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Preface

Motivation for the Book

This book seeks to present a summary of recent research advances in cyber situation
awareness. A multidisciplinary group of leading researchers from the areas of cyber-
security, cognitive science, and decision science offer their viewpoints on recent
advances in cyber situation awareness.

Today, when a security incident happens, the top three questions a cyber operation
center would ask are: What has happened? Why did it happen? What should I do?
Answers to the first two questions form the core of cyber situation awareness (SA).
Whether the last question can be satisfactorily addressed is largely dependent on the
cyber SA capability of an enterprise.

From the perspective of “data to decisions,” cyber SA can be viewed as a main
output of a particular data triaging system. Since there are a large variety of sensors
monitoring an enterprise network, the cyber operation center will gather a large amount
of data coming from these different types of data sources. The data typically represent
normal operation status. Stealthy attack-related information could be deeply embedded
among the large volume of normal operation data. Thus the signal-to-noise ratio of
attack data is normally extremely low. Answering the first two questions through data
triaging could be as hard as finding a needle in a haystack.

Although numerous tools have been developed to help security analysts gain a better
SA, existing tools are not yet adequate to provide cyber operation centers with highly
desirable cyber SA capabilities listed as follows:

• Capability 1: The ability to create problem-solving workflows or processes
• Capability 2: The ability to see the big picture of cyber defense landscape
• Capability 3: The ability to manage uncertainty
• Capability 4: The ability to reason albeit incomplete/noisy knowledge
• Capability 5: The ability to quickly locate needles in haystacks
• Capability 6: The ability to do strategic planning
• Capability 7: The ability to predict the possible next steps an adversary might take

The goal of this work is to present a summary of recent research advances in the
development of these highly desirable cyber SA capabilities.



About the Book

Chapters in this book can be roughly divided into the following four areas:

Part I: Overview

• Computer-Aided Human Centric Cyber Situation Awareness

Part II: Computer and Information Science Aspects of the Recent Advances in Cyber
Situation Awareness

• An Integrated Framework for Cyber Situational Awareness
• Lessons Learned: Visualizing Cyber Situation Awareness in a Network Security

Domain
• Enterprise-Level Cyber Situation Awareness

Part III: Learning and Decision-Making Aspects of the Recent Advances in Cyber
Situation Awareness

• Dynamics of Decision-Making in Cyber Defense: Using Multi-Agent Cognitive
Modeling to Understand CyberWar

• Studying Analysts Data Triage Operations in Cyber Defense Situational Analysis

Part IV: Cognitive Science Aspects of the Recent Advances in Cyber Situation
Awareness

• The Cognitive Sciences of Cyber-Security: A Framework for Advancing
Socio-Cyber Systems

• Collaboration on Cybersecurity Situational Awareness
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6 University of Maryland, College Park, MD, USA

7 Army Research Office, Raleigh, NC, USA

Abstract. In this chapter, we provide an overview of Cyber Situational
Awareness, an emerging research area in the broad field of cyber security, and
discuss, at least at a high level, how to gain Cyber Situation Awareness. Our
discussion focuses on answering the following questions: What is Cyber Situ-
ation Awareness? Why is research needed? What are the current research
objectives and inspiring scientific principles? Why should one take a multidis-
ciplinary approach? How could one take an end-to-end holistic approach? What
are the future research directions?

1 What Is Cyber Situation Awareness

Cyber operations – in the context of mission assurance – give rise – especially within
large enterprises - to the questions that are at the core of Cyber Situation Awareness
(Cyber SA). Without loss of generality, the process of situational awareness can be
viewed as a three-phase process: situation perception, situation comprehension, and
situation projection. Perception gains awareness about the status, attributes, and
dynamics of relevant elements within the enterprise networks. Comprehension of the
situation encompasses how analysts combine, correlate, and interpret information.
Projection of the situation into the near future encompasses the ability to make pre-
dictions based on the knowledge acquired through perception and comprehension.

Figure 1 shows a simplified illustration of cyber operations in a large enterprise.
Essentially, cyber operations are centered on answering four key questions whenever
an adversary is launching a cyber-attack:

• What has happened to the networked enterprise information systems (“enterprise
networks” for short)?

• What is the impact?

© Springer International Publishing AG 2017
P. Liu et al. (Eds.): Cyber Sitation Awareness, LNCS 10030, pp. 3–25, 2017.
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• Why did it happen?
• What should we do?

In our viewpoint, the first three questions form the “core” of Cyber SA, and
Cyber SA serves as a key enabler for answering the last question, “What should we
do”. In other words, Cyber SA is geared towards gaining awareness about what has
happened or what the adversary has done, the impact of the cyber-attacks, and how the
current situation was determined. Here, the impact includes at least two aspects:
damage assessment and mission impact analysis. Regarding why the current situation is
what it is, the security analysts should identify the exploited vulnerabilities. In many
cases, the exploited vulnerabilities include both known and unknown vulnerabilities
associated with the enterprise networks.

From the perspective of “data to decisions,” Cyber SA can be viewed as a particular
data triaging system. As illustrated in Fig. 2, the output of any sensor shown in Fig. 1
can be viewed as a data source. Because there are a large variety of sensors out there,
there are actually many kinds of data sources. Here, we roughly classify the data
sources as follows:

• Class A: in-band data
– A1: static data. In this class, the data are seldom updated. For example, network

topology, naming data, routing tables, vulnerability scan data (e.g., NESSUS
reports), attack graphs, and certain host configurations belong to this class.

– A2: dynamic data. In this class, the data are either data streams or dynamically
updated data. Each data item is explicitly or implicitly associated with a
timestamp. The timestamps clearly show the stateful nature of cyber SA.

What has happened?

What is the impact?

Why did it happen?

What should I do? 

Security Analysts

Enterprise
networks 

Sensors, 
probes

•
•
•

Fig. 1. Cyber operations for mission assurance
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A2.1: raw data (e.g., traffic dumps, OS audit logs, firewall logs)
A2.2: IDS (Intrusion Detection System) alerts (e.g., Snort alerts, tripwire
alerts)
A2.3: attack-neutral enterprise system behavior data (e.g., operating system
level dependency graphs)

– A3: the communications among security analysts. In this class, the data include
the incident reports which are manually generated by analysts.

• Class B: out-of-band intelligence
– In this class, the data include the intelligence feeds from outside. By “outside”,

we mean that (a) there exists information sharing between the enterprise itself
and a set of other partner organizations (e.g., CERT, other sister enterprises);
and that (b) the in-band data do not play a role in generating these intelligence
feeds.

As shown in Fig. 2, we view both Class A and Class B data sources as an input to
the data triaging system (which is placed at the center of Fig. 2). In addition, we view
the depicted situation as the main output of the data triaging system. We note that the
data triaging system may also generate other outputs or effects such as new experiences
and new SIEM (Secure Information and Event Management) rules.

In our viewpoint, a data triaging system is a hybrid human-cyber system. On one
hand, the human part of the system includes the brains (of the security analysts) and
how the brains interact with each other. Here, the brains are not only an information
process unit, but also a cognitive neural network which holds memories (e.g., domain
knowledge, past experiences) and human learning capacity. On the other hand, the
cyber part of the system includes unbounded possibilities of software, hardware and
HCI (Human Computer Interaction) designs. Nowadays, alert correlation tools and
SIEM systems are already being used by security analysts. In the future, intelligent
software agents and robotic systems are certainly likely to be developed.

The
Network

Attacks

Data 
Sources
(feeds)

Depicted
Situation

Fig. 2. Cyber SA as a data triaging system
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As defined in [ZYL17], a data triaging system is a dynamic human-cyber system.
At time t, the state of this dynamic system includes the following elements [ZYL17]:

• The set of attack activities in each attack chain happening on the enterprise network.
• The data sources collected (so far) from multiple sensors.
• A set of incidents detected (so far) by the analysts. The incidents are described by

the involved network events and the temporal and causal relationships between
these events.

• The analysts’ domain knowledge about the network and attacks at time t, as well as
their experience knowledge of data analysis.

• Each analyst’s mental model at time t. Each mental model holds both a set of
hypotheses about possible attacks and the relationships between these hypotheses.

• A set of data triage operations conducted by the analysts at time t. As defined in
[ZYL17], the main data triage operations include data filtering, data search,
hypothesis generation, and hypothesis confirming or denying.

From the perspective of performance, the performance of Cyber SA can be partially
evaluated by a comparison between the depicted situation (see Fig. 2) and the ground
truth situation. Of course, since in many cases the enterprise only has partial knowledge
of the ground truth, the comparison is usually done using an estimate of the ground truth.

2 Why Is Research Needed

Regarding why research is needed in the area of Cyber SA, on one hand, real-world
cyber operation centers have an urgent need to improve their analysts’ job performance.
On the other hand, existing cyber-security research, especially current research on
intrusion detection and response, cannot meet the needs of real-world cyber operations.

With respect to the first aspect, the United States has more than 20 CNDSPs
(Computer Network Defense Service Providers) whose operations are relying on
human analysts. Currently, these CNDSPs face critical challenges:

• The job performance of analysts is inconsistent.
• It is hard for analysts to get the big picture: there are “walls” between functional

domains.
• Better analytics and tools are needed to improve the job performance of analysts.

With respect to the second aspect, we found that big gaps exist between available
intrusion detection and response tools and the desired Cyber SA capabilities.

Although a lot of tools have been developed, including vulnerability scanners,
event logging tools, traffic classification tools, intrusion detection systems, alert cor-
relation tools, signature generation tools, static and dynamic taint analysis tools,
intrusion root back-tracking tools, integrity checkers, static analysis tools, bug finders,
attack graph tools, symbolic execution tools, sandboxing tools, and VM monitors, the
existing tools are not yet adequate to provide cyber operation centers (e.g., CNDSPs)
with the following highly desirable Cyber SA capabilities:

6 M. Albanese et al.



• Capability 1: The ability to create problem-solving workflows or processes.
• Capability 2: The ability to see the big picture of cyber defense landscape.
• Capability 3: The ability to manage uncertainty.
• Capability 4: The ability to reason albeit incomplete/noisy knowledge.
• Capability 5: The ability to quickly locate needles in haystacks.
• Capability 6: The ability to do strategic planning.
• Capability 7: The ability to predict possible next steps an adversary might take.

For instance, consider Capability 1. For different attack chains or attack campaigns,
different problem-solving workflows are often needed in a cyber operation center. An
executable problem-solving workflow must clearly tell the analysts when to use which
tools against which data sources in which ways. Mathematically, a problem-solving
workflow is a partial order among analysts’ data triage operations.

Although many intrusion detection and diagnosis tools are available today, no
general-purpose toolkit has been developed to automatically generate differentiated
problem-solving workflows for different attack campaigns. Putting a set of tools into a
“basket” does not automatically enable the set of tools to “learn” from each other and
address theproblem-solvingworkflow“puzzle”. Infact, real-worldcyberoperationcenters
heavily rely on human analysts and their expertise/experiences to generate the suitable
problem-solving workflows on-the-fly in the midst of a not-seen-before attack campaign.

3 Research Objectives and Scientific Principles

Motivated by the gaps between existing intrusion detection and response tools and the
desired Cyber SA capabilities, the main research objectives in the area of Cyber SA
should include the following.
Objective A: Develop a deep understanding about:

• Why the job performance gap between expert and rookie analysts is so different?
How can we bridge this performance gap?

• Why many tools cannot effectively improve job performance?
• What models, tools and analytics are needed to effectively boost job performance?

Objective B: Develop a new paradigm of Cyber SA system design, implementation,
and evaluation.
Scientific barriers. In achieving these research objectives, the following scientific
barriers should be paid particular attention.

• The tension between massive amounts of sensed information and that these infor-
mation is currently being poorly used by many analysts.

• The mismatch between silicon-speed info sensing and neuron-speed human
cognition.

• The tension between the need for “big picture awareness” and that stove piped
sensing is largely the state of the practice in cyber operation centers. Besides stove
piped sensing, human stovepipes also exist in real world. Organizations tend not to
share information with other organizations, and individual analysts within an
organization tend not to share with each other.

Computer-Aided Human Centric Cyber Situation Awareness 7



• The concept of “knowledge of us” [TS09] has not yet been paid sufficient attention
by researchers and cyber operation centers.

• The tension between lack of ground-truth and the need for scientifically sound
models.

• The tension between unknown adversary intent and publicly-known vulnerability
categories.

On one hand, the above scientific barriers bring daunting challenges to the research
community. On the other hand, these barriers also create many exciting research oppor-
tunities. By crossing these scientific barriers, the potential scientific advances include the
following:

• Understanding the nature of human analysts’ Cyber SA cognition and decision
making.

• Inspiring the design of innovative Cyber SA systems that capture the nature of the
human cognitive processes.

• Breaking both vertical (between compartments) and horizontal (between abstraction
layers) stovepipes.

• Enabling the advancement of mission assurance analytics (e.g., asset map, damage,
impact, mitigation, recovery).

• Discovering blind spot situation knowledge.
• Making adversary intent an integral part of Cyber SA analytics.

Principles. In making these potential scientific advances, we believe the following
scientific principles should be followed:

Principle 1. Cyber security research shows a new trend: moving from qualitative to quanti-
tative science; from data-insufficient science to data-abundant science.

Our 
focus

Computer and 
Information Science

of Cyber SA

Cognitive Science 
of Cyber SA

Decision Making 
and Learning Science
of Cyber SA

Fig. 3. Taking a multidisciplinary approach to research Cyber SA
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The availability of sensed cyber security information opens up fascinating oppor-
tunities to understand both mission and adversary activity through modeling and
analytics. This would require creative mission-aware analysis of heterogeneous data
with cross-compartment and cross-abstraction-layer dependencies in the presence of
significant uncertainty and untrustworthiness.

Principle 2. Cyber SA tools should incorporate human cognition and decision making char-
acteristics at the design stage.

4 The Need for a Multidisciplinary Approach

We argue that an effective research strategy to tackle the scientific barriers pointed out
in the previous section is to take a multidisciplinary approach. In particular, we found
that several fundamental Cyber SA research questions cannot be systematically
answered by a single-disciplinary approach. For example, the three questions listed
below are important research questions, but cannot be adequately answered by
restricting the research effort inside a single discipline.

• Q1: What are the differences between an expert analyst and a rookie analyst?
• Q2: What analytics and tools are needed to effectively boost job performance?
• Q3: How can we develop better tools?

For instance, consider question Q1. As illustrated in Fig. 3, the differences between
expert and rookie security analyst scan be analyzed and grouped with respect to three
different points of view.

• From the perspective of Computer and Information Science, the differences may
include the following: (a) expert analysts might use tools a rookie analyst does not
use; (b) expert analysts have a much deeper understanding of the inner workings of
a tool; (c) expert analysts can create a new tool chain to diagnose a
never-seen-before attack campaign, but a rookie analyst cannot.

• From the perspective of Cognitive Science [Gardner87], the differences between
expert and rookie analysts may include the following: (a) expert and rookie analysts
have different cognitive processes and mental states, even when they are diagnosing
the same attack campaign; (b) the reasoning processes of expert analysts are more
sophisticated and less error-prone; (c) expert and rookie analysts have different team
cognition behaviors.

• From the perspective of Decision Making and Learning Science, the differences
between expert and rookie analysts may include the following: (a) expert and rookie
analysts generate different “networks” of hypotheses, even when they are diag-
nosing the same attack campaign; (b) expert and rookie analysts have different
instance-based learning behaviors in performing intrusion detection analysis.

Hence, in the MURI project titled “Computer-aided Human Centric Cyber Situa-
tion Awareness,” which the authors of this chapter have carried out from 2009 to 2015,
the primary focus was on the integration of these three perspectives, rather than on a
deeper investigation of a single perspective.

Computer-Aided Human Centric Cyber Situation Awareness 9



5 An End-to-End Holistic Approach

As pointed out in [TS09], Cyber SA is a process involving inter-dependent operations.
When a Cyber SA system is viewed as a data triage system, as shown in Fig. 2, the data
triage system uses hybrid data triage processes to generate the designated outputs.

Accordingly, in the MURI project mentioned earlier, we took an end-to-end holistic
approach to addressing the Cyber SA problem.

As shown in Fig. 4, the proposed end-to-end solution is a “coin” with two sides:

• The life-cycle side of the “coin” shows the Cyber SA tasks in each stage of
Cyber SA, including the sensing stage (at the computer network), the data condi-
tioning & association stage, the information aggregation & fusion stage, the auto-
mated reasoning stage, the human-computer interaction stage (i.e., the interaction
between analysts and automated reasoning).

• The computer-aided cognition side of the “coin” includes the development of the
Cyber SA specific cognition models and cognition-friendly Cyber SA tools.

• To approach research on the two-sided “coin”, using testbeds (replications of the
analyst task environment) (a) allowed us to learn about the cognitive science
underlying cyber analysis; (b) allowed us to learn about the cognitive science
underlying collaboration; (c) provided ground truth; and (d) allowed us to test
technology solutions with humans in the loop.
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The goal of the computer-aided cognition “side” of the proposed solution is to draw
new insights from cognitive task analysis, simulations, modeling of analysts’ cognition
and decision making, and the associated research findings.

The goal of the life-cycle “side” of the proposed solution is to use the insights
gained through the computer-aided cognition “side” to develop a new paradigm of
computer-aided Cyber SA. This new paradigm includes new analytics and better tools,
letting tools and analysts work in concert, and bridging the gap between analysts’
cognition and Cyber SA sensors and tools.

6 The MURI Project’s Cyber SA Vision

The end-to-end holistic approach we took is inspired by a Cyber SA vision we had
when starting to work on the MURI project.

Part 1 of the vision states that today’s Cyber SA practice has two fundamental
limitations:

• Existence of a huge gap between human cognition and Cyber SA tools and algo-
rithms: the amount of information contained in “raw” situation data collected by
Cyber SA tools is several orders of magnitude greater than the “cognition
throughput” of human analysts, and critical “links” from data to decision are
missing.

• Existence of major “blind spots”: existing cyber SA tools and systems – including
auditing, vulnerability scanners, attack graph tools, intrusion detection systems,
damage assessment tools, and forensics tools – still have significant “blind spots” in
their “views” of the cyber situation landscape.

Part 2 of the vision indicates how the two limitations would be addressed in the
MURI project. In particular,

• The project would address the first limitation by building the missing links through
innovations in Cyber SA specific information and knowledge fusion, cognition
automation, artificial intelligence, and visual analytics. One envisioned research
direction is to integrate human intelligence with artificial intelligence.

• The project would address the second limitation through breaking both the hori-
zontal and vertical stovepipes. The envisioned techniques include cross-layer
dependency analysis and knowledge fusion, cross-compartment dependency anal-
ysis and knowledge fusion, probabilistic graphical models to perform uncertainty
analysis and management, and integrating “knowledge of us” with “our knowledge
of the attack campaign”.

7 The MURI Project’s Main Research Thrusts

Guided by the MURI project’s Cyber SA vision, the project had conducted research
along the following thrusts.

Computer-Aided Human Centric Cyber Situation Awareness 11



• Thrust 1: Cognition Automation
– Developing interactive Cyber SA systems that exhibit intelligent behavior.
– StudyingCyber SA specific cognitive behaviors.
– Tracing security analysts’ data triage operations and reasoning processes.
– Developing techniques to do experience-based automatic situation recognition

and projection.
– Developing intelligent agents assisting human analysts in gaining Cyber SA: the

intelligent agents should be capable of learning from human data triage opera-
tions and reasoning processes.

– Performing Cyber SA specific cognition throughput evaluation.
– Discovering bottlenecks in team-based Cyber SA.

• Thrust 2: “Blind Spots” Monitoring
– Performing cross-layer dependency analysis and impact assessment (e.g.,

[NNL12] and [PNJ12].
– Performing cross-compartment dependency analysis and impact assessment.
– Performing cross-data-source security event correlation.
– Conducting game-theoretic analysis.
– Applying big data analytics and machine learning techniques.

• Thrust 3: Situation Knowledge Fusion
– Developing cyber situation knowledge reference models for situation knowledge

representation and management [DSL12].
– Building probabilistic graphical models to perform uncertainty analysis and

management.
• Thrust 4: Visual Analytics

– Developing Cyber SA specific visual analytics.

8 Key Research Outcomes of the MURI Project

8.1 Thrust 1 Research Outcomes

8.1.1 A Methodology for Research on the Cognitive Science of Cyber
Defense
Our MURI team adhered to the living lab approach. This approach involves a cyclic
methodology that begins and ends in the real world. The team would attempt to
understand the task of the cyber analyst through interviews with subject matter experts,
looking at documentation and the literature, and observing cyber exercises. This
information was used to build laboratory versions of the cyber analyst task [RSC11].
Scenarios were developed which included attacks to a network. Because we developed
the scenarios, we knew the ground truth. Human participants were recruited and trained
on the test bed task. Some scenarios required participants with a background in
information assurance. The test bed was equipped with measures of individual and
team performance and cognition and provided ways to manipulate the scenario.
Findings from these test bed experiments can feed back to the field in the form of
user-centered tools, algorithms, or models.
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8.1.2 Building a Hybrid Human-Cyber Data Triage System for Cyber SA
Many prominent companies, government organizations and military departments have
invested significant financial resources to construct their cyber defense system. Typi-
cally, they set up a Security Operations Center (SOC) to perform 24/7 monitoring,
intrusion detection, and diagnosis (on what is actually happening). SOCs usually
employ multiple automated security tools, such as traffic monitors, firewalls, vulner-
ability scanners, Intrusion Detection/Prevention System (IDS/IPS). Besides, SOCs rely
heavily on cyber security analysts to investigate the data generated from security tools
to identify the true “signals” from them and “connect the dots” to answer some
higher-level questions about the cyber situation, for example, whether the network is
under an attack; what did the attackers do; and what might be their next steps. SOCs
cannot be fully automated because the security tools are in many cases unable to
“comprehend” sophisticated cyber-attack strategies even through advanced correlated
diagnosis. Specifically, analysts need to conduct a series of analysis, including data
triage, escalation analysis, correlation analysis, threat analysis, incident response and
forensic analysis.

Our MURI team built an innovative hybrid human-cyber data triage system (e.g.,
[CLY12, ZK13, ZSY14]) for gaining Cyber SA. Data triage encompasses examining
the details of a variety of data sources (e.g., IDS alerts, firewall logs, OS audit trails,
vulnerability reports, and packet dumps), weeding out the false positives, grouping the
related indicators so that different attack campaigns (i.e., attack plots) can be separated
from each other. Data triage provides a basis for closer inspection in the following
analysis to finally generate confidence-bounded attack incident reports. These incident
reports will serve as the primary basis for further decision-making regarding how to
change current security configuration and act against the attacks. Data triage is the most
fundamental but the most time consuming stage in gaining Cyber SA. Although
Security Information Event Management (SIEM) systems take a big leap forward in
generating more powerful data triage automatons, SIEM systems are extremely
expensive and every organization needs to use a tailored SIEM system. SIEM systems
involve a tremendous amount of manual effort.

We aimed to leverage Artificial Intelligence techniques to dramatically reduce the
cost of generating data triage automatons. We aimed to automatically learn data triage
automatons from analysts’ working experience and data triage operation traces. To this
end, we leveraged a computer-aided cognitive process tracing method to capture expert
analysts’ operations while they are performing data triage. We developed a 3-step
approach to automatically learn data triage automatons from the traces.

• Step 1. We represented the analysts’ data triage operations captured in traces and
their temporal and logical relationships in a newly defined Characteristic Constraint
Graph (CC-Graph).

• Step 2. We mined useful SIEM rule ingredients. We analyzed the CC-Graphs to
find the key data characteristic constraints. The key constraints were further cor-
related with the data sources to identify the “can-happen-before” relationships
among them. The key constraints and their “can-happen-before” relationships
represented various attack patterns, named “Attack Path Pattern”. Each attack path
pattern, which was formally represented, had a semantic meaning that defines a
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class of network connections indicating multi-step attacks. Analysts can review,
modify and extend them.

• Step 3. We directly used the formally represented attack path patterns to build a
finite state machine for conducting automated data triage, just as adding rules to a
SIEM system.

We evaluated our approach in a human-in-the-loop case study. 30 professional
security analysts were recruited in the study and asked to complete a cyber-attack
analysis task with their task operations being traced. Selecting several sets of traces,
rule sets were discovered from each set of traces and used to construct a set of data
triage state machines. False positive and false negative rates were calculated to evaluate
the performance of the state machines by comparing their data triage results with the
ground truth. The results show that all the state machines were able to finish processing
a much larger data set within several minutes.

8.1.3 Observations of Team Communication and Coordination in Cyber
Defense Analysis
Over the course of the MURI project, our team observed several cyber defense exercises
and administered surveys to those conducting cyber security for the DoD and industry
(e.g., the study in [JCR12]). Insights from these field studies not only led to the
development of a test bed and raised various research questions pertaining to teamwork
in cyber defense, but also highlighted some general observations. For instance,
stove-piping was observed in exercises - both in DoD organizations and in the industry –
but was particularly apparent in the DoD. We also observed that analysts in all sectors
were not eager to initiate collaboration or share information with each other. Survey data
from analysts allowed us to model organizational structure for cyber defense within the
industry and the military. These models revealed both large and subtle differences in
organizational structure between military and industry cyber security operations.

Field observations and surveys from analysts informed development of the
human-in-loop test bed called CyberCog. This test bed was used to conduct lab-based
experiments on teamwork on two related detection tasks: triage analysis and correlation
analysis. Teamwork and information sharing was found to significantly reduce analysts’
workload during triage analysis. We found that analysts could achieve higher triage
analysis performance by handing-off and collaborating on uncertain alerts/events with
other appropriate analysts to leverage each other’s unique expertise, instead of trying to
reason and analyze all of the alerts individually. Although, collaborating to analyze all
alerts may also be detrimental to performance. Our experiments also found evidence of a
cognitive bias among teams conducting correlational analyses [JCR16]. Pooling novel
information from team members through collaboration is pivotal to correlation analyses.
However, teams were found to repeatedly discuss and pool information which is also
commonly known to themajority of teammembers causing sub-optimal decisionmaking.

We found that cyber defense teams have to be facilitated with operator centric
collaboration tools to mitigate or reduce such cognitive biases (e.g., information
pooling bias and confirmation bias) [RC16]. Carefully designed team training methods
are necessary to help analysts determine: when to initiate collaboration with team
members, who to collaborate with and when to pursue analyses individually.
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8.1.4 Capturing Human Cognition in Cyber-Security Simulations
with CYNETS
We built CYNETS (e.g., [GM13]), a simulator to capture human cognition in per-
forming Cyber SA tasks. We conducted a large number of CYNETS simulations, using
students as human subjects. During the simulations, the Cyber SA tasks for human
subjects were as follows. The subjects were given remote access to two servers to
defend from live “red-team” attackers. They were also provided dynamic injects of
tasks they were asked to perform – typical systems administration tasks, account
creation, database updates, etc. Typical tasks included enumerating and securing
accounts with administrative access (changing from default passwords), identifying and
updating software with patches, modifying configuration of software to turn off
unneeded services, etc. During the exercise, the human subjects needed to identify what
was wrong (configuration, patches accounts, services), figure out if attackers were
utilizing those vulnerabilities to compromise systems, and turn off attacker access if
they were able to locate that the attacker had gained access.
Data Creation. The experimental simulation data was created in a lab environment.
The simulated data was fabricated from a network of computers in the laboratory that
simulates an active network of computers from a fictitious organization called “ABC”.
During a 24-hour period, accounts were logged on and off of computer systems to
create actual log entries in the Windows Security Log of the server. The data set that
was presented to human subjects had some level of normal noise, but generally was
limited to successful logon, successful logoff and unsuccessful logon events. Embed-
ded in the presented authentication data was a series of failed logon attempts, followed
by an eventually successful event.

Additionally, the same 24-hour period was used and a number of viruses were
copied on to the computers. The antivirus program was allowed to detect these files and
take appropriate action – either delete or quarantine the files with the malicious code.
Together with the updates of new antivirus definitions, these two types of records were
presented in the antivirus data.

The final set of data is patch management. In this case, we created a set of records
of normally applied updates.
Methods. Three triad teams were recruited. Each individual was randomly assigned to
one role for the simulation, either (i) Windows Authentication Analyst (WAA),
(ii) Anti-Virus Analyst (AVA), or (iii) Windows Update Analyst (WUA). When the
first training scenario was finished, the participants were given a survey to quantify
their individual situation awareness using NASA-TLX [HS88] and SART [Taylor90].

After the survey was completed, participants were given a second training scenario
followed by another individual SA survey. Following both training scenarios, the
participants were given a quick debrief about the scenario and the proper response.
Next, the first performance scenario was started and once complete was followed by the
same individual SA measures but with the added Shared SA Inventory (SSAI)
[SST09]. Subsequently, participants were asked to complete the second performance
scenario and the same individual SA and SSAI surveys.
Results. The simulation was tested initially with 3 teams to assess feasibility and
capture the performance measures mentioned above. Everything worked well in the
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simulation, and students were able to perform in the role of individual and team cyber
analyst duties in determining routine and threat activities as part of their task.
Implications. The CYNETS scaled world simulation represents the development of a
challenging cyber operations environment that emulates real world threat assessment
that involves distributed cognition across individual and teamwork functions.

8.1.5 Cognitively Modeling Detection of Cyber Attacks
with Instance-Based Learning Theory
The Instance-Based Learning Theory (IBLT) presents decision making as a dynamic
process in which analysts interacts with an environment under limited information and
uncertainty, and must rely on his/her experience to make decisions. This line of work
applied IBLT to gaining Cyber SA.

Cyber-attacks cause major work disruption. It is important to understand how a
defender’s behavior (experience and tolerance to threats), as well as adversarial
behavior (attack strategy), might impact the detection of threats. In this work [DAG13],
we used cognitive modeling to make predictions regarding these factors. Different
model types representing a defender, based on Instance-Based Learning Theory
(IBLT), faced different adversarial behaviors. A defender’s model was defined by the
analyst’s experience of threats: threat-prone (90% threats and 10% non-threats) and non
threat-prone (10% threats and 90% non-threats); and different tolerance levels to
threats: risk-averse (model declares a cyber-attack after perceiving one threat out of
eight total) and risk-seeking (model declares a cyber-attack after perceiving seven
threats out of eight total). Adversarial behavior is simulated by considering different
attack strategies: patient (threats occur late) and impatient (threats occur early).

For an impatient strategy, risk-averse models with threat-prone experiences show
improved detection compared with risk-seeking models with non threat-prone expe-
riences. However, the same is not true for a patient strategy. Based upon model
predictions, a defender’s prior threat experiences and her/his tolerance to threats are
likely to predict detection accuracy, but considering the nature of adversarial behavior
is also important.

8.2 Thrust 2 Research Outcomes

8.2.1 A Mission-Centric Framework for Cyber Situational Awareness
OurMURI team proposed a mission-centric framework for Cyber SA, which was mainly
motivated by the limitations of attack graphs. First, attack graphs do not provide
mechanisms for evaluating the likelihood of each attack pattern or its impact on the
enterprise or mission. Second, scalability of alert correlation has not been fully addressed.

The proposed solution (e.g., [AJN12]) is a novel framework to analyze massive
amounts of raw security data in real time. It envisions the capability of automatically
answering a number of questions the analyst may ask about current situation, impact
and evolution of an attack, behavior of the attackers, forensics, quality of available
information and models, and prediction of future attacks. In practice, the proposed
framework provides security analysts with a high-level view of the cyber situation.
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The key components of this framework are as follows. First, we introduced the
notion of generalized dependency graph, which captures how network components
depend on one other. Second, we extended the classical definition of attack graph with
the notion of time span distribution, which encodes probabilistic knowledge of the
attacker’s behavior. Third, we introduced the notion of attack scenario graph, which
combines dependency and attack graphs, bridging the gap between known vulnera-
bilities and the missions or services that could be ultimately affected. Fourth, we
proposed efficient algorithms for both detection and prediction, and showed that they
scale well for large graphs and large volumes of alerts. Fifth, we developed an efficient
approach for assessing the risk of zero-day vulnerabilities, based on methods for
generating partial attack graphs on-demand. Sixth, to answer the questions the analyst
may ask, it is critical to define security metrics to capture and quantify several aspects
of the system being defended, such us robustness to zero-day attacks. Accordingly, we
developed a suite of metrics for measuring network-wide cyber security risk based on
attack graphs: we investigated network diversity as a security metric, and evaluated its
impact on the robustness of networks against zero-day attacks.

8.2.2 Automatically Explaining Security Alerts
In real-world enterprises, security managers are usually swamped with the large
number of alerts they receive, and any effort that helps explain what is happening is
very helpful. We developed the novel new notion of a hypergraph alert mechanism
(HAM) and showed how a HAM can be learned automatically from a set of SNORT
rules. We then showed that using sophisticated graph reachability properties, suitably
modified to handle time constraints and hypergraph structure, we could generate
appropriate explanations of a given set of alerts that an analyst sees in front of him.

In the HAM framework (e.g., [AMP11, AMP14, MMP14]), we assumed that
SNORT rules are responsible for generating alerts. A hypergraph alert mechanism
consists of certain types of nodes and certain specialized types of hyper-edges.

• A node is a pair ðm; aÞ, and represent the fact that SNORT generated an alert a on a
machine m in the enterprise network.

• A hyper-edge is a triple e ¼ H; n; dð Þ where H is a set of nodes; n is a specific node;
and d ef g is a mapping that associates, with each n

0 2 H, a non-negative real number.

Intuitively, a hyper-edge e indicates that all events in H tend to occur more or less
together, with a temporal delay between the time the events in H occur and the time n
occurs. For a given event n

0 2 H, d ef gðn0 Þ denotes the amount of time between the

occurrence of n
0
and the occurrence of n.

We developed a formal theoretical model of HAM that is able to provide expla-
nations of an alert, given a history of alerts generated in the past, not just for the current
machine, but other machines as well. We also developed an algorithm to take existing
SNORT rules together with the enterprise network topology as input and automatically
generate a set of HAMs from them.

In addition, we worked on the following problem. Given a set of alerts A ¼
fa1; . . .; akg that have actually happened, what is the best explanation of this set of
alerts? An explanation E is a set of hyper-edges with various properties. To solve this
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problem, we developed a formal definition of an explanation for a given set of alerts;
we defined several metrics to evaluate each explanation; we also linked these metrics to
NIST’s National Vulnerability Database and MITRE’s Common Weakness Scoring
System. Using these metrics, we developed an initial algorithm able to find the set of
best explanations according to all different measures, by using prefixed order relation
among the metrics or via Pareto optimality.

8.2.3 Game-Theoretic Analysis of Patch Deployment Using the National
Vulnerability Database
Most enterprise security managers today have tons of software within their enterprise.
Because of time and cost constraints, they only typically apply patches to the software
that is deemed most vulnerable (e.g., by the NIST National Vulnerability Database).

The goal of the proposed game-theoretic analysis [SJP15] is to anticipate how the
adversary can behave, and use that information to provide an advantage to the
defender. We proposed a framework based on Stackelberg games by which the
defender (enterprise security manager) can choose the set of patches to apply within his
cost/time constraints that minimize the expected damage caused by the attacker’s
maximally damaging strategy.

Through game-theoretic analysis, we were able to prove theoretically that the
attacker’s best strategy (in terms of which known vulnerabilities to exploit) can easily
penetrate such defenses. We developed a formal concept of the best strategy for an
attacker, showed that for him to find an optimal strategy is intractable, and developed
algorithms that an attacker can use.

In addition, we asked the following question: given a set of publicly known
information such as the cost of patching vulnerabilities (which can be readily inferred
by anyone), what is the strategy that an intelligent attacker would use in order to
maximize the expected damage he can cause? With this in hand, the defender can come
up with defensive strategies that minimize the expected damage the attacker can inflict.
We allowed the defender to do two things: (i) deactivate certain products (e.g., if they
have serious vulnerabilities)which could reduce the impact of attacks; and (ii) apply
patches to certain vulnerabilities. The first method has a potential impact on produc-
tivity of the enterprise while the second has a time/cost implication. We defined the
optimal strategy of the defender as a Pareto optimization problem and showed how to
find the set of all optimal strategies for the defender. We derived a number of com-
plexity results associated with the attacker’s goal of finding an attack that maximizes
his expected impact, and also the defender’s goal of taking steps to minimize the
maximal impact the attacker can have.

We implemented our algorithms and tested them on four real-world vulnerability
dependency graphs (a more general version of attack graphs). Our results showed that
our algorithms work in reasonable amounts of time on real-world networks and provide
options to enterprise security managers that represent different combinations of max-
imizing productivity and minimizing expected attack impact. Our prototype imple-
mentation showed that run-times of our computations are all within acceptable time
bounds even for large vulnerability dependency graphs containing 30 K edges and that
the balance between productivity and impact of attacks is also acceptable.
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8.2.4 Automatic Policy Analysis and Refinement for Security Enhanced
Android via Large-Scale Semi-supervised Learning
In this line of work, we focused on automated analysis of audit logs generated by
access control systems. For a large population of users, over a period of time measured
in months or years, such logs can run into many millions of entries, or greater. The
intended output of such automated analysis is a security policy that can be parsed and
enforced by some form of mandatory access control.

Mandatory access control (MAC), which is enforced by SELinux, has a number of
advantages over discretionary access control (DAC). However, because of the difficulty
of creating, understanding, optimizing, and maintaining security policies, MAC is
typically turned off, or a weak, generic policy is used which is not very effective at
preventing misuse. In theory, if it was possible to identify in advance every potential
non-malicious access operation executed by every piece of installable software, an
appropriate security policy could be derived that would permit these operations, and no
more. This unfortunately is not a realistic goal.

It is, however, realistic to capture from a large population of users, over a sufficient
interval of time, most of the access operations that are needed in practice, and to
process this information to derive a security policy. There are several research ques-
tions that must be answered in doing so:

1. Is it possible to distinguish the operations executed by normal users and software
from operations executed by malicious software?

2. Is it possible to generate automatically a security policy that allows normal accesses
and prevents malicious accesses, in a way that makes the policy both human
readable and efficient to enforce?

3. Will such a method scale to information captured from millions of users over
extended periods of time?

4. Will the quality of the generated security policy, as judged by security analysts, be
equal to or better than the quality of manually derived policies?

We investigated this issue using as a demonstration system an Android smartphone.
Through a partnership with Samsung, we obtained access to a rich dataset of user
access operations, collected from millions of users (with their permission). We pro-
posed and evaluated a method for automatically creating security policies which can be
enforced by the MAC layer (SEAndroid) of Android devices. This approach answers
the above research questions in the affirmative, with some limitations.

Semi-supervised learning is a type of machine learning that trains on both labeled
data (used by supervised learning) and unlabeled data (used by unsupervised learning).
It is typically used when labeled data is insufficient and expensive to collect, and a large
set of unlabeled data is available. By correlating the features in unlabeled data with
labeled data, a semi-supervised learner infers the labels of the unlabeled instances with
strong correlation. This labeling increases the size of labeled data set, which can be
used to further re-train and improve the learning accuracy. Semi-supervised learning is
popular for information extraction and knowledge base construction. We hypothesized
that the process of developing and refining security policies is analogous to
semi-supervised learning. Human analysts encode their knowledge about various
access patterns into a policy, and refine that knowledge based on examination of audit
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logs. Because of the difficulty of doing this accurately and in a timely fashion, security
policies are generally overly permissive. Semi-supervised learning can automate this
process to achieve scalability in policy refinement.

The input to learning is an existing security policy (if there is one), and a set of
access events logged from user devices. Each access event entry identifies the subject
(i.e., the process or application), the object (i.e., the file or system resource), and the
type of execution requested by the subject on that object. Note that audit logs may
contain attempted accesses by malicious as well as non-malicious software and users.
A main intuition is that non-malicious accesses are much more common than malicious
access attempts, and malicious accesses have distinctive features that can be learned by
an automated method.

The proposed method used three machine learning algorithms that consider dif-
ferent perspectives of the knowledge base and audit logs. The output of these algo-
rithms is fed into a combiner that combines and appends the new knowledge into the
knowledge base. This learning process is iterated multiple times until no additional new
knowledge can be learned from the current audit log input. Finally, the policy generator
suggests refinements to the security policy. This proposed method was tested on the
SEAndroid platform, with an input dataset consisting of over 14 M denied access
events, and an initial security policy containing over 5,000 security rules. The results
showed that the method classified as malicious more than 200 types of accesses that are
currently allowed by SEAndroid. A number of these accesses have been confirmed as
previously unrecognized (and therefore unprevented) attacks on Android devices.

8.3 Thrust 3 Research Outcomes

8.3.1 Using Bayesian Networks to Gain Cyber SA
We explored two ways of using Bayesian Networks to gain Cyber SA (e.g., [XLO10]):
(1) building cross-layer Bayesian networks to infer the stealthy bridges between
enterprise network islands in clouds; (2) using Bayesian networks to perform auto-
mated heterogeneous evidence fusion towards detection of zero-day attack paths.

(1) Inferring the stealthy bridges in clouds
Gaining Cyber SA in cloud environments is a very important and emerging research
area in Cyber SA. Enterprises have begun to move parts of their IT systems (such as
web server, mail server, etc.) from traditional infrastructure into cloud computing
environments. A public cloud can provide virtual infrastructures to many enterprises.
Except for some public services, enterprise networks are expected to be like isolated
islands in the cloud: connections from the outside network to the protected internal
network should be prohibited. Consequently, an attack path that shows a multi-step
exploitation sequence in an enterprise network should also be confined inside this
island. However, as enterprise networks migrate into the cloud and replace traditional
physical hosts with virtual machines, some “stealthy bridges” could be created between
the isolated enterprise network islands. With the stealthy bridges, the attack path
confined inside an enterprise network is able to traverse to another enterprise network
in the cloud. In other words, stealthy bridges are stealthy information tunnels existing
between disparate networks in a cloud that are unknown to security sensors and should
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have been forbidden. Stealthy bridges are developed mainly by exploiting vulnera-
bilities that are unknown to vulnerability scanners. Isolated enterprise network islands
are connected via these stealthy tunnels, through which information (data, commands,
etc.) can be acquired, transmitted or exchanged illegally.

In this line of work, we built cross-Layer Bayesian Networks to infer the stealthy
bridges between enterprise network islands in clouds. In particular, our main contri-
butions are as follows. First, we found that the creation of “stealthy bridges” is enabled
by two unique features of the public cloud: (i) cloud users are allowed to create and
share virtual machine images (VMIs) with other users; and (ii) virtual machines owned
by different tenants may co-reside on the same physical host machine. Second, we built
a cloud-level attack graph by crafting new interaction rules in MulVAL, an attack
graph generation tool. The cloud-level attack graph can capture the potential attacks
enabled by stealthy bridges and reveal possible hidden attack paths that are previously
missed by individual enterprise network attack graphs. Third, based on the cloud-level
attack graph built by us, a cross-layer Bayesian Network (BN) was constructed by
identifying four types of uncertainties. The cross-layer BN is able to infer the existence
of stealthy bridges given supporting evidence from other intrusion steps. The BN has
two inputs: the network deployment model (network connection, host configuration,
and vulnerability information, etc.) and the evidence. The output of the BN is the
probability of specific events, such as the probability of stealthy bridges being estab-
lished, or the probability of a web server being compromised.

In our evaluation experiments, we considered three major enterprise networks, say
A, B, and C. A and B are all implemented within the cloud, while C is implemented
partially in the cloud and partially as a traditional infrastructure(e.g., the servers are
located in the cloud and the workstations are in a traditional network). The attack
includes seven steps conducted by attacker. In this scenario, two stealthy bridges were
established: one is from the Internet to enterprise network A through exploitation of an
unknown vulnerability, the other one is between enterprise networks B and C by
leveraging virtual machine co-residency. The attack path crosses over three enterprise
networks that reside in the same cloud, and extends to C’s traditional network. A con-
crete cross-layer BN is constructed and it takes into account the existence of stealthy
bridges; the cloud-level attack graph has the capability of revealing potential hidden
attack paths. We conducted four sets of simulation experiments, each with a specific
purpose. The results showed that (a) the probability of stealthy bridge existence is
initially very low, and increases from 34% to 88% as more evidence is collected; (b) the
BN can provide relatively correct answer by combining the overall evidence set; and
(c) the BN can still produce reliable results in the presence of changing evidence order.

(2) Detecting zero-day attack paths
Since Cyber SA in large enterprise networks is gained through synthesized analysis of
multiple data sources, evidence fusion is a fundamentally important Cyber SA capa-
bility. In the literature, a variety of homogeneous evidence fusion techniques (e.g., alert
correlation) have been developed. However, automated heterogeneous evidence fusion
is an under-investigated research area. In practice, heterogeneous evidence fusion is
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primarily relying on SIEM rules manually developed by security analysts. Unfortu-
nately, it is extremely expensive to generate high quality SIEM rules.

In this line of work, we took the first steps towards using Bayesian Networks to
perform evidence fusion towards detection of zero-day attack paths in enterprise net-
works. Detecting zero-day attacks is one of the most fundamentally challenging
Cyber SA problems yet to be solved. Zero-day attacks are usually enabled by unknown
vulnerabilities. The information asymmetry between what the attacker knows and what
the defender knows makes zero-day exploits extremely hard to detect. Signature-based
detection assumes that a signature is already available for each exploit, therefore it fails
to detect unknown exploits. Anomaly detection may detect zero-day exploits, but this
solution has to cope with high false positive rates.

Considering the extreme difficulty of detecting individual zero-day exploits, a
substantially more viable strategy is to identify zero-day attack paths. In real world,
attack campaigns are relying on a chain of attack actions, which forms an attack path.
Each attack chain is a partial order of exploits and each exploit is exploiting a particular
vulnerability. A zero day attack path is a multi-step attack path that includes one or
more zero-day exploits. A key insight in dealing with zero-day attack paths is to
analyze the chaining effect. Typically, it is not very likely for a zero-day attack chain to
be 100% zero-day, namely having every exploit in the chain be a zero-day exploit.
Hence, defenders can assume that (i) the non-zero-day exploits in the chain are
detectable; and (ii) these detectable exploits have certain chaining relationships with
the zero-day exploits in the chain. As a result, connecting the detected non-zero-day
segments through a path is an effective way of revealing the zero-day segments on the
same chain.

Both alert correlation and attack graphs are possible solutions for generating
potential attack paths, but they are still very limited in revealing the zero-day ones.
A main reason for this is that they both perform homogeneous evidence fusion and they
both have very limited capability to perform heterogeneous evidence fusion. A key
observation is that zero-day attack path detection requires heterogeneous evidence
fusion, whereas homogeneous evidence fusion is simply not adequate.

We observed that Bayesian networks can incorporate literally all kinds of knowl-
edge the defender has about the zero-day attack paths; we also observed that a Bayesian
network based approach is elastic. Whenever new knowledge is gained about zero-day
attacks, such new knowledge can be incorporated into the Bayesian network. When-
ever erroneous knowledge is identified, one can easily remove it. Based on these
observations, we developed an innovative technique which uses Bayesian Networks to
perform heterogeneous evidence fusion towards detection of zero-day attack paths in
enterprise networks. We proposed constructing Bayesian networks at the system object
level by introducing the object instance graph. We designed, implemented and eval-
uated a system prototype named ZePro, which can effectively and automatically
identify zero-day attack paths.
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8.4 Thrust 4 Research Outcomes

8.4.1 Web-Based Visualization of Snort Alert Data Using Ensemble
Approaches
We firstly developed a netflow visualization tool [HH16]. This tool visualizes corre-
lated netflows and Snort alerts as charts (e.g., bar charts, scatter plots), a simple design
rational that was chosen because it is well recognized and well understood by the
analysts, and because it has been shown to be effective for the types of tasks the
analysts perform. Based on our model of construction tools designed to fit our analysts’
workflow and mental models, each analyst has full control to define the data attributes
on the graph’s axes, as well as which data to aggregate at different graph positions.

We further extended our investigation of how ensemble visualization techniques
can be applied within our visualization tool. Ensemble visualization studies the
problem of visualizing very large datasets made up of “members” that represent events
or episodic repetition within the data. In the physical science community, ensembles
often encode simulation data, where each member is a simulation run with specific
input parameters. In a cyber security environment, an ensemble might be a collection of
network data, where each member represents a particular type of suspected attack or
collection of network traffic associated with a specific category of class of activity.

We then developed a prototype web-based application, based on our original
chart-based netflow visualization tool, to represent netflows and Snort alerts as
ensemble members, and to then apply ensemble visualization approaches to present this
data. This involved two important challenges: (i) designing a method to represent
network security data in a way that fits the “ensemble of members” input requirements
for ensemble visualization techniques; and (ii) building off existing ensemble visual-
ization methods to visually present netflow and Snort alert data in ways that can
efficiently and effectively support network analysts.

To address these challenges, we developed methods to identify patterns in
time-varying ensemble members in two different ways. This makes the ensemble
approach much more applicable to cyber situation data, since all analysis on network
data requires consideration of a time dimension. These techniques were extended and
integrated into our ensemble-based network analysis framework.

9 Conclusions

In this chapter, we provided an overview of Cyber Situational Awareness, an emerging
research area in the broad field of cyber security, and discuss, at least at a high level,
how to gain Cyber Situation Awareness. Our discussion focused on answering the
following questions: What is cyber situation awareness? Why is research needed? What
are the research objectives and scientific principles? Why should one take a multi-
disciplinary approach? How could one take an end-to-end holistic approach? What are
the future research directions?
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Abstract. In this chapter, we present a framework that integrates an
array of techniques and automated tools designed with the objective
of drastically enhancing the Cyber Situation Awareness process. This
framework incorporates the theory and the tools we developed to answer
– automatically and efficiently – some of the fundamental questions secu-
rity analysts may need to ask in the context of Cyber Situation Aware-
ness. Most of the work presented in this chapter is the result of the
research effort conducted by the authors as part of a the Multidisci-
plinary University Research Initiative project sponsored by the Army
Research Office that was mentioned in the introductory chapter. We
present the key challenges the research community has been called to
address in this space, and describe our major accomplishments in tack-
ling those challenges.

1 Introduction

Without loss of generality, the process of situation awareness can be viewed as
a three-phase process: situation perception, situation comprehension, and situa-
tion projection [1]. Perception provides information about the status, attributes,
and dynamics of relevant elements within the environment. Comprehension of
the situation encompasses how people combine, interpret, store, and retain infor-
mation. Projection of the elements of the environment (situation) into the near
future encompasses the ability to make predictions based on the knowledge
acquired through perception and comprehension.

In order to make informed decisions, security analysts need to be aware of
the current situation, the impact and evolution of an attack, the behavior of
the attackers, the quality of available information and models, and the plausible
futures of the current situation. Some of the questions they may ask are: Is there
any ongoing attack? If so, where is the attacker? Are available attack models
sufficient to understand what is observed? Can they predict an attacker’s goal?
If so, how can they prevent that goal from being reached?
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In this chapter, we describe several techniques, mechanisms, and tools that
can help form and leverage specific types of cyber situation awareness. This
framework aims at enhancing the traditional cyber defense process by automat-
ing many of the capabilities that have traditionally required a significant involve-
ment of human analysts and other individuals. Ideally, we envision the evolution
of the current human-in-the-loop approach to cyber defense into a human-on-the-
loop approach, where human analysts would only be responsible for examining
and validating or sanitizing the results generated by automated tools, rather
than being forced to comb through daunting amounts of log entries and security
alerts.

The remainder of this chapter is organized as follows. Section 2 discusses the
overall process of Cyber Situation Awareness, and Sect. 3 presents a motivat-
ing example we use throughout the chapter. Section 4 introduces the proposed
framework, whereas Sect. 5 discusses our scientific progress and major research
accomplishments in more detail. Finally, Sect. 6 gives some concluding remarks.

2 The Process of Cyber Situation Awareness

The security analyst – or cyber defense analyst – plays a major role in all the
operational aspects of maintaining the security of an enterprise. Security ana-
lysts are also responsible for studying the threat landscape with an eye towards
emerging threats to the organization. Unfortunately, given the current state of
the art in the area of automation, the operational aspects of IT security may
still be too time-consuming to allow this type of outward looking focus in most
realistic scenarios. Therefore, the scenario we envision – where automated tools
would gather and preprocess large amounts of data on behalf of the analyst – is
a highly desirable one. Ideally, such tools should be able to automatically answer
most, if not all, the questions an analyst may ask about the current situation,
the impact and evolution of an attack, the behavior of the attackers, the quality
of available information and models, and the plausible futures of the current
situation. In the following, we define the fundamental questions that an effec-
tive Cyber Situation Awareness framework must be able to help answer. For
each question, we identify the inputs as well the outputs of the Cyber Situation
Awareness process, and we also briefly comment on the life cycle of the situation
awareness gained in response to each question.

1. Current situation. Is there any ongoing attack? If yes, what is the stage of
the intrusion and where is the attacker?
Answering this set of questions implies the capability of effectively detecting
ongoing intrusions, and identifying the assets that might have been already
compromised. With respect to these questions, the input to the CSA process
is represented by IDS logs, firewall logs, and data from other security moni-
toring tools. On the other hand, the product of the CSA process is a detailed
mapping of current intrusive activities. This type of CSA may quickly become
obsolete – if not acted upon timely or updated frequently – as the intruder
progresses within the system.
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2. Impact. How is the attack impacting the organization or mission? Can we
assess the damage?
Answering this set of questions implies the capability of accurately assessing
the impact, so far, of ongoing attacks. In this case, the CSA process requires
knowledge of the organization’s assets along with some measure of each asset’s
value. Based on this information, the output of the CSA process is an estimate
of the damage caused so far by ongoing intrusive activities. As for the previous
case, this type of CSA must be frequently updated to remain useful, because
damage will increase as the attack progresses.

3. Evolution. How is the situation evolving? Can we track all the steps of an
attack?
Answering this set of questions implies the capability of monitoring ongoing
attacks, once such attacks have been detected. In this case, the input to the
CSA process is the situation awareness generated in response to the first set
of questions above, whereas the output is a detailed understanding of how
the attack is progressing. Developing this capability can help address the
useful life limitations highlighted above and refresh the situation awareness
generated in response to the first two sets of questions.

4. Behavior. How are the attackers expected to behave? What are their
strategies?
Answering this set of questions implies the capability of modeling the
attacker’s behavior in order to understand its goals and strategies. Ideally, the
output of the CSA process with respect to this set of questions is a set of for-
mal models (e.g., game theoretic models, stochastic models) of the attacker’s
behavior. The attacker’s behavior may change over time, therefore models
need to adapt to a changing adversarial landscape.

5. Forensics. How did the attacker reach the current situation? What was he
trying to achieve?
Answering this set of questions implies the capability of analyzing the logs
after the fact and correlating observations in order to understand how an
attack originated and evolved. Although this is not strictly necessary, the
CSA process may benefit, in addressing these questions, from the situation
awareness gained in response to the fourth set of questions. In this case, the
output of the CSA process includes a detailed understanding of the weak-
nesses and vulnerabilities that made the attack possible. This information
can help security engineers and administrators harden system configurations
in order to prevent similar incidents from occurring again in the future.

6. Prediction. Can we predict plausible futures of the current situation?
Answering this set of questions implies the capability of predicting possible
moves an attacker may take in the future. With respect to this set of questions,
the input to the CSA process is represented by the situation awareness gained
in response to the first (or third) and fourth sets of questions, namely, knowl-
edge about the current situation (and its evolution) and knowledge about the
attacker’s behavior. The output is a set of possible alternative scenarios that
may materialize in the future.
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7. Information. What information sources can we rely upon? Can we assess
their quality?
Answering this set of questions implies the capability of assessing the quality
of the information sources all other tasks depend upon. With respect to this
set of questions, the goal of the CSA process is to generate a detailed under-
standing of how to weight all different sources when processing information in
order to answer all other sets of question the overall CSA process is aiming to
address. Being able to assess the reliability of each information source would
enable automated tools to attach a confidence level to each finding.

It is clear from our discussion that some of these questions are strictly cor-
related, and the ability to answer some of them may depend on the ability to
answer other questions. For instance, as we have discussed above, the capability
of predicting possible moves an attacker may take depends on the capability
of modeling the attacker’s behavior. A cross-cutting issue that affects all other
aspects of the CSA process is scalability. Given the volumes of data involved in
answering all these questions, we need to define approaches that are not only
effective, but also computationally efficient. In most circumstances, determining
a good course of action in a reasonable amount of time may be preferable to
determining the best course of action, if this cannot be done in a timely manner.

In conclusion, the situation awareness process in the context of cyber defense
entails the generation and maintenance of a body of knowledge that informs
and is augmented by all the main functions of the cyber defense process [1].
Situation awareness is generated or used by different mechanisms and tools aimed
at addressing the seven classes of questions that security analysts may routinely
ask while performing their work tasks.

3 Motivating Example

Throughout this chapter, we will often refer to the network depicted in Fig. 1
as a motivating example. This network offers two public-facing services, namely
Online Shopping and Mobile Order Tracking, and consists of three subnetworks
separated by firewalls. The first two subnetworks implement the two services, and
each of them includes a host accessible from the Internet. The third subnetwork
implements the core business logic, and includes a central database server. An
attacker who wants to steal sensitive data from the main database server will
need to breach multiple firewalls and gain privileges on several hosts before
reaching the target.

As attackers can leverage the complex interdependencies of network con-
figurations and vulnerabilities to penetrate seemingly well-guarded networks,
in-depth analysis of network vulnerabilities must consider attacker exploits not
merely in isolation, but in combination. For this reason, in order to study the vul-
nerability landscape of any enterprise network, we extensively use attack graphs,
which reveal potential threats by enumerating paths that attackers can take to
penetrate a network [8].
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Internet

Web Server (A)

Mobile App Server (C)

Catalog Server (E)

Order Processing Server (F)

DB Server (G)

Local DB Server (D)

Local DB Server (B)

Fig. 1. Motivating example: enterprise network offering two public-facing services

The attack graph for the network of Fig. 1 is shown in Fig. 2. This attack
graph shows that, once a vulnerability VC on the Mobile Application Server (host
hC) has been exploited, we can expect the attacker to exploit either vulnerability
VD on host hD or vulnerability VF on host hF . However, the attack graph alone
does not answer the following important questions: Which vulnerability has the
highest probability of being exploited? Which attack pattern will have the largest
impact on the two services that the network provides? How can we mitigate the
risk? Our framework is designed to answer these questions efficiently.

host hF

host hC
host hG

host hD

Internet
1

1
1

2
1

1 exploit: VC

1 exploit: VF

1 exploit: VD

2 exploits: 
V'G and V''G

Fig. 2. The attack graph for the motivating example network

4 The Cyber Situation Awareness Framework

The proposed Cyber Situation Awareness framework is illustrated in Fig. 3. We
start from analyzing the topology of the network, known vulnerabilities, possible
zero-day vulnerabilities – these must be hypothesized – and their interdependen-
cies. Vulnerabilities are often interdependent, making traditional point-wise vul-
nerability analysis ineffective. Our topological approach to vulnerability analysis
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Fig. 3. The proposed Cyber Situation Awareness framework

allows to generate accurate attack graphs showing all the possible attack paths
within the network.

A node in an attack graph represents – depending on the level of abstraction
– an exploitable vulnerability (or family of exploitable vulnerabilities) in either
a subnetwork, an individual host, or an individual software application. Edges
represent causal relationships between vulnerabilities. For instance, an edge from
a node V1 to a node V2 represents the fact that V2 can be exploited after V1 has
been exploited.

We also perform dependency analysis to discover dependencies among ser-
vices and/or hosts and derive dependency graphs encoding how these compo-
nents depend on one another. Dependency analysis is critical to assess current
damage caused by ongoing attacks (i.e., the value or utility of services disrupted
by the attacks) and future damage (i.e., the value or utility of additional ser-
vices that will be disrupted if no action is taken). In fact, in a complex enter-
prise, many services may rely on the availability of other services or resources.
Therefore, they may be indirectly affected by the compromise of the services or
resources they rely upon.

The dependency graph for the network of Fig. 1 is shown in Fig. 4. This graph
shows that the two services Online Shopping and Mobile Order Tracking rely
upon hosts hA and hC respectively. In turn, host hA relies upon local database
server hB and host hE , whereas host hC relies upon local database server hD

and host hF . Similarly, hB, hD, hE , and hF rely upon database server hG, which
then appears to be the most critical resource.

By combining the information contained in the dependency and attack graphs
in what we call the attack scenario graph, we can then compute an estimate of
the future damage that ongoing attacks might cause for each possible outcome
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Fig. 4. The dependency graph for the motivating example network

of the current situation. In practice, the proposed attack scenario graph bridges
the semantic gap between known vulnerabilities – the lowest abstraction level –
and the missions or services that could be ultimately affected by the exploitation
of such vulnerabilities – the highest abstraction level. The attack scenario graph
for the network of Fig. 1 is shown in Fig. 5. In this figure, the graph on the
left is an attack graph modeling all the vulnerabilities in the system and their
relationships, whereas the graph on the right is a dependency graph capturing
all the explicit and implicit dependencies between services and hosts. The edges
from nodes in the attack graph to nodes in the dependency graph indicate which
services or hosts are directly impacted by a successful vulnerability exploit, and
are labeled with the corresponding exposure factor, that is the percentage loss
the affected asset would experience upon successful execution of the exploit.

In order to enable concurrent monitoring of multiple attack types, we devel-
oped novel graph-based data structures and an index structure to index large
amounts of alerts and event data in real-time. We also developed efficient algo-
rithms to analyze such data structures and help automatically answers questions
about the current cyber landscape and its evolution.

Moreover, the novel capabilities described so far have been leveraged to
develop a suite of additional capabilities and tools, including but not limited
to: topological vulnerability analysis [6], network hardening [3], and zero-day
analysis [5]. Some of these capabilities and tools are discussed in the following
section.

In summary, the proposed framework can provide security analysts with a
high-level view of the cyber situation. From the simple example of Fig. 5 – which
models a system including only a few hosts and services – it is clear that manual
analysis could be extremely time-consuming even for relatively small systems.
Instead, the graph of Fig. 5 provides analysts with a visual and very clear under-
standing of the situation, thus enabling them to focus on higher-level tasks that
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Fig. 5. The attack scenario graph for the motivating example network

require experience and intuition, and thus are more difficult to automate. Addi-
tionally, other classes of automated analytical processes may be developed within
this framework to support the analyst during these higher-level tasks as well.
For instance, based on the model of Fig. 5, we could automatically generate a
ranked list of recommendations on the best course of action analysts should
take to minimize the impact of ongoing and future attacks (e.g., sets of network
hardening actions).

5 Scientific Progress and Major Accomplishments

In this section, we highlight major accomplishments achieved during the exe-
cution of the research project that led to the development of the framework
discussed in the previous section.

5.1 Topological Vulnerability Analysis

Situation awareness, as defined in the previous sections, implies knowledge and
understanding of both the defender (knowledge of us) and the attacker (knowl-
edge of them). In turn, this implies knowledge and understanding of all the weak-
nesses existing in the computing infrastructure we aim to defend. By their very
nature, security concerns on networks are highly interdependent. Each host’s
susceptibility to attack depends on the vulnerabilities of other hosts in the net-
work. Attackers can combine vulnerabilities in unexpected ways, allowing them
to incrementally penetrate a network and compromise critical systems. To pro-
tect our critical infrastructure networks, we must understand not only individual
system vulnerabilities, but also their interdependencies. While we cannot pre-
dict the origin and timing of attacks, we can reduce their impact by knowing the
possible attack paths through our networks. We need to transform raw security
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data into roadmaps that let us proactively prepare for attacks, manage vulner-
ability risks, and have real-time situation awareness. We cannot rely on manual
processes and mental models. Instead, we need automated tools to analyze and
visualize vulnerability dependencies and attack paths, so we can understand our
overall security posture, providing context over the full security life cycle.

A viable approach to such full-context security is called topological vulnera-
bility analysis (TVA) [6]. TVA monitors the state of network assets, maintains
models of network vulnerabilities and residual risk, and combines these to pro-
duce models that convey the impact of individual and combined vulnerabilities
on the overall security posture. The core element of this tool is an attack graph
showing all possible ways an attacker can penetrate the network. Topological vul-
nerability analysis looks at vulnerabilities and their protective measures within
the context of overall network security by modeling their interdependencies via
attack graphs. This approach provides a unique new capability, transforming
raw security data into a roadmap that lets one proactively prepare for attacks,
manage vulnerability risks, and have real-time situation awareness. It supports
both offensive (e.g., penetration testing) and defensive (e.g., network harden-
ing) applications. The mapping of attack paths through a network via TVA
provides a concrete understanding of how individual and combined vulnerabili-
ties impact overall network security. For example, we can (i) determine whether
risk-mitigating efforts have a significant impact on overall security; (ii) determine
how much a new vulnerability will impact overall security; and (iii) analyze how
changes to individual hosts may increase overall risk to the enterprise.

This approach has been implemented as a security tool – CAULDRON [7] –
which transforms raw security data into a model of all possible network attack
paths. In developing this tool, several technical challenges have been addressed,
including the design of appropriate models, efficient model population, effective
visualization and decision support tools, and the development of scalable math-
ematical representations and algorithms. The result is a working software tool
that offers truly unique capabilities.

Figure 6 shows a simplified attack graph for a network of three hosts (referred
to as host 0, 1, and 2 respectively). Rectangles represent vulnerabilities that an
attacker may exploit, whereas ovals represent security conditions that are either
required to exploit a vulnerability (pre-conditions) or created as the result of
an exploit (post-conditions). Purple ovals represent initial conditions – which
depend on the initial configuration of the system – whereas blue ovals represent
intermediate conditions created as the result of an exploit. In this example, the
attacker’s objective is to gain administrative privileges on host 2, a condition that
is denoted as root(2). In practice, to prevent the attacker from reaching a given
security condition, the defender has to prevent exploitation of all vulnerabilities
that have that condition as a post-condition. For instance, in the example of
Fig. 6, one could prevent the attacker from gaining user privileges on host 1,
denoted as user(1), by preventing exploitation of rsh(0,1), rsh(2,1), sshd bof(0,1),
and sshd bof(2,1). Conversely, to prevent exploitation of a vulnerability, at least
one pre-condition must be disabled. For instance, in the example of Fig. 6, one



38 S. Jajodia and M. Albanese

p_rhosts(0,1) 
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Fig. 6. An example of attack graph (Color figure online)

could prevent the attacker from exploiting rsh(1,2) by disabling either trust(2,1)
or user(1).

The analysis of attack graphs provides alternative sets of protective measures
that guarantee safety of critical systems. For instance, in the example of Fig. 6,
one could prevent the attacker from reaching the target security condition root(2)
by disabling one of the following two sets of initial conditions: {ftp(0,2), ftp(1,2)},
or {ftp(0,2), ftp(0,1), sshd(0,1)}.
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Through this unique new capability, administrators are able to determine the
best sets of protective measures that should be applied in their environment. In
fact, each set of protective measures may have a different cost or impact, and
administrators can choose the best option with respect to any of these variables.

Still, we must understand that not all attacks can be prevented, and there
must usually remain some residual vulnerability even after reasonable protec-
tive measures have been applied. We then rely on intrusion detection techniques
to identify actual attack instances. But the detection process needs to be tied
to residual vulnerabilities, especially ones that lie on paths to critical network
resources as discovered by TVA. Tools such as Snort can analyze network traf-
fic and identify attempts to exploit unpatched vulnerabilities in real time, thus
enabling timely response and mitigation efforts. Once attacks are detected, com-
prehensive capabilities are needed to react to them. TVA can reduce the impact
of attacks by providing knowledge of the possible vulnerability paths through
the network. TVA attack graphs can be used to correlate and aggregate network
attack events, across platforms as well as across the network. These attack graphs
also provide the necessary context for optimal response to ongoing attacks.

In conclusion, topological analysis of vulnerabilities plays an important role
in gaining situation awareness, and more specifically what we earlier defined
knowledge of us. Without automated tools such as CAULDRON, human analysts
would be required to manually perform vulnerability analysis, and this would be
an extremely tedious and error-prone task. From the example of Fig. 6, it is clear
that even a relatively small network may result in a large and complex attack
graph. With the introduction of automated tools such as CAULDRON, the role
of the analyst shifts towards higher-level tasks: instead of trying to analyze
and correlate individual vulnerabilities, analysts have in front of them a clear
picture of existing vulnerability paths; instead of trying to manually map alerts
to possible vulnerability exploits, analysts are required to validate the findings
of the tool and drill down as needed [4]. The revised role of human analysts
– while not changing their ultimate mandate and responsibilities – will require
that they are properly trained to use and benefit from the new automated tools.
Most likely, as their productivity is expected to increase as a result of automating
the most repetitive and time-consuming tasks, fewer analysts will be required to
monitor a given infrastructure.

5.2 Zero-Day Analysis

As stated earlier, attackers can leverage complex interdependencies among net-
work configurations and vulnerabilities to penetrate seemingly well-guarded net-
works. Besides well-known weaknesses, attackers may leverage unknown (zero-
day) vulnerabilities, which even developers are not aware of. In-depth analysis of
network vulnerabilities must consider attacker exploits not merely in isolation,
but in combination. Attack graphs reveal such threats by enumerating poten-
tial paths that attackers can take to penetrate networks. This helps determine
whether a given set of network hardening measures provides safety of given
critical assets. However, attack graphs can only provide qualitative results (i.e.,
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secure or insecure), and this may render resulting hardening recommendations
ineffective or far from optimal.

To address these limitations, traditional efforts on network security metrics
typically assign numeric scores to vulnerabilities as their relative exploitabil-
ity or likelihood, based on known facts about each vulnerability. However, this
approach is clearly not applicable to zero-day vulnerabilities due to the lack of
prior knowledge or experience. In fact, a major criticism of existing efforts on
security metrics is that zero-day vulnerabilities are unmeasurable due to the less
predictable nature of both the process of introducing software flaws and that of
discovering and exploiting vulnerabilities [10]. Recent work addresses the above
limitations by proposing a security metric for zero-day vulnerabilities, namely,
k-zero day safety [14]. Intuitively, this metric is based on the number of dis-
tinct zero-day vulnerabilities that are needed to compromise a given network
asset. A larger such number indicates relatively more security, because it is less
likely to have a larger number of different unknown vulnerabilities all avail-
able at the same time, applicable to the same network, and exploitable by the
same attacker. However, as shown in [14], the problem of computing the exact
value of k is intractable. Moreover, Wang et al. [14] assume the existence of a
complete attack graph, but, unfortunately, generating zero-day attack graphs
for large networks is usually infeasible in practice [13]. These facts comprise a
major limitation in applying this metric or any other similar metric based on
attack graphs.

In order to address the limitations of existing approaches, we proposed a set
of efficient solutions [5] to enable zero-day analysis of practical applicability to
networks of realistic sizes. This approach – which combines on-demand attack
graph generation with the evaluation of k-zero-day safety – starts from the prob-
lem of deciding whether a given network asset is at least k-zero-day safe for a
given value of k, meaning that it satisfies some baseline security requirements: in
other words, in order to penetrate a system, an attacker must be able to exploit
at least a relatively high number of zero-day vulnerabilities. Second, it identifies
an upper bound on the value of k, intuitively corresponding to the maximum
security level that can be achieved with respect to this metric. Finally, if k is
large enough, we can assume that the system is sufficiently secure with respect to
zero-day attacks. Otherwise, we can compute the exact value of k by efficiently
reusing the partial attack graph computed in previous steps.

In conclusion, similarly to what we discussed at the end of the previous
section, the capability presented in this section is critical to gain situation aware-
ness, and can be achieved either manually or automatically. However, given the
uncertain nature of zero-day vulnerabilities, the results of manual analysis could
be more prone to subjective interpretation than any other capability we discuss
in this chapter. At the same time, since automated analysis relies on assumptions
about the existence of zero-day vulnerabilities, complete reliance on automated
tools may not be the best option for this capability, and a human-in-the-loop
solution may provide the most benefits. In fact, the solution presented in [5] can
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be seen as a decision support system where human analysts can play a role in
the overall workflow.

5.3 Network Hardening

As discussed earlier, attack graphs reveal threats by enumerating potential paths
that attackers can take to penetrate networks. Attack graph analysis can be
extended to automatically generate recommendations for hardening networks,
which consists in changing network configurations in such a way to make net-
works resilient to certain attacks and prevent attackers from reaching certain
goals. One must consider combinations of network conditions to harden, which
has corresponding impact on removing paths in the attack graph. For instance,
in Sect. 5.1, we discussed how one could prevent the attacker from reaching the
target security condition root(2) in the example of Fig. 6, and we identified two
possible hardening solutions. Furthermore, one can generate hardening solutions
that are optimal with respect to some notion of cost. Such hardening solutions
prevent the attack from succeeding, while minimizing the associated costs. How-
ever, the general solution to optimal network hardening scales exponentially as
the number of hardening options itself scales exponentially with the size of the
attack graph.

In applying network hardening to realistic network environments, it is cru-
cial that the algorithms are able to scale. Progress has been made in reducing
the complexity of attack graph manipulation so that it scales quadratically – or
linearly within defined security zones [13]. However, many approaches for gen-
erating hardening recommendations search for exact solutions [15], which is an
intractable problem. Another limitation of most work in this area is the assump-
tion that network conditions are hardened independently. This assumption does
not hold true in real network environments. Realistically, network administrators
can take actions that affect vulnerabilities across the network, such as pushing
patches out to many systems at once. Furthermore, the same hardening results
may be obtained through more than one action.

Overall, to provide realistic recommendations, the hardening strategy we
proposed in [3] takes such factors into account, and removes the assumption of
independent hardening actions. We define a network hardening strategy as a set
of allowable atomic actions that administrators can take (e.g., shutting down an
ftp server, blacklisting certain IP addresses) and that involve hardening multiple
network conditions. A formal cost model is introduced to account for the impact
of these hardening actions. Each hardening action has a cost both in terms
of implementation and in terms of loss of productivity (e.g., when hardening
requires shutting down a vulnerable service). This model allows the definition of
hardening costs that accurately reflect realistic network environments. Because
computing the minimum-cost hardening solution is intractable, we introduce
an approximation algorithm to compute suboptimal hardening solutions. This
algorithm finds near-optimal solutions while scaling almost linearly – for cer-
tain values of the parameters – with the size of the attack graph, as confirmed
by experimental evaluations. Finally, theoretical analysis shows that there is a
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theoretical upper bound for the worst-case approximation ratio, whereas experi-
mental results show that, in practice, the approximation ratio is much lower than
such bound, that is, the solutions found using this approach are not far, in terms
of cost, from the optimal solution. In conclusion, automated analysis of network
hardening options can greatly improve the performance of a security analyst,
by providing a timely list of recommended strategies to prevent attackers from
compromising the target system while, at the same time, minimizing the cost for
the defender. The analyst will then be responsible solely for validating the rec-
ommended strategies and selecting the ones that appear to be the most effective
in meeting not only quantitative but also qualitative requirements. For instance,
automated analysis may conclude that the most cost-effective hardening solu-
tion is one that requires – amongst other things – to temporarily shut down
the server hosting the company’s web site. Although the website may not be
running any revenue-generating services, the potential impact on the company’s
reputation may make this solution less attractive, and a human analyst looking
at the results of the automated tools may opt for the second-best solution after
taking into account factors that the tools were not able to capture.

5.4 Probabilistic Temporal Attack Graph

The first step in achieving any level of automation in the situation awareness
process is to develop the capability of modeling cyber-attacks and their conse-
quences. This capability is critical to support many of the additional capabilities
needed to address the key questions presented earlier in this chapter (e.g., mod-
eling the attacker, predicting future scenarios).

Attack graphs have been widely used to model attack patterns, and to cor-
relate alerts. However, existing approaches typically do not provide mechanisms
for evaluating the likelihood of each attack pattern or its impact on the organi-
zation or mission. To address this limitation, we extend the attack graph model
discussed earlier in this chapter with the notion of timespan distribution, which
encodes probabilistic knowledge of the attacker’s behavior as well as temporal
constraints on the unfolding of attacks. We assume that each step of an attack
sequence is completed within certain temporal windows after the previous exploit
has been executed, each associated with a probability. For instance, suppose an
attacker has gained some privileges on host hE in Fig. 1. Using these privileges,
he can then create the conditions to exploit a vulnerability on the main data-
base server. However, this will take a variable amount of time depending on his
skill level. The attacker will then have time to exploit the vulnerability until the
vulnerability itself is patched, or the attack is discovered.

Leversage and Byres [9] describe how to estimate the mean time to compro-
mise a system and relate that to the skill level of the attacker. This approach
can be generalized to estimate timespan distributions for individual vulnerabil-
ity exploits. In fact, we can assume that the time taken to exploit a vulnerability
varies with the skill level of the attacker. Additionally, some vulnerabilities are
easier to exploit than others, thus exhibiting higher probabilities. Intuitively,
a timespan distribution specifies a set of disjoint time intervals when a given



An Integrated Framework for Cyber Situation Awareness 43

exploit might be executed, and an incomplete probability distribution over such
time intervals.

In our model, edges in the attack graph are labeled with timespan distri-
butions. For instance, in the attack graph of Fig. 5, the edges from VA to VE

and VB are labeled with {(2, 7), 0.2} and {(1, 3), 0.8} respectively, meaning that,
after exploiting VA, with 20% probability an attacker will exploit VE between 2
and 7 time units later, and with 80% probability he will exploit VB between 1
and 3 time units later.

5.5 Dependency Graph

Government or enterprise networks today host a wide variety of network ser-
vices, which often depend on one another to provide and support network-based
services and applications. Understanding such dependencies is essential for main-
taining the well-being of a network and its applications, particularly in the pres-
ence of network attacks and failures. In a typical government or enterprise net-
work, which is complex and dynamic in configuration, it is non-trivial to identify
all these services and their dependencies. Several techniques have been developed
to learn such dependencies automatically. However, they are either too complex
to fine-tune or cluttered with false positives and/or false negatives.

We developed several novel techniques as well as a tool named NSDMiner
(which stands for Network Service Dependencies Miner) to automatically dis-
cover the dependencies between network services from passively collected net-
work traffic [11]. NSDMiner is non-intrusive: it does not require any modification
of existing software, or injection of network packets. More importantly, NSD-
Miner achieves higher accuracy than previous network-based approaches. Our
experimental evaluation, which uses network traffic collected from our campus
network, shows that NSDMiner outperforms the two best existing solutions by
a significant margin.

Specifically, we developed three additional techniques to assist in the auto-
matic identification of network service dependencies through passively monitor-
ing and analyzing network traffic, including a logarithm-based ranking scheme
aimed at more accurate detection of network service dependencies with lower
false positives, an inference technique for identifying the dependencies involving
infrequently used network services, and an approach for automated discovery of
clusters of network services configured for load balancing or backup purposes.
We performed extensive experimental evaluation of these techniques using real-
world traffic collected from a college campus network. The experimental results
demonstrate that these techniques advance the state of the art in automated
detection and inference of network service dependencies.

5.6 Additional Research Accomplishments

The wide array of accomplishments described in the previous sections is not
exhaustive of the work performed as part of the project mentioned earlier in
this chapter. In the following, we briefly describe additional lines of research



44 S. Jajodia and M. Albanese

we pursued and the accomplishments we achieved in those areas. We refer the
reader to our previous publications for more information.

We studied network diversity as a security property of networks [16]. The
interest in diversity as a security mechanism has recently been revived in vari-
ous applications, such as Moving Target Defense (MTD), resisting worms in sen-
sor networks, and improving the robustness of network routing. However, most
existing efforts on formally modeling diversity have focused on a single system
running diverse software replicas or variants. At a higher abstraction level, as a
global property of the entire network, diversity and its impact on security have
received limited attention. In our work, we took the first step towards formally
modeling network diversity as a security metric for evaluating the robustness
of networks against potential zero-day attacks. Specifically, we first devised a
biodiversity-inspired metric based on the effective number of existing distinct
resources. We then proposed two complementary diversity metrics, based on the
least and average attacker’s effort, respectively.

We also proposed a probabilistic framework for assessing the completeness
and quality of available attack models [2], both at the intrusion detection level
(e.g., IDS signatures) and at the alert correlation level (e.g., attack graphs).
Intrusion detection and alert correlation are valuable and complementary tech-
niques for identifying security threats in complex networks. However, both meth-
ods rely on models encoding a priori knowledge of either normal or malicious
behavior. As a result, these methods are incapable of quantifying how well the
underlying models explain what is observed on the network. Our approach over-
comes this limitation, and enables us to estimate the probability that an arbi-
trary sequence of events is not explained by a given set of models. We leverage
important mathematical properties of this framework to estimate such proba-
bilities efficiently, and design fast algorithms for identifying sequences of events
that are unexplained with a probability above a given threshold. This approach
holds promise of identifying zero-day attacks, because such attacks (by definition
of zero-day) are likely to be incompatible with all known traffic patterns.

Finally, we developed Switchwall [12], an Ethernet-based network fingerprint-
ing technique that detects unauthorized changes to the L2/L3 network topology,
the active devices, and the availability of an enterprise network. The network
map is generated at an initial known state and is then periodically verified to
detect deviations in a fully automated manner. Switchwall leverages a single
vantage point and uses only very common protocols (PING and ARP) without
any requirement for new software or hardware. Moreover, no previous knowl-
edge of the topology is required, and our approach works on mixed speed, mixed
vendors networks. Switchwall is able to identify a wide-range of changes, and
this capability has been validated by our experimental results on both real and
simulated networks.

6 Conclusions

As we discussed, the process of situation awareness in the context of cyber
defense consists of three phases: situation perception, situation comprehension,
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and situation projection. Situation awareness is generated and used across these
three phases, and cyber analysts must answer several key questions during this
process. In this chapter, we outlined an integrated approach to cyber situation
awareness, and presented a framework – comprising several mechanisms and
automated tools – that can help bridge the semantic gap between the avail-
able low-level data and the mental models and cognitive processes of security
analysts.

In our project, we focused on techniques and tools for automatically answer-
ing the questions the analyst may ask about the current situation, the impact
and evolution of an attack, the behavior of the attackers, the quality of available
information and models, and the plausible futures of the current situation.

Although this framework represents a first important step in the right direc-
tion, a lot of work remains to be done for systems to achieve self-awareness
capabilities. Key areas that need to be further investigated include adversar-
ial modeling and reasoning under uncertainty, and promising approaches may
include game-theoretic and control-theoretic solutions.
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Abstract. This chapter discusses lesson learned working with cyber
situation awareness and network security domain experts to integrate
visualizations into their current workflows. Working closely with net-
work security experts, we discovered a critical set of requirements that
a visualization must meet to be considered for use by the these domain
experts. We next present two separate examples of visualizations that
address these requirements: a flexible web-based application that visual-
izes network traffic and security data through analyst-driven correlated
charts and graphs, and a set of ensemble-based extensions to visualize
network traffic and security alerts using existing and future ensemble
visualization algorithms.

1 Introduction

The use of computer networks continues to grow, and with it the rise of sophisti-
cated network attacks. Network security analytics has become an important area
of computer science, and more recently data visualization. To maintain the secu-
rity and stability of a network system, analysts continuously collect vast amount
of data that capture important characteristics about their networks, then ana-
lyze the data to detect attacks, intrusions, and suspicious activity hidden in
the traffic. Visualization has been proposed as an important component of this
effort, since it allows for interactive exploration and analysis of large amounts
of data, and can help analysts detect unexpected patterns more efficiently and
effectively than traditional, text-based representations [3,13,19].

During this MURI project, we collaborated with network security experts
from ARL to explore the use of visualization to improve cyber situation aware-
ness in a network security environment. Numerous important findings resulted
from this collaboration. In particular, we discovered that visualizations designed
for network security analytics must meet a number of unique requirements, if
they are to be adopted by network security analysts. Based on these require-
ments, visualizations that are simple and efficient in their representation of net-
work data can provide powerful tools to support exploration and discovery in
an effective and time critical manner. We discuss these requirements in detail,
c© Springer International Publishing AG 2017
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then summarize two approaches we developed to visualize network security data:
analyst-drive web-based charts and graphs, and ensemble analysis techniques.

2 Visualization for Cyber Situation Awareness

The visualization community has focused recent attention on the areas of cyber
security and cyber situation awareness. Early visual analysis of cyber security
data often relied on text-based approaches that present data in text tables or
lists. Unfortunately, these approaches do not scale well, and they cannot fully
represent important patterns and relationships in complex network or security
data. Follow-on work applied more sophisticated visualization approaches like
node-link graphs, parallel coordinates, and treemaps to highlight different secu-
rity properties, patterns in network traffic, and hierarchical data relationships.
Because the amount of data generated can be overwhelming, many tools adopt
a well-known information visualization approach: overview, zoom and filter, and
details on demand. This approach starts by presenting an overview of the data.
This allows an analyst to filter and zoom to focus on a subset of the data, then
request additional details about the subset as needed. Current security visualiza-
tion systems often consist of multiple visualizations, each designed to investigate
different aspects of a system’s security state from different perspectives and at
different levels of detail.

2.1 Security Visualization Surveys

Visualization for cyber environments has matured to a point where survey papers
on the area are available. These papers provide useful overviews, and also propose
ways to organize or categorize techniques along different dimensions.

Shiravi et al.’s survey of visualization techniques for network security pro-
vides a useful overview of current visualization systems, and proposes a number
of broad categories for data sources and visualization techniques [13]. One axis
subdivides techniques by data source: network traces, security events, user and
asset context (e.g., vulnerability scans or identity management), network activ-
ity, network events, and logs. A second axis considers use cases: host/server
monitoring, internal/external monitoring, port activity, attack patterns, and
routing behavior. Numerous techniques are described as examples of different
data sources and use cases. The authors specifically address the issue of situa-
tion awareness in their future work, noting that many visualization systems try
to prioritize important situations and project critical events as ways to sum-
marize the massive amounts of data generated within a network. They distin-
guish between situation awareness, which they define as “a state of knowledge”,
and situation assessment, defined as “the process of attaining situation aware-
ness.” Converting raw data into visual forms is one method of situation assess-
ment, meant to present information to an analyst to enhance their situation
awareness.
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Dang and Dang also surveyed security visualization techniques, focusing on
web-based environments [3]. Dang chose to classify systems based on where they
run: client-side, server-side, or web application. Client-side systems are normally
simple, focusing on defending web users from attacks like phishing. Server-side
visualizations are designed for system administrators or cyber security analysts
with an assumed level of technical knowledge. These visualizations are usually
larger and more complex, focusing on multivariate displays that present multi-
ple properties of a network to the analyst. Most network security visualization
tools fall into the server-side category. A final class of system is security for web
applications. This is a complicated problem, since it can involve web developers,
administrators, security analysts, and end users. Dang also subdivided server-
side visualizations by their main goal: network management, monitoring, analy-
sis, and intrusion detection; by visualization algorithm: pixel, chart, graph, and
3D; and by data source: network packet, NetFlows, and application-generated
data. Various techniques exist at the intersection of each category.

New security and cyber situation visualization systems are constantly being
proposed. These range from simple visualization approaches like charts and maps
[4], node-link graphs [10], and timelines [9,11], to more complex representations
like parallel coordinates [1,16], treemaps [7,8], and hierarchical visualizations [2].

Although security visualization systems aim to support more flexible user
interactivity and correlation of various data sources, many of them still force an
analyst to choose from a fairly limited set of static representations. For example,
Phan et al. use charts, but with fixed attributes on the x and y-axes [9]. General
purpose commercial visualization systems like Tableau, ArcSight, SpotFire, or
SAS VA [6,12,14,15] offer a more flexible collection of visualizations, but they
do not include visualization and human perception guidelines, so representing
data effectively requires visualization expertise on the part of the analyst. Finally,
many systems lack a scalable data management architecture, so the entire dataset
must be loaded into memory prior to analysis and visualizing, increasing data
transfer cost and limiting dataset size.

3 Visualization Design Philosophy

Our design philosophy is based on discussions with cyber security analysts at
various research institutions and government agencies. The analysts overwhelm-
ing agreed that, intuitively, visualizations should be very useful. In practice,
however, they had rarely realized significant improvements by integrating visu-
alizations into their workflow. A common comment was: “Researchers come to
us and say, Here’s a visualization tool, let’s fit your problem to this tool. But
what we really need is a tool built to fit our problem.” This is not unique to the
security domain, but it suggests that security analysts may be more sensitive to
deviations from their existing analysis strategies, and therefore less receptive to
general-purpose visualization tools and techniques.

This is not to say, however, that visualization researchers should simply pro-
vide what the security analysts ask for. The analysts have high-level suggestions
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about how they want to visualize their data, but they do not have the visualiza-
tion experience or expertise to design and evaluate specific solutions to meet their
needs. To address these, we initiated a collaboration with colleagues at ARL to
build visualizations that: (1) meet the needs of the analysts, but also (2) harness
the knowledge and best practices that exist in the visualization community.

Again, this approach is not unique, but it offers an opportunity to study its
strengths and weaknesses in the context of a cyber security domain. In particular,
we were curious to see which general techniques (if any) we could start with, and
how extensively these techniques would need to be modified before they would
be useful for an analyst. Seen this way, our approach does not focus explicitly on
network security data, but rather on network security analysts. By supporting
the analysts’ situation awareness needs, we are implicitly addressing the goal of
effectively visualizing their data.

From our discussions, we defined a set of requirements for a successful visu-
alization tool. Interestingly, these do not inform explicit design decisions. For
example, they do not define which data attributes we should visualize and how
those attributes should be represented. Instead, they implicitly constrain a visu-
alization’s design through a high-level set of suggestions about what a real ana-
lyst is (and is not) likely to use. We summarized these comments into six general
categories:

1. Mental Models. A visualization must “fit” the mental models the analysts
use to investigate problems. Analysts are unlikely to change how they attack
a problem in order to use a visualization tool.

2. Working Environment. The visualization must integrate into the analyst’s
current working environment. For example, many analysts use a web browser
to view data stored in formats defined by their network monitoring tools.

3. Configurability. Static, pre-defined presentations of the data are typically
not useful. Analysts need to look at the data from different perspectives that
are driven by the problems they are currently investigating.

4. Accessibility. The visualizations should be familiar to an analyst. Complex
representations with a steep learning curve are unlikely to be used, except
in very specific situations where a significant cost-benefit advantage can be
found.

5. Scalability. The visualizations must support query and retrieval from mul-
tiple data sources, each of which may contain very large numbers of records.

6. Integration. Analysts will not replace their current problem-solving strate-
gies with new visualization tools. Instead, the visualizations must augment
these strategies with useful support.

4 Web-Based Alert Visualization

The configurability, accessibility, scalability, and integration requirements of our
design demand flexible user interaction that combines and visualizes multiple
large data sources. The working environment requirement further dictates that
this happen within the analyst’s current workflow. To achieve this, we initially
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designed and implemented a visualization system that combines MySQL, PHP,
HTML5, and JavaScript to generate web-based network security visualizations
through combinations of analyst-configurable charts focused on analyzing suspi-
cious network activity.

4.1 Web Visualization

Based on our integration requirement, we built our visualizations as a web appli-
cation using HTML5’s canvas element. This works well, since it requires no
external plug-ins and runs in any modern web browser.

We visualize network data using 2D charts. Basic charts are one of the most
well known and widely used visualization techniques [17,18]. This supports our
accessibility requirement, because: (1) charts are common in other security visu-
alization systems the analysts have seen, and (2) charts are an effective visual-
ization method for presenting the values, trends, patterns, and relationships the
analysts want to explore.

Numerous JavaScript-based libraries exist to visualize data as 2D charts, for
example, HighCharts, Google Charts, Flot Charts, and RGraph. Unfortunately,
these libraries are designed for general information visualization, so they do
not support analysis at multiple levels of abstraction or correlation between
multiple charts. To address this, we extended RGraph [5] to generate security
visualizations with flexible user interaction, data retrieval via MySQL, and the
ability to correlate between multiple charts.

RGraph cannot automatically choose chart types based on the data to visu-
alize. This capability might be useful, since analysts do not want to manually
select the chart type if this decision is obvious. On the other hand, the analysts
do not want to be restricted to specific, pre-defined visualizations. To support
these conflicting needs, we classify our charts based on the different use cases
in Fig. 1: (1) pie and bar charts for proportion and frequency comparison over a
single attribute, (2) bar charts for value comparison over a secondary attribute,
(3) scatterplots for correlation between two attributes, and (4) Gantt charts
for range value comparisons. A visualization is created based on analysis goals,
and not on the specific data being visualized. The analyst is free to change this
initial selection, and more importantly, to interactively manipulate which data
attributes are mapped to the primary and secondary dimensions.

Once a request is finalized, the system: (1) generates SQL queries to extract
the target data from one or more data sources, (2) initializes chart properties
like background grids and glyph size, color, and type, and (3) visualizes the data.

4.2 Charts

In a general information visualization tool, the viewer is usually asked to define
exactly the visualization they want. We automatically choose an initial chart
type based on: (1) existing knowledge on the strengths, limitations, and uses of
different types of charts, and (2) the data the analyst chooses to visualize. For
example, if the analyst asks to see the distribution of a single data attribute,
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Fig. 1. Charts classified by use case: (a) pie and bar chart, analysis of proportion; (b)
bar chart, value comparison along one dimension; (c) scatterplot, correlation analysis;
(d) Gantt chart, range in at least one dimension

the system recommends a pie chart or bar chart. If the analyst asks to see the
relationship across two data attributes, the system recommends a scatterplot or
a Gantt chart.

The axes of the charts are initialized based on properties of the data
attributes, for example, a categorical attribute on a bar chart’s x-axis and an
aggregated count on the y-axis. If the attributes were event timestamp and des-
tination IP, time would be assigned to the x-axis and destination IP to the y-axis
of a scatterplot (Fig. 2a). Visualizing start and end times for flows across des-
tination IP produces a Gantt chart with time on the x-axis, destination IP on
the y-axis, and rectangular range glyphs representing different flows (Fig. 2b).
Or, if two attributes like source and destination IP are selected, the attributes
are mapped to a scatterplot’s x and y-axes, with data points shown for flows
between pairs of values (Fig. 2c, d).

Data elements sharing the same x and y values are grouped together and
displayed as a count. For example, in a scatterplot of traffic between source and
destination IPs, the size of each tick mark indicates the number of connections
between two addresses (Fig. 2c, d). In a Gantt chart, the opacity of each range bar
indicates the number of flows that occurred over the time range for a particular
destination IP (Fig. 2b).

More importantly, the analyst is free to change any of these initial choices.
The system will interpret their modifications similar to the processing we perform
for automatically chosen attributes. This allows the analyst to automatically
start with the most appropriate chart type (pie, bar, scatterplot, or Gantt) based
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Fig. 2. Scatterplot and Gantt chart: (a) a scatterplot of connection counts over time by
destination IP; (b) a Gantt chart of time ranges for flows by source IP; (c) a scatterplot
with frequency count mapped to the size of an × glyph; (d) a scatterplot with count
mapped to circle size

on their analysis task, the properties of the attributes they assign to a chart’s
axes, and on any secondary information they ask to visualize at each data point.

4.3 Correlation over Multiple Views

Analysts normally conduct a sequence of investigations, pursuing new findings
as they are uncovered by correlating multiple data sources and exploring the
data at multiple levels of detail. This necessitates visualizations with multiple
views and flexible user interaction. We correlate multiple data sources by gen-
erating correlated SQL queries and extending the RGraph library to support
dependencies between different charts (Fig. 3).

Fig. 3. New constraints to create a correlated chart
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Fig. 4. Pie chart with a raw data spreadsheet

As an analyst examines a chart, they will form new hypothesis about the
cause or effect of activity in the network. Correlated charts allow the analyst to
immediately generate new visualizations from the current view to explore these
hypotheses. In this way, the system allows an analyst to conduct a series of
analysis steps, each one building on previous findings, with new visualizations
being generated on demand to support the current investigations (Fig. 4).

5 Example Analysis Session

To demonstrate our web-based visualization system, we obtained trap data being
used by network security colleagues at NCSU to act as input for their automated
intrusion detection algorithms. This provided us with a real-world dataset, and
also offers the possibility of comparing results from an automated system to a
human analyst’s performance, both with and without visualization support. One
of our NCSU colleagues served as the analyst in this example scenario. Visualiza-
tion starts at an abstract level: the distribution of alerts at different destination
IP addresses; then follows the analyst’s explorations of different hypotheses as
he highlights and zooms into subregions of interest, creates correlated charts to
drill down and analyze data at a more detailed level: visual analysis for alerts to
a specific destination IP; and imports additional supporting data into the visual-
ization: port and source IP. By including a new database flow table, the analysis
of a subset of interest is extended to a larger set of data sources: analysis of flows
related to interesting alerts. The visualization system supports the analyst by
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generating different types of charts on demand, based on the analyst’s current
interest and needs. The analyst can view the data both visually and in raw text
form to examine qualitative and quantitative aspects of the current region of
interest. The data sources used in this example include:

– event. Signature id and timestamp for each alert.
– flows. Network flow information, including source and destination IP, port,

and start and end time.
– iphdr. Source and destination IP and other information related to packet

headers.
– tcphdr. TCP related information such as source and destination port.

The analyst begins by selecting the database and the tables to use for the
first visualization, as well as the constraints needed to correlate the tables and
filter the rows to explore. Based on these tables and constraints, the analyst can
determine the types of analysis he wants to pursue and the data attributes to
visualize. The analyst initially visualizes the number of alerts for each destination
IP, selecting ip dst from table iphdr as the “aggregate for” attribute. A SQL
query is automatically generated to extract data for the chart.

Choosing “Draw Charts” displays the aggregated results as pie and bar charts
(Fig. 5). This supports visual analysis of the data from different perspectives. Pie
charts highlight the relative number of alerts for different destination IPs, while
bar charts facilitate a comparison of the absolute number of alerts by destination
IP. The charts are linked: highlighting at a bar in the bar chart will highlight
the corresponding section in the pie chart, and vice-versa.

By default, aggregation results are sorted by the number of alerts for different
destination IPs in reverse order, allowing the analysts to focus on the first few
rows with the largest number of alerts. This is based on the assumption that
analysts are more interested in addresses where a significant amount of traffic
or number of alerts occurs. The analysts can reverse the sort order to search for
low-occurrence events.

The pie and bar charts indicate that the majority of the alerts (910) occur at
destination IP 172.16.79.134. Choosing “Show Data” displays all 910 rows as a
spreadsheet in a new window (Fig. 6a). To further analyze alerts associated with
this destination IP, the analyst chooses “Sub Canvas” to open a new window with
the initial query information (the database, tables, and constraints) predefined.
The constraint iphdr.ip dst = 172.16.79.134 is added to restrict the query for
further analysis over this target destination IP. The analyst can continue to add
new constraints or tables to the query as he requests visualizations to continue
his analysis.

Next, the analyst chooses to visualize alerts from different source IPs attached
to the target destination IP. He uses destination port to analyze the correlation
between source and destination through the use of a scatterplot. Figure 6b shows
there is only one source IP with alerts related to the target destination IP,
and that most alerts are sent to port 21, shown as the large × symbol in the
scatterplot.
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Fig. 5. Aggregated results visualized as a pie chart and horizontal and vertical bar
charts

Fig. 6. Detail analysis: (a) raw data spreadsheet; (b) scatterplot of relationships
between source IP and destination port correlated to destination IP 172.16.79.134
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Fig. 7. Gantt chart with alerts for network flows at the destination IP and port of
interest; (a) two flows; (b) zoom on the left flow, showing numerous alerts; (c) zoom
on the right flow, showing one alert (Color figure online)

The analyst looks more closely at traffic related to the target destination IP
on port 21 by visualizing netflows and their associated alerts in a Gantt chart.
Collections of overlapping flows are drawn in red with endpoints at the flow set’s
start and end times. Alerts appear as black vertical bars overlaid on top of the
flows at the time the alert was detected. Figure 7a shows most of the flows are
distributed over two time ranges. By zooming in on each flow separately (Fig. 7b,
c), the analyst realizes that the vast majority of the alerts occur in the left flow
(Fig. 7b). The alerts in this flow are considered suspicious, and are flagged for
more detailed investigation.

This example demonstrates how our system allows an analyst to follow a
sequence of steps based on their own strategies and preferences to investigate
alerts. Although it is possible to filter the raw data to “highlight” this result
directly, our colleagues suggested it might be difficult to recognize that the
majority of the alerts occur for a specific destination IP, source IP, port, and
time range from a 910-line alert spreadsheet. The visualizations allow an analyst
to follow this pattern step-by-step, uncovering more detailed information as they
progress.

6 Ensemble Alert Visualization

A relatively new area of research that has grown rapidly in recent years is ensem-
ble analysis. In numerous disciplines, scientists collect data produced by a series
of runs of a simulation or an experiment, each with slightly different initial
conditions or parameterizations. This collection of related datasets—an ensem-
ble—has been widely used to simulate complex systems, explore unknowns in
initial conditions, investigate parameter sensitivity, mitigate uncertainty, and
compare structural characteristics of models. Each individual dataset forms a
member of the ensemble. Ensemble visualization is an active area of research in
visualization, specifically designed for exploring and comparing both within and
between members of massive ensemble datasets.

Although network security data and ensemble data look quite different at
first glance, they are similar in terms of their analytic challenges and goals. Both
are large and time-dependent, necessitating analysis in the time dimension and
approaches to support scalability. Ensemble visualization focuses on comparison
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and aggregation of related ensemble members, while security visualization focus
on exploration of correlations between network traffic. Although visualization
of scientific ensemble and network data at the most detailed level will likely be
different, high-level ensemble overviews and frameworks could allow an analyst
to quickly identify and drill down on subsets of interesting or suspicious network
traffic. If we view network security data as a type of ensemble, there is an impor-
tant opportunity to apply ongoing and future ensemble visualization research to
improve network security analytics.

6.1 Network Ensemble Data

To harness ensemble visualization for network security analytics, we must
address the challenge of terminology mapping: defining a network ensemble from
security datasets, and dividing the data into a series of related network traffic,
analogous to members in an ensemble. We focus on two common types of network
security data: alerts and flows. An alerts dataset contains source and destina-
tion IP, port, time, protocol, message, and classification. A flows dataset contain
source and destination IP, port, flags, start time, end time, protocol, number of
packets, and number of bytes. An alert belongs to a flow if it is detected within
the flow’s time range and has the same source and destination IP. Based on this,
we define two types of ensembles: an alert ensemble and a flow ensemble.

To maintain the requirement of configurability, we propose a general frame-
work to construct network data ensembles. This allows analysts to configure
details of the ensemble, if they choose to do so. A network ensemble consists
of related network traffic (analogous to ensemble members), each representing
a temporal sequence of alerts or flows that fall within equal-sized time win-
dows. Analyzing relationships (similarities) between this network traffic is one
important goal of cyber situation awareness.

Specifically, we offer two ways to define members in a network ensemble.
The first method combines data properties to identify members. For example,
we could define source IP and source port to specify members. Now, alerts or
flows sent from each source IP+port form a network ensemble member. The
second method divides the ensemble time window into a number of smaller time
windows, each identifying a member in the ensemble. For example, if the dataset
consists of network traffic for a 24-hour period, hourly traffic can represent an
ensemble member. Finally, analysts can control the data values stored within
each member. For example, we can analyze inter-member relationships in an
alert ensemble by comparing changes in the of numbers of alerts over the time
dimension.

6.2 Alert Ensembles

To construct an alert ensemble, an analyst defines the SQL tables that contain
the alert data of interest, a time dimension column, correlations between the
tables if more than one table is selected, and any additional constraints needed to
form the ensemble. The system will automatically identify the time window that
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covers the ensemble’s data. The analyst can choose one or more table columns
to define ensemble members, or evenly subdivide the ensemble’s time window
into a number of smaller time periods, each representing a member.

To analyze relationships between members in an alert ensemble, we subdivide
the time range of every member into a user-specified number of time-steps and
aggregate alerts within each time-step. For example, each destination IP+port
combination could form a member in the ensemble. Given a time window divided
into 30 time-steps, the number of alerts is calculated at every time-step. Com-
paring alert members is performed by comparing changes in the number of alerts
over time.

6.3 Flow Ensembles

Flow ensembles are defined in a manner similar to alert ensembles. An analyst
chooses the SQL tables that contain the data, defines how to correlate alerts
and flow traffic, identifies time dimension columns for the alerts and flows, and
provides any additional constraints to extract the data to analyze. A flow has
start and end times and contains a number of alerts, so comparing pairs of flows
is more complicated than comparing numbers of alerts. Instead of aggregating
data across time-steps, we view every member in a flow ensemble as a sequence
of individual flows. Calculating member similarity aligns flows between pairs of
members prior to comparison using dynamic time warping (DTW).

A member mi in a flow ensemble is a sequence of li flows mi =
(fi,1, fi,2, . . . , fi,li). Each flow has start time tis and end time tie, and contains
zero or more alerts. This makes the comparison of flow traffic more complicated
than aggregated alerts. Manhattan distance is not applicable for flow sequence
comparison because the sequences may have different lengths and may not be
aligned in time. To calculate the DTW distance between flow members, we must
first calculate the dissimilarity between pairs of flows. Let dis(fu, fv) be the dis-
similarity between flows fu and fv. We propose a simple flow comparison that
calculates dis(fu, fv) based on three metrics:

1. Duration. Given fi’s duration duri = tie − tis, the duration dissimilarity
between fu and fv is

disu,vdur =
| duru − durv |

max(duru, durv)
(1)

2. Density. Given fi containing ni alerts, the density of alerts in fi is deni =
ni/duri. The density dissimilarity between fu and fv is

disu,vden =
|denu − denv|

max(denu, denv)
(2)

3. Distribution. Given start and end times tis and tie for a flow fi that receives
ni alerts at times ti1, t

i
2, . . . , t

i
ni

, the intervals between alerts are Ii = {tis −
ti1, t

i
2 − ti1, . . . , t

i
e − tini

}. We use σi =
∑ni

i=1(Ii − Iµ)2/ni, the variance of the
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intervals between alerts, to compute distribution dissimilarity between fu and
fv as

disu,vdist =
|σu − σu|

max(σu, σv)
(3)

The individual dissimilarities are averaged and normalized to generate an
overall dissimilarity between fu and fv. We allow an analyst to tune the weights
wdur, wden, and wdist during averaging:

dis(fu, fv) = wdurdisu,vdur + wdensdisu,vdens + wdistdisu,vdist

0 ≤ wdur, wdens, wdist ≤ 1
wdur + wdens + wdist = 1

(4)

6.4 Ensemble Member Visualization

Ensemble visualization often contains detailed representations of one or more
ensemble members. These detailed member visualizations may be very different
depending on the types of members contained in a ensemble. To maintain con-
sistency with our existing web-based network security visualization system, we
use 2D charts to visualize network traffic. Specifically, we generate line charts to
visualize members in an alert ensemble and Gantt charts for members in a flow
ensemble.

Alert Member Visualization. An alert ensemble member is a sequence of
aggregated alert counts calculated at every time-step. Figure 8a visualizes a 100-
member alert ensemble for a single source IP of interest constructed by an ana-
lyst. Destination IP+port is used to define individual members. Time unfolds on
the x-axis, and the number of alerts at each time step is plotted on the y-axis.
Color represents the destination IP of each alert’s parent flow.

Figure 8a highlights a number of similar patterns: flows that start with
numerous alerts but end with few alerts; flows with two spikes in alerts near
their center; and an outlier flow (in orange) with numerous alerts over its center.

The analyst chooses to assign the 100 alerts members to k = 20 clusters.
Figure 8b visualizes the 20 clusters, averaging the number of alerts within each
cluster at every time-step. This visualization provides a general understanding
of changes in the numbers of alerts over time. The highlighted purple line at
the bottom of the graph represents a large cluster that contains 65 members. A
follow-on visualization of this cluster’s members (Fig. 8c) confirms that changes
in the number of alerts over time among the 65 members are similar.

Flow Member Visualization. We chose to visualize flow traffic and associated
alerts using Gantt charts. The x-axis represents time, and the y-axis represents
member (e.g., a combined IP+port). Flows are visualized as colored bars with
endpoints at the flow’s start and end times. Alerts appear as black vertical tick
marks at the time the alert was detected.

Analysts choose clusters of flow members to visualize, based on results from
flow similarity clustering algorithms. For example, Fig. 9 visualizes two clusters,
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Fig. 8. Alert member visualization: (a) a 100-member ensemble; (b) visualization
of members assigned to k = 20 clusters; (c) visualizing each alert member in a
cluster containing 65 members with similar alert patterns, but from different flows
(Color figure online)
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Fig. 9. Visualization of four flow ensemble members from two different clusters shown
in blue and red (Color figure online)

each with two flow members. Red and blue identify the two clusters. Zoom-
ing into a group of flows that occur at a similar time, but belong to different
members, produces a detailed visualization that shows the flows in each cluster
are similar based on time duration, alert density, and alert distribution. Notice
that without dynamic time warping, the flows in the red cluster would not be
considered similar, since they start and end at different times.

7 Practical Application

We extended our web-based system to support visualizing network security
ensembles. As before, data management occurs on a remote server running
MySQL and PHP. The visualizations are based on interactive 2D charts using
HTML5 and Javascript. We used anonymized network traffic from one floor of
our Computer Science building to test our system on real-world alert and flow
patterns.

As a practical example of our system, consider the alert ensemble discussed
above that retrieves alerts data for source IP 64.120.250.242 and uses des-
tination IP+port to define alerts sent to a common destination and port as a
member in the ensemble. Since the analyst is not interested in traffic with a small
number of alerts, he sorts ensemble members by number of alerts and analyzes
only the top 100 members. The system generates SQL queries to extract the
relevant data and calculate dissimilarities between pairs of members. It gener-
ates a dissimilarity matrix visualization (similar to Fig. 10b), clusters the flows
with an agglomerative clustering algorithm, then presents a line chart charac-
terizing overall dissimilarity for different numbers of clusters k. The analyst uses
the line chart to study inter-member relationships, combining the 100 members
into k = 20 clusters, then visualizes the largest cluster, containing 65 mem-
bers with similar changes in the number of alerts over time (Fig. 8c). Ensemble
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Fig. 10. Flow ensemble: (a) visualizing ensemble members in a Gantt chart; (b) dis-
similarity matrix for the 65 members

visualization makes it more efficient to detect similar changes in alerts patterns,
something that is not as obvious from a general visualization of alert traffic.

To gain a more in-depth understanding of the alert traffic covered by the 65-
member cluster, the analyst takes flow traffic into consideration by requesting a
flow ensemble visualization. The alert visualization system exports SQL queries
to extract the alerts in the 65-alert member. The analyst uses these constraints to
retrieve associated flows to construct a flow ensemble. Members in the ensemble
are defined by destination IP+port. Equal weights are assigned to the three
metrics wdur, wdens, and wdist during flow comparison (Eq. (4)). In this way,
every member in the flow ensemble is correlated with the member in the alert
ensemble that is sent to the same destination.

Figure 10a visualizes the 65 members in the flow ensemble as 65 individual
Gantt charts with time on the x-axis and destination IP+port on the y-axis. At
this level of detail, flow traffic for most members looks similar, making it difficult
to visually distinguish the flows without zooming in. The dissimilarity matrix
(Fig. 10b) indicates that network traffic sent to different destinations are fairly
strongly differentiated when we include the flow data (i.e., there are numerous
dark cells in the dissimilarity matrix).

Based on the dissimilarity matrix, the analyst decides that members of the
ensemble are similar if their dissimilarities are smaller than 0.21. This combines
the 65 members into k = 38 clusters. As expected, flows in members from the
same cluster are similar. For example, in Fig. 11, the flows in a cluster with
six members have very similar density and distributions of alerts, and relatively
similar durations (as shown in the top-right overview visualization).
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Fig. 11. A cluster of six members in the flows ensemble. Corresponding flows has very
similar patterns

8 Conclusions

Data visualization converts raw data into images that allow a viewer to “see”
data values and the relationships they form. The images allow viewers to use
their visual perception to identify features in the data, to manage ambiguity,
and to apply domain knowledge in ways that would be difficult to do algorith-
mically. Visualization can be formalized as a mapping: data passed through a
data–feature mapping generates a visual representation—a visualization—that
displays individual data values and the patterns they form.

Numerous situation awareness tools use visualization techniques like charts,
maps, and flow diagrams to present information to an analyst. The challenge is
to determine how best to integrate visualization techniques into a cyber situa-
tion awareness domain. Many tools adopt a well-known information visualization
approach: overview, zoom and filter, and details on demand. Techniques utilized
recently for the security and situation awareness domains include: charts and
maps, node-link graphs, timelines, parallel coordinates, treemaps and hierarchi-
cal visualization.

We identified an initial set of requirements for a successful visualization tool.
These do not define which data attributes we should visualize or how those
attributes should be represented. Instead, they implicitly constrain a visualiza-
tion’s design through a high-level set of suggestions about what a real analyst
is, and is not, likely to use. A visualization must “fit” the mental models the
analysts use to investigate problems. It must integrate into the analyst’s current
working environment. Pre-defined presentations of the data are typically not use-
ful. Visualizations should be familiar to an analyst. The system must support
query and retrieval from multiple data sources; the visualizations must integrate
into existing strategies with useful support. We demonstrate a prototype system
for analyzing network alerts based on these guidelines, using both basic charts
and graphs, and ensemble approaches to compare and combine alert and flow
traffic based on inter-member relationships. In both cases, data retrieval and
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data-feature mapping are driven by the analyst, to ensure they visualize their
current data of interest in ways that highlight exactly the data correlations they
want to analyze.
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Abstract. This chapter begins with a literature review of situation
awareness (SA) concepts, and a study on how to apply SA to the cyber
field for enterprise-level network security diagnosis. With the finding that
an isolation problem exists between the individual perspectives of dif-
ferent technologies, this chapter introduces a cyber SA model named
SKRM, which is proposed to integrate the isolated perspectives into a
framework. Based on one of the SKRM layers, called Operating Sys-
tem Layer, this chapter presents a runtime system named Patrol, that
reveals zero-day attack paths in the enterprise-level networks. To over-
come the limitation of Patrol and achieve better accuracy and efficiency,
this chapter further illustrates the usage of Bayesian Networks at the
low level of Operating System to reveal zero-day attack paths in a prob-
abilistic way.

1 Cyber Situation Awareness

Complete and accurate cyber situation awareness (cyber SA) is the essential pre-
requisite for human security analysts to well defend the network: the analysts
should clearly know what is going on in the network to aid the decision making
process. Much of the work in security analysis is from the individual perspective
of the algorithms or tools engaged in vulnerability analysis, intrusion detection,
damage and impact assessment, etc. These analytical tools are useful for assess-
ing the network states and facilitating the human analysts’ network security
management. Taking attack graph for example, by combining the vulnerabilities
existing in a network, an attack graph can generate the potential attack paths
that show how the attackers may exploit the network. Without attack graph,
security analysts have to manually construct the possible attack scenarios by
analyzing the vulnerability scan reports provided by vulnerability scanners such
as Nessus. This is a daunting task if the analysis target is a large scale enterprise
network with hundreds of machines.

While these techniques such as attack graphs provide powerful means to rep-
resent complex security systems and ease the analysts’ work in some aspects,
they tend to focus on the individual perspectives within the techniques. This
produces some issues when it comes to the overall cyber situation awareness.
First, the individual techniques are usually isolated from each other. Each sys-
tem is capable of producing a large amount of data, such as the system logs,
c© Springer International Publishing AG 2017
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network traffic information, security alerts, and even business transaction logs.
It’s a huge challenge for security analysts to find the needed information from
this volume of data. Moreover, integrating and interpreting the information gen-
erated by the isolated systems is another challenge. Few integration frameworks
or models exist for coupling the tools, algorithms, and techniques to enhance
the security analysts’ situation awareness and improve analysts’ effectiveness in
addressing complex cyber security problems. Second, the role of the cyber secu-
rity analyst is rarely considered. This is problematic as human is the core of
cyber SA. The output of most tools has to be interpreted within the mind of
human security analysts. Questions as follows should be answered with the role
of human operators explicitly taken into account: what information should be
present to the analysts for better understanding? Are the analysts able to under-
stand the output and correctly correlate the reported events? To what extent
can the system ease the human analysts’ cognition and enhance the situation
awareness? The list goes on. Therefore, to achieve complete and accurate cyber
situation awareness, an integration model that couples the existing security tech-
niques and considers the role of human analysts should be established.

1.1 Situation Awareness (SA)

The definition of situation awareness has evolved from the very first ones that
are proposed by Dominguez [1] and Fracker [2] in the aircraft piloting domain.
Fracker defines situation awareness as “the pilot’s knowledge about a zone of
interest at a given level of abstraction”. Pilots develop the situation awareness
by matching the sampled data acquired from the environment to the knowledge
structures stored in their long-term memory [2]. Endsley then gives a formal
definition of SA in dynamic environments: “situation awareness is the percep-
tion of the elements of the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status in the near
future” [3]. In this definition situation awareness is abstracted into three levels:
perception, comprehension, and projection.

Several mutation definitions of situation awareness are then proposed on
basis of Endsley’s definition. Salerno et al. [4] introduces a situation awareness
model that can be applied to multiple domains. They view the basic process of
transforming large amount of data into information and making sense of it as the
key component of SA. Since the majority of SA is still being accomplished in the
minds of human operators, a gap still exists between the data and the decision
support tools. They thus emphasize the importance of situation awareness to
the decision process by modifying Endsley’s definition into “situation awareness
is the perception ... and the projection of their status in order to enable decision
superiority.” McGuinness and Foy [5] add a fourth level called resolution to
Endsley’s definition. Resolution level is able to specify which path to follow in
order to achieve the desired state change. Resolution is not decision making, but
provides available options and corresponding consequences that can facilitate
decision making. McGuinness and Foy explain the four levels of SA using an
analogy: perception means “What are the current facts?”; comprehension asks



68 X. Sun et al.

“What is actually going on?”; projection represents “What will happen if ...?”;
and resolution asks, “What exactly shall I do?”.

Alberts et al. [6] informally defines the situational awareness in the context
of battlespace. They refer situational awareness as what “describes the aware-
ness of a situation that exists in part or all of the battle space at a particu-
lar point in time”. For situation in the battlespace, they identify three main
components: missions and constraints on missions, capabilities and intentions
of relevant forces, and key attributes of the environment. For awareness, they
emphasize the role of prior knowledge by pointing out that awareness is “the
result of a complex interaction between prior knowledge and current perceptions
of reality”. Each individual could have a unique awareness given the same sit-
uation. Therefore, they mention that professional education and training can
be used to ensure that individuals with same data, information, and current
knowledge can achieve similar awareness.

In addition, Endsley [7] also discussed the temporal aspects of situation
awareness. Three aspects in terms of time are identified: the perception of time
(time itself), the temporal dynamics associated with events (e.g. how much time
is available until some event occurs), and the dynamic aspect of real-world situa-
tions (e.g. the rate at which information is changing). Time is an important part
for the comprehension level and projection level of situation awareness. Besides,
the dynamic nature of situations also requires the situation awareness to con-
stantly change to keep accurate. Decision makers rely on the previous experience
to keep aware of the changing situation, make decisions and take actions. In the
OODA (Observe, Orient, Decision, Act) loop [8], decisions and actions provide
feedback to the environment and a new cycle begins.

1.2 Apply SA to the Cyber Field

It is a natural yet critical step to apply SA to the cyber field to facilitate security
analysis. Cyber security is inherently a battle between attackers and defenders
in the cyber space. However, this battle is intrinsically unfair: much of the attack
information may be forever hidden from defenders, while lots of defense informa-
tion is detectable and thus accessible for attackers. That is, information asym-
metry exists between the two sides. To win such a challenging battle, defenders
have to gain capabilities to effectively dig out useful information out of the data
from very limited security sensors. The various analytical tools and algorithms
scattered in the security literature are the ones that people can rely on to extract
information from data. However, it is found that the “best” tools (in terms of
accuracy, efficiency, costs), when used by humans, do not necessarily result in
the best SA.

This is due to the fact that most of the current security analytical approaches
were not designed with human beings in consideration. Rather, their focus was
usually on the technical breakthroughs with attempts to improve the approach’s
performance at various evaluation metrics, including efficiency, accuracy, over-
head or even scalability. But few of them would pay attention to measure how
well users could perceive and comprehend their generated data. Furthermore,
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much of the analytical methods are also found to hold only individual perspec-
tives, and thus isolated from each other. Locked in their own perspectives, iso-
lated tools do not really help human comprehend to gain holistic understanding
of the entire scenario.

The above isolations are casting challenges on human beings’ limited cog-
nitive capabilities. When human analysts are given rich data, but the data is
disconnected from each other due to different sources, the rich data becomes a
burden, instead of an advantage, for human cognitions. Overwhelmed in such dis-
connected data, human analysts will find it hard to comprehend anything. This
is so-called human cognition hurdles that people need to take into consideration
when they expect human users truly benefit from their outputs.

Compared to traditional security analytics, cyber SA considers potential
human cognition hurdles in the loop. That is, based on the rich sensed data,
cyber SA makes efforts to ensure human analysts can more effectively perceive
and comprehend data so as to make the right decision in a timely fashion. But,
how to achieve this? The answer is integration. For the purpose of easing human
digestions and facilitating their understanding, it is expected to integrate human
beings and the traditional individual perspectives into a macroscopic frame-
work. This integration framework will be a platform that accommodates and
offers multi-disciplinary theories, algorithms and toolsets in an integrated fash-
ion. Desired cyber SA capabilities beyond intrusion analysis or post-mortem
analysis, such as mission asset damage and impact assessment, can only emerge
after the integration framework.

Individual Perspectives. However, such an integration framework is not
directly available in the literature in terms of security. To build it, we first need
to identify the existing individual perspectives that may be integrated into the
framework and enable SA to benefit the overall security analysis.

Security Monitoring. For various purposes, an enterprise network can be under
the observation of several monitoring tools. Such tools may include WireShark
[13], Ntop [14], TCPdump [15], Bro [16] or Snort [17] for logging the network
traffic/flows, Nessus [18], OVAL [19], GFI LanGuard [20], QualysGuard [21] or
McAfee FoundStone [22] for scanning out the vulnerabilities, Lumeta IPsonar
[23], SteelCentral NetCollector (formerly OPNET NetMapper) [24], Nmap [25] or
JANASSURE [26] for discovering the network mapping, Backtracker [27], Shelf
[28] or Patrol [29] for intercepting the system calls, Malwarebytes Anti-Exploit
[30], AVG AntiVirus [31] or McAfee AntiVirus [32] for capturing runtime security
incidences. These monitoring tools, deployed as security sensors in the enterprise
networks, can be leveraged to gain perception for cyber SA.

Intrusion Detection. The enterprise network is mainly protected by intrusion
detection systems (IDS), which is one of the mechanisms to alert administrators
to possible cyber attacks. Host-based IDSs like OSSEC HIDS [33] and Trip-
Wire [34] alert administrators for abnormal events on individual hosts, while
network-based IDSs like Snort alert them for suspicious packets through the
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entire network boundary. Signature-based IDSs like Bro and Snort alert admin-
istrators to known attacks, while anomaly-based IDSs [35–42] can even alert
them to unknown attacks. These techniques gain the capability to detect zero-
day exploits by profiling normal behavior and detecting deviations, but they are
also found to be hard to cope with false positives.

One of the noticeable intrusion detection methods is the system call-based
intrusion detection, which mainly leverages statistical properties of system call
sequence [37,38] and system call arguments [40,41]. This method was started
from pioneer works by Forrest et al. [35] and Lee et al. [36] for intrusion detection.
In addition to the sequences and arguments, Bhatkar et al. further takes into
account the temporal properties involving arguments of different system calls
[42]. Our system call-based intrusion detection work, Patrol [29] which will be
presented in Sect. 3, is to identify zero-day attack paths through network-wide
dependencies parsed from system calls. These paths provide network-wide attack
contexts, and help detect unknown vulnerability exploitations.

The IDS systems raise alerts when they notice security patterns or anom-
alies. Hence, IDS is an important tool for us to gain perception for cyber SA.
The breakthrough made by Patrol further makes IDS able to facilitate human
comprehension for cyber SA.

Alert Correlation. As its name indicates, alert correlation [43,44] is a technique
invented to correlate isolated alerts to form potential attack paths. It has high
potentials to facilitate human comprehension for cyber SA, but it may induce
high false rates at the same time. The false rates are pointed to be twofold [29]:
(1) The correlation itself is inaccurate because it attempts to integrate possi-
bly different contexts into a unified “story”; (2) The alerts that the correlation
largely depends on genetically inherit false rates from security sensors like IDS.
When the two folds of false rates are combined together, the accuracy of the
whole solution gets worse.

Event Correlation. The isolation concern is already noticed by part of the secu-
rity products and research in the community, and they made progress from iso-
lated technologies to holistic picture. Examples are ArcSight [48], QualysGuard
[21], NIRVANA [49], etc. Specifically, ArcSight is a leading enterprise security
information and event management (SIEM) system, that provides a correlation
engine to visualize the security management of user activities, event logs and
intrusion alerts. As a web-based vulnerability scanner, QualysGuard combines
the business-level view and the network-level view by delivering IT security and
compliance as a service. NIRVANA is already designed as a situation awareness
tool with graphical model and inference algorithms to help security analysts.
Although all these outcomes are only achieving partial big picture awareness,
it shows that event correlation is a big facilitate to human comprehension for
cyber SA.

Service Dependency Discovery. Service dependency discovery is a subproblem
of event correlation, that makes efforts to mine service dependencies from the
(network or host) events. Its results may be used to rank the impact weights
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of mission assets in the enterprise network, and hence it is very important and
useful to facilitate human comprehension, projection and even resolution for
cyber SA.

Network-based discovery methods usually mine the network service depen-
dencies from network traffic. A technique is developed in [57] to enumerate the
interdependencies of application and services, while [58] proposes to use Leslie
Graph as the abstraction to describe the complex dependencies between net-
work, host and application components. The co-occurrences of network traffic
within a small time window is leveraged in [45] to identify service dependencies,
also for the purpose of fault localization. Based on [45], eXpose [46] further filters
out traffic that is less likely to lead to dependencies, using a statistical measure.
Orion [47] learns dependencies based on the spike detection in delay distribu-
tion of flow pairs. Fuzzy-logic algorithms are used in [59] to build an inference
engine to classify dependencies from the traffic. The nested network traffic flow
observation is leveraged by NSDMiner [60,61] to identify dependencies.

Host-side instrumentation can be performed to monitor the behavior of run-
ning processes, which is then used to extract service dependencies. For example,
Magpie [50] records fine-grained kernel/middleware/application events, corre-
lates them into execution paths for applications within a computer, and traces
them across the network. Pinpoint [51] records component interactions to track
the paths that requests follow. X-trace [52] reconstructs trees of events involved
in the execution of a task. Constellation [53] installs host-based daemons in a
distributed way and then applies networked machine learning. Macroscope [56]
combines the information of identified processes that produce traffic with net-
work level packet traces.

Operating System Object Dependency Tracking. Operating system object depen-
dency tracking is first invented by King et al. [27] with the purpose to automat-
ically identify sequences of intrusion steps. The follow-up works [54,55] further
propose to integrate system object dependency tracking and alert correlation
techniques. Xiong et al. [28] applies it to intrusion recovery. Our work on Patrol
takes advantage of this technique to reveal the zero-day attack paths, locating all
the known or unknown operating system level mission assets (processes or files)
that have been damaged due to the attack. All these works show that the system
object dependency tracking technique could be used to facilitate comprehension
for cyber SA.

Attack Graph. Another technique that notices the isolation problem (between
vulnerabilities) is attack graph, which makes progress to break it by consider-
ing vulnerabilities in combination. With the strengths to model and correlate
causality dependencies among known vulnerabilities, attack graph is capable to
generate all the possible attack paths that show exploit sequences to specific
attack goals in the enterprise network. Since Phillips and Swiler [101] in 1998
first proposed a model using attack templates to represent generic steps in known
attacks, attack graph has been studied for more than one decade. At the early
development stage, state enumeration attack graph becomes the main stream.
[62,63,89] by Sheyner et al. [102] by Ramakrishnan et al. [64] by Jha et al. [101]
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by Phillips and Swiler, and [65] by Swiler et al. are research works regarding state
enumeration attack graph. Because of the serious complexity problem of state
enumeration attack graph, researchers began to develop the new dependency
attack graph. Examples of research in dependency attack graph are [66] by Noel
and Jajodia, TVA [90] and Cauldron [67–69] by Jajodia et al. [103] by Ammann
et al., MIT NetSPA [104] by Ingols et al. [70] by Noel et al., MulVAL [91–93]
by Ou et al., and NIRVANA [49]. Although attack graph is powerful at vulner-
ability correlation, it could not capture zero-day attack paths. Notable progress
is recent research [71,72], which have pioneered the attack graph based model-
ing of zero-day vulnerabilities. In short, attack graph shows great potentials to
facilitate human comprehension for cyber SA.

Bayesian Networks. Bayesian Networks (BN) have been applied to intrusion
detection [105] and cyber security analysis both in traditional networks [106]
and the cloud environment [107]. Based on known vulnerabilities and observed
alerts, [106] can infer which hosts are likely to be compromised, and [107] lever-
ages BN to infer the stealthy bridges (unknown in nature) between enterprise
network islands in the cloud environment. Our work, presented in Sect. 4 employs
BN to infer zero-day attack paths in a probabilistic way. These inference capa-
bilities enabled by BN shows that BN is a powerful tool addressing uncertainty
to enhance human comprehension and projection for cyber SA.

Integration Framework. Researchers have developed various frameworks or
models of situation awareness in different domains. Using the definition of sit-
uation awareness provided in [5], Tadda and Salerno [10] establish a situation
awareness reference model that provides definitions to concepts such as entity,
object, group, event, activity, etc. Salerno et al. [4] propose another situation
awareness model based on the Joint Directors of Laboratories (JDL) data fusion
model [9] but utilize Endsley’s notions of Perception, Comprehension, and Pro-
jection (referred as Anticipation in [4]) in the model of SA [3]. The model reflects
the basic process of situation awareness, which usually starts with the analyst
defining the problem of interest. The analyst then adapts an existing model
developed from previous experience. The existing model defines the interested
patterns and thus required data to be collected for situation awareness.

However, the above existing SA models do not notice the isolation in-between
individual perspectives of the different technologies in a enterprise-level network.
The goal of enabling enterprise-level SA is to break such isolation, integrate the
individual perspectives, and use the integrated situation awareness to enhance
the human security analysts’ perception, comprehension and projection of the
whole enterprise scenario. Therefore, to gain big picture awareness through inter-
connecting situation knowledge from isolated techniques, we construct a frame-
work of cyber SA, as shown in Fig. 1 [12], on the basis of the models established
by Tadda and Salerno [10] and by Endsley [7]. The key component of this frame-
work is a model we proposed, the Situation Knowledge Reference Model (SKRM),
which will be elaborated in Sect. 2. In a word, SKRM is a model that inte-
grates cyber knowledge from different perspectives by coupling data, information,
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Fig. 1. A model of cyber situation awareness [12].

algorithms and tools, and human knowledge, to enhance cyber analysts’ situation
awareness [12,73].

In the cyber SA framework in Fig. 1, we utilize McGuinness and Foy’s def-
inition of situation awareness [5] which is composed of four levels, perception,
comprehension, projection, and resolution. As the core integration model, the
SKRM is able to take data, information, tools and algorithms, and even human
intelligence as the input, and enhances human security analysts’ four levels of
situation awareness. Human security analysts can acquire information from a
number of sources, including data, information, system interfaces, real world,
and the output of SKRM as well, to help the understanding of the situation.

Compared to Tadda and Salerno’s model in [10], the perception level in Fig. 1
includes two more elements, system interface and real world, in addition to data
and information.

The system interface is one of the main information sources for security
analysts to acquire the most relevant information. System design is an important
factor affecting the effectiveness of security analysts’ situation awareness. A well-
designed system (including both good algorithms and interfaces) can greatly ease
the information perception and comprehension. Furthermore, the information
acquirement is an active process [7], in which the security analysts can choose
which information is displayed through the system interface. For example, when
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evaluating whether a host has been compromised, the security analysts may
go through a number of reports provided by different security sensors, such
as Nessus, Snort, TCPdump [15], etc. The analysts can shift among different
interfaces or systems to get the needed information. When he finds some clues
in these reports, he may also actively look into the system logs for suspicious
activities.

The real world is another information source that is directly observed by
human security analysts. Security analysts are able to directly hear and view
information from the environment, such as abnormally deleted files, extremely
high temperature in the hardware, etc. Endsley also view team members and
others as a separate type of information source for human operator’s situation
awareness [7]. In our framework, we view them as part of the real world. Infor-
mation from such sources can be generated in various forms. For example, the
financial abnormality discussed in a company meeting may be related to an
intrusion happened towards a workstation. Or a news report about a recently
popular attack pattern could explain why an organization’s own network has
similar symptoms.

From the perspective of cyber security, Comprehension and Projection levels
are mainly about damage assessment and impact assessment [11], which evalu-
ates what is currently going on and what is likely to happen in the future. We
include the Resolution level into the framework because it’s a critical part of
cyber security analysis. In the face of current situation, security analysts usu-
ally have a number of security measures to achieve the desired state change.
Such security measures include network hardening, system intrusion recovery,
etc. Different countermeasures may require different costs and lead to different
consequences. Therefore, Resolution level provides the security analysts with the
available options and the corresponding consequences and facilitates the decision
making process.

1.3 Organization of This Chapter

The following of this chapter will be structured as follows: Sect. 2 will focus
on the introduction to SKRM, which is our proposed cyber SA model to build
the integration framework; Sect. 3 will present a runtime system called Patrol,
that reveals zero-day attack paths on the Operating System Layer of the SKRM
model; Sect. 4 will illustrate the usage of Bayesian Networks at the low level of
Operating System to reveal zero-day attack paths in a probabilistic way.

2 SKRM: Gaining Big Picture Awareness Through
an Interconnected Cross-Layer Situation Knowledge
Reference Model

2.1 Motivation

Cyber security is nowadays facing a “sea” of sensed data, especially in an enter-
prise environment. Such data may be generated from a variety of technologies
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(algorithms and tools) that are developed for the purpose of vulnerability analy-
sis, intrusion detection, damage and impact assessment, and system recovery,
etc. The rich data opens up fascinating opportunities for us to understand both
mission and adversary activities based on modeling and analytics. As pointed
out in Sect. 1.2, cyber situation awareness (SA) is one of the outcomes that we
demand from the availability of such big data, which is expected to form the pre-
requisite that cyber decision makers could depend on to infer what intrusions
may be going on, what consequences they may have and what actions should be
taken.

However, all the information technologies in enterprise security deployment
contribute their data in disparate format to the sea, and hence we find that
the resultant cyber SA could be “broken” in the form of “isolated” pieces. We
mention in [73] that the root cause to account for this is the isolated individ-
ual perspectives born with technologies, which do not explicitly consider how
to enhance human analysts’ overall cyber situation awareness. The local views
held during the design and implementation of technologies ultimately cause dif-
ferences, and such differences exist inherently in technology genes which will
definitely go to the resultant data as well, such as data granularity, data format,
data semantics and data meanings.

Tons of such heterogeneous data is presented from different sources to secu-
rity experts for analysis. Genetically “locked” in corresponding different and
individual perspectives, the data is usually at different levels, ranging from busi-
ness to network, from network to system, etc. Put together, they are supposed
to deliver the most critical knowledge of the current security situation to human
analysts. For this purpose, experts with different background and expertise are
needed to make efforts together to digest and understand the data. However,
it is found that even for the same security topic, experts from different areas
are not able to effectively communicate with each other. For example, experi-
enced business managers have the capability to quickly notice unusual financial
loss from business-relevant data, but they may not able to tell whether the loss
is caused by a buffer overflow attack or a SQL injection attack towards one
workstation. In contrast, an operating system expert can immediately notice an
abnormal system call from the log data, but cannot tell how this could affect the
company’s business flow. That is, the cyber knowledge inherits isolation from
data during the process of extraction, and thus is also in “locked” mode.

It is pointed out in [73], due to the existence of the above-described lock mode,
“an integration framework should be established to integrate cyber knowledge
from different perspectives by coupling data, information, algorithms and tools,
and human knowledge, to enhance cyber analysts’ situation awareness”. Many
cyber SA capabilities need to be based on big-picture awareness that can only be
delivered by the macroscopic framework. For example, one of such capabilities is
mission damage and impact assessment, which is essential to identify and track
the relevant causality relationships during attacks and subsequent damage prop-
agation. Another example is the asset identification (and prioritization), which
is expected to identify and classify critical mission assets into categories like
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“polluted”, “clean but in danger”, and “clean and safe”. These capabilities ben-
efit the security analysts by greatly easing their the decision making process and
facilitating the network security management. However, to gain such capabilities,
it is needed to conquer the following “stovepipe” problem.

The “Stovepipe” Problem. The above two capabilities both require the SA-
level abstraction (perception, comprehension, projection or resolution) from the
involved (data and code) elements at different levels of the computer and infor-
mation system semantics. In specific to cyber security, damage can be possi-
bly identified at the business process level, application/service level, operating
system object (file or process) level or instruction level (memory unit, instruc-
tion, register and disk sector). However, for the resultant assessment to be more
comprehensive, the capabilities both require a multi-level understanding and
cross-level awareness. Using the previous example, system experts exactly know
which file is added, deleted or modified, but they hardly know how this can
impact the business level. On the other hand, business managers can rapidly
notice a suspicious financial loss, but they cannot relate it to an dis-allowed sys-
tem call inside the operating system. That is, the current security solutions are
usually restricted and isolated by their corresponding abstraction levels, such as
workflow healing [74], intrusion detection [79,80], attack graph analysis [89–92],
OS-level dependency tracking [27] and recovery [28], and instruction-level taint
analysis [81–83]. When these technologies are applied to cyber SA, we need them
to effectively “talk” to each other, and help security analysts achieve overall sit-
uation awareness.

Such “isolation” between different knowledge bases is referred to as the
“stovepipe” problem [73]. The above-mentioned abstraction levels are one kind of
stovepipes, as they cause security analytics bound to individual levels of seman-
tics abstraction. Actually, this kind of stovepipes are horizontal stovepipes, as
non-integrated security tools on the same abstraction level, such as vulnerabil-
ity scanners, anti-virus/malware sensors, monitors and loggers, IDS, can also
be restricted from each other by the compartmentalization (processes, physi-
cal machines, network segments). This second type of stovepipes are vertical
stovepipes. In simple, horizontal stovepipes are due to differences between the
abstraction levels, while vertical ones are due to differences on the same abstrac-
tion levels.

The stovepipe problem is by nature an important one to be addressed for
situation awareness, as today’s security analytic approaches and outcomes are
inherently stovepiped, either horizontally or vertically. The SAs extracted from
the existing individual situation knowledge collectors are just isolated “pieces”.
Desired SA capabilities cannot be gained without a large picture which requires
holistic understanding of the entire scenario. Therefore these pieces of SAs must
be stitched together to become an interconnected cross-layer “big picture”, which
we call as “big picture awareness” in [73].
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Challenges and Approachs. There exist several non-trivial challenges in
accessing and modeling cross-layer data and applying it in mission-driven ana-
lytics: (1) the stovepipes in an enterprise network have to be identified, including
both horizontal (e.g., abstraction levels) and vertical (e.g., compartments) ones;
(2) analytical technologies have to be recognized to break the corresponding
stovepipes, including inter-compartment ones for vertical stovepipes and cross-
abstraction-level for horizontal stovepipes; (3) the isolated network situation
knowledge needs to be integrated into a “big picture” based on the above two
breakthroughs.

To tackle the stovepipe problem, we present an enterprise network situa-
tion knowledge reference model (SKRM) with multiple abstraction layers [73].
As a natural and critical “next-step” to achieve big picture awareness, SKRM
addresses the above challenges based on the following approaches: (1) We cate-
gorize enterprise network situation knowledge and thus identify the abstraction
layers of SKRM: the Workflow Layer, App/Service Layer, Operating System
Layer and Instruction Layer. Each layer, from top to bottom, is characterized
by additional fine-grained granularity. These abstraction layers are regarded as
horizontal stovepipes, and the compartments on the corresponding abstraction
layer, i.e. business tasks, applications or services, processes or files, memory units
or disk sectors, etc., are regarded as vertical stovepipes. (2) To break the vertical
stovepipes, inter-compartment data or control dependency tracking technologies
are brought and extended into SKRM, including workflow data or control depen-
dency mining [74–76], service dependency discovery [47,84], OS-level depen-
dency tracking [27,28], and instruction-level taint tracking [81–83]. To break the
horizontal stovepipes (e.g., abstraction layers), cross-abstraction-layer semantics
bridging technologies are introduced or developed into SKRM, to capture cross-
layer (mapping, translation or causality) relationships in-between different levels
of computer and information system semantics. For instance, as shown in Fig. 2,
a logical dependency Attack Graph [91–93] is vertically inserted between the
App/Service Layer and Operating System Layer, to enables causality represen-
tation and tracking between network service level pre-conditions (configuration
and vulnerability information) and identification of successful exploits at the
OS level. (3) Based on the above two breakthroughs, the multi-layer enterprise
network SKRM model is formalized and evaluated as the integrator of isolated
network situation knowledge. With a different perspective and granularity, each
SKRM layer generates a graph that covers the entire network and thus integrates
inter-compartment awareness of all the mission assets at that layer. The graphs
are then interconnected with each other by cross-layer relationships (e.g., map-
ping, translation, and semantics bridging). The resulted graph stack represents
SKRM in an integrated fashion, transforming isolated SA into a “big-picture-
oriented” SA.

The following sections describe the SKRM model, the SKRM graph stack
generation, and SKRM-enabled mission diagnosis.
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2.2 SKRM Model

Detecting and preventing intrusions in cyber space is like “catching big fishes
in the sea”. Like fishermen, we need a well-knit “fishing net” to capture cyber
attacks. Made of data, what will it be like? Our SKRM model, as illustrated in
Fig. 2, serves as the “fishing net”. It breaks the “isolation” in-between heteroge-
nous data sources, and enables a “big picture” to deliver macroscopic perspective
and holistic understanding.
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Fig. 2. The enterprise network Situation Knowledge Reference Model (SKRM) [73].

SKRM Overview and Features. SKRM seamlessly integrates four abstrac-
tion layers of cyber situation knowledge in an enterprise network: Workflow
Layer, App/Service Layer, Operating System Layer and Instruction Layer, from
top to bottom, with finer and finer granularities in technical details. The follow-
ing is the summary of the SKRM overview and features from [73]:

– Each abstraction layer generates a graph, and each graph covers the entire
enterprise network;

– Cross-layer relationships are captured. The individual graphs are intercon-
nected to become a graph stack;
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– The graph stack enables both inter-compartment diagnosis and cross-layer
analysis;

– Each abstraction layer is a view of the same network from a different per-
spective and thus at a different granularity;

– Isolated perception that is gained at different layers/granularities is integrated
into a more comprehensive, scalable system to support higher levels of SA,
namely comprehension and projection.

SKRM Layers. The layers are abstracted from the explored literature based
on the categorization of isolated situation knowledge, in terms of different levels
in computer and information system semantics, as well as corresponding exper-
tise. Specifically, workflow paths are powerful to model and manage the daily
business/mission processes. Application or service dependencies are invaluable
to localize any faults or problems in multi-service network environments, for
the purpose of stability and efficiency. OS object (file or process) dependencies
are useful to backward or forward track the intrusion propagation. Dynamic
instruction taint tracking is helpful for fine-grained intrusion harm analysis.

Workflow Layer. Workflow is widely used to model and manage organization
business processes [74]. A workflow is made up of several essential tasks in order
to complete a business process, in which the tasks are sequenced in a specific
order ensuring the correct dependency relationship between each other. Orga-
nization workflows are supposed to be consistent and reliable to ensure correct
execution paths. If a workflow is compromised, the tasks or data in workflow may
have been corrupted (perhaps based on malicious injection or modification), or
the execution sequence in paths have been modified. Hence, we propose Work-
flow Layer as the top layer in SKRM to capture the business/mission processes
within an enterprise. The Workflow Layer shown in Fig. 2 could be referred to
as an example of 7 tasks.

Definition 1. Workflow Layer [73]
The graph of Workflow Layer can be represented by a directed graph G(V ,

E), where:
– V is the set of nodes (tasks);
– E is the set of directed edges (immediate precedence relations);
– If (ti, tj) ∈ E, then (ti, tj) is a directed edge pointed from task ti to task tj ,

and tj should be executed subsequently to ti. The directed edges derive the
data and control dependency relationships among tasks;

– A workflow G(V, E) has a start node with 0-indegree, and some end nodes
with 0-outdegree. Any path from the start node to the end node is an
execution path.

App/Service Layer. The functioning of workflows ultimately lies in the execution
of tasks, which further depend on the proper execution of specific application
software. Moreover, according to [47], the functionality, performance and reli-
ability of a particular application may rely on multiple pre-requisite services,
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Fig. 3. The graph of Workflow Layer [73].

that are hosted in other relevant nodes in the network. Therefore, we propose
an App/Service Layer in SKRM to capture the applications/services and their
dependency relationships. The App/Service Layer shown in Fig. 2 is an example.

Definition 2. App/Service Layer [73]
The graph of App/Service Layer can be represented by a directed graph

G(V,E1, E2), where:

– V is the set of nodes (applications or services);
– E1 is the set of uni-directional edges (dependencies), and E2 is the set of

bi-directional edges (network connections);
– Service nodes are denoted as a three-tuple (ip, port, protocol);
– If (Ai, Sj) ∈ E1, then (Ai, Sj) is a dependency relation from application Ai to

service Sj . If (Sm, Sn) ∈ E2, then (Sm, Sn) is a network connection between
service Sm to service Sn.

Operating System Layer. The further exploration is done inside specific hosts,
after they are located to host application or services for the execution of work-
flows. As a result, we further introduce the Operating System Layer into SKRM,
to build an OS-level dependency graph. The Operating System Layer of Fig. 2
illustrates an example.

Definition 3. Operating System Layer [73]
The dependency graph at the OS Layer can be specified by a directed graph

G(V , E), where:

– V is the set of nodes (system objects, mainly a process, a file or a socket
inside a system);

– E is the set of directed edges which means immediate dependency relations;
– If (NA, NB) ∈ E, then node NA is influencing NB in a certain way which we

can call as dependency, represented as edges in the graph.

Instruction Layer. Fine-grained intrusion impact diagnosis at the instruction
layer may help find the missed intrusions at the process-file level [83]. Hence, an
Instruction Layer is proposed in SKRM to specify and correlate the memory cells,



Enterprise-Level Cyber Situation Awareness 81

(192.168.101.5, 80, tcp)

(192.168.101.5, 798, tcp/udp)

(172.18.34.4, 3306, tcp)

(172.18.34.4, 22, tcp)

Avactis Server

NFS 
Server Workstation

Attacker 
Computer

Web
Server

Database
Server

(10.0.0.3, 22, tcp)(172.18.34.5, 2049, tcp/udp)

OpenSSL ServerNFS4 Server

Third Party 
Web Server

(*, 80, tcp)

(192.168.202.2, 39333, tcp)

(192.168.101.5, 22, tcp)

(10.0.0.3, 973, tcp)

OpenSSL Server

(192.168.202.2, 47795, tcp)

OpenSSL Client

Web Client

DNS Server

(192.168.101.*, 53, tcp) NFS4 Client

NFS4 Client

OpenSSL Server

service dependency
network connection

Fig. 4. The graph of App/Service Layer [73].

./exploit.shexploit.sh

/etc/ld.so.nohwcap
/etc/ld.so.preload

ld.so.cache

/lib/tls/i686/cmov/libdl.so.2
/lib/tls/i686/cmov/libc.so.6

/lib/libncurses.so.5
dynamic 
libraries

...

/home/user/test-bed/workstation_attack/
wunderbar_emporium

./exploit.sh

./wunderbar_emporium.sh

stdout

libraries./wunderbar_emporium.sh

/bin/sed

libraries pwnkernel1.c

/bin/sed

pwnkernel.c

/bin/mv

/ect/selinux/config
/proc/mounts

/proc/filesystems

pwnkerne2.c

/bin/mv

/dev/null

/usr/bin/killall

/proc/#/stat
/proc/#/cmdline

stderr

/bin/uname

stdout

/bin/cat

/proc/sys/vm/mmap_min_addr

/usr/bin/cc

usr/lib/gcc/i486-linux-gnu/4.3.2/cc1

/proc/meminfo
exploit.c

/tmp/cc7yDIBy.s
exploit.gcda

/usr/include files
/usr/lib files

/usr/bin/as

/tmp/ccg0GIT1.o

/usr/lib/gcc/i486-linux-gnu/4.3.2/collect2

usr/bin/ld
libraries
exploit

/tmp/ccMABWtK.ld
/tmp/cceM6teh.le...

./exploit

/bin/cat

tzameti.avi
stdout

./exploit

/proc/kallsyms
/tmp/sendfile.s6Fvnd
/tmp/video.dMp2MO

/bin/sh
...

stderr
stdout

/dev/tty
stdin

/usr/sbin/useradd

libraries /etc/default/useradd
/etc/shadow

/etc/gshadow
/etc/passwd

/bin/mv

/proc/mounts

/mnt/wunderbar_emporium.tar.gz

/bin/tar

/bin/gzip

tzameti.avi

/usr/sbin/sshd

/bin/vi

/home/financial/secrets

/bin/mount
/root/.ssh/authorized_keys

/usr/sbin/unfsd

/pro/filesystems
/sbin/mount.nfs

/etc/nsswitch.conf

/mnt

/etc/protocols

AF_NETLINK, 0, 00000000

/etc/rpc
/etc/services

AF_NETLINK, 2018, 00000000
AF_INET, 172.18.34.5:111

AF_INET, 172.18.34.5: 2049

172.18.34.5:/export

/etc/mtab

AF_INET, 172.18.34.10:1104

portmap

/etc/hosts.allow
/etc/hosts.deny

AF_INET, 172.18.34.10:1105
AF_INET, 172.18.34.10:531

/export

AF_INET, 172.18.34.10:532
/export/*

/export/wunderbar_emporium.tar.gz

AF_INET, 192.168.101.5:54377

AF_INET, 192.168.101.5:50955

AF_INET, 192.168.101.5:815

AF_INET, 192.168.101.5:896

AF_INET, 172.18.34.10:533

/etc/init.d/unfs3

dynamic linked libraries/etc/init.d/unfs3
/usr/sbin/unfsd

/etc/exports

/proc
/proc/*/exe

AF_INET, 127.0.0.1:111

AF_NETLINK, 1430, 00000000

/etc/nsswitch.conf

/usr/sbin/unfsd

AF_INET, 127.0.0.1:111
AF_NETLINK, 1431, 00000000

/etc/nsswitch.conf

AF_INET, 0.0.0.0:2049

AF_INET, 0.0.0.0:758

AF_INET, 0.0.0.0:758

AF_INET, 172.18.34.10:533

/usr/sbin/sshd

/root/.ssh/authorized_keys
/etc/passwd

/etc/ssh/ssh_host_rsa_key...

/usr/sbin/sshd

/usr/sbin/sshd

/usr/sbin/sshd

...

dynamic linked libraries

AF_INET, 201.124.205.8: #

/usr/sbin/sshd

/usr/bin/scp

/mnt/wunderbar_emporium.tar.gz

/mnt

/bin/mount

/pro/filesystems

/sbin/mount.nfs

/etc/nsswitch.conf
/etc/protocols

AF_NETLINK, 0, 00000000

/etc/rpc
/etc/services

AF_NETLINK, 1275, 00000000
AF_INET, 172.18.34.5:111

AF_INET, 172.18.34.5: 2049

172.18.34.5:/export

/etc/mtab

page zero

AF_INET, 192.168.101.5:896

OpenSSL brute force key guessing attack 

NFS mount Misconfiguration

*a node is a system object(file, process, socket ...)

*a purple arrow is an extension from host to network

*an edge is a dependency (7 types)

*a node is a system object(file, process, socket ...)
*an edge is a dependency (7 types)

*a node is a system object(file, process, socket ...)
*an edge is a dependency (7 types)

Bypassing mmap_min_addr

*a purple arrow is an extension from host to network

Fig. 5. The graph of Operating System Layer [73].

disk sectors, registers, kernel address space, and other devices [73]. As shown in
the Instruction Layer of Fig. 2, a graph at the instruction level can be generated
based on mapping each instruction flow to the corresponding system objects
[81,83]. Besides, the dynamic taint analysis semantics [82] could be applied here.

Definition 4. Instruction Layer [73]
A graph of the Instruction Layer can also be specified by a directed graph

G(V , E), where:
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– V is the set of nodes (an instruction, register, or memory cell);
– E is the set of directed edges which mean direct data or control dependence;
– If (NA, NB) ∈ E, then node NB is data or control dependent on node NA.

2.3 SKRM Graph Stack Generation

The above-defined layers are actually horizontal stovepipes, and the compart-
ments (tasks, services, hosts, OS-level objects, instruction-level objects) on the
layer are vertical stovepipes. To break them, inter-compartment and cross-layer
interconnections are respectively needed.

Inter-compartment Interconnection. The inter-compartment interconnec-
tion is actually the process of generating the network-wide graph at the corre-
sponding abstraction layer [73].

Workflow Design/Mining. There are two ways to generate the Workflow Layer:
(1) Workflows can be manually designed and pre-specified by business managers,
since a “defined” business outcome is what the workflow wants to achieve by
performing a set of logically sequenced tasks. This method is suffering from
the limited efficiency and accuracy of human beings; (2) Alternatively, workflow
mining [75–78] can be applied to extract the workflows from business process
actual execution log data by running various data mining technologies. This
approach is more promising regarding efficiency (automatic) and accuracy. The
first method is applied to the web-shop business scenario from [74], and the
resulted graph is illustrated in Fig. 3, in which two different execution paths can
be recognized - p1: t1t2t3t4t6t7 (non-member service path) and p2: t1t2t5t6t7
(member service path).

Service Dependency Discovery. There are also two ways to generate the
App/Service Layer: (1) human expertise can be exploited to manually draw
the dependencies, but this method does not scale with the number of applica-
tions/services in the enterprise network [47]; (2) as alternatives, several auto-
mated service dependency discovery approaches are available in the field [45–
47,84]. We developed a new method [85] for the purpose of service dependency
discovery, which shows promises to be more efficient and accurate. Figure 4 illus-
trates the graph for App/Service Layer.

Inter-host OS Level Dependency Tracking. Recent work [27] shows that system
calls can be parsed to determine the dependency relation type between two OS
level objects. Following such “dependency rules”, OS object level dependency
graph can be built from the system call audit logs for each host. Our insight
goes further to extend the single-host OS object dependency graph to cover
the whole network by incorporating the socket-based communications between
remote programs. This is demonstrated to be very effective to reveal unknown
attack traces [29]. Section 3 will elaborate on this breakthrough. Figure 5 illus-
trates the graph for Operating System Layer.
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Instruction Level Taint Tracking. According to [83], the Instruction Layer could
accommodate two parts of work: (1) fine-grained taint analysis can be applied to
generate instruction flow dependency, which contains valuable binary informa-
tion; (2) cross-layer infection diagnosis can be performed to bridge the “semantic
gap” between Instruction Layer and Operating system Layer. Figure 6 illustrates
the graph for Instruction Layer, in which the instruction-level objects (rectan-
gle ones) are dynamically mapped with corresponding OS-level objects (ellipse
ones).

Cross-Layer Interconnection. Cross-layer interconnection is to capture the
cross-layer relationships, which then can be traversed from one SKRM layer to
another, to gain new information and ultimately win holistic understanding of
the whole scenario.

Cross-layer Semantics Bridging. Basically, semantics bridging (like mapping
and translation) between two adjacent abstraction layers can be used to cap-
ture cross-layer relationships. For example, bi-directional mappings between
the workflow tasks at Workflow Layer and the particular applications at the
App/Service Layer can be made by mining their association from the network
traces with workflow logs. The mappings between OS Layer objects and Instruc-
tion Layer objects can be done based on a reconstruction engine such as the one
presented in [83]. Example mappings are illustrated in Fig. 2 denoted as purple
bi-directional dotted lines between adjacent layers.

Attack Graph Representation and Generation. To interconnect the App/Service
Layer and OS Layer, a dependency Attack Graph [92] could be vertically inserted
between them, to capture causality relationship between App/Service Layer pre-
conditions (network connection, machine configuration and vulnerability infor-
mation) and OS Layer symptoms/patterns of successful exploits. Figure 7 illus-
trates the attack graph that we generated.
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18:hacl(internet,webServer,http,80):1

17:RULE 7 (direct network access):0

19:attackerLocated(internet):1 25:hacl(internet,webServer,tcp,22):1

24:RULE 7 (direct network access):0

16:netAccess(webServer,
http,80):0

20:networkServiceInfo(webS
erver,tikiwiki,http,80,_):1

21:vulExists(webServer,'CVE-2007-
5423',tikiwiki,remoteExploit,privEscalation):1

23:netAccess(webServer,t
cp,22):0

26:networkServiceInfo(webS
erver,openssl,tcp,22,_):1

27:vulExists(webServer,'CVE-2008-
0166',openssl,remoteExploit,privEscalation):1

15:RULE 3 (remote exploit of a server program):0 22:RULE 3 (remote exploit of a server program):0

13:hacl(webServer,fileServer,tcp,139):1 14:execCode(webServer,_):0 31:hacl(webServer,fileServer
,nfsProtocol,nfsPort):1

32:nfsExportInfo(fileServer,'
/export',write,webServer):1

12:RULE 6 (multi-hop access):0 30:RULE 18 (NFS shell):0

9:execCode(fileServer,
_):0

28:networkServiceInfo(fileSer
ver,samba,tcp,139,_):1

29:vulExists(fileServer,'CVE-2007-
2446',samba,remoteExploit,privEscalation):1

10:RULE 3 (remote exploit of a server program):0

8:canAccessFile(fileServer,_,w
rite,'/export'):1

7:RULE 11 (execCode implies file access):0

6:accessFile(fileServer,
write,'/export'):0

33:nfsMounted(workStation,'/mnt/
share',fileServer,'/export',read):1

5:RULE 17 (NFS semantics):0

4:accessFile(workStation,wri
te,'/mnt/share'):0

3:vulExists(workStation,'CVE-2009-
2692',kernel,localExploit,privEscalation):1

2:RULE 5 (Corresponding Trojan horse installation):0

1:execCode(workStation,root):0

11:netAccess(fileServer,tcp,1
39):0

Fig. 7. The dependency Attack Graph [73]. (Color figure online)

Definition 5. dependency Attack Graph [73]
The dependency Attack Graph (AG) can be represented with a directed graph
G(V , E), where:

– V is the set of nodes (derivation nodes denoted as ellipses, primitive fact
nodes represented with rectangles and derived fact nodes represented with
diamonds);

– E is the set of directed edges which represent the causality relationships
between nodes;

– One or more fact nodes could serve as the preconditions of a derivation node
and cause it to take effect. One or more derivation nodes could further cause
a derived fact node to become true.

The Attack Graph in Fig. 2 only illustrates a subset of Fig. 7, but it also
illustrates the interconnection of the dependency Attack Graph with its adja-
cent two layers: (1) The App/Service Layer information (network connection,
host configuration, scanned vulnerability) become the primitive nodes in Attack
Graph, based on the Datalog representation for attack graph generation [92];
(2) the derived fact nodes in Attack Graph are mapped to the OS Layer intru-
sion symptoms (like intrusion pattern or signatures) based on network-wide OS
level dependency tracking, which input is the OS level instances of host or ser-
vice configuration. For example, process /usr/sbin/sshd instantiates sshd, hence
tracking it would reveal the repeated pattern of accessing sshd-related processes
and files (i.e. Node 14 in the dependency AG).

2.4 Case Study

We further performed a concrete case study in [73], based on the busi-
ness/mission scenario adapted from [74], shown in Fig. 8a, to illustrate SKRM-
based mission diagnosis in which SKRM serves as a key enabler of capabilities,
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like mission damage and impact assessment, asset identification and classifica-
tion, etc. For this purpose, we put the scenario under a 3-step attack (CVE-2008-
0166 -OpenSSL brute force key guessing attack, NFS mount misconfiguration,
CVE-2009-2692 -bypassing mmap min addr), and several situation knowledge
collectors are deployed in the scenario to acquire real data, including Nessus,
MulVAL, Snort, Ntop, strace and our own developed ones [29].

Internet
Attacker(http, ssh)   

DMZ Firewall

Web Server(httpd, sshd):
-ecommerce travel agency

Financial Workstation(sshd)

Intranet Firewall

NFS Server(nfsd, mountd, sshd)

financial 
confidentials

shared 
binaries/files

Hotel

Car Rental

Bank

Bruteforce

DMZ

Intranet

Database Server(mysqld)

Inside

NFS mount

Trojan-horse

Inside Firewall

(a) The test-bed network and attack
scenario.

Workflow 
Layer

App/Service 
Layer

OS Layer

dependency AG

1

downward traversing cross-layer edges

3

forward inter-host dependency/taint tracking

t2 is responsible for changing the execution path from non-member service path P1 to 
member service path P2

Host-switch level mission assets (Web Server, NFS Server and Workstation) are classified 
to be “clean but in danger” because they are critical for transactions about t2. 

financial loss

Application level mission assets (tikiwiki and sshd for the Web Server, samba and unfsd
for NFS Server and Linux kernel (2.6.27) for the Workstation) are classified to be “clean 
but in danger” because they are involved in the attack paths.

4

OS-object level mission assets (process - /usr/sbin/sshd and files - /root/.ssh/
authorized_keys, /etc/passwd, /etc/ssh/ssh_host_rsa_key for the Web Server) are classified 
to be “clean but in danger” because they are mapped to the above-tagged 
applications/services.

5

The above-mentioned OS objects are updated to be “polluted” because of the mapping 
between the “repeating” dependency pattern on OS Layer graph and a vulnerability 
exploitation in dependency AG .

Corresponding mission assets at different levels are updated from the status of “clean but 
in danger” to “polluted” by reverse tracking.

OS-object level mission assets (/mnt/wunderbar_emporium.tar.gz on Web Server, /export
on NFS Server, /mnt/wunderbar_emporium.tar.gz, /home/workstation/workstation_attack/
wunderbar_emporium and /home/workstation on Workstation) are classified to be 
“polluted” because of the propagation of pollution.

(b) Mission asset identification and classifi-
cation.

Fig. 8. Example SKRM-based mission diagnosis: the test-bed and enabled
capability [73].

Capability: Mission Asset Identification and Classification As illustrates
in Fig. 8b, top-down cross-layer SKRM diagnosis will enable capability that can
identify and classify the mission assets. Starting from an obvious observation
at the business level (like financial loss), mission asset identification and pri-
oritization achieves at the identification and classification of host-switch level,
application level and OS-object level mission critical assets into classes such as
“polluted”, “clean but in danger”, and “clean and safe”.

Specifically, after noticing the financial loss, the analysts suspected that
attackers as non-members may have obtained member services via path p2,
through analysis on the Workflow Layer (Fig. 3). As task t2 is responsible
for changing the execution path from p1 to p2, they tracked down the cross-
layer edges from Workflow Layer to App/Service Layer, to perform particular
inspection on task t2. The critical host-switch level mission assets involved in
transactions about t2, Web Server, NFS Server and Workstation, were tagged
into “clean but in danger” as they became the most possible attack goals.
The analysts further tracked down the cross-layer edges from App/Service
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Layer to dependency AG, and found four possible attack paths there: 23, 14,
6, 4, 1, 16, 14, 11, 9, 6, 4, 1, 16, 14, 6, 4, 1 and 23, 14, 11, 9, 6, 4, 1,
which were highlighted with red, blue, purple and green colors respectively
in Fig. 7. All the application level assets implicated by the attack paths were
regarded as “clean but in danger”: tikiwiki and sshd for the Web Server,
samba and unfsd for NFS Server and Linux kernel (2.6.27) for the Work-
station. The edges from the dependency AG to the OS Layer were fur-
ther traversed, and hence fine-grained OS object level mission assets were
also identified and tagged to “clean but in danger”: process - /usr/sbin/sshd
and files - /root/.ssh/authorized keys, /etc/passwd, /etc/ssh/ssh host rsa key
for the Web Server. Later, the mapping between the “repeating” depen-
dency pattern on OS Layer graph (Fig. 5) and Node 27 in dependency
AG (Fig. 7) confirmed the exploitation of CVE-2008-0166. Hence, the above
processes and filers were updated to “polluted”. Further forward depen-
dency tracking on the network-wide dependency graph discovered more “pol-
luted” OS objects: /mnt/wunderbar emporium.tar.gz on Web Server, /export
on NFS Server, /home/workstation/workstation attack/wunderbar emporium,
/mnt/wunderbar emporium.tar.gz, and /home/workstation on Workstation.
Correspondingly, the Instruction Layer objects mapped to these system objects
could also be tagged into “polluted”. Also, the status of the above “clean but
in danger” host-switch level and application level assets were all updated to
“polluted”.

2.5 Discussion and Conclusion

In summary, this section identifies the stovepipe problem for cyber situation
awareness, and presents a formal SKRM model as the solution to break the
stovepipes. The SKRM-based mission diagnosis case studies show that SKRM
is a key enabler for capabilities like asset identification and classification.

More skipped case studies show that SKRM can enable other capabilities like
mission damage and impact assessment, attack path determination and attack
intent identification. It shows promising potentials to go beyond the purely intru-
sion detection or attack graph analysis. However, the current version of SKRM
is still semi-automatic, needing additional work to become fully-automated and
thoroughly evaluated in the scale of a real enterprise network.

3 Patrol: Revealing Zero-Day Attack Paths Through
Network-Wide System Object Dependencies

3.1 Motivation

One of the stubborn research problems is the zero-day attack problem, which is
also a result of the information asymmetry between the attackers and defenders.
As a huge threat that may stealthily undermine the security infrastructure of
enterprise networks, the vulnerabilities and exploits used to create the security
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holes are kept “zero-day” by the attackers, i.e. the occurrences and consequences
of the vulnerability exploitations are totally without the awareness of the defend-
ers. According to the Symantec researchers [86], a typical zero-day attack can
remain undisclosed for 312 days on average.

Researchers from the security field make efforts to conquer this problem,
with most of them focusing on the detection of zero-day vulnerability exploits.
Such techniques include some anomaly detection [35–42] and specification-based
detection [87,88] approaches. Based on profiling normal behavior and detecting
deviations, they show promising capabilities to detect novel exploits. But, as a
drawback, they usually suffer from high false positives.

One of the recent breakthroughs is made by our system named Patrol [29].
Inspired by the SKRM model, Patrol holds a big-picture vision investigating
zero-day attacks in a path which we call zero-day attack path. Zero-day attack
path is a novel observation from Parol that attackers have to go through an
attack path before they finally reach their attack goal, and such an attack path
often includes one or more zero-day exploits if not all. Specifically, due to the
security infrastructure like firewall and IDS deployed in enterprise networks,
attackers could not break into their target system directly with just one step.
Instead, determined attackers patiently employ multiple-step attacks to compro-
mise other intermediate hosts as stepping-stones. Basically, each compromise of
one intermediate machine before the final target would be an exploitation of one
vulnerability, no matter it is a disclosed one or a zero-day one. Thus, the path
from the attacker to the final attack goal is a sequence of vulnerability exploits
on compromised hosts. When such a sequence includes at least one zero-day
exploit, it is a zero-day attack path.
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Firewall
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NFS Server
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SSH Server
(OpenSSL 0.9.8g)

Database 
Server

DNS
Server

Email
Server

Workstation 2
(bzip2 1.0.5)

DMZ

Inside

Internet

Intranet
Firewall

Inside
Firewall

Attacker
Bruteforce

NFS mount

Workstation 1
(Linux kernel 2.6.24)

Trojan-horses

Fig. 9. An example attack scenario [29].

Figure 9 illustrates the example attack scenario from Patrol [29], which
includes three steps of attacks: Step 1, a brute-force key guessing attack exploit-
ing CVE-2008-0166 on SSH Server to gain root privilege; Step 2, the NFS
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mount taking advantage the mis-configured export table on NFS Server to
upload two crafted trojan-horse files, which contain exploit code of CVE-
2009-2692 and CVE-2011-4089, to other network machines through a public
directory (/exports); Step 3, the mount and execution of the arbitrary code
in uploaded trojan-horse files to create hidden channels. Hence, two attack
paths exist: p1{CVE-2008-0166, NFS misconfiguration, CVE-2009-2692} and
p2{CVE-2008-0166, NFS misconfiguration, CVE-2011-4089}. Patrol assumes
the time back to August 1, 2009, then CVE-2008-0166 becomes the only known
vulnerability, and p1 and p2 both become zero-day attack paths.

Zero-day attack path is a bigger perspective to view the zero-day attack
problem. It is also a new strategy to address this problem by leveraging the
weakness of the attackers: it’s almost impossible for the attackers to exploit
only zero-day vulnerabilities along the path to reach their final target. As a
result, zero-day attack paths usually include components corresponding to the
exploits of known vulnerabilities, and commodity intrusion detection systems can
raise alerts to help security administrators notice them. This may lead to the
disclosure of the “zero-day” components in the attack path based on forward
or backward tracking from the noticed parts along the path. In many cases
identifying zero-day attack paths is substantially more feasible than detecting
individual zero-day exploits.

The identification of zero-day attack paths is like chasing thieves from
detected clues to reveal their stealthy route breaking into the victim properties,
and Patrol is designed to implement this in the cyber world. Due to its “zero-
day” (also known as “unknown”) nature, the “zero-day attack path” problem is
actually an instance of the cyber situation awareness problems, as it is essen-
tially an effort to break the “information asymmetry” between the attackers
and the defenders, i.e. revealing the attack context of exploits including zero-
day ones on the path. Specifically, the findings of Patrol show us the system
object level activities related to the infection and propagation processes, which
greatly facilitates the analysis dig out the formerly hidden parts in attacks, i.e.
zero-day exploits. The following sections present the approach, model, design,
implementation and evaluation of Patrol.

3.2 Approach and Model

The literature is explored for potential solutions of the zero-day attack path
problem. However, it is found out that no available technique can well address
this problem due to its “zero-day” nature. For example, attack graph techniques
[89–92] generate attack paths by correlating the exploitations of found vulnera-
bilities into attack sequences towards specific targets. The resulted attack path
is inherently the model of the causality dependencies among the adjacent vul-
nerabilities. The benefit is that these techniques can be leveraged to show all
potential attack paths that can walk the attacker to the victim machines. But,
attack graph techniques also suffer from a big limitation: they are incapable
of capturing unknown vulnerabilities and thus zero-day attack paths are not
included in the resulted attack graph, i.e. the set of known attack paths.
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Another candidate solution to the zero-day attack path problem is the alert
correlation approaches, which were born to correlate isolated alerts to form
potential attack paths. Whether it can expose zero-day attack paths depends
on whether the alerts are raised to point out the exploitations of zero-day vul-
nerabilities. Only when techniques to detect zero-day exploits are employed, such
as the ones mentioned above [35–88], zero-day attack paths could be possibly
identified. The bad news is that the alerts which the correlation largely depends
on would genetically inherit high false rates from such techniques. Moreover,
the alert correlation technique itself suffers from inaccuracy as it’s inherently
an attempt to integrate possibly different contexts into a unified “story”, which
results in another fold of false rates in addition to the ones of zero-day exploit
detection.

Fig. 10. This figure is to show what the SODG and SIPPs are like. A box contains a
per-host SODG, in which a rectangle denotes a process, a diamond denotes a socket,
and an ellipse denotes a file. They look unreadable because of the fine granularity at
OS-level and the scale of network. Readers are not expected to understand the details.
A main merit of Patrol is that it can dig out SIPPs from the network-wide SODG [29].
(Color figure online)

To identify zero-day attack paths, Patrol employs a different strategy :
“Instead of first collecting vulnerabilities or alerts and then correlating them
into paths, we first try to build a superset graph and identify the suspicious
intrusion propagation paths hidden in it as candidate zero-day attack paths,
and then recognize the highly suspicious candidates among these paths” [29].
This decision is reached based on four key insights: “(1) As the only way for
programs to interact with OS, system calls are found hard-to-avoid and attack
neutral; (2) We find that a network-wide superset graph can be generated from
system calls, and zero-day attack paths are showing themselves in it. This graph
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is also attack neutral. It exists no matter whether any vulnerability is exploited
or not; (3) The superset graph is inherently a set of paths. We find a way to get its
appropriate subsets as candidate zero-day attack paths. These paths actually and
naturally correlate vulnerability exploitations, different from the logical correla-
tion in attack graph; (4) The candidate zero-day attack paths expose unknown
vulnerability exploitations along them, and thus can orientate us to recognize
such exploitations. With these paths serving as network-wide attack context, the
accuracy and performance of detecting unknown vulnerability exploitations can
be better than the detection with only isolated per-host context” [29]. Interested
readers are referred to Fig. 10 for an example of a superset graph (Fig. 10a) and
the suspicious intrusion propagation paths (Fig. 10b) hidden in it.

By assuming that a network consists of Unix-like operating systems, and sys-
tem objects are mainly classified into processes, files and sockets, Patrol proposes
to build the superset graph, namely network-wide system object dependency
graph (SODG), from system call traces. To build a network-wide SODG, Patrol
first constructs SODG for each host, namely per-host SODG. As in Definition 6
[29], system calls are parsed to generate OS objects and dependency relations in-
between them. For example, system call read determines that a process depends
on a file (denoted as file → process), while write infers that a file depends
on a process (process → file). As nodes and directed edges respectively, the
OS objects and dependency relations then form a directed graph. The resulted
graph is the per-host SODG, which is capable of capturing unknown exploits, as
it is built from system calls and system calls are the only way for programs to
talk to the operating system. As in Definition 7 [29], the network-wide SODG
can be constructed by recursively concatenating the per-host SODGs, when and
only when there exists at least one directed edge in-between two nodes from two
different SODGs. Figure 10a gives an example of a 3-host SODG. Definitions 6
and 7 are concretized versions of Definition 3.

Definition 6. per-host System Object Dependency Graph [29]
If the system call trace for the i-th host is denoted as Σi, then the per-host
SODG for the host is a directed graph G(Vi, Ei), where:

– Vi is the set of nodes, and initialized to empty set ∅;
– Ei is the set of directed edges, and initialized to empty set ∅;
– If a system call syscall ∈ Σi, and dep is the dependency relation parsed from

syscall according to dependency rules, where dep ∈ {(src → sink), (src ←
sink), (src ↔ sink)}, src and sink are OS objects (mainly a process, file or
socket), then Vi = Vi ∪ {src, sink}, Ei = Ei ∪ {dep}.dep inherits timestamps
start and end from syscall ;

– If (a → b) ∈ Ei and (b → c) ∈ Ei, then c transitively depends on a.

Definition 7. network-wide System Object Dependency Graph [29]
If the per-host SODG for the i-th host is denoted as G(Vi, Ei), then the network-
wide SODG can be denoted as ∪G(Vi, Ei), where:
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– ∪G(V2, E2) = G(V1, E1)∪G(V2, E2) = G(∪V2,∪E2), iff ∃obj1 ∈ V1, obj2 ∈ V2

and dep1,2 ∈ ∪E2, where dep1,2 ∈ {obj1 ← obj2, obj1 → obj2, obj1 ↔ obj2}.
∪V2 denotes V1 ∪ V2, and ∪E2 denotes E1 ∪ E2;

– ∪G(Vi, Ei) = ∪G(Vi−1, Ei−1)} ∪ G(Vi, Ei) = G(∪Vi,∪Ei), iff ∃obji−1 ∈
∪Vi−1, obji ∈ Vi and depi−1,i ∈ ∪Ei, where depi−1,i ∈ {obji−1 ←
obji, obji−1 → obji, obji−1 ↔ obji}. ∪Vi denotes V1∪· · ·∪Vi, and ∪Ei denotes
E1 ∪ · · · ∪ Ei.

The network-wide SODG is by nature a set of paths, and if a zero-day attack
path exists it will be one of the set. Patrol identifies suspicious intrusion prop-
agation paths (SIPPs) in the network-wide SODG as candidate zero-day attack
paths. As in Definition 8 [29], the SIPPs are a subgraph of SODG, in which
all the objects either have directed edges from or to trigger nodes, where trig-
ger nodes are those OS objects noticed by administrators to be involved in any
alerts from deployed security sensors, such as Snort [17], Tripwire [34] or Patrol
itself. Figure 10b shows an example of the SIPPs hidden in the 3-host SODG
(Fig. 10a).

Definition 8. Suspicious Intrusion Propagation Paths (SIPPs) [29]
If the network-wide SODG is denoted as ∪G(Vi, Ei), where G(Vi, Ei) denotes the
per-host SODG for the i-th host, then the SIPPs are a subgraph of ∪G(Vi, Ei),
denoted as G(V ′, E′), where:

– V ′ is the set of nodes, and V ′ ⊂ ∪Vi;
– E′ is the set of directed edges, and E′ ⊂ ∪Ei;
– V ′ is initialized to include trigger nodes only;
– For ∀obj′ ∈ V ′, if ∃obj ∈ ∪Vi where (obj → obj′) ∈ ∪Ei and start(obj →

obj′) ≤ lat(obj′), then V ′ = V ′∪{obj} and E′ = E′∪{(obj → obj′)}. lat(obj′)
maintains the latest access time to obj′ by edges in E′;

– For ∀obj′ ∈ V ′, if ∃obj ∈ ∪Vi where (obj′ → obj) ∈ ∪Ei and end(obj′ →
obj) ≥ eat(obj′), then V ′ = V ′ ∪ {obj} and E′ = E′ ∪ {(obj′ → obj)}.
eat(obj′) maintains the earliest access time to obj′ by edges in E′.

It is worth noting that the SODG and SIPPs are both instantiations of the
OS layer graph of the SKRM model (Fig. 2), as the SODG and SIPPs inherently
capture the attacker’s attack context or trace at OS level. The network-wide
SODG can be unmanageable in size, while Patrol solves this problem by digging
out its “suspicious” subgraph, i.e. the identified SIPPs, which is much smaller
regarding size. Although smaller, the SIPPs captures almost all the zero-day
attack paths, because the only possible way for a zero-day attack path to escape
SIPPs is that attackers only exploit zero-day vulnerabilities along the path. This
is extremely very rare and unlikely. As a result, a zero-day attack path will be
inside the SIPPs as long as it exists. Patrol proposes a method, named shadow
indicator checking, to recognize the highly suspicious candidate zero-day attack
paths among the SIPPs.
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3.3 System Design

Patrol uses a modular design for its system. Figure 11 illustrates its four major
components, where only the first one works on the fly, and the other three are
off-line to avoid any additional overhead imposed on individual hosts.
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Fig. 11. System overview of Patrol [29].

System Call Auditing and Filtering. The first module is a runtime system
call monitor, which is designed in Patrol to collect system call traces from each
host. The system call auditing is expected to fulfill the following requirements:
(1) It is supposed to audit all the “live” processes, rather than just some possible
processes. The reason behind this is the impossibility to pre-determine which
specific processes to audit, without the risk that system calls from other processes
can be skipped with critical intrusion information. (2) Network-wide system call
auditing is essential for recognizing any suspicious paths across the hosts, hence
system call auditing should be performed network-wide. That is, all hosts should
be in the list to be audited, and all the socket communications across hosts
should be audited. (3) It’s not accurate to identify system objects solely by their
process IDs or file descriptor numbers, which may be revoked for later reuse by
the operating system. Hence, other OS-aware information should be preserved
for sufficiency to accurately identify OS objects. (4) Patrol is also interested in
recording the time information of a system call being invoked or returned, as
its algorithm later leverages temporal relationships to help determine whether a
system call is involved in intrusion propagation.

The system call trace data is then sent from individual hosts to a central
analysis machine. Before that, system calls need to be filtered to avoid any addi-
tional bandwidth or computation costs on data transfer and analysis. Filtering
preprocessing is introduced into the system, applying some rules to prune highly
redundant or possibly innocent system calls. Such pruning could speed up the
graph generation and reduce the complexity of its resulted graphs. Currently, the
filtering rules in Patrol are mainly applied towards the following system objects:
(1) The dynamic linked library files like libc.so.∗ and libm.so.∗, which are loaded
each time an executable is run, causing a lot of redundancy; (2) Dummy objects
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like stdin/stdout and /dev/null; (3) objects about pseudo-terminal master and
slave (/dev/ptmx and /dev/pts); (4) Objects related to log related like syslogd
and /var/log/∗; (5) Objects related to system maintenance (apt-get and apt-
config). In addition to these rules, Patrol allows users to specify more filtering
rules to prune system calls, gaining more speed boosting of graph generation,
but also at larger risk of filtering out non-innocent objects. Because of this trade-
off, filtering preprocessing is implemented as options in Patrol. Besides, Patrol
employs a tuning parameter called time window to adjust the frequency of send-
ing system call logs to the analysis machine after filtering. It is defined to be the
periodic time span during which system calls are logged [29]. Setting this para-
meter is tricky, as too big a value could cause the system call data accumulative
to have bigger latency on data transfer and analysis.

SODG Generation and Concatenation. Patrol system constructs per-host
SODGs by parsing system calls from individual hosts. A system call is typ-
ically interpreted into OS objects (process/file/socket) and their dependency
relations. The OS objects become nodes in the SODGs and the dependency
relations become directed edges in-between them. Such transformation is done
according to some pre-defined dependency rules, such as the ones proposed in
[27–29,94], in which system call names are usually used to determine depen-
dency relation types, and system call arguments are used to uniquely recog-
nize and name SODG nodes, as well as decide the edge directions. For exam-
ple, system call “sys open, start:470880, end:494338, pid:6707, pname:scp, path-
name:/mnt/trojan, inode:9453574” from the Patrol dataset is transformed to
(6707, scp) ← (/mnt/trojan, 9453574 ), where pid and pname are used to recog-
nize the process, and pathname and inode are used to identify the file [29].

Per-host SODGs are concatenated together to build the network-wide SODG.
This can be done because of the fact that hosts in a network need to interact
(communicate) with each other, causing a per-host SODG to have directed edges
to/from other per-host SODGs. As long as two nodes in two different per-host
SODGs share one or more directed edges, they can be concatenated together
with the shared edges serving as the glue. It is found out that the glue edges
are usually caused by socket-based communications, as local programs often
talk with remote programs through message passing, which could be reflected in
system call socketcall. As a result, by identifying and paring the corresponding
socket objects involved in this system call, the two separate per-host SODGs can
be stitched together. For example, in Patrol’s dataset, system call “sys accept,
start:681154, end:681162, pid:4935, pname:sshd, srcaddr:172.18.34.10, src-
port:36036, sinkaddr:192.168.101.5, sinkport:22” results in a directed edge
(172.18.34.10, 36036) → (192.168.101.5, 22), which glues together the per-host
SODGs of 172.18.34.10 and 192.168.101.5 [29]. As pointed out by Definition 7,
the network-wide SODG is built by recursively running the above gluing process.
Starting from two per-host SODGs, they are first glued to a 2-host SODG,
then a 3-host SODG by concatenating a 3rd per-host SODG, then a 4-host
SODG by concatenating a 4th per-host SODG, and so on. The algorithm goes on
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recursively and ends up with no gluing edges left between any per-host SODG
and the resulted network-wide SODG.

SIPPs Identification. The third module is designed to dig out SIPPs from the
network-wide SODG, namely SIPPs identification. Benefiting from the network-
wide SODG, Patrol extends the capability of intra-host forward or backward
dependency tracking to go across the boundaries of individual hosts. Through
inter-host dependency tracking from some seed nodes, Patrol can find all the net-
work SODG objects that have direct or transitive dependency relations to/from
them. When the seed nodes are the trigger nodes recognized and fed by security
administrators, the resulted nodes and edges identified by Patrol form SIPPs by
Definition 8. Trigger nodes are alerted by security sensors like Snort, Tripwire,
etc., and noticed by security experts. For example, they could be “files that are
deleted, added, or modified in unexpected ways, and processes that behave in
an unusual or malicious manner” [29].

To identify SIPPs, Patrol may first perform backward tracking using trigger
nodes as seeds, because trigger nodes may be not the start of an intrusion. In
many cases the IDS systems suffer from detection latency, i.e. an alert could be
delayed manifestation of the intrusion start. Backward tracking could be helpful
to find the start [27], and then the start can be used to perform forward tracking.
Specifically, the backward dependency tracking is leveraged to identify all the
SODG objects that have direct or transitive directed edges to the trigger nodes
(indicating that trigger nodes are affected by the up-stream objects), while the
forward dependency tracking is to find the objects that have direct or transi-
tive directed edges from the trigger nodes (indicating that trigger nodes affect
the down-stream objects). Patrol implements both the backward and forward
dependency tracking as breadth-first search (BFS) [95] algorithms, which was
depicted in Definition 8.

Shadow Indicator Checking. Patrol further performs shadow indicator check-
ing to identify highly suspicious candidate zero-day attack paths among the
SIPPs, as SIPPs could still be complex. Shadow indicator checking is based on
the concepts of vulnerability shadow and shadow indicator. These concepts are
proposed based on the key observation that vulnerabilities share some common
features. For example, 693 common weaknesses get enumerated in CWE [96],
and 400 common attack patterns are classified by CAPEC [97]. The concept of
vulnerability shadow is much in the same spirit, but it differs by characteriz-
ing exploitations of vulnerabilities at the OS lever, rather than directly char-
acterizing vulnerabilities. Beyond the existence of the above-mentioned shared
common features, this new characterization finds that the exploitations of some
vulnerabilities often share similar characteristics in SODG as well. Moreover, the
common SODG characteristics exist in a long time span, meaning that the char-
acteristics extracted from previous exploitations of known vulnerabilities can be
applied to detect exploitations of unknown vulnerabilities.
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Definition 9. Vulnerability Shadow and Shadow Indicator [29]
A vulnerability shadow is a Cantor set denoted as S = {v | p(SODG(v))},
where:
– v is a known or unknown vulnerability, whose exploitation is part of the

SODG represented as SODG(v);
– p, the shadow indicator for S, is a boolean-valued set indicator function:

SODG(v) → {true, false}.p can be a conjunction of several predicates, in a
form like p = p1&p2& · · · &pn (n is a natural number), where for ∀1 ≤ i ≤ n,
pi is predicating an attribute of a node or edge in SODG(v), and & stands
for AND operation in logic (p is true, iff pi is true for ∀1 ≤ i ≤ n);

– v ∈ S, iff p(SODG(v)) = true.

To take advantage of this insight, Patrol defines vulnerability shadow and
shadow indication (Definition 9) [29], where vulnerability shadow is a set of
known and unknown vulnerabilities, and shadow indicator is its set indication
function. The indicator function is defined based on the common characteristics
extracted from SODGs. Vulnerability shadow is actually the built set, using
the indicator function to indicate membership of vulnerabilities in the set. As
a result, exploitations of the vulnerabilities in the same vulnerability shadow
all have the common SODG characteristics. Figure 12 illustrates an example
vulnerability shadow bypassing mmap min addr, with node.name = page zero&
node.indegree>0 &node.outdegree>0 as its shadow indicator [29]. The indicator
was first observed in exploiting CVE-2009-1895 and CVE-2009-1897, and then
can be used to recognize the exploitations of CVE-2009-2692, CVE-2009-2695,
CVE-2009-2698, etc. Unknown vulnerabilities that do not have an official CVE
ID yet could also be categorized into this shadow, as long as their exploitations
can trigger the shadow indicator to become true.

shadow indicator:
node.name=page zero&

node.indegree>0&node.outdegree>0

CVE-2009-1897CVE-2009-1895 CVE-2009-2698CVE-2009-2695 CVE-2010-4346

unknown vulnerabilities... ...
CVE-2009-2692

Fig. 12. A vulnerability shadow example: bypassing mmap min addr [29].

Shadow indicators are not welcomed by legitimate paths as they imply the
occurrence of an exploitation. When shadow indicators are detected on a path
inside the SIPPs, the path is very likely to be an attack path. If any of these
indicators could not be mapped to the existing alerts from deployed vulnerability
scanners or IDS systems, the attack path could highly possibly be a zero-day
attack path, which will be reported by the system. Patrol employs rule-based
checking to recognize the shadow indicators. For example, the rule to check the
shadow indicator of bypsssing mmap min addr is indicator page zero (function:
indegree>0&outdegree>0; msg: “bypassing mmap min addr”).
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3.4 Implementation

The implementation efforts for Patrol mainly falls into two parts: the online
system call auditing and off-line data analysis.

System Call Auditing and OS-aware Reconstruction. The system call
auditing is implemented through a loadable kernel module, which monitors 39
system calls for all the running processes. The monitoring is done by hook-
ing: the module hooks interested system calls such as the socket-related ones
(like sys accept and sys sendto) encapsulated in system call socketcall. Addi-
tional codes are placed in the hooks to record system call arguments and return
values, or preserve the descriptor information of the OS kernel data structures
accessed during the system calls, such as task struct for the process objects and
files struct for the file objects. OS-aware information could be retrieved from
these descriptors, including the process IDs, process names, absolute file paths
and inode numbers. They are leveraged in Patrol for accurate OS object identi-
fication. Besides, time information is also recorded for each system call, such as
its invoke and return time. The current version of resulted system call auditing
supports Linux kernel versions 2.6.24 through 2.6.32.

Graph Representation and Edge Aggregation. The data analysis code
is written in gawk code, that produces dot-compatible [98] output for graph
representation. The graphs in Patrol are represented with adjacency matrix as
a quick lookup is needed to decide whether there is already an existing edge
between two nodes. With adjacency matrix, this query occupies only O(1) time.
Otherwise, it may take O(|v|) or O(|e|) time, where |v| and |e| respectively
stands for the number of nodes and edges in a graph. A large number of edges
may exist between each pair of SODG nodes, which are caused by different
system calls or the same system call at different time. For reduced complexity
and better visualization, Patrol currently aggregates such edges into a single one,
and maintains data structures or variables to store the number of edges, as well
as the timestamp information of the original directed edges before aggregation.

3.5 Evaluation

For the purpose of evaluating Patrol, it was extensively tested in a web-shop test-
bed which was built to simulate the real-world enterprise network environment.
As illustrated in Fig. 9, the test-bed network was deployed with various sensors
like firewalls, Nessus [18], Oval [19], Snort, Wireshark [13], Ntop [14] and Trip-
wire. Based on such topology, the attack scenario in Fig. 9 was also implemented
into the test environment. With the assumption that the time right now is tuned
back to August 1, 2009 [29], the use of the published vulnerabilities in this attack
scenario could help us emulate unknown vulnerabilities. This is done because of
the lack of zero-day resources (a typical zero-day exploit could remain undis-
closed for averagely 312 days [86]), while we have to produce zero-day attack
paths and exploit unknown vulnerabilities for the evaluation of Patrol. Such
emulation also benefits us because we can have access to the exploit code and
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other information of the emulated vulnerabilities for verification. The caution
is that we need to carefully maintain the timelines of vulnerability shadows to
ensure that no specific knowledge of the emulated vulnerabilities is pre-used.

Correctness. Among all the vulnerabilities in the attack scenario, only CVE-
2008-0166 is the known one and only its exploit successfully triggered an alert
“SSH potential brute force attack” from Snort. Hence, both attack paths p1 and
p2, described in Sect. 3.1, in the attack scenario became “zero-day”. However, in
contrast, Patrol successfully identified p1 and p2 at the OS level: Figs. 13 and
14 respectively illustrate p1 and p2 [29]. As p2 and p1 share the same Step 1
and Step 2, summarized in Sect. 3.1, Fig. 14 only shows Step 3 in p2.

Based on comparing the SODG nodes and edges of p1 and p2 with the
intrusion knowledge extracted from the exploit code, the CVE entries in NVD
[99] and the documentation of corresponding vulnerabilities, we verified the cor-
rectness of p1 and p2. The malicious nodes in Figs. 13 and 14 were marked with
grey color if verified. The nodes corresponding to the shadow indicators were also
highlighted in red color. The results show that Patrol is capable of correctly cap-
turing the malicious objects and their interactions during the intrusion break-in
and propagations.

Step 1: brute-force attack to SSH server.
shadow indicator: brute-force attack

Step 2: trojan-horse file uploaded to /exports on NFS Server.
shadow indicator: illegal file write access

Step 3: page-zero triggered by null pointer dereference to gain privilege on Workstation 1.
shadow indicator: bypassing mmap_min_addr

Fig. 13. The zero-day attack path p1 dug out from the SIPPs (Fig. 10b) by Patrol,
capturing the 3-step attack in the attack scenario. The identified shadow indictors are
highlighted in red color. The grey nodes are proved to be malicious during verification
[29]. (Color figure online)

Efficiency. We also evaluated the efficiency of Patrol on data analysis, which
mainly spends time on SODG generation, SIPPs identification and shadow indi-
cator checking. The results show that “SODG generation dominates the time
overhead, and its computation cost increases approximately quadratic with the
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Step 3: symlink inconsistency exploited 
to win race condition on Workstation 2

shadow indicator: symlink inconsistency 
between request and creation 

Fig. 14. Step 3 of the zero-day attack path p2 identified by Patrol. The red and green
dotted lines respectively denote the execution of the attack processes and innocent
processes. The red lines replaced the requested symlink /tmp/ls (79 ) with malicious
code /tmp/evil (78 ), which was later referenced by the innocent process ls (115 ). The
identified shadow indictor is highlighted in red color. The grey nodes are proved to be
malicious during verification [29]. (Color figure online)

time window size. The time overheads of SIPPs identification and shadow indi-
cator checking tend to be linear and relatively much smaller”. The speed of
Patrol data analysis is maximized when time window size is 15 mins, reaching
6.498 KB/s. This speed is far beyond the system call generation 1.027 KB/s.
We also noticed that the caused latency is about 2.37min (among which 108.88 s
spent on SODG generation overhead and 7.54 s spent on SIPPs identification),
and the storage requirement is about 0.085 GB/day.

The filtering processing was also proved to be very effective. The test results
show that filtered data costs much less time than unfiltered data. Before filtering,
the worst case overhead is the SODG generation for SSH Server, which takes
about 30 min. The large overhead is mainly from the checking operations upon
each existing object to avoid duplication when new objects are added. Taking
this as an example, the SODG generation drops to less than 1 min after filtering.
This is because a large number of these files are effectively pruned by filtering
rules, from 15515 to 248.

Performance Overhead. The benchmarks, LMBench [100] and UnixBen ch,
were used to evaluate the online part of Patrol, the system call auditing module.
According to LMBench outputs, which focus on the impact on individual core
kernel system calls, the addon overhead is within 10%. The worst case overhead is
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52.7 % for sys stat and 175% for sys fstat, but the imposed overhead was just 0.3–
0.4 microseconds in both cases. According the UnixBench results, which focus
on the slow-down of the whole system that orchestrates the above individual
hooked system calls together, the performance overhead of Patrol is averagely
20.8% for the whole system. Using kernel decompression and kernel compilation
to measure the system performance of Patrol, the results show that the two
intensive workloads respectively impose 15.93% overhead and 20.34% overhead
on the system.

Scalability. Regarding scalability, we estimated Patrol’s time and bandwidth
overheads on an enterprise network equipped with 10000 hosts, 10 GB/s network
bandwidth and a HPC cluster of 640 processor cores (20 processors with 32 cores
per processor) [29]. Based on the above evaluation data, the Gustafsons law was
used, when parallelization could be applied to reduce the overheads. The results
show that the bandwidth overhead is about 10.029 MB/s, which only occupies
less than 1% of total bandwidth, taking the system call generation speed 1.027
KB/s. The SODG generation time for 10000 hosts’ data collected in 1 time
window (i.e. 15 mins) is estimated to be 28.35 min, taking single-host SODG
generation overhead 108.88 s. The corresponding SIPPs identification time will
be about 12.57 min, taking time overhead of single-host SIPPs identification
7.54 s and assuming at maximum 100 hosts directly or transitively depend on
each other.

3.6 Limitation and Conclusion

Due to its potential design and implementation limitations, Patrol may not be
able to handle all the situations. For example, when an attack path goes through
a vulnerability which resides in kernel space, Patrol will lose its path-based trace
since it could not go beyond the system call interface. Another situation is the
advanced persistent attack which may be a long-term and cross-victim attack,
Patrol may be able to capture the subsets of the intrusion propagation paths at
different time spans, but would fail to correlate them

As an instance of the cyber situation awareness problems, this section
presents a system named Patrol which tackles the “zero-day attack path” prob-
lem (one of the “information asymmetry” problems due to its zero-day nature).
By building a network-wide system object dependency graph, identifying sus-
picious intrusion propagation paths in it, and recognizing shadow indicators on
these paths, the system can dig out the zero-day attack paths at runtime.

4 Probabilistic Identification of Zero-Day Attack Paths

4.1 Motivation

The work of Patrol inspires us to view identifying zero-day attack paths as
a way that is more feasible than identifying individual zero-day exploits. By
constructing a System Object Dependency Graph (SODG), Patrol is able to
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reveal the zero-day attack paths at operating system level. Nonetheless, Patrol
still has a limitation: the explosion in the number and size of zero-day attack
path candidates. Considering the large number of intrusion detection points
extracted from intrusion alerts, the tracking mechanism in Patrol can result
in too many candidate zero-day attack paths. The number of false alerts can thus
substantially increase the number of false positive path candidates. Moreover,
the size of an individual candidate path can become too big as the forward
and backward tracking preserves every tracking reachable object in an SODG.
Therefore, recognizing real zero-day attack paths from the candidates becomes
very difficult. Discerning the large number of paths is already overwhelming, and
it further requires verification of numerous system objects.

4.2 Approach Overview

To address the explosion problem, we propose a probabilistic approach for zero-
day attack path identification. The basic idea is to reduce the number and size
of candidate zero-day attack paths by incorporating intrusion evidence collected
from various information sources. The approach is composed of two steps. First,
a system level dependency graph is established to capture the intrusion prop-
agation. The dependency graph is System Object Instance Dependency Graph
(SOIDG), rather than SODG used in Patrol. We will explain in a following
section why SODG is not adopted directly. Second, a Bayesian network (BN) is
built based on the SOIDG to leverage intrusion evidence. Given the evidence, an
SOIDG-based BN is able to compute the probabilities of system object instances
being infected. Connecting instances with high infection probabilities through
dependency relations can form a path. This path is regarded as a candidate
zero-day attack path. By mainly preserving instances with high infection prob-
abilities, the SOIDG-based BN can substantially reduce the number and size
of zero-day attack paths. The manual verification of zero-day attack paths thus
becomes practical.

The feasibility of this approach is supported by the special attributes of the
BN and SOIDG. The dependencies in SOIDG imply a type of cause-and-effect
relations: an already infected instance of one object could cause the infection
of an innocent instance of another object. We call this relation as infection
causality, which is caused by a system call operation involving the two objects.
For example, an infected process writing to an innocent file could get the file
infected. Meanwhile, a BN is able to model cause-and-effect relations with a
probabilistic graph. A BN can thus be constructed directly on top of SOIDG to
model the infection causality relations.

4.3 Problems of Constructing Bayesian Network Based on SODG

As a type of system level dependency graph, the SODG is a potential candidate
for being the base of constructing a Bayesian Network. It is able to capture the
dependency relations among system objects, which can thus reflect the infection
causalities. For instance, an innocent file may get infected if it depends on a
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already infected process (such dependency may be caused by the process writing
to the file). Since BN models the causality relationship with a probabilistic graph,
it seems that BN can be built directly on top of SODG.

Nevertheless, several features of SODG disqualify it from being the structure
base of BN. To illustrate these features, we use the SODG shown in Fig. 15b,
which is generated by parsing system calls in Fig. 15a.

First, the SODG cannot demonstrate the correct information flow if the time
labels on edges are removed. Considering that BNs only take the graphical struc-
ture of SODGs but the time labels, the SODGs without time labels will result
in incorrect infection causality relations in BN. For example, if the time labels
in Fig. 15b are removed, the structure of SODG shows that file 2 depends on
process B, which further depends on file 3. The dependency relation implies that
if file 3 is infected, file 2 is likely to get infected through the intermediate object
process B. Nonetheless, the system log in Fig. 15a tells that “process B reads file
3” happens at time t6, which is after “process B writes file 2” at time t4. As a
result, even if file 3 gets infected, it won’t affect the objects involved in prior
system call operations. Therefore, reflecting the information flow in a correct
way with solely graphical structure is critical for BN construction.

Second, SODG could possibly contain cycles. As shown in Fig. 15b, file 1,
process A, and process C forms a cycle. Since BN is a type of acyclic graph,
cycles in SODG are not allowed in BN.

Third, the number of parents for a node is not limited in SODG. If a system
object depends on many other objects (e.g. a process reads many files), this
object will get a large number of parents in the SODG. When a BN inherits the
structure of an SODG, it has to assign the CPT tables for each node. Assigning
CPT tables for a node with a large number of parents is very difficult and even
impractical. If a node has n parents, and each parents has two possible states
(“infected” and “uninfected”), the CPT table for the child node needs to specify
2n numbers to demonstrate the infection causalities of the parent nodes to the
child node.

t1: process A reads file 1
t2: process A creates process B
t3: process A creates process C
t4: process B writes file 2
t5: process C writes file 1
t6: process B reads file 3

(a) simplified system call log in time-
order

process Afile 3

file 1

process Cprocess B

file 2

t1

t5t3t2

t4

t6

(b) SODG

Fig. 15. An SODG generated by parsing an example set of simplified system call log.
The label on each edge shows the time associated with the corresponding system call.



102 X. Sun et al.

4.4 System Object Instance Dependency Graph (SOIDG)

Since SODGs are inappropriate for being the base graphs of BNs, we propose
a new type of operating system level dependency graph, namely System Object
Instance Dependency Graph (SOIDG). In SOIDG, each node is an instance of
an object. Each instance is a “version” of the object at a specific time point.
Different instances of the same object may have different infection status. The
reason is that the infection status of an object could possibly change due to
system call operations. An innocent object at time t1 may become infected at
time t2, and thus the object’s instance at t1 is “uninfected” while instance at t2
is “infected”.

An SOIDG is generated according to the following rules. Given a dependency
relation src→sink where src is the source object and sink is the sink object, a
new instance of src object is created only when src is a new object that has no
instances existing in SOIDG. Compared to src, sink should have new instance
added into SOIDG whenever a dependency relation src→sink appears. The src
and sink objects are treated differently because the infection status of src is
not affected by the relation src → sink, while the infection status of sink could
possibly be influenced. A new instance should thus be created for sink to reflect
such influence.

The SOIDG addresses the problematic features existing in the SODG for BN
construction. It is illustrated in Fig. 16, which is an SOIDG generated by parsing
the same set of simplified system call log as in Fig. 15a.

First, an SOIDG can imply the correct information flow even without time
information. In Fig. 16, the system call at time t6 is parsed as file 3 instance
1→process B instance 2, instead of file 3→process B. As a result, if file 3 is
infected, it only affects instance 2 of process B, but no previous instances such
as process B instance 1. Obviously file 3 cannot infect file 2 through process
B neither. Hence, the mechanism of creating new instances ensures that only
the infection status of new instances are affected by a new dependency relation,
while the old instances remain untouched. The correct information flow can thus
be represented with solely graphical structure of SOIDGs.

Second, the SOIDG doesn’t contain cycles. Given a dependency src → sink
and that sink already exists in the graph, instead of pointing back to sink, src
will point to a new instance of sink. This avoids creating cycles in the SOIDG.
For example, in Fig. 16, instead of pointing back to file 1 instance 1, process
C instance 1 point to file 1 instance 2. The cycle among file 1, process A and
process C in Fig. 15b is thus broken.

Third, the number of parents for a node in the SOIDG is limited. If an object
sink depends on n objects src1, src 2, ..., src n, sink does not become the child
nodes of these objects directly (otherwise sink will get n parents). Instead, a new
instance for sink is created to serve as the child node each time a dependency
relation happens. Hence, the n parents of sink in the SODG are assigned to n
instances of sink as parents in the SOIDG. As a result, each node in an SOIDG
can have two parents at most. One parent is a prior instance of the same object,
and the other one is an instance of another object.
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process B instance 2

t6

process A instance 1

t1

t5

process C instance 1

t3

process B instance 1

t2

t5t4t6

Fig. 16. An SOIDG generated by parsing the same set of simplified system call log as
in Fig. 15a. The label on each edge shows the time associated with the corresponding
system call operation. The dotted rectangle and ellipse are new instances of already
existed objects. The solid edges and the dotted edges respectively denote the contact
dependencies and the state transition dependencies.

4.5 SOIDG-Based Bayesian Networks and Zero-Day Attack Paths
Identification

To construct SOIDG-based BN, the graphical topology of SOIDG is inherited
directly in BN. In addition, the CPT table for each node has to be assigned.
Assuming that each object instance has two possible infection states, “infected”
and “uninfected”, a CPT table specifies the strength of the infection causalities
among object instances, such as how likely a child instance gets infected if the
parent instance is already infected. After SOIDG-based BN is constructed, the
next step is to incorporate evidence from a variety of information sources. Such
evidence can be provided by human security admins, or by security sensors such
as IDS. After probability inference, each node in the SOIDG gets a probability.
It means that the BN can quantitatively compute the probabilities of each object
instance being infected. Whenever a new piece of evidence is incorporated, the
SOIDG-based BN will generate a new set of inferred probabilities. Generally
speaking, the inferred results will get closer to real fact as more evidence is
collected.

To reveal the zero-day attack paths from the SOIDG, nodes with high infec-
tion probabilities are preserved, as well as the intermediate nodes between these
high-probability nodes. The preserved nodes and in-between edges form a path,
which can be viewed as a candidate zero-day attack path. The candidate path
is usually of manageable size and can be verified manually.

5 Conclusion

This chapter did a literature review for situation awareness (SA) concepts, and
applied SA to the cyber field for enterprise network security diagnosis. The out-
comes were reported as an integration framework that connects human beings
with technologies’ individual perspectives. A cyber SA model named SKRM was
proposed to integrate these individual perspectives into a macroscopic frame-
work. In addition, based on the SKRM’s Operating System Layer, a runtime
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system named Patrol was presented to reveal zero-day attack paths in the enter-
prise network. Furthermore, to overcome the limitation of Patrol, this chapter
also demonstrated the usage of Bayesian Networks, at the low level of Operating
System, to reveal zero-day attack paths in a probabilistic way.
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1 Introduction

Information technology is the center of gravity of everyday human activity. From the
eyes of a citizen, a company, or a nation, successful every day activities need to be
conducted while being aware of cyber security and protection, aiming to anticipate
possible criminal activities that would damage our property (both physical and intel‐
lectual) and our privacy. Cyberwar has become an important threat to our national
security, involving malicious activities across nation-wide organizations in offensive
and defensive operations, and cyber-attacks are now part of everyday news.

Actors use computers and information networks to prevent, execute, or help others
execute illegal electronic activities. Hackers or attackers are individuals who either
independently or under the auspices and possible support of nation-state actors aim at
damaging infrastructure and the information networks of important sections of the
government, private companies and individuals. Cyber Analysts or defenders, are indi‐
viduals often affiliated to an organization (government or private), aiming at protecting
information systems and infrastructure against illegal intrusion and damage to their
customers. End-users are the majority of individuals that use information technology
for conducting their everyday activities in the hopes that defenders would help them to
protect the security of their daily routine and their privacy. How successful are defenders
at protecting end-users? Unfortunately, they are not very successful. Cybersecurity is
an asymmetric, complex and dynamic situation in which attackers have advantages over
defenders on knowledge, technology, and information. In many ways, like many other
problems in our society (e.g., poverty, crime, drug abuse, etc.), we should address
cybersecurity as a problem that will never be solved once and for all but needs to be
managed successfully. Our goal should be to look for strategies to manage the problem
in ways that reduce the costs, losses, and damage to our society.

In this chapter we contribute towards this goal by providing insights through simu‐
lations of cybersecurity scenarios using a multi-agent cognitive model framework. This
framework which we call the CyberWar Game (Ben-Asher and Gonzalez 2014), builds
on a robust learning model that has successfully captured the dynamics of decision
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making from receiving feedback in experiential choice (Instance-Based Learning (IBL)
model, see Gonzalez and Dutt 2011; Lejarraga et al. 2012; Gonzalez et al. 2015). The
CyberWar Game scales up from models of individual behavior to address the dynamics
of behavior in a network of attacker and defender actors. We adopt a simulation approach
to explore what-if scenarios regarding the diversity of power and assets in a simulated
society and the costs of cyber security defense. The main contributions of this research
involves the extension of an IBL model to a multi-agent platform that captures network
effects and the specific insights that simulation results provide regarding the dynamics
of cyberwar.

1.1 Modeling Cognitively-Plausible Human Behavior

In the past years many breakthroughs have been made to improve cyber defense. Impor‐
tant innovative approaches and new technologies have been built to improve organiza‐
tions’ abilities to detect and prevent cyber attacks. However, human cognition and the
role it plays in cyber defense have run behind the technological developments and this
is an important gap in our ability to generate effective deterrence strategies (Gonzalez
et al. 2015). Ultimately, it is humans that initiate a criminal activity, humans that make
a choice to invest or not in cybersecuriy, they are the ones that monitor and may detect
such criminal activity, and the ones that decide to take an unsafe path in their daily
activities.

Recent efforts have attempted to address the challenges of understanding human
factors in cyber defense, the computational representations of human situation aware‐
ness, and the integration of these efforts into existing cyber defense technology. For
example, the notion that decision makers have a general-purpose mechanism whereby
situation-decision-utility triplets are stored as chunks and later retrieved to generalize
solutions to future decisions originates from instance-based learning theory (IBLT)
(Gonzalez et al. 2003). IBLT is a theory of decisions from experience in dynamic tasks.
A simple cognitive model, derived from IBLT, has recently been proposed for repre‐
senting individual learning and for reproducing choice behavior in repeated binary
choice tasks (Gonzalez and Dutt 2011; Lejarraga et al. 2012). The formalization of this
model is presented in the next section. This model has shown to be a robust accounting
of the choice and learning process in a large variety of tasks and environmental condi‐
tions (for a summary, see Gonzalez 2012). One of its strengths is that it offers a single
learning mechanism to account for behavior observable in multiple paradigms and deci‐
sion making tasks (Gonzalez 2012). However, Gonzalez and colleagues (2003) argue
that the most important strength of IBLT is that it provides explanations of learning and
decision making behavior in complex dynamic situations, such as cyber security.

Dutt et al. (2011) proposed an IBL model to study cyber SA. The model represented
the cognitive processes of a cyber-security analyst who needs to monitor a computer
network and detect malicious network events that constitute a simple island-hopping
cyber attack. In this model, the memory of a simulated analyst was pre-populated with
instances encoding knowledge of network events, including a set of attributes (e.g., IP
address, whether the IDS issued an alert, etc.) that define a network event. An instance
also included the analyst’s decision regarding that specific combination of attributes,
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meaning whether the analyst decided that the event (i.e., set of attributes and their values)
described malicious network activity or not. Finally, an instance also stored the outcome
of that decision, indicating whether the event actually represented a malicious network
activity or not. Controlling the representation of the analyst’s memory provided the
ability to manipulate situation awareness by adjusting the amount and type of instances
stored in memory and represent malicious network activity. For example, the memory
of a very selective analyst had 75% malicious instances and 25% non-malicious
instances, while a less selective analyst’s memory had 25% malicious instances and 75%
non-malicious instances. When making a decision about whether a new network event
is part of a malicious network activity or not, the model retrieved similar instances from
memory according to the cognitive judgment mechanisms. Through the process of
judging, making a decision and receiving feedback, the modeled analyst accumulated
evidence that can indicate if there is an ongoing cyber attack. The risk tolerance param‐
eter of the model governed this accumulation process. The number of malicious network
events that the model detected was constantly compared to the analyst’s risk tolerance,
and once the number of malicious events was equal to or higher than the risk tolerance,
the modeled analyst declared that there is an ongoing cyber attack. Thus, risk tolerance
served as a threshold for evidence accumulation and risk taking.

The results from simulating different cyber analysts demonstrated that both the risk
tolerance level and the past experiences of the analyst affect the analyst’s cyber SA, with
the effect of experiences (in memory) being slightly more impacting than risk tolerance.
This work also highlighted the importance of modeling the adversary’s behavior, by
comparing the influence of impatient and patient attacker strategies on the performance
of the defender. Patient attacker strategy and longer delays between the threat incursions
on the network can challenge the security analyst and decrease her ability to detect
threats. Thus, the cognitive model was capable of capturing the phenomenon that
temporally distributed attacks attack patterns are more challenging than others to the
simulated security cyber analyst.

Many efforts have been invested into expanding the mechanisms offered by this IBL
model to multi-agent situations, scaling up the IBL models of individuals to addressing
conflicts and social dilemmas such as the Prisoner’s Dilemma (Gonzalez et al. 2015)
and the Chicken, coordination Game (Oltramari et al. 2013). Stackelberg games and
other game theoretic approaches have been used to study decision making in cyber
security (Abbasi et al., 2016; Alpcan and Basar 2011; Grossklags et al. 2008; Lye and
Wing 2005; Manshaei et al. 2013; Moisan and Gonzalez 2015; Roy et al. 2010).
However, most of these efforts are limited to either static game models or games with
perfect or complete information (Roy et al. 2010). To some extent, these assumptions
misrepresent the reality of the network security context where situations are highly
dynamic and the decision maker must rely on imperfect and incomplete information.

To overcome this, recent studies that apply game theory to security attempt to
account for the bounded rationality of human actors, especially human adversaries
(Abbasi et al. 2016; Pita et al. 2012). However, this and other game-theoretic approaches
still do not fully address the cognitive mechanisms like memory and learning that drive
the human decision making processes and can provide a first-principled predictive
account of human performance, including both capabilities and suboptimal biases. Also,
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scaling up cognitively-plausible models to security scenarios with more than two agents
is still a challenge (Gonzalez 2012). Since the predominant focus of developing multi-
agent simulations has been for studying social interactions, the assumptions made about
individual cognition has been very rudimentary (Sun 2006). In what follows we present
our efforts to address these challenges by developing a framework of multiple human-
like agents, leveraging findings from cognitive and social sciences.

2 CyberWar Game: Building Multi-agent Models from
Cognitively-Plausible Models of Individuals

Conceptually, cyber warfare is an extension of the traditional attacker-defender concept
to multiple agents (individuals, state-sponsored organizations, or nations) simultane‐
ously executing offensive and defensive operations through computer networks.
Recently, there has been an increasing interest in multi-agent models of social conflict
that share some similarities with cyber warfare (Hazon et al. 2011). In parallel, there are
attempts to study cyber attacks and cyber warfare through multi agent-based modeling
(e.g., Kotenko 2005, 2007) that often represent strategic agents designed to execute an
optimal strategy, rather than to learn and adapt strategies from experience. The
CyberWar Game reported here builds on previous efforts (Ben-Asher and Gonzalez,
2015; Hazon et al. 2011; Juvina et al. 2011) to define multi-agent frameworks that
capture some of the essential characteristics of the cyber world and aspects of adaptive
decision makers.

The CyberWar Game takes place in a fully connected network of n agents over the
course of R rounds. Each agent has two attributes, Power (P) and Assets (A) and can
take three possible actions (j) (Attack, Defend, Nothing) against any another agent.
Power represents the agent’s cyber security infrastructure as well as possible vulnera‐
bilities which are a reflection of the agent’s investment in cyber security, what Juvina
et al. (2011) called “outcome power”. Thus, power influences the agent’s ability to
defend against attacks from other agents and the ability to execute successful attacks
against the other agents. Assets are the agent’s property (e.g., confidential information,
physical resources) that needs to be protected from other agents. Assets are also required
for the agent’s ongoing operation. As such, the agent has to spend assets when attacking
or defending, similarly changes in assets have direct influence on the power of the agent.
At each round r, decisions occur simultaneously between each of all possible pairs of
agents in the society n(n − 1). Note that each agent makes n-1 decisions in each round
against each of the other agents. This means that all decisions are made and resolved in
the context of the agents’ Power and Assets as of the end of the previous round.

Attacks can be more or less damaging, defined by the ferocity of attack, f,
. This is a proportion of the assets stolen from the agent being attacked. Severe

attacks will have a high f value (e.g., >.5), whereas weak attacks will have a low f value
(e.g., <.5). Also, every battle entails costs for the participating agents. There is a cost of
attack ( ) and a cost of defense ( ) while doing Nothing has a cost of zero. C, 
and D,  are a proportion assets the agent has to spend to execute an action.
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Each Attack or Defend action has an impact measured by Winab, a proportion that is
a function of the Power of the agent executing the action (a) over the total power of the
two agents involved in a battle, a and b:

At each round r, an agent a, decides to take an action j against a target agent b (where
a <> b). An agent can take an Attack or Defend action against another or be attacked
and defended from other agent, if and only if the agent’s assets are greater than zero. A
Nothing action can be taken regardless of the agent’s assets.

The outcomes xab and xba of the actions taken by a pair of agents in round r are defined
as follows:

All agents in the network are given initial Assets  and Power  values greater
than zero at round r = 0. The values of Assets and Power for each agent are updated
according to the sum of all the outcomes in each round. The assets in round r + 1 for
each agent a are calculated as the sum of the current round’s assets plus the sum of agent
a’s outcomes in round r from all the Attack, Defend, and Nothing actions against other
agents.

(1)

Therefore, assets change dynamically during the game as a result of each agent’s
actions and the actions of each of the other agents. At any given round, if the new assets
for r + 1 are negative, , they are set to zero, and thus the agent cannot attack, it
cannot defend, it cannot be attacked and it cannot be defended from. So that it becomes
a still agent and the only option is to stay inactive (do Nothing) for the rest of the game.
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Power of an agent a in round r + 1 is changed as a function of the proportion of

change in assets from the current to the next round . If there is no change

in Assets ( ), power in the new round will stay the same as in the current round
( . If an agent has increased its net Assets ( ), its power in round r + 1
will increase, and if it has lost Assets ( ), its power in round r + 1 will decrease:

(2)

3 Making Decisions in the CyberWar Game: Instance-Based
Learning Model

We extended the IBL model of binary choice (Gonzalez and Dutt 2011; Lejarraga et al.
2012) to allow each agent to take three possible actions against each of the other possible
agents available in the society (n – 1). That is, we created a multi-agent framework with
the characteristics of the CyberWar Game described above, where each agent is an IBL
cognitive agent, maintaining the learning and decision mechanisms of the IBL model
(Gonzalez and Dutt 2011; Lejarraga et al. 2012).

An IBL agent is boundedly-rational. That is, an IBL agent aims at maximizing its
outcomes but it is bounded by cognitive constraints such as memory, recency, and
frequency effects, and the agent’s ability to retrieve such information. An instance is a
unique combination of attributes (Situation), Action (Decision), and Outcome (Utility),
called an SDU in IBLT (Gonzalez et al. 2003). In the CyberWar Game each agent is an
IBL model with its own separate memory, and with the same mechanisms, goals, and
cognitive characteristics, but that may vary according the particular settings of Power
and Assets and the dynamics of the game.

At round r = 0 an instance is created to represent each of the possible actions that
each agent may take against each of the other agents. These instances are created with
an initial value of assets  and power  and a default outcome  (these are called
prepopulated instances, see Lejarraga et al. 2012). Because the default outcome value
is the same for all agents and all possible actions, all agents make a random choice.

Each instance i in the IBL model has a value of Activation which represents how
readily available the information is from memory (Anderson and Lebiere 1998). The
Activation equation used in the current model is an extension from that reported in past
research (e.g., Gonzalez and Dutt 2011; Lejarraga et al. 2012) by adding a Partial
Matching component form Anderson and Lebiere (1998). Thus, activation is a sum of
three components: Base-level, partial matching, and noise.

(3)
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3.1 Base Level

In   is the time (round number) in which this instance has been
observed, d, decay, is a non-negative free parameters of IBL. Thus base-level represents
the frequency and recency activation. This component is higher for instances that have
been observed more frequently, and it is also higher for instances that have been observed
recently, decaying with the passage of time.

3.2 Partial Matching

 is the sum over the attributes (α) of the situation, P is the mismatch
penalty, a non-negative free variable; and Mα is the similarity of attribute α in the instance
to the corresponding attribute of the Situation-Decision being considered as part of this
step’s decision making process. Each Mα is defined such that  where a value
of 1 means a perfect match, identical or equivalent values; and 0 means a complete
mismatch. For intermediate values, the closer to 1 the more similar the attribute values
are considered. Note that the partial matching component of the activation is always
zero or negative, because it is a mismatch penalty applied to the activation. When all
attributes match perfectly, there is no penalty. As more attributes fail to match perfectly,
and as the mismatches become more pronounced, there is more of a penalty, reducing
the activation value of the instance. In the case of the CyberWar Game the Situation
includes four attributes: the assets held at this round by the agent, the power held at this
round by the agent, the assets held at this round by the agent’s opponent for which it is
determining an action, and the power held at this round by the agent’s opponent. From
the definition of the game, all four of these values are non-negative, real numbers. The
same quadratic similarity function is used for each. If  and  are two values of an
attribute, their similarity is given by:

(4)

Thus, for the CyberWar Game the partial matching sums over four values of .
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3.3 Noise

Noise, , is a component that adds variability to the activation value.  is

a free parameter of IBL, and  is a random draw from a uniform distribution bounded
between 0 and 1 for each outcome and trial.

Once the activations of all relevant instances are known, a probability of retrieval of
an instance is computed:

(5)

Where KO is the set of all instances for an Action (Decision) o, and  is random noise

defined as , where  is the same free parameter as in the activation Eq. 4, above.
From the probability of retrieval and the outcome of each Action (Decision) o, a

Blended Value (BV) can be computed. For the CyberWar Game there are three possible
decisions: attack, defend, or nothing (if either the agent or its opponent has no assets,
there is only one possible decision, nothing). The values of (or ) computer in the
CyberWar Game are stored as outcomes (utilities) in the instances of the IBL model
( ), and the BV of a decision is:

(6)

At any round, the Action (decision) with the largest BV is selected.

4 CyberWar Game: Questions and Simulation Results

The CyberWar Game proposed above has great potential for answering many relevant
questions of interest to cybersecurity, given that it is built on computational agents that
have shown to robustly represent human choice. A goal of the current research is to
uncover the dynamics of societies in which the agents vary in their Power and Assets
and in which the cost of attack increases. We use a simulation approach in which multiple
societies of N agents engage in R battles (rounds), and we observe in which situations
are attacks more common and what leads to more defensive actions or inactivity of the
agents. The goal is to uncover how the attributes of CyberWar game (e.g., power, assets,
costs of attack and defense) may lead to more aggression (Attack actions), protection
(Defense actions) or inactivity (do Nothing actions) of the agents, and to determine the
consequences of such dynamics.

For this purpose we take an approach in which we experimentally manipulate the
attributes in various societies and compare results against a society in “equilibrium”
(i.e., Control condition) in which all agents are equal: all agents have the same starting
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Power and Assets, and the cost of attack (C) and defense (D) are the same for all agents,
and in which all attacks are of equal ferocity (f = 0.2). We then manipulate the different
attributes of the agents and the CyberWar game, while other attributes stay the same as
in the control condition.

In the data reported next, we ran equal societies of 12 agents across 30 repeated
rounds. The control condition included agents that had the same initial amount of assets
and equivalent initial power (50 initial assets, 50 initial power), and where C = D = 0.2.
That is all agents in the society were initially the same, and the costs of attack and defend
were 20% of the amount of assets available at any given round. Results from this condi‐
tion in comparison to other experimental conditions are presented next.

4.1 Agents’ Diversity and Their Influence on the Dynamics of Choice

Results from the control condition in which the society was homogenous (same assets
and power) and the costs of attack and defense were equal, were compared to three types
of heterogeneous societies: (a) a society in which half of the agents started rich
(assets = 90) and half of the agents started poor (assets = 10) but all had the same power
(power = 50); (b) a society in which half of the agents started powerful (power = 90)
and half of the agents started weak (power = 10) with the same assets (assets = 50); and
(c) a society that was most diverse where initial attributes varied in four groups: rich
and powerful (90–90), rich and weak (90–10), poor and powerful (10–90) and poor and
weak (10–10). In these three comparison groups we defined the costs to be the same as
in the control condition C = D = 0.2.

Figure 1 shows the average proportion of choices over the course of 30 rounds, for
the control condition and the three comparison groups. From the definition of the
Cyberwar game, an agent can Attack or Defend against another agent only when its
assets are greater than zero and this agent is forced to do nothing when its assets are less
or equal to zero. Thus, Fig. 1 also shows the proportion of “force-nothing” actions per
round (the interpretation of these are ignored from this point on). As observed in the
control condition, the attack, defend, and nothing actions of the agents decrease over
the course of the 30 rounds of battle. The most common type of action the agents take
is to defend their assets (25,863 decisions of this type), followed by doing nothing
(6,523) and lastly attack (3,772). Defending assets is also the more profitable action, as
it is a way in which agents can grow their assets by investing in defense while doing
business as usual. Attacking even though it is the least common action is the second
most profitable, as it involves growing the agent’s own assets by stealing the assets of
others.

According to the manipulation of agents in the society, we observe that as a society
becomes more diverse (agents of different types defined by assets and/or power define
the society), there is a faster decrease in the total number of actions. This might suggests
that diverse societies get involved faster in a self-destructing war. However, defending
continues to be most common as well as the most profitable action.
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4.2 Decreasing the Cost of Going to War

The results from the simulation above assume that the cost of attack and the cost of
defense are the same. In naturalistic situations, they are quite different. The costs of
defense have increased greatly, while for unsophisticated adversaries it is relatively
inexpensive to execute an attack. This section presents results from simulations in the
heterogeneous societies defined above but in which the cost of attack is ¼ of the cost of
defense (C = 0.05, and D = 0.2).

Figure 2 (left panel) shows the average proportion of choices of different types over
the course of 30 rounds, for the three heterogeneous societies (same as above) when

Control Condition

a- Rich and Poor Agents b- Powerful and Weak Agents c) Most diversity
(Poor-Powerful, Poor-Weak, Rich-Powerful, Rich-Weak)

Fig. 1. Overall proportion of actions of each time over the course of 30 rounds in the control
condition (top panel) against three experimental conditions that manipulate the initial assets and
power of the agents in the society.
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C = D = 0.2; and Fig. 2 (right panel) shows the corresponding proportions when
C = 0.05, and D = 0.02. A general observation is that the total number of actions
increases when the cost of attack is lower. There is a counter intuitive prediction here.
In general, attacking becomes more attractive, but less so than one would expect.
Decreasing the cost of attacks does increase the proportion of attacks, but has a much
stronger effect on the increased proportion of defend actions. Also, despite the decrease
in the cost of attack, the end state of the society is better (compared to the higher attack
costs) in terms of the number of active agents (i.e., lower proportion of forced actions).
Thus, defending continues to be most common as well as the most profitable action,
independently of the cost of attack.

4.3 How Do Different Types of Agents React to a Lower Cost of Attack?

A question emerging from the manipulation of societies and the cost of attack presented
refers to the dynamics of different types of agents in these societies and costs. Can we
predict the future of agents based on their initial power and assets status and their
membership in a society?

Figure 3 shows the average proportion of choices separately for the four groups of
agents formed in the most diverse society, where agents start: poor and powerful, poor
and weak, rich and powerful, and rich and weak. The left panel shows the results in the
condition in which the cost of attack is high (C = 0.2) and the right panel shows the
results in the situation in which the cost of attack in low (C = 0.05). The general obser‐
vation is that for survival, it is more important to start powerful than to start rich. Agents
that start weak are active only for a few rounds while powerful agents survive over the
course of the 30 rounds. For all types of actions the amount of assets is larger for the
poor-powerful and the rich-powerful agents, compared to the weak agents. Furthermore
the powerful agents clearly defend more than they attack or do nothing regardless of
their initial assets, and in turn, the powerful agents end up with the largest amount of
assets during the defense actions.

5 Discussion

Cyberwar is not an abstract speculation. The threat, potential and actual damage to U.S.
military and commercial networks by other agents (individuals, governments, states) is
real. Yet, we know very little regarding the potential motivations, strategies, and effects
of cyber-attacks across nations, states and organizations, and how our cyber defensive
operations may approach and prevent international cyber-attacks.

In this research we aim at contributing to a better understanding of potential activities
and dynamics of cyber-attack and defense actions by using drawing on insights from a
socio-cognitive computational approach. We study societies of heterogeneous agents
that are powerful or weak, wealthy or poor; societies in which agents exhibit human
boundedly rational characteristics of decision making. We propose a new research
framework which we call the CyberWar Game, which presents a description of the
dynamics of a world in which agents take actions to attack other agents and steal their

Dynamics of Decision Making in Cyber Defense 123



Fig. 2. Overall proportion of actions of each time over the course of 30 rounds in the three
conditions with heterogeneous societies, comparing a situation in which the cost of attack is high
(left panel) and the cost of attack is low (right panel).
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assets, defend their own assets, or stay still and do nothing. In contrast to other agent-
based networks, our research expands models of cognition which often focus on indi‐
vidual-level effects, and investigate how networks of agents that are boundedly-rational
behave in various societies that produce diverse motivations for the actions these agents
can take.

Our simulation results suggest that agents in a diverse society where agents differ in
power and resources are more prone to engage in self-destructing activities and quickly
evolve to make a limited number of agents rich and powerful. However, a defense
strategy is one that warrants the preservation of resources compared to an aggressive

Most diversity
(Poor-Powerful, Poor-Weak, Rich-Powerful, Rich-Weak)

Fig. 3. Overall proportion of actions for four groups of agents (Poor-Powerful, Poor-Weak, Rich-
Powerful, Rich-Weak) in the most diverse society over the course of 30 rounds, comparing a
situation in which the cost of attack is high (left panel) and the cost of attack is low (right panel).
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attack strategy or a passive strategy where agents do not attack or defend. When the cost
of war decreases compared to the cost of defense, some interesting results emerge from
a diverse society, we find an increase in the proportion of attack actions, but a stronger
effect on the increase proportion of defend actions. That is, a defense strategy continues
to be the most profitable activity even in a world in which attacks are inexpensive
compared to defense costs. Thus, powerful developed and wealthy nations are the target
of attacks which can be executed by foreign hackers at a low cost, but these nations
would be best off by applying a defense strategy, which would lead to preserving assets
and surviving a cyberwar. Reduced costs of attack enables aggressors to accomplish
attacks more successfully especially towards weak agents, and the weak and rich agents
get to disappear rather quickly from a diverse society. However, applying a defensive
rather than an aggressive strategy may prove to be more profitable particularly to
powerful agents, regardless of how wealthy they are originally.

In reality, cyber defense is however, problematic. The rapid change in information
technology and the increased sophistication of cyber attacks together with the reduced
costs of conducting ferocious attacks may prove very challenging even for powerful
nations. Thus, one would expect that as attacks become ferocious and the costs of attack
decrease, powerful and wealthy nations would become more vulnerable to potentially
dangerous damage. Our approach provides a platform to test this and other hypotheses
regarding the potential effects of cyberwar.
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Abstract. Cyber defense analysts are playing a critical role in Secu-
rity Operations Centers (SOCs) to make sense of the immense amount of
network monitoring data for detecting and responding to cyber attacks,
including large-scale cyber attack campaigns involving advanced persis-
tent threats. The network data continuously generated by multiple cyber
defense systems, which may contain many false alerts, are overwhelming
to the analysts. Analysts often need to make quick decisions/responses in
a very short time based on their awareness of the situation at that moment.
Data triage is the first and the most fundamental step performed rou-
tinely by the analysts — it filters a massive network monitoring data to
identify known malicious events. Due to the high noise-to-signal ratio of
network monitoring data, this steps accounts for a very significant por-
tion of the time and attention of intrusion detection analysts. Therefore,
a smart human-machine system that improves the performance of data
triage operation in SOC is highly desirable. In this chapter, we describe
a human-centered smart data triage system that leverages the cognitive
trace of intrusion detection analysts. Our approach is based on a dynamic
cyber-human system that integrates three dimensions: cyber defense ana-
lysts, network monitoring data, and attack activities. The approach lever-
ages recorded analytic processes of intrusion detection analysts, which we
refer to as “cognitive traces”. These traces of the analysts capture the
examples of malicious events detected from the network monitoring data.
Such traces from senior analysts provide a powerful opportunity for train-
ing junior analysts in performing data triage operations. To realize this
potential, we also developed a smart retrieval framework that automati-
cally retrieves traces of other senior analysts based on their similarity to
the events already identified by a junior analyst. The traces from analysts,
as demonstrated by a case study, also enable us to better understand their
analytic processes in a systematic, yet minimum-reactive way. We sum-
marize this chapter by discussing limitations of the proposed framework
and the directions of future research regarding improving the data triage
operations of cyber defense analysts.
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1 Introduction

As organizations rely more and more on their networks to support daily activities
or business, they have an increasing need for defending their networks against
all types of cyber attacks [1]. Therefore, many organizations (e.g., financial com-
panies, government and military departments) have decided to set up their own
Security Operations Centers (SOCs), which are customized human-in-the-loop
cyber defense systems.

SOCs collect data from both internal network and external intelligent sources.
Most networks nowadays are equipped with sensors monitoring network traffic
and detect cyber attacks. These sensors include network and host intrusion detec-
tion/prevention system (IDS/IPS), firewall monitoring and logging, vulnerability
assessment, and security information and event management (SIEM) products.
Given the monitoring data, a SOC usually relies heavily on the human analysts
to make sense of these data to achieve cyber situational awareness (i.e., Cyber
SA). More specifically, the following questions need to be answered: Whether a
network is under attack? How does the attack happen? What will attackers do
next?

Most data are collected from the sensors (e.g., IDS alerts and firewall logs) at
a rapid pace as well as in massive volume. It requires analysts to conduct a series
of analysis to achieve the Cyber SA. Existing cognitive task analysis studies in
cyber defense situational analysis have demonstrated that analysts perform vari-
ous types of analysis. D’Amico and Whitley described six broad analysis roles of
computer network defense (CND) analysts: triage analysis, escalation analysis,
correlation analysis, threat analysis, incident response and forensic analysis [2].
Data triage is the first and the most fundamental stage in Cyber SA analysis,
because it provides a basis for closer inspection for further analysis to finally gen-
erate attack incident reports. An incident report provides the basis for incident
response, threat analysis, forensic analysis, and other cyber defense operations,
both at the tactical level and at the strategic level. Due to the rapid influx
of network monitoring data from sensors, analysts usually need to make quick
decisions/responses within a very short period, for instance, filtering the incom-
ing data to identify indicators for suspicious events, weeding out false alerts,
generating hypotheses regarding malicious events, and investigating data from
different sensors regarding the suspicious events.

Cyber SA data triage presents multiple challenges to the analysts in today’s
SOCs. First, because the network data continuously generated by multiple cyber
defense systems are overwhelming and may contain many false alerts, analysts
need to apply their domain expertise and experience to make high quality deci-
sions regarding which parts of the network data are worth further analysis and
what are suspected malicious events to report as an incident. Moreover, analysts
have to perform data triage under time pressure. Quick decisions are neces-
sary because early detection of a cyber attack can not only reduce the negative
impacts of the attack, but also can disrupt the chains of cyber attack to prevent
them from reaching their original attack target. Finally, data triage process in
a SOC needed to be performed continuously 24/7 by analysts are grouped to
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cover different periods through work shifts; transferring the knowledge gained
by one shift of analysts (e.g., suspected but not yet confirmed malicious events;
attack behaviors observed, etc.) to the next shift is the third challenge of the
data triage process.

A critical factor for determining the success of a SOC in tackling those chal-
lenges is the effectiveness of the cyber defense analysts’ cognitive processes in
performing data analysis tasks. The detailed cognitive process of data triage
analysts rather complex and yet not well understood. The understanding of the
cognitive process of analysts is further complicated by the fact that different
analysts, even given the same set of sensor data, often demonstrate different
cognitive processes due to their use of different strategies and their preferences
for the use of existing tools available in SOC. An improved understanding of the
analysts’ cognitive process for data triage can provide several critical benefits for
enhancing the effectiveness of SOC. It can enhance the accountability of decision
making, improving the training of analysts, developing better cognitive aids and
collaboration supports to address the three challenges described above.

Several cognitive task analysis (CTA) studies have been conducted to provide
valuable insights about the high-level processes of analysts such as their roles and
the workflows [2,3], their cognitive demands [4], and their performance in Cyber
SA data analysis [5]. However, analysts’ fine-grained cognitive activities in data
triage remain unclear [6]. Understanding the fine-grained cognitive process of an
analyst is the basis for developing automation tools to facilitate data triage. The
fine-grained cognitive process of a senior analyst also offers the opportunity to
allow other junior analysts to leverage it to improve their own analysis.

Therefore, the goal of our research is to capture, analyze, and leverage the
fine-grained data triage processes of analysts so that the data triage performance
of SOC can be significantly improved. More specifically, our study is attempted
to answer the following research questions:

– R1: What are the unique characteristics of data triage in Cyber SA? Can we
formally define the data triage process in this context?

– R2: What are the key components in analysts’ cognitive processes and how
to represent analysts’ cognitive processes in Cyber SA data triage?

– R3: How to track analysts’ data triage processes?
– R4: How to enhance analysts’ data triage in Cyber SA by leveraging the

captured data triage processes?

To address these questions, we first related the results of the existing CTA
studies to the theories in sensemaking and decision making and pointed out the
unique characteristics of data triage in Cyber SA (Sect. 2). Based on our under-
standing, data triage is defined as a dynamic human-cyber system including
Cyber SA data, incidents, “world knowledge”, analysts and analysts data triage
operations and mental model (which will be explained in detail in the following
sections). The analysts’ cognitive processes in data triage is mainly the interac-
tion between analysts and the Cyber SA data. We first introduced a conceptual
model that identifies the key components in analysts’ cognitive processes. The
conceptual model enables us to define data triage operation as the atoms in
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analysts’ cognitive processes. Based on such definition of data triage operation,
an operation trace representation is used to represent the analysts’ cognitive
process in a fine-grained way.

Based on the trace representation, human-computer interactive toolkit is
designed and implemented to capture cyber defense analysts’ operation traces
when they are performing cyber analysis tasks. This toolkit is not an intended
outcome of the research to assist analysts with their work but used as a tool to
capture the subjects’ cognitive process in our experiment. To collect traces of
analysts’ cognitive process in data triage, the experiment has been designed with
a set of network data sources and an underlying attack scenario. 30 professional
cyber defense analysts were recruited to perform cyber defense situational analy-
sis in our experiment using the operation-auditing toolkit. The toolkit recorded
each analyst’s operations in a trace file in a non-intrusive way. Given the traces
of analysts’ operations, we investigated the data-triage-related operations by
conducting graph analysis. To leverage the captured operation traces, a context-
based retrieval system was developed which can provide novice analysts with
step-by-step guidance. The system manages the captured operation traces of
expert analysts and retrieves the relevant data triage operations based on an
analyst’s current analysis context.

This chapter is organized as follows. In Sect. 2, we describe the major charac-
teristics of data triage in Cyber SA. Based on our understanding of the character-
istics, we define data triage in Sect. 3, which is a dynamic Cyber-Human System
(CHS) containing six major components: (1) the attack activities happening in
the network, and (2) the massive and rapidly changing network monitoring data,
and (3) a set of reported incidents created to report suspicious attack kill chains,
and (4) a set of “world knowledge”, and (5) analysts’ mental models, and (6)
data triage operations performed for data triage. Focusing on the human ana-
lysts, we further define the data triage operations in Sect. 4. As the first step
towards achieving our research goal, a minimum-reactive method for capturing
analysts’ fine-grained data triage operations is proposed in Sect. 5. Drawing on
the definition of data triage operations, a trace representation is proposed to
represent a data triage process. An interactive toolkit is developed to record
analysts’ operations when they are performing data triage. We conducted a lab-
oratory experiment with professional analysts involved and recorded the traces
of their data triage processes in accomplishing a simulated cyber defense sit-
uational analysis task. A case study is conducted as the first-step evaluation
of the collected traces, which is described in Sect. 6. As the first attempt to
leverage the captured traces, we developed a retrieval system to provide novice
analysts with step-by-step guidance by suggesting the relevant captured traces of
senior analysts’ previous performance, which is described in Sect. 7. After that,
we relate our work to the relevant theories, methodologies and techniques in
Sect. 8. The data analysis in Cyber SA is a fledgling yet promising field, with
a lot of research questions remaining unanswered. We thus discuss the research
directions in Sect. 9.
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2 Characteristics of Data Triage in Cyber Situational
Awareness

2.1 Data Analysis Driven by Cyber Situational Awareness

The jobs of cyber defense analysts are conceptualized differently across organiza-
tions, which leads to diversity in expectations, tasks and responsibilities assigned
to the analysts of different levels [2,44]. However, they are all driven by the goal
of gaining cyber situational awareness [2,8,9].

The notion of cyber situational awareness is rooted in situational awareness.
Endsley defined situational awareness as a process of three main phases: (1)
“the perception of the elements in the environment with a volume of time and
space”, (2) “the comprehension of their meaning”, and (3) “the projection of
their status in the near future” [10]. The situational awareness in the field of
cyber defense covers the phases of perception, comprehension, and projection.
More specifically, it includes the perception of current network situation (e.g.,
identifying the suspicious network activities and attack types), the awareness
of the attack impact, the awareness of how an attack evolves and behaves, the
awareness of why and how the attack happens, the awareness of how trustworthy
of the collected information items are, and whether a decision made based on
these information items is good or not, and how effective is the potential of
assessment for future threats [8].

The concept of situational awareness is referred by the Recognition Primed
Decision (RPD) model proposed by Klein as “the expert decision makers evalu-
ate a situation and match that situation to a situation previously encountered”.
Boyd’s OODA loop is a similar term, which is applied in military operations,
described it as the decision process of Observe, Orient, Decide, and Act [11].
Making sense of monitoring data is the key for situation awareness. Pirolli and
Card [12] proposed a sense making loop model containing a foraging loop and a
sense making loop based on the results of cognitive task analysis of intelligence
analysis. Both the foraging loop and the sense making loop are iterative: the
foraging loop focuses on how an analyst performs information seeking, and the
sense making loop focuses on how the analyst’s mental model is developed in this
process. This nested loop structure is “an integration of bottom-up processes
and top-down processes” [12]. According to Pirolli and Card, the bottom-up
processes are processes from theory to data, such as searching and filtering,
reading and extracting, schematizing, building cases and telling story. The top-
down processes are processes from data to theory, in which analysts re-evaluate,
search for support, search for evidence, search for relations and search for
information [12].

The sense making model also points out that the data analysis process is an
iterative process where raw data are transformed into useful information and new
observations adjust analysts’ mental model. Therefore, the data analysis process
is driven by the analysts’ goal of increasing understanding of the potential cyber
threats.
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2.2 Massive and Rapidly Changing Data

Aimed at gaining cyber situational awareness, multiple sensors are deployed in
a network to monitor various network activities. Bass first pointed out that the
data collected from multiple sensors which are used as input into intrusion detec-
tion systems are heterogeneous. The data may consist of “numerous distributed
packet sniffers, system log-files, SNMP traps and queries, signature-based ID
systems, user profile databases, system messages, threat databases and operator
commands” [13]. Besides the data collected by computer/network sensors, other
important sources also come from the data generated by human intelligence,
including the data of SIEM systems (e.g., threat databases), data from external
sources (e.g., external attack or threat reports) and data collected from social
media (e.g., Facebook and Twitter) [14]. The heterogeneous data vary signifi-
cantly in types and formats, including quantitative and qualitative data (types),
structured, semi-structured, and non-structured data (formats). In addition, the
Cyber SA data change continuously over time together with the attack threats
[15]. This is due to the highly dynamic nature of cyber security environment,
which mainly comes from the uncertain network activities and the changing
of attackers’ behaviors and exploitation techniques [8]. As a result, the cyber
defense analysts are faced with massive and rapidly changing data.

D’Amico et al. described the process of how computer network defense (CND)
analysts transform raw data into situational awareness, in which raw data are
gradually transformed into interesting activities, suspicious activities, events,
incidents and intrusion sets [2]. D’Amico pointed out that the raw data are
filtered and gradually transformed into information through different stages
of analysis, including triage analysis, escalation analysis, correlation analysis,
threat analysis, and incident response analysis [12]. Triage analysis is the first
stage that filters the raw input data by weeding out the false alerts or the reports
of normal network activities. The triage results will be used in the following
escalation and correlation analysis by analysts to gain further awareness of the
attack activities, methods and targets. The related data are grouped and trans-
formed into sets of intrusion incidents. Threat and incident response analysis
are beyond the basic network connection data analysis but a higher-level data
analysis, which mainly relies on various types of intelligence/insights to perform
prediction and attack forecasting [2].

2.3 Human-in-the-Loop Data Triage

Due to cognitive limitation of humans, it seems challenging for cyber defense ana-
lysts to transform the raw data which are massive and rapidly changing over time
to intrusion sets. After realizing the need of cyber defense analysts, many studies
have been conducted to investigate how analysts perform data analysis and how
the data analysis process can be improved. A security expert has been recognized
as an important role in network intrusion detection [16]. To aid cyber defense ana-
lysts to make sense of large amount of data, various visualization tools haven been
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developed to visualize different network data to assist analysts in the tasks of mon-
itoring, analysis, response, pre-development and future development [7].

Although human analysts have very limited working memory and computa-
tional capability compared with computers, human brains are much better at
interpreting data, comprehending situations, generating hypotheses, and mak-
ing decisions in a flexible manner. Gaining much experience in the “on-the-job”
training, senior analysts usually can perform data triage more efficiently than
novice analysts [17,18]. Therefore, it is always beneficial to study how analysts
perform the data triage to elicit the experts’ expertise.

Cognitive task analysis (CTA) studies have been used by researchers to study
the cognitive processes of cyber defense analysts in cyber situational aware-
ness. The CTA study of intrusion detection experts conducted by the Air Force
enabled the researchers to identify the cognitive requirements for network intru-
sion detection which are essential to successful intrusion detection [16]. Focusing
on the computer network defense (CND) analysts, D’Amico et al. studied the
roles of analysts and the workflow of data analysis, and identified the cognitive
requirements for improving CND visualization techniques [2]. A further investi-
gation of network analysts’ workflow was conducted through a multi-phase CTA
study with a focus on the analysts’ needs for visualization, which provides the
details of analysts’ tasks, concerns and goals [4].

Existing CTA studies in Cyber SA show that triage analysis is the funda-
mental step for the further analysis as the first examination of data [2]. Most
analysts in SOCs are conducting triage analysis and making decisions under
time pressure and working in shifts to guarantee a 24/7 coverage. Therefore, it’s
worth to pay special attention to the triage analysis.

2.4 Reporting Incidents for Incident Response

The result of data triage is the basis for further analysis (e.g., threat analy-
sis, forensic analysis, etc.), according to D’Amico and Whitley’s data transition
model [2]. An incident is defined as “a violation or imminent threat of violation
of computer security policies, acceptable use policies, or standard security prac-
tices” [19]. The output of a data triage process is a set of incident reports, each
of which usually contains the following information [20–22]:

– Status (whether the report is complete or incomplete)
– Reporter
– Incident type (e.g., Account compromise, Denial-of-Service, Malicious code,

Misuse of systems, Reconnaissance, spam, phishing, scams, 0-day attack,
unauthorized access, etc.)

– Source IP (where the attack packets came from)
– Incident scope (e.g., which machines have been affected)
– Incident time line
– Incident description (e.g., explain how and why this attack incident happened)
– Evidence data (i.e., which data sources, alert, flow, connection, or payload

provide evidence for the incident)
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– Remediation actions (e.g., recommendations)
– Correlated incidents

In the process of data analysis, analysts need to quickly estimate the network
events reported in data. Incident reports are generated to report the abnormal-
ities. If the analysts suspect that some incidents belong to a same attack chain,
they may further specify the relationships between the incidents. The generated
incident reports will be further refined in further analysis processes in which
the incidents will be further investigated in detail or from a broader community
scope.

3 Definition of Data Triage in Cyber Situational
Awareness

Considering the unique characteristics of data triage in Cyber SA, it’s worthwhile
to define this data triage process in a formal way. The formal definition described
in this section identifies the key constructs of data triage process, which are the
basis for the further study at a fine-grained level.

3.1 Data Triage: A Dynamic Cyber-Human System

Figure 1 shows an example of data triage process. Several data sources collected
over time are presented to an analyst sequentially. Each data item indicates
a network event, which reports either a malicious or a normal network event.
The malicious events may belong to different attack chains. Provided with the
data sources, an analyst performs a sequence of data triage operations (which
will be described in detail in this section) to narrow down the searching scope
to a smaller subset of interest. These triage operations are conducted based on
their existing observation of the network events and their domain knowledge
and experience. As a result, the analyst reports his/her hypotheses about the
possible attack chains in incident reports or revises the existing incident reports
accordingly.

Given a network, an analyst’s data triage process is a dynamic Cyber-Human
System (CHS) evolving over time. This dynamic CHS composes of (1) the attack
activities happening in the network, and (2) the massive and rapidly changing
monitoring data collected from multiple sources, and (3) a set of reported inci-
dents and the inferred temporal and casual relationships into attack kill chains,
and (4) a set of “world knowledge” (e.g., the intelligence about the attacks and
the mission to protect the network), and (5) the mental model of the analyst that
consists of the hypotheses about the possible attacks happening in the network,
and (6) the data triage operations performed by the analysts who gradually filter
the data indicating suspicious network events.

We define data triage through defining each “state of the CHS”. Assume an
analyst is performing data triage of a network. At a certain point of analysis
time t, a state of data analysis process can be defined by a tuple,

S(t) = (t′, D(t′)t, A(t′)t, It, Kt, Ht, Ot),
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where

– t is the current time of analysis system.
– t′ is the time when the network events occurred.
– D(t′)t is the data sources to be analyzed at time t, which can be generalized

to a sequence of network events occurred at time t′.
– A(t′)t is the attack chains to be discovered at time t, which may leave evidence

in D(t′)t.
– It = ({e(t′)t}, Re(t′)t) is a set of incidents detected at time t. {e(t′)t} is a set

of suspicious network events occurred at time t′ which is analyzed at time t,
and Re(t′)t consists of the temporal and causal relationships among the events
in {e(t′)t}.

– Kt is the analyst’s domain knowledge about the network and attacks at time
t, as well as the experience knowledge of data analysis.

– Ht = ({ht}, Rht
) is the analyst’s mental model at time t. {ht} is a set of the

analyst’s hypotheses about possible attacks. Rht
contains the relationships

between the hypotheses in {ht} which are determined by the analyst at time t.
– Ot is a set of data triage operations conducted by the time t, which are

explained in Sect. 4.

This definition indicates that the data triage, as a CHS, changes from one
state to another over time. In this CHS, the data sources (D(t′)t) collected by
the sensors report the events in the network, which are determined by the net-
work activities and the attackers’ behaviors (A(t′)t) in the physical world. The
time t′ refers to the occurring time of network events in the data sources D(t′)t,
which is different from the CHS time t. The analyst interacts with the collected
data (D(t′)t) with the aim of detecting the evidence of A(t′)t. By performing
the data triage operations (Ot), the analyst gradually filters the suspicious net-
work events and generates hypotheses about the possible attack chains based on
his/her observations, and in return updates his/her mental model (Ht). Based
on the updated mental model, the analyst will be able to report the identified
attack incidents (It). Meanwhile, the detected incidents may further deepen the
analyst’s domain knowledge and experience knowledge (Kt).

3.2 Data Triage Input: Massive and Rapidly Changing Data
Sources

Figure 2 illustrates the massive and rapidly changing data sources in Cyber SA.
We show the categories of data in six different dimensions (which can be further
extended). We describe the categories as follows.

– The data can be categorized based on the sensors from which they are col-
lected. The common data sources include alerts of intrusion detection systems
(IDS) alerts, firewall logs, traffic packages, vulnerability reports, network con-
figurations, server logs, system security reports and anti-virus reports.

– In terms of data format, the data can be categorized into structured, semi-
structured, and non-structured data.
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– In terms of the level of monitoring scale, the data can be divided into the
activities of network, host, database, application, and directory.

– In terms of accessibility, internal data refer to the data which can be directly
accessed by the analysts within a SOC, while external data refer to the data
outside the SOC which will be available by request only.

– In terms of general type, the data include both qualitative and quantitative
data.

– According to whether the data are time-sensitive or not (i.e., timing), the
data can be divided into stable and streaming data. Stable data are relatively
fixed and not necessarily changing over time, e.g., network configurations
and vulnerability reports. Streaming data refer to the data sources which
are continuously collected throughout the run of the network, such as IDS
alerts and firewall logs. The large volume and time sensitive features of the
streaming data bring significant challenges for data triage. We thus focus on
streaming data.

Most of the streaming data are well-formed but may have different formats
across various sources. The common part of streaming data sources is that they
can be viewed as a sequence of data entries in temporal order considering that
they are collected over time. A data entry can be an alert, a report or a log item.

The Cyber SA raw data report the network events perceived by the moni-
toring sensors (including human intelligence). From the view point of Cyber SA
data analysis, we define the unit of analysis as a network event. A network event
can be specified by one or more data entries from different data sources. For
example, an IDS alert and an entry in firewall log correspond to a same network
event. We define network event as follows.

Definition 1. Given a network, a network event e is a multi-tuple that spec-
ifies the characteristics of a connection activity happened in the network,

e =<occurT ime, detectT ime, eventType, attackTypeprior,

srcIP, srcPort, dstIP, dstPort, prot, sensor, severity, conf,msg>

Where occurT ime is the occurrence time of the event; detectT ime is the ear-
liest timestamp of the event being detected; eventType is the type of network
connection (e.g., built, teardown and deny); attackTypeprior is a prior knowl-
edge from the sensor/agent who detected this event that specifies the type of the
attack to which the event longs; by default, attackTypeprior is null; srcIP and
srcPort are the IP address and port of the source of the network connection,
respectively; dstIP and dstPort are the IP address and port of the target, respec-
tively; prot is the network protocol; sensor refers to the sensors who detected
this event; severity and conf specify the level of severity and confidence of the
event, respectively; msg specifies other important characteristics of the event,
determined by the sensor.
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3.3 Data Triage Output: Incidents in Attack Chains

Data triage, as the first stage of Cyber SA data analysis, performs a number
of functions: (1) coordinate diverse data sources and identify the noteworthy
network events, and (2) connect these events in the view point of multi-step
attack to support intelligent response. Attack chain is modeled as a sequence
of network state changes upon exploits over exposure [23,24]. In the context
of Cyber SA data analysis, an attack chain can be presented by a sequence of
network events reported by multiple (heterogeneous) sensors.

As data generated from different sources may indicate different network activ-
ities, human analysts need to detect the true “signals” from them and “connect
the dots” to gain high-level understanding of the potential network attacks. We
define the relationships between two events are defined as follows.

Definition 2. Let ei, ej be two network events. We define “happen-before” and
“is-a-pre-step” the temporal and logic relationships between ei and ej as

– happen-before(ei, ej): ei.occurT ime < ej .occurT ime.
– is-a-pre-step(ei, ej): ei and ej are in a same attack chain and ei is a previous

step of ej in the attack chain.

The expected outcome of cyber defense situational analysis is the network
security incident reports which describe the suspicious network events and their
relationships. The instance of an attack chain is defined as a network incident.
A formal definition of network incident is given below.

Definition 3. An attack incident is defined as a tuple, <att, E,R>, where att is
an attack identifier which specifies an attack chain; E = (e1, . . . , en) is a sequence
of network events occurred to carry on the attack chain att. R = {happen-
before(ei, ej), is-a-pre-step(ei, ej)}, refer to the temporal or logical relationships
between two events ei and ej in E.

3.4 Human in Data Triage Process: Analytical Reasoning Processes

To accomplish data triage and report incidents of interest, analysts perform a
series of information foraging activities, including reading, searching, filtering
and extracting, based on their domain knowledge and expertise [3]. This process
is called analytical reasoning process, which refers to “central to the analysts’
task of applying human judgments to reach conclusions from a combination of
evidence and assumptions” [25]. The interaction between a human analyst and
the collected data is the key to understanding how the analyst accomplishes
the data triage task. Therefore, we focus on the human-data interaction in the
data triage process, as shown in Fig. 2. This process produces two products:
(1) the identified network events and how they are related to each other, and
(2) the analysts’ mental model. Analysts’ cognitive process involving actions,
observations and hypotheses is the driving force of the interaction.

We study the human data triage process at the in-between level of the macro-
level cognitive task analysis study and the micro-level behavior statistical analy-
sis regarding the unit of analysis. The macro-level CTA usually focuses on the
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human task performance, cognitive load (e.g., short-term memory), thoughts,
and cognitive bias, e.g., the study of the situational awareness analysts’ jobs
and cognitive needs [2–4], and the study of the Cyber SA measurements [26,27].
These studies usually involve interviews, observations, verbal protocols and ques-
tionnaires, in which the cognitive assessment procedure has an impact on the
analysts’ behaviors being assessed (as “reactivive recording” methods in [28].
On the contrary, the micro-level behavior statistical analysis usually uses the
data from nonreactive recording, which may involve automatic keystroke log-
ging [29,30], eye tracking [29,31] or even brain-level EEG/fMRI recording [32].

The in-between level analysis is mainly motivated by the disadvantages of
both the macro-level and micro-level cognitive study in the field of Cyber SA.
On one hand, it’s difficult to conduct macro-level study of Cyber SA data analy-
sis. The cyber defense analysts are sensitive to interruptions, considering the
fact that they are working under pressure and fully concentrated on the tasks.
Therefore, the reactive behavior recording methods could influence analysts’ task
performance. Besides, verbalizing the key aspects of the thought process is also
difficult for analysts because some thoughts are “so automated as a result of
their prior knowledge and/or training” [33]). In addition, analysts may not have
time for interviews considering the 24/7 security operations. Another practical
limitation faced by Cyber SA researchers is that the access to an organisation’s
network and professionals is quit limited due to confidential concerns. Therefore,
it’s necessary to incorporate automatic recording to capture the key aspects in
data triage process. One the other hand, one major limitation of the micro-level
study is that, there could be many important behaviors which can’t be captured,
or can’t be recovered in the following reflective analysis due to the lack of the
analysts’ situated confirmation/interpretation [28].

To deal with the problem, we study the human cognitive process in Cyber SA
data triage at an in-between level that links the key cognitive components in data
triage to automatic operation recording to achieve better understanding of the
data triage process in Cyber SA. Analysts’ operations include filtering out the
false positive alerts and identifying the data of interest, and they are guided by
the analysts’ hypotheses about possible attacks. Meanwhile, analysts’ hypotheses
are generated based on analysts’ current observations of the suspicious data. In
this way, the raw data sources are gradually transformed into the evidence of
attack incidents, and meanwhile the analysts gain their Cyber SA by generating
hypotheses about the attack incidents. Next, we introduce a conceptual model
of analysts’ analytical reasoning process in data triage, which serves as a basis
for the in-between fine-grained analysis.

The AOH Model of Analysts’ Analytical Reasoning Processes. An ana-
lyst’s cognitive process involves activities of information foraging and sensemak-
ing [12]. These activities can be covered in an Action-Observation-Hypothesis
model (AOH model) [35,45], as shown on the left side of Fig. 2. There are three
key cognitive constructs in the AOH model: action, observation, and hypothesis.
An action refer to an operation conducted by the analyst to filter and corre-
late network data; an observation refers to the data that are viewed as suspicous
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network events by the analyst; and a hypothesis is the analyst’s hypothesis about
the potential attack incident. The instances of action, observation and hypothesis
are called “AOH Objects” [34,35].

The AOH objects iterate and form reasoning cycles: an analyst takes an
action which leads to a new observation; with the this observation, the analyst
can generate new hypotheses about the potential attack incidents; in order to
investigate a new hypothesis, the analyst conducts further action in order to
gain more observations [6,34]. The relationships between action, observation
and hypothesis are defined as follows.

Definition 4. Let ai be an instance of action, oj be an instance of observation,
and hk be an instance of hypothesis, we can define three types of relationships:

– results(ai, oj): Conducting the action ai results in the observation oj.
– triggers(oj , hk): Hypothesis hk is generated based on the observation oj.
– motivates(hk, aj): Conducting ai is motivated to further investigate hypothe-

sis hk.

The relationships between the AOH objects can be represented in tree struc-
tures, called AOH-Trees. An example of AOH-Trees is shown in Fig. 3. The
nodes are the AOH objects and the links are the relationships between the
AOH objects. Based on the AOH-Trees, Hypotheses-Trees (H-Trees) are
constructed to represent the mental activities in an analyst’s cognitive process
of data triage. In a H-Tree, the nodes are hypotheses only and an edge between
two nodes represents a leads-to relationship between the two hypotheses. The
following is the definition of the leads-to relationship.

Fig. 3. AOH-Trees that represents the relationships between AOH Objects
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Definition 5. Let hi and hj be two hypothesis, an edge pointing from hi to hj

represents the relationship leads-to(hi, hj). The relationship holds iff ap, oq, that
motivates(hi, ap) and results(ap, oq) and triggers(oq, hj)

Fig. 4. The H-Trees corresponding to the AOH Trees in Fig. 3

Figure 4 is an example of the H-Trees extracted from the AOH-Trees of
Fig. 3(a). H-Trees is used to represent an analyst’ mental model in the Cyber
SA data analysis process because it represents all the hypotheses and their rela-
tionships maintained by an analyst.

4 Analysts’ Operations in Data Triage

Tasks in Triage (corresponding to triage analysis and some part of escalation
analysis mentioned in [2]):

– Detect the suspicious network connection events: identify suspicious network
connection (weeding out the false positives)

– Connect the suspicious network connection events: link the network connec-
tions according to potential attack path

– Organize the suspicious network connection event in sequence: generate inci-
dent reports based on the detected network connection event sequence to
meet the needs of further investigation

Data triage operations refer to the action instances conducted by an ana-
lyst in accomplishing a data triage task. The analyst’s mental model determines
what triage operations to perform. It also explains the motivates(hk, aj) rela-
tionship: a hypothesis may motivate analysts to perform a new action for closer
investigation. The outcome of a data triage operation is a set of network events
of interest, which the analyst may find useful to enrich the evidence of a certain
attack incident. It explains the results(ai, oj) relationship: an action leads to an
observation.

Analysts interact with the network data sources by conducting operations
to manipulate and analyze the data. A data triage operation may impact two
aspects: (1) the data transformation and (2) the mental model transformation.
We explain each of them in detail in the following.
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4.1 Data Triage Operation Related to Data Transformation

Conducting triage operations enables analysts to identify a subset of network
data that indicate suspicious network events (i.e., an observation), which may
increase the situational awareness of attack incidents. Therefore, the triage oper-
ations transform the raw network data into the evidence of the attack incidents.
Each data triage operation filters out a subset of connection events from the
original set of network events specified in the provided data sources. The char-
acteristics of the subset network events are determined by the constraint specified
in the data triage operation.

According to the study of information foraging [36,37] and existing studies of
Cyber SA data analysis [4], three major types of data triage operations that can
result in data transformation are identified: (1) filtering the data sources based
on a condition (F), (2) searching for data using a keyword (S), and (3) selecting
a collection of data with common characteristics of network events (H). They
can be defined as follows.

– FILTER(Dinput,Doutput, C): Filtering the input dataset (Dinput) based on
a condition (C) and resulting in a subset (Doutput).

– SEARCH(Dinput,Doutput, C): Searching a keyword (C) in a dataset (Dinput)
and resulting in a subset (Doutput).

– SELECT (Dinput,Doutput, C): Select a data subset (Doutput) of an input
dataset (Dinput), the network events of subset (Doutput) that have a com-
mon characteristic (C) to become the network events of interest.

4.2 Data Triage Operation Related to Analysts’ Mental Model

An analyst may gain new Observations by performing a data triage operation
related to the data transformation. The new Observations may (1) trigger the
analyst’s new hypotheses or (2) confirm/invalidate his/her previous hypotheses.
In either case, the corresponding H-Trees (representing the analyst’s mental
model) will be modified. Therefore, conducting triage operations enables analysts
to update their mental model. We can further define the data triage operations
of the creation and modification of new Observations and hypotheses.

– NEW HY PO(h,O): Generate a hypothesis h in the context of observation O.
– MODIFY (h, v1, v2): Modify the content of a hypothesis h from v1 to v2.
– CONFIRMDENY (h, TF ): Confirm or deny a hypothesis h.

Once an analyst’s mental model (i.e., H-Trees) has a hypothesis updated, the
analyst may conduct further triage operations to gain more evidence to confirm
the updated hypothesis. In this case, the following triage operation is determined
by the analyst’s mental model. The constraint of the triage operation indicates
in which aspect the analyst is interested of the network data.
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4.3 Trace Representation

Trace is defined to represent an analyst’s analytical reasoning process in data
triage.

Definition 6.
T = (GAOH ,GH , Sop)

where

– GAOH is the AOH-Trees, which is a heterogeneous network involving the ana-
lysts’ actions (i.e., performing the data triage operations related to data trans-
formation), observations of events of interest, and hypotheses. The edges are
the causal relationships between the AOH objects which are identified by the
analyst.

– GH is the corresponding H-Trees, containing merely the analyst’s hypotheses
about possible malicious network events and attack chains. H-Trees represents
the analyst’s mental model.

– Sop is a sequence of data triage operations (p1, ..., pn) in time order. ∀pi(1 ≤
i ≤ n), pi is a tuple (ti, (op)i(I, Ci)), where ti is the timestamp, and
“(op)i(I, Ci) is the operation on a cognitive activity I under context Ci. I
is an action, observation or hypothesis, Ci is a set of connections between I
with the existing actions, observations and hypotheses.” [35]

5 Minimum-Reactive Method for Capturing Analysts’
Fine-Grained Data Triage Operations

A data triage process involves complex human cognitive process. We’ve listed
several potential benefits of gaining better understanding of human cognitive
process. A necessary step to achieve this goal is to capture the analysts’ fine-
grained cognitive processes in data triage. There are three main challenges in
developing such a capture method.

– (C1) The method should capture the fine-grained information of analysts’
cognitive processes in data triage. Starting from the existing understand-
ing of data triage process, we focus on the fine-grained level of understand-
ing because it is the basis for carefully studying the rationale and strategies
underlying analysts’ data triage operations and leveraging them to improve
intelligent systems. The fine-grained cognitive process refers to a detailed rep-
resentation of data triage in which analysts’ actions of data filtering, obser-
vations of suspicious events, and analysts’ hypotheses about possible attack
chains are explicitly described.

– (C2) The method should be minimum reactive. Reactivity refers to the influ-
ence of the process of observing analysts’ analysis on their behaviors being
observed [28]. Cyber defense analysts are working under extremely high time
pressure regarding the rapidly changing cyber environment, and maintaining
a working memory is critical to identify the relationships between recognized
network events. Any distraction caused by the capture method could affect
their performance on the cyber analysis task.
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Fig. 5. The framework of the minimum-reactive method for capturing the analysts’
fine-grained data triage operations [35]

– (C3) Collecting traces of cyber defense analysts’ data triage process faces
the real-world challenges regarding the accessibility to the analysts and the
organizations’ concern about confidential information leakage.

We introduce a computer-aided method to track the fine-grained data triage
process which integrates both automatic capturing and situated self-reports.
This method contains three main components: (1) a representation of analysts’
cognitive process in data triage, (2) a computer tool that tracks various analysts’
operations while they are performing data triage tasks, and (3) an experiment
in which professional analysts were recruited to accomplish a simulated cyber
defense situational analysis task with their operations being tracked [35]. Figure 5
shows the framework of the method. The representation, described in Sect. 4.3,
can handle the first challenge (C1) of the capture method. Next, we mainly
handle C2 and C3.

5.1 ARSCA: A Computer Tool for Tracing Data Triage Operations

To handle the second challenge (C2), a computer tool, named ARSCA, is devel-
oped to be used in the experiment to record an analyst’s data triage operations
based on the pre-defined representation in a non-intrusive way. To guarantee the
non-intrusiveness, this tool is designed following several rationales [35]:

– Using this tool should not affect analysts’ normal practice in data triage.
– The tool should not add too much extra workload to analysts.
– This tool should be easy to learn and use.
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Figure 6 shows the user interface of ARSCA which contains two main views:
(1) Data View which displays all the data sources, and (2) Analysis View which
displays the existing action, observation and hypothesis instances and their rela-
tionships.

The functions provided in ARSCA can be categorized into two groups:
(1) enabling the analyst’s data triage operations, (2) recording the analyst’s
data triage operations, and (3) visualizing and managing the AOH-Trees and
H-Trees created by the analyst during his/her data triage process. More details
are described in [38].

– Enabling Data Triage Operations. ARSCA supports the data triage
operations defined in Sect. 4, including SEARCH, FILTER, and SELECT. In
Fig. 6, Region 2 and 3 provide functions of searching by keyword and filtering
by condition, thus supporting the operations of SEARCH and FILTER.
Region 4 enables an analyst to make inquiries about a certain port or a spe-
cific term appearing in the data sources. Region 5 lets an analyst select the
entries in a provided data source as the network events of interest. Once
selected, the selected data entries are displayed in another window (Region
6) for the analyst to review and confirm them as the network events of inter-
est, thus supporting the SELECT operation. The analyst using this tool can
write down his/her hypotheses at a current moment of a certain observation.
This function is shown in Region 7 and 8, which enables the NEW HY PO
operation. ARSCA visualizes the analyst’ existing hypotheses and enables the
analyst to modify them. Region 13 enables the analyst to modify the descrip-
tion and truth value of a selected hypothesis, thus enabling the MODIFY
and CONFIRM/DENY operation.

– Recording Data Triage Operations. Once the analyst using ARSCA per-
forms a data triage operation (either those related to data transformation or
those related to refining mental model), this operation is automatically cap-
tured by ARSCA together with its timestamp. For example, if the analyst
conducts a filtering or searching operation, ARSCA will record the time and
the filtering condition or the searching keyword. If the analyst selects a subset
of data as the network events of interest, ARSCA will automatically record
the subset as an observation defined in Sect. 3.4 (Region 5). If a new thought
occurs in the analyst’s mind, he/she can write down this thought in Region
8, with Region 7 displaying the selected suspicious data as the current con-
text. ARSCA will record the hypothesis and its relationship to the relevant
observation.

– Visualization of AOH-Trees and H-Trees. An analyst’s data triage oper-
ation related to data transformation is automatically captured by ARSCA as
the Actions; a subset of data selected as suspicious network events is auto-
matically captured by ARSCA as an observation; any thought written down
by the analysts is recorded by ARSCA as a hypothesis. Therefore, ARSCA
captures the analyst’s Actions, Observations, and hypotheses, that is, AOH
objects defined in Sect. 3.4. ARSCA visualized these AOH objects according
to their relationships, thus visualizing the AOH-Trees in Region 10 in Fig. 6:
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an action appears together (as a node) with an observation indicates the
action led to this observation; a hypothesis nested in an observation means
the analyst created the hypothesis based on the observation; an action nested
in an hypothesis indicates the hypothesis motivated the analyst to perform
this action for further investigation.
A node in the visualized AOH-Trees (Region 10) is either a node represent-
ing a pair of an action and its corresponding observation or representing a
hypothesis. The analyst can view the details of the node of action and obser-
vation pair by selecting the node in Region 10, and then ARSCA will display
in Region 11 the data entries that are selected in the action as the observation
of suspicious network events.

Table 1. An example of a sequence data triage operations recorded by ARSCA

# Data Triage Operation

1 <Item Timestamp=“05/24 13:24:15”>
FILTER (SELECT * FROM Task2Firewall WHERE Protocol = ‘TCP’,
Task2Firewall)
</Item>

2 <Item Timestamp = “05/24 13:25:29”>
SELECT (
FIREWALL-[4/5/2012 10:15:00 PM]-[Built]-[TCP] (172.23.240.254,
10.32.5.59),
FIREWALL-[4/5/2012 10:15:00 PM]-[Built]-[TCP] (172.23.30.220,
10.32.0.100))
</Item>

3 <Item Timestamp = “05/24 13:34:41”>
NEW HYPO (H (3524121)
H (44524411) “this is a thought”)
</Item>

Once the analyst finishes a task, ARSCA outputs the AOH-Trees, H-Trees,
and the sequence of data triage operations performed by the analyst in time
order. These files are written in XML format. A portion of XML file showing the
data triage operation sequence is displayed in Table 1. This example shows that
the analyst first performed a FILTER operation with the condition “protocol =
TCP”, and then selected the two data entries in the filtered data set (i.e., the
second SELECT operation). Based on the observation, the analyst wrote down
a thought (i.e., the NEW HYPO operation).

5.2 Experiment: Collecting Data Triage Operation Traces

Traces need to be collected when analysts are performing cyber security data
analysis. There are several real-world challenges (C3 as mentioned): (1) An orga-
nization does not want outside researchers to interview their workers (e.g., CND
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analysts) nor to access to their internal network. (2) Most analysts work in a
24/7 work shift with a very tight time schedule, so they do not have enough
time to participate interviews. Otherwise, the normal security practice in the
organization will be interrupted [35].

To tackle these concerns, we design a laboratory experiment with a simulated
Cyber SA data analysis task. Neither the data sources nor the network topology
reveal any information of the real-world setting of an organization’s network,
thus eliminating the organizations’ concerns about privacy and confidentiality.
In addition, this experiment is designed to be time-efficient for analysts by lever-
aging ARSCA in data collection. It means analysts do not need to make extra
efforts on reporting or summarizing their analysis behaviors (e.g., interviews,
verbal protocols), except for writing down some thoughts to benefit their own
analysis process in the task (which is not mandatory in the experiment). Next,
we describe the detailed experimental design.

Experimental Design. The real-world concerns are very important factors
to be considered in our experimental design in order to conduct a successful
experiment. These factors are as follows.

– We should be able to gain the sense of the analysts’ domain knowledge and
expertise, as well as their physical and mental status at the time of the exper-
iment, because these are important factors that may influence an analyst’s
task performance.

– The analysts should be trained to get familiar with the experiment environ-
ment to make sure that their performance in the experiment is close to theirs
in the real-world job setting.

– The experiment conductor may not have the opportunity to face-to-face com-
municate with the recruited analysts if the analyst identifies are also treat
security in an organization.

– We’d better assume cyber defense analysts (event experts) are not good at
or can not afford enough time and energy expressing the critical thoughts in
their minds.

– We should be able to control the experiment time in a period which is accept-
able for cyber defense analysts.

– We need to collect analysts’ comments and conclusions after they finish the
analysis task to have a good sense of their task performance. Besides, they can
also server as a valuable reference or explanation from the analysts themselves
when we review the traces collected in the experiment.

– The experiment data need to be stored explicitly in a format that is easy for
the organization to review them before passing them to the researchers.

Based on the above constraints, the experiment is designed with four main
stages: (S1) pre-task questionnaire (5 min), which inquires the information of the
analyst’s domain knowledge and expertise and their physical and mental status,
(S2) tutorial session (20 min), which trains the analyst to use the experimental
environment to perform data analysis, (S3) data triage task (at most 60 min), in
which the analyst works on a Cyber SA data analysis task together with ARSCA,



Studying Analysts’ Data Triage Operations 151

and (S4) post-task questionnaire (15 min), which contains both open-ended and
close-ended questions asking about the analyst’s findings and conclusion about
the possible cyber attack chains [35].

Stage 1: Pre-task Questionnaire. A pre-task questionnaire taking 5 min is the
first stage. The first part of the pre-task questionnaire includes the demographic
questions about age, gender, ethnicity, and native language. The second part
of questions asks about the domain knowledge and expertise of the analyst. It
includes the work title, working years, five five-point Likert scale rating questions
about the knowledge in cyber security, two questions about security expertise
(familiarity with security techniques and security certificates), and familiarity
with VAST challenges 2012 data (which is used in the simulated cyber analysis
task), and the two five-point Likert scale rating questions about the analyst’s
current mental and physical status.

Stage 2: Tutorial Session. The tutorial session is designed to eliminate the influ-
ence of the analyst’s familiarity of the experiment environment on his/her per-
formance in the task. Five short videos are provided in this tutorial session to
go through a mock-up task using ARSCA in the experiment environment. After
finishing all the videos, each analyst needs to pass a quiz (i.e., a list of practical
questions). Otherwise, he/she needs to go back to the tutorial material again to
get correct answers to all the quiz questions.

Stage 3: Data Triage Task. We first provide the analyst with a task introduction
document, in which we describe the network configuration and the role and
responsibility of the analyst in this task. Besides, the introduction documents
also describe the data sources provided to the analyst in this task and explain
the meaning of the fields of the data. After going through the introduction
document, the analyst can start analyzing the provided data sources in his/her
own way. Meanwhile, ARSCA works together with the analyst so it can record
every data triage operations conducted by the analyst in the task. The task will
be described in detail together with the data sources in the following sections.

Stage 4: Post-task Questionnaire. After finishing the task, the analyst needs
to take a post-task questionnaire. The first part of the post-task question-
naire is open-ended questions, which are coded as “IMP OBS”, “FD OBS”,
“IMP HPY”, and “EVTS”. They are described in Table 2. “IMP OBS” and
“FD OBS” ask the analyst about the most important observations. “IMP HYP”
asks about the most important hypothesis. “EVTS” asks the analyst to “connect
the dots” by providing a storyline of the possible attack chains [35].

The second part of post-task questionnaire includes four rating questions
using a five-point Likert scale asking about the analysts’ opinion on the experi-
ment setting and their task performance. These questions are shown in Table 3,
coded as “Task Com”, “SET CFT”, “EXP RFL”, and “CONC”.
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Table 2. The four open-ended questions in the post-task questionnaire.

Code Question

IMP OBS “Reflecting back, what are the 3 most important evidences that you
observed in the data that contributed to your conclusion?”

FD OBS “Please explain how you find the above evidences”

IMP HPY “Reflecting back, what are the 3 most important thoughts in your mind
that contributed to your conclusion?”

EVTS “Based on your analysis, please create one or more narratives that
describe the events on the network (i.e., tell the storyline of the potential
events)”

Table 3. The four rating questions about experiment setting and task performance [38].

Code Question

A five-point Likert Scale: Strongly Disagree (1) Disagree (2) Neutral (3) Agree (4) Strongly Agree (5)

TASK CMP Ask whether the task is of reasonable complexity. “The task is of reasonable

complexity regarding the analysis activities it involves (e.g., data exploration,

thinking reasoning, making decisions)”

SET CFT Ask whether they feel comfortable with the experiment setup. “I felt comfortable

with the setup of the experiment (e.g., the provided software tool and physical

environment), and my performance is not hindered by the experiment setup”

EXP RFL Ask how much capability/expertise is leveraged. “My capability/expertise of cyber

analysis is fully leveraged and is reflected in accomplishing the task”

CONC Ask how concentrated in accomplishing the task. “I’m fully concentrated on

accomplishing the task”

Recruitment. With this experimental design, we successfully obtained the IRB
approval and recruited 30 professional analysts from Army Research Lab and
collected the traces of their data triage process. These analysts have various
domain expertise at different levels. In additional to the professional analysts,
we also recruited the doctoral student specialized in cyber security. Although
they are not professionals, they were chosen because they have sufficient domain
knowledge and experience in cyber defense situational analysis.

Simulated Cyber Defense Situational Analysis Task. We asked the par-
ticipants to accomplish a Cyber SA data analysis task which is to report the
suspicious network events underlying a set of data sources. We selected cyber
analytics task of VAST Challenge 2012 Mini Challenge2 [39] and tailored our
task out of it. The reason why we chose this data set is because its quality is close
to the real-world problem regarding its size and noise-to-signal ratio (containing
23,711,341 firewall logs and 35,948 IDS alerts) [40]. Besides, a description of the
underlying cyber attack scenario is associated with the data set as the sample
answer for the challenge. This cyber attack scenario is a multi-step attack which
took place with 40 h on an organization’s network containing approximately
5000 hosts.
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Although this data set provided by VAST challenge has a high quality, we
can not directly use it in our experiment because it is impossible for the partic-
ipants to go through them in the experiment time (at most 60 min). Therefore,
we need tailor it into a small chunk of data. Given the attack scenario, we select
a 10-minute time window out of the total 40-hour time period in which three
types of critical malicious network events were happening and left evidence in
the data sources. The three types of network events include (1) IRC communica-
tion between the internal workstations and the external Command and Control
(C&C) servers, (2) denied file exfiltration attempts using FTP protocols, and (3)
successful file exfiltration using SSH protocols. The data sources corresponding
to this 10-minute attack time-window were finally extracted as the data set used
in our task, which contains 239 IDS alerts and 115, 524 firewall logs.

We need to evaluate this task from two aspects. First of all, we should ensure
it’s suitable for participants to complete within the required experiment time.
Moreover, the task should be of reasonable complexity regarding the difficulty
of detecting the malicious network events relevant to the attack. The task was
evaluated through a pilot study in which an senior analyst was asked to detect
the suspicious network events by analyzing the task data set in the experiment
setting. The pilot study also help us refine the training materials used in the
tutorial session to make the experiment run smoother.

6 A Case Study of the Captured Data Triage Process

The traces collected from the experiment enable us to evaluate the capturing
method. A case study is conducted to analyze the collected traces of analysts’
data triage operations, which gives us a better understanding of the analysts’
cognitive processes captured in the traces. The case study focuses on interpreting
the sequences of analysts’ operations in temporal order. The unit of analysis is
the operation associated with a timestamp.

6.1 Qualitative Trace Analysis Method

The first step of analyzing a trace is to interpret the hypotheses which are
typed down by the analyst in his/her analysis. For example, a participant wrote,
“Websites are communicating with financial servers. They are communicating
over what appears to be IRC which is commonly used by malware.” We can
know that the participant has the domain knowledge that “IRC can be used by
malware” and he/she generated this hypothesis based on this knowledge. How-
ever, the information explicitly recorded in the trace can’t completely reveal
the analyst’s cognitive process. Therefore, the next step is to infer the cognitive
activities that are not explicitly recorded in the trace (i.e., the implicit informa-
tion). These activities can usually be inferred from the traces.

Figure 7 shows an example of a partial trace. The partial trace contains a
sequence of operations in the simplified representation. It shows that the analyst
first browsed the IDS alerts at time t1, and then selected a set of alerts of



154 C. Zhong et al.

Fig. 7. An analyst’s operation sequence is interpreted by the underlying AOH objects
and their logic relationships [35]

IRC connections and confirmed them as an observation (i.e., O1). Based on
the observation O1, the analyst generated a new hypothesis (H1) about policy
violation. The network policy is marked explicit because it is mentioned in the
hypothesis H1. The analyst then filtered the IDS alerts based on “Port=6667”.
We notice that some network events using port “6667” also appeared in the
observation O1. So we can infer that the analyst conducted filtering based on
this condition because he/she thought the IDS alerts with port “6667” were
worthy of further investigation. The reason why he suspected these alerts could
be that he has the domain knowledge that port “6667” is a common port used
by malicious C&C communication. Therefore, we created the implicit objects
between the NEW HYPO operation and the FILTER operation which explains
why P1 conducted the filtering after generating the hypothesis. We analyzed the
30 traces in the same way and found three cases of different analytical reasoning
processes, which are discussed in detail as follows.
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6.2 Case 1: “Gradually Narrowing Down”

Figure 8 shows the cognitive processes recovered from an analyst’s trace. The
analyst first performed a FILTER operation on the network events in IDS
alerts at t1 and observed a set of network connections from external IPs to inter-
nal IPs (O1). He thought this set of network events were highly suspicious (H1)
so that he performed another FILTER operation at t4 to further narrow down
his search space by adding another condition “DstPort = 6667” to the filtering
condition used in FILTER at t1. In this way, the analyst detected a set of mali-
cious network events that indicates malicious IRC communication from several
Command & Control (C&C) servers to a group of internal workstations. This
case indicates the analyst gradually filtered out the irrelevant data to narrow
down the search space to locate the key evidence. This is the most common
strategies used by the analysts in the experiment.

H1: A large portion of connections uses destination port 6667. 
Further investigation is needed.

FILTERt1 A1 Filter network events in IDS alerts
that are from external IPs to internal IPs

O1 A set of network connections
from external IPs to internal IPs

SELECTt2
Domain Knowledge: 

Port 6667 is usually used 
for IRC communication

NEW_HYPOt3

FILTERt4 A2 Filter the network events (from external to
internal) using destination port 6667.

O2 A set of network connections from several
external servers to internal workstations using

destination port 6667

H2: It may indicate a malicious IRC communication from external 
C&C server to internal workstations. 

SELECTt5

NEW_HYPOt6

Fig. 8. A case of an analyst detecting suspicious network events by “gradually narrow-
ing down” [35]

6.3 Case 2: “Following a Cue”

Figure 9 is a follow-up of the analyst’s analytical reasoning process in Fig. 7,
which indicates a “following a cue” data triage strategy. According to our dis-
cussion of the case in Fig. 7, he generated a hypothesis (H2) about malicious
IRC communication in a botnet. Starting from H2, Fig. 9 shows that P1 filtered
the network events recorded in firewall logs based on a same condition “SrcPort
= 6667” to search for more details that support H2. It resulted in a set of net-
work connections between a same set of internal IPs using source port 6667, and
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H2: IRC used for C&C
communication in a botnet H3: IRC alters are 

false positive

A3: Go to Firewall logs,
Filter Firewall logs based on source port 6667

O3: Connections between internal IPs and external IPs via 
source port 6667

H4: IRC communication confirmedt10: NEW 

t8: FILTER

t9: SELECT,SELECTED 

...

t6: NEW_HYPO

t7: NEW_HYPO 

(previous operations are omitted)

Fig. 9. A case of an analyst locating suspicious network events by “following a cue”
[35]

therefore strengthened P1’s hypothesis about malicious IRC communication. In
this case, “following up a cue” refers to the strategy used by analysts in data
triage to search for network events in different data sources that indicate a same
step in an attack chain based on a clue (e.g., same set of IP addresses involved
in the network events).

6.4 Case 3: “Event Connection”

Figure 10 demonstrates an analyst’s cognitive process of obtaining three key
observations based on the knowledge of the events’ relationships in attack chains.
At the beginning of the partial operation sequence, the analyst first confirmed his
hypothesis about IRC communications in a botnet (H1) after gaining the obser-
vation O1. After confirming the hypothesis about malicious IRC communication,
he thought creatively about what could be the next step of the attacker. One
common following step was exfiltrating data from internal hosts, and FTP is a
common service used for file transfer (using port 20 or 21). Therefore, he contin-
ued data triage by filtering the network events using FTP (A2), which resulted
in the observation O2. O2 let him know that there were indeed malicious FTP
attempts but were failed. He expected those bots would choose another way, and
decided to search for the connections using SSH (using port 22). He filtered the
firewall logs based on “port = 22” (FILTER at t6), and found that three SSH
connections were successfully built between internal IP addresses and external IP
addresses. So he generated a hypothesis that the bots exfiltrate data to outside
C&C servers using SSH.

According to our understanding of the analyst’s cognitive process, we can
infer that he is familiar with the common attack chains and has the domain
knowledge of the services used for Command & Control communication and
data exfiltration. Thinking about the related events in an attack chain enabled
him performed data triage in a very efficient way, which reflects his expertise
gained from long-term on-the-job training.
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H1: It confirms IRC 
communication. The bots may 
launch attacks. Need to check 

potential attacks.   

O2: Denied FTP connections from internal IPs to external IPs through port 21.

O1: IRC connections via source port 6667 in Firewall logs

Domain Knowledge of botnet attack:
the ports commonly used by botnet are 

21(FTP), 22 (SSH), 25 (SMTP)..

H3: Failed FTP connection attempts from internal IP 
to external IP. Need to check whether SSH is used.

A2: Filter Firewall logs based on port =21

O3: Three SSH connections from internal IPs to external IPs through port 22.

A3: Filter Firewall logs based on port=22

H4: Bots use SSH to exfiltrate data.

t1: SELECT, SELECTED

t4: SELECT,SELECTED 

t2: NEW 

t5: NEW 

t8: NEW 

t3: FILTER

t6: FILTER

t7: SELECT,SELECTED 

Fig. 10. A case of an analyst “proceeding from one event to its related events” [35]

Our preliminary trace analysis results show that it is possible to understand
the analysts’ cognitive processes of data triage through analyzing the collected
traces. The traces contain the information of the key cognitive activities and the
domain knowledge of analysts when they were performing a data triage task.
Besides, the automatically captured information and the self-reports confirm
and complement each other in the collected traces.

7 Data Triage Cognitive Trace Retrieval

The preliminary trace analysis has demonstrated that the captured traces of
analysts’ cognitive processes imply the strategies they used in the task and expe-
rience knowledge. In the real-world cyber defense analysis tasks, it’s hence highly
desirable to provide junior analysts some guidance based on the experience of
expert analysts. Motivated by this need, we have developed a data triage sup-
port system that generates recommendations for an analyst based on similar
data triage experience of other (e.g., senior) analysts. A key enabler of the sys-
tem is a similarity-based retrieval of data triage traces, which is represented
using the framework described in Sect. 3.4. This representation enables us to
have a flexible and general way to represent the context of data triage, and to
design a retrieval algorithm based on the similarity between these contexts.

7.1 Experience Representation Based on AOH Model

To build an experience retrieval system, the first step is to define the concept
of “experience” in Cyber SA data triage. We model the experience as follows.
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A piece of experience gained by an analyst in accomplishing a particular task is
his/her analytical reasoning process in accomplishing a data triage task. As we
have discussed in Sect. 3.4, this analytical reasoning process can be modeled by
the AOH model, where each action leads to a new observation, which prompts
the analyst to generate one or more hypotheses, which lead to an additional
action, hence the cycle continues.

Therefore, an instance of experience can be represented by AOH-Trees. Con-
sidering the fact that an action of data filtering results in an observation of a
subset of data, we combine an action and its corresponding observation in a
pair to represent a unit that making up the current context, called “Experience
Unit” (EU); the observation in the EU may trigger the analyst generate multiple
hypotheses about the possible attack chains.

7.2 The Experience Retrieval Approach

Context-Driven Retrieval. We proposed a context-based experience retrieval
approach based on the experience representation. In order to provide ana-
lysts with relevant experience instances as reference, the approach retrieves the
matched experience instances from experience base based on the current context
of data triage. Any update of the current context (i.e., gaining more observa-
tions) will trigger the updates of the matching results. The “context” of current
process of data triage is defined by the “EUpath” in the AOH-Trees. “EUpath”
is a list of EUs in the unique path from the root of the E-Trees to the current
hypothesis of an analyst.

According to the definition of “context” of experience, the goal of the retrieval
approach is to search the experience base for EU-paths that are similar to the
current context and to generate a ranked list of EU-paths based on their degree
of similarity to the current context. The similarity between EU-paths below is
defined as follows.

Let P be an EU-path and PC be the current context, the similarity is denoted
as Sim(P, PC). Each EU-path is a set of EUs, therefore we use Jaccard Simi-
larity to compute Sim(P, PC) [34]:

Sim(P, PC) =
|P ∩ PC |
|P ∪ PC | (1)

We mainly consider the events in the observation of EU. Therefore, we have

Sim(P, PC) =
|P ∩ PC |
|P ∪ PC | =

|ObsP ∩ ObsPC
|

|ObsP ∪ ObsPC
|

ObsP = {obsx|obsx = {ex}, obsx ∈ P},
ObsPC

= {obsy|obsy = {ey}, obsy ∈ PC} (2)

where obs refers to an observation instance and e refers to an network connection
event. An observation obs contains a set of events.
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Therefore, the similarity between two paths depends on the similarities
between the network connection events contained in these two paths. The sim-
ilarity between events are defined as follows. Let ex, ey be the events in two
observation, the similarity between them, denoted as f(ex, ey), is determined by
matching the field values of their data sources. The matching includes:

– Base Matching (BM). BM refers to the minimum matching criteria, that is,
if BM of ex and ey is violated, f(ex, ey) equals to 0. One basic BM criterion
is that ex and ey should correspond to the same data source. Experts can
define other BM criteria by identifying the attributes of network connection
events that must have the same value.

– Weighted Matching (WM). Once BM is satisfied, WM is used to calculate
the degree of matching. Each individual ttribute of event is assigned a weight
(based on domain knowledge). Given ex and ey, the WM score equals to

∑
wi ∗ Match(attri(ex), attri(ey)),

where the function Match comparing the two attribute values (equals to 1 if
they are equal, otherwise equals to 0).

Experience Retrieval System. The framework of the experience retrieval
approach is shown in Fig. 11. It includes three main components, the experience
base, an indexing module, and a similarity-based ranking module. The experi-
ence base contains the experience instances extracted from expert analysts’ data
triage traces.

The experience instances are indexed based on the network events that are
contained in the observation of these experience instances. Given an experience

Fig. 11. The architecture of the context-driven similarity-based retrieval system [34]
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instance, the indexing module maps the BM attribute values of the network
events in this instances to the EUs that contain these events. The indexing will
be updated once a new experience instance is added in the experience base.
In this way, the system can quickly retrieve the relevant EUs given the events
contained in the EUs in the current context.

The system retrieves relevant experience instances from the experience data-
base based on the current context of the analyst’s data triage process. Given
the current context PC , the system first extracts all the BM attributes from
the EUs of PC , and then identifies all the matched EUs in the experience base.
With the matched EUs, the candidate EU-paths can be identified by searching
for EU-paths which contain at least one matched EU.

The candidate EU-paths needs to be further ranked based on the level
of similarities between these EU-paths and the current EU-path (i.e., current
context).

The Match Propagation (MP) algorithm was proposed to efficiently rank
the EU-paths based on the similarity between the EU-paths with the current
context.

The MP algorithm can be described based on the structure of AOH-
Trees [34].

– An EU could have several children.
– An EU has a parent.
– An EU is assigned a matching scores (M-Score) based on the similarity

between the observation in this EU and the observation in the current context
(initially 0).

– If an EU has children, this EU is assigned a list of M-Scores containing the
M-Scores of its children (initially 0). We called the list “Subtree M-Score List
(M-List)”.

Given an AOH-Tree, the MP algorithm propagates the M-Score of each EU
to its ancestors along the path to the root. The rule of propagation is as follows.
Let EUparent be an EU with n children, EUc1, . . . , EUcn. EUparent has a M-List:
{wTEUc1 , . . . , wTEUcn

}. ∀i ∈ [1, n], the wTEUci
= wEUci

+
∑

wTEUj
is in EUci’s

M-List.

Fig. 12. An AOH-Tree to be ranked [34]
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Fig. 13. M-Score propagation [34]
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Figure 12 shows an example AOH-Tree to be ranked [34]. Each EU has a M-
Score (colored in yellow). The EUs with children also have M-Lists (colored in
black). Before score propagation, all the M-Scores of the EUs are initialized to 0
(Fig. 13(a)). Suppose the current context is PC , and PC contains three observa-
tions, ObsC1, ObsC2, and ObsC3. If ObsEU5 ∈ EU5, Sim(ObsEU5, ObsC1) = 0.6,
EU-5 is assigned a M-Score 0.6. Then, the M-Score will be propagated along
the path to the root of the AOH-Tree. The updated M-Lists are shown in
Fig. 13(b). If ObsEU6 ∈ EU6, Sim(ObsEU6, ObsC1) = 0.5, and ObsEU7 ∈
EU7, Sim(ObsEU7, ObsC2) = 0.2. We further assign EU6 with a M-Score =
0.5 and EU7 with M-Score = 0.2, and propagate them. Figure 13(c) shows the
result of the propagation. Once the current context is changed, the M-Scores of
the influenced EUs need to be updated by repeating the propagation. In this
example shown in Fig. 13(d), Sim(ObsEU5, ObsC1) becomes 0 due to the change
of the current context, the M-Score of EU5 is updated to 0. The time complexity
of the update algorithm is O(Lengthofthematchedpath).

This example demonstrates how the M-Score are propagated along the paths
in AOH-Trees. Given the candidate AOH-Trees, the MP algorithm updates the
M-Lists of the roots of these AOH-Trees. The AOH-Tree paths can be further
ranked based on the M-Lists. The time complexity of the MP algorithm is O
(# of matched EUs * average length of the matched EU-paths).

7.3 Discussion

One of the benefits of capturing and retrieving analysts’ cognitive processes of
data triage is to support the training of junior analysts. Our framework enables
the automatic retrieval of relevant data triage processes and provides analysts
with the experience of other senior analysts in the contexts which are similar
to their current context. The retrieved experiences can provide analysts some
suggestions on what network events need to be further investigated. However,
future research is needed to evaluate the effectiveness and the usability of such
a data triage training system for junior cyber defense analysts.

The context information is critical to be considered in order to ensure the
retrieved results are relevant. The current definition is mainly focusing on the
observation instances of analysts’ data triage process. This work can be further
improved by a more comprehensive representation and associated reasoning of
context. For example, in addition to observations, the captured traces contain
the hypotheses entered by the analysts when they were performing a data triage
task. The hypotheses contain many clues about the analysts’ focus of attention
and mental models, which contain important contextual information that can
be useful for determining their relevance to the current context of the analyst.

In a real-world SOC, the number of cognitive traces captured can be massive.
Therefore, the similarity-based retrieval of traces need to be implemented and
evaluated in a scalable programming model and computing infrastructure such
as Spark and Hadoop Distributed File System (HDFS).
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8 Related Work

The study of data triage in Cyber SA is starting up from the existing findings
and methods in several relevant research fields. In terms of the theoretical basis,
the study is rooted in the filed of information foraging and data fusion. In terms
of the human-in-the-loop nature, the studies of cognitive task analysis in Cyber
SA or relevant fields provide very important starting point for our study. In
terms of the ultimate goal of improving cyber defense analysts’ performance, a
brunch of visual analytics methods and intelligent systems have been proposed
and developed to assist analysts in their jobs.

8.1 Information Foraging and Data Fusion

The data in Cyber SA are usually massive and change rapidly over time, as
described in Sect. 2.2. The data collected from multiple sources are heteroge-
neous, and thus both information foraging and data fusion are necessary for
analysts to detect the “true signals” of attacks by combining the information
from multiple data sources. Bass described data fusion by mapping the OODA
decision-support processes into different level of abstractions to gain cyber sit-
uational awareness [13]. Table 4 is a comparison between the OODA model and
the AOH model (described in Sect. 3.4). It shows that we specifically focus on
the iterative process in which the analysts perform filtering, searching, and selec-
tion actions on the large volume of data, select observations of interests, describe
their hypotheses, which can lead to additional observations. These activities cor-
respond to the “observation”, “orientation”, “decision” constructs in the OODA
model.

Many data fusion model and methods have been evolving to enhance the
process of data analysis in Cyber SA, considering the fact that the network data
come from multiple sources. Joint Directors Laboratories (JDL) Data Fusion
Working Group developed a model for data fusion process which is general across
multiple fields. The process model takes the sources of “information at a vari-
ety of levels, ranging from sensor data to a prior information from databases to
human input”. This model breaks the data fusion process into five components:
source pre-processing, object refinement, situation refinement, threat refinement,
and process refinement. Data fusion algorithms and techniques can be catego-
rized into these JDL components. Lan et al. proposed a framework that uses a
data fusion method based on the Dempster-Shafer (D-S) evidence theory to gain
cyber situational awareness [42].

Researchers have recognized the needs for a model that specifies how data
fusion can be successfully applied to enhance Cyber SA [46]. The application of
data fusion can contribute to intrusion detection [41], situational awareness [46],
higher-level multi-step cybre attack tracking and projection [47].

The foraging loop in the sense making model corresponds to the data analysis
process in cyber situational awareness. According to Pirolli and Card’s sensemak-
ing model, there is a tradeoff in the foraging loop among exploration (“increasing
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Table 4. OODA model and the AOH model [34]

OODA AOH Description

Observation Observation The observation in OODA refers to the raw information
which is presented before analysts’ involvement. This
data is captured in the Observation component in
A-O-H model

Orientation Orientation in OODA is “fusing information to build
situational awareness)” [48]. This essentially
incorporates the observation and through hypothesis
cycles

Action The action performed to explore the monitoring data,
to prove or disprove each hypothesis. These actions will
result in new observations

Observation The observation of some interesting data resulted from
actions. The collection of data may trigger analysts’
new hypotheses

Hypothesis The thoughts generated based on the current
observation. It could be an interpretation of current
situation, questions in mind, or attempt to future
actions

Decision Hypothesis The results of analyzing all hypotheses will result in a
final decision. This is essentially the confirmed
hypotheses of the A-O-H model

Action Occurs after analysts’ analytical reasoning processes
and is thus not within the scope of the A-O-H model

the span of new information items into the analysis process”), enrichment (“nar-
rowing the set of items to produce higher-precision sets of data”), and exploita-
tion (“thorough reading of documents, extraction of information, generation of
inferences, noticing of patterns, etc”) [12]. Considering that most analysis jobs in
cyber security is information-intensive, cyber defense analysts need their working
environment to enable information foraging and simultaneous investigation [43].

8.2 Cognitive Task Analysis in Cyber SA

Cognitive Task Analysis (CTA) is a traditional method for studying human work-
ing processes. Some researchers with the access to the cyber defense analysts
have conducted several CTA studies using various techniques, such as observa-
tion and interviews. Most of these studies focused on macro-level descriptions of
cyber security analytics (e.g., the stages of data filtering and the roles of ana-
lysts [2–4]), had have gained some valuable insights into the analysts’ cognitive
processes. However, few have attended on the fine-grained cognitive activities
due to several real-world difficulties in conducting CTA studies in cyber secu-
rity. For instance, CTA studies can be too time-consuming as analysts, who have
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to rotate through day shift and night shift on a 24/7 schedule (24 h a day, 7 days
a week) may have little time to participate in interviews. Besides, data triage
tasks are memory-intensive and require vigorous concentration so that it is hard
for analysts to give complete and accurate reports on their cognitive processes
with a commonly-used think-aloud protocol.

8.3 Intelligent System for Cyber Data Analysis

The challenges of analysts in cyber data analysts come from the human’s limited
cognitive capability in processing large data and maintaining working memory
and various cognitive bias (e.g., a common bias happened in data analysis is
confirmation bias. Motivated to address these challenges, many researchers have
developed various methods and technologies that come from artificial intelligence
(AI) and human-computer interaction (HCI). Big data analysis is also powerful
to solve the data analysis challenges in cyber situational awareness [14].

Case-Based Reasoning (CBR) is a family of approaches that uses “cases” to
represent knowledge to solve new problems and reach to a conclusion or solution
by conducting formal inference or information retrieval [49]. Cases can be struc-
tured, semi-structured or unstructured. The proposed context-based experience
retrieval system uses both positive and negative “cases” of captured analysts’
data triage traces. The negative cases (i.e., unsuccessful experience) can help
analysts to avoid wasting time on investigating the irrelevant network events.

Besides of the automatic agents, the analysts’ data processing capabilities can
be enhanced by better interactive interfaces. Visual aids have been shown useful
for sense making processes. Many visual analytics systems have been developed
to present the multivariate nature of the data in cyber space to help analysts dis-
cover interesting patterns. Four main visualization approaches are very useful to
display and manipulate the large amount of data: (1) “overview+detail, which
uses a spatial separation between focused and contextual views”; (2) “zoom-
ing, which uses a temporal separation”; (3) “focus+context, which minimizes
the seam between views by displaying the focus within the context”; and (4)
“cue-based techniques which selectively highlight or suppress items within the
information space” [50]. In additional to visual analytics, human-computer inter-
action system can help analysts maintain alternative hypotheses, overcome other
cognitive limitations and avoid cognitive bias

9 Research Directions in the Future

Our work focuses on the data triage operations performed by the analysts, which
lies in between the macro-level cognitive task analysis study and the micro-level
neural study. The current results of the preliminary trace analysis have shown
that the collected traces contain valuable information about the key cognitive
activities of analysts. It can provide important implications for both levels in
return. On one hand, the traces demonstrate the strategies and expertise knowl-
edge used by the analysts during data triage, which can help researchers identify
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the analysts’ cognitive needs and bias. On the other hand, traces serve as an
important information source that helps explain the patterns found in neural
data of much smaller granularity (e.g., EEG/fMRI data).

In our study of capturing analysts’ cognitive processes, we observed a trade-
off between CTA data collection (i.e. capturing traces) and CTA data analysis
(i.e. analyzing traces). Considering the tight time schedule of cyber defense ana-
lysts, we try to minimize analysts’ work load in our CTA data collection study.
However, more efforts made on trace analysis are needed as the interpretation of
the operations in traces is also a complex cognitive process. Fortunately, based
on our preliminary trace analysis, we have observed some common patterns of
sequential operations in traces. Therefore, it is highly likely to generate some
guidelines or a procedure, even an automated tool for trace analysis.

Our study of the trace retrieval indicates that the collected traces provide an
opportunity to provide novice analysts with the personalized guidance. Besides,
the cognitive activities captured in traces can contribute to analyst training
as another important measure for assessing analysts performance and learning
outcome. Moreover, the formal representation of the data triage operations in
traces enables us to develop automated methods to discover patterns among the
analysts’ behavior.
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Abstract. Traditionally, cyber security has been positioned and developed
primarily from a computational-technology perspective. Unfortunately, this has
been rather short-sighted as it provided solutions that fail to consider many
human-related, cognitive, and social factors that underlie solutions of signifi-
cance. While there have been substantial contributions from technology devel-
opment that help the overall problem, a more comprehensive and effective
approach is now needed that: (a) explores cognitive sciences and collaborative
systems as a substantial basis to reify discovery and prediction, (b) produces
incisive research results that inform the design of cyber tools and interfaces for
active use, and (c) establishes new understanding of cyber situation awareness
wherein the distributed cognitive activities of users, dynamic and changing roles
of the threat and the environment, collaborative teamwork, and the promise of
innovative cognitive technologies are intertwined and realized. This chapter
outlines the perspective of social-cyber systems, a transdisciplinary approach
designed to enhance information protection, reduce errors and uncertainty, take
advantage of teamwork, and facilitate insightful understanding of what aware-
ness and collective induction means for cyber defense and security. The Living
Laboratory Framework is used to describe our approach and to implement
specific aspects of social-cyber system research that inform dimensions of
awareness and induction. Cognitive explorations underlying cyber situation
awareness are presented that involve entwining theoretical foundations, models
and simulation, and problem formulation - with - ethnographies of practice,
knowledge elicitation, design storyboarding and technology prototyping. Inte-
gration of these important elements provides the basis of expanding individual
cognitive processing into collaborative teamwork and collective induction that
afford the goals of obtaining readiness and resilience in social-cyber systems.
Finally, the chapter looks towards what future requirements will be necessary to
sustain efficacy in protecting valuable resources and services.

1 Background

Cyber security can mean many things to many people but it is clearly one of the most
daunting problems that impacts society today. Not only is it a problem associated with
the military or intelligence assets of the United States and other countries, the security
of our existence as human beings may be at stake if catastrophic consequences of poor
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cyber security ensue. Cyber security threatens our lives and our lifestyles with ubiquity
unparalleled. It may open up our bank accounts for massive loss, threaten the loss and
theft of identities, the security of the transportation systems we use, decimate our
energy infrastructure, and can make our defenses that thwart nuclear attack nil. Indeed,
cyber security breakdowns are one of the most-wicked problems (Churchman 1967)
that besiege humanity in the present days.

In today’s world cyber security events and situations unfortunately occur on a
regular basis, with some having more serious consequences than others. Since the
beginning of 2015 major cyber security events have happened. The most recently leaked
data on “Ashley Madison” accounts provides a significant example of how cyber
security hacking and data access can reach deep into the societal backbone. Ashley
Madison represents an online dating site, which essentially facilitates extramarital affairs
for adults who are currently married. In July of 2015 the site was hacked by a group
called “The Impact Team” wherein the database of 31 million customers was exposed.
This made personal information highly vulnerable and has opened-up other problems.
One problem is that the database contained 10,000 customers who were government /
military workers. It is surmised that this has compromised national security concerns
along the lines of extortion-blackmail, placed sensitive projects at risk, and help
adversaries further target cyber security attacks on intelligence data [see <http://thehill.
com/policy/cybersecurity/251517-cyber-foes-likely-digging-through-ashley-madison-
data>]. Because this event just happened, the spreading activation effects are not yet
fully known. But this example demonstrates that hacking is not just a one-time hack that
exists at the surface but really creates a complex, emerging situation that has multiple,
deep layers. The perception of what cyber security is can be very rigidly defined around
the computers, architecture, and data but the perspective that is necessary is more
expansive, and needs to consider “awareness” around the broader notions of people,
behavior, crime, and society in order to develop compelling solutions. Awareness in
cyber security is not simply developing new technologies or computational algorithms
but must consider the cognitive sciences that underlie intelligence, behavior, and action.

At the heart of cyber security philosophy, policy, and operations is the adversarial
imperative, which imparts a threat to take ownership of computer infrastructure, sys-
tem, and/or files that maintain data, information, and knowledge that is often critical for
preservation. Because computational intelligence is distributed in many ways (smart
phones, reservation systems, navigation, cameras, military systems and so on) it makes
the cyber threat even more serious and potentially devastating. Cyber security opera-
tions are targeted upon technology but they are initiated by human intelligence –

designed to control or take over human enterprise, social and political entities, and to
destroy what we value as humans. In turn cyber security is concocted by humans
against humans and is designed to obtain the ‘upper hand’ of either control, execution,
power, or dominance. Because it is foisted against us – strong programs of immunity
from its effects must be initiated and sustained with much creativity and innovation.
What makes this so difficult is the lightning quick ‘change of state’ in which cyber
security effects can initialize and dissipate. Couple this much a maximum amount of
duping, deception, and disruption and one is facing one of the most-wicked problems
possible.
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This chapter is derived from our joint effort at Pennsylvania State University (along
with a team of other universities) to understand what cyber security means from the
perspective of situation awareness. For several years we have been engaged in a
Multidisciplinary University Research Initiative (MURI) designed in increase our
knowledge about situation awareness within cyber security. This is a grant provided by
the Army Research Organization (ARO) and represents a broad bandwidth approach to
thwarting threat operations that are predicating on awareness (or lack thereof).

As a point of full disclosure the position that presented in this chapter is one that
focuses around the worldview of cognitive science and necessarily is human-centered
in view and application. Cyber security is considered from the intersections of infor-
mation, technology, people, and context to derive knowledge about dynamic awareness
and how it emerges over time. While we value the worth and usefulness of technology,
we have seen within circles of the human factors that technology is often developed
without consideration of human, social, or contextual factors that strongly imprint on
its use. This chapter is not anti-technology but instead, uses an interdisciplinary nexus
to develop technology that achieves situation awareness where the human is informed
and can act in their environment in a way that produces tactical or strategic advantage
in the course of achieving an objective. The hope behind this chapter is to introduce
some alternative ways of interpreting awareness within cyber security, wherein new
innovative thinking and creative design can make a difference in our lives.

2 Introduction

It is no surprise that we conceptualize cyber security as an interdisciplinary system of
systems where transformative work is both local and distributed but undertaken by
human agents engaged with other agents (human or computational) within an often
changing environmental context. From this view, cyber security is human centered and
requires human-in-the-loop processing, contextually driven by change, and must be
approached and addressed through problem-based learning. As part of our MURI
progress (over the last 6 years) – we have held on to the basic idea that if an analyst or
team of analysts can obtain and maintain situation awareness during the course of
problem solving, they will be successful in protecting systems and enhancing cyber
defense readiness. The timely integration of information, technologies, people, and
context are all important for considering cyber security as an interdisciplinary system of
systems, team of teams conceptualization Cyber security is a very challenging problem
space that contains multiple layers of complexity that can emerge and evolve quickly in
many different ways. Activities within cyber security problem space can be seen as
dis-granular and nonlinear as well as it contains virtual non-physical space (e.g., where
hackers attack a software-based system designed to protect computer security), as well
as physical cyber security elements, often, which are bridged together through human
cognition and action. When considered jointly these elements create a demanding
context for establishing situation awareness, and produce what has been referred to as
wicked problems (Churchman 1967).
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Conceptualizing Cyber Security as Distributed Cognition
For the purposes of this chapter it is necessary to begin with what we consider cyber
security to be (i.e., a basic definition that characterizes it as a specific area of focus that
is real and exists within a situated context). Therein, we will begin with the following
definition (McNeese et al. 2011):

By cyber security we mean a socio-technical system of a vast array of distributed computers,
servers, and analysts designed to protect users from: (a) compromised systems and vulnera-
bilities perpetrated by adversarial threats and (b) defined and acted upon by humans for humans
using computer-based tools.

While this definition is straightforward and specific and describes what cyber
security ‘is’ - it is now four years old and may be too static of a definition. To update
this definition, we now believe that cyber distributed cognition occurs in what we might
term cyber-worlds – a virtual interactive world that can be veiled, hidden, and often
deceptive; that consists of multiple, dynamic layers that can change dimensionally,
representationally, numerically, and in many other ways within milliseconds (i.e.,
lightning quick). Cyber worlds contain socio-cyber systems that consist of a series of
human-environment transactions wherein a team of teams utilize many tools and
infrastructure inclusive of intelligent computational agents acting as teammates,
web-based sensor data fusion, the internet of things, cyber visual analytics, and social
network prediction. Socio-cyber systems are exactly the contexts that cyber analysts
work within to address, manage, and attack where the adversary seeks to gain entrance
to destroy data, exploit information, and/or take control.

Traditional notions or models of cognition get stretched and changed in
cyber-worlds as there are unique information-context interdependencies that emerge
and change rapidly in time and space within the social and physical environment. Space
in this context is different from typical physical context wherein physics play out laws
of nature. Space in cyber worlds is bound within the constraints of “what is possible”
given the software boundaries, the disguise that data may take on, and the lightning
speed of rapidly changing states within this unique kind of conceptual space. This is
different than tracking a physical threat of the battlefield wherein movements of targets
are subject to D = R*T physics and other constraints. Change of this magnitude means
cognition and awareness addressing the current state of cyber operations is more dif-
ficult to comprehend, and perhaps learn. Information half-life (recency) becomes
incredibly hard to decipher especially in non-routine situations. This is the world we
expect a human to understand and comprehend to thwart cyber threats as they manifest
in different kinds of modalities and environments (e.g., smart phones, banking sys-
tems). As indicated with the above definition cyber worlds must include human
interpretation and that interpretation is assisted by technologies that bring forth new
tools, interfaces, and simulations that enhance our ability to be active responders, to
‘see’ differently, and to predict patterns before they come to fruition. The demands
placed on cognition are not just analytical but include the ability to induct, to learn deep
elements of patterns that form in cyber worlds, to create and intuit, and to discern when
deception is in process.
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Worldviews of Cognitive Understanding. The world of cyber security takes place
within a complex environment (as they denoted above as a cyber-world) that may be
conceptualized from a number of different worldviews (mathematical, computational and
information science, business intelligence, eco-systems, criminological-terrorist studies,
social informatics, information fusion, big data analytics, cognitive-psychological sci-
ence, to name a few). Historically, situation awareness (Endsley 1995) has primarily been
addressed from a cognitivist worldview where an analyst utilizes “cognition as being in
his/her head” and then applies it as apropos. This view is predicated on older human
information processing approaches to cognition (Newell and Simon 1972) where cog-
nitive understanding is equitable or analogous to a computer elements reading data into a
central processing unit (e.g. image translation, memory storage) then appropriating
responses via output mechanisms). Cognivistic models have been around approaching 60
years (Newell et al. 1958) and perhaps much longer if one considers philosophic pre-
decessors (e.g. Descartes 1664). The cognitivist view has been challenged as too
microscopic (micro-cognition is often too static and relies on a homunculus in the head
(but who directs this master controller?); micro-cognition under-estimates the impact of
the environment or context that affords action, and often micro-cognition fails to consider
the social/teamwork aspects of cognition in terms of emergent dynamics.

In turn, another perspective has emerged which may be termed an ecological-
contextualistic worldview. Historically, this view has evolved from the early work of
James Gibson (1979) based on his research in direct perception which in turn focused on
human-environment transactions, and the role of affordances and effectivities have in
specifying information. Action and perception of are jointly determined by an actor
within a context (Greeno 1994). A contextualistic approach (Hoffman and Nead 1983)
looks at cognition as also being distributed outside the head in the environment. A hu-
man often constructs or picks up information in the context of work (direct perception)
and learns through repeated use of affordances and effectivities (invariance). Mace
(1977) captured the essence of an ecological-contextualistic worldview when he stated
“ask not what is inside your head but what your head is inside of”. Problems can be seen
as exercising opportunities as specified by information in the environment if one has the
correct effectivities to act on the affordance when it exists. This places problem solving
clearly within an ecological “situated cognition” perspective (Brown et al. 1989; Young
and McNeese 1995). Hutchins (1995) is representative of a similar perspective termed
“distributed cognition” which is indicative of how cognition forms in context, and
provides the foundation that cyber security activities can be wholistically framed as
distributed cyber cognition.

Distributed cognition is heavily coupled to perceiving change in the contextual
environment that specifies information. Therein, most of these approaches emphasize
the role of perception, perceptual differentiation, and the ability of people to understand
what that change represents in cyber-worlds in terms of transactions necessary for the
agent to accomplish intentions. Perceptual apparatus is bound to the body (e.g., eyes,
ears, limbs) – termed embodied cognition (Wilson 2002) – and is the basis for
dynamically moving through and experiencing the context as it unfolds. Cooke et al.
(2013) has adapted similar ideas as applicable to interactive team cognition providing
an ecological basis for team activities especially as pertinent to cyber security appli-
cations. Likewise, McNeese (1986) first used the terms macrocognition and
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macroawareness to describe cognitive activities that are broadly defined and interactive
with the natural environment. More recently Klein et al. (2003) and others have
extended macrocognition theory as a basis to understand and design solutions to nat-
uralistic decision making problems that are present in many fields of practice. The
worldview that this chapter takes is closely aligned with these approaches for indi-
vidual, team, and ‘team of teams’ activities, rather than older more traditional per-
spectives of cognition.

When perception in and of itself cannot pickup information specification directly
from the environment, then a person’s own cognition and in particular meta-cognition
(thinking about thinking) come more into play to make sense of and respond to situ-
ations. The environments that are meaningful for success also include social transac-
tions that are distributed within a team or across teams, therein ecological
contextualistic worldviews necessarily gravitate towards social connectedness and
virtual transactions where information specification in teams is prevalent (or could be
prevalent).

The meaning of awareness. As researchers who have historically focused on
socio-ecological development of cognitive technologies it is incumbent to ponder what
situation awareness or awareness represents in the cyber security/cyber defense field of
practice. Some believe that answers will be found when there is an increase in the
capacity in data accessibility. Others suggest awareness comes through “intelligence”
built into computer algorithms or by reducing uncertainty via probabilistic or machine
learning computation. Concomitantly, other worldviews suggest that improvements in
awareness come through visualization, visual analytic displays, or through the massive
amounts of information that are hidden in “big data” waiting to be data mined. Other
perspectives – if even considered – place awareness solely in the mind through con-
sideration of attention and memory activation processes (traditional cognition). More
recently, researchers have suggested awareness emerges out of the team mind (Salas
et al. 2012). While our work has touched on each of these perspectives at some point
across the last six years of our Army Research Office ARO MURI grant; each one
considered in isolation is significantly lacking as it fails to portray the big picture, see
McNeese et al. (2006), (or what some refer to as the Common Operational Picture of
Cyber Situation Awareness in Security).

There are multiple kinds of awareness present in socio-cyber systems, emergent
across time and space, represented in various ways to human and agent; distributed
across cognition. This is our collective view of what awareness means within cyber
worlds. Hence, we refer to this niche as Cyber Distributed Cognition. Based on our
own work the following elements are considered primary research missions within this
niche:

I. Opportunistic Problem Solving in Cyber Operations
II. MetaCognitive Reflections about the Threat
III. Learning and Spontaneous Access of Knowledge in Context

These missions are both interactive and iterative with each other holistically.
Because we believe that cyber situation awareness is an immersive, evolving state that

178 M.D. McNeese and D.L. Hall



draws from cognition into the context as opposed to merely static knowledge state in
the head, our missions point to different ways of thinking about awareness as it plays
out within cyber distributed cognition. The missions also formulate some of the
backbone of discovery that underlie our actual research objectives during the course of
the MURI grant.

Cyber security operations can be punctuated with changing events, volumetric data
exchange, and rife with uncertain circumstances. While many procedures are
straightforward and known new data can flow into the environment, which causes
assessment and awareness to be a high priority. This kind of environment presents the
human analyst with ample opportunity (but with associated risks) to engage in
opportunistic problem solving (Hayes-Roth and Hayes-Roth 1979). Cyber-worlds can
also be nuanced in different ways wherein there may high levels of interdependence,
overlapping layers, distributed information, and other forms of isomorphism. Yet it is
frequently the case that individual analysts may have their attention diverted into a
black hole of exploration and discovery when they are engaged in sensemaking and
putting together patterns to determine affordances and effectivities. This presents a kind
of bias that is opposition to collaboration. This may be especially true when individual
analysts are not in the same physical locale, that is, when they are distributed.
Opportunities for collective induction (Laughlin 1999) may exist but knowledge may
remain hidden and not shared for maximum utilization (see Stasser and Titus 1985). In
cases such as this unique knowledge may remain hidden and inaccessible by other
analysts who actually could use it connect the dots to form the big picture. When
collective induction is limited, then opportunistic problem solving may suffer and in
turn solutions may be minimalistic or not produced at all. If collaboration involves
integrative roles wherein distributed information is linked in cyber operations (as it
often can be) then a more deleterious effect can occur especially if the distributed
information has temporal contingencies and consequences associated with it.

The individual or team of analysts do not just come to a problem or situation
without any experience. Typically, they will be place on the job with some level of
training and in various circumstances analysts fall on the continuum between novice
and expert. As part of their experience, learning is very important as it exposes an
analyst to varying situations that may hold some degree of similarity or common
elements where previous knowledge can be automatically (spontaneously) accessed
and used opportunistically in the midst of a problem. This type of information may be
specified directly through perceptual pickup wherein the analyst or team of analysts
recognize cues that heed access to cases, stories, or segments of previous experience.
Understanding by stories or cases or segments may rely upon metacognitive activities
in that analysts may see something that reminds them about how they solved a similar
situation in the past. Thinking about how they think is termed metacognitive activity
and can occur at anytime but especially is salient when perceptual pickup stirs partial
recognition.

Without awareness in cyber distributed cognition, an analyst can have a dim per-
ception and consequently lack a basis for how to adapt or respond to a situation that
involves cyber activities. We refer to this kind of state as mindlessness, in contrast to
mindfulness. When situations are ill-defined, non-routine, and uncertain it can produce
a state akin to “blooming, buzzing confusion” (James 1981) wherein there is a fuzzy
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fog and focus is sparse. It may be experienced from several sources such as; (1) not
paying attention to primary and secondary cues within the environment wherein
recognition-primed decision making (Klein 1999) is lacking, (2) information over-
loading is experienced wherein focus is scattered, (3) stress or affective levels shuts
down the neurological apparatus, or (4) time pressure requires a very fast response.
When two or more of these sources combine simultaneously an analyst may devolve
into what we refer to as cogminutia fragmentosa (McNeese and Vidulich 2002)
whereupon attention is channelized into small strands, and is perceived in piecemeal
fashion, and mindfulness is never obtained. If this happens during a live event then
mistakes, errors, or even failure can be eminent. Therein, a cyber-world should facil-
itate human centered interaction to prevent mindlessness and facilitate mindfulness in
order that awareness might evolve to high levels.

Framing the Problem Space – Use of the Living Laboratory (LLF). As mentioned
one’s worldview can intimately determine what is a problem and what is not a problem
dependent on a researcher’s perspective. Because we view cyber SA as distributed,
cognitive work that is mutually influenced and effected by the context of action it is
incumbent to utilize our own Living Laboratory Framework –LLF- (McNeese 1996) to
discover and explore problems within cyber distributed cognition. Figure 1 shows the
Living Lab Framework. We utilize the interdisciplinary framework to conduct research
through multiple levels of analysis and design. The framework emphasizes the mutual
relationships and cyclic nature of theoretical and practical constraints of work. The
Living lab emphasizes the idea of exploring real world contexts by understanding
worker or team-centered problems that emerge during complex operations. This is an

Fig. 1. The living laboratory framework
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approach that is reflective of the ecological-contextualistic worldview. It has been
classified previously as a cognitive systems engineering methodological framework
(McNeese and Vidulich 2002). Figure 2 shows a more specified instantiation of the
LLF as we utilized it for the MURI grant.

As one can see the central heart of the framework is that of discovering - defining –

exploring problems to learn new ways of solving problems. Clearly this framework
then enables a problem-based learning (Bransford et al. 1999) approach to human
centered cyber SA. Problems come into focus through a variety of means. This is
captured in the framework by the interactions of the four elements: (1) ethnography,
(2) knowledge elicitation, (3) scaled world simulations, and (4) reconfigurable proto-
types. Problems can be informed from the top-down -through theoretical positions- and
from the bottom-up - through practice. Practice in the real world as we know is coupled
to extant problems that occur as users experience them in differing ways. This excites
the bottom-up processes in the LLF that focus on what gets done in cyber security (in
particular, cyber situation awareness) and how people utilize technology to accomplish
work. As related earlier much of this work is distributed and complex. Concomitantly,
problems are also coupled with theory or theoretical positions taken by researchers.

Theory provides a view of what could happen in cyber security by postulating
hypotheses about how human-cognitive agents transform their world. Because our
worldview necessarily incorporates human-in-the-loop processing of cyber security,
practice is typically known (heeded) by the experience that an agent (analyst, operator,
or user) encounters while involved with distributed work. At the core of the LLH then
is the coupling of theory-problems-practice and the ways they are informed by feed-
back from the four elements that can provide additional enhancements of
data/information/knowledge. As learning ensues in a given element it feeds-forward to
setup processes in other elements as well, and also improves comprehension. Research
coupling among these elements also may yield secondary increases regarding use and

Fig. 2. Instantiation of LLF for Cyber SA MURI Grant
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modeling. By cycling though these elements the framework affords a living ecosystem
approach to distributed, cognitive work that promotes an interdisciplinary, transfor-
mative, systems-level thinking in advancing success in cyber-worlds. We will return to
unpack this figure with more specificity as we get into the specific activities of our
MURI research a bit further along in the chapter.

Engaging the Problem Space – Distributed, Cognitive Work. We begin by
reviewing some of the attributes we know about the problem space. Our framing of the
problem is best taken as ‘situating cyber situation awareness’ paper (McNeese et al. 2011)
developed directly from our MURI work. That paper enabled a distinctive cognitive
engineering perspective to understanding cyber-worlds, which has continued in our
research throughout the grant. So the first premise is that awareness within cyber worlds is
work that engages cognition within specified contexts wherein technology developments
improve aspects of sense-making, decision making, problem solving, and/or action
potential.

This coincides with a human centered approach where cyber security is viewed as
first and foremost as distributed, cognitive work wherein tools and technologies support
cognitive work to improve performance (eliminating problems, enhancing capabilities,
removing constraints, adapting response). Taking that as our baseline, lets delve in
more depth as to what this means. The attributes we find embedded with the cyber
security world embroil around difficulties humans have as agents engaged with a
complex context. Figure 3 summarizes these problem attributes on a general level and
the consequences that emerge for humans.

Fig. 3. Problems encountered in distributed work settings
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Exploring Cyber Distributed Cognition Using the Living Lab Framework
Considering the above problems and issues that are pertinent within cyber security
operations, there are three specific areas (premises) we wish to look at:

(1) Cyber-situation awareness as distributed cognitive work as performed in a given
context, field of practice,

(2) Cognitive work will focus on human-systems integration centered on information
fusion for both hard and soft sensor data,

(3) Cyber operations potential can improve with apropos teamwork (both within and
across team performance).

Given that our theoretical approach within the Living Lab Framework is distributed
cognition and given we have defined what some of the problems are in practice, we will
now look at other components of the framework that have been explored the last
several years: (1) knowledge elicitation, (2) ethnographic exploration, (3) scaled world
developments, and (4) prototype technologies. The LLF is not pre-specified in a linear,
assumed order but rather is adaptable to the circumstances the researcher must work
within. This chapter reviews outcomes associated with distributed cyber security,
socio-cyber systems, and awareness by summarizing accomplishments within two
distinctive but related trajectories: qualitative research and quantitative research. Both
of these trajectories as part of the LLF are mutually informative and provide feedback
cycles to further ‘knowledge as design’ as more results become available. While there
are multiple research accomplishments within each track this chapter focuses on recent
work. We begin with qualitative research.

3 Qualitative Research: Knowledge Elicitation/Ethnographic
Data

One of the challenges for research in cyber-security is the access problem of experts.
Unfortunately, much of the work in cyber security operations is classified and therein
unattainable. To overcome this early in the MURI we were able to; (1) participate in a
workshop at Arizona State University with some cyber analysts who provided
invaluable information to general levels of thinking about cyber analyst work and what
situation awareness amounted to –from their experiences, (2) interview/observe dif-
ferent kinds of cyber analysts from different venues (university, business) and in a war
game exercise, (3) collect results from a survey given to 112 cyber security experts, and
(4) conducted interviews from students from our College who were participants in a
recent student regional cyber security exercise. In addition, we had the benefit of
faculty members who had prior professional experience and cyber/network analysts.

Through our various contacts we have derived early ideas about cyber work and
further elaborated the spectrum of problems that are extant and relevant. We have
previously published aspects of # 1, 2, and 3 above (Tyworth et al. 2013) so will not
reiterate everything mentioned there. Many of the problems mentioned earlier in the
introduction are present in cyber activities, and we have discovered from triangulating
across these sources of data that cyber security: (a) involves a hidden – often ill-defined
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threats, (b) takes place in a notational environment with much context switching pre-
sent, (c) location and spatial cognition is emphasized (thinking about space in the
computer is different than physical space), (d) representation of locations (where cyber
attacks occur) especially with temporal constraints is often a problem (this motivated
our development of a visual analytics workbench), (e) tracking of problems-situations
range from location-time-space representations translatable into semantic descriptions
(data-information-sensor translations), (f) there is often collaborative and intuitive
reasoning preset wherein human and machine tools related to situation awareness may
be most useful), (g) more data is not necessarily useful as it can produce overload and
obfuscates comprehension, (h) tools are not very good – they do not deliver what was
promised (often this has to do with scale up problem), (i) having to reason and process
more information can result in fatigue and burnout (which contributes to mindlessness),
and (j) there is often isolation – no common ground present and therein collaborative
problem solving is not really supported in any effective way.

We discovered that implications associated with awareness - given these problems
– are important. Situation awareness can come and go dependent on what information
is known or unknown at a given point in time and this acts as hidden knowledge across
team members in the team setting. As complexities grow the focus of intentions can
become blurred, disjointed, and channelized (more evidence of mindlessness in oper-
ation). Understanding attacks can be confusing when SA comes and goes and when
these attacks are multiple and distributed over time. While there are more insights
discovered that represent some of the main findings, this qualitative section focuses
more on the recent qualitative study with students. (See Tyworth et al. (2013) for more
information regarding other qualitative work that imbues individual and team-based
distributed cyber cognition.)

Regional Student Competition. One of the primary objectives for recent work in
cyber distributed cognition was focused one the use of a Cyber Threat regional exercise
which our SRA students participated in as student teams. This objective represents
more of a need for qualitative data directly taken in the form of knowledge elicitation
interviews, which can then be used to propagate initial concept map-based models.

Preparations and Development. We were given an opportunity to have access to a
College of Information Sciences and Technology Security Club project wherein
members competed in the Mid Atlantic Collegiate Cyber Defense Competition. This
allowed us as researchers to develop a qualitative study to determine how they would
problem solve and make decisions when presented with an engaging Cyber Security
Threat Situation. As part of the competition they were asked to participate in a chal-
lenge problem.

Challenge Problem. The following paragraph describes what they did on the challenge problem
in the regional competition:

The work they performed was typical cyber-defense activities. They were given remote access
to two Linux and two Windows-based servers to defend from live “red-team” attackers. They
were also provided dynamic injects of tasks they were asked to perform – typical systems
administration tasks, account creation, database updates, etc. They had full administrative
access to the systems they were defending, so they could do anything they wanted. Typical
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tasks included enumerating and securing accounts with administrative access (changing from
default passwords), identifying and updating software with patches, modifying configuration of
software to turn off unneeded services, etc. During the exercise, the students needed to identify
what was wrong (configuration, patches accounts, services), figure out if attackers were utilizing
those vulnerabilities to compromise systems, and turn off attacker access if they were able to
locate that the attacker had gained access.

Methods. The participants for the qualitative study were recruited from the team of
students that were participating in the National Collegiate Cyber Defense Competition
(CCDC). After the project was described to students. Informed consent forms were
signed, and the participants were questioned about their team experiences, training and
preparation activities, and understanding of the competition and their teammates. The
interviews were recorded and notes were also taken to supplement the digital recordings.

When all of the interviews were completed, the digital recordings were sent to a
transcription service that transcribed the data word-for-word. In instances where the
recording was inaudible the handwritten interviewer notes were used for clarification.
All of this data was analyzed by two of the researchers collaboratively. Key phrases
were pulled from the transcript and put into a spreadsheet. Once the key phrases were
identified, the same researchers worked together to identify themes and categories in
order to create the coding scheme (see Table 1). This coding scheme was again col-
laboratively used to classify each of the key phrases previously identified. In cases in
which a classification did not exist, the coding scheme was modified and the process
continued as normal.

Results. The outcome of the coding scheme application resulted in specific frequency
of occurrence of codes across all interviews. This highlights the nature of distributed
cognition, situation awareness, and individual and team cognition as it relates to stu-
dents identifying, exploring, and solving the challenge problem(s).

In addition to understanding the content of the entire set of interviews vis-à-vis the
coding scheme, a plan was derived to produce a descriptive model of the student’s
distributed cognition to ascertain how situation awareness emerged within knowledge,
context, and process. The use of concept mapping (Zaff et al. 1993) was chosen as a
flexible, lightweight kind of cognitive model and was collaboratively formulated by the
same researchers who coded the interviews - by utilizing the raw text of the interviews
and the frequency occurrence produced by the results of the coding scheme. An overall
plan was generated to produce an integrative, overlay model of cognition (see Fig. 4).

To initiate this plan, the first phase accomplished included creating a declarative
concept map to represent some of the major findings in the coding scheme (as appli-
cable to the actual interview text phrases) to come up with a first-level model of
knowledge underlying distributed cognition in cyber operations teamwork. The
declarative concept map in turn represents element # 1 in the overall overlay: intention.
The other elements (solution path, teamwork in evidence, cognitive processes
demonstrated) would also need to be developed to completely in the next phase of
future work to completely propagate the entire overlay cognitive model. The first phase
model (see Fig. 4) is heavily informed by the activity of planning and re-planning, and
determining what role uncertainty plays in accomplishing the overall challenge prob-
lem. As we perused this initial concept map there was much to be learned in how
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Table 1. Coding scheme used to analyze interviews

Fig. 4. Declarative concept map of intentions-solution paths
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individuals and teams formulate what the challenge problem consists of, and in turn
how to begin tackling it. All of this is valuable for understanding comprehension of
cyber threat activity, and how this might be improved with new cognitive technologies
that would enable information fusion and potential gains through collaborative
teamwork.

Implications. It is evident that students working together in teams often struggle to
understand how they will solve the problem given to them and how they can work
together to reap the benefit of their collective talents. In newly formed teams this is
difficult process as it minces strategic knowledge resident in teamwork processes with
specific knowledge needed to solve the problem at hand.

Furthermore, the management of their intentions becomes a reified issue in that
they have to spend time figuring how to work as individuals but yet as an interactive
team, including defining “function allocation” (i.e. Who will do what when with what
tools?). Although this was a first-level concept map specifically focused more on
planning – it is the first of several concept maps that could be generated as part of the
layered representation.

4 Quantitative Research: Simulations, Design Prototypes
and Experiments

Much of the work within this trajectory is interrelated as we often design scaled worlds
(and the scenarios within) as human in the loop simulations to address specific research
problems-issues-constraints initially revealed by novices and/or experts engaged in
specific problem spaces (e.g., novice Security and Risk Analysis (SRA) students
engaged in the Mid-Central Regional Exercise as reported in the previous qualitative
work section). So at the most fundamental level scaled worlds have been designed to
take broad problem spaces that exist in practice and scale them down into experi-
mentally tractable simulations that are can be controlled and manipulated according to
objectives. The goal is to have an experimental simulation that represents many of the
elements of the cyber operations context (such that it appears as a real work envi-
ronment) but is adaptable for testing and evaluation purposes. To that end, most of our
simulations-scenarios are adapted for either testing the theory-based understanding
(distributed cyber cognition and awareness) or for evaluating the intervention of an
innovative prototype within the scaled world (socio-cyber systems) to see if it influ-
ences individual or team performance. Once a prototype is tested and design to the
point it positively influences performance in the scaled world, then it is at the state of
readiness for application within the real world context it was designed for. If the LLF
has evolved technologies to this point they are then inserted into the real world context
for actual application testing and the cycle of understanding begins again. At this point
we have not actually placed prototypes into actual practice as they still need further
testing under different conditions.

The simulations are absolutely designed from our worldview in the sense that they
represent human-environment transactions and are strongly ecologically contextualis-
tic. The transactions needed occur when some form of ‘change of state’ emerges from
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the context which requires a human to perform in a certain way to cause positive
change in addressing problems-plans-subproblems-outcomes. Indeed, all of the simu-
lations we have designed represent changes in the cognitive-contexual continua that a
person or team must contend with. Affordances for action are created based on
emerging events that create changes in various states which can then be resolved by
application of different types and amounts of resources (effectivities). Certain team
roles restrict who may do what at what time but together this syntax creates complexity
representative of real world cyber situations that are often time-based. Awareness
comes from comprehending the emergent situation based on assessment of events
within situations, and how well resources are producing positive effects in resolving
events. The development of socio-cyber systems often springs off of developing new
technologies that specify information about an affordance to make it more visible or
known, extending the conditions under which an effectivity is appropriate, advancing
awareness based on expectations of state changes, and sharing of hidden knowledge to
create a bigger imprint of the common operational picture at any point in time. Tasks
can require analytical inquiry at the individual level but also may demand information
sharing and collective induction. By simulating real world events and simulations much
can be known that was not previously considered. This brings forth ‘knowledge as
design’ and generates new ideas and concepts that are relevant to cyber security
concerns.

The simulations have built in dependent measures that accumulate the degree to
which performance approaches the optical level based on how well individuals or
teams resolve the total number of situations-events that occur in the simulation, and to
what degree or level they were resolved to. These simulations require comprehension
of the problem, awareness of changes that emerge, communications with team mem-
bers about all aspects of what is going on, and a lot of individual work representative of
a particular role they are responsible for. Because the simulations often present
dynamic occurring cyber events, the best-laid plans have to be refigured and revised.
This emulates the necessity for replanning which is often one of the bugaboos expe-
rienced in complexity and problem solving. When replanning is successful
human-environment transactions make headway and problems dissipate. In many
cases, the distributed social interdependencies are the most important considerations to
pay attention to (i.e., where cyber awareness develops and comes into play as to
whether performance will increase or decrease) as they create uncertainty, analytical
reasoning, are heavily dependent on temporal awareness. The simulation design affords
implementation of actual experiments wherein experimental independent variables are
manipulated to see the effect upon dependent variables. The simulations in general also
manage control variables that are necessary so as not introduce new extraneous vari-
ance. Often as mentioned above scaled world simulations tests a given hypothesis
derived from the theory under examination, but it can also test different states of a new
technology to see how it might interact with other experimental variables as part of an
overall study. Therein, the scaled worlds, experiments, and technology prototypes are
intimately coupled together for evaluating ideas and concepts within a domain that
represents the real world problem specifications.
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Specific Cyber Simulations Developed. During the first four years of the MURI grant
one of the focus areas was to specify, create, and build simulations that would emulate
salient elements of (1) cyber distributed cognition (2) cyber situation awareness
(3) innovations in socio-cyber systems. The goal for these simulations was to provide
some degree of flexible experimental control that would impact scenario design gen-
eration and to provide quantitative testbeds that could be activated for specific human
in the loop experiments. In turn we achieved our goals by developing 3 specific scaled
world simulators (1) CyberCITIES (2) TeamNETS (3) IdsNETS (4) NETS Dart. The
CyberCITIES simulation was our first simulator in the cyber area and the task focused
on recognizing and utilizing information surrounding access control within cyber
security (Reifers 2010). Because these simulators have been reported and described
elsewhere we will not dwell on them here, Tyworth et al. (2013). By all accounts they
were successful as providing adequate experiences with different aspects of cyber
security operations albeit with certain constraints and assumptions. One of the essential
issues for all the simulations is determining how much training to provide for students.
Actually the topic of training and learning is an area the simulations might be extended,
as training over time produces insights, expertise, and awareness that was not present
previously. This argues for actually conducting longitudinal studies that emphasize the
learning of metacognitive activities, spontaneous access of knowledge when it is
needed, and how to operate and integrate knowledge effectively as a team. While most
experiments focus on single shot studies (one and done) it is our belief that the LLF is
best implemented when longitudinal simulations are invoked.

All of the simulations focused on both individual and team cognition requirements
within an emerging scenario design in which different events had to be assessed and
processed with some rigor. These simulations absolutely required interdependencies
across the information-role-context coupling, and all of the simulations represented
analytical thinking requirements and the need to communicate with teammates in order
to obtain acceptable scores. The simulations also provided a 2-way testbed where the
outputs from qualitative research could be a basis for developing a scenario that was
grounded in reality. Although each of these simulations had limits as to what could be
done – they provided a basis for generating situation awareness and situated action
within a specified cyber distributed cognition context. Likewise, the simulations were
designed so that new prototypes could be configured within the simulation. This
enabled human in the loop testing of new innovations, which could be compared with
control cases, as well as salient experimental variables that represent some of the
problem states and issues we identified earlier (e.g., time pressure).

The simulations are all predicated on client-server technologies wherein command
and control are achieved vis-à-vis experimenter’s stations. The picture in Fig. 5 shows the
laboratory setups of some of the simulations. Individual stations are shown on the top and
bottom figures (enabling experiments to be conducted in which participants act as indi-
viduals, members of a closely linked and interacting team, or members of a pseudo
distributed team environment.) The middle picture of Fig. 5 shows our Extreme Events
Laboratory which supports 3-D visualization experiments, utilization of 3-D sound (i.e.,
experiments with sonified data interaction) and combined visualization/sonification
interactions.
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Simulations were designed to absolutely be distributed in the sense that they could
provide distributed space (team members are connected via interfaces and chat rooms
but remotely located from each other), distributed information (information has to be
fused together at individual and team levels to address task demands), and distributed
context (in some simulations context switching must occur which challenges
awareness).

Human in the Loop Experimental Studies
As part of the nexus between theory-problems-technology feedback loop within the LLF
we have utilized this set of simulations for experiments that help to inform and understand
cyber distributed cognition in general and how awareness evolves within socio-cyber
systems in particular. The goal of human in the loop experiments is to test individual and
team cognition under variously constrained conditions to evaluated theoretical per-
spectives, hypotheses that aim to discover new possibilities in opportunistic problem
solving, and to develop and test innovative solutions to problems that are difficult. The set
of experiments we have designed and implemented are a mere subset of what is possible
to look at given the simulation capabilities, but are the ones we have data on to date.
These studies taken as a whole demonstrate that cognition-context-communications-
computation-teamwork all play roles in successful problem solving to varying degrees.
The design, implementation, and evaluations we produced using the Team NETS, Ids-
NETS, and DART NETS simulations have been previously described in Tyworth et al.
(2013) but are captured here to provide additional edification as to how our new simu-
lations can be used. The following exert describes experiments that were undertaken to
further the understanding of cognitive science within cyber operations:

“We have conducted experiments using the scaled- world simulations. One set of experiments
examines transactive memory and CDA. To conduct these experiments, we have updated
NeoCITIES scaled-world simulation (c.f., Jones, McNeese, Connors, Jefferson, & Hall, 2004;
McNeese et al. 2006) to better support the dynamic and rich nature of the cyber security
environment. The new simulation, the NeoCITIES Experimental Task Simulation (NETS), has
been extended to support richer scenarios and complex decision making. The current imple-
mentation of NETS (referred to as idsNETS) has been implemented using intrusion detection
data to mimic the role of an intrusion detection analyst. We have plans to extend the NETS
functionality to be able to simulate scenarios from the other operational domains we identify in
the future.

For our own research, we are addressing the issue of the formation and maintenance of
transactive memory systems in synchronous distributed collaborations. To study this, a new
version of the NETS simulation was designed (teamNETS) to simulate collaborative problem
solving tasks within a cyber-environment. This version of the simulation was extended with
numerous enhancements to better support our research questions and transactive memory
research at large. Within the study, each team member is assigned a particular specialty, and in
order to achieve high performance, it is necessary that they communicate and share relevant
information to solve different types of events. From this study we hope to gain an understanding
of how these transactive memory systems are formed in distributed collaborations, and how
new systems can be designed to better support this process.

Transactive Memory was first conceptualized by Wegner (Wegner 1986) as an “interper-
sonal awareness of others’ knowledge” and can be conceptualized as a specialized form of
Cyber Situation Awareness, where rather than focusing on, or being aware of, aspects within the
cyber environment, your awareness is grounded in the cyber knowledge, activities and
behaviors of your collaborators. An effective Transactive Memory System can give a human
quick and coordinated access to another person’s specialized expertise (Lewis 2004). Numerous
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Fig. 5. Laboratory environments for cyber operations
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studies have shown a positive link between a team’s Transactive Memory System and its
performance in collaborative tasks (c.f., Ellis 2006; Moreland and Myaskovsky 2000; Pearsall
and Ellis 2006).

Whereas Transactive Memory is an important thread within team research it is mainly
approached from a management or organization psychology lens, often only considering the
humans. Since its inception, technology and information have evolved dramatically, though
Transactive Memory has remained fairly constant. Research has focused primarily on exploring
its effect in new domains, and extending the concept as a research tool, but no one has examined
how new technologies have changed how we, as humans use this transactive memory. In order
to bring Transactive Memory into the 21st century, it is imperative that we understand how
transactive memory has changed with synchronous distributed collaboration systems, social
networks, and crowd-sourced knowledge repositories, to name a few.

A second set of experiments is being conducted to look at the impact of task load on the
ability of participants to establish and maintain cyber-SA and prioritize tasks. Maintaining cyber
SA is, in part, dependent on the ability to prioritize attention. Cyber defense analysts must
attend to alerts associated to potential threats and respond to them within time constraints,
requiring a prioritization of events in accordance to their threat level. However, high levels of
cognitive workload may limit the ability of analysts to focus their attention on priority tasks. For
example, unexpected surges in threat level in some events may not get noticed in time. An
interface that provides information on anticipated threat level could facilitate analysts’ ability to
attend to unexpected surges.

In this set of experiments, we explore the effect of a workload-preview on performance in a
dual-task cyber- security event monitoring context using our NETS-DART scaled-world sim-
ulation. The simulation provides a dual- task environment. The primary and secondary tasks
represent internal and external networks in an organization. All participants are presented with
two types of scenarios – regular scenarios and surge scenarios. The difference between the two
is that surge scenarios consist of secondary-task events that grow in threat-level and exceed that
of concurrent primary-task events. Experimental results are expected to provide insight on the
effect that workload previews have on attention- allocation, task management and cyber-SA in
multi-task cyber-security contexts. (pp. 8–9)”

After completing the previous simulations (TeamNETS, IdsNETS, and DART
NETS), we embarked on the development and test of simulation designed to be
strongly linked to actual cyber security operations. This resulted in the newest and most
current development of a scaled world simulation termed Cybernetic Team Simulation
(CYNETS). The following section describes ongoing work that led to CYNETS
becoming a reality.

CYNETS Simulator Proof of Concept. At this point in the chapter we turn now to
the most recent proof of concept simulation that was designed, CYNETS.

Preparations and Development. Inherent in our simulation – CYNETS - was the
desire to create scenarios that built off of realistic hard data to provide a solid scaled
world feel wherein the collective demands on distributed teams would be bound to both
hard and soft data integration. Also, we desired a simulator with a scenario that
required discovery-information seeking, team communication/coordination, cognitive
processing, and therein a task that was ill/defined and uncertain to a degree that would
enable the necessity of developing cyber SA.

CYNETS Task. The work they performed was typical cyber-defense activities. They
were given remote access to two Linux and two Windows-based servers to defend from
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live “red-team” attackers. They were also provided dynamic injects of tasks they were
asked to perform – typical systems administration tasks, account creation, database
updates, etc. They had full administrative access to the systems they were defending, so
they could do anything they wanted. Typical tasks included enumerating and securing
accounts with administrative access (changing from default passwords), identifying and
updating software with patches, modifying configuration of software to turn off
unneeded services, etc. During the exercise, the students needed to identify what was
wrong (configuration, patches accounts, services), figure out if attackers were utilizing
those vulnerabilities to compromise systems, and turn off attacker access if they were
able to locate that the attacker had gained access.

Simulation Data. To develop hard data fusion elements, the experimental simulation
data was created in the lab environment from a similar perspective. The simulated data
was fabricated from a network of computers in the laboratory that simulates an active
network of computers from a fictitious organization called “ABC” (see Fig. 6).
The ABC network includes three servers and 25 workstations. The data that was
provided to simulation exercise analysts included a 24-hour period of logon/logoff log
data from a Windows 2012 server for the entire network.

In this 24-hour period, accounts were logged on and off of computer systems to
create actual log entries in the Windows Security Log of the server. While the actual
events of successful logon and logoff events are entered into the Security Log of the
authentication server, these are not the only events that are generally displayed there.
A windows domain treats computers in a similar way to the way it treats users. They
must also log on and off. However, a systems authentication is more automated. Also,

Fig. 6. ABC simulated network
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as a user authenticates and accesses networked services, other authentication records
are also in the log to include every time a networked user accesses a different network
device. This noise of normal activity often clouds the real issues of authentication
failure and account misuse. The data set that was presented to simulation participants
had some level of normal noise, but generally was limited to successful logon, suc-
cessful logoff and unsuccessful logon events. Embedded in the presented authentication
data was a series of failed logon attempts, followed by an eventually successful event.
This simulated a password-guessing activity that resulted in a compromised account.

Additionally, the same 24-hour period was used and a number of viruses were copied
on to the computers. The antivirus program was allowed to detect these files and take
appropriate action – either delete or quarantine the files with the malicious code.
Together with the updates of new antivirus definitions, these two types of records were
presented in the antivirus data. To simulate unsuccessful antivirus actions, anti-virus
alerts were fabricated repetitively on one system. This mimics the behavior of some
antivirus applications – where a suite of malware is installed on a system that re-installs
other parts of the suite if they are removed. The undetected malware is indicated because
of the repeating successful removal of several sets of other parts of the suite. Together
with an outdated set of virus definitions, an analyst is led to the conclusion that the
system must be infected with malware that is not detected by the old set of definitions.

The final set of data is patch management. In this case, we created a set of records of
normally applied updates. However, we also intentionally left one system offline for a
period to show the lack of updates being applied to that system. Additionally, we filled
the hard drive of another system to prevent it from having patches applied. This system
showed “failed updates”, primarily because the drive was full. A network analyst
seeing records from these systems would be able to interpret that the systems needed
hands-on attention to figure out why they are not receiving their patches.

Methods. Three triad teams were recruited from an Information Sciences and Tech-
nology (IST) course within the College of Information Sciences and Technology
(IST) at the Pennsylvania State University. Each individual was randomly assigned to
one role for the simulation either (1) Windows Authentication Analyst (WAA),
(2) Anti-Virus Analyst (AVA), or (3) Windows Update Analyst (WUA). Each role is
responsible for reactionary machine and problem identification through the simulated
logs as previously described.

Upon entering the lab and signing the informed consent forms, participants receive
their randomly selected role and are given a pre-trial demographics survey. Subse-
quently, they are directed to read through a role-specific PowerPoint presentation for
training. After all participants have completed the training presentation, a 5-minute
training scenario is started to allow the participants to get familiar with the interface and
the task. When the training scenario is finished, the participants are given a survey to
quantify their individual situation awareness (SA) using NASA-TLX (Hart and
Staveland 1988), SART (Taylor 1990) and MARS (Matthew and Beal 2002).

After the survey is completed, participants are given an additional training scenario
followed by another individual SA survey. Following both training scenarios, the
participants are given a quick debrief about the scenario and the proper response. Next,
the first performance scenario is started and once complete is followed by the same
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individual SA measures but with the added Shared SA Inventory (SSAI) (Schielzo
et al. 2009). Subsequently, participants are asked to complete the second performance
scenario and the same individual SA and SSAI surveys. Upon completion of the final
survey, participants are debriefed about the fictitious nature of the scenarios and
thanked for their service.

Results. The simulation was tested initially with 3 teams to assess feasibility and
capture the performance measures mentioned above. Everything worked well in the
simulation, and students were able to perform in the role of individual and team cyber
analyst duties in determining routine and threat activities as part of their task. While the
initial proof of concept was conceptualized, implemented, and tested- and met the
expectations of the experimenters, more robust testing and experimentation is desirable.
This is discussed further in the future work section below.

Implications. The CYNETS scaled world simulation represents the development of a
challenging cyber operations environment that emulates real world threat assessment
that involves distributed cognition across individual and teamwork functions. As such
it provides a capability for extending understanding of hard (and potentially soft data
fusion) within an emerging milieu. The implications are that the study of the problems
mentioned at the beginning of this report can be brought into the lab setting and studied
for further illumination of situation awareness within cyber defense. Further work on
cognitive technologies that are human-centered in design can be embedded within the
information architecture underlying the simulator designed to undergo precise
human-in-the-loop testing to determine how they improve human/team performance.

Innovative Prototype Technologies

Visual Analytics Test-bench. During the research on the Multidisciplinary University
Research Initiative (MURI) on cyber situation awareness, we conducted research on
tools and visualization aids for cyber analysts. There are numerous visualizations that
have been developed to aid the visualization and analysis of network systems (see for
example Stall et al. (2014) and Shrvavi et al. (2011)). In particular, N. Giacobe
(Giacobe (2015)) developed a prototype cyber analyst workbench illustrated in Fig. 7.
The tool extends the typical concept of providing network-type displays (e.g., overlays
of computer network topographies on geographical map displays, network “traffic”
displays, attack maps, link diagrams, etc.), to include linking text-based data (e.g.,
cyber-network sensor data and reports on cyber-attack activities), with social network
information (indicating potential threat perpetrators), timeline information, and ongoing
analyst hypotheses and notes. The aim was to explore how a cyber-analyst might
conduct situation assessment, analogous to the concepts of situation analysis performed
by analysts for traditional non-cyber military operations. Indeed, Giacobe explored the
applicability of the Joint Directors of Laboratories (JDL) data fusion process model for
cyber security applications (Giacobe (2010)).

Complex Event Processing
In addition to visualization aids, research under the MURI grant explored automated
tools to detect cyber events and activities. The concept of Complex Event Processing
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(CEP) has emerged from the business community and crisis management. The concept
involves developing an explicit and implicit representation of conditions, observables,
and contextual information that provide evidence for an emerging activity or event.
Rimland and Ballora (2014) explored the application of CEP to detection of
cyber-attacks. Their architectural approach is illustrated in Fig. 8. In addition to con-
sidering the CEP approach, they also explored the transformation of cyber data into
sounds (sonification) in order to improve the interface with analysts (viz., transforming
network conditions into sounds so that analysts could more readily detect anomalies).

Discussion/Future Work
The work undertaken represents further effort to open discovery, understanding, and
prediction as to how situation awareness emerges in distributed cyber operations (both
individually and in teamwork). While this is a lofty goal, the research described above
(coupled with our five previous years of MURI research) has begun to make necessary
in-roads in these areas. In particular, we have designed, implemented and provided an
initial proof of concept for the CYNETS scaled world simulation involving distributed
information fusion surrounding an emergent adversarial threat situation. While the first
experimental design and test of the simulation only involved the incorporation of hard
data fusion, the scaled world is designed to include soft data fusion in future studies to
further extrapolate nuances of cyber situation awareness as cyber operations are
employed in both routine and non-routine opportunistic problem solving sets.

Our use and testing of the scaled world using scenarios involving human-in-the-loop
testing with Security and Risk Assessment (SRA) students within the College of
Information Sciences and Technology validates that it is possible to create a realistic
emulation of cyber security using typical data expressions and use from day-to-day

Fig. 7. Prototype analyst workbench (Giacobe (2013))
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cyber analyst activities. The simulation affords analysis of individual cognitive pro-
cessing as well as team cognitive processes to comprehend and discover specific
problems and issues that arrive in predicting correct answers or solvation of complex
problems. Having the availability of this type of simulation gives an additional tool to
breakdown the reasons for individuals and teams not coming up with the absolute
correct answers. This purports a “failure-driven learning” approach wherein over time
correct answers may be discovered through use and interaction.

Concomitantly, it gives an ability to assess and analyze why wrong answers or
procedures occurred potentially giving rise to detect and isolate bugs in cognitive
models, and/or barriers to learning how cyber situation awareness comes into existence.
Learning why SA does not envelop in the individual and in turn the group provides the
basis upon which human-centered cognitive technologies can be developed (as
opposed to just blindly throwing technology to the wall to see what sticks).

In addition to developing and testing the CYNETS simulation we were provided an
additional unique opportunity to have access to IST students participating in a regional
cyber security exercise. This access allowed us to interview students especially as to
how they plan to attack a cyber threat situation (again both individually and in teams)
and allowed a different kind of exploration as to how students identified, defined,
investigated, and solved problems (or not) but from an alternative mode of under-
standing in contrast to an experimental design and simulation-based study. It is
important because; (1) it was deemed state of the art for student teams (circa 2015),
(2) it was provided by governmental officials who are fully aware of the embedded
issues and constraints and therein represented what would be indicative of wicked

Fig. 8. CEP processing architecture for cyber SA
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problems in the literature (Churchman 1967), and (3) these students will very soon be
practicing cyber analysts so it is important to see how they interpret the cyber word and
see what their shortcomings are in terms of distributed cognition and cyber situation
awareness as they represent the new generation who will be combating threats of the
future.

Many of the contextual and human-centric elements of decision making came into
play (e.g., how they setup teams and utilize expertise, how they planned and re-planned
the problem (metacognitive actions), how they knew how far to go in terms of pursuing
a given path of solution, how they make team decisions, etc.) really influence their
overall awareness of who they are, how things work together, and how the emerging
context restrains what they can do in a limited timeframe (time pressure). Like many
complex problems uncertainty and reasoning about uncertainty will impact the direc-
tionality of interdependent problem elements and how they become aware of what a
threat is – where it exists at – and whether it is current.

Our intent with the qualitative interviews of students was to apply a coding scheme
relative to the interests we have outlaid in work for the last six years (i.e., mainly
pursuing a distributed cognition worldview that emphases learning and the evolving
transactions between agents (human or computational) and the environment). Once our
encoding scheme was applied to interviews we were able to use it to engage devel-
opment of an initial concept-map based descriptive model (basically focused on
planning and how people tackle the problems resident in the exercise). Concept maps
afford descriptive based cognitive models which can be flexibly used in different ways
but mainly as lightweight knowledge representation typologies emanating from
knowledge elicitation activity (Zaff et al. 1993). We will discuss more about this below
in the future work section.

Our overall goal with the modeling part of the Living Lab Approach, however, is to
generate what we refer to as a layered, declarative concept map. This models declar-
ative (and to some extend strategic) knowledge resident in a novice or expert cyber
analyst for a given challenge problem within a specified context. As such it employs
both cognitivistic and contextualistic layers of understanding and thinking as a person
or team evolves through solvation of the problem presented. Because the map is
heterarchical and is entrenched within the concept-relation-concept syntax it is maxi-
mally flexible and not over constrained. The coding scheme and concept maps of
interviews of novice-level students can be useful to contrast and compare against expert
concept maps for further elucidation, and inspire specific requirements for training.

In summary, much has been discovered. However, still more needs to be discovered
about distributed cognition, information fusion, and teamwork as it contributes to
establishing situation awareness in cyber defense. The approach taken here has always
been to keep cycling to various components of the Living Lab as opportunity presents
itself with eventually the intent to intervene in real world practice with; (a) effective
cognitive technologies that truly impact positive use or (b) Innovative training for
individuals and teams involved in complex cyber security problems. We turn now to
discuss potential future work that directly follows directly from our research activities
from this last year.
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Future work. If one steps back from what has been accomplished, it clearly sets up
some new research channels and extensions that could come into effect. We will briefly
discuss what needs to be done in the next phase to further establish this line of research.

First, for the experimental research we feel that the next step is a full-scale exper-
imental study involving CYNETS. Our hope would be to run an experimental design
wherein hard fusion is crossed with soft fusion access. In this case soft fusion repre-
sents specific intelligence gathered on the threat that emerges during the course of the
scenario. This would complement the hard fusion component and provide an additional
dynamic in the teamwork component. This would provide a fuller scale test and actual
experimental evaluation for publishing (assuming significant effects were obtained).
The orchestration of the soft fusion element could be information provided only to one
team member at a given point in time (simple soft data fusion) or unique information
could be given to all three team members at different points in time (complex soft data
fusion). There is experimental evidence that suggests team members only share that
which is unique, which if true really limits the collective induction possibilities in the
cyber context. Our intent would be to try to utilize ROTC students (as a kind of more
DoD-aware student base) and compare with IST/SRA students (who are probably more
aware of the technology and security-risk aspects of cyber systems).

Second, the coding schema data can be further propagated as a more integral
concept map that involves layered representation to couple together different per-
spectives on knowledge that underlies situation awareness and distributed cognitive
process. The first step would be to produce additional declarative, procedural, and
strategic knowledge-based concept maps according to the planned overlay concept
mapping typology (see Fig. 4). In the tradition of the AKADAM techniques (see Zaff
et al. 1993) it is the intent to use the lightweight concept map model as the basis for;
(1) establishing user needs and (2) defining new interface or cognitive technologies to
obtain what Perkins (1986) refers to as ‘knowledge as design’. The trajectory would be
to use the entirely propagated layered concept map across every element as a basis for
prototyping new designs that improve situation awareness in individual and distributed
cognitive activities.

Third, the results from the experiment can be merged with the qualitative study to
mutually inform each facet of our research (e.g., the research independent variables can
be directly derived from qualitative data, and likewise the results of experiments can
inform better cognitive models of individual cyber analysts and teams of analysts as
they engage situation awareness in this kind of context.

Finally, another future goal would be to expound on descriptive lightweight models
and create new middleweight models in the form of abstraction hierarchies and the
cognitive decision ladder (Rasmussen et al. 1994). These models emphasize both
structure and function more than concept maps but are given to make extant the actual
contextual variants as well as providing representation of insights when learning
proceeds. This is important because both kinds of models set up the cognitive systems
engineering of adaptive resiliency systems of awareness in cyber operations which is
needed where evolutionary uncertain information fusion foments across a highly dis-
tributed environment. Eventually, the goal would be to learn from the discoveries
inherent in student exercises as well as the experimental designs in a way that really
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strengthens and reinforces the cognitive models and ensuing technologies that are
waiting to be developed for the next generation.
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Abstract. Information complexity and expanse of cybersecurity space
surpasses the cognitive ability of individual analysts to be truly situ-
ationally aware. Team level situation awareness in cyber security can
be described as the coordinated perception and comprehension of sig-
nificant events in the network by all team members that serve as the
basis for effective response actions. Effective teamwork is imperative to
transform individual analysts’ disparate cognition and situation aware-
ness into team level, collective cognition and situation awareness. We
employed a hybrid methodology that makes opportunistic use of a mix
of field observations, simulation, modeling, and laboratory experimenta-
tion to study and improve team situation awareness in the cyber security
domain. Findings from experiments summarized in this chapter demon-
strate the important role of teamwork at every level of cyber security
defense and the detrimental effect of team process loss on overall cyber
defense performance.

Keywords: Teamwork · Collaboration · Communication · Human fac-
tors · Cyber security · Simulation · Modeling · Cognitive Task Analysis ·
EAST

1 Introduction

Situation awareness (SA) is to be cognizant of relevant changes in the environ-
ment either happening at the moment or forthcoming [15]. The concept of situa-
tion awareness (SA) was originally used to refer to an individual pilot’s awareness
of changes relevant to the flight. Translating this into cybersecurity defense con-
text, situation awareness would refer to an individual cyber defense analyst’s
(human operator defending an organization from cyber attacks) awareness of
changes to network/system activity that might constitute an attack/breach.

Situation awareness is a dynamic cognitive process whereby an individual or
a group of individuals need to continuously modify and update their SA with new
information from the environment [16]. However, even a medium or semi-large
sized organization would typically have to manage massively interconnected net-
work of systems (both mobile and non-mobile) and software services containing
several known (yet unpatched) and unknown vulnerabilities. Computer networks
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are predominantly monitored for security attacks through signature-based sen-
sors that produce large amounts of alerts that could be rife with false alarms.
In addition to unreliable attack event data, large amounts of data in the form
of system logs and network traffic data are also collected for analysis and attack
detection purposes. Hence, information environment in cyber security can be
characterized as a big data problem for human analysts who have to process
the large amounts of information to detect attacks. Such a level of complexity,
information overload and expanse of cybersecurity space surpasses the cogni-
tive ability of a single analyst or system to continuously process and update
information to be truly situationally aware.

Cyber security detection task, therefore, requires a large group of human ana-
lysts and a multitude of technology to divide and work round-the-clock to effec-
tively defend large computer networks from continuous cyber attacks/breaches.
In the information overloaded cyber security environment, technological solu-
tions are undoubtedly crucial for achieving good situation awareness and for
attack detection but currently it is not feasible to develop security solutions
(e.g., host/network intrusion sensors, network mapping software, security ana-
lytics and visualization) to solely have complete security awareness and respond
to threats reliably. The human analyst and technology must operate interdepen-
dently to triage and analyze the large amounts of threat information to detect
attacks. Human analysts are especially essential for developing hypotheses about
emerging threats and for using contextual knowledge to prioritize threats based
on severity and to respond to attacks appropriately. It is important to recog-
nize that the “awareness” in situation awareness resides neither with the analyst
alone, nor with the technology alone, but with the joint human-technology sys-
tem [25].

Attack surface is constantly evolving especially with new vulnerabilities
detected every day on a growing amount of hardware and technology. It is not
feasible even for an expert individual analyst assisted with highly intelligent
technology to have all the knowledge and expertise or pay attention to such
widely disparate threat vectors. Hence, a highly collaborative team of analysts
with diverse knowledge, skills and experience is necessary to keep organizations
abreast of evolving threats. Furthermore, attacks are increasingly multi-step (a
combination of techniques used to deliver, exploit, command and control) and
therefore events observed by different analysts could be pieces of a larger attack
that spans different parts of network or could be pieces of redundant attacks
observed by different analysts at different parts of the network. Attacks can
also be stealthy, strategic and can include non-technical attack vectors such as
social engineering. Pertinent information to detect such attacks are often distrib-
uted across time and space (different network end points and systems) and would
require inputs from many other teams to successfully detect and respond. Hence,
situation awareness necessary to detect advanced forms of threats is difficult to
achieve and requires members of different teams and analysts working across
work shifts to collaborate and share information with each other. This requires
understanding how different components of this system (individual operator,
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team of operators and technology) work together interdependently to achieve
situation awareness and also the human-system gaps impinging these interac-
tions. Hence, complete security situation awareness is improbable or difficult
to achieve through interactions only between an individual analyst and his/her
technology. Individual analysts within a team and organization, supported by
technologies conducive to human collaboration, would need to effectively com-
municate, and share information and knowledge with each other to detect highly
sophisticated cyber attacks of this time and the future.

Furthermore, security analysts and technology do not operate in vacuum but
within the context of a complex sociotechnical system that is organizational
security. In addition to large networks of computers and a manifold of threat
detection software, this sociotechnical environment include several human oper-
ators and stakeholders (e.g., security defense analyst and responder) working in
different roles, capabilities and at different times of the day. For example, ana-
lysts would typically have to work with system administrators, data stewards,
physical security teams, security training teams, software vendors, end users,
employees, privacy teams and even legal teams to maintain the security posture
of the organization.

Finally, information sharing and collaboration between organizations about
emerging threat vectors are also crucial to inhibit the spread of novel attacks
(such as zero-day vulnerabilities and attacks) to different organizations. Informa-
tion disclosure between organizations could involve disclosure of newly detected
vulnerabilities, disclosure of attacks/breaches or disclosure of initiatives taken
to proactively deter identified attacks. A large body of work has led to web
based tools that enable information disclosure between organizations. Further-
more, governments have developed information sharing and analysis centers to
encourage cyber security information exchange. However, confidentiality, legal
implications, cost of disclosure and brand reputation largely inhibits information
sharing between organizations. Nevertheless, information sharing and collabo-
rative initiatives between organizations and between government agencies are
necessary for large scale security situation awareness which is in turn critical to
the overall security posture of an entire nation.

The Iranian Airbus tragedy of 1988 in which a commercial flight full of pas-
sengers was mistakenly shot down by USS Vincennes [6] is a classic example of
the effects of poor teamwork. Although, till date, there are no widely publicized
reports about attack detection failure due to lack of teamwork between analysts
within an organization, there are some preliminary evidence from observations
of cyber defense exercises that point in that direction [19,21,37]. Such adverse
events in the cyber environment that stem from lack of human collaboration
could be avoided by working proactively to improve teamwork between ana-
lysts. Efforts to improve teamwork and collaboration within organization and
between analysts have been minimal. However, there has been some work to
improve information sharing between organizations partly because it is a much
more publicized policy issue. As we have enumerated, effective human collabora-
tion and information sharing at every level of the cyber defense process is vital
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for developing a more secure Internet ecosystem. Therefore, it is important to
measure and improve team level security situation awareness at every level of
cyber security. In this chapter, we explore the role of human collaboration and
information within the cybersecurity system and the impact of collaboration on
achieving security situation awareness.

2 Team Cognition

Team cognition can be defined as cognitive processes such as learning, decision
making and situation awareness occurring at the team level [34]. Not surpris-
ingly, team cognition has a significant effect on human performance especially in
complex socio-technical environments [7,10,34] such as cyber security. The three
major theoretical perspectives used for explaining team cognition are: shared
cognition or shared mental models, transactive memory, and interactive team
cognition.

2.1 Shared Mental Models

The shared cognition or shared mental models view has been around for more
than two decades and is the most widely adopted approach used to explain
team cognition [1,7,22,34]. It adopts the concept of mental models (individual)
and extends it to explain cognition in teams. Mental models can be defined as
“mechanisms whereby humans are able to generate descriptions of system pur-
pose and form explanations of system functioning and observed system states,
and predictions of future system states” [33, p. 7]. Cannon-Bowers, Salas, and
Converse [2] first developed the concept of team mental models based on their
study of expert teams: “When we observe expert, high performance teams in
action, it is clear they can often coordinate their behavior without the need to
communicate” [1, p. 196]. Shared cognition [1,7] theory suggests that team per-
formance is dependent on the degree to which the knowledge and understanding
of the task and the situation is similar across the members of the team. In sim-
ple terms, it requires the members of the team to be on the “same page”. The
shared cognition model is often critiqued for its simplistic view of team cognition
given that it is unlikely that all individuals have identical knowledge structures
[10]. Similarly, it is not feasible for all analysts in a team (even in a small team)
to share the same knowledge and awareness of the threats in the network due
to the massiveness of computer networks and information complexity inherent
in cyber security defense. There could however be overlapping knowledge and
information between analysts that could play a role in overall team performance,
but would still require a significant amount of interaction between analysts to
transform individual cognition into team level cognition.

Cross-training, wherein members of a team are trained on each others team
roles, is often used to foster shared team cognition [34]. Training cyber defense
analyst teams for shared cognition through cross training is not pragmatic
because cyber threat landscape is evolving and it is not possible for an analyst
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to know, learn and have experience on all the emerging vulnerabilities, threats,
adversarial tools and techniques. Furthermore, it will be difficult to cross-train
cyber defense analysts because analyst’s roles in general are almost homoge-
neous with subtle differences in terms of skills and experiences (largely tacit).
Also, cross-training analysts conducting different roles such as triage analysess,
correlational analyses an and forensics analyses is also difficult considering the
highly technical nature of each role. Therefore, cross training for cyber defense
teams is not practical.

2.2 Transactive Memory

In everyday life, we often use memory systems outside of our own minds (i.e.,
calendars, notes and directories) to remember things such as meeting times and
phone numbers. To formalize this type of memory which is distributed across
individuals and systems, Wegner [42] introduced transactive memory. Transac-
tive memory considers each individual in a group a memory system holding
distinct information and knowledge along with the awareness of what others in
the group know. Transactive memory is similar to external memory, but instead
of remembering to look at book for a certain information, we just remember
that our team mate is an expert on a topic and that asking her or him will give
us the same information in a faster and more comprehensible manner. There-
fore, instead of trying to train every analyst to know everything, analyst team
members can leverage each others’ expertise to achieve their goals. However, this
type of team behavior is also contingent on good team interactions mostly in
the form of team communication.

2.3 Interactive Team Cognition

Cooke and colleagues [8,10] proposed a theory of Interactive Team Cognition
(ITC) which states that team cognition can be observed in team interactions.
This is contrasted to the earlier theory of shared team cognition [1] which states
that team cognition is the sum of the knowledge of individual team members.
ITC does not however dispute the importance of individual knowledge for effec-
tive performance, but argues instead that team cognition is not solely tied to
the knowledge of the individual members of the team. ITC goes further to posit
that team cognition is not a final product but an ongoing activity that con-
stantly updates and clarifies individual and team cognition. This is in contrast
to the shared mental models perspective that views team cognition as emerging
from relatively static knowledge structures of individuals and therefore mea-
sures of cognition and performance are aggregated from the individual level.
Hence according to ITC, team cognition has to be studied and measured at
the team level through observation of team level processes such as communica-
tion. Communication is the key medium through which a team of humans form
relationships, collaborate and share information. Communication could be con-
ducted through various forms such as face-to-face communication, non-verbal
communication and even through virtual mediums such as telephone networks
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and internet networks. Whatever the form be, communication is a key element
in the team process. Communication in cyber security defense teams is also mul-
timodal. Finally, according to ITC, team cognition is unique to each context and
therefore needs to be studied for each context and importantly, in the context.
ITC fits well as a theoretical driver to measure and improve team cognition in
the cyber defense environment because threat landscape in cyber space is con-
stantly evolving and therefore team level interactions between analysts should
be an ongoing activity. Such consistent interactions would enable the analysts
to have good security awareness of their network and to take the appropri-
ate response. This would eventually lead to good cyber defense performance. It
should also be noted that interactions between analysts need to be less biased
to gain good security situation awareness [27].

3 Team Based Situation Awareness

There are several definitions of situation awareness (SA), however the defini-
tion which is widely used is “the perception of the elements in the environment
within a volume of time and space, the comprehension of their meaning, and the
projection of their status in the near future” [15, p. 97].

Situation awareness conceptualized at the team level is called team situation
awareness (Team SA). Team SA is viewed as an important factor to be consid-
ered in designing human-machine systems and interfaces [36]. Endsley defines
team SA as “the degree to which every team member possesses the SA required
for his or her responsibilities” [17]. According to this perspective, the team’s
performance depends on the level of situation awareness in each of the team
members and one member’s poor SA can affect the team’s performance. How-
ever, this model of team SA does not go far enough [18]. It may be relevant to
homogeneous groups, but not to heterogeneous teams and this perspective may
not suffice as team increases in size [9]. If a team is truly an interdependent
group, then each team member will have different, though perhaps overlapping,
perspectives on the situation. In a complex and dynamic world, it is likely that
two or more perspectives on the team will need to be fused in order to have SA
that extends beyond an analyst’s screen of alerts. The fusion takes place through
some form of team interaction often communication. For example, one analyst
may be aware of a denial of service attack on a network server and once this
information is integrated with another analyst’s awareness of two other similar
attacks on a different network a bigger picture emerges. Without the interaction
and integration, the team as a whole cannot perceive all the threats, comprehend
them, and project appropriate responses.

In short, team SA is much more than the sum of individual SA [35]. This
follows from the perspective of Interactive Team Cognition [8] that espouses that
cognitive processing at the team level occurs through team interactions situated
in a rich context. This view of team cognition can be contrasted with others that
focus on the aggregate of individual knowledge (e.g., [24]). Thus by placing the
focus on team interaction, team situation awareness can be described as the coor-
dinated perception of change in the environment by team members that serve as
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the basis for effective action [18]. According to this view, team SA means, mem-
bers of a team becoming aware of different aspects of the situation and knitting
the pieces of the puzzle together through communication or other interactions to
achieve team situation awareness and to take appropriate actions [35]. This view
[11] suggests that team members through team interactions transform individ-
ual knowledge to collective knowledge and in the process achieve team situation
awareness. Hence it is important to study team level interactions to detect team
level process loss and biases among cyber defense analysts to truly improve team
level situation awareness.

Team cognition and its processes have been profusely investigated in other
domains such as medical teams, air traffic control and intelligence analysis.
Therefore, there is a large collection of literature on cognitive biases that affect
team cognition in such complex domains. In contrast, research in the cyber secu-
rity domain have predominantly focused on the technical side of the problem,
even though it has been widely characterized as a socio-technical problem [14,23].
Studies to explore the human side of the cyber problem are minimal and mostly
have focused on the individual analyst because the task on first sight seems to
be an individual cognitive task. Champion et al. [3] found that team processes
such as communication and collaboration play important roles in the outcome
performance, which is detecting potential cyber attacks. There is very little work
done so far to explore the various aspects of team cognition of cyber defense. Due
to the complex, heterogeneous and dynamic nature of cyber defense, it would
be more suitable to study team level interactions of analysts and identify factors
that improve team level interactions and team performance.

4 Living Lab Approach

The methodology that we employed to study team level processes in cyber
security was a hybrid methodology that makes opportunistic use of a mix of
field observations, simulation, modeling, and laboratory experimentation. The
methodology centers on the use of synthetic task environments [12] or simu-
lations that represented a compromise between field studies and artificial lab-
oratory experiments. The methodology that we used to conduct research on
teamwork in cyber defense is presented in Fig. 1. Multiple methods were used in
an integrated fashion so that results from one method provided input to another
method. At the heart of this approach was the use of Synthetic Task Environ-
ments (STEs) for laboratory experimentation.

4.1 Cognitive Task Analysis

The methodology starts in the field with Cognitive Task Analysis (CTA). Gain-
ing a good understanding about how the operators in the real world perform
the cyber defense task was essential for conducting research in a setting that
is faithful to the real world. CTA was used to understand the tasks and the
cognitive processes and requirements underlying those tasks at individual and
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Fig. 1. Overall methodology used to study team processes in cyber defense

team levels. As shown in Fig. 1, the findings from the CTA provided input for all
other methodological steps including modeling, STE development, development
of measures, and simulation-based human-in-the-loop experiments. The CTA is
also a good source of research questions and hypotheses to be tested in later
experiments.

Access to cyber defense analysts at their workplace was often restricted due
to confidentiality policies and also due to workplace time restrictions. Hence,
field studies to understand the different roles, responsibilities and team process
in cyber defense was achieved through field observations of cyber defense exer-
cises conducted at both academic (with students) and organizational (defense
organization) levels. In exercises organized by defense organizations, roles and
responsibilities of team members were found to be structured and rigid whereas
the roles of team members in academia based cyber defense exercises were loosely
defined (responsibilities are exchanged as the exercise evolves). However, in both
venues, we observed that there was a team leader assisted by team members
either monitoring networks for intrusions or taking response actions to already
discovered intrusions. In academia based cyber defense exercises, leadership role
was often shared whereas in other non-academia based defense exercise, lead-
ership was centralized. Most of the defense activities in both venues were live
activities such as monitoring for attacks, analysis of activity logs and response
to attacks. Offline activities such as code and malware analysis was only a small
part of these exercises. The team sizes at cyber defense exercise were observed
to be usually a larger 10 person team. However, a survey we conducted with 130
people working in cyber defense (predominantly working at academic settings)
indicated that cyber defense team size varied between a 3 person team and 5
person teams with members of the team working on different roles.

In cyber defense exercises, the amount of team interactions widely varied
between teams and admittedly some teams in academia based exercises demon-
strated higher level of interactions due to the competitive nature of these exer-
cises. However, the amount of communication and collaboration between real
world cyber defense analyst teams was still not clear and therefore we sought
expert (cyber defense managers) opinion through interviews. Experts’ anecdotes
indicated that even though analysts worked in groups, there was a lack of com-
munication and collaboration within cyber defense analyst groups (working in
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group doesn’t automatically mean there is teamwork). They hypothesized that
existing reward policies and lack of team training could be the contributing fac-
tors. There was preliminary evidence from observational study conducted by
Jariwala and colleagues [21] that teamwork could lead to better performance in
cyber defense analysis. It is difficult to collect valid measures of team perfor-
mance and team process measures from cyber defense exercises due to lack of
experimental control and due to lack of priority given by current cyber defense
exercises towards improvements to human factors and team processes. Hence,
evidence from controlled experiments are required to validate the effectiveness
of teamwork in the cyber defense context.

Perception of teamwork in cyber security defense was found to be positive
among both cyber defense analysts and security managers. Security managers
reported to value teamwork that leads to automation of tasks and collaborations
that lead to detection of attack signatures not seen before [40]. Positive emotions
reported towards teamwork indicated that teamwork is highly valued in cyber
defense. However, as opposed to other emergency response teams such as EMS
(Emergency Medical Support), collaboration in security must be initiated by
the individual analyst i.e., an analyst initiates collaboration on detecting an
attack that needs more than one person’s knowledge or expertise to solve [4]. In
many other domains, the task is well structured with each member of the team
playing a particular role and requiring the individual members to work as a team
on the task from the beginning. Therefore, even though teamwork is perceived
positively by the cyber security community, it is currently not a natural part of
the task (part of the reason why collaboration and teamwork is minimal in cyber
defense). A significant amount of extra effort is required to foster collaboration
in security through team training and collaboration tools.

4.2 EAST (Event Analysis of Systemic Teamwork)

As part of the CTA, we conducted an EAST (Event Analysis of Systemic Team-
work) analysis [41] of cyber security systems. This framework characterizes an
organization in terms of tasks, information, and a social system. The output
of the analysis is in the form of graphics that represent these various aspects
of the system that can be examined and compared qualitatively and quanti-
tatively. EAST provides a high-level view of the large sociotechnical system.
The assumption is that with adequate models of cyber security systems we can
understand how different system configurations (variations in team coordination,
management structure, task allocation, information needs, and social network-
ing practices) impact cyber situation awareness and ultimately, cyber security.
Three organizations participated in this part of the CTA. Organization A was
a cyber security organization within the military. Organization B was a cyber
security unit within a large information technology company and Organization
C was a cyber security unit within a small information technology company.

The models were informed by one or two sources of data. In all three
cases a Subject Matter Expert (SME) from each organization consented to be
interviewed about their units. Interviews took approximately one hour each.
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Fig. 2. ORG A - social network
diagram

Fig. 3. ORG B - social network diagram

Results of the interviews were used to tailor surveys targeting analysts at each
of the three organizations. Survey questions were aligned with the task, infor-
mation, or social aspects of each organization. There were no survey responses
returned from Organization A, and 7 and 1 responses respectively from Orga-
nizations B and C. The interviews, supplemented by these surveys as available,
were instrumental in deriving the EAST models that are shown here.

Interview Results: Organization A. The organization A (ORG A) interview
revealed that the 50 cyber security analysts work mostly independently with lit-
tle to no teamwork or collaboration among them (See Fig. 2). However, the ana-
lysts do exchange information with each other using chat and shift-change meet-
ings. Additionally, the analysts operate under a hierarchical chain of command
and have the roles of manager, team leader, and analyst. In general, analysts stay
with the same customer and hence do not rotate assignments. The process of
analyzing and reporting incidents is fixed, with analysts gathering information,
documenting findings, and reporting to cyber command (for review, achieve)
and their customers (other DOD sites). Lastly, analysts leave the ORG A team
largely due to burn out (average turnover rate is 1–1.5 years). The ORG A team’s
main goal is to discover and report on all possible intrusions that are against
prevailing policies. In order to accomplish this goal the analyst’s main tasks
are: hand-off meetings, customer assignments, review of events, gather batches
of alerts, review alerts, dispatch those alerts, and then gather a new batch of
alerts. These tasks are done sequentially with one task not being more impor-
tant than the other. Analysts gather needed information using online references,
dictionary, work flow systems, and other resources (Fig. 4).
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Fig. 4. ORG A - sequential task net-
work

Fig. 5. ORG B - information network
diagram

Interview Results: Organization B. The ORG B team of fourteen analysts
consists of detectors (6), responders (6), a threat analyst and a manager working
closely together with the operations team (See Fig. 3). Communication among
the detectors and responders is most common, but overall the team seems to
communicate across all levels. The subject matter expert also stated that the
analysts routinely collaborate on a team level. Furthermore, some of the analysts’
roles are interchangeable, whereas others are not. For instance, a responder can
perform a detector’s job, but not the other way around.

The overall goal of the team is to ensure zero data loss. Interrelated measures
are taken to wade off cyber attacks. These measures are: detection, monitoring,
response, proactivity, design for security and availability, and server handling
(see Figs. 5 and 6). In particular, the detectors are responsible for classifying
the alerts into “buckets” of good, bad, or neutral ones, whereas the responders
further investigate the alerts (bad ones first, then neutral ones). The threat ana-
lyst models what is going on in the network and the operation team answers
questions responders may have (difficult alerts). They also train detectors and
responders. The survey revealed some interesting findings (see Fig. 7 for sum-
mary). For instance, though the importance of teamwork was expressed among
the analysts it was not part of their daily routine. Also, analysts did not work
under time constraints this was a 24-hour operation, so if something did not get
done in the previous shift, then the next shift would take care of it. In addition,
the analysts reported that they did not have difficulty processing and integrating
information while assessing critical incidents.

Interview Results: Organization C. This response team consists of four
security specialists (see Fig. 8). Their roles and responsibilities are: Information
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Fig. 6. ORG B - sequential task network diagram

Security Specialist (monitoring logs, audits, etc.), Information Security Engineer
(vulnerability scans, analyzing information, responding to security escalations),
Information Security Architect (design), and Chief Security Officer (policy set-
ting, process and procedures, customers). The analysts collaborate on a daily
basis and some analysts can perform dual jobs, but in general they do not rotate
out of their positions. However, they do move up with experience. Furthermore,
the analysts’ tasks are interrelated, completed in parallel, and repeated almost
constantly. Log files, Wikis, and other tools are used by the security specialists
(see Fig. 9).

Fig. 7. ORG B - summary

Overall Summary. Some stark differences between the Organization A: com-
puter incident team and the two private security teams exist. As somewhat
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Fig. 8. ORG C - social network dia-
gram

Fig. 9. ORG C - information network
diagram

expected, the organizational structure is much more rigid within the military
computer incidence team compared to the other two teams. For example, ana-
lysts at Organization A generally do not rotate assignments or switch roles.
Yet, both private security teams do so (to a certain extent knowledge permit-
ting). Likewise, most Organization A tasks are completed sequentially and are
dependent on each other, whereas many tasks in the other two teams are done
constantly and in parallel. This rigidity-organizational and task related-may be
one of the reasons why Organization A security analysts burn out more quickly.
However, there are also some similarities between all three security teams. For
one, most tasks are not time constrained since security monitoring is done 24/7.
Hence, alerts not classified in one shift will be classified in the next. Moreover,
all three security teams reported that all tasks are equally important. Lastly,
looking at teamwork and collaboration one finds a wide range of answers. The
Organization A analysts do not collaborate or work in teams, the Organization
B analysts collaborate, but there is little teamwork, and the Organization C
analysts seem to collaborate and work as a team (see Fig. 10).

Fig. 10. ORG C summary of survey results (Only the Chief Security Officer answered
some of the survey questions.)
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4.3 Synthetic Task Environment

Experiments on team interactions need to be conducted in context (through field
studies) or using simulation environments. Due to restricted access to real world
cyber teams and due to lack of importance currently given to team process met-
rics in cyber defense exercises [19], experiments on team interactions in cyber
defense can instead be conducted in the lab using simulation systems that recre-
ate realistic user interactions and work flows between study participants which
would in turn require the participants to exercise some of the same cognitive
process involved while conducting cyber defense in the real world [12]. Synthetic
task environments (STE) are such simulation environments built with the objec-
tive of recreating the cognitive aspects of the real world task with highest fidelity
possible, giving less focus towards the appearance of the real world environment
[12]. STEs tend to have mixed fidelity with the task and cognitive requirements
being higher fidelity than equipment and interfaces.

Results and findings from cognitive task analyses we conducted served as
input for the development of STE called CyberCog [29]. The STE provided an
experimental context that preserved the cyber defense task environment. The
entire cyber defense task flow was not replicated in the STE, because the objec-
tive was also to provide an environment for experimentation that was better
controlled than the field. It can be thought of as an abstraction of cyber defense
environment. In addition to being guided by the CTA, the selection of features
to extract from the field and to be brought into the lab was based on research
questions and technological constraints. As the STE itself was being developed,
task scenarios that served as the experimental task and measures of perfor-
mance, process, and cognition in this context were also developed. CTA data
provided input for these developmental activities and together with the STE
they became the lab based experimental context from which we collected human-
in-the-loop data. Participants in our experiments used this synthetic task envi-
ronment (CyberCog) to perform different cyber defense tasks. However, usage of
the STE to collect measures comes with the added burden of training the study
participants for the specific task which has to be simplified, carefully designed
and tested.

4.4 Agent Based Modeling

Findings from both Cognitive Task Analysis (CTA) and human-in-loop exper-
iments provided inputs for developing computational models and simulations.
They were used in tandem with experimentation to extend empirical results to
situations that are difficult to test empirically (e.g., 100 operators, team inter-
actions occurring over longer time periods) and for theory building to explain
empirical findings. A multi-agent simulation system [28] was used to model the
dynamic, team-level interactions between the analysts because multi-agent sim-
ulations are generally used to study macro level social phenomena emerging
from micro level interactions between agents (can be simple rule based agents
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or more sophisticated cognitive-model based agents). The focus on macro-level
interactions is consistent with the theory of interactive team cognition.

CTA and lab experiments provided theoretically grounded parameters for
multi-agent simulations. Simulations using different combinations of parameter
values were conducted which is infeasible to study through lab based team exper-
iments. The models developed were validated by comparing the human-in-loop
experimental results against the results from the multi-agent model simulation
which leads to findings that ultimately can be applied back in the actual domain.
In addition, the findings from modeling and experiments can feed back to refine
the models and to ask new experimental questions.

These living lab methodologies described were applied to measure the effect
of lack of collaboration (collaboration loss) during triage analysis and effect of
team process loss during correlation analysis on cyber defense performance. As
described earlier, it is important to study and measure team level interactions to
detect team level process loss and biases that would affect situation awareness
in cyber defense. Team interactions during triage analysis and correlation analy-
ses were specifically studied because they are the fundamental and commonly
conducted tasks in cyber defense [13]. Triage analysis is the first level task in
the cyber defense task hierarchy and most of the upper level defense analysis
and decision are based off the information fed by triage analysts. Subsequent
to triage analyses involves correlational analyses of the threats and suspicious
events discovered through triage analyses. An improvement in team performance
at the triage and correlational analyses level would have a positive effect on over-
all cyber defense performance. Next we summarize the experiment and models
used in these experiments.

5 Team Collaboration Loss

5.1 Human-in-the-Loop Experiment

Triage analysis is usually the first step in the cyber defense analysis process.
During triage analysis, analysts monitor the large number of network events
flagged by sensors to determine if events are indeed suspicious or if they are
simply false alarms [13]. Findings from triage analyses feed further analyses for
responding to attacks. Therefore, it is imperative to improve analyst performance
on triage analysis. Triage analysis entails constant monitoring of large numbers
of events that could correspond to a disparate array of known and unknown
attacks requiring the analyst to have a wide range of security expertise and to
constantly acquire new expertise. A group of analysts are often tasked to perform
triage analyses, but they don’t necessarily have to collaborate and work as team.
The task is generally seen as an individualized task with each analyst working
on parts of the flagged network event data set. However, we hypothesized that
there can benefits to teamwork even at the triage level.

To demonstrate the importance of teamwork in triage analysis, we investi-
gated the effect of teamwork/cooperation versus Individual-work/competition
on triage analysis performance [31]. The synthetic task environment (STE),
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CyberCog [29], was originally built for this experiment. The CyberCog system
was built to recreate the different aspects of triage analysis task as it was per-
formed in the real world, but in a controlled mode. CyberCog was a three-person
synthetic task environment that simulated the triage process in cyber defense
analysis. The CyberCog system presented a simulated set of network and system
security alerts which participants had to categorize as either benign or suspicious.
The classification is based on other simulated information sources such as net-
work and system activity logs, a user database, a security news website, and
a vulnerability database. Alerts used in this system were simplified versions of
their real world counterparts to make them understandable for our experimental
participants who were not familiar with the domain or the task. Simplified does
not imply that the alerts were easy to analyze but simply meant that they are
presented in a form that was free from technical jargon. Simplified data were
used to make the task easy for participants to quickly learn through training.

In this experiment, team members were trained with both diverse and over-
lapping triage analysis knowledge such that each team member had some unique
triage analysis expertise necessary for optimum overall cyber defense perfor-
mance in the experiment. Team members were either incentivized to work indi-
vidually or to collaborate to detect as many attacks as possible through triage
analysis. All team members had access to information that describes each others’
expertise.

We found that participants’ performance on difficult to analyze alerts (or
“hard alerts”) in the team/cooperation condition was significantly better than
participants’ performance in the individual/competition condition. No difference
in performance was detected on easy to analyze alerts. The participants had to
put more cognitive effort into analyzing “hard” alerts when compared to other
alerts. To accurately analyze the hard alert types, the specialized training pro-
vided prior to the start of the experiment was necessary. It was difficult and time
consuming (not impossible) for a non-expert to learn (through resources pro-
vided) and analyze the hard alerts during the analyses process. In contrast, the
remaining easy alert types were intuitive even to non-experts and therefore the
participants in the individual/competition condition were able to demonstrate
similar performance compared to participants in the team/cooperation condi-
tion when analyzing “easy” alerts. So we hypothesized that teamwork could be
leading to essential peer-to-peer learning that was allowing participants in the
team/cooperation condition to perform better.

Cyber defense performance can be improved through improved team work
between cyber defense analysts. Teamwork between analysts could be improved
by rewarding analysts to collaborate, through team training and by providing
tailor made collaboration tools. However, teamwork might not be desirable in
all instances but it would be during novel events such as during zero-day attacks
and large scale attacks that are complex and overwhelming when countered indi-
vidually. Novel attacks (such as zero-day attacks, Advanced Persistent Threats)
are not an everyday event and are difficult to predict but demands coordinated
teamwork. Hence, consistent efforts to measure and improve team processes in
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cyber defense analyst teams is necessary to enable the team to work together
effectively when required. Cyber security analysts should be made aware that
collaboration is not only important for overall organization’s security posture,
but can also lead to mutual benefits in terms of self-rewards, knowledge expan-
sion and to reduce one’s workload.

5.2 Agent Based Model

Developing lab based, human-in-the-loop experiments of team process in cyber
security is a long and arduous task primarily due to the technical nature of the
task. Therefore, an agent based model was built to replicate and extend the
experiment presented in the previous section to explore the effects of different
collaboration strategies and team sizes on triage analysis performance [32]. Para-
meters for the model was based on findings from CTA, the human-in-the-loop
experiment and past literature in cognitive science. The model was validated
by comparing the results from simulation against results from the experiment.
Results from model simulations indicated that, in novel triage analyses situa-
tions, collaboration can expedite the required learning process through low cost
exchange of knowledge. Moreover, results from the model simulations indicated
that collaboration between a heterogeneous group of people (people with dif-
ferent knowledge structures) can lead to better triage analysis performance in
comparison to collaboration between a homogeneous group of people (people
with similar knowledge structures) because diversity in knowledge could be con-
ducive to analysis of a multitude of attacks. Team size was also found to play an
important role in triage analysis performance. A large group of heterogeneous
team members could lead to excessive knowledge exchange which can be counter
productive in terms of gaining expertise.

Hence, it can be inferred that, fostering and rewarding small groups of het-
erogeneous (in terms of background knowledge and experience) analysts to col-
laborate and triage alerts can lead to improved triage analysis performance.
Collaboration in the team can be sustained through frequent team training.

6 Team Process Loss

6.1 Human-in-the-Loop Experiment

Triage analysis is usually followed by the attack correlation task [13] wherein
the attacks/events flagged to be suspicious are correlated to detect patterns and
relationships between events that could be either temporally or spatially distrib-
uted, and could be part of attacks carried out at a larger scale. Attack correlation
is a crucial contributor to the overall cyber situation awareness because it con-
tributes to the comprehension aspect of situation awareness.

Attack correlation is a cognitively difficult task to conduct due to the vastness
of computer networks and information complexity of cyber security. Attack corre-
lation is essential in detection of advanced forms of threats (APT - Advanced Per-
sistent Threats) such as multi-step attack, zero-day attacks and stealth attacks.
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Currently, there is a scarcity of methods and technologies to proactively detect
multi-step attacks and APTs even though the breadcrumbs of the attack emerg-
ing in a network are available, observed, and most often reported by the analysts.
Currently, it is also in-feasible to program an expert system to correlate and inte-
grate such seemingly disparate information and detect an emerging large scale
attack. However, it is feasible for the human analysts to collaborate, share infor-
mation and incorporate the contextual information essential to correlate and
integrate the seemingly disparate events that are part of a large scale emerging
attack. On the other hand, humans have biases and cognitive limitations that
prevent them from doing such complex correlations and integration.

Training, motivating and rewarding analysts to work as a team solely may
not ensure effective team work and information flow especially in correlation
tasks. Pooling individual analyst’s expertise would be crucial to attack detec-
tion especially in novel attack situations (e.g., zero day attacks) and in detecting
multi-step kind of attacks. However, past literature in organizational psychology
and cognitive science shows us that teams by default are ineffective in pooling
novel information. Teams are known to repeatedly discuss and pool information
which is also commonly known to a majority of the team members. They are
known to be ineffective in using the unique knowledge available with each team
member in making decisions. This process loss is popularly known as informa-
tion pooling bias or hidden profile paradigm [38]. This effect has been observed
in a wide array of teams such as medical teams [5], military teams [26], and
intelligence analysis teams [39] and jury teams [20].

Therefore, we investigated the presence of team process loss in the form
of information pooling bias in cyber defense analyst teams conducting attack
correlation tasks [30]. We also demonstrated that collaborative visualizations,
designed considering human cognitive processes, can be effective in minimizing
this bias and improving cyber defense analyst team performance [30]. Further-
more, agent-based modeling was used to theorize about internal cognitive search
processes in human analysts that result in such biases during their team discus-
sions [30].

Results strongly indicated that all the teams who participated in the experi-
ment exhibited the bias while performing the correlation task. They were found
to spend a majority of time discussing attacks that were also observed by other
members of the team, whereas they spent only a low percentage of time dis-
cussing attack that were known uniquely by each team member, but were corre-
lated and were part of a large scale multi-step attack. Such a biased team discus-
sion in attack correlations could lead to ineffective detection because sometimes
integrating the seemingly disparate unique and isolated events could be crucial
to detecting large scale multi-step attacks such as advanced persistent threats
(APT) [30].

Detection performance was observed to improve in teams who used cogni-
tive friendly collaborative visualization tools during their discussions [30]. Teams
without visualizations on an average detected 30% fewer attacks in comparison
to teams with the visualization. The difference in detection performance was
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from the detection and correlation of increased number of unique attack types
by teams with visualization. These findings indicated that the information pool-
ing bias can be minimized in cyber defense analyst teams conducting attack
correlation tasks by using tailor-made collaboration tools developed taking into
consideration the cyber defense analysts cognitive requirements [30].

6.2 Agent Based Model

An agent based model (ABM) was developed to theorize about the cognitive
search processes used in the head of an analyst who is trying to search for infor-
mation to contribute to an ongoing discussion [30]. Cognitive search processes
were particularly chosen for theory exploration because they were suspected to
be the key component behind the bias because if the team members conducted a
depth first type of search, it would lead to a tunneled and narrow focused discus-
sion spending most of the time discussing the same topic and being myopic about
other potential large scale attacks. Hence it was hypothesized that humans, by
default, use heuristics based on local search/uphill search process [30] to search
for information in their memories in order to contribute to the ongoing discus-
sion, leading to the information pooling bias. Furthermore, when the ongoing
topic of discussion does not appear in the current search neighborhood, it can
cause humans to not recognize the presence of related information available in
other part of memory spaces. Therefore, assistance is needed in the form of
visual interventions to stimulate recognition memory to help find that relevant
information to bring to the discussion.

Three search models were developed and explored: Random Search, Local
Search and Memory-Aided Local Search. The random search model was the null
model for which agents’ do random walks in search of information to contribute
to the discussion and was developed for comparison purposes to evaluate whether
the models of interest (local and memory-aided) were not producing a stochastic
behavior. Results indicated that both local search models and the memory-aided
local search model deviated significantly from the null model (random search)
and therefore it can be inferred that local and memory-aided local search models
were not behaving in a random fashion [30].

In the local search model, agents conducted local neighborhood search and
moved in an uphill manner in search of information to contribute to the dis-
cussion. In the memory-aided local search model, agents were aided in finding
regions in its memory space where it would be possible to find relevant discus-
sion information and once they knew the region to examine, they did local/uphill
search in that region in search of information to contribute to the discussion. It
was observed that agents in the local search model spent more time discussing
shared information more than agents in the memory-aided local search model.
Similarly it was observed that agents in the local search model spent less time
discussing unique information compared to agents in the memory-aided local
search model.

The models themselves do not convey much information and hence have
to be compared and validated against the complementary human-in-the-loop



222 P. Rajivan and N. Cooke

experiment. The agents in the “local search” model were observed to demon-
strate biased team discussion as observed in the human-in-the-loop experiment.
Furthermore, the agents in the “memory-aided local search” model were observed
to demonstrate less-biased team discussion as observed in teams with visualiza-
tion in the human-in-the-loop experiment.

These results are particularly insightful because we can now suspect that
human analysts could be using simple heuristics based cognitive search process
during team discussions thereby causing them to have such a bias. On the other
hand, they could be lacking a global view due to low recognition memory which
is essential to see the connections between seemingly disparate but connected
information. Therefore, in such contexts, we need tailor made, cognitive friendly
collaboration tools and visualizations that will enhance human cognitive search
processes which is essential for attack correlation analysis.

7 Summary

Cyber defense is complex, dynamic, overloaded with information and to make
things worse, it is rife with uncertainties. Effective human collaboration and
information sharing at every level of the cyber defense process is essential to
maintain an organization’s security posture. Simply bringing a group of analysts
together does not automatically ensure teamwork. Analysts have to be incen-
tivized, trained and aided with appropriate tools to foster effective collaboration
between them. Moreover, cyber defense analysts teams and other closely associ-
ated teams must be experimentally studied to detect team-level process losses.
Improvements to teamwork and team interactions can augment security situa-
tion awareness which is essential for overall cyber security defense performance.

Time restrictions and confidentiality policies inhibits naturalistic field stud-
ies on cyber defense teams. Therefore, it would be beneficial to use field study
opportunities for studying work flow of cyber defense analysts and cognitive
processes underpinning their work flow. Findings from such field studies can then
inform synthetic task simulation development (synthetic task environments) for
running controlled human-in-loop experiments in the lab. Measures and find-
ings from such experiments can further be explored, extended and validated
through multi-agent modeling and simulations. We presented experiments con-
ducted using these methodologies for studying teamwork on two different cyber
defense tasks: triage analysis and correlation analysis.

Cyber defense analysts in the real world have to triage a large number of
security events. Regular, known security events can be analyzed by individual
analysts and would not require a team effort. Events that are novel, difficult to
analyze, non-intuitive (e.g., events associated with zero-day attacks) and emerg-
ing in nature (forewarning events that prelude larger multi-step or APT kinds
of attacks) are often “hard” to analyze accurately due to lack of prior knowledge
and evidence. To analyze such difficult and uncertain events, diverse expertise
and knowledge would be necessary which can be quickly and efficiently achieved
through teamwork among a heterogeneous group of analysts. Applying the extra
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effort to communicate and collaborate with other team members for analyzing
uncertain and novel events could be perceived as an inconvenience or even as
an added cost. However, as we see from the results, instead of trying to reason
and analyze all of the alerts, the analysts can achieve higher performance by
handing-off uncertain alerts/events with other appropriate analysts to leverage
each others’ unique expertise. Collaborating to analyze all alerts may also be
detrimental to performance as shown in our results. Hence, carefully designed
team training methods would help analysts to determine when to initiate collab-
oration, who to collaborate with and also when to pursue analyses individually.
Finally, results from the experiment also indicated that teamwork and informa-
tion sharing could significantly reduce analysts’ workload.

Attack correlation which follows triage analyses involves fusion of disparate
attack information (e.g., attack source, vulnerabilities and systems exploited,
attack path and so on). In addition to the inherent cognitive load associated
with the task, the multitude of parameters necessary to identify relevant attack
patterns would be distributed both temporally and spatially. Such a task sur-
passes the ability of an individual analyst to efficiently make attack correlations
to detect an attack. Therefore, the correlation task is simplified by employing
teams of analysts to collaborate during attack correlation phase. However, past
literature in organizational psychology and cognitive science shows us that teams
by default are ineffective in pooling novel information which is pivotal to cor-
relation analyses. Teams are known to repeatedly discuss and pool information
which is also commonly known to a majority of the team members [38]. Empir-
ical results from our experiments indicate that cyber defense teams conducting
correlation tasks would also be affected by such biases causing sub-optimal deci-
sion making [30]. Hence, even though collaboration among human analysts is
essential for effective attack correlation, the teams also have to be facilitated
with tools to mitigate or reduce such cognitive biases (e.g., confirmation bias
and information pooling bias). It can be further theorized that such collabo-
ration tools can enhance the information search process in-the-head leading to
less biased decision making as shown through our model results. Less biased
information exchange would significantly augment team level security situation
awareness.

The research summarized in this chapter used a combination of human-in-
the-loop experiment and agent-based modeling to investigate team cognition in
cyber defense demonstrating how such a multi-faceted, multidisciplinary app-
roach is effective and insightful for team research in cyber security defense
domain. This chapter demonstrates the benefits of teamwork in cyber defense
through exploration of team interactions and team level cognitive biases in two
different cyber defense tasks. But there are host of other factors too such as
trust, confidentiality and organizational security policies that would be affecting
teamwork which requires further explorations.
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