierarchy, senior groups inherit attributes from
junior groups [20], and a user assigned to senior groups gets all attributes of
group besides its direct attributes. A set of environment attributes is also added
to incorporate contextual information (like access time, threat level) in policies.

We outline how an attribute enhanced OT-RBAC model, along the lines of
Fig. 5, can incorporate NIST proposed strategies [27] for adding attributes in
RBAC, i.e., Dynamic Roles, Attribute Centric and Role Centric. We discuss
these in context of objects permissions assignment. These approaches can be
similarly applied to Hadoop services permissions assignment also.

6.1 Dynamic Roles

Dynamic Roles approach considers user and environment attributes to determine
roles of a user. This automated approach require rules defined using a policy
language [8] composed of attributes and resulting roles. The roles of the user
will change based on the user’s current attributes as well as current environment
attributes. As shown in Fig. 6, OT-RBAC model can be configured to achieve
dynamic roles assignment to users based on the direct or inherited attributes
through group memberships [20]. We can further extend the use of attributes
for dynamic permissions assignment to roles based on object tags, environment
attribute values and operations.

As in Fig. 6, user u1 with attribute jobTitle value director and environment
attribute optMode value normal can be assigned Admin role, which can change to
role Faculty when attribute optMode changes to emergency. Similarly, permission

76 M. Gupta et al.

Fig. 7. Attribute Centric Approach in OT-RBAC

containing operation write on object ob with tag value PII can be assigned to
role Admin which can change to role Faculty when tag changes to PCI.

6.2 Attribute Centric

In this approach, access decision is based on attributes of entities (role is also an
attribute) where authorization policies comprise attributes of subjects, objects or
environment [23,24,42]. To configure OT-RBAC with attribute centric strategy,
boolean authorization functions are defined using propositional logic formula for
each operation in OP which specify policy if subject s can perform operation op
on object ob in ecosystem service es under some environment attributes.

As shown in Fig. 7, authorization policy is defined stating that subject s
with effective attribute jobTitle value director is allowed to perform write on
object ob with attribute tag value PII in ecosystem service es with name hdfs
when environment attribute optMode is normal. It should be noted that object
ob must belong to ecosystem service es and subject must be allowed to access
es (expressed by access(s,es)) before performing any operation on object in es.
Similar authorization policy for read operation can be defined by administrators.

6.3 Role Centric

In this approach the maximum permissions (avail prms) are assigned to user
through roles assignment (similar to RBAC [33]) but the final set of permis-
sions (final prms) is dependent on the attributes of entities. Permission Filter-
ing boolean functions are defined based on the attributes, which are checked for
each permission in avail prms set available to users via roles, to determine the
final prms set assigned to the users as discussed in [25].

Object-Tagged RBAC for the Hadoop Ecosystem 77

Fig. 8. Role Centric Approach in OT-RBAC

Assume user u1 assigned to role Admin then u1 gets permissions (avail prms)
of writing to hdfs service file customer and reading a file having PII tag. These
permissions are checked against filter functions selected using target functions
discussed in [25]. As shown in Fig. 8, filter function FAdmin1 is invoked to check
if first permission is in final prms set. The function checks if creator user of
s has jobTitle attribute with value director and optMode is normal to avail
this permission. If it returns true, the permission will be included in final set
(final prms). Similar filter function can be called for other permissions also.

7 Related Work

Several papers [6,7,14,19,32,36,43] discuss security threats and solutions in
Hadoop ecosystem. Recently, Gupta et al. [18] presented a multi-layer autho-
rization framework for Hadoop ecosystem, which covers several access control
enforcement points and demonstrates their application using Apache Ranger.
Access control using cryptography based on proxy re-encryption [31] provides
approach for delegated access to Hadoop cluster. A security model for G-Hadoop
framework using public key and SSL is presented in [46]. Security and privacy
concerns of MapReduce applications are discussed in [15]. Ulusoy et al. [39,40]
proposed approaches for fine grained access control for MapReduce systems.
Privacy issues in Big Data are addressed in [13,29,37,38].

Risk aware information disclosure in [9] can be used for Hadoop Data lake.
Secure information access model via data services [11] can be applied for Hadoop
data services. HDFS can use data access protection using data distribution and
swapping in [16]. Vimercati et al. [41] discuss confidentiality of outsourced data.

78 M. Gupta et al.

Colombo et al. [12] also proposed fine-grained context-aware access control fea-
tures for MongoDB NoSQL datastore.

Risk based access using classification [10] studies role assignment based on
risk factors. Contextual attributes in location aware ABAC in [21] can be applied
in Hadoop. Classification of data object based on content is presented in [44].
Policy engineering for ABAC [26] can be used to define values based on risk or
context. Another promising approach in attribute based data sharing has been
presented in [45]. Use of role mining in [28] can be extended to determine roles of
users based on attributes. A research roadmap on trust and Big Data is presented
in [34]. Trust based Data ingestion or processing can use models in [30].

Hu et al. [22] presented a general access control model for Big Data process-
ing frameworks. The paper introduces chain of trust among several entities to
authorize access request. The work provides a preliminary document which can
be conceptualized to specific systems like Hadoop. However, the authors do not
address details particular to the Hadoop ecosystem.

8 Conclusion and Future Work

In this paper we present first formalized access control model called HeAC for
Hadoop ecosystem. Besides the regular permissions including objects and oper-
ations, this model also includes object attribute values (represented as tags) in
object permissions. We further extended HeAC model to propose Object-Tagged
RBAC model (OT-RBAC) which preserves role based permission assignment
and presents a novel approach for adding object attributes to RBAC. We pro-
posed an implementation approach for introducing roles in open-source Apache
Ranger using context enricher and condition evaluators. We additionally draft
some extensions to OT-RBAC by adding attributes to provide fine grained access
policies. We outline OT-RBAC model to support NIST strategies for including
attributes using Dynamic Roles, Attribute Centric and Role Centric.

For future work, we plan to develop pure attribute based access control mod-
els for fine grained access to Hadoop ecosystem resources. Also, since the Hadoop
data lake is used by multiple tenants it would be interesting to introduce data
ingestion security into the system to secure data at HDFS data nodes level.

Acknowledgement. Sincere gratitude is extended to James Benson, Technology
Research Analyst at Institute for Cyber Security, UTSA, for his useful comments.
This research is partially supported by NSF Grants CNS-1111925, CNS-1423481, CNS-
1538418, DoD ARL Grant W911NF-15-1-0518 and by The Texas Sustainable Energy
Research Institute at University of Texas at San Antonio.

References

1. Apache Hadoop. http://hadoop.apache.org/
2. Apache Knox. https://knox.apache.org/

http://hadoop.apache.org/
https://knox.apache.org/

Object-Tagged RBAC for the Hadoop Ecosystem 79

3. Apache Ranger. http://ranger.apache.org/
4. Apache Sentry. https://sentry.apache.org/
5. Data Age 2025: The Evolution of Data to Life-Critical. https://www.idc.com/
6. Big Data: Securing Intel IT’s Apache Hadoop Platform (2016). http://

www.intel.com/content/dam/www/public/us/en/documents/white-papers/
big-data-securing-intel-it-apache-hadoop-platform-paper.pdf

7. Securing Hadoop: Security Recommendations for Hadoop Environments (2016).
https://securosis.com/assets/library/reports/Securing Hadoop Final V2.pdf

8. Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.
In: Proceedings of IEEE ACSAC, pp. 353–362 (2002)

9. Armando, A., Bezzi, M., Metoui, N., Sabetta, A.: Risk-based privacy-aware infor-
mation disclosure. IJSSE 6(2), 70–89 (2015)

10. Badar, N., Vaidya, J., Atluri, V., Shafiq, B.: Risk based access control using classi-
fication. In: Al-Shaer, E., Ou, X., Xie, G. (eds.) Automated Security Management,
pp. 79–95. Springer, Cham (2013)

11. Barhamgi, M., Benslimane, D., Oulmakhzoune, S., Cuppens-Boulahia, N., Cup-
pens, F., Mrissa, M., Taktak, H.: Secure and privacy-preserving execution model for
data services. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS,
vol. 7908, pp. 35–50. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38709-8 3

12. Colombo, P., Ferrari, E.: Complementing MongoDB with advanced access control
features: concepts and research challenges. In: Proceedings of SEBD 2015 (2015)

13. Colombo, P., Ferrari, E.: Privacy aware access control for Big Data: a research
roadmap. Big Data Res. 2(4), 145–154 (2015)

14. Das, D., O’Malley, O., Radia, S., Zhang, K.: Adding security to Apache Hadoop.
Hortonworks, IBM (2011)

15. Derbeko, P., Dolev, S., Gudes, E., Sharma, S.: Security and privacy aspects in
mapreduce on clouds: a survey. Comput. Sci. Rev. 20, 1–28 (2016)

16. Di Vimercati, S.D.C., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Protect-
ing access confidentiality with data distribution and swapping. In: Proceedings of
IEEE BdCloud, pp. 167–174 (2014)

17. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM TISSEC 4(3), 224–274 (2001)

18. Gupta, M., Patwa, F., Benson, J., Sandhu, R.: Multi-layer authorization frame-
work for a representative Hadoop ecosystem deployment. In: Proceedings of ACM
SACMAT (2017, to appear). 8 pages

19. Gupta, M., Patwa, F., Sandhu, R.: POSTER: access control model for the Hadoop
ecosystem. In: Proceedings of ACM SACMAT (2017, to appear). 3 pages

20. Gupta, M., Sandhu, R.: The GURAG administrative model for user and group
attribute assignment. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS
2016. LNCS, vol. 9955, pp. 318–332. Springer, Cham (2016). doi:10.1007/
978-3-319-46298-1 21

21. Hsu, A.C., Ray, I.: Specification and enforcement of location-aware attribute-based
access control for online social networks. In: Proceedings of ACM ABAC 2016, pp.
25–34 (2016)

22. Hu, V.C., Grance, T., Ferraiolo, D.F., Kuhn, D.R.: An access control scheme for
Big Data processing. In: Proceedings of IEEE CollaborateCom, pp. 1–7 (2014)

23. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. IEEE Com-
put. 48(2), 85–88 (2015)

http://ranger.apache.org/
https://sentry.apache.org/
https://www.idc.com/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
https://securosis.com/assets/library/reports/Securing_Hadoop_Final_V2.pdf
http://dx.doi.org/10.1007/978-3-642-38709-8_3
http://dx.doi.org/10.1007/978-3-319-46298-1_21
http://dx.doi.org/10.1007/978-3-319-46298-1_21

80 M. Gupta et al.

24. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31540-4 4

25. Jin, X., Sandhu, R., Krishnan, R.: RABAC: role-centric attribute-based access
control. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531,
pp. 84–96. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33704-8 8

26. Krautsevich, L., Lazouski, A., Martinelli, F., Yautsiukhin, A.: Towards attribute-
based access control policy engineering using risk. In: Bauer, T., Großmann, J.,
Seehusen, F., Stølen, K., Wendland, M.-F. (eds.) RISK 2013. LNCS, vol. 8418, pp.
80–90. Springer, Cham (2014). doi:10.1007/978-3-319-07076-6 6

27. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. IEEE Comput. 43(6), 79–81 (2010)

28. Lu, H., Hong, Y., Yang, Y., Duan, L., Badar, N.: Towards user-oriented RBAC
model. J. Comput. Secur. 23(1), 107–129 (2015)

29. Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving
computing in Big Data era. IEEE Netw. 28(4), 46–50 (2014)

30. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust
models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus
2012. LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32287-7 8

31. Nunez, D., Agudo, I., Lopez, J.: Delegated access for Hadoop clusters in the cloud.
In: Proceedings of IEEE CloudCom, pp. 374–379 (2014)

32. OMalley, O., Zhang, K., Radia, S., Marti, R., Harrell, C.: Hadoop security design.
Technical report, Yahoo Inc. (2009)

33. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Comput. 29(2), 38–47 (1996)

34. Sänger, J., Richthammer, C., Hassan, S., Pernul, G.: Trust and Big Data: a
roadmap for research. In: Proceedings of IEEE DEXA, pp. 278–282. IEEE (2014)

35. Servos, D., Osborn, S.L.: HGABAC: towards a formal model of hierarchical
attribute-based access control. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood,
N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 187–204. Springer, Cham
(2015). doi:10.1007/978-3-319-17040-4 12

36. Sharma, P.P., Navdeti, C.P.: Securing big data Hadoop: a review of security issues,
threats and solution. IJCSIT 5, 2126–2131 (2014)

37. Soria-Comas, J., Domingo-Ferrer, J.: Big Data privacy: challenges to privacy prin-
ciples and models. Data Sci. Eng. 1(1), 21–28 (2016)

38. Tene, O., Polonetsky, J.: Big Data for all: privacy and user control in the age of
analytics. Nw. J. Tech. Intell. Prop. 11, xxvii (2012)

39. Ulusoy, H., Colombo, P., Ferrari, E., Kantarcioglu, M., Pattuk, E.: GuardMR:
fine-grained security policy enforcement for MapReduce systems. In: Proceedings
of ACM ASIACCS, pp. 285–296 (2015)

40. Ulusoy, H., Kantarcioglu, M., Pattuk, E., Hamlen, K.: Vigiles: fine-grained access
control for MapReduce systems. In: Proceedings of IEEE Big Data Congress, pp.
40–47 (2014)

41. Vimercati, S.D.C.D., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Shuffle
index: efficient and private access to outsourced data. ACM TOS 11(4), 19 (2015)

42. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proceedings of ACM FMSE, pp. 45–55 (2004)

43. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2012)

http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-33704-8_8
http://dx.doi.org/10.1007/978-3-319-07076-6_6
http://dx.doi.org/10.1007/978-3-642-32287-7_8
http://dx.doi.org/10.1007/978-3-642-32287-7_8
http://dx.doi.org/10.1007/978-3-319-17040-4_12

Object-Tagged RBAC for the Hadoop Ecosystem 81

44. Wrona, K., Oudkerk, S., Armando, A., Ranise, S., Traverso, R., Ferrari, L.,
McEvoy, R.: Assisted content-based labelling and classification of documents. In:
Proceedings of IEEE ICMCIS, pp. 1–7 (2016)

45. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: Proceedings of ACM ASIACCS, pp. 261–270 (2010)

46. Zhao, J., Wang, L., Tao, J., Chen, J., Sun, W., Ranjan, R., Ko�lodziej, J., Streit, A.,
Georgakopoulos, D.: A security framework in G-Hadoop for Big Data computing
across distributed cloud data centres. JCSS 80(5), 994–1007 (2014)

Identification of Access Control Policy Sentences
from Natural Language Policy Documents

Masoud Narouei(B), Hamed Khanpour, and Hassan Takabi

Department of Computer Science and Engineering,
University of North Texas, Denton, TX, USA

{Masoudnarouei,Hamedkhanpour}@my.unt.edu, Hassan.Takabi@unt.edu

Abstract. Access control mechanisms are a necessary and crucial design
element to any application’s security. There are a plethora of accepted
access control models in the information security realm. However,
attribute-based access control (ABAC) has been proposed as a general
model that could overcome the limitations of the dominant access control
models (i.e., role-based access control) while unifying their advantages.
One issue with migrating to an ABAC model is the information that
needs to be encoded in the model is typically buried within existing nat-
ural language artifacts, hence difficult to interpret. This requires process-
ing natural language documents and extracting policies from those docu-
ments. Software requirements and policy documents are the main sources
of declaring organizational policies, but they are often huge and consist of
a lot of general descriptive sentences that lack any access control content.
Manually processing these documents to extract policies and then using
them to build a model is a laborious and expensive process. This paper
is the first step towards a new policy engineering approach for ABAC
by processing policy documents and identifying access control contents.
We take advantage of multiple natural language processing techniques
including pointwise mutual information to identify access control policy
sentences within natural language documents. We evaluate our approach
on documents from different domains including conference management,
education, and healthcare. Our methodology effectively identifies policy
sentences with an average recall and precision of 90% on all datasets,
which bested the state-of-the-art by 5%.

Keywords: Access control policy · Attribute-based access control · Pol-
icy engineering · Natural language processing

1 Introduction

A fundamental management responsibility is securing information and informa-
tion systems. Almost all of the applications that deal with safety, privacy, defense
and even finance include some form of access control, which regulates who or
what can view or use resources in a computing environment. Access control poli-
cies (ACP) are those rules that a corporation exerts in order to control access to

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 82–100, 2017.
DOI: 10.1007/978-3-319-61176-1 5

Identification of Access Control Policy Sentences 83

its information assets. They determine which activities are allowed for authorized
users, controlling every attempt by a user for accessing system resources. They
also reveal a lot of information about the internal processes within an orga-
nization, which sometimes mirror the structure of the organization. The risks
of not using adequate access control policies range from inconvenience to criti-
cal loss or corruption of data. A big challenge for security administrators while
implementing an access control model is to properly define ACPs, especially
in large corporations. Most of these corporations have high-level requirement
specification documents that specify how information access is manipulated and
who, under which circumstances, can access what asset. All US federal agen-
cies are required to provide information security by the “Federal Information
Security Act of 2002” [2], and policy documentation is part of that requirement.
Although it is not necessary for private industry to prepare such documenta-
tion, the remarkable costs affiliated with recent cyber-attacks have forced many
corporations to record their security policies. In addition, recording security
policies aid corporations in transitioning from access control lists into a more
robust access control model such as Attribute-based Access Control (ABAC)
with more ease. In this paper, we refer to these documents as natural language
access control policies (NLACPs), which are described as “statements governing
management and access of enterprise objects. They are human expressions that
can be translated to machine-enforceable access control policies” [10].

An issue with NLACPs is they are usually declared in human understandable
terms, are unstructured, and also may be ambiguous, hence it is difficult to
encode them directly in a machine-enforceable form. In our previous work [19], we
addressed this issue by proposing semantic role labeling technique, where we were
able to process sentences and extract necessary elements such as subject, object
and action to create machine-enforceable ACPs. However, prior to identifying
ACP elements, one has to first process the unstructured NLACP documents in
order to identify those sentences that express policies. NLACPs are often huge
and consist of many sentences. Several of these sentences are general descriptive
sentences that lack any access control policy content (non-ACP sentences). The
process of manually sifting through NLACPs to extract the buried ACPs is very
laborious and error-prone.

This paper is the first step towards our ultimate goal of building an ABAC
system from existing information. Current ABAC solutions try to convert
already existing policies in the form of ACL [32], RBAC, etc. to an equiva-
lent ABAC model. However, the previous work ignores an important source of
information, NLACP documents, in the process of building an ABAC model. In
this paper, we aim to propose a new technique to solve this issue in order to
make it easier for corporations to extract ACPs from NLACPs. We will limit our
discussion to identifying ACP sentences and separating them from other non-
informative, irrelevant sentences. In the future, we aim to use the extracted ACP
sentences to build a new ABAC model. Our proposed technique takes advantage
of four different types of features in order to come up with a final discriminating
feature set. These features include pointwise mutual information (PMI) features,

84 M. Narouei et al.

security features, syntactic complexity features and dependency features. To the
best of our knowledge, this is the first report that elaborates on the effectiveness
of using four different feature vectors to extract policies.

The contributions of this paper are as follow:

– We take the first step towards proposing a new policy engineering approach
for ABAC by processing NLACP documents and extracting policy contents.

– We introduce a new technique to effectively distinguish ACP sentences from
non-ACP sentences.

– We introduce four different types of features in order to come up with a final
discriminating feature set.

– We introduce the first publicly available policy dataset to encourage more
research on this area.

The rest of this paper is organized as follows: We begin with a discussion of
related work in Sect. 2. Section 3 will discuss some background concepts and then
Sect. 4 will present our methodology. The experiments are presented in Sect. 5,
and finally, conclusion and future works wraps up the paper.

2 Related Work

Previous work in the literature took advantage of predefined patterns and com-
bining machine learning approaches to find access control policy sentences. Xiao
et al. proposed Text2Policy, which employs shallow parsing techniques with finite
state transducers to match a sentence into one of four access control patterns
[30]. One example of such a pattern is Modal Verb in Main Verb Group, which
helps recognize that the main verb contains a modal verb, which leads to iden-
tifying the sentence as an ACP sentence. If the matching is successful, it uses
the annotated portions of the sentence to extract the subject, action, and object
from the sentence. Text2Policy does not need a labeled data set. However, it
misses ACPs that do not follow one of its four semantic patterns. It is reported
that only 34.4% of the identified ACP sentences followed one of Text2Policy’s
patterns [25].

Slankas et al. proposed access control rule extraction (ACRE), a supervised
learning approach that uses an ensemble classifier to determine whether a sen-
tence expresses an ACR or not [25]. Their ensemble classifier is composed of
a k-nearest neighbors (k-NN) classifier, a näıve bayes classifier, and a support
vector machine classifier. To determine how to use these classifiers, they calcu-
lated a threshold value for the ratio of the computed distance to the neighbors
compared to the number of words in the sentence. If the k-NN classifier’s ratio
for a sentence is below a threshold value of 0.6, they return the k-NN classifier’s
predication. Otherwise, they output a majority vote of the three classifiers. Even
though this approach performs very well, the k-NN classifier suffers from a slow
processing time since it has to compare each sentence to all other sentences to
make a decision.

Identification of Access Control Policy Sentences 85

In our previous work, we proposed semantic role labeling (SRL) to auto-
matically extract ACP elements from unrestricted natural language documents,
define roles, and build an RBAC model [20]. We did not attempt to identify
ACP sentences, but instead used the already extracted sentences by [25] and left
implementing the ACP sentence identification step for future work. In this work,
we propose our methodology for ACP sentence identification.

The problem of mining ABAC policies from natural language documents
has not been studied in the literature. However, there are few works for deriving
ABAC policies from request logs. This problem was first investigated in [31]. The
authors present an algorithm for mining ABAC policies from logs and attribute
data. The algorithm iterates over tuples in the user-permission relation extracted
from the log, uses selected tuples as seeds for constructing candidate rules, and
attempts to generalize each candidate rule to cover additional tuples in the user-
permission relation. Finally, it selects the highest quality candidate rules for
inclusion in the generated policy. In [16], the authors proposed a multi-objective
evolutionary approach for learning ABAC policies from sets of authorized and
denied access requests. They used the same ABAC language and the same case
studies of the [31]. They presented a strategy for learning policies by learning
single rules, each one focused on a subset of requests, an initialization of the
population; a scheme for diversity promotion and for early termination. Most
recently, we introduced a policy engineering framework for ABAC where we were
able to identify access control policy sentences using deep learning techniques
and convert some ACP sentences to ABAC policies using semantic role labeling
technique [18]. There are also some other work for inferring RBAC policies from
logs for less expressive access control models (e.g., RBAC [7]). Usage of evolu-
tionary techniques for inferring RBAC rules explaining the observed actions in
environments with tree-structured role hierarchies was also proposed in [9].

3 Background

This section provides background with regards to PMI, syntactic complexity,
ML, and ABAC with the motivation behind using these techniques.

3.1 Pointwise Mutual Information

Pointwise mutual information (PMI) has been extensively applied in information
retrieval (IR) and text based applications. PMI was introduced by Turney [27]
as an unsupervised learning algorithm for finding synonyms based on statistical
information. It gives an estimation of semantic similarity between two words
based on word co-occurrence1 on a very large corpus, e.g., Web, Wikipedia.
Given two words t1 and t2, their PMI score is defined as Eq. 1:

PMI(t1, t2) = log2
P (t1, t2)

P (t1) ∗ P (t2)
(1)

1 Frequent occurrence of two words from a text corpus alongside each other in a certain
order.

86 M. Narouei et al.

where P (t1, t2) is the probability of P (t1) and P (t2) under the joint distribution
and P (t1), P (t2) is the probability of each word independently. Thus, if P (t1)
and P (t2) are independent, P (t1, t2) = P (t1)P (t2), and PMI is log(1) = 0,
meaning that P (t1) and P (t2) share no information.

We take advantage of PMI scores in order to extract informative features
that are relevant to the current task. This will also narrow down the number of
features significantly as will be described in Sect. 4.2.

3.2 Measures of Syntactic Complexity

ACP sentences usually contain more complex structures such as clauses than
non-ACP sentences (e.g., “If by chance a student is employed at a particular
clinic or health care institution for any reason, that student may not be placed
at that clinic or institution for any of their clinical practical.” compared to
non-ACP content such as “All Health providers and staff.” Hence, we evaluate
syntactic complexity of written English texts to better discriminate ACP sen-
tences from non-ACP contents. Although many different measures have been
suggested for characterizing syntactic complexity, previous literature only con-
sidered a small set since not many computational tools are available and manual
analysis is laborious. Recently Lu [13] proposed a computational system that
uses 14 different measures to analyze syntactic complexity in second language
writing. These 14 syntactic complexity measures are chosen from a large number
of measures that were discussed in [22,29].

Table 1. The 14 syntactic complexity measures used in previous research [13]

Mean length of clause MLC # of words / # of clauses

Mean length of sentence MLS # of words / # of sentences

Mean length of T-unit MLT # of words / # of T-units

Sentence complexity ratio C/S # of clauses / # of sentences

T-unit complexity ratio C/T # of clauses / # of T-units

Complex T-unit ratio CT/T # of complex T-units / # of T-units

Dependent clause ratio DC/C # of dependent clauses / # of clauses

Dependent clauses per T-unit DC/T # of dependent clauses / # of T-units

Coordinate phrases per clause CP/C # of coordinate phrases / # of clauses

Coordinate phrases per T-unit CP/T # of coordinate phrases / # of T-units

Sentence coordination ratio T/S # of T-units / # of sentences

Complex nominals per clause CN/C # of complex nominals / # of clauses

Complex nominals per T-unit CN/T # of complex nominals / # of T-units

Verb phrases per T-unit VP/T # of verb phrases / # of T-units

This system takes input as a plain text file and then counts the frequency of
the following nine structures:

Identification of Access Control Policy Sentences 87

– Words (W)
– Sentences (S)
– Verb phrases (VP)
– Clauses (C)
– T-units (T)
– Dependent clauses (DC)
– Complex T-units (CT)
– Coordinate phrases (CP)
– Complex nominals (CN)

Using these calculated frequencies, the system produces 14 indices of syn-
tactic complexity, presented in Table 1. We use these 14 features to measure
syntactic complexity of sentences, which will help classification.

3.3 Machine Learning

Machine learning (ML) is a method of data analysis that automates building an
analytical model. Using algorithms that iteratively learn from data, ML allows
computers to find hidden insights without being explicitly programmed. ML
algorithms are often categorized as being supervised or unsupervised. Super-
vised algorithms can apply what has been learned in the past to new data.
Unsupervised algorithms, however, draw inferences from new data. In this work,
we have a labeled dataset and hence we use supervised ML algorithms. We will
take advantage of two ML algorithms, näıve bayes and support vector machines.
The näıve bayes algorithm is based on conditional probabilities. It uses Bayes’
Theorem, to find the probability of an event occurring given the probability of
another event that has already occurred. Using these probabilities, the algorithm
calculates the probability of any sentence being either ACP or non-ACP and
then makes the final decision based on the higher probability. We also employ
support vector machine, which is a supervised ML algorithm that constructs a
hyperplane or set of hyperplanes in a high-dimensional space that is used for
classification. The algorithm plots all sentences in a n-dimensional space (where
n is number of features) with the value of each feature being the value of a
particular coordinate. Then, the algorithm finds the hyper-plane(s) that best
separates ACP and non-ACP sentences.

3.4 Attribute-Based Access Control

Attribute-based access control (ABAC) is an access control model wherein the
access control decisions are made based on a set of attributes, associated with
the requester, the environment, and/or the resource itself. An attribute is a
property expressed as a name:value pair that can capture identities and access
control lists (DAC), security labels, clearances and classifications (MAC), and
roles (RBAC). ABAC was proposed as a general model that could overcome
the limitations of the dominant access control models (i.e., discretionary-DAC,
mandatory-MAC, and role-based-RBAC) while unifying their advantages. Our

88 M. Narouei et al.

Fig. 1. Overview of the proposed system

central contribution is to take the first step towards proposing a new policy
engineering approach for ABAC by processing policy documents and extracting
those sentences that exhibit ACP content. We then use these ACP sentences to
extract ABAC policies.

4 The Proposed Methodology

In order to effectively distinguish ACP sentences from non-ACP sentences, we
take advantage of different NLP and ML techniques. Our proposed system is
composed of a set of components that extract various types of features. The
overview of the system is presented in Fig. 1. In the next sections, we will describe
each of these components in detail.

4.1 Preprocess Engine

Figure 2 presents part of a large NLACP document2. It is obvious that there are
many non-relevant contents such as titles, tables, etc. that need to be removed.
As these formal NLACP documents are usually expressed in PDF format, the
first step is to read each PDF document. For this purpose we used Apache
PDFBox [1] toolkit, which extracts texts and ignore the other contents such
as tables. In order to parse the extracted text, we fed it into Stanford Corenlp
toolkit [15]. The tool split the text by sentence boundaries where each sentence
was on a separate line and ended by a period. As many of the extracted sentences
are not statements (e.g., titles), we introduce the following equation to filter out
everything other than sentences.

Ratio(sent) =
Capitals(sent)
Tokens(sent)

2 http://policy.unt.edu/sites/default/files/07.022 AdministrativeEntrySearches
UniversityResidenceHalls 2012.pdf.

http://policy.unt.edu/sites/default/files/07.022_AdministrativeEntrySearchesUniversityResidenceHalls_2012.pdf
http://policy.unt.edu/sites/default/files/07.022_AdministrativeEntrySearchesUniversityResidenceHalls_2012.pdf

Identification of Access Control Policy Sentences 89

Where Capitals stand for the number of capital letters in the sentence (sent)
and Tokens counts for the number of tokens in each sentences. If this ratio is
less than 0.6, we consider the sentence for further processing. We used different
ratios but 0.6 gave us the most accurate results. We also limited ourselves to
sentences with more than 15 characters, which helped us remove more incomplete
sentences. After this step, the following four sentences are extracted:

– The University respects its resident students’ reasonable expectation of pri-
vacy in their rooms and makes every effort to ensure privacy in university
residences.

– However, in order to protect and maintain the property of the university and
the health and safety of the university’s students, the university reserves the
right to enter and/or search student residence hall rooms in the interest of
preserving a safe and orderly living and learning environment.

– Designated university officials are authorized to enter a residence hall room
unaccompanied by a resident student to conduct room inspections under the
following conditions.

– To perform reasonable custodial, maintenance, and repair services.

Next, the extracted sentences were fed to feature engine in order to extract
discriminating features.

Fig. 2. Part of a NLACP document

90 M. Narouei et al.

4.2 Feature Engine

Feature engine is responsible for extracting various types of features and creating
the final feature vector. The following sections will describe each sub-component
in detail.

Security Features. Kong et al. proposed a system called AUTOREB that was
able to infer the mobile app security behaviors using apps’ reviews from different
users with an average accuracy of 94% [12]. As their problem is quite similar
to ours in terms of classifying security sentences, we decided to take advan-
tage of their proposed methodology to extract more discriminating features.
Our adapted methodology is described as follows:

First, we ranked all words in ACP sentences based on their frequencies of
occurrence and chose the top 15 most frequent keywords. These 15 keywords
were considered as the initial set of our security features. Then, the new keywords
were chosen from those that had a high co-occurrence with current keywords in
our feature set. If this co-occurrence exceeded a threshold, we added the new
keyword into the feature set. To avoid repetitive calculations, at each round we
only considered those keywords that were added in the previous round. This
process was repeated until no more new keywords were added. In the case of
applying the same methodology on any other dataset, the same process can be
applied to identify the keywords relevant to that dataset.

PMI Features. N-grams have been extensively used for text classification as
a good syntactic feature. However, they often result in large and sparse feature
vectors. By taking advantage of PMI scores, we can limit ourselves to only those
words that are informative and correlated to the current task. This will improve
the performance of classification algorithm and speed it up considerably. To
have an accurate calculation of PMI scores, a large corpus is required. In the
original arrangement of PMI by Turney [27], it is required to consult the Web
for counting words. However, there are some disadvantages with using the Web.
The Web is always changing and the search scheme of commercial search engines
is always changing too, which makes it hard to maintain the functionality of the
system. For computing semantic relations, it has been shown that Wikipedia
is more reliable and effective than a search engine and covers more concepts
than WordNet [23]. In order to extract PMI scores, we used two different setups.
For the first one, we gathered pre-calculated PMI data through Semilar project
[24]. This data was calculated using whole Wikipedia text (as of Jan 2013).
For the second setup, we calculated PMI scores from access control contexts as
mentioned briefly in Sect. 3.1 so that it will be more adaptable to our approach.
We gathered over 10 MB of text consisting all of our datasets and then calculated
PMI scores based on the formula described in Sect. 3.1. To calculate relevant
keywords, we adopt the same process that was described in previous section.
Starting with the same initial set of 15 keywords, we calculated the PMI score of
all words in our dataset. For each setup, we used the corresponding set of PMI

Identification of Access Control Policy Sentences 91

scores. If this PMI score was more than a threshold, we added the other word to
the feature set too. After the first round, we came up with a new set of features
in addition to the initial 15 keywords. Then in the second iteration, we repeated
the process using newly found keywords in the previous step. We followed this
process until no more features were added to our feature set.

Syntactic Complexity Features. This component computes complexity mea-
sures based on the explanations in Sect. 3.2. For each sentence a feature vector
of 23 values were created.

Dependency Relations. Marneffe et al. described a methodology for extract-
ing typed dependency parses of English sentences [4]. A dependency parse
demonstrates dependencies among single words. It also labels dependencies with
grammatical relations, such as subject or indirect object. Consider the sentence:
“Bills on ports and immigration were submitted by Senator Brownback, Repub-
lican of Kansas.” The corresponding typed dependency tree is drawn in Fig. 3.

Fig. 3. Typed dependency parse for the sentence “Bills on ports and immigration were
submitted by Senator Brownback, Republican of Kansas.”

Typed dependency parses of ACP sentences capture inherent relations occur-
ring in ACP sentences that can be critical in discriminating them from non-ACP
contents. Using this structure, we extracted the ratio of occurrences of each of
the following attributes to the length of sentence and used them as features:

92 M. Narouei et al.

– Subject
– object
– auxiliary verb
– verb

Feature Fusion. This component stacks all the four feature types in a single,
long feature vector that were used for classification. For PMI and security fea-
tures, there are some redundancies in extracted keywords that were removed too.

4.3 Classification

After building the final feature vector for each sentence and creating the final
dataset consisting of all vectors, we train a predictive model using ML algo-
rithms. Since our training set has fairly little data, we need to choose a classifier
with high bias according to machine learning theory [14]. For this work, we chose
näıve bayes as there are many theoretical and empirical results that näıve bayes
does well in such circumstances (e.g. [6,21]). We also employed support vector
machines classifier as it has consistently achieved good performance on text cat-
egorization tasks (see [11]). The created model will be used to categorize unseen
sentences to either ACP or non-ACP.

5 Experiments and Results

5.1 Dataset(s)

The access policy domain suffers from a scarcity of publicly available data for
researchers. To help alleviate this issue, we created a dataset to serve the dual
purpose of (1) making our evaluation of the proposed method more robust, and
(2) providing the research community with more data, which will in turn allow
other researchers to evaluate their work both more comprehensively and in direct
comparison to others.

We constructed our dataset from real-world policy documents from the
authors’ home institution. To do this, we gathered over 430 policy documents in
PDF format from the university policy office3, as well as policy documents from
the university’s health science center4. The documents described security access
authorizations for a wide variety of departments, including humanresources,
information technology, risk management services, faculty affairs, administra-
tion, intellectual property, technology transfer, and equity development, among
others. Altogether, these documents were comprised of more than 21,000 sen-
tences. Since manually labeling the sentences is a labor-intensive process, in this
work we limited our data to a randomly selected subset of 1,000 sentences from
the full dataset.

3 https://policy.unt.edu/policy-alphabetical/a.
4 https://app.unthsc.edu/policies/Home/ByChapter.

https://policy.unt.edu/policy-alphabetical/a
https://app.unthsc.edu/policies/Home/ByChapter

Identification of Access Control Policy Sentences 93

The sentences were annotated for the presence of ACP content by two Ph.D.
students studying cybersecurity, who are familiar with access control policies and
the contexts in which they occur. They were also provided a coding guide that
told them what should be considered as an access control policy sentence and
what should not. The first author of this paper adjudicated any discrepancies
in the annotations after discussing them with both annotators. We computed
kappa on the annotations, finding κ = 0.75 between the two annotators. The
final annotated dataset is comprised of 455 ACP sentences and 545 non-ACP
sentences. This dataset is available upon request.

5.2 Evaluation Criteria

In order to evaluate results, we use recall, precision, and the F1 measure. Pre-
cision is the fraction of ACP sentences that are relevant, while recall is the
fraction of ACP sentences that are retrieved. To compute these values, the clas-
sifier’s predictions are categorized into four categories. True positives (TP) are
correct predictions. True negatives (TN) are sentences that we correctly pre-
dicted as not an ACP sentence. False positives (FP) are sentences that were
mistakenly identified as an ACP sentence. Finally, false negatives (FN) are ACP
sentences that we failed to correctly predict as an ACP sentence. Using these
values, precision is calculated using P = TP

TP+FP and recall using R = TP
TP+FN .

To have an effective model, a high value for both precision and recall is required.
Lower recall means the approach could more likely miss ACP sentences while
a lower precision implies that the approach could more likely identify non-ACP
sentences as ACP sentences. We define F1 as the harmonic mean of precision
and recall, giving an equal weight to both elements. F1 measure is calculated
using the F1 = 2 × P×R

P+R respectively.

5.3 Experimental Results

After performing the preprocessing, the dataset is divided into 70% training (700
sentences) and 30% testing sets (300 sentences). In order for both datasets to be
independent and identically distributed, stratification was performed to make
sure the distribution of both classes (ACP and non-ACP) are the same in both

Table 2. Obtained results using two classifiers (näıve bayes and support vector
machines (SVM)) alongside comparison with baseline and the implemented ensemble
classifier

Methodology Precision (%) Recall (%) F1 (%)

ZeroR 30 54 39

Ensemble 74 70 72

SVM 76 76 76

Näıve Bayes 82 80 80

94 M. Narouei et al.

train and test sets. Then, the training set is fed to feature engine for feature
extraction. The initial set of seeds for all datasets are presented in Table 4. All
the experiments were performed using weka toolkit [8], which is a collection of
ML algorithms for data mining tasks. We used SMO (support vector machine’s
implementation in weka) as well as näıve bayes classifier for classification task.
We trained both classifiers using the training set. The performance of the system
on the testing dataset is reported in Table 2. The second row shows the baseline
results generated using weka’s ZeroR classifier. The ZeroR algorithm selects the
majority class in the dataset and uses it to make all predictions.

Table 3. Study document set statistics

Dataset Domain # of sentences # of ACP sentences

iTrust for ACRE Healthcare 1160 550

iTrust for Text2policy Healthcare 471 418

IBM Course Management Education 401 169

CyberChair Conference Mgmt 303 139

Collected ACP Documents Multiple 142 114

The third row shows the comparison with the ACRE system proposed by
Slankas et al. [25]. In their ensemble classifier, an object is assigned to the class
most common among its k nearest neighbors. The classifier used a modified ver-
sion of Levenshtein distance as distance metric. The details of this classifier was
presented in Sect. 2. We were not able to receive the source codes for their ensem-
ble classifier and hence we implemented it based on the description provided in
their paper as well as the main author’s thesis [26]. We did our best to make sure
that our implemented ensemble classifier is similar to their methodology. Finally,
the fourth and fifth rows present results obtained using our proposed method.
As Table 2 shows, our methodology was able to outperform the majority baseline
and previous work by a huge margin.

In order to have an exact comparison between our proposed methodology
and the ACRE system, we performed experiments on the same datasets that
they used in their paper. These datasets were manually labeled by Slankas et al.
[25] and consisted of five sections, described as follows:

– iTrust for ACRE. iTrust [17] is an open source healthcare application that
consists of 40 use cases plus additional non-functional requirements. iTrust
for ACRE was extracted directly from the project’s wiki.

– iTrust for Text2policy. The second version of iTrust that was taken from
the documentations used by Xiao et al. [30].

– IBM Course Management. Eight use cases from the IBM Course Regis-
tration System [3].

– CyberChair. CyberChair documents [28], which has been used by over 475
different conferences and workshops.

Identification of Access Control Policy Sentences 95

– Collected ACP Documents. A combined document of 142 sentences that
were collected by Xiao et al. [30].

More information about these dataset(s) can be found in Table 3. The initial
seeds for each dataset is presented in Table 4. Using these seeds, each dataset
was independently fed to the feature engine and experiments were performed.
The obtained results are presented in Table 5. As the table presents, applying
our implemented system on all five dataset(s) achieved a macro average of 90%
F1 while the ACRE system achieved 85%.

Table 4. The top 15 frequent keywords for each dataset

UNT Policies will, must, may, health, student, shall, information, employee,
should, science, review, center, policy, university, staff

Collected can, access, read, if, customer, subject, assign, information,
paper, resident, use, patient, medical, may, reps

CyberChair reviewer, paper, submit, author, assign, number, must,
expertise, should, indicate, process, base, overview, topic,
abstract

IBM system, student, course, professor, schedule, registrar, offering,
case, use, semester, information, offering, delete, will, select

iTrustforACRE patient, office, hcp, can, name, date, message, list,
appointment, information, user, lab, representative, view,
office

iTrustfortext2policy patient, view, can, message, representative, name, list, system,
hcp, date, appointment, data, user, present, administrator

In order to extract effective PMI scores, we used both pre-calculated PMI
values using Wikipedia and also our self-calculated PMI values based on security
context. In order to come up with the best threshold, we used ten-fold cross val-
idation on the train set to evaluate the performance using features generated by
each threshold value. Figure 4(a) presents the performance using pre-calculated
PMI values from Wikipedia. The best set of features were extracted using a
threshold value of 0.4. Figure 4(b) shows the performance using self-calculated
PMI values. The best performance (83%) was obtained using a threshold value
of 0.8. As these figures indicate, our self-generated PMI scores yield a higher
performance, which seems reasonable considering the fact that they were gener-
ated from the security context while pre-calculated PMI values were generated
using public Wikipedia article, which are general to any method but not specific
to our domain. Hence, we used our self-calculated PMI scores with the threshold
of 0.8 as the output of PMI component. For security features, the best results
were obtained using a threshold value of 15 co-occurrences in the whole context,
as Fig. 5 shows, hence we used this threshold. It is obvious that the performance
decreases considerably after a threshold of 20 co-occurrences since there are not
many words that occur together more than 20 times in the dataset.

96 M. Narouei et al.

Table 5. Comparison with ACRE system

Dataset ACRE Proposed system

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

iTrust for ACRE 90 86 88 89 90 90

iTrust for Text2policy 96 99 98 97 99 98

IBM Course Management 83 92 87 94 93 93

CyberChair 63 64 64 79 74 77

Collected ACP Documents 83 96 89 91 93 92

Average 83 87 85 90 90 90

Fig. 4. Threshold analysis using PMI values from Wikipedia (a) and self-calculated
PMI values (b)

Table 6 shows the final number of features generated by each component
while performing the first experiment (policy documents). Overall, 750 features
were extracted after combining all of the features together and removing dupli-
cates. These features were used to build a final feature vector for each sentence.
For all features except complexity and dependency features that had their own
calculated values, the presence or absence of the features in the corresponding
sentence was considered.

Our dataset consists of ACP and non-ACP sentences both expressed in secu-
rity context. Even distinguishing an ACP sentence from a non-ACP sentence
was sometimes difficult as expressed by our labelers. Our proposed system was
able to distinguish between these sentences by 80% F1 while the state-of-the-art

Table 6. The number of different feature values

Feature type # of features

Security features 73

Policy PMI 721

Syntactic complexity 23

Dependency features 4

Identification of Access Control Policy Sentences 97

Fig. 5. Threshold analysis of co-occurrences of security features

gains around 72% F1. The strength of our methodology comes from incorporat-
ing both lexical and semantic features. As all sentences are expressed in ACP
context, using just lexical approach is not sufficient. However, using syntactic
complexity features improves the results as ACP sentences usually consist of
clauses and more complex structures compared to non-ACP sentences. These
structures convey lots of information but are usually ignored using only lexical
approaches. The ensemble classifier that was used in the previous work consid-
ered the syntax of sentence (using a modified version of Levenshtein distance
for comparing words) to identify ACP sentences. This approach performed very
well on their reported experiments, but while analyzing policy documents, both
syntactic and semantic features proved more fruitful.

As we mentioned in the previous section, we were unable to get their codes,
and hence we implemented their methodology in Java language using Stanford
Corenlp package. On average, our implementation reported 84% average preci-
sion on all five datasets (iTrust for ACRE, iTrust for Text2policy, IBM Course
Management, CyberChair, Collected ACP Documents) while their reported aver-
age precision was 81%. The F1, however, was lower as we got around 81% while
they reported 84%. The main problem with ensemble classifier was the speed
since for each instance, the k-NN classifier needs to compute the distance to all
other sentences. This resulted in an average execution time of about 5–6 h on
the five datasets while our proposed methodology runs for less than a minute
given the features, or about 20 min for extracting features depending on the size
of dataset.

6 Discussion

There are several threats to validity of experiments including lack of represen-
tativeness of datasets, identifying a threshold for features and human factors
for determining correct ACP sentences from NLACPs. The five datasets used in

98 M. Narouei et al.

previous literature covered mostly limited grammars and many of their policies
were of similar structure and form, not representing the diversity of policies in
real-world. To reduce the threat, we evaluated our approach on policy docu-
ments from authors’ home institution. These documents covered a large variety
of policies ranging from human resources, information technology, risk manage-
ment services, faculty affairs, administration, intellectual property, technology
transfer, and equity development, among others. To further reduce this threat,
additional evaluation needs to be done to choose a more representative sam-
ple of dataset, instead of choosing sentences randomly. Choosing the proper
threshold is another issue as it determines the quality of extracted keywords. To
reduce this threat, we examined different threshold values from different ranges.
A final threat include human factors for determining correct ACP sentences from
NLACPs. To reduce the human factor threats, the sentences were annotated for
the presence of ACP content by two Ph.D. students studying cybersecurity, who
are familiar with ACPs and the contexts in which they occur. The co-author
of this paper adjudicated any discrepancies in the annotations after discussing
them with both annotators.

To further evaluate our method’s performance on ACP sentences that were
previously used in the literature, we performed another experiment. We ran-
domly sampled 250 ACP sentences from the four dataset(s) that were previously
described (iTrust, IBM course registration system, cyberchair and collected doc-
uments). We also gathered 250 sentences that carry no ACP information from
Microsoft research paraphrase corpus [5]. This dataset contains 5,800 pairs of
sentences that were extracted from news sources on the web, alongside human
annotations indicating whether each pair capture a semantic equivalence rela-
tionship. Only one sentence has been extracted from any given news article.
Using 10-fold cross validation, our proposed system was able to correctly iden-
tify ACP sentences with an accuracy of 94%, which shows applicability of this
method in the wild.

7 Conclusion and Future Work

ABAC is a promising alternative to traditional models of access control (i.e.,
DAC, MAC and RBAC) that is drawing attention in both recent academic lit-
erature and industry. However, the cost of developing ABAC policies can be a
significant obstacle for organizations to migrate from traditional access control
models to ABAC. In this paper, we took the first step towards a new policy
engineering approach for ABAC by processing policy documents and extracting
access control contents. We took advantage of multiple natural language process-
ing techniques including pointwise mutual information to identify access control
policy sentences. Experimental results yielded an average 90% F1, which bested
the state-of-the-art by 5%. In future, we plan to extend our work to a compre-
hensive policy engineering framework that includes extracting ABAC policies
from ACP sentences.

Identification of Access Control Policy Sentences 99

References

1. Apache pdfbox. https://pdfbox.apache.org/index.html
2. Federal information security management act of 2002. Title III of the

E-Government Act of 2002 (2002)
3. Ibm course registration requirements (2004)
4. De Marneffe, M.C., MacCartney, B., Manning, C.D., et al.: Generating typed

dependency parses from phrase structure parses. In: Proceedings of LREC, Genoa,
vol. 6, pp. 449–454 (2006)

5. Dolan, B., Brockett, C., Quirk, C.: Microsoft research paraphrase corpus (2005).
Accessed 29 Mar 2008

6. Forman, G., Cohen, I.: Learning from little: comparison of classifiers given lit-
tle training. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS, vol. 3202, pp. 161–172. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30116-5 17

7. Gal-Oz, N., Gonen, Y., Yahalom, R., Gudes, E., Rozenberg, B., Shmueli, E.: Min-
ing roles from web application usage patterns. In: Furnell, S., Lambrinoudakis,
C., Pernul, G. (eds.) TrustBus 2011. LNCS, vol. 6863, pp. 125–137. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22890-2 11

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

9. Hu, N., Bradford, P.G., Liu, J.: Applying role based access control and genetic algo-
rithms to insider threat detection. In: Proceedings of the 44th Annual Southeast
Regional Conference, pp. 790–791. ACM (2006)

10. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M.,
Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K., et al.: Guide to attribute based
access control (abac) definition and considerations (draft). NIST special publica-
tion 800(162) (2013)

11. Joachims, T.: Text categorization with Support Vector Machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683

12. Kong, D., Cen, L., Jin, H.: Autoreb: automatically understanding the review-to-
behavior fidelity in android applications. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 530–541. ACM (2015)

13. Lu, X.: Automatic analysis of syntactic complexity in second language writing. Int.
J. Corpus Linguist. 15(4), 474–496 (2010)

14. Manning, C.D., Raghavan, P., Schütze, H.: Probabilistic information retrieval. In:
Introduction to Information Retrieval, pp. 220–235 (2009)

15. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky,
D.: The stanford corenlp natural language processing toolkit. In: ACL (System
Demonstrations), pp. 55–60 (2014)

16. Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of
attribute-based access control policies. In: Gaspar-Cunha, A., Henggeler Antunes,
C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 351–365. Springer, Cham
(2015). doi:10.1007/978-3-319-15934-8 24

17. Meneely, A., Smith, B., Williams, L.: itrust electronic health care system: a case
study (2011)

18. Narouei, M., Khanpour, H., Takabi, H., Parde, N., Nielsen, R.: Towards a top-down
policy engineering framework for attribute-based access control. In: Proceedings of

https://pdfbox.apache.org/index.html
http://dx.doi.org/10.1007/978-3-540-30116-5_17
http://dx.doi.org/10.1007/978-3-540-30116-5_17
http://dx.doi.org/10.1007/978-3-642-22890-2_11
http://dx.doi.org/10.1007/BFb0026683
http://dx.doi.org/10.1007/978-3-319-15934-8_24

100 M. Narouei et al.

the 22nd ACM Symposium on Access Control Models and Technologies. ACM
(2017)

19. Narouei, M., Takabi, H.: Automatic top-down role engineering framework using
natural language processing techniques. In: Akram, R.N., Jajodia, S. (eds.)
WISTP 2015. LNCS, vol. 9311, pp. 137–152. Springer, Cham (2015). doi:10.1007/
978-3-319-24018-3 9

20. Narouei, M., Takabi, H.: Towards an automatic top-down role engineering approach
using natural language processing techniques. In: Proceedings of the 20th ACM
Symposium on Access Control Models and Technologies, pp. 157–160. ACM (2015)

21. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison
of logistic regression and naive bayes. Adv. Neural Inf. Process. Syst. 2, 841–848
(2002)

22. Ortega, L.: Syntactic complexity measures and their relationship to l2 proficiency: a
research synthesis of college-level l2 writing. Appl. Linguist. 24(4), 492–518 (2003)

23. Ponzetto, S.P., Strube, M.: Knowledge derived from wikipedia for computing
semantic relatedness. J. Artif. Intell. Res. (JAIR) 30, 181–212 (2007)

24. Rus, V., Lintean, M.C., Banjade, R., Niraula, N.B., Stefanescu, D.: Semilar: The
semantic similarity toolkit. In: ACL (Conference System Demonstrations), pp. 163–
168. Citeseer (2013)

25. Slankas, J., Xiao, X., Williams, L., Xie, T.: Relation extraction for inferring access
control rules from natural language artifacts. In: Proceedings of the 30th Annual
Computer Security Applications Conference, pp. 366–375. ACM (2014)

26. Slankas, J.B.: Implementing database access control policy from unconstrained
natural language text (2015)

27. Turney, P.D.: Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In:
Raedt, L., Flach, P. (eds.) ECML 2001. LNCS, vol. 2167, pp. 491–502. Springer,
Heidelberg (2001). doi:10.1007/3-540-44795-4 42

28. Van De Stadt, R.: Cyberchair: A web-based groupware application to facilitate the
paper reviewing process. arXiv preprint arXiv:1206.1833 (2012)

29. Wolfe-Quintero, K., Inagaki, S., Kim, H.Y.: Second Language Development in Writ-
ing: Measures of Fluency, Accuracy, & Complexity. No. 17, University of Hawaii
Press, Honolulu (1998)

30. Xiao, X., Paradkar, A., Thummalapenta, S., Xie, T.: Automated extraction of
security policies from natural-language software documents. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, p. 12. ACM (2012)

31. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from logs. In:
Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 276–291. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-43936-4 18

32. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Trans.
Dependable Secure Comput. 12(5), 533–545 (2015)

http://dx.doi.org/10.1007/978-3-319-24018-3_9
http://dx.doi.org/10.1007/978-3-319-24018-3_9
http://dx.doi.org/10.1007/3-540-44795-4_42
http://arxiv.org/abs/1206.1833
http://dx.doi.org/10.1007/978-3-662-43936-4_18

Fast Distributed Evaluation of Stateful
Attribute-Based Access Control Policies

Thang Bui, Scott D. Stoller(B), and Shikhar Sharma

Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
stoller@cs.stonybrook.edu

Abstract. Separation of access control logic from other components of
applications facilitates uniform enforcement of policies across applica-
tions in enterprise systems. This approach is popular in attribute-based
access control (ABAC) systems and is embodied in the XACML stan-
dard. For this approach to be practical in an enterprise system, the access
control decision engine must be scalable, able to quickly respond to access
control requests from many concurrently running applications. This is
especially challenging for stateful (also called history-based) access con-
trol policies, in which access control requests may trigger state updates.
This paper presents an policy evaluation algorithm for stateful ABAC
policies that achieves high throughput by distributed processing, using a
specialized multi-version concurrency control scheme to deal with possi-
bly conflicting concurrent updates. The algorithm is especially designed
to achieve low latency, by minimizing the number of messages on the
critical path of each access control decision.

1 Introduction

Separation of access control logic from other components of applications facili-
tates uniform enforcement of policies across applications in enterprise systems.
This approach is adopted in the ISO standard for access control in open systems
[13] and the XACML standard1. Servers that run the access control policy eval-
uation algorithm and provide access control decisions to applications are called
policy decision points (PDPs) in XACML terminology. In this paper, we refer to
them simply as servers, since we do not discuss other kinds of server.

For this approach to be practical in an enterprise system, the policy eval-
uation algorithm must be scalable, able to quickly respond to access control
requests from many concurrently running applications. To scale beyond the
capacity of a single server, distributed policy evaluation algorithms are needed,

This material is based on work supported in part by NSF Grants CNS-1421893,
and CCF-1414078, ONR Grant N00014-15-1-2208, AFOSR Grant FA9550-14-1-0261,
and DARPA Contract FA8650-15-C-7561. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of these agencies.

1 http://www.oasis-open.org/committees/xacml/.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 101–119, 2017.
DOI: 10.1007/978-3-319-61176-1 6

http://www.oasis-open.org/committees/xacml/

102 T. Bui et al.

to coordinate concurrent processing of requests on multiple servers. This is rel-
atively straightforward if the policy and the information it references are static.
However, this is challenging for stateful (also called state-modifying, dynamic, or
history-based) access control policies, in which access control requests may trigger
state updates, i.e., updates to information referenced by the policy. The classi-
cal examples of stateful access control policies are dynamic separation-of-duty
(DSOD) policies, such as the Chinese wall policy [5] and DSOD in role-based
access control (RBAC) [2]. Another classic category of stateful access control
policies are usage control policies [20], such as policies that limit the number
of times a user can view a video or the number of videos that a user with a
particular type of subscription can view each month. The research literature
contains numerous additional examples of stateful access control policies, policy
models, and policy evaluation algorithms [3,4,6,8,10–12,14,17–19,22]. In the
context of Attribute-Based Access Control (ABAC), the updated state is typi-
cally attribute data.

The main challenge in distributed policy evaluation algorithms for state-
ful policies is ensuring serializability, as in concurrent transaction processing in
databases [21]. Processing of each access control request, including its reads of
attribute data and its updates to attribute data, should be serializable with
respect to processing of other requests. Since concurrent requests may read or
write the same attribute data, a concurrency control mechanism is needed to
ensure this.

To illustrate the importance of serializability in this context, consider a typ-
ical Chinese wall policy in which companies A and B are in the same conflict
of interest (COI) class, so user who has accessed documents of one them cannot
access documents of the other. When a server allows a request for access to doc-
uments of either company, it updates a user attribute to reflect this. Suppose a
devious user concurrently submits an access request for a document of company
A to one server, and an access request for a document of company B to another
server. In a non-serializable execution in which both requests are evaluated in
the initial state (where the user has not accessed any documents), both requests
could be permitted, violating the intended policy. In a serializable execution, the
result must be equivalent to a serial execution, where one of the requests sees the
effect of the update performed by the other request, causing the second request
to be denied, as it should be.

A straightforward approach to this problem is to use a distributed replicated
database that supports serializability for multi-row transactions, and to evaluate
each request in a transaction. However, this requirement eliminates well-known
scalable NoSQL databases, such as Bigtable [7], Cassandra2, and MongoDB3,
which achieve scalability in part by supporting only single-row transactions.
Master-slave replication in SQL databases, such as MySQL4, allows multi-row
transactions, but has limited scalability, because all read-write transactions must

2 http://cassandra.apache.org/.
3 https://www.mongodb.com/.
4 https://dev.mysql.com/.

http://cassandra.apache.org/
https://www.mongodb.com/
https://dev.mysql.com/

Fast Distributed Evaluation of Stateful ABAC Policies 103

be submitted to a single master server, and provides inadequate consistency guar-
antees, because slaves can return slightly out-of-date data. Multi-phase commit
protocols, such as in Oracle, IBM DB2, and Microsoft SQL Sever, allow multi-
row transactions and ensure serializability, but are less scalable.

Decat et al. present a distributed policy evaluation algorithm for stateful
ABAC policies [8] that is more scalable than multi-phase commit protocols, by
exploiting the fact that evaluation of an ABAC request involves at most two
objects (i.e., two rows), typically called the subject and the resource. Their algo-
rithm uses a specialized scheme for optimistic concurrency control [21, Sect. 15.5].
Their experimental results demonstrate that their algorithm scales well in terms
of throughput. However, their algorithm incurs a significant increase in latency,
since processing of each request involves a chain of 6 messages (including the
messages to and from the client).

This paper presents a new distributed policy evaluation algorithm for state-
ful ABAC policies. The algorithm is called FACADE (Fast Access Control Algo-
rithm with Distributed Evaluation). It uses a specialized scheme for multiver-
sion timestamp ordering concurrency control [21, Sect. 15.6] that simultaneously
achieves low latency by minimizing the length of the message chain on the crit-
ical path (i.e., the message chain ending with the result sent to the client). Low
latency is of obvious importance for interactive applications: developers struggle
to keep the latency of the application’s core functionality within limits acceptable
to users, especially for multi-tier enterprise applications, where many requests
involve processing by multiple servers (web servers, application servers, data-
base servers, etc.), and latency contributions from non-core functionality such
as access control are acceptable only if they are low. Low latency is also impor-
tant for batch applications. These applications often process large amounts of
data, hence requiring many access control checks. If the latency of these checks
is not kept very low, the repeated delays in the core application processing will
cause poor system utilization. Reducing the number of messages per request has
the additional benefit of reducing the required network capacity.

FACADE processes read-only requests differently than read-write requests,
in contrast to Decat et al.’s algorithm, which processes all requests the same
way. This, together with use of multiversion timestamp ordering concurrency
control, enables FACADE to use especially short message chains for read-only
requests. Multiversion timestamp ordering concurrency control has the desirable
property that read-only requests never abort. This helps FACADE use a shorter
critical path than Decat et al.’s algorithm for read-only requests.

FACADE also uses shorter message chains than Decat et al.’s algorithm for
read-write requests. This is achieved partly by use of multiversion concurrency
control and partly by specialization to requests that update at most one object.
This specialization is motivated by the observation that in every stateful policy
given as an example in every paper cited above, each request updates the state
of at most one object. FACADE can be extended to handle requests that update
two objects, but that extension is not described in this paper.

104 T. Bui et al.

FACADE is more flexible than Decat et al.’s algorithm, in that FACADE
allows an object to be a subject and a resource, while Decat et al.’s algorithm
requires the sets of subjects and resources to be disjoint [8, Sect. 3.4]

We ran experiments, described in Sect. 3, to compare the performance of
FACADE and Decat et al.’s algorithm. Our experiments show that FACADE
has significantly lower average latency, uses significantly fewer network messages
per request, and has slightly higher throughput than Decat et al.’s algorithm in
many cases.

2 Algorithm

System Architecture. We adopt the system architecture in [8]. There are two
types of hosts: clients and servers. Each client runs applications and a small
client-side stub that interacts with the access control servers. Each server runs
three kinds of processes: a coordinator, which receives requests from clients and
is responsible for concurrency control, a database, which stores a copy of the
attribute data used by the policy, and one or more workers, which evaluate
requests based on the access control policy and send the result to the coordinator
and/or client.

Each worker reads attribute data from the co-located replica of the database.
Workers never update the database. The set of objects is partitioned across
the set of coordinators. Thus, for each object x, there is a unique coordinator,
denoted coord(x), responsible for x; we also say that coord(x) manages x. Only
coord(x) submits updates of x to the master database (this is done using a
standard database connector, such as ODBC or JDBC, regardless of whether
the master database is on the same server or a different server). Coordinators
never read the database.

Multiversion Timestamp Ordering Concurrency Control. Before presenting our
algorithm, we briefly review multiversion timestamp ordering concurrency con-
trol [21, Sect. 15.6], with a change in terminology: we refer to “requests” in place
of “transactions”. A sequence of versions is associated with each data item. In
FACADE, we treat each attribute of each object as a data item. Each version v
has a value v.value, a write timestamp v.wts (the timestamp of the request that
created v), and a read timestamp v.rts (the largest timestamp of any request
that successfully read v). Each request req is assigned a timestamp req.ts. Let
v denote the most recent version of x.attr whose timestamp is at most req.ts. A
read of x.attr by req returns v.value. A write by req requires a conflict check: if
req.ts < v.rts, then req aborts and restarts; if req.ts == v.wts, then the value of
v is overwritten; otherwise (if req.ts > v.rts), a new version of x.attr is created.
Note that reads never cause aborts, and read-only transactions always commit.

To support conflict checking, each coordinator maintains a data structure
containing the read timestamp and write timestamp of every version of an
attribute created during the coordinator’s current session (i.e., since the coordi-
nator process started running). This data structure does not store the value of

Fast Distributed Evaluation of Stateful ABAC Policies 105

each version, since it is not needed for conflict checking. Entries for old versions
can be garbage-collected; details are straightforward and omitted. Although this
data structure has some information overlap with cachedUpdates, we keep the
two data structures separate for clarity, because they serve different purposes.

This data structure is accessed using two functions. getVersion(x,attr,ts)
returns the most recent version of x.attr written at or before ts; if no such version
exists, it returns a special version v with v.wts = 0 and v.rts = 0, representing
the last version written in the previous session (any timestamp guaranteed to
precede all timestamps generated in the current session is safe; 0 is a convenient
choice). addVersion(x,attr,ts) creates and stores a version of x.attr with write
timestamp and read timestamp equal to ts.

Database. To avoid use of a heavyweight multi-phase commit protocol in the
database, we assume a database that supports master-slave (also called primary-
secondary) replication, in which updates are committed at one replica, called
the master or primary, and the updates are visible at the other replicas, called
slaves or secondaries, within a known time limit, called the database latency.
This assumption is satisfied by the replication schemes in popular databases,
such as primary-secondary replication in MongoDB and master-slave replication
in MySQL. Loose bounds on the database latency are sufficient: the size of the
database latency has little effect on FACADE’s performance, mainly affecting
how long updates are cached by coordinators. Since distributed concurrency con-
trol is provided by the coordinators, it does not matter what, if any, centralized
concurrency control scheme is used by the master replica of the database.

FACADE masks the database latency in the same way as Decat et al.’s
algorithm. Each coordinator maintains a LRU cache of recent committed updates
to objects it manages, and it piggybacks on each request (when forwarding the
request to a coordinator or worker) the cached updates for objects it manages
that are involved in the request. Each cached update specifies a write timestamp
as well as an attribute and its new value. A cached update is never evicted before
the current time exceeds the update’s write timestamp plus the database latency.
The cache is accessed using the function cachedUpdates(x), which returns the
set of cached updates to x.

FACADE needs to store multiple versions of objects in the database. This can
easily be done in any database, by including a “version” column in the database
schema. Our implementation using MySQL works this way.

Request Objects. We model requests as objects with fields subject, resource, ts
(timestamp), cachedUpdates[i] (i = 1 and i = 2 for piggybacked cached updates
to subject and resource, respectively), worker (worker selected to evaluate this
request), and evalResult (result of evaluating the request, described below).

Policy Language. FACADE is independent of the details of the policy language.
Any ABAC policy language can be used, provided it can express updates. For
example, XACML can be used, with updates expressed as obligations, as in

106 T. Bui et al.

[8,20]. Details of the policy language are abstracted behind an interface contain-
ing a single function evaluateRequest(policy,request) that returns an EvalResult
object with these fields: decision (permit or deny), readAttr[i] (i = 1 and i =
2 for the set of attributes of the subject and resource, respectively, read dur-
ing evaluation of the request), updatedObj (the index of the updated object,
if any, otherwise −1), rdonlyObj (if updatedObj > 0, this is the index of the
other object, otherwise −1), and updates (set of attribute-value pairs, specifying
updates to updatedObj). The index values are interpreted as: 1 = subject, 2 =
resource. evaluateRequest evaluates the request using attribute values current
as of req.ts, reading values from req.cachedUpdates when they exist, otherwise
reading values from the database using queries with timestamp req.ts.

Bounds on Attribute Accesses. Our algorithm can exploit bounds on attribute
read and written by requests, when available, to improve performance. In par-
ticular, for a request r, for each object x that might be accessed by r (namely,
the subject and resource), the client stub provides (1) a lower bound on the set
of attributes of x that will definitely be read by r, (2) an upper bound on the set
of attributes of x that might be read by r, and (3) an upper bound on the set of
attributes of x that might be updated by the request. It is always safe to use the
trivial bounds, i.e., the empty set for (1) and the set of all attributes for (2) and
(3). When tighter bounds are available for (1), the algorithm can sometimes use
them to conclude that a request definitely conflicts with an in-progress request
r, without waiting to learn the exact set of attributes read by r. When tighter
bounds are available for (2) and (3), the algorithm can sometimes use them
to conclude that two requests involving the same object access disjoint sets of
attributes and hence cannot conflict, without waiting to learn the exact sets of
attributes they accessed. Note that these situations arise only in the typically
small fraction of cases that two concurrent requests access the same object, and
at least one of the requests is not known to be read-only.

Tighter bounds can often be obtained from basic knowledge about the request
and the policy. The code or rules defining these bounds could be written manually
for small systems or generated by a straightforward static analysis of the access
control policy, based on the types of object and type of action in each rule and
the names of the attributes read and written by each rule. For example, consider
an access control system for an online video service, in which requests to play
a video are subject to usage control to limit the number of views, and all other
requests (browsing the video catalog, paying for a video, account maintenance,
etc.) are not. In this system, a client can identify a request as read-only if the
resource type is not “video” or the action is not “play”.

These bounds are provided by defining (possibly using trivial bounds) the
following policy-specific functions, where x is req.subject or req.resource.
– defReadAttr(x, req) is a set of attributes of x definitely read by req.
– mightReadAttr(x, req) is an upper bound on the set of attributes of x that

might be read by req (including definitely read attributes).
– mightWriteAttr(x, req) is an upper bound on the set of attributes of x that

might be updated by req.

Fast Distributed Evaluation of Stateful ABAC Policies 107

client coordS coordR worker
request request, … request, …

decision

conflict
check

result
conflict
checkoutcome

result

client coord1 coord2 worker
request request, … request, …
decision

readAttr
readAttr

client coordR coordW worker
request request, … request, …

decision
readAttr

result
conflict
check

client coordW coordR worker
request request, … request, …

decision
readAttr

result
conflict
check

Fig. 1. Sequence diagrams. Top left: Decat et al.’s algorithm. Top right: FACADE
for read-only request. Thick and thin solid lines are non-local and local messages,
respectively, on the critical path. Dashed lines are messages not on the critical path.
Bottom left: FACADE for read-write request, when client correctly predicts a read-only
object. Bottom right: FACADE for read-write request, when client incorrectly predicts
a read-only object.

Sequence Diagrams. We give brief overviews of Decat et al.’s algorithm and our
algorithm, focusing on the message patterns shown in the sequence diagrams in
Fig. 1. The sequence diagrams show the common case in which the request does
not restart due to a conflict and the two objects accessed by the request are
managed by coordinators on different servers. Accesses to the database are not
shown; they are the same for Decat et al.’s algorithm and FACADE.

Overview of Decat et al.’s Algorithm. In Decat et al.’s algorithm, the client sends
the request to coordS, the coordinator for the subject of the request. coordS
updates data structures used for conflict detection and then forwards the request
(with piggybacked cached committed updates) to coordR, the coordinator for
the resource of the request, which does the same and then forwards to the request
to a worker on the same server. The worker evaluates the request and then sends
the result to coordS. coordS checks for conflicts involving the subject; specifically,
it checks whether any attribute of the subject read by the request was updated
after it forwarded the request to coordR (any such update was not piggybacked
on the request and hence might not have been used in its evaluation). If there
is no conflict, it forwards the result to coordR, which performs a similar conflict
check and, if there is no conflict, commits the updates (if any) to the resource,
and then sends the outcome of the conflict check to coordS. coordS commits

108 T. Bui et al.

the updates to the subject and then sends the decision to the client. If either
coordinator detects a conflict, the request is restarted. After coordS sends the
result to coordR and before it receives the outcome of coordR’s conflict check,
it treats the request’s updates to the subject specially, as tentative updates; for
details, see [8].

Overview of FACADE for Read-Only Requests. The client sends the request to
coord1, the coordinator for one of the objects accessed by the request (either
one is fine). coord1 updates data structures used for conflict detection and then
forwards the request (with piggybacked cached committed updates) to coord2,
the coordinator for the other object accessed by the request. coord2 updates its
data structures and forwards the request to the worker. The worker evaluates the
request, sends the decision to the client, and sends the sets of read attributes of
the subject and resource to their respective coordinators, which update the read
timestamps of the read versions. It is safe for the worker to send the decision
directly to the client, because read-only requests never abort in FACADE.

Note that this message pattern is used for any request that turns out to
be read-only, regardless of whether this is known in advance, i.e., regardless of
whether mightWriteAttr is empty for either object involved in the request.

Overview of FACADE for Read-Write Requests. When the client sends the
request to the coordinator for an object not updated by the request, we say
that the client correctly predicts a read-only object for the request. This is guar-
anteed if mightWriteAttr returns an empty set for at least one object involved
in the request, and has 50% probability otherwise. It is preferable for the client
to send the request to such a coordinator, denoted coordR, because the worker
sends the evaluation result to the coordinator for the updated object, denoted
coordW, and that result message is local if the worker is co-located with coordW,
which happens if coordR receives the request from the client and forwards it to
coordW. If mightWriteAttr returns a non-empty set for both objects, then the
client arbitrarily selects a coordinator to which to send the request. If that turns
out to be coordW, we say that the client incorrectly predicts a read-only object
for the request. The only consequence is that the worker’s result message is a
network message instead of a local message.

When the client correctly predicts a read-only object for the request, the
client sends the request to the coordinator for that object, denoted coordR.
coordR updates data structures used for conflict detection and then forwards the
request (with piggybacked cached committed updates) to coordW. The worker
evaluates the request and sends the result, including the decision and the sets
of read and written attributes of the subject and resource, to coordW. coordW
checks for conflicts; specifically, it checks whether any attribute updated by
this request was read by a request with a later timestamp. Even if there is no
conflict yet, a conflict could arise later, involving a request with a later timestamp
that has already been forwarded and might read the attribute. A set of such
requests, called “pending might read requests”, is associated with each version
of an attribute. The worker waits until there are no such pending might read

Fast Distributed Evaluation of Stateful ABAC Policies 109

requests and then checks for conflicts again. If there is no conflict, it commits
the updates, sends the decision to the client, and sends the set of read attributes
of the other object to the other coordinator.

When the client incorrectly predicts a read-only object for the request, the
message pattern is the same, except that coordW receives the request first and
then forwards it to coordR, and the evaluation result message from the worker
to coordW is a network message instead of a local message.

Handling of Requests Known to be Read-Only. A request req is known to be read-
only iff mightWriteAttr(req.subject, req) and mightWriteAttr(req.resource, req)
are empty. Handling of requests known to be read-only is described separately
from handling of other requests, for ease of understanding, although the two are
similar in places, and the code for them is integrated in our implementation.
Handling of requests known to be read-only follows the pseudocode in Fig. 2.
The pseudocode syntax is generally Python-like, except we denote tuples using
angle brackets instead of parentheses. Implicitly, coarse-grain locking is used to
ensure that coordinators process each incoming message atomically, i.e., without
interruption by processing of other messages (as an optimization, finer-grained
locking could be used).

Handling of Read-Write Requests. Handling of other requests follows the
pseudocode in Figs. 3 and 4.

Liveness. The algorithm presented in the pseudocode is deadlock-free: the
inequality on timestamps in the await statement in Fig. 4 ensures that two
requests cannot be stuck waiting for each other. However, it can starve some
read-write requests. For example, a long stream of reads to an attribute x.attr
can cause the condition in the await statement in Fig. 4 to remain true for a
long time, causing a pending update to x.attr to starve. The underlying reason
is that FACADE gives precedence to reads over writes, in the sense that reads
never abort, and writes can be aborted due to conflicting reads.

To counter-balance this, and thereby help prevent starvation of writes, we
modify the algorithm to delay reads in two cases (these modifications are not
reflected in the pseudocode). (1) After a coordinator c receives 〈“request”, req, 1〉
from a client, if req might update req.obj[1], c delays processing of incoming
requests that potentially conflict with req (temporarily storing them in a queue)
until c determines the outcome (commit or restart) of the current execution
of req, at which time c processes the delayed requests normally. An incoming
request req2 potentially conflicts with req if req2 might read an attribute that
req might update. (2) After a coordinator c receives an evaluation result mes-
sage 〈“result”, req〉 that includes updates to an object x managed by c, while c is
waiting for the await condition to become true, c delays processing of incoming
requests that potentially conflict with those updates until c determines the out-
come (commit or restart) for req, at which time c processes the delayed requests
normally An incoming request req2 potentially conflicts with the updates if req2
might read one of the updated attributes. Note that these two kinds of delays

110 T. Bui et al.

Fig. 2. Handling of requests known to be read-only.

cannot lead to deadlock (i.e., to circular wait), because the delayed requests are
younger than req.

Decat et al.’s algorithm can also starve requests. It gives precedence to writes
over reads, in the sense that writes never abort, and reads can be aborted because
of conflicting writes. Consequently, long streams of writes can starve read-only

Fast Distributed Evaluation of Stateful ABAC Policies 111

Fig. 3. Handling of requests not known to be read-only, part 1.

and read-write requests. Their algorithm does not incorporate any mechanism to
compensate for this. This is probably acceptable for workloads in which writes
are infrequent relative to reads.

Optimizations. Our implementation incorporates the following optimizations
that are not reflected in the pseudocode. (1) If the same coordinator is respon-
sible for both objects involved in a request, then the coordinator performs the
processing for both objects together, without sending itself a message in between.

112 T. Bui et al.

Fig. 4. Handling of requests not known to be read-only, part 2.

Fast Distributed Evaluation of Stateful ABAC Policies 113

(2) The await statement in Fig. 4 waits for all relevant pending reads to com-
plete before checking whether any of them conflict with the pending update.
As an optimization, when each relevant pending read completes, the coordi-
nator immediately checks whether it conflicts with the pending update, and if
so, immediately restarts the request performing the update. (3) To reduce the
number of database queries, workers piggyback data read from the database on
messages sent to coordinators, and coordinators add it to the data structure that
caches recent committed updates. Note that caching of attribute data is done
only by coordinators, not workers, because a coordinator performs all updates
to objects it manages and hence knows when cached data is stale (relative to a
specified request timestamp).

Fault-Tolerance. Like Decat et al. in [8], we focus in this paper on scalability and
leave detailed consideration of fault-tolerance for future work. We briefly sketch
how to extend our algorithm to tolerate crash failures. A fault-monitoring service
is needed to detect crashes and restart crashed processes. Requests that were in-
progress at the time of a crash might be dropped. If a client does not receive a
decision for a request in a reasonable amount of time, the client can re-submit
the request with the same identifier. If the request is read-only, the worker simply
re-evaluates it in the current state. If the request performs updates, the worker
checks whether the request already committed, and if so, re-sends the original
decision, otherwise re-evaluates the request in the current state. To support this,
when a coordinator commits the attribute updates for a request, it also inserts a
record containing the request id and decision in a request log table. The worker
looks up the request id in this table before evaluating a request.

3 Evaluation

Implementation. We implemented FACADE in DistAlgo [15,16], an extension
of Python with high-level communication and synchronization constructs. The
DistAlgo compiler5 translates DistAlgo into Python for execution. We also imple-
mented Decat et al.’s algorithm in DistAlgo, to allow a performance comparison
of the algorithms, not influenced by the performance of different programming
language implementations (Decat et al.’s implementation is in Scala). Our imple-
mentations of both algorithms are publicly available6. The experimental plat-
form consists of three desktop PCs with Intel Core 2 Quad processors (two at
2.83 GHz, one at 2.66 GHz), with Gigabit Ethernet NICs connected to a Gigabit
Ethernet switch, and running Windows 10 64-bit, Python 3.6, DistAlgo 1.0.9,
and MySQL 5.7.17.

Workload. The workload consists of pseudorandom sequences of requests. The
same seeds, hence the same workload, are used for corresponding experiments
with the two algorithms. Configuration parameters for each experiment include:
5 http://sourceforge.net/projects/distalgo/files/.
6 http://www.cs.stonybrook.edu/∼stoller/software/.

http://sourceforge.net/projects/distalgo/files/
http://www.cs.stonybrook.edu/~stoller/software/

114 T. Bui et al.

– nClient: number of clients. This is also the maximum number of concurrent
requests, since each client sends a request and waits for the response before
sending the next request.

– nWorker: number of workers per coordinator.
– nObj: number of objects in database. We use objects with 10 attributes, two

of which are mutable (i.e., might be updated by access control policy rules).
– nRequest: total number of requests (split evenly among the clients).
– pWrite: probability that a request is read-write; other requests are read-only.
– pSameCoord: probability that the two objects involved in a request have the

same coordinator. As discussed below, we emulate experiments with nCoord
coordinators using our platform with 2 coordinators by setting pSameCoord
= 1/nCoord.

– wrongWrite: flag controlling accuracy of client’s prediction of written objects.
wrongWrite = 0 means completely accurate. wrongWrite = 1 means the pre-
diction always includes an object not written by the request.

– wrongAttr: flag controlling accuracy of client’s prediction of accessed
attributes. wrongAttr = 0 means completely accurate. wrongAttr = 1 means
the predictions of read and written attributes contain all attributes and all
mutable attributes, respectively.

Latency. To evaluate how the performance, primarily latency, of FACADE would
depend on the number of coordinators in a system, we ran experiments anal-
ogous to the latency experiments in [8, Sect. 3.4, Fig. 9]. We use nClient = 1,
like they do, to measure the intrinsic latency of the algorithm, in the absence
of contention. In their experiment, latency is measured instead as a function of
the actual number of coordinators. However, the number of coordinators affects
the latency only indirectly, by affecting the probability that the same coordi-
nator is responsible for the two objects involved in the request. For clarity, we
measure the latency directly as a function of this probability, by making pSame-
Coord a workload parameter, as described above. This also allows us to use a
smaller platform for the experiments. Values of the other fixed workload para-
meters in these experiments are nWorker = 1, nObj = 1000, nRequest = 5000
and pWrite = 0.1. For FACADE, we repeat the experiments for each of the four
possible combinations of values of wrongWrite and wrongAttr. Figure 5 shows
average latency per request and average number of network messages sent per
request for FACADE and Decat et al.’s algorithm. When pSameCoord is 0.5 or
less, corresponding to deployments with 2 or more coordinators, FACADE has
lower latency and sends fewer network messages than Decat et al.’s algorithm.
FACADE’s lower latency stems from using fewer network messages and fewer
database queries (due to optimization (3)). Deployments in large systems would
probably use around 10 coordinators, as in Decat et al.’s experiments. This cor-
responds to pSameCoord = 0.1, for which the average latency of FACADE is
less than half the average latency of Decat et al.’s algorithm (37.7 ms compared
to 91.1 ms), and the average network messages per request is 3.8 for FACADE
vs. 5.6 for Decat et al.’s algorithm. This is true regardless of whether accurate

Fast Distributed Evaluation of Stateful ABAC Policies 115

Fig. 5. Average latency per request (left) and average number of network messages per
request (right) as a function of pSameCoord.

prediction of accessed attributes and written objects is possible. More gener-
ally, we see that incorrect prediction of accessed attributes and written objects
have negligible effect on these results. We also see that the average latency of
FACADE is almost independent of pSameCoord; this is because local process-
ing time accounts for much of the latency, and the average number of network
messages per request changes less for FACADE than Decat et al.’s algorithm.

Throughput. To evaluate throughput, we ran experiments analogous to the
performance experiments in [8, Sect. 4.4, Fig. 13]. To determine the maximum
throughput of each algorithm, we ran experiments with increasing numbers of
clients, until the throughput plateaus. For each value of nClient, we ran experi-
ments with increasing numbers of workers, until throughput plateaus. We then
used the value of nWorkers determined for the largest value of nClient in exper-
iments with all smaller values of nClient, since we wanted only one workload
parameter to vary in the final results. For FACADE with wrongWrite = 0 and
wrongAttr = 0, we found nClient = 23 and nWorker = 4 provided the maximum
throughput of 344 requests/second, with mean latency of 65.5 ms. For Decat
et al.’s algorithm, we found nClient = 19 and nWorker = 14 provided the max-
imum throughput of 318 requests/second, with mean latency of 79.5 ms. Values
of the other fixed workload parameters are nObj = 1000, nRequest = 5000,
pWrite = 0.1 and pSameCoord = 0.1. Figure 6 shows average throughput as a
function of nClient for Decat et al.’s algorithm and FACADE. For FACADE,
average throughput is shown for each of the four possible combinations of values
of wrongWrite and wrongAttr. We see that FACADE achieves higher maximum
throughput than Decat et al.’s algorithm in most cases in these experiments.
We also see that FACADE’s throughput is more sensitive than its latency to the
accuracy of predictions of accessed attributes and written objects.

Local Processing Time. The CPU time per request for coordinators is similar
for FACADE and Decat et al.’s algorithm. The CPU time per request for work-
ers is roughly double for FACADE compared to Decat et al.’s algorithm, due

116 T. Bui et al.

Fig. 6. Average throughput as a function of nClient for Decat et al.’s algorithm (left)
and FACADE (right).

to versioning and piggybacking data read from the database on messages to
coordinators (i.e., optimization (3)). Local processing is a significant fraction of
the overall latency (and throughput is relatively low in absolute terms), because
Python is relatively slow. If both algorithms were implemented in a faster lan-
guage such as C++, local processing would be a smaller part of the overall
latency, and the ratio of average latency for FACADE to average latency for
Decat et al.’s algorithm would be even smaller than in our experiments.

Performance with Different Write Probabilities. To evaluate the effect of pWrite
on performance, we also ran the latency experiments and throughput experi-
ments (described in the Latency and Throughput paragraphs above, respectively)
with pWrite = 0.0 (i.e., all requests are read-only) and pWrite = 0.2. We con-
sider pWrite = 0.1 to be a realistic value and pWrite = 0.2 to be on the high side
of the realistic range. pWrite = 0.0 is a natural boundary value to consider; it is
also the best case for both algorithm’s performance. For the latency experiments,
the results with pWrite = 0.0 and pWrite = 0.2 are almost the same as those
described above for pWrite = 0.1, because writes have little effect on performance
when there are no conflicts, and there are no conflicts in experiments with only
one client. For the throughput experiment with pWrite = 0.0, for FACADE, we
found nClient = 24 and nWorker = 8 provided the maximum throughput of
412 requests/second, with mean latency of 56.6 ms; for Decat et al.’s algorithm,
we found nClient = 24 and nWorker = 9 provided the maximum throughput of
373 requests/second, with mean latency of 62.0 ms. For throughput experiment
with pWrite = 0.2, for FACADE, we found nClient = 24 and nWorker = 2 pro-
vided the maximum throughput of 303 requests/second, with mean latency of
77.4 ms; for Decat et al.’s algorithm, we found nClient = 25 and nWorker = 4
provided the maximum throughput of 283 requests/second, with mean latency
of 86.8 ms. Thus, FACADE’s maximum throughput is 11%, 8%, and 7% higher
than Decat et al.’s algorithm’s maximum throughput when pWrite = 0.0, 0.1,
and 0.2, respectively, and FACADE has lower latency in all three experiments.

Fast Distributed Evaluation of Stateful ABAC Policies 117

Performance with More Conflicts. To evaluate the effect of a higher conflict rate
on performance, we also ran the throughput experiments with an unrealistically
small number of objects; decreasing nObj is the simplest way to increase the
conflict rate. Specifically, we reduced nObj from 1000 (a more realistic value)
to 200 (an unrealistically small value) for these experiments. Other workload
parameters, including nClient and nWorker, are the same as described above for
the throughput experiments. For FACADE with wrongWrite = 0 and wron-
gAttr = 0, the number of restarts due to conflicts increased from 1 to 16,
throughput decreased from 344 to 295 requests/second, and average latency
increased from 65.5 to 75.9 ms. For Decat et al.’s algorithm, the number of
restarts due to conflicts increased from 1 to 6, throughput decreased from 318
to 305 requests/second, and average latency increased from 79.5 to 81.7 ms.
Although FACADE is more sensitive than Decat et al.’s algorithm to this change,
FACADE’s performance is still competitive, with 3% lower throughput and 7%
lower latency than Decat et al.’s algorithm.

4 Related Work

Decat et al.’s work in [8] is the most closely related and is discussed in previous
sections.

Chadwick describes a distributed architecture for a XACML-based stateful
policy framework, consisting of multiple policy decision points (PDPs) inter-
acting with a centralized database containing the mutable state [6]. Each PDP
locks all relevant rows in the database before evaluating a request. The design
has limited scalability, due to the centralized database and locking.

Alzahrani et al. describe a similar distributed architecture [1], without com-
mitting to a specific approach to storage of the state. They briefly mention a
few alternatives, e.g., in a centralized database, or replicated at or partitioned
among the PDPs, but do not discuss any of them in detail.

Dhankhar et al. consider evaluation of stateful distributed XACML policies.
Different PDPs have different policies, and the policies can refer to each other
[9]. Concurrency control is provided by a centralized lock manager. Each PDP
locks all relevant attributes before evaluating a request. The centralized lock
manager limits scalability of their design.

Kelbert and Pretschner describe a fault-tolerant decentralized infrastructure
for enforcement of usage control policies [14]. They rely on the database, Cassan-
dra (see Foonote 2), for concurrency control. As mentioned in Sect. 1, Cassandra
provides serializability only for single-row transactions, so their system does not
support serializable evaluation of requests involving attributes of two objects.

Weber et al. present a framework for stateful access control policies in dis-
tributed systems based on weakly consistent replication of the state, as provided
by eventually consistent data stores [22]. In contrast, our design is based on the
traditional notion of strong consistency. When weak consistency is acceptable,
it potentially allows more fault-tolerance and scalability. They do not present a
completed implementation or any performance results.

118 T. Bui et al.

Acknowledgments. We thank M. Decat for explaining the details of [8].

References

1. Alzahrani, A., Janicke, H., Abubaker, S.: Decentralized XACML overlay network.
In: Proceedings of the 10th IEEE International Conference on Computer and Infor-
mation Technology (CIT 2010), pp. 1032–1037. IEEE Computer Society (2010)

2. American National Standards Institute (ANSI), International Committee for Infor-
mation Technology Standards (INCITS): Role-based access control. ANSI INCITS
Standard, pp. 359–2004, February 2004

3. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In:
Proceedings 22nd IEEE Computer Security Foundations Symposium (CSF), pp.
203–217. IEEE Computer Society (2009)

4. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM
Trans. Inf. Syst. Secur. 13(3), 20:1–20:28 (2010)

5. Brewer, D.F.C., Nash, M.J.: The Chinese wall security policy. In: Proceedings of
the 1989 IEEE Symposium on Security and Privacy, pp. 206–214. IEEE Computer
Society (1989)

6. Chadwick, D.: Coordinated decision making in distributed applications. Inf. Secur.
Tech. Rep. 12, 147–154 (2007)

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. 26(2), 4:1–4:26 (2008)

8. Decat, M., Lagaisse, B., Joosen, W.: Scalable and secure concurrent evaluation of
history-based access control policies. In: Proceedings of the 31st Annual Computer
Security Applications Conference (ACSAC 2015), pp. 281–290. ACM (2015)

9. Dhankhar, V., Kaushik, S., Wijesekera, D., Nerode, A.: Evaluating distributed
XACML policies. In: Proceedings of the 4th ACM Workshop On Secure Web Ser-
vices (SWS 2007), pp. 99–110. ACM (2007)

10. Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile
code. In: Proceedings of the 5th ACM Conference on Computer and Communica-
tions Security (CCS 1998), pp. 38–48. ACM (1998)

11. Gama, P., Ribeiro, C., Ferreira, P.: A scalable history-based policy engine. In:
Proceedings of the 7th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2006), pp. 100–112. IEEE Computer Society
(2006)

12. Gay, R., Mantel, H., Sprick, B.: Service automata. In: Barthe, G., Datta, A., Etalle,
S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 148–163. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29420-4 10

13. ISO/IEC: Information technology – open systems interconnection – security frame-
works for open systems: access control framework. ISO/IEC Standard 10181–
3:1996, International Organization for Standardization (2006)

14. Kelbert, F., Pretschner, A.: A fully decentralized data usage control enforcement
infrastructure. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M.
(eds.) ACNS 2015. LNCS, vol. 9092, pp. 409–430. Springer, Cham (2015). doi:10.
1007/978-3-319-28166-7 20

15. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-
rithms. ACM Trans. Program. Lang. Syst. 39(3), 395–410 (2017)

http://dx.doi.org/10.1007/978-3-642-29420-4_10
http://dx.doi.org/10.1007/978-3-319-28166-7_20
http://dx.doi.org/10.1007/978-3-319-28166-7_20

Fast Distributed Evaluation of Stateful ABAC Policies 119

16. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for dis-
tributed algorithms. In: Proceedings of the 2012 ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA),
pp. 395–410. ACM Press, October 2012

17. Lobo, J., Ma, J., Russo, A., Lupu, E., Calo, S., Sloman, M.: Refinement of history-
based policies. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 280–
299. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20832-4 18

18. Martinelli, F., Matteucci, I., Mori, P., Saracino, A.: Enforcement of U-XACML
history-based usage control policy. In: Barthe, G., Markatos, E., Samarati, P.
(eds.) STM 2016. LNCS, vol. 9871, pp. 64–81. Springer, Cham (2016). doi:10.
1007/978-3-319-46598-2 5

19. Nguyen, D., Park, J., Sandhu, R.S.: A provenance-based access control model for
dynamic separation of duties. In: Eleventh Annual International Conference on
Privacy, Security and Trust (PST 2013), pp. 247–256. IEEE Computer Society
(2013)

20. Park, J., Sandhu, R.: The uconabc usage control model. ACM Trans. Inf. Syst.
Secur. 7(1), 128–174 (2004)

21. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 6th edn.
McGraw-Hill, New York (2011)

22. Weber, M., Bieniusa, A., Poetzsch-Heffter, A.: Access control for weakly consis-
tent replicated information systems. In: Barthe, G., Markatos, E., Samarati, P.
(eds.) STM 2016. LNCS, vol. 9871, pp. 82–97. Springer, Cham (2016). doi:10.
1007/978-3-319-46598-2 6

http://dx.doi.org/10.1007/978-3-642-20832-4_18
http://dx.doi.org/10.1007/978-3-319-46598-2_5
http://dx.doi.org/10.1007/978-3-319-46598-2_5
http://dx.doi.org/10.1007/978-3-319-46598-2_6
http://dx.doi.org/10.1007/978-3-319-46598-2_6

Privacy

Gaussian Mixture Models for Classification and
Hypothesis Tests Under Differential Privacy

Xiaosu Tong1, Bowei Xi2(B), Murat Kantarcioglu3, and Ali Inan4

1 Amazon, Seattle, WA, USA
xiaosutong@gmail.com

2 Department of Statistics, Purdue University, West Lafayette, IN, USA
xbw@purdue.edu

3 Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
muratk@utdallas.edu

4 Department of Computer Engineering,
Adana Science and Technology University, Adana, Turkey

ainan@adanabtu.edu.tr

Abstract. Many statistical models are constructed using very basic
statistics: mean vectors, variances, and covariances. Gaussian mixture
models are such models. When a data set contains sensitive information
and cannot be directly released to users, such models can be easily con-
structed based on noise added query responses. The models nonetheless
provide preliminary results to users. Although the queried basic statistics
meet the differential privacy guarantee, the complex models constructed
using these statistics may not meet the differential privacy guarantee.
However it is up to the users to decide how to query a database and
how to further utilize the queried results. In this article, our goal is to
understand the impact of differential privacy mechanism on Gaussian
mixture models. Our approach involves querying basic statistics from a
database under differential privacy protection, and using the noise added
responses to build classifier and perform hypothesis tests. We discover
that adding Laplace noises may have a non-negligible effect on model
outputs. For example variance-covariance matrix after noise addition is
no longer positive definite. We propose a heuristic algorithm to repair
the noise added variance-covariance matrix. We then examine the classi-
fication error using the noise added responses, through experiments with
both simulated data and real life data, and demonstrate under which
conditions the impact of the added noises can be reduced. We compute
the exact type I and type II errors under differential privacy for one sam-
ple z test, one sample t test, and two sample t test with equal variances.
We then show under which condition a hypothesis test returns reliable
result given differentially private means, variances and covariances.

Keywords: Differential privacy · Statistical database · Mixture model ·
Classification · Hypothesis test

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 123–141, 2017.
DOI: 10.1007/978-3-319-61176-1 7

124 X. Tong et al.

1 Introduction

Building a model over a data set is often a straightforward task. However, when
the data set contains sensitive information, special care has to be taken. Instead
of having direct access to data, the users are provided with a sanitized view of
the database containing private information, either through perturbed individual
records or perturbed query responses.

From users’ perspective, knowing the responses to their queries are perturbed,
users may not want to directly query the output of a complex model. Many
statistical models are constructed using very basic statistics. Knowing the val-
ues of means, variances and covariances, or equivalently the sums, the sums of
squares and the sums of cross products, users can build least square regression
models, conduct principal component analysis, construct hypothesis tests, and
construct Bayesian classifiers under Gaussian mixture models, etc. Although the
basic statistics (e.g., means, variances and covariances) satisfy differential pri-
vacy guarantee, the complex models constructed using these basic statistics may
no longer meet the differential privacy guarantee.

We notice it is up to the users to decide how to query a database and how
to further utilize the queried results. Building statistical models using the per-
turbed basic statistics provides quick initial estimates. If the results based on
the perturbed query responses are promising, users can then proceed to improve
the accuracy of the results.

In this article, our goal is to understand the impact of differential privacy
mechanism for the mixture of Gaussian models. Gaussian mixture models refer
to the case where each model follows multivariate Gaussian distribution. Hence
users only need to obtain the mean vector and the variance-covariance matrix for
each class. Out of all the statistical techniques that can be applied to Gaussian
mixture models without further querying the database, we focus on building
a classifier or performing a hypothesis test with the noisy responses. Through
extensive experiments and theoretical discussions, we show when the classifiers
and tests work reliably under privacy protection mechanism, in particular, dif-
ferential privacy.

k-anonymity [17,18,20] and differential privacy [5] are two major privacy
preserving models. Under k-anonymity model the perturbed individual records
are released to the users, while under differential privacy model the perturbed
query responses are released to the users. Recent work pointed out the two
privacy preserving models are complimentary [3]. Main contributions of this
article could be summarized as follows:

1. We provide theoretical results on the type I and type II errors under differ-
ential privacy for several hypothesis tests. We also show when a hypothesis
test returns reliable result under differential privacy mechanism.

2. We propose a heuristic algorithm to repair the noise added variance-
covariance matrix, which is no longer positive definite and cannot be directly
used in building a Bayesian classifier.

Gaussian Mixture Models for Classification and Hypothesis Tests 125

3. We examine the classification error for the multivariate Gaussian case through
experiments. The experiments demonstrate when the impact of the added
noise can be reduced.

The rest of the paper is organized as follows. Section 1.1 provides a brief
overview of differential privacy mechanism. Related work is discussed in Sect. 2.
Section 3 provides theoretical results for hypothesis tests under differential pri-
vacy. In Sect. 4 we provide an algorithm to repair the noise added variance-
covariance matrix, and study the classification error through extensive experi-
ments. Section 5 concludes our discussion.

1.1 Differential Privacy

Let D = {X1, · · · ,Xd} be a d-dimensional database with n observations, where
the domain of each attribute Xi is continuous and bounded. We are interested in
building Gaussian mixture models over database D. One only needs to compute
the expected values of each attribute Xi and the variance-covariance matrix,
Σij = cov(Xi,Xj) = E[(Xi − μi)(Xj − μj)], where μi = E(Xi). More details
follow in Sect. 4. Users obtain the values of μis and Σijs by querying the database
D. The query results are perturbed according to differential privacy mechanism.
Next we briefly review differential privacy.

Given a set of queries Q = {Q1, ..., Qq}, Laplace mechanism for differential
privacy adds Laplace noise with parameter λ to the actual value. λ is deter-
mined by privacy parameter ε and sensitivity S(Q). Here, ε is a pre-determined
parameter, selected by the database curator, while sensitivity S(Q) is a func-
tion of the query Q. Hence differential privacy mechanism minimizes the risk of
identifying individual records from a database containing sensitive information.

Sensitivity is defined over sibling databases, which differ in only one obser-
vation.

S(Q) = max
∀ sibling databases D1,D2

q∑

i=1

|QD1
i − QD2

i | (1)

That is, sensitivity of Q is the maximum difference in the L1 norm of the query
response caused by a single record update. Sensitivities for standard queries,
such as sum, mean, variance-covariance are well established [6].

Once ε and S(Q) are known, λ is set such that λ ≥ S(Q)/ε. Then for
each query Q, the database first computes the actual value QD in D, then
adds Laplace noise to obtain the noisy response RD, and return RD to users:
RD = QD + r, where r ∼ Laplace(λ). There have been many work on sensitiv-
ity analysis. For querying mean, variance and covariance, we use the sensitivity
results as in [22] in this article. Later in the experimental studies, the Laplace
noises are added according to the results in [22]. Although there are other tech-
niques to satisfy differential privacy (e.g., exponential mechanism [16]), for the
three basic queries needed to build Gaussian mixture models, we leverage the
Laplace mechanism discussed above.

126 X. Tong et al.

2 Related Work

Gaussian mixture models are widely used in practice [4,9]. Differential privacy
mechanism [5] models the database as a statistical database. Random noises
are added to the responses to user queries. The magnitude of random noise is
proportional to the privacy parameter ε and the sensitivity of the query set.
Different formulations of differential privacy have been proposed. One definition
of sensitivity consider sibling data sets that have the same size but differ in
one record [5,7]. Other studies have sibling data sets through insertion of a new
record sets [6]. We follow the formulation in [5] in this article.

Classification under differential privacy has received some attention. In [8],
Friedman et al. built a decision tree, a method of ID3 classification, through
recursive queries retrieving the information gain. Jagannathan et al. [10] built
multiple random decision trees using sum queries. [1] proposed perturbing the
objective function before optimization for empirical risk minimization. The lower
bounds of the noisy versions of convex optimization algorithms were studied.
Privacy preserving optimization is an important component in some classifiers,
such as regularized logistic regression and support vector machine (SVM). [12]
extended the results in [1], and also proposed differentially private optimiza-
tion algorithms for convex empirical risk minimization. [19] proposed a privacy
preserving mechanism for SVM.

In [14] every component in a mixture population follows a Gaussian mixture
distribution. A perturbation matrix was generated based on a gamma distrib-
ution. Gamma perturbations were included in the objective function as multi-
pliers, and a classifier was learned through maximizing the perturbed objective
function. On the other hand, we consider classifiers that can be constructed using
very basic statistics, i.e., means, variances and covariances, and show how their
performance is affected by the added noises. In this article, we present Bayes
classifiers based on Gaussian mixture models by querying the mean vector and
the variance-covariance matrix for each class.

[2] proposed an algorithm using a Markov Chain Monte Carlo procedure
to produce principal components that satisfy differential privacy. It is a dif-
ferentially private lower rank approximation to a semi-positive definite matrix.
Typically the rank k is much smaller than the dimension d. [11] also proposed an
algorithm to produce differentially private low rank approximation to a positive
definite matrix. [15] focused on producing recommendations under differential
privacy. In [15], the true ratings were perturbed. A variance-covariance matrix
was computed using the perturbed ratings; noises were added to the resulting
matrix; then a low rank approximation to the noise added matrix was computed.
Compared to the existing work, we focus on the scenario where all the variables
are used to learn a variance-covariance matrix and the subsequent classifier and
dimension reduction is not needed.

[13] proposed the differentially private M-estimators, such as sample quan-
tiles, maximum likelihood estimator, based on the perturbed histogram. Our
work has a different focus. We examine the classifiers and hypothesis tests con-
structed using the differentially private sample means, variances and covariances.

Gaussian Mixture Models for Classification and Hypothesis Tests 127

[21] derived rules for how to adjust sample sizes to achieve a pre-specified power
for Pearson’s χ2 test of independence and the test of sample proportion. For
the second test, when sample size is reasonably large, the sample proportion
is approximately normally distributed. [21] developed sample size adjustment
results based on the approximate normal distribution. Our work provides theo-
retical results to compute the exact type I and type II errors for one sample z
test, one sample t test, and two sample t test. Both type I and type II errors are
functions of ε and n. Hence with a known ε value users can obtain a minimum
sample size required to achieve a pre-specified power while the exact type I error
is controlled by a certain upper bound.

3 Hypothesis Tests Under Differential Privacy

Differential privacy mechanism has a big impact on hypothesis tests because the
test statistic is now created using the noise added query results, and hypothesis
tests often apply to data with smaller sample size than classification. Next we
provide the distributions for the noise added test statistic under the null value
and an alternative value.

Only when we know the true λs for the Laplace noises, we can numerically
compute the exact p-value given a noise added test statistic. The true λs are
unknown to the users querying a database. Hence in this section we examine a
more realistic scenario: A rejection region is constructed using the critical values
from a Gaussian distribution or a t distribution as usual, users compute a test
statistic using the noise added mean and variance, and make a decision. The
exact type I and type II errors can be computed numerically for likely ε values,
which provide a reliability check of the test for users. Here we show for what
sample size the exact type I and type II errors are close to those without the
added noises. We consider the most commonly used hypothesis tests: the one
sample z test, the one sample t test, the two sample t test with equal variance.

For the two sample t test with unequal variances, the degrees of freedom for
the standard test is also affected by the added Laplace noises. To construct a
rejection region and compute the exact type I and type II errors merits more
effort in this case. It is part of our future work.

3.1 One Sample z Test

Assume n samples Y1, Y2, ..., Yn i.i.d ∼ N(μ, σ2), where σ2 is known. The null
hypothesis is H0 : μ = μ0. We consider the common two-sided alternative
hypothesis Ha : μ �= μ0 or the one-sided Ha : μ > μ0 and Ha : μ < μ0.

The test statistic is based on the noise added sample mean. Ȳ a = Ȳ + r,
where r ∼ Laplace(λ). The test statistic under differential privacy is

Z =
Ȳ a − μ0

σ/
√

n
.

128 X. Tong et al.

Ȳ a follows a Gaussian-Laplace mixture distribution, GL(μ, σ2, n, λ). It has
the cumulative distribution function (CDF) Fa(y|μ) as follows.

Fa(y|μ) = Φ

(
y − μ

σ/
√

n

)
+

1
2

exp{y − μ

λ
+

σ2

2nλ2
}Φ

(
− y − μ

σ/
√

n
− σ

λ
√

n

)

− 1
2

exp{−y + μ

λ
+

σ2

2nλ2
}Φ

(
y − μ

σ/
√

n
− σ

λ
√

n

)
, (2)

where Φ(·) is the CDF of the unit Gaussian distribution.
We can easily derive the distribution of the test statistic under the null value

and an alternative value by re-scaling Ȳ a. However for the one sample z test
the computation of the exact type I and type II errors can be done in a simpler
fashion. Here and for the rest of this section we show the exact type I and type
II errors for the two-sided alternative Ha : μ �= μ0. The results for the one-sided
alternatives can be derived similarly.

Let α be the significance level of the test. Let zα
2

be the (1 − α
2) quantile of

the unit Gaussian distribution (i.e., the upper quantile). α and β are the type I
and type II errors for the standard test, without the added Laplace noise. For
the test under differential privacy, we have the exact type I error, αa, and type
II error, βa, as follows.

αa = P

(∣∣∣∣ Ȳ
a − μ0

σ/
√

n

∣∣∣∣ > z α
2

|H0

)
= 1 − Fa

(
μ0 + z α

2

σ√
n

| μ0

)
+ Fa

(
μ0 − z α

2

σ√
n

| μ0

)

= α + e

−z α
2

σ

λ
√

n
+ σ2

2nλ2 Φ

(
z α

2
− σ

λ
√

n

)
− e

z α
2

σ

λ
√

n
+ σ2

2nλ2 Φ

(
−z α

2
− σ

λ
√

n

)
,

βa = P

(∣∣∣∣ Ȳ
a − μ0

σ/
√

n

∣∣∣∣ < z α
2

|Ha

)
= Fa

(
μ0 + z α

2

σ√
n

| μa

)
− Fa

(
μ0 − z α

2

σ√
n

| μa

)

= β +
1

2
exp{

−z α
2

σ

λ
√

n
+

μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
−z α

2
+

μ0 − μa

σ/
√

n
+

σ

λ
√

n

)

+
1

2
exp{

z α
2

σ

λ
√

n
− μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
−z α

2
+

μ0 − μa

σ/
√

n
− σ

λ
√

n

)

− 1

2
exp{ σ2

2nλ2
+

μ0 − μa

λ
−

z α
2

σ

λ
√

n
} +

1

2
exp{ σ2

2nλ2
+

μ0 − μa

λ
+

z α
2

σ

λ
√

n
}

− 1

2
exp{

z α
2

σ

λ
√

n
+

μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
z α

2
+

μ0 − μa

σ/
√

n
+

σ

λ
√

n

)

− 1

2
exp{

−z α
2

σ

λ
√

n
− μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
z α

2
+

μ0 − μa

σ/
√

n
− σ

λ
√

n

)
.

3.2 One Sample t Test

Assume n samples Y1, Y2, ..., Yn i.i.d ∼ N(μ, σ2), where σ2 is unknown. The null
hypothesis is H0 : μ = μ0. The common alternative hypotheses are Ha : μ �= μ0,
Ha : μ > μ0, or Ha : μ < μ0. Suppose users query the sample mean and

Gaussian Mixture Models for Classification and Hypothesis Tests 129

the sample variance. Then the test statistic involves two noise added sample
statistics,

T a =
Ȳ a − μ0

Sa/
√

n
,

where Y a = Ȳ + r1 with r1 ∼ Laplace(λ1), and Sa =
√

S2 + r2 with r2 ∼
Laplace(λ2).

To obtain the distribution of the test statistic under either the null value or
an alternative value, we re-write the test statistic as

T a =
Za

Xa
, where Za =

Ȳ a − μ

σ/
√

n
+

μ − μ0

σ/
√

n
and Xa =

√
(Sa)2/σ2.

We obtain the distribution of Za by rescaling a Gaussian-Laplace mixture distri-
bution. Similarly we obtain the distribution of Xa based on a Chi-Square-Laplace
mixture distribution. Let FZ(z) be the CDF of Za and fX(x) be the PDF of
Xa.

FZ(z|μ) = Φ (z − δ) +
1
2

exp{σ(z − δ)
λ1

√
n

+
σ2

2nλ2
1

} × Φ

(
−(z − δ) − σ

λ1
√

n

)

− 1
2

exp{−σ(z − δ)
λ1

√
n

+
σ2

2nλ2
1

} × Φ

(
(z − δ) − σ

λ1
√

n

)
, (3)

where δ = μ0−μ
σ/

√
n
. δ equals to 0 under the null and does not equal to 0 under the

alternative. The distribution of Xa does not depend on the mean.

fX(x) = [2xfg(x
2|n − 1

2
, θ0) +

σ2x

λ2
e
− σ2x2

λ2 (
θ1

θ0
)

n−1
2 Fg(x

2|n − 1

2
, θ1)

− xe
− σ2x2

λ2 (
θ1

θ0
)

n−1
2 fg(x

2|n − 1

2
, θ1) +

σ2x

λ2
e

σ2x2
λ2 (

θ2

θ0
)

n−1
2 (1 − Fg(x

2|n − 1

2
, θ2))

− xe
σ2x2

λ2 (
θ2

θ0
)

n−1
2 fg(x

2|n − 1

2
, θ2)] / [1 − 1

2
(
θ2

θ0
)

n−1
2] (4)

where θ0 = 2
n−1 , θ1 = 2

n−1−2σ2/λ2
, θ2 = 2

n−1+2σ2/λ2
, and Fg and fg are the CDF

and PDF of a gamma distribution respectively.
The distribution of the test statistic T a given mean μ is

FT (t|μ) =
{∫ ∞

0
FZ(tx|μ)fX(x) dx t ≥ 0∫ ∞

0
(1 − FZ(tx|μ)) fX(x) dx t < 0 (5)

Let tα
2 ,n−1 be the (1 − α

2) quantile of a t distribution with n − 1 degrees
of freedom. The exact type I and type II errors can be computed numerically.
Again we just show αa and βa under the two sided alternative. Similarly we can
obtain the revised errors for the one sided alternatives.

αa = P
(|T a| > tα

2 ,n−1

∣∣μ = μ0

)
= 1 − FT (tα

2 ,n−1|μ0) + FT (−tα
2 ,n−1|μ0),

βa = P
(|T a| < tα

2 ,n−1

∣∣μ = μa

)
= FT

(
tα

2 ,n−1|μa

) − FT

(−tα
2 ,n−1|μa

)
.

130 X. Tong et al.

3.3 Two Sample t Test with Equal Variance

Assume n1 samples Y 1
1 , Y 1

2 , ..., Y 1
n1

i.i.d ∼ N(μ1, σ
2), n2 samples Y 2

1 , Y 2
2 , ..., Y 2

n2

i.i.d ∼ N(μ2, σ
2), where σ2 is unknown. The null hypothesis is H0 : μ1 −μ2 = 0.

The common alternative hypotheses are Ha : μ1 − μ2 �= 0, Ha : μ1 − μ2 > 0, or
Ha : μ1 − μ2 < 0.

Suppose users query the sample means and the sample variances. Then the
test statistic involves multiple noise added sample statistics.

T a =
Ȳ a
1 − Ȳ a

2

Sa
√

1
n1

+ 1
n2

,

where Ȳ a
1 = Ȳ1+r1, Ȳ a

2 = Ȳ2+r2, and Sa =
√

(n1−1)(S2
1+r3)+(n2−1)(S2

2+r4)
n1+n2−2 , with

ri ∼ Laplace(λi), i = 1 ∼ 4. We re-write the test statistic as

T a =
Za

Xa
, where Za =

Ȳ a
1 − Ȳ a

2 − (μ1 − μ2)

σ
√

1
n1

+ 1
n2

+
(μ1 − μ2)

σ
√

1
n1

+ 1
n2

and Xa =
Sa

σ
.

Since the Laplace noises are added independently, we can then obtain the distri-
bution of the numerator by convoluting Gaussian and Laplace distributions. The
distribution of Xa is based on convolution of chi-square and Laplace distribu-
tions. The distributions of Za and Xa depend on the Laplace noise parameters
λi, i = 1 ∼ 4. We obtain their distributions under two separate cases. Let
υ = n1 + n2 − 2. Let δ = μ1−μ2

σ
√

1
n1

+ 1
n2

. δ equals to 0 under H0 and is non-zero

under Ha.

Distribution of Za, λ1 �= λ2: We have the CDF

FZ(z|μ1 − μ2) = Φ (z − δ) − λ2
2

2(λ2
1 − λ2

2)
eτ2(z−δ)+

τ2
2
2 (1 − Φ(z − δ + τ2))

+
λ2
2

2(λ2
1 − λ2

2)
e

τ2
2
2 −τ2(z−δ)Φ(z − δ − τ2) +

λ2
1

2(λ2
1 − λ2

2)
e

τ2
1
2 +τ1(z−δ)(1 − Φ(z − δ + τ1))

− λ2
1

2(λ2
1 − λ2

2)
e

τ2
1
2 −τ1(z−δ)Φ(z − δ − τ1) (6)

where τ1 = σ
√

1
n1

+ 1
n2

/λ1, and τ2 = σ
√

1
n1

+ 1
n2

/λ2.

Distribution of Za, λ1 = λ2: We have the CDF

FZ(z|μ1 − μ2) = Φ (z − δ) −
(

1
2

+
τ(z − δ)

4
− τ2

4

)
e

τ2
2 −τ(z−δ)Φ (z − δ − τ)

− τ

4
√

2π
e

τ2
2 −τ(z−δ)− (z−δ−τ)2

2 +
τ

4
√

2π
e

τ2
2 +τ(z−δ)− (z−δ+τ)2

2

+ (
1
2

− τ(z − δ)
4

− τ2

4
)e

τ2
2 +τ(z−δ)(1 − Φ(z − δ + τ)) (7)

Gaussian Mixture Models for Classification and Hypothesis Tests 131

where τ = σ
√

1
n1

+ 1
n2

/λ1.

Distribution of Xa, λ3 �= λ4: It does not depend on μ1 − μ2. Note υ =
n1 + n2 − 2. We have the PDF

fX(x) = [2xfG(x2;
υ

2
, θ0) +

b22
b22 − b21

e−b1x2
(b1x)(

θ1

θ0
)

υ
2 FG(x2;

υ

2
, θ1)

− b22x

b22 − b21
e−b1x2

(
θ1

θ0
)

υ
2 fG(x2;

υ

2
, θ1) − b21

b22 − b21
e−b2x2

(b2x)(
θ2

θ0
)

υ
2 FG(x2;

υ

2
, θ2)

+
b21x

b22 − b21
e−b2x2

(
θ2

θ0
)

υ
2 fG(x2;

υ

2
, θ2) +

b22
b22 − b21

eb1x2
(b1x)(

θ3

θ0
)

υ
2 (1 − FG(x2;

υ

2
, θ3))

− b22x

b22 − b21
eb1x2

(
θ3

θ0
)

υ
2 fG(x2;

υ

2
, θ3) − b21

b22 − b21
eb2x2

(b2x)(
θ4

θ0
)

υ
2 (1 − FG(x2;

υ

2
, θ4))

+
b21x

b22 − b21
eb2x2

(
θ4

θ0
)

υ
2 fG(x2;

υ

2
, θ4)]/[1 − b22

2(b22 − b21)
(
θ3

θ0
)

υ
2 +

b21
2(b22 − b21)

(
θ4

θ0
)

υ
2]

where τ1 = σ
√

1
n1

+ 1
n2

/λ1, τ2 = σ
√

1
n1

+ 1
n2

/λ2, b1 = (n1+n2−2)σ2

(n1−1)λ3
, b2 =

(n1+n2−2)σ2

(n2−1)λ4
, θ0 = 2

n1+n2−2 , θ1 = 2
n1+n2−2−2b1

, θ2 = 2
n1+n2−2−2b2

, θ3 =
2

n1+n2−2+2b1
, θ4 = 2

n1+n2−2+2b2
.

Sample Size

Ty
pe

 I
Er

ro
r

0.05

0.10

0.15

0.20

0.25

0.30

100 200 300 400

0.2
0.4
0.6

0.8
1

Sample Size

Ty
pe

 I
Er

ro
r

0.1

0.2

0.3

100 200 300 400

0.2
0.4
0.6

0.8
1

Sample Size

Ty
pe

 I
Er

ro
r

0.1

0.2

0.3

0.4

100 200 300 400

0.2
0.4
0.6

0.8
1

Sample Size

Ty
pe

 I
Er

ro
r

0.1

0.2

0.3

0.4

0.5

100 200 300 400

0.2
0.4
0.6

0.8
1

Fig. 1. Exact type I errors for increasing sample size n and five εs: 0.2, 0.4, 0.6, 0.8,
and 1. Top left is one sample z test; top right is one sample t test; bottom left is two
sample t test with equal sample size and equal variance; bottom right is two sample t
test with unequal sample sizes and equal variance.

132 X. Tong et al.

Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

Fig. 2. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 50.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)

Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

Fig. 3. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 100.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)

Distribution of Xa, λ3 = λ4: Again, it does not depend on μ1 − μ2. We have
the PDF

fX(x) = [2xfG(x2;
υ

2
, θ0) + (

b2x3 + bx

2
)e−bx2

(
θ1

θ0
)

υ
2 FG(x2;

υ

2
, θ1)

− (
2x + bx3

2
)e−bx2

(
θ1

θ0
)

υ
2 fG(x2;

υ

2
, θ1) − (

b2x

2
)e−bx2

(
θ1

θ0
)

υ+2
2 FG(x2;

υ + 2

2
, θ1)

+ (
bx

2
)e−bx2

(
θ1

θ0
)

υ+2
2 fG(x2;

υ + 2

2
, θ1) + (

bx − b2x3

2
)ebx2

(
θ2

θ0
)

υ
2 (1 − FG(x2;

υ

2
, θ2))

− (
2x − bx3

2
)ebx2

(
θ2

θ0
)

υ
2 fG(x2;

υ

2
, θ2) + (

b2x

2
)ebx2

(
θ2

θ0
)

υ+2
2 (1 − FG(x2;

υ + 2

2
, θ2))

− (
bx

2
)ebx2

(
θ2

θ0
)

υ+2
2 fG(x2;

υ + 2

2
, θ2)]/[1 − 1

2
(
θ2

θ0
)

υ
2 − b

4
(
θ2

θ0
)

υ+2
2]

where b = 2σ2/λ3, θ0 = 2
n1+n2−2 , θ1 = 2

n1+n2−2−b , and θ2 = 2
n1+n2−2+b .

Gaussian Mixture Models for Classification and Hypothesis Tests 133

Given the Laplace noise parameters λi, we select the CDF and PDF of Za

and Xa respectively. The distribution of the test statistic T a given the value of
μ1 − μ2 follows Eq. 5. Let tα

2 ,υ be the (1 − α
2) quantile of a t distribution with υ

degrees of freedom. The exact type I and type II errors again can be computed
numerically. We show αa and βa under the two sided alternative. Similarly we
can obtain the revised errors for the one sided alternatives. Let δ = μ1 − μ2.

αa = P
(|T a| > tα

2 ,υ | δ = 0
)

= 1 − FT (tα
2 ,υ | δ = 0) + FT (−tα

2 ,υ | δ = 0),

βa = P
(|T a| < tα

2 ,υ | δ �= 0
)

= FT (tα
2 ,υ | δ �= 0) − FT (−tα

2 ,υ | δ �= 0).

3.4 Experimental Evaluation

To examine when the exact type I and II errors are less reliable, we run a set of
experiments and provide the results in the following tables and figures. For all
the experiments we set α = 0.05, increase sample size n from 50 to 400 by steps
of 25, and examine five ε values, 0.2, 0.4, 0.6, 0.8 and 1. λ = 1/(niε).

Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

Fig. 4. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 200.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)

In Table 1, we show the exact type I errors for selected sample size n: 50,
100, 200, 300, and 400. Figure 1 shows the exact type I errors for the tests with
increasing sample size n. As sample size increases and ε becomes larger, the
exact type I errors is approaching α = 0.05. Considering the exact type I error
only, when users construct a test statistic with noise added mean and variance,
the sample size needs to 100 or larger to provide a reliable result for moderate
to small noise. For large noise, i.e. ε ≤ 0.2, the sample size needs to be 400 or
larger for a reliable test.

Figures 2, 3, 4 and 5 show the type II errors with noise added query results
for selected n: 50, 100, 200, 400 and ε: 0.2, 0.6, 1. Hypothesis tests often operate
with far less samples than classification, since the test is always significant for

134 X. Tong et al.

Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

Fig. 5. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 400.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)

large dataset. For the tests considered in this article, the type I errors based on
noise added query results decrease sharply as sample size increases. Type II error
depends on the difference between the true value and the hypothesized value.
The type II error under differential privacy also improves significantly as sample
size increases and ε becomes larger.

Notice users cannot know how much noises are added to the query results.
Small noises can cause major distortion to the test results. We must apply dif-
ferential privacy query results with caution in hypothesis tests. Often users have
only a handful or a few dozen samples in a test, the direct noise addition makes
the test result unreliable. With very small datasets, users need the clean query
results or direct access to the raw data for a reliable output.

4 Differentially Private Bayesian Classifier for Gaussian
Mixture Models

Let database D = {X1, . . . , Xd,W}, where W is a binary class label, Dom(W) =
{w1, w2}, and each Xi, 1 ≤ i ≤ d is a continuous attribute. A Bayesian classifier
has the following decision rule:

Assign a record x to w1 if P (w1|x) > P (w2|x) ; otherwise assign it to w2.

The probabilities P (wi|x) can be calculated as: P (wi|x) = p(x|wi)P (wi)/p(x).
If p(x|wi) follows multivariate Gaussian distribution, it is known as the Gaussian
mixture model [4]. For each class wi, its mean μi and the variance-covariance
matrix Σi of p(x|wi) ∼ N(μi, Σi) are estimated from the data set D. For binary
case, the Bayes error (i.e., the classification error) is calculated as [4]:

Bayes Error =
∫

R1

p(x|w2)P (w2)dx +
∫

R2

p(x|w1)P (w1)dx.

Gaussian Mixture Models for Classification and Hypothesis Tests 135

Table 1. (a) Z test type I error with added noises. σ = 0.5. (b) One sample t test
type I error with added noises. σ = 0.4. (c) Two sample t test with equal sample size
type I error with added noises. σ1 = σ2 = 0.35. n1 = n2 = n. (d) Two sample t test
with unequal sample size type I error with added noises. σ1 = σ2 = 0.2. n1 = n and
n2 = 1.1n.

n ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1 n ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1

a b

50 0.3177 0.1542 0.1011 0.0794 0.0689 50 0.3805 0.2109 0.1373 0.1023 0.0841

100 0.2251 0.1070 0.0762 0.0647 0.0594 100 0.2953 0.1415 0.0935 0.0746 0.0657

200 0.1542 0.0794 0.0631 0.0573 0.0546 200 0.2035 0.0968 0.0711 0.0618 0.0575

300 0.1239 0.0697 0.0587 0.0548 0.0531 300 0.1606 0.0813 0.0639 0.0578 0.0549

400 0.1070 0.0647 0.0565 0.0536 0.0523 400 0.1363 0.0734 0.0603 0.0559 0.0537

c d

50 0.4645 0.2576 0.1612 0.1157 0.0924 50 0.4977 0.3748 0.2726 0.1975 0.1518

100 0.3609 0.1673 0.1057 0.0815 0.0701 100 0.4944 0.2920 0.1844 0.1319 0.1039

200 0.2472 0.1108 0.0774 0.0653 0.0597 200 0.4066 0.1976 0.1236 0.0922 0.0744

300 0.1936 0.0907 0.0681 0.0601 0.0564 300 0.3376 0.1557 0.1001 0.0714 0.0602

400 0.1627 0.0805 0.0634 0.0575 0.0542 400 0.2917 0.1320 0.0871 0.0613 0.0549

R1 is the region where records are labeled as class 1, and R2 is the region where
records are labeled as class 2.

In this article we examine Bayes error for Gaussian mixture models under
differential privacy protection. The database D only needs to return the following
for users to build a Bayesian classifier:

– The sample size in D, which has sensitivity 0,
– The proportions of the two classes, i.e., P (w1) and P (w2),
– For each category, mean μi and variance-covariance Σi of the multivariate

Gaussian distribution for p(x|wi).

Bounded variables fit well into differential privacy mechanism. With
unbounded variables one very large or small record can cause a significant
increase the sensitivity. Notice Gaussian distribution is unbounded. Hence
we work with truncated Gaussian distribution over interval [μ − 6σ, μ + 6σ],
a probability range of 0.999999998. Truncated Gaussian has density
I{μ−6σ≤x≤μ+6σ}(x) f(x)

Φ(6)−Φ(−6) .

4.1 Repair Noise Added Variance-Covariance Matrix

Let Σ̂ = (σ̂ij)d×d be the sample variance-covariance matrix. When users query
variances and covariances separately, independent Laplace noises are added to
every element of Σ̂. Let A = (rij)d×d be the matrix of independent Laplace
noises, where rij = rji. The returned query result is ΣQ = Σ̂ + A.

ΣQ is the noise added variance-covariance matrix, which is the results that
users can easily obtain to test their model. ΣQ is still symmetric but seize to be

136 X. Tong et al.

positive definite. In order to have a valid variance-covariance matrix, we repair
the noise added variance-covariance matrix, and obtain a positive definite matrix
Σ+ close to ΣQ, since Σ̂ is not disclosed to users under differential privacy.

Let (lj , ej), j = 1, ..., d be the eigenvalue and eigenvector pairs of ΣQ, where
the eigenvalues follow the decreasing order, l1 ≥ l2 ≥ ... ≥ ld. The last several
eigenvalues of ΣQ are negative. Let lk, ..., ld be the negative eigenvalues. The
positive definite matrix Σ+ has eigenvalue and eigenvector pairs as the following:
(l1, e1), ..., (lk−1, ek−1), (l+k , ek), ..., (l+d , ed). We keep the eigenvectors, and use
an optimization algorithm to search over positive eigenvalues to find a Σ+ that
minimizes the determinant of Σ+ − ΣQ.

(l+k , ..., l+d) = argmin |Σ+ − ΣQ|.
Let Ej = eje

′
j , j = 1, ..., d. We have

Σ+ − ΣQ =
d∑

j=k

(l+j − lj)Ej .

Therefore we perform a fine grid search over wide intervals to obtain positive
eigenvalues that

(l+k , ..., l+d) = argmin{wk>0,...,wd>0}|
d∑

j=k

(wj − lj)Ej |.

4.2 Experimental Evaluation

We have conducted extensive experiments in this section. We consider binary
classification scenario. To understand how differential privacy affects the Bayes
error, we do not want to introduce any other errors. Note Gaussian distribution
may not represent the underlying data accurately. To avoid additional errors
due to modeling real data distribution inaccurately, we generate data sets from

Sample Size

Ba
ye

s
Er

ro
r

0.25

0.30

0.35

1000 2000 3000 4000 5000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1000 2000 3000 4000 5000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1000 2000 3000 4000 5000

0.05
0.3

0.6
1

Fig. 6. Small training sample LDA Bayes error. Left: 2 dimension; Middle: 5 dimension;
Right: 10 dimension.

Gaussian Mixture Models for Classification and Hypothesis Tests 137

Sample Size

Ba
ye

s
Er

ro
r

0.234

0.235

0.236

0.237

0.238

10000 20000 30000 40000 50000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.21

0.22

0.23

0.24

10000 20000 30000 40000 50000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.20

0.21

0.22

0.23

0.24

0.25

10000 20000 30000 40000 50000

0.05
0.3

0.6
1

Fig. 7. Large training sample LDA Bayes error. Left: 2 dimension; Middle: 5 dimension;
Right: 10 dimension.

Sample Size

Ba
ye

s
Er

ro
r

0.25

0.30

0.35

1000 2000 3000 4000 5000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.2

0.3

0.4

1000 2000 3000 4000 5000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.2

0.3

0.4

0.5

1000 2000 3000 4000 5000

0.05
0.3

0.6
1

Fig. 8. Small training sample QDA Bayes error. Left: 2 dimension; Middle: 5 dimension;
Right: 10 dimension.

Sample Size

Ba
ye

s
Er

ro
r

0.210

0.215

0.220

0.225

10000 20000 30000 40000 50000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.15

0.20

0.25

0.30

10000 20000 30000 40000 50000

0.05
0.3

0.6
1

Sample Size

Ba
ye

s
Er

ro
r

0.1

0.2

0.3

0.4

10000 20000 30000 40000 50000

0.05
0.3

0.6
1

Fig. 9. Large training sample QDA Bayes error. Left: 2 dimension; Middle: 5 dimension;
Right: 10 dimension.

known Gaussian mixture parameters. The parameters are estimated from real
life data in two experiments, and synthetic in the rest.

In Eq. 4, if the two Gaussian distributions have the same variance-covariance
matrix, we perform a linear discriminant analysis (LDA). If the two Gaussian
distributions have different variance-covariance matrices, we perform a quadratic
discriminant analysis (QDA). Every experimental run has the following steps.

138 X. Tong et al.

1. Given the parameters of the Gaussian mixture models, we generate a training
set of n samples. We truncate the training samples to the μ ± 6σ interval,
throwing away samples that fall out of the interval.

2. Using the truncated training set which has less than n samples, given a pre-
specified ε, we compute the sensitivity values according to [22], sample means
and variance-covariance matrices. Then we add independent Laplace noises
to each Gaussian component.

3. We repair the noise added variance-covariance matrices, and obtain positive
definite matrices.

4. We generate a separate test data set of size 50,000 using the original parame-
ters without the noises, and report the effectiveness of the Gaussian mixture
models using the noise added sample means and the positive definite matrices
from the previous step. Test data set of size 50,000 is chosen to make sure
that the estimated Bayes errors are accurate.

Experiment 1. We set μ1 = 0.75 × 1d and μ2 = 0.25 × 1d, where 1d is a d-
dimensional vector with elements all equal to 1. The two d-dimensional Gaussian
distributions have the same variance-covariance matrix Σ, where σii = 0.82 and
σij = 0.5 × 0.82. The prior is p1 = p2 = 0.5. We pool the two classes to estimate
the sample variance-covariance matrix. We compute the sensitivity for variances
and covariances adjusted to the range of the pooled data. The sample means and
the sensitivity values for sample means are computed. We run the experiments in
2-dimension, 5-dimension, and 10-dimension, d = 2, 5, 10. We have four ε values,
ε = 0.05, 0.3, 0.6, 1. Meanwhile we gradually increase the training set size.

Table 2. True LDA and QDA Bayes errors

2-D 5-D 10-D 2-D 5-D 10-D

LDA Bayes error 0.2351 0.2100 0.1996 QDA Bayes error 0.2105 0.1170 0.0589

Using the prespecified parameter values, we have the true LDA classifica-
tion rule, following Eq. 4. We generate 5 million samples using the prespecified
parameter values without truncation, using the true LDA classification rules to
estimate Bayes error. We take the average Bayes error of four such runs as the
actual LDA Bayes error, shown in Table 2.

Figures 6 and 7 show the Bayes error under differential privacy for LDA
experiment in increasing dimensions. For each combination (ε, n, d), we perform
five runs. The average Bayes error of five runs is shown on the figures.

When two classes have the same variance-covariance matrix, the LDA Bayes
error in general is not significantly affected by the noise added query results
used in the classifier. For ε from 0.3 to 1, several thousand training samples are
sufficient to return a preliminary Bayes error estimate which is very close to the
actual LDA Bayes error. For this special case, we can obtain a fairly accurate

Gaussian Mixture Models for Classification and Hypothesis Tests 139

idea about how well the LDA classifier performs using the noise added query
results.

Experiment 2. We set μ1 = 0.75×1d and μ2 = 0.25×1d. We set Σ1 = Id, where
Id is a d-dimensional identity matrix, and set Σ2 as the one used in Experiment
1. We set the prior as p1 = p2 = 0.5. The sample means, variances, covariances,
and the sensitivity values are computed. Again, we run the experiments in 2-
dimension, 5-dimension, and 10-dimension, d = 2, 5, 10. We have four ε values,
ε = 0.05, 0.3, 0.6, 1. Meanwhile we gradually increase the training set size.

Using the prespecified parameter values, we have the true QDA classifica-
tion rule, following Eq. 4. We generate 5 million samples using the prespecified
parameter values without truncation, using the true QDA classification rules to
estimate Bayes error. We take the average Bayes error of four such runs as the
actual QDA Bayes error, shown in Table 1.

Figures 8 and 9 show the Bayes error rate for QDA experiment in increasing
dimensions. For each combination (ε, n, d), we perform five runs. The average
Bayes error of five runs is shown on the figures.

When two classes have different variance-covariance matrices, dimensionality
has a large impact on the Bayes error estimates obtained under differential pri-
vacy. For ε from 0.3 to 1, 2 dimensional experiment shows that three thousand
training samples is sufficient to return a reasonable estimate of the actual Bayes
error. 5 dimensional experiment needs 40,000 training samples to eliminate the
impact of the added noises. 10 dimensional experiment needs even more training
samples to return a reasonable estimate of the Bayes error under differential
privacy.

Experiment 3. We used the Parkinson data set from the UCI Machine learning
repository (https://archive.ics.uci.edu/ml/datasets/Parkinsons). We computed
the mean and variance-covariance matrix of each class in the Parkinson data and
used these parameters in our Gaussian mixture models. In all of the experiments,
we set ε = 0.6. For the Parkinson data, the majority class equals to 75.38% of
the total. There are 197 observations and 21 numerical variables besides the
class label. Without differential privacy mechanism, directly using the sample
estimates, the Bayes error is less than 0.01. On the other hand, the Gaussian mix-
ture models with increasing sample sizes under differential privacy have Bayes
error decreasing from 0.246 to 0.198. The Bayes error 0.198 is obtained from
50,000 training samples. The above results confirm that direct noise addition to
Gaussian mixture parameters could cause significant distortion in higher dimen-
sional space when two classes have different variance-covariance matrices. As
dimensionality increases, we need a very large number of training samples to
reduce the impact of the added noises.

Experiment 4. We also used the Adult data set from the UCI Machine learning
repository (https://archive.ics.uci.edu/ml/datasets/Adult). The Adult data is
much larger than the Parkinson data, with 32,561 observations. We used all
the numerical variables in this experiment, i.e., 6 variables. We computed the
mean and variance-covariance matrix of each class in the Adult data and used

https://archive.ics.uci.edu/ml/datasets/Parkinsons
https://archive.ics.uci.edu/ml/datasets/Adult

140 X. Tong et al.

these parameters in our Gaussian mixture models. Again we set ε = 0.6. For
the Adult data, the majority class equals to 75.92% of the total, similar to
the Parkinson data. Without differential privacy mechanism, directly using the
sample estimates, the Bayes error is 0.0309. With 50,000 training samples, the
Gaussian mixture model under differential privacy has the Bayes error equal to
0.0747. The impact of the added noises is less severe for this lower dimensional
data. Training sample size around 50,000 provides a reasonable result.

5 Summary

In this article we examine the performance of Bayesian classifier using the noise
added mean and variance-covariance matrices. We also study the exact type
I and type II errors under differential privacy for various hypothesis tests. In
the process we identify an interesting issue associated with random noise addi-
tion: The variance-covariance matrix without the added noise is positive definite.
However simply adding noise can only return a symmetric matrix, which is no
longer positive definite. Consequently the query result cannot be used to con-
struct a classifier. We implement a heuristic algorithm to repair the noise added
matrix.

This is a general issue for random noise addition. Users may simply assemble
basic query results without directly querying a complex statistic. Then adding
noises causes the assembled result to no longer satisfy certain constraints. The
query results need to be further modified in order to be used in subsequent
studies.

References

1. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk
minimization. J. Mach. Learn. Res. 12, 1069–1109 (2011)

2. Chaudhuri, K., Sarwate, A.D., Sinha, K.: A near-optimal algorithm for
differentially-private principal components. J. Mach. Learn. Res. 14, 2905–2943
(2013)

3. Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. Trans. Data
Priv. 6(2), 161–183 (2013)

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley,
New York (2001)

5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
doi:10.1007/11787006 1

6. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du,
D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-79228-4 1

7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878 14

http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1007/11681878_14

Gaussian Mixture Models for Classification and Hypothesis Tests 141

8. Friedman, A., Schuster, A.: Data mining with differential privacy. In: KDD 2010:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, NY, USA, pp. 493–502. ACM (2010)

9. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic
Press Professional Inc., San Diego (1990)

10. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A practical differentially
private random decision tree classifier. In: ICDM Workshops, pp. 114–121 (2009)

11. Kapralov, M., Talwar, K.: On differentially private low rank approximation. In:
SODA 2013: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, New Orleans, Louisiana, pp. 1395–1414. SIAM (2013)

12. Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and
high-dimensional regression. J. Mach. Learn. Res. 23, 1–41 (2012)

13. J. Lei. Differentially private M-estimators. In: Advances in Neural Information
Processing Systems, pp. 361–369 (2011)

14. Pathak, M.A., Raj, B.: Large margin Gaussian mixture models with differential
privacy. IEEE Trans. Dependable Secure Comput. 9(4), 463–469 (2012)

15. McSherry, F., Mironov, I.: Differentially private recommender systems: building
privacy into the Netflix prize contenders. In: KDD 2009: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Paris, France, pp. 627–636. ACM (2009)

16. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS
2007: 48th Annual IEEE Symposium on Foundations of Computer Science, Prov-
idence, Rhode Island, pp. 94–103. IEEE (2007)

17. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing
information. In: Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS), Seattle, WA, USA, 1–3 June
1998

18. Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

19. Rubinstein, B., Bartlett, P.L., Huang, L., Taft, N.: Learning in a large function
space: privacy-preserving mechanisms for SVM learning. J. Priv. Confidentiality
4(1), 65–100 (2012)

20. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

21. Vu, D., Slavkovic, A.: Differential privacy for clinical trial data: preliminary eval-
uations. In: IEEE 13th International Conference on Data Mining Workshops,
Los Alamitos, CA, USA, pp. 138–143. IEEE (2009)

22. Xi, B., Kantarcioglu, M., Inan, A.: Mixture of Gaussian models and Bayes error
under differential privacy. In: Proceedings of the First ACM Conference on Data
and Application Security and Privacy, pp. 179–190. ACM (2011)

Differentially Private K-Skyband Query
Answering Through Adaptive Spatial

Decomposition

Ling Chen1(B), Ting Yu2, and Rada Chirkova1

1 Department of Computer Science, North Carolina State University, Raleigh, USA
{lchen10,rychirko}@ncsu.edu

2 Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
tyu@qf.org.qa

Abstract. Given a set of multi-dimensional points, a k-skyband query
retrieves those points dominated by no more than k other points. k-
skyband queries are an important type of multi-criteria analysis with
diverse applications in practice. In this paper, we investigate techniques
to answer k-skyband queries with differential privacy. We first propose a
general technique BBS-Priv, which accepts any differentially private spa-
tial decomposition tree as input and leverages data synthesis to answer
k-skyband queries privately. We then show that, though quite a few
private spatial decomposition trees are proposed in the literature, they
are mainly designed to answer spatial range queries. Directly integrat-
ing them with BBS-Priv would introduce too much noise to generate
useful k-skyband results. To address this problem, we propose a novel
spatial decomposition technique k-skyband tree specially optimized for
k-skyband queries, which partitions data adaptively based on the para-
meter k. We further propose techniques to generate a k-skyband tree
over spatial data that satisfies differential privacy, and combine BBS-Priv
with the private k-skyband tree to answer k-skyband queries. We conduct
extensive experiments based on two real-world datasets and three syn-
thetic datasets that are commonly used for evaluating k-skyband queries.
The results show that the proposed scheme significantly outperforms
existing differentially private spatial decomposition schemes and achieves
high utility when privacy budgets are properly allocated.

Keywords: k-skyband query · Differential privacy · Adaptive spatial
decomposition

1 Introduction

Given a set of multi-dimensional points, a k-skyband query [30] identifies the set
of points that are dominated by at most k other points. A point p dominates
another point q if p is at least as good as q on all dimensions and strictly better

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 142–163, 2017.
DOI: 10.1007/978-3-319-61176-1 8

Differentially Private K-Skyband Query 143

than q in at least one dimension. A k-skyband query is a generalization of a sky-
line query [5,7,25]: when k is 0, a k-skyband query is just a skyline query. As an
important type of preference queries, skyband queries and their variants [15,30]
have wide applications in practice, e.g., location-based services [22] and service
recommendations [23].

Similar to other data analysis tasks, directly releasing the results of k-
skyband queries over sensitive data of individuals could result in privacy breach.
For example, the presence (absence) of one point may cause a large set of points
to be removed from (included in) the k-skyband results. Thus, by analyzing the
output of k-skyband queries, an adversary may infer the presence or absence of
an individual in the dataset, which could be very sensitive. Due to such potential
privacy risks, a data owner may be reluctant to share k-skyband query results
with collaborators or the public, even if such sharing could bring significant
benefits.

In this paper, we develop techniques to answer k-skyband queries with differ-
ential privacy [10,11]. Unlike syntactic approaches such as k-anonymity [16,31],
differential privacy provides a provable strong privacy guarantee that the output
of a computation is insensitive to any particular individual. That is, an adversary
has limited ability to make inference about whether an individual is present or
absent in the dataset.

We first propose a general technique BBS-Priv, which accepts any differen-
tially private spatial decomposition tree as input and leverages data synthesis
to generate private k-skyband results. Specifically, in a spatial decomposition
tree, an internal node contains the coordinates of a region, the number of data
points within the region (referred as point count), and pointers to its child nodes
(i.e., subregions) at the lower level. Given a spatial decomposition tree, such as
private quad-tree or kd-tree [9], BBS-Priv adopts the branch-and-bound para-
digm to progressively traverse nodes for dominance checking, and prunes internal
nodes that do not contain k-skyband points, i.e., there is no need to access all
the partitions. When reaching a node that could not be further pruned, BBS-Priv
generate approximate k-skyband results using synthesized points based on the
node’s point count.

Fig. 1. Comparison of true and private k-skyband results with anti-correlated synthetic
dataset when k = 200.

144 L. Chen et al.

As several techniques have been proposed in the literature to generate private
spatial decomposition trees [9], it seems that we can directly combine them with
BBS-Priv to answer k-skyband queries privately. Unfortunately, such a straight-
forward approach would significantly distort k-skyband query results. Figure 1a
shows an example synthetic dataset following an anti-correlated distribution,
which is commonly used in skyline query evaluation. Figure 1b shows the true k-
skyband results, and Fig. 1c shows the private k-skyband results when combining
BBS-Priv with a differentially private quadtree [9]. We see that private quadtree
fails to sufficiently capture the properties of the dataset that are important to
k-skyband queries, producing k-skyband results significantly different from the
true results. There are two major reasons for such a poor performance. First,
in k-skyband queries, the regions close to the upper-right corner are much more
important than those lower-left regions, since these regions contain points with
preferred values in all dimensions. Thus, it is much more desirable to accurately
capture data distributions in upper-right regions than the lower-left ones. Exist-
ing spatial decomposition schemes are designed for spatial range queries and thus
all regions are treated equally, and thus are not suitable to answer k-skyband
queries. Second, existing schemes achieve differential privacy by perturbing the
point count in each region. After such perturbation, some empty regions’ point
counts may become positive. If these regions are close to the upper-right corner,
these noisy points would distort the k-skyband results significantly.

Based on the above observations, we develop k-skyband tree, a novel spa-
tial decomposition technique, which partitions data space adaptively based on
the parameter k. The insight of k-skyband tree is that not all the regions con-
tribute equally to the k-skyband results (e.g., points in dominance regions do
not contribute to the k-skyband results at all), and thus finer and more accurate
decompositions should be performed on the regions that are likely to contain
k-skyband results. Built on this insight, when choosing a splitting point to par-
tition a region, k-skyband tree finds an appropriate upper-right region ne that
contains more than k points, which guarantees that the points in the lower-left
region sw can be safely pruned. The upper-right region ne gets finer decom-
positions in subsequent splittings. We further present a suite of techniques to
publish a k-skyband tree privacy, and propose a post-processing technique to
improve its accuracy by suppressing data synthesis in those empty partitions
whose noisy point counts become positive. We can then feed BBS-Priv with the
private k-skyband tree to compute private k-skyband results.

For evaluation, we conduct experiments over three synthetic datasets with
different distributions and two real-world datasets [1,2], and compare private
k-skyband trees with private quad-tree and private kd-tree, two well-known dif-
ferentially private spatial decomposition schemes. Our results show that for syn-
thetic datasets k-skyband tree outperforms quadtree and kd-tree when sufficient
privacy budgets are allocated (ε > 0.5). Further, our proposed technique sig-
nificantly outperforms private quadtree and kd-tree in the two real datasets for
all studied privacy budgets (ε ranging from 0.1 to 2.0). One key observation
from our experiments is that, though the three synthetic datasets are commonly

Differentially Private K-Skyband Query 145

used in skyline query evaluation, they unfortunately do not capture the actual
data distributions in real applications where k-skyband queries matter most.
We observe that real datasets tend to have fan-shaped data distributions, where
dominant points spread sparsely in dominance regions (e.g., the ne region in a
2-D space), while other inferior points more densely spread over other regions.
Our scheme is adaptive enough to capture such distributions while existing spa-
tial decomposition schemes fail to do so.

2 Preliminaries

2.1 Differential Privacy

Differential privacy [10] is a formal privacy model that guarantees the output of
a query function to be insensitive to any particular record in the data set.

Definition 1 (ε-differential privacy): Given any pair of neighboring data-
bases D and D′ that differ in at most one individual record, a randomized algo-
rithm A is ε-differentially private iff for any S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ Pr[A(D′) ∈ S] ∗ eε

The parameter ε is often referred as the privacy budget in differential privacy,
as it directly affects the level of privacy protection. Obviously, the smaller ε, the
harder to distinguish between D and D′ from the output of A, and thus the
stronger the privacy protection.

The most common strategy to achieve ε-differential privacy is to add noise
to the output of a function. The magnitude of the noise is calibrated by the
privacy budget ε and the sensitivity of the query function f , which is defined
as the maximum difference between the outputs of the query function f on any
pair of neighboring databases:

Δf = max
D,D′

‖ f(D) − f(D′) ‖1

There are two common approaches for achieving ε-differential privacy:
Laplace mechanism [12] and Exponential mechanism [26].

Laplace Mechanism: The output of a query function f is perturbed by
adding noise from the Laplace distribution with probability density function
pdf(x|b) = 1

2b exp(− |x|
b), b = Δf

ε . The following randomized mechanism Al sat-
isfies ε-differential privacy:

Al(D) = f(D) + Lap(
Δf

ε
)

Exponential Mechanism: This mechanism returns an output that is close
to the optimum, with respect to a quality function. A quality function q(D, r)
assigns a score to all possible outputs r ∈ R = range(f), and outputs closer to

146 L. Chen et al.

the true output receive higher scores. A randomized mechanism Ae that outputs
r ∈ R with probability

Pr[Ae(D) = r] ∝ exp(
εq(D, r)

2Δq
)

satisfies ε-differential privacy, where Δq is the sensitivity of the quality function.
Differential privacy has two properties: sequential composition and parallel

composition. Sequential composition is that given n independent randomized
mechanisms A1, A2, . . . , An where Ai (1 ≤ i ≤ n) satisfies εi-differential privacy,
a sequence of Ai over the dataset D satisfies ε-differential privacy, where ε =∑n

1 εi. Parallel composition is that given n independent randomized mechanisms
A1, A2, . . . , An where Ai (1 ≤ i ≤ n) satisfies ε-differential privacy, a sequence
of Ai over a set of disjoint data sets Di satisfies ε-differential privacy.

2.2 K-Skyband Queries

Given a d-dimensional data set D, a k-skyband query returns all the points in D
that are dominated by at most k other points in D. The dominance relationship
in k-skyband queries is defined as follows:

Definition 2 (Dominance). Given two d-dimensional points p = (u1, . . . , ud)
and q = (v1, . . . , vd), if for all i = 1, . . . , d, ui � vi and ∃j, uj
 vj, we say that
p dominates q (p
 q), where
 denotes better than and � denotes better than
or equal to.

In k-skyband queries, k represents the thickness of the skyband results, and
a skyline query [5,30] is a special case of k-skyband queries when k = 0. k-
skyband queries can be answered by extending algorithms for skyline queries,
such as Branch-and-Bound Skyline (BBS) [30]. BBS is an efficient algorithm
built on top of any spatial decomposition. A spatial decomposition is a hierar-
chical (tree) decomposition of a geometric space into smaller regions. In a spatial
decomposition tree, an internal node stores the coordinates of a region, the num-
ber of points in that region (referred to as point count) and pointers to its child
nodes, while the leaf nodes are individual data points.

Given a spatial decomposition tree, BBS traverses the nodes for dominance
checking, and prunes internal nodes that are determined to contain no skyline
points, i.e., not all the points will be accessed. It can be easily adapted to answer
k-skyband queries by excluding a region if it is already dominated by k other
points. In this paper, we focus on how to adapt BBS to answer k-skyband queries
with differential privacy.

3 Approaches

3.1 BBS-Priv

BBS-Priv is inspired by the BBS algorithm [30]. BBS maintains a set S to keep
track of all the k-skyband points discovered so far during the algorithm, and

Differentially Private K-Skyband Query 147

accesses the nodes in a spatial decomposition tree starting from the root node
that covers the whole region. When a node n is accessed, if BBS finds more than
k points in S that dominate n, n is pruned. Otherwise, BBS (1) inserts n into
S if n is a leaf node that represents a point, or (2) expands n by accessing n’s
child nodes if n is an internal node. For n’s child nodes, distances are computed
according to L1 norm, i.e., the maxdist of a point is the sum of its coordinates
and the maxdist of an internal node is the maxdist of its upper-right corner
point. These child nodes are inserted into a max heap that sorts nodes based
on their maxdist, so that nodes with higher maxdist are accessed earlier. The
intuition is that nodes with larger maxdist cannot be dominated by those with
smaller maxdist, and thus BBS only needs to check the dominance relationship
between the current accessed node and each point in S. The access order based
on the max heap guarantees that points inserted into S are k-skyband points.
BBS continues to access nodes from the max heap until the heap is empty, and
returns points in S as the k-skyband results.

In BBS-Priv, the input is a differentially private spatial decomposition tree,
whose leaf nodes are not individual points but a region. We can simply adapt
BBS such that when reaching a leaf node e, if e is not pruned by points in S, we
uniformly generate points in the region according to e’s point count, treat each
of them as a child of e, and continue. Due to space limit, we omit the detailed
pseudocode of BBS-Priv.

Privacy Analysis. It is easy to see that BBS-Priv only conducts post processing
of a spatial decomposition T . As long as T is constructed with differential privacy,
BBS-Priv would provide the same privacy guarantee.

3.2 Differentially Private K-Skyband Tree

Although BBS-Priv can be combined with any existing differentially private spa-
tial decomposition trees, as we will show in Sect. 4 later, the resulting k-skyband
results are often highly distorted compared with the true results. The reason is
that existing differentially private spatial decomposition schemes aim to capture
the distribution of all the data. For example, in existing schemes, it is common
that a dense region (with high point count) will be further partitioned. How-
ever, for k-skyband queries, we may not need to do so if that area is already
dominated by more than k points. Similarly, for a sparse region, if it is close to
the upper-right corner, we may still need to continue the partition as it is likely
to contain k-skyband results and we need to better capture their distributions.
Based on this observation, we propose a novel spatial decomposition algorithm
k-skyband tree specifically tailored to answer k-skyband queries, and will show
further how to build k-skyband tree with differential privacy. For simplicity and
easy explanation, we present our scheme for handling spatial data (2-D data).
It can be easily extended to handle multi-dimensional data, which we omit due
to space limit.

148 L. Chen et al.

K-Skyband Tree. The insight of k-skyband tree is to perform finer and more
accurate decompositions on the regions that are more important for k-skyband
results, i.e., the regions close to the upper-right corner. Note that when we
say “upper-right corner”, it is relative to the input dataset instead of to the
whole space. Therefore, the partition of space must be dependent on the dataset.
Specifically, k-skyband tree chooses a splitting point s such that there are more
than k data points in the the upper-right region ne and all the data points
falling into the dominance region sw can be excluded from the computation of
k-skyband results. Details of k-skyband tree is presented at AppendixA. The
main point of k-skyband tree is not to make query answering more efficient.
Instead, it would guide fine-grained decomposition towards those regions that
are likely to contain k-skyband results, so that when we add noise later to satisfy
differential privacy, the distribution of points in those regions is preserved better,
reducing the distortion of the true results.

Differentially Private K-Skyband Tree. To make the process of building
k-skyband tree satisfy differential privacy, we need to revise the algorithm in the
following major steps. First, as the tree will reveal the split points for each region
(i.e., the coordinates of internal nodes), we need to make the splitting process
differentially private. Specifically, we leverage the Exponential Mechanism to
choose private values for the splitting point. For sx (sy), we divide the possible
output range, [xmin, xmax]([ymin, ymax]), into intervals based on the ranks of the
true data points, and assign higher probability to the intervals closer to sx (sy).
Once an interval is chosen based on the Exponential Mechanism, a value is
uniformly sampled from the interval to be the private value of the splitting
point.

Second, the point count of each node in the tree will reveal the number
of points in each region. To achieve differential privacy, we adopt the laplace
mechanism to add noise. Specifically, we add Laplacian noise to the point count
of each node, protecting the true count of the points falling into the split regions.

The pseudo code of building differentially private k-skyband tree is shown
in Algorithm 1 and the function splitByK is shown in Algorithm 3 (in Appen-
dixA). Besides the region r, k in k-skyband queries, and the max height h, the
algorithm accepts as input the privacy budgets ε0, . . . , εh for each level of the
spatial decomposition tree and the split rate α used for computing the budget of
choosing splitting points. In Algorithm3, we apply the Exponential Mechanism
to obtain noisy values for sx and sy (Lines 14–15), and use the obtained random
values to form the noisy splitting point. In Algorithm1, Line 1 and Lines 17–18
correspond to adding Laplacian noise to point counts.

The algorithm starts by adding Laplacian noise to the point count of the
input region r, and adds the root node into the queue Q for splitting (Lines
1–2). The algorithm splits the node recursively until there are no nodes left in
Q. For each node n to be split (Line 4), the algorithm first computes the budget
εc for obtaining noisy count and k′ based on k and εc (Line 8). The reason why
we use k′ = k +1+

√
2

εc
instead of k +1 is because (1) by adding Laplacian noise

Differentially Private K-Skyband Query 149

Algorithm 1. Differentially Private k-skyband tree
Input: A region r, k in k-skyband queries, max height of the tree h, privacy budgets

for each level of the tree ε0, . . . , εh, split rate α
Output: A differentially private spatial decomposition tree T
1: r.ncount = r.count + Lap(1

ε0∗(1−α)
)

2: Q.enqueue(r)
3: while Q is not empty do
4: n = Q.dequeue()
5: if isLeaf(n, h) then
6: updateNoisyCount(n)
7: continue // back to Line 3

8: l = n.level, εc = εl+1 ∗ (1 − α), k′ = k + 1 +
√

2
εc

9: if n.ncount > k′ and n.parent.midPointSplit is false then
10: N = splitByK(n, k′, εl ∗ α)
11: if N.ne = n then
12: N = splitByMidPoint(n)
13: n.midPointSplit = true, εc = εl+1

14: else
15: N = splitByMidPoint(n)
16: n.midPointSplit = true, εc = εl+1

17: for c ∈ N do
18: c.ncount = c.count + Lap(1

εc
)

19: Q.enqueue(N.ne, N.nw, N.se)
20: if N.ne.ncount ≤ k then
21: Q.enqueue(N.sw)

22: return N

with mean 0 to k, there is 50 % of the chance that we would obtain a noisy value
smaller than k + 1; (2) if the noisy count of ne is smaller than k + 1, then sw
cannot be pruned and we need to further split sw; (3) the standard deviation
of Laplacian noise based on εc is

√
2

εc
and adding this standard deviation to k to

obtain k′ (i.e., making the count of ne to be slightly larger than k) can make the
noisy count of ne more likely larger than k; Based on k′, the algorithm splits the
node n using the corresponding budget in the level of the node n (Line 10). After
splitting, for each split node, the algorithm computes the noisy count based on
the count budget (Lines 17–18). If the node is split using midpoint as quadtree,
the splitting budget is saved and the count budget is updated (Lines 11–13 and
15–16), and all the children nodes are set to use midpoint split (Lines 13 and
16). If the noisy count of ne is less than or equal to k, the dominance region sw
needs to be further split (Lines 20–21).

When a node’s level reaches the maximum height of the tree (h), the node
is considered as a leaf node and no further split is applied (Line 5). Also, if
the noisy count of the node is too small (e.g., less than 8), further splitting
the node will caused the counts of child nodes to be distorted significantly by
the Laplacian noise, and thus the algorithm considers the node as a leaf node.

150 L. Chen et al.

In this case, if the leaf node is not at the maximum level, the remaining budgets
allocated for the rest of the levels are used to recompute the noisy count [9]
(Line 6). The algorithm terminates when there are no nodes left in Q.

Obtaining Splitting Point with Differential Privacy. To protect the val-
ues of the splitting point, the algorithm leverages the Exponential Mechanism
(EM) [26] to sample the noisy values.

Let L = {x1, . . . , xm} be a set of m values in ascending order in some domain
range [lo, hi], and let xs be the desired value of the splitting point. Let rank(x)
denote the rank of x in L, representing the number of items in L that are smaller
than x. The quality function fed into the EM [9] is:

q(L, x) = −|rank(x) − rank(xs)|,
The EM returns x with Pr[EM(L) = x] ∝ e− ε

2 |rank(x)−rank(xs)| based on this
quality function. Since all values x between two consecutive values in L have the
same rank, they are equally likely to be chosen, which can be implemented
using uniformly random sampling between the two consecutive values in L.
Accordingly, EM can be implemented by choosing an output from the inter-
val Ik = [xk, xk+1) with probability proportional to |Ik|e− ε

2 |k−rank(xs)|. Once an
interval Ik is chosen, EM then returns a uniformly random value in Ik.

Privacy Analysis. Due to space limit, we provide next only a sketch of the
proof of the privacy guarantee of private k-skyband tree. Note that, the construc-
tion process of k-skyband tree tree falls into the category of hybrid spatial decom-
position as defined in [9], where in the first few levels it uses data-dependent
split (i.e., SplitByK (Algorithm3)) and in the remaining levels it uses data-
independent split (i.e., through midpoints). Therefore the analysis of k-skyband
tree’s privacy guarantee is very similar to that in [9].

To construct a k-skyband tree with differential privacy, we need to combine
the privacy guarantees of both tree structures and point counts. Note that adding
or deleting a single data point changes the counts of all the nodes on the path
from the root to the leaf containing that data point, and it could also affect the
node splitting in the levels where data-dependent split is used. For a k-skyband
tree with max height h, our algorithm assigns the privacy budget ε0, . . . , εh for
the nodes at level 0, . . . , h. To protect both node splitting results and point
counts, for nodes at the level i (0 ≤ i ≤ h), our algorithms uses the Exponential
Mechanism with budget αεi to obtain noisy splitting points and adds Laplacian
noise with budget (1 − α)εi to obtain noisy point counts. For the levels where
data-independent split is used, there is no need to protect node splitting, and the
budget for splitting is also used for computing noisy counts. If nodes n1 and n2

are not on the same root-to-leaf path, their point counts are independent of each
other, and knowing the noisy counts of n1 does not affect the privacy guarantees
of n2. Thus, based on the parallel composition property (Sect. 2.1), k-skyband
tree at the level i satisfies εi-differential privacy. Further, based on the sequence
composition property of differential privacy in Sect. 2.1, for ε = ε0 + . . .+ εh, the
whole k-skyband tree satisfies ε-differential privacy.

Differentially Private K-Skyband Query 151

Budget Allocation Strategy. For budget allocation, we follow the geometric
scheme proposed in [9]. Let εi denote the budget for level i of the tree, and the
budgets for each level is computed using εi+1 = 2

1
3 εi. The intuition is that for

nodes at the levels closer to root, the point counts are larger and more resistant
to noise, and more budgets should be allocated for levels close to leaves.

For a level i where data-dependent split is used, we allocate αεi to compute
the noisy splitting point and (1 − α)εi to obtain noisy point counts. Previous
study [9] shows that a small portion of budget is enough for splitting, and we set
α = 10% based on our empirical evaluations. Such allocation is also consistent
with the study on private kd-tree [9], which shows that finding a splitting point
using Exponential Mechanism requires less budget than adding Laplacian noise
to point counts.

Post Processing. Post processing is commonly used in differential privacy to
improve utility [10,13]. For example, [9,19] leverages post-processing to improve
count query accuracy. However, the utility of k-skyband queries do not solely
depend on the accuracy of point counts, and the existing post-processing tech-
niques optimized for count queries do not work properly for k-skyband queries.
The reason is that k-skyband tree uses data-dependent split at the first few levels,
and certain dominance regions of the noisy splitting point (i.e., sw regions) are
excluded in the computation of k-skyband results. If we adjust the noisy counts
of the nodes using existing post-processing techniques, the noisy counts of some
ne regions may become less than k, making the corresponding sw regions not
qualified for pruning. Due to such inconsistency between the region splitting
and noisy counts, the properties of the dataset that are important to k-skyband
queries cannot be sufficiently captured, further distorting the k-skyband results
significantly.

Empirically, we observed that the major factor affecting the utility of private
k-skyband results is to synthesize data points for the regions whose noisy counts
are positive but their true counts are zero. If the regions of these nodes are close
to the upper-right point (xmax, ymax), then the private k-skyband results are
significantly distorted since the data points in these regions could dominate the
data points in any other region.

To smooth such errors caused by data synthesis with Laplacian noise, we
propose a novel post-processing technique. The insight is to not synthesize points
for half of the empty leaf nodes, as Laplacian noise has a 50% of probability to
be positive (or negative) and could turn half of the empty leaf nodes to have
positive noisy counts. However, the number of empty leaf nodes partially reveals
the data distribution of the data set. Therefore, instead of directly using the
number of empty leaf nodes, we use the number of leaf nodes whose noisy count
are negative to approximate the number of empty leaf nodes whose noisy count
are positive.

Let C be the set of nodes whose true point counts are 0. Denote Cp as the
subset of nodes in C whose noisy point counts are positive, and denote Cn as
all the leaf nodes (not only those in C) whose noisy point counts are negative.

152 L. Chen et al.

As Laplacian noise has a 50% probability to be positive, the expected size of Cp

is E[|Cp|] = |C|
2 . Cn includes two types of nodes: (1) the empty leaf nodes whose

noisy counts are negative (Cn,1) and (2) the leaf nodes whose point counts are
positive but noisy counts become negative (Cn,2). Ideally, we should use |Cn,1|
to approximate |Cp|. But |Cn,2| is usually a small number since we do not split
nodes whose noisy counts are too small, we can ignore |Cn,2| and directly use
|Cn| to approximate |Cp|.

Based on the analysis, with the private k-skyband tree, we compute the num-
ber of leaf nodes whose noisy counts are negative (|Cn|), sort the leaf nodes
with noisy positive counts in LC in ascending order, and set the noisy count of
the first |Cn| nodes in LC to zero. In this way, we can reduce the error of data
synthesis in the nodes in Cp.

Another alternative approach is to directly compute |C|, and set the noisy
count of the first |C|

2 nodes in LC to zero. However, such approach relies on the
true count of leaf nodes, which requires further privacy protection that consumes
another portion of the privacy budget. Thus, we choose the approach based
on |Cn|.

4 Evaluations

In our evaluations, we compare the performances of three techniques: k-skyband
tree, kd-tree, and quadtree. For k-skyband tree, we limit the max tree height to be
7, and set the noisy count threshold to 8 to stop splitting. In this way, the max
height allows k-skyband tree to get fine enough decompositions and the noisy
count threshold prevents the noisy count of some nodes becoming too small and
too sensitive to noise. For quadtree, we limit the max tree height to be 7, same as
k-skyband tree. For kd-tree, we use the hybrid tree with the default parameters
from the existing work [9], which was shown to perform the best for answering
count queries. We conduct experiments with privacy budgets ranging from 0.1
to 1.0 and k ranging from 0 to 200; for each budget and each k, we apply the
techniques on each dataset 10 times and report their average.

Datasets. The evaluations are carried out over three synthetic datasets that
are commonly used for evaluating many interesting variations of skyline queries.
They follow independent, correlated and anti-correlated distributions respec-
tively [5]. Each of these datasets contains 10,000 points. For these synthetic
datasets, we normalize the values to be in the range [0, 1000000] × [0, 1000000],
and assume the larger values to be preferred in each dimension. Besides synthetic
datasets, we also conduct experiments over two real-world datasets: NBA [2] and
forest cover type [1]. The NBA dataset includes the statistics of all NBA players
from 1997 to 2016, and there are 8645 points in total. In the NBA dataset, we
want to find out NBA players who can score high points (in the range [0, 3156])
and get many rebounds (in the range [0, 1449]). The second dataset is uniformly
sampled from the forest cover type dataset, which provides basic information
for forested lands in the United States. It contains about 50,000 records and has

Differentially Private K-Skyband Query 153

Fig. 2. Illustration of the synthetic dataset following anti-correlated distributions and
their k-skyband results when k ranges from 20 to 200. (Color figure online)

been used to evaluate skyline query answering schemes [35]. From this dataset,
we want to find out those forests located in uninhabited areas, i.e. those with
high elevations (in the range [1859, 3858]) and long distance to roadways (in the
range [0, 7117]), since those areas might exist some rare or endangered animal
species for research.

The distributions of the synthetic datasets and the real datasets as well as
their true skyband query results are shown in Figs. 2 and 5. When k increases, the
k-skyband expands toward the area containing less preferred points. Figures 2b
and 5c–d show different k-skybands on different datasets when k increases from
0 to 200. If k1 > k2, k1-skyband results are the super set of k2-skyband results,
and visually a new stripe in a different color is added when k increases from k2
to k1.

Utility Metric. We use F1-measure to examine the similarity between the
true k-skyband results St and the private k-skyband results Sp. To compute F1-
measure, we first define false positives and false negatives based on the distance
among points in Sp and St. Intuitively, with differential privacy, we could not
guarantee that any true k-skyband results are returned. Instead, if a private
skyband point is close to a real skyband point, then we say it is a hit (a true
positive). Otherwise, it is a false positive. Similarly, if a true skyband point is
not hit by any private skyband point, then it is counted as a false negative. More
formally, given tx and ty, a point q in Sp is a true positive (TP) if there exists a
point p in St such that |p.x − q.x| ≤ tx and |p.y − q.y| ≤ ty; otherwise, we say
q is a false positive (FP). Similarly, a point p in St is a false negative (FN) if
there exists no point q in Sp such that |p.x − q.x| ≤ tx and |q.y − p.y| ≤ ty. Here
for simplicity we use tx and ty instead of a radius to quantify the threshold of
distance between a skyband point and its true positives. We refer to tx (ty) as
the error tolerance threshold in x (y) dimension. Based on the counts of TP, FP
and FN, we can compute the precision and recall and further derive F1-measure.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1 =

2 × Precision × Recall

Precision + Recall

154 L. Chen et al.

For each of the five datasets, we obtain the ranges for each dimension (i.e.,
[xmin, xmax] and [ymin, ymax]). We then set tx and ty to be 1%, 3%, 5%, and
7% of (xmax − xmin) and (ymax − ymin), and compute F1-measure accordingly.
Note that for the 2-dimension dataset, when both tx and ty are set to 1% of the
data domains, the error tolerance rate in the 2-dimension space becomes 1% ×
1%, which requires a private point to be very close to a true point. In Sects. 4.1
and 4.2, we show the F1-measure with both tx and ty set to 3%, and the results
of different error tolerance rates are shown in AppendixB.

4.1 Results on Synthetic Datasets

Figure 3 shows the F1-measure results for the anti-correlated synthetic datasets.
Due to space limit, we omit the results for the normal and correlated distribu-
tions. In the figure, the x-axis shows different values for k and the y-axis shows
the values of F1-measure.

Impacts of Datasets. For the anti-correlated dataset, quadtree has very poor
F1-measure scores (about 0.1). Unlike the independent and correlated datasets,
the true k-skyband points are concentrated in the center areas instead of the
areas close to the upper-right point, as shown in Fig. 2b. Thus, when quadtree
fails to capture the properties of those regions that contribute most to k-skyband
results, the resulting private k-skyband points are still in the regions close to
the optimal point (as shown in Fig. 4a), causing high false positives and high
false negatives, leading to F1-measure scores. kd-tree performs better than k-
skyband tree when ε is less than or equal to 0.5. For example, when ε is 0.1,
k-skyband tree uses very little budget for splitting the region and cannot capture
the data distribution precisely. The resulting k-skyband is similar to the one
shown in Fig. 4a. However, when ε becomes larger, which allows enough budget
for splitting the region, k-skyband tree performs much better than the other two
trees (shown in Figs. 4a and b), and produces the private k-skyband (shown in
Fig. 4c) that is very similar to the true k-skyband. Though both k-skyband tree
and kd-tree are data dependent and will adaptively conduct finer decompositions
in dense regions, k-skyband tree focuses the decompositions on the regions that
are most important to k-skyband queries (i.e., the upper-right regions), while kd-
tree treats each region equally and does not provide fine enough decompositions
in the upper-right regions, which explains the accuracy gap between kd-tree
and k-skyband tree, especially when ε becomes bigger. For the independent and
correlated datasets, the results are similar.

Impacts of k. Generally, F1-measure improves with the increase of k, and k-
skyband tree is better than the other two approaches when budgets are >0.5.
The reason is that when k is small (<20), k-skyband query results intend to
contain only a few data points. For privacy protection, a relatively large amount
of noise is needed to hide the exact locations of these data points, causing high
distortion of actual query results. When k increases, more and more data points
are contained in k-skyband query results. k-skyband tree would more accurately

Differentially Private K-Skyband Query 155

Fig. 3. Comparing F1-measure of k-skyband tree, kd-tree and quadtree on the anti-
correlated dataset when k ranges from 0 to 200 and ε ranges from 0.1 to 1.0.

Fig. 4. Private k-skyband results of the anti-correlated dataset when ε = 2 and k =
200.

capture the distribution of skyband points, even if their exact locations are pro-
tected, which explains the increased utility. In this case, producing an accurate
k-skyband is very difficult because the corresponding nodes with small number
of points are sensitive to the added noise; when k becomes larger, the number
of points in k-skyband becomes larger, and the corresponding nodes with larger
number of points are more resistant to the added noise.

Summary. From the synthetic datasets, it does not seem k-skyband tree offers
significant advantages over kd-tree or quadtree (depending on which datasets we
look at). However, we note that these three datasets are widely used in past
work to evaluate the efficiency and scalability of algorithms to compute exact
skyline/k-skyband points. In this work however we focus on the accuracy of
differentially privacy algorithms. We argue that none of the distributions in the
three synthetic datasets are representative of practical datasets where k-skyband
queries are meaningful and useful. For example, in the independent dataset, all
the points evenly spread in the whole region, which means k-skyband points
are as common as any other non-skyband points. Similarly, for the correlated
dataset, it implies that if a point is superior in one dimension, it also tends
to be so in the other. In that case, there would be no need to have k-skyband
queries over multiple dimensions, as we only need to query points superior in
one dimension and their superiority in the other dimension is implicitly ensured.

156 L. Chen et al.

The anti-correlated dataset goes to another extreme: if a point is superior at one
dimension, it must be poor at the other, which also renders k-skyband queries
over multi-dimensions unnecessary. Essentially k-skyband queries are to find
unusual points who are good at both dimensions. Unusual points mean they
cannot be as common as other points (inferior at both dimension) as in the
independent and correlated datasets, and, on the other hand, they do exist (i.e.,
superior in both dimensions), not as in the anti-correlated dataset.

4.2 Results on Real Datasets

Figures 6a–f show the F1-measure results for the two real datasets when varying
k under different privacy budget ε.

Fig. 5. Illustration of NBA and Forest Cover Type datasets and their k-skyband results
when k ranges from 20 to 200. (Color figure online)

The first thing we notice is that the distributions of the two real datasets
(shown in Fig. 5) do not resemble any of the three synthetic datasets (shown in
Fig. 2). Most of the points are “ordinary”. They are not good at either dimen-
sion (i.e., they are largely concentrated around regions that are inferior in both
dimensions, and k-skyband points instead spread out sparsely: we do have points
that are superior in one dimension or in both dimensions, but they are not as
concentrated as those “ordinary” points.

Differentially Private K-Skyband Query 157

Fig. 6. Comparing F1-measure of 3 techniques based on k-skyband tree, kd-tree and
quadtree on the two real datasets of NBA player stats and Forest Cover Type when k
ranges from 0 to 200 and ε ranges from 0.1 to 1.0.

From the F1-measure results, for all ε values, we can see that k-skyband tree
clearly outperforms the other two approaches when k > 20 in the NBA dataset;
in the forest cover type dataset, k-skyband tree achieves the best performance
for all k values. The major reason is that both kd-tree and quadtree focus on
splitting more in dense areas, which unfortunately in the real datasets correspond
to regions that are not likely to contain k-skyband results. On the other hand,
for the regions containing k-skyband points, since they are sparse, kd-tree and
quadtree can only generate very course-grained partitions close to the optimal
point or along each dimension. The consequence is that during data synthesizing
phase, many points will be generated quite near the optimal point or the x
and y axes. These synthesized points will be very likely to be included in the
private k-skyband query results, which are far different from the real results. As
a contrast, k-skyband tree will quickly prune out those dense but not interesting
regions (from k-skyband queries’ point of view) and split more in regions that
likely contain k-skyband points even if these regions are not dense.

Summary. In general, k-skyband tree outperforms the other two trees for both
real datasets for all ε values when k is reasonably large (k > 20). In the forest
cover type dataset, k-skyband tree are better than the other two trees for all k
values. Such results show that k-skyband tree achieves high utility not only in
synthetic datasets used for evaluating various skyline computations, but also in
real-world datasets used in multi-criteria decision making.

158 L. Chen et al.

For these real-world datasets, we can observe that the desired data points
usually are in the sparse areas that contain small number of points, and most of
the data points are condensed in the areas that represent less desirable values.
For example, in the NBA dataset, the best players spread in the areas that
represent high scoring or high rebounding, and only a few are in the region that
represents both high scoring and high rebounding; while the rest of the players
are condensed in the areas along the diagonals from the upper-right corners to
the lower-left corners.

5 Related Work

Early works to ensure privacy of released data were based on syntactic
approaches such as k-anonymity [16,31] and �-diversity [24]. However, these
approaches only satisfy syntactic privacy notions, and cannot provide formal
guarantees of privacy as differential privacy. Differential privacy ensures that no
matter what knowledge or power an adversary has, the adversary cannot infer
an individual’s presence in a dataset from the randomized output.

In this work, our goal is to perform k-skyband queries under differential pri-
vacy. Initial efforts on differential privacy [10–12,14,21] focused on the theoretical
proof of its feasibility on various data analysis tasks, e.g., histogram [3,19,36].
More recent work has focused on practical applications of differential privacy
for privacy-preserving data publishing, such as data publishing based on pri-
vate spatial decompositions. Inan et al. [20] proposed a differentially private
technique to build data-partitioning index structures in the context of private
record matching, which uses an approximate mean as a surrogate for median
(on numerical data) to build kd-tree. Recent works [9,37] also proposed several
private spatial decompositions, such as quadtree, kd-tree and PrivTree, building
the noisy trees with effective budget allocation strategies. These differentially
private data publishing techniques are specifically crafted for answering range
count queries. However, synthesizing the dataset based on the spatial decom-
positions and applying BNL to compute k-skyband results cannot capture the
accurate results. Data synthesis on the partitions whose true counts are zero but
becomes positive after adding noise would introduce too much unnecessary noise
for k-skyband results. Unlike these approaches generating a tree for answering k-
skyband queries with different k values, our technique generates a private tree for
each k value (i.e., choosing the ne regions based on k). Our technique optimizes
the data decomposition for k-skyband queries and suppresses data synthesis on
partitions whose noisy counts become positive from zero with post-processing
techniques. Evaluation results demonstrate the superiority of our space decom-
position optimized based on k over the general space decompositions proposed
by the existing works.

Differentially private cluster analysis has also been studied in prior work.
Zhang et al. [38] proposed differentially private model fitting based on genetic
algorithms and McSherry [27] introduced the PINQ framework, both of which
have been applied to achieve differentially privacy for k -means clustering.

Differentially Private K-Skyband Query 159

Nissim et al. [29] proposed the sample-aggregate framework that calibrates the
noise magnitude according to the smooth sensitivity of a function. Their frame-
work can be applied to k -means clustering under the assumption that the dataset
is well-separated. Chen et al. [8] proposed several techniques that achieve dif-
ferential privacy for WaveCluster [32,33], which can capture spatial information
to detect clusters with complex shapes, e.g. concave shapes. Leveraging private
clustering analysis for computing k-skyband results would easily miss some par-
titions that contain a small number of k-skyband points, since these partitions
are too sparse to form clusters.

Another important line of prior work focuses on privacy-preserving database
queries over sensitive data distributed among multiple parties. Recently, the
advances in the theory of secure multiparty computations [6,17,18] proved that
comparison, addition, and multiplication (XOR and AND) can be computed
securely with reasonable computation cost. Based on these primitive protocols,
a line of research has focused on developing efficient secure multi-party com-
munication protocols for various database queries, such as set operations [4,28],
top-k queries [34]. These protocols focus on protecting the privacy of the data
among multiple parties and only the final query results are released to the pub-
lic, while our work presents an approach to release the query results without
compromising individual privacy of the individuals. What’s more, there are no
existing secure protocols for k-skyband queries, and building such protocols is
not trivial.

6 Conclusion

In this paper we have addressed the problem of k-skyband queries with differ-
ential privacy. We propose a general technique BBS-Priv that accepts any space
decomposition tree with differential privacy as input and selective performs data
synthesis for interested tree nodes to compute private k-skyband results. To
improve the query accuracy, we further devise a new space decomposition tree
k-skyband tree specifically optimized for k-skyband queries, which partitions the
space based on k other than median value or midpoint of each dimension. We
further present a suite of techniques to publish a k-skyband tree satisfying differ-
ential privacy, and propose a post-processing technique to improve accuracy by
suppressing data synthesis on those partitions whose noisy counts become posi-
tive from zero. In the future, we will investigate under differential privacy other
categories of multi-criteria decision making queries, such as top-k dominating
queries.

A Algorithm of k-Skyband Tree

Algorithm 2 shows the detailed steps of generating k-skyband tree. Given a region
〈(xmin, xmax), (ymin, ymax)〉, k-skyband tree first inserts the input region node r
into a queue Q (Line 1), and then removes a node n from Q for splitting (Line 3).
If the height of n reaches the maximum height h, n is considered as a leaf node
(Line 4) and k-skyband tree continues to process a new node from Q (back to

160 L. Chen et al.

Line 2). If the point count of n is larger than k+1, k-skyband tree uses a function
SplitByK (Algorithm 3) to choose a splitting point s = (sx, sy) based on k (Line
7), such that the upper-right region ne = 〈(sx, sy), (xmax, ymax)〉 contains more
than k data points. When SplitByK cannot find such a ne (i.e., ne is the same as
n at Line 8), k-skyband tree uses the midpoint of each dimension as the splitting
point (same as quadtree) (Line 9). If the point count of n is smaller than k+1 (not
possible to find ne whose point count is larger than k+1), k-skyband tree also uses
the midpoint of each dimension as the splitting point (same as quadtree) (Line
11). After splitting, the dominance region of s, sw = 〈(xmin, sx), (ymin, sy)〉, is
considered as a leaf node and no further split is required. The splitting terminates
when there are no more nodes in Q to be split (Line 2).

Algorithm 2. k-skyband tree
Input: A region r, k in k-skyband queries, the max height of the tree h
Output: A spatial decomposition tree T
1: Q.enqueue(r)
2: while Q is not empty do
3: n = Q.dequeue()
4: if isLeaf(n, h) then
5: continue // back to Line 2

6: if n.count > k + 1 then
7: N = splitByK(n, k, −1) // -1 means no noise added
8: if N.ne = n then
9: N = splitByMidPoint(n)

10: else
11: N = splitByMidPoint(n)

12: Q.enqueue(N.ne, N.nw, N.se)
13: if N.ne.count ≤ k then
14: Q.enqueue(N.sw)

15: return N

To obtain an upper-right region with more than k points, we propose an
efficient algorithm shown in Algorithm3. Given a region n, the algorithm uses
two max heaps (Hx and Hy) to sort the data points within n (Line 2), where
Hx (Hy) sorts the points based on their x (y) coordinates. The algorithm accesses
a point nx from Hx and a point ny from Hy, and uses the x coordinate of nx

and the y coordinate of ny as a new splitting point s = 〈sx, sy〉(Line 8). Then
nx and ny are put into a set P (Line 9), which are later checked to see whether
they fall into the upper-right region ne split based on s. The reason is that the
y (x) coordinate of nx (ny) may be smaller than sy (sx), and thus nx (ny) may
not fall into ne. To compute the point count of ne, we only need to check the
points in P : each c ∈ P is checked to see whether it falls into ne (Lines 10–12).
If so, then c is moved from P to S, which holds all the points that dominate
the current split point (Line 12); otherwise, c remains in P and will be checked
again when a new splitting point is formed in the next iteration. Also, due to the

Differentially Private K-Skyband Query 161

way split points are generated, if a point dominates an early split point, it will
also dominate later ones. That is why we can safely put that point into S. The
algorithm terminates when S contains more than k points (Line 4), i.e., splitting
by s guarantees that the upper-right region contains more than k points. The
non-private k-skyband tree directly returns the split regions (Lines 16–17) and
skip the steps for obtaining the private values for s (Lines 14–15).

B Results with Different Error Tolerance Rates

A real skyband point is considered to be hit by a private skyline point if the
private skyband point is close enough to the real skyband point. Error tolerance
rates quantitatively define how close they should be in order to be considered as
a hit. Larger error tolerance rates mean more loose constraints on the distance
between the private and the real skyband points, and thus make F1-measure
become better. In other words, when the error tolerance rates become larger,
the privacy technique provides better guarantee in utility. We compute results
of F1-measure by varying error tolerance rates to observe the impacts of error
tolerance rates on the performance.

Algorithm 3. SplitByK
Input: A region n, k in k-skyband queries, εs privacy budgets for splitting
Output: A set N that contains four children nodes sw,se,nw,ne
1: S = ∅, P = ∅
2: Hx.insert(n.data), Hy.insert(n.data)
3: sx = n.xmax, sy = n.ymax

4: while S.size < k + 1 do
5: if Hx is empty or Hy is empty then
6: break
7: nx = Hx.remove(), ny = Hy.remove()
8: sx = nx.x, sy = ny.y
9: P .add(nx), P .add(ny)

10: for c ∈ P do
11: if c.x ≥ sx and c.y ≥ sy then
12: S.add(c), P .remove(c)

13: if εs > 0 then
14: sx = EM(sx,εs)
15: sy = EM(sy,εs)

16: N = {sw, se, nw, ne} = n.split(sx,sy)
17: return N

Figure 7 shows the F1-measure results for the two real-world datasets when
the error tolerance rate tx and ty ranges from 1% to 7%. In each figure, the
x-axis shows different values for the error tolerance rates and the y-axis shows
the values of F1-measure. Due to space limit, we choose to show the results with
k set to 40 and ε set to 1.0 as the representative results. Clearly, k-skyband tree
performs much better than the other two trees in all the error tolerance rates,
and its F1-measure improves significantly when tx and ty reach 7%.

162 L. Chen et al.

Fig. 7. F1-measure of 3 techniques based on k-skyband tree, kd-tree and quadtree on
the real datasets for k = 40, ε = 1.0, and error tolerance rate ranges from 1% to 7%
on each dimension.

References

1. http://kdd.ics.uci.edu/databases/covertype/covertype.html
2. Nba players statistics. http://www.hoopsstats.com/basketball/fantasy/nba/

playerstats
3. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy,

accuracy, and consistency too: a holistic solution to contingency table release (2007)
4. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:

ASIACCS (2012)
5. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
6. Cachin, C.: Efficient private bidding and auctions with an oblivious third party.

In: CCS (1999)
7. Chen, L., Gao, S., Anyanwu, K.: Efficiently evaluating skyline queries on RDF

databases. In: ESWC (2011)
8. Chen, L., Yu, T., Chirkova, R.: Wavecluster with differential privacy. In: CIKM

(2015)
9. Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differentially private

spatial decompositions. In: ICDE (2012)
10. Dwork, C.: Differential privacy: a survey of results. In: TAMC (2008)
11. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: STOC (2009)
12. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in

private data analysis. In: TCC (2006)
13. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.

Trends Theor. Comput. Sci. 9, 211–407 (2014)
14. Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets. In: STOC (2009)
15. Feng, X., Gao, Y., Jiang, T., Chen, L., Miao, X., Liu, Q.: Parallel k-skyband

computation on multicore architecture. In: APWeb (2013)
16. Ghinita, G., Zhao, K., Papadias, D., Kalnis, P.: A reciprocal framework for spatial

k-anonymity. Inf. Syst. 35(3), 299–314 (2010)
17. Gordon, D.S., Carmit, H., Katz, J., Lindell, Y.: Complete fairness in secure two-

party computation. In: STOC (2008)

http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://www.hoopsstats.com/basketball/fantasy/nba/playerstats
http://www.hoopsstats.com/basketball/fantasy/nba/playerstats

Differentially Private K-Skyband Query 163

18. Harnik, D., Naor, M., Reingold, O., Rosen, A.: Completeness in two-party secure
computation: a computational view. In: STOC (2004)

19. Hay, M., Rastogi, V., Miklau, G., Suciu, D.: Boosting the accuracy of differentially
private histograms through consistency. PVLDB 3, 1021–1032 (2010)

20. Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using
differential privacy. In: EDBT (2010)

21. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? In: FOCS (2008)

22. Kodama, K., Iijima, Y., Guo, X., Ishikawa, Y.: Skyline queries based on user loca-
tions and preferences for making location-based recommendations. In: Interna-
tional Workshop on Location Based Social Networks (2009)

23. Levandoski, J.J., Mokbel, M.F., Khalefa, M.E.: Preference query evaluation over
expensive attributes. In: CIKM (2010)

24. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007).
http://doi.acm.org/10.1145/1217299.1217302

25. Magnani, M., Assent, I., Mortensen, M.L.: Taking the big picture: representative
skylines based on significance and diversity. VLDB J. 23(5), 795–815 (2014)

26. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS
(2007)

27. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. Commun. ACM 53(9), 19–30 (2010)

28. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 1

29. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in
private data analysis. In: STOC (2007)

30. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in data-
base systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

31. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. In: Pro-
ceedings IEEE Security & Privacy (1998)

32. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: a multi-resolution clus-
tering approach for very large spatial databases. In: VLDB (1998)

33. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: a wavelet-based clus-
tering approach for spatial data in very large databases. VLDB J. 8(3–4), 289–304
(2000)

34. Vaidya, J., Clifton, C.: Privacy-preserving top-k queries. In: ICDE (2005)
35. Valkanas, G., Papadopoulos, A.N., Gunopulos, D.: Skydiver: a framework for sky-

line diversification. In: EDBT (2013)
36. Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially private

histogram publication. VLDB J. 22(6), 797–822 (2013)
37. Zhang, J., Xiao, X., Xie, X.: Privtree: a differentially private algorithm for hierar-

chical decompositions. In: SIGMOD (2016)
38. Zhang, J., Xiao, X., Yang, Y., Zhang, Z., Winslett, M.: Privgene: differentially

private model fitting using genetic algorithms. In: SIGMOD (2013)

http://doi.acm.org/10.1145/1217299.1217302
http://dx.doi.org/10.1007/978-3-540-24676-3_1

Mutually Private Location Proximity Detection
with Access Control

Michael G. Solomon1(B), Vaidy Sunderam1, Li Xiong1, and Ming Li2

1 Department of Mathematics and Computer Science,
Emory University, Atlanta, USA

{msolo01,lxiong,vss}@emory.edu, michael@solomonconsulting.com
2 Department of ECE, University of Arizona, Tucson, USA

ming.li@arizona.edu

Abstract. Mobile application users want to consume location-based ser-
vices without disclosing their locations and data owners (DO) want to
provide different levels of service based on consumer classifications, some-
times without disclosing areas of interest (AOI) locations to all users.
Both actors want to leverage location-based services utility without sac-
rificing privacy. We propose a protocol that supports queries from differ-
ent classifications of users, such as subscribers/non-subscribers, or inter-
nal/external personnel, and imposes embedded fine-grained access con-
trol without disclosing user or DO location information. We use Cipher-
text Policy Attribute-Based Encryption (CP-ABE) and Hidden Vector
Encryption (HVE) to provide flexible access control and mutually private
proximity detection (MPPD). Our protocol minimizes expensive crypto-
graphic operations through the use of location mapping with compressed
Gray codes, each representing multiple locations. Our protocol encrypts
AOI locations using HVE, and then encrypts AOI information using
CP-ABE with an expressive access policy. Our protocol’s use of these
two encryption methods allows DOs to define a single set of AOIs that
can be accessed by sets of users, each with potentially different access
permissions. A separate service provider (SP) processes queries without
divulging location information of the user or any DO provided AOI.

1 Introduction

Mobile applications increasingly incorporate location awareness into services
they provide. Many such services rely on location to provide context-sensitive
results, such as proximity alerts when a consumer approaches some defined area
of interest. Today’s smart phones, tablets, and other mobile devices make accu-
rate location-sensing a commonly used feature. However, consumers of such fea-
tures are becoming increasingly concerned over the loss of privacy resulting

Research supported by AFOSR DDDAS grant FA9550-17-1-0006 and NSF TWC
grant CNS-1618932.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 164–184, 2017.
DOI: 10.1007/978-3-319-61176-1 9

Mutually Private Location Proximity Detection with Access Control 165

from ongoing location disclosure. Consumers want to use location-based ser-
vices without sacrificing their privacy. Likewise, Data providers or data owners
(DO) of areas of interest (AOI) want to provide differing levels of service based
on consumer classifications, without disclosing the locations of all AOIs to all
consumers. For example, DOs may provide services of greater value to paid sub-
scribers than to users who consume services for free. Alternatively, DOs may
keep specific AOI locations private from some users in the interest public safety
or to avoid public panic, as in the case of areas of active criminal activity or
ongoing health hazards. DOs may want to restrict access to, and even awareness
of, AOIs to consumers based on access permissions and location.

We propose a protocol that allows DOs to define a single set of AOIs with
consumer access rules that limits AOI proximity alerts to specific groups of con-
sumers. The locations of defined AOIs are kept private and not disclosed to
consumers until they are in proximity to individual AOIs. The protocol funda-
mentally provides proximity detection based on a consumer’s current location,
without disclosing any consumer’s location. Our protocol supports mutual pri-
vacy (privacy for the data provider and the consumer), along with embedded
access control that allows DOs to control proximity alerts by consumer type.

1.1 Motivation

Consider Mary, a guest at the “Fun Times” amusement park. Mary wants to
make the most of her day and desires to minimize time spent waiting in line
for attractions or shows. Mary has subscribed to the “Fun Times InTheKnow
app” premium service that sends information to her smart phone about nearby
attractions and shows with short wait times. Bob is also in the “Fun Times”
park and has the “InTheKnow” app, but Bob did not subscribe to the premium
service. Bob only receives general information about attraction wait times for
attractions that are somewhat close to his current location. Both Mary and Bob
want to receive helpful information without disclosing their locations to “Fun
Times.” On the other hand, “Fun Times” wants to provide location-sensitive
services to Mary and Bob without publishing all of the “Fun Times” AOIs. If
“Fun Times” published all of their AOIs, no subscribers would need to pay for
the subscription to the premium service. “Fun Times” protects their revenue
stream by keeping their AOIs private. “Fun Times” can limit the information
they provide to subscribers, and even define different subscriber levels based
on subscription fees paid. “Fun Times” can also use this service to direct their
employees to areas of the park that need cleaning, servicing, or even crowd man-
agement. Other use cases for such a location privacy preserving framework could
include providing epidemiological related alerts or criminal activity investigation
proximity with precision granularity based on clearance and/or “need to know”.

166 M.G. Solomon et al.

1.2 Existing and Potential Solutions

A naive approach to location privacy could be to simply stop the sensing or
release of physical location. However, this results in the loss of utility (e.g. nav-
igation, lost device tracking, etc.) Alternatively, applications could introduce
novel ways of exchanging and processing location information that protects the
location owner’s privacy without requiring user action. Application layer loca-
tion privacy efforts generally focus on one of four main areas, each with its own
drawbacks: location perturbation (limited accuracy), access control (limited pri-
vacy/utility trade-off), private information retrieval (PIR) (lack of DO privacy),
and encryption (performance cost). Each type of approach attempts to provide
the ability for users to consume location based services without divulging their
exact locations to any untrusted service provider (SP) or any DO, and in some
cases, allow the DO to keep its AOI location data private as well. Existing
approaches assume equal access to proximity detection for all AOIs. Traditional
access controls require a trusted authority to make decisions at run time.

Existing MPPD solutions largely focus on location as the only criteria for
determining proximity to a defined area. In some cases, additional attributes
should be considered, such as security level or subscriber status, before provid-
ing proximity responses. A useful MPPD protocol should allow a single set of
AOIs to service a large group of diverse users. Such a protocol would only provide
proximity alerts for users that are both near a defined AOI and meet require-
ments set by the data owner. This is normally accomplished by separating the
MPPD functionality from the authorization phase. This requires a third party
to examine each user and AOI attributes to determine if a proximity alert is
allowed, based on data owner policy. In this scenario, the third party possesses
substantial information about users and AOIs.

1.3 Our Contributions

We propose a novel method of providing Mutually Private Proximity Detection
(MPPD) with embedded fine-grained access control. Our protocol provides fine-
grained access control that is embedded in the encryption technique. That is,
decryption is only successful when attempted with an authorized user’s key. Our
method does not disclose location data to any user, DO, or SP. Our protocol
introduces a novel use of two existing techniques, Ciphertext Policy Attribute-
Based Encryption (CP-ABE) to provide fine-grained access control based on
descriptive consumer attributes, and Hidden Vector Encryption (HVE) to effi-
ciently determine user proximity to AOIs. Neither CP-ABE, nor HVE, alone
solve the problem of MPPD, but when both are integrated into a new pro-
tocol, work together to efficiently provide MPPD. To the best of our knowl-
edge, there is only one other proposed protocol [24] that controls access to AOIs
based on access rules the data owner supplies, along with MPPD. However, this
protocol requires distance calculations for determining proximity to each AOI,
which can be costly. Our protocol substantially reduces computational overhead
and increases scalability by using HVE with compressed AOI location tokens to

Mutually Private Location Proximity Detection with Access Control 167

determine if a user’s location overlaps one or more AOIs, along with CP-ABE
to provide flexible fine-grained access control.

Our proposed protocol is novel in that it provides fine-grained flexible con-
sumer access control, minimizes computational load on devices with limited
processing power (eg. mobile devices), and also provides a high level of privacy
guarantees for both users and DOs. The protocol supports these services and
reduces the DO administrative workload by incorporating two state of the art
partial solutions, drawing on the existing strengths of each approach (CP-ABE
and HVE). Using this new protocol, DOs can create a single set of AOIs, along
with access policies for each AOI, that restricts user consumption of proximity
alerts based on DO defined descriptive attributes. Users (consumers) must pos-
sess the attributes necessary to satisfy a DO defined access policy for each AOI to
receive proximity alerts for that AOI. All of this functionality is provided without
requiring any third party to access unencrypted location information to make
access authorization decisions. Using CP-ABE, DOs can define the granularity
of user proximity alert consumption based on its own defined access policies.
The use of HVE provides the actual proximity determination of a user location
to an AOI without disclosing either location to any party. The combination of
CP-ABE and HVE provides a flexible and scalable approach to implementing
MPPD with controlled access based on user classifications.

2 Related Work

Existing private proximity detection solutions generally fall into the follow-
ing four areas, each with its own drawbacks: location perturbation (limited
accuracy), access control (limited privacy/utility trade-off), private information
retrieval (PIR) (lack of DO privacy), and encryption (performance cost). Cur-
rent private proximity detection solutions, with the exception of [24], provide
results based on location alone, and do not consider other attributes. Results
filtering is left to a trusted third party that can examine attributes and learn
user locations.

2.1 Location Perturbation and Transformation

Location perturbation schemes use obfuscated or perturbed user location data.
K-anonymity is the most common technique to limit the ability to determine any
user location. Kim [21,23] proposed two different approaches to cloaking loca-
tions. One weakness of such schemes is that attackers can use the same cloaking
techniques as authorized users to generate and analyze shared cloaked locations.
Another weakness of these schemes is that the Location Based Server (LBS)
only responds with answers of the same, or lower, precision of the obfuscated
user location. Yiu [30] proposed a collection of schemes to strengthen the shared
knowledge weakness by partitioning data using different criteria, but these tech-
niques are still vulnerable to attacks based on a priori knowledge and brute-
force attacks. Hossain [18] proposed shear-based spatial perturbation schemes.

168 M.G. Solomon et al.

Recent work in cloaking [3,29] extends differential privacy [11] and provides
greater semantic privacy protection. However, all perturbation schemes reduce
location data precision.

2.2 Access Control

Another approach is via structured access control techniques. Bugiel [7] pro-
posed FlaskDroid, a fine-grained Mandatory Access Control (MAC) approach
for Android devices. Li [24] proposed Privacy-preserving Location Query Pro-
tocol (PLQP). PLQP allows queries to access location information while still
upholding user privacy and is efficient enough to operate on mobile devices. Lu
[25] proposed Secure and Privacy-preserving Opportunistic Computing (SPOC)
framework for health care data, which requires close proximity of a patient and
medical personnel to grant PHI access. Fawaz [13] proposed more fine-grained
access control for sharing location data with third-party apps. Access control
methods only provide binary access control with limited granularity for privacy
protection, i.e. users can either grant or block access, and these approaches
require a trusted third party to access locations to make access decisions.

2.3 Private Information Retrieval

PIR [10] allows users to issue DO queries without the DO learning the query’s
content. These techniques build private spatial indexes that utilize PIR opera-
tions, which can provide efficient spatial query processing while the underlying
PIR scheme provides privacy. Hengartner [17] uses PIR to hide location infor-
mation from an untrusted server and uses trusted computing to guarantee that
the PIR algorithms are only performing the intended operations. Khoshgozaran
[20] proposed two location privacy approaches that eliminate the need for an
LBS anonymizer. Ghinita [14] uses PIR techniques to support Nearest-Neighbor
(NN) queries without requiring a trusted third party. This approach uses cryp-
tography to protect user locations and increases performance with data mining
techniques to eliminate redundant calculations. PIR techniques can be efficient
and provide a high level of privacy guarantees, but they assume that the AOI
data is public, and provide no privacy for DOs.

2.4 Encryption

Other approaches use encryption for location data to provide privacy, requiring
varying degrees of communication and computation in the encrypted space to
determine proximity. Encryption techniques can be viewed as symmetric PIR,
that is, PIR plus the restriction of AOI privacy, which is the main focus of our
research. Although encryption introduces overhead, techniques that use it can be
more resistant to attackers, even those with prior knowledge. Proposed encryp-
tion techniques can loosely be grouped into three general categories: spatial data
encryption, novel encoding/notation, and homomorphic encryption schemes.

Mutually Private Location Proximity Detection with Access Control 169

Spatial data encryption approaches include Khoshgozaran [19], who proposed
a grid-based scheme that uses group shared symmetric keys, allowing users to
query nearby cell contents and then locally decrypt location details for items
encrypted with their group shared key. Wang’s [28] approach performs a geo-
metric range search on encrypted spatial data.

Other approaches depend on novel location encoding or notation. Ghinita [15]
proposed a method based on HVE to protect user locations. Calderoni [8,26] pro-
posed a new compact data structure, Spatial Bloom Filter (SBF), to privately
store AOI locations, and the Paillier cryptosystem to protect AOIs from disclo-
sure while still allowing comparison with encoded (but unencrypted) user loca-
tions. Kim [22] proposed Hilbert Curve Transformation (HCT), which encodes
locations using a Hilbert Curve and then encrypts the result using AES.

And finally, other approaches depend on homomorphic encryption to pro-
vide location protection. Elmehdwi [12] proposed Secure k-Nearest Neighbors
(SkNN), which uses the Paillier cryptosystem and protocols to support private
k-NN queries. Choi [9] also uses Paillier cryptosystem, along with Order Preserv-
ing Encryption (OPE) [1] to detect proximity between proximity zones. Sedenka
[27] uses the Paillier cryptosystem as well, but incorporates garbled circuits to
define three protocols to privately calculate distances between any two points
using different coordinate systems on a spherical surface.

None of these encryption-based techniques provides access control They only
address private proximity detection. To the best of our knowledge, only one
other proposed technique addresses MPPD and access control. Li [24] proposes
a MPPD solution that does include fine-grained access control by using CP-ABE
[4], along with Paillier cryptosystem. Li’s use of Pailler is similar to the secure
distance calculations of Elmehdwi’s approach, and is the most similar to our
approach. We compare our framework to Li’s in the experiments section.

Encryption techniques are promising and can offer good privacy guarantees
for both users and DOs, but at a cost. Encryption requires computation overhead
which can be a drawback for devices with limited processing power.

3 Problem Setting and Preliminaries

In this section, we define our problem setting and privacy model, then introduce
the two cryptographic primitives that we use in our protocol.

3.1 Framework Model

Our location-based proximity detection model is based on users traveling through
real space represented by a two-dimensional grid. At any one point in time, a
user occupies exactly 1 grid cell. On demand, users can query an encrypted
database of AOIs, using their own encrypted locations, to determine if their
current location overlaps any AOI. The DO defines multiple AOIs, encrypts
them, and supplies them to the SP. The SP determines access authorization
using encrypted data, and then carries out the calculations on the encrypted

170 M.G. Solomon et al.

data if access is authorized to determine if the user’s current location is in
proximity to one or more AOIs. The SP responds to the user with a list of AOIs
that overlap the cell that encloses the user’s location. Cells can represent any
physical size. The only restriction is that the DO and all users must use the same
cell granularity when converting AOI or user locations into grid coordinates.

Our protocol uses an architecture of four distinct entities. They are:

– Data Owner/Provider (DO) - Defines/encrypts AOI locations/access policies
– Key Generator (KG) - Generates CP-ABE and HVE keys and tokens.
– Service provider (SP) - Provides computation services for users to determine

user proximity to any AOI
– User - user with ability to determine current location (GPS or other means)

The function of each step of the protocol is explained in a later section.

3.2 Privacy Model

Our protocol provides the following privacy guarantees:

– DOs learn nothing
– Users learn nothing except when in proximity to an AOI
– SPs learn nothing

All DOs learn nothing about user locations and users learn nothing about
AOI locations (defined by a DO), except in the case when their current location
overlaps one or more AOIs. Even when a user learns that he or she overlaps an
AOI, the complete dimensions of the AOI are undisclosed. A user could travel
around the grid in a structured attempt to learn AOI locations by remembering
cells with AOI overlaps. Our protocol does not protect eventual AOI location
disclosure from such an attack. SPs only learn that a user’s location overlaps
one or more AOIs, but do not know any actual user or AOI location, and thus
cannot infer any physical location information. SPs can learn that two or more
users are in proximity to one another, when those users overlap the same AOIs,
but again without any AOI or user location information, cannot determine any
physical location information.

Protocol extensions to protect AOI locations from deliberate user brute-force
attacks are left for future work, but could be implemented at the KG by having
the KG detect patterns of such attacks and responding to the user accordingly.
The KG does know the location of a user when that user requests an HVE key,
but the KG is trusted, and thus does not share user location with any other
entity and does not have access to any AOI information.

The KG does not return the generated HVE encrypted user location to the
user. Instead, the KG sends the encrypted user location to the SP. The SP only
has access to encrypted AOI and user locations. It can only learn that a user’s
location overlaps one or more AOIs, but does not know what location the overlap
represents in the grid. The SP could infer user to user proximity when multiple
users are in proximity to the same AOI within a short period of time. But the

Mutually Private Location Proximity Detection with Access Control 171

SP still would not know the location of any user or AOI. Although HVE is a
public key cryptography scheme and would provide the possibility for a malicious
service provider to attempt to build a fake encrypted AOI list, our framework
limits the distribution of the HVE public keys. This practice limits the ability
to encrypt AOI locations to only trusted entities, thereby removing the ability
to use dictionary type attacks to generate imposter AOI lists.

3.3 Ciphertext Policy Attribute Based Encryption

A CP-ABE scheme provides fine-grained access control over data [4]. CP-ABE
associates a user with a descriptive attribute set to generate a secret key, SK.
Only users whose attributes match the encryption access policy can decrypt the
data. CP-ABE provides the ability for a set of users with identical attributes to
share data (i.e. able to decrypt the same ciphertext) without having to share keys
or have any awareness of the existence of other users with the same attributes.
Further, any user’s attributes may satisfy the requirements of many different
ciphertext access policies. CP-ABE expressive access policies free ciphertext from
being bound to a static set of attributes. Users that possess different attributes
may be able to decrypt a ciphertext, as long as each user’s attributes satisfies the
DO supplied access policy. To encrypt a message M using CP-ABE, the encryptor
provides an access policy, expressed as a boolean expression containing selected
attributes and values for M. Figure 1 shows an access policy in a tree structure.
M is then encrypted based on the access structure, T. Decryptors generate SK
based on their attributes. A decryptor is only able to decrypt ciphertext, CT,
when her SK satisfies the access policy used to encrypt M. Unauthorized users
cannot decrypt CT even if they collude and combine disjoint attributes.

AND

subscriber =
free

alertType
= notify

(subscriber=paid AND ((alertType = warn) OR alertType = notify))) OR
(subscriber=free AND (alertType = notify))

OR

AND

subscriber =
paid

OR

alertType =
warn

alertType =
notify

Fig. 1. CP-ABE access policy tree

CP-ABE defines the following four essential functions:

1. Setup(): Input security parameter, output public key (PK), for encryption,
and master key (MK), to generate user secret keys.

172 M.G. Solomon et al.

2. Encrypt: Input message M, access structure T, public key PK, output cipher-
text CT.

3. KeyGen: Input set of user’s attributes SX and MK, output secret key SK for
SX.

4. Decrypt: Input CT, SK. If SK satisfies access structure in CT, return M, else
return NULL.

3.4 Hidden Vector Encryption

Hidden Vector Encryption (HVE) [6] is an extension of an anonymous identity
based encryption (IBE) [5] scheme. With IBE, the keys used for encryption and
decryption are based on identities and attributes. HVE allows an attribute string
that is associated with the ciphertext or the user secret key to contain wildcards.
Thus, HVE provides a searchable encryption scheme that supports conjunctive
equality, range and subset queries. An HVE attribute is represented as a vector
of elements with a value of 0, 1, or a wildcard (represented as “*” and often
referred to as a “don’t care” value). The wildcard in an HVE attribute matches
the values 0 or 1 in comparison operations. An HVE comparison of a search
predicate S and a ciphertext C evaluates as True if the attribute vector I used
to encrypt C contains the same values as S for all positions that are not “*”.

HVE defines the following four essential functions:

1. Setup(): Input security parameter, output public key (PK), for encryption,
and master key (MK).

2. KeyGen: Input MK and a string y in 0, 1, *, output secret key SK for y.
3. Encrypt: Input public key PK, message M, attribute string x in 0, 1, output

ciphertext CT.
4. Query: Input CT, SK. If SK satisfies attribute string x in CT, return M, else

return NULL.

4 Protocol Description

In this section, we present our proposed protocol for MPPD with access control
by combining HVE and CP-ABE. We call the protocol PrivProxABE, which
stands for Private Proximity detection using ABE. We first define AOI types
and user attributes which will be used to enforce access control and then present
the details for each of the steps of the protocol.

4.1 AOI and User Attributes

Suppose “Fun Times” defines four types of AOIs, each with a different color
designator. Table 1 lists the AOI types and what each one represents.

These AOI types are simply examples of what our protocol can represent.
AOI types can be of any type and any number. The AOI type definition is left
up to the specific implementation definition, as long as each AOI is uniquely

Mutually Private Location Proximity Detection with Access Control 173

Table 1. AOI Types

Color Who can access Alert type

Red Paid subscribers Warn

Blue Paid subscribers Notify

Green Paid subscribers Approach

Yellow Free users Notify

identified with a character label. AOIs can overlap by sharing one or more cells.
In such cases, users would receive a response to a proximity query indicating
that their current location places them within more than one AOI. Using our
example, “Fun Times” wants to provide some value to users who use their mobile
app, but reserve the more detailed information for premium subscribers to their
service. Users of the “InTheKnow” app that have paid for the premium service
can receive “warn”, “notify”, and “approach” alerts. The first two alert types
could be used to provide guidance for areas to avoid, while the third alert type
could inform users of areas that would be beneficial to visit. Users that have not
paid for the premium subscription will only receive “notify” alerts. Notice that
there are two different colors for the “notify” alert. Premium subscribers will
receive more specific information about “notify” alerts, while free users will only
receive general messages. This approach allows “Fun Times” to define different
classifications of users, each of which receives different proximity alerts.

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

AOIs “red”, “blue”, and “green”

AOIs available only to subscribed (paid) users.
Purple represents “red” and “blue” overlap.

Access policy: AOI “red”

“(subscriber=paid) AND
(alertType=warn)”

Access policy: AOI “green”

“(subscriber=paid) AND
(alertType=approach)”

Access policy: AOI “blue”

“(subscriber=paid) AND
(alertType=no�fy)”

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

AOI “yellow”

Access policy: AOI “yellow”

“(subscriber=free) AND
(alertType=no�fy)”

AOIs for free users are more generic
(i.e. provide less specific informa�on)

Fig. 2. Paid subscriber and free user AOIs (Color figure online)

Figure 2 shows how each AOI accessible by both paid and free subscribers is
defined on a grid and the access policy associated with each AOI. Our example
includes four users to demonstrate the protocol’s flexibility. Table 2 shows each
user and their associated descriptive attributes used to generate each user’s secret
key. A user’s attributes must satisfy (match) an AOI’s access policy to decrypt
and access the AOI.

To determine proximity to an AOI, a user sends the current encrypted loca-
tion to a service provider, which then determines if that user is within any cell

174 M.G. Solomon et al.

Table 2. Users and Descriptive Attributes

User Subscriber AOI Types Can decrypt AOIs

Alice free warn, notify yellow

Bart free approach none

Mary paid approach, notify blue, green

Daniel paid warn, notify red, blue

defined as an AOI, all without ever learning any location information from the
user or data provider. Users request a secret key from a key generator based
on descriptive attributes. The attribute-based key provides the ability for the
service provider to assess accessibility for each AOI. To continue our example,
four users request proximity alerts for the amusement park defined AOIs.

We call the technique PrivProxABE (MPPD using ABE). The protocol is
made up of four basic phases:

I Setup - DO Initializes protocol state
II InitAOIs - DO Encrypts AOIs with access policy

III InitUserLoc - User encrypts current user location
IV Query - User initiates location proximity query

4.2 Setup

Algorithm 1 shows the steps in the “Setup” phase and refers to Fig. 3. In the
“Setup” phase, the DO calls the ABEsetup() method on the KG to generate
the ABE public key, PKABE. The KG sends PKABE to the DO and the SP. The
DO also calls the HVEsetup() function on the KG to generate the HVE public
key, PKHVE, and returns PKHVE to the DO. The DO keeps PKABE and PKHVE

secret, (i.e. the DO does not share either key with any other entity.)

Algorithm 1. PrivProxABE Protocol - Setup
1. DO calls ABEsetup() on KG. KG sends PKABE to DO and SP.
2. DO calls HVEsetup() on KG. KG sends PKHVE to DO.

Data Provider
(DP)

A�er setup:
PKABE, PKHVE

Service Provider
(SP)

A�er setup:
PKABE

Key
Generator
(trusted)

Fig. 3. PrivProxABE Setup phase

Mutually Private Location Proximity Detection with Access Control 175

4.3 Encrypting AOIs with Access Policy

Algorithm 2 shows the steps in the “InitAOIs” phase and refers to Fig. 4. Our
evaluation assumes a static set of AOIs. If AOIs change frequently, this phase
would be revisited to initialize any new or changes AOIs. Initializing individ-
ual AOIs has a small impact on performance, and would only impact overall
performance in relation to the number of frequently update AOIs.

Algorithm 2. PrivProxABE Protocol - InitAOIs
3. DO encrypts encoded AOI cells (encoded using Gray encoding) and keeps
CTHVE.
4a. DO encrypts AOI label and other descriptive AOI info using access policy to
get CTABE.
4b. DO sends CTABE and CTHVE to SP.

Data Provider
(DP)

AOIs
(cells)

3) EncHVE (AOIs)

4a) EncABE (AOI info)

CTABE

Service Provider
(SP)

A�er InitAOIs:
PKABE, CTABE , CTHVE

CTHVE

Fig. 4. PrivProxABE InitAOIs phase

Encode AOI Locations. In the “InitAOIs” phase, the DO maps cell IDs to
coordinates, (x,y), and generates Gray codes for the x and y values. The complete
Gray code for a cell ID is the concatenation of the ordered pair’s GrayCode(x)
and GrayCode(y). Table 3 shows the Gray codes for the “red”, “blue”, “green”,
and “yellow” AOIs presented in Fig. 2.

We use Gray encoding to reduce the number of stored values to represent
AOIs. In many cases, using Gray codes dramatically reduces the number of
distinct values necessary to represent groups of cells that comprise AOIs. To
reduce the number of required comparisons to determine AOI proximity in user
queries, we compress the Gray codes into search tokens that contain wildcards,
as proposed in [15]. If two Gray code values differ by only a single digit, we
replace the digit with a wildcard, “*”, allowing the new single search token
to represent two individual Gray codes, or Cell IDs. The iterative compression
process continues until no two remaining search tokens differ by a single digit,
potentially resulting in a small number of search tokens for each AOI.

176 M.G. Solomon et al.

Table 3. AOI location encoding - step 1

AOI color Cell ID Cell coord Gray code

Red 18 (3,3) 0001000110

Red 19 (4,3) 0011000110

Red 23 (3,4) 0001000111

Red 24 (4,4) 0011000111

Blue 14 (4,3) 0011000010

Blue 15 (5,3) 0011100010

Blue 19 (4,4) 0011000110

Blue 20 (5,4) 0011100110

Green 1 (1,1) 0000100001

Green 6 (1,2) 0000100011

Yellow 9 (4,2) 0011000011

Yellow 10 (5,2) 0011100011

Yellow 12 (2,3) 0001100010

Yellow 13 (3,3) 0001000010

Yellow 14 (4,3) 0011000010

Yellow 15 (5,3) 0011100010

Yellow 17 (2,4) 0001100110

Yellow 18 (3,4) 0001000110

Yellow 19 (4,4) 0011000110

Yellow 20 (5,4) 0011100110

Yellow 22 (2,5) 0001100111

Yellow 23 (3,5) 0001000111

Yellow 24 (4,5) 0011000111

Yellow 25 (5,5) 0011100111

For example, the Gray codes for cell 18 (0001000110) and cell 19 (0011000110)
only differ by the value in position 2. Therefore, we can combine the two Gray
codes into a single token, replacing the value in position 2 with a wildcard “*”,
(00*1000110). The wildcard represents a “don’t care” value, since the token
matches any value in position 2. The Gray codes for cell 23 and 24 also dif-
fer by only a single digit and can be represented with the token (00*1000111).
Notice that the two resulting tokens differ by only a single digit and can also be
combined into a single token (00*100011*). In this way, a single token can repre-
sent four cells. Table 4 shows the result of the compression process for the“red”,
“blue”, “green”, and “yellow” AOIs presented in Fig. 2.

Mutually Private Location Proximity Detection with Access Control 177

Table 4. AOI location encoding - step 2

AOI color Compressed Gray code token(s)

red 00*100011*

blue 0011*00*10

green 00001000*1

yellow 0011*00*1*, 0001*00*10, 0001*00111

Encrypt Encoded AOIs. After compressing each of the Gray encoded AOI
locations, each AOI is represented by one or more compressed tokens. The DO
encrypts each compressed token with HVE using PKHVE, returning CTHVE. The
DO then encrypts the AOI label and any additional AOI information for a single
AOI with CP-ABE using PKABE, returning CTABE. The DO then sends CTABE

and CTHVE for all AOIs to the SP.

4.4 Encrypting User Location

Algorithm 3 shows the steps in the “InitUserLoc” phase and refers to Fig. 5. If
the user is new (eg. not a user known to the KG), the KG authenticates the
user and records the authorized user attributes in the KG user table. The KG
uses the user attributes to generate a secret key (SKABE), and returns SKABE

to the user. The user then calls HVEencrypt(currentLocation) on the KG to
encrypt the user’s current location using HVE, generating LocHVE. The KG
returns LocHVE to the user. The user then generates a randomIdentifier for use
in the query phase. The randomIdentifier detaches queries from user identities.

Algorithm 3. PrivProxABE Protocol - InitUserLoc
5. User calls ABEkeyGen(userID) on KG. The KG authenticates new users and
generates a CP-ABE secret key (SKABE) based on the user’s attributes, and returns
SKABE to the user.
6. User calls HVEencrypt(currentLocation) on KG. KG sends the encrypted loca-
tion (LocHVE) to the user. The user generates a randomIdentifier.

User

SKABE ,
randomIden�fier

Key Generator
(trusted)

5) SKABE =
ABEkeyGen(userID)

6a) randomIden�fier =
HVEencrypt(loca�on)

Service Provider
(SP)

A�er InitUserLoc:
PKABE, CTABE ,
CTHVE, LocHVE,

randomIden�fier

Fig. 5. PrivProxABE InitUserLoc phase

178 M.G. Solomon et al.

4.5 Querying Proximity to AOIs

Algorithm 4 shows the steps in the “Query” phase and refers to Fig. 6. The
HVEdecrypt(LocHVE) function, run on the SP, iterates through each AOI and
attempts to decrypt CTHVE. If HVE decryption is successful, that means
that the user’s location shares 1 cell defined by the AOI. The SP returns a
list of all successfully decrypted HVE ciphertexts to the user. The user runs
ABEdecrypt(SKABE, CTABE) to attempt to decrypt each AOI returned from
the SP. Successful ABE decryption means the user’s attributes satisfy the AOI’s
access policy for an AOI that overlaps the current user’s location. The ser-
vice provider returns a list of encrypted AOIs that overlap the user’s location.
The user then attempts to decrypt each AOI using CP-ABE. Any successfully
decrypted AOI means that the user’s location overlaps the AOI and the user is
authorized to consume the AOI’s information.

Algorithm 4. PrivProxABE Protocol - Query
7. User calls HVEdecrypt() on SP. SP attempts to decrypt all AOIs using user’s
LocHVE.
8. SP returns a list of all successfully decrypted (HVE) AOIs.
9. User calls ABEdecrypt(SKABE,CTABE) for each AOI returned from the SP to
determine if the user is authorized to consume proximity alerts for each AOI.

Service Provider
(SP)

7b) If HVEdecrypt()
succeeds, add ABE

ciphertext to list

User

SKABE ,
randomIden�fier

9) ABEdecrypt
(SKABE, CTABE)

Fig. 6. PrivProxABE Query phase

5 Security and Privacy

In this section, we analyze the security and privacy guarantees of our proposed
protocol. One of the primary requirements of this protocol is to maintain the
privacy of all actors. The proposed protocol relies on the security guarantees
of CP-ABE and HVE to provide the overall security of our approach. In each
scheme, the SK is necessary to decrypt data. Our protocol ensures that only
trusted entities, users and the KG, have access to any SK. The following list
explains the privacy guarantees with respect to each architectural entity.

Mutually Private Location Proximity Detection with Access Control 179

– Data Owner/Provider (DO) - The DO is the only entity with access to the
unencrypted AOI data. It does not share unencrypted AOI locations with
any other entity to protect AOI locations. The DO does not have access to
any other information generated or stored by the KG or any user, and thus
cannot learn any information about user locations.

– Key Generator (KG) - The KG (trusted entity) generates SKs, but never
has access to AOIs and cannot decrypt any AOI data without colluding with
another entity. The KG does learn user locations as it generates LocHVE for a
user’s current location, but never shares this data with any entity other than
the user and does not have access to any information, such as AOI locations,
with which to correlate user locations. The KG could remember user locations
to build user trajectories, but our protocol defines the KG as a trusted entity
and we expect that the KG will not exceed its authority.

– Service provider (SP) - The SP never has access to unencrypted AOI or user
locations, and cannot access the decryption keys to decrypt any ciphertext.
The SP never learns any information about AOI or user locations. The SP
does learn that a user is in proximity to one or more AOIs when the locations
overlap, but does not have any information to imply actual user/AOI loca-
tions. The SP can determine when users are close to one another when they
are in proximity to the same AOI(s). The service provider cannot attempt a
dictionary type attack by building a fake AOI list since it lacks PKHVE which
is necessary to encrypt AOI locations.

– User - The user only divulges actual location to the KG. Since the SP carries
out all calculations on encrypted data, the SP never learns the user’s loca-
tion, and as stated previously, the DO never has access to any user location
information. The user never has access to any AOI location and only learns
general AOI information when the SP discloses that the user is in proximity
to one or more AOIs. The user learns that the current location overlaps the
reported AOIs, but does not immediately learn the dimensions of any AOI.
Through a process of strategically visiting multiple cells, a user could build a
map of AOI locations based on proximity alerts. However, a user could only
construct meaningful map entries from AOI data the user is authorized to
decrypt. One method to restrict malicious users from building even a partial
AOI map in a short period of time could be to set a threshold of maximum
speed at which a user could realistically travel from cell to cell. If a user
attempts to exceed this threshold, he would be deemed malicious. Hallgren
et al. [16] propose a protocol, MaxPace, based on the concept of using travel
speed thresholds to detect malicious users. Implementing protection from this
type of attack is left for future work.

Our protocol protects both AOI and user locations from disclosure, and only
allows users to eventually build an AOI map after determined actions resulting
in recording history of cells visited and proximity alerts.

180 M.G. Solomon et al.

6 Experiments

In this section, we evaluate our protocol in terms of computational performance.
We do not evaluate communication overhead in this analysis, as it is expected
that communication overhead is similar between the approaches we used in out
evaluation. In future work we will expand the evaluation to measure communi-
cation overhead. We implemented a prototype of our framework and Li’s [24]
similar framework and ran multiple tests to evaluate performance as input data
size varied. We ran each test by first defining access policies, half of which are
satisfied by test user attributes. We then define a set of AOIs, each with one
of the test access policies. The test user then issues location proximity queries,
each with a random user location. The times reported in the results represent the
average time to resolve a single location proximity query. All tests were run on a
single computer with 16GB memory and an Intel Core i7 2.4GHz CPU running
Ubuntu Linux 16.04. We chose to run all tests on a single computer to focus on
computation load. Tests were run for varying numbers of AOIs, ranging from
10 to 1500, using grid sizes from 100× 100, up to 1500× 1500, and various AOI
shapes. Figure 7 shows the 11 different AOI shapes used in the performance eval-
uation. We defined 9 basic shapes, 1 irregular shape, and a standard symmetric
AOI represented as a square when using grid cells and as a circle for circle-based
AOIs. For Li’s Paillier based implementation, we constructed each AOI using
multiple circles to approximate the shapes built from grid cells. The only AOI
type that can be generally approximated with a single circle is the square AOI.
All other AOI shape definitions require multiple circles, which results in more
computation.

Regular AOI shapes

Irregular AOI “Circular” AOI
(can be depicted
as a single circle)

Fig. 7. AOI shapes used in tests

Both frameworks were implemented in Python 2.7, using the Charm [2]
framework for rapid cryptosystem prototyping. The primary purpose of our pro-
totype implementations is to demonstrate the viability and advantages of our
proposed protocol and to compare its relative performance to similar proposed
protocol that is less scalable, as opposed to providing a deployment-ready solu-
tion. Our experiments showed that varying the grid sizes only had a minor affect

Mutually Private Location Proximity Detection with Access Control 181

0
500

1000
1500
2000
2500
3000
3500
4000
4500

100 250 500 750 1000 1250 1500

Ti
m

e
(s

)

AOI count

(a) User query - Irregular AOI shape

HVE Pailler

0

100

200

300

400

500

100 250 500 750 1000 1250 1500

Ti
m

e
(s

)

AOI count

(b) User query - Circular AOIs

HVE Pailler

0

500

1000

1500

2000

2500

3000

100 250 500 750

Ti
m

e
(s

)

AOI count

(c) User query - Random AOI shape

HVE Pailler

Fig. 8. Experimental results

on performance - much less than varying the number of AOIs. For this reason,
we chose to present results of tests all run using a grid size of 250× 250. The
unit size can represent any physical distance. In this way, the association of a
physical measurement with the unit size defines the precision of the approach.
That is, a smaller unit size results in higher precision.

Figure 8 shows the performance time of our scheme compared against Paillier-
based protocol [24] with varying number of AOIs of different shapes. Our tests
show that the choice of HVE for AOI encoding and encryption provides superior
scalability over Paillier cryptosystem distance calculations. Li’s CP-ABE/Paillier
approach works efficiently for circular AOIs, but lacks scalability for more com-
plex AOI shapes. In our evaluations, we represented Li’s circular AOIs as square
regions. Although squares only approximate circular regions, they provide the
most compact structure when using Gray code compression. Figure 8(a) shows
that CP-ABE/Paillier performs better than our CP-ABE/HVE framework when
all AOIs are represented as circles only. This is because our HVE approach
requires a collection of cells to define each AOI. Although using Gray codes with
token compression to combine multiple tokens, the Paillier distance calculation
for a single circle is still more efficient than an HVE token match.

However, when AOI shapes are not circular, as is desirable to represent dis-
tinct regions in the real world of various shapes, the CP-ABE/Paillier approach
which requires multiple circles to represent a single AOI exhibits slower perfor-
mance due to the additional overhead. Our approach can efficiently represent
irregular AOI shapes and still provide good performance. Figure 8(b) shows the
performance when using AOIs with irregular shapes. The last set of test we ran
randomly selected AOI shapes from 10 pre-defined shapes, including circular
AOIs. Even when selecting some regular shapes, our approach using CP-ABE

182 M.G. Solomon et al.

and HVE performs better than the P-ABE/Paillier approach. Figure 8(c) shows
the performance for randomly shaped AOIs.

7 Conclusion

We propose a novel framework and protocol based on CP-ABE and HVE that
provides MPPD with embedded access control for different classifications of
users. With our framework, DOs can define and maintain a single set of AOIs
and grant access to AOI information based on user attributes. We implemented
our framework and protocol, along with another approach that uses CP-ABE
and Paillier cryptosystem, and showed that our approach is more scalable when
using AOIs defined as non-circular shapes. Our framework provides a basis for
implementers to develop scalable MPPD services that minimizes workload on
DOs or users. This approach can provide flexible MPPD services to meet a wide
variety of client needs, without requiring a trusted third party to examine user
locations to determine proximity.

Future work toward refining our MPPD with access control solution include
hardening the protocol against attack, optimizing the HVE token compression
algorithm, and reducing the communication overhead between framework com-
ponents. Each of these enhancements will make our protocol more secure and
scalable, and easier to deploy to mobile devices with limited resources.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 563–574. ACM (2004)

2. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryp-
tographic Eng. 3(2), 111–128 (2013)

3. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
pp. 901–914. ACM (2013)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE symposium on security and privacy (SP 2007), pp. 321–334.
IEEE (2007)

5. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

7. Bugiel, S., Heuser, S., Sadeghi, A.R.: Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In: Usenix Security,
pp. 131–146 (2013)

http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-70936-7_29

Mutually Private Location Proximity Detection with Access Control 183

8. Calderoni, L., Palmieri, P., Maio, D.: Location privacy without mutual trust: the
spatial bloom filter. Comput. Commun. 68, 4–16 (2015)

9. Choi, S., Ghinita, G., Bertino, E.: Secure mutual proximity zone enclosure evalua-
tion. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 133–142 (2014)

10. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM (JACM) 45(6), 965–981 (1998)

11. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79228-4 1

12. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: 2014 IEEE 30th International Con-
ference on Data Engineering, pp. 664–675. IEEE (2014)

13. Fawaz, K., Shin, K.G.: Location privacy protection for smartphone users. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 239–250. ACM (2014)

14. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries
in location based services: anonymizers are not necessary. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, pp. 121–
132. ACM (2008)

15. Ghinita, G., Rughinis, R.: A privacy-preserving location-based alert system. In:
Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 432–435. ACM (2013)

16. Hallgren, P., Ochoa, M., Sabelfeld, A.: Maxpace: Speed-constrained location
queries. In: 2016 IEEE Conference on Communications and Network Security
(CNS), pp. 136–144. IEEE (2016)

17. Hengartner, U.: Hiding location information from location-based services. In: 2007
International Conference on Mobile Data Management, pp. 268–272. IEEE (2007)

18. Hossain, A.A., Lee, S.J., Huh, E.N.: Shear-based spatial transformation to pro-
tect proximity attack in outsourced database. In: 2013 12th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), pp. 1633–1638. IEEE (2013)

19. Khoshgozaran, A., Shahabi, C.: Private buddy search: enabling private spatial
queries in social networks. In: International Conference on Computational Science
and Engineering, CSE 2009, vol. 4, pp. 166–173. IEEE (2009)

20. Khoshgozaran, A., Shahabi, C.: Private information retrieval techniques for
enabling location privacy in location-based services. In: Bettini, C., Jajodia, S.,
Samarati, P., Wang, X.S. (eds.) Privacy in Location-Based Applications. LNCS,
vol. 5599, pp. 59–83. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03511-1 3

21. Kim, H.I., Chang, J.W.: k-nearest neighbor query processing algorithms for a query
region in road networks. J. Comput. Sci. Technol. 28(4), 585–596 (2013)

22. Kim, H.I., Hong, S., Chang, J.W.: Hilbert curve-based cryptographic transforma-
tion scheme for spatial query processing on outsourced private data. Data Knowl.
Eng. 104, 32–44 (2015)

23. Kim, H.I., Kim, Y.K., Chang, J.W.: A grid-based cloaking area creation scheme for
continuous lbs queries in distributed systems. J. Convergence 4(1), 23–30 (2013)

24. Li, X.Y., Jung, T.: Search me if you can: privacy-preserving location query service.
In: 2013 Proceedings of the IEEE INFOCOM, pp. 2760–2768 (2013)

25. Lu, R., Lin, X., Shen, X.: Spoc: a secure and privacy-preserving opportunistic com-
puting framework for mobile-healthcare emergency. IEEE Trans. Parallel Distrib.
Syst. 24(3), 614–624 (2013)

http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1007/978-3-642-03511-1_3

184 M.G. Solomon et al.

26. Palmieri, P., Calderoni, L., Maio, D.: Spatial bloom filters: enabling pri-
vacy in location-aware applications. In: Lin, D., Yung, M., Zhou, J. (eds.)
Inscrypt 2014. LNCS, vol. 8957, pp. 16–36. Springer, Cham (2015). doi:10.1007/
978-3-319-16745-9 2

27. Šeděnka, J., Gasti, P.: Privacy-preserving distance computation and proximity test-
ing on earth, done right. In: Proceedings of the 9th ACM Symposium on Info,
Computer and Comm Security, ASIA CCS 2014, pp. 99–110 (2014)

28. Wang, B., Li, M., Wang, H.: Geometric range search on encrypted spatial data.
IEEE Trans. Info Forensics Secur. 11(4), 704–719 (2016)

29. Xiao, Y., Xiong, L.: Protecting locations with differential privacy under temporal
correlations. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1298–1309. ACM (2015)

30. Yiu, M.L., Ghinita, G., Jensen, C.S., Kalnis, P.: Enabling search services on out-
sourced private spatial data. VLDB J. 19(3), 363–384 (2010)

http://dx.doi.org/10.1007/978-3-319-16745-9_2
http://dx.doi.org/10.1007/978-3-319-16745-9_2

Privacy-Preserving Elastic Net for Data
Encrypted by Different Keys - With

an Application on Biomarker Discovery

Jun Zhang, Meiqi He, and Siu-Ming Yiu(B)

Department of Computer Science, The University of Hong Kong,
Pokfulam Road, Pok Fu Lam, Hong Kong

{jzhang3,mqhe,smyiu}@cs.hku.hk

Abstract. Elastic net is a popular linear regression tool and has many
important applications, in particular, finding genomic biomarkers for
cancers from gene expression profiles for personalized medicine (elastic
net is currently the most accurate prediction method for this problem).
There is an increasing trend for organizations to store their data (e.g.
gene expression profiles) in an untrusted third-party cloud system in
order to leverage both its storage capacity and computational power.
Due to the privacy concern, data must be stored in its encrypted form.
While there are quite a number of privacy-preserving data mining pro-
tocols on encrypted data, there does not exist one for elastic net. In this
paper, we propose the first privacy-preserving elastic net protocol using
two non-colluding servers. Our protocol is able to handle expression pro-
files encrypted from multiple medical units using different encryption
keys. Thus, collaboration between multiple medical units are made pos-
sible without jeopardizing the privacy of data records. We formally prove
that our protocol is secure and implemented the protocol. The experi-
mental results show that our protocol runs reasonably fast, thus can be
applied in practice.

Keywords: Privacy-preserving elastic net · Multiple encryption keys ·
Encrypted gene expression profiles · Biomarker discovery

1 Introduction

We motivate our study based on the following biomarker discovery applica-
tion. The current cancer treatment based on doctors’ empirical knowledge can
be described as “one-size-fits-all” - almost all the patients diagnosed with the
same cancer will receive similar treatment. Under this situation, some patients
are likely to be under-treated while others be over-treated. Even worse, not
all patients will benefit from the treatment, a proportion of them may suffer
from severe side effects. By contrast, personalized medicine aims at treating
patients differently with different drugs at the right dose [1]. To achieve person-
alized treatment for cancer, we need biomarkers (i.e. a set of genes) to predict

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 185–204, 2017.
DOI: 10.1007/978-3-319-61176-1 10

186 J. Zhang et al.

a patient’s response to anticancer drugs (e.g. sensitivity and resistance). With
the advert of bioinformatics technology, we are able to make use of data min-
ing and statistical methods to discover biomarkers from genomic data. Cancer
Genome Project (CGP) [2] and Cancer Cell Line Encyclopedia (CCLE) [3] are
examples showing the analysis results for discovering biomarkers using genomic
features derived from human tumor samples against drug responses. A typical
input for genomic features is a gene expression profile which is a vector recording
the degrees of activation of different genes. The number of genes can be up to
tens of thousands. A patient’s response is usually measured by GI50 value (log
of drug concentration for 50% growth inhibition) [4]. Given n gene expression
profiles (e.g. from n patients) of which the dimension is m (n � m), the task is
to perform regression analysis between gene expression profiles and GI50 values.
Elastic net regression was found to be the most accurate predictor [5] among
existing approaches.

Why encrypted by different keys? Due to the huge volume of medical
records and DNA information, there is an increasing trend for medical units
to make use of a third-party cloud system to store the records as well as to
leverage its massive computational power to analyze the data. It is well recog-
nized that genomic information such as DNA is particularly sensitive and must
be well protected [6]. The privacy of gene expression has been overlooked until
Schadt et al. pointed out that gene contents can be inferred based on expres-
sion profiles alone [7]. Even worse, some expression data is strongly correlated
to important personal indexes such as body mass index and insulin levels. It is
likely that an entire profile can be derived and linked to a specific individual.
Therefore, gene expression profiles stored in cloud should also be encrypted. As
medical units need to retrieve expression profiles when implementing personal-
ized treatment, profiles from different medical units would be encrypted using
different keys to avoid leaking the details of the records to other medical units.

It is important for different medical units to combine their datasets in order
to increase the size of n (the number of patients) for accurate predication. Collab-
orative data mining on encrypted data is a promising direction for medical units
to “share” data for more accurate prediction without jeopardizing the privacy
of the data. The problem to be tackled in this paper is to design a privacy-
preserving elastic net protocol to predict biomarkers based on gene expression
profiles encrypted by different keys and GI50 values. Our goal is to ensure that
the cloud learns nothing about the patients’ expression profiles beyond what is
revealed by the final result of elastic net regression.

Difficulties of the problem: There is no existing work for elastic net or lasso
(another popular linear regression model) [8] while most of the work was designed
for ordinary least square (OLS) and ridge regression. The difficulty lies on the
fact that unlike solving OLS and ridge regression, the state-of-the-art solution
(e.g. glmnet [9]) for elastic net is based on an iterative algorithm, which requires
information of one training sample in each iteration. It is not clear how to per-
form these iterations if all data records are encrypted. Other existing solutions
(e.g. Least Angle Regression (LARS) [10], computing the Euclidean projection

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 187

onto a closed convex set [11] and using proximal stochastic dual coordinate
descent [12]) suffer from a similar problem.

Ideas of our proposed solution: Instead of using the iterative algorithms
to solve the elastic net problem directly, it has been proved that elastic net
regression can be reduced to support vector machine (SVM) [13]. An identical
solution as glmnet [9] up to a tolerance level can be obtained with a solver for
SVM. Our main idea is to transform the encrypted training dataset of elastic
net to that of SVM, based on which we compute the gram matrix1. Then the
gram matrix will be used as input to a modern SVM solver. Once obtaining the
solution to SVM, we reconstruct the solution to elastic net. We make sure that
the cloud server cannot recover patients’ expression profiles based on the gram
matrix, for which we provide a security proof in this paper.

Roughly speaking, there are two ways to achieve privacy preserving SVM.
One is perturbation based approach. Data sent to the cloud is perturbed by a
random transformation [14], which considers only one user (i.e. medical unit).
The other is cryptography based approach, such as secret sharing [15], Oblivi-
ous Transfer (OT) [15,16] and Fully Homomorphic Encryption (FHE) [15,17].
The cryptography based approach provides a higher level of privacy compared
to perturbation based approach, but incurs higher computation/communication
overhead. Most of the previous work focused on distributed databases [15,16,18–
20], while we consider a centralized outsourced encrypted database under mul-
tiple keys. Liu et al. proposed a secure protocol based on FHE for outsourced
encrypted SVM [17], but it requires the users to be online during the whole
process. It has been proved that completely non-interactive multiple party com-
putation cannot be achieved in the single server setting when user-server collu-
sion might exist [21]. Thus, we need at least two non-colluding servers [22] if
we want to keep the medical units offline. This two non-colluding servers model
makes sense in the practical community (e.g. [22,23]). For example, we set up
two cloud servers which belong to Amazon Web Services (AWS) cloud service
and Google Cloud Platform (GCP) respectively. Considering the consequences
of legal action for breach of contract and bad reputation, it is reasonable to
assume that they will not collude. According to [24], each user can secret-share
its data among the two non-colluding servers. Then the two servers compute
on the shares of the input interactively and send the shares of the result to the
users to reconstruct the final output. Although the secret sharing based app-
roach is better in terms of computation cost, it incurs higher communication
cost [25] and cannot deal with data encrypted under multiple keys. Moreover,
oblivious transfer focuses on the single key setting, which is not suitable for
the case of multiple keys. Consequently, we focus on homomorphic encryption
based approach in this paper. There indeed exists a multikey FHE primitive
that allows computation on data encrypted under multiple keys [26]. However,
its efficiency is still far from practice and it requires interactions among all the
medical units during the decryption phase. Peter et al. came up with a scheme
that transforms the ciphertexts under different keys into those under the same
1 A matrix that contains dot product of any two training samples.

188 J. Zhang et al.

key [27], incurring a huge amount of interactions between the servers. To reduce
communication overhead, proxy re-encryption [30] can be utilized to transform
ciphertexts [28,29]. However, the amount of interactions is still heavy. Because
they used partially homomorphic encryption - if the underlying cryptosystem
is additively homomorphic, they need joint work between the two servers to
compute multiplication and vice versa. To further reduce the communication
overhead, we utilize a framework to enable additively homomorphic encryption
to support one multiplication [31]. We choose the BCP Cryptosystem [32] as the
underlying additively homomorphic encryption and modify it to support mul-
tikey additive homomorphism. In this way, we successfully remove the need to
transform the ciphertexts to those under the same key, while it is a must in
[27–29]. To remove the constraint that medical units need to be online during
decryption phase, we divide a medical unit’s secret key s into two shares s1 and
s2, and distribute them to the servers. Final decryption is obtained after two
rounds of partial decryption.

To summarize, our contributions include the following:

(1) We construct a homomorphic cryptosystem that supports one multiply oper-
ation under single key and multiple add operations under both single key
and different keys. Compared with the BCP cryptosystem, our scheme only
doubles the encryption time. With 1024-bit security parameter, an add oper-
ation takes less than 1 ms while a multiply operation takes about 16 ms. The
size of ciphertext increases linearly from 6138 B to 26 KB with the number
of involved users increasing from 2 to 100. Overall speaking, the proposed
scheme is practical.

(2) We propose the first privacy preserving protocol to solve elastic net on
gene expression profiles encrypted by different encryption keys for cancer
biomarker discovery, which encourages cooperation between medical units.
Through reduction from elastic net to SVM, we demonstrate how to train
SVM securely based on the gram matrix. The solution to elastic net is recon-
structed based on the solution to SVM. Moreover, our solution can allow
users (medical units) to stay offline except for the initialization phase.

(3) We evaluate our scheme on a real database2 for drug sensitivity in cancer
cell lines [33]. Moreover, our scheme can also be used to solve lasso, based
on a similar reduction from lasso to SVM [34].

2 Model Description

In this paper, we propose a collaborative model for privacy preserving biomarker
discovery for anticancer drugs using encrypted expression profiles extracted from
the tumor samples of patients. As shown in Fig. 1, the involved parties are
patients, medical units, certified institution and the cloud.

(1) Patients (P). Cancer patients go to the medical units to receive personalized
treatment. We list six patients here labeled as {P1, P2 · · · , P6}.

2 http://www.cancerrxgene.org, accessed on 10 Aug 2016.

http://www.cancerrxgene.org

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 189

Fig. 1. System model for genomic bio-
marker discovery through collaborative
data mining.

Fig. 2. Dataset transformation from
elastic net to SVM

(2) Medical Units (MUs). There are different MUs (e.g. cancer hospitals, tumor
research centers) in our model. Each MU is able to extract tumor samples
from the patients, observe the effect of 72 h of anticancer drug treatment
on them, and upload the GI50 values to the cloud. On the other hand, MU
sends the tumor samples to the certified institution.

(3) Certified Institution (CI). CI is responsible to perform gene expression pro-
filing. CI encrypts the gene expression profiles from different MUs with dif-
ferent encryption keys, and sends the encrypted profiles to the cloud. Only
the MU that holds the correct private key can decrypt the encrypted profiles.

(4) Cloud (C). It consists of two non-colluding servers S1 and S2, which is
responsible for storage and massive computation.

Threat model: CI is a trusted party. S1 and S2 are both honest-but-curious,
and they are non-colluding. There might exist collusion between a MU and S1.
However, none of the medical units will collude with S2. We consider two types
of potential attacks: (i) attacker at one MU tries to know the expression profiles
of other MUs (ii) attacker at S1 or S2 in the cloud aims at recovering gene
expression profiles through observing the input, intermediate or final results.

3 Preliminaries

3.1 Elastic Net Regression

Let the input dataset be {(xi, yi)}n
i=1, where each xi ∈ Rm is a column vec-

tor representing a gene expression profile, and yi ∈ R is the GI50 value.3 Let
X ∈ Rn×m be a matrix containing all gene expression profiles (the transposed

3 GI50 denotes the log of the drug concentration for 50% growth inhibition.

190 J. Zhang et al.

i-th row of X is xi) and the column vector y ∈ Rn (i-th element of y is yi)
be the responses, the goal of linear regression analysis is to find a column vec-
tor β ∈ Rm such that yi can be approximated by ỹi = βT xi. The ordinary
least squares (OLS) regression works by minimizing the residual sum of squares
minβ ||Xβ − y||22. There are some situations where OLS is not a good solution,
for example, when m is large or the columns of X are highly correlated. One
way to handle this problem is to introduce a penalization term. Ridge regression
uses l2-norm penalization (||β||22), while lasso regression uses l1-norm penaliza-
tion (|β|1). Ridge regression cannot produce a sparse model. By contrast, owing
to the nature of l1 penalty, lasso is able to generate a sparse model. Neverthe-
less, lasso has some limitations - it selects at most n variables in the n � m
case, picks out only one variable from a group of correlated variables not car-
ing which one is selected (the robustness issue: we want to identify all related
variables). In our application, since n � m and genes may be highly correlated,
lasso regression is not the ideal method in this situation and elastic net penalty
(λ1|β|1 + λ2||β||22) is introduced, which is a convex combination of the lasso and
ridge penalty [10]. It performs well under the situation of n � m and correlated
variables. The elastic net regression can be represented as follows.

min
β∈Rm

||Xβ − y||22 + λ||β||22 such that |β|1 ≤ t (1)

where λ > 0 is the l2-regularization constant and t > 0 is the l1-norm budget.

3.2 Support Vector Machine with Squared Hinge Loss

Given that we have a dataset {(xi, yi)}n
i=1 where xi ∈ Rm and yi ∈ {+1,−1}, we

aim at finding a separating plane wT x + b = 0 (w ∈ Rm) to classify the training
samples into two classes. There exists many eligible separating planes. For sake
of robustness, support vector machine maximizes the margin (1

||w||) between two
classes, which is equivalent to minimize ||w||2. However, sometimes the training
dataset is linearly inseparable. One solution is to allow SVM to make mistakes
on some samples. We use the squared hinge loss max(0, 1 − yi(wT xi + b))2 to
measure the error of sample xi, which need to be minimized. Therefore, the
linear SVM with squared hinge loss can be represented as follows.

min
w

1
2
wT w + C

n∑

i=1

max(0, 1 − yi(wT xi + b))2 (2)

where C is the penalty parameter of the error term. The above is the primal
form of SVM, which is often solved in its dual form:

min
αi≥0

f(α) = αT Qα +
1

2C

n∑

i=1

α2
i − 2

n∑

i=1

αi (3)

where α ∈ Rn and each αi is the coefficient for xi. Q is a n × n matrix with
Qij = yiyjx

T
i xj . Gram matrix K is defined as K = xT

i xj . Once we get α by
solving (3), we can further compute w =

∑n
i=1 αixiyi.

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 191

3.3 Reduction from Elastic Net to SVM

Zhou et al. demonstrated that elastic net regression can be reduced to SVM [13].
They do not include any bias item b (they assume that the separating hyperplane
passes through the origin). After a series of transformations, (1) and (3) can be
changed to (4) and (5) respectively.4 We do not provide the transformation steps
(Please refer to [13] for details).

min
β̂i>0

||Ẑβ̂||22 + λ

2m∑

i=1

β̂2
i

2m∑

i=1

β̂i = 1 (4)

where Ẑ = [X̂1,−X̂2] ∈ Rn×2m, X̂1 = X − 1
t yIT and X̂2 = X + 1

t yIT (I ∈ Rm

is an identity vector).

min
αi>0

||Z(
α

|α∗|1)||22 + λ

2m∑

i=1

(
αi

|α∗|1)2
2m∑

i=1

αi

|α∗|1 = 1 (5)

where Z = yixi, C = 1
2λ and α∗ is the optimal solution. Comparing (4) and (5),

we notice that they have similar form except for two differences. The first one is
that the class labels in elastic net are real valued but binary in SVM. As shown
in Fig. 2, to transform the training dataset X of elastic net to that of SVM, we
compute X̂1 as subtracting each column of X by 1

t y and calculate X̂2 as adding
each column of X by 1

t y, then concatenate X̂1 and X̂2 together and transpose
it. The first m training samples of SVM are of class +1, and the remaining are
of class −1. The second difference is that they have different scale. The optimal
solution β̂∗ can be represented by the optimal solution α∗ as β̂∗ = α∗

|α∗|1 . Finally,

the optimal solution β to elastic net (see (1)) can be recovered from β̂ according
to β = t × (β̂1···m − β̂m+1···2m), where t is the l1-norm budget and β̂i···j denotes
a vector consisting of elements of β̂ from index i to j.

4 Our Scheme

Fully homomorphic encryption can be used to compute arbitrary polynomial
functions over encrypted data. However, the high computational complexity and
communication cost preclude its use in practice. If only focusing on those opera-
tions of interest to the target application, more practical homomorphic encryp-
tion schemes are possible. For example, Zhou and Wornell [35] proposed an
integer vector encryption scheme which supports addition, linear transformation
and weighted inner product on ciphertexts. Nevertheless, reduction from elastic
net to SVM leads to changes of the training dataset. To be specific, one gene
expression profile of a patient across all genes (i.e. one row) is a training sample of
elastic net. But one training sample of SVM see Fig. 2 can be considered as gene
expression values of a particular gene among all the patients (i.e. one column).

4 Here we use β̂ ∈ R2m to differentiate from β ∈ Rm, β can be derived from β̂.

192 J. Zhang et al.

Therefore, if we encrypt gene expression profiles using the integer vector encryp-
tion, there is no way to construct ciphertexts for the training dataset of SVM.
As a result, we restrict our attention to cryptosystems encrypting one element of
the profile at a time instead of encrypting the whole profile. Recall that we can
use gram matrix as input to train SVM (see Sect. 3.2) and the basic operation
to compute gram matrix is the dot product of two samples, it requires a cipher-
text to support one multiply operation and multiple add operations. Indeed, the
BGN cryptosystem [36] can compute one multiplication on ciphertexts using
the bilinear maps. However, it does not support multikey homomorphism. In
our setting of collaborative data mining in the cloud, the training dataset of
elastic net is horizontally partitioned (different units holding different records
with the same set of attributes) while the training dataset of SVM is vertically
partitioned (records are partitioned into different parts with different attributes
after the transformation). In order to train SVM on encrypted training dataset,
we thus need a cryptosystem that supports one multiply operation under single
key and multiple add operations under both single key and different keys. In this
paper, we try to let medical units stay offline except for the initialization phase.
Specifically, we use secret sharing to authorize one server (i.e. S1) to decrypt the
encrypted gram matrix without knowing the secret key of any medical unit.

4.1 Building Blocks

Framework to Enable One Multiplication on Cihphertexts. Catalano
and Fiore [31] showed a framework to enable existing additively homomorphic
encryption schemes (i.e. Paillier, ElGamal) to compute multiplication on cipher-
texts. We use E() to denote the underlying additively homomorphic encryption.
The idea is to transform a ciphertext E(xij) into “multiplication friendly”. To
be specific, we use E(xij) = (xij − bij , E(bij)) (where bij is a random num-
ber) to represent the “multiplication friendly” ciphertext. Given two “mul-
tiplication friendly” ciphertexts E(x11) = (x11 − b11, E(b11)) and E(x21) =
(x21 − b21, E(b21)), we compute multiplication as E(x11x21) = (α1, β1, β2).

α1 = E[(x11 − b11)(x21 − b21)]E(b11)x21−b21E(b21)x11−b11

= E(x11x21 − b11b21) (6)
β1 = E(b11) β2 = E(b21) (7)

To decrypt E(x11x21), we will add b11b21 to the decryption of α where b11, b21 is
retrieved from β1, β2. The addition of two ciphertexts after multiplication works
by adding the α components and concatenating the β components. Therefore,
the β component will grow linearly with additions after performing a multipli-
cation. To remove this constraint, two non-colluding servers are used to store
E = (xij − bij , E(bij)) and bij respectively. In this way, S1 can throw away the β
component after performing a multiplication, because S2 will operate on the bij ’s
in plaintext. Therefore, the ciphertext contains only the α component after per-
forming a multiplication. This framework has a nice property that it inherits the
multikey homomorphism of the underlying additively homomorphic encryption.

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 193

Given two safe primes p and q, we compute N = pq, g = −a2N (a ∈ Z
∗
N2), the secret

key s ∈ [1, N2

2
], the public key (N, g, h = gs).

Encryption: To encrypt plaintext m ∈ ZN , we select a random r ∈ [1, N
4

] and generate

the ciphertext E(m) = (C
(1)
m , C

(2)
m) as below:

C(1)
m = grmod N2 and C(2)

m = hr(1 + mN) mod N2 (8)

Decryption:

t =
C

(2)
m

(C
(1)
m)

s m =
t − 1 mod N2

N
(9)

Proxy Re-encryption: If the secret key s is divided into two shares s1, s2 such that

s = s1 + s2, then we can use s1 to partially decrypt E(m) to E(m)′ = (C
(1)
m

′
, C

(2)
m

′
),

which can be considered as a ciphertext under key s2.

C(1)
m

′
= C(1)

m C(2)
m

′
=

C
(2)
m

C
(1)
m

s1 (10)

Single Key Homomorphism: Supposed that we have two plaintexts m1, m2 and
their ciphertexts E(m1) = (C

(1)
m1 , C

(2)
m1) and E(m2) = (C

(1)
m2 , C

(2)
m2) under the same key

s. The ciphertext E(m1+m2) can be computed as E(m1+m2) = (C
(1)
m1C

(1)
m2 , C

(2)
m1C

(2)
m2).

Fig. 3. The BCP cryptosystem

Multikey Homomorphism of the BCP Cryptosystem. The BCP
cryptosystem (also known as Modified Paillier Cryptosystem) is an additively
homomorphic encryption under single key [32]. We briefly review the BCP cryp-
tosystem in Fig. 3 and discuss how to modify it to support multikey homo-
morphism at the expense of expanding the ciphertext size. Supposed that
E(ma) = (C(1)

ma , C
(2)
ma) is under key sa, E(mb) = (C(1)

mb , C
(2)
mb) is under key sb,

then E(ab)(ma + mb) where E(ab) denotes a ciphertext related to key sa and sb

can be computed as

E(ab)(ma + mb) = (C(1)
ma

, C(1)
mb

, C(2)
ma

C(2)
mb

) (11)

The ciphertext size only depends on the number of involved medical units
(i.e. keys). There are two MUs with key sa and sb respectively in this example,
the addition of their ciphertexts is a 3-tuple. If n MUs cooperate together, the
addition of their ciphertexts should be a (n+1)-tuple. To decrypt E(ab)(ma+mb),
the secret key sa and sb are required.

t =
C

(2)
maC

(2)
mb

(C(1)
ma)sa(C(1)

mb)sb

ma + mb =
t − 1 mod N2

N
(12)

Incorporating the above modified the BCP cryptosystem to the framework
that enables additively homomorphic encryption to support one multiplication,
we obtain our final encryption scheme EBCP .5

5 E denotes the framwork and BCP denotes the underlying cryptosystem.

194 J. Zhang et al.

Gram Matrix Computation. Gram matrix K is defined as Kij = 〈xi, xj〉 =
xT

i xj where xi and xj are any two training samples (see Sect. 3.2). Recall that
the original training dataset X of elastic net regression is transformed to the
training dataset X̂ of SVM during the reduction process (see Sect. 3.3), we use
X̂ = {x̂i}2m

i=1 to denote the transformed dataset. After dataset transformation,
the horizontally partitioned dataset of the elastic net is converted to vertically
partitioned dataset of SVM. The gram matrix K(X̂) of X̂ is computed as follows.

K(X̂) =

⎡

⎢⎢⎢⎣

〈x̂1, x̂1〉 〈x̂1, x̂2〉 · · · 〈x̂1, x̂2m〉
〈x̂2, x̂1〉 〈x̂2, x̂2〉 · · · 〈x̂2, x̂2m〉

...
...

. . .
...

〈x̂2m, x̂1〉 〈x̂2m, x̂2〉 · · · 〈x̂2m, x̂2m〉

⎤

⎥⎥⎥⎦ (13)

For ease of description, we firstly consider the case of two medical units
denoted as MUA and MUB . Assume that the cloud store n gene expression
profiles, among which nA records are from MUA and nB records are from MUB .
Then in the transformed dataset of SVM, for each training sample, the first nA

elements are encrypted under key sA, the remaining nB elements are encrypted
under key sB . Assume that we have two training samples x̂1 and x̂2 of SVM,
their dot product 〈x̂1, x̂2〉 can be computed as follows and their ciphertexts are
denoted as EBCP (x̂1) = (x̂1 − b1, E(b1)), EBCP (x̂2) = (x̂2 − b2, E(b2)).

〈x̂1, x̂2〉 =
nA∑

i=1

x̂1ix̂2i +
n∑

i=nA+1

x̂1ix̂2i (14)

Supposed that the ciphertext of
∑nA

i=1 x̂1ix̂2i and
∑n

i=nA+1 x̂1ix̂2i are αA and
αB respectively,6 then S1 will compute αA, αB as follows. The computation of
αA or αB only requires single key homomorphism.

αA = E(
nA∑

i=1

x̂1ix̂2i − b1ib2i) = (C(1)
A , C

(2)
A) (15)

αB = E(
nA+nB∑

i=nA+1

x̂1ix̂2i − b1ib2i) = (C(1)
B , C

(2)
B) (16)

As αA and αB are encrypted under different keys, adding them together
requires multikey homomorphism.

E(〈x̂1, x̂2〉 − 〈b̂1, b̂2〉) = αA + αB = (C(1)
A , C

(1)
B , C

(2)
A C

(2)
B) (17)

Keep Medical Units Offline. We leverage EBCP ’s proxy re-encryption prop-
erty, which inherits from the underlying the BCP cryptosystem (see (10)). To
keep MUA and MUB offline, we split the secret key s of each involved medical

6 S1 will abandon the β1 and β2 component after a multiplication.

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 195

unit into two shares. Specifically, we have sA = sA1 + sA2 and sB = sB1 + sB2 .
S1 holds sA1 , sB1 and S2 holds sA2 , sB2 . To compute 〈x̂1, x̂2〉, S1 will firstly
decrypt (17) partially.

C
(1)
A

′
= C

(1)
A C

(1)
B

′
= C

(1)
B (18)

C
(2)
A

′
C

(2)
B

′
= C

(2)
A C

(2)
B

(C
(1)
A)

sA1 (C
(1)
B)

sB1
(19)

Then S1 will send C
(1)
A and C

(1)
B to S2. S2 will compute and return (C(1)

A)sA2 ,
(C(1)

B)sB2 , 〈b̂1, b̂2〉 to S1 afterwards. Finally, S1 is able to decrypt E(〈x̂1, x̂2〉 −
〈b̂1, b̂2〉) completely and get 〈x̂1, x̂2〉 in plaintext.

C
(2)
A

′′
C

(2)
B

′′
=

C
(2)
A

′
C

(2)
B

′

(C(1)
A

′
)sA2 (C(1)

B

′
)sB2

(20)

〈x̂1, x̂2〉 =
(C(2)

A

′′
C

(2)
B

′′ − 1) mod n2

n
+ 〈b̂1, b̂2〉 (21)

The above shows how to compute 〈x̂1, x̂2〉 based on two ciphertexts EBCP (x̂1)
and EBCP (x̂2). Similarly, we can compute each element of the gram matrix Kij =
〈x̂i, x̂j〉 = x̂T

i x̂j based on the ciphertexts EBCP (x̂i) and EBCP (x̂j). Observing
that the gram matrix in (13) is symmetric, we can only compute the upper
triangular half of it. In the end, S1 gets the gram matrix K in plaintext. If
there are more than two medical units, we can easily extend (14), (15) and
(17) to handle the case of multiple medical units. The size of ciphertext of
〈x̂1, x̂2〉 increases linearly with the number of involved medical units. Likewise,
the communication overhead also increases linearly during the decryption phase.

4.2 Our Construction

Given the encrypted gene expression profiles EBCP (X) derived from multiple
medical units, the cloud runs privacy preserving elastic net on it to discover
biomarkers to predict a patient’s response to anticancer drugs. As it is not clear
how to design a privacy preserving protocol based on iterative algorithms to
solve elastic net. We resort to reduction to shift our attention from elastic net
to SVM. In Algorithm 1, we firstly demonstrate how to transform the encrypted
dataset of elastic net to that of SVM (see Sect. 3.3). It is easy to perform such
transformation on the dataset in plaintext. However, once it is encrypted, we
need to rely on the homomorphic properties of our cryptosystem to finish the
transformation. Next, we compute the encrypted gram matrix EBCP (K) of the
transformed training dataset (see Sect. 4.1). Gram matrix plays a role as inter-
mediate dataset based on which SVM model can be generated correctly without
breaching the privacy of patients’ gene expression profiles. In order to keep med-
ical units offline, we authorize S1 to decrypt EBCP (K). Based on K, we train
SVM and obtain the solution α. Finally, we use α to reconstruct β, which is the
solution to elastic net.

196 J. Zhang et al.

Algorithm 1. Protocol for Privacy-preserving Elastic Net.

Input: Encrypted dataset EBCP (X) = {EBCP (xi)}n
i=1, where xi ∈ Zm and

response vector in plaintext y ∈ Rn; l1-norm budget t and l2-regularization
parameter λ.
Output: Solution β.

1. Dataset Transformation: Compute EBCP (X̂T
1) and EBCP (X̂T

2), where
X̂1 = X − 1

t yIT and X̂2 = X + 1
t yIT . Given t and y, we might need to scale

EBCP (X) to make sure operations are run on integer domain. The encrypted
training dataset of SVM is EBCP (X̂) = [EBCP (X̂1), EBCP (X̂2)]T and the class
labels ŷ ∈ Z2m where ŷi = +1 if i ∈ [1,m] and yi = −1 if i ∈ [m + 1, 2m].
2. Gram Matrix Computation: Compute first the encrypted gram matrix
E(K) of SVM based on EBCP (X̂), then authorize S1 to decrypt E(K) and get
the gram matrix K in clear.
3. Train SVM: Solve the dual optimization problem of SVM (see (3)) based
on gram matrix K and C = 1

2λ to get SVM’s solution α (Please refer to the
Appendix if readers are interested in how to train SVM).
4. Reconstruct elastic net’s solution β based on α.

Model Assessment. In Algorithm 1, there are two parameters: l1-norm con-
straint t and l2-regularization parameter λ. It is not known beforehand which
t and λ are best for the elastic net. For different combinations of (t, λ), the
predictive power of the derived solution varies. We do “grid search” on t and
λ using k-fold cross validation [37] to assess the goodness-of-fit of our model
under different parameters. The grid-search is straightforward. We specify the
range of t and λ respectively. Then we try various pairs of (t, λ). As it might be
time-consuming to do a complete grid-search, we recommend using a coarse grid
first. Once a “better” region is identified, we will conduct a finer grid search on
that region. We divide our training dataset EBCP (X) into k subsets satisfying
EBCP (X) = EBCP (X1) ∪ · · · ∪ EBCP (Xk), EBCP (Xi) ∩ EBCP (Xj) = ∅ (i
= j).
We use EBCP (Xi) where i ∈ [1, k] as the validation set and the remaining k − 1
subsets as the training dataset each time. In order to measure the performance
of regression, we choose Rooted Mean Squared Error (RMSE). An RMSE value
closer to 0 indicates the regression model is more useful for prediction. In the
setting of k-fold cross validation, we need to compute the average of k RMSE
values. Supposed that there are d samples in the validation set, the predicted
GI50 value of gene expression profile xi is ỹi and the true value is yi, then RMSE
is computed as

RMSE =

√√√√(
1
d

d∑

i=1

(ỹi − yi)2) (22)

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 197

Recall that each gene expression profile is encrypted, we can compute the
ciphertext of the predicted GI50 value ỹi as EBCP (ỹi) = (βT (xi − bi), βT E(bi))
where β is the solution to elastic net. To get ỹi in plaintext, we make the two
non-colluding servers work together. S1 reveals β to S2. S2 return βT bi to S1.
Then S1 computes ỹi = βT (xi − bi) + βT bi = βT xi. For each (t, λ) pair, S1

computes RMSE with each predicted value ỹi. Finally, S1 will pick the optimal
(t, λ) which achieves the smallest RMSE and get the optimal solution β∗.

5 Security Analysis

We consider the honest-but-curious model, meaning that all the medical units,
S1 or S2 will follow our protocol but try to gather information about the inputs
of MUs. There might exist collusion between a medical unit and S1. We analyze
the security of our model with the Real and Ideal paradigm and Composition
Theorem [38]. The main idea is to use a simulator in the ideal world to simulate
the view of a semi-honest adversary in the real world. If the view in the real world
is computationally indistinguishable from the view in the ideal world, then the
protocol is believed to be secure. According to the Composition Theorem, the
entire scheme is secure if each step is proved to be secure. Due to page limit, the
Proof of Theorem 1 is given in the Appendix.

Theorem 1. In Algorithm1, it is computationally infeasible for S1 to distin-
guish the gene expression profiles encrypted under multiple keys as long as EBCP

is semantically secure and the two servers are non-colluding.

Theorem 2. No encryption scheme is secure against known-sample attack if
dot products are revealed.

Proof: We define known-sample attack as an attacker obtaining the plaintexts
of a set of records of the encrypted database but not knowing the correspon-
dence between the plaintexts and the encrypted records. According to [39], no
encryption scheme is secure against known-sample attack if distance informa-
tion is revealed. As distance computation can be decomposed into dot products,
revealing dot products equals to revealing distance. Given n encrypted samples
whose dimension is m, if an attacker knows the plaintexts of m linearly indepen-
dent samples, the attacker can obtain the plaintext of any encrypted samples
even without the decryption key. The idea is to construct m linear equations,
whose unique solution corresponds to the desired sample.

Fortunately, in the following theorem, we show that it is impossible for the
attackers to make use of Theorem 2 to launch the attack.

Theorem 3. S1 cannot reconstruct gene expression profile of a patient with
gram matrix K known, considering the impossibility that an attacker collects
enough samples of SVM to launch the attack mentioned in Theorem2.

Proof: According to Sect. 3.3, one gene expression profile of a patient across
all genes (i.e. one row) is a training sample of elastic net. But the training

198 J. Zhang et al.

sample of SVM can be considered as gene expression values of a particular gene
among all the patients (i.e. one column). If S1 colludes with MU1, it only brings
minor advantage that some of the elements from MU1 of a training sample are
revealed. Unless the attacker cracks our cryptosystem and obtains all the private
keys of the involved medical units, he cannot set up linear equations to launch
known-sample attack.

6 Experimental Evaluation

The configuration of our PC is Windows 7 Enterprise 64-bit Operating System
with Intel(R) Core(TM) i5 CPU (4 cores), 3.4 GHz and 16 GB memory. We use a
public database for drug sensitivity in cancer cell lines [33]. To provide platform
independence, we use Java to implement our scheme together with open-source
IDE. We use BigInteger class to process big numbers which offers all basic oper-
ations we need. We utilize SecureRandom class to produce a cryptographically
strong random number. As for the generation of safe prime numbers, we use
the probablePrime method provided by BigInteger class. The probability that
a BigInteger returned by this method is composite does not exceed 2−100. The
performance of our scheme depends heavily on the size of modulus N , and the
number of additions and multiplications performed. During the initialization
phase, public and private key pair are generated. The runtime of generating a
key pair varies with the bit length of N , as it depends a lot on the random num-
ber generator. A typical value for N is 1024 and it takes about 2 s in average
to generate one key pair. We firstly compare the encryption time of two train-
ing samples when using the BCP Cryptosystem and our proposed cryptosystem
EBCP . We vary the dimension of each sample from 1000 to 10000. The bit length
of modulus N is set to 1024 and 1536 respectively (following the same setting as
in [27]). As shown in Fig. 4, the encryption time scales linearly as the dimension
increases. We use E(x) and (x − b, E(b)) where b is a random number to denote
the ciphertext of x under BCP and EBCP cryptosystem respectively. Leveraging
the framework proposed in [31], the encryption time of EBCP doubles that of the
BCP Cryptosystem. The additional encryption time is caused by generating the
random number b. Moreover, we measure the time to compute dot product of two
encrypted training samples. We focus on vertically partitioned dataset of SVM.
To facilitate understanding, we encrypt the first half (belonging to Alice) of a
sample using secret key sA and the second half (belonging to Bob) using secret
key sB . We show the runtime of dot product computation on the ciphertexts in
Fig. 5. Similarly, time to calculate dot product increases linearly with the dimen-
sion of samples. For vectors of dimension m, one dot product operation includes
m multiplications and m − 1 additions, among which one addition is multikey
homomorphic. It takes only 1 ms to run a multikey homomorphic addtition. For
operations under single key, addition is much faster than multiplication. With a
1024-bit modulus, the runtime of additions is less than 1 s. The runtime of mul-
tiplications varies from 16 s to 185 s with the dimension of a sample increasing
from 1000 to 10000. Therefore, multiplications are the bottleneck of dot product

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 199

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

Dimension of Each Sample

T
im

e
 in

 s
e
co

n
d

BCP Cryptosystem, bitlength=1024
"Multiplication Friendly", bitlength=1024
BCP Cryptosystem, bitlength=1536
"Multiplication Friendly", bitlength=1536

Fig. 4. Encryption time

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

Dimension of each sample

D
o
t
p
ro

d
u
c
t
ti
m

e
 i
n
 s

e
c
o
n
d

bitlength=1536
bitlength=1024

Fig. 5. Dot product time

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of users

S
iz

e
 o

f
d
o
t
p
ro

d
u
c
t
c
ip

h
e
rt

e
x
t
(B

y
te

s
)

bitlength=1536
bitlength=1024

Fig. 6. Ciphertext size

computation. To decrypt one encryted dot product, it takes 285 ms and 572 ms
with and without secret sharing separately. Recall that the multikey homomor-
phism property is achieved at the expense of expanding ciphertext size, we also
measure the effect of the number of involved users on the increase of ciphertext
size. As shown in Fig. 6, the ciphertext size increases linearly from 6138 B to
26 KB when the number of involved users increasing from 2 to 100.

The public database for drug sensitivity in this paper consists of 1002 cancer
cell lines, 265 anticancer drugs. For each drug, GI50 values of around 300 to 1000
cell lines are available. As for gene expression profiling, it contains the RMA-
normalized expression values of 17737 genes of 1018 cell lines. We preprocess
them in MATLAB, keeping those cell lines that belong to the intersection of
gene expression profiles and GI50 values. For example, considering drug PD-
0325901, we get 843 expression profiles and GI50 values. As our cryptosystem
only supports operations on the integer domain, we need to preprocess the data-
base. To be specific, we first select a system parameter p to represent the number
of bits for the fractional part of expression values. We next multiply each expres-
sion value by 10p to get its integer value. Then, we need to divide each element of
the gram matrix by 102p to remove the influence of scaling up. After running our
privacy-preserving elastic net, we successfully pick out 165 genomic biomarkers.

Comparison with existing schemes: We focus on the homomorphic encryp-
tion based schemes [17,27–29], of which the setting is outsourced encrypted data-
base under multiple keys. According to the experimental evaluation of [31], using
their proposed framework to enable one multiplication on additively homomor-
phic ciphertexts outperforms the BGV homomorphic encryption [40] (in terms
of ciphertext size, time of encryption/decryption/homomorphic operations). As
shown in the experiments above, modification to the BCP Cryptosystem for mul-
tikey homomorphism only doubles the encryption time. Therefore, addition and
multiplication can be run more efficiently in our scheme compared to [17], which
deals with only two users (i.e. keys). Besides, they require the users to be online
while we keep the users offline in this paper. Under two non-colluding servers
model, the schemes in [27–29] can be used to compute addition/multiplication.
The main drawback of their schemes is that they have to transform the cipher-
texts under multiple keys to those under the same key, which is a heavy work-
load for the cloud server. Moreover, computing multiplication incurs interactions
between the two servers. By contrast, our cryptosystem enables calculating mul-
tiplication without interactions.

200 J. Zhang et al.

7 Discussion and Conclusions

In practical scenarios, a gene expression profile typically has dimension of order
104. We can only collect hundreds of patients’ profiles of different cancers. If we
store gram matrix K in the memory, it is of order 108 in our case, which requires
a lot of memory. Keerthi et al. [41] proposed to restrict the support vectors to
some subset of basis vectors J ⊂ {1, · · · , n} in order to reduce the memory
requirement. This method requires O(|J |n) space where |J | � n. However,
the derived α using this method can be different from the one we get using
the entire gram matrix K. It is a trade-off between accuracy and efficiency. For
genomic biomarker discovery, it is obviously more important to pick out accurate
biomarkers. Therefore, it makes sense to maintain the gram matrix in memory.
Furthermore, each element of the gram matrix can be calculated independently.
To accelerate the computation of gram matrix, we can utilize existing parallel
computing frameworks.

To conclude, in this paper, by assuming the existence of two non-colluding
servers, we proposed a privacy preserving collaborative model to conduct elastic
net regression through reduction to SVM on encrypted gene expression profiles
and GI50 values of anticancer drugs. To compute the gram matrix on ciphertexts,
we successfully construct a cryptosystem that supports one multiply operation
under single key and multiple add operations under both single key and different
keys. Besides, we use secret sharing to allow one of the cloud server to get the
gram matrix. Our scheme keeps the medical units offline and is proved to be
secure in the semi-honest model or even if a medical unit colludes with one cloud
server. The experimental results highlight the practicability of our scheme. The
proposed protocol could also be applied to other applications that use elastic
net or lasso for linear regression. Our future work is to extend our scheme to
malicious adversaries (either S1 or S2 is malicious). One promising direction is
to use commitment scheme [42] and zero-knowledge protocols.

Acknowledgements. This work is supported in part by RGC CRF (Project No.
CityU C1008-16), Hong Kong and National High Technology Research and Develop-
ment Program of China (No. 2015AA016008).

Appendix

Train SVM: We do not include any bias item in this paper, according to
Sect. 3.3. Therefore, efficient dual coordinate descent method [43] can be used,
of which the main idea is to optimize one variable once at a time, reducing mem-
ory requirements. However, coordinate descent methods are inherently sequential
and hard to parallelize. To utilize the parallel properties of SVM, we also seek to
find an solution which can be parallelized [44]. As shown in [45], optimizing on
either the primal problem or the dual problem is in fact equivalent. Linear SVM
can be considered as non-linear SVM with a linear kernel k and an associated

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 201

Reproducing Hilbert Space H.

min
f∈H

1
2
||f ||2H + C

n∑

i=1

max(0, 1 − yif(xi))2 (23)

According to the representer theorem, the minimizer of (23) can be represented
by f∗(x) =

∑n
i=1 θik(xi, x). Note that these coefficients θi are different from the

Lagrange multipliers αi in standard SVM literature. The relationship between
θi and αi is θi = yiαi. (23) can be rewritten as

min
θ

1
2
θT Kθ + C

n∑

i=1

max(0, 1 − yiθ
T Ki)2 (24)

where K is also the gram matrix with Kij = xT
i xj and Ki is the ith row of K.

The Newton optimization algorithm of the above problem can be expressed as
dense linear algebra operations. When combined with highly optimized libraries
such as Intel’s MKL for multicores, Jacket, and CuBLAS for GPUs, we can
largely speedup the training of SVM.

Proof of Theorem 1. We discuss the security of each step in Algorithm 1.

Step 1 Dataset Transformation: Given EBCP (X), it requires homomorphic
addition to compute EBCP (X̂1) and EBCP (X̂2). Therefore, we need to prove
the security of addition over ciphertexts against a semi-honest adversary ASH

S1

in the real world. We set up a simulator FSH in the ideal world to simulate the
view of ASH

S1
. Considering one operation EBCP (Xij + 1

t y), The view of ASH

S1
in

this step includes input {EBCP (Xij), EBCP (1t y)} and output EBCP (Xij + 1
t y).

Without loss of generality, we assume that simulator FSH computes EBCP (m1)
and EBCP (m2) where m1 = 1 and m2 = 2. Then the simulator computes
EBCP (m1 + m2) and returns {EBCP (m1), EBCP (m2), EBCP (m1 + m2)} to ASH

S1
.

Since the view of ASH

S1
are ciphertexts generated under EBCP cryptosystem and

ASH

S1
has no knowledge of the private key. If ASH

S1
could distinguish the real world

from the ideal world, then it indicates ASH

S1
is able to distinguish ciphertexts gen-

erated by EBCP , which contradicts to the assumption that EBCP is semantically
secure. Therefore, ASH

S1
is computationally infeasible to distinguish the real world

from the ideal world.
For the case where a medical unit (denoted as MU1) colludes with S1, we

use ASH

(S1,MU1)
to denote the corresponding adversary. ASH

(S1,MU1)
cannot learn

anything beyond gene expression values of MU1.

Step 2 Gram Matrix Computation: Recall that the basic operation of gram
matrix computation is dot product of two training samples x̂1 and x̂2. The secu-
rity of addition has been proved in step 1. As for the security of multiplication,
computing α component is implemented over ciphertexts on S1 (see (6)). Simi-
lar to the proof above, we can prove the security of multiplication with the real
and ideal paradigm. Moreover, the multikey homomorphic addition of the BCP

202 J. Zhang et al.

Cryptosystem is based on ciphertexts (see (11)). As long as the BCP Cryptosys-
tem is semantically secure, the multikey homomorphic addition is secure. As
for decrypting the encrypted dot product, S1 interacts with S2. S1 sends CA1

and CB1 to S2 (see (18)). S2 returns (CA1)
sA2 , (CB1)

sB2 to S1. Based on the
hardness of computing discrete logarithm, it is infeasible for S1 to deduce sA2

or sB2 . Therefore, S1 cannot recover sA or sB .
For the case of collusion between S1 and MU1, {x̂1i}na

i=1 and {x̂2i}na
i=1 are both

revealed to ASH

(S1,MU1)
. Even though the adversary can know

∑n
j=na+1 x̂1j x̂2j ,

the value of {x̂1j}n
j=na+1 and {x̂2j}n

j=na+1 remains unknown. According to The-
orem 3, it is secure to reveal gram matrix to S1.

Step 3 Train SVM: Given the gram matrix K, we train SVM to get α. ASH

S1

cannot infer anything about gene expression profiles based on α.

Step 4 Reconstruct β based on α: If gene expression profiling microarray is
known to the public, then ASH

S1
will know which genes are picked out as biomark-

ers corresponding to non-zero elements of β. We can remedy this vulnerability
through permuting the gene expression profile before uploading.

References

1. Duffy, M.J., Crown, J.: A personalized approach to cancer treatment: how bio-
markers can help. Clin. Chem. 54(11), 1770–1779 (2008)

2. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim,
S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al.: The cancer cell line
encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature
483(7391), 603–607 (2012)

3. Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau,
K.W., Patricia Greninger, I., Thompson, R., Luo, X., Soares, J., et al.: System-
atic identification of genomic markers of drug sensitivity in cancer cells. Nature
483(7391), 570–575 (2012)

4. Covell, D.G.: Data mining approaches for genomic biomarker development: appli-
cations using drug screening data from the cancer genome project and the cancer
cell line encyclopedia. PloS One 10(7), e0127433 (2015)

5. Jang, I.S., Neto, E.C., Guinney, J., Friend, S.H., Margolin, A.A.: Systematic assess-
ment of analytical methods for drug sensitivity prediction from cancer cell line data.
In: Pacific Symposium on Biocomputing, p. 63. NIH Public Access (2014)

6. Erlich, Y., Narayanan, A.: Routes for breaching and protecting genetic privacy.
Nat. Rev. Genet. 15(6), 409–421 (2014)

7. Schadt, E.E., Woo, S., Hao, K.: Bayesian method to predict individual SNP geno-
types from gene expression data. Nat. Rev. Genet. 44(5), 603–608 (2012)

8. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.
Ser. B (Methodol.) 58, 267–288 (1996)

9. Friedman, J., Hastie, T., Tibshirani, R.: glmnet: lasso and elastic-net regularized
generalized linear models. R Package Version, 1 (2009)

10. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

11. Liu, J., Ji, S., Ye, J., et al.: SLEP: sparse learning with efficient projections, vol.
6, p. 491. Arizona State University (2009)

Privacy-Preserving Elastic Net for Data Encrypted by Different Keys 203

12. Shalev-Shwartz, S., Zhang, T.: Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. In: ICML, pp. 64–72 (2014)

13. Zhou, Q., Chen, W., Song, S., Gardner, J.R., Weinberger, K.Q., Chen, Y.: A reduc-
tion of the elastic net to support vector machines with an application to GPU
computing. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

14. Lin, K.P., Chen, M.S.: Privacy-preserving outsourcing support vector machines
with random transformation. In: Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 363–372. ACM
(2010)

15. Laur, S., Lipmaa, H., Mielikäinen, T.: Cryptographically private support vector
machines. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 618–624. ACM (2006)

16. Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate poly-
nomials. J. Math. Crypt. 7(1), 1–29 (2013)

17. Liu, F., Ng, W.K., Zhang, W.: Encrypted SVM for outsourced data mining. In:
2015 IEEE 8th International Conference on Cloud Computing, pp. 1085–1092.
IEEE (2015)

18. Yu, H., Jiang, X., Vaidya, J.: Privacy-preserving SVM using nonlinear kernels on
horizontally partitioned data. In: Proceedings of the 2006 ACM Symposium on
Applied Computing, pp. 603–610. ACM (2006)

19. Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving SVM classification on vertically
partitioned data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD
2006. LNCS, vol. 3918, pp. 647–656. Springer, Heidelberg (2006). doi:10.1007/
11731139 74

20. Vaidya, J., Hwanjo, Y., Jiang, X.: Privacy-preserving svm classification. Knowl.
Inf. Syst. 14(2), 161–178 (2008)

21. Van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-
preserving cloud computing. HotSec 10, 1–8 (2010)

22. Chow, S.S., Lee, J.H., Subramanian, L.: Two-party computation model for privacy-
preserving queries over distributed databases. In: NDSS (2009)

23. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053–1066 (2012)

24. Demmler, D., Schneider, T., Zohner, M.: ABY-A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

25. Pedersen, T.B., Saygın, Y., Savaş, E.: Secret charing vs. encryption-based tech-
niques for privacy preserving data mining (2007)

26. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234.
ACM (2012)

27. Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty compu-
tation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058
(2013)

28. Wang, B., Li, M., Chow, S.S., Li, H.: Computing encrypted cloud data efficiently
under multiple keys. In: 2013 IEEE Conference on Communications and Network
Security (CNS), pp. 504–513. IEEE (2013)

29. Wang, B., Li, M., Chow, S.S., Li, H.: A tale of two clouds: computing on data
encrypted under multiple keys. In: 2014 IEEE Conference on Communications and
Network Security (CNS), pp. 337–345. IEEE (2014)

http://dx.doi.org/10.1007/11731139_74
http://dx.doi.org/10.1007/11731139_74

204 J. Zhang et al.

30. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

31. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1518–1529. ACM (2015)

32. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-40061-5 3

33. Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S.,
Bindal, N., Beare, D., Smith, J.A., Richard Thompson, I., et al.: Genomics of
drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery
in cancer cells. Nucleic Acids Res. 41(D1), D955–D961 (2013)

34. Jaggi, M.: An equivalence between the Lasso and support vector machines. In:
Argyriou, A., Signoretto, M., Suykens, J.A.K. (eds.) Regularization, Optimization,
Kernels, and Support Vector Machines, pp. 1–26. Taylor & Francis, Boca Raton
(2014)

35. Zhou, H., Wornell, G.: Efficient homomorphic encryption on integer vectors and
its applications. In: Information Theory and Applications Workshop (ITA 2014),
pp. 1–9. IEEE (2014)

36. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

37. Fushiki, T.: Estimation of prediction error by using k-fold cross-validation. Stat.
Comput. 21(2), 137–146 (2011)

38. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

39. Wong, W.K., Cheung, D.W.L., Kao, B., Mamoulis, N.: Secure kNN computation
on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 139–152. ACM (2009)

40. Halevi, S., Shoup, V.: An implementation of homomorphic encryption. https://
github.com/shaih/HElib

41. Keerthi, S.S., Chapelle, O., DeCoste, D.: Building support vector machines with
reduced classifier complexity. J. Mach. Learn. Res. 7, 1493–1515 (2006)

42. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

43. Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S.S., Sundararajan, S.: A dual
coordinate descent method for large-scale linear SVM. In: Proceedings of the 25th
International Conference on Machine Learning, pp. 408–415. ACM (2008)

44. Tyree, S., Gardner, J.R., Weinberger, K.Q., Agrawal, K., Tran, J.: Parallel support
vector machines in practice. arXiv preprint arXiv:1404.1066 (2014)

45. Chapelle, O.: Training a support vector machine in the primal. Neural Comput.
19(5), 1155–1178 (2007)

http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-540-40061-5_3
http://dx.doi.org/10.1007/978-3-540-30576-7_18
https://github.com/shaih/HElib
https://github.com/shaih/HElib
http://dx.doi.org/10.1007/3-540-46766-1_9
http://arxiv.org/abs/1404.1066

Privacy-Preserving Community-Aware Trending
Topic Detection in Online Social Media

Theodore Georgiou(B), Amr El Abbadi, and Xifeng Yan

Department of Computer Science,
University of California, Santa Barbara, Santa Barbara, USA

{teogeorgiou,amr,xyan}@cs.ucsb.edu

Abstract. Trending Topic Detection has been one of the most popu-
lar methods to summarize what happens in the real world through the
analysis and summarization of social media content. However, as trend-
ing topic extraction algorithms become more sophisticated and report
additional information like the characteristics of users that participate
in a trend, significant and novel privacy issues arise. We introduce a
statistical attack to infer sensitive attributes of Online Social Networks
users that utilizes such reported community-aware trending topics. Addi-
tionally, we provide an algorithmic methodology that alters an existing
community-aware trending topic algorithm so that it can preserve the
privacy of the involved users while still reporting topics with a satisfac-
tory level of utility.

1 Introduction

With the explosive growth of Online Social Networks and the consequential
unparalleled creation of an enormous amount of user generated content, algo-
rithms that can extract meaningful insights and summarize this content have
been widely studied and used. Specifically, the concept of Trending Topics has
been popularly utilized in the detection of breaking news, hyper-local events, or
memes, and also significantly contribute as marketing and advertising mecha-
nisms. In its broader definition, a trending topic is a set of words or phrases that
refer to a temporarily popular topic. Trending topics are used to understand
and explain how information and memes diffuse through vast social networks
with hundreds of millions of nodes. However, due to the open-access nature of
Online Social Networks like Twitter, where everyone can see who says what, and
depending on how much information a trending topic contains, novel notions of
privacy emerge.

As a concrete example, Twitter reports Trending Topics by location, even at
the city resolution. Their service also offers a search functionality which enables
the discovery of all social postings (tweets) that contain certain keywords, and
those tweets are always associated with a user of the social media service. When
Twitter reports that a topic is trending in Athens, Greece, anyone can find the
users that mentioned this topic through Search and may, therefore, assume that

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 205–224, 2017.
DOI: 10.1007/978-3-319-61176-1 11

206 T. Georgiou et al.

they live in Athens, Greece. The location of a user could be considered a sensitive
attribute, if for example they post provocative political opinions and are afraid
of physical repercussions. As we will show later, an attacker can easily infer the
location of hundred of thousands of Twitter users through a simple crawling of
Location-based trending topics using the official Twitter API. These users do not
geocode their tweets neither publicly display their location on their profile. Thus,
the correlation between trending topics and attributes like location can lead
to privacy leaks. Building smarter trending topic extraction algorithms, which
contain richer demographic information of the involved users can further increase
the privacy risk of any reported topic. It is important that any algorithm that
extracts multiple correlated user attributes takes privacy seriously into account.

In [8] we proposed an efficient method to identify trending topics on Twitter
where the underlying user population (the users that mention the topic) share
common attributes like age, location, gender, political affiliation, sports teams,
etc. Through human-based evaluations we showed that topics correlated with
surprising attribute values tend to be 27% more interesting and informative
than trending topics that are extracted purely based on their raw frequency or
burstiness. We call such an algorithm a community-aware trending topic extrac-
tion algorithm since the involved users in each topic form homogeneous groups
(communities), even if they are not linked directly.

Due to the public nature of Online Social Networks like Twitter, apart from
identifying the real identity of a user, an attacker will usually try to infer sen-
sitive attribute values of certain users utilizing knowledge of the social network
(who is a friend with whom, or who follows who). Furthermore, a sensitive
attribute inference attack is also a significant risk in the context of community-
aware trending topic reporting and to the best of our knowledge has not been
studied before. At the same time, large Social Media websites like Facebook
and Twitter already have proprietary methods for inferring social attributes of
their users that are not explicitly provided by them. Recently, it was revealed
that Facebook is able to learn a user’s political preference between values like
“Liberal”, “Very Liberal”, “Moderate”, or “Conservative”. This is a particularly
interesting case since user content on Facebook is usually not accessible to any-
one except the user’s immediate social network. However, if sensitive attribute
information, like political preference, is used in the context of enriching other
features which are publicly known, like Facebook’s Trending section, then this
feature could start leaking sensitive information to virtually anyone.

To demonstrate how sensitive attribute inference could be applied as an
attack in the context of trending topics, we provide a hypothetical example
in Fig. 1 where users mention certain topics that were reported as trending from
a community-aware algorithm (listed in the table at the top of the figure). The
information in the table is public to everyone, similarly to the lists of Trend-
ing Topics that Facebook and Twitter already publish to their users in general.
The main difference is that each topic is also linked with values for specific
attributes like gender, age, location, political preference, etc. The association of
an attribute value with a topic indicates that this specific attribute value is a

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 207

Fig. 1. Alice and Bob are two users who have discussed some topics. These topics were
reported as trending and additionally, for each topic certain demographic information
was extracted for 3 attributes: Location, Political Preference, and Gender. These values
indicate that a significant portion of all the users that mentioned each topic, belong
to the community defined by those values. An attacker can observe these values and
can also find which topics Alice and Bob have discussed. Based on this knowledge, the
attacker can infer certain attribute values of Alice and Bob with certain confidence. In
case (a) (left), where Bob and Alice have only discussed a single topic, the attacker has
low inference confidence. In case (b) (right), Bob and Alice have also discussed topic
T4 which increases the confidence of the attacker for Alice’s gender and Bob’s political
preference but at the same time decreases the confidence for Bob’s gender because T2

and T4 have mostly male and female communities correspondingly.

characteristic for the majority of the users that mentioned the topic (but not
necessarily all of them). For an attacker, this means that they cannot be 100%
confident that every user mentioning topic T1 lives in Boston. However, when
users discuss several topics, the attacker’s confidence may increase. As shown in
Fig. 1 Alice and Bob each mention some of the topics that happen to be listed in
the table of trending topics. Since the attacker can obtain a list of the users that
mentioned each topic (e.g., Twitter provides such search functionality), they can
also increase their confidence (note the difference between cases (a) and (b)) in
inferring Alice and Bob’s sensitive attributes like political preference or gender
without even accessing their posts or network.

In Table 1 we list some real examples of topics and their corresponding com-
munity characteristics (attribute values) that we extracted from Twitter data.
The communities are characterized by values for several attributes including
Location, Gender, Age, Political party (US only), or even Sports teams. Note
that these attribute values are temporal and might change over time, even for
the same topics. Each topic has a frequency (how many unique users mentioned
it) and a community defined by the attributes that describe a significant part
of the users that mentioned the topic. In practice, it is impossible to observe
topics where the entirety of their population forms a homogeneous community
on some attribute values, therefore, the reporting algorithm will only guaran-
tee that at least some percentage of this user population shares the reported

208 T. Georgiou et al.

attribute values. Note, that a community is not necessary to have a value for
every attribute, as it happens for “#NFL” where the user population is homo-
geneous only on Gender and Location and not in Age or Politics. In the last
column of the table we provide the number of privacy violations for each topic,
i.e. the number of social media users that will have at least one attribute exposed
to an attacker if the corresponding trending topic is publicly reported.

Table 1. Real examples of community-aware trending topics

Topic Frequency Community characteristics Size Violations

#NavyYardShooting 5427 Location: USA, Age: 19–22 5218 2561

#NFL 1534 Gender: Male, Location: USA 1212 389

#FreeJustina 54 Location: Boston, Gender:
Female, Political party:
Democrats

51 13

#OscarTrial 1242 Location: Johannesburg: ZA,
Gender: Female

1133 345

#ObamaCare 5090 Location: USA, Politics:
Republicans

4818 1002

#ObamaIn3Words 246 Location: USA, Age: 19–22,
Gender: Male, Politics:
Republicans

224 76

#RedSox 528 Location: Boston, Age:
19–22, Gender: Male, Team:
Red Sox

411 256

An attacker similar to the one in Fig. 1 can peruse the rows of Table 1 and
attempt to infer sensitive attribute values for the involved users. If there is a user
that mentioned both topics #ObamaCare and #ObamaInThreeWords then the
attacker can be very confident that the user supports the Republican party, that
they are located in the United States, and moderately confident that they are
male and a young adult. This is becomes more important In the presence of even
more sensitive attributes like sexual orientation, religion, or race. Note that this
kind of attack is different from existing privacy scenarios where the attacker
infers sensitive attributes through the user’s local social graph (e.g., [26]). In
the case of community-aware trending topics, membership to a community is
implicit and happens just by mentioning certain topics. Therefore, even if a user
is careful with which groups they subscribe to or become members of, sensitive
information can still be exposed simply through the mention of a topic.

We tested how easily we can attack private attributes in existing Trending
Topics reports. As mentioned earlier, Twitter provides Trending Topics by loca-
tion (a total of 401 cities in the world). We crawled these topics through the
Twitter API, and managed to infer the location of approximately 300k users
that mentioned topics which were trending only in a single location just within

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 209

a single day of crawling. 11.8% of these users had public location and from a
sample we estimated that this location inference attack was 82.33% successful.
This proved how easy an attacker can exploit existing Trending Topics to infer
the location of thousands of users. Therefore, altering trending topic algorithms
to protect the sensitive attributes of OSN users is an important area to study.

Main contributions: In this research we formally introduce a novel privacy
model that captures the notion of sensitive attribute inference in the presence
of community-aware trending topic reports where an attacker can increase their
inference confidence by consuming these reports and the corresponding commu-
nity characteristics of the involved users. We discuss a basic attack and provide
an efficient algorithm that preserves the privacy of each individual user so that
sensitive attributes can not be successfully inferred. To the best of our knowledge
we are the first to address this notion of privacy and introduce an algorithm that
uses the idea of attribute generalization in combination with Artificial Intelli-
gence techniques to efficiently defend against such attacks.

In the next sections we provide related literature on the subject of sensitive
attribute inference in Social Media (Sect. 2), discuss the data, attack, and privacy
models (Sect. 3), and provide an analysis of the basic attack that is based on
Naive Bayes inference (Sect. 4), which is commonly used in this line of research.
We then present a novel approach to preserve privacy while maintaining topic
reports with high utility (Sect. 5). Finally, we provide experimental results on
the algorithm’s performance and utility (Sect. 6).

2 Related Work

Data privacy is a thoroughly studied area and several families of algorithms
have been proposed to deal with different kinds of attacks, mostly on published
anonymized datasets. Most notably, the concepts of k-anonymity [16,17,20],
l-diversity [11], t-closeness [10], and Differential Privacy [6] include methodolo-
gies to preserve data privacy and information anonymity. However, privacy in
Online Social Networks follows a different data model where most of the infor-
mation is publicly available: the Twitter social graph, the set of online postings
by every user in Twitter, user membership in Facebook pages, etc. What is
not accessible though, is information about sensitive characteristics that users
might want to keep hidden from the general public. An attack to discover these
characteristics is known as sensitive or private attribute inference.

There are studies and published algorithms for inferring user demograph-
ics based on the content posted by social media users or their social network.
Schwartz et al. [18] developed language models to identify the gender and age
of Facebook users. [5] describe a method to infer user demographics by utilizing
external knowledge of website user demographics and correlating it with a social
media service. Their approach mainly differs from Schwartz et al.’s in its ability
to infer the user characteristics without analyzing the content of postings. Nazi
et al. [12] proposed a methodology to discover hidden information from Social
Media by exploiting publicly accessible interfaces like the search functionality.

210 T. Georgiou et al.

While all the aforementioned work provides useful data mining tools and models,
the privacy implications of the proposed methods are not examined.

Zheleva et al. [26] were the first to study the privacy of sensitive attributes in
the context of Online Social Networks. They describe a variety of attack models
to infer sensitive user attributes but the model most related to the current work,
is the model that utilizes the membership of users in Facebook pages. This
model is similar to the “membership” of a user to a trending topic’s community.
However, they do not provide any algorithmic solution since it is the choice of the
user to subscribe to a page. A system called Privometer [21] measures how much
privacy leaks from certain user actions (or from their friends’ actions) and creates
a set of suggestions that could reduce the risk of a sensitive attribute being
successfully inferred, like “tell your friend X to hide their political affiliation”.
Similar to Privometer, in [3], and then in [14], a method is proposed for the
prevention of information leakage by introducing noise, through the removal of
edges or addition of fake edges, to the social graph. This idea was then extended
to a finer-grained perturbation in [2] where edges are only added partially. Eunsu
et al. [15] built a system called “curso” that identifies when a user’s privacy
is violated through the analysis of their local network. There are also studies
that focused on the anonymization of network data where the attacker tries to
statistically infer the relationship between members of the social network. Most
prominent works in this area include [4,25]. Tassa et al. [22] also studied the
same problem but specifically consider distributed social networks.

Dealing with privacy on a virtually infinite stream of data poses its own
challenges and most of the aforementioned techniques focus on static datasets.
Dwork et al. have studied privacy in streaming environments and proposed a
family of algorithms called Pan-Private Streaming Algorithms [7]. The main
focus of these algorithms is to deal with attackers with control of the machine(s)
where the algorithm is running but no access to the stream, while in our case
they have access to every social post.

3 Data and Attack Models

3.1 Data Model

The users of a Social Media service are represented as a set U = {u1, u2, ..., un}.
Each user u is associated with a vector v of k sensitive attributes (e.g., location,
age, etc.). The attribute ai of a user u (u.v.ai) can take on one of a set of possible
values {ai1, ai2, ..., aimi

}, where mi is the corresponding attribute’s total number
of unique values. The values of an attribute form a hierarchy which for some
attributes can have a significant depth (e.g., for location: cities, to regions, to
countries, to continents, to wordwide) or be trivial (e.g. for gender: from male and
female to any gender). An attribute value can be generalized by being replaced
with an ancestor value from the hierarchy. A user can mark a set of attributes
as sensitive and keep them private. Or depending on the nature of an attribute,
e.g., race, which the social media service might infer using its own proprietary
inference algorithm, it could be considered as sensitive for everyone.

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 211

The content of the Social Media service is represented as an infinite stream
P of posts. Every post p ∈ P has a unique author (user) p.u and contains
an arbitrary number of topic keywords p.T = {t1, t2, ...}. We define a publicly
available search function SEARCH that returns all the users mentioning a given
topic keyword t: SEARCHt = {p.u|t ∈ p.T}. The number of users mentioning t
is referred to as topic population and its size is equal to |SEARCHt| and referred
to as topic frequency (second column in Table 1). We can assume that each user
that mentions topic t is counted only once to avoid bias from spamming. The
search function SEARCH is defined for multiple topics as well, and returns the
intersection of the users that mention all the given topics.

We define a homogeneous community as a group of users with identical values
in some of their attributes, but not necessarily connected in the social graph.
More formally, a homogeneous community contains users that share the same
values for a combination of attributes where is the power-
set symbol and ai is a user attribute (e.g., location, age, etc.). Users that live in
San Francisco, are 25 years old, and are male, form a homogeneous community
that contains all the users identified by these values for the attribute combi-
nation {location, age, gender}. Users in New York form another homogeneous
community defined by the singleton attribute combination {location}.

A community-aware trending topic algorithm (referred to as CATT [8]) iden-
tifies topic keywords mentioned by a homogeneous community that has at least
size ξ of the total topic population (0 < ξ ≤ 1). For example, if ξ = .7, a topic
with frequency 1000 will have at least 700 users forming a homogeneous com-
munity. The CATT algorithm reports records in the form of a stream of tuples:
ti, Ci, where Ci is the set of attribute values that define the homogeneous commu-
nity CATT identified for topic ti. If a topic t has no homogeneous community of
size ξ|SEARCHt| or larger associated with it then it isl not reported by CATT.
We will refer to homogeneous communities simply as communities and to topics
extracted via a community-aware algorithm as community-aware topics.

CATT extracts trending topics using a batch-based sliding window on the
stream of social postings of the service. At the end of each window, CATT
reports a set of pairs ti, Ci) which includes all the extracted topics from the
current window. We refer to the output of CATT for each window of social
postings as a batch. Table 1 shows an example of such a batch that contains 8
pairs. Through the definition of community-aware trending topics, the users of
the social media service inherit an implicit membership to communities just by
mentioning certain topics. Using a single reported pair ti, Ci one can infer that
at least ξ% of the users in SEARCHti are characterized by the values of Ci.
This constantly increasing knowledge enables an attacker to gradually improve
their inference confidence for a given user’s sensitive attribute(s).

Note that execution of CATT requires the knowledge of community attributes
for the involved users. Realistically, CATT is executed by the Social Media service
itself which has access to private user information or even its own proprietary
method to extract attributes. Attackers lack access to the necessary information
to execute CATT themselves.

212 T. Georgiou et al.

3.2 Attack Model

A CATT algorithm reports a stream of batches of pairs ti, Ci. The attacker
knows CATT’s threshold ξ, as it is public knowledge, has access to the output
stream, and to the search function SEARCH which returns the set of users
that have mentioned the provided topic(s). It is also safe to assume that the
attacker has general knowledge of each attribute’s prior distribution. For exam-
ple, such knowledge might include the location distribution based on a Census,
the age distribution based on published statistics from the social media service,
the gender distribution based on users that have this information public, etc.
We can safely assume that the attacker is omnipotent and can indefinitely store
the pairs (ti, Ci) and the corresponding sets of users SEARCHti. The goal of
the attacker is to infer a user’s sensitive attribute by exploiting the knowledge
of each topic’s community Ci and the users associated with it. In the presence
of an omnipotent attacker a privacy preserving algorithm must maintain all pre-
vious trending topics and communities to accurately calculate the probability
distribution of the sensitive attribute values, of each user.

In related literature on sensitive attribute inference [14,21,26], an attacker
would train a Naive Bayes Classifier to choose the value of a sensitive attribute
L that maximizes the probability distribution PL|u.T . However, though Naive
Bayes is known to be a decent classifier, it is also known to be a bad estima-
tor [24]. For the inference process to be accurate, a high probability bound is
necessary, so we consider that attack to be successful only when the inference
probability of an attribute value is greater than a set threshold θ (e.g., θ = .75
or .85). We will be using a global value for θ across all attributes and users, but
the proposed model and algorithm support different values for each attribute
and user.

4 Privacy Model

4.1 Sensitive Attribute Inference

Having established the models for the data (social stream) and the attacker
(inference of sensitive attributes) we can now formally define the privacy model.
For every user in the social network that discusses several topics in a stream-
ing fashion, we want to protect against having their sensitive attribute values
leaked through the continuous reporting of community-aware trending topics.
Specifically, any attacker that has access to current and historical reports of
community-aware trending topics should not be able to infer any user’s sensitive
attribute with confidence that is higher that a set value θ. At no point should an
attacker be able to infer a lower bound for the distribution PL|u.T (probability
distribution of sensitive attribute L of a user u given the topics T of u), that is
higher than θ.

Definition: If there is even a single case where a user’s sensitive attribute can
be inferred with confidence larger than θ, this comprises a privacy violation.

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 213

A community-aware trending topic algorithm that is capable of maintaining a
record of zero privacy violations while it continuously reports new batches of
topics is called θ-private.

Referring back to the example of Fig. 1, if θ is set to .75 then an algorithm
that reports the topics in the table of the figure is not θ-private in case (b), since
the attacker can infer the gender of Alice and the political preference of Bob with
confidence that is higher than θ. To make the algorithm θ-private we would need
to obfuscate the gender and political preference associated with topics T1, T2,
and T4. If Alice and Bob had only discussed topics T1 and T2, as in case (a),
then the algorithm would be θ-private for this specific instance.

The inference of a sensitive attribute involves estimating the probability of
a specific value given some background knowledge. As already discussed, the
attacker has access to prior attribute probabilities and the output and settings
of CATT. The Naive Bayes classifier is a powerful and simple technique to cal-
culate the probability of a sensitive attribute value. Arguably, if the attacker
has additional information of other sensitive attributes (e.g., already knows that
Alice is a woman because she has her own photo in her profile) then they can
get a better estimation of the probability of another sensitive attribute, like her
location, than they would from Naive Bayes. In the following subsection we focus
on the calculations necessary to get a lower bound of the probability P (L|u.T)
using Naive Bayes. The end goal is to anticipate what values the attacker can
successfully infer so that they can be kept private. This is typically easy since
the attacker’s knowledge is generally based on publicly available information and
the privacy model can incorporate it if necessary. To keep things simple, for the
rest of the paper we assume that the attacker has no existing knowledge of sen-
sitive attribute values and therefore the Naive Bayes Classifier can set a precise
upper bound. The introduced privacy model is independent of how P (L|u.T) is
calculated by an attacker and the privacy preserving algorithm proposed later
can be easily adjusted to calculate these distributions differently.

4.2 Naive Bayes Inference

Given a collection of topic and community tuples ti, Ci (the output of CATT)
and a search function SEARCH, an attacker may attempt to infer the sensitive
attributes of users that mention at least one of the topics ti. Let u be a user
that has mentioned k topics t1, t2, ..., tk and let L be one of the user’s sensitive
attributes (e.g., location). The probability distribution of L, given that the user
mentioned some topics t1, t2, ..., tk is:

PL|t1, t2, ..., tk =
Pt1, t2, ..., tk|LPL

Pt1, t2, ..., tk
(1)

by applying the Bayes Rule. P (L) is the prior multinomial distribution of the
attribute L and can be assumed to be known to an attacker based on their
general knowledge on such information. The probability distribution of a user
mentioning topics t1, t2, ..., tk given L, Pt1, t2, ..., tk|L, is equal to the number of

214 T. Georgiou et al.

users u that mention all the k topics and have a specific value for L, over the
total number of users with that value of L. For example, for L = a:

Pt1, ..., tk|L = a =
|{u|u.v.L = a, t1 ∈ u.T, ..., tk ∈ u.T}|

|{u|u.v.L = a}| (2)

where u.v.L is the attribute L in the user’s vector of attributes v. Similarly, the
prior probability of topics Pt1, t2, ..., tk is equal to the number of users that men-
tioned these topics over the total number of users n: |SEARCHt1, t2, ..., tk|/n.

While an attacker might have knowledge of the attribute’s multinomial distri-
bution and the ability to calculate the prior probability of any topic combination
(using the search function SEARCH), they cannot compute the set of users that
have a specific attribute value L = a: {u|u.v.L = a}. Instead, they can obtain an
approximate value of the probability distribution Pt1, t2, ..., tk|L based on the
reported tuples from CATT. The attacker can exploit the guarantees provided
by CATT that a reported trending topic ti has a population of size |SEARCHti|
with a homogeneous community Ci with size at least ξ|SEARCHti|.

More specifically, if the attribute L is not part of Ci, then the topic population
of ti follows the prior distribution of L: Pti|L = PL. If L ∈ Ci and has a value
L = a, then applying the Bayes Rule we get:

Papproxti|L = a =
PL = a|tiPti

PL = a
=

ξ

PL = a
Pti (3)

Similarly, the probability that a user with value L = b mentions topic ti is:

Papproxti|L = b = PL=b|tiPti
PL=b

=
1 − ξPL = b|SEARCHti|

PL = bn
= 1 − ξP ti (4)

The attacker can now approximate the probability distribution (2) by assum-
ing topic independence given L: Papproxt1, t2, ..., tk|L =k

i=1 Pti|L where each fac-
tor of the product can be computed using the probability formulas from (3) and
(4). Note that topic independence given L is an assumption that can be true
when the number of topics k is large. An attacker can use the following formula
to approximate PL|u.T :

PapproxL|u.T =
nPLti∈u.TPti|L
|SEARCHu.T | (5)

If for any value of L = l, the probability PL = l|u.T becomes larger than the
threshold θ then we assume that the privacy of this user for L is violated.

5 Privacy Preservation Methodology

A community-aware trending topic algorithm is also θ-privacy-preserving if its
output does not enable the inference of sensitive user attributes with a confidence

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 215

greater than a threshold θ, for any of the users involved. We will refer to this
modification of the CATT algorithm as θ-CATT. At the same time, the goal is to
keep reporting trending topics with maximum utility. Maximizing the utility of
the results is a competing goal with preserving privacy since the algorithm could
report an empty result set and the privacy leakage would be zero. Issues arise
when the algorithm reports at least one trending topic ti and its community Ci

and for all users in SEARCHti some statistical information is leaked. Especially
challenging is the fact that users continuously discuss new topics which results
in a constant stream of information that an attacker can use to increase their
inference confidence of sensitive attribute values (as demonstrated in Fig. 1).

We now introduce a novel approach that utilizes the concept of generalization
in combination with Artificial Intelligence to efficiently solve the exponentially
expensive anonymization problem while preserving significant utility.

5.1 Utility of Trending Topics

The goal behind extracting trending topics that certain communities focus on is
to provide additional insight into why certain topics end up trending, understand
which user demographics are interested in an event, product, etc., and generally
provide more interesting, surprising and personalized trending topics to the users
of the social media service. Using the notion of Self-information from Information
Theory [19] we provide a measure of the information content for community-
aware trending topics. Self-information can capture how surprising an event is
based on the probability of the event. The total utility of θ-CATT’s results
is equal to the self-information sum of every reported topic’s community. The
self-information of a community Ci is ICi = −log2PrCi. Intuitively, the less
likely a community is to be observed, the higher its self-information. Since we
are using the logarithm with base 2, self-information is measured in bits. This
metric provides a systematic way to measure the utility of the reported topics
and can be used to calculate the information/utility loss when anonymization is
applied. We define a utility function util() which returns the utility over a set of
tuples (ti, Ci). Other metrics can be used as well without alterations to θ-CATT.

5.2 Community Attribute Anonymization

θ-CATT needs to constantly monitor the maximum confidence of a hypothetical
attacker to infer every sensitive attribute of every user in the service. When
θ-CATT identifies a trending topic ti with a homogeneous community that
involves |SEARCHti| users, it has to make sure that none of the users u ∈
SEARCHti will have their sensitive attributes leaked by publishing (ti, Ci). To
ensure that, it calculates the probability of each sensitive attribute for every user
u: PL|u.T and checks if the value becomes greater than θ. If it does not, then
the pair (ti, Ci) is published. If it does, θ-CATT will anonymize the sensitive
attribute of the community before publishing, while preserving as much utility
as possible.

216 T. Georgiou et al.

We utilize the method of attribute generalization to achieve anonymization
similarly to k-anonymity [9,16,17,20]: if the city of a user can be inferred,
θ-CATT reports location at the state level instead, which will alter the infer-
ence probability since a much larger population is described by this value. Gen-
eralization of categorical attributes is achieved by moving up a level in the
attribute hierarchy (as described in earlier section). Depending on the depth
of an attribute’s hierarchy, a single generalization (moving up a single level in
the attribute’s value hierarchy) might lead to complete anonymization which
also means zero utility for this attribute. For example, generalizing the value
“male” will result to “any gender” (or “*”).

The θ-CATT algorithm encapsulates the privacy-agnostic CATT algorithm
which just extracts the community-aware trending topics by consuming the social
stream. θ-CATT receives the batch of topics and attributes pairs (ti, Ci) (as
described in earlier section), and combined with the knowledge of every user’s
sensitive attributes and the topics they have previously mentioned (u.T), calcu-
lates if any user’s privacy would leak with the publication of the batch.

5.3 Finding the Best Anonymization Strategy

In order to output a list of trending topics that contains no privacy violations,
a decision must be made that involves choosing which topic communities should
be anonymized without sacrificing too much utility. There are many solutions
to this problem, each with a different level of utility loss. To avoid solving this
problem in exponential time by trying all possible combinations and choosing the
one that minimizes the utility loss, we propose an algorithm that efficiently finds
the best strategy for identifying a near optimal combination to anonymize. The
θ-CATT algorithm is able to identify the privacy risk each new topic-community
pair poses before publishing it, ideally in real time. To achieve this computation,
θ-CATT needs to store: (1) the history of trending topics previously reported
by the algorithm, that each user u has mentioned, and (2) the communities that
were reported to be correlated with those topics. With this information θ-CATT
can simulate an attacker and identify privacy violations before they even occur.

Batch-Based Anonymization. When a batch of pairs (ti, Ci) is reported
by CATT, θ-CATT will iterate through all pairs, apply necessary anonymiza-
tions and publish the altered set of pairs. A naive approach to identify which
pairs require anonymization, is to iterate through them one by one, and if a
pair violates the privacy of at least one user, appropriately anonymize the com-
munity’s sensitive attribute(s) before moving to the next topic. However, the
iteration order might lead to non-optimal results where more communities get
anonymized than necessary to preserve privacy and utility loss is not minimal.
For example, it might be better to anonymize a single community C3 instead
of anonymizing two communities C1 and C2 and achieve the same privacy gain.
Occasionally, the combination of two topic communities can enable their publi-
cation without anonymization while if we each pair is individually considered,

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 217

then neither of them would get reported. For this reason, θ-CATT considers
the privacy and utility of the whole batch to identify the best anonymization
strategy which minimizes the required attribute generalization and utility loss.

Assume for simplicity that there is a single sensitive attribute L and let S be a
batch of k pairs (ti, Ci) with communities that have a value for attribute L. Since
the generalization of an attribute in a community Ci lowers the total utility of the
batch, we want to generalize L in the least possible number of communities. An
anonymized batch S′ is a modified version of S with an arbitrary number of the
communities in S anonymized (a community is anonymized when its attribute L
is generalized at least once as described earlier). If a community does not contain
a value for attribute L, it is ignored since it will not alter any user’s inference
probability for L. Therefore, there is a total of 2k different anonymized batches
S′ ranging from the case where nothing is anonymized to the case where all k
communities are anonymized and every possible combination in between.

The goal for θ-CATT is to find the batch S′ that has greater utility than
any other S′′: utilS′ ≥ utilS′′ while at the same time S′ preserves the privacy
of every user’s sensitive attribute. For example, in Table 1, k = 7 and S contains
the eight topic-community pairs listed in the table. If reporting these 7 pairs
violates the privacy of any of the involved users, then θ-CATT will identify an
anonymized version of the batch that does not leak sensitive attributes.

A* State Encoding. To find the best anonymized batch S′, a naive approach
would be to enumerate all 2k possible batches and keep the batch with the max-
imum utility, which at the same time does not leak any sensitive user attributes.
However, this approach has exponential complexity O(2k). Instead, we propose
a customized version of the A* algorithm, which is an Informed Search method
[13], to identify a good batch S′ efficiently. A* is a search algorithm, hence,
it requires a search tree with a starting node and a goal node to reach. Each
node of the tree is called a state and corresponds to a batch S′. The starting
state would be the non-anynomized batch S while the goal state would be the
anonymized batch S′ that preserves the privacy of all involved users. There are
many acceptable goal states, so additionally a cost function is needed to indicate
the amount of sacrificed utility to reach a specific state.

Each anonymized batch S′ corresponds to a state and all possible states
form the search tree. We encode S′ as a k-digit binary number where the i-th
digit corresponds to the pair ti, Ci ∈ S′. A value of 0 as the i-th digit indicates
that the sensitive community attribute L in ti, Ci is generalized, while a value
of 1 indicates that it is not. Ideally, we would like to report the batch S′ that
corresponds to the value 111...1 (no anonymization). A batch S′ is an ancestor
of batch S′′ in the search tree if their encoding differs in exactly one digit, where
this digit is 0 in S′ and 1 in S′′. Using this notion of ancestors a search tree
can be defined where the encoding 111...1 is the root node and a node’s children
contain all descendant encodings. For example, for k = 4, the children of root
node 1111 are: 1110, 1101, 1011, and 0111. The children of 1110 are: 1100, 1010,
and 0110, etc. A visual example for k = 3 is shown in Fig. 2(a). All search tree

218 T. Georgiou et al.

branches will have 00...0 as the common leaf node which corresponds to a fully
anonymized batch and is the least desirable result since its utility is minimal.

As the starting state of A* θ-CATT selects the batch S (original, non-
anonymized output of the CATT algorithm) which has encoding 111...1. The
goal state will be the first state that has no privacy leaks (all sensitive attribute
inference probabilities are below θ). Given a random state S′, the neighbors are
generated by flipping a single digit with value 1. If there are no such digits left,
the search tree has reached its end. Given that the algorithm is stable across
batches (all probabilities are below θ before a new batch), an acceptable goal
state will always exist. In the worst case this will be the state with encoding
00...0 at the bottom of the search tree (Fig. 2(a)).

A* Cost Function. A* requires a cost function that returns the cost of visiting
each state. θ-CATT utilizes the following cost function f.: fS′ = gS′ + hS′.
Function gS′ returns the total utility loss: gS′ = utilS − utilS′, where S is the
original non-anonymized set of topics and communities. Function h(S′) is the
heuristic that estimates how close the current state is to the goal state and we use
the following measure: h(S′) = # users with a privacy violation. The number of
users with a privacy violation is obtained by iterating through all the involved
users in the batch and calculating the probability of inferring their sensitive
attribute(s) with confidence higher than θ (Eq. 5). The function g measures the
cumulative cost to reach a node in the search tree (how much utility has been
sacrificed) and function h estimates the remaining distance of the goal state,
where there is no privacy violation for any user. Note that this specific heuristic
is not admissible (it might overestimate the cost to reach the goal state), which
means that A* might not find the optimal path. Not finding the optimal path
means that some additional utility might be sacrificed in order to greedily reach
a goal state in less steps. Since the two functions g and h measure different units
we normalize them with two weights α and β: f(S′) = αg(S′) + βh(S′) where
α+β = 1. The exact values of α and β depend on the total number of users (for
g) and the specific utility function used (for h).

Algorithmic Complexity. A* checks recursively if the current node is an
acceptable goal state—number of privacy violations is equal to zero—and if it
is not, it expands its children nodes and adds them in a priority queue to visit
them next. Priority is calculated using the f(.) function. This strategy enables
θ-CATT to find a path to a batch S′ that does not violate the privacy of any
user, while reducing the number of necessary steps. The only trade-off is that the
utility of the reached S′ might not be optimal. For multiple sensitive attributes,
the same process can be executed in parallel.

Let V be the set of sensitive attributes, k the size of the batch with pairs
of topics and communities, T the set of all topics in the batch, and n the total
number of users in the social network. The time complexity of the algorithm is:

O(|V | · k · |SEARCHT | + |SEARCHT | · |u.T |

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 219

The main bottleneck of the algorithm is the calculation of the inference prob-
ability (Eq. 5) for a specific attribute and every involved user. First, the whole
process must be repeated for every sensitive attribute. This entails linear com-
plexity to the number of sensitive attributes. Second, probability calculations
must be repeated every time the cost of a state in the search tree is valuated.
While there are 2k states to explore, the customized A* with the proposed greedy
heuristic can reach a local optimum in logarithmic complexity. log22k = k, thus,
the algorithm scales linearly (amortized) with the number of topics in the batch.
Finally, we need to calculate probabilities for every involved user, so the time
complexity will also be proportional to |SEARCHT |. The inference probability
formula (Eq. 5) contains the product of the empirical probabilities Pti|L where
ti is an old topic the user has mentioned and L is a sensitive attribute. To avoid
calculating this product every time the inference probability is measured, we can
instead store in memory the products for all topics the user has mentioned so
far. The prior probability of PL needs to be calculated only once per batch and
n is a fixed number (at least in the context of a batch). The only “problematic”
term is the denominator of the fraction, |SEARCHu.T |, which requires the cal-
culation of the intersection of every set of users that mentioned the same topics
with user u. However, this value needs to be calculated only once per user, per
batch. Therefore, the time complexity of the inference probability calculation is
constant.

The necessary space complexity to store the probability products for each
user and sensitive attribute is: On|V |.

6 Experimental Results

For our experiments we used a real Twitter dataset that contains a uniform 10%
sample of the complete Twitter Firehose stream from a 39 day period between
April 16 and May 24, 2014. Each tweet also contains the information of its
author (user). The extracted topics include unigrams, hashtags or capitalized
entities from the tweets’ raw text. The four extracted user demographics include
location, gender, age, and US political party preference. Location extraction
was done on (1) the tweet level using Twitter’s geo-tagging mechanism, and
to further improve the recall, on (2) the user level using a user-provided raw
text field (similarly to [1,23]). To extract gender and age we applied existing
language models extracted from [18] on social media data. The hierarchy for
gender includes the leaf nodes “male”/“female” and the top level of “all genders”
or “*”. Similarly, the hierarchy for age includes the leaf nodes “13–18”/“19–
22”/“23–29”/“30+” and the top level “*”. Finally, for political party affiliation
we gathered the official Twitter accounts associated with the three most popular
US political parties: Democratics, Republicans, and Libertarians. Then, a user’s
political affiliation was determined based on the simple majority of interactions
(@-replies) with these accounts. More extensive details can be found in [8].

We consider all four attributes to be sensitive for every user. Then we ran
two versions of our algorithms (simple CATT and θ-CATT) and compared the

220 T. Georgiou et al.

results. The algorithm settings are: θ = .7 (attacker’s inference confidence), ξ =
.5 (community size as a ratio of the topic population), utility util{ti, Ci} =k

i=1

ICi (self-information sum), α = .999, and β = .001. The selected values were
empirically chosen to reflect a realistic scenario with a plethora of violations.

The average number of extracted trending topics and community pairs in the
dataset is 112 per window (a window of data corresponds to a single batch of
trending topics as described in earlier section). We focus on the topics that have a
specific city-level location, or age, or gender, or political party preference values,
which on average is k = 21.57 topics per batch. The per-batch average number of
unique location values is 15.2, number of unique gender and political party values
is 2, and number of unique age values is 2.8. The average number of involved
users is 8162. The average utility without any anonymization (simple CATT)
is 43.1 bits but also contains an average of 213.2 privacy violations. Privacy
violations were counted by identifying users that have inference probabilities
(Eq. 5) for either location, age, gender, or political party preference, that is higher
than θ. To preserve the privacy of the location attribute, θ-CATT anonymized
on average 4.3 communities to bring the number of privacy violations to 0. The
average utility of the anonymized results published by θ-CATT is 38.37 bits, so
there is a total utility loss of 4.73 bits.

Examples that demonstrate cases where a community got anonymized to
preserve the involved users’ privacy are listed in Table 2. The 4th column lists
how many privacy violations would occur if the original community was pub-
lished. The 5th column shows how the proposed algorithm decided to anonymize
the community by generalizing at least one attribute. After anonymization, θ-
CATT managed to bring all privacy violations to 0 so that the reported results are
θ-private. For the topic #OscarTrial the location attribute was generalized to
hide the location of 345 users. For the topic #ObamaInThreeWords both age
and party preference are generalized to preserve the privacy of 76 users.

Table 2. Examples of communities and the corresponding anonymized versions.

Topic Original community Size Viol/ns Anonymized community

#OscarTrial Location:
Johannesburg, ZA,
Gender: Female

1133 345 Location: ZA,
Gender: Female

#FreeJustina Location: Boston,
Gender: Female,
Politics: Democrat

51 13 Location: Boston,
Gender: *, Politics:
Democrat

Bruins Location: Boston,
Gender: Male, Age:
19–22

196 58 Location: *, Gender:
Male, Age: 19–22

#ObamaIn3Words Location: USA, Age:
19–22, Gender: Male,
Politics: Republican

224 76 Location: USA, Age: *,
Gender: Male, Politics:
*

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 221

(a) (b) (c)

Fig. 2. (a) Full search tree (k = 3). “No anonymization” is the starting state of A*.
(b) Running time for k = 21.57. (c) Utility loss for different values of θ.

In Fig. 2(c) it can be seen how the utility loss scales for different values of θ.
As expected, when θ = 1, an attacker must be 100% confident when inferring
a sensitive attribute which in reality is practically impossible and results in
maintaining the full utility of the results (equal to the utility of CATT’s output).
On the other end, for θ = 0, no information leakage is permitted at all, therefore,
full anonymization of the communities is necessary and utility becomes equal
to 0. These two extremes are equally not practical for a meaningful and realistic
combination of trending topics with utility and preserved privacy. Based on the
values in Fig. 2 we observe that choosing a value of θ above .6 can maintain at
least 73% of CATT’s original utility of community-aware trending topics. This
curve is a useful guide for choosing the desired privacy-utility trade-off.

Figure 2(b) shows the running time of our privacy preservation algorithm.
All running times are recorded on a personal laptop with a 2.6 GHz Intel Core
i5 processor and 16 Gb of RAM. There were 70 datapoints each corresponding
to randomly sampled batches of topics. Since the complexity of the algorithm
is mainly affected by the number of involved users (users mentioning one of
the topics in the batch) the plot demonstrate how the running time is affected
by this number. Each datapoint is an execution time (y-axis) of a single batch
and corresponds a certain number of involved users (x-axis). The number of
topics with sensitive attributes (batch size) was quite stable throughout our
experiments with a mean of k = 21.57 and a standard deviation of 3.35. The plot
also contains the corresponding least-square linear trendline and its equation.
All reported running times are within the range of 0 s (no anonymizations were
necessary for these batches so A* immediately found the goal state to be the
starting state) and 160 s. Note that the time necessary to stream-in the data of a
single batch takes around 3–4 min based on the rate of new tweets being created
on Twitter, therefore, an average running time of 39.56 s is more than sufficient
to produce results before the new batch is even ready for processing. This means
that the algorithm can be used in a real-time fashion, a strong requirement for
any streaming algorithm.

To examine if the running time is affected by the size of a batch k we also
performed an experiment where we forced the number of topics to be always

222 T. Georgiou et al.

equal to 15—an arbitrarily selected value that is less than 21.57—by randomly
dropping some topics. We observed that the running time is also increasing
linearly with the number of users, as expected. Altering k had no apparent effect
on how the running time scales with the number of users, similar to the slope
of the trendline in Fig. 2(b), which proves that the greedy heuristic of A* has
sublinear amortized complexity. Based on the projected trendlines in Fig. 2(b),
we estimate that the running time for 100K users, which is a number that can be
observed for trending topics on the Twitter web-page, would be approximately
490 s which is again acceptable based on the rate of generated tweets. Therefore,
our algorithm satisfies the efficiency requirement of a practical real-world setting.

7 Conclusions

With the introduction of algorithms that extract trending topics that corre-
late with user demographics (community-aware topics), novel ways emerge to
attack sensitive user information through attribute inference. We are the first to
address privacy concerns in this context, by demonstrating how an attacker can
statistically infer sensitive attribute values and introducing a privacy model for
the preservation of these sensitive values of each individual user that discusses
trending topics in a social network. Towards this end, we propose a new algo-
rithmic approach that utilizes Artificial Intelligence methods in a novel way to
efficiently identify when a privacy violation may occur and remedy all violations
by efficiently extracting an optimal anonymization strategy which maximizes the
utility of the reported trending topics and corresponding community character-
istics.

Acknowledgments. This work is supported by NSF grant CNS 1649469.

References

1. Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.H., Liu, B.: Predicting flu trends using
Twitter data. In: Computer Communications Workshops, pp. 702–707 (2011)

2. Boldi, P., Bonchi, F., Gionis, A., Tassa, T.: Injecting uncertainty in graphs
for identity obfuscation. Proc. VLDB Endow. 5(11), 1376–1387 (2012).
http://dx.doi.org/10.14778/2350229.2350254

3. Bonchi, F., Gionis, A., Tassa, T.: Identity obfuscation in graphs through the infor-
mation theoretic lens. In: Proceedings of the International Conference on Data
Engineering, pp. 924–935. ICDE, Washington, DC (2011). http://dx.doi.org/10.
1109/ICDE.2011.5767905

4. Campan, A., Truta, T.M.: Data and structural k-anonymity in social networks. In:
PinKDD 2008, pp. 33–54 (2009). http://dx.doi.org/10.1007/978-3-642-01718-6 4

5. Culotta, A., Ravi, N.K., Cutler, J.: Predicting the demographics of twitter users
from website traffic data. In: Proceedings of the Conference on Artificial Intelli-
gence, pp. 72–78 (2015). http://dl.acm.org/citation.cfm?id=2887007.2887018

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
doi:10.1007/11787006 1

http://dx.doi.org/10.14778/2350229.2350254
http://dx.doi.org/10.1109/ICDE.2011.5767905
http://dx.doi.org/10.1109/ICDE.2011.5767905
http://dx.doi.org/10.1007/978-3-642-01718-6_4
http://dl.acm.org/citation.cfm?id=2887007.2887018
http://dx.doi.org/10.1007/11787006_1

Privacy-Preserving Community-Aware Trending Topic Detection in OSM 223

7. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N., Yekhanin, S.: Pan-private
streaming algorithms. In: Proceedings of the Innovations in Computer Science
- ICS 2010, Tsinghua University, Beijing, China, pp. 66–80, 5–7 January 2010.
http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/6.html

8. Georgiou, T., El Abbadi, A., Yan, X.: Extracting topics with focused communities
for social content recommendation. In: Proceedings of the 2017 ACM Conference
on Computer Supported Cooperative Work and Social Computing, CSCW 2017,
Portland, OR, USA, pp. 1432–1443, 25 February–1 March 2017. http://dl.acm.
org/citation.cfm?id=2998259

9. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-
anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 49–60. ACM (2005)

10. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: ICDE 2007, pp. 106–115 (2007)

11. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007).
http://doi.acm.org/10.1145/1217299.1217302

12. Nazi, A., Thirumuruganathan, S., Hristidis, V., Zhang, N., Shaban, K., Das, G.:
Query hidden attributes in social networks. In: 2014 IEEE International Conference
on Data Mining Workshop, pp. 886–891, December 2014

13. Nilsson, N.J.: Problem-Solving Methods in Artificial Intelligence. McGraw-Hill
Pub. Co., New York (1971)

14. Raymond, H., Murat, K., Bhavani, T.: Preventing private information inference
attacks on social networks. IEEE Trans. Knowl. Data Eng. 25(8), 1849–1862
(2013). http://dx.doi.org/10.1109/TKDE.2012.120

15. Ryu, E., Rong, Y., Li, J., Machanavajjhala, A.: Curso: protect yourself from curse
of attribute inference: a social network privacy-analyzer. In: Proceedings of the
ACM SIGMOD Workshop on Databases and Social Networks, DBSocial 2013, New
York, NY, USA, pp. 13–18 (2013). http://doi.acm.org/10.1145/2484702.2484706

16. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001). http://dx.doi.org/10.1109/69.971193

17. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing
information. In: PODS, vol. 98, p. 188 (1998)

18. Schwartz, H., Eichstaedt, J., Kern, M., Dziurzynsk, L., Ramones, S.: Personality,
gender, and age in the language of social media: the open-vocabulary approach.
PLoS ONE 8(9), e73791 (2013). https://doi.org/10.1371/journal.pone.0073791

19. Shannon, C.E.: A mathematical theory of communication. SIG-
MOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001).
http://doi.acm.org/10.1145/584091.584093

20. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 571–588
(2002)

21. Talukder, N., Ouzzani, M., Elmagarmid, A.K., Elmeleegy, H., Yakout, M.:
Privometer: privacy protection in social networks. In: Workshops Proceedings of
the International Conference on Data Engineering, ICDE, pp. 266–269 (2010).
http://dx.doi.org/10.1109/ICDEW.2010.5452715

22. Tassa, T., Cohen, D.J.: Anonymization of centralized and distributed social net-
works by sequential clustering. IEEE Trans. Knowled. Data Eng. 25(2), 311–324
(2013)

http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/6.html
http://dl.acm.org/citation.cfm?id=2998259
http://dl.acm.org/citation.cfm?id=2998259
http://doi.acm.org/10.1145/1217299.1217302
http://dx.doi.org/10.1109/TKDE.2012.120
http://doi.acm.org/10.1145/2484702.2484706
http://dx.doi.org/10.1109/69.971193
https://doi.org/10.1371/journal.pone.0073791
http://doi.acm.org/10.1145/584091.584093
http://dx.doi.org/10.1109/ICDEW.2010.5452715

224 T. Georgiou et al.

23. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two nat-
ural hazards events: what Twitter may contribute to situational awareness. In:
Proceedings of the SIGCHI conference on human factors in computing systems,
pp. 1079–1088. ACM (2010)

24. Zhang, H.: The optimality of Naive Bayes. AA 1(2), 3 (2004)
25. Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph

data. In: International Conference on Privacy, Security, and Trust in KDD, pp.
153–171 (2008). http://dl.acm.org/citation.cfm?id=1793474.1793485

26. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles. In: Proceedings of the Inter-
national Conference on World Wide Web, pp. 531–540 (2009). http://doi.acm.org/
10.1145/1526709.1526781

http://dl.acm.org/citation.cfm?id=1793474.1793485
http://doi.acm.org/10.1145/1526709.1526781
http://doi.acm.org/10.1145/1526709.1526781

Privacy-Preserving Outlier Detection
for Data Streams

Jonas Böhler1(B), Daniel Bernau1, and Florian Kerschbaum2

1 SAP Research, Karlsruhe, Germany
{jonas.boehler,daniel.bernau}@sap.com
2 University of Waterloo, Waterloo, Canada

florian.kerschbaum@uwaterloo.ca

Abstract. In cyber-physical systems sensors data should be
anonymized at the source. Local data perturbation with differential pri-
vacy guarantees can be used, but the resulting utility is often (too) low.
In this paper we contribute an algorithm that combines local, differen-
tially private data perturbation of sensor streams with highly accurate
outlier detection. We evaluate our algorithm on synthetic data. In our
experiments we obtain an accuracy of 80% with a differential privacy
value of ε = 0.1 for well separated outliers.

1 Introduction

In cyber-physical systems, e.g. smart metering, connected cars or the Internet
of Things, sensors stream data to a sink, e.g. a database in the cloud, which is
commonly controlled by a different entity. The subjects observed by the sensors
have a vested interest in preserving their privacy towards the other entity. A
technical means to preserve privacy is to anonymize the data (at the source).
However, the data itself may be personally identifiable information as was, e.g.,
shown for smart meter readings [10]. Local data perturbation with differential
privacy guarantees [5] can be used to protect against such exploitation and can
be applied by the sensor. However, the resulting utility in this non-interactive
model is often much lower than in the interactive, trusted curator model of
differential privacy. So far, successful, differentially private outlier detection was
only achieved in the interactive model [8,17,18].

Our algorithm contributed in this paper shows that local data perturbation
of sensor streams combined with highly accurate outlier detection is feasible.
We achieve this by using a relaxed version of differential privacy and a privacy-
preserving correction method. The relaxation is to adapt the sensitivity to the
set of data excluding the outliers [4]. We assume a scenario where outliers are
subject to subsequent investigation which requires precise data, e.g. a broken
power line or water pipe. Our privacy-preserving correction method uses distrib-
ution of trust between a correction server and an analyst server (the database).
The correction server never learns the real measurements, but only the random

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 225–238, 2017.
DOI: 10.1007/978-3-319-61176-1 12

226 J. Böhler et al.

noise added by the data perturbation (with indices of data values). The ana-
lyst server never learns the random noise, but only indices of data values whose
outlier status – false positives and false negatives – the correction server has
adjusted1. The result provides an improved outlier detection and preserves dif-
ferential privacy towards the data analyst, since data perturbation is applied at
the source (independent of the algorithm). Furthermore, the correction server
never learns enough information to reconstruct any of the data.

Our non-interactive data perturbation is applied once for all subsequent
analyses and does not require a privacy budget distributed over a series of queries
which is critical in many applications [6,20]. We evaluate our algorithm on syn-
thetic data. In our experiments we detect 80% of outliers in a subset of 10%
of all points with a differential privacy value of ε = 0.1 on data sets with well
separated outliers. Our error correction method has an average runtime of less
than 40 ms on 100,000 data points.

2 Related Work

We perform outlier detection on sensor data perturbed with relaxed differential
privacy at the source and correct the detection errors due to perturbation. We
are not aware of any related work on this specific problem, however, there has
been extensive work in related areas: releasing differentially private topographi-
cal information, relaxations of differential privacy and separation of outliers and
non-outliers.

In the area of releasing topological proximities under differential privacy a
foundation for privately deriving cluster centers is provided in [1,16,21]. Their
approaches have two drawbacks due to the use of the interactive model: The
complex determination of ε for an assumed number of iterations until conver-
gence and the limitation to aggregated cluster centers. An approach towards non-
interactive differential privacy in clustering through a hybrid approach of non-
interactive and interactive computations is formulated in [22]. A foundation for
increasing differential privacy utility by sensitivity optimizations is introduced
in [17]. Furthermore, the authors formulate a differentially private approach to
release near optimal k-means cluster centers with their sample-and-aggregate
framework. In [18] the sample-and-aggregate approach is extended to detect the
minimal ball B enclosing approximately 90% of the points; everything outside
B is presumed to be an outlier. Their approach is formulated in the interactive
model and requires to apply the calculated ball B to the original data for out-
lier identification. The work in [8] is similar in the desire to produce a sanitized
data set representation allowing an unlimited series of adaptive queries. Their
non-interactive approach for producing private coresets (a weighted subset of
points capturing geometric properties of its superset) suitable for k-means and
k-median queries is proven theoretically efficient, but does not allow to identify

1 The analyst server learns also parameters about the data set which are however
computable from the output of the algorithm.

Privacy-Preserving Outlier Detection for Data Streams 227

individual outliers. Chances for great accuracy improvements in differentially pri-
vate analysis are identified in [18] if outliers were identified and removed before
analysis.

Several relaxations for differential privacy have been suggested. Either by
adapting the sensitivity [17], additional privacy loss [3], by distinguishing
between groups with different privacy guarantees [11,14], or by relaxing the
adversary [19,23]. In [3] (ε,δ)-differential privacy is presented where the privacy
loss does not exceed ε with probability at most 1−δ where δ is negligible. For our
scenario in which outliers should be treated as a separate group, δ would become
very large. Instead, we argue for a noise distribution with different ε guaran-
tees for outliers and non-outliers. By relaxing the assumed adversary knowledge
about the data the work [23] shows that utility gains in Genome-Wide Asso-
ciation Studies are achievable. This relaxation is not discriminating between
different groups found in the data set as in our case. Additionally, we avoid
relaxing the adversary and instead decrease the privacy guarantee for outliers.

The discussion on separation of outliers and non-outliers has been addressed
in [11] by questioning the equal right for privacy for all (i.e. citizens vs. terror-
ists). Their work is close to ours in enforcing privacy guarantees to differentiate
between a protected and a target subpopulation. However, in [11] the original
data is maintained and query answers are perturbed interactively with a trusted
curator. We avoid giving access to original data and enforce perturbation at the
source. It is concluded in [15] that sparse domains incorporate a high risk of
producing outliers in the perturbed data and thus argue for the need of outlier
identification and removal in the unperturbed data set. In contrast, we preserve
outliers and enable the detection of outliers in the perturbed data. Tailored dif-
ferential privacy is defined in [14] and aims to provide stronger ε-differential
privacy guarantees to outliers. We decided to evaluate the opposite by granting
them less protection since we see outliers as faulty systems or sensors one needs
to detect.

3 Preliminaries

We model a database (or data set) D as a collection of records from Dn, i.e. D ∈
Dn, where each entry Di of D represents one participant’s information. The
Hamming distance dH(·, ·) between two databases x, y ∈ Dn is dH(x, y) = |{i :
xi �= yi}|, i.e. the number of entries in which they differ. Databases x, y are called
neighbors or neighboring if dH(x, y) = 1.

Definition 1 (Differential Privacy). A perturbation mechanism M provides
ε-differential privacy if for all neighboring databases D1 and D2, and all S ⊆
Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε) · Pr[M(D2) ∈ S].

The protection for an individual in the database is measured by the privacy
level ε. While a small ε offers higher protection for individuals involved in the

228 J. Böhler et al.

computation of a statistical function f , a larger ε offers higher accuracy on f . In
case an individual is involved in a series of n statistical functions perturbed by a
corresponding mechanism Mi, where each function is requiring εi, her protection
is defined as ε =

∑n
i=1 εi by the basic sequential composition theorem of Dwork

et al. [3,16]. A data owner can limit the privacy loss by specifying a maximum for
ε called privacy budget [4]. Depending on the mutual agreement the exhaustion
of the privacy budget can require the original data to be destroyed as mentioned
in [20] since the privacy guarantee no longer holds.

The noise level of M in differential privacy is dependent on the sensitivity of
f . For an overview of different notions of sensitivity with respect to the l1-metric
see Table 1. The global sensitivity GSf of a function f : Dn → R

k determines
the worst-case change that the omission or inclusion of a single individual’s data
can have on f . For example, if f is a counting query the removal of an individ-
ual can only change the result by 1. GSf has to cover all neighboring databases,
whereas local sensitivity LSf (D) covers one fixed database instance D ∈ Dn and
all its neighbors. In certain cases databases with low local sensitivity can have
neighbors with high local sensitivity, thereby allowing an attacker to distinguish
them by the sensitivity-dependent noise magnitude alone. In contrast, smooth
sensitivity SSf (D) compares a fixed database instance D with all other database
instances but with respect to the distance between them and a privacy parame-
ter β2. Using the notation from Table 1, the parameters that differ in the various
notions are: allowed distance between neighboring databases D1,D2 (1 for GSf

and LSf , unrestricted for SSf) and choice of databases D1 (a single fixed data-
base instance for LSf and SSf , unrestricted for GSf). In Sect. 4 we introduce
a new notion of sensitivity, relaxed sensitivity, where the choice of databases is
generalized to allow the selection of a subgroup of all possible databases.

Table 1. Comparison of different sensitivity notions

Global [4] GSf = max
D1,D2: dH (D1,D2)=1; D1,D2∈Dn

‖f(D1) − f(D2)‖1

Local LSf (D1) = max
D2: dH (D1,D2)=1; D2∈Dn

‖f(D1) − f(D2)‖1

Smooth [17] SSf,β(D1) = max
D2∈Dn

(
LSf (D2)e

−βdH (D1,D2)
)

Two models for computation of a mechanism M have been suggested by
[5]. In the interactive model a data analyst receives noisy answers to functions
evaluated on unperturbed data D as long as the privacy budget is not exhausted.
In contrast, the original data D can be discarded in the non-interactive model by
producing a sanitized version D′ = M(D, f) of D and results are calculated with

2 SSf needs to be a smooth upper bound S as defined in [17], i.e. ∀D ∈ Dn : S(D) ≥
LSf (D) and ∀D1, D2 ∈ Dn, dH(D1, D2) = 1 : S(D1) ≤ eβ · S(D2). These require-
ments can be fulfilled by S(D) = GSf with β = 0. SSf , however, is the smallest
function to satisfy these requirements with β > 0.

Privacy-Preserving Outlier Detection for Data Streams 229

D′. While [17] assumes that the majority of mechanisms utilize the interactive
model the findings of [2] suggest that D′ is inefficient but potentially useful for
many classes of queries if computational constraints are ignored. However, the
non-interactive model also has its benefits: First, there is no need for a curator
who requires access to the sensitive D, analyzes and permits queries and adjusts
the privacy budget. Second, storage constrained sensors do not need to retain
D and instead release a locally sanitized D′. Third, the data owner is not left
with the administrative decision on how to handle exhausted privacy budgets
(e.g. destroy D or refresh budget periodically as discussed in [16,21]).

4 Relaxed Differential Privacy

Differential privacy is a strong privacy guarantee due to its two worst-case
assumptions: the adversary is assumed to have complete knowledge about the
data set except for a single record and all possible data sets are covered by
the guarantee. To relax differential privacy one has to relax these assumptions.
The first assumption was relaxed in [19] by using a weaker but more realistic
adversary and bounding the adversary’s prior and posterior belief. In [17] the
second assumption is relaxed by their notion of smooth sensitivity. We focused
on the latter approach due to the fact that we are concerned with the discovery
of outliers: We do not need the guarantee to hold for all records equally.

4.1 Relaxed Sensitivity

Our following new notion of relaxed sensitivity allows for different privacy
guarantees for groups N (non-outliers), O (outliers) within a single dataset
Dn = N ∪ O.

Definition 2 (Relaxed sensitivity). Let Dn = N ∪ O then the relaxed sen-
sitivity of a function f : Dn → R

k is

RSN ,Dn

f = max
D1,D2∈N

D2: dH (D1,D2)=1

‖f(D1) − f(D2)‖1.

In the following we abuse notation slightly and say that in the case that D
consists of multiple, independent columns the sensitivity and perturbation are
calculated per column and not the entire database at once. While local sensitiv-
ity only holds for one fixed database instance the relaxed sensitivity covers all
databases from the subset N . Let LSX

f , GSX
f denote local and global sensitivity

respectively over a database set X.

Theorem 1. Relaxed sensitivity compares to local and global sensitivity as fol-
lows:

LSN
f (D) ≤ RSN ,Dn

f = GSN
f ≤ GSDn

f

where D ∈ N ⊆ Dn.

230 J. Böhler et al.

The proof is omitted due to space constraints. We will omit the dataset in
the sensitivity notation in the following when it is not explicitly needed. The
privacy guarantee is enforced by noise whose magnitude is controlled by privacy
parameter ε and the sensitivity. We adapt the popular Laplace mechanism [5] to
allow its invocation with different sensitivity notions.

Definition 3 Laplace mechanism. Given any function f : Dn → R
k, the

Laplace mechanism is defined as

ML(x, f(·), GSf/ε) = f(x) + (Y1, . . . , Yk)

where Yi are independent and identically distributed random variables drawn
from the Laplace distribution Laplace (GSf/ε).

To relax differential privacy, we will adapt the scaling parameter to RSf/ε,
thus sampling noise from Laplace (RSf/ε). We view a database as consisting of
multiple columns and the perturbation is performed per column: The Laplace
mechanism receives a column, i.e. a vector, as input and outputs a perturbed
vector.

Theorem 2. Let Dn = N ∪ O and f be a function f : Dn → R
k. The Laplace

mechanism ML(x, f,RSf/ε) preserves ε′-differential privacy for x ∈ Dn and
preserves ε-differential privacy for x ∈ N , where ε′ = ε · GSf/RSf ≥ ε.

The proof is omitted due to space limitations.

4.2 Approximation of Relaxed Sensitivity

We do not want to restrict the queries an analyst can perform in the non-
interactive model. Therefore, we choose to evaluate the identity function fid(x) =
x for sensitivity determination. The sensitivity for fid can be unbounded depend-
ing on the input domain. In the following we assume elements in N to be bounded
real numbers. With fid as our function and bounded N , we can express the
relaxed sensitivity as RSfid = max(N) − min(N), i.e. the gap between pos-
sible databases, that we seek to close. We see sensors measurements as point
coordinates and use the terms interchangeably.

With historical data and domain knowledge the approximation can be tai-
lored more precisely to individual data sets. With knowledge about what mea-
surements can be considered physically possible one can approximate a bound for
N . We approximate RSfid in the following with q-th percentiles ρq, q ∈ [0, 100]
of D. We denote with po the percentage of outliers in the data set – alternatively,
it can be seen as a bound on N . We set qmax = 100 − po/2, qmin = 100 − qmax,
and approximate RSfid with

R̂Sfid = ρqmax(D) − ρqmin(D). (1)

For this approximation we assume the following characteristics regarding our
datasets:

Privacy-Preserving Outlier Detection for Data Streams 231

1. We define outliers as points on an outer layer surrounding non-outliers,
2. the percentage of outliers or a bound for N can be approximated,
3. the data set contains only one cluster.

Assumption 1 is also used in depth-based outlier detection algorithms. Regarding
Assumption 2, one can learn the outlier percentage or bounds via historical data
and the range of plausible (i.e. non-faulty, physically possible) measurements.
If multiple clusters exists the data can be split in cluster groups thus fulfilling
Assumption 3. The split is either performed by the data owner or a third party
in a privacy-preserving manner (see Sect. 2 for clustering approaches consuming
a portion of ε).

R̂Sf implicitly defines N ′, which is an estimation of N . An estimation R̂Sf >
RSf leads to N ⊂ N ′, i.e. more elements than necessary are protected which
does not decrease privacy for elements from N . However, R̂Sf < RSf implicitly
defines N ′ ⊂ N , i.e. elements in N\N ′ could suffer a privacy loss since they
receive less noise than needed. We want to stress that even for an inaccurate
approximation, the non-outliers are still protected and receive a privacy level
of ε′ = ε · RSfid/R̂Sfid ≥ ε (see Theorem 2). Furthermore, we correct errors
introduced by the perturbation (or estimation R̂Sf > RSf). For this we classify
and detect the errors based on their change in distance to the center after and
before perturbation as described in the following sections.

5 Outliers and False Negative Types

Let foutlier be an outlier detection function foutlier : T → {1, . . . , |T |} which
returns the indices (i.e. row numbers) of T which are outliers. We will refer to
outliers detected in the unperturbed data set as outliers or O = foutlier(T).
When referring to the perturbed version of T , denoted as T ′, we will use pre-
sumed outliers or O′ = foutlier(T ′). We define outliers as points on an outer layer
surrounding a (denser) core similar to [18]. Our goal is to find a small subset
containing O on the perturbed data without having access to the original data.

Outlier Layer

Border Layer

Core Layer

Outlier

Cover Point

Noise Vector

(a) Legend

Perturbed Point
Original Point

(b) Outlier undetected due to
perturbation of other points.

(c) Outlier undetected due
to its perturbation.

Fig. 1. Types of false negatives after perturbation. Layers correspond to unperturbed
data points.

232 J. Böhler et al.

We perturb the data set with the adapted Laplace mechanism using approx-
imated relaxed sensitivity per column. For well-separated outliers and non-
outliers and with our relaxed sensitivity notion O and O′ can be equal. However,
this is not necessarily the case and therefore we present a correction algorithm
in Sect. 6 to find the false negatives i.e. missing outliers from O that are not in
O′. The presumed outliers in O′ can be separated in two sets: false positives,
i.e. presumed outliers in O′ that are not in O and true positives, i.e. outliers in
O that are also in T ′.

We distinguish between two different types of false negatives visualized in
Fig. 1. Non-outliers lie in the core layer, outliers in the outlier layer and the
empty border layer separates the two. The layers for the unperturbed data differ
from the perturbed layers which are omitted in Fig. 1. The two types of false
negatives can occur as follows: First, a non-outlier can become a cover point after
perturbation, i.e. “cover” a real outlier to produce a false negative as shown in
Fig. 1b. Second, an outlier can also become a false negative on its own when it
lands in a non-outlier region after perturbation, e.g. a dense core as in Fig. 1c,
where it will not be detected in the perturbed data.

6 Relaxed Differentially Private Outlier Detection
and Correction

Given the data T ′, a relaxed differentially private version of T , we want to find
the outliers corresponding to the unperturbed T . We use the semi-honest model
introduced in [9] where corrupted protocol participants do not deviate from the
protocol but gather everything created during the run of the protocol. (e.g. mes-
sage transcripts, temporary memory). Furthermore, we assume that only one
participant can be corrupted; an alternative assumption is that participants
do not share their knowledge. The assumption that parties do not share their
knowledge is similar to the interactive model of differential privacy, i.e. different
analysts do not collaborate by combining their privacy budgets.

In the following we view data sets as consisting of two columns, one column
per measured attribute. Let T , T ′ be the unperturbed resp. perturbed data set.
For the perturbation each column receives independently drawn noise from the
Laplace mechanism with approximated relaxed sensitivity. We use sets of indices
corresponding to rows in T and T ′. This is convenient since an index identifies
the same point before and after perturbation. Let I be the set of indices from T
(and thereby also T ′). We denote with T [i] the row at index i ∈ I and with T [, j]
the selection of column j. Recall that we denote with O the set of all indices
corresponding to rows with outliers in T detected by foutlier, i.e. O = foutlier(T),
and with O′ the set of all presumed outlier indices from T ′. As before, false
negatives are missing outliers from O that are not found in O′, false positives
are presumed outliers in O′ that are not in O, and true positives are outliers in
O that are also in O′. We denote the Euclidean distance of two points c, x as
d(c, x) = dc(x) where c is the center of T , determined by averaging each column.

Privacy-Preserving Outlier Detection for Data Streams 233

Definition 4 (Distance Difference ddiff). The distance difference between
a point in T and T ′ at index i and the center c after and before perturbation
respectively is

ddiff[i] = dc(T ′[i]) − dc(T [i]).

We denote with wO the width of the outlier layer (visualized in Fig. 1) in the
unperturbed data T . We denote with FNLj a set of indices for different layers
j ∈ {1, 2, 3} of presumed false negatives. These are spatial layers based on the
false negative types of Fig. 1 used in the correction phase.

6.1 Correction Algorithm

Our goal is to detect presumed outliers on relaxed differentially private data
T ′, find the undetected false negatives and remove additionally detected false
positives. The algorithm presented in Fig. 2 operates as follows: Each sensor S
has as input the data set T , the privacy parameter ε and approximated relaxed
sensitivities R̂Sfid,j for each data column j. The correction server CS has as
input the outlier layer width wO. The values for R̂Sfid,j and wO are determined
with historical data, i.e. knowledge about past outliers, and bounds for the non-
outliers, e.g. normal, non-faulty measurement values for sensors. S scales the
data in line 1a and generates the perturbed data set T ′ via perturbation of each
column j with the adapted Laplace mechanism parameterized with R̂Sfid,j/ε.
Then it sends T ′ to the analyst A and the distance differences ddiff to the cor-
rection server CS. In line 3 the server CS filters O′ in two sets FP and T P for
presumed false positives and true positives respectively. The filtering is based on
comparison of ddiff against a threshold – the distance difference with the biggest
change between sorted distance differences. We use the fact that false positives,
i.e. non-outliers that were detected as outliers in the perturbed set, have a higher
distance difference, i.e. receive more noise, than true positives when non-outliers
and outliers are well-separated. We do not want to remove true positives (actual
outliers) under any circumstances. Thus, we err on the side of removing not
enough false positives if the separation between outliers and non-outliers is low.
In line 4 we reduce the set of indices to check for potential false negatives. With-
out the reduction true negatives can land in FNLj , since they have the same
distance difference (ddiff) but not the same core distance (dc) as false negative
candidates. The server CS detects false negatives in line 5, i.e. outliers not con-
tained in O′, in three spatial layers FNL1, FNL2, and FNL3, where the first
corresponds to the false negative type from Fig. 1c and the latter to 1b. The use
of two layers FNL2 and FNL3 for one false negative type is due to the row
reduction and a simplification for FNL2 explained in the following.

The inequalities are based on the unperturbed position of outliers in respect
to non-outliers (i.e. on an outer, less dense layer) and the distance difference after
perturbation. The reasoning for FNL1 is that non-outliers, who are by definition
closer to the center c, are distanced further away from c after perturbation due
to the noise magnitude. Whereas outliers, who are already further away, can

234 J. Böhler et al.

Input: Each sensor Sid has data T , privacy level ε and approximated relaxed sensitivities
̂RSfid,j per column j. Correction server CS has outlier layer width wO of sensor domain.

1. Each sensor Sid

(a) Scales each column T [, j]: subtraction of mean and division of standard deviation.

(b) Perturbs each column to T ′[, j] = ML(T [, j], fid, ̂RSfid,j/ε) and sends its id
and perturbed data, i.e. (id, T ′), to analyst A.

(c) Calculates the data center c by averaging every dimension, calculates the distance
differences ddiff = dc(T ′) − dc(T) and sends (id, ddiff) to correction server CS.

2. Analyst A performs standard outlier detection on T ′ to get the list O′ of presumed
outliers indices and sends (id, O′) to CS.

3. Correction Server CS
(a) Calculates the threshold index t for the biggest change between ascending ddiff

values of presumed outliers: t = arg maxjk∈J ddiff[jk+1] − ddiff[jk] where
J = {j1, j2, . . . } are the indices from O′ sorted according to ascending ddiff

values. (For convenience we define jk+1 = jk for k + 1 > |J |.)
(b) Separates indices via t into false positives FP = {i ∈ O′ | ddiff[i] > ddiff[t]} and

true positives T P = O′\FP and calculates dT P = min
i∈T P

ddiff[i].

(c) Sends (id, dT P , dT P + wO) to A.
4. Analyst A creates

I2 = {i ∈ I\O′ | dc(T ′[i]) ≥ dT P},

I3 = {i ∈ I\O′ | dc(T ′[i]) ≥ dT P + wO},

and sends (id, I2, I3) to CS.
5. Correction Server CS creates false negatives layer sets

FNL1 = {i ∈ I\O′ | ddiff[i] < 0},

FNL2 = {i ∈ I2 | 0 ≤ ddiff[i] ≤ dT P},

FNL3 = {i ∈ I3 | dT P ≤ ddiff[i] ≤ dT P + wO}.

Output: CS outputs (id, T P , FNL1, FNL2, FNL3) to DO.

Fig. 2. Algorithm for correction of outlier detection.

reduce their distance to the center as seen in Fig. 1c. Hence, we look for indices
i fulfilling ddiff[i] < 0. The idea behind FNL2 is a simplification that all outliers
lie on the same “orbit” around the center (same center distance). In this case the
minimal distance difference ddiff to become a true positive is the minimal ddiff one
can find from the set of presumed true positives T P, i.e. dT P = min

t∈T P
(ddiff[t]).

Only unperturbed outliers with a ddiff greater than dT P could be detected as
an outlier after perturbation. Hence, the remaining undetected have ddiff larger
than 0 (otherwise they land in FNL1) but smaller than dT P . However, not all
outliers do lie on the same orbit. Therefore, we collect in FNL3 indices with
distance difference greater than dT P . We also know that no undetected outlier’s
distance difference can be greater than the distance difference of false positives

Privacy-Preserving Outlier Detection for Data Streams 235

in FP, i.e. dFP = min
f∈FP

(ddiff[f]). More precise is the outlier layer width wO

(line 4).

6.2 Privacy of the Correction Algorithm

The server CS knows the distance difference for points at a given index i,
i.e. ddiff[i], but CS does not know which perturbed point is identified by i since
this knowledge remains at the analyst A. The only information CS sends to
A is dT P , wO, i.e. information regarding outliers which we like to detect. Even
if A had access to all outlier information, including the noise used to perturb
them, it would not lessen the protection of non-outliers. In exchange A sends
CS IL2, IL3, i.e. sets of indices j of perturbed points with dc(T ′[j]) ≥ dT P and
dc(T ′[j]) ≥ dT P +wO respectively. However, CS does not know which points cor-
respond to these indices. If A and CS were to collaborate (i.e. not semi-honest)
they could only narrow down the possible origin of a perturbed point. The infor-
mation collaborating servers could learn can be reduced by using frequency-
hiding order-preserving encryption as presented in [12] for the distance differ-
ences. Secure computation is not practical for our scenario (e.g. computation
constrained IoT sensors) due to the bidirectional communication – although the
communication complexity can be seen as almost independent of the network
performance as shown in [13].

7 Outlier Detection Evaluation

We compared detected outliers on the original data with presumed outliers found
on the perturbed data. Our algorithm was implemented in R 3.3.1 and run on
a Apple MacBook Pro (Intel Core i7-4870HQ CPU, 16 GB main memory). We
selected DBSCAN [7] to realize foutlier and used the fpc package implementation.
DBSCAN utilizes density and proximity of points, thus matching our spatial def-
inition of the outlier topology where the outliers lie on an outer layer surrounding
a denser core. DBSCAN is parameterized via eps for neighborhood reachabil-
ity (point proximity and connections) and minPts (threshold density within the
reachable neighborhood). We used the same DBSCAN parameters for the unper-
turbed and perturbed data. Our error correction logic only requires between 30
and 40 ms for 100,000 points. Four synthetic datasets were created to examine
the impact of varying separation between outliers and non-outliers with the fol-
lowing characteristics: 100,000 points in R

2 where each dimension is sampled
independently from a normal distribution with standard deviation 3 and mean
0. Outlier percentage in the unperturbed data is 10%. After sampling the dis-
tances between outliers and non-outliers were increased to ≈ 50, 120, 220, 400;
we denote these data sets with Separation 50, etc. These separation distances
were chosen based on decreasing probabilities that Laplace distributed noise
preserves the outlier topology.

With accuracy we denote the percentage of all false negatives and true pos-
itives, i.e. all outliers, found with our approach. Furthermore, subset size is the

236 J. Böhler et al.

●●●●●

●●●●● ●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●● ●●●●●

25

50

75

100

0.1 0.5 1.0
Epsilon

Ac
cu

ra
cy

Dataset
Separation 50
Separation 120
Separation 220
Separation 400

(a) Accuracy.

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

5

10

15

20

0.1 0.5 1.0
Epsilon

Su
bs

et
 s

iz
e

Dataset
Separation 50
Separation 120
Separation 220
Separation 400

(b) Subset size as percentage of all points.

Fig. 3. Accuracy and subset size for synthetic data sets; mean of 5 runs with ε ∈
{0.1, 0.5, 1}.

size of the output of algorithm in Fig. 2, i.e. {T P,FNL1,FNL2,FNL3}. Accu-
racy and subset size for ε ∈ {0.1, 0.5, 1} is shown in Fig. 3a and b respectively.
The results for ε = 0.1 indicate that our correction algorithm achieves meaning-
ful accuracy of ≈75% for separation ≥220. However, ε = 0.1 is a strong privacy
guarantee and ε ∈ {0.5, 1} still offers meaningful protection. For ε = 0.5 the
found outlier percentage increases to 95–100% for all data sets. With a privacy
guarantee of ε = 1 our correction algorithm is not always needed since the sep-
aration between outliers and non-outliers is preserved even after perturbation.
The subset size is always below 20% as is evident from Fig. 3b.

8 Conclusion

We implemented and evaluated an algorithm for detection of individual outliers
on data perturbed in the local, non-interactive model of differential privacy,
which is especially useful for IoT scenarios. We introduced a new notion of
sensitivity, relaxed sensitivity, to provide different differential privacy guarantees
for outliers in comparison to non-outliers. Furthermore, we presented a correction
algorithm to detect false negatives and false positives. In our experiments we
detect 80% of outliers in a subset of 10% of all points with a differential privacy
value of ε = 0.1 for data with well separated outliers.

Acknowledgments. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 700294
(C3ISP) and 653497 (PANORAMIX).

References

1. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ frame-
work. In: Proceedings of the ACM Symposium on Principles of Database Systems
(PODS) (2005)

2. Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive data-
base privacy. J. ACM (JACM) 60(2), 12 (2013)

Privacy-Preserving Outlier Detection for Data Streams 237

3. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). doi:10.
1007/11761679 29

4. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878 14

5. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

6. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: Proceedings of the Conference on Com-
puter and Communications Security (CCS) (2014)

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD) (1996)

8. Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets. In: Proceedings of
the ACM symposium on Theory of computing (STOC) (2009)

9. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2009)

10. Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering
billing. In: International Symposium on Privacy Enhancing Technologies Sympo-
sium, pp. 192–210. Springer (2011)

11. Kearns, M., Roth, A., Wu, Z.S., Yaroslavtsev, G.: Privacy for the protected (only).
ArXiv e-prints, May 2015

12. Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 656–667. ACM (2015)

13. Kerschbaum, F., Dahlmeier, D., Schröpfer, A., Biswas, D.: On the practical impor-
tance of communication complexity for secure multi-party computation protocols.
In: Proceedings of the 2009 ACM Symposium on Applied Computing, pp. 2008–
2015. ACM (2009)

14. Lui, E., Pass, R.: Outlier privacy. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 277–305. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 11

15. Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: the-
ory meets practice on the map. In: Proceedings of the International Conference on
Data Engineering (ICDE) (2008)

16. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Proceedings of the ACM International Conference
on Management of Data (SIGMOD) (2009)

17. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in
private data analysis. In: Proceedings of the ACM Symposium on Theory of Com-
puting (STOC) (2007)

18. Nissim, K., Stemmer, U., Vadhan, S.: Locating a small cluster privately. In: Pro-
ceedings of the ACM Symposium on Principles of Database Systems (PODS)
(2016)

19. Rastogi, V., Hay, M., Miklau, G., Suciu, D.: Relationship privacy: output pertur-
bation for queries with joins. In: Proceedings of the ACM Symposium on Principles
of Database Systems (PODS) (2009)

20. Roth, A.: New Algorithms for Preserving Differential Privacy. Ph.D. thesis,
Carnegie Mellon University (2010)

http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/978-3-662-46497-7_11
http://dx.doi.org/10.1007/978-3-662-46497-7_11

238 J. Böhler et al.

21. Roy, I., Setty, S.T., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: security and
privacy for mapreduce. In: Proceedings of the USENIX Conference on Networked
Systems Design and Implementation (NSDI) (2010)

22. Su, D., Cao, J., Li, N., Bertino, E., Jin, H.: Differentially private k-means clustering.
In: Proceedings of the ACM Conference on Data and Applications Security and
Privacy (CODASPY) (2016)

23. Tramèr, F., Huang, Z., Hubaux, J.P., Ayday, E.: Differential privacy with bounded
priors: reconciling utility and privacy in genome-wide association studies. In: Pro-
ceedings of the ACM Conference on Computer and Communications Security
(CCS) (2015)

Undoing of Privacy Policies on Facebook

Vishwas T. Patil(B) and R.K. Shyamasundar

Department of Computer Science and Engineering,
Information Security R&D Center, Indian Institute of Technology Bombay,

Mumbai 400076, India
ivishwas@gmail.com, shyamasundar@gmail.com

Abstract. Facebook has a very flexible privacy and security policy spec-
ification that is based on intensional and extensional categories of user
relationships. The former is fixed by Facebook but controlled by users
whereas the latter is facilitated by Facebook with limited control to users.
Relations and flows among categories is through a well-defined set of pro-
tocols and is subjected to the topology of underlying social graph that
continuously evolves by consuming user interactions. In this paper, we
analyze how far the specified privacy policies of the users in Facebook
preserve the standard interpretation of the policies. That is, we investi-
gate whether Facebook users really preserve their privacy as they under-
stand it or certain of their innocuous actions leak information contrary
to their privacy settings. We demonstrate the kind of possible breaches
and discuss how plausibly they could be set right without compromis-
ing performance. The breaches are validated through experiments on the
Facebook.

1 Introduction

Social networks help individuals, groups of individuals, organizations, and gov-
ernments to establish their digital identity online and allow other digital identi-
ties to interact with it. Establishment of connections and subsequent interactions
allow the digital identities to engage with their audience. The platform also facil-
itates search for new audience. It keeps track of interactions among identities
and categorizes them according to their individual likes and dislikes, which helps
the platform in presenting relevant content and advertisement to its audience.

Protection of one’s digital identity and associated information is desired and
expected. Social network platforms deploy access control systems to ensure that
security and privacy of their users is maintained. However, by definition, social
networks are formed by dynamic connections among stakeholders that indepen-
dently control their privacy specifications. It is challenging to ensure the privacy
of a conservative individual who is connected with a liberal individual. In this
paper, we shall study a set of such scenarios and analyze the impact of actions
of independent stakeholders’ on privacy.

The navigability over the Facebook has been succinctly captured by Boyd
and Ellison [3] who characterize social network systems like Facebook by three

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 239–255, 2017.
DOI: 10.1007/978-3-319-61176-1 13

240 V.T. Patil and R.K. Shyamasundar

functions: (i) identity representation: allow users to create a profile by popu-
lating a pre-defined template of fields with personal information, (ii) distributed
relationship articulation: facilitate relationship with other identities and organize
the relationships into categories like Friend, Family, etc., (iii) traversal-driven
access: allow users to traverse the social space and grant access based on the
access policy specified on the reachable node.

Abstraction of relationships into categories like Family, Friends, Friends of
Friends, etc., help individuals to specify access control in a natural and under-
standable way. On the other hand, it makes access control enforcement very
challenging when there are billions of nodes in the social graph and edges, which
are added/deleted spontaneously as users interact. It is indeed an achievement by
Facebook that they achieve the underlying access control in quite a performance-
centric manner [4,7]. Thus, it is interesting and important to understand the
access control mechanism of such a dynamic system so that one can attempt to
analyze or reason about its properties and compliances with settings permissible
in a user’s profile.

The paper is organized as follows: Sect. 2 highlights user representation in
Facebook and overall global model to enable analysis of access control and policy
preservation mechanisms. In Sect. 3, we discuss how the categories, as defined and
facilitated by Facebook, can be used to provide/restrict access to users. Section 4
illustrates the gaps between user interpretation of privacy-preservation and user
actions that undo privacy. In Sect. 5, we discuss possible approaches to mitigate
various privacy anomalies discovered. Section 6 presents current related work
and other works on Facebook privacy evaluations that have become irrelevant as
over the years Facebook has updated its architecture, features and mechanisms
for access control.

2 Access Control in Facebook: User Representation,
Social Graph

Facebook organizes its content retrieval and distribution around 3 pillars: (i)
Newsfeed: responsible to present content/updates to users about their friends,
(ii) Timeline: where users curate their own content, and (iii) Graph search: also
known as social graph that consumes all of the actions of Facebook users and
simultaneously allows them to query the graph. Queries to the graph are resolved
in context of the requester and the content being requested. Access to content
is governed by an access policy specified by its owner. To study access control
in Facebook we briefly explain its social graph and some of the relevant query
functions.

2.1 Social Graph of Facebook

Social graph in Facebook is a representation of user information on Facebook.
Each and every action or event created by Facebook’s users is consumed by the
social graph. The graph evolves reflecting user actions. Facebook’s social graph
is composed of [8]:

Undoing of Privacy Policies on Facebook 241

– nodes - basically “things” such as a user, a photo, a page, a comment
– edges - the connections between those “things”, such as relationships

(friends)
– fields - info about those “things”, such as a user ’s birthday, or the name of

a page

Each user of Facebook is represented by a node (identified uniquely by a
64-bit number) on Facebook’s social graph and a user’s relationship with other
nodes is captured through labelled edges. For example, A friends←−−−→ B is a
representation of friendship relationship between user A and B. When user Z
follows user B on Facebook, that relationship is absorbed by the social graph
and the graph evolves to: A friends←−−−→ B follower←−−−−− Z .

Updates to social graph happen by adding/deleting nodes (or updating fields
of nodes), and adding/deleting/updating labelled edges. Social graph allows its
nodes to be queried. A user is allowed to compose a query by specifying a par-
ticular node (of type root [8]) about which the requester needs information. It is
very likely that different sets of information about a node are presented based
on who the requester is. For example, in the graph shown above, assume user
B posts a photo with access set to his “Friends”; the access control mechanism
of Facebook will allow user A to reach the post, whereas user Z will be denied
access. If user B changes the access setting to “Public”; both user A and user Z
will be allowed to access the post. In the following subsections we shall briefly
introduce the reader to Facebook’s social graph and its access control mechanism
based on lists (information classification labels/categories).

2.2 Representation of User Events and Interpretation of Privacy
Policies

Consider a typical user event on Facebook as depicted in Fig. 1(a). The event
is created by Alice and its interaction with Bob, Cathy, and David is depicted
in Fig. 1(b) through the social graph. Upon careful observation on nodes in
Fig. 1(b), one can notice the node ids are in chronological order, signifying
sequence of events and user actions. As per Facebook’s current (05/2017) work-
ing, we can reason the following about Fig. 1(b):

– Alice has “checked-in” to a “location” and has tagged Bob in that event,
therefore Bob has visibility (access) to the event. This is because Facebook’s
default policy allows a tagged user to access the event in which the user is
tagged.

– Cathy could comment on Alice’s event because Cathy has visibility of the
event. This could happen in two circumstances: either Alice has set her access
policy on this event to “Friends” or “Public”.

– David could like the comment made by Cathy because David had visibility to
the event. This implies Alice’s access policy for this event must be “Public”
since David and Alice are not friends.

242 V.T. Patil and R.K. Shyamasundar

c)b)

a)

Fig. 1. (a) Creation of event, (b) its representation on social graph [4], (c) deletion of
event

Similarly, reasoning about Fig. 1(c), we can conclude that the change in social
graph is not because of Alice setting her event’s access policy to “Only Me” but
because of Alice deleting the event altogether. Owner of an event can delete
the event at will and all dependent nodes of that event node also get deleted.
If Alice sets the access policy of her event to “Only Me”, then the event node,
its dependent nodes, and their associations will be part of the social graph but
visibility of the event gets restricted to Bob alone. To understand the scenario
in which Alice changes the access policy of the event to “Only Me” we need to
understand the access control model of Facebook. Social graph provides traversal
paths from a requester to the node being requested. Existence of path between
a requester and the node being requested is not a sufficient condition to access
the node but the requester has to also satisfy the access policy specified on that
node by node’s owner. To analyze Facebook’s access control model, let us first
understand the types of nodes in its social graph, and set of queries that can
be run on them, followed by an understanding of categories of access/privacy
policies provided by Facebook.

Querying the Social Graph

1. Let G(V,E) denote the social graph of Facebook. Let V denote the set of
vertices or nodes and E as the set of edges, where E ⊆ V × V.

Undoing of Privacy Policies on Facebook 243

2. Let TV : V −→ SV provide type of a node (e.g., user, photo, event, . . .)
The members of this set can further be divided into two sets: subjects and
objects. Users are subjects and the content generated by the users is treated
as objects. The fields populated by a user in her profile are also treated as
objects.

3. Let TE : E −→ SE provide type of an edge (e.g., friend, like, comment, . . .)
The members of this set are associations between subjects and objects.
Let E : SE −→ 2E be a generic function that returns the set of all edges of
same type. Let Et ∀ t ∈ SE be a function on edge of type t.

(E1) Et(x) := {y | (x, y) ∈ Et}
(E2) Efriends(user) = {subject | (user, subject) ∈ Efriends}
(E3) Eauthored(user) = {object | (user, object) ∈ Eauthored}
(E4) Eauthored by(object) = {user | (object, user) ∈ Eauthored by}
(E5) Elikes(user) = {object | (user, object) ∈ Elikes}
(E6) Eliked by(object) = {user | (object, user) ∈ Eliked by}
(E7) Etagged at(user) = {object | (user, object) ∈ Etagged at}
(E8) Etagged(object) = {user | (object, user) ∈ Etagged}

While the above set of query functions is useful for a requester to traverse the
social graph, it also raises questions as how Facebook preserves the access of
users/resources in the system. When a requester traverses towards a node of
its interest on the social graph, underlying topology of the graph determines
existence of a path from the requester to the node in question. However, existence
of traversal path is not a sufficient condition for access. Each non-root type of
node in the social graph is access controlled by a policy specified by its owner.
In the following, we shall discuss the various types of policies Facebook provides
its users.

3 Policy Specification for Access over Users in Facebook

In this section, we shall discuss usage of relationship categories (i.e., labels) as
policy handles and its efficacy enforcing user stated privacy policies.

3.1 Lists as Policy: Extensional vs Intensional Information
Classification

Each user on Facebook is provided with pre-defined relationship categories,
called lists, along which users can organize their relationships with others.
“Friends” is the basic relationship category to which every user-to-user relation-
ship (friendship) is added. A user is allowed to organize friendship relations into
other pre-defined categories like “Family”, “Close Friends”, “Acquaintances” so
that a distinct affinity level could be imposed on relations. This is how people,
in real-world, intend to organize their relationships. Aforementioned list of rela-
tionship categories is common across all user profiles. This notion of categorizing
(or listing of) friends into affinity levels help users to specify who can have access

244 V.T. Patil and R.K. Shyamasundar

to their information. Users are also provided with an option to create “Private
Lists”. When a user posts something, the post is labelled with one of these list
names. Any requester who satisfies membership to the label assigned with the
post can access the post. Since members of these aforementioned lists are finite
and known to the list owner, this category of labels is called extensional labels.
And the information published using this type of labels is classified as exten-
sional information. In other words, extensional labels are labels in user’s local
namespace.

There is another set of labels for information classification that is intensional.
The labels that fall under this category are: “Friends of friends”, “Public”, and
the set of “Social Lists”. Social Lists1 are automatically added to user’s account
at the time of profile creation/update, when a user provides her school, univer-
sity, affiliation information. A post labelled with intensional label is available to
a requester who satisfies membership to it. Owners of such posts do not have
complete control over who will be accessing the intensional information because
membership to intensional labels is not directly under their control. In other
words, intensional labels are labels in user’s extended namespace.

Labels are used as access control policies over a user’s information. A typical
access policy consists of a label available to the user. Facebook also provides
Custom policies that involves a combination of labels. Custom policy’s interpre-
tation involves set algebraic union and intersection operations over labels used
to compose it. We shall study the exact evaluation sequence of labels, at the time
of access, later. The whole gamut of information labelling in Facebook provides
a very rich and flexible access (thus privacy) policy specification over a user’s
information. Users are allowed to change labels of their objects as per their dis-
cretion. However, this flexibility in policy specification is not well-understood
by majority of the users and users end up in a state where their policy specifi-
cation may look innocuous, whereas it may not. We shall study such scenarios
in next section. Given below is a typical set of labels (information classification
categories) provided to express access control policies:

– Only Me: is a label/list in which user herself is the only member
– Public: is a label, when used, the associated object is accessible publicly
– Friends: is the primary list under which all friendship relations are enlisted
– Restricted: is a list of friends to whom only Public labelled information is

allowed
– Family: is a list of friends who are assigned as family members
– Close Friends: is a list of friends who are assigned as close friends
– Acquaintances: is a list of friends who are assigned as acquaintances
– Friends of friends: is an intensional list consisting of users who have friendship

relation with some member in “Friends” list, therefore;

1 Facebook categorizes this type of list as Smart List because they are created based on
common affiliations across the Facebook users. Facebook treats Close Friends, Family
also as Smart Lists because, based on interactions among users, smart membership
suggestions to these categories are provided by Facebook. To disambiguate, we use
the term Social List.

Undoing of Privacy Policies on Facebook 245

(E9) Effriends(user) = {subject | ∃ y s.t. (user, y) ∈ Efriends

and (y, subject) ∈ Efriends}
– University : is a social list of friends who are also members of Smart List
University

– School : is a social list of friends who are also members of Smart List School
– Cycling : is a Private List to which user has assigned a set of friends

Let us understand the usage of labels for access control with an example: assum-
ing current state of social graph is represented by A friends←−−−→ B follower←−−−−− Z
Let P1 be a post by user B. Access to object P1 is determined by the access
policy associated with P1. User B can change access policy of his objects it owns
at will. Let us discuss access implications of different policies on P1

1. B authored−−−−−→
Only Me

P1 : since B himself is the only member of list named “Only Me”,

no one else except B will have access to P1

2. B authored−−−−−→
Friends

P1 : since Efriends(B) = {A} [cf. (E2)], user A can access P1

3. B authored−−−−−→
Public

P1 : since the policy is “allow all”, both A and Z can access object

P1

4. B authored−−−−−→
Only Me

P2
tagged−−−−→ A : since Etagged(P2) = {A} [cf. (E8)], even though the

access policy on P2 is “Only Me”, user A will be able to access object P2.
Tagging can be seen as adding an exception to the default access policy of an
object.

Access Control of objects in Facebook is a simple check on associated list’s
membership. If a requester of an object is a member of the list with which the
object is protected, the requester gets access. Tagging is a positive exception to
the membership check. There are two negative exceptions to the membership
check: “Restricted” list and “Blocked” list. If a requester of an object is member
of one of these lists, access is denied even when the requester is member of the
list with which the object is protected.

When a Custom policy is used for access control, sequence of evaluation of
lists used to build Custom policy becomes important. In the following we explain
how policies are evaluated and enforced at the time of access.

3.2 Policy Evaluation and End-to-End Enforcement

Each object in Facebook is labelled with an access policy, which is a combina-
tion of labels with positive/negative exceptions. At the time of access, policies
are evaluated in context of object’s owner. In other words, evaluation of labels
(i.e., Lists) is done in the namespace of object’s owner. Every object has an
access policy. Users are allowed to change access policies of own objects. Any
combination of labels, from a user’s namespace, is permitted to express access
policies.

246 V.T. Patil and R.K. Shyamasundar

Fig. 2. Sequence of policy evaluation [cf. (E1), (E8)]

Figure 2 outlines the
sequence of policy eval-
uation and enforcement
when user y requests
an access to object P .
All labels, except the
labels “Public” and
“Only Me”, are treated
as Custom policy inter-
nally. Since a Custom
policy is nothing but
a policy composed of
a user’s extensional and
intensional labels and
exceptions.

In other words, a
Custom policy is a com-
bination of two fields:
“Share with” and “Do
not share with”. The
“Share with” field can
accept any user label,
except “Public”. The
“Do not share with”
field accepts any user
label, except “Public”,
“Friends”, and “Friends
of friends”. Both the
fields accept user’s indi-
vidual friends. Every
user profile is provi-
sioned with two lists:
Blocked Users and

Restricted Users. Blocked Users consists of any user on Facebook with whom
the user does not want to interact. If a user blocks a current friend, the relation-
ship between them gets unfriended. Restricted Users consists of friends of the
user who will be restricted to have access to the user’s public posts only, unless
tagged. These two lists are not allowed to be used to express access policy but
they are internally handled at the time of each access enforcement.

Undoing of Privacy Policies on Facebook 247

Table 1. Snapshots of associations formed in a social graph

Assumptions:
at time t0 (following is the state of different sets)
users = {A, B, C, D, E, F} objects = {PA1 , PB1 , PC1 , PD1 , PE1 , PF1 , PF2 , PF3}
friendship edges = {(A,B), (B,C), (C,D), (D,E), (E,F), (F,A)} FamilyB = {A}
University = {E, F} School = {A, E, F}

at time t4 (user E has disassociated from list School) School = {A, F}

at time t5 University = {A, E, F} School = {F}

3.3 Reasoning About Access Control in Facebook w.r.t. Social
Graph

Table 2. Node reachability in social graph at t1

At time t1

• PA1 is accessible to its owner alone
• PB1 is accessible to A, as B has added A to list
Family
• PC1 is accessible to B and D [cf. (E2)]
• PD1 is accessible to all except A [cf. (E9)]
• PE1 is accessible to all
• PF1 is accessible to A and E

To analyze the access
control on Facebook,
two broad categories of
information represented
in Facebook becomes
very handy: (i) The util-
ity of social graph in
Facebook to record rela-
tionships and interac-
tions among users and
their objects (content).
(ii) The way Facebook
allows its users to categorize their relationships through intensional, extensional
classes and, in turn, using these class names as labels on their respective objects
to express access policies.

248 V.T. Patil and R.K. Shyamasundar

Now let us reason about access control in Facebook with respect to an evolv-
ing social graph. Various possible associations that are formed between users and
objects are captured through five snapshots depicted in Table 1. (cf. Appendix A)

Table 2 describes accessibility of objects to users at time t1. Object can be
operated upon (e.g., to like/comment) by a requester only when the object is
accessible. Tables 3, 4, 5 and 6 describe the actions taken or events created by
users between time t2 and t5.

Table 3. Events and actions at t2

At time t2

• A comments on object PB1

• B shares object PD1 as Public
• C comments on object PD1

• D likes object PE1

• E likes object PF1

• F creates object PF2 , accessible to A

Table 4. Events and actions at t3

At time t3

• A changed access policy of PA1 from
Only Me to Public, so it becomes
accessible to all
• B changed access policy of PB1 from
Family to Friends, so it becomes
accessible to A and C
• C comments on her own post
• E likes PD1

• F creates object PF3 with with
custom policy in which “Share with =
University” and “Do not share with =
School”. The object is not accessible
to anyone. University and School are
social lists and they will be evaluated
in the context of user F. Therefore
UniversityF = {E} and SchoolF =
{A,E}. Though user E is part of
“Share with” field of this custom
policy, he will not get access to PF3

because “Do not share with” is
evaluated before “Share with” (cf.
Fig. 2)

Table 5. Events and actions at t4

At time t4

• A likes object PF2

• C comments on object PB1 . This
object was not accessible to C until t2
• E disassociates from list School
• E shares PF3 with FFriends.
Though user A is a member of user
E’s FFriends, she will not get access
to PF3 because it is governed by its
owner’s base policy
University-School.
• F likes object PE1

Table 6. Events and actions at t5

At time t5

• A disassociates from list School
• A likes object PF3 as it is now
accessible, since she has associated
herself with list University and is no
more part of list School
• C likes the comment made by A on
PB1

• E changes the access policy of PE1

from Public to Only Me
• F likes object PA1

Undoing of Privacy Policies on Facebook 249

4 Analysis of Privacy-Preservation in Facebook Through
User Specified Policies/Actions

Issue of privacy comes to fore as soon as an unintended observer observes an
information and learns something more, which later could be associated with
that subject under observation. The observed information need not necessarily
be “personally identifiable information” as defined in prevalent definitions of
privacy [13,21]. We believe that users trust Facebook as they voluntarily divulge
[19] personal information, during profile creation and thereupon, to Facebook. In
this section we analyze some of the instances of privacy violations in Facebook
using the analysis done in Sects. 2 and 3. All of these breaches have been validated
using Facebook as of May 2017.

Our analysis of Facebook policies using its access control is elaborated using
a hypothetical scenario captured in Table 1. In this table, each row represents a
user’s actions in chronological fashion. Therefore, we use C.t4 to denote an action
of user C at time t4. All other actions, of every user, up to time t4 is the envi-
ronment/status of social graph w.r.t. C.t4. Thus, an action should be analyzed
in context with its current environment. Note that, since social graph is a co-
creation by its users, an individual has little or no control over the environment
in which he/she is operating. An action/setting that seems privacy-preserving
can later be compromised by a change in environment. This will become clear as
we navigate through the scenarios.

Nonrestrictive Change in Policy of an Object Risks Privacy of Others.
Consider user action A.t2 in context with environment trace B.t1, B.t3. User B
has changed policy of his object PB1 from Family to Friends. Since user A is
member of B’s Family, through action A.t2 user A has authored a comment on
PB1 . The environment at time t2 ensured that only Family members of B had
access to object PB1 . Nonrestrictive change in policy from Family to Friends
on PB1 gets enforced on all of its dependent nodes (comment, reply) and fields
(like). User A’s comment is exposed to friends of B without A’s consent.

Restrictive Change in Policy of an Object Suspends Others’ Privi-
leges. Consider user action E.t5 in context with two other events in environ-
ment D.t2, F.t4. User E has changed policy of her object PE1 from Public to
Only Me. Prior to policy change, users D and F have liked the object. When a
query on “likes of a user” is made to social graph at time t4, object PE1 will be
listed in the reply. Restrictive change in policy from Public to Only Me on PE1

gets enforced on all of its dependent nodes (comment, reply) and fields (like). A
“likes of user D” query will not list object PE1 at t5, neither user D/F will be
able to disassociate themselves from the object under control of user E. The like
edges to PE1 from D and F will only be accessible again on social graph when
user E makes a nonrestrictive policy change on PE1 . Assume PE1 is a sensitive
post to which some users have liked/commented. A restrictive change in policy
over PE1 locks out users from updating/retracting their own comments or likes.

250 V.T. Patil and R.K. Shyamasundar

At a later point in time, user E can divulge list of users associated with her post
from the past.

Share Operation is Privacy-Preserving. Consider user action B.t2 in con-
text with environment D.t1. Since user B is member of D’s “Friends of friends”
list, object PD1 appears on his Newsfeed, which he shares by action B.t2. Sharing
an object of others creates a local node and it is allowed to specify access policy
on this new node under the control of sharer. This shared node can have com-
ments, likes as any other object node created by the sharer. However the sharer
cannot increase or decrease the accessibility sphere of the original object (on
social graph) which it has shared. Original access policy of the base object con-
tinues to be carried along with the object in its shared form. Thus, the intended
reach of the object by its original author is always enforced. Restrictive or non-
restrictive change in policy on base object reflects wherever the object exists on
social graph in a shared form. This is similar to the notion of capability lists [15]
except that instead of user carrying the capability list, the object is carrying it.

Policy Composition Using Intensional Labels Is Not Privacy-
Preserving. Consider user actions F.t3, E.t4, A.t5 in context with social list
“School” at t4 and t5. Through action in F.t3, user F has created an object
PF3 with a custom policy University-School. Here the intention of the user is to
make the object available to his friends from University but not from his School.
According to the state of social graph at time t3 nobody gets access to object
PF3 because University ⊆ School. At time t4, user E disassociates herself from
social list School and thus could get access to PF3 . Through action in E.t4, user
E shares PF3 with access policy as School. As shared objects carry their access
policy wherever they exist on social graph, user A will not receive access to PF3

due to E.t4. Whereas by disassociating herself from social list School, user A
will have access to PF3 at time t5 as shown in A.t5. Disassociation from a social
list allows users to bypass the privacy/access intention of a custom policy when
an intensional label is part of “Do not share with” field. Similarly, association
with a social list allows users to bypass the privacy/access intention of a custom
policy when an intensional label is part of “Share with” field. Note that “Friends
of Friends” is also an intensional label.

Like, Comment Operations are Not Privacy-Preserving. Consider user
actions D.t2 and F.t4 in context with environment event E.t1. On Facebook,
List of Friends is an object of user profile. In its privacy settings, Facebook
allows to choose intended audience for this object. We assume all users in
this scenario have set their audience to “Only Me” for this object. The inten-
tion behind such a setting is not to let the profile visitors know who their
friends are, except their mutual friends. However, the way Facebook works,
Newsfeed of a user is supplied with relevant content from user’s social circle.
With a high probability friends’ posts appear in Newsfeed to which a user
may interact by making a comment or like. These interactions get recorded on

Undoing of Privacy Policies on Facebook 251

social graph. When a user interacts with objects with access policy set to Pub-
lic, those interactions also become public. Social graph allows queries to public
content. For example, https://fb.com/search/FBID-Alice/photos-commentedon
returns all the “photo” type of objects on which Alice has commented. Similarly,
/photos-liked returns all photos liked by Alice. For a typical user, these queries
return objects from their friends. Any user of Facebook can make these queries
to social graph for any other user of Facebook. For a complete list of search
attributes please refer Facebook API page [8].

5 Is There a Way to Preserve the Intentions of Policies?

Having seen scenarios of breach of policies, the question is: is it possible to
adhere to the intended privacy in the policies without compromising too much
on the performance or is it possible to consider policy streamlining to avoid such
breaches? Due to lack of space (cf. [20]), we shall briefly discuss some of the
possible approaches below.

Intercept and Resolve Intensional Labels at the Time of Object Cre-
ation. Association and disassociation with intensional label of type social list is
unverified, unsupervised and easy. Whereas associating with Friends of Friends
label of a user is relatively tough but possible. To restrict users from bypassing
access control when intensional label is part of access policy, one may think of
resolving intensional labels into its prevalent member set and use list of member
IDs as explicit custom policy. To automate this process we are experimenting
with a browser extension that intercepts, resolves intensional labels and writes
equivalent custom policy on-the-fly.

Anonymize Unsafe Operations via a Proxy node. Information leakage
on List of Friends object has serious security implications. By knowing friends
of a user an attacker creates profiles similar to friend of the user and launch
a spear phishing attack. Therefore, it is important to prevent this leakage at
least when the object’s policy is set to Only Me. Collecting likes on objects is
one of the important input Facebook relies on for Newsfeed content and targeted
advertising. Without forgoing these objectives, Facebook can introduce a special
node to its social graph called Proxy node. All like and comment operations of
users with privacy setting as Only Me for List of Friends object should be
rerouted through this Proxy node on social graph.

Treat Comment Nodes Similar to Nodes with Access Policy. A com-
ment is a node on social graph of Facebook. However comment type of nodes
have shared ownership as long as the post on which comment is made is acces-
sible to the commenter. Once the owner of the post changes post policy to a
restrictive one, commenter’s ownership is suspended until the node policy is
reverted. Facebook can extend the treatment of post type of nodes to comment
type of nodes.

https://fb.com/search/100009425274721/photos-commentedon
https://fb.com/search/100009425274721/photos-liked

252 V.T. Patil and R.K. Shyamasundar

6 Related Work

The access control mechanism of Facebook is ad-hoc and hybrid therefore it is
different from standard, prevalent lattice-based access control models [22] like
Mandatory Access Control (MAC), Discretionary Access Control (DAC), Role-
Based Access Control (RBAC), Capability Systems [15] etc. Facebook’s access
control mechanism is based on the topology of the underlying volatile social
graph. Content and identities are represented by nodes in the graph and edges
represent their relationships with other nodes. An access is granted to a requester
(a node on the social graph) only if there exists a path to the node being accessed
and the requester fulfils the access control specified on the node by its owner.
Access control in Facebook involves a subtle element of delegation similar in
RBAC [1,6] in the midst of discretionary access control [11,16]. Access control
mechanism of Facebook is a function of communication history among users (e.g.,
existence of friendship is necessary for certain policies), which has parallels with
characterizations presented in [23] and works presented in [18] has a security and
privacy conformance model based on labels controlled by independent domains.

Owing to the difficulty for users to fully comprehend the privacy consequences
of adjusting their privacy settings or re-adjusting their relationships; Fong et al.
[10], presented a paradigm for access control in Facebook-style SNSs and also dis-
cussed the possibility of overcoming Sybil attacks [9] using the conditions (preva-
lent on Facebook in year 2009) needed for satisfying Denning’s principle of privi-
leged attenuation (POPA); it easily follows from our illustrated privacy breaches
that POPA cannot be preserved in the current setup of Facebook. In [5], a rule-
based access control mechanism for Facebook-style SNSs is presented. The mech-
anism relies on relationship inputs (node’s type, trust level of relationships, etc.)
from underlying social graph. Social graph of Facebook, as of today, does not pro-
vide a normal user the attributes required to write rules that are presented in it.

In works on web transparency and accountability [17], it has been argued
that vast amounts of profile tracking leads to various breaches of policies and
hence there is a need for regulations on privacy while profile tracking. In [2], the
authors present an inference, from social graph queries about friendship, that
eight friendship links are enough to construct a “public view” of a user. Works
highlighting the importance of privacy to friendship links are presented in [12,14].
In future, privacy will be the most important parameter for any application’s
acceptability, especially so for applications dealing with social networks [19].

7 Conclusion

Through our experiments on Facebook, we have discovered certain user actions
and configurations that undo the privacy guarantees set by the user. We pre-
sented our findings with the help of a hand-crafted scenario and proposed plau-
sible mitigation techniques for privacy-preservation. Our mitigation techniques
in the existing access control model would pave way for a general purpose access
control model for global-scale social applications. It is of interest to note that

Undoing of Privacy Policies on Facebook 253

there is a serious impact on privacy due to App ecosystem of Facebook. While
the impact of cross-domain access can be analyzed through several techniques
like the one explored in [18], the aspect just pointed out need further explo-
ration. Assuming there will be a regulation for privacy [19], one would need to
understand how compliance of regulations on the policy settings can be ensured.

Acknowledgement. The work was carried out as part of research at ISRDC (Infor-
mation Security Research and Development Center), supported by 15DEITY004, Min-
istry of Electronics and Information Technology, Govt of India.

A Appendix

authored

Friends au
th
or
ed

authored

FF
rie
nd
s

School

authored
Public

au
th
or
ed

On
ly
M
e

authored
Family

University

School

A

E

F

B

C D

PF1

PC1

PE1

PA1

PB1

PD1

Fig. 3. Social graph at time t1

Figure 3 shows instance of the
graph at time t1. Each user
node of the graph has authored
an object. Their access poli-
cies are marked on respective
(user,object) edges. Therefore, at
time t1, following are the objects
introduced to the social graph.
Accessibility to these objects
is evaluated according to their
respective labels as described in
Table 2.

Figures 4, 5 and 6 show the
state of social graph at time t2,
t4, and t5, respectively.

authored

Friends

edge indicating access policy
controlled by parent node

edge type − comments

edge type − shared by

edge type − likes

Legends:

node type − comment

node type − shared post

au
th

or
ed

authored
FF

rie
nd

s

authored

Public

authored
School−E

School

authored
Public

au
th

or
ed

O
nl

yM
e

authored
Family

University

School

PD1

A

E

F

B

C D

PF1

PC1

PD1

PF2

PE1

PA1

PB1

Fig. 4. Social graph at time t2

254 V.T. Patil and R.K. Shyamasundar

authored

Friends

au
th

or
ed

Pu
bl

ic

authored
Friends

au
th

or
ed

authored

FF
rie

nd
s

authored

Public

authored
School−E

Schoolau
th

or
ed

U
ni

−S
ch

oo
l

authored authored
PublicFFriends

University

School

PD1

PA1

PB1

A

E

F

B

C D

PF1

PC1

PD1

PF2

PF3

PF3 PE1

Fig. 5. Social graph at time t4

authored

Friends

au
th

or
ed

Pu
bl

ic

authored
Friends

au
th

or
ed

authored

FF
rie

nd
s

authored

Public

authored
School−E

Schoolau
th

or
ed

U
ni

−S
ch

oo
l

authored authored
OnlyMeFFriends

University

School

PD1

PA1

PB1

A

E

F

B

C D

PF1

PC1

PD1

PF2

PF3

PF3 PE1

Fig. 6. Social graph at time t5

References

1. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: Proceed-
ings of the 16th Annual Computer Security Applications Conference, p. 168. IEEE
Computer Society (2000)

2. Bonneau, J., et al.: Eight friends are enough: Social graph approximation via pub-
lic listings. In: 2nd EuroSys Workshop on Social Network Systems, SNS 2009,
pp. 13–18. ACM (2009)

3. Boyd, D.M., Ellison, N.B.: Social network sites: Definition, history, and scholarship.
J. Comput.-Mediated Commun. 13(1), 210–230 (2007)

Undoing of Privacy Policies on Facebook 255

4. Bronson, N., Amsden, Z., et al.: TAO: facebook’s distributed data store for the
social graph. In: USENIX ATC 2013, pp. 49–60 (2013)

5. Carminati, B., Ferrari, E., Perego, A.: Enforcing access control in web-based social
networks. ACM TISSEC 13(1), 6:1–6:38 (2009)

6. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. Int.
J. Inf. Secur. 7(2), 123–136 (2008)

7. Curtiss, M., Becker, I., Bosman, T., et al.: Unicorn: a system for searching the
social graph. Proc. VLDB Endow. 6(11), 1150–1161 (2013)

8. Facebook: Graph API Overview (2017). https://developers.facebook.com/docs/
graph-api/overview/

9. Fong, P.W.L.: Preventing sybil attacks by privilege attenuation: a design principle
for social network systems. In: IEEE Symposium on Security and Privacy, pp.
263–278 (2011)

10. Fong, P.W.L., Anwar, M., Zhao, Z.: A privacy preservation model for facebook-style
social network systems. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol.
5789, pp. 303–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04444-1 19

11. Graham, G.S., Denning, P.J.: Protection: principles and practice. In: Proceedings
of the Spring Joint Computer Conference, AFIPS 1972, 16–18 May 1972, pp. 417–
429. ACM (1972)

12. Hangal, S., Maclean, D., Lam, M.S., Heer, J.: All friends are not equal: using
weights in social graphs to improve search. In: 4th SNA-KDD Workshop. ACM
(2010)

13. International Association of Privacy Professionals: What is privacy? (2017).
https://iapp.org/about/what-is-privacy/

14. Jernigan, C., Mistree, B.: Project ‘Gaydar’ Computes Orientation. In: CACM
(2009). http://cacm.acm.org/news/42191-project-gaydar-computes-orientation

15. Levy, H.M.: Capability-Based Computer Systems. Digital Press, Bedford (1984)
16. Li, N., Tripunitara, M.V.: On safety in discretionary access control. In: 2005 IEEE

Symposium on Security and Privacy (SP 2005), pp. 96–109, May 2005
17. Narayanan, A., Reisman, D.: The princeton web transparency and accountability

project. In: Cerquitelli, T., Quercia, D., Pasquale, F. (eds.) Transparent Data Min-
ing for Big and Small Data. Studies in Big Data, vol. 11, 45–57. Springer, Cham
(2017)

18. Narendra Kumar, N.V., Shyamasundar, R.K.: Dynamic labelling to enforce confor-
mance of cross domain security/privacy policies. In: Krishnan, P., Radha Krishna,
P., Parida, L. (eds.) ICDCIT 2017. LNCS, vol. 10109, pp. 183–195. Springer, Cham
(2017). doi:10.1007/978-3-319-50472-8 15

19. Patil, V.T., Shyamasundar, R.K.: Privacy as a currency: un-regulated? In: 14th
International Conference on Security and Cryptography, SECRYPT 2017 (2017,
to appear)

20. Patil, V.T., Shyamasundar, R.K.: Social networks and collective unravelling of pri-
vacy. Technical report, ISRDC, IIT Bombay (2017). http://isrdc.iitb.ac.in/reports/
isrdc-tr-2017-rks-vtp-sns-privacy.pdf

21. Renaud, K.G.D.: Privacy: Aspects, definitions and a multi-faceted privacy preser-
vation approach. In: 2010 Information Security for South Africa, pp. 1–8, August
2010

22. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
23. Schneider, F.B.: Enforceable security policies. ACM TISSEC 3(1), 30–50 (2000)

https://developers.facebook.com/docs/graph-api/overview/
https://developers.facebook.com/docs/graph-api/overview/
http://dx.doi.org/10.1007/978-3-642-04444-1_19
https://iapp.org/about/what-is-privacy/
http://cacm.acm.org/news/42191-project-gaydar-computes-orientation
http://dx.doi.org/10.1007/978-3-319-50472-8_15
http://isrdc.iitb.ac.in/reports/isrdc-tr-2017-rks-vtp-sns-privacy.pdf
http://isrdc.iitb.ac.in/reports/isrdc-tr-2017-rks-vtp-sns-privacy.pdf

Cloud Security

Towards Actionable Mission Impact Assessment
in the Context of Cloud Computing

Xiaoyan Sun1(B), Anoop Singhal2, and Peng Liu3

1 California State University, Sacramento, CA 95819, USA
xiaoyan.sun@csus.edu

2 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
anoop.singhal@nist.gov

3 Pennsylvania State University, University Park, PA 16802, USA
pliu@ist.psu.edu

Abstract. Today’s cyber-attacks towards enterprise networks often
undermine and even fail the mission assurance of victim networks. Mis-
sion cyber resilience (or active cyber defense) is critical to prevent or min-
imize negative consequences towards missions. Without effective mission
impact assessment, mission cyber resilience cannot be really achieved.
However, there is an overlooked gap between mission impact assessment
and cyber resilience due to the non-mission-centric nature of current
research. This gap is even widened in the context of cloud computing.
The gap essentially accounts for the weakest link between missions and
attack-resilient systems, and also explains why the existing impact analy-
sis is not really actionable. This paper initiates efforts to bridge this gap,
by developing a novel graphical model that interconnects the mission
dependency graphs and cloud-level attack graphs. Our case study shows
that the new cloud-applicable model is able to bridge the gap between
mission impact assessment and cyber resilience. As a result, it can sig-
nificantly improve the effectiveness of cyber resilience analysis of mission
critical systems.

1 Introduction

Due to the increasing severity of cyber-attacks, mission assurance entails critical
demands of active cyber defense and cyber resilience more than ever. Especially
in the public cloud where a large number of enterprise networks reside, failure of
effective cyber defense would generate huge negative impact towards enterprises’
missions. Mission cyber resilience or active cyber defense means capabilities to
make prioritized, proactive and resource-constraint-aware recommendations on
taking cyber defense actions, including network and host hardening actions,
quarantine actions, adaptive MTD (Moving Target Defense) actions, roll-back
actions, repair and regeneration actions. Due to the fundamental necessity and
importance of situational awareness to decision making, cyber situational aware-
ness plays a critical role in achieving mission cyber resilience. Specifically, mission

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 259–274, 2017.
DOI: 10.1007/978-3-319-61176-1 14

260 X. Sun et al.

cyber resilience cannot be really achieved without impact assessment. That is,
knowing which mission and how a mission is impacted by an attack is the key
for making correct resilience decisions.

However, there is actually a largely overlooked gap between mission impact
assessment and cyber resilience, though both mission impact assessment and
attack-resilient systems have been extensively researched in the literature:

(1) Despite extensive research on attack-resilient survivable systems and net-
works [1], most if not all existing cyber resilience techniques are unfor-
tunately not mission-centric. The cyber resilience analysis is usually con-
strained to the level of assets, without consideration in regards to the mission
impact. For example, the recommendation of having a backup server would
be made by performing asset-level resilience analysis, but the mission-level
impact is rarely analyzed. Lack of mission models and mission dependency
analysis is a common limitation of existing attack resilience techniques.
Without mission dependency analysis, existing cyber resilience techniques
cannot quantify the effectiveness of the recommended cyber response actions
in terms of mission goals, and hence cannot convincingly justify the superi-
ority of the recommended response actions.

(2) From another aspect, despite extensive research on mission impact assess-
ment, mission impact assessment results cannot be automatically used to
make mission-centric recommendations on taking cyber response actions. For
instance, even if the dependency relationship between a server and a mission
is definite, it’s still difficult to make any resilience recommendations regard-
ing this server due to the absence of asset-level cyber resilience analysis. This
gap is even widened in the context of cloud computing. In public cloud, each
enterprise network has its own missions. These missions are usually expected
to be independent and isolated from each other. However, multi-step attacks
may penetrate the boundaries of individual enterprise networks from the
same cloud, and thus impact missions of multiple enterprise networks. That
is, attacks that happen in one enterprise network may be able to affect mis-
sions of another enterprise network in the same cloud. Therefore, mission
impact should be re-assessed in cloud environment.

(3) In addition, most mission impact assessment techniques are generally one-
dimensional, without explicitly considering the dimension of service depen-
dency. For example, a mission dependency graph usually specifies the depen-
dency relations among a task and its supporting services, but may not include
dependencies among services. However, service dependency is also indispens-
able for accurate mission impact analysis. For example, a web service may
depend on the authentication service to verify users, while the authentication
service may further depend on the database service to query users’ creden-
tials. If the database service is down, missions related to the web service and
authentication service may also be impacted, although they do not directly
depend on the database service. As a result, the service dependency relations
should be explicitly included for accurate mission cyber resilience analysis.

Towards Actionable Mission Impact Assessment 261

Hence, lack of automation tools in associating missions with attack-resilient
systems is a weakest link in achieving cyber resilience. Without such association,
existing mission impact analysis results are not really actionable: it’s difficult to
find out why and how a mission has been impacted. Since bridging this gap may
significantly boost the cyber resilience of mission critical systems, how to bridge
this gap is a very important problem.

Therefore, the primary objective of this paper is to take the first steps towards
systematically bridging the critical gap between mission impact assessment and
cyber resilience in the context of cloud computing. We aim to model the mission
impact process and enable the automatic reasoning of this process. To achieve
this goal, we identified and addressed the following challenges:

First, it is very challenging to envision a never-seen-before graphical model
that can integrate mission dependency graphs and cloud-level attack graphs in
such a way that can effectively bridge the gap between existing mission impact
analysis results and attack-graph-based active cyber defense. No graphical model
has yet been proposed to bridge this gap, though two schools of thoughts have
been respectively developed on mission impact analysis and attack-graph-based
active cyber defense.

Second, a cloud environment gives rise to new challenges in bridging the gap.
Cloud services such as Infrastructure as a Service (IaaS), make attack graphs
more complicated and harder to get analyzed. Conventional attack graphs can-
not capture the stealthy information flows introduced by certain cloud features.
Attackers could leverage the hidden security vulnerabilities caused by inappro-
priate cloud management to launch zero-day attacks.

The significance of this paper’s contributions is two-fold: (1) We have devel-
oped a novel graphical model, the mission impact graph model, to systematically
bridges the critical gap between impact assessment and cyber resilience. Bridg-
ing this gap significantly boosts the cyber resilience of mission critical systems;
(2) To the best of our knowledge, this is the first work that investigates the
mission impact assessment problem by considering the special features in cloud
computing environment; (3) We have extended the attack graph generation tool
MulVAL [9] to enable logical reasoning of mission impact assessment and auto-
matic generation of mission impact graphs.

2 Our Approach

In this paper, we aim to bridge the gap between mission impact assessment and
cyber resilience.

On the side of mission impact assessment, different types of mission depen-
dency graphs have been developed to associate missions with component tasks
and assets. As shown in Fig. 1, the status of assets (hosts, virtual machines, etc.)
will generate direct impact towards missions through dependency relations. In
current literature, such dependency relations among assets, tasks, and missions
are usually very loose and not well defined. As a result, the corresponding mis-
sion impact assessment is also inaccurate. In addition, without considering the

262 X. Sun et al.

Fig. 1. The Mission dependency graph, service dependency graph, and attack graph.

possibility of multi-step attacks caused by combinations of vulnerabilities, the
mission impact assessment is usually not sufficiently comprehensive. Missions
that seem irrelevant to some compromised assets may also be impacted due to
the existence of multi-step attacks. For example, in Fig. 1, let’s assume mission
m1 and mission mn depends on host h1 and host hn respectively. Analysis of
the individual mission dependency graphs (vertical graphs in Fig. 1) could lead
to a conclusion: if h1 is compromised, then m1 will be impacted but mn will
not. This is because the individual mission dependency graphs do not show any
direct relations between mission mn and host h1. However, if the possibility of
a multi-step attack is considered, host h1 can be used as a stepping-stone to
compromise hn. In this case mission mn has the possibility of being impacted
as well. Therefore, with only mission dependency graphs, it is not sufficient to
perform accurate and comprehensive mission impact assessment.

On the side of cyber resilience, attack graphs have become mature techniques
for analyzing the causality relationships between vulnerabilities and exploita-
tions. As in Fig. 1, by analyzing the vulnerabilities existing in the network, attack
graphs are able to generate potential attack paths that show a sequence of attack
steps (e.g., from host h1 to hn). This capability enables security admins to proac-
tively analyze the influence of some security operations towards the potential
attack paths. For example, security admins could check how potential attack
paths would be changed if a vulnerability is patched. However, the traditional

Towards Actionable Mission Impact Assessment 263

attack graph has two limitations. First, it is not mission-centric. The attack
graph is able to generate potential attack paths through logical reasoning, but
it lacks the capability of reasoning potential impacts towards missions. Second,
traditional attack graphs do not consider potential attacks enabled by some spe-
cial features of public cloud environment, such as virtual machine image sharing
and virtual machine co-residency. New attack types may arise in cloud due to
these features, but are not captured in traditional attack graphs.

In addition, service dependency discovery has been studied in a number of
research works [20–22]. In a network, the normal functioning of an applica-
tion or service may depend on the normal functioning of other services. Service
dependency graphs are able to capture such dependency relations. The service
dependencies are important for correct mission impact assessment in that mis-
sions may be indirectly impacted by other seem-to-be irrelevant services. For
example, mission mi in Fig. 1 does not directly depend on service s2 in the ver-
tical mission dependency graph. Without considering the service dependencies,
mi seems to be irrelavant with s2 and thus will not be impacted by its status.
However, by taking service dependencies into account, the status of s2 will affect
service si, which will eventually impact mi. Hence, service dependency graphs
should also be incorporated when performing mission impact assessment for the
purpose of cyber resilience.

Therefore, considering the respective capabilities and disadvantages of mis-
sion dependency graphs and attack graphs, this paper proposes to develop a
logical graphical model, called attack graph based mission impact graph (referred
as mission impact graph in the rest of this paper), to integrate mission depen-
dency graphs, service dependency graphs, and cloud-level attack graphs. Our
approach contains three steps. First, there exist essential semantic gaps between
mission dependency graphs and attack graphs. We identify the semantic gaps and
unify the representation of nodes and edges. This makes interconnecting mission
dependency graphs and attack graphs feasible. Services are already components
of mission dependency graphs, so service dependency graphs are align with mis-
sion dependency graphs in terms of semantics. Second, to bridge the gap inside
a cloud environment, we extend traditional attack graphs into cloud-level attack
graphs. The cloud-level attack graphs are incorporated into new mission impact
graphs. Third, we implement a set of interaction rules in MulVAL [8,9] to enable
automatic generation of logical mission impact graph.

3 The Semantic Gap Between the Attack Graph and the
Mission Dependency Graph

Generally speaking, a mission dependency graph is a mathematical abstraction
of assets, services, mission steps (also known as tasks) and missions, and all
of their dependencies [6]. A mission dependency graph has five types of nodes,
including assets, services, tasks, missions and logical dependency nodes. The
logical dependency nodes are basically AND-nodes and OR-nodes that represent
logical dependencies among other nodes. The AND-node represents that a parent

264 X. Sun et al.

nodes depends on all of its children nodes. The OR-node denotes that a parent
node depends on at least one of its children nodes. For example, a successful task
may depend on all of the supporting services being functional, while a complete
mission could require only one of its tasks being fulfilled. Edges in a mission
dependency graph represent the interdependencies existing among nodes.

As for the attack graph, it usually shows the potential attack steps leading to
an attack goal. Several different types of attack graphs have been developed, such
as state enumeration attack graphs [10–12] and dependency attack graphs [13–
15]. This paper uses the dependency attack graph for analysis. Figure 2 is part
of a simplified attack graph. A traditional attack graph generated by MulVAL is
composed of two types of nodes, fact nodes (including primitive fact nodes and
derived fact nodes) and derivation nodes (also known as rule nodes). Primitive
fact nodes (denoted with rectangles in Fig. 2) present objective conditions of the
network, such as the network, host, and vulnerability information. Derived fact
nodes (denoted with diamonds) are the facts inferred by applying the deriva-
tion rule. Each derivation node (denoted with ellipse) represents the application
of a derivation rule. The derivation rules are implemented as interaction rules
in MulVAL. Simply put, one or more fact nodes could be the preconditions
of a derivation node, while the derived fact node is the post-condition of the
derivation node. For example, in Fig. 2, if node 4 “the attacker has access to the
server”, node 5 “the server provides a service with an application” and node 6
“the application has a vulnerability” are all satisfied, then the rule in node 7 will
take effect and make node 8 become true. That is, attacker is able to execute
arbitrary code on the server. In this example, node 4, 5 and 6 are the fact nodes;
node 7 is the derivation node; node 8 is the derived fact node.

4:netAccess(server, http)

7:Rule (remote exploit of a server program)

5:networkServiceInfo(server, app) 6:vulExists(server, 'vulID', app)

8:execCode(server)

Fig. 2. Part of a simplified attack graph.

Mission dependency graphs and traditional attacks graphs have the following
semantic gaps:

(1) The meaning of nodes differs. In a mission dependency graph, a node denotes
an entity, such as an asset, a service, a task, or a mission. The node does
not specify the status of the entity. In a traditional attack graph, a node
represents a statement, be it a rule or a fact. For example, a primitive fact
node could be “the web server provides OpenSSL service” or “the openssl

Towards Actionable Mission Impact Assessment 265

program has a vulnerability called CVE-2008-0166”. A rule node could be
“the remote exploit of a server program could happen”.

(2) The meaning of edges differs. In a mission dependency graph, the edges rep-
resent general interdependencies among nodes, and do not specify concrete
dependency types. The logical relations are specially denoted with AND
and OR nodes. In a traditional attack graph, directed edges represent the
causality relationship among nodes. One or more fact nodes could cause a
derivation node to take effect, which further enables a derived fact node.

(3) The representation of logical relations among nodes differs. In a mission
dependency graph, the logical relations are represented specifically with
AND and OR nodes. In traditional attack graph, the logical relations are
not provided explicitly, but are implied in the graph structure: derivation
nodes (rule nodes) imply AND relations and derived fact nodes imply OR
relations. That is, fact nodes that serve as preconditions of a derivation node
have AND relations, while derivation nodes leading to a derived fact node
have OR relations. The underlying principle is that all of the preconditions
have to be satisfied to enable a derivation rule, while a derived fact node can
become true as long as one rule is satisfied.

Hence, in the proposed mission impact graph, we will bridge the semantic
gaps between mission dependency graphs and attack graphs.

4 Incorporating Cloud-Level Attack Graphs

In the public cloud, each enterprise network can generate its own individual
attack graph by scanning hosts and virtual machines in the network. These
individual graphs may not be complete because new attack paths enabled by
the cloud environment could be missed. Therefore, a cloud-level attack graph
is needed to capture potential missing attacks by taking some features of pub-
lic cloud into consideration, such as virtual machine image sharing and virtual
machine co-residency. Hence, [16] proposed the construction of cloud-level attack
graphs. A cloud-level attack graph contains three levels: virtual machine level,
virtual machine image level, and host level. The virtual machine level mainly
captures the causality relationship between vulnerabilities and potential exploits
inside the virtual machines. The virtual machine image level focuses on attacks
related to virtual machine images. For example, a virtual machine image may be
instantiated by different enterprise networks. As a result, its security holes are
also inherited by all the instance virtual machines. The virtual machine image
level is able to reflect such inheritance relationship. The host level mainly cap-
tures potential attacks to hosts, including exploits leveraging the virtual machine
co-residency relationship.

Therefore, the mission impact graph needs to be extended to incorporate
cloud-level attack graphs. The semantics of mission impact graphs remain the
same because cloud-level attack graphs have the same semantics as traditional
attack graphs. However, the mission impact graph is now composed of two parts:

266 X. Sun et al.

cloud-level attack graph part, and the cloud-applicable mission dependency part.
New nodes should be added as derivation nodes and fact nodes to incorporate
special features of cloud.

To achieve this goal, we crafted a set of Datalog clauses in MulVAL as the
primitive facts, derived facts and interaction rules. For the cloud-level attack
graph part, new facts and rules are crafted to model virtual machine image
vulnerability existence, vulnerability inheritance, backdoor problem, and virtual
machine co-residency problem, and so on. For mission dependency part, new
rules are added to model the residency dependencies among virtual machines
and hosts, service dependencies among virtual machines and services, etc. For
example, the residency dependency relationship between a host and the depen-
dent virtual machines can be modeled with the following interaction rule:

interaction rule(
(hostImpact(VM):-

residencyDepend(Vm, Host),
HostImpact(Host)),

rule_desc(‘An compromised host will impact the dependent
virtual machines’)).

5 Mission Impact Graph and Graph Generation

The new graphical model, which is referred to as mission impact graph, is for-
mally defined as follows: (1) It is a directed graph that is composed of three
parts: attack graph part, service dependency part and mission-task-service-host
dependency part. (2) It contains two kinds of nodes: derivation nodes and fact
nodes. Each fact node represents a logical statement. Each derivation node rep-
resents an interaction rule that is applied for derivation. There are two types of
fact nodes, primitive fact nodes and derived fact nodes. A primitive fact node
represents a piece of given information, such as host configuration, vulnerability
information, network connectivity, service information, progress status of a mis-
sion (e.g. which mission steps are already completed and which are not), and so
on. Derived fact nodes are computing results of applying interaction rules iter-
atively on input facts. (3) The edges in the mission impact graph represent the
causality relations among nodes. A derived fact node depends on one or more
derivation nodes (which have OR relations); a derivation node depends on one
or more fact nodes (which have AND relations).

In mission impact graphs, we need to combine attack graphs and mission
dependency graphs by unifying their representation of nodes and edges. It is
composed of four steps:

Step 1, the entity nodes in mission dependency graphs become either prim-
itive fact nodes or derived fact nodes in mission impact graphs. A fact node
represent a statement about an entity. Primitive fact nodes usually represent
already known information provided by network scanners or human administra-
tors, such as host configuration, network configuration, and vulnerability infor-
mation, etc. Derived fact nodes are computed information by applying interac-
tion rules towards the primitive fact nodes. One entity in the mission dependency

Towards Actionable Mission Impact Assessment 267

Fig. 3. Logical mission impact graph generation.

graph may become a number of fact nodes depending on its related known infor-
mation and computed information. For example, a service node s in the mission
dependency graph may be related to two pieces of information: the known infor-
mation that showing “s is disabled” through a port scanning, and the computed
information that “s is impacted” by applying interaction rules. In this case, the
s node in the mission dependency graph could become two fact nodes in the
mission impact graph: a primitive fact node with the predicate serviceDisabled ;
and a derived fact node with the predicate serviceImpacted. Similarly, an asset
node h may in mission dependency graph could become a derived fact node
with predicate execCode, meaning “attackers can execute arbitrary code on the
host h”.

Step 2, derivation nodes are added into the mission impact graph to model the
causality relationships among fact nodes. The interdependencies among entities
such as assets, services, tasks, and missions in the mission dependency graph
can be interpreted into specific impact causality rules, which become derivation
nodes in mission impact graph. For example, the dependency between a task t
and a service s could be interpreted into a rule R: “t will be compromised if s
is disabled and t is not completed yet”. When node “s is disabled” and node “t
is not completed yet” are both satisfied, the derivation node stating rule R will
take effect.

Step 3, logical relation nodes in mission dependency graphs are removed,
including AND and OR nodes. The logical relations among nodes are implied
with graph structure as in the mission impact graph: derivation nodes imply
AND, and derived fact nodes imply OR.

268 X. Sun et al.

Step 4, the fact nodes and derivation nodes in mission impact graphs are
connected with edges to represent direct causality relations, rather than general
dependencies as in mission dependency graphs.

Finally, to enable automatic generation of mission impact graphs, we
extended the capability of MulVAL by creating new Datalog clauses. Figure 3
shows the process of mission impact graph generation. Three sets of input are
provided to MulVAL in terms of mission dependencies, service dependencies,
and cloud-level attacks. The input sets are converted to corresponding Datalog
clauses, which are then fed to MulVAL reasoning engine. The MulVAL reasoning
engine analyzes the input sets and perform computation by applying interaction
rules. Interaction rules are very important for the logical reasoning. For mission
impact analysis, we created three different sets of interaction rules, including
rules for mission-task-service-host impact propagation, service impact propaga-
tion, and attack analysis. After reasoning, mission impact traces are generated.
Graph generators such as Graphviz [23] can analyze the traces to build the final
mission impact graphs. Originally MulVAL only contains the input set and inte-
gration rules for attack graph generation. We added two more input sets and
two more integration rule sets, and also extended the attack-related input set
and interaction rule set by including cloud-level features.

In the implementation, three sets of Datalog clauses are added as primi-
tive facts, derived facts, and interaction rules for the function of mission impact
analysis. For primitive facts, we crafted clauses that describe mission-task depen-
dencies, the service types, task service dependencies, and mission progress sta-
tus, and so on. Some information can be provided by system administrators. For
derived facts, we added clauses for the status of missions, tasks, services and
assets. To enable the logical reasoning, we created interaction rules to model the
causality relationships between pre-conditions and post-conditions. For example,
attacks towards servers will impact services that are provided by these servers.
The interaction rule describing this causality relationship could be represented
with Datalog clauses as follows:

interaction rule(
(serviceImpacted(Service, H, Perm):-

hostProvideService(H, Service),
execCode(H, Perm)),

rule_desc(‘An compromised server will impact the dependent
service’)).

6 Case Study

As shown in Fig. 4, our scenario contains three enterprise networks in cloud:
A is a start-up company, B is a medical group, and C is a vaccine supplier.
In addition to providing existing vaccines, C is also developing a new type of
vaccine together with its collaborators. The formula of the new vaccine is still
very confidential. For security purposes, C only accepts client requests from
trusted IPs. The relationships between A, B and C are: (1) they are on the
same cloud; (2) A’s webserver and B’s database server are two virtual machines

Towards Actionable Mission Impact Assessment 269

Fig. 4. The attack and mission scenario.

that co-reside on the same physical host; This is not uncommon in that cloud
providers generally host virtual machines on arbitrary hosts. This co-residency
relationship can be leveraged by attackers. (3) B is a trusted client to C.

The mission for medical group B, Bm1, is to provide medical services to
all of its patients. Sample tasks include: Bt1, patients make appointments; Bt2,
access medical records; Bt3, order shots or medicine; Bt4, administer shots; Bt5,
update medical records, and so on. The mission for vaccine supplier C, Cm1,
is to supply vaccines to authorized medical groups, and develop the new type
of vaccine with collaborators. The sample tasks include: Ct1, ask for login ID
and password; Ct2, check the ID and password. If the user is medical group, go
to Ct3. If the user is collaboration partner, go to Ct4 ; Ct3, order vaccine; Ct4,
check and update new vaccine information. Ct3 and Ct4 are then composed of
a number of subtasks.

In our attack scenario, attacker Mallory (could be a competitor of victim
companies) is very interested in the new vaccine, and wants to steal its for-
mula from supplier C. To break into the supplier network, Mallory performs
the following attack steps: (1) Mallory compromises A’s webserver by exploit-
ing vulnerability CVE-2007-5423 in tikiwiki 1.9.8; (2) Mallory leverages the co-
residency relationship to take over B’s database server, based on a side channel
attack in cloud. Extensive research has been done on side channel attacks [17–
19]. (3) B’s NFS server has a directory (/exports) that is shared by all the servers
and workstations inside the company. Normally B’s web server should not have
write permission to this shared directory. However, due to a configuration error
of the NFS export table, the web server is given write permission. Therefore,
Mallory uploads a Trojan horse to the shared directory, which is crafted as a
management software named tool.deb. (4) The innocent Workstation user from
B downloads tool.deb from NFS server and installs it. This creates an unsolicited
connection back to Mallory. (5) The Workstation has access to C’s webserver
as a trusted client. Mallory then managed to take over it via a brute-force key

270 X. Sun et al.

guessing attack (CVE-2008-0166); (6) Mallory leverages C’s webserver as a step-
ping stone to compromise C’s MongoDB database server based on CVE-2013-
1892, which allows Mallory successfully steal credential information from an
employee login database table; (7) Mallory logins into C’s webserver as a col-
laborator of C, and accesses the project proprietary documentation to collect
formula-related vaccine research and development records.

By performing logical reasoning in MulVAL, we generated a mission impact
graph for our scenario. Figure 5 shows a part of the graph. MulVAL takes several
types of inputs, including vulnerability-scanning report, host configuration, net-
work connectivity, mission-task-service-asset dependencies, and so on. The out-
put is a mission impact graph showing which missions are likely to be affected
by considering current status of the networks.

The result cloud-level mission impact graph is very helpful for understanding
potential threats to missions in this scenario. First, individual mission impact
graph may miss important attacks leveraging some features of cloud, and thus
generate incorrect evaluation about possible threats to missions. For example,
without considering the co-residency relationship between A’s webserver and
B’s database server, B seems to be very safe as the database has no exploitable
vulnerability. As a result, mission Bm1 is viewed as safe. However, our mission
impact graph shows that Bm1 has the possibility of being impacted because
the virtual machine co-residency can be leveraged for attack. Second, the result

1:attackerLocated(internet)

3:Rule(direct network access)

2:hacl(internet, A_webServer, http, 80)

4:netAccess(A_webServer, http, 80)

7:Rule (remote exploit of a server program):0

5:networkServiceInfo(A_webServer, tikiwiki, http, 80, _) 6:vulExists(A_webServer, 'CVE-2007-5423', tikiwiki, remoteExploit, privEscalation)

8:execCode(A_webServer,_):0

11:Rule (Virtual Machine Coresidency):0

9:resideOn(A_webServer, h1):0 10:resideOn(B_DBServer, h1):0

12:stealthyBridgeExists(A_webServer, B_DBServer, h1):0

13:execCode(B_DBServer,_):0

16:Rule(NFS Shell) 39:Rule(service dependency):0

14:hacl(B_DBServer, B_nfsServer, nfsProtocol, nfsPort) 15:nfsExportInfo(B_nfsServer, '/export', write, B_DBServer)

17:accessFile(B_nfsServer, write, '/export')

19:Rule(NFS Semantics)

18:nfsMounted(B_workStation, '/mnt/share', nfsServer, '/export', read)

20:accessFile(B_workStation, write, '/mnt/share')

22:Rule(Corresponding Trojan horse installation)

21:vulExists(B_workStation, 'CVE-2009-2692', kernel, localExploit, privEscalation)

23:execCode(B_workstation, root):0

25:Rule (multi-hop access):0

24:hacl(B_workSTATION, C_webServer, http, 80)

26:netAccess(C_webServer, http, 80)

29:Rule(remote exploit of a server program):0

27:networkServiceInfo(C_webServer, openssl, tcp, 22, _) 28:vulExists(C_webServer, 'CVE-2008-0166', openssl, remoteExploit, privEscalation)

30:execCode(C_webServer,_):0

32:Rule(multi-hop access):0 48:Rule(service dependency):0

31:hacl(C_webServer, C_DBServer, tcp, 27017)

33:netAccess(C_DBServer, tcp, 27017)

36:Rule(remote exploit of a server program):0

34:networkServiceInfo(C_DBServer, mongoDB, tcp, 27017, _) 35:vulExists(C_DBServer, 'CVE-2013-1892', mongoDB, remoteExploit, privEscalation)

37:execCode(C_DBServer, root):0

57:Rule(service dependency):0

38:provideService(B_DBServer, database, tcp, _)

40:serviceImpacted(B_DBServer, Database, tcp, _)

42:Rule(task dependency):0

41:taskDependOnService(Bt2, database, tcp, _)

43:taskImpacted(Bt2)

45:Rule(mission is composed of tasks):0

44:composingTask(Bm1, Bt2)

46:missionImpacted(Bm1)

47:provideService(C_webServer, web, http, 80)

49:serviceImpacted(C_webServer, web, http, 80)

51:Rule(task dependency):0

50:taskDependOnService(Ct1, web, http, 80)

52:taskImpacted(Ct1)

54:Rule(mission is composed of tasks):0

53:composingTask(Cm1, Ct1)

55:missionImpacted(Cm1)

56:provideService(C_DBServer, database, tcp, 27017)

58:serviceImpacted(C_DBServer, database, tcp, 27017)

60:Rule(task dependency):0

59:taskDependOnService(Ct2, database, tcp, 27017)

61:taskImpacted(Ct2)

63:Rule(control depended task can influence workflow):0

62:controlDependency(Cm1, Ct2)

64:missionFlowChanged(Cm1, Ct2)

65:Rule(workflow impacts mission):0

Fig. 5. Mission impact graph.

Towards Actionable Mission Impact Assessment 271

cloud-level mission impact graph is mission-centric. Although attack paths for
the scenario network can be generated in the traditional attack graph, the poten-
tial impact towards mission cannot be assessed without analyzing the depen-
dency relationships among missions, tasks, services and assets. For example, the
attack graph is able to show the attack path from A’s web server to C’s data-
base server, but the impact of attacks to missions is unclear. Our mission impact
graph is able to show such impact towards missions by considering both attacks
and missions.

One function of our mission impact graph is to perform automated “taint”
propagation through logical reasoning. Given a “taint”, be it a vulnerability, a
compromised machine, or a disabled service, the impact of the “taint” can be
analyzed through logical reasoning. The mission impact graph is able to reflect
affected entities such as assets, services, tasks, and missions. For example, in our
case study, if C’s web server is compromised, the mission impact graph will show
that task Ct1 and mission Cm1 are impacted.

The generated mission impact graph enables effective mission-centric cyber
resilience analysis. Propagating the attack-graph-based active cyber defense
from the attack graph side to the mission impact side is helpful for performing
advanced proactive “what-if” mission impact assessment. Through logical rea-
soning, impact analysis can be performed all the way from inside a machine to
a mission. Given the input information, attack graphs can predict the potential
attack paths and identify possibly to-be-affected assets. Mission impact graph
extends attack graphs in a way that the prediction of potential attack paths
directly enables the prediction of potential mission impact. Therefore, we can
perform proactive “what-if” mission impact analysis by changing the input con-
ditions. For example, what if we remove a server? What if we patch a vulner-
ability on a host? Which tasks or missions will be affected? In our case study,
if we break the co-residency relationship between A’s webserver and B’s data-
base server by moving one of the virtual machines, attacks towards B and C
will prevented. As a result, missions in B and C won’t be affected. Similarly, if
the vulnerability on C’s webserver is patched, attacks towards C can be stopped
and mission Cm2 will be safe. In addition, we can also analyze the potential
mission impact by assuming vulnerability existence on other servers. For exam-
ple, what if an unknown security hole exists on a host? Which tasks or missions
will be affected in this case? In addition, as the situation knowledge regarding a
network is continuously collected, such knowledge can be interpreted into input
files to the automated tool for iterative “what-if” mission impact analysis based
on the current situation. Therefore, performing such “what-if” analysis enables
interactive mission impact analysis, and thus helps security admins make correct
decisions for cyber resilience.

7 Related Work

A literature review is performed to disclose the mismatch between mission
impact assessment and cyber resilience: (1) the formal models used by the exist-
ing mission impact assessment techniques cannot be directly used by the existing

272 X. Sun et al.

attack-resilient system and network designs; (2) lack of mission models and mis-
sion dependency analysis is a common limitation of existing cyber resilience
techniques.

Mission impact assessment. In the past decade or so, extensive research has been
conducted on modeling the mission dependencies to help facilitate computer-
assisted analysis of current missions. The existing mission-oriented impact assess-
ment techniques can be classified into four categories: (1) mission impact assess-
ment through use of ontology based data collection. The basic idea is to create
the ontology of mission dependencies. For example, the Cyber Assets to Mission
and Users (CAMUs) approach [2] assumes that a cyber asset provides a cyber
capability that in turn supports a mission. Their approaches mine existing logs
and configurations, such as those from LDAP, NetFlow, FTP, and UNIX to cre-
ate these mission-asset mappings; (2) mission impact assessment through use of
dependency graphs [4,5]. The basic idea is the use of mission dependency graphs
for cyber impact assessment and a hierarchical (time-based) approach to mission
modeling and assessment; (3) mission impact assessment through use of mission
thread modeling [6]. The basic idea is to leverage mission metrics supported by
resource model and value model; (4) mission impact assessment through use of
Yager’s aggregators [3]. The basic idea is to utilize a tree-based approach to
calculate the impact of missions. The mission tree is a tree-structure that uti-
lizes Yager’s aggregators [7] to intelligently aggregate the damage of assets to
calculate the impact on each individual mission.

Cyber resilience and active cyber defense. Since 2000, a tremendous amount of
research has been conducted on how to make systems and networks resilient
to cyber-attacks. For example, the two volumes of DARPA Information Surviv-
ability Conference and Exposition proceedings described the design, implemen-
tation and evaluation of the first set of survivable and attack-resilient systems
and networks [1]. The cyber response actions adopted in these systems include
replication actions, honeypot actions, software diversification actions, dynamic
quarantine actions, adaptive defense actions, roll-back actions, proactive and
reactive recovery actions. Since then, a variety of cyber response actions have
emerged, including migration actions, regeneration actions, MTD actions, decoy
actions, CFI (control flow integrity) actions, ASLR (Address Space Layout Ran-
domization) actions, IP randomization actions, N-variant defense actions, and
software-defined network virtualization actions.

8 Conclusion

This paper makes the first efforts to close a gap between mission impact assess-
ment and cyber resilience. In the cloud environment it is even more difficult
to analyze the impact of vulnerabilities and security events on missions. To fill
the gap and associate missions with current attack-resilient systems, this paper
develops a novel graphical model that interconnects mission dependency graphs
and cloud-level attack graphs. Our case study shows that the mission impact

Towards Actionable Mission Impact Assessment 273

graph model successfully bridges the gap and can significantly boost the cyber
resilience analysis of mission critical systems.

Acknowledgement. We thank the anonymous reviewers for their valuable comments.
This work was supported by ARO W911NF-15-1-0576, ARO W911NF-13-1-0421
(MURI), CNS-1422594, NIETP CAE Cybersecurity Grant, and NIST 60NANB16D241.

Disclaimer

This paper is not subject to copyright in the United States. Commercial products are
identified in order to adequately specify certain procedures. In no case does such identi-
fication imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the identified products are necessarily the best
available for the purpose.

References

1. Proceedings of DARPA Information Survivability Conference and Exposition, Ana-
heim, California, 12–14 June 2001, Volume I & Volume II (2001)

2. D’Amico, A., Buchanan, L., Goodall, J.: Mission impact of cyber events: scenarios
and ontology to express the relationships between cyber assets, missions, and users.
In: Proceedings of the 5th International Conference on Information Warfare and
Security (2010)

3. Holsopple, J., Yang, S.J., Sudit, M.: Mission impact assessment for cyber warfare.
Intelligent Methods for Cyber Warfare, vol. 563, pp. 239–266. Springer, Cham
(2015)

4. Jakobson, G.: Mission cyber security situation assessment using impact dependency
graphs. In: Information Fusion (FUSION) (2011)

5. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack
graphs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
18–34. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88313-5 2

6. Musman, S., Temin, A., Tanner, M., Fox, D., Pridemore, B.: Evaluating the Impact
of Cyber Attacks on Missions. MITRE Corporation, Bedford (2009)

7. Yager, R.R.: On ordered weighted averaging aggregation operation in multicriteria
decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

8. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: ACM CCS (2006)

9. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security
analyzer. In: USENIX Security (2005)

10. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Security and Privacy (S&P) (2002)

11. Ramakrishnan, C.R., Sekar, R.: Model-based analysis of configuration vulnerabil-
ities. J. Comput. Secur. 10, 189–209 (2002)

12. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of Workshop on New Security Paradigms (1998)

13. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats.
Massive Computing, vol. 5. Springer, USA (2005)

14. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable graph-based network vulnera-
bility analysis. In: ACM CCS (2002)

http://dx.doi.org/10.1007/978-3-540-88313-5_2

274 X. Sun et al.

15. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: ACSAC (2006)

16. Sun, X., Dai, J., Singhal, A., Liu, P.: Inferring the stealthy bridges between enter-
prise network islands in cloud using cross-layer Bayesian networks. In: Tian, J.,
Jing, J., Srivatsa, M. (eds.) International Conference on Security and Privacy in
Communication Networks. Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol. 152. Springer, Cham
(2015)

17. Zhang, Y., et al.: Homealone: co-residency detection in the cloud via side-channel
analysis. In: 2011 IEEE Symposium on Security and Privacy. IEEE (2011)

18. Ristenpart, T., et al.: Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security. ACM (2009)

19. Younis, Y., Kifayat, K., Merabti, M.: Cache side-channel attacks in cloud comput-
ing. In: International Conference on Cloud Security Management (ICCSM) (2014)

20. Chen, X., Zhang, M., Mao, Z.M., Bahl, P.: Automating network application depen-
dency discovery: experiences, limitations, and new solutions. In: Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation
(OSDI) (2008)

21. Natarajan, A., Ning, P., Liu, Y., Jajodia, S., Hutchinson, S.E.: NSDMiner: auto-
mated discovery of network service dependencies. In: Proceeding of IEEE Interna-
tional Conference on Computer Communications (2012)

22. Peddycord III, B., Ning, P., Jajodia, S.: On the accurate identification of network
service dependencies in distributed systems. In: USENIX Association Proceedings
of the 26th International Conference on Large Installation System Administration:
Strategies, Tools, and Techniques (2012)

23. http://www.graphviz.org/

http://www.graphviz.org/

Reducing Security Risks of Clouds Through
Virtual Machine Placement

Jin Han1, Wanyu Zang2, Songqing Chen3, and Meng Yu1(B)

1 University of Texas at San Antonio, San Antonio, USA
meng.Yu@utsa.edu

2 Texas A&M University at San Antonio, San Antonio, USA
3 George Mason University, Fairfax, USA

Abstract. Cloud computing is providing many services in our daily
life. When deploying virtual machines in a cloud environment, virtual
machine placement strategies can significantly affect the overall security
risks of the entire cloud. In recent years, some attacks are specifically
designed to collocate with target virtual machines in the cloud. In this
paper, we present a Security-aware Multi-Objective Optimization based
virtual machine Placement algorithm (SMOOP) to seek a Pareto-optimal
solution to reduce overall security risks of a cloud. SMPPO also considers
resource utilization on CPU, memory, disk, and network traffic using
several placement strategies. Our evaluation results show that security
of clouds can be effectively improved through virtual machine placement
with affordable overheads.

1 Introduction

Cloud computing is the basis of many services in our daily life, such as email ser-
vices, services of smart Internet of Things (IoT) devices and file sharing services.
In an Infrastructure as a Service (IaaS) cloud like Amazon EC2 [4], many vir-
tual machines (VMs) share a physical server. The placement of virtual machines
can have different strategies, leading to different computing performance, energy
consumption, and resource utilization. Therefore, given different resource con-
straints, how to achieve multiple objectives is a very important problem in cloud
computing. Such a problem has attracted extensive attention recently [6,14,16].

With resource and other constraints, the virtual machine placement (VMP)
is essentially a multiple-objective optimization problem. Phan et al. [16] used an
Evolutionary Multi-Objective Optimization (EMOA) algorithm to build Green
Clouds when considering energy consumption, cooling energy consumption and
user-to-service distance in VMP optimization. Xu and Fortes [22] proposed a
genetic algorithm with fuzzy multi-objective evaluation to minimize the total
resource wastage, power consumption and thermal dissipation costs in VMs
placement. Shigeta et al. [20] suggested to assign different weights to multi-
objectives on cost and performance and built a cost evaluation plug-in module

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 275–292, 2017.
DOI: 10.1007/978-3-319-61176-1 15

276 J. Han et al.

to search for the optimal VMs placement. Some other research focus on mini-
mizing the overall network cost while considering large communication require-
ments [3,15], or applying the constraint programming (CP) engine to optimize
VMP [2,7]. While above multi-objective optimization placement schemes greatly
improve the overall performance of the cloud, the security risk of the entire cloud
environment was not considered as an objective or at most considered as one
constraint in the initialization phase.

At the same time, there are new types of attacks targeting at the cloud
infrastructure. For example, some attacks, such as those discussed in [8,9,12,18]
, exploit the vulnerabilities of hypervisor (or Virtual Machine Monitor, VMM),
e.g., Xen [5] or KVM [11]. Once the attacker compromises the hypervisor, he or
she can take over all the VMs running on it. In [17] (HYG attack), the initial
stage of the attack is to locate a target VM. Upon success, the attacker will try
to launch a VM on the same physical server. It is a placement based attack and
the success of the attack depends on the placement strategies of the cloud, or
the configuration policy of the cloud. Apparently, collocating with vulnerable
virtual machines, or “bad neighbors”, on the same physical server does increase
the security risks to cloud users. Thus, the security risk exposed to the user
depends not only on how secure the VM itself is, such as the operating system
and applications running inside, but also the Virtual Machine Monitor (VMM
or Hypervisor), running underlying the VMs, and other VMs coresident on the
same node.

We believe that security should be considered as one key element, the same
as the energy and performance, in VM placement. In the previous work [14], we
proposed a VMP scheme based on the security risk of each VM. However, the
security analysis of our previous work mainly focused on dependency relations.
Yuchi and Shetty [26] extended our previous work to the VM placement initial-
ization. Yu et al. [25] proposed isolation rules to formulate the VMP behavior
based on the Chinese wall policy. Unfortunately, this work mainly focuses on
improving security and overlooks other objectives, such as energy saving and
resource utilization. Besides, the security measurements in this work mainly con-
sider the vulnerabilities of VMs or hypervisor, or security regulations, without
considering the security assessment of a VMP.

When comparing different VMP schemes, the security metrics can only be
evaluated after a placement is specified. For example, a specific placement scheme
has an unique attack path exposed by co-residence that may disappear in a dif-
ferent placement. Therefore, there is no generic function to map a placement
scheme into a security assessment value. We cannot simply apply any exist-
ing evolutionary multi-objective optimization algorithm (EMOA) to solve our
problem directly. Furthermore, the low efficiency and the complicated security
assessment require us to design our own crossover and mutation procedures in
the the EMOA algorithm.

In this paper, we propose a VM placement specific security measurement
of the cloud, and a new VMP approach to provide better intrusion resilience,
resource utilization, and network performance. In the proposed VM placement

Reducing Security Risks of Clouds Through Virtual Machine Placement 277

specific security assessment, we consider the vulnerabilities not only on VMs
and hypervisor themselves, but also the host co-resident and network connec-
tions that will change with the VM placement. Based on the proposed security
measurement scheme, we propose an evolutionary multi-objective optimization
algorithm, named as Security-aware Multi-Objective Optimization based vir-
tual machine Placement algorithm (SMOOP), to seek a Pareto-optimal solution
balancing the multiple objectives on security, resource utilization, and network
traffic.

Our proposed scheme features an innovative combination of the following
contributions.

– We conduct security assessment of the cloud from four aspects: networking,
co-residence, hypervisor vulnerabilities, and VM vulnerabilities. The proposed
security risk assessment is placement specific and crosses multiple dimensions.
We provide detailed metrics and approach to measure the security of the cloud
in the case study and experiments.

– We consider security as one objective in VMP strategies, with other objectives
and constraints at the same time. To the best of our knowledge, this is the first
work that includes a placement specific security assessment in the context of
multi-objective optimization based VMP.

– We propose a high-scalable approach, SMOOP with five placement strategies,
to achieve Pareto-optimal placement given multiple objectives. Each objective
can have different weight according to the application context of our approach.
The experimental results show the effectiveness of our strategies. SMOOP can
provide improved security of the cloud with affordable overheads.

The rest of the paper is organized as follows. In Sect. 2, we compare our con-
tribution with related work. Section 3 describes the formulation of VMP opti-
mization problem. Section 4 describes the design and implementation of SMOOP.
The evaluation results are discussed in Sect. 5 and Sect. 6 summarizes our work.

2 Related Work

As cloud computing become more popular, VMP has become one of the most
critical security problems of cloud. Recently, a lot of research on cloud computing
have set the goal to improve the security level of data center [1]. Existing research
on the co-residence based attacks, e.g., side channel attacks, demonstrates the
real threat to the normal users if they are collocated with a vulnerable or mali-
cious VM [17,23,24,28]. Thus, security aware VMP has been investigated as a
practical solution to mitigate such attacks [2,14,19].

Saeed et al. [2] presented a security-aware approach for resource allocation
in clouds which allows for effective enforcement of defense-in-depth for cloud
VMs. They tried to enhance the security level by modeling the cloud provider’s
constraints and customer’s requirements as a constraint satisfaction problem
(CSP). However, the placement generated by this method can only satisfy the
input constraints, rather than being an optimal placement to meet multiple
objectives.

278 J. Han et al.

Some other research utilizes isolation rules in the VMP. Afoulki et al. [1]
proposed a VMP algorithm which improves the security of cloud computing by
performing isolation between users. Each user can submit a list of adversary
users with whom it does not want to share a physical machine. Yu et al. [25]
also proposed isolation rules to formulate the VMs placement behavior based on
Chinese wall policies.

Our previous work [14] proposed a VM placement scheme based on security
risk of each VM, and Yuchi and Shettey [26] extended it to the VM placement
initialization. Both of them mainly focused on the dependency relations. Yuchi
and Shettey’s method also over simplified the problem and did not reflect the
potential risk caused by co-resident VMs [21,27]. Previously, we have investi-
gated to periodically migrate VMs based on the game theory, making it much
harder for the adversaries to locate the target VMs in terms of survivability
measurement [29]. But we did not consider the risk caused by the co-resident
VMs in the same physical machine.

Our work in this paper differs from the aforementioned work mainly in two
aspects. First, existing work simplifies the security consideration in the place-
ment. They mainly consider the security constraints or regulations, or vulnera-
bilities of VMs or hypervisor in the placement. They often overlook co-residency
attacks, which is a key factor in VM placement. In our security-aware VMP, we
comprehensively consider security assessment associated with placement, includ-
ing the security risks in the network connection, co-residence, VMs and hypervi-
sor. Second, existing work often emphasizes on security while overlooking other
performance factors. We propose an optimal solution satisfying multiple objec-
tives on security, resource utilization, and network traffic.

3 Problem Formulation

In this section, we describe our system and metrics to model the objectives, and
constraints of virtual machine placement in a cloud.

3.1 Threat Model and Security Assumptions

In this paper, we mainly consider co-residency based attacks, such as cross-
VM side channel attacks. Also, we assume that the attackers are capable of
utilizing vulnerabilities in both VMs and virtual machine monitors (VMMs, or
hypervisor) of the clouds.

We have the following assumptions for the cloud: ① the cloud management,
placement related software components, and the migration process are all secure;
② for simplicity, each migration of a VM will result in affordable cost in terms
of service interruption and consume the same amount of resources; ③ the cloud
provider has enough CPU, network bandwidth, and other resources to perform
arbitrary migration of VMs; and ④ the cloud provider has sufficient resources
as the reward, e.g., extra memory or CPUs, to motivate VM migration. The
above assumptions ensure that change of VM placement is both acceptable and
affordable for cloud provider and clients.

Reducing Security Risks of Clouds Through Virtual Machine Placement 279

3.2 Security Assessment

In a cloud, an attacker can compromise a VM through different attack paths.
They can compromise a VM through the vulnerabilities (in the operating system,
or applications) carried by the VM, the co-resident VMs, the host VMM, or VMs
on different physical machines having network connections. Therefore, we cannot
simply use the vulnerabilities of VMs, or the vulnerabilities of the hypervisor to
evaluate the security risk of an entire cloud. We need a comprehensive approach
to measure the security risks of a specific placement scheme.

VM1 VM2

...

VMM R2

...

VMM

VM1 VM2

R4

Host 1 Host 2

R1

R2

R3R1 R1 R3 R1

Fig. 1. Security Risk Metrics

For this purpose, we propose a four dimensional security risk evaluation
model, as shown in Fig. 1, to assess the security risk of a cloud. The new eval-
uation model covers all possible attack paths in a cloud. Four different types of
security risks are described as follows.

– VM risk (R1 in the figure): the risk/vulnerability carried by a VM itself. If a
VM has more vulnerabilities than others, it is more likely to be compromised
first. Vulnerable VMs can be used as stepping stones to attack co-resident
VMs and underlying hypervisor to gain more privileges.

– VMM/hypervisor risk (R2): the risk/vulnerability carried by a VMM/Hyper-
visor. An adversary may gain the administrative privileges via the vulnera-
bilities in a hypervisor or the control VM. Such vulnerabilities will enable the
adversary to compromise all guest VMs on the hypervisor.

– Co-residency risk (R3): the risk caused by the VMs co-resident on the same
hypervisor. Assume that, in the figure, VM1 (an attacker VM) and VM2 (a
normal user VM) share the same CPU core or are located on the same physical
machine, the attacker will be able to steal the user’s private information, such
as the cryptographic key, via side-channel attacks.

– Network risk (R4): the security risk of a VM caused by the network con-
nections. For example, VM1, located in host 1, provides web services, and
the VM2, located in host 2, contains a database server. The attacker may
compromise the database server through accessing the web server, e.g., SQL
injection.

280 J. Han et al.

3.3 An Example Using Our Model and Metrics

Using the proposed security risk assessment model, we can assign or calculate
the values of each type of the risks based on specific hardware, software, and
network configuration. In this section, we provide an example to show how to
quantify the values of each types of security risks, and also how to calculate
the overall security risk of the entire cloud. In the example, we assume we have
N VMs and M physical machines.

– R1: CVSS (Common Vulnerability Scoring System) is a popular tool to mea-
sure the vulnerabilities of software or hardware [14]. We can use vulnerability
scanner tools, such as Nessus and Qualys, to generate the vulnerability list
for every VM. We can score each VM’s risk based on the list. For example,
we can use CVSS Base Score as a VM’s risk value, with the assumption that
the vulnerable level of a VM is not higher than the worst vulnerability of that
VM. The CVSS score uses an interval scale of (0, 10) to measure the severity
of vulnerabilities. For a VM vi, its VM risk R1 is VM i

R1
= SCOREi/10, so

its range would be limited in a scale of (0, 1). Note that R1 is not affected by
a specific placement.

– R2: The risk level of a hypervisor is determined by two factors: its own vul-
nerability and the VMs running on it. For hypervisor’s own vulnerability, we
can use scanner tools to generate the vulnerability list and also use the most
severe one to obtain the SCOREhypervisor from CVSS. We use Riskhypervisor
= SCOREhypervisor/10 to indicate the vulnerability of the hypervisor so that
the value is fit in 0 to 1, similar to R1. There are different ways to calculate
how the guest VMs can affect the security of hypervisors. In this paper, we
mainly consider the VM with the highest risk since this may be the most vul-
nerable attacking surface to the hypervisor. Assume VM vi is on the host K,
its hypervisor risk R2 is calculated as: Ri

2 = Riskhypervisor(1+max(Rj
1pjK)),

where j = 1 to N , and pjK = 1 if VM vj is placed on host K as well. Different
from R1, R2 is affected by different VM placements.

– R3: A malicious VM may compromise a normal VM if they are collocated
on the same physical machine. If an attacker compromises a VM, he can
compromise, with enough time, other co-resident VMs eventually. So a VM
can survive only if all other co-resident VMs can survive. For a VM vi on the
host K, its co-residency risk R3 is calculated as: Ri

3 = 1 − ∏N
j=1(1 −Rj

1pjK),
where pjK = 1 if VM vj is placed on the physical machine K. Similar to R2,
R3 will change if VM placement changes.

– R4: If an attacker compromises a VM, he is able to compromise (with enough
time) all other VMs with network connections to the compromised VM. Con-
sidering the cascades [13] in the network, giving a VM, a depth first algo-
rithm can be applied to build all possible attack paths. In our previous work,
we also discussed how to evaluate risks of being attacked based on Markov
Chains [14]. Thus, there are different ways to evaluate the risk levels based on
network connections. In this paper, we simply consider the risk caused by only
direct network connections for simplicity, while other approaches can also be

Reducing Security Risks of Clouds Through Virtual Machine Placement 281

applied. Thus, for a VM vi, its network risk R4 is Ri
4 = 1 − ∏N

j=1(1 − Rj
1),

where vj is a VM sending packets to vi directly, and vi and vj are not on the
same host. R4 changes with different VM placements as well.

With all types of risks defined as above, we define the security risk, Ri of a
VM vi as the following.

Ri = 1 − (1 − Ri
1)(1 − Ri

2)(1 − Ri
3)(1 − Ri

4) (1)

Based on our discussions, our metrics show the risk levels of different VMs. For
example, a VM with risk level 70% is safer than a VM with risk level 80%.

3.4 Objectives in VM Placement

Assume that we have N VMs and M physical machines. There are three values
to optimize: security risk (SR), resource wastage (RW) and network traffic (NT).
Our goal is to find solutions to minimize these values.

Security Risk. Minimizing the security risk of the entire cloud is our first
objective. The security risk of a VM vi is Ri = 1−(1−Ri

1)(1−Ri
2)(1−Ri

3)(1−Ri
4).

To evaluate the security risk of the entire cloud, we need to consider the security
risk of all VMs in the cloud. In security assessment, we use the median value of
all VMs’ risk values as the risk level of the cloud. Thus, security risk is calculated
as follows.

fSR = median(Ri) (2)

where i = 1 to N . The reason to choose the median value is twofold. First, the
median value is more robust than the mean value. Second, in our placement
generation, a dangerous VM will be isolated from other VMs. Thus, VMs with
high risk values are outliers in our system. It is the same for VMs with low risk
values.

Resource Wastage. Minimizing resource wastage, while complying with the
constraints, is the second objective in VMP optimization. In this paper, we
consider the wastage of multiple resources, including CPU, memory, and disk.
In stead of using one value to measure the resource wastage, we use a vector to
represent the resources wastage.

Assume the CPU, memory and disk capacity for a host J as
〈CPUJ ,MEMJ ,DISKJ 〉. A VM vi requests resources as 〈cpui,memi, diski〉,
therefore, the CPU wastage of the host J is W c

J = (CPUJ −
∑N

i=1 cpuipiJ)/CPU j , where piJ = 1 if VM vi is placed on host J , otherwise it is
0. The memory wastage of host J is Wm

J = (MEMJ −∑N
i=1 memipiJ)/MEMJ .

The disk wastage of host J is W d
J = (DISKJ − ∑N

i=1 diskipiJ)/DISKJ .
For a physical machine J , we choose the maximum value from {W c

J ,W
m
J ,W d

J }
to represent the resource wastage of host J . We would like to minimize the total
amount of the resource wastage of the entire cloud.

fRW =
M∑

J=1

max(W c
J ,W

m
J ,W d

J) (3)

282 J. Han et al.

while subject to the following capacity constraints in each host J:

M∑

i=1

cpui × piJ<CPUJ (4)

M∑

i=1

memi × piJ<MEMJ (5)

M∑

i=1

diski × piJ<DISKJ (6)

Network Traffic. The third optimization objective is to minimize the network
traffic in cloud. One way to reduce the network traffic is to identify correlated
VMs that exchange high volume of data with each other, and then put them on
the same physical machine if possible. We use the following equation to measure
the network traffic from VM vi to VMvj :

Tij = Pij/t (7)

where Pij is the number of packets sent from VM vi to VM vj in time period of
t. Therefore, the total network traffic in the time period of t is:

fNT =
N∑

j=1

N∑

i=1

Tijgij (8)

where gij = 0 if VM vi and VM vj are placed on the same host, otherwise it is 1.
Note that our system does not limit the number of objectives or constraints.

The users can add more objectives or constraints, such as energy or migration
cost, based on their preferences.

4 SMOOP Design

With the proposed security metric of VMs, we can quantify the risk level of
a cloud. As a typical multi-objective optimization problem, the objectives may
conflict with each other. For example, if we place more VMs on a physical server,
it will be less secure due to co-residency problem. However, it can reduce the
resource wastage and network traffic. It is impractical to always find the optimal
solution minimizing all objectives. The evolutionary multi-objective algorithms
(EMOA), such as NSGAII [10], are popular solutions to such multi-objective
optimization problems. Using EMOA, we can obtain Pareto-optimal solutions
balancing on the objectives of security, network traffic and resource utilization.

Challenges. The VMP can be considered as a bin-packing problem, where
each VM needs to be placed on a physical server once and only once, so it is
an NP hard problem. The challenge is that the security metrics can only be
evaluated after the placement is specified. For example, in a specific placement

Reducing Security Risks of Clouds Through Virtual Machine Placement 283

scheme, a unique attack path exposed by co-residence may disappear in a dif-
ferent placement. Therefore, there is no generic function mapping a placement
scheme into a security assessment value. As a result, we cannot use any existing
multi-objective programming solutions to solve our problem. Furthermore, we
have complicated security strategies in each placement generation, we have to
design a new crossover and a new mutation procedure in the EMOA algorithm.

4.1 Security-Aware Multi-objective Optimization Based VMP

In this section, we present our Security-aware Multi-Objective Optimization
based virtual machine Placement (SMOOP). The algorithm is shown in Algo-
rithm 1. Table 1 describes the variables used in the algorithm.

Table 1. Variable definition

Variable Description

V N Number of virtual machines

P N Number of physical machines

N G Number of iteration

N IS Number of placement in candidate pool

N Elite Number of elite would be passed to next iteration

N C Times of crossover operation in one iteration

N M Times of mutation operation in one iteration

In practice, FFD (First-Fit with the possible fullest node) has been widely
used in VMP. It can quickly provide a placement with consideration on resource
utilization. Thus, we use it to generate a baseline for future comparison in the
algorithm. As shown in Algorithm1, SMOOP generates hundreds of placements
and passes those with high fitness value to the next iteration. In each iteration,
randomly chosen parents are applied to crossover and mutation operations. An
elite choosing function is designed to improve efficiency. For each generated tem-
porary placement in an iteration, we apply a multi-objective evaluation function
to assign ranking values. The highly ranked placements are put into a candidate
pool, and used as the parents for next iteration. The preference of multi-objective
evaluation can be adjusted (described in Sect. 4.3) in our algorithm.

In an initialization phase, the consideration for migration cost can be avoided.
Our goal is to search for the best possible placement plan based on the multi-
objectives requirement. The crossover operation is used to improve the overall
efficiency. In the re-optimization phase, which is triggered by adding VMs or
removing VMs, the migration cost is considered as an important factor in the
mutation operation to limit the number of migrating VMs (in switch() function
of Algorithm 3). Note that our goal is to improve the survivability of entire cloud,
so we do not optimize our solution for a specific VM. Therefore, our approach

284 J. Han et al.

Algorithm 1. SMOOP
Ensure: Canditate = init() by Strategies

for G = 1 → N G do
for i = 1 → N E do

Elite[i] = Elite choosing(Canditate)
end for
for j = 1 → N C do

(X, Y) = Random select(Canditate)
Off C[j] = Crossover(X, Y)

end for
for k = 1 → N M do

X = Random select(Canditate)
Off M[k] = Mutation(X)

end for
Temp = fitness sorting(Elite, Off C, OFF M)
for i = 1 → N G do

Candidate[i] = temp[i]
end for

end for

may lower the security level of a specific VM, while the overall security level of
whole cloud can still be improved.

4.2 Crossover and Mutation Operation

The crossover operation, shown in Algorithm 2, is one of the key elements in our
algorithm. The main purpose of the crossover operation is to guarantee that there
is always a chance to generate new improved placement based on the existing
placement in the current iteration.

Isolated Zones. Since the security is a key factor in the placement generation,
we introduce isolated zones in our algorithm to accommodate different security
demand. Physical machines with the highest hypervisor risk levels are put into
isolated zones. The most dangerous VMs and VMs connected to them are placed
into the isolated zones by priorities. The purpose of the isolated zones is to isolate
the most dangerous VMs first and reduce the number of attack paths through
network connections.

If all physical machines use the same copy of hypervisor, the vulnerabilities
of all the hypervisors will also be the same. In such a situation, we have the
following assumptions. ① The possibility to compromise any physical machine
through the hypervisor attack surface for a specific VM is the same. ② If the
communication bandwidth between two VMs is larger than zero, the possibility
to compromise one VM through another VM will be non-zero.

We propose five security related strategies to reduce security risk during each
placement generation. Placement strategy I: Put a VM into a physical machine

Reducing Security Risks of Clouds Through Virtual Machine Placement 285

Algorithm 2. Crossover(X, Y)
Temp = Blank P lacement Object
Rank A = Rank(X)
Rank B = Rank(Y)
for i = 1 → P N do

if Rank A[i] > Preset value then
temp ← Rank A[i]

end if
if Rank B[i] > Preset value then

temp ← Rank B[i]
end if

end for
Remove duplicate VM(temp)
Ran = Gen Random list(VM)
for i = 1 → V N do

if Ran[i] is not in temp then
temp ← Ran[i] by Strategies

end if
end for
Return Temp

which has network connections with it. The purpose is to reduce R4 caused by
network connections.

Assume that physical machine PMI already has a set of VMs, Si =
(va, . . . , vi) and PMJ has a set of VMs, Sj = (vb, . . . , vj). There is no net-
work connections between Si and Sj . When a new VM vn is to be placed and
it has network connections with at least one VM in PMI . If vn is placed into
PMI , Sj on PMJ will not be affected by attacks through network connections.
It will only affect Si on physical machine PMI . For any VM vi ∈ Si, Ri

3 will be
updated by adding the new VM vn. Assume that the current co-residency risk
of vi is Old(Ri

3), then we have

New(Ri
3) = Old(Ri

3) + (1 − Old(Ri
3))R

n
1 (9)

where Rn
1 is the risk level of vn.

If vn is placed into a physical machine PMJ , not only R3 will be updated,
R4 introduced by network connections will also be increased by

∑K
v=c Tnv (All

traffic through VM vn to connected VMs on physical machine PMI).
According to the security metrics defined earlier, in this case, the co-residency

risk of each VM vj ∈ Sj will be

New(Rj
3) = Old(Rj

3) + (1 − Old(Rj
3))R

n
1 (10)

Also, R4 of VM vj increases as well.

New(Rj
4) = Old(Rj

4) + (1 − Old(Rj
4))R

n
1 (11)

286 J. Han et al.

Therefore, following strategy 1, assign VM vn on to PMI rather than PMJ

can reduce security risk.
We have more strategies applied in the placement generation. Placement

strategy II: high risk VMs should be put into the isolated zones. Placement strat-
egy III: low risk VM without any connection with VMs in isolated zones should
be put into low risk physical machines. Strategy II and III generate physical
machines that contain only low risk VMs and have no network connections with
high risk VMs in isolated zones. Placement strategy IV: marked lowest and high-
est hypervisor risk physical machines should have a higher probability to be kept
during crossover operation. This is based on our strategy II and III. Placement
strategy V: If a VM on one physical machine has connection with a VM on a dif-
ferent physical machine, we should migrate one of them on to the same physical
machine.

Mutation Operation. Mutation operations, shown in Algorithm 3, operate on
a random-chosen temporary placement, trying to obtain an improved result. Its
purpose is to keep evolving the existing placement with limited migration cost.

Algorithm 3. Mutation(X)
Temp = Blank P lacement Object
temp ← X
for i = 1 → Preset Maximum number do

temp ← Switch(temp) by Strategy of Switching VM
end for
Return Temp

When a Pareto-optimal solution is generated, our algorithm double checks
the workload balance in every physical machine, migrating marked VMs among
physical machines. In the switch() function of the algorithm, a VM can only be
switched (migrated) to another physical machine to which it has network con-
nections. The strategy is to guarantee that random evolving will not jeopardize
the isolation of dangerous VMs and reduce unnecessary switching operation.

4.3 Prioritize the Objectives

In our current fitness function, we have three objectives, including minimizing the
security risk, minimizing the resource wastage, and minimizing network traffic.
Our algorithm tries to provide a Pareto-optimal solution which can be as good
as possible in every degree based on the three objectives. To enable users to
prioritize the objectives according to their business preference, we can add weight
factors into the fitness function.

f = w1fSR + w2fRW + w3fNT (12)

Reducing Security Risks of Clouds Through Virtual Machine Placement 287

where wi represent different weights and
∑3

i=1 wi = 1. If we consider that the
security is more important than the other two objectives, we can assign higher
weight on the security risk. Currently, our algorithm can optimize and balance
security, the utilization of CPU, memory and disk, and the network traffic. Our
algorithm can be easily extended to support more objectives and constraints,
such as energy.

5 Evaluation

We implemented our solution in Java. All input data are provided through con-
figuration files. Multiple threads are used to improve the performance. We ran-
domly generate a large number of VMs with different parameters to evaluate
SMOOP. In our evaluation, for each VM, we randomly assign the requirement of
CPU, memory, and disk. The vulnerability score is assigned based on the uniform
distribution. Following the same method, we configure the physical machine.

5.1 Computing Complexity

Assume that there are M physical servers and each server has N VMs. Our
algorithm iterates for k times. Assume that the fitness value of a VM can be
calculated in constant time with a fitness function, which is O(N). We sort
the candidate pool with complexity of O(NlogN). The elite choosing operation
will take constant time. The crossover and mutation operation in our algorithm
is bounded by O(MN2). The overall combined complexity of our algorithm is
O(k(MN2 + N logN + N)), thus O(kMN2). Multi-threading is used in our
implementation. We used 8 threads to conduct elite selection, crossover and
mutation operation simultaneously.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Numbers of VM

101

102

103

104

105

106

Ti
m

e
co

ns
um

ed
 (m

s)

Time consumed for each generation

Fig. 2. Scalability

288 J. Han et al.

We test our implementation in a 8 core processor with 16GB memory. The
overall performance of our algorithm is affected by the number of VMs, the
number of physical machines, and the number of candidate placement gener-
ated in each generation. Figure 2 shows the computing time for each generation
under the following setting: ① 100 different placements are generated for each
generation. ② 270 operations are done in each generation. With 10000 VMs and
500 physical machines, each generation takes about 15–20 min. If we reduce the
number of VMs to 3000, each generation takes around 2 min.

5.2 Effectiveness in Risk Reduction

Security risk is a key consideration in VMP. To evaluate if our strategies can
improve the security level of the entire cloud, we conduct the experiments con-
sidering risk level as the only objective in the placement. Figure 3 shows the
security risk with 800 VMs and 60 physical machines. At the beginning of each
simulation, we always generate 100 placement with the random-FFD algorithm
and use the lowest risk level as the baseline reference. We collect the placement
with the lowest risk level in each generation. Within 20 generations, the risk
level of whole cloud can be reduced by 25% to 30%.

Figure 4 shows the security risk with different number of VMs and physical
machines in each generation. Despite the increased number of the VMs, the
median value of the risk level of VMs is stable within the range of 0.82 to
0.84. If we check placement with the lowest risk level in the first generation,
our algorithm improves with the increased number of the VMs. We repeat our
experiment 20 times with different numbers of VMs and physical machines. The
reduced risk level is from 5% (400 VMs and 20 physical machines) to 15% (6400
VMs and 400 physical machines) just in the first generation.

5.3 Effectiveness of Multi-objective Optimization

In this evaluation, we consider multi-objectives on risk level, resource wastage,
and network traffic.

Figure 5 shows experimental results with weight setting (0.8, 0.1, 0.1) in an
environment of 800 VMs and 60 physical machines. The risk level has weight of
80%, resource wastage and network traffic have weight of 10% for each in the
fitness function. We collect the placement with best fitness value. The baseline is
still the best placement chosen from 100 random-FFD placements. If a physical
machine can hold hundreds of VMs, the placement generated by FFD will be
using the minimum number of physical machines. With setting of (0.8, 0.1, 0.1),
the active number of physical machines and resource wastage are limited, with
much improved security.

We also run the experiment with weight setting (0.4, 0.3, 0.3) in an environ-
ment of 3000 VMs and 200 physical machines, and the results are shown in Fig. 6.
Since the resource wastage and network traffic have higher weights, the allowance
of resource wastage was controlled and it also affects the security improvement

Reducing Security Risks of Clouds Through Virtual Machine Placement 289

0 2 4 6 8 10 12 14 16 18 20

Security Risk Conduction Curve (VM:800 PM:60)

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

F
itn

es
s

V
al

ue
(C

irc
le

)
an

d
R

is
k

Le
ve

l(T
ria

ng
le

)
Security Oriented Improvement comparing with FFD (Normalized)

Fitness Value
Risk Level

Fig. 3. Comparing with random-FFD

0 1 2 3 4 5 6 7 8 9 10

Security Risk Conduction Curves

0.75

0.8

0.85

0.9

0.95

1

R
is

k
Le

ve
l

Risk Level Conduction with Different VM Numbers

VM200
VM400
VM800
VM1600

Fig. 4. Security improvement with dif-
ferent number of VMs.

0 1 2 3 4 5 6 7 8 9 10

Improvment by Generation

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

F
itn

es
s

V
al

ue
(C

irc
le

)
an

d
R

is
k

Le
ve

l(T
ria

ng
le

)

Comparing (0.8 0.1 0.1) with Random-FFD (normalized)

Fitness Value
Risk Level
Recouse Wastage
Network Traffic

Fig. 5. Multi-objective optimization

0 1 2 3 4 5 6 7 8 9 10

Improvment by Generation

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

F
itn

es
s

V
al

ue
(C

irc
le

)
an

d
R

is
k

Le
ve

l(T
ria

ng
le

)
Comparing (0.4 0.3 0.3) with Random-FFD (normalized)

Fitness Value
Risk Level
Recouse Wastage
Network Traffic

Fig. 6. Multi-objective optimization 2

we can achieve. A cloud provider can always change the optimization preferences
by changing the weights of different objectives.

5.4 Comparison with Random-FFD Algorithm

In the experiment, we use with 1600 VMs and 120 physical machines, we generate
100 placements with the random-FFD algorithm. We choose the placement with
the lowest median value of risk level. After running our algorithm to reduce
the risk level, we choose the best placement. As shown in Fig. 7, we can see
that the risk level of the entire VM set has been effectively reduced. In the
figure, the X-axis is the risk level of VMs. For example, 10% means that the
risk level is between 10% and 20%. With 1600 VMs, the risk level under 50%
is improved by 15% to 35%. The risk level above 80% dropped from 54% to

290 J. Han et al.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Distribution of Risk Level of whole WM set

0

100

200

300

400

500

600

Fr
eq

ue
nc

y(
N

um
be

r i
n

16
00

 V
M

s)

Effectiveness of SMOOP

ran_FFD
SMOOP

Fig. 7. Comparison with distribution in 1600 VMs and 120 PMs

33%. The experimental results demonstrate our placement strategies can greatly
improve the security level of the entire cloud.

6 Conclusion

In this paper, we describe an approach for comprehensive security assessment
of VMP. We quantify the security risks of the cloud based on the vulnerabil-
ities caused by various factors, including the network, the physical machines,
the VMs, and the co-residency of VMs. To optimize these objectives, we have
designed a new scheme to generate VMP based on multiple objectives optimiza-
tion with the given resource and other constraints. Our proposed strategy seeks
the Pareto-optimal placement while considering multiple optimization objectives
and constraints. The experimental results demonstrate the effectiveness of our
approach and the improvement compared with existing solutions.

Acknowledgment. This project is partially supported by ARO grant W911NF-15-
1-026 and NSF CNS-1634441.

References

1. Afoulki, Z., Bousquet, A., Rouzaud-Cornabas, J.: A security-aware scheduler for
virtual machines on iaas clouds. Report 2011 (2011)

2. Al-Haj, S., Al-Shaer, E., Ramasamy, H.V.: Security-aware resource allocation in
clouds. In: 2013 IEEE International Conference on Services Computing, pp. 400–
407, (June 2013)

3. Alicherry, M., Lakshman, T.V.: Optimizing data access latencies in cloud systems
by intelligent virtual machine placement. In: 2013 Proceedings IEEE INFOCOM,
pp. 647–655, (April 2013)

Reducing Security Risks of Clouds Through Virtual Machine Placement 291

4. Amazon: Amazon web services. http://aws.amazon.com
5. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev. 37(5), 164–177 (2003). http://doi.acm.org/10.1145/1165389.945462

6. Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E.K., Moatti, Y., Lorenz, D.H.:
Guaranteeing high availability goals for virtual machine placement. In: 2011 31st
International Conference on Distributed Computing Systems, pp. 700–709, (June
2011)

7. Caron, E., Le, A.D., Lefray, A., Toinard, C.: Definition of security metrics for
the cloud computing and security-aware virtual machine placement algorithms.
In: 2013 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, pp. 125–131, (October 2013)

8. CVE-2007-4993: Xen guest root can escape to domain 0 through pygrub. http://
cve.mitre.org/cgibin/cvename.cgi?name=CVE-2007-4993

9. CVE-2007-5497: Vulnerability in xenserver could result in privilege escalation and
arbitrary code execution. http://suuport.citrix.com/article/CTX118766

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. default, M.: Kernel based virtual machine. http://www.linux-kvm.org
12. Hacker, A.: Xbox 360 hypervisor privilege escalation vulnerability. http://www.

securityfocus.com/archive/1/461489
13. Horton, J.D., Cooper, R., Hyslop, W., Nickerson, B.G., Ward, O., Harland, R.,

Ashby, E., Stewart, W.: The cascade vulnerability problem. J. Comput. Secur.
2(4), 279–290 (1993)

14. Li, M., Zhang, Y., Bai, K., Zang, W., Yu, M., He, X.: Improving cloud survivability
through dependency based virtual machine placement, (2012)

15. Maziku, H., Shetty, S.: Network aware vm migration in cloud data centers. In: 2014
3rd GENI Research and Educational Experiment Workshop, pp. 25–28, (March
2014)

16. Phan, D.H., Suzuki, J., Carroll, R., Balasubramaniam, S., Donnelly, W., Botvich,
D.: Evolutionary multiobjective optimization for green clouds. In: Proceedings of
the 14th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, GECCO 2012, pp. 19–26. ACM, New York (2012)

17. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, CCS 2009,
pp. 199–212. (2009). http://doi.acm.org/10.1145/1653662.1653687

18. Rutkowska, J., Wojtczuk, R.: Xen owning trilogy. Talk at Black Hat (2008)
19. Shetty, S., Yuchi, X., Song, M.: Security-aware virtual machine placement in cloud

data center. In: Moving Target Defense for Distributed Systems, WN, pp. 13–24.
Springer, Cham (2016). doi:10.1007/978-3-319-31032-9 2

20. Shigeta, S., Yamashima, H., Doi, T., Kawai, T., Fukui, K.: Design and imple-
mentation of a multi-objective optimization mechanism for virtual machine place-
ment in cloud computing data center. In: Yousif, M., Schubert, L. (eds.) Cloud-
Comp 2012. LNICSSITE, vol. 112, pp. 21–31. Springer, Cham (2013). doi:10.1007/
978-3-319-03874-2 3

21. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.M.: A placement vulnerability
study in multi-tenant public clouds. In: USENIX Security, pp. 913–928 (2015)

http://aws.amazon.com
http://doi.acm.org/10.1145/1165389.945462
http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2007-4993
http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2007-4993
http://suuport.citrix.com/article/CTX118766
http://www.linux-kvm.org
http://www.securityfocus.com/archive/1/461489
http://www.securityfocus.com/archive/1/461489
http://doi.acm.org/10.1145/1653662.1653687
http://dx.doi.org/10.1007/978-3-319-31032-9_2
http://dx.doi.org/10.1007/978-3-319-03874-2_3
http://dx.doi.org/10.1007/978-3-319-03874-2_3

292 J. Han et al.

22. Xu, J., Fortes, J.A.B.: Multi-objective virtual machine placement in virtualized
data center environments. In: Green Computing and Communications (Green-
Com), 2010 IEEE/ACM International Conference on Cyber, Physical and Social
Computing (CPSCom), pp. 179–188, (December 2010)

23. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy, pp. 640–656, (May 2015)

24. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside
the cloud. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 929–
944, USENIX Association, Washington, D.C. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/xu

25. Yu, S., Gui, X., Tian, F., Yang, P., Zhao, J.: A security-awareness virtual machine
placement scheme in the cloud. In: 2013 IEEE 10th International Conference on
High Performance Computing and Communications 2013, IEEE International Con-
ference on Embedded and Ubiquitous Computing, pp. 1078–1083, (November 2013)

26. Yuchi, X., Shetty, S.: Enabling security-aware virtual machine placement in iaas
clouds. In: 2015 IEEE Military Communications Conference, MILCOM 2015, pp.
1554–1559, (October 2015)

27. Zhang, W., Jia, X., Wang, C., Zhang, S., Huang, Q., Wang, M., Liu, P.: A com-
prehensive study of co-residence threat in multi-tenant public paas clouds. In:
Lam, K.-Y., Chi, C.-H., Qing, S. (eds.) ICICS 2016. LNCS, vol. 9977, pp. 361–375.
Springer, Cham (2016). doi:10.1007/978-3-319-50011-9 28

28. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in paas clouds. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2014, pp. 990–1003. ACM,
New York (2014)

29. Zhang, Y., Li, M., Bai, K., Yu, M., Zang, W.: Incentive compatible moving tar-
get defense against VM-colocation attacks in clouds. In: Gritzalis, D., Furnell,
S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 388–399. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30436-1 32

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/xu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/xu
http://dx.doi.org/10.1007/978-3-319-50011-9_28
http://dx.doi.org/10.1007/978-3-642-30436-1_32

Firewall Policies Provisioning Through
SDN in the Cloud

Nora Cuppens1, Salaheddine Zerkane1,2,3(B), Yanhuang Li1, David Espes2,3,
Philippe Le Parc2,3, and Frédéric Cuppens1,2

1 IMT Atlantique, 2 Rue de la Chataigneraie, 35510 Cesson-sevigne, France
zerkanesalaheddine@gmail.com

2 BCOM, 1219 Avenue des Champs Blancs, 35510 Cesson-sevigne, France
3 Lab-STICC, Université de Bretagne Occidentale,

20 Avenue Le Gorgeu, 29200 Brest, France

Abstract. The evolution of the digital world drives cloud computing
to be a key infrastructure for data and services. This breakthrough is
transforming Software Defined Networking into the cloud infrastructure
backbone because of its advantages such as programmability, abstraction
and flexibility. As a result, many cloud providers select SDN as a cloud
network service and offer it to their customers. However, due to the rising
number of network cloud providers and their security offers, network
cloud customers strive to find the best provider candidate who satisfies
their security requirements. In this context, we propose a negotiation and
an enforcement framework for SDN firewall policies provisioning. Our
solution enables customers and SDN providers to express their firewall
policies and to negotiate them via an orchestrator. Then, it reinforces
these security requirements using the holistic view of the SDN controllers
and it deploys the generated firewall rules into the network elements. We
evaluate the performance of the solution and demonstrate its advantages.

Keywords: Security policies · Software Defined Networking · Cloud
computing · Orchestration · Firewall · OpenFlow · Service providers ·
ABAC

We implement our solution into an existing SDN Firewall solution by enhanc-
ing its orchestration layer. Then, we deploy a use case for our proposition in
an SDN infrastructure. The scenario compounds a NSC and 3 different NSPs.
Each provider delivers a type of SDN firewall whether it is a stateful proac-
tive SDN firewall [36], a stateful reactive SDN firewall [37] or a stateless SDN
firewall [16,31]. All the peers express their firewall policies using our language.
The Orchestrator mediates between them, selects the best provider and runs a
negotiation process in order to reach a mutual agreement with the customer.
Afterwards, it sends the contract to the chosen firewall service. The latter inter-
prets it into OpenFlow [1,12,25] rules and installs them in the network elements.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 293–310, 2017.
DOI: 10.1007/978-3-319-61176-1 16

294 N. Cuppens et al.

We evaluate the performance of our framework by setting a test-bed for the
aforementioned scenario.

The rest of the paper is organized as follows: Sect. 1 reviews existing pro-
posals on policy-related solutions. Section 2 describes the formalism and all the
processes from policy expression till the interpretation process of the firewall poli-
cies into OpenFlow rules and their deployment. Section 3 presents the integration
of our solution into an existing SDN firewall environment and its performance
experimentation results. Section 4 concludes the paper and outlines future work.

1 Related Work

The literature lacks of propositions that integrate to SDN security applications
(especially SDN firewalls) firewall policy provisioning in the orchestration layer.
There is an open research field on the subject in terms of SDN as a service and
firewall policies orchestration in the cloud. To the extent of our studies the major-
ity of SDN security solutions do not support negotiation between firewall policies,
neither propose mutual agreement processes between providers nor reinforcement
function of the client-provider agreement. CloudWatcher [32], FRESCO [13,33]
and OpenSec [17] are three famous SDN propositions that rely on specific policy
script languages. They lack interoperability and openness since they are plate-
form specific. In addition, they do not integrate a policy management process in
order to interact with the cloud level. Other solutions focus on policy expression
and enforcement. Tang et al. [34] develop a service oriented high level policy
language to specify network service provisioning between end nodes. Batista et
al. [2] propose the PonderFlow, an extension of Ponder [9] language to OpenFlow
network policy specification. EnforSDN [3] proposes a management process that
exploits SDN principles in order to separate the policy resolution layer from the
policy enforcement layer in network service appliances. The concept improve the
enforcement management, network utilization and communication latency, with-
out compromising network policies. However, it can not handle stateful security
applications like stateful firewalls.

Many solutions have been proposed for selecting NSP in the cloud. There are
two trends in the literature. The major one focusses on NSC’s security require-
ments without taking into consideration NSP’s constraints. [18,23] define the
selection strategy exclusively on NSC’s capacity. Bernsmed et al. [4] present
a security SLA (Service Level Agreement) framework for cloud computing to
help potential NCSs to identify necessary protection mechanisms and facilitate
automatic service composition. In [6], different virtual resource orchestration
constraints are resumed and expressed by Attribute-Based Paradigm from NSC
perspective. The other trend which is part of our work takes into consideration
NSP capacities and offers in order to perform the selection. In [20], both NSP
and NSC can express security requirements in SLA contract then these security
requirements are transformed to OrBAC [15] policies. Li et al. [21] proposes a
method to measure the similarity between security policies and suggest using
the solution in SP selection process.

Firewall Policies Provisioning Through SDN 295

Most of the work in the literature define security policies negotiation based on
access control negotiation. The literature is classified in 3 types of negotiations:
(1) negotiation with no constraints, (2) negotiation with global constraints, (3)
negotiation with local constraints [11]. For example, [5] examines the problem
of negotiating a shared access state, assuming all negotiators use the RBAC [30]
policy model. Based on a mathematical framework, negotiation is modeled as
a Semiring-based Constraint Satisfaction Problem (SCSP) [7]. In [35], authors
argue that the guidance provided by constraints is not enough to bring practical
solutions for automatic negotiation. Thus, they define an access control policy
language which is based on Datalog [14] with constraints and the language can
be used to define formal semantics of XACML [28]. Towards the need for human
consent in organizational settings, Mehregan et al. [22] develop an extension
of Relationship-Based Access Control (ReBAC) model [10] to support multiple
ownership, in which a policy negotiation protocol is in place for co-owners to
come up with and give consent to an access control policy. Some autors consider
security policy negotiation as a process of contract establishment. For example,
Li et al. [19] propose to integrate policy negotiation in contract negotiation
by introducing bargaining process. An extension of the negotiation model is
proposed in [29] and the model is designed for privacy policy negotiation in
mobile health-Cloud environments. In our work we combine the 3 negotiation
types and adapt them to negotiate SDN firewall policies in the cloud.

Our solution fills the aforementioned gaps. It meets key-functional require-
ments for user-centric clouds as (1) it addresses the firewall service configuration
at the management layer. (2) it offers a language for firewall policies expression.
(3) It supports multiple policy models in order to translate attribute-based secu-
rity expression to concrete policies. (4) It selects the best SDN Firewall NSP.
(5) It provides a negotiation protocol for NSC and NSP based on 3 types of
negotiations. (6) it establishes a service level agreement between NSC and NSP.
(7) It reinforces the contract according to SDN infrastructure configuration. (8)
Then, it interprets it into OpenFlow rules and deploys them inside the network.
To the best of our knowledge, there is no method in the literature that considers
all these points together.

2 SDN Firewall Policy Provisioning Model

Both NSC and NSPs specify their firewall policies using our proposed expression
Language. Then the Orchestrator assesses the expressions by comparing NSP’s
service templates with NSC’s policies after receiving them. It ranks the NSPs
and selects the best one which fulfills the most NSC’s requirements. It starts a
negotiation process with NSC in the case it is necessary. A successful negotiation
generates a firewall policy agreement. This contract is derived from high-level
firewall policies and sent to the chosen SDN firewall service. The latter reinforces
the received policies according to its view (topology, previous security policies
and other network configurations) and translates them into OpenFlow rules.
Afterwards, it sends the OpenFlow rules to the SDN controllers. Each one of
them deploys the received OpenFlow rules on its network elements.

296 N. Cuppens et al.

2.1 Scenario Description

We introduce a use case to experiment our concept. The subjects involved in the
scenario are NSC, SDN orchestrator and 3 NSPs. NSC requires an SDN Firewall
service that meets its firewall policies (Requirements). Each NSP provides a
type of SDN firewalls and a set of firewall policies (Obligations). The three SDN
firewall services are as follows:

1. NSP1: SDN Reactive Stateful Firewall [37]. It forwards systematically
all the packets to the stateful firewall Application over the SDN controller.
The application verifies each packet using its access control table and reacts
to these network events by installing the proper stateful firewall OpenFlow
rules in the Network Elements. It relies on the Finite State Machine of all
the connections. This service spares Network elements resources. However, it
shifts the computing and memory loads on the controller. As a result, the
latter became vulnerable to some DDoS attacks.

2. NSP2: SDN Proactive Stateful Firewall [36]. The service is based on a
white list approach. It closes all the accesses and opens only the routes to the
authorized connections while tracking their states. The service pre-installs
all the Stateful firewall OpenFlow rules in the Network Elements. The latter
sends each time a copy of their events to the Firewall service. The proactive
service protects against DDoS attacks. It delegates also the access control to
the Network Elements.

3. NSP3: Stateless SDN Firewall [16,31]. The service does not track the
connections states and it is vulnerable to DDoS attacks. However it consumes
fewer resources in the Network Elements and in the Controller comparing with
the above services.

2.2 Expression of Firewall Policies

We propose an SDN firewall policy language to homogenize NSP’s obligations
and NSC’s requirements. The proposed language is inspired from the Attribute-
Based Access Control Model (ABAC) [8]. It allows expressing firewall policies
based on a common template. These unification guarantees the interoperability
between the Obligations and the Requirements. The grammar of our language
is as follows:

Π is the set of all the firewall policies. It describes the access controls within
the dynamic environment of the allocated cloud resources: Π = {π1, π2, ..., πm}
where πi=1..m are firewall policies.

Θ is a set of Obligations. It encompasses all the firewall policies of Π
expressed by NSPs. Θ = {θ1, θ2, ..., θk}

Φ is a set of Requirements. It encompasses all the firewall policies of Π
expressed by NSC. Φ = {φ1, φ2, ..., φj}

Where Π = Θ ∪ Φ and πi=1..m ≡ θi=1..k ∨ φi=1..j

Each firewall policy πi is formed by many atomic elements εi=1..n:
πi=1..m ≡ ε1 ∧ ε2 ∧ ... ∧ εn

Firewall Policies Provisioning Through SDN 297

εi=1..n is defined by a preposition of predicates. Each predicates defines a pro-
priety of the element.

Theorem 1. A(εi) and B(εi) are two predicates defining εi proprieties. Predi-
cates equivalence is determined by the preposition : A(εi) ∈ Ω,B(εi) ∈ Ψ | (Ψ =
Ω) → (A(εi) ≡ B(εi)).

The atomic rule element εi=1..n is formed by the following predicates :

1. Type: type(εi) ≡ subject(εi) ∨ action(εi) ∨ object(εi) ∨ context(εi)
2. Domain: domain(type(εi)) ∈ {protocol, time...}. Domain restricts the unit

of an element.
3. Value: value(type(εi)) ≡ variable(type(εi)) ∨ non-variable(type(εi)).

variable has not an assigned value while non-variable has an already assigned
value. Both variable and non-variable can be assigned by three kinds of data
types:
(a) constant: numeric or semantic value, ex. value(type(εi)) = TCP .
(b) interval: numeric interval, ex. value(type(εi)) = [8 : 00, 20 : 00]
(c) set: a collection of values, ex. value(type(εi)) = {15 : 00, 16 : 00}
For simplification, we use xi to present a variable, xi ≡ variable(type(εi))

4. Scope: it defines the access to the values of a variable. It can be:
(a) Public preference: pubpre(xi) a public preference variable is accessible

as public information.
(b) Private preference: pripre(xi) a private preference variable is a local

configuration that can not be disclosed.

If context is not specified in a policy we add a universal context element �. It
indicates that all the obligations for the context are acceptable.

(context(εi) ≡ �) → ((domain(context(εi)) ≡ �) ∧ (value(context(εi)) ≡ �))

Finally we write:
εi ≡ type(εi)∧domain(type(εi))∧value(type(εi))∧(pubpre(xi)∨pripre(xi))

When the scope is not defined: εi ≡ type(εi)∧domain(type(εi))∧value(type(εi))
The firewall policies given in Sect. 2.1 using our language are defined in Table 1.

2.3 Assessment of Firewall Policies

The assessment of firewall policies is based on matching the Obligations with
the Requirements in order to determine which NSPs’ policies satisfies NSC’s
requests. This process depends on two level of relationships. Element-Element
relation which relies on corresponding the predicates of the firewall policies ele-
ments. The second level (Policy-Policy relation) focuses on finding the relation-
ships between the matched elements.

298 N. Cuppens et al.

Table 1. Firewall policy expression for NSC, NSP1, NSP2 and NSP3

NSC

φ1

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol time

value {NSC, NSP} pass
{HTTP, TCP,

ICMP} [0:00,24:00]

φ2

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol connection exc

value {NSC, NSP} x2 TCP
TCP failed Time

>30

Scope -
pripre ({quarantine,

block, alert})
- -

φ3

Element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol attack detection
value {NSC, NSP} block ICMP DoS detection

NSP1

θ1
element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol time
value NSP x2 x3 x4

Scope -
pubpre({pass,

block})
pubpre({HTTP,
TCP, ICMP})

�
θ2

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol connection exc
value NSP x2 x3 x4

Scope -
pripre({block,

alert})

pubpre({TCP,
HTTP, SSH,

ICMP})
�

NSP2

θ1 (same policy as NSP1)
θ2 (same policy as NSP1)

θ3
Element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation protocol attack detection
value NSP block x3 x4

Scope - -
pubpre({HTTP,

TCP,SSH,
ICMP})

pubpre(
{Poisoning,

DoS detection})

NSP3

θ1 (same policy as NSP1)
θ4

element ε1 ε2 ε3 ε4
type subject action object context

domain organization firewall operation IP address �
value NSP x2 x3 x4

Scope -
pubpre({pass,

block})
� �

Firewall Policies Provisioning Through SDN 299

Element-Element Relation. There are five relations between the elements:

1. inconsistent: (type(εi) 	≡ type(εj)) → (εi
� εj). If two rule elements εi

and εj have not equivalent type predicates then they are in inconsistent
relation denoted: εi
� εj . For example, in Table 1, φ1.ε1
� θ1.ε2 because
subject(φ1.ε1) 	≡ action(θ1.ε2)

Theorem 2. Not equivalence of type is defined as follows:
type(εi) ∈ Ω, type(εj) ∈ Ψ | ((Ω 	⊆ Ψ) ∧ (Ψ 	⊆ Ω)) → (type(εi) 	≡ type(εj))

2. comparable: ((type(εi) ≡ type(εj)) ∧ (domain(εi) ∼= domain(εj))) → (εi ∼
εj). If two rule elements εi and εj have equivalent type predicates and their
domain predicates are in congruence, then they are in comparable relation. It
is denoted with εi ∼ εj . For example, in Table 1, φ1.ε2 ∼ θ1.ε2 because their
subject predicates are equivalent and their domain predicates are congruent.

Theorem 3. Domain congruence is defined as follows:
domain(εi) ∈ Ω, domain(εj) ∈ Ψ | ((Ω ⊆ Ψ) ∨ (Ψ ⊆ Ω)) → (domain(εi) ∼=
domain(εj))

3. equal: ((εi ∼ εj) ∧ (value(type(εi)) ∼= value(type(εj)))) → (εi = εj). If
two rule elements εi and εj are comparable and their values predicates are in
congruence, then they are in equal relation denoted with εi = εj . For example,
in Table 1, φ2.ε3 = θ3.ε3 because both elements are comparable and their
value predicates are congruent ({TCP} ⊆ {HTTP, TCP, SSH, ICMP}).

Theorem 4. Value congruence is defined as follows:
value(type(εi)) ∈ Ω, value(type(εj)) ∈ Ψ | ((Ω ⊆ Ψ) ∨ (Ψ ⊆ Ω)) →
(value(type(εi)) ∼= value(type(εj)))

4. unequal: ((εi ∼ εj) ∧ (value(type(εi)) 	≡ value(type(εj)))) → (εi 	= εj). If
two rule elements εi and εj are comparable but do not have equivalent value,
they are in unequal relation denoted with εi 	= εj . For example, in Table 1,
φ1.ε2 	= θ3.ε2 because both are comparable however they have not equivalent
values (pass 	≡ block).

Theorem 5. Not equivalence of value is defined as follows:
type(εi) ∈ Ω, type(εj) ∈ Ψ | ((Ω 	⊆ Ψ) ∧ (Ψ 	⊆ Ω)) → (value(type(εi)) 	≡
value(type(εj)))

5. incomparable: ((type(εi) ∼= type(εj)) ∧ (domain(εi) 	≡ domain(εj))) →
(εi � εj). If two rule elements εi and εj have equivalent type predicates
and not equivalent domain predicate, then they have incomparable relation
denoted with εi � εj . For example, in Table 1, φ1.ε3 � θ4.ε3 because they have
congruent type predicates but their domains are not equivalent (protocol 	≡
IP address).

Theorem 6. Congruence of type is defined as follows:
type(εi) ∈ Ω, type(εj) ∈ Ψ | ((Ω ⊆ Ψ) ∨ (Ψ ⊆ Ω)) → (type(εi) ∼= type(εj))

300 N. Cuppens et al.

Policy-Policy Relations. We derive from Element-Element relations, three
relations between policies. These relations are as follows:

1. match: (P 1 ∧ P 2 ∧ ... ∧ Pn) → (πα �� πβ)
Pi ≡ ((πα.εi = πβ .ε1) ∨ ... ∨ (πα.εi = πβ .εn)) | πα, πβ ∈ Π, i = 1..n
If any element of a policy α is in equal relation with another element of a
policy β, then the two policies are in match relation denoted with πα �� πβ .
For example, in Table 1, φ3 �� θ3 because (φ3.ε1 = θ3.ε1) ∧ (φ3.ε2 = θ3.ε2) ∧
(φ3.ε3 = θ3.ε3) ∧ (φ3.ε4 = θ3.ε4).

2. mismatch: ∃εi∃εj(πα.εi � πβ .εj) → (πα � πβ) | πα, πβ ∈ Π. If there are at
least incomparable elements εi and εj from two policies πα and πβ , then the
two policies have mismatch relation denoted with πα � πβ . For example, in
Table 1, φ3 � θ2 because φ3.ε4 � θ2.ε4.

3. potential match: ((∀εi∀εj(πα.εi ∼ πβ .εj)) ∧ (∃εk∃εl(πα.εk 	= πβ .εl))) →
(πα ∝ πβ) | πα, πβ ∈ Π. If all the elements of the policies πα and πβ are
comparable but it exists at least an unequal relation between two of their
respective elements then the two policies are in a potential match relation
denoted πα ∝ πβ . For example, in Table 1, φ1 ∝ θ1 because ((φ1.ε1 ∼ θ1.ε1)∧
(φ1.ε2 ∼ θ1.ε2) ∧ (φ1.ε3 ∼ θ1.ε3) ∧ (φ1.ε4 ∼ θ1.ε4)) ∧ (φ1.ε1 	= θ1.ε1).

NSP Ranking. The orchestrator ranks each NSP based on the relations
between the Requirements and the Obligations (see Sect. 2.3). This process
enables selecting the most compliant NSP according to the Algorithm 1.

2.4 Establishment of Contract

Negotiation Protocol. When an agreement is not reached between the peers,
the orchestrator negotiates the offers of the chosen NSP with NSC. We pro-
pose the Rule-Element Based Negotiation Protocol (RENP) in order to manage
the negotiation process. Our protocol specifies for each element the next action
regarding the proposed values (vrec) of NSP and the local configuration (vloc) of
NSC. The protocol contains three types of actions:

1. accept: it indicates that the proposed value is agreed.
2. refuse: it indicate that the proposed value is aborted.
3. propose: It generates a counter-offer .

Table 4 in the Appendix presents the detail of RENP protocol. (vp) is the pro-
posed variable upon negotiation. The results of the assessment and negotiation
processes for the example defined in Sect. 2.1 are as follows. The orchestrator
finds potential match relations between the pairs: (φ1, θ1), (φ2, θ2) and (φ3, θ3).
NSP1 does not meet the firewall requirement of φ3 and NSP3 does not fulfill φ2

and φ3. As a consequence, the resulting relations are mismatch. The orchestrator
puts NSP2 into the ranking list.

The orchestrator conducts then policy negotiation with NSC on behalf of
NSP2. It accepts the obligations θ1 for φ1 and θ3 for φ3. However, it proposes a

Firewall Policies Provisioning Through SDN 301

Algorithm 1. NSP Ranking
1: rank list is Empty {Initial ranking list is Empty}
2: for All NSPs do
3: rank ← 0 {Default ranking value}
4: matching ← True {To make sure that there are only matches for Gold ranking}
5: for i=0, i≤Length(Requirement), i++ do
6: for j=0, j≤Length(Obligation), j++ do
7: if Match(Requirement[i], Obligation[j]) = True then
8: rank ← 2
9: Break

10: else if Potential Match(Requirement[i], Obligation[j]) = True then
11: rank ← 1
12: matching ← False
13: Break
14: else if Mismatch(Requirement[i], Obligation[j]) = True then
15: matching ← False
16: end if
17: end for
18: if rank = 0 then
19: Break
20: end if
21: end for
22: if (rank = 2) and (matching = True) then
23: Add (rank list, (NSP, NSPgold)){Tag NSP as NSP gold and add it to the

ranking list}
24: else if rank = 1 then
25: Add (rank list, (NSP ,NSPsilver)){Tag NSP as NSP silver and add it to the

ranking list}
26: else
27: print NSP is not compliant with NSC, it will not be add to the ranking list
28: end if
29: end for
30: return rank list

counter offer for φ2. This case corresponds to column 5 in row 4 of Table 4 because
the received value (in φ2) vprec : quarantine has no intersection with pripreloc

:
{block, alert} (in θ2). Thus, the orchestrator chooses another value = block in
pripreloc

as a new proposition. After receiving the proposition, NSC accepts the
new value because block belongs to the local private configuration of φ2. Then
the orchestrator establishes the contract between NSC and NSP2 (Table 2).

General Agreement. Algorithm 2 illustrates the contract building process
conducted by the orchestrator. It chooses the NSPtop in the top of rank list.
The orchestrator accepts directly without negotiation NSPgold and establishes
contract with NSC. While for NSPsilver, it starts a negotiation process with
NSC by executing the proposed negotiation protocol (see Table 4). It transforms
potential match relations into match relations. If the negotiation fails NSP is
deleted from rank list and the negotiation process is re-conducted.

302 N. Cuppens et al.

Table 2. Final agreement between NSP and SDN orchestrator

NSC Policy 1

Element ε1 ε2 ε3 ε4

Type Subject Action Object Context

Domain Organization Firewall operation Protocol Time

Value NSP Pass {HTTP, TCP, ICMP} [0:00,24:00]

Policy 2

Element ε1 ε2 ε3 ε4

Type Subject Action Object Context

Domain Organization Firewall operation Protocol connection exc

Value NSP Block TCP TCP failed Time>30

Policy 3

Element ε1 ε2 ε3 ε4

Type Subject Action Object Context

Domain Organization Firewall operation Protocol attack detection

Value NSP Block ICMP DoS detection

2.5 Enforcement of Security Policy

Policy Transformation. SDN NSP contains two levels of policy abstraction:
(1) a service level abstraction which defines the business logic. This high level is
expressed by administrators and tenants. (2) An OpenFlow level which interprets
the high-level abstraction into infrastructure specific rules. The abstraction at the
service level hides the details of the network configuration and service deployment.
It simplifies the expression of the service policies.While theOpenFlow level ensures
deploying the policies into the network elements according to the network state.

The orchestrator sends the high level policies to SDN Firewall Applications.
Each one interprets the high level policies into OpenFlow rules and sends them
to the controller.

The interpretation process is based on mapping the elements of the high level
policy model with OpenFlow elements. A high level policy can be interpreted to
more than one OpenFlow rule.

OpenFlow is based on flow rules. Mainly, it structures policies into 6 parts. (1)
OF.Type can be Flow ADD rules, Flow MODIFY rules and Flow DELETE rules.
(2) Matching F ields define the characteristics of the traffic. They describe the
header of a packet in order to identify network flows. (3) Actions specify the oper-
ations on the matched. These actions can be Drop traffic, Forward to controller,
Forward to Port. (4) Timers indicate the lifetime of the rule (Hard Timeout)
or the ejection time if the rule is not matched for a time interval (Idle T imeout).
(5) Metadata can be used to save any extra information. (6) Counters allow to
specify rules based on traffic statistics. Table 3 shows the interpretation of the
final agreement (Table 2) into OF rules. We applied the following mappings.

1. Object corresponds to OF Matching F ields. It is the first element which is
mapped to its OF counterparts.
The interpretation of the object element will generate at least an OF rules
for each object value.

Firewall Policies Provisioning Through SDN 303

Algorithm 2. Establishment of contract
1: rank list← call (NSP Ranking) {Making NSP Ranking List}
2: while NSP in rank list do
3: Best NSP = NSPtop{Choose NSPtop from rank list}
4: if Best NSP is NSPgold then
5: Accept (Best NSP.Obligation()) { Accept NSPtop offer }
6: Contract =Generate Contract (Best NSP,NSC) {Establish contract

with NSC}
7: return
8: else
9: Negociate (Best NSP.Obligation()), NSC.Requirement()) {Start negotia-

tion with NSC}
10: negotiation Result = RENP (potential match) {Execute negotiation proto-

col between potential match rule pairs}
11: if negotiation Result = Accepted then
12: Contract =Generate Contract (NSP,NSC) {Establish contract with

NSC}
13: return
14: else
15: Delete (NSPtop, rank list) { Delete NSPtop from rank list }
16: end if
17: end if
18: end while

2. Action of the high level policy corresponds to OF Action F ield. OpenFlow
offers also the possibility to express many actions (ACTION List) and to
associate them to the same OF rule. The orchestrator verifies that there is
no contradiction between actions (for example: block and allow) in the same
policy. For example, block corresponds to the OF action: DROP .

3. Context element is mapped to OF components such as TIME OUTs and OF
Counters but also to firewall specific functions. The interpretation to firewall
function triggers a condition in order to execute the OF rule of the Context.
For example, the context: TCP Failed T ime > 30 in Policy2 triggers TCP
connection counting function and when it exceeds 30 connections it installs
the corresponding rule for policy2.

4. NSP is mapped to the topology of the service provider. For each link between
the nodes, the interpretation module generates the corresponding OF rules
taking the 3 aforementioned mappings. The OF Matching fields that corre-
spond to the topology are at least IPsrc, IPdst, PORTsrc, and PORTdst. If
the topology is not provided, the Firewall Application installs the OF rules
without specifying the topology matching fields.

5. The default type of OF rule is ADD. The firewall application verifies firstly
that the rule is not a duplicate of a previous interpreted rule by comparing
both matching parts. If only the contexts are different, then the OF rule type
is set to MODIFY . If the firewall application receives from the Controller
an error upon sending a MODIFY rule, the firewall application changes the
MODIFY rule to ADD rule and re-sends it to the controller.

304 N. Cuppens et al.

Table 3. Interpretation of the final agreement into OpenFlow rules

OF type Matching field Action Timer Firewall function

Policy 1 ADD ETH Type=2048
IP Proto=6
DST P=80

Forward
controller

Idle Timeout=0
Hard

Timeout=0

Policy 1 ADD ETH Type=2048
IP Proto=6

Forward
controller

Idle Timeout=0
Hard

Timeout=0

Policy 1 ADD ETH Type=2048
IP Proto=1

Forward
controller

Idle Timeout=0
Hard

Timeout=0

Policy 2 MODIFY ETH Type=2048
IP Proto=6

DROP TCP Count(30)

Policy 3 MODIFY ETH Type=2048
IP Proto=1

DROP SNORT.ALERT =
DDOS

Policy Deployment. The controller opens a secure channel with the data
plane devices (network elements) and communicates by exchanging OpenFlow
messages. Upon receiving OF rules from SDN firewall, the controller sends them
to the corresponding data plane devices which then install the rules. The rules
are parsed and their elements are saved in the Flow tables of the data plane
devices. At this level, the OF rules become Flow entries in the data plane devices.
When the data plane devices receive network packets, they parse their headers
and match the contents with all the matching fields of each flow entry. Once
a matching is found, the corresponding action is executed on the packet. If a
match is not found, the data plane device drops the packet or sends it to the
controller.

3 Evaluation

We implement the proposed solution using Python programming language. The
Framework has an orchestrator layer which integrates the firewall provisioning
model. In addition, it has a stateful SDN firewall application that executes the
security policies and the finite state machines of stateful network protocols.

We deploy our solution in the B-Secure platform which is a cloud environment
to test the performance of SDN security solutions. It consists of a central machine
(16 GB of RAM and Intel i7 processors), a data plane device machine (16 GB of
RAM, Intel i7 processors, 6 physical network interfaces of 1 GB/s) connected to
the central machine, and two machines (4 GB of RAM and Intel i3 processors)
connected to the data plane device.

We install the orchestrator, the firewall application and the SDN controller
RYU [24] in the central machine. In the data plane device machine, we run the
OpenVswitch (OVS) [26,27]. It is a virtual switch framework widely used in both
industry and research. The physical network link between the controller and the
OVS is 1 GB/s.

Firewall Policies Provisioning Through SDN 305

In the central machine, we deploy NSC and NSP2 of the use case (see
Sect. 2.1). The orchestrator generates the contract and sends the high level poli-
cies to the SDN firewall Application. Then the latter interprets the policies to
OpenFlow rules and asks RYU controller to install them on OVS. We vary the
number of NSC’s Requirements from 1 to 2500 policies. We measure the follow-
ing performance metrics:

1. Policy Processing Time (PPT) is the time that the orchestrator needs to
process the policy expression.

2. Orchestrator Processing Time (OPT) is the total time taken by the orches-
trator from the first policy expression to sending the last policy.

3. Firewall Application Processing Time (FAPT) is the total time taken by the
firewall application to process the policies.

4. Controller Processing Time (CPT) is the total time taken by the controller
to send all the OpenFlow rules.

5. Infrastructure Processing Time (IPT) is the total time that the infrastructure
(Controller-OVS link and OVS) needs to install all the OF rules.

6. Policy Processing Total Time (PPTT) is the total policy provisioning time.
7. Orchestrator Setup Rate (OSR) is the speed of the orchestrator:

OSR = OPT/Number of Policies (1)

8. Firewall Setup Rate (FSR) is the speed of the firewall Application:

FSR = FAPT/Number of Policies (2)

9. Controller Setup Rate (CSR) is the speed of the Controller:

CSR = CPT/Number of Openflow Rules (3)

10. Infrastructure Setup Rate (ISR) is the speed of the Infrastructure:

ISR = IPT/Number of Openflow Rules (4)

Figures 1 and 2 display the different measured processing times during the
experiment. The processing times in all the figures increase with the rise of
rule number. In Fig. 1, we observe that PPT increases slowly with a starting
value of 0.00236 s for 10 policies to a maximal value of 0.6421 s for 2500 policies.
In addition, PPT ’s values are the lowest among all processing times. FAPT is
slightly higher than CPT . Moreover, OPT is slower than both FAPT and CPT .
For example, the values for 2500 policies are: 2.700 s, 2.254 s and 2.141 s. However,
the largest processing times are those of IPT as shown in Fig. 2 ((10,0.0034 s)
and (2500, 11.025 s)).

The reasons are the amount and nature of the processing that each layer
performs. The orchestrator runs many processes in order to generates the final
agreement. The firewall application performs the interpretation to OF rules
and the controller deploys the generated OF rules in the network element. The
infrastructure is impacted by the performance of OVS and the data link with

306 N. Cuppens et al.

0 500 1,000 1,500 2,000 2,500
0

0.5

1

1.5

2

2.5

Number of NSC’s policies

T
im

e
[S

ec
o
n
d
]

PPT

OPT

FAPT

CPT

Fig. 1. Policy processing times

the controller. Our solution accumulates a processing time of 7.96 s with 2500
rules, while the infrastructure processing time is 1.5 times higher (2500, 11.02 s).
Around 50% (in Average) of PPTT is taken by the infrastructure to deploy the
rules. For example, for 2500 rules, it takes 18.12 s from the time of releasing the
initial policy request in the orchestrator to the time of deployment of the final
OF rule in the network element. 60% of this time is taken by the infrastructure
alone (see Fig. 2).

0 500 1,000 1,500 2,000 2,500
0

5

10

15

20

Number of NSC’s policies

IPT

PPTT

Fig. 2. Policy deployment times

Figure 3 displays the different policy setup rates in the infrastructure. We
observe 3 different states. In the first state, CSR, FSR, OSR and ISR
increase to reach their top values respectively (100, 5186), (100, 4838), (50, 3150),
(10, 2941). In the second stage, all the rates decrease rapidly. The diminution is

Firewall Policies Provisioning Through SDN 307

linear for CSR, FSR and OSR while fluctuating for ISR. In the third stage, we
observe that all the rates reduce with the increase of the number of policies. The
rates of our solution reach a value around 1000 Policies/s at 2500 while ISR con-
tinues to hold lower values. This observation comforts the previous results. ISR
low rates are caused by the load on the link Controller-OVS. We observe that
the orchestrator has lower performance than the firewall application. This obser-
vation consolidates the explanations provided previously. Our solution has good
performances with around 1000 policies/s. In practice, the number of firewall
rules depends on the size of the topology and the granularity of each rule. Fur-
thermore, policies changes do not need the repetition of all the process because
OpenFlow enables to update directly the installed rules.

0 500 1,000 1,500 2,000 2,500
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

Number of NSC Policies

R
a
te

[P
o
li
ci

es
/
S
ec

o
n
d
]

ISR

OSR

FSR

CSR

Fig. 3. Solution’s policy rates

4 Conclusion and Perspectives

We propose a solution to express firewall policies, assess NSC’s requirements
with NSPs’ obligations, select the best NSP candidate, negotiate and agree on
a common policy contract then deploy the agreement in a SDN cloud platform.
We integrate and deploy the solution in an existing SDN firewall framework.
Moreover, we evaluate its performance and scalability. The evaluation shows
promising results with a rate of 1000 deployed policies/s.

Our framework brings many advantages. It offers interoperability between
different NSCs and NSPs through a unified language that simplifies administra-
tor’s tasks. It abstracts the complexity of the network by hiding the infrastruc-
ture details. In addition, it automatizes firewall policies orchestration.

In order to improve our solution, we plan to include in the process new
elements such as quality of service, pricing and NSP’s reputation. This improve-
ment will resolve specific cases in our ranking algorithm. For example, the empty
rank list or multiple matching and potential matching NSPs.

308 N. Cuppens et al.

Acknowledgement. The work of Nora Cuppens and Frédéric Cuppens reported in
this paper has been partially carried out in the SUPERCLOUD project, funded by
the European Unions Horizon 2020 research and innovation programme under grant
N643964.

A RENP Protocol

Table 4. RENP protocol

References

1. Adrian Lara, A.K., Ramamurthy, B.: Network innovation using openflow: a survey.
IEEE Commun. Surv. Tutorials 16(1), 493–511 (2014)

2. Batista, B., Fernandez, M.: Ponderflow: a policy specification language for openflow
networks. In: The Thirteenth International Conference on Networks, pp. 204–209
(2014)

3. Ben-Itzhak, Y., Barabash, K., Cohen, R., Levin, A., Raichstein, E.: EnforSDN:
network policies enforcement with SDN. In: 2015 IFIP/IEEE International Sym-
posium on Integrated Network Management (IM), pp. 80–88. IEEE (2015)

Firewall Policies Provisioning Through SDN 309

4. Bernsmed, K., Jaatun, M.G., Undheim, A.: Security in service level agreements for
cloud computing. In: CLOSER, pp. 636–642 (2011)

5. Bharadwaj, V.G., Baras, J.S.: Towards automated negotiation of access control
policies. In: Policy, pp. 111–119 (2003)

6. Bijon, K., Krishnan, R., Sandhu, R.: Virtual resource orchestration constraints in
cloud infrastructure as a service. In: Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy, pp. 183–194. ACM (2015)

7. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison.
Constraints 4(3), 199–240 (1999)

8. Chernov, D.V.: Attribute based access control models. Prikladnaya Diskretnaya
Matematika, Suppl., 79–82 (2012)

9. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: Sloman, M., Lupu, E.C., Lobo, J. (eds.) POLICY 2001. LNCS, vol.
1995, pp. 18–38. Springer, Heidelberg (2001). doi:10.1007/3-540-44569-2 2

10. Fong, P.W.: Relationship-based access control: protection model and policy lan-
guage. In: Proceedings of the First ACM Conference on Data and Application
Security and Privacy, pp. 191–202. ACM (2011)

11. Gligor, V.D.: Negotiation of access control policies. In: Christianson, B., Malcolm,
J.A., Crispo, B., Roe, M. (eds.) Security Protocols 2001. LNCS, vol. 2467, pp.
202–212. Springer, Heidelberg (2002). doi:10.1007/3-540-45807-7 29

12. Hegr, T., Bohac, L., Uhlir, V., Chlumsky, P.: Openflow deployment and concept
analysis. Adv. Electr. Electron. Eng. 11(5), 327 (2013)

13. Hu, H., Han, W., Ahn, G.J., Zhao, Z.: Flowguard: building robust firewalls for
software-defined networks. In: Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, pp. 97–102. ACM (2014)

14. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interac-
tive tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, pp. 1213–1216. ACM (2011)

15. Kalam, A.A.E., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y.,
Miege, A., Saurel, C., Trouessin, G.: Proceedings of the IEEE 4th International
Workshop on Organization based access control. In: Policies for Distributed Sys-
tems and Networks, POLICY 2003, pp. 120–131. IEEE (2003)

16. Kaur, K., Kaur, S., Gupta, V.: Software defined networking based routing firewall.
In: 2016 International Conference on Computational Techniques in Information
and Communication Technologies (ICCTICT), pp. 267–269. IEEE (2016)

17. Lara, A., Ramamurthy, B.: Opensec: policy-based security using software-defined
networking. IEEE Trans. Netw. Serv. Manag. 13(1), 30–42 (2016)

18. Leite, A.F., Alves, V., Rodrigues, G.N., Tadonki, C., Eisenbeis, C., de Melo, A.:
Automating resource selection and configuration in inter-clouds through a soft-
ware product line method. In: 2015 IEEE 8th International Conference on Cloud
Computing, pp. 726–733. IEEE (2015)

19. Li, Y., Cuppens-Boulahia, N., Crom, J.M., Cuppens, F., Frey, V.: Reaching agree-
ment in security policy negotiation. In: 2014 IEEE 13th International Conference
on Trust, Security and Privacy in Computing and Communications, pp. 98–105.
IEEE (2014)

20. Li, Y., Cuppens-Boulahia, N., Crom, J.-M., Cuppens, F., Frey, V.: Expression
and enforcement of security policy for virtual resource allocation in IaaS cloud.
In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC 2016. IFIP AICT, vol. 471, pp.
105–118. Springer, Cham (2016). doi:10.1007/978-3-319-33630-5 8

http://dx.doi.org/10.1007/3-540-44569-2_2
http://dx.doi.org/10.1007/3-540-45807-7_29
http://dx.doi.org/10.1007/978-3-319-33630-5_8

310 N. Cuppens et al.

21. Li, Y., Cuppens-Boulahia, N., Crom, J.-M., Cuppens, F., Frey, V., Ji, X.: Sim-
ilarity measure for security policies in service provider selection. In: Jajodia, S.,
Mazumdar, C. (eds.) ICISS 2015. LNCS, vol. 9478, pp. 227–242. Springer, Cham
(2015). doi:10.1007/978-3-319-26961-0 14

22. Mehregan, P., Fong, P.W.: Policy negotiation for co-owned resources in
relationship-based access control. In: Proceedings of the 21st ACM on Symposium
on Access Control Models and Technologies, pp. 125–136. ACM (2016)

23. Nathani, A., Chaudhary, S., Somani, G.: Policy based resource allocation in iaas
cloud. Future Gener. Comput. Syst. 28(1), 94–103 (2012)

24. NTT: Component-based software defined networking framework (2017). www.osrg.
github.io/ryu/

25. ONF: Openflow switch specification, December 2014
26. Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., Shenker, S.: Extending

networking into the virtualization layer. In: Hotnets (2009)
27. Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J., Gross,

J., Wang, A., Stringer, J., Shelar, P., et al.: The design and implementation of
open vSwitch. In: NSDI, pp. 117–130 (2015)

28. Rissanen, E.: extensible access control markup language (XACML) version
3.0 (committe specification 01). Technical report, OASIS (2010). http://docs.
oasisopen.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf

29. Sadki, S., El Bakkali, H.: An approach for privacy policies negotiation in mobile
health-cloud environments. In: 2015 International Conference on Cloud Technolo-
gies and Applications (CloudTech), pp. 1–6. IEEE (2015)

30. Sandhu, R.S., Coynek, E.J., Feinsteink, H.L., Youmank, C.E.: Role-based access
control models yz. IEEE Comput. 29(2), 38–47 (1996)

31. Satasiya, D., et al.: Analysis of software defined network firewall (sdf). In: Interna-
tional Conference on Wireless Communications, Signal Processing and Networking
(WiSPNET), pp. 228–231. IEEE (2016)

32. Shin, S., Gu, G.: Cloudwatcher: network security monitoring using openflow in
dynamic cloud networks (or: How to provide security monitoring as a service
in clouds?). In: 2012 20th IEEE International Conference on Network Protocols
(ICNP), pp. 1–6. IEEE (2012)

33. Shin, S., Porras, P.A., Yegneswaran, V., Fong, M.W., Gu, G., Tyson, M.: Fresco:
modular composable security services for software-defined networks. In: NDSS
(2013)

34. Tang, Y., Cheng, G., Xu, Z., Chen, F., Elmansor, K., Wu, Y.: Automatic belief
network modeling via policy inference for SDN fault localization. J. Internet Serv.
Appl. 7(1), 1 (2016)

35. Xue, W., Huai, J., Liu, Y.: Access control policy negotiation for remote hot-
deployed grid services. In: First International Conference on e-Science and Grid
Computing (e-Science 2005), 9 p. IEEE (2005)

36. Zerkane, S., Espes, D., Le Parc, P., Cuppens, F.: A proactive stateful firewall
for software defined networking. In: Risks and Security of Internet and Systems -
11th International Conference, CRiSIS 2016, Roscoff, France, 5–7 September 2016,
Revised Selected Papers, pp. 123–138 (2016)

37. Zerkane, S., Espes, D., Le Parc, P., Cuppens, F.: Software defined network-
ing reactive stateful firewall. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC
2016. IFIP AICT, vol. 471, pp. 119–132. Springer, Cham (2016). doi:10.1007/
978-3-319-33630-5 9

http://dx.doi.org/10.1007/978-3-319-26961-0_14
www.osrg.github.io/ryu/
www.osrg.github.io/ryu/
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf
http://docs.oasisopen.org/xacml/3.0/xacml-3.0-core-spec-cd-03-en.pdf
http://dx.doi.org/10.1007/978-3-319-33630-5_9
http://dx.doi.org/10.1007/978-3-319-33630-5_9

Budget-Constrained Result Integrity Verification
of Outsourced Data Mining Computations

Bo Zhang1, Boxiang Dong2, and Wendy Wang1(B)

1 Stevens Institute of Technology, Hoboken, NJ, USA
{bzhang41,Hui.Wang}@stevens.edu

2 Montclair State University, Montclair, NJ, USA
dongb@montclair.edu

Abstract. When outsourcing data mining needs to an untrusted ser-
vice provider in the Data-Mining-as-a-Service (DMaS) paradigm, it is
important to verify whether the service provider (server) returns correct
mining results (in the format of data mining objects). We consider the
setting in which each data mining object is associated with a weight for
its importance. Given a client who is equipped with limited verification
budget, the server selects a subset of mining results whose total verifi-
cation cost does not exceed the given budget, while the total weight of
the selected results is maximized. This maps to the well-known budgeted
maximum coverage (BMC) problem, which is NP-hard. Therefore, the
server may execute a heuristic algorithm to select a subset of mining
results for verification. The server has financial incentives to cheat on
the heuristic output, so that the client has to pay more for verification of
the mining results that are less important. Our aim is to verify that the
mining results selected by the server indeed satisfy the budgeted max-
imization requirement. It is challenging to verify the result integrity of
the heuristic algorithms as the results are non-deterministic. We design a
probabilistic verification method by including negative candidates (NCs)
that are guaranteed to be excluded from the budgeted maximization
result of the ratio-based BMC solutions. We perform extensive experi-
ments on real-world datasets, and show that the NC-based verification
approach can achieve high guarantee with small overhead.

Keywords: Data-Mining-as-a-Service (DMaS) · Cloud computing ·
Result integrity · Budgeted maximization

1 Introduction

Due to the fast increase of data volume, many organizations (clients) with limited
computational resources and/or data mining expertise have outsourced their
data and data mining needs to a third-party service provider (server) that is
computationally powerful. This emerges the Data-Mining-as-a-Service (DMaS)
paradigm [8,21]. Although DMaS offers a cost-effective solution for the client,

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 311–324, 2017.
DOI: 10.1007/978-3-319-61176-1 17

312 B. Zhang et al.

it raises several security issues. One of the issues is result integrity verification,
i.e., how to verify that the untrusted server returns the correct mining results
[9,18]. There are many incentives for the server to cheat on the mining results.
As data mining is critical for decision making and knowledge discovery, it is
essential for the client to verify the result integrity of the outsourced mining
computations.

The key idea of the existing result integrity verification solutions (e.g., [7])
is to associate the mining results with a proof, which enables the client to verify
the result correctness with a deterministic guarantee. It has been shown that
the construction of integrity proofs can be very costly [7]. We assume that the
client has to pay for the cost of proof generation. If the client has a tight budget
for proof construction, she only can afford the proof construction of a subset
of mining results. We consider that the mining results that involve different
data items bring different benefits to the client (e.g., the shopping patterns of
luxury goods are more valuable than that of bread and milk). Therefore, it is
desirable that the mining results that bring the maximum benefits to the client
are picked for the proof construction. This problem can be mapped to the well-
known budgeted maximum coverage problem (BMC) [13].

Formally, given a set of objects O = {o1, . . . , on}, each of which associated
with a weight (value) wi and a cost ci, the budgeted maximization problem (BMC)
is to find a subset of objects O′ ⊆ O whose total cost does not exceed the
given budget value B, while the total weight is maximized. A variant of BMC
problem considers the case when the cost of overlapping objects is amortized, i.e.,
c({oi, oj}) < ci + cj . This motivates the budgeted maximization with overlapping
costs (BMOC) problem [6]. It has been proven that both BMC and BMOC
problems are NP-hard [13].

Given the complexity of BMC/BMOC problems, the server may execute a
heuristic BMC/BMOC algorithm (e.g., [6,19]) to pick a subset of mining results
for proof construction. The server is incentivized to cheat on proof selection
by picking the results with cheaper computations (e.g., by randomly picking a
subset of mining results), and claims that those picked results are returned by the
BMC/BMOC heuristic algorithm. To catch such cheating of proof construction,
it is important to design efficient methods for verification of the result integrity
of heuristic BMC/BMOC computations.

In general, it is difficult to verify the result correctness of heuristic algo-
rithms, as the output of these algorithms has much uncertainty. Prior work
(e.g., metamorphic testing [4,5]) mainly use software testing techniques that
execute the algorithm multiple times with different inputs, and verify if multiple
outputs satisfy some required conditions. These techniques cannot be applied
to the DMaS paradigm, as the client may not be able to afford to execute the
(expensive) data mining computations multiple times. Existing works [7,21] on
integrity verification of outsourced data mining computations mainly focus on
the authentication of soundness and completeness of the data mining results,
but not the result correctness of budgeted maximization algorithm.

Budget-Constrained Result Integrity Verification 313

We aim to design efficient verification methods that can catch any incorrect
result of heuristic BMC/BMOC algorithms with high probabilistic integrity guar-
antee and small computational overhead. To our best knowledge, this is the first
work that focuses on verifying the result integrity of the budgeted maximization
algorithm. We focus on the type of ratio-based BMC/BMOC heuristic algorithms
that rely on the weight/cost ratio to pick the objects, and make the following
main contributions. First, we design an efficient result correctness verification
method for the ratio-based BMC/BMOC problem. Following the intuition of
[7,14–16] to construct evidence patterns for the purpose of verification, our key
idea is to construct a set of negative candidates (NCs) that will not be picked by
any ratio-based heuristic BMC/BMOC algorithm. A nice property is that NCs
do not impact the original output of BMC/BMOC algorithm (i.e., all original
mining results selected by the BMC/BMOC algorithm are still picked under the
presence of NCs). The verification mainly checks if the server picks any NC for
proof construction. If there is, then the server’s cheating on proof construction is
caught with 100% certainty. Otherwise, the mining results that the server picked
for proof construction are trusted with a probabilistic guarantee. We formally
analyze the probabilistic guarantee of the NC-based method. Second, the basic
NC-based approach is weak against the attacks that utilize the knowledge of how
NCs are constructed. Therefore, we improve the basic NC-based approach to be
robust against these attacks. Last but not least, we take frequent itemset mining
[11] as a case study, and launch a rich set of experiments on three real-world
datasets to evaluate the efficiency and robustness of the NC-based verification.
The experiment results demonstrate that the NC-based verification method can
achieve high guarantee with small overhead (e.g.,it takes at most 0.001 s for proof
verification of frequent itemset results from 1 million transactions).

The remaining of the paper is organized as following. Section 2 introduces
the preliminaries. Section 3 presents the NC-based verification method. Section 4
reports the experiment results. Section 5 discusses the related work. Section 6
concludes the paper.

2 Preliminaries

2.1 Budgeted Maximization Coverage (BMC) Problem

Given a set of objects O = {o1, . . . , on}, each associated with a cost ci and a
weight (i.e., value) wi, the budgeted maximization coverage (BMC) problem is
to find the set O′ ⊆ O s.t. (1)

∑
oi∈O′ ci ≤ B, for any specified budget value B,

and (2)
∑

oi∈O′ wi is maximized. When the overlapping objects share the cost,
i.e., c(oi, oj) < ci+cj , the problem becomes the budgeted maximization coverage
with overlapping cost (BMOC) problem. Both BMC and BMOC problems are
NP-hard [6,13]. Various heuristic algorithms have been proposed [6,19]. Most of
the heuristic BMC/BMOC algorithms [3,6,13,19] follow the same principle: pick
the objects repeatedly by their weight

cost ratio (denoted as WC-ratio) in descending
order, until the total cost exceeds the given budget. The major difference between
these algorithms is how the cost is computed for a given set of objects; BMC

314 B. Zhang et al.

algorithms simply sum up the cost of these objects, while BMOC algorithms
compute the total cost of these objects with sharing. We call these ratio-based
heuristic algorithms the GREEDY algorithms. We assume that the server uses
a ratio-based greedy algorithm to pick the subset of mining results for proof
construction.

2.2 Budget-Constrained Verification

In this paper, we consider the scenario where the data owner (client) outsources
her data D as well as her mining needs to a third-party service provider (server).
The server returns the mining results R of D to the client. We represent R as a
set of mining objects {o1, . . . , on}, where each mining object oi is a pattern that
the outsourced data mining computations aim to find. Examples of the mining
objects include outliers, clusters, and association rules. Different mining objects
can be either non-overlapping (e.g., outliers) or overlapping (e.g., association
rules that share common items).

Since the server is potentially untrusted, it has to provide an integrity proof
of its mining results, where the proof can be used to verify the correctness of
the mining results [7]. In general, each mining object is associated with a single
proof [2,17]. We use ci to denote the cost of constructing the proof of the mining
object oi. According to [7], the overlapping mining objects share the proofs (and
its construction cost) of the common data items. The total proof cost of R is
cR =

∑
∀oi∈(∪∀oj∈Roj)

ci.
We assume that the client has to pay for the cost of proof construction. The

proof construction cost is decided by the number of mining objects that are
associated with the proofs. Intuitively, the more the client pays for the proof
construction, the more mining objects that she can verify the correctness. We
assume that different mining objects bring different benefits to the client. We use
wi to denote the weight of the mining object oi. We follow the same assumption
of the BMC/BMOC problem that the weights of different mining objects never
share, regardless of the overlaps between the mining objects. Thus given a set
of mining objects R, the total weight of R is computed as: wR =

∑
∀oi∈R wi.

In this paper, we consider the client who has the limited budget for proof
construction. Given the budget B and the mining results R from the outsourced
data D, the client asks the server to pick a subset of mining results R′ ⊆ R
for proof construction where cR′ ≤ B, while wR′ is maximized. Apparently, this
problem can be mapped to either BMC (for share-free proof construction sce-
nario) or BMOC (for shared proof construction scenario). Given the complexity
of BMC/BMOC algorithms, the server runs the GREEDY algorithm to pick a
subset of mining objects for proof construction.

2.3 Verification Goal

Due to various reasons, the server may cheat on proof construction. For instance,
in order to save the computational cost, it may randomly select a set of data

Budget-Constrained Result Integrity Verification 315

mining objects, instead of executing the GREEDY algorithm. Therefore, after
the client receives the mining objects R from the server, in which R′ ⊆ R is
associated with the result integrity proof, she would like to verify whether R′

indeed satisfies budgeted maximization. Formally,

Definition 1 (Verification Goal). Given a set of mining objects R =
{o1, . . . , on}, let R′ denote the mining objects picked by the server for proof con-
struction. A verification algorithm should verify whether R′ satisfies the following
two budgeted maximization requirements: (1) The total cost of R′ does not exceed
the budget B; and (2) The total weight of R′ is maximized.

The verification of Goal 1 is trivial, as the client can simply calculate the
total cost of R′ and compare it with B. The verification of Goal 2 is extremely
challenging due to two reasons: (1) due to the NP-hardness complexity of the
BMC/BMOC problem, it is impossible that the client re-computes the budgeted
maximization solutions; and (2) as the server uses a heuristic method to pick R′,
it is expected that R′ may not be the optimal solution. A naive solution is to
pick a set of objects R′′ ⊆ R (either randomly or deliberately), and compare the
total weight of R′′ with that of R′. However, this naive solution cannot deliver
any verification guarantee, even if the total weight of R′ is smaller than that
of R′′, as the output of the heuristic algorithms is not expected to be optimal.
Our goal is to design efficient verification method that can deliver probabilistic
guarantee of the results of heuristic BMC/BMOC algorithms. We must note that
the verification of correctness and completeness of the mining results is not the
focus of our paper.

3 NC-based Verification Approach

3.1 Basic Approach

The key idea of our verification method is to use the negative candidates (NCs)
of budgeted maximization. The NCs are guaranteed to be excluded from the
output of any GREEDY algorithm. Therefore, if the server’s results include any
NC, the client is 100% sure that the server fails the verification of budgeted
maximization. Otherwise, the client has a probabilistic guarantee of budgeted
maximization.

Intuitively, if the WC-ratio of any NC is smaller than the WC-ratio of any
real object in D, the GREEDY algorithm never picks any NC if it is executed
faithfully. Besides this, we also require that the presence of NCs should not
impact the original results (i.e., all original mining objects selected by GREEDY
should still be selected under the presence of NCs). Following this, we define the
two requirements of NCs:

– Requirement 1: There is no overlap between any NC and any real object or
NC;

– Requirement 2: The WC-ratio of any NC oi is lower than the ratio of any real
object oj ∈ R, i.e., wi

ci
<

wj

cj
, where R is the mining results of the original

dataset D.

316 B. Zhang et al.

Based on this, we have the following theorem:

Theorem 1. Given a set of objects R and the GREEDY algorithm F , for any
NC oi ∈ R that satisfies the two requirements above, it is guaranteed that oi �∈
F (R).

The correctness of Theorem 1 is straightforward. Requirement (1) ensures
that NCs do not share cost with any other object, thus WC-ratio is its exact
ratio used in the GREEDY algorithm. It also ensures that the presence of NCs do
not change the WC-ratio of any other objects, and thus do not change the output
of the GREEDY algorithm. Requirement (2) ensures that NCs always have the
smallest WC-ratio, and thus are never picked by the GREEDY algorithm.

We formally define (ε, θ)-budgeted maximization as our verification goal.

Definition 2 ((ε, θ)-Budgeted Maximization). Given a set of objects R, let
R′ ⊆ R be the set of objects picked by any GREEDY algorithm. Assume the
server cheats on θ percent of R′. We say a verification method M can verify
(ε, θ)-budgeted maximization if the probability p to catch the cheating on R′

satisfies that p ≥ ε.

Suppose we insert K NCs into the original n objects. Suppose the GREEDY
algorithm picks m < n objects. Also suppose that the attacker picks � ≥ 1
budget-maximized objects from the m objects (i.e., � = mθ, where θ is the
parameter for (ε, θ)-budgeted maximization) output by the GREEDY algorithm,
and replaces them with other objects with lower weight/cost ratios. Note that if
such replacement involves any NC, then the verification method can catch the
cheating. Now let us compute the probability that the attacker can escape by
picking no NCs when replacing budget maximized objects. If an attacker replaces
an object o in the original budgeted-maximization result with another object o′,
the probability that o′ is not a NC is n−m

n−m+K . Thus, with probability n−m
n−m+K ,

the attacker’s wrong result is not caught. Now, given � ≥ 1 budgeted-maximized
objects that are not returned by the server, the probability p that the server can
be caught (i.e., it picks at least one NC):

p = 1 −
�−1∏

i=0

n − m − i

n − m + K − �
. (1)

Since n−i
n+K−i ≥ n−i−1

n+K−i−1 , it follows that:

1 − (
n − m

n − m + K
)� ≤ p ≤ 1 − (

n − m − �

n − m + K − �
)�. (2)

Based on this reasoning, we have the following theorem:

Theorem 2. Given n original objects, among which m < n itemsets are picked
by GREEDY, the number K of NCs to verify (ε, θ)-budgeted maximization sat-
isfies that: K ≥ (1

mθ
√
1−ε

− 1)(n − m).

Budget-Constrained Result Integrity Verification 317

We calculate the value of K with regard to various θ and ε values, and observe
that our NC-based verification method does not require large number NCs when
the budget is large, even though θ is a small fraction. For example, when θ = 0.1
and m = 400, our method only requires 16 and 25 NCs in order to achieve p
of at least 95% and 99%, respectively. A detailed analysis of the relationship
between K and the verification parameters (i.e., θ and ε) can be found in the
full paper [22].

A challenge to calculate the exact K value is that the client may not pos-
sess the knowledge of the real m value (i.e., the number of original objects
picked by GREEDY). Next, we discuss how to estimate m. Intuitively, for any
m′ ≤ m, (1

m′θ
√
1−ε

− 1)n) ≥ (1
mθ

√
1−ε

− 1)n). Therefore, we can simply calculate

the lowerbound m̂ of m, and estimate K = (1
m̂θ

√
1−ε

− 1)n̂. To calculate m̂, we
can calculate the upperbound cost cmax of any object oj in O, then we compute
m̂ = [B

cmax
].

3.2 A More Robust Approach

If the server possesses the distribution information of the original dataset D, as
well as the details of the NC-based verification, it may try to escape from the
verification by distinguishing NCs from the original objects based on their char-
acteristics. In particular, there are two possible attacks that can be launched: (1)
the overlap-based attack: the server may identify those objects that are disjoint
with other objects as NCs, since NCs do not overlap with any other object; and
(2) the ratio-based attack: the server can sort all objects (including real ones and
NCs) by their WC-ratio, and pick K ′ objects of the lowest ratio as NCs. Next,
we discuss the strategy to mitigate these attacks.

In order to defend against the overlap-based attack, we introduce the overlap
between NCs. In particular, we require the overlap between NCs should be simi-
lar to the overlap between the original objects. We define the overlapping degree
of the object oi as odi = di

n−1 , where di is the number of objects in D that oi

overlaps with. We assume the overlapping degree follows a normal distribution,
i.e., od ∼ N (uo, σ

2
o). We estimate ûo and σ̂o from the overlapping degrees of orig-

inal objects. We require that the overlapping degree of NCs should follow the
same distribution N (ûo, σ̂o

2). To make sure that ratio of NCs remains smaller
than that of any original object, we introduce the overlap by increasing the cost
of NCs, while keeping the weight unchanged. Note that we only introduce over-
lapping between NCs; NCs and real mining objects do not overlap. Thus NCs
still satisfy Requirement 1 of NCs.

Regarding to the ratio-based attack, identifying the NCs of the lowest WC-
ratio leads to insufficient number of NCs to satisfy (ε, θ)-budgeted maximization.
In particular, suppose that the server uniformly picks K ′ ∈ [0,K] by random
guess, and takes K ′ objects with the lowest WC-ratio as the NCs. Then K −K ′

NCs remain to be unidentified by the server. Next, we analyze the the probabilis-
tic integrity guarantee that can be provided if the server launches the ratio-based
attack. We have the following theorem:

318 B. Zhang et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.9

C
at

ch
in

g
pr

ob
ab

ili
ty

ε

ε’
ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15

C
he

at
in

g
fr

ac
tio

n

θ

θ’
θ

(a) Comparison between ε and ε′ (θ = 0.1) (b) Comparison between θ and θ′ (ε = 0.99)

Fig. 1. Evaluation of ε′ and θ′

Theorem 3. Given a set of K NCs that satisfies (ε, θ)-budgeted maximization,
our NC-based approach is able to verify (ε′, θ′)-budgeted maximization, where
ε′ = 1− ε(n−m)−K(1−ε)

K(mθ−1) , and θ′ = (n−m) ln(1−ε)
Km (ln K

n−m + K
n−m + K2

8(n−m)2), where
n is the number of original objects, and m is the number of objects picked by
GREEDY.

Due to the space limit, we omit the proof of Theorem 3.
We plot ε and ε′ (defined in Theorem 3) in Fig. 1 (a) (θ and θ′ in Fig. 1

(b) respectively). The results show that the ratio-based attack only degrades
(ε, θ)-budgeted maximization slightly. For example, consider n = 600, and
m = 400. When ε = 0.99, and θ = 0.1, it requires K = 25 NCs to verify
(0.99, 0.1)-budgeted maximization (Theorem 2). If the server exploits the ratio-
based attack, the NC-based approach needs 495 NCs to provide the same security
guarantee.

4 Experiments

4.1 Setup

Hardware. We execute the experiments on a testbed with Intel i5 CPU and
8GB RAM, running Mac OS X 10. We implement all the algorithms in C++.

Datasets. We take frequent itemset mining [11] as the mining task. Given a
dataset D and a threshold value minsup, it aims at finding all the itemsets
whose number of occurrences is at least minsup. We use three datasets, namely
Retail, T10 and Kosarak datasets, available from the Frequent Itemset Mining
Data Repository1. We use various support threshold values minsup for mining.
The data description and the mining setting can be found in our full paper [22].

Budget setting. We vary the budget to observe its impact on the performance
of the NC-based approach. We define budget ratio br = B

Tb , where B is the given

1 http://fimi.ua.ac.be/data/.

http://fimi.ua.ac.be/data/

Budget-Constrained Result Integrity Verification 319

budget, and Tb is the total proof cost for all the frequent itemsets. Intuitively,
a higher budget ratio leads to the higher budget for proof construction.

Cost and weight model. For each item x, its cost is computed as cx =
suppD({x})

max∀x∈X suppD({x}) , where suppD({x}) denotes the frequency of {x} in D. We
use four different strategies to assign the item weights. We consider that all
items have the same weight. Given any itemset X = {x1, . . . , xt}, the cost and
weight of X is the sum of the individual items. In other words, cX =

∑
cxi

,
while wX =

∑
wxi

.

4.2 Robustness of Probabilistic Verification

We measure the robustness of our NC-based approach. In particular, we simulate
the cheating behavior by the attacker on budgeted maximization, and measure
the probability p that our approach can catch the attacker. We compare p with
the pre-defined desired catching probability ε. The experiment results on the
datasets demonstrate that the detection probability is always larger than ε, which
verifies the robustness of our verification approach. The detailed result can be
found in our full paper [22].

4.3 Verification Performance

Verification preparation time. We measure the time of creating artifi-
cial transactions that produce NCs for verification of budgeted maximization.
Figure 2 shows the NC creation time for the datasets. In general, the NC cre-
ation procedure is very fast. In all the experiments, it takes at most 0.9 s to
generate the NCs, even for small θ = 0.02 and large ε = 0.95. Furthermore,
we observe that larger ε and smaller θ lead to longer time for generating NCs.
This is because the number of NCs is positively correlated to ε but negatively
correlated to θ. In other words, we need more NCs to verify smaller errors of the
budgeted maximization results with higher guarantee.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0
.0

2
 0

.0
3

 0
.0

4
 0

.0
5

 0
.0

6
 0

.0
7

 0
.0

8
 0

.0
9

 0
.1

T
im

e(
s)

θ

ε=0.8
ε=0.85

ε=0.9
ε=0.95

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0
.0

2
 0

.0
3

 0
.0

4
 0

.0
5

 0
.0

6
 0

.0
7

 0
.0

8
 0

.0
9

 0
.1

T
im

e(
s)

θ

ε=0.8
ε=0.85

ε=0.9
ε=0.95

(a) T10 (n = 4054, m = 2289, (b) Kosarak (n = 3023, m = 1896,

minsup = 100) minsup = 1981)

Fig. 2. NC construction time

320 B. Zhang et al.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 0
.0

2
 0

.0
3

 0
.0

4
 0

.0
5

 0
.0

6
 0

.0
7

 0
.0

8
 0

.0
9

 0
.1

O
ve

rh
ea

d
R

at
io

(%
)

θ

ε=0.8
ε=0.85

ε=0.9
ε=0.95

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0
.0

2
 0

.0
3

 0
.0

4
 0

.0
5

 0
.0

6
 0

.0
7

 0
.0

8
 0

.0
9

 0
.1

O
ve

rh
ea

d
R

at
io

(%
)

θ

ε=0.8
ε=0.85

ε=0.9
ε=0.95

(a) T10 (n = 4054, m = 2289, (b) Kosarak (n = 3023, m = 2429,

minsup = 100) minsup = 1981)

Fig. 3. Mining overhead (various θ setting for (ε, θ)-budget maximization)

Verification time. We measure the verification time on the datasets for various
settings of θ and ε. We observe that the verification time is negligible; it never
exceeds 0.039 s. The minimal verification time is 0.001 s, even for the Kosarak
dataset, which consists of nearly 1 m transactions. We omit the results due to
the space limits.

Mining overhead by verification. We measure the mining overhead by
adding artificial transactions for NC creation. We measure the overhead ratio
as (TD′ −TD)

TD
, where TD and TD′ are the mining time of the original dataset D

and D′ after adding artificial transactions. Intuitively the lower overhead ratio
is, the smaller additional mining cost incurred by our NC-based verification.

Various θ. Figure 3 reports the overhead ratio for the datasets when changing
θ setting for (ε, θ)-budgeted maximization. First, similar to the observation of
NC creation time, the mining overhead ratio increases when θ becomes smaller
and ε rises, as it requires more NCs, which results in larger mining overhead.
Second, for all datasets, the overhead ratio is small (no more than 4%). The
mining overhead is especially small for the T10 dataset. It never exceeds 0.08%
even though ε = 0.95. The reason is that the mining of the original T10 dataset
consumes a long time, which leads to the small mining overhead ratio.

Various budgets. In Fig. 4, we display the effect of the budgets (in the format
of the budget ratio) on the mining overhead. On both datasets, we observe that
the mining overhead drops with the increase of budgets. Given a large budget,
the GREEDY algorithm picks more frequent itemsets for proof construction.
This results in the decreased number of NCs. Therefore, the mining overhead
on the artificial transactions reduces, as the number of artificial transactions
drops. In particular, the mining overhead can be very small, especially on the
T10 dataset (no larger than 0.25%).

Budget-Constrained Result Integrity Verification 321

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ve

rh
ea

d
R

at
io

(%
)

Budget Ratio

ε=0.8
ε=0.85

ε=0.9
ε=0.95

 0

 1

 2

 3

 4

 5

 6

 7

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ve

rh
ea

d
R

at
io

(%
)

Budget Ratio

ε=0.8
ε=0.85

ε=0.9
ε=0.95

(b) T10 (minsup = 100, θ = 0.05) (c) Kosarak (minsup = 1981, θ = 0.1)

Fig. 4. Mining overhead (various budgets)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 500 1000 1500 2000 2500 3000 3500 4000

N
C

/M
T

(T
im

e
R

at
io

)

Number of frequent itemsets

ε=0.8
ε=0.9

ε=0.95
ε=0.99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1000 1500 2000 2500 3000

N
C

/M
T

(T
im

e
R

at
io

)

Number of frequent itemsets

ε=0.8
ε=0.9

ε=0.95
ε=0.99

(a) T10 (θ = 0.)b(1 Kosarak (θ = 0.1

br = 0.5) br = 0.5)

Fig. 5. NC-based approach vs. metamorphic testing (MT)

4.4 Comparison with Metamorphic Testing (MT)

We compare our NC-based approach with the metamorphic testing (MT) app-
roach [4,5]. For the implementation of the MT approach, we treat the GREEDY
algorithm as a black box M , and run it on the discovered frequent itemsets I
twice. The output of the first execution M(I) is used as the input of the second
execution of M . Apparently, if the server is honest, the output of the second
execution of M should be the same as the output of the first execution, i.e.,
M(I) = M(M(I)). The overhead of MT is measured as the time of the sec-
ond execution of the GREEDY algorithm. We measure the total time of our
NC-based approach for verification, which includes the time of both verification
preparation and verification. In Fig. 5, we show the ratio of the time performance
of our NC-based approach to that of MT approach. Overall, our NC-based app-
roach shows great advantage over MT approach, especially when the number of
frequent itemsets is large. For example, on the T10 dataset, our verification app-
roach is at least 10 times faster than MT when the number of frequent itemset
is larger than 3, 000. We also observe that when the number of frequent item-
sets increases, the ratio decreases (i.e., the NC-based approach is much faster
than MT). This is because MT takes more time to pick the budget-maximized

322 B. Zhang et al.

objects from the larger set of candidates. It is worth noting that MT does not
provide any formal guarantee that the result satisfies budgeted maximization
requirement.

5 Related Work

In this section, we discuss the related work, including: (1) the verifiable computa-
tion techniques for general-purpose computations; (2) result integrity verification
of outsourced data mining computations; and (3) software testing for heuristic
algorithms.

Gennaro et al. [9] define the notation of verifiable computation (VC) that
allows a computationally limited client to be able to verify the result correct-
ness of some expensive general-purpose computations that are outsourced to a
computationally powerful server. Babai and Goldwasser et al. [1,10] design the
probabilistic checkable proofs. However, the incurred proofs might be too long
for the verifier to process. This is not ideal for the DMaS paradigm where com-
monly the client outsources the data mining computations with a single input
dataset.

Verification of result integrity of outsourced data mining computations have
caught much attention recently. The existing methods have covered various types
of data mining computations, including clustering [15], outlier mining [14], fre-
quent itemset mining [7,8], Bayesian networks [16], and collaborative filtering
[20]. All these works focus on correctness and completeness verification of mining
results, while ours aims at the problem of verification of budgeted maximization.

In software testing, it has been shown that the verification of heuristic algo-
rithms is very challenging, as the heuristic methods may not give exact solutions
for the computed problems. This makes it difficult to verify outputs of the corre-
sponding software by a test oracle - a mechanism to construct the test cases. This
is known as the test oracle problem [12] in software testing. A popular technique
that is used to test programs without oracles is metamorphic testing (MT) [4,5],
which generates test cases by making reference to metamorphic relations, that
is, relations among multiple executions of the target program. Though effective,
MT is not suitable to the budget-constrained DMaS paradigm, as it involves
multiple executions of the same function.

6 Conclusion

In this paper, we investigate the problem of result verification of budgeted max-
imization problem in the setting of DMaS paradigm. We present our probabilis-
tic verification method that authenticates whether the server’s results indeed
reach budgeted maximization. We analyze the formal guarantee of the budgeted
maximization of our method. Our experiments demonstrate the efficiency and
effectiveness of our methods. For the future work, one interesting direction is
to investigate the deterministic verification methods that can authenticate bud-
geted maximization with 100% certainty.

Budget-Constrained Result Integrity Verification 323

References

1. Babai, L.: Trading group theory for randomness. In: Symposium on Theory of
Computing (1985)

2. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 7

3. Bleiholder, J., Khuller, S., Naumann, F., Raschid, L., Wu, Y.: Query planning
in the presence of overlapping sources. In: Ioannidis, Y., Scholl, M.H., Schmidt,
J.W., Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm,
C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 811–828. Springer, Heidelberg (2006).
doi:10.1007/11687238 48

4. Chen, T.Y., et al.: Metamorphic testing: a new approach for generating next test
cases. Technical report, Hong Kong University of Science and Technology (1998)

5. Chen, T.Y., et al.: Fault-based testing in the absence of an oracle. In: International
Conference on Computer Software and Applications (2001)

6. Curtis, D.E., et al.: Budgeted maximum coverage with overlapping costs: monitor-
ing the emerging infections network. In: Algorithm Engineering & Expermiments
(2010)

7. Dong, B., et al.: Integrity verification of outsourced frequent itemset mining with
deterministic guarantee. In: ICDM (2013)

8. Dong, B., Liu, R., Wang, H.W.: Result integrity verification of outsourced frequent
itemset mining. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp.
258–265. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39256-6 17

9. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 25

10. Goldwasser, S., et al.: The knowledge complexity of interactive proof systems.
SIAM J. Comput. 18(1), 186–208 (1989)

11. Han, J., et al.: Mining frequent patterns without candidate generation. In: ACM
Sigmod Record (2000)

12. Kanewala, U., et al.: Techniques for testing scientific programs without an oracle.
In: International Workshop on Software Engineering for Computational Science
and Engineering (2013)

13. Khuller, S., et al.: The budgeted maximum coverage problem. Inf. Process Lett.
70(1), 39–45 (1999)

14. Liu, R., Wang, H.W., Monreale, A., Pedreschi, D., Giannotti, F., Guo, W.: AUDIO :
An integrity auditing framework of outlier-mining-as-a-service systems. In: Flach,
P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS, vol. 7524, pp. 1–18.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33486-3 1

15. Liu, R., et al.: Integrity verification of k-means clustering outsourced to infrastruc-
ture as a service (IAAS) providers. In: SDM (2013)

16. Liu, R., et al.: Result integrity verification of outsourced Bayesian network struc-
ture learning. In: SDM (2014)

17. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 6

http://dx.doi.org/10.1007/978-3-642-22792-9_7
http://dx.doi.org/10.1007/11687238_48
http://dx.doi.org/10.1007/978-3-642-39256-6_17
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-33486-3_1
http://dx.doi.org/10.1007/978-3-642-22792-9_6

324 B. Zhang et al.

18. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 24

19. Sindelar, M., et al.: Sharing-aware algorithms for virtual machine colocation. In:
Symposium on Parallelism in Algorithms and Architectures (2011)

20. Vaidya, J., et al.: Efficient integrity verification for outsourced collaborative filter-
ing. In: ICDM (2014)

21. Wong, W.K., et al.: Security in outsourcing of association rule mining. In: VLDB
(2007)

22. Zhang, B., et al.: Budget-constrained result integrity verification of outsourced
data mining computations (2017). http://www.cs.stevens.edu/hwang4/papers/
dbsec2017full.pdf

http://dx.doi.org/10.1007/978-3-642-28914-9_24
http://dx.doi.org/10.1007/978-3-642-28914-9_24
http://www.cs.stevens.edu/ hwang4/papers/dbsec2017full.pdf
http://www.cs.stevens.edu/ hwang4/papers/dbsec2017full.pdf

Searchable Encryption to Reduce Encryption
Degradation in Adjustably Encrypted Databases

Florian Kerschbaum1(B) and Martin Härterich2

1 University of Waterloo, Waterloo, Canada
florian.kerschbaum@uwaterloo.ca

2 SAP, Karlsruhe, Germany
martin.haerterich@sap.com

Abstract. Processing queries on encrypted data protects sensitive data
stored in cloud databases. CryptDB has introduced the approach of
adjustable encryption for such processing. A database column is adjusted
to the necessary level of encryption, e.g. order-preserving, for the set
of executed queries, but never reversed. This has the drawback that
long running cloud databases will eventually transform into only order-
preserving encrypted databases. In this paper we propose searchable
encryption as an alternative in order to reduce this encryption degrada-
tion. It maintains security while only marginally impacting performance
when applied only to infrequently used queries for searching. We present
a budget-based encryption selection algorithm as part of query planning
for making the appropriate choice between searchable and deterministic
or order-preserving encryption. We evaluate our algorithm on a long-tail
distributed TPC-C benchmark on an experimental implementation of
encrypted queries in an in-memory database. In one choice of parame-
ters our algorithm incurs only a 1.5% performance penalty, but one of
15 columns is not decrypted to order-preserving or deterministic encryp-
tion. Our selection algorithm is configurable, such that higher security
gains are possible at the cost of performance.

1 Introduction

In order to protect cloud databases data can be processed in encrypted
form [1,9,10,29,30]. A common way to enable processing of encrypted data is
order-preserving encryption [1,2,19,23,28]. Order-preserving encryption allows
processing many SQL queries without modification. However, order-preserving
encryption is susceptible to simple attacks on the static data [27].

In order to increase security CryptDB has introduced adjustable encryp-
tion [29]. The idea is to layer encryption in onions. Queries are analyzed and the
encryption layer is adjusted before their execution.

This has the positive effect that only the layers necessary for the query exe-
cution, e.g. deterministic encryption instead of order-preserving encryption, are
revealed and thus security is increased. A database starts in a completely secure

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 325–336, 2017.
DOI: 10.1007/978-3-319-61176-1 18

326 F. Kerschbaum and M. Härterich

(cold) mode and transforms into a (hot) mode which is very efficient, since no
more decryption operations are necessary, but all queries can be processed on
the data as is. This transformation is also never reversed. Since it is not possible
to determine when a cloud database has been compromised, there is no reason
to encrypt data which has once been revealed to the cloud service provider.

This lack of reversion has the negative consequence that many databases
may ultimately reach a state that has only order-preserving encrypted columns.
Hence, in a long running database system adjustable encryption may be no
better than pure order-preserving encryption. The set of all queries determines
the encryption level, even if those queries contribute little to the overall load of
the database. Particularly, the long tail of the query distribution may have a
severe negative security effect. These queries are infrequently executed, e.g. only
once, presumably using columns that are infrequently used for searching, but
have the same impact on the security as the most frequently reoccurring ones.
This paper proposes dealing with these infrequent queries differently in order to
confine their impact.

This raises two research questions: First, how to detect infrequently used
columns and second, how to handle them. For the second problem we propose
to use searchable encryption [3,5,11,12]. Searchable encryption is a randomized,
strongly secure encryption scheme where the key holder can issue tokens for
equality or range searches. The search algorithm is different than in a regular
table scan and also significantly slower. Yet, all data for which no token has been
issued remains semantically secure. Hence, searchable encryption is particularly
suited for infrequently searched columns, since the search pattern is sparse.

For the first problem we propose a more intelligent encryption selection
algorithm. It now has two choices: searchable encryption and order-preserving
or deterministic encryption. It will first try searchable encryption until a cer-
tain threshold has been reached and only then decrypt. This increases the time
for transforming from a cold to a hot database, but handles infrequently used
columns with searchable encryption.

We perform a set of experiments using the TPC-C benchmark on our algo-
rithms in an implementation of encrypted queries in an in-memory, column-store
database. Our algorithm is configurable in order to allow different trade-offs
between security and performance according to the preference of the database
administrator. However, we were particularly interested in a set of parameters
where the gain of security is clearly higher than the cost of security. In one
particular choice of parameters our algorithm may incur only a small 1.5% per-
formance penalty, but the most infrequently used column is not decrypted. Note
that the economic value of a single non-decrypted column can be very high for
sensitive data, such as salaries, outstanding sales prices or health care data.
Due to the difficulty of scientifically assessing sensitivity values, we only report
the percentage of still randomly encrypted data; in our case a 6.7% security
improvement which is still more than 4 times the performance penalty. We also
show in detail the different trade-offs between security and performance in query
planning for different parameters of the algorithm (Sect. 5).

Searchable Encryption to Reduce Encryption Degradation 327

2 Related Work

2.1 Queries on Encrypted Data

Hacigümüs et al. introduce the first database for processing SQL queries on
encrypted data [10]. They use deterministic encryption and binning for range
queries. Binning requires the client to post-process the result and filter non-
matching entries. Agrawal et al. improve on this by order-preserving encryp-
tion [1]. In order-preserving encryption plaintexts are mapped to ciphertext in
the same order. This removes the necessity for post-processing (and query rewrit-
ing) and range queries can be processed with the same relational operator as on
plaintexts. Later, Popa et al. extend this concept using adjustable encryption
which adjusts the ciphertext to the query [29]. Hang et al. also show how to
implement this over multiple keys [13].

Boldyreva et al. formalize order-preserving encryption [2]. They provide a
proof that their scheme is the best possible stateless encryption scheme [2].
Recently Naveed et al. have shown that this security definition is rather weak and
simple attacks can exploit the static leakage of order-preserving encryption [27].
A stronger notions of security – indistinguishability under (frequency-analysing)
order-preserving chosen plaintext attack – are achieved by the scheme by Popa
et al. [28] and Kerschbaum [19], respectively. Yet, their schemes are not efficiently
compatible with adjustable encryption. Hence, system builders have to make a
choice between the two. Our experiments indicate that adjustable encryption has
a high security improvement, e.g. in the TPC-C benchmark only 15 columns need
to use deterministic encryption. We hence believe that adjustable encryption is
preferable to a stronger order-preserving encryption.

We build on adjustable encryption providing a further enhancement of secu-
rity. Particularly, we introduce a query planning algorithm for searchable encryp-
tion in order to handle infrequently used columns in adjustable encryption, such
that even not all 15 columns need to be deterministic.

2.2 Searchable Encryption

Searchable encryption offers stronger security than order-preserving or deter-
ministic encryption. Using a token generated by the secret key one can search
for values or within ranges. Without the token the ciphertext is as secure as
common standard encryption.

The first sub-linear search time, (inverted) index-based searchable encryption
scheme was introduced by Curtmola et al. [5]. Its idea is to provide an index of
deterministically encrypted keywords and an encrypted list of documents. Since
each deterministic ciphertext is unique, these schemes are not as susceptible
to frequency analysis, but still more efficient to search. Hahn and Kerschbaum
showed how the index can be built from the access pattern [11].

Searchable encryption also supports complex queries. The fastest method has
been proposed by Demertzis et al. in [6] where all subranges in the disjunctions
are indexed (and leaked on a match).

328 F. Kerschbaum and M. Härterich

There exist also a large number of applications which have been developed
on top of encrypted, in-memory, column-store database with specific protocols,
e.g., benchmarking [4,15,16,20,22,26], RFID tracking [18,21,25], smart metering
[14], supply chain planning [7,24], web applications [8] or reputation systems [17].

3 Searchable Encryption

3.1 Definitions

We propose to use searchable encryption as an alternative to deterministic
and order-preserving encryption in adjustable encryption. Searchable encryp-
tion allows the (private) key holder to issue a search token for a query string.
Using this search token the ciphertext holder can compare a ciphertext to the
query string. The result of this comparison (match/no match) is immediately
revealed in plaintext.

We employ the symmetric key variant due to better performance and the lack
of need for a public key in our scenario. A searchable encryption in our scenario
consists of the following algorithms:

– sk ← KeyGen(λ): Generates a secret key sk for a security parameter λ.
– c ← Enc(sk, x): Encrypts a plaintext x into a ciphertext c using secret key sk.
– t ← TrapDoor(sk, x): Generates a trapdoor search token t for plaintext x

using secret key sk.
– �/⊥ ← Test(t, c): Returns � if the search token matches and ⊥ if not.

Note that the ability to decrypt is optional in our scenario and hence not
implemented, since we can use another encrypted column of the same data for
decryption.

3.2 Performance Calibration

We compare the execution time of SQL queries on searchable encryption to
that of on deterministic encryption or order preserving encryption. These results
are used to calibrate our query planning algorithm. This algorithm compares
the runtime of a query using searchable encryption with its equivalent using
deterministic or order-preserving encryption, respectively. Both executions – on
searchable and on deterministic or order-preserving encryption – share some
common effort which includes query pre-processing and decryption of the result
set on the client and data transfer between the client and the server. We omit this
time in the following evaluation, because it does not contribute to the advantage
of one execution strategy over the other.

For searchable encryption we must consider the generation of the trapdoor
and the runtime of the UDF. Our tests show that the UDF scales very well,
so that we have the following linear cost model. Let N denote the number of
entries in the searched database column, tUDF scan denote the scan time per data-
base row and ttrapdoor generation includes both the actual execution of the crypto-
graphic algorithm and the row-independent execution time for query processing.

tsearchable = NtUDF scan + ttrapdoor generation

Searchable Encryption to Reduce Encryption Degradation 329

Table 1. Constants used for calibration

tUDF scan 4.5µs

ttrapdoor generation 65ms

tscan ∼0µs (< 1ns)

tencryption 20ms

When executing equality or range searches on deterministic or order-
preserving encryption, respectively, we use unmodified relational operators that
compare the values stored in the database to the search values. In this case the
main execution time stems from encrypting these literal values to deterministic
or order-preserving ciphertexts. Hence in our linear model

tdeterministic = Ntscan + tencryption

the slope tscan is very small. Note that in particular for in-memory databases we
find that tscan � tUDF scan. In fact, for table sizes up to 100 million entries there
is a total runtime of less than 50 ms.

Our measurements lead to the following values for tUDF scan,
ttrapdoor generation, tscan and tencryption which we use for the calibration of our
query planning algorithm (Table 1).

4 Detecting and Handling Infrequently Used Columns

Searchable encryption in our UDF can handle selection similar to deterministic
or order-preserving encryption but at higher security and lower performance.
We now aim to identify infrequently used columns, such that we can decide to
handle them by searchable encryption keeping the performance impact low, but
maximizing the relative security gain.

4.1 Problem

Consider an adjustably encrypted database and the following two sequences A
and B of queries:

Sequence A:
SELECT x FROM T WHERE y > 10
SELECT x FROM T WHERE y > 10
SELECT x FROM T WHERE y > 10
SELECT x FROM T WHERE y > 10
SELECT x FROM T WHERE y > 10

330 F. Kerschbaum and M. Härterich

Sequence B:
SELECT x FROM T WHERE y = 10
SELECT x FROM T WHERE y > 10
SELECT x FROM T WHERE y = 10
SELECT x FROM T WHERE y = 10
SELECT x FROM T WHERE y = 10

Using the standard adjustment algorithm both sequences result in an order-
preserving encryption of column y. Yet, if in sequence B the second query is
handled using searchable encryption, then the security would remain at deter-
ministic encryption and the performance impact would be small. Our problem
is to identify and handle differently this specific (infrequent) query.

The problem is a typical scheduling problem where an optimizer has to make
a decision based on future inputs (queries). The decision problem in case of
the first query of sequence A and the second query of sequence B is almost
identical: A query requiring a database adjustment appears for the first time.
The optimizer has to decide whether to use searchable encryption or to decrypt.

The only sensible choice is to treat first-time appearing queries as infrequent
until they reach a certain threshold and then decrypt. We present our algorithm
in the next section.

4.2 Algorithm

We use a budget mechanism in order to determine infrequently used columns.
For each column col we maintain a budget budget[col]. This budget describes the
extra amount of time allowed for searchable encryption compared to determinis-
tic or order-preserving encryption. It can be maintained in an arbitrary but fixed
unit of time (say milliseconds). For each column we use searchable encryption
until the budget is used up (i.e. reaches 0) and subsequently switch to the other
encryption schemes.

We fix two parameters α and β for our algorithm. Whenever a query is
executed the parameter α is added to the budget. The parameter β defines the
upper bound of the budget, i.e. the budget is never increased beyond β. We call
this process budget refilling.

When we choose searchable encryption we deduct the additional cost of the
query from the budget. Let σ be the cost of searchable encryption for equality
and τ be the cost of searchable encryption for ranges as determined in Sect. 3.2.

We can run our algorithm – in particular budget refilling – for several different
sets of columns. A SQL query uses a number of columns, not only the ones in
selection. We consider and later evaluate the following options for the budget
update strategy, i.e. choosing the column col.

– S1: Increase the budget for all columns used as selection parameters.
– S2: Increase the budget for all columns occurring in the query in any role

(e.g. also in the result list).
– S3: Increase the budget for all columns of all tables occurring in the query.
– S4: Increase the budget for all columns of the database scheme used.

Searchable Encryption to Reduce Encryption Degradation 331

4.3 Cost Estimation

Note that the costs σ and τ used in our algorithm depend on the number of rows
to which the test function needs to be applied. For simple scans on complete
database tables this number is readily available. However, as soon as there are
other selection conditions which narrow the result set it is important that they
are applied first. Hence the actual number of rows the function acts on has to
be estimated. This is a difficult problem and lies at the heart of many query
optimizations already for non-encrypted data. In our implementation we use a
straight-forward approach and assume that the selection conditions occurring in
our queries are independent and reduce the result set by a fixed factor.

5 Experimental Results

5.1 Security Measure

We define security as the encryption state of the database after one test run,
i.e. a series of queries chosen according to the distribution described before.
Each column that is decrypted to deterministic encryption lowers the security
compared to columns encrypted using randomized and searchable encryption.
Our security measure is hence simply the number of columns not decrypted to
order-preserving or deterministic encryption.

This security measure is independent of the number of queries we have exe-
cuted. We simply measure the state of the database. Note that without our
encryption selection algorithm all 15 columns would be decrypted to determin-
istic encryption after the first query accessing them, i.e. after each test run. We
hypothesize that using our algorithm the database will remain in a more secure
state.

We report the percentage of columns not decrypted. The baseline in our set
of queries from the TPC-C benchmark is 15 columns that may be decrypted
without our encryption scheme selection algorithm. Hence, each not decrypted
column is a 6.7% security improvement. We ignore any different sensitivity level
of columns, since they are difficult to assess scientifically, but note that any
non-decrypted column may already have high economic value.

We devise a simple theoretical test whether a column is likely to be decrypted
or not. Given the distribution of the test queries and the strategy used for budget
refilling one can calculate the expected value of the change per query execution
of the budget for a given data base column col. Let Qi be the query type of
query i, pj be the probability of picking a query type j (1 ≤ j ≤ 11), and
χ(Qi, col) = χrefill strategy(Qi, col) be 1 if query type Qi leads to a refill for
column col and 0 else. The cost σ(Qi, col) (cf. Sect. 4.3) of query i depends on
the query type and the column. Then, we have

E(Δbudget[col]) =
∑

i

pQi
(χ(Qi, col)α − σ(Qi, col)) (1)

332 F. Kerschbaum and M. Härterich

Fig. 1. (left) Security vs. Performance for α = 3, 6, 9, 12, β = 100α and strategy S1.
(middle) Security vs. Performance for α = 3, β = 300, 450, 600, 750 and strategy S1.
(right) Security vs. Performance for α = 3, β = 300 and all strategies.

If the expected value E(Δbudget[col]) is negative, then the budget will even-
tually reach 0. If, however, the expected value is positive then there is a good
chance that no decryption of the column col to a weaker security level is ever
necessary.

5.2 Performance Measure

We measure the wall clock time the database requires for performing the queries
on encrypted data. Let ti be time for the i-th query. We use the sum s =

∑
i ti

of all queries as the measured performance.
In an encrypted “hot” database without our encryption selection algorithm

the query would always be performed using deterministic or order-preserving
encryption. Our encryption scheme selection algorithm improves security, but
infrequent queries may be slower. In order to measure this performance penalty
we first measured a baseline. We executed each query type of our set from the
TPC-C benchmark 500 times on deterministic encryption. We use the median
bj as the baseline performance for this query type (1 ≤ j ≤ 11).

Using the randomly chosen queries in a test run we compute a baseline for
the entire test run. Let Qi be the query type of query i (1 ≤ Qi ≤ 11). Then, our
baseline B is B =

∑
i bQi

. We report the performance penalty of our encryption
scheme selection algorithm as s

B − 1. A performance penalty of 5% means that
an encrypted database using our algorithm (for the chosen set of parameters)
executes 5% slower than encrypted database without our algorithm. Recall that
our algorithm improves security, i.e. we trade performance for security.

Each test run consists of 500 queries (0 < i ≤ 500) chosen according to the
geometric distribution described before. In order to have the database reach
a “hot” state in our experiments, we disregard the first 100 queries in our
performance measurement. Even when using our encryption scheme selection
algorithm, several columns need to be decrypted to deterministic encryption.
Including this time will skew our measurements, since it is not included in the

Searchable Encryption to Reduce Encryption Degradation 333

baseline. We argue that the performance of a “hot” database is critical for prac-
tical use rather than the cost of reaching this state, since this can be included in
an installation or setup phase. Hence, we focus our measurements on the “hot”
phase.

5.3 Experimental Setup

We execute all experiments on an SAP HANA database (SP05 release) running
on an HP Z820 workstation with 128 GB RAM and 16 dual cores (Intel Xeon
CPU running at 2.60 GHz). There was no network access, connections were per-
formed via the loopback interface. Our performance measurement is solely based
on the database execution time and hence independent of network performance.
Our security measurement is obviously independent of network performance.

Our client is implemented in Java 1.7 as a JDBC driver and running on the
64-bit JVM. The crypto routines are implemented in C++, compiled with GCC
4.3 and accessed via JNI. The UDFs use the same crypto routines accessible as
linked libraries.

We execute series of test runs. Each test run consists of 500 queries chosen
according to the geometric distribution described before. A series consists of 20
test runs and we report the median performance penalty and median security
improvement as described before of those 20 test runs. Note that the median
of an even number of values is the mean of the middle two values. Hence, we
sometimes have “half” decrypted columns.

Each series of test runs has fixed parameters for the budget increment α,
the budget upper limit β and the budget refilling strategy. The initial value for
the budget is chosen to be 1

2β. We conduct experiments varying each parameter
individually. In the first experiment we vary α, in the second β and in the
third the strategy. For each experiment we report the security improvement
vs. performance penalty trade-off for the different parameter choices. We intend
to give the database administrator guidance on configuring this trade-off in our
algorithm.

5.4 Budget Increment α

We measure the impact of the budget increment α in our algorithm. As men-
tioned before α is linear in the expected value of the budget of a column and,
hence, its probability of decryption. We choose four values for α = 3, 6, 9, 12. We
choose the budget upper limit β = 100α. We choose the budget update strat-
egy S1, i.e. increase the budget for all columns used as selection parameters. We
explain our choice of strategy using the results from the appropriate experiments
in Sect. 5.6. Our random choices and experimental setup are as described before.
Our results are depicted in Fig. 1.

Discussion. We can see in Fig. 1 that the performance impact of searchable
encryption is high, since the slope is steep. This can be expected from our cal-
ibration in Sect. 3.2. Nevertheless, we also see that for the values of α = 3, 6, 9

334 F. Kerschbaum and M. Härterich

the security gain is higher than the performance penalty whereas for α = 12 the
performance penalty is higher than the security gain. Particularly, for α = 3 and
β = 300 we have performance penalty of 1.5% and one non-decrypted column,
i.e. a security gain of 6.7%. Hence, we conclude that for truly infrequent queries
searchable encryption is indeed a viable alternative. In our subsequent experi-
ments we use α = 3 in order to address this optimal set of infrequent queries.
Note that in our test data, smaller values for α < 3 make little sense, since there
is only one non-decrypted column left.

5.5 Budget Upper Limit β

We measure the impact of the budget upper limit β in our algorithm. It is linear
in the expected time to reach decryption (hot state), but it also counters the
probabilistic nature of the query distribution. It has to be high enough in order to
allow bursts of infrequent queries in an otherwise “stable” query set. We choose
the four values for β = 300, 450, 600, 750. We chose α = 3 from the results in the
first experiment and the same budget update strategy S1 as before. Our random
choices and experimental setup are as described before. Our results are depicted
in Fig. 1.

Discussion. We can see in Fig. 1 again a high performance impact of searchable
encryption. Nevertheless, our choice of budget increment α = 3 leads to higher
security gains than performance penalties for β = 300, 450, 600. We conclude that
α = 3 is indeed addressing a promising set of infrequent queries. As expected
the higher the budget upper limit β, the less columns are decrypted and the
better the security, but the worse performance. Note that due to our budget
update strategy S1 of refilling only selection columns very few column budgets
get increased and the budget limit (and initial budget) is more critical. For
β = 300, we have the best security gain to performance penalty ratio. Hence,
we use α = 3 and β = 300 in our subsequent experiment for the budget update
strategy.

5.6 Budget Update Strategy

We measure the impact of the budget update strategy S1 to S4. We expect less
columns to be decrypted from S1 to S4, since budget increments occur more
frequently. This implies more security gain and less performance penalty. We
chose α = 3 and β = 300 from the results in the first two experiments. Our
random choices and experimental setup are as described before. Our results are
depicted in Fig. 1.

Discussion. We can see in Fig. 1 somewhat surprising results. For our choices of
α = 3 and β = 300 the security is not impacted by the budget update strategy.
All four strategies on average do not decrypt one column. Still, we can see the
expected decreased performance penalty.

Searchable Encryption to Reduce Encryption Degradation 335

Different strategies may impact different columns and hence we believe that
there may be a qualitative difference between the strategies. Still, even if the
security differences are just too small to be measured, the strategy S1 is clearly
superior. Hence, we recommend and used in all our other experiments strategy
S1 of refilling only selection columns.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM International Conference on Man-
agement of Data, SIGMOD (2004)

2. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 13

3. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

4. Catrina, O., Kerschbaum, F.: Fostering the uptake of secure multiparty computa-
tion in e-commerce. In: Proceedings of the 3rd International Conference on Avail-
ability, Reliability and Security, ARES (2008)

5. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

6. Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis,
M.: Practical private range search revisited. In: Proceedings of the ACM Interna-
tional Conference on Management of Data, SIGMOD (2016)

7. Dreier, J., Kerschbaum, F.: Practical privacy-preserving multiparty linear program-
ming based on problem transformation. In: Proceedings of the 3rd IEEE Interna-
tional Conference on Privacy, Security, Risk and Trust, PASSAT (2011)

8. Fuhry, B., Tighzert, W., Kerschbaum, F.: Encrypting analytical web applications.
In: Proceedings of the 8th ACM Cloud Computing Security Workshop, CCSW
(2016)

9. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries
over encrypted relational databases. In: Proceedings of the 9th International Con-
ference on Database Systems for Advances Applications, DASFAA (2004)

10. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database-service-provider model. In: Proceedings of the 2002 ACM
International Conference on Management of Data, SIGMOD (2002)

11. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: Proceedings of the 21st ACM Conference on Computer and Communications
Security, CCS (2014)

12. Hahn, F., Kerschbaum, F.: Poly-logarithmic range queries on encrypted data with
small leakage. In: Proceedings of the 8th ACM Cloud Computing Security Work-
shop, CCSW (2016)

13. Hang, I., Kerschbaum, F., Damiani, E.: Enki: access control for encrypted query
processing. In: Proceedings of the ACM International Conference on Management
of Data, SIGMOD (2015)

http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-642-40041-4_20

336 F. Kerschbaum and M. Härterich

14. Jawurek, M., Kerschbaum, F., Danezis, G.: SOK: privacy technologies for smart
grids - a survey of options. Technical report MSR-TR-2012-119, Microsoft (2012)

15. Kerschbaum, F.: Building a privacy-preserving benchmarking enterprise system.
Enterp. Inf. Syst. 2(4), 421–441 (2008)

16. Kerschbaum, F.: Practical privacy-preserving benchmarking. In: Proceedings of
the IFIP International Information Security Conference, SEC (2008)

17. Kerschbaum, F.: A verifiable, centralized, coercion-free reputation system. In: Pro-
ceedings of the 8th ACM Workshop on Privacy in the Electronic Society, WPES
(2009)

18. Kerschbaum, F.: An access control model for mobile physical objects. In: Proceed-
ings of the 15th ACM Symposium on Access Control Models and Technologies,
SACMAT (2010)

19. Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: Proceedings
of the 22nd ACM Conference on Computer and Communications Security, CCS
(2015)

20. Kerschbaum, F., Dahlmeier, D., Schröpfer, A., Biswas, D.: On the practical impor-
tance of communication complexity for secure multi-party computation protocols.
In: Proceedings of the ACM Symposium on Applied Computing, SAC (2009)

21. Kerschbaum, F., Oertel, N.: Privacy-preserving pattern matching for anomaly
detection in RFID anti-counterfeiting. In: Proceedings of the International Work-
shop on Radio Frequency Identification: Security and Privacy Issues, RFIDSec
(2010)

22. Kerschbaum, F., Schneider, T., Schröpfer, A.: Automatic protocol selection in
secure two-party computations. In: Proceedings of the 12th International Con-
ference on Applied Cryptography and Network Security, ACNS (2014)

23. Kerschbaum, F., Schröpfer, A.: Optimal average-complexity ideal-security order-
preserving encryption. In: Proceedings of the 21st ACM Conference on Computer
and Communications Security, CCS (2014)

24. Kerschbaum, F., Schröpfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh,
S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaboratiue supply-chain
management. IEEE Comput. 44(9), 38–43 (2011)

25. Kerschbaum, F., Sorniotti, A.: RFID-based supply chain partner authentication
and key agreement. In: Proceedings of the 2nd ACM Conference on Wireless Net-
work Security, WISEC (2009)

26. Kerschbaum, F., Terzidis, O.: Filtering for private collaborative benchmarking. In:
Proceedings of the International Conference on Emerging Trends in Information
and Communication Security, ETRICS (2006)

27. Naveed, M., Kamara, S., Wright, C.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the 21st ACM Conference on Computer
and Communications Security, CCS (2014)

28. Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. In: Proceedings of the 34th IEEE Symposium on Security and Privacy,
S&P (2013)

29. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP (2011)

30. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical queries
over encrypted data. In: Proceedings of the 39th International Conference on Very
Large Data Bases, PVLDB (2013)

Efficient Protocols for Private Database Queries

Tushar Kanti Saha1(B), Mayank2, and Takeshi Koshiba3

1 Division of Mathematics, Electronics, and Informatics,
Graduate School of Science and Engineering, Saitama University, Saitama, Japan

saha.t.k.512@ms.saitama-u.ac.jp
2 Department of Computer Science and Engineering,

Indian Institute of Technology (Banaras Hindu University), Varanasi, India
mayank.cse14@iitbhu.ac.in

3 Faculty of Education and Integrated Arts and Sciences,
Waseda University, Tokyo, Japan

tkoshiba@waseda.jp

Abstract. We consider the problem of processing private database
queries over encrypted data in the cloud. To do this, we propose a pro-
tocol for conjunctive query and another for disjunctive query process-
ing using somewhat homomorphic encryption in the semi-honest model.
In 2016, Kim et al. [IEEE Trans. on Dependable and Secure Comput.]
showed an FHE-based query processing with equality conditions over
encrypted data. We improve the performance of processing private con-
junctive and disjunctive queries with the low-depth equality circuits than
Kim et al.’s circuits. To get the low-depth circuits, we modify the packing
methods of Saha and Koshiba [APWConCSE 2016] to support an effi-
cient batch computation for our protocols with a few multiplications. Our
implementation shows that our protocols work faster than Kim et al.’s
protocols for both conjunctive and disjunctive query processing along
with a better security level. We are also able to provide security to both
attributes and values appeared in the predicate of the conjunctive and
disjunctive queries whereas Kim et al. provided the security to the values
only.

Keywords: Private Database Queries · Conjunctive · Disjunctive ·
Packing method · Homomorphic Encryption · Batch technique

1 Introduction

Private database queries (PDQ) plays an important role for accessing these data
securely from any part of the world. In addition, users are not interested to dis-
close their queries and results to the database owners or any other parties. At
the same time, database owners are not interested to disclose their whole data-
base to their users. Besides, they do not like to keep their data in their personal
computer or server because of high maintenance cost. They are now interested
in storing their data to another party like the cloud so that database owners and

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 337–348, 2017.
DOI: 10.1007/978-3-319-61176-1 19

338 T.K. Saha et al.

their allowed users can access the data from anywhere in the world with a low
cost. However, they also want to secure their data at the same time. Moreover,
database owners want to secure their data using the encryption method of a
cryptographic scheme. But the encrypted data needs to be decrypted by some
trusted parties before utilizing it for some purposes which raises another secu-
rity problem. In reality, it is hard to find such trusted parties. So it is desirable
to execute some queries on encrypted data without decryption. On the con-
trary, homomorphic encryption (HE) is the encryption scheme which allows the
meaningful operation like addition and multiplication on encrypted data with-
out decryption. Therefore, we use homomorphic encryption scheme in case of
private database queries. The concept of privacy homomorphism was coined by
Rivest et al. in 1978 [10]. Also, the role of homomorphic encryption was limited
to either addition or multiplication before introducing Gentry’s revolutionary
work in 2009 [6]. Moreover, the homomorphic encryption scheme can be clas-
sified into three types. Firstly, partial homomorphic encryption (PHE) allows
either addition or multiplication but not both. Secondly, somewhat homomor-
phic encryption (SwHE) allows many additions and few multiplications. Finally,
fully homomorphic encryption (FHE) allows any number of additions and mul-
tiplications. Here Gentry proposed the fully homomorphic encryption scheme
by applying bootstrapping technique into somewhat homomorphic encryption
scheme. But fully homomorphic encryption scheme is far behind from practical
implementation due to its speed [11]. Therefore, we use somewhat homomorphic
encryption scheme [9] which is faster than FHE due to supporting a limited num-
ber of multiplications. In this paper, we consider the security of the attributes
and values appeared in the predicate of a conjunctive or disjunctive query with
equality conditions. An example of the conjunctive query is that a managing
staff of a hospital is trying to find out the patient’s information from a hospital
database who are suffering from ‘Leukemia’ and age is less than 30. In addi-
tion, a doctor is searching for the patients who are suffering from fever or cold,
which is an example of the disjunctive query. In 2016, Kim et al. [8] showed an
approach to address private database queries like conjunctive, disjunctive, and
threshold queries using leveled FHE [3] with SIMD techniques. They also showed
its implementation in [7] which took about 26.54 s to perform a query on 326
elements (0.08 sec./per record) including 11 attributes of 40-bit values with the
93-bit security level. But this speed of processing query is not satisfactory to
process big data stored in the cloud. So there should be an efficient method to
improve the performances of conjunctive and disjunctive queries with a better
security level.

1.1 Reviews of Recent Works

In 2013, Boneh et al. [2] showed an efficient method of processing conjunctive
queries only with somewhat homomorphic encryption. But the performance of
their scheme is still far from practicality. In 2016, Cheon et al. [5] showed an
approach to private query processing on encrypted databases using leveled FHE
in [3] with a better security level. But their performances of query processing

Efficient Protocols for Private Database Queries 339

was highly time-consuming in a practical sense. They also declared performance
improvement challenge for processing the private queries. At the same time, Kim
et al. [8] also used BGV scheme in [3] to describe another protocol for processing
conjunctive, disjunctive, and threshold queries over encrypted data in the cloud.
They showed the practical implementation of the protocol in another paper [7].
It took about 0.11 s to access each record with 11 attributes of 40-bit values.
In another paper, Kim et al. [7] showed a better security for processing these
same types of queries. Here they provide security to both attributes and values
in the predicate of a query. But it took about 0.12 s to access each record with
11 attributes of 40-bit values. Here they used equality circuits of depth �log l� to
compare two l-bit integers which can be improved by the private batch equality
protocol in [11]. Besides, none of the above protocols were able to achieve a
remarkable efficiency regarding practicality. Recently, Saha and Koshiba [12]
showed an efficient protocol than that in [5] for processing a conjunctive query.
But their computation technique is only useful for processing a conjunctive query.

1.2 Our Contribution

In this paper, we consider the problem of processing private conjunctive and
disjunctive queries with equality conditions over encrypted database. We also
think the security both attributes αi and values vi with 1 ≤ i ≤ k appeared in the
predicate of a conjunctive and disjunctive query. Here we follow the conventional
approach of processing conjunctive and disjunctive queries. For example, let us
consider the conjunctive and disjunctive queries with k equality conditions as
“select V from Record where α1 = v1 and α2 = v2 and . . . and αk = vk” and
“select V from Record where α1 = v1 or α2 = v2 or . . . or αk = vk” respectively.
To process these queries with k equality conditions, the conventional solution is
that client needs to send k queries firstly to the database server. After that,
database server does the equality matching of attributes and the values of its
Record table and sends back the results to the client. Then client needs to do
the intersection and union of those k results from the database to get the actual
result of conjunctive and disjunctive query respectively. In addition, most of
the existing solutions with homomorphic encryption [4,5,7,8] used the equality
circuits of depth �log l� for comparing two l-bit binary values. By developing
new batch technique and packing methods, our equality circuit is reduced to
a constant-depth circuit which includes many equality comparisons. Then we
propose an efficient method to improve the performances of private conjunctive
and disjunctive queries using ring learning with errors (RLWE) based SwHE of
a better security level.

2 Our Protocols

In this section, we describe the protocols of processing private database queries
for conjunctive and disjunctive cases. To address private database query (PDQ),
we consider the security of both attributes and values in the predicate of a

340 T.K. Saha et al.

conjunctive or disjunctive query. Here we use the same protocol settings as in
Kim et al. [7] with a different scenario.

2.1 Attribute Matching

Suppose a medical research institute (MRI) is maintaining its database of some
patients in the cloud. Since patient’s information are sensitive, MRI has uploaded
its database using a public key encryption scheme. Here consider Bob has m
encrypted records {R1, . . . ,Rm} in its Record table of the MRI’s database with
λ attributes where λ ≥ k. Here we require only the k attributes and their values
from the predicate of a query to process that query. Furthermore, we denote
each attribute name with a δ-bit binary vector αi = (gi,0, · · · , gi,δ−1) where gi,c

is the c-th bit of the i-th attribute with 1 ≤ i ≤ k and 0 ≤ c ≤ δ − 1. Also,
we need to consider k attributes among λ attributes in each record required for
our conjunctive and disjunctive query processing. We also denote each attribute
name in the Record table using a δ-bit binary vector βj = (hj,0, · · · , hj,δ−1)
where hj,e is the e-th bit of the j-th attribute with 1 ≤ j ≤ λ and 0 ≤ e ≤
δ − 1. Since we consider the security of attributes, first the protocol matches
encrypted attribute αi with any attribute βj in the Record table. Here Bob does
the matching by computing the Hamming distance Hi,j between αi and βj as
Hi,j = |αi − βj |. Here if Hi,j = 0, then we can say that αi = βj ; otherwise
αi �= βj . According to our protocol, αi must be matched with any βj for some
1 ≤ i ≤ k and 1 ≤ j ≤ λ.

2.2 Batch Processing

For our Record table, each record is represented as Rμ = {wμ,1 . . . , wμ,λ} where
each value wμ,j = (bμ,j,0, . . . , bμ,j,l−1) is considered as a binary vector of the same
length l with 1 ≤ μ ≤ m and 1 ≤ j ≤ λ. We know that our Record table contains
m records. If we want to compute the Hamming distance of each vi from each
wμ,j one by one then it is more time-consuming. Here we use the batch technique
of the private batch equality protocol in [11]. Actually, batch processing is the
method of executing a single instruction on multiple data. The performance of
our protocols can be increased by using the batch technique within the lattice
dimension n. Generally, a big database consists of many tables where each table
contains numerous records. For our conjunctive query processing with batch
technique, if we compare all the values of a certain attribute of a particular table
using a single computation then we will be required higher lattice dimension n
which requires more memory to compute. This high requirement of memory may
exceed the usual capacity of a machine in the cloud. So we divide all records of a
table into blocks. For our given m records, we divide the total records m into p
blocks as p = �m/η�. Here each block consists of η records with λ attributes from
which we have to access k attributes. If we access each record of our Record table
one after another then it requires m ·k rounds communication between Alice and
Bob in the cloud for accessing m records. On the contrary, the batch technique
allows us to access all values of any attribute βj at a time. By utilizing the batch

Efficient Protocols for Private Database Queries 341

technique, we reduce the communication complexity between Alice and Bob in
the cloud from m · k to �(m · k)/η�. Now we can pack the η values of the βj-th
attribute of each block in a single polynomial to support batch computation
where 1 ≤ j ≤ λ.

2.3 Protocol for Conjunctive Query

A conjunctive query is a query which contains multiple conditions in the predi-
cate of the query connected by ‘and’/‘∧’. For instance, a research staff is trying
to find the information of the patients who suffer from Leukemia and are 30 years
old. This is a conjunctive query request to the cloud. In this scenario, consider
Alice has a conjunctive query with k conditions in its predicate as “select V
from Record where α1 = v1 and α2 = v2 and . . . and αk = vk”. Here we follow
the conventional approach of processing a conjunctive query. So it can be com-
puted by intersecting ‘IDs’ from the result the k sub-queries as

⋂k
i=1 Q(αi = vi)

where Q(αi = vi) = {ID | the attribute αi of ID takes vi as the value.} More-
over, the values of k attributes {α1, . . . , αk} appeared in the predicate of the
query is represented as a set V = {v1, . . . , vk} where vi = (ai,0, . . . , ai,l−1)
is considered as a binary vector of length l. Here we consider the security of
both attributes αi and values vi appeared in the predicate of the query. Firstly,
Alice sends the encrypted attributes to find the required column in the Record
table that are needed in the conjunctive query computation. Then she sends the
encrypted values vi to Bob to be matched with some wμ,j using the multiple
Hamming distance computation where 1 ≤ μ ≤ m and 1 ≤ j ≤ λ. To speed up
the computation using batch processing as discussed in Sect. 2.2, let us form a
query vector Ai = (ai,0, . . . , ai,l−1) from the values of the i-th condition of the
query where 1 ≤ i ≤ k. We also assume the i-th attribute of query condition
matches with βj-th attribute of the Record table where 1 ≤ j ≤ λ. Again we
form another record vector from η values of the attribute βj of each block σ as
Bσ,j = (wσ,j,1, . . . , wσ,j,η) where wσ,j,d = (bσ,j,d,0, . . . , bσ,j,d,l−1) with 1 ≤ σ ≤ p
and 1 ≤ d ≤ η. Here |Ai| = l and |Bσ,j | = η ·l. Here we find the distance between
two vectors Ai and Bσ,j by the multiple Hamming distance computation as

Hσ,d,i =
l−1∑

r=1

|ai,r − bσ,j,d,r| =
l−1∑

r=1

(ai,r + bσ,j,d,r − 2ai,rbσ,j,d,r) (1)

where 1 ≤ d ≤ η, 1 ≤ σ ≤ p, and j ∈ {1, 2, . . . , λ}. Moreover, if Hσ,d,i in Eq. (1) is
0 for some position d in the block σ then we can say that Ai = Bσ,j,d; otherwise
Ai �= Bσ,j,d where Bσ,j,d is the d-th sub-vector of Bσ,j,d. Here the multiple
Hamming distance means the distances between the vector Ai and each sub-
vector in Bσ,j . So we need to define another packing method than that in [14].
In this way, Alice gets some IDs for each value vi in the predicate of a query.
Then she gets conjunctive query matched IDs after the intersection of all IDs
for each vi. She then sends the IDs to Bob in the cloud again and Bob returns
the corresponding records to Alice. Now we explain our protocol for conjunctive
query by the following steps.

342 T.K. Saha et al.

1. Alice generates the public key and secret key by herself and encrypts each col-
umn of the database D′ along with attributes. Then she uploads the database
to the cloud.

2. Then she also parses both attributes and values from the predicate part of
her query. She encrypts attributes αi and vi using her public key and sends
it to Bob in the cloud.

3. For 1 ≤ i ≤ k and 1 ≤ j ≤ λ, Bob tries to find out the βj-th attribute of the
Record table that matches αi using the Hamming distance Hi,j with every
attribute in the database. Here Alice helps Bob to find the βj-th attribute
after decryption of the Hamming distance result of Bob.

4. For 1 ≤ σ ≤ p, Bob does secure computation of batch equality test as in
Eq. (1) and sends the encrypted result Hσ,d,i to Alice to verify whether at
least one of Hσ,d,i’s is equal to 0.

5. For 1 ≤ i ≤ k and 1 ≤ d ≤ η, Alice decrypts Hσ,d,i using her secret key and
checks each value Hσ,d,i and gets the IDs for some position d where Hσ,d,i = 0;
In this way, she gets k sets of IDs for k conditions in the query.

6. Then Alice computes the intersection of k sets of IDs and sends the result to
Bob to get her desired result.

7. Bob sends the encrypted data to Alice depending on those IDs given by Alice.
Then Alice decrypts the data and gets her desired result.

2.4 Protocol for Disjunctive Query

A disjunctive query is a query which contains multiple conditions in the predicate
of the query connected by ‘or’/‘∨’. As discussed in Sect. 2.3, we consider the same
database settings for processing a disjunctive query. Let us look at a disjunctive
query with k conditions in its predicate as “select V from Record where α1 = v1
or α2 = v2 or . . . or αk = vk”. Here we also follow the conventional approach
of processing a disjunctive query. Now we can compute by taking union ‘IDs’
from the result the k sub-queries as

⋃k
i=1 Q(αi = vi). We process this query with

the same multiple Hamming distance computation as in Eq. (1). Our protocol
for processing the disjunctive query is same as discussed by 7 steps in Sect. 2.3
except step 6. In case of disjunctive query, Alice needs to compute the union of k
sets of IDs instead of intersection (see step 6 in Sect. 2.3) required for conjunctive
query protocol.

Remark 1. Here our protocols are secure under the assumption that Bob is semi-
honest (also known as honest-but-curious), i.e., he always follows the protocols
but tries to learn information from the protocols. Here we use somewhat homo-
morphic encryption scheme in [12] and skip its review due to page limitation.

3 Packing Method

In information theory, the method of encoding many bits in a single polynomial
is called packing method. In 2011, Lauter et al. [9] used a packing method for

Efficient Protocols for Private Database Queries 343

an efficient encoding of an integer in a polynomial ring to facilitate arithmetic
operations (see Sect. 4.1 in [9] for details). Here we need the packing methods
for both attributes and value matching. Let us consider a binary vector M =
(11001101) with l = 8 which can be encoded as Poly(M) = 1+x2 +x3 +x6 +x7

using the packing method in [9]. Here we review and modify the packing methods
in Saha et al. [11] which was used in their private batch equality test protocol.
Here we skip the discussion of our packing method for attribute matching due
to page limitation which is a variant of the following packing method.

3.1 Our Packing Method for Value Matching

First, let us review some parameters in [12]. Let t (resp. q) defines the ring for
a message space (resp. ciphertext space) as Rt = Zt[x]/(xn + 1) (resp. Rq =
Zq[x]/(xn + 1)) which is a ring of integer polynomials of degree less than n with
coefficient modulo t (resp. q) (see [12] for details). To accelerate the processing of
a conjunctive and disjunctive query, we need to compute the multiple Hamming
distance Hσ,d,i in Eq. (1) with few polynomial multiplications. As discussed in
Sect. 2.3, for 1 ≤ i ≤ k and j ∈ {1, . . . , λ}, we consider two same integer vectors
Ai = (ai,0, · · · , ai,l−1) ∈ Rt of length l and Bσ,j = (wσ,j,1, . . . , wσ,j,s) ∈ Rt where
wσ,j,d = (bσ,j,d,0, . . . , bσ,j,d,l−1) of length η · l with 1 ≤ σ ≤ p and 1 ≤ d ≤ η.
Here we need to find the Hamming distances between Ai = (ai,0, . . . , ai,l−1) and
Bσ,j = (bσ,j,1,0, . . . , bσ,j,1,l−1, . . . , bσ,j,η,0, . . . , bσ,j,η,l−1). Furthermore, we know
from [14] that the secure inner product 〈Ai,Bσ,j〉 helps to compute the Hamming
distance between Ai and Bσ,j . Here we pack these integer vectors by some
polynomials with the highest degree(x) = n in such a way so that inner product
〈Ai,Bσ,j〉 does not wrap-around a coefficient of x with any degrees. For the
integer vectors Ai and Bσ,j with n ≥ η · l and 1 ≤ d ≤ η, the packing method
of [11] in the same ring R = Z[x]/(xn + 1) can be rewritten as

Poly1(Ai) =
l−1∑

c=0

ai,cx
c, Poly2(Bσ,j) =

s∑

d=1

l−1∑

e=0

bσ,j,d,ex
l·d−(e+1) . (2)

Here if we multiply the above two polynomials, it will help us to find the inner
product 〈Ai,Bσ,j〉 which in turn helps the multiple Hamming distances compu-
tation between the vectors Ai and Bσ,j . Here each Hamming distance can be
found as a coefficient of x with different degrees. Now the polynomial multiplica-
tions of Poly1(Ai) and Poly2(Bσ,j) in the same base ring R can be represented
as follows.

(l−1∑
c=0

ai,cx
c
)

×
(s∑

d=1

l−1∑
e=0

bσ,j,d,ex
l·d−(e+1)

)
=

s∑
d=1

l−1∑
c=0

l−1∑
e=0

ai,cbσ,j,d,ex
c+l·d−(e+1)

=
s∑

d=1

l−1∑
c=0

ai,cbσ,j,d,cx
l·d−1 +ToHD+ ToLD =

s∑
d=1

〈Ai,Bσ,j,d〉xl·d−1 + · · · (3)

Here, Ai is the i-th vector of length l that appeared in the predicate of a
conjunctive or disjunctive query where 1 ≤ i ≤ k. Also, Bσ,j,d is the d-th

344 T.K. Saha et al.

sub-vector of Bσ,j of the block σ and βj attribute of the Record table with
1 ≤ σ ≤ p, 1 ≤ d ≤ η and j ∈ {1, . . . , λ}. Moreover, the ToHD (terms of higher
degree) means deg(x) > l·d − 1 and the ToLD (terms of lower degrees) means
deg(x) < l·d − 1. The result in Eq. (3) shows that one polynomial multiplication
includes the multiple inner products of 〈Ai,Bσ,j,d〉. According to the SwHE in
Sect. 2 of [12], the packed ciphertexts for Polyτ (A) ∈ R are defined for some
τ ∈ {1, 2} as

ctτ (A) = Enc(Polyτ (A), pk) ∈ (Rq)2 . (4)

Proposition 1. Let Ai = (ai,0, · · · , ai,l−1) be an integer vector where |Ai| = l
and Bσ,j = (bσ,j,1,0, . . . , bσ,j,1,l−1, . . . , bσ,j,η,0, . . . , bσ,j,η,l−1) be another integer
vector of length η · l. For 1 ≤ d ≤ η, the vector Bσ,j includes η sub-vectors where
the length of each sub-vector is l. If the ciphertext of Ai and Bσ,j can be repre-
sented as ct1(Ai) and ct2(Bσ,j) respectively by Eq. (4) then under the condition
of Lemma 1 (see Sect. 2.3 in [12] for details), decryption of homomorphic multi-
plication ct1(Ai)� ct2(Bσ,j) ∈ (Rq)2 will produce a polynomial of Rt with xl·d−1

including coefficient 〈Ai,Bσ,j,d〉 =
∑s

d=1

∑l−1
c=0 ai,cbσ,j,d,ex

l·d−1 mod t. Alterna-
tively, we can say that homomorphic multiplication of ct1(Ai) and ct2(Bσ,j)
simultaneously computes the multiple inner products for 1 ≤ i ≤ k, 1 ≤ σ ≤ p,
1 ≤ d ≤ η, 0 ≤ c ≤ (l − 1), and j ∈ {1, . . . , λ}.

4 Secure Computation Procedure

We need to securely compute both attribute and value matching as discussed
in our protocol in Sect. 2.3. Now we present the matching technique of both
attributes and values of a conjunctive and disjunctive query with the Record
table in the following sub-sections. Due to page limitation, we skip the discussion
of secure computation procedure of attribute matching (similar to the following
secure computation of value matching).

4.1 Matching the Values in the Record

Now we compute our protocol using the SwHE scheme in [12] and the packing
method in Sect. 3.1 for matching the records. In addition, according to Eq. (1),
we need to find out the values of the multiple Hamming distance Hσ,d,i. As
discussed in Sect. 3.1, we consider two same integer vectors Ai = (ai,0, · · · ,
ai,l−1) ∈ Rt and Bσ,j = (bσ,j,1,0, . . . , bσ,j,1,l−1, . . . , bσ,j,η,0, . . . , bσ,j,η,l−1) ∈ Rt

from which Hσ,d,i can be computed. Here, for 1 ≤ d ≤ η, Hσ,d,i is computed by
the multiple Hamming distance between Ai and Bσ,j using Eq. (1). For these
two integer vectors Ai and Bσ,j , the multiple Hamming distance Hσ,d,i in Eq. (1)
can be computed by the packing method in Eq. (2) and inner product property
in Eq. (3). Moreover, the packed ciphertext of the vectors Ai and Bσ,j is com-
puted by the Eq. (4). So Hσ,d,i is computed from Proposition 1 and the packed
ciphertext vector ct1(Ai) and ct2(Bσ,j) in three homomorphic multiplications
and two homomorphic additions as ct(Hσ,d,i) equals

ct1(Ai) � ct2(V2) � ct2(Bσ,j) � ct1(V1) � (−2ct1(Ai) � ct2(Bσ,j)) (5)

Efficient Protocols for Private Database Queries 345

where V1 denotes an integer vector like (1, . . . , 1) of length l and V2 denotes
another integer vector like (1, . . . , 1) of length η · l. The above encrypted poly-
nomial ct(Hσ,d,i) includes many Hamming distances between the sub-vectors
of Ai and sub-vectors of Bσ,j . Here we need the Hamming distance Hσ,d,i in
Eq. (1). Bob sends ct(Hσ,d,i) to Alice for decryption. According to Proposition 1
and our protocols, Alice decrypts ct(Hσ,d,i) in the ring Rq using her secret key
and extracts Hσ,d,i as a coefficient of xl·d−1 from the plaintext of ct(Hσ,d,i).
Then Alice checks whether at least one of the Hσ,d,i contains 0 or not to decide
whether Ai = Bσ,j,d or Ai �= Bσ,j,d.

4.2 Secure Computation of Our Protocols

For the secure computation of conjunctive query protocol, Alice sends both
encrypted attributes and values from the predicate to Bob in the cloud. Bob
first securely matches attributes. Then Bob matches each vi with the j-th col-
umn of Record table to find the equalities according to Eq. (5) and sends result
ct(Hσ,d,i) to Alice. Then Alice decrypts the results ct(Hσ,d,i) and gets some IDs
where she gets Hσ,d,i=0 for some d of the σ-th block. In this way, Alice gets k
sets of IDs for k values in the predicate of the query. After that, she does the
intersection of those sets of IDs to support conjunctive query computation and
sends IDs to Bob. Later, Bob sends the corresponding encrypted records from
the Record table depending on those IDs. Finally, Alice decrypts the encrypted
records using her secret key to get her desired result. On the contrary, to support
disjunctive query computation, Alice and Bob do the same thing as required for
conjunctive query except that Alice does the union of those sets of IDs and sends
those IDs to Bob. In this way, we process secure computation for both of our
protocols.

4.3 Hiding Additional Information from Leakage

During decryption, Alice can know some additional information from the compu-
tation of the Hamming distance Hσ,d,i in Eq. (1) than she needs due to sending
encrypted polynomials ct(Hσ,d,i) to her. But Alice needs to know only those
coefficients which has degree xl·d−1. We solve the problems by adding a random
polynomial at the cloud (Bob) ends separately. For securing the polynomial
Hσ,d,i, Bob also adds another random polynomial rb to ct(Hσ,d,i) for masking
extra information. Since Alice needs to check only the coefficient of xl·d−1 from
the large polynomial ct(Hσ,d,i) produced by Bob, then random polynomial in
the ring R can be represented by rb =

∑n/l
d=0

∑l−2
i=0 rb,l·d+ix

l·d+i . Here ct(Hσ,d,i)
consists of three ciphertext components as ct(Hσ,d,i) = (c0, c1, c2). So Bob adds
rb to the ciphertext as ct(H′

σ,d,i) = ct(Hσ,d,i) � rb = (c0 � rb, c1, c2). Here the
ciphertext ct(H′

σ,d,i) contains all required information as a coefficient of xl·d−1

and hide all other coefficients using the randomization. In this way, we hide
ct(H′

σ,d,i) to disclose any information to Alice except the coefficient of xl·d−1.

346 T.K. Saha et al.

5 Performance Analysis

In this section, we present the both theoretical and practical performance of our
protocols in comparison to Kim et al. [8] protocol. Here, we experimented our
two protocols and compared their performances with conjunctive and disjunctive
query results in [8]. Here we use the same scenario as Kim et al. [8] protocol along
with the database and queries.

5.1 Theoretical Evaluation

In this section, we figure out the multiplicative depth of equality circuits for Kim
et al. [8] and our protocol. To measure the equalities of attributes and values as
discussed in Sect. 4, we required the Hamming distance computation in Eq. (1).
In addition, the encrypted computation of these Hamming distances required
only three polynomial multiplications as in Eq. (5). Furthermore, Kim et al.
needed a multiplicative depth of �log l� + �log(1 + ρ)� for their equality circuits
comparing two l-bit message with ρ attributes. On the contrary, our method
required only log 3 due to using our packing method. Also, the communication
complexity of our protocols is O(k · m · l log q).

5.2 Parameter Settings and Security Level

Here, we used the same database settings as shown in [7]. So we consider a data-
base where each record includes 11 attributes with l = 40 bits data. Besides,
we also consider two cases of 100 and 1000 records in the Record table for our
conjunctive and disjunctive query processing with k = 10 conditions. More-
over, we encoded the name of each attribute with δ = 8 bits integer. Further-
more, we also set the values of some other security parameters required for
the SwHE in the experiments. We also considered the equality as a compari-
son operator. Moreover, we took the block size η = 100. We also considered
appropriate values for the parameters (n, q, t, ω) of our security scheme as dis-
cussed in Sect. 2 of [12] for successful decryption and achieving a certain security
level. As mentioned in Sect. 3 of our protocols, we need the lattice dimension
n ≥ (λ · δ) for attributes comparison and n ≥ (η · l) for values comparison. For
this reason, we set n = 100 · 40 = 4000 for values matching. In addition, we
set n = 2048 for attribute matching to provide better security in the computa-
tion. Furthermore, we set t = 2048 for our plaintext space Rt. According to the
work in [9], we choose the standard deviation ω = 8 and q ≥ 16n2t2ω4 =
24·222·222·212 = 260 for the ciphertext space Rq during attribute matching.
Therefore, we fix our parameters as (n, q, t, ω) = (2048, 61-bits, 2048, 8). Sim-
ilarly, q ≥ 16n2t2ω4 = 24·224·222·212 = 262 for values matching. So we set
(n, q, t, ω) = (4096, 63-bits, 2048, 8). According to computation procedure in [14],
our parameters settings provide 364-bit security level to protect our protocols
from some distinguishing attacks. Also, NIST [1] showed different security levels
for many security algorithms and their corresponding validity periods. Further-
more, they declared that a minimum strength of 112-bit level security has a

Efficient Protocols for Private Database Queries 347

Table 1. Performance of our protocols for 40-bit data

m (# of record) k (# of conditions) Timing (seconds) Security level

Kim et al. [8] Our protocol Kim et al. [8] Our protocol

Conj Disj

100 10 8 2.948 3.058 93 364

1000 10 80 17.191 17.768 93 364

security lifetime up to 2030. They also disclosed that a security algorithm with a
minimum strength of 128-bit level security has a security lifetime beyond 2030.

5.3 Implementation Details

Here Table 1 shows the performances of conjunctive and disjunctive query proto-
cols compared to that of Kim et al. [8]. Here, we have implemented our protocols
in C++ programming language with Pari C library (version 2.9.1) [13] and ran
the programs on a single machine configured with 3.6 GHz Intel core-i5 processor
and 8 GB RAM using Linux environment. For a database of 100 records (resp.,
1000 records), our conjunctive query protocol took only 2.948 s (resp., 17.191 s).
Also, our disjunctive query protocol took only and 3.058 s (resp., 17.768 s) for
100 records (resp., 1000 records). On the other hand, Kim et al. [8] needed 8
sec (resp., 80 s) for both conjunctive and disjunctive query processing over 100
records (resp., 1000 records). Furthermore, we achieve 364-bit security level for
both our protocols whereas Kim achieved a security level of 93-bit. They also
achieved a security level of maximum 125-bit which made computation time to
twice of the timing with a 93-bit security level. Apart from the above advantages,
we are also able to provide security to both values and attributes in the predicate
of our queries whereas Kim et al. [8] provided only security to values appeared
in the predicate of the query. Besides, Kim et al. [7] also tired to provide security
to the attributes, but their performance was lower than that in [8] as shown in
Table 4 of [7].

6 Conclusions

In this paper, we have shown two efficient protocols for processing private con-
junctive and disjunctive queries over encrypted database using RLWE based
somewhat homomorphic encryption in the semi-honest model. Our experiments
proved that our protocols achieved a remarkable efficiency than Kim et al. [7,8]
with a better security level. Furthermore, we have achieved the efficiency due
to using low-cost equality circuits and batch technique with the packing meth-
ods. Moreover, our protocols can support a larger data size for both query and
database by increasing the lattice dimension n.

Acknowledgment. This research is supported by KAKENHI Grant Numbers
JP16H01705, JP17H01695, and JP24106008 for Scientific Research on Innovative
Areas.

348 T.K. Saha et al.

References

1. Barker, E.: Recommendation for key management. In: NIST Special Publication
800–57 Part 1 Rev. 4. NIST (2016)

2. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohas-
sel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38980-1 7

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theor. 6(3), 13 (2014)

4. Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976,
pp. 142–159. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48051-9 11

5. Cheon, J.H., Kim, M., Kim, M.: Optimized search-and-compute circuits and their
application to query evaluation on encrypted data. IEEE Trans. Inf. Forensics
Secur. 11(1), 188–199 (2016). IEEE Press, New York

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on
Theory of Computing - STOC 2009, pp. 169–178. ACM, New York (2009)

7. Kim, M., Lee, H.T., Ling, S., Ren, S.Q., Tan, B.H.M., Wang, H.: Better security
for queries on encrypted databases. IACR Cryptology ePrint Archive, 2016/470
(2016)

8. Kim, M., Lee, H.T., Ling, S., Wang, H.: On the efficiency of FHE-based private
queries. IEEE Trans. Dependable Secure Comput. 10.1109/TDSC.2016.2568182.
(to appear)

9. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: ACM Workshop on Cloud Computing Security Workshop, CCSW
2011, pp. 113–124. ACM, New York (2011)

10. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phism. In: DeMillo, R.A., Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Founda-
tions of Secure Computation, pp. 169–177. Academic Press, New York (1978)

11. Saha, T.K., Koshiba, T.: Private equality test using ring-LWE somewhat homo-
morphic encryption. In: 3rd Asia-Pacific World Congress on Computer Science and
Engineering (APWConCSE), pp. 1–9. IEEE (2016)

12. Saha, T.K., Koshiba, T.: Private conjunctive query over encrypted data. In: Joye,
M., Nitaj, A. (eds.) Progress in Cryptology - AFRICACRYPT 2017. Lecture Notes
in Computer Science, vol. 10239, pp. 149–164. Springer, Cham (2017)

13. The PARI∼Group, PARI/GP version 2.9.1, Bordeaux (2014). http://pari.math.
u-bordeaux.fr/

14. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practi-
cal packing method in somewhat homomorphic encryption. In: Garcia-Alfaro,
J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.)
DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54568-9 3

http://dx.doi.org/10.1007/978-3-642-38980-1_7
http://dx.doi.org/10.1007/978-3-662-48051-9_11
http://dx.doi.org/10.1109/TDSC.2016.2568182
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://dx.doi.org/10.1007/978-3-642-54568-9_3

Toward Group-Based User-Attribute Policies
in Azure-Like Access Control Systems

Anna Lisa Ferrara1, Anna Squicciarini2(B), Cong Liao2, and Truc L. Nguyen1

1 Computer Science Department, University of Southampton, Southampton, UK
{al.ferrara,tnl2g10}@soton.ac.uk

2 Information Sciences and Technology,
Pennsylvania State University, University Park, USA

{acs20,cl13}@psu.edu

Abstract. Cloud resources are increasingly pooled together for collabo-
ration among users from different administrative units. In these settings,
separation of duty between resource and identity management is strongly
encouraged, as it streamlines organization of resource access in cloud.
Yet, this separation may hinder availability and accessibility of resources,
negating access to authorized and entitled subjects. In this paper, we
present an in-depth analysis of group-reachability in user attribute-based
access control. Starting from a concrete instance of an Access Control
supported by the Azure platform, we adopt formal verification methods
to demonstrate how it is possible to mitigate access availability issues,
which may arise as per-attribute criteria groups are deployed.

1 Introduction

The increasing adoption of cloud computing has drawn attention to its secu-
rity challenges [7,12]. This has led major cloud providers to incrementally add
security features for increased costumers’ confidence [1,12]. Access control, in
particular, is acknowledged as one of the fundamental security features required
to avoid unauthorized access to sensitive data and protect organizations assets.

Among prominent cloud providers, Microsoft Azure has stood out for its
recent focus on security technologies for cloud resources [6]. In particular,
Microsoft currently boasts features such as an extensive Security Center (backup
features, dependability etc.), Automatic Monitoring, and support of Role-based
Access Control (RBAC). The deployment of RBAC in Azure has been met by
much praise, by both security researchers [23] and by practitioners [2].

The access control mechanism supported by Azure not only provides a suite
of easy-to-use ways to implement RBAC, but also is integrated with the native
identity management systems supported by Microsoft through Active Directory
(referred to as AAD). One of the many peculiar features resulting from the
integration is the ability to specify security groups, which can be used for role
and privilege assignment. Security groups can be populated manually, on a per-
user basis, or through dynamic triggers (aka dynamic groups).
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 349–361, 2017.
DOI: 10.1007/978-3-319-61176-1 20

350 A.L. Ferrara et al.

Thus, Azure RBAC roles can be granted to Azure AD security groups
with rule-based membership - effectively achieving user attribute-based access
control. ABAC is deemed more desirable by researchers and practitioners since
it provides flexibility and scalability for securely managing access to resources,
particularly in collaborative environments.

Yet, implementing user attribute-based access control brings a set of new
interesting challenges [1], particularly when dynamic security groups are used
and managed by resource managers (and not identity managers).

Developers have no mean to check whether their attribute-based policies for
resource (or resource group) access meet intended requirements and adminis-
trative units’ policies. Identifying the right set of rules for security groups is a
complicated and error prone process that should take into account resources’
access control policies as well as user-attributes assignment policies.

Accordingly, automatic tools inspecting policy-compliant resource access in
cloud - are desirable and needed to assist designers in policy development in order
to avoid availability issues. Resource availability and accessibility are among the
top security concerns of cloud adopters to date.

In this paper we propose to analyse user attribute-based policies devel-
oped under the Azure-like platform. Given dynamic groups implementing user-
attribute policies to resources and administrative units policies, we first model
the user attribute-based access control system as a state transition system that
evolves via administrative actions to modify the user attributes and the user-
groups membership; then we study the “group-reachability problem”.

The Group-reachability problem. Given a subscription policy with
unboundedly many users, a finite set of dynamic groups, a finite set of adminis-
trative units’ policies, an initial configuration of the user attribute-based access
control system, and a target security group goal , is there a reachable configura-
tion of the access-control system where some user is assigned group goal?

We choose the GURA framework [9] to express user attributes assignments
in Azure AD since it enables an elegant and succinct representation of user
attributes administrative policies via RBAC. Our contributions include:

1. A proposal to develop user attribute-based access control policies for Azure
management via a combination of AD dynamic security groups, GURA poli-
cies and the version of RBAC supported by Azure.

2. A proposal to analyse the group-reachability problem via security analysis of
Administrative RBAC [3,16]. First, we show that the reachability problem
in Azure-like AC systems is equivalent to the attribute-reachability problem
in GURA systems [9]. We then reduce it to the role-reachability problem in
ARBAC so that existing tools and techniques can be leveraged to address the
group reachability problem.

We note that while we provide a concrete approach to verify user-attribute
policies’ for Azure-like platforms, our theoretical results on group reachability are
agnostic to any implementation, as they could be applied in any user-attribute
based access control system that supports dynamic groups.

Toward Group-Based User-Attribute Policies 351

Fig. 1. Example scenario

2 Motivating Example

We now present our problem statement through a running example (inspired
from discussions of existing cloud adopters). Our goal, through our proposed
architecture is to ensure secure enforcement of organizations’ access policies while
ensuring group-reachability, that is to say, verify whether there is a reachable
configuration where some group of users can eventually be granted access to a
given resource or resource group, given (a) the available resources offered by a
representative cloud provider such as Azure and (b) the administrative security
requirements imposed by cloud collaborators and partners.

Consider a large-scale production project, InsightIT, involving multiple
companies. Assume all such organizations share a production environment
through an Azure Subscription (see Fig. 1). For simplicity, we focus on two of
such collaborative units, ABC and ITC. ABC needs to set up a production envi-
ronment for their client with PaaS Services like Azure App Service, Azure SQL
Database (PaaS), Azure Storage. Assume that ABC employees are organized in
4 departments: storage, compute, networking, security. Each has corresponding
responsibilities. ITC is doing development or testing work on some applications
originally deployed by ABC. The applications are to be kept confidential to the
public and the other partner collaborators, and ITC should only be given access
to the environments needed for deployment and collaboration.

In order to enable the ITC Development team and the ABC on a single
cloud platform (i.e. Azure Subscription), it is relatively easy (and recommended
per Microsoft best practices [14]) to configure these PAAS services into sepa-
rate containers, referred to as resource groups (see Fig. 1). ABC can configure
its resources within two resource groups, RG1 and RG2, with RG2 including the
company’s Customer Databases and virtualized environment. RG1 can be used
as a container for ITC and ABC collaborative effort. Access to RG2 and RG1 must

352 A.L. Ferrara et al.

be controlled carefully to comply with each organization’s administrative policy
(formalized in the GURA framework as discussed in Sect. 4). Access is granted
to dynamic groups. These groups are specified by resource administrators (or
resource owners) according to the project’s access needs and the anticipated
organizational workflow. In particular, access to resource groups can be granted
by assigning designated roles to dynamic groups (discussed in Sect. 3.1). This
enables automated access to resource groups per user-attributes. Let’s refer to
these dynamic groups as AccToRG1 and AccToRG2, respectively - and assume
that membership is granted according to specific per-attribute conditions.

In addition to the resources access requirements, both ABC and ITC main-
tain distinct internal administrative policies, to be honored during the collabora-
tion and used as a guidance for policy and access decisions. Typically, adminis-
trative policies include several conditions- both written (e.g. due to law compli-
ance) and verbal, with no official documentation (reflecting the internal practices
of an organization and its culture, e.g. interns are not allowed access to internal
servers). For instance, part of ABC administrative policy mandates employees
to have rotational periods in various departments. Testers are assigned to the
Network department. Further, resources pooled for collaboration with partners
may only be accessible to some ABC developers. Further, ABC domain is only
granted to permanent workers. On the other hand, ITC, per its internal HR
structure, maintains a policy stating that Tester is the official position of their
Computing department.

Given a set of administrative policies like the ones above, checking consis-
tency of group-based policies by simple inspection may be difficult. For instance,
let’s assume the RG1 owner, in an effort to accommodate both ITC and ABC
administrative policies, decides that a user is assigned to a security group to
access to RG1 only if he/she is both part of the Compute department and has a
Tester position within the organization. However, this combination of attributes
won’t enable any ABC user to join the security group, as ABC Testers are man-
dated membership to Networking department as part of their rotational period.
Similarly, ABC employees may be denied access to RG2 if the rule mandates
only the ABC users to join the group, unaware of temporary domains assigned
new employees or interns. These issues may be referred to as instances of the
group-reachability problem.

3 Preliminaries

3.1 Access Control in Azure

Microsoft Azure is one of the dominant cloud IaaS platforms for enterprises.
Azures core features include compute, storage, database and networking. An
Azure account is referred to as subscription, and is overseen by one or more
super admins, or owners. A subscription is essentially a container of the owner’s
Microsoft cloud environment. Azure access control include:

Azure Active Directory (AAD): provides a full suite of identity management
capabilities, along with single sign-on (SSO) access to cloud SaaS Applications.

Toward Group-Based User-Attribute Policies 353

Users information within AAD is stored along with their attributes. Users can
be organized in groups. Group owners or administrators can add users one-by-
one, or in a criteria-based fashion. In the latter case, groups are referred to as
dynamic groups. Users can be granted access to resources through individual
role assignment or through group-role assignment.

Resources: are cloud assets which populate the subscriptions (e.g. virtual
machines, databases, storage). Resource Groups (RG) are containers to seg-
regate workloads and resources that require different access settings. Access to
resources is assigned to RGs or to individual resources.

Roles (R): Users are assigned to a resource group with roles to get permissions
to access to cloud resources. Azure supports a large set of built-in roles, and
supports easy to add customized roles.

3.2 Generalized User Role Assignment

GURA model [9]: Let U be a finite set of users and ATTR be a finite set of
attributes. Each attribute is a function that takes users as input and returns a
value from the attribute scope. Attributes can be atomic-valued or set-valued. An
atomic-valued attribute will return a single value while a set-valued attribute will
return a subset of values within its defined scope. Moreover, let AR be a finite set
of administrative roles. Administrators are allowed to change attributes of a user
according to some preconditions. A precondition is a logical formula expressed
over user attributes that evaluates to true or false. Formally, administrative
rules are tuples in the following relations where C is a set of preconditions:

– for each atomic-valued attribute att ∈ ATTR, permission to assign a particu-
lar value to att of a user is specified as: assign ⊆ AR×C×ATTR×SCOPEatt.
The meaning of an assign tuple (admin, c, att, val) ∈ assign is that a member
of the administrative role admin ∈ AR can give value val to the atomic-valued
attribute att of a user whose current user-attributes assignment satisfies pre-
condition c, where SCOPEatt is the scope of the attribute att ∈ ATTR;

– permission to add a particular value to the set-valued attribute att of a user
is specified as: add ⊆ AR ×C ×ATTR×SCOPEatt. The meaning of an add
tuple (admin, c, att, val) ∈ add is that a member of the administrative role
admin ∈ AR can add value val to the set of values for attribute att of a user
whose current user-attributes assignment satisfies precondition c.

– permission to revoke the assignment of a value from any atomic-valued or
set-valued attribute of a user is specified as: delete ⊆ AR × SCOPEatt. The
meaning of a tuple (admin, val) ∈ delete is that value val can be deleted from
attribute att of any user.

Management of membership in administrative roles is outside the scope of
GURA. Thus, we assume that each role in AR always contains some admin-
istrator.

GURA Systems: A GURA system is a state transition system that evolves
via administrative actions to modify user attributes. Formally, a GURA system

354 A.L. Ferrara et al.

is a tuple S = 〈U,AR,ATTR,UATTR, assign, add, delete〉 where UATTR ⊆
U × ATTR × SCOPEatt is the user-attribute relation.

A configuration of S is any user-attribute assignment relation UV ⊆ U ×
ATTR × SCOPEatt. A configuration UV is initial if UV = UATTR.

Given two S configurations UV and UV ′, there is a transition from UV to
UV ′ with rule m ∈ (can assign ∪ can add ∪ can delete), denoted UV

m−→ UV ′,
if one of the following holds:

[assign move] m = (admin, c, att, val), the user-attribute assignment relation
of a user u satisfy precondition c, att is an atomic-valued attribute, and UV ′ =
(UV \ {(u, att, val′)|(u, att, val′) ∈ UV }) ∪ {(u, att, val)};

[add move] m = (admin, c, att, val), the user-attribute assignment relation of
a user u satisfy precondition c, att is a set-valued attribute, and UV ′ = UV ∪
{(u, att, val)};

[delete move] m = (admin, att, val), and UV ′ = UV \ {(u, att, val)};

A run of S is any finite sequence of S transitions π = c1
m1−−→ c2

m2−−→ . . . cn
mn−−→

cn+1 for some n ≥ 0, where c1 is an initial configuration of S. An S configuration
c is reachable if c is the last configuration of an S run.

Definition 1 (Attribute-reachability Problem). For any pair (att, val)
∈ ATTR × SCOPEatt, (att, val) is reachable in S if there is an S reachable
configuration UV such that (u, att , val) ∈ UATTR, for some u ∈ U . Given a
GURA system S over the set of attributes ATTR and a target pair (att, val) ∈
UV × SCOPEatt, the attribute-reachability problem asks whether (att, val) is
reachable in S.

Restricted GURA1 system: A restricted GURA1 system (rGURA1) is a
GURA system where a precondition can be expressed as a conjunction of lit-
erals, where each literal is either in positive form � or in negative form ¬�, for
some pair � = (att, val) ∈ ATTR ×SCOPEatt. A user u satisfies a positive pair
(att, val) if (att(u) = val) evaluates to true. On the contrary, she satisfies a
negative pair if ¬(att(u) = val) evaluates to true.

Since Azure AD policies always allow some administrator to revoke an
attribute value, we assume that rGURA1 policies contain a delete rule for each
attribute-value.

3.3 Administrative Role Based Access Control

An RBAC policy is a tuple 〈U,R, P,UA,PA〉 where U , R and P are finite sets of
users, roles, and permissions, respectively, UA ⊆ U × R is the user-role assign-
ment relation, and PA ⊆ P × R is the permission-role assignment relation. A
pair (u, r) ∈ UA means that user u is a member of role r. Similarly, (p, r) ∈ PA
means that members of role r are granted the permission p.

The ARBAC-URA policy allows to change the user-role assignment UA by
means of assignment/revocation rules carried out by administrators which are
organized in a set AR of administrative roles.

Toward Group-Based User-Attribute Policies 355

Administrators are allowed to change roles of a user according to a precon-
dition. A precondition is a conjunction of literals, where each literal is either in
positive form r or in negative form ¬r, for some role r in R. A precondition can
be partitioned in two sets denoted Pos and Neg , respectively corresponding to
the set of roles that appear in positive and negative form in the precondition.

Permission to assign users to roles is specified as: can assign ⊆ AR×2R×2R×
R. The meaning of a can-assign tuple (admin,Pos ,Neg , r) ∈ can assign is that
a member of the administrative role admin ∈ AR can make a user whose current
role memberships satisfies the precondition (Pos,Neg), a member of r ∈ R. In
the rest of the paper we assume that Pos ∩ Neg = ∅.

Permission to revoke users from roles is specified as: can revoke ⊆ AR × R.
A tuple (admin, r) ∈ can revoke means that a member of the administrative

role admin ∈ AR, can revoke the membership of a user from a role r ∈ R.

ARBAC-URA Systems: An ARBAC-URA system is a state transition sys-
tem that evolves via administrative actions to modify user role assignments. For
a formal definition see [4].

Definition 2 (Role-reachability Problem [4]). For any role r ∈ R, r is
reachable in an ARBAC-URA system S if there is an S reachable configuration
UR such that (u, r) ∈ UR, for some u ∈ U . Given an URA system S over the
set of roles R and a role goal ∈ R, the role-reachability problem asks whether
goal is reachable in S.

4 User Attribute-Based Access Control in Azure-Like
Platforms and State Transition System

4.1 User Attribute-Based Access Control

We now briefly discuss how to enable User Attribute-Based Access Control in a
RBAC deployment such as the one supported by Azure.

We define a practical Azure-like ABAC model. Let’s assume a conventional
formulation of users U , resources Res and Privilege sets P against resources
in Res. Let a subscription denote a single Cloud domain where resources are
maintained. Administrative units interface this subscription and corresponding
resources by means of one Azure Active Directory. Users U are part of one or
more administrative units connected to the AAD. The following elements define
a User Attribute-based Access Control (UAA) model for an Azure-like platform.

• Users and Attributes: Each u ∈ U is described by a unique identifier and
a finite set of attributes ATTR. Each attribute is a function that takes
users as input and returns a value from the attribute scope. Attributes
can be atomic-valued or set-valued. An atomic-valued attribute will return
a single value while a set-valued attribute will return a subset of values
within its defined scope. An example of user is a User of id BobSmith, with
attributes domain(BobSmith)= abc, Department(BobSmith)=Network and
Position(BobSmith)=Tester.

356 A.L. Ferrara et al.

• Administrative Units: Users within a subscription are organized into one or
more administrative units. Each administrative unit is responsible for manag-
ing attributes assignments for their users. In our framework, we express each
administrative unit’s policy by means of GURA policies. For instance, in our
example of InsightIT, portions of the ABC and ITC administrative policies
are reported in Tables 2 and 1, respectively (delete rules are excluded). We
assume that each attribute can be revoked from a user regardless of any pre-
condition. Administrative units are managed by designated administrators
according to pre-defined administrative roles.

• Dynamic Security Groups: Users are organized in a finite set G of dynamic
security groups- regardless of their original administrative unit. Moreover,
GLabel is a function that maps a group to a logical formula expressed over
user attributes that evaluates to true or false.
Our example includes two dynamic groups AccToRG1 and AccToRG2. Exam-
ples of conditions of dynamic groups in our InsightIT example are reported
in Table 3.

• Privilege Assignment: Resource administrators assign privileges to dynamic
groups. Privileges are mediated by roles. That is to say, an access privilege is
not assigned directly but obtained as part of a role-assignment.
In our example, Bob Smith may be assigned Contributor role to resource
group RG1 if he meets the requirements set for AccToRG1. Thus, users’ access
to resources is mediated by users’ membership in dynamic groups.

We assume that resources are statically associated with dynamic groups,
thus, in the rest of the paper we refer to an UAA policy as a tuple 〈G,GLabel,
GURAP 〉, where GURAP = 〈U ,AR,ATTR,UATTR, assign, add, delete〉 is the
GURA policy obtained by combining together all administrative units policies.

4.2 User Attribute-Based Systems

A User Attribute-based (UAA) system is a GURA system where users can be
organised in security groups according to their attributes. The system maintains
the invariant that a user belongs to a group if and only if her attributes satisfies
a given condition associated with the security group.

Formally, a UAA system is a state transition system defined as S = 〈U,ARG,
GLabel,GA,ATTR,UATTR, assign, add, delete〉 where 〈G,GLabel ,GURAP〉

Table 1. Examples of administrative rules for ITC

Rule Admin Pre-condition Attr Value

add ITC Admin Department(u) =
Network ∧ Position(u)
= Developer

Department Compute

add ITC Admin Position(u) = Tester Department Compute

assign ITC Admin Position Tester

Toward Group-Based User-Attribute Policies 357

Table 2. Examples of administrative rules for ABC

Rule Admin Condition Attr Value

assign ABC Admin Department(u) = Network Position Tester

add ABC Admin Position(u) = Developer Department Compute

assign ABC Admin Position Developer

assign ABC Admin Position(u) = guest Domain .abc

assign ABC Admin Position(u) = Intern Domain .abcBeta

Table 3. Two dynamic groups and corresponding conditions

Group GLabel Role and resource

AccToRG1 Position(u)=Tester and Department(u)=Compute Contributor RG1

AccToRG2 Domain(u)=ABC Reader RG2

is a UAA policy, GURAP = 〈U ,AR,ATTR,UATTR, assign, add, delete〉 is
the underlying GURA system, and GA ⊆ U × G is the user-group assignment
relation.

A configuration of S is any pair (UV,UG) where UV ⊆ U × ATTR ×
SCOPEatt is a user-attribute assignment relation and UG ⊆ U × G is a user-
group assignment relation. A configuration (UV,UG) is initial if (UV,UG) =
(UATTR,GA).

Given two S configurations (UV,UG) and (UV ′, UG′), there is a transition
from (UV,UG) to (UV ′, UG′) with rule m ∈ (can assign∪can add∪can delete),
denoted (UV,UG) m−→ (UV ′, UG′), if in the underlying GURA system there is
a transition UV

m−→ UV ′. Moreover, for each (u, g) ∈ UG and (u′, g′) ∈ UG′, u
satisfies GLabel(g) and u′ satisfies GLabel(g′).

A run of S is any finite sequence of S transitions π = c1
m1−−→ c2

m2−−→ . . . cn
mn−−→

cn+1 for some n ≥ 0, where c1 is an initial configuration of S. An S configuration
c is reachable if c is the last configuration of an S run.

Definition 3 (Group-reachability Problem). For any group g ∈ G, g
is reachable in S if there is an S reachable configuration (UV,UG) such that
(u, g) ∈ UG, for some u ∈ U . Given an UAA system S and a target group
g ∈ G, the group-reachability problem asks whether g is reachable in S.

For instance, in our InsightIT example (Sect. 2) we can ask whether resource
group RG2 can be reachable by ABC interns or whether group RG1 can be reach-
able by an ITC tester.

Restricted UAA (rUAA): A restricted UAA system is a UAA system where
the underlying GURA system is a rGURA1 system.

358 A.L. Ferrara et al.

5 Group, Attribute and Role Reachability

In this section, we first show that the group-reachability problem in Azure-like
user attribute based access control is equivalent to the attribute-reachability
problem in GURA. Then, we show that scalable techniques and tools that have
been recently proposed to address the role-reachability problem in administrative
RBAC can be employed to address the group-reachability problem for an inter-
esting class of instances via a reduction from the attribute-reachability problem
in rGURA1 (see Sect. 3.2) to the ARBAC role-reachability problem. Proofs are
omitted for lack of space.

Theorem 1. The group-reachability problem in UAA is equivalent to the
attribute-reachability problem in GURA.

Corollary 1. The group-reachability problem in rUAA is equivalent to the
attribute-reachability problem in rGURA1.

We now show a reduction from the attribute-reachability problem in
rGURA1 to the role-reachability problem in ARBAC-URA.

Definition 4. (From rGURA1 to ARBAC-URA). Let S = 〈U ,AR,
ATTR,UATTR, assign, add, delete〉 be a rGURA1 system. We construct a cor-
responding ARBAC − URA system S = 〈U,R,AR,UA, can assign, can revoke〉
as follows:

1. U ′ = U , and AR′ = AR;
2. for each (att, val) ∈ ATTR × SCOPEatt add a role att val to R;
3. for each tuple (u, att, val) ∈ UATTR add a tuple (u, att val) to UA;
4. for each (admin, P t,Nt, att, val) ∈ assign add (admin,Pos ,Neg , att val)

to can assign, where Pos = {att val ∈ R|(att, val) ∈ Pt} and Neg =
{att val ∈ R|(att, val) ∈ Nt}∪{att val ∈ R|att is an atomic-valued attribute
and (att, val′) ∈ Pt for some val′ ∈ SCOPEatt, val′ �= val};

5. for each (admin, P t,Nt, att, val) ∈ add add (admin,Pos ,Neg , att val) to
can assign, where Pos = {att val ∈ R|(att, val) ∈ Pt} and Neg = {att val ∈
R|(att, val) ∈ Nt}∪{att val ∈ R|att is an atomic-valued attribute and (att,
val′) ∈ Pt for some val′ ∈ SCOPEatt, val′ �= val};

6. for each (admin, att, val) ∈ delete add (admin,att val) to can revoke.

Theorem 2. Let S = 〈U ,AR,ATTR,UATTR, assign, add, delete〉 be a
rGURA1 system. Let S ′ = 〈U,R,AR,UA, can assign, can revoke〉 be the corre-
sponding ARBAC-URA system of Definition 4. The pair (att∗, val∗) ∈ ATTR ×
SCOPEatt∗ is reachable in S iff the role att∗ val∗ is reachable in S ′.

6 Related Work

Our work lies at the crossroad of two related research areas: access control in
cloud and formal security analysis of administrative access control models.

Toward Group-Based User-Attribute Policies 359

Access Control in Cloud. Access control in cloud computing has gained great
interest over the recent years [17,22], with emphasis on attribute based mecha-
nisms [18,19,21]. Related work has also focused on secure information sharing
in Cloud Computing environment [15]. Sandhu et al. have recently focused on
models for sharing information and resources in various cloud systems, including
Azure and Open-Stack [23,24]. In comparison to this body of work, we tackle
the important issue of group-availability, which to our knowledge has not been
addressed before. The main concept underlying such models is from Group-
Centric Secure Information Sharing (g-SIS) [11], which introduces group-based
information and resources sharing, allows sharing among a group of organiza-
tions.

Security Analysis. Li et al. [13] study role-based policies where role-
membership rules may be added or removed by principals. Sasturkar et al. [20]
prove reachability to be Pspace-complete in arbac ura policies. Jayaraman
et al. proposed Mohawk, a tool able to both finding shallow errors in complex
arbac policies and proving correctness [8]. Ferrara et al. presented vac, an auto-
matic and scalable tool for the reachability problem of arbac policies with an
unbounded number of users [3–5]. Ranise et al. proposed asaspXL, which is able
to analyse large arbac policies [16]. Sandhu et al. prove attribute-reachability
to be Pspace-complete in rGURA1 policies [10].

7 Concluding Remarks

We presented an in-depth analysis of group-reachability in User-based access con-
trol systems. Starting from a concrete instance of an access control mechanism
supported in the Azure platform, we demonstrated how it is possible to ver-
ify well-formedness in user-attribute access control. Well-formedness is analysed
by addressing the group-reachability problem, which may arise as per-attribute
criteria groups are used. We will provide a real-world architecture in the near
future, and test it for scalability with respect to realistic scenarios.

Acknowledgements. Portions of Dr Squicciarini’s work was funded from National
Science Foundation Grant 1453080. Portions of Dr. Ferrara’s work was supported by
the EPSRC Grant no. EP/P022413/1. This research is also partly supported by the
Microsoft Azure Internet of Things Research Award.

References

1. Beaver, K.: What admins should know about Microsoft Azure security and vulner-
abilities. http://searchwindowsserver.techtarget.com/tip/What-admins-should-
know-about-Microsoft-Azure-security

2. Biz Tech: Why enterprises that value security trust Microsoft Azure. http://www.
biztechmagazine.com/article/2016/10/why-microsoft-azure-essential-enterprises-
value-security

http://searchwindowsserver.techtarget.com/tip/What-admins-should-know-about-Microsoft-Azure-security
http://searchwindowsserver.techtarget.com/tip/What-admins-should-know-about-Microsoft-Azure-security
http://www.biztechmagazine.com/article/2016/10/why-microsoft-azure-essential-enterprises-value-security
http://www.biztechmagazine.com/article/2016/10/why-microsoft-azure-essential-enterprises-value-security
http://www.biztechmagazine.com/article/2016/10/why-microsoft-azure-essential-enterprises-value-security

360 A.L. Ferrara et al.

3. Ferrara, A.L., Madhusudan, P., Nguyen, T.L., Parlato, G.: Vac - verifier of
administrative role-based access control policies. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 184–191. Springer, Cham (2014). doi:10.1007/
978-3-319-08867-9 12

4. Ferrara, A.L., Madhusudan, P., Parlato, G.: Security analysis of role-based access
control through program verification. In: Chong, S., (ed.) IEEE Computer Security
Foundation, pp. 113–125. IEEE (2012)

5. Ferrara, A.L., Madhusudan, P., Parlato, G.: Policy analysis for self-administrated
role-based access control. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 432–447. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36742-7 30

6. Freato, R.: Microsoft Azure Security. Packt Publishing Ltd, Birmingham (2015)
7. Inforworld: The dirty dozen: 12 cloud security threats (2016). http://www.

infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-
threats.html

8. Jayaraman, K., Tripunitara, M.V., Ganesh, V., Rinard, M.C., Chapin, S.J.:
Mohawk: abstraction-refinement and bound-estimation for verifying access control
policies. ACM Trans. Inf. Syst. Secur. 15(4), 18 (2013)

9. Jin, X., Krishnan, R., Sandhu, R.: A role-based administration model for
attributes. In: First International Workshop on Secure and Resilient Architectures
and Systems, pp. 7–12. ACM (2012)

10. Jin, X., Krishnan, R., Sandhu, R.: Reachability analysis for role-based administra-
tion of attributes. In: ACM Workshop on Digital Identity Management, pp. 73–84.
ACM (2013)

11. Krishnan, R., Sandhu, R., Niu, J., Winsborough, W.: A conceptual framework
for group-centric secure information sharing. In: 4th International Symposium on
Information, Computer, and Communications Security, pp. 384–387. ACM (2009)

12. Krutz, R.L., Vines, R.D.: Cloud Security: A Comprehensive Guide to Secure Cloud
Computing. Wiley Publishing, Hoboken (2010)

13. Li, N., Tripunitara, M.V.: Security analysis in role-based access control. In: 9th
ACM SACMAT, pp. 126–135. ACM (2004)

14. Microsoft Azure Documentation. https://docs.microsoft.com/en-us/azure/
active-directory/role-based-access-control-troubleshooting

15. Qiu, M., Gai, K., Thuraisingham, B., Tao, L., Zhao, H.: Proactive user-centric
secure data scheme using attribute-based semantic access controls for mobile clouds
in financial industry. Future Gener. Comput. Syst., 223–238 (2016)

16. Ranise, S., Truong, A.T., Armando, A.: Boosting model checking to analyse
large ARBAC policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM
2012. LNCS, vol. 7783, pp. 273–288. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38004-4 18

17. Raykova, M., Zhao, H., Bellovin, S.M.: Privacy enhanced access control for out-
sourced data sharing. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp.
223–238. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32946-3 17

18. Riad, K., Yan, Z.: EAR-ABAC: an extended AR-ABAC access control model for
SDN-integrated cloud computing. Environments 132(14), 9–17 (2015)

19. Riad, K., Yan, Z., Hu, H., Ahn, G-J.: AR-ABAC: a new attribute based access
control model supporting attribute-rules for cloud computing. In: Collaboration
and Internet Computing Conference (CIC), pp. 28–35. IEEE (2015)

20. Sasturkar, A., Yang, P., Stoller, S.D., Ramakrishnan, C.R.: Policy analysis for
administrative role based access control. In: 19th IEEE Computer Security Foun-
dations Workshop, (CSFW-19), pp. 124–138 (2006)

http://dx.doi.org/10.1007/978-3-319-08867-9_12
http://dx.doi.org/10.1007/978-3-319-08867-9_12
http://dx.doi.org/10.1007/978-3-642-36742-7_30
http://dx.doi.org/10.1007/978-3-642-36742-7_30
http://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
http://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
http://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-troubleshooting
https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-troubleshooting
http://dx.doi.org/10.1007/978-3-642-38004-4_18
http://dx.doi.org/10.1007/978-3-642-38004-4_18
http://dx.doi.org/10.1007/978-3-642-32946-3_17

Toward Group-Based User-Attribute Policies 361

21. Wan, Z., Liu, J., Deng, R.: HASBE: a hierarchical attribute-based solution for
flexible and scalable access control in cloud computing. IEEE Trans. Inf. Forensics
Secur. 7(2), 743–754 (2012)

22. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: IEEE Infocom, pp. 1–9 (2010)

23. Zhang, Y., Patwa, F., Sandhu, R.: Community-based secure information and
resource sharing in Azure cloud IaaS. In: 4th International Workshop on Secu-
rity in Cloud Computing, pp. 82–89. ACM (2016)

24. Zhang, Y., Patwa, F., Sandhu, R., Tang, B.: Hierarchical secure information and
resource sharing in openstack community cloud. In: IEEE International Conference
on Information Reuse and Integration, pp. 419–426. IEEE (2015)

Secure Storage in the Cloud

High-Speed High-Security Public Key
Encryption with Keyword Search

Rouzbeh Behnia(B), Attila Altay Yavuz, and Muslum Ozgur Ozmen

School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, USA

{behniar,attila.yavuz,ozmenmu}@oregonstate.edu

Abstract. Data privacy is one of the main concerns for clients who rely
on cloud storage services. Standard encryption techniques can offer con-
fidentiality; however, they prevent search capabilities over the encrypted
data, thereby significantly degrading the utilization of cloud storage ser-
vices. Public key Encryption with Keyword Search (PEKS) schemes offer
encrypted search functionality to mitigate the impacts of privacy versus
data utilization dilemma. PEKS schemes allow any client to encrypt their
data under a public key such that the cloud, using the corresponding
trapdoor, can later test whether the encrypted records contain certain
keywords. Despite this great functionality, the existing PEKS schemes
rely on extremely costly operations at the server-side, which often intro-
duce unacceptable cryptographic delays in practical applications. More-
over, while data outsourcing applications usually demand long-term
security, existing PEKS schemes do not offer post-quantum security.

In this paper, we propose (to the best of our knowledge) the first post-
quantum secure PEKS scheme that is also significantly more computa-
tionally efficient than the existing (non-post-quantum) PEKS schemes.
By harnessing the recently developed tools in lattice-based cryptogra-
phy, the proposed scheme significantly outperforms the existing PEKS
schemes in terms of computational overhead. For instance, the test
(search) operation per item at the cloud side is approximately 36× faster
than that of the most prominent pairing-based scheme in the litera-
ture (for 192-bit security). The proposed PEKS scheme also offers faster
encryptions at the client side, which is suitable for mobile devices.

Keywords: Public Key Encryption with Keyword Search · Cloud stor-
age · Privacy · Lattice-based cryptography

1 Introduction

The emergence of cloud storage and computing services has revolutionized the
IT industry. One of the most prominent cloud services is data storage out-
sourcing [3], which can drastically reduce the cost of data management via
continuous service, expertise and maintenance for the resource-limited clients

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 365–385, 2017.
DOI: 10.1007/978-3-319-61176-1 21

366 R. Behnia et al.

(e.g., small/medium size businesses). Despite its merits, data outsourcing raises
significant privacy concerns for users. Traditional data encryption techniques
(e.g., symmetric ciphers) can be used to mitigate this concern. However, they
abolish the data owner from performing any efficient search (and therefore
retrieval) operation over the data that is remotely stored on the cloud. Vari-
ous privacy enhancing technologies have been proposed towards addressing this
limitation.

Searchable Encryption (SE) schemes allow a keyword-based search function-
ality over the encrypted data. SE schemes are generally applied to a client/server
architecture, in which the client stores her encrypted data on a remote server.
There are two main types of SE technologies: (i) Dynamic Symmetric SE (DSSE)
(e.g., [30,41,43]) permits a client to perform encrypted search on her data via
her own private key. DSSE is efficient as it relies on symmetric primitives, but
it is rather suitable for a single client outsourcing/searching her own data. (ii)
Public Key Encryption with Keyword Search (PEKS) [6] schemes allows any
client to encrypt her data under a public key such that the server can later test
whether the encrypted records contain certain keywords via search trapdoors
produced by an entity holding the private key. PEKS is suitable for distributed
applications (e.g., email, audit logging for Internet of Things), in which large
number of entities generate encrypted data to be searched/analyzed by a partic-
ular auditor. The focus of this paper is on PEKS schemes. In Fig. 1, we provide
some example applications of PEKS with their corresponding system model.

Fig. 1. Potential applications of PEKS schemes

High-Speed High-Security Public Key Encryption with Keyword Search 367

One of the potential application scenarios for PEKS schemes is illustrated
in Fig. 1-a. Alice has a number of devices (e.g., desktop, pager), and her email
gateway is supposed to route her emails based on the keywords associated with
each email. For instance, when one of the originators (i.e., Bob) sends her an
email with keyword “urgent” the email should be routed to her pager. To achieve
this, Bob encrypts his email using a standard public key encryption and uses
PEKS algorithm to generate a searchable ciphertext of keyword w = “urgent” to
be associated with the email. Alice can then provide the server with trapdoor
tw computed for keyword w and enable the gateway to test whether any of the
stored emails is associated with w via the Test algorithm of PEKS.

As depicted in Fig. 1-b, another possible scenario of employing PEKS schemes
is for storing private log files on a remote server. In Internet of Things (IoT)
applications, PEKS schemes can enable a set of heterogeneous devices to send
their log files (encrypted under the auditor’s public key) along with a searchable
ciphertext of the keyword related to the logs to a storage server. To look for a
specific event, the auditor can compute and send a trapdoor (of any keywords
of his interest) to the server and receive all the files that contain the keyword.

1.1 Research Gap

There have been various PEKS schemes with additional features proposed in the
literature [8,11,37,39]. We have identified two main research gaps that pose an
obstacle towards the adoption of PEKS schemes in practice.

• Extreme Computational Overhead: Most of the proposed PEKS schemes are
based on heavy pairing computations, and the schemes that are devised
by pairing-free tools are even more costly than their pairing-based counter-
parts [15]. Despite their elegance, the existing constructions introduce a sig-
nificant cryptographic delay as the server has to run a costly algorithm (i.e.,
Test(.) requiring at least one pairing operation per item) linear to the size
of database.

• Lack of Long-term Security: When dealing with sensitive user data, most
applications require long-term cryptographic security (e.g., sensitive medical
data). However, due to algorithmic breakthroughs and the rise of powerful
computers, the size of cryptographic keys are required to be steadily increased
to ensure the same level of security. This causes the conventional crypto-
graphic tools (e.g., RSA, ECC) to become increasingly inefficient. Therefore,
there is a need for PEKS schemes that have a more efficient response against
increasing key sizes. More importantly, with the predictions on the emer-
gence of quantum computers, it is necessary to devise PEKS schemes that can
achieve post-quantum security. However, current PEKS schemes are built on
ECC or quadratic residuosity problems [15], which do not offer post-quantum
security.

368 R. Behnia et al.

1.2 Our Contribution

Towards addressing aforementioned problems, we introduce the first (to the best
of our knowledge) NTRU-Based PEKS scheme which we refer to as NTRU-PEKS
hereafter. In the following, we outline our contributions.

• A New PEKS via NTRU: In the initial proposal of PEKS [6], Boneh et al.
showed how one could derive a PEKS scheme from an IBE scheme. Abdalla
et al. [1] supported this claim and provided requirements for the underlying
IBE scheme to ensure the security and correctness of the derived PEKS.
This led to the proposal of a large number of PEKS schemes (e.g., [15,31,44])
based on different IBE schemes. In this paper, we rigorously prove that Ducas
et al.’s IBE scheme [17] meets these requirements and put forth the first
NTRU-based PEKS scheme by leveraging this IBE. Furthermore, we prove
the security and consistency of our PEKS scheme and suggest parameter sizes
to avoid potential decryption errors.

• High Efficiency: We devise a highly efficient PEKS scheme that significantly
reduces the cryptographic delay by harnessing the latest advancements in
lattice-based cryptography, ring-LWE [38] and fast arithmetic operations over
polynomial rings Z[x]/(xN + 1). We implement our scheme1 for 80-bit and
192-bit security and compare its efficiency with the most prominent PEKS
schemes. As it is shown in Table 1, our scheme has significantly more efficient
Test and PEKS algorithms than those in in [6,44]. The efficiency of Test
algorithm is of vital importance, since it is executed by the server linearly
with the total number encrypted keywords to be searched. The efficiency
of the PEKS algorithm facilitates the implementation of PEKS schemes on
battery-limited devices.

• Long-term Security: We develop the first practical NTRU-based PEKS that
offers long-term security, while being (currently) secure against quantum com-
puters, thanks to the security guarantees of lattice-based cryptography.

2 Preliminaries

In this section, we provide definitions and notations that are used by our scheme.
For the sake of compliance, we use the same notation as in [17].

Notations. a
$←− X denotes that a is randomly selected from distribution X .

Hi for i ∈ {1, . . . , n} denotes a hash function which is perceived to behave as a
random oracle in this paper. AO1...On(.) denotes algorithm A is provided with
access to oracles O1 . . . On. We denote scalars in plain (e.g., x) and vectors in
bold (e.g., x). The norm of a vector v is denoted by ‖v‖. �x� rounds x to the
closest integer. x =Δ y means x is defined as y. The function gcd(x, y) returns the
greatest common divisor of values x and y.
1 The complete implementation can be found on https://github.com/Rbehnia/

NTRUPEKS.git.

https://github.com/Rbehnia/NTRUPEKS.git
https://github.com/Rbehnia/NTRUPEKS.git

High-Speed High-Security Public Key Encryption with Keyword Search 369

Table 1. Comparison of our NTRU-PEKS scheme with state-of-the-art

Schemesa Test (ms) PEKS (ms) Trapdoor (ms) QCc Resiliency

BCOb κ = 80 3.38 2.53 0.36 χ

κ = 192 43.39 46.02 2.69 χ

ZIb κ = 80 8.12 16.37 1.05 χ

κ = 192 118.65 194.42 5.61 χ

NTRU-PEKS κ = 80 0.34 0.69 5.15 χ

κ = 192 1.23 2.50 17.35 �
a Experimental setup and evaluation metrics are given is Sect. 5.
b BCO and ZI denote Boneh et al.’s scheme [6] and Zhang-Imai scheme [44],
respectively.
c QC stands for Quantum Computer.

2.1 NTRU-Based Cryptographic Tools

Ajtai [2] introduced the Short Integer Solution (SIS) problem and demonstrated
the connection between average-case SIS problem and worst-case problems over
lattices. Hoffstein et al. [26] proposed an efficient public key encryption scheme
called NTRU-based on polynomial rings. Regev [38] introduced the Learning
with Error (LWE) problem. The SIS and LWE problems have been used as the
building blocks of many lattice-based schemes.

NTRU encryption works over rings of polynomials R =Δ Z[x]/(xN + 1) and
R′ =Δ Q[x]/(xN + 1) which are parametrized with N as a power-of-two integer.
(xN +1) is irreducible, therefore, R′ is a cyclotomic field. For f =

∑N−1
i=0 fix

i and
g =

∑N−1
i=0 gix

i as polynomials in Q[x], fg denotes polynomial multiplication in
Q[x] while f ∗ g =Δ fg mod (xN + 1) is referred to as convolution product. For
an N -dimension anti-circulant matrix AN we have AN (f) +AN (g) = AN (f + g),
and AN (f) × AN (g) = (f ∗ g).

Definition 1. For prime integer q and f, g ∈ R, h = g∗f−1 mod q, the NTRU
lattice with h and q is Λh,q = {(u, v) ∈ R2|u + v ∗ h = 0 mod q}. Λh,q is a full-

rank lattice generated by Ah,q =
(
AN (h) IN

qIN 0N

)

, where I is an identity matrix.

Note that one can generate this basis using a single polynomial h ∈ Rq. How-
ever, the lattice generated from Ah,q has a large orthogonal defect which results
in inefficiency of standard lattice operations. As proposed by [25], another basis
(which is much more orthogonal) can be efficiently [17] generated by selecting

F,G ∈ R and computing f∗G − g∗F = q. The new base Bf,g =
(
A(g) −A(f)
A(G) −A(F)

)

generates the same lattice Λh,q.

Definition 2 (Gram-Schmidt norm [22]). Given B = (bi)i∈I as a finite basis
and B̃ = (b̃i)i∈I as its Gram-Schmidt orthogonalization, the Gram-Schmidt norm
of B is

∥
∥
∥B̃

∥
∥
∥ = max

i∈I
‖bi‖.

370 R. Behnia et al.

Using Gaussian sampling, Gentry et al. [22] proposed a technique to use a
short basis as trapdoor without disclosing any information about the short basis
and prevent attacks similar as in [36].

Definition 3. An n-dimensional Gaussian function ρσ,c : (R → (0, 1]) is defined
as ρσ,c(x) =Δ exp(−‖x−c‖2

2σ2). Given a lattice Λ ⊂ R
n, the discrete Gaussian dis-

tribution over Λ is DΛ,s,c(x) = ρσ,c(x)
ρσ,c(Λ) for all x ∈ Λ.

If we pick a noise vector over a Gaussian distribution with the radius not smaller
than the smoothing parameter [34], and reduce the vector to the fundamental
parallelepiped of our lattice, the resulting distribution is close to uniform. We
formally define this parameter through the following definition.

Definition 4 (Smoothing Parameter [34]). For any n-dimensional lattice Λ, its
dual Λ∗ and ε > 0, the smoothing parameter ηε(Λ) is the smallest s > 0 such
that ρ1/s

√
2π,0(Λ

∗ \0) � ε. A scaled version of the smoothing parameter is defined
in [17] as η

′
ε = 1√

2π
ηε(Λ).

Gentry et al. [22] defined a requirement on the size of σ related to the smooth-
ing parameter. In [17], Ducas et al. showed that using Kullback-Leibler diver-
gence, the required width of σ can be reduced by factor of

√
2. Based on [17,

18,22], for positive integers n, λ, ε � 2−λ/2/(4
√

2N), any basis B ∈ Z
N×N and

any target vector c ∈ Z
1×n, the algorithm (v0 ← Gaussian-Sampler(B, σ, c))

as defined in [17,22] is such that Δ(DΛ(B),σ,c,v0) is less than 2−λ.
In this paper, we will use the same algorithm in our Trapdoor algorithm.

Definition 5 (Decision LWE Problem). Given R =Δ Z[x]/(xN +1) and an error
distribution X over R. For s as a random secret ring element, uniformly random
ai’s ∈ R and small error elements ei ∈ X , the decision LWE problem asks
to distinguish between samples of the form (ai, ais + ei) and randomly selected
(ai, bi) ∈ R × R.

Definition 6 (A tool for computing Gram-Schmidt norm [17]). Let f ∈ R′,
we denote f̄ as a unique polynomial in f ∈ R′ such that A(f)T = A(f̄). If
f(x) =

∑N−1
i=0 fix

i, then f̄(x) = f0 − ∑N−1
i=1 fN−ix

i.

2.2 Identity-Based Encryption

Definition 7. An IBE scheme is a tuple of four algorithms IBE =
(Setup,Extract,Enc,Dec) defined as follows.

– (mpk,msk) ← Setup(1k): On the input of the security parameter(s), this
algorithm publishes system-wide public parameters params, outputs the mas-
ter public key mpk and the master secret key msk.

– sk ← Extract(id, msk,mpk): On the input of a user’s identity id ∈ {0, 1}∗,
mpk, and msk, this algorithm outputs the user’s private key sk.

High-Speed High-Security Public Key Encryption with Keyword Search 371

– c ← Enc(m,id,mpk): On the input of a message m ∈ {0, 1}∗, identity id, and
mpk, this algorithm outputs a ciphertext c.

– m ← Dec(c,sk): On the input of a ciphertext c, the receiver’s private key sk
and mpk, this algorithm recovers the message m from the ciphertext c.

Following the work of [1], the following definition defines anonymity in the sense
of [24].

Definition 8. Anonymity under chosen plaintext attack (IBE-ANO-RE-CPA)
for an IBE scheme is defined as follows. Given an IBE scheme, we associate a
bit b ∈ {0, 1} to the adversary A in the following experiment.

ExperimentExpIBE-ANO-RE-CPA-b
IBE,A (1k)

idSet ← ∅, (mpk,msk) $←− Setup(1k) KeyQuery(id)
for a random oracle H idSet ← idSet ∪ id
(id0, id1,m) ← FKeyQuery(.),H(find ,mpk) sk ← Extract(id,msk,mpk)
c ← EncH(m, idb,mpk) return sk
b′ ← FKeyQuery(.),H(guess, c)
if {id0, id1} ∩ idSet = ∅ return b′ else, return 0

A’s advantage in the above experiment is defined as
AdvIBE−ANO−RE−CPA

IBE,A (1k) = Pr[ExpIBE−ANO−RE−CPA−1
IBE,A (1k) = 1] −

Pr[ExpIBE−ANO−RE−CPA−0
IBE,A (1k) = 0].

2.3 Public Key Encryption with Keyword Search

A PEKS scheme consists of the following algorithms.

Definition 9. A PEKS scheme is a tuple of four algorithms PEKS =
(KeyGen,PEKS,Trapdoor,Test) defined as follows.

– (pk, sk) ← KeyGen(1k): On the input of the security parameter(s), this algo-
rithm outputs the public and private key pair (pk, sk).

– sw ← PEKS(pk,w): On the input of user’s public key pk and a keyword w ∈
{0, 1}∗, this algorithm outputs a searchable ciphertext sw.

– tw ← Trapdoor(sk,w): On the input of a user’s private key sk and a keyword
w ∈ {0, 1}∗, this algorithm outputs a trapdoor tw.

– b ← Test(tw, sw): On the input of a trapdoor tw = Trapdoor(sk, w′) and a
searchable ciphertext sw = PEKS(pk,w), this algorithm outputs a bit b = 1 if
w = w′, and b = 0 otherwise.

Definition 10. Keyword indistinguishability against an adaptive chosen-
keyword attack (IND-CKA) is defined as follows. Given a PEKS scheme, we
associate a bit b ∈ {0, 1} to the adversary A in the following experiment.

372 R. Behnia et al.

ExperimentExpPEKS-IND-CKA-b
PEKS,A (1k)

wSet ← ∅, (pk, sk) ← KeyGen(1k) TdQuery(w)
for a random oracle H wSet ← wSet ∪ w
(w0, w1) ← ATdQuery(.),H(find , pk) sk ← Extract(w, sk, pk)
sw ← PEKSH(pk,wb) return sk
b′ ← ATdQuery(.),H(guess, sw)
if {w0, w1} ∩ wSet = ∅ return b′ else, return 0

A’s advantage in the above experiment is defined as AdvPEKS-IND-CKA
PEKS,A (1k) =

Pr[ExpPEKS-IND-CKA-1
PEKS,A (1k) = 1] − Pr[ExpPEKS-IND-CKA-0

PEKS,A (1k) = 0].

2.4 Consistency of PEKS

Due to the properties of NTRU-based encryption scheme, and following the work
of [15], we investigate the consistency of our scheme from two aspects, namely,
right-keyword consistency and adversary-based consistency [1]. Right-keyword
consistency implies the success of a search query to retrieve records associated
with keyword w for which the PEKS algorithm had computed a searchable cipher-
text. On the other hand, adversary-based consistency [1] ensures the inability of
an adversary to generate two distinct keywords that the Test algorithm returns
1 on the input of a trapdoor for one keyword, and the searchable ciphertext of
the other. We define the adversary-based consistency [1] as follows.

Definition 11. Adversary-based consistency of a PEKS scheme is defined in
the following experiment.
ExperimentExpPEKS-Consist

PEKS,A (1k)

(pk, sk) ← KeyGen(1k)
for a random oracle H
(w0, w1) ← AH(pk), sw0 ← PEKSH(pk,w0)
tw1 ← TrapdoorH(pk,w1)
if w0 �= w1 and [TestH(pk, tw1 , sw0) = 1] return 1 else, return 0
A’s advantage in the above experiment is defined as AdvPEKS−Consist

PEKS,A (1k) =
Pr[ExpPEKS−Consist

PEKS ,A (1 k) = 1].

3 Proposed Scheme

In this section, we present our scheme that consists of the following algorithms.

(h,B) ← KeyGen(q,N) : Given a power-of-two integer N and a prime q, this
algorithm works as follows.
1. Compute σf ← 1.17

√
q

2N and select f, g ← DN,σf
to compute

∥
∥
∥B̃f,g

∥
∥
∥

and Norm ← max(‖(g,−f)‖ ,
∥
∥
∥(qf̄

f∗f̄+g∗ḡ
, qḡ

f∗f̄+g∗ḡ
)
∥
∥
∥). If Norm < 1.17

√
q,

proceed to the next step. Otherwise, if Norm ≥ 1.17
√

q, this process is
repeated by sampling new f and g.

High-Speed High-Security Public Key Encryption with Keyword Search 373

2. Using extended euclidean algorithm, compute ρf , ρg ∈ R and Rf ,Rg ∈ Z

such that ρf ·f = Rf mod (xN +1) and ρg ·g = Rg mod (xN +1). Note
that if gcd(Rf ,Rg) �= 1 or gcd(Rf , q) �= 1, start from the previous step
by sampling new f and g.

3. Using extended euclidean algorithm, compute u, v ∈ Z such that u ·Rf +
v ·Rg = 1. Compute F ← q ·v ·ρg, G ← q ·u ·ρf and k ← �F∗f̄+G∗ḡ

f∗f̄+g∗ḡ
� ∈ R

and reduce F and G by computing F ← F − k ∗ f and G ← G − k ∗ g.

4. Finally, compute h = g∗f−1 mod q and B =
(
A(g) −A(f)
A(G) −A(F)

)

and output

(pk ← h, sk ← B).
sw ← PEKS(pk,w) : Given cryptographic hash functions H1 : {0, 1}∗ → Z

N
q and

H2 : {0, 1}N × {0, 1}N → Z
N
q , the receiver’s public key pk and a keyword

w ∈ {0, 1}∗ to be encrypted, the sender performs as follows.

1. Compute t ← H1(w) and pick r, e1, e2
$←− {−1, 0, 1}N , k

$←− {0, 1}N .
2. Compute A ← r ∗ h + e1 ∈ Rq and B ← r ∗ t + e2 +

⌊
q
2

⌋
k ∈ Rq.

3. Finally, the algorithm outputs sw = 〈A,B,H2(k,B)〉.
tw ← Trapdoor(sk, w) : Given the receiver’s private key sk, and a keyword w ∈

{0, 1}∗, the receiver computes t ← H1(w) and using the sampling algorithm
Gaussian-Sampler(B, σ, (t, 0)), samples s and tw such that s + tw ∗ h = t.

b ← Test(pk, tw, sw) : On the input of a receiver’s public key pk, a trapdoor
tw and a searchable ciphertext sw = 〈A,B,H2(k,B)〉, this algorithm com-
putes y ← �B−A∗tw

q/2 � and outputs b = 1 if H2(y,B) = H2(k,B) and b = 0,
otherwise.

3.1 Completeness and Consistency

In this section, we show the completeness and consistency of our scheme.

Lemma 1. Given a public-private key pair (h,B) ← KeyGen(q,N), a searchable
ciphertext sw ← PEKS(pk,w), and a trapdoor generate by the receiver tw ←
Trapdoor(sk, w) our proposed scheme is complete.

Proof. To show the completeness of our scheme for sw = 〈A,B,H2(k,B)〉, the
Test algorithm should return 1 when �B−A∗tw

q/2 � = k. To affirm this, we work as
follows.

B − A ∗ tw = (r ∗ t + e2 +
⌊q

2

⌋
k) − (r ∗ h + e1) ∗ tw ∈ Rq

= r ∗ s + r ∗ h ∗ tw + e2 + �q

2
�k − r ∗ h ∗ tw − tw ∗ e1 ∈ Rq

= r ∗ s + e2 + �q

2
�k − tw ∗ e1 ∈ Rq

Given r, e1, e2, tw and s are all short vectors (due to the parameters of our
sampling algorithm), all the coefficients of r ∗ s + e2 − tw ∗ e1 will be in (− q

4 , q
4),

and therefore, �B−A∗tw

q/2 � = k. ��

374 R. Behnia et al.

To address right-keyword consistency issues related to the decryption error
of encryption over NTRU lattices, we need to make sure that all the coefficients
of z = r ∗ s + e2 − e1 ∗ tw are in the range (− q

4 , q
4) and q ≈ 224 for κ = 80 and

q ≈ 227 for κ = 192.

Theorem 1. The NTRU-PEKS scheme is consistent in the sense of
Definition 11.

Proof. Upon inputting q and N , the challenger C initiates the experiment
(h,B) ← KeyGen(q,N). It passes h to the adversary A and keeps B secret.

(w0, w1) ← AH1(pk): A sends C two keywords (w0, w1).
sw0 ← PEKSH(pk,wb): C computes A = r ∗h+e1 and B = r ∗H(w0)+e2 +

⌊
q
2

⌋
k

for a random selection of r, e1, e2
$←− {−1, 0, 1}N , k

$←− {0, 1}N , and sends
〈A,B,H2(k,B)〉 to A.

tw1 ← TrapdoorH(pk,wb): C samples short vectors s, tw such that s + tw ∗ h =
H(w1) and returns tw to A.

Following Definition 11, A wins when w0 �= w1, and the Test algorithm
outputs 1 (i.e., H2(k,B) = H2(y,B)).

Note that in the above game, A wins when w �= w′ and H2(z1, z′
1) =

H2(z2, z′
2). Let’s assume A makes q1 queries to H1 and q2 queries to H2 ora-

cles. Let E1 be the event that there exist (x1, x2) such that H1(x1) = H1(x2)
and x1 �= x2 and let E2 be the event that there exist two pairs (z1, z′

1) and
(z2, z′

2) such that H2(z1, z′
1) = H2(z2, z′

2) for z1 �= z2 and z′
1 �= z′

2. Then if Pr[·]
represents the probability of consistency definition,

AdvPEKS−Consist
PEKS,A (1k) ≤ Pr[E1] + Pr[E2] + Pr[ExpPEKS−Consist

PEKS,A = 1 ∧ Ē1 ∧ Ē2]

Given the domain of our hash functions, the first and second terms are upper
bounded by (q1+2)2/N2log2 q and (q2+2)2/N2log2 q, respectively. For the last term, if
H1(x1) �= H1(x2), then in our scheme, the probability that B1 = B2 is negligible
due to the decryption error. Therefore, H2(y1, B1) �= H2(y2, B2), hence, the
probability of the last term is also negligible. ��

3.2 Discussion on Alternative NTRU-Based Constructions

Bellare et al. [5] proposed a new variation of public key encryption with search
capability called Efficiently Searchable Encryption (ESE). The idea behind ESE
is to store a deterministically computed “tag” along with the ciphertext. To
respond to search queries, the server only needs to lookup for a tag in a list of
sorted tags. This significantly reduces the search time on the server. For ESE
to provide privacy, the keywords need to be selected from a distribution with
a high min-entropy. To compensate for privacy in absence of high min-entropy
distribution for keywords, the authors suggested truncating the output of the
hash function to increase the probability of collisions. However, this directly

High-Speed High-Security Public Key Encryption with Keyword Search 375

affects the consistency of the scheme and shifts the burden of decrypting unre-
lated responds to the receiver. As compared to PEKS schemes, in ESE schemes,
the tag can be computed from both the plaintext and ciphertext. This highly
differentiates the applications of these two searchable encryption schemes.

In this paper, we focused on PEKS scheme as it does not have consistency
issues or min-entropy distribution requirement, and fits better for our target
real-life applications (as discussed in Sect. 1). Nevertheless, for the sake of com-
pleteness, to extend the advantages of NTRU-based encryption [42] to ESE, we
also instantiated an NTRU-based ESE scheme based on the encrypt-with-hash
transformation proposed in [5]. We compared it with its counterpart which was
instantiated based on El-Gamal encryption. Our implementations of NTRU-
based ESE and El-Gamal ESE (developed on elliptic curves) were run on an
Intel i7 6700HQ 2.6 GHz CPU with 12 GB of RAM. We observed that encryption
for NTRU-based ESE takes 0.011 ms where encryption in El-Gamal ESE takes
2.595 ms. As for decryption, NTRU-based ESE takes 0.013 ms and El-Gamal
ESE takes 0.782 ms. The differences are substantial, since the NTRU-base ESE
is 236× and 60× faster in encryption and decryption, respectively.

4 Security Analysis

In this section, we focus on analyzing the security of our proposed schemes.
The security of lattice-based schemes is determined by hardness of the under-

lying lattice problem (in our case, ring-LWE). Based on [21], the hardness of
lattice problems is measured using the root Hermite factor. For a vector v in an
N-dimension lattice that is larger than the nth root of the determinant, the root
Hermite factor is computed as γ = ‖v‖

det(Λh,q)1/n . According to [16], for a short
planted vector v in an NTRU lattice, the associated root Hermite factor is com-

puted as γn =
√

N/(2πe)×det(Λ)1/n‖v‖
0.4×‖v‖ . Based on [13,21], γ ≈ 1.004 guarantees

intractability and provides at least 192-bit security.

Lemma 2. If an IBE scheme is IBE-IND-CPA and IBE-ANO-RE-CPA-secure,
then it is also IBE-ANO-CPA-secure.

Proof. Please see appendix.

Following Lemma 2, to establish the security of our NTRU-PEKS scheme, we
need to rely on the security of the underlying IBE scheme. Ducas et al. provided
the proof of IBE-IND-CPA of their scheme in [17]. Therefore, we are left to prove
the anonymity of their scheme via Theorem 2.

Theorem 2. The IBE scheme of Ducas et al. is anonymous in the sense of
Definition 8 under the decision ring-LWE problem.

Proof. Since the output of the PEKS algorithm of our scheme corresponds to
the encryption algorithm of [32,33], for A to determine sw corresponds to which
keyword with any probability Pr ≥ 1

2 + ε - for any non-negligible ε, it has

376 R. Behnia et al.

to solve the decision ring-LWE. Our scheme works over the polynomial ring
Z[x]/(xN +1), for a power-of-two N and a prime q ≡ 1 mod 2N . The ring-LWE
based PEKS algorithm computes a pseudorandom ring-LWE vector A = r∗h+e1

(for a uniform r, e1
$←− {−1, 0, 1}N) and uses H(w) to compute B = r ∗ H(w) +

e2 +
⌊

q
2

⌋
k that is also statistically close to uniform. Therefore, the adversary’s

view of 〈A,B,H2(A, k)〉 is indistinguishable from uniform distribution under the
hardness of decision ring-LWE. The pseudorandomness is preserved when tw is
chosen from the error distribution (by adopting the transformation to Hermite’s
normal form) similar to the one in standard LWE [35]. ��
Theorem 3. If there exists an adversary A that can break IND-CKA of NTRU-
PEKS scheme as in Definition 10, one can build an adversary F that uses A as
subroutine and breaks the security of the IBE scheme as in Definition 8.

Proof. The proof works by having adversaries F and A initiating the find phase
as in Definitions 8 and 10 respectively.

AlgorithmFKeyQuery(.),H(find ,mpk)

– (mpk,msk) $←− Setup(q,N): F receives mpk and passes it to A.

AlgorithmATdQuery(.),H(find , pk)

– Queries on TdQuery(.): Upon such queries, F queries KeyQuery(.) which
keeps a list idSet maintaining all the previously requested queries and
responses. If the submitted query exists, the same response is returned, oth-
erwise, to sample short vectors s, tw, the oracle uses msk to run (s, tw) $←−
Gaussian-Sampler(msk, σ, (H(w), 0)) and passes tw to F . F sends tw to A.

After the find phase, a hidden fair coin b ∈ {0, 1} is flipped.

Execute(w0, w1) ← ATdQuery(.),H(guess, pk)

– Upon receiving (w0, w1), F selects a message m ∈ {0}N and calls
Enc(m,w0, w1) that runs encryption on (wb,m) which works as in Defini-
tion 7 and outputs sw = 〈A,B,H2(k,B)〉. F relays sw to A.

Finally, A outputs its decision bit b′ ∈ {0, 1}. F also outputs b′ as its response.
Omitting the terms that are negligible in terms of q and N , the upper bound on
IND-CKA of NTRU-PEKS is as follows.

AdvPEKS−IND−CKA
A (q,N) ≤ AdvNTRU−IBE−ANO−CPA

F (q,N)

��

Secure Channel Requirement. Baek et al. [4] highlighted the requirement of
a secure channel for trapdoor transmission between the receiver and the server
and proposed the notion of Secure-Channel Free (SCF) PEKS schemes where

High-Speed High-Security Public Key Encryption with Keyword Search 377

the keywords are encrypted by both the server’s and receiver’s public key. Offline
keyword-guessing attack, as introduced by Byun et al. [12], implies the ability
of an adversary to find which keyword was used to generate the trapdoor. This
inherent issue is due to low-entropy nature of the commonly selected keywords
and public availability of the encryption key [10]. Since Byun et al.’s work [12],
there have been many attempts in proposing schemes that are secure against
keyword guessing attacks [20,27,28]. However, in all the proposals, once the
trapdoor is received by the server, the keyword guessing attacks remain a per-
petual problem [28]. Jeong et al. [28] showed the trade-off between the security
of a PEKS scheme against keyword-guessing attacks and its consistency - by
mapping a trapdoor to multiple keywords. For our scheme, we can assume a
conventional or even post quantum secure [9] SSL/TLS connection between the
receiver and the server. We believe such reliable protocols provide the best mean
for communicating trapdoors to the servers. Establishing a secure line through
SSL/TLS could be much more efficient than using any public key encryption
as in SFC-PEKS. Since in such protocols, after the hand shake protocol, all
communications are encrypted using symmetric encryption.

5 Performance Evaluation

We first describe our experimental setup and evaluation metrics. We then provide
a detailed performance analysis of our scheme by also comparing its efficiency
with the pairing-based schemes proposed in [6,44]. To the best of our knowledge,
and based on [10], the selected pairing-based counterparts are the most efficient
schemes proposed in random oracle and standard models.

5.1 Experimental Setup and Evaluation Metrics

We implemented our PEKS scheme in C++2, using NTL [40] and GNU MP
[23] libraries. The implementations of the pairing-based counterparts [6,44] were
obtained from MIRACL library. We used the MIRACL suggested elliptic curves,
MNT (with embedding degree k = 6) and KSS (with embedding degree k = 18)
for 80-bit and 192-bit security, respectively. The implementations were done on
an Intel Core i7-6700HQ laptop with a 2.6 GHz CPU and 12 GB RAM. Our eval-
uation metrics are computation, storage, and communication that are required
by the sender, receiver and server.

5.2 Performance Evaluation and Comparisons

The Test algorithm of our scheme only requires one convolution product, which
is much more efficient than the bilinear pairing operation required in all of the
existing pairing-based PEKS schemes. Referring to Table 1, running the Test
algorithm for one keyword and one record our scheme is 36× and 97× faster

2 https://github.com/Rbehnia/NTRUPEKS.git.

https://github.com/Rbehnia/NTRUPEKS.git

378 R. Behnia et al.

Table 2. Analytical performance analysis and comparison.

Schemes Computation Storage

Test PEKS Trapdoor PK size SK size SC size TD size

NTRU-PEKS Conv 2Conva GSamp N|q| 2N

log2(2sπ)b
3N|q| N|q|

BCO [6] bp 1bp + sm sm 2|q′| |q′| 2|q′| + |q′| 2|q′|
ZI [44] ex + bp 2sm + 2ex+ 2bp sm + 1pa 2|q′| |q′| 2 × 18|q′|

+2|q′|
2|q′| + |q′|

For 192-bit security, we set N = 1024 and q ≈ 227 which gives us a root Hermite factor γ = 1.0042 for

our scheme and for BCO and ZI schemes, we set q′ ≈ 2192.

PK and SK denote public key and private key, respectively. SC and TD refer to the searchable ciphertext

and trapdoor, receptively. Conv denotes convolution product as defined in Sect. 2. GSamp denotes a

Gaussian Sampling function as in [17]. bp denotes a bilinear pairing operation [7], pa and sm denote

point addition and scalar multiplication in G, respectively, and ex denotes exponentiation in GT .

Public key, private key and SC are stored on the sender, receiver and server’s machines, respectively.

PEKS, Trapdoor and Test algorithms are run by the senders, receiver and server machines, respectively.
a With a slight storage sacrifice, sender can pre-compute one of the convolution products.
b The value of s defines the norm of the Gram-Schmidt coefficient. In [17], the authors set the norm s ≈√

qe
2 , where e is the base of natural logarithm.

Table 3. Parameter sizes of our scheme and its pairing-based counterparts

Schemes Public key size Private key size SC size TD size

NTRU-PEKS 27.2 Kb 32Kb 52 Kb 27 Kb

BCO [6] 0.38 Kb 0.19 Kb 0.57 Kb 0.38 Kb

ZI [44] 0.76 Kb 0.19 Kb 0.89 Kb 0.57 Kb

All schemes are implemented for 192 bits of security.

than BCO and ZI schemes, respectively. This gap significantly increases as the
number of keywords/records increases, for instance, as depicted in Fig. 2, the
search time for 10000 (with distinct keywords) records in database, is 10 s in our
scheme, and 400 s and 1100 s for BCO and ZI schemes, respectively. For 10000
records (which is rather small comparing to the number of records in actual
databases), our scheme is 40 times faster than Boneh et al.’s scheme. For real-
world cases with a large database, our scheme seems to be the only practical
solution at this moment. We believe that this is one of the main aspects of our
scheme which makes it an attractive candidate to be implemented for real-world
applications. As it is shown in Table 2, the dominant operations of the PEKS
algorithm in our scheme are two convolution products of form x1 ∗ x2. However,
since one of the operands has very small coefficients (i.e., r

$←− {−1, 0, 1}N), the
convolution products can be computed very rapidly. Specifically, in our case,
since N has been selected as a power-of-two integer, the convolution product
can be computed in N log N operations by Fast Fourier Transform. In Fig. 3, we
compare the efficiency of the PEKS algorithm of our scheme with ones in [6,44].
Generating one searchable encryption in our scheme is 19× and 78× faster than
that of BCO and ZI schemes, respectively. Therefore, in our scheme, the sender
can generate 2000 searchable encryptions with distinct keywords in 4 s while this
time is increased to 100 s and 400 s in BCO and ZI schemes, respectively. The

High-Speed High-Security Public Key Encryption with Keyword Search 379

Fig. 2. Search time of server

Fig. 3. Efficiency of PEKS algorithm

sender needs to store the receiver’s public key of size N |q|, referring to Table 3,
for 192-bit security, it can be up to 27.2 Kb. The resulting searchable encryption
of our PEKS algorithm is to be sent to the server is of size 52 Kb, based on Table 3.
This is larger than the searchable encryption size of BCO and ZI scheme. Due
to the structure of our PEKS algorithm, the computation of A in searchable
ciphertext can be done prior to having knowledge of the keyword. Therefore,
with a slight storage sacrifice (i.e., storing N |q| bits), the PEKS algorithm can
become twice as fast.

380 R. Behnia et al.

Fig. 4. Efficiency of Trapdoor algorithm

The Trapdoor algorithm in our
scheme requires a Gaussian Sampling
similar as in [17,22]. This is the most
costly operation in our scheme. As it
is shown in Table 1, for 192-bit secu-
rity, one trapdoor generation is 6.4×
and 3× slower than those of BCO and
ZI schemes, respectively. In Fig. 4 we
compare the efficiency of the Trapdoor
algorithm of our scheme with the ones
in [6,44]. This algorithm in Boneh
et al.s scheme only requires one scalar
multiplication and consequently, it is
the fastest. Trapdoor algorithm in
BCO scheme is capable of generating 2000 trapdoors for distinct keywords in
5 s, ZI scheme generates the same number of trapdoor in 10 s comparing to our
scheme which takes 30 s. Each trapdoor in our scheme is 27 Kb which is much
larger than those in BCO and ZI schemes. With the sacrifice of storage, the
receiver can pre-compute and securely store the trapdoors locally. As discussed
in Sect. 4, the trapdoors are to be transmitted to the server via a secure channel.

5.3 Discussion

To the best of our knowledge, our scheme is the first post-quantum secure PEKS
scheme in the literature. Except the Trapdoor algorithm, which is only run O(1)
times for each keyword, our algorithm enjoys from a very efficient PEKS and
Test algorithms. While the PEKS algorithm is run O(1) times for each keyword
and record, the efficiency of our Test algorithm, which is run O(L) times (for
a database of size L), significantly decreases the search time on the server and
minimizes the cryptographic end-to-end delay. Note that achieving a low end-to-
end delay is of great importance, since even small delays (e.g., a few milliseconds)
could incur significant financial costs for companies like Amazon [19].

One limitation of our scheme is that its searchable ciphertext sizes are larger
than its pairing-based counterparts, as our scheme relies on NTRU. This incurs
a larger storage overhead on the server. However, given its significantly efficiency
advantage for PEKS and especially critical algorithm Test, and also high storage
capability of the modern cloud servers with a relatively low storage cost, this
can be considered as a highly favorable trade-off. Moreover, as discussed, a faster
response time (i.e., lower end-to-end delay) seems a much critical ecumenical
parameter for modern cloud services than having a relatively higher storage.

6 Related Work

Searchable encryption can be instantiated from both symmetric or asymmetric
key settings. Song et al. [41] proposed the first SE scheme that relies on sym-
metric key cryptography. Kamara et al. [29] proposed the first DSSE scheme to

High-Speed High-Security Public Key Encryption with Keyword Search 381

address the limitation of its static ancestors. While being highly efficient, sym-
metric SE schemes are more suitable for applications that involve a single client
who outsources her own data to the cloud relying on her private key.

In this paper, given the target applications that need multiple heteroge-
neous entities to create searchable encrypted data, our focus is on SE schemes
instanced in asymmetric settings. In particular, we concentrate on PEKS, as
it requires neither specific probability distributions on keywords nor perfor-
mance/consistency trade-offs as dictated by some other asymmetric alternatives
(e.g., ESE as discussed in Sect. 3.2). In PKES, decryption and trapdoor gen-
eration take place using the private key of the receiver, while any user can
use the corresponding public key to generate searchable ciphertext. With a few
exceptions, all of the proposed PEKS schemes are developed using costly bilin-
ear pairing operations. The first instance of pairing-free PEKS schemes is con-
structed by Crescenzo and Saraswat [15] based on the IBE scheme in [14], which
is constructed using quadratic residue for a composite modulus. Khader [31]
proposed the first instance of such schemes in the standard model based on a
k-resilient IBE, she also put forth a scheme which supports multiple-keyword
search. Nonetheless, due to their costly operations, the proposed schemes are
not practical to be implemented in real-world applications.

7 Conclusion

In this paper, we proposed (to the best of our knowledge) the first NTRU-based
PEKS scheme, which harnesses some of the most recent cryptographic tools in
lattice-based cryptography, IBE scheme based on ring-LWE and efficient polyno-
mial arithmetics at the same time. We formally proved that our scheme is secure
and consistent in IND-CKA model, and also showed that our base IBE scheme
achieves anonymity property required by our PEKS construction. Our theoret-
ical and experimental analysis confirmed that our NTRU-based PEKS scheme
is significantly more computationally efficient than its most efficient pairing-
based counterparts at the server and sender side, which offer the lowest end-to-
end cryptographic delay among the existing PEKS schemes. In addition to its
efficiency, our PEKS scheme demonstrated a much smoother performance for
increasing key sizes and inherits the (current) post-quantum security properties
of its underlying NTRU primitives. The high efficiency and long-term security of
NTRU-based PEKS are expected to pave a path towards potential consideration
of PEKS schemes for real-life applications.

Appendix

The following proof is obtained from [1].

382 R. Behnia et al.

Proof of Lemma1.

Let A be an adversary on an IBE-ANO-CPA-secure scheme. We can build
another adversaries A1 and A3 attacking the IBE-IND-CPA, and another adver-
sary A2 attacking ANO-RE-CPA of the IBE scheme such that

Pr[ExpIBE-ANO-CPA-1
IBE,A (k) = 1]− Pr[ExpIBE-ANO-RE-1

IBE,A (k) = 1] � AdvIBE-IND-CPA
IBE,A1

(1k)

Pr[ExpIBE-ANO-RE-1
IBE,A (k) = 1] − Pr[ExpIBE-ANO-RE-0

IBE,A (k) = 1] � AdvIBE-ANO-RE
IBE,A2

(1k)

Pr[ExpIBE-ANO-RE-0
IBE,A (k) = 1]− Pr[ExpIBE-ANO-CPA-0

IBE,A (k) = 1] � AdvIBE-IND-CPA
IBE,A3

(1k)

Adding the above equations will conclude this proof. ��

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). doi:10.
1007/11535218 13

2. Ajtai, M.: Generating hard instances of lattice problems. In: Twenty-Eighth Annual
ACM Symposium on Theory of Computing, Philadelphia, PA, USA. Proceedings,
pp. 99–108. ACM (1996)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., et al.: Above the clouds: a Berkeley view
of cloud computing. Technical report. EECS Department, University of California,
Berkeley (2009)

4. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword
search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69839-5 96

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 30

6. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

7. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

8. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-70936-7 29

http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/978-3-540-69839-5_96
http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-70936-7_29

High-Speed High-Security Public Key Encryption with Keyword Search 383

9. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: IEEE Symposium
on Security and Privacy S&P, Â Fairmont, San Jose, California. Proceedings, pp.
553–570. IEEE Computer Society (2015)

10. Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. ACM Comput. Surv. 47(2), 18:1–18:51 (2014)

11. Bringer, J., Chabanne, H., Kindarji, B.: Error-tolerant searchable encryption. In:
IEEE International Conference on Communications, Dresden, Germany. Proceed-
ings, pp. 1–6. IEEE (2009)

12. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: Jonker, W., Petković,
M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006).
doi:10.1007/11844662 6

13. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-25385-0 1

14. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). doi:10.1007/3-540-45325-3 32

15. Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords based
on Jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT
2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77026-8 21

16. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

17. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 2

18. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
415–432. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 26

19. Eaton, K.: How one second could cost Amazon $1.6 Bil-
lion in sales (2012). https://www.fastcompany.com/1825005/
how-one-second-could-cost-amazon-16-billion-sales. Accessed 2017

20. Fang, L., Susilo, W., Ge, C., Wang, J.: Public key encryption with keyword search
secure against keyword guessing attacks without random oracle. Inf. Sci. 238, 221–
241 (2013)

21. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78967-3 3

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Fortieth Annual ACM Symposium on Theory of
Computing, STOC, Victoria, Canada. Proceedings, pp. 197–206. ACM (2008)

23. Granlund, T.: The GMP development team: GNU MP: the GNU multiple precision
arithmetic library (2012). http://gmplib.org/

24. Halevi, S.: A sufficient condition for key-privacy. IACR Cryptology ePrint Archive
2005, p. 5 (2005)

25. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA

http://dx.doi.org/10.1007/11844662_6
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/3-540-45325-3_32
http://dx.doi.org/10.1007/978-3-540-77026-8_21
http://dx.doi.org/10.1007/978-3-540-77026-8_21
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/978-3-662-45608-8_2
http://dx.doi.org/10.1007/978-3-642-34961-4_26
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://gmplib.org/

384 R. Behnia et al.

2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). doi:10.1007/
3-540-36563-X 9

26. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). doi:10.1007/BFb0054868

27. Hu, C., Liu, P.: A secure searchable public key encryption scheme with a designated
tester against keyword guessing attacks and its extension. In: Lin, S., Huang, X.
(eds.) CSEE 2011. CCIS, vol. 215, pp. 131–136. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23324-1 23

28. Jeong, I.R., Kwon, J.O., Hong, D., Lee, D.H.: Constructing PEKS schemes secure
against keyword guessing attacks is possible? Comput. Commun. 32(2), 394–396
(2009)

29. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS, vol.
6054, pp. 136–149. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14992-4 13

30. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security, CCS,
Raleigh, NC, USA. Proceedings, pp. 965–976. ACM (2012)

31. Khader, D.: Public key encryption with keyword search based on K-resilient IBE.
In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4707, pp. 1086–
1095. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74484-9 95

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

33. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 3

34. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

35. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009)

36. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. J. Cryptol. 22(2), 139–160 (2009)

37. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31815-6 7

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC,
Hunt Valley, MD. Proceedings, pp. 84–93. ACM (2005)

39. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy,
S&P, Oakland, California, USA. Proceedings, pp. 350–364. IEEE Computer Society
(2007)

40. Shoup, V.: NTL: a library for doing number theory (2003). http://www.shoup.
net/ntl

41. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy S&P, Berkeley, California,
USA. Proceedings, pp. 44–55. IEEE Computer Society (2000)

http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/978-3-642-23324-1_23
http://dx.doi.org/10.1007/978-3-642-23324-1_23
http://dx.doi.org/10.1007/978-3-642-14992-4_13
http://dx.doi.org/10.1007/978-3-540-74484-9_95
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-540-31815-6_7
http://www.shoup.net/ntl
http://www.shoup.net/ntl

High-Speed High-Security Public Key Encryption with Keyword Search 385

42. Whyte, W., Howgrave-Graham, N., Hoffstein, J., Pipher, J., Silverman, J.H.,
Hirschhorn, P.S.: IEEE P 1363.1 draft 10: draft standard for public key crypto-
graphic techniques based on hard problems over lattices. IACR Cryptology EPrint
Archive 2008, p. 361 (2008)

43. Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with min-
imal leakage and efficient updates on commodity hardware. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 241–259. Springer, Cham (2016).
doi:10.1007/978-3-319-31301-6 15

44. Zhang, R., Imai, H.: Generic combination of public key encryption with keyword
search and public key encryption. In: Bao, F., Ling, S., Okamoto, T., Wang, H.,
Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 159–174. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-76969-9 11

http://dx.doi.org/10.1007/978-3-319-31301-6_15
http://dx.doi.org/10.1007/978-3-540-76969-9_11

HardIDX: Practical and Secure Index with SGX

Benny Fuhry1(B), Raad Bahmani2, Ferdinand Brasser2, Florian Hahn1,
Florian Kerschbaum3, and Ahmad-Reza Sadeghi2

1 SAP Research, Karlsruhe, Germany
{benny.fuhry,florian.hahn}@sap.com

2 Technische Universität Darmstadt, Darmstadt, Germany
{r.bahmani,f.brasser,a.sadeghi}@trust.tu-darmstadt.de

3 University of Waterloo, Waterloo, Canada
florian.kerschbaum@uwaterloo.ca

Abstract. Software-based approaches for search over encrypted data
are still either challenged by lack of proper, low-leakage encryption or
slow performance. Existing hardware-based approaches do not scale well
due to hardware limitations and software designs that are not specif-
ically tailored to the hardware architecture, and are rarely well ana-
lyzed for their security (e.g., the impact of side channels). Addition-
ally, existing hardware-based solutions often have a large code foot-
print in the trusted environment susceptible to software compromises.
In this paper we present HardIDX: a hardware-based approach, leverag-
ing Intel’s SGX, for search over encrypted data. It implements only the
security critical core, i.e., the search functionality, in the trusted envi-
ronment and resorts to untrusted software for the remainder. HardIDX
is deployable as a highly performant encrypted database index: it is log-
arithmic in the size of the index and searches are performed within a few
milliseconds. We formally model and prove the security of our scheme
showing that its leakage is equivalent to the best known searchable
encryption schemes.

1 Introduction

Outsourcing the storage and processing of sensitive data to untrusted cloud
environment is still considered as too risky due to possible data leakage, gov-
ernment intrusion, and legal liability. The cryptographic solutions Secure Mul-
tiparty Computation (MPC) and in particular Fully Homomorphic Encryption
(FHE) [23] offer high degree of protection by allowing arbitrary computation
on encrypted data, but they are impractical for adoption in large distributed
systems [24].

Moreover, there are a number of useful applications that only require a small
set of operations. A prime example of such operations is the search and retrieval
in an encrypted databases without the need to download all data from the
cloud. For this task, different cryptographic schemes have been proposed such
as property-preserving encryption [6,8], or functional encryption [10] and its
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 386–408, 2017.
DOI: 10.1007/978-3-319-61176-1 22

HardIDX: Practical and Secure Index with SGX 387

special case searchable encryption [16,29,41]. In this context, performing effi-
cient and secure range queries are commonly considered to be very challenging.
CryptDB [36] resorts to order-preserving encryption for this purpose which is
susceptible to simple ciphertext-only attacks as shown by Naveed et al. [34].

Many schemes for search over encrypted data supporting range queries
require search time linear in the number of database records. Recently, schemes
with polylogarithmic search time, based on an index structure, have been pro-
posed [17,19,29]. In Sect. 7 and Table 2, we elaborate on the search time, query
size, storage size and leakage problems of those approaches. Designing an effi-
cient searchable encryption scheme with minimal leakage on the queried ranges
remains an open challenge.

Another line of research [4,5] leverages the developments in hardware-
assisted Trusted Execution Environments (TEEs) for search over encrypted data.
Although Intel’s recently introduced Software Guard Extension (SGX) [2,15,26,
31] has inspired new interest in TEEs, related technologies have been available
before, e.g., in ARM processors known as ARM TrustZone [3] as well as in
academic research [12,42]. Also, AMD has recently announced a TEE for their
CPUs [27] rising the hope that TEEs will be widely available in x86 processors,
and thus in many relevant environments such as clouds, in the near future. TEEs
have to interact with untrustworthy components within the same computer sys-
tem for various reasons. In order to achieve comprehensive security, information
leakage through those channels has to be considered and taken care of. Previous
SGX based solutions that allow search on encrypted data load and execute the
entire unmodified database management system (DBMS) into an enclave [4,5].
They do not formally consider information leakage and do not scale well due to
limited memory size of SGX’s enclaves and the large footprint of the code they
require in the TEE.

Our goal and contribution. We present an efficient scheme for search over
encrypted data that can be deployed as a database index. SGX’s protection
characteristics are utilized to achieve an outstanding tradeoff between security,
performance and functionality. The currently fastest software-based schemes that
support range queries are [17] and [19]. Our solution significantly improves over
these approaches in terms of performance and storage. Compared to the latest
hardware-based schemes [4,5], we improve in terms of security and scalability.
Our scheme organizes data in a B+-tree structure that is frequently used for
databases indexes in most database management systems (DMBSs) [37]. Our
solution supports searches for single values and value ranges and it can easily be
adapted to many other database (search) operations.

We implemented and extensively evaluated our two constructions on SGX-
enabled hardware (see Sect. 6). Both have a very small code and memory foot-
print in the TEE compared to other hardware-based approaches [4,5]. Addition-
ally, our solution scales to arbitrary index sizes as memory usage in the enclave
is constant and untrusted resources are used to store the database itself. Our
main contributions are as follows:

388 B. Fuhry et al.

– Our scheme has logarithmic complexity in the size of index and searches are
performed within a few milliseconds.

– We formally model and prove our scheme secure showing that its security
(leakage) is comparable to the best known searchable encryption schemes.

– We provide an implementation and evaluate the performance and functional
bottleneck of SGX on the basis of two different constructions that are designed
specifically for SGX to reduce the Trusted Computing Base.

2 Background

2.1 Intel Software Guard Extensions (SGX)

SGX is an extension of the x86 instruction set architecture (ISA) introduced with
the 6th Generation Intel Core processors (code name Skylake). We now present
a high level overview of SGX’s features utilized by HardIDX (see [2,15,26,31]
for more details).

Memory Isolation. On SGX enabled platforms, programs can be divided into
two parts, an untrusted part and an isolated, trusted part. The trusted part, called
enclave in SGX terminology, is located in a dedicated portion of the physical
RAM. The SGX hardware enforces additional protection on this part of the
memory. In particular, all other software on the system, including privileged
software like OS, hypervisor and firmware cannot access the enclave memory.
The (untrusted) host process can invoke the enclave only through a well-defined
interface. Furthermore, all isolated code and data is encrypted while residing
outside of the CPU package. Decryption and integrity checks are performed
when the data is loaded inside the CPU.

Memory Management. SGX dedicates a fixed amount of the system’s main
memory (RAM) for enclaves and related metadata. For current systems this
memory is limited to 128 MB which is used for both, SGX metadata and the
memory for the enclaves themselves. The enclaves can only be deployed in about
96 MB. The SGX memory is reserved in the early boot phase and is static
throughout the runtime of the system. The OS can allocate (parts of) the mem-
ory to individual enclaves and change these allocation during the runtime of
the enclaves. In particular, the OS can swap out enclave pages. SGX ensures
integrity, confidentiality and freshness of swapped-out pages.

Attestation. SGX has a remote attestation feature which allows to verify the
correct creation of an enclave on a remote system. During enclave creation the
initial code and data loaded into the enclave are measured. This measurement
can be provided to an external party to prove the correct creation of an enclave.
The authenticity of the measurement as well as the fact that the measurement
originates from a benign enclave is ensured by a signature, provided by SGX’s
attestation feature (refer to [2] for details). Furthermore, the remote attestation
feature allows for establishing a secure channel between an external party and
an enclave.

HardIDX: Practical and Secure Index with SGX 389

2.2 Side Channel Attacks

Side channel attacks allow an adversary to extract sensitive information with-
out having direct access to the information source by observing effects of the
processing of the sensitive information. They have been known for a long time
and various variants have been studied in the past, e.g., hardware side chan-
nels, software timing side channels and cache timing side channels [13,22,45].
All these attacks are noisy and require repeated execution and measurements to
extract the sensitive information.

In the context of SGX, there exist a new class of side channels, called deter-
ministic side channel [44]. As the OS is untrusted, yet still manages the enclave’s
resources, it can observe the enclaves behavior. In particular, the OS can gener-
ate a precise trace of the enclave’s code and data accesses at the granularity of
pages. In [44] it is shown that this allows to extract sensitive information from
an SGX enclave.

3 High Level Design

3.1 HardIDX Overview

The high level design of our solution is shown in Fig. 1. The design involves three
entities: the client (who is the data owner and therefore trusted), the untrusted
SGX enabled server and the trusted SGX enclave within the server.

Fig. 1. High level design

Initially, a client prepares its data values by augmenting it with (index) search
keys. We abbreviate data values as values and the search keys as keys through-
out this paper. All other values and keys (e.g., cryptographic keys) are clearly
differentiate if ambiguous. The values are stored at pseudo-random position. The
keys are then inserted into a B+-tree and the storage order of all nodes is also
pseudo-random. The tree and values are linked by adding pointers to the leaves
of the tree identifying the random position of the corresponding values. A value
can be any data such as records in a relational database or files/documents in
other database types. The client then encrypts all nodes of the tree with a secret

390 B. Fuhry et al.

key SKk and all values with SKv. The encrypted B+-tree and encrypted values
are deployed on the untrusted server in the cloud (see step 1 in Fig. 11).

The client uses the SGX attestation feature for authenticating the enclave
and establishing a secure connection between the client and the enclave (see
details in Sect. 2.1). Through this connection, the client provisions SKk into the
enclave (see step 2). This completes the setup of our scheme, which needs to be
executed only once.

Now, the client can send (index) search queries to the server that are
encrypted with a probabilistic encryption scheme under SKk . Hence, the
untrusted server cannot learn anything about the query, not even if the same
query was send before. When a query arrives in the enclave, SKk is used to
decrypt the query (see step 3).

In step 4 , the enclave loads the B+-tree structure (tree nodes, but no values)
from the untrusted storage into enclave memory and decrypts it. Given sufficient
memory, the entire tree is loaded into the enclave and the search is performed
afterwards (see step 5). As the tree size can exceed the memory available inside
the enclave we provide a second design. In this case, only a subset of tree nodes
is loaded into the enclave. The tree is traversed starting from the root node
and nodes are fetched from the untrusted storage if necessary. In both cases the
search algorithm eventually reaches a set of leaf nodes, which holds pointers to
values matching the query. This list of pointers, representing the search result,
is passed to the untrusted part (see step 6). The untrusted part learns nothing,
except for the cardinality of the result set, from this interaction, because the
values are stored in a randomized order.

The result of the index search could be processed further, e.g. in combina-
tion with additional SQL operators, in the SGX enclave at the server. In order
to complete the end-to-end secure search, we assume that the server uses the
pointers to fetch the encrypted values from untrusted storage and sends them
to the client, where they are decrypted with SKv (see step 7).

Notably, the plaintext values are never available on the server. They are
encrypted with strong standard cryptography methods (AES-128 in GCM mode
in our case) and never decrypted on the server, not even inside the SGX enclave.
SKv is only known to the client.

3.2 Assumptions and Attacker Model.

Due to SGX’s protection, the attacker cannot directly access the enclave. How-
ever, side channels exist through which the attacker could potentially extract
sensitive information. We assume the attacker has full control over all software
on the system running HardIDX. (1) The attacker can observe all interaction
of the enclave with resources outside the enclave. In particular, the attacker
can observe the access pattern to B+-tree nodes stored outside the enclave.
(2) The attacker can use deterministic page-fault side channel to observe data

1 For visualization purposes, the tree nodes and values are shown to be encrypted as
a block. In reality each node and value is encrypted individually.

HardIDX: Practical and Secure Index with SGX 391

access inside the enclave at page granularity [44]. Through this side channel, the
attacker can observe access patterns on the B+-tree stored inside the enclave.
(3) The attacker can use cache side channel to learn about code paths or data
access patterns inside the enclave, as SGX does not protect against them [15].

Hardware attacks are out of scope in this paper. Furthermore, we consider
denial of service (DoS) attacks on the cloud server and network out of scope.
In this version, we only assume a passive attacker due to page constraints. We
present mitigation strategies for an active attacker in the long version [20]. We
furthermore assume as single user and the multi user case in Appendix C.

4 Notation and Definitions

4.1 B+-tree

A B+-tree is a balanced, n-ary search tree. So called search keys are utilized to
index values. A B+-tree can be used to search for single values, e.g., unique staff
ids are used to find the corresponding database record (see Fig. 2) or for ranges,
e.g., a salary index that allows to search for all employees falling in a specific
salary range.

Fig. 2. B+-tree example: the unique staff ids are used as keys and the values are the
staff records (random storage position on the left).

Three node types are differentiated in a B+-tree: the root node, internal
nodes and leaf nodes. Every node x contains x.#k keys that are stored in a
nondecreasing order: x.k1 ≤ ... ≤ x.k(x.#k). At every inner node x (including
the root if not the only node), the keys separate the key domain into (x.#k+1)
subtrees that are reachable by (x.#k + 1) child pointers: {x.p0, ..., x.p(x.#k)} =
x.p. Every key x.ki has a corresponding pointer x.pi that points to a node
containing elements greater than or equal to x.ki and smaller than any other tag
x.kj ∀j ∈ [i + 1, x.#k]. x.p0 points to a node containing only keys, which are
smaller than x.k1. No internal node is linked to a value. Instead, every leaf node
x stores x.#k keys and a pointer to its corresponding value (x.p0 is not used at
the leaves). Every node x in the tree has a unique id x.id and a flag x.isLeaf

392 B. Fuhry et al.

that stores if the x is a leaf. We denote the B+-tree without the values as B+-
tree structure and pxi

as the storage position of xi, i.e., the physical memory
address.

We use unchained B+-trees, i.e., the leafs are not connected. Linked leaves
would increase the search performance, but it would severely deteriorate the
security. The reason is that a range query would directly leak the relationship
among leaves if links are followed during a query.

With HardIDX, it is not necessary to define the key domain D in advance
as in many other approaches. D can be an arbitrary domain with a defined
order relation and a defined minimal and a maximal element recognizable by
the algorithms. These two elements, denoted as −∞ and ∞, fulfill the following:
−∞ < x.k < ∞ ∀x.k ∈ D.

The branching factor b specifies a B+-tree by defining the maximal num-
ber of pointers. b also defines the minimal number of pointer for the different
node types, but we do not further elaborate on details. For ease of exposition,
we assume that every key and pointer fits in an 32 bit block, but this is no
prerequisite for our constructions.

4.2 Probabilistic Symmetric Encryption

A probabilistic authenticated symmetric encryption consists of three proba-
bilistic polynomial-time algorithms PASE =

(
PASE Gen(1λ), PASE Enc(SK, v),

PASE Dec(SK,C)
)

with the usual definitions of functionality. PASE has to be
an authenticated IND-CCA secure encryption, e.g., AES-128 in GCM mode.

4.3 Hardware Secured B+-tree (HSBT)

Based on the presented definition of a B+-tree, we define the notion of a Hard-
ware Secured B+-tree (HSBT) as follows. We assume that the B+-tree should
store a set s of n key-value pairs: s = ((k1, v1), ..., (kn, vn)). This set consists of
n values v = (v1, ..., vn) and their corresponding keys k = (k1, ...kn).

Definition 1 (HSBT). A secure hardware B+-tree scheme is a tuple of six
polynomial-time algorithms

(
HSBT Setup, HSBT Enc, HSBT Tok, HSBT Dec, HSBT -

SearchRange, HSBT SearchRange Trusted
)
.

Algorithms executed at the client:
SK ← HSBT Setup(1λ): Take the security parameter λ as input and output a

secret key SK.
γ ← HSBT Enc(SK, s): Take the secret key SK and a set s of key-value pairs as

input. Output an encrypted B+-tree γ.
τ ← HSBT Tok(SK,R): Take the secret key SK and a range R = [Rs, Re] as

input. Output a search token τ .
v′ ← HSBT Dec(SK,C′): Take the secret key SK and a set of ciphertext C′ as

input. Decrypt the ciphertexts and output plaintext values v′.

HardIDX: Practical and Secure Index with SGX 393

Executed at the server on untrusted hardware:
C′ ← HSBT SearchRange(τ, γ): Take a search token τ and an encrypted tree γ

as input and call the secure hardware function HSBT SearchRange Trusted.
Output a set of encrypted values C′.

Executed at the server on secure hardware:
P ← HSBT SearchRange Trusted(τ,X): Take a search token τ as input. Output

a set of pointers P.

Definition 2 (Correctness). Let D denote a HSBT-scheme consisting of the six
algorithms described in Def. 1. We say that D is correct if for all λ ∈ N, for all
SK output by HSBT Setup(1λ), for all key-value pairs s used by HSBT Enc(SK, s)
to output γ, for all R used by HSBT Tok(SK,R) to output τ , for all C′ output
by HSBT SearchRange(τ, γ), the values v′ output by HSBT Dec(SK,C′) are all
values in s for which the corresponding keys k′ fall in R, i.e., v′ = {vi|(ki, vi) ∈
s ∧ ki ∈ [Rs, Re] = R}.

Our security model, which we define next, is based on a proof framework
introduced by Curtmola et al. in [16]. A description about the proof tech-
nique can be found in Appendix A. At security models of searchable encryption
schemes so far, the leakage only covers the transaction between the client and
server. In our scenario, there is an additional transaction between the server and
the secure hardware that can be viewed by the adversary. Therefore, we extend
the CKA2-security to CKA2-HW-security by introducing a new type of leakage
denoted as Lhw. It consists of the inherent leakage of the used secure hardware
and the inputs/outputs to/from the secure hardware.

Definition 3 (CKA2-HW-security). Let D denote a HSBT-scheme consisting of
the six algorithms described in Definition 1. Consider the probabilistic experi-
ments RealA(λ) and IdealA,S(λ), whereas A is a stateful adversary and S is a
stateful simulator that gets the leakage functions Lenc and Lhw.

RealA(λ): the challenger runs HSBT Setup(1λ) to generate a secret key SK.
A outputs a set of key-value pairs s. The challenger calculates γ ←
HSBT Enc(SK, s) and passes γ to A. Afterwards, A makes a polynomial num-
ber of adaptive queries for arbitrary ranges R. The challenger returns search
tokens τ to A after calculating τ ← HSBT Tok(SK,R). A can use γ and the
returned tokens at any time to make queries to the secure hardware. The
secure hardware returns a set of pointers P. Finally, A returns a bit b that
is the output of the experiment.

IdealA,S(λ): the adversary A outputs a set of key-value pairs s. Using Lenc,
S creates γ and passes it to A. Afterwards, A makes a polynomial number
of adaptive queries for arbitrary ranges R. The simulator S creates tokens τ
and passes them to A. The adversary A can use γ and the returned tokens
at any time to make queries to S (that simulates the secure hardware). S is
given Lhw and returns a set of pointers P. Finally, A returns a bit b that is
the output of the experiment.

394 B. Fuhry et al.

We say D is
(Lenc,Lhw

)
-secure against adaptive chosen-keyword attacks if

for all probabilistic polynomial-time algorithms A, there exists a probabilistic
polynomial-time simulator S such that

|Pr [RealA(λ) = 1] − Pr [IdealA,S(λ) = 1] | ≤ negl(λ)

5 Search Algorithms

In this section, we will present two different constructions that enable a client
to the search for a single value or a range of values based on keys. We use B+-
trees in both constructions to achieve logarithmic search and SGX to protect
the confidentiality and integrity of the data.

5.1 Construction 1

We sketch our first correct (according to Definition 2) and secure (according to
Definition 3) construction in this section. A more detailed construction can be
found in the long version of the paper [20]. The guiding idea of the construction
is that the entire data should be stored and processed inside the enclave. The
client constructs the B+-tree locally, encrypts the B+-tree structure and the
values with SKk and SKv, respectively (see 5.2 for details). Both are sent to the
cloud provider and the SGX application consisting of a trusted and an untrusted
part get deployed there.

Software measurement as described in Sect. 2.1 is used for remote attestation,
i.e., to prove to the client that the correct software is deployed on an SGX
enabled CPU. During the deployment, the application reserves an SGX protected
memory region (see Sect. 2.1). A secure transfer protocol between client and
server (see Sect. 2.1) is used to deploy SKk inside the enclave. Thus SKk is only
known by the enclave’s process and the client. The cloud provider and all other
processes cannot access this key at any point in time. The next step is to load the
B+-tree structure (tree nodes, but no values) from an untrusted to the isolated
memory region and use SKk to decrypt the tree nodes. It is important to note
that the tree is still protected, because all data inside the enclave is secured by
SGX. The values are stored outside of the enclave to save enclave memory. This
has no security implications as the values are encrypted with an authenticated
IND-CCA secure encryption scheme and they are stored in a randomized order.
The enclave is then ready to receive search query tokens τ from the client.

The untrusted part relays τ to the trusted part. There, the token gets
decrypted and a B+-tree traversal is performed. All pointers that lead to values
falling in the queried range are returned in random order. The untrusted part
receives pointers to the values, loads the values from memory or disk and passes
them to the client.

This construction suffers from the substantial problem mentioned before: the
memory reserved for SGX is limited to 128 MB, and only about 96 MB can be
used for data and code. SGX supports a larger enclave size, but enclave pages

HardIDX: Practical and Secure Index with SGX 395

have to be swapped in and out in this case. Our evaluation (see Sect. 6) shows
that even 50, 000, 000 values are possible. A B+-tree, however, is only a small
part of a full encrypted DBMS based on our constructions. Other components
would occupy large regions of the restricted enclave memory and thus further
limit the available space.

Construction 1 provides a very low leakage (see [20] for details), but it is
not usable in a big data cloud scenario, because of the described limitation.
Therefore, we present a second construction in the next section.

5.2 Construction 2

In this section, we describe our second correct (according to Definition 2) and
secure (according to Definition 3) construction. Instead of loading all nodes into
the enclave, the main idea is to only load the nodes required to traverse the
tree. The challenge is to optimize the communication bottleneck between the
untrusted part and the enclave. We performed extensive benchmarking and algo-
rithm engineering in order to identify and minimize the most important run-time
consuming tasks, such as switching between the untrusted part and the enclave.
The decisive advantage of our second construction is that the required memory
space inside the enclave is O(1) for a tree of arbitrary size. The trade-off is that
all nodes are stored encrypted inside untrusted main memory or on the untrusted
disk and thus have to be decrypted by the enclave before processing. This also
leads to a slightly larger leakage than in the first construction, namely a finer-
granular access pattern on node instead of page level (details are described by a
formal model and proof later).

The setup of the HSBT-scheme is slightly different than in the first construc-
tion in order to implement the described features. As before, the B+-tree is
constructed and encrypted at the client and is then transferred to the cloud
provider. However, the application does not reserves memory for the whole B+-
tree structure inside the enclave. Instead, it only reserves a fixed space, denoted
as reservedSpace, for on the fly processing. The remote attestation and secure
key deployment are performed as in the previous construction.

We now describe an HSBT-scheme consisting of six algorithms
(
HSBT2 Setup,

HSBT2 Enc, HSBT2 Tok, HSBT2 Dec, HSBT2 SearchRange, HSBT2 SearchRange -
Trusted

)
that utilizes a pseudorandom permutation Π : {0, 1}λ × {0, 1}log2#x

→ {0, 1}log2#x in more detail. Note that all but HSBT2 SearchRange and
HSBT2 SearchRange Trusted exactly match the algorithms utilized for Con-
struction 5.1.

SK ← HSBT2 Setup(1λ): Use input λ to execute PASE Gen two times and out-
put SK =

(
SKk , SKv

)
. SKv and SKk are kept secret at the client. SKk

is additionally shared with the server enclave using a secure transport and
deployment protocol. The enclave stores SKk inside the isolated enclave.

γ ← HSBT2 Enc(SK, s): Take SK and s = ((k1, v1), ..., (kn, vn)) as input. Start
by storing all values v = (v1, ..., vn) in a random order. An almost standard
B+-tree insertion is used for all keys. One difference is that every newly

396 B. Fuhry et al.

created node x gets an id according to the creation order, i.e., the first node
gets id 0 (x.id = 0), the second id 1 (x.id = 1) et cetera. After each pair is
inserted, the empty position for keys and pointers in the tree get filled up.
More specifically, a node x that contains x.#k keys from the domain gets
filled with (b − 1 − x.#k) keys ∞ and (b − x.#k) dummy pointers. Then,
all keys and pointers are padded to a length of 32 bit (this is no prerequisite
of our solution). The ids are used by the algorithm to store the nodes at
pseudorandom positions: px = Π(SKk , x.id). Now, we have a B+-tree in
which every node occupies the same storage space and the order of the nodes
and values is random. Finally, PASE Enc(SKv, ·) is used to encrypt every value
and PASE Enc(SKk , ·) is used to encrypt every node. The encrypted nodes
and values form the encrypted tree γ, which is protected by an authenticated
IND-CPA secure encryption.

τ ← HSBT2 Tok(SKk , R): Use input SKk and R = [Rs, Re] to calculate τ ←
PASE Enc(SKk , Rs||Re) and output τ . Queries for all elements below Re or all
elements above Rs can be created by using Rs = −∞ or Re = ∞, respectively.

v′ ← HSBT2 Dec(SKv,C′): Use input SKv to decrypt the encrypted values
C′ =

(
C0, ..., Cj

)
: v′ =

(
PASE Dec(SKv, C0), ..., PASE Dec(SKv, Cj)

)
. Out-

put v′.
C′ ← HSBT2 SearchRange(τ, γ): Take the search token τ and the encrypted tree

γ as input. At the beginning, pass only the root node to the trusted part and
receive pointers to nodes that should be traversed next. The trivial solution is
to pass one node after another. A problem with this design is that every con-
text switch from the untrusted to the trusted part or back causes an overhead.
We therefore optimized the number of context switches: transfer as many
nodes as currently in the queue, but not more than fit into reservedSpace.
We denote the maximal number of nodes as maxAmount, which is directly influ-
enced by reservedSpace: maxAmount = reservedSpace/(o · 128bit) where o
is the number of AES-blocks used by each node. Nodes are passed until no
further are requested. Then output C′ by dereferencing pointers to the values.
See Algorithm 1 for details.

P ← HSBT2 SearchRange Trusted(τ,X): Take a search token τ and nodes X as
input. During the setup phase, SKk was deployed inside the secure hardware.
Therefore, the algorithm is able to decrypt all nodes and the token that are
encrypted with SKk . Then, search all keys falling in the query range, whereby
all keys are accessed. Finally, return the corresponding pointers in a random
order together with the plaintext isLeaf tag for each pointer. The tag is
necessary, because the untrusted part has no direct access to this encrypted
node information. See Algorithm2 for details.

The construction is correct according to Definition 2, because it is based on
a textbook B+-tree traversal. The difference to the textbook algorithm is that
the nodes are loaded inside the enclave after another and that each node is
encrypted. These changes do not influence the correctness, because each node
remains accessible to the enclave and the encryption (at the client) and the
decryption (inside the enclave) are based on a correct PASE-scheme.

HardIDX: Practical and Secure Index with SGX 397

Algorithm 1. HSBT2 SearchRange(τ, γ)

1: X = ∅ � FIFO queue
2: X.enqueue(root)
3: results = ∅
4: while X ! = ∅ do
5: for i=0; i < X.size && i < maxAm-

ount; i++ do
6: Xtmp = X.dequeue()
7: end for
8: resultstmp =HSBT2 SearchRange -

Trusted(τ , Xtmp)

9: for (isLeaf, p) in resultstmp do
10: if isLeaf then
11: results.add(*p)
12: else
13: X.enqueue(*p)
14: end if
15: end for
16: end while
17: return results

Algorithm 2. HSBT2 SearchRange Trusted(τ,X)

1: τPlain = PASE Dec(SKk , τ)

2: parse τPlain as
(
Rs, Re

)

3: Xtmp = {PASE Dec(SKk , *X0), PASE Dec(

SKk , *X1), ...}
4: P = ∅
5: for x in Xtmp do
6: if not x.isLeaf and Rs < x.k1 then
7: P.add(x.p0)

8: end if
9: for i = 1, i < b − 1, i++ do

10: if (x.ki ≤ Rs < x.ki+1) ||
(x.ki ≤ Re < x.ki+1) ||
(Rs ≤ x.ki && x.ki+1 ≤ Re) then

11: P.add(x.pi)

12: end if
13: end for
14: if Re ≥ x.kb−1 then

15: P.add(x.pb−1)

16: end if
17: end for
18: P = random permutation of P
19: return (*P0.isLeaf, P0), (*P1.isLeaf, P1), ...

Next, we will prove the security of Construction 5.2. The first step is to define
the leakage functions that are based on the attack model described in Sect. 3.

Lenc(s): Given the key-value pairs s = ((k1, v1), ...(kn, vn)), this function out-
puts the amount n of values, the size of each value and the amount of B+-tree
nodes #x.

Lhw(s, T,R, t): Given the key-value pairs s, the plaintext B+-tree T , the search
range R and given point in time t, this function outputs the nodes access
pattern X (s, T,R, t) and the value pointers access pattern Δ(s, T,R, t).

The nodes access pattern X (s, T,R, t) is a tree that contains the storage
positions of all nodes in T that get accessed when searching for the range R.
For a more formal definition, we denote the set of leaf nodes that contain keys
from the range as M , i.e., M = {x |x ∈ T ∧ x.isLeaf ∧ x.kj ∈R, j ∈ [1, b−1]}.
Additionally, we define x→parent1 as the parent node of x and x→parentj
denotes the node that is reached by moving j layers up in the tree starting
from x. We denote a node that only contains the storage position of a node xi

as yi. Now, we can specify the node set Y of X as Y = {yi |xi ∈M}∪{yi |xi ∈
T ∧ x ∈ M ∧ xi == x→parentj , j ∈ [1, h − 1]}. The set of directed edges in
X is {(yi, yj) | yi, yj ∈ Y ∧ ∃xi, xj ∈ T : xi == xj→parent1}. The time
parameter t defines a snapshot of the random (but fixed) order of sibling
nodes at a given point in time. See Fig. 3 for an illustrative example.

398 B. Fuhry et al.

The value pointers access pattern Δ(s, T,R, t) is defined as the pointers to
the result values together with the leaf nodes in which these pointers are
stored. More formally, Δ(s, T,R, t) = {(x,Px) |x ∈ T ∧ x.isLeaf ∧ ∃x.kj ∈
R, j ∈ [1, b − 1] ∧ Px = {x.pl |x.kl ∈ R, l ∈ [1, b − 1]}}. The time parameter t
defines a random but fixed order of the pointers.

Fig. 3. Illustration of nodes access pattern leakage: (a) example B+-tree T (storage
positions on the left), (b) leakage X (s, T, R, t) for R = [33, 55] and B+-tree T at t1, (c)
leakage X (s, T,R, t) for R = [33, 55] and B+-tree T at t2

Theorem 1 (Security). The secure hardware B+-tree construction presented
above is

(Lenc,Lhw

)
-secure according to Definition 3.

The idea of the security proof is to describe how a polynomial-time simulator
S simulates the encrypted B+-tree γ, the token τ and the secure hardware so that
a PPT adversary A can distinguish between RealA(λ) and IdealA,S(λ) with at
most negligible probability. The detailed proof can be found in Appendix B.

The leakage definition and security proofs for Construction 5.1 are similar.
The main difference is the granularity of the tree and value pointers access
pattern. In Construction 5.2, the attacker is able to reveal accesses on a node
level. In contrast, the attacker in Construction 5.1 is able to reveal accesses on
page level, because SGX inherently leaks the page access pattern.

Note that the page access leakage is an upper bound in the first construction.
Each page allocates 4 KB and every encrypted node consists of one or multiple
AES-blocks. Up to k = 4KB/(o · 128bit) nodes are contained in one page if o
AES-blocks are used by each node. Experiments showed that 102 AES-blocks are
used for each node if b = 100 and 32 bit keys and pointers are used. Therefore,
even multiple of those huge nodes fit within a single page.

5.3 Side Channels

Our implementation is concerned with three types of (side) channels: exter-
nal resource access, page-fault side channel and cache timing side channel (see
Sect. 3). By means of all three channels an adversary can observe access patterns

HardIDX: Practical and Secure Index with SGX 399

to memory with the goal of inferring sensitive information from the observed
access patterns.

By monitoring access to external resources, the attacker tries to gain infor-
mation about the tree structure and ultimately the order of values stored in
the database. The only external resources accessed by Construction 5.1 are the
encrypted values stored at random positions, which does not leak information.
Construction 5.2 also accesses B+-tree nodes but this is explicitly covered in its
leakage.

The page-fault side channel allows the attacker to reliably observe memory
access patterns at a granularity of 4 KB. All accesses within the same page are
indistinguishable for the attacker and, thus, are not exploitable. The implemen-
tation of Construction 5.1 explicitly considers the leakage of the tree structure
through this side channel. In Construction 5.2, this side channel does not leak
additional information, as nodes are smaller than memory pages and the nodes
access pattern is leaked anyway by storing the B+-tree outside of the enclave.

Cache timing side channel allow finer grained memory access observations
while being less reliable. Nevertheless, assuming an adversary who is able to
observe accesses within a node, the attacker needs to determine which links
to child nodes are followed. Our algorithm, however, accesses every key and
pointer, whether the pointer is followed or not. By this and other fine grained
implementation details, we achieve data independent accesses and thwart the
cache timing side channel.

Leakage of cryptographic keys are thwarted for page-fault and cache timing
side channel by using leakage resilient implementations and hardware features [7].
For instance, the AES implementation used in HardIDX holds the S-Boxes in
CPU registers instead of RAM to hamper cache side channel attacks [32].

6 Performance Evaluation

In this section, we present our evaluation results collected in a number of exper-
iments with real SGX hardware. Our evaluation system was equipped with an
Intel Core i7-6700 processor at 3.40 Ghz and 32 GB DDR4 RAM. 64-bit Ubuntu
14.04.1 extended with SGX support was used as operating system.

6.1 Construction 1 vs. Construction 2

First, we compare the performance of our two constructions. The parameters of
the B+-tree are held constant for this comparison: the branching factor is 10 and
the tree contains 1,000,000 key-value pairs. Queries with five different sizes of the
result set are used: 20, 24, 28, 212, 216. The search ranges were selected uniformly
at random and every result size is tested with 1,000 different ranges. Figure 4a
depicts the results of this evaluation, whereby the x-axis shows the size of the
result set and the y-axis shows the median of the run-times in ms.

The performance difference can be explained by the following effects:

400 B. Fuhry et al.

Fig. 4. (a) Comparison of constructions and (b) effect of different branching factors

– Processor mode switch. Before executing inside an enclave, the processor
has to switch into “enclave mode”. This includes, e.g., storing the current
CPU context on the host process’ stack and loading the CPU context of
the enclave. In Construction 5.1 only one switch is required, whereas in the
Construction 5.2 O(logb n) switches are performed, as at least each level of
the B+-tree is loaded into the enclave.

– Data transfer. In Construction 5.1, the data transfer between trusted and
the untrusted code is limited to the result set and the query whereas in
Construction 5.2 also part of the B+-tree is transferred between the two com-
ponents.

– Access to plain data. In Construction 5.1, decryption is a one-time effort
after loading the entire B+-tree into the enclave. During query processing, it
has access to plaintext nodes of the B+-tree. Construction 5.2 incrementally
loads the B+-tree nodes from untrusted storage. All processed nodes need to
be decrypted during query processing.

Construction 5.2, therefore, is slower than Construction 5.1 by a small factor
at any result size. For an increasing size of the result set, both algorithms search
a linearly increasing part of the tree. Figure 4a shows that the run-times of our
two constructions converge (on a logarithmic scale). This shows that the effects
described above diminish compared to the search time of the algorithm.

6.2 Memory Management

In order to identify the limiting parameters in the memory management of our
two constructions, we evaluate B+-trees with different tree sizes (amounts of
key-value pairs) and branching factors. On each tree we ran 1, 000 randomly
chosen queries with result set size of 100 and tested with the branching factors
10, 25, 50 and 100. The results of these evaluation are depicted in Fig. 4b. The
x-axis shows the size of the B+-tree and the y-axis shows the median run-time
of the queries.

We see a sharp increase of the run-time above a tree size of 106 records. This is
due to the exhausted memory in SGX and the virtual memory mechanism of the

HardIDX: Practical and Secure Index with SGX 401

operating system that swaps pages in and out. This is not security critical, since
pages remain encrypted and integrity protected by the SGX system, even when
they are swapped out of the SGX protected memory. The figure also reveals a
significant difference in the impact of paging between different branching factors.
The reason becomes clear by considering the number of required page swaps.
The lower the branching factor, the higher the number of nodes in a B+-tree.
The higher the number of nodes, the higher the number of accesses to different
memory pages. The higher the number of different page accesses, the higher the
probability of a swapped out page.

We also see that Construction 5.2 is not affected by paging, albeit supporting
an unlimited tree size. Our data also shows that, as expected, higher branching
factors result in better performance and the runtime approaches the runtime of
Construction 5.1.

6.3 Comparison with Related Work

In this section, we compare our Construction 5.2 against the currently fastest
approach with comparable security features and a security proof presented by
Demertzis et al. in [17]. The authors present seven different constructions that
support range queries. The constructions have different tradeoffs regarding secu-
rity, query size, search time, storage and false positives. We do not compare
against the highly secure scheme with prohibitive storage cost and also exclude
the approaches with false positives as our construction does not lead to false
positives. Instead, we compare against the most secure approach without these
problems: Logarithmic-URC.

We assume that the OXT construction from [14] is used as underlying sym-
metric searchable encryption scheme (SEE) by Logarithmic-URC. Fundamen-
tally, the SSE scheme is changeable, but the authors of [17] also utilize OXT
for the security and performance evaluation. One has to note that a quite equal
construction as Logarithmic-URC was presented independently by Faber et al.
in [19]. We implemented the algorithm of [17], but a security and performance
comparison to [19] would lead to comparable results.

Table 1 compares our Construction 5.2 and Logarithmic-URC. In this eval-
uation, we use a branching factor of 100 for Construction 5.2 and search for a
randomly chosen range that contains 100 results. Every test for the four different
tree sizes (100, 1,000, 10,000, 100,000) was performed 1,000 times and the table
shows the mean.

Table 1. Time comparison of random range queries with Logarithmic-URC [17] and
our Construction 5.2

Tree size 100 1,000 10,000 100,000

Logarithmic-URC 0.015 s 0.020 s 0.051 s 1.052 s

Construction 5.2 (b = 100) 0.119 ms 0.121 ms 0.124 ms 0.125 ms

402 B. Fuhry et al.

Our construction runs in about a tenth of a millisecond and with very mod-
erate increase for all tree sizes. In contrast, Logarithmic-URC requires at least
multiple milliseconds up to a seconds for bigger trees. A reason for the per-
formance difference might be that OXT construction itself is less efficient then
our construction. Furthermore, the search time of OXT depends on the number
of entries. Logarithmic-URC fills the OXT construction with elements from a
binary tree over the domain for every stored key. An increasing domain severely
increases the tree height of a binary tree and thus the number of entries for
OXT. In contrast, the height of the B+-tree in our construction increases much
slower with the tree size.

It is not trivial to compare Logarithmic-URC and Construction 5.2 regarding
security. The access pattern leakage and the leakage of the internal data structure
of Logarithmic-URC is comparable to our access pattern leakages. However,
Logarithmic-URC additionally leaks the domain size, the search range size and
the search pattern. The search pattern reveals whether the same search was
performed before, which might be sensitive information.

7 Related Work

7.1 Searchable Encryption

Searchable encryption scheme supporting range queries are rare. Table 2 shows
a comparison of different searchable encryption schemes and other schemes
that support range queries. Note that all existing range-searchable encryption
schemes leak the access pattern – including ours. The first range-searchable
scheme by Boneh and Waters in [11] encrypt every entry linear in the size of
the plaintext domain. The first scheme with logarithmic storage size per entry
in the domain was proposed by Shi et al. in [40]. Their security model is some-
what weaker than standard searchable encryption. The construction is based on
inner-product predicate encryption which has been made fully secure by Shen
et al. in [39]. All of these schemes have linear search time.

Lu built the range-searchable encryption from [39] into an index in [29].
He enabled polylogarithmic search time, but his encrypted inverted index tree
reveals the order of the plaintexts and is hence only as secure as order-preserving
encryption. Wang et al. [43] proposed a multi-dimensional extension of Lu [29],
but it suffers from the same problem of order leakage. There is no known search-
able encryption schemes for ranges – until ours – that has polylogarithmic search
time and leaks only the access pattern.

ORAM can in principle be used to hide the access pattern of searchable
encryption. However, Naveed shows that the combination of the two is not
straightforward [33]. Special ORAM techniques, like TWORAM [21], are needed.

7.2 Encrypted Databases

Encrypted databases, such as CryptDB [36], use property-preserving encryp-
tion for efficient search. Property-preserving encryption has very low deployment

HardIDX: Practical and Secure Index with SGX 403

Table 2. Comparison of range-searchable encryption schemes. n is the number of keys,
D is the size of the plaintext domain and R is the query range size.

Scheme Search time Query size Storage size Search
pattern
leakage

Order
leakage

Boneh, Waters [11] O(nD) O(D) O(nD) yes no

Shi et al. [40] O(n logD) O(logD) O(n logD) yes no

Shen et al. [39] O(n logD) O(logD) O(n logD) no no

Lu [29] O(log n logD) O(logD) O(n logD) no yes

Demertzis et al. [17]
Faber et al. [19]

O(logR) O(logR) O(n logD) yes no

This papers O(log n) O(1) O(n) no no

and runtime overhead due to the ability to use internal index structures of the
database engine in the same way as on plain data. Order-preserving encryption
[1,8,9,28] allows range queries on the ciphertexts as on the plaintexts. However,
Naveed et al. [34] initiated the research direction of practical ciphertext-only
attacks on property-preserving encryption, in particular order-preserving encryp-
tion, which recover the plaintext in many cases with very high probability (close
to 100%) and further attacks followed [18,25].

Cash et al. [14] introduce a new protocol called OXT that allows evaluation
of boolean queries on encrypted data. Faber et al. [19] extend this data structure
to support range queries but either leak additional information on the queried
range or the result set contains false positives. In [17], Demertzis et al. present
several approaches for range queries. We provide an experimental and detailed
comparison in Sect. 6.3.

7.3 TEE-Based Applications

Trusted Database System (TDB) uses a trusted execution environment (TEE)
to operate the entire database in a hostile environment [30]. While TDB encrypts
the entire database storage and metadata, it is not concerned with information
leakage from the TEE. Neither does TDB aim at hiding access patterns nor does
it consider side channels attacks against the TEE. Furthermore, since the entire
DB operates in the TEE the trusted computing base is very large exposing a
very large attack surface.

Haven is an approach to shield application on an untrusted system using
SGX [5]. The goal of Haven is to enable the execution of unmodified applications
inside an SGX enclave. This technique could be used to isolated off-the-shelf
databases with SGX, however, Haven does not consider information leakages
through memory access patterns or interactions with the untrustworthy outside
world. Furthermore, this approach limits the size of the database due to limited
enclave size.

404 B. Fuhry et al.

VC3 adapts the MapReduce computing paradigm to SGX [38]. There the
data flows between Mapper and Reducer can leak sensitive information and it
is excluded from their adversary model. In contrast, we focus on information
leakage in the interaction of an enclave with other entities.

In [35], SGX protected machine learning algorithms have been adapted to
prevent the exploitation of side channels by the usage of data-oblivious primi-
tives. Access to external data is addressed by randomizing the data and always
accessing all data, i.e., their solution has an complexity of O(n), even for tree
searches.

8 Conclusion

In this paper, we introduce HardIDX – an approach to search for ranges and
values over encrypted data using hardware support making it deployable as a
secure index in an encrypted database. We provide a formal security proof explic-
itly including side channels and an implementation on Intel SGX. Our solution
compares favorably with existing software- and hardware-based approaches. We
require few milliseconds even for complex searches on large data and scale to
almost arbitrarily large indices. We only leak the access pattern and our trusted
code protected by SGX hardware is very small exposing a small attack surface.

Acknowledgments. This research was co-funded by the German Science Foundation,
as part of project P3 within CRC 1119 CROSSING, the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No. 644412 (TREDISEC)
and No. 643964 (SUPERCLOUD), and the Intel Collaborative Research Institute for
Secure Computing (ICRI-SC).

A Proof Framework

In [16], Curtmola et al. introduced a three step framework to proof the secu-
rity of searchable encryption. The first step is to formulate a leakage, i.e., an
upper bound of the information that an adversary can gather from the protocol.
Secondly, one defines the RealA(λ) and a IdealA,S(λ) game for an adaptive
adversary A and a polynomial time simulator S. RealA(λ) is the execution of
the actual protocol and IdealA,S(λ) utilizes S to simulate the real game by using
only the formulated leakage. An adaptive adversary can use information learned
in previous protocol iterations for its queries. Third, a scheme is CKA2-secure if
one can show that A can distinguish the output of the games with probability
negligibly close to 0. This in turn means that A does not learn anything besides
the leakage stated in the first step, because otherwise he could use this additional
information to distinguish the games.

B
(Lenc,Lhw

)
-Security Proof

In Sect. 5.2, we provide the description of Construction 5.2 and the leakage of
the construction. We now prove Theorem 1 by describing a polynomial-time

HardIDX: Practical and Secure Index with SGX 405

simulator S for which a PPT adversary A can distinguish between RealA(λ)
and IdealA,S(λ) with negligible probability.

Proof. The simulator S works as follows:

– Setup: S creates a new random key S̃K = PASE Gen(1λ) and stores it.
– Simulating γ: S gets Lenc and creates #x nodes X =

(
x1, ..., x#x

)
filled

with random keys, random pointers and increasing node ids. These nodes are
stored in the pages

(
ω1, ...ω#ω

)
. Additionally, S generates n encryptions of

random values C =
(
C1, ..., Cn

)
using PASE Enc, the number of values and the

size of the values. Every encrypted value is given a distinct index. S outputs
γ = (X,C)

All described operations can be executed by S, because the information
required for the encryption of values is included in the leakage. The simulated
γ has the same size as the output of RealA(λ) and the IND-CCA security
of PASE makes the nodes and values indistinguishable from the output of
RealA(λ).

– Simulating τ : The simulator S creates two random values r1 and r2 and
encrypts them: τ ← PASE Enc(SKk , Rs||Re). S outputs τ .

The simulated τ is indistinguishable from the output of RealA(λ) as a
result of the IND-CCA security of PASE.

– Simulating secure hardware: At time t, the simulator S receives encrypted
nodes (denoted as X), a token τ and Lhw. It has to simulate the output of
the secure hardware enclave. The simulator decrypts every node xi ∈ X with
PASE Dec(S̃K, xi).

We differentiate between two cases for every xi:
1. xi is not leaf: S reads the id of xi and searches the corresponding yi in

X (s, T,R, t). It returns a pointer to all children in the order defined by t.
A cannot distinguish between the output of RealA(λ) and the simulated
output, because the pointers point to indistinguishable nodes according to
the IND-CCA security of PASE. Furthermore, the results are consistent for
different requests of the same range as the nodes access pattern delivers
deterministic results and the pseudorandom permutation creates unam-
biguous positions for the simulated nodes. The same argument applies for
queries of distinct or overlapping ranges.

2. x is leaf: S uses the leakage Δ(s, T,R, t) to output all result pointers
P =

⋃
x Px,∀(x,Px) ∈ Δ in the order defined by t.

This output is indistinguishable from the output of RealA(λ) as the
number of result pointers matches and the pointers are consistent because
Δ(s, T,R, t) is unambiguous. The values pointed on are indistinguishable,
because they are protected by IND-CCA secure encryption. ��

C Multiple Users

So far, we considered a setup comprising one user, but multiple user are directly
supported by HardIDX. Multiple users are able to concurrently query data with-
out limitations, as concurrent tree traversals do not influence each other. The

406 B. Fuhry et al.

only requirement is that each user has access to the key SKk to create query
tokens and SKv to decrypt the result. It is also possible that each user shares a
different key SKk with the enclave. This would hide the search pattern of one
user from all other users, but it requires a small modification in the protocol:
the token has to be accompanied by client information, because the enclave has
to identify the key to use for the token decryption. The nodes can be encrypted
by any key that is known to the enclave. Particularly, it is not required to be a
key shared with any user.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: ACM International Conference on Management of Data, SIG-
MOD (2004)

2. Anati, I., Gueron, S., Johnson, S.P., Scarlata, V.R.: Innovative technology for CPU
based attestation and sealing. In: Workshop on Hardware and Architectural Sup-
port for Security and Privacy, HASP (2013)

3. Limited, A.R.M.: ARM Security Technology - Building a Secure System using
TrustZone Technology (2009)

4. Bajaj, S., Sion, R.: TrustedDB: A trusted hardware-based database with privacy
and data confidentiality. IEEE Trans. Inf. Forensics Secur. 26, 752–765 (2014)

5. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with Haven. In: 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI (2014)

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 30

7. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33481-8 9

8. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 13

9. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22792-9 33

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-70936-7 29

12. Brasser, F., El Mahjoub, B., Koeberl, P., Sadeghi, A.R., Wachsmann, C.: TyTAN:
Tiny Trust Anchor for Tiny Devices. In: Design Automation Conference. DAC
(2015)

13. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23822-2 20

http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/978-3-642-33481-8_9
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-642-22792-9_33
http://dx.doi.org/10.1007/978-3-642-22792-9_33
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-642-23822-2_20

HardIDX: Practical and Secure Index with SGX 407

14. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

15. Costan, V., Devadas, S.: Intel SGX Explained. Technical report, IACR Cryptology
ePrint Archive, Report 2016/086

16. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: 13th ACM Conference on
Computer and Communications Security, CCS (2006)

17. Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis,
M.: Practical Private Range Search Revisited. In: International Conference on
Management of Data, SIGMOD (2016)

18. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption?. In: Conference on Computer and Communications Security, CCS
(2016)

19. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham
(2015). doi:10.1007/978-3-319-24177-7 7

20. Fuhry, B., Bahmani, R., Brasser, F., Hahn, F., Kerschbaum, F., Sadeghi, A.R.:
HardIDX: Practical and Secure Index with SGX (2017)

21. Garg, S., Mohassel, P., Papamanthou, C.: textbsansTWORAM : Efficient Obliv-
ious RAM in Two Rounds with Applications to Searchable Encryption. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53015-3 20

22. Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: physical side-
channel key-extraction attacks on PCs. J. Cryptographic Eng. 5, 95–112 (2015)

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on
Theory of Computing, STOC (2009)

24. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 49

25. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
Abuse Attacks against Order-Revealing Encryption. Technical report, IACR Cryp-
tology ePrint Archive, Report 2016/895

26. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: Workshop on Hardware
and Architectural Support for Security and Privacy, HASP (2013)

27. Kaplan, D., Powell, J., Woller, T.: AMD Memory Encryption (2016). http://
amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD Memory
Encryption Whitepaper v7-Public.pdf

28. Kerschbaum, F., Schröpfer, A.: Optimal average-complexity ideal-security order-
preserving encryption. In: 21st ACM Conference on Computer and Communica-
tions Security, CCS (2014)

29. Lu, Y.: Privacy-preserving logarithmic-time search on encrypted data in cloud. In:
19th Network and Distributed System Security Symposium, NDSS (2012)

30. Maheshwari, U., Vingralek, R., Shapiro, W.: How to build a trusted database sys-
tem on untrusted storage. In: 4th Conference on Symposium on Operating System
Design and Implementation, OSDI (2000)

http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/978-3-319-24177-7_7
http://dx.doi.org/10.1007/978-3-662-53015-3_20
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

408 B. Fuhry et al.

31. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Workshop on Hardware and Architectural Support for Security and
Privacy, HASP (2013)

32. Mowery, K., Keelveedhi, S., Shacham, H.: Are AES x86 cache timing attacks still
feasible?. In: ACM Workshop on Cloud Computing Security Workshop, CCSW
(2012)

33. Naveed, M.: The fallacy of composition of oblivious RAM and searchable encryp-
tion. Technical report, IACR Cryptology ePrint Archive, Report 2015/668

34. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: 22nd ACM Conference on Computer and Communications
Security, CCS (2015)

35. Ohrimenko, O., Schuster, F., Fournet, C., Meht, A., Nowozin, S., Vaswani, K.,
Costa, M.: Oblivious multi-party machine learning on trusted processors. In: 25th
USENIX Security Symposium. USENIX Security (2016)

36. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP (2011)

37. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, (2002)

38. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: VC3: Trustworthy data analytics in the cloud using SGX. In:
IEEE Symposium on Security and Privacy, S&P (2015)

39. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 27

40. Shi, E., Bethencourt, J., Chan, H.T.H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy,
S&P (2007)

41. Song, D.X., Wagner, D., Perrig, A.: practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, S&P (2000)

42. Strackx, R., Piessens, F., Preneel, B.: Efficient isolation of trusted subsystems in
embedded systems. In: SecureComm (2010)

43. Wang, B., Hou, Y., Li, M., Wang, H., Li, H.: Maple: scalable multi-dimensional
range search over encrypted cloud data with tree-based index. In: 9th ACM Sympo-
sium on Information, Computer and Communications Security, ASIACCS (2014)

44. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: IEEE Symposium on Security and Privacy,
S & P (2015)

45. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: 23rd USENIX Security Symposium. USENIX Security
(2014)

http://dx.doi.org/10.1007/978-3-642-00457-5_27

A Novel Cryptographic Framework for Cloud
File Systems and CryFS, a Provably-Secure

Construction

Sebastian Messmer2, Jochen Rill1(B), Dirk Achenbach1,
and Jörn Müller-Quade2

1 FZI Forschungszentrum Informatik, Karlsruhe, Germany
mail@smessmer.de, {rill,achenbach}@fzi.de

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
joern.mueller-quade@kit.edu

Abstract. Using the cloud to store data offers many advantages for
businesses and individuals alike. The cloud storage provider, however, has
to be trusted not to inspect or even modify the data they are entrusted
with. Encrypting the data offers a remedy, but current solutions have
various drawbacks. Providers which offer encrypted storage themselves
cannot necessarily be trusted, since they have no open implementation.
Existing encrypted file systems are not designed for usage in the cloud
and do not hide metadata like file sizes or directory structure, do not
provide integrity, or are prohibitively inefficient. Most have no formal
proof of security. Our contribution is twofold. We first introduce a com-
prehensive formal model for the security and integrity of cloud file sys-
tems. Second, we present CryFS, a novel encrypted file system specifically
designed for usage in the cloud. Our file system protects confidentiality
and integrity (including metadata), even in presence of an actively mali-
cious cloud provider. We give a proof of security for these properties.
Our implementation is easy and transparent to use and offers perfor-
mance comparable to other state-of-the-art file systems.

1 Introduction

In recent years, cloud computing has transformed from a trend to a serious com-
petition for traditional on-premise solutions. Elastic cost models and the avail-
ability of virtually infinite resources present an alternative to offers of a preset
volume. The more bandwidth is available to consumers, the more economically
reasonable it is to replace an on-premise solution with a cloud solution. In the
wake of the PRISM disclosures, it seems näıve to trust in the security of one’s
data in the cloud, however. The scientific challenge for security researchers is to
solve this dilemma by finding solutions without sacrificing the economic benefits
of cloud technology.

Cryptographic research offers methods that guarantee the confidentiality
and integrity of data in the presence of an adversary. The principle of cryp-
tographic proof eliminates trust requirements by highlighting precisely which

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 409–429, 2017.
DOI: 10.1007/978-3-319-61176-1 23

410 S. Messmer et al.

guarantees hold under which assumptions. A proof of security makes use of a
formal model in formulating security properties. Cryptographic schemes can then
also be expressed in the terms of the formal model. Formal proofs of security
constructively establish how a scheme achieves a security property (under given
assumptions). This is a significant difference to the “ad-hoc security” method
of eliminating vulnerabilities from a scheme until one can no longer conceive of
any more attacks.

Provably-secure schemes are rarely adopted in practice. The abstract compu-
tational models that form the basis of cryptographic frameworks don’t usually
facilitate a straightforward implementation. Also, the concept of efficiency in
these models differs from practical efficiency notions, so that many asymptot-
ically efficient schemes are rather inefficient in practice. In contrast, there are
many practical solutions to security challenges. They are deployed widely, but
seldomly lend themselves to a formal security analysis and are thus analysed in
an “ad-hoc” fashion.

Returning to the cloud scenario from before, a particular case in this area
of conflict is outsourced file system data. Encrypting snapshots of file systems
(backups) as one single block is certainly a mastered task. To update a single
file in a huge file system, one were to re-encrypt and re-upload the whole snap-
shot. It is a different challenge altogether to efficiently deduplicate and compress
encrypted remote backups to conserve bandwidth and storage space. In a sim-
ilar fashion, it is not immediately obvious how to allow fine-grained access to
single files in a file system hierarchy while provably protecting metadata and at
the same time conserving efficiency. Indeed, we are not aware of any efficient
cryptographic cloud file system in literature.

1.1 Our Contribution

Our contribution is twofold. We first give a formal security model for encrypted
file systems and cloud file systems in particular. Our model covers both integrity
and confidentiality for chosen ciphertext attacks, as well as chosen plaintext
attack scenarios. Our model is designed to be as generic as possible to be useful
for analysing the security of other cloud file systems beyond the scope of this
paper.

Second, we design and implement CryFS1, a provably secure encrypted file
system for the cloud which is easy to use and acts completely transparent to the
user. In addition to hiding file contents, we also hide file metadata, like sizes and
permission bits, and the directory structure. Our file system is designed to be
used by multiple users. When used only by a single user, CryFS also protects the
integrity of the file system in the sense that no malicious storage provider can
change the file system (for example delete, undelete or roll back files) without
being noticed. We achieve good network performance by keeping ciphertext data
in small same-sized blocks, which are organised in a special tree data structure
and are synchronised individually. Local changes only cause few blocks to be

1 https://www.cryfs.org.

https://www.cryfs.org

A Novel Cryptographic Framework for Cloud File Systems and CryFS 411

synchronised. We prove that our file system is secure in our security model.
The performance of our reference implementation is already comparable to other
state-of-the-art encrypted file systems. It is open source and available on github2.

1.2 Related Work

There are various commercial and free solutions for secure cloud storage.
Providers like SpiderOak3, tresorit4 and boxcryptor5 offer cloud storage space
in combination with a proprietary client application to synchronise data. They
claim that all data is encrypted on the client and stored securely on the servers.
However, these services do not disclose the specification of their protocols. Thus,
they presume a certain level of trust in their service that is not much different
from trusting a popular cloud provider in the first place. Traditional encrypted
file systems like EncFS6, eCryptFs7 and NCryptFS [12] are open and theoreti-
cally usable in a cloud setting, however, they lack important security features:
By encrypting files individually, they protect the content but leave metadata
like the directory structure unencrypted. Using this, an attacker can easily dis-
tinguish a music CD collection (which has about 20 files per directory, 3MB
each) from a folder containing only documents. Other solutions like the now-
discontinued TrueCrypt8, VeraCrypt9, and dm-crypt10, hide the directory struc-
ture by encrypting the whole file system into one big container. However, these
solutions cannot be used in a cloud setting efficiently, as changing one small file
in the file system causes the whole container to be re-encrypted and thus to be
re-uploaded.

What is more, none of the presented solutions have a formal proof of security.
There has been research into how to model the security of file systems, however,
most of this research is directed at disk encryption schemes. Damg̊ard et al. [5]
for example introduce a formalisation of encryption schemes for file systems that
is based on the Universal Composability framework. However, there are many
artefacts in their model which are not relevant in the cloud setting (e.g. they
explicitly model physical and logical sectors). Their model also misses compo-
nents on which our security is based (i.e. different states for client and server) and
thus is not well suited for our setting. Kristian Gjøsteen [8] and more recently
Khati et al. [11] both introduce a game-based security model, which, however,
is also only suited for modeling full disk encryption.

Modeling the security of outsourced data in general has been mainly inves-
tigated in the context of searchable encryption and proofs of data possession
2 https://github.com/cryfs/cryfs.
3 https://spideroak.com.
4 http://tresorit.com.
5 http://www.boxcryptor.com.
6 http://www.arg0.net/#!encfs/c1awt.
7 http://www.ecryptfs.org.
8 http://truecrypt.sourceforge.net.
9 https://veracrypt.codeplex.com.

10 https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt.

https://github.com/cryfs/cryfs
https://spideroak.com
http://tresorit.com
http://www.boxcryptor.com
http://www.arg0.net/#!encfs/c1awt
http://www.ecryptfs.org
http://truecrypt.sourceforge.net
https://veracrypt.codeplex.com
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt

412 S. Messmer et al.

(PDP), as well as proofs of retrievability (POR). For searchable encryption, there
are many different security models (e.g. by Chase et al. [4], Goh [9] and others)
which are specifically designed for the corresponding scheme and cannot easily
be applied to other settings and schemes. In addition, keeping the queries private
is an important goal in the context of searchable encryption and is thus almost
always included in the security model. For cloud based file systems, this is not as
important. Achenbach et al. [1] introduce a more general security framework for
modeling the security of outsourcing schemes but their model does not consider
integrity. However, our framework is in part inspired by their ideas. There is
a rich body of work regarding outsourcing schemes and corresponding security
models which provide proofs of data possession and retrievability (e.g. Zhang
et al. [13], Erway et al. [7] and Cash et al. [3]). Similar to our goals, all these
schemes provide integrity for outsourced data. However, their requirements are
fundamentally different. The goal of a PDP scheme is for a cloud provider to be
able to prove that he has all of the outsourced data and that he did not modify
it maliciously without requiring the user to hold a copy of the data himself and
without having to download it. This is very useful if the server performs com-
putations on the outsourced data without interaction of the user and the user
wants to verify if all the data is still correct. In our case however, the server
is only used for storage and users interact with the data only locally. Thus, all
integrity checks can be performed by the user on the data itself. In order to
achieve these particular integrity guarantees, PDP schemes require design and
performance trade offs, which are also reflected in their security models. This
makes the schemes incomparable to our scheme and the security models hard to
adapt to our case.

2 A Security Model for Cryptographic File Systems

In this chapter, we introduce a novel formal security model for cloud file systems
which covers both security and integrity in a non-adaptive as well as in an
adaptive setting. We first give security definitions in the chosen plaintext attack
scenario and then show how to extend them to the chosen ciphertext attack
scenario. Further, we show that chosen ciphertext security for file systems can
be achieved by combining plaintext security and integrity. Note that throughout
this work we use · to denote a free parameter, which can be chosen by the
adversary.

2.1 Basic Definitions

In general, encrypted file systems use a symmetric encryption scheme as under-
lying primitive. We give a formal definition of such an encryption scheme.

Definition 1 (Symmetric Encryption Scheme). A symmetric encryption
scheme E is a tuple E := (Gen,Enc,Dec) with

– Gen : 1k → {0, 1}k is a PPT algorithm which given a security parameter k,
outputs a key K.

A Novel Cryptographic Framework for Cloud File Systems and CryFS 413

– Enc : {0, 1}k × {0, 1}n → {0, 1}m is a probabilistic polynomial time (PPT)
algorithm which given a key K and a plaintext outputs the corresponding
ciphertext.

– Dec : {0, 1}k × {0, 1}m → ({⊥} ∪ {0, 1}n) is a PPT algorithm which given a
key K and a ciphertext outputs the corresponding plaintext. It outputs ⊥ if
K is wrong or the ciphertext was not valid.

Security and integrity of these basic encryption schemes are modeled by the
standard security notions indistinguishability under chosen plaintext (IND-CPA)
and integrity of ciphertexts [2] (INT-CTXT) respectively.

Security Game 1 (IND-CPAA(k))
– The experiment chooses a key K ←

Gen(1k) and a random bit b ←
{0, 1}.

– The adversary is given oracle access
to LR(K, m0, m1), which outputs an
encryption of mb under K, if |m0| =
|m1|.

– A submits a guess b′ for b.
The result of the experiment is 1, if b′ =
b, and 0 else.

Security Game 2 (INT-CTXTA(k))
– The experiment chooses a key K ←

Gen(1k).
– The adversary is given oracle access to

Enc(K, ·).
– The adversary is given oracle access to

Dec(K, ·).
The result of the experiment is 1, if for any
Dec oracle query: Dec(K, c) �= ⊥ and c was
never output by the Enc oracle.

Note that there are several equivalent formalisations for IND-CPA secu-
rity [10]. We use the formalisation with a left-or-right oracle to reduce the com-
plexity of our proofs. If a classic encryption oracle is needed, we can simulate it
easily by setting both inputs to LR to be equal.

We now give a formal definition of an encrypted file system. In general, a
file system needs four algorithms: one for initialising the file system (like setting
up data structures), one for updating the file system (like adding and removing
files), one for decrypting the file system and one for generating the cryptographic
keys. The file system, and all algorithms which interact with it, are stateful.

Definition 2 (Encrypted File System). Let F be the set of plaintext file
systems, C the set of ciphertext file systems, and S the set of client states. Let
K = {0, 1}k be the set of keys and E = (Gen′,Enc′,Dec′) be a symmetric encryp-
tion scheme. An encrypted file system C is a tuple C := (Gen, Init,Update,Dec, E)
with

– Gen : {1}k → K is a PPT algorithm which generates a key K.
– Init : K → C×S is a PPT algorithm which takes the key K and initialises an

empty ciphertext file system C, and the client state s.
– Update : K × C × F × S → ({⊥} ∪ C) × S is a PPT algorithm used to update

the file system. It is given the key K, an old ciphertext file system C, a new
plaintext file system F and a client state s. It outputs ⊥ if the decryption of
C fails, else a new ciphertext file system C ′, and a new client state s′.

– Dec : K × C × S → ({⊥} ∪ F) × S is a PPT algorithm which is given a key
K, a ciphertext file system C, and the client state s and outputs ⊥ if the
decryption fails, else the decrypted file system F , and a new client state s.

414 S. Messmer et al.

2.2 Modelling Non-adaptive Security

Traditionally, security against non-adaptive adversaries requires that an adver-
sary cannot gain any information from a scheme which they did not observe or
interact with before. In the case of file systems however, we additionally require
that the adversary could have interacted with other encrypted file systems using
the same key. We allow the adversary to create an arbitrary but constant number
of file systems, which are available before and after he chooses the challenge. Also,
we do not require the client state to be kept secret. We allow the challenges to
be restricted by a relation Rd (e.g. both file systems must store the same amount
of data). This means that from looking at a freshly encrypted file system, an
attacker cannot deduce any information even if he observed modifications on
different file systems using the same key. In particular, this requires the file sys-
tem to introduce measures to be secure under key reuse (e.g. a user encrypting
two different file systems with the same password). We call this security notion
indistinguishability under non-adaptive chosen file system attacks (IND-naCFA).

Security Game 3 (IND-naCFAA,Rd(k))

– The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.
– The adversary is given oracle access to Init(K). The j-th query returns a new

ciphertext file system (Cj , sj) using the same key, and the following oracle to
interact with it:

• (C ′
j , s

′
j) ← Updatej(K,Cj , ·, sj). The game sets (Cj , sj) := (C ′

j , s
′
j).

The number of Init queries is bounded by an adversary-chosen constant qInit.
– The adversary outputs two file systems F 0 and F 1 with (F 0, F 1) ∈ Rd.
– The experiment generates (C, s) ← Init(K).
– The experiment computes (C ′, s′) ← Update(K,C, F b, s).
– A is given (C, s) and (C ′, s′).
– A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b, and 0 else.

Definition 3 (Nonadaptive Security). A file system is IND-naCFA secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[IND-naCFAA,Rd(k) = 1]| ≤ 1
2

+ k−c

2.3 Modelling Adaptive Security

Intuitively, while IND-naCFA models security of a file system directly after cre-
ation, adaptive security models the security of a file system later in its life.
To achieve this, we allow the adversary to choose a file system as challenge
with which he already interacted. We then require that he cannot distinguish
which of two modifications he chose is performed. Again, we allow to restrict
the adversary’s choice of challenge by a relation Rd. We call this security notion
indistinguishability under adaptive chosen file system attacks and it is a direct
extension of IND-naCFA.

A Novel Cryptographic Framework for Cloud File Systems and CryFS 415

Security Game 4 (IND-aCFAA,Rd(k))

– The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.
– The adversary is given oracle access to Init(K), which on the j-th query

initialises Fj = ⊥ (empty file system), returns a new ciphertext file system
(Cj , sj) using the same key and an oracle to interact with it.

• (C ′
j , s

′
j) ← Updatej(K,Cj , ·, sj). The game remembers the most recent

input Fj and sets (Cj , sj) := (C ′
j , s

′
j).

The number of Init queries is bounded by a constant qInit chosen by the adver-
sary.

– The adversary outputs j and two file systems F 0, F 1 with (Fj , F
0, F 1) ∈ Rd.

– The experiment computes (C ′
j , s

′
j) ← Updatej(K,Cj , F

b, sj) and passes
(C ′

j , s
′
j) to the adversary.

– A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 4 (Adaptive Security). A file system is IND-aCFA secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[IND-aCFAA,Rd(k) = 1]| ≤ 1
2

+ k−c

2.4 Modelling Integrity

To provide integrity, a cloud file system must ensure that a malicious server
cannot alter the file system in any way, even though the server can observe
every modification made to this file system and to other file systems using the
same key. In particular, a server must not be able to provide the client with old
states of the file system. This results in the following security model, which we
call integrity of file systems.

Security Game 5 (INT-FSA(k))

– The experiment chooses a key K ← Gen(1k).
– The adversary is given oracle access to Init(K). The j-th query returns a new

ciphertext file system (Cj , sj) using the same key, and the following oracles
to interact with it:

• (C ′
j , s

′
j) ← Updatej(K,Cj , ·, sj). The game sets (Cj , sj) := (C ′

j , s
′
j).

• (F, s′
j) ← Decj(K, ·, sj). The game sets sj := s′

j for the next query.
The number of Init queries is bounded by an adversary-chosen constant qInit.

The result of the experiment is 1 if for any of the decryption oracle queries
Decj(K,C ′, sj)
= ⊥, Cj
= C ′.

Definition 5 (Integrity). A file system is INT-FS secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[INT-FSA(k) = 1]| ≤ k−c

416 S. Messmer et al.

2.5 Security Against Chosen Ciphertext Attacks

Like IND-CCA security is an extension of IND-CPA security, we extend IND-naCFA
to IND-naCCFA and IND-aCFA to IND-aCCFA. The security games are identical
to their chosen plaintext counterparts, except that Init returns an additional
decryption oracle Decj(K, ·, sj), which is modeled like in the INT-FS game.

For basic encryption schemes, ciphertext security (IND-CCA) can be achieved
by combining plaintext security (IND-CPA) with integrity (INT-CTXT) [2]. We
show that this is also true for file systems within our security framework.

Lemma 1. A file system F = (Gen, Init,Update,Dec) is IND-(n)aCCFA secure,
if it is IND-(n)aCFA and INT-FS secure.

Proof. Assume a modified version of IND-(n)aCCFA, where the Decj oracle only
works for the most recent output of the corresponding Updatej oracle, or (if
Update has not been called yet) for the output of Init. For all other queries, it
returns ⊥. We call this modified game IND-(n)aCCFA′. It is straightforward to
reduce an adversary against IND-(n)aCCFA′ to an adversary against IND-(n)aCFA
by remembering the most recent Updatej queries and answer the decryption
query accordingly. We now show that any adversary with non-negligible suc-
cess probability against IND-(n)aCCFA also has a non-negligible success prob-
ability against IND-(n)aCCFA′. Assume towards a contradiction an adversary
A with a non-negligible different success probability in playing IND-(n)aCCFA
and IND-(n)aCCFA′. We transform this adversary into an adversary A′ against
INT-FS. When A requests access to the Init oracle, A′ forwards the calls to
the Init oracle provided by INT-FS, returning (Cj , sj) and the Updatej oracle.
When A requests access to the Decj oracle, A′ calls the Decj oracle provided by
INT-FS, but ignores the response and implements the behaviour described for
the IND-(n)aCCFA′ game by remembering the most recent Updatej query. For
IND-aCCFA′, the challenge (C ′

j , s
′
j) is generated by another call to the Updatej

oracle. For IND-naCCFA′, the challenge (C, s, C ′, s′) is generated by calling Init
and then using the freshly returned Updatej oracle. Since the success probability
of A is non-negligibly different for IND-(n)aCCFA and IND-(n)aCCFA′, and the
only difference in the games is the behaviour of Decj oracle queries that are not
the most recent output of the Updatej oracle but decrypts successfully, we know
such a query must happen with non-negligible probability. This query can be
used directly to win the INT-FS game. ��

3 CryFS: An Encrypted File System for the Cloud

CryFS is an overlay file system that can be mounted to a virtual folder. Every-
thing the user stores in this virtual folder is encrypted in the background. The
ciphertexts are stored on the hard disk (through the underlying file system)
and can be picked up by third party synchronisation clients like Dropbox and
uploaded to a cloud storage. This allows for a flexible use on top of any file
system or cloud storage provider. In contrast to many other encrypted file sys-
tems, we do hide file contents as well as metadata like file sizes, file permissions

A Novel Cryptographic Framework for Cloud File Systems and CryFS 417

and directory structure. We achieve this by splitting all file system data into
same-size blocks. These blocks are then individually encrypted using an authen-
ticated cipher. Using a specifically tailored data structure, we ensure that all
file operations are still fast and we induce little space overhead, even though
all files are segmented into small blocks (see Sect. 3.1). To prevent malicious
storage providers from violating the integrity of the file system, we introduce
additional measures to prevent rollback, deletion and re-introduction of deleted
blocks (see Sect. 3.3). We point out that we decided against using hash trees to
protect integrity: The primary reason behind this decision is our goal to support
concurrent access to the file system. Hash trees induce changes from the affected
block up to the root node, thus increasing the chance of edit conflicts. The sec-
ond reason for avoiding hash trees are performance considerations. Although
hash trees have only logarithmic overhead in the size of the file system, any non-
constant overhead is prohibitive for file systems with many frequent changes in
many small files. Even though these integrity protections are only fully effective
when the file system is used by a single user, CryFS is designed to work well
with multiple users. See AppendixC for details. As most other encrypted file
systems, CryFS uses two keys: a file system key for encrypting the file system
blocks and a master key for encrypting the filesystem key. This makes it easy to
change passwords for example.

3.1 Data Structures, Blocks and Files

As already mentioned, CryFS does not encrypt files individually. Rather, it splits
every file into same-sized blocks, which are then encrypted. A tree data structure
then associates blocks to files and files to directories. We base our construction
on Dielissen et al.’s work on left-perfect binary trees [6] and generalise their
definition to left-max-data trees.

ID:25 12 87 File: cat.jpg

43ID:12 7 1 ID:87 2 5

3 4 7 1 2 5

Fig. 1. The tree for an exemplary file “cat.jpg”. Each tree node is one same-sized block
in CryFS. The actual file data is stored in the leaves, whereas inner nodes store only
pointers. For determining the file size, one only has to descend into the right-most
branch of the tree and examine how much data is stored in the right-most leaf. Since
all leaves are at the same depth and only the right-most elements are allowed to contain
a less-than-maximum amount of data, this descend suffices to know how many blocks
the file contains and thus the total file size.

418 S. Messmer et al.

The main idea for this data structure is that all nodes in the tree are as
far left as possible. The actual binary file data is always stored in the left-
most leaves of the file system tree and in-order. All leaves in the tree are at
the same depth, and with exception of the right-most one, store exactly the
same amount of data. This allows to represent arbitrary file sizes. Internal nodes
contain only pointers to other blocks. If the block size is chosen appropriately
(and thus the number of available pointers in each block), even large files can
be represented by a tree with little depth. Every block is identified by a unique
id, which is randomly chosen each time a block is created. See Fig. 1 for an
example file represented as a left-max-data tree. This structure leads to very
efficient algorithms for file system access. When trying to read a certain position
in a file, one only needs to compute the respective block number from the total
number of blocks in this file and the fixed block data size. Also, small changes
to a file are particularly efficient: only a small block has to be changed (and
synchronised to the cloud) not the whole file. Increasing the file size is described
in Algorithm 1, decreasing is similar. Since only the right-most leaf can contain a
less-than-maximum amount of data, determining the file size can also be achieved
without reading all blocks by determining the amount of data in the right-most
leaf. In our reference implementation with 32 KB blocks and 16 byte block ids,
this data structure induces a space overhead of roughly 0.05% for inner nodes
plus an additive overhead of at most one leaf node’s size if the right-most leaf is
not full.

Algorithm 1. Grow an existing tree by one leaf
function GrowTree(treeRoot ,newBlock)

� ← LowestNonFullInnerNode(treeRoot)
if � = ⊥ then /* All nodes are full. We need to add a level. */

� ← NewInnerNode() /* Create a new root block */
�.AddChild(treeRoot)
treeRoot ← �

end if
while depth(�) < depth(leaves) − 1 do

n ← NewInnerNode()
�.AddChild(n)
� ← n

end while
�.AddChild(NewLeaf(newBlock))
return treeRoot

end function

3.2 Directory Structure

Directories in CryFS are basically files themselves. Directories, however, do not
store binary data but store a list of the directory’s entries—i.e. pointers to the
root block of files and directories. To allow for an efficient listing of all directory
entries without having to descend into all individual file trees, we store the

A Novel Cryptographic Framework for Cloud File Systems and CryFS 419

ID:13 cat.jpg: 25 Directory: images/

ID:25 12 87 File: cat.jpg

43ID:12 7 1 ID:87 2 5

3 4 7 1 2 5

Fig. 2. The file “cat.jpg” is contained in a directory “images”. To list all files of a
directory efficiently, the name of each file is included with the respective pointer. As it
is the case with files, once the number of entries in a directory exceeds the size of one
block, the directory itself is represented as a tree.

name of each entry, as well as all file metadata (like permission bits) along
with the corresponding pointer in the directory structure. This layout allows
for fast modifications of the directory structure. Moving a large directory only
requires re-encrypting both the old and the new parent directory. See Fig. 2 for
an example of a file system tree with one directory and one file.

3.3 Encryption and Integrity

Encryption is on the block level—i.e. each block is encrypted individually. This
allows for good performance because blocks can be encrypted in parallel. We use
a cipher with an authenticated operation mode (e.g. AES-GCM) to prevent an
adversary from altering the content of the blocks themselves. However, this is
not yet sufficient to protect the integrity of the file system as a whole, since the
connections between different blocks are not protected. An adversary can still
try to reorder blocks, replace newer blocks with older versions, delete or re-add
already deleted blocks.

We use a number of different mechanisms to prevent these attacks. First, we
store the block ID in the header of the block, where it is integrity-protected by the
authenticated encryption scheme. This ensures that an attacker cannot assign
a different ID to a block (by changing the name of the file storing the block)
and therefore prevents reordering. To prevent an attacker from replacing a block
with a previous version of the same block, a block also stores a version counter
in its header. Clients store a local list of all known blocks with a flag whether
the block still exists, and their corresponding version numbers and check that
it does not decrease. This list is also used to prevent an attacker from deleting
or re-adding already deleted blocks without the client noticing. Additionally,
the clients remember the master-key-encrypted file system key to prevent an
adversary from replacing the whole file system including the key. In Sect. 4,
we formally prove that this approach achieves the desired security goals. See
Algorithms 1–5 for a description of relevant file system algorithms in pseudo-
code.

420 S. Messmer et al.

Algorithm 2. Returns a new block
with a unique id and the version number
set to 0

function CreateBlock

i ← GenerateUniqueID()
return (i, i||0)

end function

Algorithm 3. Add a file or a folder tree to a directory
function AddToDirectory(directory ,newEntry)

if RightmostLeaf(directory).IsFull() then
GrowTree(directory,CreateBlock())

end if
RightmostLeaf(directory).AddData(newEntry)

end function

Algorithm 4. Creates a tree data struc-
ture from a file and returns the root
node

function CreateFile(file)
D := (d0, . . . , dn) ← SplitData(file)
t ← CreateBlock()
t.AddData(d0)
for all other di ∈ D do

bi ← CreateBlock()
bi.AddData(di)
t ← GrowTree(t, bi)

end for
return t

end function

Algorithm 5. Creates the data structure for a complete file
system

function CreateFileSystem(sourceFileSystemRoot)
rootBlock ← CreateBlock()
for all Directories dir in sourceFileSystemRoot do

rootBlock .AddToDirectory(CreateFileSystem(dir))
end for
for all Files file in sourcFileSystemRoot do

rootblock.AddToDirectory(CreateFile(file))
end for
return rootBlock

end function

4 Proving the Security of CryFS

In this section, we prove the adaptive and non-adaptive security of CryFS and
show that it also provides integrity. Further, we show that CryFS also achieves
ciphertext indistinguishability. We first give a formal description of CryFS. To
simplify notation, we represent the tree structure of CryFS as a set of node blocks.

Definition 6 (CryFS). Let I be the space of block IDs, I × {0, 1}n the set of
plaintext blocks, and I × {0, 1}m the set of ciphertext blocks. CryFSE1,E2 is an
encrypted file system (Gen, Init,Update,Dec) with E1 = (Gen1,Enc1,Dec1) and
E2 = (Gen2,Enc2,Dec2). The client state S ⊆ 2I×N×{0,1} × {0, 1}k′

stores a set
of all known blocks with their id i ∈ I, current version v ∈ N and a flag whether
the block still exists (1) or was deleted in the past (0). The state also stores
cfs ∈ {0, 1}k′

, an encrypted version of the file system key. For the sake of clarity
of the exposition, we first define intermediate functions:

– Repr : F → 2I×{0,1}n

: Takes a plaintext file system and generates its represen-
tation as a set of plaintext blocks.

– EncBlock : K × (I × {0, 1}n) × N → (I × {0, 1}m): Takes a key Kfs, a plain-
text block (i, b) and a version number v ∈ N. Prepends block ID and version
number to the data and encrypts it. Outputs (i, c) with c := Enc2(Kfs, i||v||b).

– DecBlock : K× (I×{0, 1}m) → {⊥}∪ [(I×{0, 1}m)×N]: Takes a key Kfs and
a ciphertext block (i, c). Decrypts it to i′||v||b := Dec2(Kfs, c). If decryption
fails or i
= i′, returns ⊥. Otherwise, returns the plaintext block (i, b) and the
version number v.

Now we define the functions forming an encrypted file system.

– Gen(1k) �→ (Kmaster) : Uses Gen1 to generate a master key Kmaster.

A Novel Cryptographic Framework for Cloud File Systems and CryFS 421

– Init(Kmaster) �→ (C, s) : Takes Kmaster and generates Kfs ← Gen2(1k).
Encrypts it with the master key to cfs = Enc1(Kmaster,Kfs). Computes
B := Repr(F) = {(i0, b0), . . . , (in, bn)}, a set of blocks representing an empty
file system F .
Sets C := (cfs,EncBlock(Kfs, (i0, b0), 0), . . . ,EncBlock(Kfs, (in, bn), 0)) and
s := ({(i0, 0, 1), . . . , (in, 0, 1)}, cfs) and outputs (C, s).

– Dec(Kmaster, C, s) �→ (F, s) : Reads cfs from C and compares it with the
cfs stored in s. If they differ, returns ⊥. Otherwise, decrypts it to Kfs :=
Dec1(Kmaster, cfs). Then, computes
D := {((i′, b), v) | ((i′, b), v) = DecBlock(Kfs, (i, c)), (i, c) ∈ C}. Outputs ⊥ in
the following cases:

• Dec1 fails to decrypt cfs (wrong key or an integrity violation).
• DecBlock fails to decrypt c (wrong key, an integrity violation, or i
= i′).
• There is an ((i, b), v) ∈ D for which there is no (i, v′, 1) ∈ s
• There is an ((i, b), v) ∈ D for which there is an (i, v′, 1) ∈ s with v < v′

• There is an (i, v, 1) ∈ s for which there is no ((i, b), v′) ∈ D
Otherwise, computes the plaintext file system F := Repr−1({(i0, b0), . . . ,
(in, bn)}) and outputs (F, s). The client state is not changed.

– Update(Kmaster, C, F
′, s) �→ (C ′, s′) : Decrypts the old file system state to

F := Dec(Kmaster, C, s). Then, reads cfs from C and decrypts it to Kfs. If
either decryption fails, returns ⊥. Initializes s′ := s. Compares Repr(F) and
Repr(F ′) and does the following:

• For each block (i, b)
∈ Repr(F), (i, b′) ∈ Repr(F ′):
∗ If (i, v, 0) ∈ s, replace it in s′ with (i, v + 1, 1). Else, add (i, 0, 1) to s′

∗ Note: if (i, v, 1) ∈ s, Dec would have failed above.
• For each block (i, b) ∈ Repr(F), (i, b′) ∈ Repr(F ′), b
= b′

∗ Replace (i, v, 1) in s′ with (i, v′ +1, 1), where v′ is the version number
returned from DecBlock on decryption.

∗ Note: (i, v, 1) ∈ s ∧ v′ ≥ v, otherwise Dec would have failed above.
• For each block (i, b) ∈ Repr(F), (i, b′)
∈ Repr(F ′)

∗ Replace (i, v, 1) with (i, v, 0) in s′.
∗ Note: (i, v, 1) ∈ s otherwise Dec would have failed above.

Then, encrypts F ′ using EncBlock with updated version numbers and outputs
the new ciphertext file system C ′ (including cfs), and the modified state s′.

We now show that CryFS exhibits non-adaptive security according to
Definition 3. We set Rd to restrict the challenge file systems to be representable
using the same number of blocks. Formally, this means

Rd = {(F 0, F 1) ∈ F × F : |Repr(F 0)| = |Repr(F 1)|}

Theorem 1 (Nonadaptive Security of CryFS). CryFSE1,E2 = (Gen, Init,
Update,Dec) is IND-naCFA secure, if E1 = (Gen1,Enc1,Dec1) and E2 =
(Gen2,Enc2,Dec2) are IND-CPA secure encryption schemes.

422 S. Messmer et al.

Proof. We prove the claim by reduction using two steps. First, we modify
IND-naCFA to IND-naCFA′ such that when the adversary gets the challenge
(C, s), (C ′, s′), it does not contain an encryption of Kfs, but an encryption
of 0s instead. We prove that an adversary which has a different advantage in
IND-naCFA and IND-naCFA′ can be used to break the IND-CPA security of E1.
Second, we give a reduction from IND-naCFA′ to the IND-CPA security of E2.

Consider the following modification to IND-naCFA: When the adver-
sary expects the challenge (C ′, s′), replace the encrypted file system key
Enc1(Kmaster,Kfs) in state and ciphertext with Enc1(Kmaster, 0). We call this
modified game IND-naCFA′. Now, assume towards a contradiction an adversary
A with a probability of success p against IND-naCFA and p′ against IND-naCFA′,
where p = p′ + d for a positive non-negligible d. This adversary can be used
to construct an adversary B with a non-negligible advantage of d

2 against the
IND-CPA security of E1. The reduction works as follows: The IND-CPA game
draws Kmaster ← Gen1(1k) and a random bit b. When A uses the Init oracle,
B generates K ′

fs ← Gen2(1k) and (Cj , sj) using the algorithms described in
Definition 6 and uses the encryption oracle of IND-CPA to generate c′

fs as an
encryption of K ′

fs. Since B knows K ′
fs it can also build the Updatej oracle. When

the adversary outputs F 0, F 1, B generates another independent Kfs ← Gen2(1k),
and passes 0 and Kfs as challenge to the IND-CPA game. The game returns cfs.
When b = 0, this is an encryption of 0. When b = 1, this is an encryption of
Kfs. B then draws a random bit a, and knowing Kfs, can build the challenge
(C, s) and (C ′, s′) as an encryption of F a. It replaces the encrypted file system
key in C, s, C ′ and s′ with the cfs and returns the result to A. If A outputs a, A
wins and B outputs 1 to the IND-CPA game. If A loses, B outputs 0. For b = 0,
this was a perfect simulation of the IND-naCFA′ game. B has success probability
Pr[a
← A | b = 0] = 1 − p′. For b = 1, this was a perfect simulation of the
IND-naCFA game. B has success probability Pr[a ← A | b = 1] = p = p′ + d.
Together, B has success probability Pr[b ← B] = 1

2 (1 − p′) + 1
2 (p′ + d) = 1

2 + d
2 .

Since d is non-negligible, B has a non-negligible advantage in the IND-CPA game
which is a contradiction.

Now, assume towards another contradiction that A′ is a successful attacker on
IND-naCFA′. We transform A′ into a successful attacker B′ on IND-CPA security
of E2: The game draws Kfs and a random bit b. B′ draws Kmaster ← Gen1(1k).
When A′ uses Init, B′ generates a new K ′

fs, encrypts it with Kmaster, and creates
an empty ciphertext file system. Knowing Kmaster, the Updatej oracle can be
implemented easily.

Upon receiving challenges F 0 and F 1 from A′, B′ first generates an empty
file system, and encrypts it to (C, s) using the encryption oracle and prepending
c′
fs = Enc1(Kmaster, 0). Then, B′ updates it with F 0 and F 1 respectively, and

uses the LR-oracle provided by IND-CPA successively for each pair of blocks in
Repr(F 0) and Repr(F 1). This is possible, since we require (F 0, F 1) ∈ Rd (i.e.
both have the same number of blocks), Repr can be implemented to choose the
same block ids for F 0 and F 1, and all blocks are of the same size. B′ remembers
all encrypted blocks returned by the oracle, prepends c′

fs to get C ′, and passes

A Novel Cryptographic Framework for Cloud File Systems and CryFS 423

it to A′ together with a generated file system state s′ in which all block ids in
have version number 1.

This is a correct simulation of the IND-naCFA′ game. When A′ submits a
guess for b, B′ forwards it and thus inherits its success probability. This is a
contradiction to the assumption that E2 is IND-CPA-secure. ��

Theorem 2 shows that CryFS is also adaptively secure according to
Definition 4. Since block IDs are public and CryFS only re-encrypts blocks for
which the plaintext changed (for performance reasons), we set Rd to restrict
both challenge file systems add, delete or modify blocks with the same block
IDs. Theorem 3 shows that CryFS exhibits integrity according to Definition 5.

Theorem 2 (Adaptive Security of CryFS). CryFSE1,E2 = (Gen, Init,Update,
Dec) is IND-aCFA secure, if E1 = (Gen1,Enc1,Dec1) and E2 = (Gen2,Enc2,Dec2)
are IND-CPA secure encryption schemes.

Theorem 3 (Integrity of CryFS). CryFSE1,E2 = (Gen, Init,Update,Dec) is
INT-FS secure, if E1 is IND-CPA and E2 is INT-CTXT secure.

The proofs for Theorems 2 and 3 can be found in AppendicesA and B.
Lastly, we show that CryFS can also be secure against chosen ciphertext

attacks.

Theorem 4 (Chosen Ciphertext Attacks). CryFSE1,E2 = (Gen, Init,Update,
Dec) is IND-naCCFA and IND-aCCFA secure, if E1 = (Gen1,Enc1,Dec1) is
an IND-CPA and E2 = (Gen2,Enc2,Dec2) an IND-CPA and INT-CTXT secure
encryption scheme.

Proof. This follows directly from Theorems 1 and 3 and Lemma 1. ��

5 Performance

In this section, we present results of our performance evaluation for our reference
implementation of CryFS. We tested various performance factors in comparison
to other popular file systems. Even though our implementation is preliminary
and still has potential for optimisation, our experiments show that our file system
has performance comparable to existing encrypted file systems and is practical.

CryFS is implemented using C++ and can be compiled with either GCC
or Clang. For cryptography, the Crypto++11 library is used, but the code is
written in a way that allows for easy switching to another library. We tested
CryFS 0.10-m2, EncFS 1.8.1, TrueCrypt 7.1a, and VeraCrypt 1.19. CryFS was
built with GCC 5.3.1 using optimization level Ofast. In all cases, the underlying
file system was Ext4. For comparision we also tested the performance of Ext4
itself without using a cryptographic file system on top. CryFS was configured
to use aes-256-gcm and run with a block size of 32 KB. EncFS was also set to

11 https://www.cryptopp.com/.

https://www.cryptopp.com/

424 S. Messmer et al.

Table 1. Experimental results for file system operations using the bonnie++ 1.03e
benchmark. Bonnie++ tests sequential read and write speed, both bytewise and block-
wise, and of a Rewrite run, which iteratively loads a block from the file, modifies it,
and writes it back. It tests the performance of random seeks, creations and deletions.
In parentheses next to each value, the average CPU utilization is reported.

CryFS EncFS TrueCrypt VeraCrypt Plain Ext4

Sequential output Bytewise (MB/s) 40.5 (35%) 39.3 (38%) 29.2 (26%) 28.1 (25%) 70.9 (64%)

Blockwise (MB/s) 53.8 (3%) 63.2 (8%) 34.7 (3%) 35.1 (3%) 71.0 (5%)

Sequential input Bytewise (MB/s) 20.9 (23%) 65.7 (52%) 66.1 (59%) 67.4 (61%) 64.8 (69%)

Blockwise (MB/s) 23.7 (1%) 67.8 (3%) 68.5 (3%) 69.0 (3%) 66.4 (4%)

Rewrite Blockwise (MB/s) 19.3 (3%) 28.9 (4%) 31.4 (4%) 31.4 (4%) 31.6 (3%)

Random seeks (/s) 79.4 (0%) 53.5 (0%) 111.5 (0%) 108.3 (0%) 155.9 (0%)

Random create (/s) 2701 (6%) 4208 (12%) 4071 (99%) 4036 (99%) –

Random delete (/s) 4070 (4%) 24250 (19%) 9424 (99%) 9457 (99%) –

aes-256. For TrueCrypt and VeraCrypt, a container with 50 GB size was created,
also using aes-256. We used a machine with Intel(R) Core(TM) i5-2500K CPU
@ 3.30 GHz QuadCore, 16 GB DDR3-RAM on Ubuntu 16.10, Linux 4.8.0-49
x86 64. As hard-drive, a Samsung HD 204UI was used. The experiments were
run using the benchmarking tool bonnie++ 1.03e12. To minimize the influence
of cache effects, bonnie++ runs the read/write tests with a test file size that is
twice the size of main memory (32 GB in our case). For create/stat and delete
tests, we used 16 ∗ 1024 files with 10 KB each. Each experiment was run three
times to ensure a low standard deviation, and we report the average value. The
benchmark script is available online.13

We found that writes by CryFS on HDDs are 15% slower than EncFS, while
random seeks are faster by 45%. Read performance is slower by about a factor
of three. All operations are still fast enough to be used in practice, however.
CryFS uses less CPU time for all operations. Table 1 includes measurements for
all tested file systems and shows the measured performance in detail.

6 Conclusion and Future Work

In this work, we introduced a novel formal model for the security and integrity
of cloud file systems. Our model is generic and designed to be applicable for
a wide range of file systems. We also introduced CryFS, a novel encrypted file
system specifically designed for the cloud. It has low communication and storage
overhead. It ensures the confidentiality of the file system by hiding file contents as
well as metadata like file sizes and directory structure. It ensures the integrity
of the file system even against a malicious storage provider when used by a
single user, but can also be used efficiently by multiple users when integrity is
not important. We proved the security of CryFS in our new framework. Our

12 http://www.coker.com.au/bonnie++/.
13 https://github.com/cryfs/benchmark/tree/0.10-m2.

http://www.coker.com.au/bonnie++/
https://github.com/cryfs/benchmark/tree/0.10-m2

A Novel Cryptographic Framework for Cloud File Systems and CryFS 425

benchmarks show that CryFS offers comparable performance to other state-of-
the-art file systems even though our implementation is preliminary and has room
for improvements. Our implementation is available on github.

Regarding our framework, there are a few open questions to be addressed in
the future. First, even though we establish basic relations between our security
notions, it remains open to show other relations or separations to get a better
understanding of the requirements for secure cloud file systems. Second, we show
that if a basic encryption primitive is IND-CPA and INT-CTXT secure, it can be
used to construct a IND-CCFA secure file system. It remains an open question,
if IND-CCA security (which is a weaker notion) would also be sufficient. Last,
extending our formal model to a multi-user setting as well as extending CryFS
itself to provide integrity for multiple users is left for future work.

A Adaptive Security of CryFS

Theorem 2 (Adaptive Security of CryFS). CryFSE1,E2 = (Gen, Init,Update,
Dec) is IND-aCFA secure, if E1 = (Gen1,Enc1,Dec1) and E2 = (Gen2,Enc2,Dec2)
are IND-CPA secure encryption schemes.

Proof. Consider the following modification to IND-naCFA: When the adversary
queries Init or the Updatej oracles or expects output (C, s), instead of getting
Enc1(Kmaster,Kfs) they instead get Enc1(Kmaster, 0). Now, assume towards a
contradiction an adversary A with a success probability of p against IND-aCFA
and a success probability of p′ against IND-aCFA′, where p = p′ +d for a positive
non-negligible d. This adversary can be used to construct an adversary B with
a non-negligible advantage of d

2 which breaks the IND-CPA security of E1. The
game draws Kmaster ← Gen1(1k) and a random bit b. When A uses the Init oracle,
B generates a new file system key Kfs ← Gen2(1k) and uses the LR oracle of the
IND-CPA game to get cfs as either an encryption of 0 or of Kfs, depending on
the value of b. Then it generates a new empty file system (Cj , sj) but replaces
the encryption of Kfs with cfs. A expects access to an Updatej oracle which
can be built by using Kfs to decrypt and encrypt blocks. Again, B replaces all
encryptions of Kfs with cfs. When the adversary outputs j, F 0, F 1, B draws a
random bit a. It uses Updatej to build the challenge (C ′, s′) as an encryption of
F a. If A outputs a (A wins), B outputs 1. If A loses, B outputs 0. For b = 0,
this was a perfect simulation of the IND-aCFA′ game. B has success probability
Pr[a
← A | b = 0] = 1 − p′. For b = 1, this was a perfect simulation of the
IND-aCFA game. B has success probability Pr[a ← A | b = 1] = p = p′ + d.
Together, B has success probability Pr[b ← B] = 1

2 (1 − p′) + 1
2 (p′ + d) = 1

2 + d
2 .

Since d is non-negligible, B has a non-negligible advantage against IND-CPA.
Now, assume towards another contradiction that A′ is a successful attacker

on IND-aCFA′. We transform A′ into a successful attacker B′ on the IND-CPA
security of E2. Intuitively, B′ selects a random file system created by A′ and uses
A′ to break its security. Since the number of file systems is a fixed constant, this
only reduces the success probability by a constant amount. The reduction works

426 S. Messmer et al.

as follows. The game draws Kfs and a random bit b. B′ draws Kmaster ← Gen1(1k)
and draws a random j∗ ← {1, . . . , qInit}. When A′ uses Init for the j-th time
and j
= j∗, B′ generates a new K ′

fs, encrypts it with Kmaster, and creates an
empty ciphertext file system. Knowing Kmaster, the Updatej oracle can easily be
implemented. In every output, Enc1(Kmaster,Kfs) is replaced with an encryption
of 0. When A′ uses Init for the j∗-th time, B′ generates a new empty file system
by using the encryption oracle of the IND-CPA experiment to encrypt all blocks.
Again, B′ prepends Enc1(Kmaster, 0). B′ also saves the current plaintext file
system Fj (which is empty). If A′ uses their access to the Updatej-oracle, B′

updates the saved plaintext according to the input to the oracle. It uses the
encryption oracle to encrypt added or modified blocks and exchanges them in
the saved ciphertext. B′ updates the saved file system Fj and the state sj . Upon
receiving challenge j, F 0 and F 1 from A′, B′ updates the corresponding plaintext
Fj for both F 0 and F 1 respectively and passes the added and modified blocks
of Repr(F 0) and Repr(F 1) (when compared to Repr(Fj)) to the LR oracle of the
IND-CPA experiment. It now has an encryption of either the modified blocks in
F 0 or in F 1. Since it is required that (Fj , F

0, F 1) ∈ Rd (i.e. they add, remove,
and modify blocks with the same ID), B′ knows which ciphertext blocks it has to
add, remove and replace with their new versions in order to generate the correct
ciphertext file system, even though it does not know which change was selected
by the experiment. B′ prepends Enc1(Kmaster, 0) to the generated ciphertext and
passes it to A′ along with the updated state. This is a correct simulation of the
IND-aCFA′ game. When A′ submits a guess for b, B′ forwards it to the game and
thus inherits its success probability. This is a contradiction to the assumption
that E2 is IND-CPA secure. ��

B Integrity of CryFS

Theorem 3 (Integrity of CryFS). CryFSE1,E2 = (Gen, Init,Update,Dec) is
INT-FS secure, if E1 is IND-CPA and E2 is INT-CTXT secure.

Proof. Again, we first change INT-FS to INT-FS′ by replacing Enc1(Kmaster,Kfs)
with Enc1(Kmaster, 0) in the output of all oracles. Assume towards a contradiction
that an adversary A with success probability of p against INT-FS and success
probability of p′ against INT-FS′ exists (where p = p′ + d for a positive non-
negligible d). This adversary can be used to construct an adversary B with
an advantage of d

2 against the IND-CPA security of E1 by using the following
reduction: When A uses Init, B generates Kfs ← Gen2(1k) and uses the LR
oracle of the IND-CPA game to get cfs as either an encryption of 0 or of Kfs. It
generates (Cj , sj) using Kfs but replaces the encrypted file system key with cfs.
B builds the Updatej and Decj oracles using Kfs to decrypt and encrypt blocks.
Each output contains cfs instead of the encrypted file system key. When Decj
is used, B checks whether decryption was successful for C
= C ′, i.e. whether A
was successful. If A was successful, B outputs 1, otherwise it outputs 0. If b = 0,
this was a perfect simulation of the INT-FS′ game. B has success probability
Pr[0 ← B | b = 0] = 1 − p′. If b = 1, this was a perfect simulation of the INT-FS

A Novel Cryptographic Framework for Cloud File Systems and CryFS 427

game. B has success probability Pr[1 ← B | b = 1] = p = p′ + d Together, B
has success probability Pr[b ← B] = 1

2 (1 − p′) + 1
2 (p′ + d) = 1

2 + d
2 . Since d is

non-negligible, this is a non-negligible advantage for B against IND-CPA.
Now, assume towards another contradiction that A′ is a successful attacker

on INT-FS′. We give a reduction which transforms A′ into a successful attacker
B′ on INT-CTXT. The game draws Kfs ← Gen2(1k) and B′ draws Kmaster ←
Gen1(1k). B′ draws a random j∗ ← {1, . . . , qInit}. When A′ uses Init for the
j-th time with j
= j∗, B′ generates a new independent K ′

fs and creates a new
ciphertext file system with this key. Knowing K ′

fs, implementing Updatej and
Decj oracles is straightforward. In every output, Enc1(Kmaster,Kfs) gets replaced
by Enc1(Kmaster, 0). When A′ uses Init for the j∗-th time, B′ creates a new empty
file system but uses the encryption oracle provided by INT-CTXT to encrypt all
blocks. It also builds Updatej and Decj but uses the decryption and encryption
oracles of the INT-CTXT game to decrypt and encrypt. Instead of prepending
Enc1(Kmaster,Kfs), which B′ does not know, it prepends Enc1(Kmaster, 0).

Since A′ is successful, there is an oracle query Decj(K,C ′, sj) which decrypts
successfully with Cj
= C ′. With non-negligible probability 1

qInit
, this happens for

j = j∗, where B′ implemented Init using the INT-CTXT experiment. Cj and C ′

have the same set of block IDs, otherwise Decj(Kmaster, C
′, sj) = ⊥. So there

has to be a block in C ′ which is different from the corresponding block in Cj , i.e.
∃i, ci, c′

i : (i, ci) ∈ Cj , (i, c′
i) ∈ C ′, ci
= c′

i. This block c′
i was input to the decryp-

tion oracle of the IND-CTXT game when decrypting C ′. We argue that c′
i wins the

INT-CTXT game. First note that INT-FS′ decrypts with cfs = Enc1(Kmaster,Kfs)
from the state, not with the c′

fs = Enc1(Kmaster, 0) passed to the adversary.
Therefore c′

i decrypts successfully with the key from the INT-CTXT experiment.
We now have to argue that c′

i was never output by the INT-CTXT encryption ora-
cle. Recall that this oracle is only used for encrypting the output of the j-th query
of the Init oracle and for the outputs of the Updatej oracle. Since C ′ decrypts
successfully, we know that the plaintext ((i′, b′

i), v
′
i) := DecBlock(K, (i, c′

i)) has
ID i = i′ and a version number v′

i ≥ vsi where vsi is the version number in the
state. All previous Update′

j oracle queries for this block ID encrypted a block
with version number vi ≤ vsi , and vi = vsi only for ci where we know c′

i
= ci. So
we know c′

i was not output of the Updatej oracle. If (i, c′
i) was in the j-th output

of the Init oracle, then v′
i = 0. In this case, either block i was never modified,

which is a contradiction to ci
= c′
i, or block i was modified, which means vsi > 0

and is a contradiction to successful decryption. Taking everything into account,
we know that c′

i was never output by the INT-CTXT encryption oracle and thus
wins the game. This is a contradiction to the assumed security of E2. ��

C Achieving Multi-user-Compatibility

CryFS provides confidentiality, integrity and fast file system operations in a
single-user context. However, the design presented so far does not work well
when used by multiple users for multiple reasons. For example, we cannot dis-
tinguish whether an integrity violation was caused by an attacker rolling back a

428 S. Messmer et al.

block, or by a second client synchronising modifications on top of an outdated
version. We resolve these problems by introducing a number of measures, which
ensure that CryFS can be used with multiple users without integrity guarantees
while maintaining integrity in the single-user setting.

First, in addition to having a pointer from the directory block to the root
of a file, we also add a pointer from each file root node back to the directory it
belongs to. That is, the whole directory structure is stored twice, once bottom-up
in these pointers and once top-down through the file system tree. Using this, we
can recover from a race condition where two users both add a different file to the
same directory by periodically scanning for “dangling” pointers and reintegrate
the corresponding files into the directory block.

Second, we extend the header of each block to also contain a unique client ID
of the client who last modified the block along with the version counter. Further,
each client saves the newest version for every block ID and client combination,
and remembers the last updating client. Now, when a client reads a block that
still has the same client ID as in his local state, the version number is checked
to be non-decreasing otherwise it has to be increasing.

Third, instead of explicitly flagging deleted blocks in the local state, we set
their last updating client ID to ⊥. This allows clients to reintroduce deleted
blocks as long as they increase the version number. Last, we allow to disable the
check for missing blocks since there is no mechanism for a client to communicate,
that he deleted a block, which will cause other clients to think that an attacker
has deleted it.

References

1. Achenbach, D., Huber, M., Müller-Quade, J., Rill, J.: Closing the gap: a universal
privacy framework for outsourced data. In: Pasalic, E., Knudsen, L.R. (eds.) Balka-
nCryptSec 2015. LNCS, vol. 9540, pp. 134–151. Springer, Cham (2016). doi:10.
1007/978-3-319-29172-7 9

2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Crypt. 21(4), 469–491 (2008)

3. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious ram.
J. Cryptol. 30(1), 22–57 (2017)

4. Chase, M., Shen, E.: Substring-searchable symmetric encryption. Cryptology
ePrint Archive, Report 2014/638 (2014). http://eprint.iacr.org/2014/638

5. Damg̊ard, I., Dupont, K.: Universally composable disk encryption schemes. Cryp-
tology ePrint Archive, Report 2005/333 (2005). http://eprint.iacr.org/

6. Dielissen, V.J., Kaldewaij, A.: A simple, efficient, and flexible implementation
of flexible arrays. In: Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 232–241.
Springer, Heidelberg (1995). doi:10.1007/3-540-60117-1 13

7. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, CCS 2009, pp. 213–222. ACM, New York (2009)

8. Gjøsteen, K.: Security notions for disk encryption. In: Vimercati, S.C., Syverson,
P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 455–474. Springer,
Heidelberg (2005). doi:10.1007/11555827 26

http://dx.doi.org/10.1007/978-3-319-29172-7_9
http://dx.doi.org/10.1007/978-3-319-29172-7_9
http://eprint.iacr.org/2014/638
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-60117-1_13
http://dx.doi.org/10.1007/11555827_26

A Novel Cryptographic Framework for Cloud File Systems and CryFS 429

9. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
http://eprint.iacr.org/2003/216

10. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Cryptography and Network Security. Chapman and Hall/CRC, Boca
Raton (2008)

11. Khati, L., Mouha, N., Vergnaud, D.: Full disk encryption: bridging theory and
practice. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 241–257.
Springer, Cham (2017). doi:10.1007/978-3-319-52153-4 14

12. Wright, C.P., Martino, M.C., Zadok, E.: NCryptfs: a secure and convenient cryp-
tographic file system. In: Proceedings of the 2003 USENIX Annual Technical Con-
ference, San Antonio, TX, pp. 197–210, June 2003

13. Zhang, Y., Blanton, M.: Efficient dynamic provable possession of remote data via
update trees. Trans. Storage 12(2), 9:1–9:45 (2016)

http://eprint.iacr.org/2003/216
http://dx.doi.org/10.1007/978-3-319-52153-4_14

Secure Systems

Keylogger Detection Using a Decoy Keyboard

Seth Simms, Margot Maxwell, Sara Johnson, and Julian Rrushi(B)

Department of Computer Science, Western Washington University,
Bellingham, WA 98226, USA

{simmss2,maxwelm,johns782}@students.wwu.edu
julian.rrushi@wwu.edu

Abstract. Commercial anti-malware systems currently rely on signa-
tures or patterns learned from samples of known malware, and are unable
to detect zero-day malware, rendering computers unprotected. In this
paper we present a novel kernel-level technique of detecting keyloggers.
Our approach operates through the use of a decoy keyboard. It uses a
low-level driver to emulate and expose keystrokes modeled after actual
users. We developed a statistical model of the typing profiles of real
users, which regulates the times of delivery of emulated keystrokes. A
kernel filter driver enables the decoy keyboard to shadow the physical
keyboard, such as one single keyboard appears on the device tree at
all times. That keyboard is the physical keyboard when the actual user
types on it, and the decoy keyboard during time windows of user inac-
tivity. Malware are detected in a second order fashion when data leaked
by the decoy keyboard are used to access resources on the compromised
machine. We tested our approach against live malware samples that we
obtained from public repositories, and report the findings in the paper.
The decoy keyboard is able to detect 0-day malware, and can co-exist
with a real keyboard on a computer in production without causing any
disruptions to the user’s work.

Keywords: Decoy I/O · 0-knowledge anti-malware · Kernel drivers

1 Introduction

Malware development, dispersion, and infection are an ever-present threat to
system security and user privacy. Among the most insidious and difficult to
detect are 0-day malware, as well as those using code and data structure muta-
tion. With nearly limitless access to system services, drivers, and modules, these
types of malware have some distinct advantages over current detection methods
– not only must they have been previously encountered and analyzed in order
to be caught, but they can interfere with and elude the software trying to track
them. Keyloggers are a common component of malware, able to spy on a user’s
activity and gather information like passwords, account numbers, and credit card
numbers.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 433–452, 2017.
DOI: 10.1007/978-3-319-61176-1 24

434 S. Simms et al.

There are several methods used by keyloggers to capture information from the
keyboard in the Windows operating system. User level keyloggers can implement
a software hook that can intercept keystroke events, perform cyclical querying
of the keyboard device to determine state changes, or inject special code into
running processes that has access to the messages being passed. Kernel level
keyloggers work by using filter drivers that can view the I/O traffic bound for
a keyboard. There are varying methods of implementing keyloggers, and while
many are documented, it is likely that there are some that are not. New keystroke
interception techniques are discovered continuously.

Contribution. We present a novel defensive deception approach, which uses
a decoy keyboard to receive contact from keyloggers in a way that leads to
their detection unequivocally. The decoy keyboard emulates the presence and
operation of its real counterpart with the help of drivers in the kernel. The
decoy keyboard can be installed on a full production system in active use, and
is able to not interfere with the activities of a normal user. The decoy keyboard
appears as a standard USB keyboard in the Windows device tree. It is effectively
invisible to the user, and indistinguishable from a real keyboard to malware.
The defender’s objective is to proactively misdirect malware into intercepting
keystrokes emulated by the decoy keyboard. An attack surface is created by
sending emulated keystrokes to a decoy process (dprocess), which runs in user
space. Malware are detected when they use the data that they had intercepted
from the decoy keyboard on the compromised computer. Some malware are
detected upon contact with the decoy keyboard. The decoy keyboard can be
combined with a decoy mouse and a decoy monitor for consistency reasons,
using techniques similar to those discussed in this paper.

Novelty. The decoy keyboard is a 0-knowledge detector, meaning that it can
detect malware without any prior knowledge of their code and data. 0-day
malware, polymorphic malware, metamorphic malware, data-structure mutat-
ing malware, are all detectable by this work. A shadowing mechanism enables
the decoy keyboard to coexist with its real counterpart on a computer in pro-
duction. A timing model helps the decoy keyboard expose emulated keystrokes
on the attack surface in a realistic and consistent fashion. Data intercepted from
a decoy keyboard have the same timing characteristics as data intercepted from
a real keyboard. The decoy keyboard is a usable security tool. It runs automati-
cally with very little computational overhead, and requires no user input or any
other involvement. Overall, our approach creates an active redirection capability
that is effective in trapping malware.

Threat Model. Our approach currently works against keyloggers that run in
user space. Kernel-level malware are planned as future work. Malware could use
any exploits to land on a computer, and could have any form of internal design
to intercept keystrokes. Our approach works independently of the exploitation
techniques and the inner workings of malware. We did this work with reference
to the Windows operating system, as we were seeking a proof of concept to show

Keylogger Detection Using a Decoy Keyboard 435

the potential of our approach. Similar principles can be applied to other modern
time-shared operating systems as well.

Paper organization. The remainder of this paper is organized as follows.
Section 2 describes the proposed approach in four parts, namely modeling human
keystroke dynamics, low-level deceptive driver, keyboard shadowing, and a dis-
cussion of how our approach attains malware detection. In Sect. 3 we discuss the
evaluation of the proposed approach against live malware. In Sect. 4 we discuss
related work in malware detection, deception tactics, and keystroke dynamics.
Section 5 summarizes our findings and concludes the paper.

2 Approach

2.1 Modeling Human Keystroke Dynamics

Just as we humans have unique patterns in our handwriting (to the level that
it can be used for identification), we have similar patterns in the way that we
type on computer keyboards. This has been extensively studied [35] as a biomet-
ric means of user authentication and identification, with generally good results.
However, it is important to note that we are not using this model for authenti-
cation, but rather for generation of keystrokes. This presents a different set of
unique challenges, and eliminates some of the specific considerations needed for
user verification. Notably, we are proceeding with the assumption that the mal-
ware is not specifically targeting a user or users that they already have acquired a
large amount of recorded keystroke data and built complex models for. We used
the large body of previous research to help define a model that we could use to
send emulated keystrokes that would appear to come from a unique human user,
while simultaneously meeting our goals.

One primary goal was having low overhead, since we are working at the
driver and operating system level, and additional processing time could add
unwanted and unintentional delays that could cause our deception to become
visible. Low overhead implies a measure of simplicity in the model, with the
additional consideration that a more complex and specific model is difficult to
implement without error and likely easier to detect, as well as being unsuitable
for the initial stage of research. Of course, model accuracy was also important,
keeping in mind that the accuracy of keystroke dynamic authentication may not
map directly to our generation of keystrokes. Based on these considerations and
requirements, we chose to implement a model consisting of the time between
each key in a digraph, or two consecutive keys. For example, in the word ‘the’,
there are two digraphs: ‘th’ and ‘he’.

This is similar to the models used by Gaines [33] and Umphress [32] (among
others), and has shown to be quite effective in user authentication for text such
as passwords. Importantly, Gaines found there was little difference in the digraph
times between english text, random words, or random phrases, and the data was
found to be normally distributed. A histogram of a single example digraph is
shown in Fig. 1.

436 S. Simms et al.

Fig. 1. Distribution of timing data for a single digraph.

The model itself consists of the mean time in milliseconds and the sample
standard deviation for each possible key combination. Each unique digraph can
be represented as a normal curve with those two values. With a relatively small
finite number of possible digraphs, this can be quickly implemented with a lookup
table containing the two variables for each digraph, and a statistical function
used to generate a random number (for milliseconds of key delay) that falls
within the normal curve. Thus we are very likely to get a value that is close
to the mean, but occasionally we will get a delay that is less than or more
than usual, as is common with human behavior. We developed the model using
data from some publicly available datasets [36–38], but for the operation of the
software we are using data recorded from individual members of the research
group, in order to present a unique user.

While our software is still a prototype, future production and distribution
across numerous machines could enable the possibility of malware analyzing data
from different sources that are all operating the software, and thereby the ability
to expose the deception if they all had nearly identical timing values. Thus we
must provide a unique user, and we evaluate and test the software using models
created from real people. Working with these datasets exposed us to the issue of
outliers when using recorded data. After implementing and testing our model, we
discovered that there were several instances of unnaturally long delays between
generated keys, due to unrealistically high standard deviation values. This was
due to the fact that any sort of pause in the middle of typing, even to the extent
of leaving the computer for several minutes, was reflected in the timing data;
these outliers were affecting the model and were not representative of what we
were trying to model.

We explored two methods of outlier removal, the simple but naive method
(removing values that fall outside of a certain number of standard deviations
from the mean), and a more robust method using the median absolute deviation
(MAD). Leys et al. [39] describes this method in detail, but the results are
evident and can be seen in Table 1.

Keylogger Detection Using a Decoy Keyboard 437

Table 1. Comparison of outlier removal methods for a single digraph

Baseline Naive MAD

Mean 261.7162 158.2817 131.8971

Median 127 124 120.5

Std. dev. 562.0665 142.0196 57.17455

To generate the models used in testing the deceptive driver against real mal-
ware, we recorded our own typing data for a full page of text and generated a
model for each user, associating every digraph with a mean time in milliseconds
and standard deviation. This is also how the decoy keyboard learns the typing
profile of a user on a machine in operation. Significant outliers were removed, and
digraphs for which there was insufficient data (less than three occurrences) were
discarded. When encountering digraphs for which there is no entry in the model,
the deceptive driver will use a predetermined mean value with high variance to
represent the unpredictability of such rare occurrences; regardless, a user’s typ-
ing patterns can be identified using a limited number of common digraphs [33],
and rare occurrences are not of much use in generating or validating a model. To
illustrate the effectiveness of the model in distinguishing users, the timing values
for the ten most common digraphs of three of the authors are shown in Fig. 2.
Each data point consists of the mean timing value for one of the ten digraphs,
where the distance from the center represents the time in milliseconds. We can
see that the two users in the middle have roughly the same typing speed, but
they have unique characteristics for each digraph. The user on the outside is
significantly different just by nature of a slower typing speed.

Fig. 2. Comparing the digraph model of three users.

438 S. Simms et al.

2.2 Low-Level Deceptive Driver

This is the driver that emulates keystrokes. We refer to this driver as the decoy
keyboard (DK) driver. It is a customized Windows USB Human Interface Device
(HID) function driver, based on an open-source project called VMulti [43], i.e., a
virtual multiple HID driver using the Kernel Mode Driver Framework (KMDF).
We modified and extended VMulti to turn it into a decoy keyboard driver.
KMDF is the same framework used by many vendor drivers for real hardware.
It allows us to follow the same requirements and standards as a real keyboard.
Thus, it appears in the device tree and Device Manager just as any other device.
The location of the decoy function driver within the Windows device tree can
be seen in Fig. 3. Normally, a driver does not initiate messages or data traffic
itself, but responds to signals either from the hardware device (like keys being
pressed) or from the operating system (turning on lights for Caps Lock, etc.).

In our case, with no physical hardware to generate signals, the keystrokes
must originate from within the driver itself. That is, keystrokes are processed
as normal key events through the driver so as to be indistinguishable from a
real keyboard. These events have no explicit time stamps. They are retrieved
using a first in, first out queue. However, any software that intercepts or records
the events can easily associate a time value to each event for the purposes of
analysis. Keystrokes sent without regard to timing would simply go at machine
speed, that is, far faster than any human could possibly type. This is why we
use the statistical model that we described previously, to regulate the time each
event is sent, emulating human typing behavior. The model of a user’s typing
profile is represented internally as an array that functions as a lookup table,
providing the core statistical values for each pair of keys.

On loading, the DK driver processes the statistical model and thus initializes
a normal distribution function for each digraph, using the mean and standard
deviation in combination with a cryptographically secure random number gen-
erator. Keystrokes are sent by the driver one at a time. Each key event is an
individual action. Text/keycodes are taken as input and then are processed by
the DK driver. For each pair of keys encountered, the appropriate distribution is
used to randomly generate a time value that falls within the range as defined by
the statistical model. That value is used as the delay between sending the two
key events. When the driver decides to send a specific keystroke, it will immedi-
ately process it per the USB HID protocol, queuing a keyboard report as a USB
interrupt transfer request that contains the key being pressed and any modifiers
(shift, alt, etc.). The operating system will periodically poll the interrupt trans-
fer pipe and retrieve the data, delivering it to any requesting applications, i.e.,
dprocess in our case.

2.3 Keyboard Shadowing

The operation of a decoy keyboard in parallel with a real keyboard creates
an outlier configuration. Malware could simply browse all I/O devices on the

Keylogger Detection Using a Decoy Keyboard 439

Fig. 3. Location of the decoy keyboard in the device tree. (Source: Microsoft Hardware
Dev Center [42])

computer, and then check if multiple keyboards are attached to the compro-
mised computer. Computers with two physical keyboards are not common, con-
sequently the decoy keyboard needs to operate when the user is not typing any
keys on the real keyboard. We have devised a technique, which we refer to as the
keyboard shadowing mechanism (Kshadow), to detect windows of time when the
user is not using the keyboard. The duration of those time windows of inactivity
varies from several seconds to several minutes, and at times may last one or more
hours depending on the work situation a user is in. For example, the user may be
reading a document, and occasionally use the real keyboard to perform keyword
searches on it. The user may be attending an hour-long presentation, in which
the user mostly listens and sometimes writes down notes. The user may also be
away from the computer for extended periods of time, such as when going to
lunch or when participating in a meeting. Note that, since Kshadow runs in the
kernel, there is now running process for it in user space.

Kshadow signals the DK driver when a time window of inactivity begins,
and again when it ends. A go signal gives the DK driver a green light to start
sending keystrokes to a dprocess. A stop signal notifies the DK driver that the
physical keyboard is now producing keystrokes. It is time that the DK driver
quickly wraps up the communication with a dprocess, and goes to sleep until
the next signal from Kshadow arrives. The DK driver may choose to not use a
time window of inactivity entirely, especially if the time window is long. In those
cases, the DK driver selects specific portions of the time window in which to send
keystrokes to a dprocess. The remaining fractions of the time window are left to
be inactive. Keyboard shadowing is transparent to the user, who does not see or
interact with the decoy keyboard. The user types on the physical keyboard as

440 S. Simms et al.

if the decoy keyboard were not present on the computer. Only one keyboard is
discoverable at any time on the computer, with characteristics that match those
of the physical keyboard.

We now discuss the inner workings of keyboard shadowing, with reference
to Fig. 4. In Windows, the I/O system is packet driven [40]. An I/O device in
general is operated by a stack of drivers. The driver stack of an I/O device is
an ordered list of device objects, i.e., device stack, each of which is linked with
the driver object of a kernel driver. A device object is a C struct that describes
and represents an I/O device to a driver, whereas a driver object is a C struct
that represents the image of a driver in memory [40]. The I/O requests that read
keystrokes from a keyboard are packaged into data structures called I/O request
packets (IRPs) [40]. An IRP is self contained, in the sense that it contains all
the data that are necessary to describe an I/O request. IRPs originate from a
component of the I/O system called I/O manager, which is also responsible for
enabling a driver to pass an IRP to another driver.

An IRP traverses the device stack top to bottom. It is processed along the way
by the drivers in the driver stack using the I/O manager as an intermediary. Once
an IRP is fully processed by those drivers and thus reaches the bottom of the
driver stack, the lowest driver populates its payload with scancodes. A scancode
is a byte that corresponds to a specific key on the keyboard being pressed or
released. The IRP may climb back up the driver stack. At the end, the I/O
manager responds to the caller thread in user space by passing the keystrokes
to it. The keyboard class driver referenced in Fig. 4 does IRP processing that
applies generally to all keyboards, regardless of their hardware, low-level design,
and type of hardware connection to the computer. When a process in user space
requests to read keystrokes, the I/O manager converts the request into an IRP
and sends it to the driver located at the top of the stack. Here is how.

The I/O operation performed by an IRP is indicated by a field called major
function code, which may be accompanied by a minor function code. The I/O
manager accesses the device object located at the top of the stack, and from
there follows a pointer to the corresponding driver object. At that point, the
I/O manager uses the major function code as an index into a dispatch table
of the driver object, and obtains the address of a driver routine to call. The
routine belongs to the keyboard class driver, which can now process the IRP
and subsequently pass it down the driver stack. All the other drivers in the
stack are given an opportunity to process IRPs this way as well. Without any
keyboard shadowing in place, the keyboard class driver passes the IRP to a
function driver. Generally speaking, the function driver of an I/O device has the
most knowledge of how the device operates. The function driver presents the
interface of the device to the I/O system in the kernel.

The function driver of the physical keyboard is an HID driver, which is
referred to as keyboard HID client mapper driver. It is written in an independent
way from the actual transport. Possible transports can be USB, Inter-Integrated
Circuit (I2C), Bluetooth, and Bluetooth Low Energy. In the case of the com-
puters that we used for code development and research in this work, the HID

Keylogger Detection Using a Decoy Keyboard 441

class driver serves as a bridge between the keyboard HID client mapper driver
and a USB bus. The reader is referred to [20] for a thorough description of
HID concepts and architecture. Keyboard shadowing is implemented as a filter
driver, which is positioned between the keyboard class driver and the keyboard
HID client mapper driver, as depicted in Fig. 4. Kshadow creates a filter device
object (FiDO). This FiDO is similar to the functional device object (FDO) and
physical device object (PDO) created by the other drivers in the stack. These
device objects are only different in the type of drivers to which they represent
an I/O device.

Fig. 4. Integration of keyboard shadowing with the driver stack of an HID keyboard.

By registering with the I/O manager as a filter driver, Kshadow gets to
see all IRPs bound for the keyboard, physical or decoy. Kshadow has access to
the process ID of dprocess. Furthermore, for each IRP, Kshadow retrieves the
process ID of the thread that requested the I/O operation. This is how Kshadow

442 S. Simms et al.

knows whether an IRP originated in dprocess or in another process. Regard-
less of the source, Kshadow receives IRPs from the keyboard class driver. If
an IRP originated in a process other than dprocess, Kshadow passes it down
to the keyboard HID client mapper driver. If an IRP originated in dprocess,
Kshadow simply passes it to DK driver, which populates it with the scan-
codes of emulated keystrokes. Kshadow acquires high resolution time stamps
to measure the interval between the current time and the time an IRP was last
seen going down the driver stack. The Windows kernel provides APIs such as
KeQueryPerformanceCounter() that are highly accurate.

If no IRPs from processes other than dprocess arrive for an interval of time
that exceeds a given threshold, Kshadow marks the beginning of a time window
of inactivity and thus sends a go signal to the DK driver. All communications
between Kshadow and DK driver take place through direct function calls, and
do not involve the I/O manager. This is because DK driver is not part of the
driver stack, consequently no device object is created for it. It is slightly more
challenging for Kshadow to spot the end of a time window of inactivity. We deem
that inactivity ends when the driver at the bottom, which is also referred to as
a miniport driver, completes its processing of a pending IRP. The completion
event is due to the user pressing a key on the keyboard, and the miniport driver
subsequently reading the scancode byte and placing it on the IRP. We leverage
the fact that the completed IRP could be made to climb up the driver stack.

When Kshadow notices a completed IRP coming from underneath, it knows
that the physical keyboard has become active and thus sends a stop signal to
the DK driver. However, a completed IRP does not just climb up the driver stack
by itself. Kshadow registers one of its functions as an IoCompletion routine for
an IRP, before passing it down the driver stack. When the IRP is complete, the
IoCompletion routines of all higher-level drivers are called in order. When the
IoCompletion routine of Kshadow is invoked, Kshadow marks the end of the
time windows of inactivity and DK driver stops sending emulated keystrokes to
dprocess.

2.4 First and Second Order Detection

First order detection of a keylogger happens when the malware attempts to
intercept keystrokes and is detected in the act. Second order detection refers
to detection at a time that postdates the keystroke interception mounted by a
keylogger. As we discuss later on in this paper, our approach can attain first
order detection of various forms of keyloggers. Nevertheless, its main strength is
in second order detection of keyloggers. When we started this research, our goal
was to deliver effective second order detection. First order detection is primarily
consequential, and was noticed mostly during the practical tests against live
malware. We base this work on a simple observation: keyloggers intercept data
for attackers to use. Of course, not all intercepted data will be used, but some
of those data will. In fact, malicious use of intercepted data is the reason behind
the very existence of keyloggers.

Keylogger Detection Using a Decoy Keyboard 443

The idea that underpins this work is to use a decoy keyboard to generate
emulated and hence decoy keystrokes for keyloggers to intercept. Keyloggers
commonly encrypt the data they intercept on a compromised computer, and
then send those data to the attacker over the network. Furthermore, keyloggers
commonly come as one of the modules of larger malware. Other modules open
up backdoors into the compromised computer, and enable the attacker to access
any resources. Yet other modules intercept filesystem traffic, spy on a user over
the webcam, or authenticate to other computers using stolen credentials. The
malware are detected when they use decoy data leaked by the decoy keyboard.
In our prior work we have created decoy network services, which require authen-
tication. In this case, we need to leak an account by using the decoy keyboard
to make it appear as if a user is typing his or her username and password to
authenticate to those services.

More specifically, we have explored a decoy network interface card (DNIC),
which makes a computer appear to have access to an internal network [41]. Nei-
ther the DNIC nor the internal network exist for real. Furthermore, they are
both masked to the user, consequently the user does not see and hence does not
access them. We have developed an Object Linking and Embedding (OLE) for
Process Control (OPC) server, which provides power grid data after authenti-
cating the client. All of these decoys are implemented in the kernel, therefore no
network packet ever leaves the computer for real. The decoy keyboard leaks an
OPC server account, which includes the IP address of the server computer, the
name of the OPC server, and of course a username and password. The IP address
in question is reachable over the imaginary network. Once malware intercepts
the OPC server account from the decoy keyboard and thus uses it to access the
OPC server over the DNIC, we attain second order detection.

Another example involves the leakage of credentials that provide access to a
virtual private network (VPN), which is reachable only over the DNIC. VPNs
are of particular interest to attackers, since they commonly lead to protected
resources. For instance, the BlackEnergy malware that compromised a regional
power distribution company in Ukraine was able to access electrical substa-
tion networks through a VPN using stolen VPN credentials. We can display an
imaginary VPN over the DNIC. The imaginary VPN is accessible via credentials
leaked by the decoy keyboard, leading to an unequivocal second order detection.
It is of paramount importance to this work that the attacker does not discard
the data that the keylogger had intercepted from the decoy keyboard. This is
why the model of human keystroke dynamics, which we discussed earlier in this
paper, is so critical to this work. If we can leak data in a way that resembles
those produced by a real keyboard, we give the attacker no reason not to use
the decoy data. For consistency reasons, the decoy keyboard can provide decoy
non-sensitive data for other decoy processes. For example, the decoy keyboard
can fill a webform through a decoy web browser process.

444 S. Simms et al.

3 Evaluation

The decoy keyboard approach was installed and run on a 64-bit Windows 10
virtual machine in our lab. The lab was isolated both logically and physically
from any physical computer networks. Firstly, we tested the ability of the decoy
keyboard to co-exist with a real keyboard. We simply used a computer equipped
with a decoy keyboard for several days to do our usual work. We paid atten-
tion to all details related to the keyboard use. We observed no visible delays
when typing on the physical keyboard. There were numerous periods of key-
board inactivity, in which we were away from the computer. The logs show that
the decoy keyboard had been in operation multiple times, however we saw no
anomalies with the use of the real keyboard when we returned to work on the
computer. The only observable was that the screen saver and the power saving
mode appeared to be affected by the operation of the decoy keyboard. As a
dprocess requests keystrokes, and the DK driver generates them, normal com-
puter activity is created, consequently Windows assumes that there is a user
working on the computer.

The delay in IRP processing caused by Kshadow, as the user types on the
physical keyboard, is characterized by the data of Fig. 5. The lower chart indi-
cates the delays that occur when Kshadow passes the IRPs down the driver stack
as soon as they arrive. This graph is given solely for comparison reasons. The
higher graph shows the delays when Kshadow works to determine if a time win-
dow of inactivity has begun. The greater delays are due to Kshadow registering
one of its functions as an IoCompletion routine, acquiring high-resolution time
stamps to measure time intervals, and retrieving the process ID for the thread
that originally requested to read a keystroke. Other overhead is due to starting
and maintaining a kernel thread.

The delays caused by the overall approach when a user returns to his or
her workplace and presses a key on the keyboard are given in Fig. 6. This is
the situation in which the decoy keyboard has been operating for some time,
and now the user needs the physical keyboard back in operation. The data
pertain to 10 separate occurrences of the aforementioned situation. The lower
chart shows the delays that occur when the DK driver is able to respond to
the stop signal immediately. This only happens when the DK driver is not
emulating keystrokes, and dprocess does not exist or is suspended and hence is
not reading keystrokes. Otherwise the DK driver needs some time to wrap up
its keystroke emulation, halt dprocess, and altogether get out of the way. The
duration of these finalizations depends on the data that the decoy keyboard is
leaking through the attack surface and hence may vary. There is also some delay
occurring when the keyboard transitions in the opposite direction, namely from
physical to decoy. Nevertheless, the user is not affected, since he or she is not
typing on the physical keyboard at that time.

We examined the arrival times of keystrokes in user space for the purpose of
testing the statistical model. Without incorporating the model in the DK driver,
keystrokes arrive at an almost constant rate. The delay between any two keys
is the same, and quite minimal. Clearly this is an obvious indication that the

Keylogger Detection Using a Decoy Keyboard 445

Fig. 5. I/O filtering overhead while the physical keyboard is in use.

Fig. 6. Decoy-to-physical transition overhead.

446 S. Simms et al.

keyboard is a decoy. With the statistical model in use within the DK driver, the
keystrokes arrive at times that match the typing profile of an actual user. We
have not included the corresponding charts due to room limitations.

We now discuss the evaluation of the effectiveness of our approach. We tested
the decoy keyboard against live malware. The malware corpus was comprised of
samples that were obtained from public malware repositories, namely Open Mal-
ware, AVCaesar, Kafeine, Contagio, StopMalvertising, and unixfreaxjp. Those
repositories provide malware samples for academic research. The malware sam-
ples were known, and included remote access tools (RATs), worms and trojans,
and also viruses. We used the IDA Pro tool to analyze the malware samples to
the greatest degree that we could in order to identify and remove goodware. We
also did analysis work to identify malware samples that are of the same malware,
but appear different because of polymorphic or metamorphic techniques. At the
end, the malware corpus consisted of 50 malware samples. Most of those mal-
ware samples have a history of involvement in malware campaigns in the recent
years, therefore are valid and pertinent for testing purposes.

Some of the malware samples use keylogger modules that intercept keystrokes
by probing their target keyboard. Those probes resulted in IRPs bound for the
target keyboard. When the decoy keyboard was in operation, the malicious IRPs
reached Kshadow and DK driver, causing a first order detection of the malware.
The other malware samples that escaped first order detection needed to be tested
against second order detection. In that regard, we did not operate the decoy
keyboard against real human attackers on the Internet. We are a University and
thus are not in the position to run real-world cyber operations at this time.
Nevertheless, we tested whether or not the decoy keystrokes were intercepted by
the malware, and the malware subsequently attempted to send those keystrokes
to attackers over the network. If we succeeded in causing malware to attempt to
send decoy data to attackers, then the use of those decoy data by the attackers,
and hence a second order detection of the malware by our approach, is only a
matter of time.

Our testing differed depending on the type of malware. Let us first discuss
the case of RATs. We started with testing the decoy keyboard approach against
QuasarRAT and jRAT, and later realized that they resemble the software archi-
tecture and interception tactics of several other RATs such as Bandook, Ozone,
Poisonivy, and njRAT. These RATs are comprised mainly of two executables,
a client and a server. The server executable is run on a compromised com-
puter, whereas the client executable is run on the attacker’s machine. The server
executable performs keylogging, and then sends the data to the client. The
client executable typically presents a graphical user interface (GUI) panel to
the attacker, which the attacker uses to select target computers, as well as the
operations to perform on them. A typical control panel is shown in Fig. 7. The
keylogger module is selected.

As the decoy keyboard found several time windows of inactivity, it sent key-
strokes to dprocess. The keystrokes were intercepted by the server executable,
which sent them to the client executable. The client executable in turn displayed

Keylogger Detection Using a Decoy Keyboard 447

Fig. 7. The control panel of QuasarRAT.

the intercepted keystrokes on the GUI panel. The decoy data that were leaked
by the decoy keyboard were now listed on the GUI panel. In the case of the
other malware samples, the testing was challenging as there were no GUI panels
to display the intercepted data. In those cases, we used a kernel debugger to set
breakpoints on instructions of the malware that accessed intercepted keystrokes.
We dumped the intercepted data on the debugger’s console, and verified that
some of those data were indeed data generated by the DK driver.

In conclusion, all of the samples in the malware corpus intercepted keystrokes
generated by the decoy keyboard, and either sent them to the client executable
running on a computer on the local network, or attempted to send them to
external IP addresses. In the latter case, the network packets were eventually
dropped due to the testbed isolation. There were no false alarms raised, because
no goodware ever requested to read keystrokes after the user went away from
the computer and a decoy keyboard was made active.

4 Related Work

Decoy I/O devices are intrinsically a form of deception, and there has been
a great deal of prior work in the field. Cohen’s Deception Toolkit [9] in 1997
was one of the first publicly available programs designed to deceive and identify
attackers by presenting fake information and vulnerabilities [10]. Honeypots and
honeyfiles, decoy machines and files designed to entice and trap attackers, have
also been explored quite heavily. In 1989, Stoll published a book that detailed
some of the earliest uses of honeypots and honeyfiles as he worked to catch
a hacker that infiltrated the computer systems at Lawrence Berkley National
Laboratory [11]. By Presenting Attractive yet fake files to the attacker, he was
able to catch them “in the act,” eventually leading to their arrest. These concepts
have since been applied towards attracting automated software instead of real
people, but the underlying idea remains the same.

A decoy I/O device as presented in this research has two main differences
from existing deception tactics and decoys such as honeypots and honeyfiles.

448 S. Simms et al.

The first is that it can (and is intended to) be deployed on an active, production
machine, running in the background transparent to the user. The second is that
it is specifically designed to emulate a real I/O device down to the hardware
level, making it as indistinguishable from a real device as the complexity of
the decoy communications allow. A typical honeypot, such as Sebek [12], is a
system designed solely for logging and reporting attacks that presents itself as
a potential target through the activity of a typical system in production use.
However, due to the nature of the design, the honeypot itself cannot be in active
use; any incoming connections are either malicious in nature or from someone
who has stumbled upon it by accident.

Sebek and other high-interaction honeypots will imitate a complete machine,
and thus require the full resources of one, and are expensive to maintain. Low-
interaction honeypots like PhoneyC [13] are designed to only present certain
vulnerable services, and require less resources to operate. In order to operate
multiple honeypots on one physical computer, virtual machines can be utilized,
but malware such as Conficker [14] can detect that they are being run virtually
and change their behavior, or simply avoid the honeypot altogether. Along that
vein, Rowe proposed using fake honeypots as a defensive tactic by making a
standard production machine appear to be a honeypot [15], scaring away any
would-be attackers by emulating the signatures and anomalies that are typically
associated with honeypots.

Anagnostakis et al. proposed a hybrid technique called a “shadow honey-
pot” [16] that utilizes actual production applications with embedded honey-
pot code. Incoming connections are first filtered through an anomaly detection
process, which will redirect possible malicious traffic to the shadow honeypot,
and normal traffic to the standard server. However, the shadow honeypot is run-
ning the same server application with the same internal state, with the added
honeypot code serving to analyze the behavior of the request. The shadow hon-
eypot can then send valid requests to the real server, and any change in state
from malicious activity is thrown out. Spitzner discussed the issue of insider
threats [17], and how they target actual information that they can use, thus
the honeypot could provide fake data that appears attractive. This data could
be business documents, passwords, and so on, and would be a “honeytoken”
designed to redirect the attacker to the honeypot. This is similar to the research
presented here in that fake data attracts an attacker to the decoy I/O device,
but is on an entirely different scale and still requires a high-interaction honeypot
to implement.

The honeytokens proposed by Spitzner are a type of honeyfile, a concept
explored by Yuill et al. [18] which are commonly used on honeypots but have
also been placed on systems in actual use. Software can then analyze traffic to
and from the files with the assumption that any activity is malicious in nature,
as those files are not in use by legitimate applications. This concept of a Canary
File, or a honeyfile placed amongst real files on a system, was proposed by
Whitman [19], and he also discusses the automatic generation and management
of the Canary Files. However, the content of automatically generated files is

Keylogger Detection Using a Decoy Keyboard 449

difficult to present as authentic upon inspection, and malware that resides at
the operating system level is able to examine file access patterns to ignore files
that are not being used.

5 Conclusion

The decoy keyboard is a novel anti-malware approach that is transparent to
both normal users and attackers. The approach requires no prior knowledge of
malware code and data structures to be able to detect them, and can operate on
computers in production. The filter driver is able to shadow a physical keyboard.
It can reliably guide a low-level deceptive driver in the generation of decoy key-
strokes for malware to intercept. The decoy keystrokes are delivered to malware
according to a timing model that makes both the decoy data and their delivery
quite consistent with the behavior of a physical keyboard. The decoy keyboard is
safe to operate, and does not interfere with the user’s work. The decoy keyboard
showed to be effective against a large malware corpus, attaining approximated
second order detections and some first order detections as well.

Acknowledgments. This material is based on research sponsored by U.S. Air Force
Academy under agreement number FA7000-16-2-0002. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of U.S. Air Force Academy or the U.S. Government.

Appendix A: Malware Detection

Current malware detection (including keyloggers) is based on both static and
dynamic analysis. Malware detection through static analysis consists of scanning
an executable file for specific strings or instruction sequences that are unique to
a specific malware sample [1,2,21]. This is a primary type of detection employed
by commercial anti-virus software packages; in addition to simply scanning files
present on a computer, the keyboard and other device stacks are inspected and
interceptions by known malware are flagged and reported, but lists of known sig-
natures must be kept and frequently updated. The main limitation of the static
analysis techniques is that malware can change its appearance by means of poly-
morphism, metamorphism, and code obfuscation. Other static analysis research
focused on higher-order properties of executable files, such as the distribution
of character n-grams [22,23], control flow graphs [3,24], semantic characteris-
tics [4], and function recognition [25–27]. Dynamic analysis is another field of
ongoing research that studies the execution flow of a malware binary using meth-
ods such as function call monitoring and information flow tracking [5]. Tools like
Detours [6] allow an analyst to hook into the function calls of a piece of malware
and execute their own code for investigative purposes before returning control

450 S. Simms et al.

to the original program. This type of hook can be performed on binary files
located on disk as well as by modifying the memory space of a currently running
process. Using these techniques, researchers are able to learn various indicators,
which are then used to detect that malware. Detection indicators include disk
access patterns [28], malspecs [29], sequences of system calls and system call
parameters [30], and behavior graphs [31].

All of these methods are rooted in and constrained by the concept of ana-
lyzing existing malware. The main advantage and differentiator of the decoy
keyboard approach over such a large body of malware detection research is that
a decoy keyboard does not require any prior analysis of a malware sample in
order to detect it. A decoy keyboard can detect malware encountered for the
very first time, whereas the techniques from the mentioned large body of mal-
ware detection research require that an instance of malware be given to them as
input for analysis. A specific instance of the malware needs to be detected by
other means – someone has to provide the malicious code, along with an explicit
and validated statement that it is malware. Those techniques will then be used
to analyze the program, which at that time is known to be malware, and thus
will learn indicators such as those discussed in the previous paragraph. Those
indicators are subsequently used to detect other instances of the malware. This
introduces a period of time between the release and discovery of new malware
and the update of any software to protect against it during which targeted sys-
tems are vulnerable. Additionally, kernel-based malware has such a degree of
access to the system and underlying processes that it may very well be able to
find and circumvent any installed security software.

Some work has been done to counteract the deficiencies of static and dynamic
analysis by using machine learning techniques such as behavioral clustering [7]
and classification [8], but the accuracy of these techniques is dependent on the
quality of the training set; malware that is significantly different in operation
from the majority may still manage to evade detection.

References

1. Christodeorescu, M., Jha, S.: Static Analysis of Executables to Detect Malicious
Patterns. Department of Computer Sciences, Wisconsin Univ-Madison (2006)

2. Griffin, K., Schneider, S., Hu, X., Chiueh, T.C.: Automatic generation of string
signatures for malware detection. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 101–120. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04342-0 6

3. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware using
control-flow graph matching. In: Büschkes, R., Laskov, P. (eds.) Detection of Intru-
sions and Malware, and Vulnerability Assessment. LNCS, vol. 4064, pp. 129–143.
Springer, Heidelberg (2006)

4. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection
of android malware through static analysis. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
576–587 (2014)

http://dx.doi.org/10.1007/978-3-642-04342-0_6
http://dx.doi.org/10.1007/978-3-642-04342-0_6

Keylogger Detection Using a Decoy Keyboard 451

5. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6 (2012)

6. Hunt, G., Brubacher, D.: Detours: binary interception of Win32 functions. In: 3rd
Usenix Windows NT Symposium (1999)

7. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario,
J.: Automated classification and analysis of internet malware. In: Kruegel, C.,
Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74320-0 10

8. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

9. Cohen, F.: The deception toolkit. Risks Digest, vol. 19 (1998)
10. Cohen, F.: A note on the role of deception in information protection. Comput.

Secur. 17(6), 483–506 (1998)
11. Stoll, C.: The Cuckoo’s Egg: Tracing a Spy through the Maze of Computer Espi-

onage. Doubleday, New York (1989)
12. Balas, E.: Know your enemy: Sebek. The Honeynet Project (2003)
13. Nazario, J.: PhoneyC: A Virtual Client Honeypot. LEET, vol. 9, pp. 911–919 (2009)
14. Leder, F., Werner, T.: Know your enemy: Containing conficker. The Honeynet

Project (2009)
15. Rowe, N.C., Duong, B.T., Custy, E.J.: Defending cyberspace with fake honeypots.

J. Comput. 2(2) (2007)
16. Anagnostakis, K.G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E.P.,

Keromytis, A.D.: Detecting targeted attacks using shadow honeypots. In: Usenix
Security (2005)

17. Spitzner, L.: Honeypots: catching the insider threat. In: 19th Annual Computer
Security Applications Conference, pp. 170–179 (2003)

18. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: deceptive files for intrusion
detection. In: Proceedings from the Fifth Annual IEEE SMC Information Assur-
ance Workshop, pp. 116–122 (2004)

19. Whitham, B.: Canary files: generating fake files to detect critical data loss from
complex computer networks. In: The Second International Conference on Cyber
Security, Cyber Peacefare and Digital Forensic, pp. 170–179 (2013)

20. Microsoft Device and Driver Technologies: HID drivers (2016). https://msdn.
microsoft.com/en-us/windows/hardware/drivers/hid/index

21. Szor, P.: The Art of Computer Virus Research and Defense. Pearson Education,
Indianapolis (2005)

22. Li, W.-J., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.D.: A study
of malcode-bearing documents. In: Hämmerli, B., Sommer, R. (eds.) DIMVA
2007. LNCS, vol. 4579, pp. 231–250. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73614-1 14

23. Li, W.J., Wang, K., Stolfo, S.J., Herzog, B.: Fileprints: identifying file types by
n-gram analysis. In: Information Assurance Workshop, Proceedings from the Sixth
Annual IEEE SMC 2005, pp. 64–71 (2005)

24. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: International Workshop
on Recent Advances in Intrusion Detection, pp. 207–226 (2005)

25. Kruegel, C., Robertson, W., Vigna, G.: Detecting kernel-level rootkits through
binary analysis. In: 20th Annual Computer Security Applications Conference, pp.
91–100 (2004)

http://dx.doi.org/10.1007/978-3-540-74320-0_10
https://msdn.microsoft.com/en-us/windows/hardware/drivers/hid/index
https://msdn.microsoft.com/en-us/windows/hardware/drivers/hid/index
http://dx.doi.org/10.1007/978-3-540-73614-1_14
http://dx.doi.org/10.1007/978-3-540-73614-1_14

452 S. Simms et al.

26. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code
by model checking. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 174–187 (2005)

27. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: 2005 IEEE Symposium on Security and Privacy, pp. 32–46
(2005)

28. Felt, A., Paul, N., Evans, D., Gurumurthi, S.: Disk level malware detection. In:
Poster: 15th Usenix Security Symposium (2006)

29. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Proceedings of the 1st India Software Engineering Conference, pp. 5–14
(2008)

30. Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.:
A quantitative study of accuracy in system call-based malware detection. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
pp. 122–132 (2012)

31. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X.Y., Wang, X.:
Effective and efficient malware detection at the end host. In: USENIX Security
Symposium, pp. 351–366 (2009)

32. Umphress, D., Williams, G.: Identity verification through keyboard characteristics.
Int. J. Man Mach. Stud. 23(3), 263–273 (1985)

33. Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke
timing: Some preliminary results. No. RAND-R-2526-NSF. RAND CORP (1980)

34. KeyTrac Keyboard Biometrics. http://www.keytrac.net
35. Banerjee, S.P., Woodard, D.L.: Biometric authentication and identification using

keystroke dynamics: a survey. J. Pattern Recogn. Res. 7(1), 116–139 (2012)
36. Roth, J., Liu, X., Metaxas, D.: On continuous user authentication via typing behav-

ior. IEEE Trans. Image Process. 23(10), 4611–4624 (2014)
37. Feit, A.M., Weir, D., Oulasvirta, A.: How we type: movement strategies and perfor-

mance in everyday typing. In: Proceedings of the 2016 Chi Conference on Human
Factors in Computing Systems, pp. 4262–4273 (2016)

38. Choi, Y.: Keystroke patterns as prosody in digital writings: a case study with decep-
tive reviews and essays. In: Empirical Methods on Natural Language Processing,
p. 6 (2014)

39. Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use
standard deviation around the mean, use absolute deviation around the median.
J. Exp. Soc. Psychol. 49(4), 764–766 (2013)

40. Russinovich, M.E., Solomon, D.A., Ionescu, A.: Windows Internals, Part 1 and 2,
6th edn. Microsoft Press, Redmond (2012)

41. Rrushi, J.: NIC displays to thwart malware attacks mounted from within the OS.
Comput. Secur. 61(C), 59–71 (2016)

42. Microsoft Hardware Dev Center: Device nodes and device stacks. https://
msdn.microsoft.com/en-us/windows/hardware/drivers/gettingstarted/
device-nodes-and-device-stacks

43. Newton, D.: Virtual Multiple HID Driver (multitouch, mouse, digitizer, keyboard,
joystick). https://github.com/djpnewton/vmulti

http://www.keytrac.net
https://msdn.microsoft.com/en-us/windows/hardware/drivers/gettingstarted/device-nodes-and-device-stacks
https://msdn.microsoft.com/en-us/windows/hardware/drivers/gettingstarted/device-nodes-and-device-stacks
https://msdn.microsoft.com/en-us/windows/hardware/drivers/gettingstarted/device-nodes-and-device-stacks
https://github.com/djpnewton/vmulti

The Fallout of Key Compromise
in a Proxy-Mediated Key Agreement Protocol

David Nuñez(B), Isaac Agudo, and Javier Lopez

Network, Information and Computer Security (NICS) Laboratory,
Computer Science Department, University of Málaga, Málaga, Spain

{dnunez,isaac,jlm}@lcc.uma.es

Abstract. In this paper, we analyze how key compromise affects the
protocol by Nguyen et al. presented at ESORICS 2016, an authenticated
key agreement protocol mediated by a proxy entity, restricted to only
symmetric encryption primitives and intended for IoT environments.
This protocol uses long-term encryption tokens as intermediate values
during encryption and decryption procedures, which implies that these
can be used to encrypt and decrypt messages without knowing the cor-
responding secret keys. In our work, we show how key compromise (or
even compromise of encryption tokens) allows to break forward secu-
rity and leads to key compromise impersonation attacks. Moreover, we
demonstrate that these problems cannot be solved even if the affected
user revokes his compromised secret key and updates it to a new one.
The conclusion is that this protocol cannot be used in IoT environments,
where key compromise is a realistic risk.

1 Introduction

Nguyen, Oualha, and Laurent presented at ESORICS 2016 an authenticated key
agreement protocol based on an ad-hoc variant of symmetric proxy re-encryption
[16], called AKAPR. This protocol is intended for highly-constrained IoT devices,
and therefore, deliberately excludes the use of asymmetric primitives such as
Diffie-Hellman key exchange due to its reliance on modular exponentiations. The
proposed protocol is implemented on top of block ciphers, MACs, and simple
modular arithmetic. The authors provide a formal verification of the mutual
authentication property using ProVerif.

In this paper we identify some deficiencies in the proposed protocol that were
not considered by the formal analysis and describe several attacks that exploit
them. In particular, our attacks exploit the fact that encryption and decryption
operations do not use secret keys directly, but intermediate secret values (which
we call “encryption tokens”). These secrets are relatively exposed throughout
the protocol and can be used to compromise the security of their corresponding
owners (and in certain cases, other users). We show how compromise of these
encryption tokens (or directly, of secret keys) makes it possible to break for-
ward security and lead to key compromise impersonation attacks. An interesting

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 453–472, 2017.
DOI: 10.1007/978-3-319-61176-1 25

454 D. Nuñez et al.

(and devastating) consequence of the nature of these attacks is that these can-
not be prevented even if the affected user renews his secret key, given that the
compromised secret can be linked to the encryption token of other users.

This paper constitutes an example of how providing a formal analysis of a
protocol or system is often not enough, since this may be incomplete, incorrectly
designed or directly flawed. In the case of the analyzed protocol, the authors did
not consider the possibility of key compromise. However, in IoT environments
(which is the target application of the protocol), key compromise is a realistic
risk due to the broad attack surface of most devices, which includes physical
attacks (e.g., use of JTAG and UART interfaces, power analysis, etc.), software
vulnerabilities (e.g., buffer over-reads like Heartbleed in OpenSSL), privilege
escalation through backdoor accounts, etc.

Related Work. The protocol we analyze in this paper is an example of authen-
ticated key exchange (AKE), one of the most recurring topics in the literature
when it comes to security protocols. It is also the basis for most Internet appli-
cations that relay on secure channels, as it is embedded in TLS and IPSEC. We
can clearly distinguish two research trends in this area, one based on public-key
cryptography, where Diffie-Hellman [7] is the current “standard”, and the other
on secret key cryptography. With respect to the latter, most proposals rely on
a Key Distribution Center (KDC) that shares a secret key with all users in the
system and supports them on agreeing on a session key. Since 1978, when the
Needham-Schroeder symmetric protocol [14] was proposed, several authors have
attempted to propose better symmetric AKE protocols, usually showing how
previous ones can be attacked and fixing their weaknesses. For example, one of
the weaknesses of the original Needham-Schroeder protocol was the inability to
prove the freshness of the session key. Denning and Sacco [6] proposed the use
of Timestamps as a way fix this problem. Later, the Kerberos protocol [15], also
built on the idea of using timestamps, was proposed as the current “standard”
AKE solution in the symmetric set-up. In the last years, new assumptions on
the capabilities of the attackers have been defined as well as new application
scenarios, security requirements and constrains that make this problem still an
interesting research topic, particularly in those environment where public-key
cryptography is not viable. Some recent works show that Elliptic Curve Cryp-
tography (ECC) can be run in most wireless sensor platforms [12], although
there are still some highly-constrained devices, such as passive RFID, that are
not yet capable of using PKC and would then require the use of symmetric AKE
protocols.

The analyzed protocol uses techniques from proxy re-encryption (PRE).
This is a research topic with increasing popularity, with new use cases aris-
ing in different contexts (e.g., data sharing in the cloud, key management, etc.).
Although the vast majority of PRE schemes are based on public-key cryptog-
raphy [18], there have been some proposals based on symmetric cryptography.
Syalim et al. [21] propose a symmetric PRE scheme based on the All-Or-Nothing
Transform, although it assumes that both sender and receiver share a common
secret. Cook and Keromytis [5] present a solution based on a double-encryption

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 455

approach, but as in the previous case, a priori shared keys are needed. The
key-homomorphic PRF primitive by Boneh et al. [2] can be used to construct
symmetric PRE schemes without the shared key requirement, although as noted
by Garrison et al. [10], its computational cost is comparable or greater than tra-
ditional public-key cryptography. Sakazaki et al. [19] propose a symmetric PRE
scheme that is essentially equivalent to the one of this paper; this is discussed
further in Sect. 2.1.

Organization. The rest of this paper is organized as follows: In Sect. 2, we
describe the AKAPR protocol in detail, including actors, protocol flow and the
underlying symmetric proxy re-encryption primitive. In Sect. 3, we present sev-
eral attacks and weaknesses of the AKAPR protocol. In Sect. 4, we discuss some
possible alternatives to the protocol. Finally, Sect. 5 concludes the paper.

2 Description of the Authenticated Key Agreement
Protocol

In this section we briefly describe the protocol AKAPR (Authenticated Key
Agreement mediated by a Proxy Re-Encryptor). The goal of this protocol is
to provide an authenticated key exchange between two entities, using a proxy
entity as a mediator. As in the general case of proxy re-encryption, although
the proxy entity assists in the process, it should not learn any information.
A critical restriction that guides the design of this protocol is that it assumes
that the authenticating entities may not be capable of using common public-
key cryptography primitives, such as Diffie-Hellman key exchange and digital
signatures, due to the its reliance on modular exponentiations. Instead, AKAPR
is designed solely on top of block ciphers, MACs, and simple modular arithmetic.

In the remaining of this section we first briefly explain the underlying sym-
metric proxy re-encryption primitive. Next, we describe the general setting of
the protocol, which includes the description of actors, network architecture and
trust assumptions. Finally, we detail the protocol flow.

2.1 Symmetric Proxy Re-encryption Primitive

The authors propose a symmetric proxy re-encryption algorithm, which is com-
posed of the following five functions:

– KeyGen(λ): On input the security parameter λ, the key generation algorithm
KeyGen outputs the secret key sk and identity id. As an example, for user A,
these are skA and idA.

– ReKeyGen(skA, idA, skB , idB): On input the secret keys skA and skB , and
identities idA and idB , the re-encryption key generation algorithm ReKeyGen
computes the re-encryption key between users A and B as rkA→B =
h(skA‖idB)−1 · h(skB‖idA)−1, where h : {0, 1}∗ → Zp is a hash function.

456 D. Nuñez et al.

– Enc(skA, idB ,M): On input the secret key skA, the identifier of B, and a
message M , the encryption algorithm Enc samples t from Zp, derives a fresh
key K from t using a key derivation function (KDF), and outputs ciphertext
CA = (SymEncK(M), t · h(skA‖idB)), where SymEnc is a symmetric encryp-
tion algorithm.

– ReEnc(rkA→B , CA): On input a re-encryption key rkA→B and a ciphertext
CA = (CA,1, CA,2), the re-encryption algorithm ReEnc outputs ciphertext
CB = (CA,1, CA,2 · rkA→B).

– Dec(skB , idA, CB): On input the secret key skB , the identity of the original
recipient A, and a ciphertext CB = (CB,1, CB,2), the decryption algorithm
Dec computes t ← h(skB‖idA) · CB,2, derives key K from t using the KDF
and decrypts the message M from CB,1 using symmetric decryption algorithm
SymDec.

We note that there is a previous proposal by Sakazaki et al. [19], fur-
ther discussed in [23], which is essentially equivalent to this symmetric proxy
re-encryption scheme. The only difference is that the original proposal by
Sakazaki et al. uses the XOR operator instead of the modular multiplication.
If instantiated correctly, both of them are equivalent, security-wise; however,
Sakazaki et al.’s choice of the XOR operator can be implemented more efficiently
than modular multiplication.

Additionally, we also remark that this symmetric proxy re-encryption scheme
is not consistent with the prevalent idea of proxy re-encryption, where the sender
does not need to know a priori the identity of the intended recipient. In this
scheme, the sender fixes the recipient identity during encryption, and therefore,
the resulting ciphertext can only be re-encrypted to this identity. In contrast,
in the traditional idea of proxy re-encryption (regardless if it is public-key or
symmetric), ciphertexts can be re-encrypted for any possible recipient, as long
the corresponding re-encryption key exists. Although, for simplicity, we will con-
tinue to refer to this scheme as symmetric proxy re-encryption, we believe that it
is actually some kind of multiparty encryption, where the sender and the proxy
jointly create a ciphertext decryptable by an a priori fixed recipient.

2.2 Protocol Setting

There are three main types of actors in the AKAPR protocol, which are the
following:

– The Initiator (I) and the Responder (R), which are two entities located in
separate subnetworks and that want to establish an authenticated session
between them. It is assumed that these entities may lack the capacity to use
asymmetric primitives such as Diffie-Hellman, which requires modular expo-
nentiation, and therefore will only use symmetric techniques. Note, however,
that a regular device can also participate in this protocol.

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 457

Key Distribution Center
(KDC)

Delegatee (D)

Responder (R)

Fig. 1. Network architecture (adapted from [16])

– The Delegatee1 (D), which mediates in the key agreement protocol between
the Initiator and the Responder, without being able to learn the negotiated
session keys.

– The Key Distribution Center (KDC), which initially generates all the secret
keys and necessary re-encryption keys, and distributes them (secret keys to
entities, and re-encryption keys to the delegatee).

Figure 1 depicts the network setting assumed by this protocol, as well as its
main actors.

2.3 Trust Assumptions

The protocol has the following trust assumptions:

– The Delegatee is assumed to be honest-but-curious, which means it behaves
correctly with respect to the protocol, but at the same time, it has an interest
in reading the underlying information. We will latter show that if this assump-
tion is relaxed (e.g., an attacker gains control of the delegatee, or simply, the
delegatee cooperates with him), it makes several attacks possible.

– The Key Distribution Center is fully trusted. It is clear that, given that the
KDC knows all the keys involved, it can gain full control of the network.
The existence of an omniscient KDC can be seen as a single point of failure,
precisely for this reason [13, Remark 13.3].

1 Note that, in the proxy re-encryption literature, the term “Delegatee” is usually
referred to the recipient of a re-encrypted ciphertext. Hence, a re-encryption from
user A to B can be seen as the delegation of decryption rights from a “delegator”
A to a “delegatee” B. However, for consistency with the analyzed protocol, we will
also refer to it as “delegatee”.

458 D. Nuñez et al.

2.4 AKAPR Protocol Flow

We begin this subsection by defining some of the notation used in the protocol.
Recall that one of the principal requirements is to use only symmetric encryp-
tion primitives. In particular, the protocol requires an authenticated encryption
scheme, denoted by AEnc, and a message authentication code MAC. The pro-
tocol assumes that each principal X has a shared key with the delegatee D,
namely KXD. This key is used to provide authenticity and integrity of commu-
nications between the principal and the delegatee. In addition, it also assumes
that both initiator and responder maintain two counters for the communication
between them, in order to protect against replay attacks. These counters are
labeled CTIR and CTRI , respectively. Additionally, nonces NI and NR are used
to ensure freshness of messages; a session identifier SID also contributes towards
this goal. Table 1 summarizes the notation used in this paper.

Table 1. Notation

Symbol Description

I Initiator

R Responder

D Delegatee

KDC Key Distribution Center

CTIR, CTRI Counters

SID Session identifier

NI , NR Nonces

H Hash function

KDF Key derivation function

AEnc,ADec Authenticated encryption/decryption primitives

MAC Message authentication code

KID,KRD Pre-shared keys with the delegatee

Zp Multiplicative group of integers modulo p (i.e., {1, ..., p − 1})

The AKAPR protocol is composed of 4 messages. In the the first two mes-
sages, the delegatee acts as intermediary between the initiator and responder,
while the third and fourth messages are directly between them. Figure 2 shows
the flow of messages of the protocol. Next, we describe these messages in detail.

Message 1 (I → D). The first message of the protocol, M1, is created by
an initiator I and sent to the responder R, via the delegatee D. The initiator
performs the following steps:

1. CTIR ← CTIR + 1
2. SID ← H(idI‖idR‖w), for a random w

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 459

Initiator I
M1

M2

M3

M4

Delegatee D Responder R

Fig. 2. Protocol flow

3. NI
R←− Zp, t

R←− Zp

4. AK ← KDF(idI , idR, t)
5. AE1 ← AEncAK(SID‖idI‖idR‖NI‖CTIR)
6. C1 ← t · h(skI‖idR)
7. M̄1 ← SID‖idI‖idR‖AE1‖C1

8. M1 ← M̄1‖MACKID
(M̄1)

Message 2 (D → R). Once the delegatee D receives a message from an initiatior
I, he performs the following procedure in order to verify the validity of the
message and to generate the message for responder R, namely M2.

1. Verify that SID is not repeated and that MAC in M1 with key KID; if failed,
abort the protocol.

2. C2 ← rkI→R · C1

3. M̄2 ← SID‖idI‖idR‖AE1‖C2

4. M2 ← M̄2‖MACKRD
(M̄2)

Note that after the re-encryption performed by the delegatee, the value of
C2 is t · h(skR‖idI)−1.

Message 3 (R → I). When the responder R receives the previous message
from the delegatee D, he also verifies its validity, proceeds to decrypt it and
extract the necessary information, as described below. Finally, he produces a
new message M3 that is sent directly to the initiator I, without intermediaries.
Note that at the end of this process, the responder already knows the agreed
session key KS .

1. Verify MAC in M2 with key KRD; if failed, abort the protocol.
2. t ← h(skR‖idI) · C2

3. AK ← KDF(idI , idR, t)
4. SID‖idI‖idR‖NI‖CTIR ← ADecAK(AE1)
5. Check that CTIR ≥ CTRI ; if failed, abort the protocol.
6. CTRI ← CTIR + 1
7. NR

R←− Zp

8. KS ← KDF(CTRI , idI , idR, NI , NR)
9. M3 ← AEncAK(SID‖idR‖idI‖NI‖t‖NR‖CTRI)

460 D. Nuñez et al.

Message 4 (I → R). When the initiator I receives the response from the
responder R, he follows the procedure below to verify its validity and extract
the necessary information. He produces a final message M4 that is sent directly to
the responder R, who verifies its validity using the previously generated session
key KS .

1. SID‖idR‖idI‖NI‖t‖NR‖CTRI ← ADecAK(M3)
2. Check that SID,NI and t correspond to the original ones sent in M1, and

that CTRI = CTIR + 1; if failed, abort the protocol.
3. KS ← KDF(CTRI , idI , idR, NI , NR)
4. M4 ← SID‖MACKS

(SID‖idI‖idR‖NI‖NR)

As a final remark, we note that the authors do not describe any procedure
for the initial key distribution.

3 Attacks to the AKAPR Protocol

In this section we describe several attacks and weaknesses of the AKAPR proto-
col. Most of them stem from the use of encryption tokens as intermediate values
for encryption and decryption, as well as the possibility of obtaining an encryp-
tion token associated to another user by means of the delegatee or analysis of
past protocol traffic. This is particularly problematic in the event of compromise
of long-term secret keys, to the point that even key revocation and update does
not allow the affected user to recover the guarantees of secrecy and authentica-
tion with respect to other users. In the Appendix, we also show how the choice of
an insecure keyed-hash construction can lead to length-extension attacks, which
combined with our previous attacks, can be used to mount complex attack sce-
narios.

3.1 Breaking Forward Secrecy

A first and simple attack to this protocol is to recover previous session keys from
past traffic, once the long-term secret of a user is leaked. The security goal we
are breaking in this case is forward secrecy, formally defined as follows:

Definition 1 (Forward secrecy [3]). A protocol provides forward secrecy if
compromise of the long-term keys of a set of principals does not compromise the
session keys established in previous protocol runs involving those principals.

For this type of attack, we assume that an attacker has collected the messages
of the protocol for one or several runs, and that, at a latter stage, he is able to
get access to the secret key of the responder. The goal is to recover previous
session keys. In the case of the AKAPR, the attacker proceeds as follows:

1. The attacker stores the protocol messages for one or several rounds. For sim-
plicity, let us assume he stores the traffic for only the run he wants to extract
its session key.

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 461

2. At some point, the attacker compromises the responder R and obtains his
long-term secret key skR.

3. From message M2 of the stored protocol run, he parses t · h(skR‖idI)−1 and
extracts t, since he can compute h(skR‖idI). The value t is used to compute
the encryption key AK ← KDF(idI , idR, t).

4. From message M3, the attacker can decrypt the values NR, NI and CTIR

using the key AK computed in the previous step.
5. The attacker computes the session key KS used during the stores run as

described in the protocol:

KS = KDF(CTRI , idI , idR, NI , NR)

Therefore, it can be seen this protocol does not fulfill forward secrecy. We
note that if the attacker compromises the initiator I instead, then the attack is
the same except for step 3, where he uses skI to extract t from t · h(skI‖idR),
contained in message M1.

Countermeasure. The messages M1 and M2 are transmitted over an authenti-
cated channel using MACs, with pre-shared MAC keys KID and KRD, respec-
tively. A possible countermeasure to the previous attack is to assume additional
encryption keys for securing the confidentiality of the channel, given that the
assumption of pre-shared keys already exists. However, if attackers were able
to compromise the secret key of one user, it is reasonable to assume that the
corresponding MAC key is potentially leaked too.

3.2 Key Compromise Impersonation Attacks

The previous subsection was devoted to attacking forward secrecy, a common
concern of protocol designers. There are, however, other kinds of attacks that are
not that well known, but can be potentially more hazardous. Key compromise
impersonation (KCI) attacks occur when an adversary gains access to the secret
key of a principal, and uses it to establish a session with him impersonating a
different user. The attacker may use this session to actively gain new knowledge
about the victim or causing him harm (e.g., by sending him malware), as the
victim believes he is communicating with a legitimate user [4]. Therefore, KCI
attacks can be more dangerous than breaking forward secrecy, which is limited to
passive eavesdropping of past and future traffic. The following is a more formal
definition of KCI, adapted from [20].

Definition 2 (Key compromise impersonation). A key agreement protocol
is vulnerable to key compromise impersonation (KCI) if compromise of the long-
term key of a specific user allows the adversary to establish a session key with
that user by masquerading as a different user.

Here we describe three types of KCI attacks, although it may be possible that
other variations exist. For the first two KCI attacks, we assume that the attacker
compromises the secret key of one user and tries to impersonate an initiator I

462 D. Nuñez et al.

Initiator I
(Attacker)

Delegatee D
(Attacker)

M2

M3

M4

Responder R

(a) KCI Attack 1

Initiator I
(Attacker)

Delegatee D

M2

M1

M3

M4

Responder R

(b) KCI Attack 2

Initiator I Delegatee D

M1
M2

M3

M4

Responder R
(Attacker)

(c) KCI Attack 3

Fig. 3. Flow of KCI attacks

(which may be any user in the system chosen by the attacker); therefore, the
victim acts as the responder R. Since the attacker needs to direct the attack via
the delegatee, he needs at least one of the pre-shared MAC keys: either the key
KRD between the delegatee D and the responder R, or the key KID between
the delegatee and the impersonated user I. The two first KCI attacks differ on
which MAC key is compromised. Finally, we also identify a third KCI attack
that occurs in the opposite situation, when the attacker tries to impersonate a
responder. Although in this case the attacker has to wait for a key agreement
request from the victim (which can be forced by an out-of-band action), this
attack is much easier to achieve, since it does not require any MAC key.

KCI Attack 1. If the attacker knows skR and KRD then the strategy to imper-
sonate an initiator I is to produce a message M2 (i.e., the second message of
the AKAPR protocol, which is between the delegatee and the responder), since
this message does not depend on any secret from user I; the only requirement
is to chose a counter value high enough. The responder R will accept this mes-
sage as coming from user I via the delegatee, as depicted by Fig. 3b, since its
authenticity can be checked with KRD. The attacker now only has to continue
the protocol to establish a session key between him and R, although R thinks the
session is between him and I. This attack works even in the attacker does not
know skR, but only h(skR‖idI). The initial assumption of the attacker knowing
KRD is reasonable given he has access to skR.

KCI Attack 2. If the attacker knows skR and KID then the attacker needs to
know also h(skI‖idR) in order to impersonate an initiator I. There are different
ways to achieve this:

– A first option is to use past protocol traffic between R and I in order to
extract this value, following a strategy similar to the forward secrecy attack:

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 463

Knowing skR enables the attacker to compute the t value from the messages
of a protocol run, which in turn, can be used to extracth(skI‖idR) from
message M1.

– A second option is to trick the delegatee into delivering this value by means
of the re-encryption function, basically using it as a re-encryption oracle2. In
order to do this, the attacker initiates a key agreement protocol between R and
I, where C1 is the component of message M1 with value t ·h(skR‖idI). Next,
he captures the response M2 of the delegatee and parses the re-encrypted
component C2. Finally, he computes h(skI‖idR) = t · (C2)−1.

– A third option is to assume that the attacker colludes with the delegatee (or
even that the attacker is the delegatee). In this case, h(skI‖idR) can be com-
puted from the re-encryption keys since rkI→R = h(skI‖idR)−1·h(skR‖idI)−1.
In addition, the assumption of knowing KID is natural.

Once the attacker knows h(skI‖idR), he initiates a normal key agreement proto-
col with R via the delegatee, as shown in Fig. 3b, using KID for computing the
MAC for the first message. Note that the attacker can participate successfully
in this key agreement since he does not need to know the secret skI , but the
encryption token h(skI‖idR). As a final comment on this attack, note that it
works even if the attacker initially does not know skR, but only the encryption
token h(skR‖idI).

KCI Attack 3. Previous KCI attacks supposed that the leaked secret was of a
user who later acted as the responder. Suppose now that the secret key of an
initiator I is leaked. Figure 3c shows the protocol flow of this attack, where the
attacker acts as the responder R. An attacker that knows the secret key skI of
the initiator can impersonate any user R if he is able to obtain h(skR‖idI). As
in the KCI attack 2, there are several ways to do this:

– Previous traffic between I and R. Knowing skI enables the attacker to com-
pute the t value from the messages of a protocol run, which in turn, can be
used to compute h(skR‖idI) from message M2.

– Using the delegatee as a re-encryption oracle. This requires knowledge of
KID.

– Assuming that the attacker controls the delegatee, colludes with it, or the
corresponding re-encryption key is leaked somehow.

Once the attacker knows h(skR‖idI), he can respond to normal key agreement
requests from I. As in previous KCI attacks, the attacker succeeds without actu-
ally knowing the secret skR, but the encryption token h(skR‖idI); similarly, this
attack works even if the attacker only knows the encryption token h(skI‖idR)
at the beginning.

As a final remark, KCI attacks 1 and 2 required the additional knowledge of
one of the pre-shared MAC keys, since in both of them the attacker imperson-
ated an initiator, whose messages are required to be validated, and therefore,
2 Note that in the traditional proxy re-encryption literature (i.e., in the public-key

setting), the re-encryption oracle is considered as a delicate point. See for example
[17], where several generic attacks using the re-encryption oracle are discussed.

464 D. Nuñez et al.

is performing a proactive impersonation. On the contrary, in this KCI attack
the attacker impersonates a responder, which implies that the impersonation is
reactive in this case (i.e., it requires that the initiator I starts the key agree-
ment). This can be achieved either by waiting for a key agreement request to
occur or by forcing it using some out-of-band mechanism (e.g., hard-resetting
the initiator’s device, social engineering, etc.).

3.3 Limited Scope of Key Revocation and Update

An interesting, yet not immediate, takeaway of the previous attacks is that
they exploit the following undesired properties of the protocol: (1) encryption
tokens can replace long-term secret keys, and (2) associated encryption tokens
(e.g., h(skI‖idR) and h(skR‖idI)) can be linked with each other through valid
protocol messages. These issues are problematic when long-term secret keys are
compromised, as illustrated by the attacks we identified.

A natural action that the affected principal performs once he becomes aware
of the compromise of his secret key, is to initiate some kind of key revoca-
tion/update procedure. In principle, one can believe that key revocation is an
effective countermeasure against a long-term key compromise event. However,
we show next that this is not the case: once the long-term key of a user is com-
promised, and even after key revocation and update is realized, the protocol still
remains vulnerable with respect to forward secrecy and key compromise imper-
sonation, for all users whom the affected user communicated before. This is a
consequence of the two undesired properties described above.

Breaking Forward Secrecy. As an illustration, suppose that the responder R
updates his secret key to sk′

R after his previous long-term secret skR is exposed,
revokes previous re-encryption keys and asks for their update. In order for the
protocol to be correct, the new re-encryption keys should be of the form rk′

I→R =
h(skI‖idR)−1 · h(sk′

R‖idI)−1, for all possible initiators I. Note that the term
h(skI‖idR) does not change with respect to the previous re-encryption key, and
therefore, the initiator I still uses this same encryption token when participating
in a key agreement with the responder R. The consequence of this is that an
attacker that was able to break forward secrecy before can extract h(skI‖idR)
from previous rounds of the protocol, since h(skI‖idR) has not changed. Using
this encryption token, the attacker can compute the corresponding t value from
the first message of the protocol (i.e., M1) of any future round, and break forward
secrecy again.

Key Compromise Impersonation. Suppose now that it is an initiator I who
updates his secret key to sk′

I . Analogously to the previous case, it is still pos-
sible for an attacker to recover h(skR‖idI) from previous traffic between I and
any other user R. However, in this case, the attacker does not limit himself to
passively eavesdrop protocol messages as above (i.e., breaking forward secrecy),
but can actively impersonate the responder R, given that he knows the value
h(skR‖idI) necessary to decrypt message M2. Notice how updating the secret

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 465

key of I does not have any effect on the encryption token that protects the
second message of the protocol.

Countermeasures. The only possible countermeasures against this problem are
either to issue a new identity for the affected user or to revoke also the users
that established communications with him previously. Both options do not seem
adequate nor practical.

4 Discussion

The previous attacks demonstrated that the main weaknesses of the AKAPR
protocol is that the encryption tokens are, in fact, long-term secrets, just as the
secret keys, and that the encryption tokens between two users can be linked
to each other. These problems make it possible for an attacker to perpetually
threaten the security goals of the protocol once he gains control of an encryption
token. In this section we informally discuss some possible amendments to this
protocol.

First, we note that if we assume that the initiator I is also capable of read-
ing Message 2 (from the delegatee D to the responder R), then this means he
can extract the encryption token h(skR‖idI). This is a plausible assumption in
several settings compatible with this protocol (e.g., wireless environments), and
it is also consistent with the philosophy of the Dolev-Yao model [8], by which
one can consider the network to be open and all its messages public and subject
to scrutiny by other entities. Therefore, it can be seen that this is function-
ally equivalent to the initiator I knowing this encryption token. Given that this
encryption token is implicitly known by the responder (since he can generate it),
then it acts as a sort of shared key between them. Therefore, a possible variation
of the protocol is to simply distribute this encryption token to the initiator when
he wants to commence a key agreement with responder R. This can be realized
by transforming the delegatee D into a mere key server that distributes these
encryption tokens to initiators. Therefore, instead of the delegatee re-encrypting
Message 1 into Message 2, which requires it to know a re-encryption key linking
two encryption tokens, he stores the “shared encryption tokens”.

Note that this variation is still compatible with achieving the goal of secrecy
with respect to the delegatee, simply by encrypting these encryption tokens with
the secret key of the corresponding initiator. Therefore, re-encryption keys stored
by the delegatee D are replaced by encryptions of encryption tokens. Specifically,
each rkI→R is substituted by an encrypted key ekI→R = EncskI

(h(skR‖idI)).
Note that this implies that ekI→R �= ekR→I , and therefore, this doubles the
number of keys managed by the delegatee D; nevertheless, this number is still of
quadratic order (since it is necessary to store a key between each pair of users of
the system), dominated by the number of users. This new type of keys eliminates
the link between encryption tokens, reducing this way the applicability of some of
the attacks we propose (although not completely). An interesting insight about
this variation is that it is extremely similar to the traditional Needham-Schroeder

466 D. Nuñez et al.

symmetric key agreement protocol [14], with the main difference that in this case
the key server (i.e., the delegatee) does not know the session keys because these
are encrypted by a separate key server (i.e., the KDC).

However, it is important to note that this variant still suffers from the long-
term nature of encryption tokens. An improvement to this respect could be
to include a timestamp in the encryption token generation, in a similar way
than Kerberos [15] improves over Needham-Schroeder protocol. Thus, encryption
tokens would be of the form h(skA‖idB‖Ti), where Ti represents a time period.
Although this could mitigate the attacks to a certain extent (since compromised
encryption tokens would only be useful for a given time period), it also implies
that the re-encryption keys should be recomputed by the KDC and distributed
to the delegatee on each time period. This can represent a great inconvenience
in some settings.

5 Conclusions

Proxy re-encryption (PRE) is a hot research topic nowadays, with new use cases
arising in different contexts. Most PRE schemes are based on public-key cryp-
tography, mostly because public key cryptography has become omnipresent in
most environments. PRE schemes using symmetric cryptography would make
an excellent contribution for IoT scenarios where devices are highly constrained,
but it is true that properly capturing the essence of PRE and providing secure
solutions in the same sense as in the public-key world is challenging.

In this paper we show how difficult is to properly define and implement PRE
in the symmetric world by exploring the weaknesses of a particular scheme pro-
posed at ESORICS 2016. This protocol tries to adapt previous proposals for
symmetric key PRE to the IoT scenario, focusing not only on providing a lighter
solution (not involving public-key cryptography) but also trying to avoid redun-
dant messages that are needed in well-know and deeply-studied authentication
and key exchange protocols (e.g., Needham-Schroeder).

Unfortunately the paper fails to accomplish its goals, mainly because of the
use of two immutable encryption tokens for every pair of communicating par-
ties that depend only on the secret keys of the initiator and the identity of the
responder (and vice versa). The way the protocol is designed implies that com-
promising the secrets of one party allows to obtain the encryption token of the
other party, which can be used to mount key compromise impersonation attacks
and break forward security. Moreover, revocation of compromised keys turns out
to be ineffective, which makes the protocol unusable in it present form.

Acknowledgments. This work was partly supported by the Junta de Andalućıa
through the project FISICCO (P11-TIC-07223) and by the Spanish Ministry of Econ-
omy and Competitiveness through the PERSIST project (TIN2013-41739-R). The first
author is supported by a contract from the Regional Ministry of Economy and Knowl-
edge of Andalućıa.

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 467

Appendix: Length-Extension Attacks

We now describe a completely different attack strategy, based on a potentially
dangerous design choice in the AKAPR protocol. The symmetric proxy re-
encryption primitive that underlies the key agreement protocol (see Sect. 2.1),
uses a keyed hash function to derive the encryption tokens. Specifically, these
values are of the form h(skA‖idB), where the identity of the recipient is used as
the message of a keyed hash, with h : {0, 1}∗ → Zp as the hash function3. The
authors state that the hash function is required to behave as a random oracle,
which can be a rather strong assumption. However, it is known that real instan-
tiations of hash functions do not necessarily behave as random oracles. In fact,
widely used hash functions such as SHA-1 and SHA-256 (as well as others based
on the Merkle-Damg̊ard construction) suffer from length-extension vulnerabili-
ties [22] that make possible to create new encryption tokens without knowing
skA, under the assumption that identifiers can have variable length.

First, let us recall the idea of length-extension attacks. In this type of attacks,
knowledge of the hash value h(m1) and the length of m1 can be used to compute
h(m1‖pad‖m2), for any message m2 chosen by the attacker and some required
internal padding pad. It is known that hash functions based on the Merkle-
Damg̊ard construction (e.g., MD5, SHA-1, SHA-256) are vulnerable to this type
of attacks. This problem has been shown to permeate to real systems, such as
the Flickr’s API signature forgery vulnerability [9].

In the AKAPR protocol, if we assume that identifiers can have different
lengths (i.e., id ∈ {0, 1}∗), then it may be possible that, for some identity idB ,
there exists an identity idBX where idB is a prefix. For example, let us assume
that idB = “Bob” and that the attacker knows h(skA‖idB), but that skA remains
secret. Then, by the length-extension vulnerability he can produce h(skA‖idBE),
where idBE = “Bob Esponja”4. For the sake of illustration, let us ignore the
internal padding pad for the moment.

As discussed in Sect. 3.2, an attacker that knows h(skA‖idBE) can imperson-
ate A in a key agreement with BE without knowing skA, regardless if he acts as
an initiator or a responder. The length-extension attack is particularly worrisome
when the attacker has access to previous traffic, or the delegatee is compromised
or deceived by the attacker; in this case, the delegatee can be used in combination
with the attack strategies presented in previous sections in order to compromise
the security of non-involved users. For example, let us suppose that an attacker
gains access to the private key of user B. Figure 4 shows a combination of some
of the attacks described in this paper that eventually compromise the security
of key agreements between users A and BE. An attacker that knows skB can
3 Note that when we assume that h is implemented with a traditional hash function,

it is also necessary an additional encoding from its output domain to Zp, as required
in Sect. 2.1; usual encodings of this type (e.g., taking modulo p) are easily invertible,
so we will omit this for simplicity.

4 “Bob Esponja” is the Spanish name for “SpongeBob SquarePants” [24]. Not asso-
ciated with the sponge-based hash function SHA3 [1], which, interestingly, is not
susceptible to length-extension attacks.

468 D. Nuñez et al.

trivially generate encryption tokens h(skA‖idB) associated to any other user
A; knowing this, he can compute the opposite encryption tokens using strate-
gies discussed in previous attacks (e.g., using the delegatee as an encryption
oracle, compromising the delegatee, analyzing previous traffic between A and
B). The resulting encryption tokens can be used as input to length-extension
attacks, undermining this way the security of other users. The output of the
length-extension attacks are also encryption tokens, which in turn, can be used
again to obtain more encryption tokens. Therefore, it can be seen how the initial
leakage of B’s secret can potentially affect key agreements between other users,
since once the attacker obtains h(skA‖idBE) and h(skBE‖idA), he can poten-
tially control all their past and future key agreements. Note that, although BE
is some user whose identity has idB as prefix (i.e., the choice of BE is not com-
pletely free), A is an arbitrary user, which is a serious threat to the application
of this protocol in a real setting.

skB

h(skB‖idA)

h(skA‖idB)

h(skA‖idBE)

h(skBE‖idA)

Trivial

Using the delegatee, analysis of previous traffic, ...

Length-extension attack

Using the delegatee, analysis of previous traffic, ...

Fig. 4. Abstract flow of a length-extension attack

We next describe some possible attack scenarios that apply this strategy in
combination with others of the previously identified attacks. In particular, we
illustrate two scenarios: the first is reminiscent of sybil attacks in distributed
networks, where a malicious entity gains control of multiple identities in order
to increase its control over a system or network; the second is similar to a spear
phishing attack, where the attacker targets specific victims aided by relevant,
yet fake, contextual information that gains the trust of the victim.

Sybil-Like Attack Scenario. The goal of the attacker in this scenario is to gain
as much encryption tokens as possible, each of them associated to a different
identity, and to start multiple key agreements with a victim A, who will believe
is communicating with different entities. In particular, the idea is to obtain

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 469

skB

h(skB‖idA)

h(skA‖idB)

h(skA‖idB1) h(skA‖idBn)
...

h(skB1‖idA) h(skBn‖idA)

...

Fig. 5. Abstract flow of a sybil attack

encryption tokens between A and fresh “pseudonyms” (all of them with the
same prefix in order to exploit the length-extension vulnerability, as described
before).

We initially assume either that the attacker is a legitimate user (e.g., user
B), or that he gained access to the secret key skB of some user B; this does
not matter from the point of view of the attack. Now, he can set up a sybil
attack against any user A of his choosing as follows, also represented in Fig. 5.
First, knowledge of skB allows to compute h(skB‖idA) trivially; next, using
the techniques described for previous attack strategies, the attack obtains the
opposite encryption token h(skA‖idB). Now he proceeds to launch the length-
extension attack against this hash value, by appending random i values to the
end of idB , obtaining as a result hashes of the form h(skA‖idB‖pad‖i). Therefore,
fresh pseudonyms will be identities of the form idBi = idB‖pad‖i. Note that in
this case the internal padding pad that is necessary for the length-extension
attack is not necessarily a problem (e.g., if identities have a numerical format);
the only important requirement from the point of view of the sybil attack is that
identities idBi are different from each other.

Finally, using once again the techniques for obtaining the opposite encryption
token, the attacker eventually obtains a set of encryption tokens of the form
h(skBi‖idA), for different i values, which enable him to mount a sybil-like attack
against entity A. The attacker can now start multiple key agreements with the
victim A, making him believe that there are several independent entities Bi,
which in fact are controlled uniquely by the attacker.

Spear Phishing Scenario. Suppose that an attacker gains access to skB , where
idB is a common but dangerous prefix (e.g., “Bank”). Once again, following the
previously discussed strategies, the attacker can obtain the encryption tokens
between a victim A and user B, namely h(skA‖idB), and later use this hash
value to derive new encryption tokens involving a tailored bait whose name starts
with “Bank” (e.g., “Bank of America”). Recall that the attacker does not need
to know the secret of “Bank of America”, but uses instead our attack strategies
to obtain an encryption token that compromises the security with respect to the

470 D. Nuñez et al.

victim A. This type of attack also works if, instead of compromising user B, we
suppose B does not initially exist and the attacker is capable of registering it
with the KDC as a new user.

There is, however, a small problem with the internal padding pad in this case.
Following our example, the length-extension attack would allow the attacker
to compute the encryption token h(skA‖“Bank”‖pad‖“of America”). Therefore,
the forged identity is actually “Bank”‖pad‖“of America”, which can be prob-
lematic if the padding allows the victim to detect the attack. We will, however,
illustrate with a real example how this problem can be overcome, and experi-
mentally demonstrate the viability of the attack.

Table 2. Spear phishing based on a length-extension attack

Original encryption token h(skA‖“Bank”)

Hash input (string) “????????????????????????????????Bank”

Hash input (hex) 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

3F 3F 3F 3F 3F 3F42 61 6E 6B

Hash output (hex) D2 7A D9 E5 FD FC 84 3E 8F 73 74 05 72

04 1D 80 72 48 F2 58 09 06 04 BF 5A 38

AA B7 B5 74 C8 CB

“Extended” encryption token h(skA‖“Bank”‖pad‖“of America”)

“Bank”‖pad‖“of America” (hex) 42 61 6E 6B 80 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 01 20 6F 66 20 41 6D 65 72

69 63 61

“Bank”‖pad‖“of America” (‘latin1’) “Bank of America”

Hash output (hex) 4F FA C6 1B A9 9F F2 AD 28 93 92 21 BD

7D 12 CF F4 01 BA C5 5F 41 C3 FB 64 41

F7 45 EE 17 5C A8

Suppose that the protocol uses SHA-256 as hash function and that secret keys
are of 256 bits. In our experimental attack, the secret key is the hexadecimal
value 3F (which corresponds to the character ‘?’) repeated 32 times; note that the
specific value of this key is irrelevant for the attack and that it always remains
unknown to the attacker. Table 2 shows the concatenation of the secret key and
the identity “Bank”, represented both as text and as hexadecimal strings, as
well as the output of the hash function for this input. We suppose now that the
attacker knows this output value (i.e., the encryption token h(skA‖“Bank”));
knowing this, the attacker can use the length-extension vulnerability of SHA-
256 to compute the encryption token h(skA‖“Bank”‖pad‖“of America”).

The concrete result for the length-extension attack applied to the previous
values is also presented in Table 2. Note that the first four bytes of the extended
identity correspond to the string “Bank” (42 61 6E 6B). Next, there is the

The Fallout of Key Compromise in a Proxy-Mediated Key Agreement 471

internal padding pad (80 00 ... 00 01 20), followed by the characters that
correspond to the extension string “of America” (6F 66 ... 63 61). It should
be noted that the intermediate padding may be rendered differently depending
on the implementation of the user agent (e.g., browsers, mobile apps, stand-
alone GUI, etc.), and some options may be exploitable. For example, when the
extended identity “Bank”‖pad‖“of America” is rendered with the ISO 8859-1
encoding (also called ‘latin1’), the intermediate padding may be ignored, depend-
ing on the implementation, since it is composed of NUL characters (00) and
invalid codes (80). This is the case of Python 2.7.10 implementation, which we
used for reproducing the length-extension attack, and that displays “Bank of
America” as the extended identity when ‘latin1’ encoding is selected. This can
be used to deceive users into believing they are interacting with the real Bank
of America, since the only difference between the legitimate identity and the
displayed extended identity are non-printable characters (i.e., the user cannot
visually distinguish one string from another). This also can be reproduced with
UTF-8 encoding if errors are ignored when printing UTF-8 encoded strings (in
Python this is achieved by specifying the option ‘ignore’).

We note that this example, although somewhat artificial, only makes rela-
tively common assumptions, such as the use of SHA256, secret keys of 256 bits,
‘latin1’ encoding of strings, variable-size identities, etc.

Countermeasures. As a simple and effective countermeasure to the length-
extension attack, the protocol can require the use of a hash function resistant
to length-extension attacks (e.g., SHA3), or even better, use an HMAC or a
key derivation function (e.g., HKDF [11]). HMACs and KDFs are specifically
designed to take a secret as input, and to be secure against length-extension
attacks.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion. NIST (Round 3) 6(7), 16 (2011, to be submitted)

2. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 23

3. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2013)

4. Chalkias, K., Baldimtsi, F., Hristu-Varsakelis, D., Stephanides, G.: Two types of
key-compromise impersonation attacks against one-pass key establishment proto-
cols. In: Filipe, J., Obaidat, M.S. (eds.) ICETE 2007. CCIS, vol. 23, pp. 227–238.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-88653-2 17

5. Cook, D.L., Keromytis, A.D.: Conversion functions for symmetric key ciphers. J.
Inf. Assur. Secur. 1(2), 119–128 (2006)

6. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

http://dx.doi.org/10.1007/978-3-642-40041-4_23
http://dx.doi.org/10.1007/978-3-642-40041-4_23
http://dx.doi.org/10.1007/978-3-540-88653-2_17

472 D. Nuñez et al.

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

8. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor.
29(2), 198–208 (1983)

9. Duong, T., Rizzo, J.: Flickr’s API signature forgery vulnerability (2009)
10. Garrison, W.C., Shull, A., Myers, S., Lee, A.J.: On the practicality of crypto-

graphically enforcing dynamic access control policies in the cloud. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 819–838, May 2016

11. Krawczyk, D.H., Eronen, P.: HMAC-based extract-and-expand key derivation func-
tion (HKDF). RFC. 5869, October 2015

12. Liu, Z., Huang, X., Hu, Z., Khan, M.K., Seo, H., Zhou, L.: On emerging fam-
ily of elliptic curves to secure internet of things: ECC comes of age. IEEE
Trans. Dependable Secur. Comput. 14(3), 237–248 (2016). doi:10.1109/TDSC.
2016.2577022. ISSN: 1545-5971

13. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

14. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

15. Neuman, B.C., Ts’o, T.: Kerberos: an authentication service for computer net-
works. IEEE Commun. Mag. 32(9), 33–38 (1994)

16. Nguyen, K.T., Oualha, N., Laurent, M.: Authenticated key agreement mediated
by a proxy re-encryptor for the internet of things. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 339–358.
Springer, Cham (2016). doi:10.1007/978-3-319-45741-3 18

17. Nuñez, D., Agudo, I., Lopez, J.: A parametric family of attack models for proxy
re-encryption. In: Proceedings of the 28th IEEE Computer Security Foundations
Symposium, CSF 2015, pp. 290–301. IEEE Computer Society (2015)

18. Nuñez, D., Agudo, I., Lopez, J.: Proxy re-encryption: analysis of constructions and
its application to secure access delegation. J. Netw. Comput. Appl. 87, 193–209
(2017)

19. Sakazaki, H., Anzai, K., Hosoya, J.: Study of re-encryption scheme based on
symmetric-key cryptography. In: 31st Symposium on Cryptography and Informa-
tion Security (SCIS 2014) (2014)

20. Strangio, M.A.: On the resilience of key agreement protocols to key compromise
impersonation. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043,
pp. 233–247. Springer, Heidelberg (2006). doi:10.1007/11774716 19

21. Syalim, A., Nishide, T., Sakurai, K.: Realizing proxy re-encryption in the symmet-
ric world. In: Abd Manaf, A., Zeki, A., Zamani, M., Chuprat, S., El-Qawasmeh,
E. (eds.) ICIEIS 2011. CCIS, vol. 251, pp. 259–274. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25327-0 23

22. Tsudik, G.: Message authentication with one-way hash functions. ACM SIGCOMM
Comput. Commun. Rev. 22(5), 29–38 (1992)

23. Watanabe, D., Sakazaki, H., Miyazaki, K.: Representative system and security
message transmission using re-encryption scheme based on symmetric-key cryp-
tography. J. Inf. Process. 25, 67–74 (2017)

24. Wikipedia: SpongeBob SquarePants – Wikipedia, the free encyclopedia (2016).
https://en.wikipedia.org/wiki/SpongeBob SquarePants. Accessed 18 Oct 2016

http://dx.doi.org/10.1109/TDSC.2016.2577022
http://dx.doi.org/10.1109/TDSC.2016.2577022
http://dx.doi.org/10.1007/978-3-319-45741-3_18
http://dx.doi.org/10.1007/11774716_19
http://dx.doi.org/10.1007/978-3-642-25327-0_23
https://en.wikipedia.org/wiki/SpongeBob_SquarePants

Improving Resilience of Behaviometric
Based Continuous Authentication
with Multiple Accelerometers

Tim Van hamme(B), Davy Preuveneers, and Wouter Joosen

imec-DistriNet-KU Leuven, Leuven, Belgium
{tim.vanhamme,davy.preuveneers,wouter.joosen}@cs.kuleuven.be

Abstract. Behaviometrics in multi-factor authentication schemes con-
tinuously assess behavior patterns of a subject to recognize and verify
his identity. In this work we challenge the practical feasibility and the
resilience of accelerometer-based gait analysis as a behaviometric under
sensor displacement conditions. To improve misauthentication resistance,
we present and evaluate a solution using multiple accelerometers on
7 positions on the body during different activities and compare the
effectiveness with Gradient-Boosted Trees classification. From a security
point of view, we investigate the feasibility of zero and non-zero effort
attacks on gait analysis as a behaviometric. Our experimental results
with data from 12 individuals show an improvement in terms of EER with
about 2% (from 5% down to 3%), with an increased resilience against
observation attacks. When trained to defend against such attacks, we
observe no decrease in classification performance.

1 Introduction

Multi-factor authentication schemes are adopting behavioral biometrics (or
behaviometrics) [3] to continuously verify in the background the identity of users
by leveraging information about the user’s device [21,22], context or the user’s
behavior [5,11] within that context. These trends are often referred to as Active
Authentication, also known as Context-aware [9], Continuous [19] or Implicit [20]
Authentication. The key challenges that these authentication schemes aim to
address are (1) the ability to conveniently and reliably authenticate the identity
of a user, and (2) to continuously assess the confidence in the user’s identity.

One well-known behaviometric is gait recognition [10,17] using accelerometer
data to analyze motion patterns. While this technique is hardly new, several
challenges from a practical feasibility and security point of view remain: (1)
there has been little research that investigates the practical resilience of such
schemes against sensor displacement, (2) reported high recognition rates were
only achieved in a controlled setup where the test subjects are known to walk,
making it difficult to ascertain the accuracy − or even the misauthentication
resistance − under other conditions and motion activities, and (3) the feasibility
and effectiveness of zero and non-zero effort attacks against gait analysis.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 473–485, 2017.
DOI: 10.1007/978-3-319-61176-1 26

474 T. Van hamme et al.

To the best of our knowledge, we are the first to evaluate the effectiveness of
using multiple accelerometers to collectively further improve this type of authen-
tication scheme. Additionally, in this work, we enhance the resilience against the
above threats with the following contributions:

– We investigate the effectiveness of accelerometers on 9 different places on the
body, and analyze the impact of different human activities on the EER.

– We research whether multiple accelerometers can enhance misauthentication
resistance, report on the use of different machine learning algorithms, and
discuss which combination of on-body positions is the most effective.

– We evaluate a solution that relies on a common set of features, rather than a
unique set for each type of activity, to improve classification robustness under
diverse circumstances and motion activities.

– We evaluate our authentication scheme against zero-effort and non-zero effort
attacks, and compare the results against single accelerometer schemes.

We evaluate our research on the public REALDISP benchmark dataset1 that
was previously collected to evaluate sensor displacement in activity recogni-
tion [2,4]. Based on a study with data from 12 individuals, our results show
a recognition improvement reducing the equal error rate (EER) from 5% down
to 3%, with an increased resilience against observation and spoofing attacks.

The remainder of this paper is structured as follows. In Sect. 2, we discuss
related work on accelerometer based gait authentication. Section 3 presents our
multi-sensor approach. In Sect. 4, we describe the experiments and results. We
conclude in Sect. 5 summarizing our main insights and discussing future work.

2 Related Work

This section reviews relevant research on gait authentication schemes, summa-
rizing the EER and recognition accuracy results in Table 1.

Table 1. Comparisng the EER and recognition rate of gait authentication schemes

Related work # Sensors Body position EER RR

Mantyjarvi et al., 2005 [13] 1 Hip 7% 88%

Gafurov et al., 2007 [7] 1 Hip (back pocket) 7.3% 86.3%

Annadhorai et al., 2008 [1] 1 Ankle ? 84%

Derawi et al., 2010 [6] 1 Hip 20% ?

Nickel et al., 2011 [16] 1 Hip (phone in pouch) 10.3% ?

Ngo et al., 2014 [15] 5 (1 at a time) Hip, back 14.3% ?

Lu et al., 2014 [12] 1 Different positions 14% ?

1 https://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+
Dataset.

https://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset
https://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset

Improving Resilience of Behaviometric Based Continuous Authentication 475

Mantyjarvi et al. [13] investigated the feasibility of using gait signals for iden-
tification using correlation, frequency domain and distribution statistics. For 36
subjects wearing the accelerometer on 2 different days, correlation proved to
be the best method, obtaining a 7% EER and a 88% recognition rate (RR).
Similar work by Gafurov et al. [7] compared absolute distance, correlation, his-
togram, and higher order moments to evaluate performance of the system both
in authentication and identification modes. Their analysis on 50 subjects showed
that the distance metric had the best performance with an EER of 7.3%, and
a recognition rate of 86.3%. Annadhorai et al. [1] identified subjects from gait
cycles using k-Nearest Neighbor classification. Features were extracted for each
gait cycle from accelerometer (3D), pitch and roll data. A subject was identified
with an accuracy of 84%. However, these results were obtained on a relatively
small data set, with only 2 walks from 4 different subjects. Derawi et al. [6]
tested the feasibility of gait as a behaviometric by using the accelerometer in a
smartphone. During an enrollment phase the average gait cycle is determined.
Two gait cycles are compared using Dynamic Time Wrapping (DTW). An EER
of 20% was achieved on a dataset containing 51 subjects, with two walks per
subject. Contrary to previous works, Nickel et al. [16] did not rely on extract-
ing gait cycles to calculate feature vectors, but used Hidden Markov Models to
classify gait patterns of 48 subjects. They reported a False Reject Rate (FRR)
of 10.42% at a False Acceptance Rate (FAR) of 10.29% (or an EER of ≈10.3%).
A large scale experiment was conducted by Ngo et al. [15] with 744 subjects
between 2 to 78 years old, walking under different ground slope conditions. They
verified four different gait based authentication methods. The authors conclude
that the maturity of the subject’s walking ability and the slope greatly influence
the performance of gait based user authentication. Lu et al. [12] describe a gait
verification system based on Gaussian Mixture Model - Universal Background
Model (GMM-UBM) framework. The design objective was to adapt the gait
model for mobile phones such that it can account for different body placements
and over time variance in the user’s gait pattern. The UBM was trained using
data from 47 different subjects, the user gait model was tested for 12 subjects.
The reported EER was 14%.

3 Challenges with Gait Authentication Schemes

This section identifies challenges and the gap that we aim to bridge when using
accelerometer based gait recognition as a behaviometric in real life scenarios.

3.1 Different Body Positions and Sensor Displacement

Most people own at least one mobile device, with different types of sensors.
In the future even more sensors will be attached to our body, in the form of
smart watches, activity trackers, smart shoes or even smart clothes. Therefore,
there is an opportunity to research what positions on the body are the most
characterizing and effective for authentication purposes.

476 T. Van hamme et al.

However, most of these devices are not fixed at all times to a certain place
on our body. They do have an area where they are normally located, but their
exact placement varies from time to time, e.g. changing your smartphone from
your left to your right pocket, or wearing pants with entirely different pockets.
These subtle sensor displacements in the real world, will have an impact on the
classification accuracy, and hence the effectiveness of accelerometer based gait
authentication schemes.

3.2 Misauthentication Resistance Under Different Motion Activities

Walking is not the only predominant activity in human life. We are sitting, run-
ning, cycling, climbing stairs, etc. as well. A behaviometric should be able to
deal with different types of activities. The related work showed that most tech-
niques (1) assume that people are walking and do not consider other activities;
(2) explicitly exploit gait cycles to extract features: their first step is always
to discover the gait cycle and extract it from the data sample. While the first
assumption is reasonable for completely different activities (Wilson et al. [24]
achieved an activity classification accuracy of 95%), this is not valid for the
latter. It is useless to extract gait cycles for sitting, and not straightforward to
find patterns similar to gait cycles for activities like rowing, going to the gym or
cycling. Moreover, the related work seemed to struggle when the walking condi-
tions changed slightly (i.e. changing the walking speed, the type of shoes used,
the amount of weight being carried, the type of surface and the inclination of
the ground). While it might be possible to classify whether the wearer of the
accelerometer is running or walking, and maintaining different models for both
cases, it certainly is not practical to repeat this for a range of different speeds.

We therefore investigate the feasibility of a common feature set − rather
than special features fitted to every particular activity − and the added value of
using multiple accelerometers for behaviometric-based authentication. We will
use data where the activity is known beforehand. This is reasonable because of
high accuracies achieved for activity recognition in other work [24]. Based on
our previous research in the field of activity recognition [18], our hypothesis is
that we can obtain even higher accuracies for our use case and setting, because
our solution does not rely on a fine-grained distinction between activities, as
discussed in Sect. 4.4.

3.3 Security Threats and Attacker Model

To evaluate the effectiveness of the proposed scheme, we consider the impact of
two different types of attacks:

– Zero-effort attack: the adversary is simply another subject in the database
that acts as a casual impostor

– Non-zero effort attack: the adversary actively masquerades as someone
else by mimicking and spoofing the gait pattern of the claimed identity

Improving Resilience of Behaviometric Based Continuous Authentication 477

In the zero-effort attack, we use the data of the other subjects as negative
examples for a given user to get insights into the probability of misauthentication.

A non-zero effort attack would occur when the attacker tries to obtain activity
patterns of the subject (i.e. observation and spoofing). The attacker attempts to
act like the subject by walking at the same pace or mimicking the characteristic
activity, as investigated in [8,14], or he can try to sneak an accelerometer into
the coat of the subject. To make these attacks harder to perform, we combine
multiple sensors on different places on the body. This way, we collect more data
to learn a subject’s movement patterns, with an opportunity to further decrease
the EER.

4 Evaluation

This section reports on the experiments conducted to test the concerns expressed
in Sect. 3. We use the public REALDISP benchmark dataset [2,4] to enable the
reproducibility of our research results. It contains 17 subjects, all performing 33
different actions, among which: walking, jogging, running, cycling, rowing, etc.
All subjects wore 9 sensors on different positions. They performed the set of
exercises twice: once with the sensors adjusted carefully by the makers of the
dataset; and once adjusting the sensors themselves. The data collected consists
of 3D accelerometer, 3D gyroscope, 3D magnetic field measurements and an
estimation of the orientation using quaternions. The sampling rate is 50 Hz.

4.1 Activity-Agnostic Behaviometrics

We do not make any assumptions on a particular motion pattern (e.g. presence
of gait cycles) so that our behaviometrics can be used for different types of
activities.

The REALDISP dataset contains 33 different activities. For each of them we
extracted features using the same approach: the data was split in intervals of 128
samples (which is ≈2.5 s). For each interval we calculated some straightforward
features, in both the time and frequency domain. Among them: mean, stan-
dard deviation, kurtosis, mean average derivation, energy in the signal, average
resultant vector. This led to a feature vector of length 224. Only the activi-
ties walking, jogging, running and cycling had a meaningful amount of samples
(≈23) per subject. Only 12 subjects appeared to have walking, running and jog-
ging data, of them only 9 cycled. Each subject had performed all actions twice,
once with self sensor placement and once with ideal sensor placement.

With authentication in mind, we trained a model for each subject and each
activity. We constructed a set which consists for 50% of samples belonging to
the subject and for 50% of samples from other subjects. The samples belong-
ing to the other subjects were sampled equally among the total distribution
w.r.t. subjects. For each subject adjacent samples w.r.t. time were taken. This
set was split in a training and test set using n-fold cross-validation. This process
splits the set in n temporal adjacent chunks, in a stratified manner, thus taking

478 T. Van hamme et al.

Table 2. Comparison of EER with different machine learning classifiers

SVM with
sigmoid kernel

SVM with rbf
kernel

kNN GBT Bagging AdaBoost Random forest

0.511 0.488 0.198 0.068 0.094 0.047 0.036

Table 3. EERs of ideally placed sensors

Walking Walking Jogging Running Cycling

BACK 0.036 0.010 0.040 0.020

LC 0.034 0.033 0.022 0.010

LLA 0.076 0.060 0.029 0.032

LT 0.033 0.021 0.011 0.012

LUA 0.062 0.045 0.019 0.031

RC 0.026 0.025 0.024 0.009

RLA 0.057 0.082 0.061 0.056

RT 0.016 0.018 0.015 0.011

RUA 0.071 0.064 0.031 0.022

into account to what user the samples belong. A model is trained n times, each
time leaving a different chunk out for testing. The others are used for training.
The number of false positives (fp), false negatives (fn), true positives (tp) and
true negatives (tn) are accumulated over the different iterations. This process
is repeated for every subject in the dataset. We compared different classifica-
tion algorithms by calculating the average EER of all body positions for the
walking activity (see Table 2). Support Vector Machines produced bad results
due to the small amount of training samples compared to the dimension of the
feature space. Ensemble methods like AdaBoosting, Random Forests, Bagging
and Gradient-Boosted Trees performed a lot better. Because of the robustness
w.r.t. outliers in other machine learning experiments and its ability to handle
heterogeneous features, we decided upon Gradient-Boosted Trees. We will use
this model throughout the following experiments.

4.2 Optimal Sensor Positions on the Body

The REALDISP dataset contains data from sensors placed on different positions.
This allowed us to evaluate which are the most relevant ones for authentication.
We used the approach described above to train a model for each subject. The
FAR and FRR can be tuned by demanding a minimal certainty before accepting
a sample as genuine. In a first experiment, we used the data collected during
walking under an ideal sensor placement. The results were evaluated using 8-fold
cross validation. 9 body positions were considered: the back (BACK), the left
(LUA) and right upper arm (RUA), the left (LLA) and right lower arm (RLA),

Improving Resilience of Behaviometric Based Continuous Authentication 479

Table 4. EERs of slightly displaced sensors (training on both self-placement and ideal
placement data) for each body position and different activities

Position Walking Jogging Running Cycling

BACK 0.054 0.035 0.059 0.051

LC 0.050 0.036 0.039 0.023

LLA 0.100 0.077 0.052 0.046

LT 0.050 0.043 0.042 0.021

LUA 0.090 0.049 0.035 0.033

RC 0.042 0.039 0.040 0.030

RLA 0.086 0.067 0.054 0.072

RT 0.051 0.027 0.033 0.028

RUA 0.074 0.059 0.050 0.028

Table 5. EERs when training on data from both sides of the body

Position Walking Jogging Running Cycling

RUA & LUA 0.079 0.052 0.055 0.042

RLA & LLA 0.081 0.066 0.064 0.056

RC & LC 0.044 0.052 0.053 0.030

RT & LT 0.055 0.039 0.048 0.025

the left (LC) and right calf (RC), the left (LT) and right thigh (RT). First, we
note that the results are very promising, with really low EERs: ≈8% in the worst
case scenario, and reducing further down to ≈2%. Second, the lower body seems
to be more relevant than the upper body.

We repeated the same experiment for the other activities: jogging, running
and cycling. The EERs are shown in Table 3. The conclusion that the lower
body is more informative than the upper body remains valid for the activities
considered. This observation holds in all subsequent experiments. Due to the
limited amount of data, we cannot make more fine-grained conclusions.

4.3 Impact of Sensor Displacements

In real life scenarios, a sensor will never be worn on the exact same position.
Therefore we investigated the effect of small sensor displacements.

In a first experiment the model was trained with walking samples where the
sensors were administered by a professional, while testing with walking data
when the sensors were self placed, and vice versa. The results plummeted, with
best case EERs of ≈45%, worst case up to ≈50%. This can be explained by the
lack of walks under sensor displacement in the training set.

480 T. Van hamme et al.

Table 6. EERs training on different activities

Position Without cycling With cycling

BACK 0.025 0.025

LC 0.020 0.015

LLA 0.055 0.031

LT 0.028 0.016

LUA 0.045 0.029

RC 0.035 0.017

RLA 0.055 0.037

RT 0.024 0.014

RUA 0.043 0.029

Fig. 1. EERs for walking. The left bar corresponds to Table 4 and the right to Table 3.

A second experiment uses data from both (ideal and self placement) walks
as training data. The best EER, for the RC sensor, is ≈5%. The worst EER is
≈10%.

The same experiment was repeated for the other activities as well. The results
are shown in Table 4. Our earlier conclusion that the upper body seems to be
less suited for authentication than the lower body still holds. On top of that,
the lower arm consistently has worse EERs than the upper arm. The increase in
amount of training data makes our results more consistent.

Figure 1 illustrates our conclusions. It shows the results w.r.t. EER for
the walking activity of the previous experiment (left bar) and the experiment
described in Sect. 4.2 corresponding with Table 3 (right bar). It can clearly be
seen that in both cases the upper body is less suited for authentication then the
lower body and the back. Furthermore, when data of both ideal and self sensor
placement (left bar) is used, the EERs suffer a bit, when compared to using data
of only ideal sensor placement.

In a third experiment the training set contained the data from the right part
of the body and tests were executed with the corresponding left side of the body.

Improving Resilience of Behaviometric Based Continuous Authentication 481

Table 7. EERs when combining multiple accelerometers

BACK LC LLA LT LUA RC RLA RT RUA

BACK 0.054 0.033 0.048 0.032 0.056 0.04 0.066 0.049 0.073

LC 0.037 0.052 0.049 0.061 0.067 0.036 0.043 0.049 0.062

LLA 0.051 0.05 0.1 0.05 0.081 0.054 0.083 0.059 0.055

LT 0.033 0.061 0.058 0.053 0.047 0.04 0.048 0.035 0.061

LUA 0.056 0.067 0.08 0.043 0.089 0.065 0.079 0.047 0.068

RC 0.04 0.037 0.057 0.043 0.074 0.044 0.046 0.047 0.061

RLA 0.066 0.042 0.082 0.047 0.08 0.045 0.086 0.051 0.066

RT 0.049 0.052 0.056 0.033 0.047 0.049 0.054 0.053 0.06

RUA 0.071 0.062 0.055 0.064 0.066 0.063 0.063 0.056 0.072

4 fold cross validation yielded EERs of approximately 45%. The clarification is
probably similar to the one in the first experiment: there is not enough training
data for this type of brutal sensor displacements.

In a fourth experiment the model was trained using data from both the right
and left sensor. The tests were conducted using 4 fold cross validation. The
results are shown in Table 5. We conclude that this type of sensor displacement
has no additional measurable impact.

4.4 Impact of Other Motion Activities

Earlier we argued that having a model for every activity is infeasible. Even more,
engineering optimal features for each activity under different circumstances is
impossible. We conduct an experiment where we train our model using different
activities. In a first experiment we use walking, jogging and running data, for
self and ideal sensor placements. The results, using 4 fold cross validation, are
shown in Table 6. Compared to training the model using only one activity, as
shown in Table 4, the results have improved. The best EER is ≈2%, while the
worst is ≈5.5%. We assume that using training data at different speeds improves
the EER. This needs to be verified using more fine grained data w.r.t. speed.

In the second experiment we added cycling to the dataset, which does not
seem to affect the results significantly (see Table 6). The EERs are lower than
in the first experiment, but cycling gave better results in previous experiments
as well. Furthermore, only 9 subjects were available for cycling.

4.5 Resilience Against Observation Attacks

To improve the EER and the resilience against observation and spoofing attacks,
we combined the data of two accelerometers. A feature vector of length 448
(2*224) is obtained. The experiment is similar as before, using walking data
for both self and ideal sensor placement. The results are shown in Table 7.

482 T. Van hamme et al.

As expected, combining the same sensor yields no new information. The val-
ues on the diagonal of Table 7 are similar to the results shown in Table 4. On top
of that, the order in which sensors are combined does not matter, since EERi,j ≈
EERj,i. The best result is achieved by combining the sensors adjusted on the
back and the left thigh, which gives an EER of ≈3%. This is an improvement
of ≈2% compared to using both sensors separately (see Table 4). However, if we
consider for each body position, the results for left and right sensor together,
the combination of a sensor placed on a calf with a sensor on the back yields
the best results. Furthermore, for each sensor placement, a combination with the
back sensor is among the best scoring. Combining two sensors does not always
lead to an improvement in performance, i.e. combining the right upper arm and
back sensor leads to an EER of ≈7%, this is higher then the ≈5% EER obtained
using the back sensor by itself.

For completeness we investigated what would happen if three sensors were
used together. This lead to a feature vector of length 672 (3*224). We conclude
that adding a third sensor leads to a minor improvement, but definitely not in
all circumstances. This is illustrated in Fig. 2. The left bar shows the EER corre-
sponding to each body position (as shown in Table 3). For each body position we
add the sensor that leads to the best combined EER. The EERs for two sensors
are shown by the middle bar. Then the third sensor, leading to the best EER is
added, which illustrated by the right bar.

Fig. 2. Each bar represents the EER of at least one sensor. The left bar shows the
EER when using only the first sensor from the description. The middle bar represents
EER of the first two sensors. The right bar, is the EER of all three sensors.

An attacker can execute an observation attack by collecting accelerometer
data through the HTML5 APIs of a mobile browser. An authentication system
relying on only one sensor would now be compromised. When two sensors are
used, we need to test the feasibility of misauthentication when the attacker
constructs a trace, using the obtained data and his own data for the second
sensor. We assume that the attacker knows the location of the second sensor.

To test the above use case we trained the system as we did before; using data
from the walking activity, where the sensors are placed on the back and the left

Improving Resilience of Behaviometric Based Continuous Authentication 483

calf. Positive training samples are combinations of traces from the subject itself.
Negative training samples consist of back and left calf data from other subjects.
We test the system with genuine combinations of traces and with constructed
combinations of traces by an attacker. The attacker combines an obtained a back
trace and his own left calf accelerometer data. This leads to bad results, an EER
of ≈17%. At a FRR (false rejection rate) of ≈10% a FAR (false acceptance rate)
of ≈37% is achieved. At the threshold used to achieve the result in Table 4, the
FAR is ≈43%.

In a last experiment we added some samples of the attack to the training
data. This lead to an EER of ≈4%, which is only slightly more then before
(0.037). The FAR is ≈1% when the FRR is ≈10%. When the old threshold is
used, the FAR is ≈4%. We conclude that the model has to be trained with the
observation attack in mind in order to be resilient against it.

The above results were obtained with a public dataset to guarantee the repro-
ducibility of our research results. However, this means there might be some
validity threats to generalize our research results. To address this concern, we
are collecting bigger datasets to confirm our findings.

5 Conclusion

In this work, we evaluated the resilience of the accelerometer as a behaviometric
for gait authentication, and more specifically the effect on the equal error rate
(EER) when using multiple sensors at different places on the body.

Our experiments on gait authentication with a single accelerometer using
Gradient-Boosted Trees and a fairly elaborate feature vector showed low EERs
and recognition accuracies that go beyond the state-of-the-art. For data col-
lected from 12 subjects and on 9 different places on the body, we obtained EER
values between 2 to 8% for ideally positioned sensors. However, further experi-
ments demonstrated that the accuracy dropped significantly after subtle sensor
displacements, with the EER worsening from single digits to about 45%. We
obtained similar results when sensors were displaced from one side to the other
side of the body. When we incorporate data from displaced sensors in our training
data set, the accuracy improves again with EERs between 5 to 10%, i.e. slightly
worse compared to our first experiment. We also measured the impact of other
motion activities, including jogging, running and cycling, and their effect on
misauthentication

We evaluated the effectiveness of multiple accelerometers for gait authen-
tication and the impact on the classification accuracy, demonstrating further
improvements in the EER of ≈2%. Additionally, as a hacker can carry out an
observation attack and obtain accelerometer data with the HTML5 APIs, we
investigated the resilience of our multi-sensor scheme against spoofing attacks.
Our experimental results show our scheme is more robust against such attacks
under the condition that not all sensors are compromised.

As future work, we will investigate to what extent motion patterns are inde-
pendent. We will execute additional attack experiments based on an adversary

484 T. Van hamme et al.

leveraging his own sensor data to reproduce traces of the victim in order to
ascertain whether such attacks are feasible and practical. Furthermore, we will
investigate whether it is feasible to modularize our multi-sensor behaviometric-
based authentication scheme, not by fusing the different data sets before training
but rather fusing individual decisions based on each data set [23], allowing for
more flexibility to combine different behaviometrics at runtime.

Acknowledgments. This research is partially funded by the Research Fund KU
Leuven and DiskMan. DiskMan is a project realized in collaboration with imec. Project
partners are Sony, IS4U and Televic Conference, with project support from VLAIO
(Flanders Innovation and Entrepreneurship).

References

1. Annadhorai, A., Guenterberg, E., Barnes, J., Haraga, K., Jafari, R.: Human iden-
tification by gait analysis. In: Proceedings of the 2nd International Workshop on
Systems and Networking Support for Health Care and Assisted Living Environ-
ments. p. 11: 1–11: 3. HealthNet ’08, NY, USA. ACM, New York (2008)

2. Baños, O., Damas, M., Pomares, H., Rojas, I., Tóth, M.A., Amft, O.: A benchmark
dataset to evaluate sensor displacement in activity recognition. In: Proceedings of
the 2012 ACM Conference on Ubiquitous Computing. pp. 1026–1035 (2012)

3. Bailey, K.O., Okolica, J.S., Peterson, G.L.: User identification and authentication
using multi-modal behavioral biometrics. Computers & Security 43, 77–89 (2014)

4. Baños, O., Tóth, M.A., Damas, M., Pomares, H., Rojas, I.: Dealing with the effects
of sensor displacement in wearable activity recognition. Sensors 14(6), 9995–10023
(2014)

5. Crossler, R., Johnston, A., Lowry, P., Hu, Q., Warkentin, M., Baskerville, R.:
Future directions for behavioral information security research. Computers and
Security 32, 90–101 (2013)

6. Derawi, M.O., Nickel, C., Bours, P., Busch, C.: Unobtrusive user-authentication
on mobile phones using biometric gait recognition. In: 2010 Sixth International
Conference on Intelligent Information Hiding and Multimedia Signal Processing.
pp. 306–311 (2010)

7. Gafurov, D., Snekkenes, E., Bours, P.: Gait authentication and identification using
wearable accelerometer sensor. In: 2007 IEEE Workshop on Automatic Identifica-
tion Advanced Technologies. pp. 220–225 (2007)

8. Gafurov, D., Snekkenes, E., Bours, P.: Spoof attacks on gait authentication system.
IEEE Transactions on Information Forensics and Security 2(3), 491–502 (2007)

9. Hayashi, E., Das, S., Amini, S., Hong, J., Oakley, I.: Casa: Context-aware scalable
authentication. In: Proceedings of the Ninth Symposium on Usable Privacy and
Security. p. 3: 1–3: 10. SOUPS ’13, NY, USA. ACM, New York (2013)

10. Kale, A., Cuntoor, N., Yegnanarayana, B., Rajagopalan, A.N., Chellappa, R.:
Gait analysis for human identification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA
2003. LNCS, vol. 2688, pp. 706–714. Springer, Heidelberg (2003). doi:10.1007/
3-540-44887-X 82

11. Kayacik, H.G., Just, M., Baillie, L., Aspinall, D., Micallef, N.: Data driven authenti-
cation: On the effectiveness of user behaviour modelling with mobile device sensors.
CoRR abs/1410.7743 (2014)

http://dx.doi.org/10.1007/3-540-44887-X_82
http://dx.doi.org/10.1007/3-540-44887-X_82

Improving Resilience of Behaviometric Based Continuous Authentication 485

12. Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verification for mobile
phones. In: Proceedings of the 2014 ACM International Symposium on Wearable
Computers. pp. 91–98. ISWC ’14, NY, USA. ACM, New York (2014)

13. Mantyjarvi, J., Lindholm, M., Vildjiounaite, E., Makela, S.M., Ailisto, H.A.: Iden-
tifying users of portable devices from gait pattern with accelerometers. In: Pro-
ceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2005. vol. 2, pp. ii/973-ii/976 Vol. 2 (2005)

14. Mjaaland, B.B.: The plateau: imitation attack resistance of gait biometrics. In:
Leeuw, E., Fischer-Hübner, S., Fritsch, L. (eds.) IDMAN 2010. IAICT, vol. 343,
pp. 100–112. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17303-5 8

15. Ngo, T.T., Makihara, Y., Nagahara, H., Mukaigawa, Y., Yagi, Y.: The largest iner-
tial sensor-based gait database and performance evaluation of gait-based personal
authentication. Pattern Recognition 47(1), 228–237 (2014)

16. Nickel, C., Busch, C., Rangarajan, S., Möbius, M.: Using hidden markov models
for accelerometer-based biometric gait recognition. In: 2011 IEEE 7th International
Colloquium on Signal Processing and its Applications. pp. 58–63 (2011)

17. Ntantogian, C., Malliaros, S., Xenakis, C.: Gaithashing: A two-factor authentica-
tion scheme based on gait features. Computers & Security 52, 17–32 (2015)

18. Ramakrishnan, A.K., Preuveneers, D., Berbers, Y.: A modular and distributed
Bayesian framework for activity recognition in dynamic smart environments. In:
Augusto, J.C., Wichert, R., Collier, R., Keyson, D., Salah, A.A., Tan, A.-H. (eds.)
AmI 2013. LNCS, vol. 8309, pp. 293–298. Springer, Cham (2013). doi:10.1007/
978-3-319-03647-2 27

19. Shepherd, S.: Continuous authentication by analysis of keyboard typing character-
istics. In: European Convention on Security and Detection. pp. 111–114 (1995)

20. Shi, E., Niu, Y., Jakobsson, M., Chow, R.: Implicit authentication through learn-
ing user behavior. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.)
ISC 2010. LNCS, vol. 6531, pp. 99–113. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 9

21. Spooren, J., Preuveneers, D., Joosen, W.: Mobile device fingerprinting considered
harmful for risk-based authentication. In: 8th European Workshop on System Secu-
rity, EuroSec 2015, France, April 21, 2015. p. 6: 1–6: 6 (2015)

22. Spooren, J., Preuveneers, D., Joosen, W.: Leveraging battery usage from mobile
devices for active authentication. Mobile Information Systems 2017, 14 (2017)

23. Tao, Q., Veldhuis, R.: Threshold-optimized decision-level fusion and its application
to biometrics. Pattern Recogn. 42(5), 823–836 (2009)

24. Wilson, J., Najjar, N., Hare, J., Gupta, S.: Human activity recognition using lzw-
coded probabilistic finite state automata. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA). pp. 3018–3023 (2015)

http://dx.doi.org/10.1007/978-3-642-17303-5_8
http://dx.doi.org/10.1007/978-3-319-03647-2_27
http://dx.doi.org/10.1007/978-3-319-03647-2_27
http://dx.doi.org/10.1007/978-3-642-18178-8_9
http://dx.doi.org/10.1007/978-3-642-18178-8_9

Security in Networks and Web

A Content-Aware Trust Index for Online
Review Spam Detection

Hao Xue(B) and Fengjun Li

The University of Kansas, Lawrence, KS, USA
{haoxue,fli}@ku.edu

Abstract. Online review helps reducing uncertainty in the pre-
purchasing decision phase and thus becomes an important information
source for consumers. With the increasing popularity of online review
systems, a large volume of reviews of varying quality is generated.
Meanwhile, individual and professional spamming activities have been
observed in almost all online review platforms. Deceptive reviews with
fake ratings or fake content are inserted into the system to influence
people’s perception from reading these reviews. The deceptive reviews
and reviews of poor quality significantly affect the effectiveness of online
review systems. In this work, we define novel aspect-specific indicators
that measure the deviations of aspect-specific opinions of a review from
the aggregated opinions. Then, we propose a three-layer trust framework
that relies on aspect-specific indicators to ascertain veracity of reviews
and compute trust scores of their reviewers. An iterative algorithm is
developed for propagation of trust scores in the three-layer trust frame-
work. The converged trust score of a reviewer is a credibility indicators
that reflects the trustworthiness of the reviewer and the quality of his
reviews, which becomes an effective trust index for online review spam
detection.

Keywords: Trust · Online review · Opinion mining

1 Introduction

With the increasing popularity of online social-collaborative platforms, people
get more connected and share various types of information to facilitate others’
decision-making processes. A vast amount of user-generated content (UGC) has
been made available online. For example, TripAdvisor.com, which specializes
in travel-related services, has reached 315 million unique monthly visitors and
over 200 million reviews. Yelp.com, which is known for restaurant reviews, has
a total of 71 million reviews of businesses and a monthly average of 135 million
unique visitors to the site. This plethora of data provides a unique opportunity
for the formation of “aggregated opinions”, from which people make reasonable
judgments about the quality of a service or a product from an unknown provider.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 489–508, 2017.
DOI: 10.1007/978-3-319-61176-1 27

http://TripAdvisor.com
http://Yelp.com

490 H. Xue and F. Li

However, the quality of UGC is problematic. For example, it has been
observed that a non-negligible portion of online reviews is unfairly biased or mis-
leading. To make things worse, deceptive reviews have been purposely planted
into online review systems by individual or professional spammers [6,12,18,39].
For example, recent studies on Yelp show that about 16% restaurant reviews are
considered suspicious and rejected by Yelp internally [20]. Opinions expressed
in deceptive reviews deviate largely from the fact to mislead the consumers to
make unwise decisions. This is known as online review spamming, which was first
identified by Jindal et al. in [12].

Many deterrence-based and reputation-based approaches have been adopted
to address the spamming problem in online review systems. For example, the
“Verified Purchase” mechanism of Amazon.com labels reviews that are posted
by consumers who actually have purchased the reviewed items. This label is
often perceived by consumers as a positive indicator of the trustworthiness of
the review. A more generally adopted approach is the “review of the review”,
which allows users to rate a review or vote for its “helpfulness”. Readers then use
the ratings and vote counts as a measure to assess the quality and the trustwor-
thiness of the review. While these mechanisms provide additional information
about how helpful or trustworthy a review is, their limitations are obvious. Sim-
ilar to reviews, the “review of review” is a subjective judgment that can be
easily gamed by purposeful spammers. Moreover, it suffers from inadequate user
participation. Surveys show that only a small portion of users provides reviews
online. Furthermore, among thousands of users who read a review, only a few
provides feedback. In most online review systems, a large amount of reviews does
not have any helpfulness or usefulness rating at all.

Detection-based mechanisms are considered more effective approaches to
address the review spamming problem. Many learning-based schemes have been
proposed to identify deceptive reviews and spamming reviewers from textual fea-
tures [12,23,25], temporal features [6,41], individual or group behavior patterns
of spammers [39], and sentiment inconsistency [18,24]. The rationale behind
these approaches is two-fold. Along the first direction, the detection models rely
on the deviation in rating behaviors. Since the objective of opinion spammers is
to alter users’ perception of the quality of a target, spammers often generate a
large amount of reviews, seemingly from different users, with extreme ratings.
In this way, spammers can significantly distort the mean rating. Such detection
focuses on rating-based features that reflect the deviation from the aggregated
rating (or the majority vote) [1,18] and other rating behaviors (e.g., change
of average rating over time, change of average ratings across groups of users,
etc.). While these approaches have been used with success, they can be easily
gamed by avoiding extreme rating behaviors. Along the second direction, detec-
tion schemes rely on text-based features, by identifying duplicated messages in
multiple reviews [12,23], or psycholinguistic deceptive characteristics [25]. These
approaches involve training classifiers with manually labeled reviews, which is
expensive and time-consuming. Combining review rating and textural features
at the same time, some approaches detect spam reviews whose ratings are incon-
sistent with the opinions expressed in the review text [18,24].

http://Amazon.com

A Content-Aware Trust Index for Online Review Spam Detection 491

Inspired by these approaches, we propose a content-based trust index for
review spam detection, which is based on a set of aspect-specific opinions
extracted from review content and iteratively computed in a three-layer trust
propagation framework. First, we have observed two types of spams – (1) “Low-
quality spams” that usually have short, poorly-written, sometimes irrelevant
content. The low quality spams are generated at low cost so they often come
in large quantity. These spams can be easily identified by existing detection
mechanisms. (2) “High-quality spams” that are long, carefully composed, and
well-written deceptive opinions. It is costly to generate such spams. However, it
is also very difficult to detect them, especially using text features.

In this work, we target the second type of spamming reviews, whose content
is carefully composed with bogus opinions. To engage the reader, these spams
may include fake information cues or social motivational descriptions, which
make them difficult to be detected by schemes using simple text-based features.
To tackle this problem, we propose aspect-specific indicators that measure the
deviation of an aspect-specific opinion of a review from the opinion aggregated
across all reviews on that aspect of the target, based on majority vote. Although
majority vote has some limitations in extreme cases, such as inertia against
sudden change of quality, we assume in most cases the aspect-specific majority
vote effectively reflects the fact. This is because in our approach, we first attempt
to remove the low-quality reviews, regardless of benign or deceptive, as they
do not contribute any meaningful opinion. With the remaining “meaningful”
reviews, we can reasonably assume the benign reviews always outnumber the
high-quality spams that are costly to generate. In extreme cases, where the
number of high-quality spams is larger than or comparable to the number of
truthful reviews, the review system is considered broken and no detection scheme
could work. The rationale behind our approach is that if every review carries
aspect-specific opinions, the majority vote on a common aspect should reflect
the factual quality of the target, so that the agreement between the opinion of a
review and the aggregated opinion reflects the quality of that review. Then, our
scheme considers multiple aspect-specific indicators and integrates the deviations
across all aspects.

To effectively integrate the aspect-specific indicators, we adopt a three-layer
trust propagation framework, which was first described in [38]. It calculates
trust scores for reviews, reviewers, and the aspect-specific opinions of the target
(defined as “statement”). To do this, we first apply opinion mining techniques to
extract aspect-specific opinions from the reviews, and then input them into the
three-layer trust propagation model that iteratively computes the trust scores by
propagating the scores between reviews, reviewers, and statements. As a result,
the converged trust score of a reviewer reflects his overall deviation from the
aggregated opinion across all aspects and all targets that he has reviewed. This
is a strong indicator of trust to distinguish benign reviewers and high-quality
spammers.

We summarize our contributions as: (i) We propose a novel aspect-specific
opinion indicator as a content-based measure to quantify the quality and trust-
worthiness of review content. And (ii) We develop an iterative three-layer trust

492 H. Xue and F. Li

propagation framework to compute trust scores for users, reviews, and state-
ments as a measure of users’ trustworthiness and stores’ reputation.

2 Related Work

Opinion Mining. Opinion mining has been used to analyze the opinions, sen-
timents, and attitudes expressed in a textual content towards a target entity.
It typically includes work from two related areas, opinion aspect extraction and
sentiment analysis. Aspect extraction aims to extract product features from
opinionated text. Many work considered it as a labeling task, thus rule based
methods are used extensively [10,19,31–33]. To group the extracted aspect into
categories, lexical tools like WordNet [22] is often used. Topic modeling-based
approaches are also very popular [3,4,13,17,36], as they are able to extract and
group aspects simultaneously. On the other hand, the goal of is to analyze the
polarity orientation of the sentiment words towards a feature or a topic of the
product. One of most common way is to use some sentiment lexicons directly,
such as MPQA Subjectivity Lexicon [40] and SentiWordNet [2]. However, just
like WordNet, these tools have their own limitations. Another common practice
is to infer the polarity of target words using a small group of seed terms with
known polarity [5,11,37]. In addition, supervised learning algorithms are often
applied in previous work [15,27,28,34]. In this work, we adopt the supervised
learning method as our opinion mining technique. Note that opinion mining is
not our focus here. The difference between our goal and typical opinion mining
work is that we are not trying to improve the performance of extracting opin-
ions. Instead, our purpose of applying opinion technique is to use the extracted
aspects as deviation indicators for trustworthiness analysis.

Trust Propagation. Trust and trust propagation have been extensively studied
in literature. The general idea of reinforcement based on graph link information
has been proved effective. HITS [16] and PageRank [26] are successful exam-
ples in link-based ranking computation. [39] applied graph-based reinforcement
model to compute trustworthiness scores for users, reviews, and stores. How-
ever, these approaches did not consider content information. [38] proposed a
content-driven framework for computing trust of sources, evidence, and claims.
The difference between this model and ours is that we extract more fine-grained
information from content, while the model in [38] mainly used the similarities
between content in general. In [38], the inter-evidence similarity plays an impor-
tant role to make sure that similar evidences get similar scores. However, the
consensuses of opinions used in our model already represent such similarity, so
we did not add the inter-evidence similarity. Besides, we also redefined the com-
putational rules in the context of our problem. In many work, trust is often
generated and transmitted in a graph of trust, such in [8,14,21,42]. Trust can
also be inferred from rating deviations [35]. Different from previous approaches,
our model derives trust from the consistence between an individual’s opinion
and the majority opinion.

A Content-Aware Trust Index for Online Review Spam Detection 493

3 Aspect-Specific Opinion Indicator

Existing content-based detection approaches take textual content of a review
as input, which often use word-level features (e.g., n-grams) and known lexi-
cons (e.g., WordNet [22] or psycholinguistic lexicon [18]) to learn classifiers that
identify a review as spam or non-spam. To train the classifier, costly and time-
consuming manually labeling of reviews is required. Due to subjectiveness of
human judgment and personal preferences, there is no readily available ground
truth of opinions. Therefore, a high-quality labeled dataset is difficult to obtain.
Some existing work adopt crowdsourcing platforms such as Amazon Mechani-
cal Turk to recruit human labeler, however, it is pointed out the quality of the
labeled data is very poor. Different from these approaches, our opinion spam
detection scheme focuses on deviation from the majority opinion. Although
biased opinions always exist in UGC, we argue that a majority of users may
be biased but honest, instead of maliciously deceptive. This is based on an over-
arching assumption regarding reviewer behaviors – that is the majority of reviews
are posted by honest reviewers, as recognized by many existing work on opinion
spam detection [1,18,24]. If this assumption does not hold, online peer review
systems will be completely broken and useless. As a result, we propose to use
the majority opinions as the “ground truth”.

3.1 Aspect Extraction

Existing work on opinion mining studies opinions and sentiments expressed in
review text at document, sentence or word/phrase levels. Typically, the overall
sentiment or subjectiveness of a review (document-level) or a sentence of a review
is classified and used as a text-based feature in spam detection. However, we
consider these opinions are either too coarse or too fine-grained. For example, it is
common that opposite opinions are expressed in an individual review – it may be
positive about one aspect of the target entity but negative about another. This is
difficult to capture using the document-level sentiment analysis. Therefore, the
derived review-level majority opinion is inaccurate and problematic. Another
direction of approaches proposes to use opinion features that associate opinions
expressed in a review with specific aspects of the target entity [9,24]. Intuitively,
opinion features are nouns or noun phrases that typically are the subjects or
objects of a review sentence. For example, in the below review, the underlined
words/phrases can be extracted as opinion features.

“This place is the bomb for milkshakes, ice cream sundaes, etc. Onion rings, fries,
and all other “basics” are also fantastic. Tuna melt is great, so are the burgers.
Classic old school diner ambiance. Service is friendly and fast. Definitely come
here if you are in the area ...”

Obviously, users may comment on a large number of very specific aspects
about the target entity. The derived opinion features are thus too specific and
too fine-grained to form a majority opinion on each feature, since other reviews
about the same target may not comment on these specific features. However,

494 H. Xue and F. Li

from the above example, we can see that opinion features such as “milkshakes”,
“fries”, and “burgers” are all related to an abstract aspect “food”. If we define
a set of aspect categories, opinion features about a same or a similar high-level
concept can be grouped together.

Consider a set of reviews (R), which are written by a group of users
(U) about a set of entities (E). Each review r ∈ R consists of a sequence
of words {w1, w2, ..., wnr

}. Then, we can define a set of m abstract aspects
a = {a1, a2, ...am}, and sentiment polarity label l = {l1, l2, ...lk}. As a result,
for each review r, we can extract a set of aspect-sentiment tuple, denoted as
aoi = <ai, li>, to represent the aspect-specific opinions of a user u towards a
target entity e.

Typical sentiment polarity labels include “positive”, “negative”, “neutral”,
and “conflict” [7,30]. Since “conflict” captures inconsistencies within a review
but does not contribute to inter-review consistence, we do not include this label
in our model. Abstract aspect categories are more difficult to define since they
are domain-specific and thus need to be carefully tuned for a given domain. In
this work, we use Yelp reviews as our dataset to study the credibility of users
and their reviews. Therefore, we define a small set of aspect categories including
four meaningful aspects food, price, service, and ambience for restaurant reviews.
We consider the opinion extractions as a classification problem and adopt the
support vector machine supervised learning model for opinion extraction. In this
way, we classify each sentence to a specific aspect, and group sentences in a review
about a same aspect as an aspect-specific “statement” (denoted as si). We use the
SemEval dataset [30], which is a decent-sized set of labeled data for restaurant
reviews, to train our classifier (see more details in Sect. 5). Our goal is to identify
an adequate number of aspects that are commonly addressed by all reviews so
that we can construct a credibility indicator from the aggregated opinions. In
fact, too many over-specific aspects complicate the credibility computing model
instead of improving it. Therefore, we combine all other aspect category labels
in the SemEval dataset as a fifth category “miscellaneous”. This is different from
previous work that considered all aspects in the classification [7].

Next, we conduct the aspect-specific sentiment classification upon the clas-
sified aspect-specific statements to obtain aspect-specific sentiment polarities.
For each category, the classification is conducted independently. For example,
to determine the sentiment polarities of the “food” category, we conduct a
sentiment classification upon all statements that have been classified into the
category “food”, and determine the aspect-sentiment tuples: “food-positive”,
“food-negative”, and “food-neutral”.

3.2 Opinion Vector and Quality Vector

To use the extracted opinions for further analysis, we define an opinion vector
o = [o1, ..., o5] to capture aspect-specific opinions and their sentiment polari-
ties. Each element of the opinion vector corresponds to an aspect of food, price,
service, ambience, and miscellaneous, respectively. Sentiment polarities are rep-
resented by element values, where a positive sentiment is denoted by “+1”,

A Content-Aware Trust Index for Online Review Spam Detection 495

a negative sentiment is denoted by “−1”, and neutral is denoted by “0”. Since a
statement may not necessary to express an opinion about an aspect, we distin-
guish no opinion expressed from a neutral opinion by defining a corresponding
opinion status vector os. For example, if a statement expresses three opinions,
positive about food, neutral about price, and negative about service, its opinion
vectors are o = [1, 0,−1, 0, 0] and os = [1, 1, 1, 0, 0].

With the opinion vectors, we can aggregate the opinions on multiple aspects
from all reviewers of an entity to form four aspect-specific aggregated opinions.
While aspect-specific opinions are subject judgements and thus can be biased,
the aggregated aspect-specific sentiments are highly likely to reflect the true
quality of the entity from a specific aspect. This is because individual biases are
typically smaller aspect level than at document level, which is more affected by
the weights subjectively assigned by individuals to multiple aspects. In this sense,
aspect-level bias can be corrected by the majority view if the review amount is
adequate. Furthermore, comparing with rating, aspect-specific opinions are more
difficult to be tampered by opinion spammers, whose review text are likely to be
pointless, wrong focused, or brief. Finally, the aggregated sentiments are robust
to correct the inaccuracy introduced by opinion mining models. Opinion mining
often suffers from precision problems, but our goal is to decide if the overall
aspect-specific opinion is positive, neutral, or negative. Although each individual
input incurs a small uncertainty, the chance to affect overall value is very small.
Based on these considerations, we derive the aggregated aspect-specific opinion
vectors as oagg = [oagg1 , ..., oagg5] and osagg = [osagg1 , ..., osagg5], where

oaggi =

⎧
⎪⎨

⎪⎩

1, avgi∈Ai
(oi) ≥ θp

−1, avgi∈Ai
(oi) ≤ θn

0, otherwise.
(1)

In this way, the aggregated sentiment polarity of each aspect is mapped to
the positive, neutral, and negative labels based on the averages. The aggregated
aspect-specific opinion vector is considered a quality vector, which can be used
to determine the credibility of a user statement. Intuitively, a statement is more
credible and of higher quality, if it expresses a consistent opinion with the aggre-
gated opinion about one aspect of the target entity, and thus the reviewer is
considered more honest and trustworthy.

4 Content-Based Trust Computation

We compute the aggregated aspect-specific opinion vector as a quality measure
and use individual aspect-specific opinion vector as a credibility (or trust) mea-
sure. To integrate trust measures across multiple users and multiple entities,
trust propagation models are commonly used [38,43]. Therefore, in this work,
we adopt a three-layer trust propagation model to compute iteratively the trust-
related scores for users, reviews, and aspect-specific statements.

The three-layer propagation model was first introduced in [38] to compute
trustworthiness of data sources of free-text claims online. Most of the previous

496 H. Xue and F. Li

work is based on a bi-partite graph structure, which ignores the content and
the context in which the content is expressed. The intermediate layer in the
three-layer model can include the content context (i.e., the reviews) and capture
the intertwined relationships between users, reviews, and opinions expressed in
specific statement. Therefore, we define three types of nodes, users, reviews, and
statements, and compute the trustworthiness scores from the obtained opinion
vectors. Each user is connected to the reviews she posts. Each review is connected
to the statements expressed in the review itself. The statement is defined as
an opinion expressed on a target in the review system, e.g. restaurant1-food-
positive. The structure is shown in Fig. 1. In the figure, ui, ri, and si represent
a user node, a review node, and a statement node respectively. h(ui), f(ri), and
t(si) are defined as the score of a user, a review, and a statement respectively.
The value p(ri, si) is a weight on the link from a review to a statement. These
values will be described in rest of this subsection shortly.

Fig. 1. Structure of the model

For each type of node, a score is defined, namely honesty for users, faith-
fulness for reviews, and truthfulness for statements. Different with the original
model in [38], we defined a support weight on the links between reviews and
statements, which measures the how supportive a review is for a statement. The
support weight is defined as the sentiment consistency between the review and
the statement it expressed. As mentioned above, there are three predefined sen-
timent polarities, positive, negative, and neutral. Here, if the sentiment polarity
expressed in the review on a specific aspect category is the same as the sentiment
polarity of the statement, then we say the review fully supports the statement.
On the other hand, if the sentiment polarities between a review and a statement
are totally opposite, i.e. positive and negative, or negative and positive, we say
the review rejects the statement. For all other cases, we say the reviews partially
support the statement. With these definitions, the values of support between
review ri and statement si are defined as:

p(ri, si) =

⎧
⎪⎨

⎪⎩

1, ri fully supports si

0, ri rejects si

0.5, ri partially supports si

(2)

A Content-Aware Trust Index for Online Review Spam Detection 497

As mentioned before, each type of node has a type of score that measures the
extent of trustworthiness. The honesty score for a user is defined in the following
equation:

hn+1(ui) = αhn(ui)

+ (1 − α)

∑

rj∈R(ui)

∑

sk∈S(rj)

[p(rj , sk) × tn(sk)]

|R(ui)| × |S(rj)|
(3)

Here, different with the original model in [38], under our definition, the hon-
esty score of a user consists of two parts. The first part is the honesty score from
the last round. We added this part because a user’s honesty does not entirely
depend on the feedback from his/her statements. The second part is the feedback
from the reviews and statements related to the user. R(ui) is the collection of
reviews that user ui posts. S(rj) is collection of statements review rj expresses.
tn(sk) is the truthfulness score of statement sk. p(rj , sk) is a support value of
review rj to statement sk. The second part is essentially a weighted average of
truthfulness scores of all statements that reviews of user ui expresses. The sup-
port value serves as a factor that controls the feedback. If a statement supports
a statement with high truthfulness score, the contribution from this statement
will be high. Otherwise, a user will be penalized for supporting a statement with
low truthfulness score or rejecting a statement with high truthfulness score. The
parameter α controls the ratio between the two parts. The faithfulness score for
a review is defined as:

fn+1(ri) = μfn(ri) + (1 − μ)hn(u(ri)) (4)

The faithfulness score of a review also comes from two parts, the faithful-
ness score from the previous round and the honesty score of the author. The
parameter μ is also used to control the ratio between the two parts. Here u(ri)
represents the user who writes review ri. The truthfulness score for a statement
is defined as:

tn+1(si) =

∑

rj∈R(si)

[fn(rj) × hn(u(rj)) × p(rj , si)]

|R(si)|
(5)

R(si) is the collection of reviews that express statement si. The truthfulness
score of statement si is essentially a weighted average of honesty scores of the
users whose reviews express this statement. The three types of scores are all
in the range [0, 1]. From the formulas above, it is obvious that the three types
of scores are defined in an intertwined relationship. The measurement of trust
is propagated along the structural connections. For example, a user’s honesty
score is dependent on the trustworthiness of the statements in his reviews, thus
the trust is propagated from his statements to the user himself, and further
propagates to his reviews and back to his statements. Each type of score gets
feedbacks from the other two, which allows reinforcement based on the con-
nections among the nodes. The scores of nodes are computed in an iterative

498 H. Xue and F. Li

Algorithm 1. Iterative framework to compute trust-related scores
Input:

Collections of users U , reviews R, and statements S;
Initial sentiment polarities for all statements in S;
Interpolation parameters α, μ;

Output:
honesty scores h(u) for all users in U , faithfulness scores f(r) for all reviews in R,
and truthfulness scores t(s) for all statements in S;
repeat

Compute the honesty scores for all users using (3)
Compute the truthfulness scores for all statements using (5)
Compute the faithfulness scores for all reviews using (4)
Normalize each type of score so that the largest is 1

until converged

computational framework, as shown in Algorithm1. After the model converges,
it outputs the final result.

5 Experiments

5.1 Dataset

We used two datasets in the experiments. We first used the SemEval dataset [30],
which contains 3,041 sentences from restaurant reviews, to train our classifier.
In SemEval, each sentence is labeled with one or multiple aspect categories
(i.e., food, service, price, ambience, and anecdotes/miscellaneous) and the cor-
responding sentiment polarities (i.e., positive, neutral, negative, and conflict).
As discussed in Sect. 3, the “conflict” sentiment category is not considered in
our model. We then split this dataset in 4:1 ratio with a training dataset and a
testing dataset of 2,432 and 609 labeled sentences, respectively.

We tested our content-aware trust propagation scheme on a second dataset
with restaurant reviews from Yelp.com, which is a subset of the dataset that we
crawled from Yelp.com in 2013. The entire dataset contains 9,314,945 reviews
about 125,815 restaurants in 12 U.S. cities from 1,246,453 reviewers between
2004 and 2013. In this experiment, we extracted a dataset for the city of Palo
Alto, California. It contains 128,361 reviews about 1,144 restaurants from 45,180
reviewers. Although our dataset contains rich information about the reviewers,
such as the total number of reviews, average ratings, social relationships, etc.,
we only used review content in this study.

5.2 Aspect Category and Sentiment Polarity Classifications

Aspect Category Classification. We use Support Vector Machine (SVM) in
the Python machine learning library scikit-learn [29] as the classifier for opin-
ion extraction. For feature extractions, we used the bag-of-words model and

http://Yelp.com
http://Yelp.com

A Content-Aware Trust Index for Online Review Spam Detection 499

extracted the tf-idf weights as features. The classifiers for aspect categories and
sentiment polarities are trained separately at sentence level.

Since SVM is a binary classifier, a trained SVM classifier can only classify
whether a sentence contains a category or not. However, a single sentence may
contain multiple aspect categories, which cannot be classified with a single SVM
classifier. Therefore, we trained five separate binary one-vs-all SVM classifiers
independently, one for each aspect category. For example, if a sentence contains
opinions about “food”, it is classified into the “food” category by the “food”
classifier. If it contains opinions about both “food” and “price”, the “food”
classifier identifies the sentence as “food”, and the “price” classifier also identities
it as “price” at the same time. The results of aspect category classification are
shown in Table 1.

Table 1. Classification performance of aspect category classifiers

Label Precision Recall F1-score Support Accuracy

food 0.81 0.78 0.80 238 0.844

not food 0.86 0.88 0.87 371

avg/total 0.84 0.84 0.84 609

price 0.91 0.62 0.73 65 0.952

not price 0.96 0.99 0.97 544

avg/total 0.95 0.95 0.95 609

service 0.82 0.69 0.75 122 0.906

not service 0.92 0.96 0.94 487

avg/total 0.90 0.91 0.90 609

ambience 0.83 0.52 0.64 84 0.920

not ambience 0.93 0.98 0.95 525

avg/total 0.91 0.92 0.91 609

anecdotes/miscellaneous 0.77 0.70 0.73 243 0.796

not anecdotes/miscellaneous 0.81 0.86 0.84 366

avg/total 0.79 0.80 0.79 609

For “avg/total” in the table, “avg” means the average of precision, recall,
and f1-score, respectively, and “total” denotes the total support of each cat-
egory. Among the five categories, the category anecdotes/miscellaneous has
the worst performance (with the lowest precision of 0.77). This category con-
tains the aspects that do not belong to any one of the other four categories.
Since it is always easier to determine if a sentence does not belong to the
anecdotes/miscellaneous category than it does, the precision, recall, and f1-
score of the “not anecdotes/miscellaneous” category are higher than the “anec-
dotes/miscellaneous” category.

Interestingly, we find that the food category, which is a most popular aspect
category for restaurant reviews, has the second-worst performance among the

500 H. Xue and F. Li

five categories. This may because many different terms and aspects representing
the food category. Using tf-idf weights as the features, it is difficult to have a
unified representation of the category. Therefore, it is relatively more difficult to
train an effective classifier for the food category than for others such as price or
service.

Sentiment Polarity Classification. After we obtain the classified results of
aspect categories, we apply the sentiment classifier in each category to com-
pute the category-based sentiment polarities. One review may contain multi-
ple opinions about multiple categories. For example, after sentiment polarity
classification, we can extract opinions as “food-positive”, “price-neutral”, and
“service-negative” from a single review. We show the results of sentiment polar-
ity classification in Table 2.

Table 2. Classification performance of category-based sentiment polarities

Label Precision Recall F1-score Support Accuracy

food, negative 0.39 0.36 0.38 33 0.740

food, neutral 0.50 0.04 0.07 25

food, positive 0.80 0.92 0.85 169

avg/total 0.71 0.74 0.70 227

price, negative 0.55 0.44 0.49 25 0.635

price, neutral 0.00 0.00 0.00 2

price, positive 0.67 0.81 0.73 36

avg/total 0.60 0.63 0.61 63

service, negative 0.66 0.69 0.67 48 0.698

service, neutral 0.00 0.00 0.00 7

service, positive 0.73 0.79 0.76 61

avg/total 0.66 0.70 0.68 116

ambience, negative 0.64 0.30 0.41 23 0.675

ambience, neutral 0.00 0.00 0.00 5

ambience, positive 0.68 0.92 0.78 49

avg/total 0.62 0.68 0.62 77

anecdotes/miscellaneous, negative 0.11 0.10 0.10 31 0.547

anecdotes/miscellaneous, neutral 0.60 0.49 0.54 96

anecdotes/miscellaneous, positive 0.60 0.73 0.66 107

avg/total 0.54 0.55 0.54 234

From the two tables, we can see that the performance of aspect category
classification is much better than category-based sentiment polarity classifica-
tion. This is because using bag-of-words model, it is easier to find representative
features for categories than for sentiment polarities. Sometimes, the sentiment
polarities are implicit and context-dependent. In addition, the category-based

A Content-Aware Trust Index for Online Review Spam Detection 501

sentiment analysis takes the classification results as aspect categories. Any inac-
curacy from previous classification results affects the overall performance. It is
worth noting that the classification performance of sentiment polarity in our
scheme is comparable to the baseline (e.g., some submissions in the SemEval 14
contest [30]).

The classifications of aspect categories and category-based sentiment polar-
ities are used as input to the trust propagation model. SVM does not yield
the best results, but the current classification results do provide a good set of
inputs to the trust propagation computation. Other supervise- and unsupervised-
classification models may yield higher precision and thus improve the perfor-
mance of our model.

5.3 Trustworthiness Scores Computation

We construct the proposed three-layer trust propagation model using the struc-
tural relationships among reviewers, reviews, and statements, where the state-
ments are aspect-specific opinions about the restaurants. There are in total three
different sentiment polarities, but for each restaurant there exists at most one
statement for a specific aspect category. Since the score of statement nodes
depends on the feedback from the other two types of nodes as well as the sup-
port value on the link, the sentiment of statement can be set to any arbitrary
polarity.

We conduct two sets of experiments which initialize the statement senti-
ments with two different settings. In the first set of experiments, we initialize
the statement sentiments based on the aggregated opinions, and in the second
set of experiments, we set all the statement sentiments as positive. In the experi-
ments, we only use four aspect categories, i.e., food, price, service, and ambience.
The category of miscellaneous is ignored since it is not an informative category
related to trustworthiness analysis. Finally, in the experiments, we set the values
of α and μ to 0.5.

Results. The average truthfulness scores of four aspect categories under two
statement sentiment initialization settings are shown in Table 3. In both settings,
food-related statements receive the highest scores.

Table 3. Average truthfulness scores of the statements of different categories under
different initialization settings

Category Initialized with majority opinions Initialized to be all positive

Food 0.744 0.620

Price 0.554 0.196

Service 0.471 0.276

Ambience 0.676 0.102

502 H. Xue and F. Li

Compared with scores using the first setting, the results from the second set-
ting all decreased. Truthfulness scores about categories except food have obvious
deduction, especially for the category ambience. This means that statements on
categories like price and ambience are more controversial and subjective, since
many “positive” statements about these categories are considered of low trust-
fulness.

Fig. 2. Distribution of scores when sentiments of statements are set based on majority
opinions. (a) Distribution of honesty scores for users. (b) Distribution of faithfulness
scores for reviews. (c) Distribution of truthfulness scores for statements

Fig. 3. Distribution of the scores when sentiments of statements are all set to be
positive. (a) Distribution of honesty scores for users. (b) Distribution of faithfulness
scores for reviews. (c) Distribution of truthfulness scores for statements

For score distributions, we first presents the results of the experiment where
we set the sentiments based on majority opinions, as it is the most intuitive
setting. The distributions of the honesty, faithfulness, and truthfulness scores are
shown in Fig. 2. The results show that for users and reviews, the scores roughly
follows normal distributions with mean both around 0.75, which indicate that
most of the users and reviews are somehow with some biased opinions but still
honest. The distribution of truthfulness scores are somehow skewed and pushed
to the right side. The results indicate that most claims are of high truthfulness
since they are initialized based on majority opinions.

A Content-Aware Trust Index for Online Review Spam Detection 503

We did the experiments under another setting to make sure our model works
as we expected. In the second setting, we make initial sentiment polarities of
the statements set to be positive. Under this setting, what can be expected
is that some statements would be false since in reality, they do not have that
kind of positive feedback, and thus these statements will receive much lower
truthfulness scores. However, the scores of users and reviews will not be affected
too much since our model will always award the users who express opinions
that are consistent with the majorities and penalized those who do not. In the
second set of experiments, when setting sentiment polarities of all statements
to be positive, the distributions of scores are shown in Fig. 3. The most obvious
change is that the distribution of truthfulness of statements is divided into two
parts, which is as expected from the results in Table 3. A part of statements
receive scores lower than 0.4, indicating these are the statements that becomes
false because of the arbitrary initialization of positive sentiment. Another part
of statements still have relatively high scores as they are still true under this
setting. Note that the changes in the distribution of statements scores do not
mean that our model is sensitive to initializations. The drop of truthfulness
scores of some statements is caused by the unreliable initial values of statements
(arbitrarily set to positive). During the trust propagation in our model, some
of truthfulness of the statements are penalized since the majority do not agree
that it should be positive. In fact, the changes of statements scores reflect how
our model treats unreliable statements and it is exactly what we expect to see.
For honesty and faithfulness, the distributions left shift a bit as some users are
affected by the false statement. As expected, the honesty scores and faithfulness
scores did not change much.

Evaluations. In this work, we did two kinds of evaluations, add synthetic data
and use human evaluators. The purpose of using synthetic data is to test whether
our model works in the way as we expected. To achieve this goal, we modified
the data of 20 users in the dataset and changed them to extreme cases. 10 users
are changed to fully support all the statements their reviews expressed. The rest
10 users are changed to reject all the statements their reviews expressed. With
the modified data, we conducted experiments under the setting that sentiments
of statements are set based on majority opinions. The distributions of the scores
are shown in Fig. 4. The scores of the users with synthetic data are shown in
Table 4.

Table 4. Average honesty scores of users with synthetic data

Synthetic type Min Average Median Max

Support 0.784 0.865 0.863 0.942

Reject 6.842e−12 0.002 6.842e−12 0.013

504 H. Xue and F. Li

Fig. 4. Distribution of the scores with synthetic data. (a) Distribution of honesty scores
for users. (b) Distribution of faithfulness scores for reviews. (c) Distribution of truth-
fulness scores for statements

The results of the synthetic data show that the model works the way as
expected, to award users who agree with majority opinions and penalize users
who do not. As mentioned before, we argue that the majority opinions reflect the
truth about the qualities of items in the review system, thus the honesty and
faithfulness scores we defined reflect the trustworthiness of users and reviews
respectively.

As for human evaluation, three human evaluators were involved. We ran-
domly selected twenty users from our dataset as the subject of the evaluation.
For each user, eight reviews were randomly picked. Since every two users could
form a pair, there would be 190 pairs in total. We randomly picked 20 pairs
to compare the users’ extent of honesty by asking the three evaluators to read
their reviews. For every pair of users, the evaluators were instructed to make a
judgment of which user was more honest. For example, for two users u1 and u2,
the judgment of honesty is either u1 > u2 or u1 < u2. We conducted two steps
of evaluations. In the first step, the only information about a user we provided
for the human evaluator was the eight randomly selected reviews. In the sec-
ond step, along with the reviews, we provided the ratings about the reviewed
restaurants on Yelp.com as facts of qualities.

Table 5. Agreement in first evaluation

Our model Evaluator 1 Evaluator 2 Evaluator 3

Our model 13 5 7

Evaluator 1 13 10 10

Evaluator 2 5 10 12

Evaluator 3 7 10 12

After we got the judgment from the evaluators, we compared the judgments
with the results of users’ honesty scores from our proposed model. In the model,
for each user, his/her honesty score can be computed. For each pair of users

http://Yelp.com

A Content-Aware Trust Index for Online Review Spam Detection 505

Table 6. Agreement in second evaluation

Our model Evaluator 1 Evaluator 2 Evaluator 3

Our model 13 12 13

Evaluator 1 13 7 12

Evaluator 2 12 7 13

Evaluator 3 13 12 13

u1 and u2, we can make a judgment according to the honesty scores h(u1) and
h(u2). The agreements among human evaluators and our model of first level
and second level evaluations are shown in Tables 5 and 6 respectively. Here the
agreement means that the judgment of whether a user is more honest than the
other is consistent between two results. For example, in not meaningful. In the
first evaluation, human evaluators just read the randomly selected reviews and
have no reference for quality judgment. By barely reading reviews, the evaluators
tend to make arbitrary judgments and the agreements between human and our
model are relatively low. In the second evaluation, evaluators have ratings of the
reviewed targets from Yelp.com as the group truth for qualities. Comparing the
results of the two tables, we find that the agreements between human evaluators
and our model in the second evaluation are higher than in the first one, which
means that by providing the actual ratings of the restaurants as facts, the human
evaluators were able to make more reasonable judgments and achieved better
consistency with our model. Also, comparing to the intra-human agreements,
the agreements between human evaluators and our model are pretty acceptable.

To further analyze the agreements between evaluators and our model, out
of the agreements between each pair of evaluators, we computed the ratio of
overlapping agreements of model and the pair of evaluators (e.g., the ratio of
agreements of model, evaluator 1, and evaluator 2 over the agreements between
evaluator 1 and evaluator 2). The computed ratios for the two evaluations are
shown in Table 7. The increased ratio of overlapping agreements in the second
evaluation indicates that with proper reference of quality, evaluators tend to
make similar judgments with our model. The judgments that our model disagree
with the evaluators, the evaluators themselves are also unlikely to agree with each
other. The evaluations show that our model is able to achieve higher consistency
with the human evaluators when they have fair reference of qualities. Thus, our
model is able to evaluate the extent of honesty of users.

Table 7. Ratio of overlapping agreements between model and each pair of evaluators
in two evaluations

Evaluator 1 & 2 Evaluator 1 & 3 Evaluator 2 & 3

First evaluation 0.400 0.500 0.167

Second evaluation 0.857 0.750 0.692

http://Yelp.com

506 H. Xue and F. Li

6 Conclusion

In this work, we study the problem of inferring trustworthiness from the con-
tent of online reviews. We first apply opinion-mining techniques using supervised
learning algorithms to extract opinions that are expressed in the reviews. Then,
we integrate the opinions to obtain opinion vectors for individual reviews and
statements. Finally, we develop an iterative content-based computational model
to compute honesty scores for users, reviews, and statements. According to the
results, there exist differences of statement truthfulness across different cate-
gories. Our model shows that the trustworthiness of a user is closely related to
the content of her reviews. The review dataset we used was collected in 2013. The
structures and content in the dataset are static and there is no dynamic changes
considered in our model. However, the reviews and qualities of restaurants tend
to change with time. In order to take the dynamic changes into account, we
plan to add a temporal dimension in our model in the future. For the opinion
mining task, we applied a supervised learning model and used a labeled dataset.
However, manually labeling dataset is usually both labor-intensive and time
consuming. In our next step, we will apply unsupervised learning methods such
as word2vec to group the aspect categories, and thus to automate the opinion
mining process.

References

1. Akoglu, L., Chandy, R., Faloutsos, C.: Opinion fraud detection in online reviews
by network effects. In: ICWSM (2013)

2. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 2200–
2204 (2010)

3. Brody, S., Elhadad, N.: An unsupervised aspect-sentiment model for online reviews.
In: Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 804–812.
Association for Computational Linguistics (2010)

4. Chen, Z., Mukherjee, A., Liu, B.: Aspect extraction with automated prior knowl-
edge learning. In: ACL, vol. 1, pp. 347–358 (2014)

5. Fahrni, A., Klenner, M.: Old wine or warm beer: target-specific sentiment analysis
of adjectives. In: Proceedings of the Symposium on Affective Language in Human
and Machine, AISB, pp. 60–63 (2008)

6. Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Exploiting
burstiness in reviews for review spammer detection. In: ICWSM (2013)

7. Ganu, G., Elhadad, N., Marian, A.: Beyond the stars: improving rating predictions
using review text content. WebDB 9, 1–6 (2009)

8. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and dis-
trust. In: Proceedings of the 13th International Conference on World Wide Web,
pp. 403–412. ACM (2004)

9. Hai, Z., Chang, K., Kim, J.J., Yang, C.C.: Identifying features in opinion mining
via intrinsic and extrinsic domain relevance. IEEE Trans. Knowl. Data Eng. 26(3),
623–634 (2014)

A Content-Aware Trust Index for Online Review Spam Detection 507

10. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 168–177. ACM (2004)

11. Jijkoun, V., Hofmann, K.: Generating a non-English subjectivity lexicon: relations
that matter. In: Proceedings of the 12th Conference of the European Chapter
of the Association for Computational Linguistics, pp. 398–405. Association for
Computational Linguistics (2009)

12. Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008 Inter-
national Conference on Web Search and Data Mining, WSDM 2008, pp. 219–230.
ACM, New York (2008)

13. Jo, Y., Oh, A.H.: Aspect and sentiment unification model for online review analysis.
In: Proceedings of the Fourth ACM International Conference on Web Search and
Data Mining, pp. 815–824. ACM (2011)

14. Jøsang, A., Marsh, S., Pope, S.: Exploring different types of trust propagation.
In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust
2006. LNCS, vol. 3986, pp. 179–192. Springer, Heidelberg (2006). doi:10.1007/
11755593 14

15. Kennedy, A., Inkpen, D.: Sentiment classification of movie reviews using contextual
valence shifters. Comput. Intell. 22(2), 110–125 (2006)

16. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
(JACM) 46(5), 604–632 (1999)

17. Konishi, T., Tezuka, T., Kimura, F., Maeda, A.: Estimating aspects in online
reviews using topic model with 2-level learning. In: Proceedings of the Interna-
tional MultiConference of Engineers and Computer Scientists, vol. 1, pp. 120–126
(2012)

18. Lim, E.P., Nguyen, V.A., Jindal, N., Liu, B., Lauw, H.W.: Detecting product review
spammers using rating behaviors. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM 2010, pp. 939–948.
ACM, New York (2010)

19. Liu, Q., Gao, Z., Liu, B., Zhang, Y.: A logic programming approach to aspect
extraction in opinion mining. In: 2013 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol.
1, pp. 276–283. IEEE (2013)

20. Luca, M., Zervas, G.: Fake it till you make it: reputation, competition, and yelp
review fraud. Manag. Sci. 62(12), 3412–3427 (2016)

21. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the
2007 ACM conference on Recommender systems, pp. 17–24. ACM (2007)

22. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

23. Mukherjee, A., Liu, B., Wang, J., Glance, N., Jindal, N.: Detecting group review
spam. In: Proceedings of the 20th International Conference Companion on World
Wide Web, WWW 2011, pp. 93–94 (2011)

24. Mukherjee, S., Dutta, S., Weikum, G.:
25. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by

any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, vol. 1
(2011)

26. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web (1999)

http://dx.doi.org/10.1007/11755593_14
http://dx.doi.org/10.1007/11755593_14

508 H. Xue and F. Li

27. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity
summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meet-
ing on Association for Computational Linguistics, p. 271. Association for Compu-
tational Linguistics (2004)

28. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL 2002 Conference on
Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Associ-
ation for Computational Linguistics (2002)

29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

30. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I.,
Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In: Proceed-
ings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pp. 27–35 (2014)

31. Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews.
In: Kao, A., Poteet, S.R. (eds.) Natural Language Processing and Text Mining, pp.
9–28. Springer, London (2007)

32. Poria, S., Cambria, E., Ku, L.W., Gui, C., Gelbukh, A.: A rule-based approach to
aspect extraction from product reviews. In: Proceedings of the Second Workshop
on Natural Language Processing for Social Media (SocialNLP), pp. 28–37 (2014)

33. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction
through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

34. Salvetti, F., Lewis, S., Reichenbach, C.: Automatic opinion polarity classification
of movie. Colo. Res. Linguist. 17(1), 2 (2004)

35. Than, C., Han, S.: Improving recommender systems by incorporating similarity,
trust and reputation. J. Internet Serv. Inf. Secur. (JISIS) 4(1), 64–76 (2014)

36. Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models.
In: Proceedings of the 17th International Conference on World Wide Web, pp.
111–120. ACM (2008)

37. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 417–424. Association for Compu-
tational Linguistics (2002)

38. Vydiswaran, V., Zhai, C., Roth, D.: Content-driven trust propagation framework.
In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 974–982. ACM (2011)

39. Wang, G., Xie, S., Liu, B., Yu, P.S.: Identify online store review spammers via
social review graph. ACM Trans. Intell. Syst. Technol. 3(4), 61:1–61:21 (2012)

40. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: an explo-
ration of features for phrase-level sentiment analysis. Comput. Linguist. 35(3),
399–433 (2009)

41. Xie, S., Wang, G., Lin, S., Yu, P.S.: Review spam detection via temporal pattern
discovery. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2012, pp. 823–831. ACM, New York
(2012)

42. Xue, H., Li, F., Seo, H., Pluretti, R.: Trust-aware review spam detection. In: 2015
IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 726–733. IEEE (2015)

43. Yin, X., Han, J., Philip, S.Y.: Truth discovery with multiple conflicting information
providers on the web. IEEE Trans. Knowl. Data Eng. 20(6), 796–808 (2008)

Securing Networks Against Unpatchable
and Unknown Vulnerabilities Using
Heterogeneous Hardening Options

Daniel Borbor1(B), Lingyu Wang1, Sushil Jajodia2, and Anoop Singhal3

1 Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, Canada
{d borbor,wang}@ciise.concordia.ca

2 Center for Secure Information Systems, George Mason University, Fairfax, USA
jajodia@gmu.edu

3 Computer Security Division,
National Institute of Standards and Technology, Gaithersburg, USA

anoop.singhal@nist.gov

Abstract. The administrators of a mission critical network usually have
to worry about non-traditional threats, e.g., how to live with known, but
unpatchable vulnerabilities, and how to improve the network’s resilience
against potentially unknown vulnerabilities. To this end, network hard-
ening is a well-knowfn preventive security solution that aims to improve
network security by taking proactive actions, namely, hardening options.
However, most existing network hardening approaches rely on a single
hardening option, such as disabling unnecessary services, which becomes
less effective when it comes to dealing with unknown and unpatchable
vulnerabilities. There lacks a heterogeneous approach that can combine
different hardening options in an optimal way to deal with both unknown
and unpatchable vulnerabilities. In this paper, we propose such an app-
roach by unifying multiple hardening options, such as firewall rule mod-
ification, disabling services, service diversification, and access control,
under the same model. We then apply security metrics designed for eval-
uating network resilience against unknown and unpatchable vulnerabili-
ties, and consequently derive optimal hardening solutions that maximize
security under given cost constraints.

1 Introduction

Today’s computing networks are playing the role of nerve systems in many mis-
sion critical infrastructures, such as cloud data centers and smart grids. However,
the scale and severity of security breaches in such networks have continued to
grow at an ever-increasing pace, which is evidenced by many high-profile security
incidents, such as the recent large scale DDoS attacks caused by the Mirai Botnet
on the Dyn DNS, and the cyber-physical attack on the Ukrainian power grid in
2015. The so-called zero-day attacks, which exploit either previously unknown or

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 509–528, 2017.
DOI: 10.1007/978-3-319-61176-1 28

510 D. Borbor et al.

known, but unpatched vulnerabilities, are usually behind such security incidents,
e.g., Stuxnet employs four different zero day vulnerabilities to target SCADA.
Therefore, administrators of a mission critical network usually need to worry
about not only patching known vulnerabilities and deploying traditional defense
mechanisms (e.g., firewalls, IDSs, and IPSs), but also non-traditional security
threats, e.g., how to live with known, but unpatchable vulnerabilities, and how
to improve the network’s resilience against potentially unknown vulnerabilities.

In fact, it is well known that both cybercriminals and governmental agencies
stockpile vulnerabilities that are not publicly known (e.g., the NSA reportedly
spent more than 25 million a year to acquire software vulnerabilities, and private
vendors are providing at least 85 zero-day exploits on any given day [16]). On
the other hand, even for known vulnerabilities, patching is not always a viable
option. For example, a patch may not be readily available at the time of the
attack, or the system may have reached their end-of-support with no more patch
available; patching a vulnerability may cause unacceptable service disruptions on
a regular basis (e.g., Windows updates); even worse, patching a vulnerability may
sometimes reintroduce other security vulnerabilities that have previously been
fixed (e.g., Apache MINA SSHD 2.0.14 introduces an SSL regression previously
fixed in 2.0.13 [20]).

Consequently, security professionals need to block the exploitation of such
vulnerabilities through other means, such as modifying firewall rules, service
diversification, or access control. A critical question is How to optimally combine
such options in order to both improve the security and lower the cost? To this
end, network hardening is a well-known preventive security solution that aims to
improve network security by taking proactive actions, namely, hardening options.
However, most existing network hardening approaches rely on a single hardening
option, such as disabling unnecessary services [9,21] or service diversification [6]
(a detailed review of related work will be given later in Sect. 5). Such a solution
becomes less effective when it comes to dealing with unknown and unpatchable
vulnerabilities. There lacks a heterogeneous approach that can combine different
hardening options in an optimal way to deal with such vulnerabilities.

Running Example. We first consider a concrete example to demonstrate why
deriving an optimal hardening solution with heterogeneous hardening options
would demand a systematic and automated approach. Figure 1 shows a hypo-
thetical network roughly based on Cisco’s cloud data center concept [5] as well
as the OpenStack architecture [11]. Despite its relatively small scale, it mimics
a typical cloud network, e.g., the client layer connects the cloud network to the
internet through the CRS 7600; a firewall (ASA v1000) separates the outside
network from the inner one. There is a security/authentication layer (authenti-
cation server, Neutron server, etc.) as well as a VM and Application layer (Web
and application servers). Finally, a storage layer is separated and protected by
another firewall (ASA 5500) and an MDS 9000.

We make the following assumptions about the network. We assume the two
firewalls and other host-based security mechanisms (e.g., personal firewalls or
iptables) together enforce the connectivity described inside the connectivity table

Securing Networks Against Unpatchable and Unknown Vulnerabilities 511

Fig. 1. An example cloud network.

shown in the figure. External users (including attackers) are represented with
host h0, and the most critical asset is assumed to be the Xen database server (h4),
which may be accessed through the three-tier architecture involving hosts h1, h2,
and h3. We assume the network is free of any known vulnerabilities, except for
an unpatchable vulnerability on the application server running SecurityCenter
5.5 (which cannot be changed due to functionality requirements), and another
one on the database server running MySQL 5.7 which may be changed to MSQL
2012 or PostgreSQL 9. For simplicity, we exclude exploits and conditions that
involve firewalls in this example.

To measure the network’s resilience against zero-day attacks, we apply the k-
zero-day safety metric (k0d) [25]. This metric basically counts how many distinct
services must be compromised using unknown vulnerabilities before an attacker
may compromise the critical asset (i.e., the number of distinct services along the
shortest path). In addition, we refine the metric by taking into consideration
the potentially uneven distribution of distinct services along the shortest path
[29,32] (e.g., a path consisting of three http and one Xen would be considered
slightly “shorter”, or less secure, than a path consisting of two http and two Xen,
although both paths have the same number of resource instances and resource
types).

For hardening options, we consider changes of both the firewall rules and
service types. First, we assume the administrator may enable or disable firewall
rules on both the firewall ASA v1000 (f1) and on the firewall ASA 5500 (f2).
On f1 he has a rule that allows the connection from the cloud user (h0) to the
app VM (h2); he also has the option to allow local user access to h1 and h2.
The firewall ASA 5500 (f2) has a rule where he allows the rsh connection on

512 D. Borbor et al.

h3 from h2, as well as local user access to h3 and h4. Second, we assume the
administrator has the option of replacing the Apache Mina 2.0.14 ssh servers
with either Copssh 5.8, OpenSSH 7.4, or Attachmate 8.0; the Web servers with
either Apache 2.4, IIS 8.5, NGINX 1.9 or a Litespeed 5.0.14 Web server; the rsh
service only uses MVRSHD 2.2.

Clearly, even with such a small scale network, the administrator now faces a
number of hardening options, including disabling service instances, diversifying
service types, and changing firewall rules, each of which may incur certain instal-
lation/maintenance costs (we will discuss the cost model in more details later in
Sect. 2). To maximize the resilience of the network against both unknown and
unpatchable vulnerabilities, the administrator must decide what would be the
optimal combination of such hardening options in order to maximize the afore-
mentioned security metric, while respecting given cost constraints. Such a task
would obviously be tedious and error-prone, if done manually, and demands a
systematic and automated approach.

In this paper, we develop such an approach to optimally combine heteroge-
neous hardening options in order to increase a network’s resilience again both
unknown and unpatchable vulnerabilities under various cost constraints. Specif-
ically, we first devise our model of different hardening options, costs, and the
security metric. We then develop optimization and heuristic algorithms to derive
optimal hardening solutions under given cost constraints. We evaluate our app-
roach through simulations in order to study the effect of optimization parameters
on accuracy and running time, and the effectiveness of optimization for differ-
ent types of networks. In summary, the main contribution of this paper is the
following.

– To the best of our knowledge, this is the first effort on network hardening
using heterogeneous hardening options.

– In contrast to previous works, we provide a refined security metric and an
improved cost model that takes into account real world variables in calculating
hardening costs.

– Our method is practically relevant to the defense of mission critical networks
in which unknown and unpatchable vulnerabilities are realistic security con-
cerns.

The remainder of this paper is organized as follows: In Sect. 2, we present
the model and formulate the optimization problem, and in Sect. 3 we discuss the
methodology and show case studies. Section 4 shows simulation results. Section 5
reviews related work and Sect. 6 concludes the paper.

2 The Model

We first introduce the extended resource graph model to capture network services
and their relationships, then we present the heterogeneous hardening control and
cost model, followed by the problem formulation.

Securing Networks Against Unpatchable and Unknown Vulnerabilities 513

2.1 Extended Resource Graph

To model network services and their relationships, we revise the Extended
Resource Graph concept introduced in our previous work [6] in order to model
both unpatchable and unknown vulnerabilities, as well as heterogeneous hard-
ening options. The extended resource graph of the running example is shown in
Fig. 2 and detailed below.

Fig. 2. The extended resource graph of our running example.

In Fig. 2, each pair shown in a rectangle is a security-related condition.
If the condition is a privilege, it is represented as 〈privilege, host〉; if it is
connectivity, it is represented as 〈source, destination〉. If a firewall affects a
security-related condition, it is represented as 〈privilege, firewall, host〉 or as
〈source, firewall, destination〉. Each one of the rows below the rectangle indi-
cate different hardening options available for that condition. The option cur-
rently in use is indicated by the highlighted integer (e.g., 0 means disabled; in
the case of service diversification, 1 means Apache, and 2 means IIS) and other

514 D. Borbor et al.

potential instances are in a lighter text. For the conditions modifiable by a fire-
wall rule, the rows below the rectangle indicate the firewall rules that affect it.

Each exploit node (oval) is a tuple that consists of a service running on
a destination host, the source host, and the destination host (e.g., the tuple
〈http, 1, 2〉 indicates a potential zero-day vulnerability in the http service on
host 2, which is exploitable from host 1). If the exploit is unpatchable, but
diversifiable, it is represented by a double oval; if it is neither patchable nor
diversifiable, it is represented as a colored oval (those different types of exploits
will contribute to the calculation of the security metric value, as detailed later).
The self-explanatory edges point from preconditions to an exploit (e.g., from
〈0, 1〉 and 〈http, 1〉 to 〈http, 0, 1〉), and from the exploit to its post-conditions
(e.g., from 〈http, 0, 1〉 to 〈user, 1〉).

We make two design choices here. The first is to associate the service instance
concept as a property (label) of a condition (e.g., 〈http, 1〉), instead of an exploit
(as in our previous work [6]). This label can then be inherited by the correspond-
ing exploits. The second design choice is that, while some conditions indicate the
involved firewall rules, the actual label values that they will take will depend on
the number of predefined modifiable rules in the firewall itself. For each firewall,
instead of modeling service instances, we model the number of modifiable firewall
rules that can be enabled. This would help to avoid the need for introducing new
conditions and exploits into the extended resource graph when firewall rules are
to be disabled and hence we may work with a fixed structure of the extended
resource graph. While the definitions of service pool and service instance remain
the same as in [6], Definitions 1 and 2 formally introduce the revised concepts.

Definition 1 (Firewall Rule Pool and Firewall Rule). Denote F the set
of all firewalls and Z the set of integers, for each firewall f ∈ F , the function
r(.) : F → Z gives the firewall rule pool of f which represent all modifiable
firewall rules of that firewall.

Definition 2 (Extended Resource Graph). Given a network composed of

– a set of hosts H,
– a set of services S, with the service mapping serv(.) : H → 2S,
– the collection of service pools SP = {sp(s) | s ∈ S},
– the collection of firewall rules FR = {r(f) | f ∈ F},
– a set of firewalls F , with the rule mapping r(.) : F →| FR |,
– and the labeling function v(.) = vf (.) ∪ vc(.) where vf (.) : f → F and vc(.) :

C → SP .

Let E be the set of zero-day exploits {〈s, hs, hd〉 | hs ∈ H,hd ∈ H, s ∈ serv(hd)},
and Rr ⊆ C × E and Ri ⊆ E × C be the collection of pre and post-conditions
in C. We call the labeled directed graph, 〈G(E ∪ C,Rr ∪ Ri), v〉 the extended
resource graph.

2.2 Heterogeneous Hardening Control and Cost Model

We introduce the notion of heterogeneous hardening control as a model to
account for all hardening options in a network where we represent each initial

Securing Networks Against Unpatchable and Unknown Vulnerabilities 515

condition as an optimization variable. We formulate the heterogeneous harden-
ing control vectors using those variables as follows. We note that the number of
optimization variables present in a network will depend on the number of initial
conditions that are affected by one or more hardening options. Since we only
consider remotely accessible services in the extended resource graph model, we
would expect in practice the number of optimization variables to grow linearly
in the size of the network (i.e., the number of hosts). We will further evaluate
and discuss the scalability of our solution in Sect. 4.

Definition 3 (Optimization Variable and Heterogeneous Hardening
Control). Given an extended resource graph 〈G, v〉, ∀c ∈ C and ∀f ∈ F , v(c)
and v(f) are optimization variables. A hardening control vector is the integer
valued vector V = (v(c1), v(c2), ..., v(c|C|) ∪ (v(f1), v(f2), ..., v(f|F |)

Changing the value of an optimization variable has an associated hardening
cost and the collection of such costs are given in a hardening cost matrix in a self-
explanatory manner. We make use of Gartner’s 2003 Total Cost of Ownership
(TCO) analysis report [19] to establish a realistic cost estimation of the cost of
different hardening options. Table 1 provides a reference as to which criteria is
applicable to different hardening options costs.

Table 1. Criteria to be used when calculating hardening costs for different hardening
options based on Gartner’s TCO [19]

Hardening option cost selection criteria

Gartner’s TCO criteria Firewall
connectivity

Firewall
layer 3

Firewall
access
control

Diversity

Downtime costs x

Operational costs x x x x

Support costs x x x

Changes in upgrade costs x x x x

Monitoring costs x x

Production costs x

Security management and
failure control costs

x x x x

Definition 4 (Hardening Cost). Given s ∈ S and sp(s), and given f ∈ F
and r(f), the cost to change from one specific hardening option to another is
defined as the hardening cost.

Definition 5 (Hardening Cost Matrix). The collection of all hardening
costs for all hardening options are given as a hardening cost matrix HCM . For

516 D. Borbor et al.

the different hardening options, the element at ith row and jth column indicates
the hardening cost of changing the ith hardening option to be the jth hardening
option.

Definition 6 (Total Hardening Cost). Let vs(ci) be the service associated
with the optimization variable v(ci) and V c0 the initial service instance values
for each of the conditions in the network. Let vf (fi) be the firewall associated
with the optimization variable v(fi) and V f0 the initial firewall rule set values
for each of the firewalls in the network. The total hardening cost, Qd, given by
the heterogeneous hardening vector V is obtained by

Qd =
|C|∑

i=1

CMvs(ci)(V c0(i),Vc(i)) +
|F |∑

i=1

CMvf (fi)(V f0(i),Vf (i))

We note that the above definition of hardening cost between each pair of
service instances has some advantages. For example, in practice we can easily
imagine cases where the cost is not symmetric, i.e., changing one service instance
to another (e.g., from Apache to IIS) carries a cost that is not necessarily the
same as the cost of changing it back (from IIS to Apache). Our approach of using
a collection of two-dimensional matrices allows us to account for cases like this.
Additionally, by considering instance 0, it provides us the advantage to model
disabling a service as a special case of service diversification if the hardening
option allows it. Nonetheless, our cost model can certainly be further improved,
as discussed in Sect. 6.

2.3 Problem Formulation

As mentioned in Sect. 1, the security metric that we will be using, denoted
as d, is based on the minimum number of distinct resources, excluding those
with unpatchable vulnerabilities, on the shortest attack path in the resource
graph [25], with the extension for considering the uneven distribution of services
along that path [29,32], as formally defined below.

Definition 7 (d-Safety Metric). Given an extended resource graph 〈G(E ∪
C,Rr ∪Ri), v〉, and a goal condition cg ∈ C; let t =

∑n
i=1 2−n | serv(hi)) | (total

number of service instances), and let pj = |hi:sj∈serv(hi))|
t (1 ≤ i ≤ n, 1 ≤ j ≤ n)

(relative frequency of each resource). For each c ∈ C and q ∈ seq(c) (attack
path), denote R(q) for s : s ∈ R, r appears in q, r is not unpatchable, we define
the network’s d-safety metric (where min(.) returns the minimum value in a set)
d = minq∈seq(cg)r(R(q)); where r(R(q)) is the attack path’s effective richness of
the services, defined as r(G) = 1∏n

1 p
pi
i

[29].

With the aforementioned models, the network hardening problem is to maxi-
mize the d value by changing the hardening options while respecting the available
budget in terms of given cost constraints. In the following, we formally formulate
this as an optimization problem.

Securing Networks Against Unpatchable and Unknown Vulnerabilities 517

Problem 1 (d-Optimization Problem). Given an extended resource graph
〈G, v〉, find a heterogeneous hardening control vector V which maximizes
min(d(〈G(V), v〉)) subject to the constraint Q ≤ B, where B is the available
budget and Q is the total hardening cost as given in Definition 6.

Since our problem formulation is based on an extended version of the resource
graph, which is syntactically equivalent to attack graphs, many existing tools
developed for the latter (e.g., the tool in [15] has seen many real applications
to enterprise networks) may be easily extended to generate extended resource
graphs which we need as inputs. Additionally, our problem formulation assumes a
very general model of budget B and cost Q, which allows us to account for differ-
ent types of budgets and cost constraints that an administrator might encounter
in practice, as will be demonstrated in the following section.

3 The Methodology

This section details our optimization and heuristic algorithms used for solving
the formulated heterogeneous hardening problem. We also illustrate the opti-
mization process through a few case studies.

3.1 Optimization Algorithm

Our first task is to select an optimization algorithm that would fit our harden-
ing problem. First, it is well known that most gradient-based methods require
to satisfy mathematical properties like convexity or differentiability, which are
not applicable to our problem. Second, the problem we want to solve includes
different if-then-else constructs to account for the different hardening technique
used, and thus, an algorithm that allows to insert this construct is necessary.
Additionally, since our optimization problem uses variables that are defined as
discrete (discrete variable space), a simple and robust search method and opti-
mization technique is needed. We find that metaheuristic algorithms provide
these advantages. Specifically, the Genetic Algorithm (GA) provides a simple
and clever way to encode candidate solutions to the problem [8]. One of the
main advantages is that we do not have to worry about explicit mathematical
definitions. For our automated optimization approach, we chose GA because it
requires little information to search effectively in a large search space in contrast
to other optimization methods (e.g., the mixed integer programming [4]).

The extended resource graph is the input to our automated optimization
algorithm where the fitness function is d. One important point to consider when
optimizing the d function on the extended resource graph is that, for each gen-
eration of the GA, the graph’s labels selected will dynamically change. This in
turn will change the value of d, since the shortest path may have changed with
each successive generation of GA and the change in the hardening options will
enable or disable certain paths. Our optimization tool takes this into consider-
ation. Additionally, if there are more than one shortest path that provides the

518 D. Borbor et al.

optimized d, our optimization tool gives priority to the paths by considering
the uneven distribution and relative frequency of resources in that path, thus
addressing one of the limitations that was present in [6] where no priority was
provided.

The constraints are defined as a set of inequalities in the form of q ≤ b,
where q represents one or more constraint conditions and b represents one or
more budgets. These constraint conditions can be overall constraints (e.g., the
total hardening cost Qd) or specific constraints to address certain requirements or
priorities while implementing the heterogeneous hardening options. The number
of independent variables used by the GA (genes) are the optimization variables
given by the extended resource graph. For our particular network hardening
problem, the GA will be dealing with integer variables representing the selection
of a hardening option. Because v(.) is defined as an integer, the optimization
variables need to be given a minimum value and a maximum value. This range
is determined by the number of instances provided in the service pool of each ser-
vice and firewall rule pool of each firewall. The initial service instance for each of
the services and the initial set of firewall rules are given by the extended resource
graph while the final heterogeneous hardening control vector V is obtained after
running the GA.

3.2 Case Studies

In the following, we demonstrate different use cases of our method with varying
cost constraints and hardening options. For these test cases, the population size
defined for our tool is set to be at least the value of optimization variables (more
details will be provided in the coming section). This way we ensure the individu-
als in each population span the search space. We ensure the population diversity
by testing with different settings in genetic operations (like crossover and muta-
tion). For all the test cases, we have used the following algorithm parameters:
population size = 100, number of generations = 150, crossover probability = 0.8,
and mutation probability = 0.2 (Fig. 3).

Test case A: Qd ≤ 500 units with firewall rule constraints. We start with the
simple case of one overall budget constraint (Qd ≤ 500). There are 11 different
services-based optimization variables and 2 firewall-based optimization variables.
If no firewall rules are changed, the solution provided by the GA yields d =
2.7529. In this case, because of the firewall rules that are enabled, the metric
cannot be increased any further.

On the other hand, if we allow the firewall rules to be modified, while main-
taining the overall budget Qd ≤ 500, the optimization results will be quite dif-
ferent. The solution provided by the GA is a d metric of 3.3895. This total
hardening cost satisfies both the overall budget constraints. We can see that the
hardening options enforced by the firewall rules in our optimization tool can
affect the optimization. Nevertheless, additional budget constraints might not
allow achieving the maximum d possible.

Securing Networks Against Unpatchable and Unknown Vulnerabilities 519

Fig. 3. Test case A: Effect of modifiable hardening options and budget constraints.

Test case B: Qd ≤ 500 units with a critical service with an unpatched vulnerabil-
ity. While test case A shows how enabling or disabling predefined firewall rules
can affect the d metric optimization, when considering the effects of unpatch-
able vulnerabilities the d metric value will change. This test case models such
a scenario by assigning a restriction for the ssh services not to be diversified or
disabled.

In the graph, we can see that the ssh service is highlighted to represent the
fact that it cannot be patched. The solution provided by the GA is d = 2.8284.
While the increase is less than when the ssh service can be diversified, we can
still have an increase in the d metric even with unpatchable vulnerabilities on
the network (Fig. 4).

As seen from the above test cases, our model and problem formulation makes
it relatively straightforward to apply any standard optimization techniques, such
as the GA, to optimize the d metric through combining different network hard-
ening options while dealing with unpatchable and unknown vulnerabilities and
respecting given cost constraints.

520 D. Borbor et al.

Fig. 4. Test case B: Effect of having an unpatchable vulnerability in the network.

3.3 Heuristic Algorithm

All the test cases described above rely on the assumption that all the attack paths
are readily available. However, this is not always the case in practice. Due to the
well-known complexity that resource graphs have inherited from attack graphs
due to their common syntax [29,32], it is usually computationally infeasible to
enumerate all the available attack paths in a resource graph for large networks.
Therefore, we present a modified version of the heuristic algorithm [6] to reduce
the search complexity when calculating and optimizing the d metric by only
storing the m-shortest paths at each step. The following briefly describes the
modified algorithm.

The algorithm starts by finding the initial conditions that are affected by
the modifiable firewall rules and stores them on a list γ. After that, it topo-
logically sorts the graph and proceeds to go through each one of the nodes on
the resource graph. If an exploit is a post-condition of one of the conditions in
γ, it is not included in the set of exploits σ(). The main loop cycles through

Securing Networks Against Unpatchable and Unknown Vulnerabilities 521

each unprocessed node. If a node is an initial conditions, the algorithm assumes
that the node itself is the only path to it and it marks it as processed. For each
exploit e, all of its preconditions are placed in a set. The collection of attack
paths α(e) is constructed from the attack paths of those preconditions. In a
similar way, σ′(ov(e)) is constructed with the function ov() which, aside from
using the exploits, includes value of elements of the hardening control vector
that supervises that exploit.

If there are more than m paths to that node, the algorithm will first look for
the relative frequency of each unique combination of exploit and service instance
in α′(ov(e)). Then, the algorithm creates a dictionary structure where the key is
a path from α(e) and the value is the effective richness of service/service instance
combinations given by each one of the respective paths in α′(ov(e)). A function
ShortestM() selects the top m keys whose values are the smallest and returns the
m paths with the smallest effective richness value. If there are less than m paths,
it will return all of the paths. After this, it marks the node as processed. The
process is similar when going through each one of the intermediate conditions.
Finally, the algorithm returns the collection of m paths that can reach the goal
condition cg. It is worth noting that by considering the effective richness of each
path, the algorithm provides a path a priority based on the relative frequency
of the combination of unique service with service instance.

4 Simulations

In this section, we show simulation results. All simulations are performed using
a computer equipped with a 3.0 GHz CPU and 8GB RAM in the Python 2.7.10
environment under Ubuntu 12.04 LTS and MATLAB 2015a’s GA toolbox. To
generate a large number of resource graphs for simulations, we first construct a
small number of seed graphs based on realistic cloud networks and then gener-
ate larger graphs from those seed graphs by injecting new hosts and assigning
resources in a random but realistic fashion (e.g., the number of pre-conditions
of each exploit is varied within a small range since real world exploits usually
have a constant number of pre-conditions).

For the different hardening options that are implemented through firewall
rules, we randomly select 10% of the initial conditions. Additionally, to analyze
the effect of unpatchable vulnerabilities, our graphs include randomly assigned
unpatchable services. The resource graphs are used as the input for the optimiza-
tion toolbox where the objective function is to maximize the minimum d value
subject to budget constraints. In all the simulations, we employ the heuristic
algorithm described in Sect. 3.3.

To determine the genetic operators, we used the hill climbing algorithm. Our
simulations showed that (detailed simulation results are omitted here due to
page limitations), using the GA with a crossover probability of 80%, a mutation
rate of 20%, and setting the number of generations to 70 will be sufficient to
obtain good results. Additionally, our experiences also show that, because our
largest resource graph had a heterogeneous hardening control vector of fewer

522 D. Borbor et al.

m
(the parameter for the number of shortest paths

for the heuristic algorithm)

1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 ti

m
es

 (s
)

1

2

3

4

5

6

7

8

9

10
Number of selected minimum paths

5 optimization variables
10 optimization variables
15 optimization variables
20 optimization variables
25 optimization variables
32 optimization variables

Fig. 5. The processing time.

Generations
50 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8
54 nodes

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

Fig. 6. The accuracy vs. m (the parameter of the heuristic algorithm).

Securing Networks Against Unpatchable and Unknown Vulnerabilities 523

than 100 variables, we could set the population size equal to 200; nevertheless,
we believe that when dealing with a bigger number of optimization variables,
the population size should be at least twice the number of variables.

The complexity of our proposed solution will depend on the objective func-
tion, the population size, and the length of hardening control vector. We note
that the optimization problem here is NP-hard since the sub-problem of finding
the shortest paths (within the objective function) in resource graphs is already
intractable by the well know results in attack graphs [29,32] and the common
syntax between resource graphs and attack graphs. We will therefore rely on
the heuristic algorithm presented in Sect. 3.3. Figure 5 shows that the processing
time increases almost linearly as we increase the number of optimization vari-
ables or the parameter m of the heuristic algorithm. The results show that the
algorithm is relatively scalable with a linear processing time.

The accuracy of the results presented in Fig. 5 is also an important issue to
be considered. This is address through the simulations depicted in Fig. 6. Here
the accuracy refers to the approximation ratio between the result obtained for
the d metric using our heuristic algorithm and that of simply enumerating and
searching all the paths while assuming all services and service instances are dif-
ferent (dHeuristic

dBruteForce
). The heterogeneous hardening control vector provided by the

GA is used to calculate the accuracy. A ration close to 1 indicates that our algo-
rithm can provide a solution that is closer to the one provided by enumerating
all paths (brute force). From the results, we can see that when m is greater or
equal to 4 the approximation ratio reaches an acceptable level. For the following
simulations, we have settled with an m value of 9.

We also consider the ratio between the difference in the d metric before and
after optimization, (dOptimized−dNotOptimized

dNotOptimized
), which will be called the gain of

the d metric (or simply the gain). The gain provides us with an idea on how
much room there is to improve the security with respect to given cost con-
straints using our method. Figure 7 shows that the gain will increase linearly
as we increase the number of firewall-based hardening options. These results
confirm that firewall-based hardening options can positively affect our effort to
provide better resilience for cloud networks against zero-day attacks. Addition-
ally, the figure shows that the number of unpatchable vulnerabilities that are
present in the network will significantly reduce the gain that can be achieved
through other hardening techniques. Since it is not probable to find a large num-
ber of unpatchable vulnerabilities all at the same time within a network, we only
consider up to three unpatchable vulnerabilities.

In Fig. 8, we analyze the average gain in the optimized results for different
sizes of graphs. In this figure, we can see that we have a good enough gain for
graphs with a relatively high number of nodes. As expected, as we increase the
number of unpatchable vulnerabilities, the gain will decrease. However, we can
also see this decrease is linear. In the case where no unpatchable vulnerabilities
are present, we can see that the gain stops to increase after reaching a certain
size of the graph, which can be explained as that the number of available service

524 D. Borbor et al.

The number of modifiable firewall rules
1 2 3 4 5 6 7

G
ai

n

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Average gain as a function of
modifiable firewall rules

0 unpatchable vuln.
1 unpatchable vuln.
2 unpatchable vuln.
3 unpatchable vuln.
4 unpatchable vuln.
5 unpatchable vuln.
6 unpatchable vuln.

Fig. 7. The average gain based on the number of modifiable firewall rules.

The number of nodes
50 100 150 200 250 300 350 400 450 500 550

G
ai

n

1

1.5

2

2.5

3

3.5

4
Average gain versus the number of nodes

0 unpatchable vuln.
1 unpatchable vuln.
2 unpatchable vuln.
3 unpatchable vuln.

Fig. 8. The average gain vs. the number of nodes.

Securing Networks Against Unpatchable and Unknown Vulnerabilities 525

instances is not large enough (in constrast to the increasing size of the graph)
to allow to optimize the d metric any further.

5 Related Work

In general, the security of networks may be qualitatively modeled using attack
trees [9,10,22] or attack graphs [2,23]. A majority of existing quantitative models
of network security focus on known attacks [1,28], while few works have tackled
zero day attacks [25,26,29,32] which are usually considered unmeasurable due to
the uncertainties involved [17]. In terms of security metrics, most of the current
works deal with assigning numeric scores to rank known vulnerabilities (mostly
based on the CVSS) [18] to be able to model the impact that they have on a
network. This ranking is based on how likely and easily exploitable the known
vulnerabilities are. This, however, is not the case for unknown vulnerabilities.

Early works on network hardening typically rely on qualitative models while
improving the security of a network [23,24,27]. Those works secure a network
by breaking all the attack paths that an attacker can follow to compromise an
asset, either in the middle of the paths or at the beginning (disabling initial
conditions). Also, those works do not consider the implications when dealing
with budget constraints nor include cost assignments, and tend to leave that
as a separate task for the network administrators. While more recent works
[1,31] generally provide a cost model to deal with budget constraints, one of the
first attempts to systematically address this issue is by Gupta et al. [14]. The
authors employed genetic algorithms to solve the problem of choosing the best
set of security hardening options while reducing costs.

Dewri et al. [9] build on top of Gupta’s work to address the network hardening
problem using a more systematic approach. They start by analyzing the problem
as a single objective optimization problem and then consider multiple objectives
at the same time. Their work consider the damage of compromising any node in
the cost model in order to determine the most cost-effective hardening solution.
Later on, in [10] and in [30], the authors extrapolate the network hardening
optimization problem as vulnerability analysis with the cost/benefit assessment,
and risk assessment respectively. In [21] Poolsappasit et al. extend Dewri’s model
to also take into account dynamic conditions (conditions that may change or
emerge while the model is running) by using Bayesian attack graphs in order
to consider the likelihood of an attack. Unlike our work, most existing work is
limited to known vulnerabilities and focus on disabling existing services.

There exist a rich literature on employing diversity for security purposes. The
idea of using design diversity for tolerating faults has been investigated for a long
time, such as the N-version programming approach [3], and similar ideas have
been employed for preventing security attacks, such as the N-Variant system [7],
and the behavioral distance approach [12]. In addition to design diversity and
generated diversity, recent work employ opportunistic diversity which already
exists among different software systems. For example, the practicality of employ-
ing OS diversity for intrusion tolerance is evaluated in [13]. More recently, the

526 D. Borbor et al.

authors in [29,32] adapted biodiversity metrics to networks and lift the diversity
metrics to the network level. While those works on diversity provide motivation
and useful models, they do not directly provide a systematic solution for improv-
ing diversity. So far, the work done by [6], is one of the first work that has tried
to provide a solution for this problem; their limitation, however, is that their
metric is too simplistic and does not consider additional hardening options.

6 Conclusions

In this paper, we have provided a heterogeneous approach to network hardening
to increase the resilience of a network against both unknown and unpatchable
vulnerabilities. By unifying different hardening options within the same model,
we derived a more general method than most existing efforts that rely on a single
hardening option. Our automated approach employed a heuristic algorithm that
helped to manage the complexity of evaluating the security metric as well as
limiting the time for optimization to an acceptable level. We have addressed
one limitation of our previous work by considering the uneven distribution of
services along an attack path. We have devised a more realistic cost model.
We have tested the efficiency and accuracy of the proposed algorithms through
simulation results, and we have also discussed how the gain in the d value will
be affected by the number of available modifiable firewall rules, unpatchable
vulnerabilities, and the different sizes and shapes of the resource graphs.

The following lists several future direction of our approach.

– While this paper has proven that we can integrate different network hardening
options (e.g., firewalls and diversity) under the same model, some hardening
options may not easily fit into this model (e.g., service relocation).

– The security metric we applied relies on the number of unknown vulnera-
bilities, which may be refined by further considering known and patchable
vulnerabilities (even though those would carry less weight).

– This study relies on a static network configuration. A future research direction
would be to consider a dynamic network model in which both attackers and
defenders may cause incremental changes in the network.

– We note that, although we assume that the costs are linearly additive, there
could be cases where the exact costs may depend on the actual combination
of controls (which would make the problem significantly more complex). We
believe this could be explored in a future work.

– We will evaluate other optimization algorithms in addition to GA to find the
most efficient solution for our problem.

Acknowledgements. The authors thank the anonymous reviewers for their valu-
able comments. Authors with Concordia University were partially supported by the
Natural Sciences and Engineering Research Council of Canada under Discovery Grant
N01035. Sushil Jajodia was supported in part by the National Science Foundation under
grant IIP-1266147; by the Army Research Office under grants W911NF-13-1-0421 and
W911NF-13-1-0317; and by the Office of Naval Research under grants N00014-15-1-
2007 and N00014-13-1-0703.

Securing Networks Against Unpatchable and Unknown Vulnerabilities 527

References

1. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-
ening using attack graphs. In: 2012 42nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 1–12. IEEE (2012)

2. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, pp. 217–224. ACM (2002)

3. Avizienis, A., Chen, L.: On the implementation of n-version programming for soft-
ware fault tolerance during execution. In: Proceedings of IEEE COMPSAC, vol.
77, pp. 149–155 (1977)

4. Md Azamathulla, H., Wu, F.C., Ab Ghani, A., Narulkar, S.M., Zakaria, N.A.,
Chang, C.K.: Comparison between genetic algorithm and linear programming app-
roach for real time operation. J. Hydro Environ. Res. 2(3), 172–181 (2008)

5. Bakshi, K.: CISCO cloud computing-data center strategy, architecture, and solu-
tions. CISCO White Paper (2009). Accessed 13 Oct 2010

6. Borbor, D., Wang, L., Jajodia, S., Singhal, A.: Diversifying network services under
cost constraints for better resilience against unknown attacks. In: Ranise, S.,
Swarup, V. (eds.) DBSec 2016. LNCS, vol. 9766, pp. 295–312. Springer, Cham
(2016). doi:10.1007/978-3-319-41483-6 21

7. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Wei, H., Davidson, J., Knight, J.,
Nguyen-Tuong, A., Hiser, J.: N-variant systems: a secretless framework for security
through diversity. In: USENIX Security, vol. 6, pp. 105–120 (2006)

8. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput.
Methods Appl. Mech. Eng. 186(2), 311–338 (2000)

9. Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security hardening using
multi-objective optimization on attack tree models of networks. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, pp. 204–
213. ACM (2007)

10. Dewri, R., Ray, I., Poolsappasit, N., Whitley, D.: Optimal security hardening on
attack tree models of networks: a cost-benefit analysis. Int. J. Inf. Secur. 11(3),
167–188 (2012)

11. Fifield, T., Fleming, D., Gentle, A., Hochstein, L., Proulx, J., Toews, E. and
Topjian, J.: OpenStack Operations Guide. O’Reilly Media, Inc. (2014)

12. Gao, D., Reiter, M.K., Song, D.: Behavioral distance measurement using hidden
Markov models. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219,
pp. 19–40. Springer, Heidelberg (2006). doi:10.1007/11856214 2

13. Garcia, M., Bessani, A., Gashi, I., Neves, N., Obelheiro, R.: OS diversity for intru-
sion tolerance: myth or reality? In: 2011 IEEE/IFIP 41st International Conference
on Dependable Systems and Networks (DSN), pp. 383–394. IEEE (2011)

14. Gupta, M., Rees, J., Chaturvedi, A., Chi, J.: Matching information security vul-
nerabilities to organizational security profiles: a genetic algorithm approach. Decis.
Support Syst. 41(3), 592–603 (2006)

15. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats:
Issues, Approaches and Challenges. Kluwer Academic Publisher, New York (2003)

16. Krebs, B.: How many zero-days hit you today? (2013). http://krebsonsecurity.
com/2013/12/how-many-zero-days-hit-you-today/

17. McHugh, J.: Quality of protection: measuring the unmeasurable? In Proceedings
of the 2nd ACM workshop on Quality of protection, pp. 1–2. ACM (2006)

http://dx.doi.org/10.1007/978-3-319-41483-6_21
http://dx.doi.org/10.1007/11856214_2
http://krebsonsecurity.com/2013/12/how-many-zero-days-hit-you-today/
http://krebsonsecurity.com/2013/12/how-many-zero-days-hit-you-today/

528 D. Borbor et al.

18. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE
Secur. Priv. 4(6), 85–89 (2006)

19. Mieritz, L., Kirwin, B.: Defining gartner total cost of ownership (2005)
20. Apache mina project, October 2016. https://mina.apache.org/mina-project/
21. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using

Bayesian attack graphs. IEEE Trans. Dependable Secur. Comput. 9(1), 61–74
(2012)

22. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005). doi:10.
1007/11555827 14

23. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and privacy, pp. 273–284. IEEE (2002)

24. Wang, L., Albanese, M., Jajodia, S.: Network Hardening: An Automated Approach
to Improving Network Security. Springer, Heidelberg (2014)

25. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k -zero day safety: a network
security metric for measuring the risk of unknown vulnerabilities. IEEE Trans.
Dependable Secur. Comput. 11(1), 30–44 (2014)

26. Wang, L., Jajodia, S., Singhal, A., Noel, S.: k -zero day safety: measuring the
security risk of networks against unknown attacks. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 573–587. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15497-3 35

27. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack
graphs. Compu. Commun. 29(18), 3812–3824 (2006)

28. Wang, L., Singhal, A., Jajodia, S.: Measuring the overall security of network
configurations using attack graphs. In: Barker, S., Ahn, G.-J. (eds.) DBSec
2007. LNCS, vol. 4602, pp. 98–112. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73538-0 9

29. Wang, L., Zhang, M., Jajodia, S., Singhal, A., Albanese, M.: Modeling network
diversity for evaluating the robustness of networks against zero-day attacks. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 494–511.
Springer, Cham (2014). doi:10.1007/978-3-319-11212-1 28

30. Wang, S., Zhang, Z., Kadobayashi, Y.: Exploring attack graph for cost-benefit
security hardening: a probabilistic approach. Comput. Secur. 32, 158–169 (2013)

31. Yigit, B., Gur, G., Alagoz, F.: Cost-aware network hardening with limited budget
using compact attack graphs. In: 2014 IEEE Military Communications Conference
(MILCOM), pp. 152–157. IEEE (2014)

32. Zhang, M., Wang, L., Jajodia, S., Singhal, A., Albanese, M.: Network diversity: a
security metric for evaluating the resilience of networks against zero-day attacks.
IEEE Trans. Inf. Forensics Secur. (TIFS) 11(5), 1071–1086 (2016)

https://mina.apache.org/mina-project/
http://dx.doi.org/10.1007/11555827_14
http://dx.doi.org/10.1007/11555827_14
http://dx.doi.org/10.1007/978-3-642-15497-3_35
http://dx.doi.org/10.1007/978-3-540-73538-0_9
http://dx.doi.org/10.1007/978-3-540-73538-0_9
http://dx.doi.org/10.1007/978-3-319-11212-1_28

A Distributed Mechanism to Protect Against
DDoS Attacks

Negar Mosharraf1(B), Anura P. Jayasumana2, and Indrakshi Ray3

1 Forcepoint Security Labs, Forcepoint LLC, San Diego, CA, USA
nmosharraf@forcepoint.com

2 Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO, USA

anura.jayasumana@colostate.edu
3 Department of Computer Science, Colorado State University,

Fort Collins, CO, USA
indrakshi.ray@colostate.edu

Abstract. Distributed Denial of Service (DDoS) attacks remain one of
the most serious threats on the Internet. Combating such attacks to pro-
tect the victim and network infrastructure requires a distributed real-
time defense mechanism. We propose Responsive Point Identification
using Hop distance and Attack estimation rate (RPI-HA) that when
deployed is able to filter out attack traffic and allow legitimate traffic
in the event of an attack. It dynamically activates detection and blocks
attack traffic while allowing legitimate traffic, as close to the source nodes
as possible so that network resources are not wasted in propagating the
attack. RPI-HA identifies the most effective points in the network where
the filter can be placed to minimize attack traffic in the network and max-
imize legitimate traffic for the victim during the attack period. Extensive
OPNET c© based simulations with a real network topology and CAIDA
attack data set shows that the method is able to place all filtering routers
within three routers of the attacker nodes and stop 95% of attack traffic
while allowing 77% of legitimate traffic to reach victim node.

1 Introduction

Denial of Service (DoS) attacks, that make network service unavailable to legit-
imate users, have been known since early 1980s. Distributed Denial of Ser-
vice (DDoS) attacks originate and propagate in a distributed manner mak-
ing them harder to mitigate. DDoS attacks against commercial websites like
Yahoo, Ebay and E*Trade have provided evidence of how DDoS attacks block
legitimate users and cause financial loss [9]. Moreover, emergency and essential

This work was partially supported by NSF I/UCRC Award Number 1650573 and
funding from CableLabs. The views and conclusions contained in this document are
those of the authors and should not be automatically interpreted as representing the
official policies, either expressed or implied of NSF and CableLabs.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 529–540, 2017.
DOI: 10.1007/978-3-319-61176-1 29

530 N. Mosharraf et al.

services rely on the network infrastructure, and thus DDoS attacks may have
severe consequences, such as loss of life. Consequently, techniques for prevent-
ing, detecting, and surviving such attacks [2] are needed. Despite significant
research into countermeasures, DDoS attacks still remain a major threat [3].
DDoS attack can appear like a flash crowd, i.e., a large number of legitimate
users connecting to a server/site simultaneously [10]. A comprehensive defense
mechanism should include preventing, detecting, and responding techniques to
counter DDoS attacks since there is no one-size-fit-all solution to the DDoS prob-
lems [15]. Prevention mechanisms aim to stop the occurrences of attacks [9,14],
while detection mechanisms aim to identify attack traffic [5,7]. The response
mechanisms attempt to identify the sources of attack and react to those [6]. Our
work belongs to this last category and tries to identify the attack source and
prevent the propagation of attack traffic.

Responsive techniques identify the source and mitigate DDoS attacks by
filtering or limiting attack packets [1,3,4]. Such schemes comprise two parts:
attack detection and packet filtering. The characteristics of attack packets, such
as source IP address or marked IP header values [11,14], are often used to detect
and identify attack traffic and packet filtering. Note that packet filtering can
be applied either close to the attack node [5,7] or close to the victim node
[14] where all the attack aggregate. However, applying filtering close to at the
victim has two drawbacks. First, the victim may crash while dealing with an
overwhelming volume of attack traffic. Second, the high volume of attack traffic
may still overwhelm upstream Internet resources. At these traffic intensities,
the infrastructure upstream from the intended victim becomes severely affected
necessitating attack traffic be filtered as close as possible to the attack sources.
However, it is difficult to anticipate and identify such nodes as the attack may
originate at widely distributed nodes and spread through various routes [15].
Our approach aims to solve this problem.

This paper proposes a novel distributed DDoS defense mechanism for achiev-
ing Responsive Point Identification algorithm using Hop distance and Attack
estimation rate (RPI-HA), which does not consume any router resources in the
process of identifying routers for upstream filtering. The approach tries to min-
imize the modifications required to the routers and the current protocols to
combat DDoS attacks and such modifications have a low complexity and are
scalable. The mechanism aims to maximize the arrival rate for legitimate traffic
and minimize the attack flow during the attack. The approach consists of four
parts. The first part develops rules to create a history-based profile of high con-
fidence legitimate IP addresses that serve to differentiate the good traffic from
the malicious [8]. The second part represents the IP address history in the form
of a Bloom filter for efficient transfer. The third and fourth parts, the main con-
tribution of this paper, identify how and where this history is used to prevent
the attacks. Placing filters in upstream routers incur storage and performance
costs since the filter must be applied to multiple routers. Placing the filter closer
to the victim causes the link capacity to become saturated and wastes network
resources. Our scheme introduces an algorithm that identifies the routers where

A Distributed Mechanism to Protect Against DDoS Attacks 531

the filters can be placed. To the best of our knowledge, this is the first work that
considers the optimal placement of the filters to mitigate DDoS attacks. Section 2
describes our responsive defense mechanism. Section 3 presents our simulation
results. Section 4 concludes the paper.

2 Distributed Responsive Defense Approach

This section presents our scheme to identify upstream routers, and block the
DDoS attacks at these routers to minimize the impact both to the victim and to
the upstream network during the attack time. The DDoS mitigation mechanism
consists of the following components: (1) identification model to discriminate
attack traffic from legitimate traffic based on a history-based profile, (2) capture
the history-based profile in the form of a Bloom filter for efficient transfer, (3)
identify the responsive points (router/switch) which carry the attack traffic, and
(4) activate packet filtering at selected points. We use the mechanisms detailed
in [8] for the first two steps. The main contributions of this paper are the last
two components, and the resulting overall architecture.

2.1 Identification Model

History based profiles the specific attack features as well as normal traffic char-
acteristics for history based profiles to discriminate between the attack traffic
from legitimate traffic are investigated in [8]. A key observation is that the DDOS
attacks tend to use randomly spoofed IP addresses [8] and other packet features,
such as port number and size of packet are randomly distributed as well. Our
experiments [8] with the CAIDA 2007 dataset [12] indicated that such as filter-
ing model can protect the victim node from 95% of attack traffic while allowing
70% of legitimate traffic.

2.2 Bloom Filter Mechanism

The filtering mechanism must be applied at upstream routers which must process
all packets targeted towards the victim node. Since the network bandwidth may
already be saturated during an attack, transferring the entire history and looking
it up in the upstream routers is rather expensive. A Bloom filter is thus proposed
for representing the contents of the IP based history [8]. Such a filter helps reduce
the communication and computation costs and also the storage requirements at
upstream routers that check for malicious traffic. There are three fundamental
performance metrics for Bloom filters where the size of the Bloom filter is an
adjustable parameter based on the accepted false positive rate as well as number
of hash functions.

532 N. Mosharraf et al.

2.3 Responsive Points’ Identification

The third step constitutes the main contribution of this paper and it is how
and where to use this filter to minimize the impact of the attack. Proposed
solution addresses this problem by using a recently developed technology, typi-
cally implemented as Small Formfactor Probes (SFP) using Field Programmable
Gate Arrays (FPGAs). Our proposed approach monitors traffic by using SFPs
to efficiently identify router/switch which carry high volume of attack traffic
and then applies packet filtering at selected routers as the responsive point
of defense mechanism. An example of such hardware is JDSU SFProbes and
Packet Portal [16]. SFProbes can plug into any SFP compatible elements such
as switches/routers in such a way that it taps into the normal fiber without
interfering with the traffic flow. It can be programmed over the network using
the same fiber to do tasks such as counting the number of packets with certain
values in header fields and forward information about link traffic to a remote
base station. Our approach uses these probes at a subset of ports in the network
to identify the upstream links, and thus nodes, which carry attack traffic. A main
advantage of using SFProbes is that they plug into the routers/switches and do
not require modifying the router’s operation and software to apply our scheme.
This feature is used to send the history based profiles to identify the paths with
high intensity of attack traffic. Moreover, the portal base station (PBS) has
knowledge about SFProbes attached to the routers throughout the network and
can collect data from SFProbes and perform the computation needed for our
scheme, obviating the need for routers performing such computations.

Upon detection of an attack, the proposed approach starts to protect a victim
node as illustrated in Fig. 1. At this point, the victim network sends the Bloom
filters that it had created to PBS. The PBS sends the Bloom filter to those
SFProbes that are plugged into different routers as shown in Fig. 1. SFProbes
start monitoring the intensity of traffic directed toward the victim node.

Fig. 1. Responsive defense mechanism

Let t1, t2, ...tm be discrete time slots and X (tm, i) be the number of packets
received by a router during time slot m at SFProbe i destined to the victim
node. Equation (1) is defines the historical estimate of the average number of
packets received by a router, where α is a weighted value between 0 and 1.

X̄ (tm, i) = (1 − α) X̄ (tm−1, i) + αX (tm, i) (1)

A Distributed Mechanism to Protect Against DDoS Attacks 533

Let Aj (tm, i) represent a Boolean variable which equals 1 if the packet Pj is
received at router i at time slot tm and matches the corresponding Bloom filter
B (v) for point v, and is 0 otherwise, i.e.,

Aj (tm, i) =

{
1 if Pj (tm, i) ∈ B (v)
0 otherwise

(2)

Let W̄ (tm, i) be the historical estimate of the average number of packets
received by the router at SFProbe i during time slot m that match the Bloom
filter. Thus, W̄ (tm, i) Eq. (3) shows the average number of packets that is con-
sidered as the legitimate traffic by the Bloom filter directed towards the victim
where, n is the total number of packets flowing toward the victim node in time
slot tm:

W̄ (tm, i) = (1 − α) W̄ (tm−1, i) + (α)
n∑

j=1

Aj (tm, i)
n

(3)

During the attack time, if the number of IP addresses that do not match
Bloom filter is higher than a specific threshold β, then the router is likely to be
carrying significant attack traffic. Such routers are candidates for filter place-
ment. We define Eq. (4) Attack Estimation Rate (ASR) R (tm, i) to determine
the average number of packets that do not match Bloom filter.

R (tm, i) = X̄(tm,i)−W̄ (tm,i)

X̄ (tm, i)
(4)

Upon detection of an attack, the SFProbes start monitoring traffic going
towards the victim nodes and send R (tm, i) estimate to PBS. Next we decide
the points at which the filters are to be placed. Save network resources, the best
routers to apply the filtering mechanism must be as far away as possible from
the victim node. The volume of potential attack traffic passing through a router
has to be considered as well. Thus, we use two factors to determine the best
routers to place the SFProbes - the Attack Estimation Rate of Eq. (4) and the
hop distance Hi (v) that shows how far the SFProbe i is from the victim node v.
For each SFProbe i computer the weighted attack estimation rate Hi (v) is given
by:

S (tm, i) = X̄(tm,i)−W̄ (tm,i)

X̄ (tm, i)
∗ Hi (v) (5)

The routers with higher value of S (tm, i) are selected routers to apply filter-
ing mechanism. We call this approach as the Responsive Point’s Identification
algorithm using Hop distance and Attack estimation rate (RPI-HA). In addition
to the hop distance and the volume of attack traffic, other issues must also be
considered while placing the filters. One such additional factor is the number of
routers on which filters are placed based on the distribution of the attack traffic.
We present a new formula that adjusts the number of routers according to the

534 N. Mosharraf et al.

attack traffic distribution that we refer to as the Responsive Point’s Identifica-
tion algorithm using Hop distance, Transmission rate and Attack estimation rate
(RPI-HTA). In this scheme, the transmission rate of traffic directed towards the
victim node as well as hop distance is considered to determine the best filtering
points. SFProbes collect the information of attack estimation rate R (tm, i) and
traffic transmission rate T (tm, i) during m time slots and send this information
to the PBS. To select the filtering points the attack estimation rate D (tm, i) is
computed as follows:

D (tm, i) = X̄(tm,i)−W̄ (tm,i)

X̄ (tm, i)
∗ T̄ (tm,i)

C (v)
∗ Hi (v) (6)

D̄ (tm, i) = (1 − α) D̄ (tm, i) + (α)
n∑

i=1

D (tm, i)
n

(7)

In Eq. (6) we consider the distribution of traffic towards the victim node
as an important factor that helps to determine how the attack has followed,
where traffic transmission rate T (tm, i) and capacity of the victim node C (v)
are considered. D (tm, i) determines if the attack is distributed or centralized.
If the attack is highly distributed, we need to consider more filtering points to
stop the attack whereas if the attack is more centralized we apply filters on
few of the routers. The historical average attack estimation rate is given by
D̄ (tm, i) in Eq. (7) where n indicates total number of participating SFProbes
that collects the data. We select only those routers D̄ (tm, i) higher than average
attack estimation rate as filtering points. Thus, the number of filters in the
RPI-HTA depends on traffic transmission rate, hop distance, as well as attack
estimation rate and it will be vary according to D̄ (tm, i) and D (tm, i).

2.4 Packet Filtering

The last step of the proposed approach is activating packet filtering at selected
points. According to the previous section, PBS selects those routers which carry
the attack traffic for applying Bloom filtering. So PBS sends created Bloom
filters to these selected routers and the routers start to filter incoming traffic
directed towards the victim node. This process continues during the attack.

3 Evaluation

Performance of our approach is evaluated next using a real network topology
from Oregon route-views between March 31 and May 26 2001 [18] and set it
up on OPNET c©. We test the effectiveness of the responsive defense mechanism
using the DARPA 1998 intrusion detection dataset [17] which contains 7 weeks
of training datasets that we use to establish an IP address history and 2 weeks
of testing dataset to evaluate our techniques. The first step is creating the IP

A Distributed Mechanism to Protect Against DDoS Attacks 535

address history from the DARPA training dataset and then create correspond-
ing Bloom filter, the details of which was presented in [8]. The next step, eval-
uates the responsive defense approach based on the created IP address history
in OPNET c©. We also have validated our model by real network traffic collected
at University of Auckland [13] and CAIDA attack dataset [12] in Sect. 3.5

3.1 Metrics

Responsive defense mechanism is evaluated, (i) Attack Traffic Detection Rate (ii)
Normal Traffic Detection Rate, and (iii) Link Utilization Rate. Attack Detection
Rate is the percentage of attack dataset that is correctly detected as the attack
and cannot pass through the Bloom filter to reach the victim node. Normal
Traffic Detection Rate is defined as the percentage of normal traffic that can
correctly pass through the Bloom filter during the attack period. False Negative
Rate is defined as the percentage of attack traffic that is incorrectly marked as
normal traffic and therefore can pass through the Bloom filter. Link Utilization
Rate is defined as the percentage of the network’s bandwidth that is currently
being consumed by the network traffic.

3.2 Percentage of Collaborative SFProbes

The effectiveness of the responsive defense mechanism relies on the collaboration
of SFProbes through the network. Increasing the number of SFProbes attached
to the routers enables more close monitoring and more effective filtering. We look
at four different scenarios to validate this. We assume a different percentage of
routers (80% to 25%) have SFProbes attached to them to monitor network traf-
fic to address the case where only a fraction of routers implement the mitigation
technique. The number of filtering routers is either fixed according to the RPI-
HA or variable based on RPI-HTA algorithm. In the RPI-HA algorithm, the
number of filtering routers considered 8, 5 and 3 as 20%, 12.5% and 7.5% of the
total routers through the network. We also looked at a fifth scenario where the
filters are placed in random locations throughout the network without apply-
ing any algorithm to stop the attack traffic. Figure 2 shows the average attack
detection rate over 5 runs. We use a time slot of 60 s. The results demonstrate
the effectiveness of using the RPI-HTA algorithm, which considers all the three
features (hop distance, transformation rate and attack estimation rate) together.
The RPI-HTA algorithm produces an attack traffic detection rate of 91% when
80% of routers use SFProbes. Note that, by applying the random selection to
determine placement of filters the attack traffic detection rate reduces by more
than 14% and up to 23%. These results show how the location of filters plays an
important role in protecting the victim node. Recall that the number of filtering
points for RPI-HTA algorithm is variable and depends on attack distribution,
transmission rate, and hop distance. 7 filters for networks having 80% and 60%
probes and 6 filters for those having 40% and 25% probes are selected according
to the RPI-HTA algorithm. As shown in Fig. 3 the attack traffic detection rate
for RPI-HTA algorithm for 80% and 60% probes is equal or higher than when

536 N. Mosharraf et al.

Fig. 2. Attack traffic detection rate

Fig. 3. Normal detection rate

RPI-HA algorithm is applied by 8 filtering routers through the network. This
means that the RPI-HTA algorithm can provide comparable or better filtering
mechanism by using lower number of filtering routers by placing the filters in
the appropriate locations. The other important parameter to evaluate is how
many normal packets can reach the victim node. As shown in Fig. 3, normal or
legitimate traffic detection rate is around 72% for RPI-HTA algorithm with 80%
probes and it increases to around 80% if fewer filters are used to stop attack
traffic. Thus, there is a trade off between accuracy of the attack traffic detection
rate and the normal detection rate.

3.3 Efficiency of Distributed Approach

Figure 4 depicts the fraction of attack traffic dropped at different hop distances
from the victim, and thus the source. It shows that 60% of the attacks in total
are detected and blocked in the first two routers from attacker, with 23% in
the first and 37% in the second. Thus, it shows that RPI-HTA algorithm can
effectively select routers further from the victim node and close to attacker.
Furthermore, it shows that having more probes is more effective and we can select
farther routers as well. For instance, with 80% probes all the filtering points are
selected at least 3 hop distances away from victim node, while with 25% probes
the filtering points must be within 1 and 2 hop distances from victim node.
In this experiment, the 25th, 50th (median), 75th percentiles, minimum and

A Distributed Mechanism to Protect Against DDoS Attacks 537

Fig. 4. Attack detection rate and location of selected routes

(a) RPI-HTA (b) RPI-HA (c) Random selection

Fig. 5. Result of attack detection rate

maximum value of attack traffic detection rate for all 3 scenarios are computed
as well. As shown in Fig. 5(a), the first layer of router from attacker (fifth hop
distance from victim) has relatively good attack traffic detection rate close to
20% for 50% of simulations in the RPI-HTA algorithm, whereas, this detection
rate reduces to less than 10% for random selection scenario. This proves that
RPI-HTA algorithm can accurately select desirable filtering points during the
attack period. Thus, it can be observed that the core of detection and prevention
mechanism is located at the router with hop distance 4, 3, and 5 from victim
node in that order.

3.4 End User’s Utilization

The other part of our evaluation is specifying utilization of the victim node and
other end-users before and after applying filtering mechanism. In Fig. 6(a), the
last link utilization of victim node without applying filtering approach shows
that it is fully utilized during the attack time. However, the link utilization
reduces to around 60% after deploying Bloom filter through the network based
on RPI-HTA algorithm. The result shows that 80% probes through the network
give 50% link utilization rate for the victim node - this is the least link utilization
rate that we get in our experiments. Figure 6(b) shows the last link’s utilization
for other end-users increases with applying the filtering routers. It means the
other end-users can receive normal traffic during the attack time. This is good

538 N. Mosharraf et al.

Fig. 6. (a) Victim node’s utilization. (b) Average of last link utilization of end-users

as it provides service availability in the presence of DDoS attacks and minimizes
the attack impact during an attack time.

3.5 Validation with Real Network Dataset

In this experiment, the effectiveness of responsive defense approach is tested
using real network trace from University of Auckland in New Zealand. The packet
trace contains 6.5 weeks IP header trace taken with 155 Mbps Internet links
[13]. We use The CAIDA attack dataset 2007 [12] in the experiments as attack
traffic. The dataset is run with same topology that was used in previous part by
distributing the dataset traffic over the network. History-based profile of normal
traffic going to the victim node is created using the trace collected from the
University of Auckland. The corresponding Bloom filter will be created based
on the scheme [8] in the second step and then represented approach is applied
during the attack time. Figure 7 shows the attack traffic detection rate against
the CAIDA attack traffic. Attack traffic detection rate is around 95% with 80%
probes in the RPI-HTA algorithm where it was around 91% for DARPA dataset.
Overall the attack traffic detection rate increases slightly compared with DARPA
dataset, where the Bloom filter accuracy played a role in this situation. In Fig. 8,
the 25th, 50th (median), 75th percentiles, minimum and maximum value of
attack traffic detection rate of RPI-HTA algorithm is shown for CAIDA dataset
traffic; this can be compared with Fig. 5(a) for DARPA dataset as well. As shown
for 75% of simulations, the most portion of attack is detected and blocked at the
first layer of routers from the attacker (hop distance 5 from victim node) followed
by the one in the second layer of routers from attacker. The router with fifth hop
distance from victim has a better attack traffic detection rate close to 25% for
50% of simulations in the RPI-HTA algorithm, whereas this detection rate was
20% for DARPA dataset. Moreover, it shows that router with hop distance 5, 4
and 3 in that order were the core of attack detection. This proves that RPI-HTA
algorithm accurately selected desirable filtering points during the attack period
for CAIDA attack traffic as well.

A Distributed Mechanism to Protect Against DDoS Attacks 539

Fig. 7. Attack traffic detection rate

Fig. 8. Attack traffic detection rate of RPI-HTA for CAIDA attack traffic

4 Conclusion

A responsive defense approach to defend against DDoS attacks was presented.
A key contribution is the distributed mechanism that identifies in real-time the
best response points where filters are to be activated so as to minimize attack
traffic and maximize legitimate traffic during the attack. The technique has been
validated with two real-world data sets. Results for CAIDA attack set, e.g., indi-
cate that the responsive mechanism protects the victim nodes from 95% of attack
traffic close to the source of attack, while allowing 77% of legitimate traffic. The
method is light in terms of computational and communication overheads. Results
also demonstrate the effectiveness of the mechanism in preserving valuable net-
work resources and link utilizations for other end-users during the attack time,
thus preserving the service availability and minimizing the attack impact. Our
future work includes validating the scheme with very recent real-world network
dataset. A part of our future work also includes extending our identification
scheme for IPv6 addresses.

Acknowledgment. The authors gratefully thank Forcepoint LLC for their funding
support.

540 N. Mosharraf et al.

References

1. Aghaei Foroushani, Z.H.: TDFA: traceback-based defense against DDoS flooding
attacks. In: Proceedings of 28th International Conference on Advanced Information
Networking and Applications (AINA), Victoria, BC, pp. 710–715. IEEE (2014)

2. Cabrera, J.B.D., Lewis, L., Qin, X.Z., et al.: Proactive intrusion detection and
distributed denial of service attacks-a case study in security management. J. Netw.
Syst. Manag. 10(2), 225–254 (2002)

3. Chen, C., Park, J.-M.: Attack diagnosis: throttling distributed denial-of-service
attacks close to the attack sources. In: Proceedings of IEEE International Confer-
ence on Computer Communications and Networks, pp. 275–280 (2005)

4. Francois, J., Aib, I., et al.: FireCol: a collaborative protection network for the
detection of flooding DDoS attacks. IEEE/ACM Trans. Netw. 20(6), 1828–1841
(2012)

5. Gil, T.M., Poletto, T.: MULTOPS: a data-structure for bandwidth attack detec-
tion. In: Proceedings of 10th Conference on USENIX Security Symposium, Wash-
ington, D.C., USA (2001)

6. John, A., Sivakumar, T.: DDoS: survey of traceback methods. Int. J. Recent Trends
Eng. ACEEE (Assoc. Comput. Electron. Electr. Eng.) 1(2) (2009)

7. Mahajan, R., Bellovin, S.M., et al.: Controlling high bandwidth aggregates in the
network. ACM SIGCOMM Comput. Commun. Rev. 32(3), 62–73 (2002)

8. Mosharraf, N., Jayasumana, A.P., Ray, I.: A responsive defense mechanism against
DDoS attacks. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong,
P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 347–355. Springer, Cham (2015).
doi:10.1007/978-3-319-17040-4 23

9. Peng, T., Leckie, C., Ramamohanarao, K.: Proactively detecting distributed denial
of service attacks using source IP address monitoring. In: Mitrou, N., Kontovasilis,
K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol.
3042, pp. 771–782. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24693-0 63

10. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mech-
anisms countering the DoS and DDoS problems. ACM Comput. Surv. 39(1), 1–42
(2007)

11. RioRey, Inc. 2009-2012: RioRey taxonomy of DDoS attacks, RioReyTaxono-
myRev2.32012,2012. http://www.riorey.com/xresources/2012/RioRe

12. The CAIDA DDoS Attack 2007 Dataset. http://www.Caida.org/data/passive/
ddos-20070804dataset.xml

13. W.A.N.D.R. Group. http://wand.cs.waikato.ac.nz/wand/wits/auck
14. Yaar, Y., Perrig, A., Song, D.: Pi: a path identification mechanism to defend against

DDoS attacks. In: Proceedings of the 2003 IEEE Symposium on Security and
Privacy, Pittsburgh, PA (2003)

15. Zargar, S., Joshi, J., Tipper, D.: A survey of defense mechanisms against distrib-
uted denial of service (DDoS) flooding attacks. IEEE Commun. Surv. Tutorials
15(4), 2046–2069 (2013)

16. http://www.jdsu.com/en-us/Test-and-Measurement/Products/a-z-productlist/
Pages/packetportal.aspx

17. http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/
data1998data.html

18. https://snap.stanford.edu/data/oregon1.html, http://www.darkreading.com/
attacks-and-breaches/ddos-attack-hits-400-gbit-s-breaks-record/d/d-id/1113787

http://dx.doi.org/10.1007/978-3-319-17040-4_23
http://dx.doi.org/10.1007/978-3-540-24693-0_63
http://www.riorey.com/xresources/2012/RioRe
http://www.Caida.org/data/passive/ddos-20070804dataset.xml
http://www.Caida.org/data/passive/ddos-20070804dataset.xml
http://wand.cs.waikato.ac.nz/wand/wits/auck
http://www.jdsu.com/en-us/Test-and-Measurement/Products/a-z-productlist/Pages/packetportal.aspx
http://www.jdsu.com/en-us/Test-and-Measurement/Products/a-z-productlist/Pages/packetportal.aspx
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data1998data.html
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data1998data.html
https://snap.stanford.edu/data/oregon1.html
http://www.darkreading.com/attacks-and-breaches/ddos-attack-hits-400-gbit-s-breaks-record/d/d-id/1113787
http://www.darkreading.com/attacks-and-breaches/ddos-attack-hits-400-gbit-s-breaks-record/d/d-id/1113787

Securing Web Applications with Predicate
Access Control

Zhaomo Yang1(B) and Kirill Levchenko2

1 University of California, San Diego, USA
zhy001@cs.ucsd.edu

2 University of California, San Diego, USA
klevchenko@cs.ucsd.edu

Abstract. Web application security is an increasingly important con-
cern as we entrust these applications to handle sensitive user data. Secu-
rity vulnerabilities in these applications are quite common, however,
allowing malicious users to steal other application users’ data. A more
reliable mechanism for enforcing application security policies is needed.
Most applications rely on a database to store user data, making it a nat-
ural point to introduce additional access controls. Unfortunately, existing
database access control mechanisms are too coarse-grained to express an
application security policy. In this paper we propose and implement a
fine-grained access control mechanism for controlling access to user data.
Application access control policy is expressed using row-level access pred-
icates, which allow an application’s access control policy to be extended
to the database. These predicates are expressed using the SQL syntax
familiar to developers, minimizing the developer effort necessary to take
advantage of this mechanism. We implement our predicate access control
system in the PostgreSQL 9.2 DBMS and evaluate our system by devel-
oping an access control policy for the Drupal 7 and Spree Commerce.
Our mechanism protected Drupal and Spree against five known security
vulnerabilities.

1 Introduction

We depend on Web applications to handle more and more of our private and sen-
sitive data. However, unauthorized data accesses are still very common today. A
modern Web application consists of three distinct parts: client-side code running
in the browser, server-side code running directly or in an application server, and
a database often running on a separate server. Since the client side is completely
under the user’s control, in a typical application code that checks data accesses
will be intermingled with code implementing the server-side functionality, split
across multiple components of the application’s server-side code. All checking
code combined together consists of the application’s security policy. Because
there is not a centralized policy, developers may forget it when adding a new file
or editing an existing file, thus introduce data access vulnerabilities.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Livraga and S. Zhu (Eds.): DBSec 2017, LNCS 10359, pp. 541–554, 2017.
DOI: 10.1007/978-3-319-61176-1 30

542 Z. Yang and K. Levchenko

Most Web applications rely on a database to store and query user data. As
the custodian of this data, the database management system (DBMS) seems a
natural place to centralize those portions of security mechanism and policy that
control access to user data. Unfortunately, the SQL access control mechanism is
too coarse, providing only column-level access control. Moreover, a DBMS has
no notion of application users, and so cannot protect one application user’s data
from another’s. Such Web applications, therefore, do not use the SQL access
control mechanism; instead, the database becomes a convenient data structure
which the application uses to manage its data. From the DBMS point of view,
there is only one database user, the application, which has complete access to
all tables in the database.

In this work, we set out to design the most developer-friendly application user
access control mechanism possible. We believe that it is simple, intuitive, and
compatible with most applications’ user protection boundaries. Our mechanism
is implemented in the DBMS, where it can guarantee that the access control
policy is enforced even if the attacker gains direct access to the database. The
application developer specifies the access control policy to be enforced by the
DBMS row-level predicates, which are checked on every query. These predicates
are expressed using the familiar SQL syntax of WHERE clauses, attached to
SQL GRANT statements.

In addition to specifying the desired policy, the security mechanism needs a
way to tell the DBMS, at run time, on which application user’s behalf the appli-
cation is currently acting, in order for the DBMS to apply the policy correctly.
We do this by allowing the developer to specify an authentication function that
provides a means for the DBMS to authenticate a user.

We implemented our system as an extension to the PostgreSQL 9.2 data-
base management system. The application policy, consisting of authentication
functions and GRANT–WHERE clauses, is compiled by a separate tool into
SQL statements accepted by the modified DBMS. Besides, we created security
policies for several modules of the Drupal content management system and the
Spree e-commerce platform. We appeal to the reader’s own judgement and expe-
rience as a programmer and security practitioner to judge whether our means of
expressing security policy is more clear and direct than the state of the art. The
security policies provide protection against at least five known vulnerabilities in
Drupal and Spree server-side code (Table 2).

The rest of the paper is organized as follows. Section 2, next, provides the
necessary technical background for the rest of the paper. Section 3 provides a
toy application example we use to illustrate our mechanism. Section 4 describes
the application interface to the mechanism, that is, how the developer specifies
the desired policy. Section 5 describes our implementation. Section 6 evaluates
our system using Drupal and Spree. Section 7 describes related work. Section 8
concludes the paper.

Securing Web Applications with Predicate Access Control 543

Fig. 1. Structure of a modern Web application.

2 Background

2.1 Modern Web Application Structure

A typical modern Web application consists of three parts, illustrated in Fig. 1:
client-side code, server-side code, and a database.

Client-side. The client side of a Web application forms its user interface. It
interacts with the server side via HTTP requests. This part of the application
is in the difficult position of being trusted neither by user nor by the rest of the
application itself.

Server-side. The server side of an application contains the major logic of the
application. Each client interacts with a distinct instance of the server, and this
interaction between a client and an instance of the server is termed a session.
Applications may associate a set of access privileges with a session, which delin-
eate what a client is allowed to do. The server side also interacts with a central
data store, typically an SQL database. User and application data in the database
is subject to access controls, and these are often implemented in the server side
of the application as well.

Database. Many Web applications rely on an SQL database to manage applica-
tion data. Web applications interact with the database by issuing SQL queries,
either directly or via a framework (e.g., Ruby on Rails). Each server side instance,
corresponding to a session, opens a connection to the database. In performing its
function, the application server side may issue queries to the database or modify
data in the database. In this sense, the server side mediates user access to the
database.

Neither the operating system nor the DBMS has any notion of application
users, and so can offer the application no help in implementing its access control
policy; the server side of the application must implement all necessary access
controls. A database has its own notion of users, managed by a database admin-
istrator, distinct from OS users and application users. An application connects

544 Z. Yang and K. Levchenko

to the database as a single database user. Because of a single database user rep-
resenting the application, the application database user must have the union of
all access permissions necessary to carry out every application function.

2.2 Current SQL Access Controls

Our mechanism extends existing SQL access controls. SQL access controls work
at the granularity of columns. A database user may be granted any combination
of permissions to issue SELECT, UPDATE, DELETE, and INSERT statements
affecting a set of columns. Syntactically, this is accomplished using the GRANT
statement. For example, to grant user “Alice” SELECT and UPDATE privileges
on table Table 1, the table owner would issue:

GRANT SELECT, UPDATE ON Table1 TO Alice;

After this statement is executed, the user “Alice” will be able to SELECT (read)
and UPDATE (modify) values in table Table 1.

2.3 Threat Model

In this work, we assume that an attacker can co-opt the server side into letting
him send arbitrary queries to the DBMS. Based on this threat model, the trusted
computing base consists of the DBMS server and its operating system, the DBMS
itself, and any user-defined functions installed in the application database when
the database was first created. This model is assumed in Roichman et al. [9] and
Oracle’s VPD, and is stronger than the model of Nemesis [5], GuardRails [3],
Scuta [12] and Diesel [6].

3 Toy Application: Gradebook

To make things concrete, we use a toy example application to illustrate both the
traditional application security mechanism and our fine-grained mechanism. The
Gradebook application is a simple Web application for students and instructors
in a course. It allows students to check their own grades and allows instructors
to view all grades, enter new grades and update old grades. Figure 2 shows
the tables used by the application. The Gradebook application consists of two
tables, Users and Grades, shown in Fig. 2. The Users table stores user names,
a password salt, and a password hash. In addition, the instr column stores a
boolean flag indicating if the user is an instructor or a student. The Grades table
stores student grades for each assignment.

To authenticate a user, the Gradebook application issues the following query,
which implements a salted hash:

SELECT user_id, instr
FROM Users

WHERE user_name = ?
AND pass_hash = SHA1(pass_salt || ?);

Securing Web Applications with Predicate Access Control 545

Users

user id INTEGER
instr BOOLEAN
user name TEXT
pass salt TEXT
pass hash TEXT

Grades

user id INTEGER
assignment TEXT
score INTEGER

Fig. 2. SQL database tables for the Gradebook toy application example.

Here the “?” stands for the user identifier saved by the application when it
authenticated the user on login. (We show all queries as prepared statements,
although our access control mechanism does not depend on their use.) To retrieve
a student’s grade, for example, the server side issues the query:

SELECT assignment, grade
FROM Grades

WHERE user_id = ?;

4 Application Interface

In this section we describe our access control mechanism. Our design was guided
by two requirements:

• Keep it simple. Expressing a policy should be as simple and intuitive as
possible.

• Assume the worst. The application should not be trusted; assume it is
completely compromised.

First we introduce a straightforward concept called user-defined authentication
function, which encapsulates the application’s authentication mechanism. Then
we extend the familiar SQL GRANT statement with a WHERE clause, as pro-
posed by Chaudhuri et al. [4].

4.1 User Authentication Function

The first element of our mechanism is authentication function. This function is
just like a normal user-defined function that returns table rows, but the results
of the last evaluation of this function within a session are remembered in a per-
session authentication table with the same name as the authentication function.

To illustrate, recall that the Gradebook application authenticates a user by
querying a user table with the user name and password supplied by the user. If
the user name and password match, the query returns the user id and a flag
indicating if the user is an instructor or not. (This information is used through-
out the rest of the session.) To use our mechanism, the developer wraps this
query in an authentication function:

546 Z. Yang and K. Levchenko

CREATE AUTHENTICATION FUNCTION Auth(TEXT, TEXT)
RETURNS TABLE(user_id INTEGER, instr BOOLEAN)
AS $$

SELECT user_id, instr
FROM Users

WHERE user_name = $1
AND pass_hash = SHA1(pass_salt || $2);

$$ LANGUAGE SQL;

The authentication function Auth takes two text arguments, the user name and
password of the user, represented by “$1” and “$2” in the function body. It
returns a table row containing the user id and instr flag of the row corre-
sponding to the user, or no rows if the user name or password do not match.
Note the similarity of the enclosed query to the authentication query given in
Sect. 3. To authenticate a user, the application then issues the query:

SELECT user_id, instr FROM Auth($,$);

The result of the query is the same as in the corresponding query in Sect. 3,
however because the query was issued through an authentication function, the
result is now saved in an authentication table named Auth. This special table
is available for use in access control predicates, as we will describe in the next
section.

Note that some applications have more than one way to authenticate users.
For example, applications which have a notion of session can authenticate a
user using a session token stored in a cookie. To handle other authentication
mechanisms, multiple instances of the authentication function taking different
parameters can be defined.

4.2 Predicate Access Control

To protect individual rows in a table, the developer specifies a predicate defin-
ing which rows an application user may access. Syntactically, the predicate is
expressed using a GRANT statement with a USING clause and WHERE clause.
The USING clause lists the tables used in the predicate. The WHERE clause
then specifies the predicate itself.

For example, in the Gradebook application, to express the policy that a
student user may only see his own grades, the application developer would use
the statement:

GRANT SELECT ON Grades TO Gradebook
USING Auth
WHERE Auth.user_id = Grades.user_id

OR Auth.instr;

This statement grants a database user Gradebook permission to SELECT from
the table Grades only those rows of the table where the user id column is equal
to the user id of the currently authenticated user. The second term of the
WHERE clause allows users with the instr flag to access all rows. All SELECT
statements executed by the Gradebook database user will only see those rows
of the Grades table that satisfy the predicate. The “SELECT . . . FROM Grades”
query from Sect. 3 is now, in effect:

Securing Web Applications with Predicate Access Control 547

SELECT assignment, grade
FROM Grades, Auth

WHERE user_id = ?
AND (Auth.user_id = Grades.user_id

OR Auth.instr);

The result of inner join above will return only those rows of the Grades table
allowed by the policy.

The USING clause specifies the authentication table to be used for this access
control check. Ordinary tables may also be specified in the USING clause of the
GRANT statement, which will result in them being added to the join. DELETE,
UPDATE, and INSERT privileges may be granted in a similar way.

4.3 Composition

Grants are a monotonic operation: a GRANT statement can only increase the
access privileges of the grantee. Multiple GRANT statements for the same
privilege (e.g., SELECT) on the same table will result in the grantee having
access to all rows satisfying at least one of the WHERE clauses of the grant.
In other words, the WHERE clauses of the two GRANT statements are OR’ed
together. Thus, the “GRANT SELECT” statement in Sect. 4.2 has the same effect as
two separate grants of the SELECT privilege with predicates “Auth.user id =
Grades.user id” and “Auth.instr.” Traditional (unpredicated) GRANT state-
ments can be mixed with predicated GRANT statements. An unpredicated grant
is equivalent to predicated GRANT with WHERE clause WHERE TRUE.

4.4 Revocation, Ownership and De-authentication

The REVOKE statement, which revokes access privileges from a user, is uncon-
ditional. That is, the result of executing a revoke statement is that the named
user will not have the specified access privilege to the named tables. Predicates
are not preserved when privileges are revoked. Granting the revoked privileges to
the same user again will not restore the predicate in place before the REVOKE.

Access privileges on a table or view can only be granted by its owner. If the
application database user (Gradebook in the examples above) is to be treated as
untrusted, then the protected tables must have a different owner. Otherwise, an
attacker connected to the database as the application database user can restore
to himself all privileges. All application tables and views should be owned by a
user other than the database user used by the application to service application
user requests.

To de-authenticate, the application can re-authenticate as another user or
call the authentication function in a way that is guaranteed to return no rows.
For the Auth function used in the Gradebook application, calling it with either
user name or password NULL will result in no rows being returned. This clears
the authentication table associated with the authentication function.

548 Z. Yang and K. Levchenko

5 Implementation

We implemented the predicate access access control mechanism described above
by extending the PostgreSQL DBMS. Our implementation consists of two parts:
a minimally-modified PostgreSQL 9.2 DBMS and a separate tool to compile
security policies into lower-level constructs available in PostgreSQL.

5.1 Architecture

We chose to prototype most of the mechanism as a separate policy compiler,
rather than in the DBMS itself, for convenience. In the intended ultimate imple-
mentation, the GRANT–WHERE predicate access control mechanism would be
part of the DBMS.

In our current implementation, all schema declarations, including CRE-
ATE TABLE, CREATE VIEW, and CREATE FUNCTION statements are sent
directly to the database. All security policy statements, namely GRANT (with
and without a WHERE clause), REVOKE, and CREATE AUTHENTICATION
FUNCTION, are sent to our tool for compilation into rewriting rules, triggers,
and function definitions understood by PostgreSQL. The compiled statements
are then sent to the database.

Because the compiler composes predicates as described in Sect. 4.3 and then
packages them to be installed at the start of each session, the security policy
must be presented all at once to the compiler.

5.2 PostgreSQL

The PostgreSQL DMBS supports query rewriting via its rule system, and we
use this facility to implement access control predicates. To avoid large, unwieldy
rules covering every database user, we modified PostgreSQL to support session-
local rules, allowing the appropriate set of rules to be installed for each database
user at the start of their session.1 We call such session-local rules temporary
rules, by analogy to temporary tables which exist for the duration of a session
and are visible only inside the session in which they are created.

Temporary rules are defined using the CREATE TEMPORARY RULE state-
ment, which, except for the addition of the TEMPORARY keyword, is syntactically
identical to an ordinary CREATE RULE statement. A temporary rule is visible
and effective only inside the session in which it is created.

Temporary rules differ from ordinary rules in one other way. PostgreSQL
applies ordinary rewriting rules recursively to each table in a query until no
further rules apply. This means, in particular, that rewriting rules cannot be
recursive (or the rewriting step would not terminate). However, temporary rules
derived from access control predicates will result in rewritten queries referring

1 Temporary rules are also necessary because the current app. user’s information is
cached in a temporary table and the rules which referring to this table must also be
temporary. Thus, modifying PostgreSQL cannot be avoided completely.

Securing Web Applications with Predicate Access Control 549

to the same table. For this reason, temporary rules are applied once and before
permanent rules are applied. This allows temporary rules to rewrite queries using
the same table.

5.3 On CONNECT Trigger

Predicate access controls are enforced using temporary rules specific to the data-
base user of each session. These rules must be put into place at the start of a
session, before the user issues any queries. To implement this, we added a special
kind of trigger function to PostgreSQL which is executed when a user connects.
This trigger is specified using a CREATE ON CONNECT TRIGGER statement.
To prevent a database administrator from accidentally locking herself out of the
database, ON CONNECT triggers are disabled for the database superuser. In
our implementation, only the database superuser can create an ON CONNECT
trigger.

5.4 Policy Compiler

We implemented the security mechanism described in Sect. 4 as a standalone
security policy compiler that compiles GRANT, REVOKE, and CREATE
AUTHENTICATION FUNCTION statements into temporary rewriting rules
that are put into place at the start of a session by an ON CONNECT trigger.

6 Evaluation

To evaluate our predicate access control mechanism, we developed security poli-
cies for two modules of Drupal 7.1, a popular open-source content management
system written in PHP, and Spree 1.3.1, a popular open-source eCommerce appli-
cation using Ruby on Rails. Policies are based on what we inferred to be the
intended access control policies of these applications. A set of general security
policies for these two different popular applications allowed us to exercise all
parts of our prototype and evaluate its performance on two complex applica-
tions with large user bases. Due to the space limits, the security policies are not
shown in the paper.

6.1 Expressiveness

The ability to express an application’s intended access control policy is our main
criterion for evaluation. Moreover, our access control mechanism allows a policy
to be expressed in a declarative manner and in one place. Both Drupal and Spree
expressed access control policy in their implementation programming language
(Drupal in PHP and Spree in Ruby) at the point in the code program where
the access control check took place. The resulting policy and mechanism were
spread across multiple locations in code.

550 Z. Yang and K. Levchenko

Drupal. Drupal uses role-based access control, storing the assigned permissions
in the database. Both login and session authentication functions cache the cur-
rent application user’s permissions and user ID. Drupal manages sessions by
storing session-to-user mapping in the database. We protected 14 key tables
using 51 GRANT statements, each of which expresses a separate access condi-
tion.2 Drupal’s existing access control checks occur at 15 separate locations in
the source code.

Spree. Spree access control is also role based. Our authentication functions
cache the current application user’s roles along with his user ID. By default,
Spree manages session information using the Ruby on Rails CookieStore mech-
anism, which stores session information in a cryptographically-signed cookie.
While it would be possible to implement cookie signature checking in a database
user-defined function, we configured Spree to use the ActiveRecordStore mech-
anism, which stores session information on the server in the same way as Drupal.
We protected 53 tables using 29 GRANT statements, each of which expresses
a separate access control condition. Spree’s existing access control checks are
spread across 11 separate locations in the source code.

6.2 Security

Our security policies mitigated three known Drupal vulnerabilities and two
known Spree vulnerabilities (see Table 2). By their nature, GRANT-based polices
define what data a user is allowed to access rather than defining disallowed
behavior; such polices are much more likely to be effective against future vul-
nerabilities than policies covering specific vulnerabilities.

6.3 Performance

To assess the overhead imposed by our prototype, we measured the performance
of Drupal and Spree using Apache JMeter, a popular server performance testing
tool. All the experiments use a Intel Core i7-3632QM 2.20 GHz laptop with 4 GB
of RAM and all of the client side, the server side and database were running on
the same machine. Table 1 shows the time to perform each benchmarked task
with and without our security policy. We report the mean of 50 runs.

Drupal. For the Drupal tests, we populated the database with 2,000 users and
5,000 nodes (articles). Each view article task results in 114 queries issued to the
database. Each edit article task generates in 257 queries and data modification
statements.

Spree. For the Spree tests, we populated the database with 50 users, 100 items
and 200 orders. The benchmark task simulates the entire process of a user adding
an item to the cart and checking out. The task results in 2,987 queries and data
modification statements issued to the database.
2 Alternatively, we could combine several access control into one statement in a dis-

junction.

Securing Web Applications with Predicate Access Control 551

Table 1. Drupal and Spree performance with and without security policies (Before
and After columns, respectively).

Task Before After

Drupal view article 0.44 s 0.54 s

Drupal edit article 1.29 s 1.61 s

Spree buy item 18.40 s 24.12 s

Spree uses persistent connections more aggressively than Drupal, so Drupal
creates database connections more frequently, which requires installing all the
rules at the start of each session in the ON CONNECT trigger, which icnreases
the performance penalty. Spree also issues more queries against tables that do
not require row-level protection (e.g. spree countries, which stores country
information). On the other hand, Spree policies are more detailed, incurring a
higher overhead. For example, the access control predicate for INSERT opera-
tions on the spree orders table checks if the new row’s total cost, order state
and payment state are valid. In other words, our security policy encoded addi-
tional application constraints beyond plain access control.3

Although the performance overhead is not negligible, the absolute increase
in query times is likely acceptable in many applications. Furthermore, these
performance measurements are for an unoptimized prototype; an implementation
integrated into the DBMS would likely perform better.

7 Related Work

Fine-grained and predicate access control has a long history, and it is not our
intention to reinvent it. The aim of this work is to synthesize the most developer-
friendly access control mechanism from the vast body of existing work, without
sacrificing security guarantees.

7.1 Database Mechanisms

Rizvi et al. [8] present a predicate access control model using authorization views.
Queries issued to the database must satisfy using authorization views granted to
a user. Authorization views are defined using special authorization parameters,
however how such parameters are communicated to the database is considered
out of scope. Roichman et al. [9] also describe a similar solution using views
parametrized by an authentication token. The application needs to be modified
to store this token and transmit it back with each query.

3 In effect, we are using the predicate access control to implement sophisticated for-
eign key and value constraints. A lower overhead, pure access control policy is also
possible.

552 Z. Yang and K. Levchenko

Table 2. Known vulnerabilities in Drupal 7.1 and Spree 1.3.1 which are mitigated by
our policies.

Appl. Vulnerability Description

Drupal CVE-2012-1590 User permissions are not checked properly for
unpublished forum nodes, which allows remote
authenticated users to obtain sensitive information such
as the post title via the forum overview page

Drupal CVE-2012-2153 Tag node access is not added to queries thus queries
are not rewritten properly and restrictions of content
access module are ignored

Drupal CVE-2011-2687 Proper tables are not joined when node access queries
are rewritten thus access restrictions of content access
module are ignored

Spree (No CVE ID)a By passing a crafted string to the API as the API
token, a user may authenticate as a random user,
potentially an administrator

Spree CVE-2013-2506 Mass assignment is not performed safely, which allows
remote authenticated users to assign any roles to
themselves

a https://spreecommerce.com/blog/exploits-found-within-core-and-api

The Oracle DBMS introduced the Virtual Private Database (VPD) feature
in release 8.1.5 to provide fine-grained access control [2]. Compared to our app-
roach, the VPD mechanism is considerably more complex to use. The developer
must supply a database function that returns a string containing a dynamically-
generated WHERE clause fragment. User authentication information must be
communicated via application contexts (key-value stores); the authentication
function must explicitly store values in the context to be available by the
dynamically-generated queries.

Row-level security introduced to PostgreSQL since version 9.5 allows the
DB administrator to restrict which rows can be accessed or modified on a per-
database user basis [1]. Although it provides a finer-grained access control com-
pared to the standard privilege system, the DBMS is still not aware of application
users, thus the per-application user access control cannot be achieved.

The GRANT-WHERE syntax we use was previously proposed by
Chaudhuri et al. [4]. Like Rizvi et al. [8], they do not address the problem of
authentication, assuming the availability of a function called userId conveyed
securely by the database driver (e.g. via ODBC, JDBC, etc.), which supplies a
user identifier. We are inspired by their clean and familiar syntax for expressing
access control policy, which we pair with an intuitive way to authenticate a user
to the application. There is no implementation of their system.

https://spreecommerce.com/blog/exploits-found-within-core-and-api

Securing Web Applications with Predicate Access Control 553

7.2 Non-DBMS Mechanisms

Several proposals from the computer security community solve the problem by
mediating the communication between application and database. The Neme-
sis [5] system relies on taint tracking in a specialized PHP interpreter to auto-
matically infer when a user has authenticated to a database and then applies
appropriate access controls. Taint tracking is also used by GuardRails, a source-
to-source translator for Ruby on Rails programs, which together with developer
annotations allows a security policy to be applied to program objects [3]. Both
Nemesis and GuardRails cannot protect data in the database if the application
is tricked into sending arbitrary queries to DB. The CLAMP [7] system solves
the authentication and access control problem by extracting from the applica-
tion the authentication mechanism and access control logic to create a “User
Authenticator”(UA) and a “Query Restrictor”(QR). These two components are
isolated from the application itself, and so, should the attacker gain control of
the application, would not be corrupted. Building a UA and a QR consisting
of authentication logic and data access logic respectively, however, may be too
complex for developers.

The fine-grained access control we propose can be applied at the level of
users, the number of which is not known a priori. Two systems, Scuta [12] and
Diesel [6] provide protection at the level of application modules or components.
This provides isolation between untrusted modules of an application. Scuta works
by placing components into different access control rings, which are mapped to
multiple database users with the necessary table-level access controls. Diesel,
on the other hand, intercepts and rewrites queries sent to the database. The
level of access is indicated to the rewriting proxy at the start of a session, in
effect allowing an application to drop privileges before issuing queries on behalf
of an untrusted module. Besides, Son et al. [10,11] attempt to find and repair
vulnerabilities in applications using static analysis. This is a very promising
approach, but is likely still too complex for developers to use.

8 Conclusion

In this paper we described a row-level access control mechanism implemented in
the database aimed at Web applications. Our mechanism allows the application
developer to express her application’s security policy using familiar SQL syntax.

We implemented our system as an extension to PostgreSQL and developed a
security policy for two core Drupal modules and the Spree e-commerce platform.
Our prototype has acceptable performance overhead, yet provides protection
against five known and future unknown vulnerabilities. Moreover, our mechanism
allows the security policy for these systems to be expressed in a centralized
manner.

554 Z. Yang and K. Levchenko

References

1. PostgreSQL’s row-level security. https://www.postgresql.org/docs/9.5/static/
ddl-rowsecurity.html

2. Virtual Private Database. http://www.oracle.com/technetwork/database/
security/index-088277.html

3. Burket, J., Mutchler, P., Weaver, M., Zaveri, M., Evans, D.: GuardRails: a data-
centric web application security framework. In: Proceedings of the 2nd USENIX
Conference on Web Application Development (2011)

4. Chaudhuri, S., Dutta, T., Sudarashan, S.: Fine grained authorization through pred-
icated grants. In: Proceedings of the 23rd IEEE International Conference on Data
Engineering (2007)

5. Dalton, M., Kozyrakis, C., Zeldovich, N.: Nemesis: preventing authentication and
access control vulnerabilities in web applications. In: Proceedings of the 18th
USENIX Security Symposium (2009)

6. Felt, A.P., Finifter, M., Weinberger, J., Wagner, D. : Diesel: applying privilege
separation to database access. In: Proceedings of 6th ACM Symposium on Infor-
mation, Computer and Communication Security (2011)

7. Parno, B., McCune, J., Wendlandt, D., Andersen, D., Perrig, A.: CLAMP: practical
prevention of large-scale data leaks. In: Proceedings of the 30th IEEE Symposium
on Security and Privacy (2009)

8. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-
niques for fine-grained access control. In: Proceedings of the 2004 ACM SIGMOD
international conference on Management of Data (2004)

9. Roichman, A., Gudes, E.: Fine-grained access control to web databases. In: Pro-
ceedings of the 12th ACM Symposium on Access Control Models and Technologies
(2007)

10. Son, S., McKinley, K.S., Shmatikov, V.: RoleCast: finding missing security checks
when you do not know what checks are. In: Proceedings of the 2011 ACM Confer-
ence on Object Oriented Programing Systems Languages and Applications (2011)

11. Son, S., McKinley, K.S., Shmatikov, V., Up, F.M.: Repairing Access-Control Bugs
in Web Applications. In Proceedings of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (2013)

12. Tan, X., Du, W., Luo, T., Soundararaj, K.D.: SCUTA: a server-side access control
system for web applications. In: Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies (2012)

https://www.postgresql.org/docs/9.5/static/ddl-rowsecurity.html
https://www.postgresql.org/docs/9.5/static/ddl-rowsecurity.html
http://www.oracle.com/technetwork/database/security/index-088277.html
http://www.oracle.com/technetwork/database/security/index-088277.html

Author Index

Achenbach, Dirk 409
Agudo, Isaac 453
Atluri, Vijayalakshmi 41

Bahmani, Raad 386
Behnia, Rouzbeh 365
Bernau, Daniel 225
Böhler, Jonas 225
Borbor, Daniel 509
Brasser, Ferdinand 386
Bui, Thang 101

Chen, Ling 142
Chen, Songqing 275
Chirkova, Rada 142
Cuppens, Frédéric 293
Cuppens, Nora 293

Dong, Boxiang 311

El Abbadi, Amr 205
Espes, David 293

Ferrara, Anna Lisa 41, 349
Fuhry, Benny 386

Georgiou, Theodore 205
Gudes, Ehud 3
Gupta, Maanak 63

Hahn, Florian 386
Han, Jin 275
Härterich, Martin 325
He, Meiqi 185

Inan, Ali 123

Jajodia, Sushil 509
Jayasumana, Anura P. 529
Johnson, Sara 433
Joosen, Wouter 473

Kantarcioglu, Murat 123
Kerschbaum, Florian 225, 325, 386
Khanpour, Hamed 82
Koshiba, Takeshi 337

Le Parc, Philippe 293
Levchenko, Kirill 541
Li, Fengjun 489
Li, Ming 164
Li, Yanhuang 293
Liao, Cong 349
Liu, Peng 259
Lopez, Javier 453
Lorenzi, David 41

Maxwell, Margot 433
Mayank 337
Messmer, Sebastian 409
Mosharraf, Negar 529
Mulamba, Dieudonne 20
Müller-Quade, Jörn 409

Narouei, Masoud 82
Nguyen, Truc L. 349
Nuñez, David 453

Ozmen, Muslum Ozgur 365

Parlato, Gennaro 41
Patil, Vishwas T. 239
Patwa, Farhan 63
Preuveneers, Davy 473

Ray, Indrajit 20
Ray, Indrakshi 529
Rill, Jochen 409
Rrushi, Julian 433

Sadeghi, Ahmad-Reza 386
Saha, Tushar Kanti 337
Sandhu, Ravi 63

Shalabi, Yossif 3
Sharma, Shikhar 101
Shyamasundar, R.K. 239
Simms, Seth 433
Singhal, Anoop 259, 509
Solomon, Michael G. 164
Squicciarini, Anna 349
Stoller, Scott D. 101
Sun, Xiaoyan 259
Sunderam, Vaidy 164
Sural, Shamik 41

Takabi, Hassan 82
Tong, Xiaosu 123

Uzun, Emre 41

Vaidya, Jaideep 41
Van hamme, Tim 473

Wang, Lingyu 509
Wang, Wendy 311

Xi, Bowei 123
Xiong, Li 164
Xue, Hao 489

Yan, Xifeng 205
Yang, Zhaomo 541
Yavuz, Attila Altay 365
Yiu, Siu-Ming 185
Yu, Meng 275
Yu, Ting 142

Zang, Wanyu 275
Zerkane, Salaheddine 293
Zhang, Bo 311
Zhang, Jun 185

556 Author Index

	Preface
	Organization
	Contents
	Access Control
	Cryptographically Enforced Role-Based Access Control for NoSQL Distributed Databases
	1 Introduction
	2 Background and Related Work
	3 Proposed Design
	3.1 Read/Write Access
	3.2 Write Access Issues
	3.3 ACP Updates
	3.4 Formal Description of the Protocol

	4 Conclusions
	References

	Resilient Reference Monitor for Distributed Access Control via Moving Target Defense
	1 Introduction
	2 Background and Related Works
	2.1 Protection of Access Control Subsystems
	2.2 Moving Target Defense
	2.3 Leader Election
	2.4 Consensus Algorithms
	2.5 Byzantine Fault Tolerance
	2.6 Service Location Protocol

	3 Architecture Overview
	3.1 Access Control Architecture Components
	3.2 Threat Model

	4 Distributed Access Control Architecture
	4.1 The Client
	4.2 The Authorization Control Service
	4.3 The Discovery Service
	4.4 The Resource Access Service

	5 Implementation
	5.1 Clients and Resource Access Service
	5.2 Authorization Control Server
	5.3 Discovery Service

	6 Conclusion and Future Work
	References

	Preventing Unauthorized Data Flows
	1 Introduction
	2 Preliminaries
	3 Access Control Systems Data Leakage Free by Design
	3.1 MDFP is NP-complete
	3.2 ILP Formulation
	3.3 Compact ILP Formulation

	4 Preventing Data Leakages with Monitors
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	7.1 Proof of Lemma1
	7.2 Proof of Theorem2
	7.3 Proof of Theorem4

	References

	Object-Tagged RBAC Model for the Hadoop Ecosystem
	1 Introduction
	2 Multi-layer Authorization in Hadoop Ecosystem
	3 Hadoop Ecosystem Access Control Model
	4 Object-Tagged RBAC for Hadoop Ecosystem
	5 Proposed Implementation
	6 Attributes Based Extensions to OT-RBAC
	6.1 Dynamic Roles
	6.2 Attribute Centric
	6.3 Role Centric

	7 Related Work
	8 Conclusion and Future Work
	References

	Identification of Access Control Policy Sentences from Natural Language Policy Documents
	1 Introduction
	2 Related Work
	3 Background
	3.1 Pointwise Mutual Information
	3.2 Measures of Syntactic Complexity
	3.3 Machine Learning
	3.4 Attribute-Based Access Control

	4 The Proposed Methodology
	4.1 Preprocess Engine
	4.2 Feature Engine
	4.3 Classification

	5 Experiments and Results
	5.1 Dataset(s)
	5.2 Evaluation Criteria
	5.3 Experimental Results

	6 Discussion
	7 Conclusion and Future Work
	References

	Fast Distributed Evaluation of Stateful Attribute-Based Access Control Policies
	1 Introduction
	2 Algorithm
	3 Evaluation
	4 Related Work
	References

	Privacy
	Gaussian Mixture Models for Classification and Hypothesis Tests Under Differential Privacy
	1 Introduction
	1.1 Differential Privacy

	2 Related Work
	3 Hypothesis Tests Under Differential Privacy
	3.1 One Sample z Test
	3.2 One Sample t Test
	3.3 Two Sample t Test with Equal Variance
	3.4 Experimental Evaluation

	4 Differentially Private Bayesian Classifier for Gaussian Mixture Models
	4.1 Repair Noise Added Variance-Covariance Matrix
	4.2 Experimental Evaluation

	5 Summary
	References

	Differentially Private K-Skyband Query Answering Through Adaptive Spatial Decomposition
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 K-Skyband Queries

	3 Approaches
	3.1 BBS-Priv
	3.2 Differentially Private K-Skyband Tree

	4 Evaluations
	4.1 Results on Synthetic Datasets
	4.2 Results on Real Datasets

	5 Related Work
	6 Conclusion
	A Algorithm of k-Skyband Tree
	B Results with Different Error Tolerance Rates
	References

	Mutually Private Location Proximity Detection with Access Control
	1 Introduction
	1.1 Motivation
	1.2 Existing and Potential Solutions
	1.3 Our Contributions

	2 Related Work
	2.1 Location Perturbation and Transformation
	2.2 Access Control
	2.3 Private Information Retrieval
	2.4 Encryption

	3 Problem Setting and Preliminaries
	3.1 Framework Model
	3.2 Privacy Model
	3.3 Ciphertext Policy Attribute Based Encryption
	3.4 Hidden Vector Encryption

	4 Protocol Description
	4.1 AOI and User Attributes
	4.2 Setup
	4.3 Encrypting AOIs with Access Policy
	4.4 Encrypting User Location
	4.5 Querying Proximity to AOIs

	5 Security and Privacy
	6 Experiments
	7 Conclusion
	References

	Privacy-Preserving Elastic Net for Data Encrypted by Different Keys - With an Application on Biomarker Discovery
	1 Introduction
	2 Model Description
	3 Preliminaries
	3.1 Elastic Net Regression
	3.2 Support Vector Machine with Squared Hinge Loss
	3.3 Reduction from Elastic Net to SVM

	4 Our Scheme
	4.1 Building Blocks
	4.2 Our Construction

	5 Security Analysis
	6 Experimental Evaluation
	7 Discussion and Conclusions
	References

	Privacy-Preserving Community-Aware Trending Topic Detection in Online Social Media
	1 Introduction
	2 Related Work
	3 Data and Attack Models
	3.1 Data Model
	3.2 Attack Model

	4 Privacy Model
	4.1 Sensitive Attribute Inference
	4.2 Naive Bayes Inference

	5 Privacy Preservation Methodology
	5.1 Utility of Trending Topics
	5.2 Community Attribute Anonymization
	5.3 Finding the Best Anonymization Strategy

	6 Experimental Results
	7 Conclusions
	References

	Privacy-Preserving Outlier Detection for Data Streams
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Relaxed Differential Privacy
	4.1 Relaxed Sensitivity
	4.2 Approximation of Relaxed Sensitivity

	5 Outliers and False Negative Types
	6 Relaxed Differentially Private Outlier Detection and Correction
	6.1 Correction Algorithm
	6.2 Privacy of the Correction Algorithm

	7 Outlier Detection Evaluation
	8 Conclusion
	References

	Undoing of Privacy Policies on Facebook
	1 Introduction
	2 Access Control in Facebook: User Representation, Social Graph
	2.1 Social Graph of Facebook
	2.2 Representation of User Events and Interpretation of Privacy Policies

	3 Policy Specification for Access over Users in Facebook
	3.1 Lists as Policy: Extensional vs Intensional Information Classification
	3.2 Policy Evaluation and End-to-End Enforcement
	3.3 Reasoning About Access Control in Facebook w.r.t. Social Graph

	4 Analysis of Privacy-Preservation in Facebook Through User Specified Policies/Actions
	5 Is There a Way to Preserve the Intentions of Policies?
	6 Related Work
	7 Conclusion
	A Appendix
	References

	Cloud Security
	Towards Actionable Mission Impact Assessment in the Context of Cloud Computing
	1 Introduction
	2 Our Approach
	3 The Semantic Gap Between the Attack Graph and the Mission Dependency Graph
	4 Incorporating Cloud-Level Attack Graphs
	5 Mission Impact Graph and Graph Generation
	6 Case Study
	7 Related Work
	8 Conclusion
	References

	Reducing Security Risks of Clouds Through Virtual Machine Placement
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Threat Model and Security Assumptions
	3.2 Security Assessment
	3.3 An Example Using Our Model and Metrics
	3.4 Objectives in VM Placement

	4 SMOOP Design
	4.1 Security-Aware Multi-objective Optimization Based VMP
	4.2 Crossover and Mutation Operation
	4.3 Prioritize the Objectives

	5 Evaluation
	5.1 Computing Complexity
	5.2 Effectiveness in Risk Reduction
	5.3 Effectiveness of Multi-objective Optimization
	5.4 Comparison with Random-FFD Algorithm

	6 Conclusion
	References

	Firewall Policies Provisioning Through SDN in the Cloud
	1 Related Work
	2 SDN Firewall Policy Provisioning Model
	2.1 Scenario Description
	2.2 Expression of Firewall Policies
	2.3 Assessment of Firewall Policies
	2.4 Establishment of Contract
	2.5 Enforcement of Security Policy

	3 Evaluation
	4 Conclusion and Perspectives
	A RENP Protocol
	References

	Budget-Constrained Result Integrity Verification of Outsourced Data Mining Computations
	1 Introduction
	2 Preliminaries
	2.1 Budgeted Maximization Coverage (BMC) Problem
	2.2 Budget-Constrained Verification
	2.3 Verification Goal

	3 NC-based Verification Approach
	3.1 Basic Approach
	3.2 A More Robust Approach

	4 Experiments
	4.1 Setup
	4.2 Robustness of Probabilistic Verification
	4.3 Verification Performance
	4.4 Comparison with Metamorphic Testing (MT)

	5 Related Work
	6 Conclusion
	References

	Searchable Encryption to Reduce Encryption Degradation in Adjustably Encrypted Databases
	1 Introduction
	2 Related Work
	2.1 Queries on Encrypted Data
	2.2 Searchable Encryption

	3 Searchable Encryption
	3.1 Definitions
	3.2 Performance Calibration

	4 Detecting and Handling Infrequently Used Columns
	4.1 Problem
	4.2 Algorithm
	4.3 Cost Estimation

	5 Experimental Results
	5.1 Security Measure
	5.2 Performance Measure
	5.3 Experimental Setup
	5.4 Budget Increment
	5.5 Budget Upper Limit
	5.6 Budget Update Strategy

	References

	Efficient Protocols for Private Database Queries
	1 Introduction
	1.1 Reviews of Recent Works
	1.2 Our Contribution

	2 Our Protocols
	2.1 Attribute Matching
	2.2 Batch Processing
	2.3 Protocol for Conjunctive Query
	2.4 Protocol for Disjunctive Query

	3 Packing Method
	3.1 Our Packing Method for Value Matching

	4 Secure Computation Procedure
	4.1 Matching the Values in the Record
	4.2 Secure Computation of Our Protocols
	4.3 Hiding Additional Information from Leakage

	5 Performance Analysis
	5.1 Theoretical Evaluation
	5.2 Parameter Settings and Security Level
	5.3 Implementation Details

	6 Conclusions
	References

	Toward Group-Based User-Attribute Policies in Azure-Like Access Control Systems
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Access Control in Azure
	3.2 Generalized User Role Assignment
	3.3 Administrative Role Based Access Control

	4 User Attribute-Based Access Control in Azure-Like Platforms and State Transition System
	4.1 User Attribute-Based Access Control
	4.2 User Attribute-Based Systems

	5 Group, Attribute and Role Reachability
	6 Related Work
	7 Concluding Remarks
	References

	Secure Storage in the Cloud
	High-Speed High-Security Public Key Encryption with Keyword Search
	1 Introduction
	1.1 Research Gap
	1.2 Our Contribution

	2 Preliminaries
	2.1 NTRU-Based Cryptographic Tools
	2.2 Identity-Based Encryption
	2.3 Public Key Encryption with Keyword Search
	2.4 Consistency of PEKS

	3 Proposed Scheme
	3.1 Completeness and Consistency
	3.2 Discussion on Alternative NTRU-Based Constructions

	4 Security Analysis
	5 Performance Evaluation
	5.1 Experimental Setup and Evaluation Metrics
	5.2 Performance Evaluation and Comparisons
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

	HardIDX: Practical and Secure Index with SGX
	1 Introduction
	2 Background
	2.1 Intel Software Guard Extensions (SGX)
	2.2 Side Channel Attacks

	3 High Level Design
	3.1 HardIDX Overview
	3.2 Assumptions and Attacker Model.

	4 Notation and Definitions
	4.1 B+-tree
	4.2 Probabilistic Symmetric Encryption
	4.3 Hardware Secured B+-tree (HSBT)

	5 Search Algorithms
	5.1 Construction 1
	5.2 Construction 2
	5.3 Side Channels

	6 Performance Evaluation
	6.1 Construction 1 vs. Construction 2
	6.2 Memory Management
	6.3 Comparison with Related Work

	7 Related Work
	7.1 Searchable Encryption
	7.2 Encrypted Databases
	7.3 TEE-Based Applications

	8 Conclusion
	A Proof Framework
	B (to.Lenc, Lhw)to.-Security Proof
	C Multiple Users
	References

	A Novel Cryptographic Framework for Cloud File Systems and CryFS, a Provably-Secure Construction
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 A Security Model for Cryptographic File Systems
	2.1 Basic Definitions
	2.2 Modelling Non-adaptive Security
	2.3 Modelling Adaptive Security
	2.4 Modelling Integrity
	2.5 Security Against Chosen Ciphertext Attacks

	3 CryFS: An Encrypted File System for the Cloud
	3.1 Data Structures, Blocks and Files
	3.2 Directory Structure
	3.3 Encryption and Integrity

	4 Proving the Security of CryFS
	5 Performance
	6 Conclusion and Future Work
	A Adaptive Security of CryFS
	B Integrity of CryFS
	C Achieving Multi-user-Compatibility
	References

	Secure Systems
	Keylogger Detection Using a Decoy Keyboard
	1 Introduction
	2 Approach
	2.1 Modeling Human Keystroke Dynamics
	2.2 Low-Level Deceptive Driver
	2.3 Keyboard Shadowing
	2.4 First and Second Order Detection

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	The Fallout of Key Compromise in a Proxy-Mediated Key Agreement Protocol
	1 Introduction
	2 Description of the Authenticated Key Agreement Protocol
	2.1 Symmetric Proxy Re-encryption Primitive
	2.2 Protocol Setting
	2.3 Trust Assumptions
	2.4 AKAPR Protocol Flow

	3 Attacks to the AKAPR Protocol
	3.1 Breaking Forward Secrecy
	3.2 Key Compromise Impersonation Attacks
	3.3 Limited Scope of Key Revocation and Update

	4 Discussion
	5 Conclusions
	References

	Improving Resilience of Behaviometric Based Continuous Authentication with Multiple Accelerometers
	1 Introduction
	2 Related Work
	3 Challenges with Gait Authentication Schemes
	3.1 Different Body Positions and Sensor Displacement
	3.2 Misauthentication Resistance Under Different Motion Activities
	3.3 Security Threats and Attacker Model

	4 Evaluation
	4.1 Activity-Agnostic Behaviometrics
	4.2 Optimal Sensor Positions on the Body
	4.3 Impact of Sensor Displacements
	4.4 Impact of Other Motion Activities
	4.5 Resilience Against Observation Attacks

	5 Conclusion
	References

	Security in Networks and Web
	A Content-Aware Trust Index for Online Review Spam Detection
	1 Introduction
	2 Related Work
	3 Aspect-Specific Opinion Indicator
	3.1 Aspect Extraction
	3.2 Opinion Vector and Quality Vector

	4 Content-Based Trust Computation
	5 Experiments
	5.1 Dataset
	5.2 Aspect Category and Sentiment Polarity Classifications
	5.3 Trustworthiness Scores Computation

	6 Conclusion
	References

	Securing Networks Against Unpatchable and Unknown Vulnerabilities Using Heterogeneous Hardening Options
	1 Introduction
	2 The Model
	2.1 Extended Resource Graph
	2.2 Heterogeneous Hardening Control and Cost Model
	2.3 Problem Formulation

	3 The Methodology
	3.1 Optimization Algorithm
	3.2 Case Studies
	3.3 Heuristic Algorithm

	4 Simulations
	5 Related Work
	6 Conclusions
	References

	A Distributed Mechanism to Protect Against DDoS Attacks
	1 Introduction
	2 Distributed Responsive Defense Approach
	2.1 Identification Model
	2.2 Bloom Filter Mechanism
	2.3 Responsive Points' Identification
	2.4 Packet Filtering

	3 Evaluation
	3.1 Metrics
	3.2 Percentage of Collaborative SFProbes
	3.3 Efficiency of Distributed Approach
	3.4 End User's Utilization
	3.5 Validation with Real Network Dataset

	4 Conclusion
	References

	Securing Web Applications with Predicate Access Control
	1 Introduction
	2 Background
	2.1 Modern Web Application Structure
	2.2 Current SQL Access Controls
	2.3 Threat Model

	3 Toy Application: Gradebook
	4 Application Interface
	4.1 User Authentication Function
	4.2 Predicate Access Control
	4.3 Composition
	4.4 Revocation, Ownership and De-authentication

	5 Implementation
	5.1 Architecture
	5.2 PostgreSQL
	5.3 On CONNECT Trigger
	5.4 Policy Compiler

	6 Evaluation
	6.1 Expressiveness
	6.2 Security
	6.3 Performance

	7 Related Work
	7.1 Database Mechanisms
	7.2 Non-DBMS Mechanisms

	8 Conclusion
	References

	Author Index

