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Preface

The previous edition of the book Biochemical Basis and Therapeutic Implications 
of Angiogenesis was published in 2013. It included several chapters on the patho-
physiology of angiogenesis and the clinical application of the information derived 
from several laboratories around the world. The book included several chapters 
devoted to the therapeutic implications of growth factors, endothelial progenitor 
cells, microRNA, and angiogenesis inhibitors derived from natural sources.

The editors were told by the publisher that the book was immensely successful 
and received over 35,000 downloads since its publication. The publishers asked us 
to develop a second edition of the book wherein we would have updated informa-
tion on the pathogenesis of atherosclerosis, underlying mechanism, and therapeutic 
applications of this information.

It was a major task to ask some of the authors of previous edition to update their 
chapters to include state-of-the-art information, and to ask new authors to contribute 
novel information.

In the last several years, a number of investigators have described various signals 
and pathways leading to the evolution and persistence of angiogenesis. These include 
a number of growth factors, receptors, redox state, and pro-inflammatory state. Based 
on microarray technology, a host of known pathways leading to angiogenesis have 
been confirmed and novel pathways postulated.

As our understanding of the role of various triggers and inhibitors of angiogenesis 
has expanded, several novel therapies for a myriad of disease states have been pro-
posed. For example, angiogenesis inhibitors have been approved and are used to arrest 
the growth of some tumors. On the other hand, a number of trials have been conducted 
to test the value of pro-angiogenic factors in myocardial ischemia. The results of these 
studies are not consistent and not as revealing as once thought.

We thought it timely to get several world-class experts on different aspects of 
angiogenesis to present their work again in one book. While this book does not 
cover each and every aspect of angiogenesis, it covers most relevant issues in the 
biology of this interesting phenomenon that plays a critical role in physiology and 
pathology. We have organized it in five sections. The chapters in the first part of this 
book mainly deal with the role of growth factors, neuropeptides, and signal 
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 transduction mechanisms as well as cellular regulation by mast cells, integrins, and 
stem cells. The second part of this book deals with the role of angiogenesis in cancer. 
The third part addresses the therapeutic implications of angiogenesis in eye 
disorders. The fourth part deals with the therapeutic implications of angiogenesis in 
cardiovascular disorders and peripheral vascular disease. The last part deals with 
therapeutic implications of angiogenesis in miscellaneous disease states such as 
diabetes and stroke.

We are grateful to Mr. Sheik Mohideen and Ms. Merry Stuber at Springer for their 
continuous advice and understanding during the editorial process. Finally, we thank the 
authors for contributing the best of their work for inclusion in this book. We hope the 
readers will find this compilation of work from several laboratories useful in under-
standing the pathobiology of angiogenesis and designing new therapies. Dr. Mehta 
would like to thank his wife, Paulette, and children, Asha and Jason, for their eternal 
support, and his colleagues for inspiration and all their help over the years.

Little Rock, AR, USA Jawahar L. Mehta 
 Pankaj Mathur 
Winnipeg, MB, Canada Naranjan S. Dhalla

Preface
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Chapter 1
Endothelial Growth Factor Receptors 
in Angiogenesis

David J. Bruce and Peng H. Tan

D.J. Bruce (*) 
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e-mail: davebruce@doctors.org.uk 

P.H. Tan 
Department of Immunology, Division of Medicine, Imperial College London, Hammersmith 
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Abstract It is hard to underestimate the role of endothelial growth factor receptors 
in the generation of new blood vessels. This axis is involved in vascular develop-
ment in embryos and angiogenesis in adults. As the signaling of these tyrosine 
kinase receptors has been elucidated, we have gained an appreciation of the com-
plex interactions with other receptors, co-receptors, and downstream pathways.

Its involvement in pathology makes it a particularly tempting therapeutic target 
with its manipulation offering several theoretical benefits. The most intensely stud-
ied is the role of anti-VEGFR drugs in cancer chemotherapy. Initial trials were dis-
appointing but a decade ago the first drug targeting the vascular endothelial growth 
factor (VEGF) axis was approved, providing a vital proof of concept. Therapies 
specifically targeting the receptor are in early development for prevention of neo-
vascular diseases of the eye. Conversely, promotion of revascularization following 
vascular occlusion is another possible application being studied.

While these therapies show promise, the manipulation of VEGF receptors them-
selves remains a relatively small niche in the therapeutic armory. A deeper under-
standing of the receptor, its co-receptors, and the downstream web of signaling is 
required to complete the pieces of the puzzle and unlock the potential of this receptor 
pathway.

Keywords Angiogenesis • VEGFR • Neovascularization • Tumorigenesis • Growth 
factor • Signaling interactions • Tyrosine kinase inhibitor • Receptor
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1  Introduction: The Signaling Axes Behind Angiogenesis

Angiogenesis begins with the remodeling of the initial lattice of vascular endothe-
lial cell precursors, which results in differential growth of the vessels to form 
branches and sprout new vessels. This requires coordinated communication within 
the preliminary lattice of homogenous vessels. Intercellular signaling continues to 
play a part in the recruitment of supporting cells including smooth muscle, peri-
cytes, and fibroblasts [1] and in the breakdown and deposition of the extracellular 
matrix [2]. This development and remodeling of the vascular network is controlled 
by the interaction of angiogenic growth factors with their receptors and the subse-
quent downstream signaling networks [3] (Table 1.1).

One of the most important and closely studied of these is the vascular endothelial 
growth factor (VEGF) pathway which plays a central role. This signaling cascade 
influences numerous cellular events involved in angiogenesis including endothelial 
cell proliferation and migration, remodeling of the extracellular matrix, increased 
vascular permeability, and survival of new blood vessels [6]. In addition, the angio-
poietin- Tie pathway has been identified as a second vascular tyrosine kinase system 
that is essential during vasculogenesis and adult vascular homeostasis [7].

This chapter will aim to cover some of the evidence for the role of the endothelial 
growth factor receptors in angiogenesis and the interactions of these receptors with 
complementary signaling pathways. The therapeutic potential of VEGF receptor 
manipulation will be discussed, with particular emphasis on antitumor therapies 
where most work has been focused.

2  The VEGF Axis

The VEGF family of signaling molecules was originally identified as a potent medi-
ator of vascular permeability [8] but is now known to stimulate vasculogenesis in 
embryos and angiogenesis in adults [9]. The downstream pathways form a complex 
network involving cross talk with other signaling axes [10]. The end result of these 

Table 1.1 Growth factors, 
receptors, and co-receptors 
involved in angiogenesis [4, 5]

Receptor Role

VEGFR Receptor for VEGF, VEGF, PlGF
Tie-1, Tie-2 Receptor for angiopoietin (Ang)
FGFR Receptor for fibroblast growth 

factor (FGF)
PDGFR Receptor for platelet-derived 

growth factor (PDGF)
NRP Co-receptor for VEGFR
HSPG Co-receptor for VEGFR

D.J. Bruce and P.H. Tan
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pathways is an increase in vascular permeability and the stimulation of cell survival, 
proliferation, and migration, ultimately leading to angiogenesis or lymphangiogen-
esis [3, 9, 11, 12].

2.1  VEGF Structure and Function

VEGF is part of the cysteine knot growth factor superfamily [13] and is found in 
mammals as a family of structurally homologous secreted glycoproteins: VEGF-A, 
VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). VEGF is usually 
secreted as a dimeric glycoprotein [9].

VEGF-A is the best characterized of this family. The VEGF-A gene is found on 
chromosome 6 (locus 6p21.1) [14], and alternative exon splicing produces six iso-
forms (Table 1.2). All of them contain binding domains for the receptors VEGFR-1 
and VEGFR-2 [15], but it is the splicing of exons encoding different C-terminal 
domains that gives each isoform their own unique biochemical properties [14]. 
Proteolytic processing and other posttranslational modifications act to further refine 
VEGF activity [17].

The different isoforms of VEGF have different solubility and bioavailability. 
This is due to the ability of VEGF to tether to the extracellular matrix to varying 
degrees, allowing it to act in a paracrine fashion [18]. The effect of the localiza-
tion of VEGF is reflected in embryos expressing a VEGF splice variant lacking 
heparin- binding and ECM interaction domains. The disruption of VEGF-A sig-
naling, due to failure to generate concentration gradients, leads to endothelial 
cells failing to form additional branches and impaired filopodia function [19]. 
Matrix metalloproteinases (MMP) cleave VEGF-A releasing the receptor binding 
domain. Blocking this activity can arrest the angiogenic switch associated with car-
cinogenesis [20].

Table 1.2 Isoforms of human VEGF-A [15, 16]

Isoform Receptors and co-receptors

VEGF 121 VEGFR1, VEGFR2 Predominant in humans. Secreted into systemic 
circulation

VEGF 145 VEGFR1, VEGFR2, HSPG
VEGF 165 VEGFR1, VEGFR2, NRP, 

HSPG
Predominant in humans

VEGF 183 VEGFR1, HSPG
VEGF 189 VEGFR1, HSPG Bound to ECM proteoglycans
VEGF 206 VEGFR1, HSPG Bound to ECM proteoglycans

1 Endothelial Growth Factor Receptors in Angiogenesis
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2.1.1  The VEGF Receptors

VEGF binds to a family of receptor tyrosine kinases, known as the VEGF receptors 
(VEGFRs). There are three characterized VEGFRs (Table 1.3) which are structur-
ally similar, with an extracellular ligand binding domain, a transmembrane helix, 
and a cytoplasmic region containing a kinase domain (Fig.  1.1) [22]. When the 
ligand has bound the extracellular domain, the intracellular domain autophosphory-
lates, and the receptors dimerize. VEGFRs activate various downstream signaling 
pathways (Fig. 1.2) [9]. The VEGFRs are expressed by endothelial cells with each 
member of the family showing distinct expression patterns, as revealed by in situ 
hybridization and northern blot [23].

VEGFR-1
VEGFR-1 binds VEGF-A and is the only known cell surface receptor for VEGF-B 
and PlGF [21]. While VEGF-A binds VEGFR-1 with higher affinity than VEGFR- 2, 
the tyrosine kinase activity of VEGFR-1 is weaker than VEGFR-2. It has been sug-
gested that VEGFR-1 acts either as a “decoy” receptor to reduce the bioavailability 
of VEGF-A by forming inert complexes or as a dominant antagonist of the axis [24]. 
Additionally, PlGF may act by displacing VEGF-A from VEGFR-1, thus increasing 
VEGF-A bioavailability [25]. Both in vitro fluorescence studies and in vivo experi-
ments showed that cells which lack VEGFR-1 had decreased sprout formation and 
reduced migration. However, a soluble isoform of VEGFR-1 (sVEGFR-1) rescued 
angiogenesis indicating that VEGFR-1 may have a positive regulatory role, possibly 
related to its effect on the localization of VEGF [12]. This effect has been noted in 
FLT −/− mutant vessels, where both membrane-bound and soluble forms of VEGFR-1 
rescued aberrant endothelial proliferation but only soluble VEGFR-1 rescued vessel 
branching. Hence, it may be that heterogeneous sVEGFR-1 expression underlies 
the spatial variation of VEGFR-2 signaling which are required for correct branching 
development [26].

Heterodimers form between VEGFR-1 and VEGFR-2, which may augment cer-
tain signaling pathways. In cell lines expressing both receptors, signaling pathways 
leading to PLCγ activation were enhanced, and these cells showed more efficient 
migration towards VEGF-A compared to cells expressing VEGFR-1 alone [27].

VEGFR-2
VEGFR-2 is vital to angiogenesis. In murine models, knockout of VEGFR-2 leads to 
aberrant vascular development and embryonic lethality [10]. VEGFR-2 binds 
VEGFR-A, VEGF-C, VEGF-D, and VEGF-E.  It is found on both vascular and 

Table 1.3 The VEGFR receptors and their ligands [16]

Receptor Gene Ligands Localization

VEGFR1 FLT-1 VEGF-A, VEGF-B, PlGF Vascular endothelium
VEGFR2 KDR VEGF-A, VEGF-C, VEGF-D, 

VEGF-E
Vascular and lymphatic endothelium

VEGFR-3 FLT-4 VEGF-C, VEGF-D Lymphatic endothelium

D.J. Bruce and P.H. Tan
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In VEGFR3, a
disulfide bridge
substitutes for the
fifth Ig domain

Approximately 750 amino
acid residues

In VEGFR1 and VEGFR2 there
are 7 Immunoglobulin-like
folds.

The domain is split into two
by this 70 amino acid insert.

C-terminal tail

Signalling
cascades

Transmembrane region

Tyrosine kinase domain:

Juxta-membrane
domain

Extracellular domain:

VEGF

Fig. 1.1 The structure of VEGF receptor (VEGFR). The VEGFR has an extracellular domain that 
consists of seven immunoglobulin (Ig)-like domains, except in VEGFR3 where the fifth domain is 
replaced by a disulfide bridge. The intracellular domain consists of a tyrosine kinase domain, inter-
rupted by a 70 amino acid insert, a juxta-membrane region, and a C-terminal tail. The binding of 
signaling molecules to phosphorylation sites present on the intracellular domain initiates cell signal-
ing (see Fig. 1.2). Studies of the crystal structure of VEGFR1 show that the second Ig domain is the 
ligand binding site. The third Ig domain determines ligand binding specificity in VEGFR2 [11]

1 Endothelial Growth Factor Receptors in Angiogenesis
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lymphatic endothelium [16]. VEGFR-2 has at least four autophosphorylation sites. The 
tyrosine residues Tyr1054 and Tyr1059 are required for maximal kinase activity [28], 
and Tyr1175 is known to be crucial for PLCγ/PKC/MAPK signaling which is neces-
sary for endothelial cell proliferation [29]. Tyr1175 is also bound by the adaptor protein 
Shb, and inhibition of Shb reduces PI3K activation and subsequent VEGF-induced cell 
migration [30].

A number of pathways are known to be necessary for VEGFR-2-mediated cell 
migration. Two complementary pathways mediate VEGFR-2 activation of FAK; 
one involves the Src kinase while the other involves RhoA and ROCK. This in turn 
initiates paxillin and vinculin recruitment [31].

Studies on human umbilical vein endothelial (HUVEC) cells indicate that 
VEGFR-2 is involved in the regulation of the actin cytoskeleton via Ras activation. 
Inhibition of this signaling pathway inhibits branching morphogenesis. The Ras path-
way mediates ERK activation which is required for VEGF-mediated cell proliferation 
[32]. ERK signaling is also involved in promoting cell survival and proliferation but 
is inhibited by p38MAPK suggesting cross talk between these pathways influences 

PLGF VEGF-B VEGF-A
VEGF-C

VEGF-D

PI3K

PLCγ

SHP2

Grb2

Nck Rho

Akt/PKB

PI3K

IQGAP

Shb

VEGFR 1 VEGFR 2

NRP 1
HSPG

NRP 2

VEGFR 3

Cell membrane

Protoolytic
processing

Sch

FAX

Ras

Raf
MEK

Akt
PKC

PI3K

ERK 1/2

PLCγ

PKC

p42/44
MAPK p42/44

MAPK

PLCγ
Paxillin

hsp 27

Actin
remodelling

VASCULAR
PERMEABILITY

ANGIOGENSIS (vascular endothelium) LYMPHANGIOGENESIS (lymphatic endothelium)

VASCULAR PERMEABILITY
MONOCYTE MIGRATION
HAEMATOPOIESIS
Precursor cell recruitment
from bone marrow
endothelial cell regulation
in development

eNOS

CELL
PROLIFERATION

CELL
MIGRATION

Endothelial
cell

embryonic
development

CELL
SURVIVAL

p38
MAPK

eNOS

NO

CELL
SURVIVAL

CELL
MIGRATION

FAX Src

Fig. 1.2 VEGFR signaling pathways. VEGF ligands bind to particular VEGFR homodimers and 
heterodimers. Co-receptors may modify this interaction, such as the neuropilins and heparan sul-
fate proteoglycans. VEGFR1 is found on vascular endothelium, VEGFR3 is found on lymphatic 
endothelium, and VEGFR2 is found on both. These signaling pathways stimulate cell survival, 
proliferation, and migration and increase vascular permeability, ultimately leading to angiogenesis 
or lymphangiogenesis (Adapted from Refs. [11, 21])

D.J. Bruce and P.H. Tan



9

the cellular response to angiogenic stimuli [33]. VEGF-mediated activation of cdc42 
and p38MAPK regulates actin polymerization and stress fiber reorganization leading 
to endothelial cell migration via heat shock protein 27 activation [33].

In HUVEC cells, VEGFR-2 co-localizes with the scaffolding protein IQGAP1 to 
the leading edge of migrating cells. IQGAP1 interacts with the cell cytoskeleton to 
manipulate cell motility and morphogenesis [34].

In summary then, VEGFR-2 plays a vital role in endothelial cell survival, prolif-
eration, and migration and stimulates vascular permeability and invasion. These 
processes are crucial for angiogenesis [16].

VEGFR-3
VEGFR-3  in adults is associated with the lymphatic endothelium. It is found to be 
expressed exclusively on lymphatic endothelial and some high endothelial venules [35].

There are two splice variants in humans and both have a high affinity for VEGF-C 
and VEGF-D [36]. VEGFR-3 forms homodimers or heterodimers. The binding of 
VEGF-C induces VEGFR-2/VEGFR-3 heterodimer formation, and the function of 
the regulatory tyrosine phosphorylation sites differs in the various ligand-induced 
dimerized complexes [37]. VEGFR-3 is responsible for inducing cell migration and 
prevents apoptosis via Akt and p42/p44MAPK [38]. Pathways involving PKC, 
ERK1/2, PI3K, PLCγ, SHP2, and the transcription factors STAT3 and STAT5 are all 
influenced by VEGFR-3 signaling [9].

Murine studies have shown lethal defects in vasculogenesis, severe anemia, and 
cardiac effusion in VEGFR-3-deficient embryos. This may be due to a direct result of 
reduced VEGFR-3-mediated signaling. However, it is also possible that these effects 
are a result of cross talk with VEGFR-2, perhaps by the reduction of VEGF-C bio-
availability to VEGFR-2 due to binding of VEGF-C to VEGFR-3 [39]. It is thought 
that VEGFR-3 may negatively regulate VEGFR-2 signaling [40]. VEGFR plays an 
important role during angiogenic sprouting, where endothelial cells develop as either 
tip or stalk cells. VEGFR-3 has also been implicated in reinforcing Notch signaling in 
tip cells of angiogenic sprouts and thus influencing tip to stalk cell conversion [41].

3  Co-Receptors

VEGFR activity may be modulated by co-receptors. Neuropilin (NRP) is a trans-
membrane glycoprotein involved in neuronal axon guidance but is also known to act 
as a co-receptor for VEGFR. However, the mechanism underlying the enhanced sig-
naling remains uncertain. It may be that VEGFR2/NRP1 complex formation increases 
VEGFR affinity for VEGF, or that the intrinsic catalytic activity of the kinase domain 
is enhanced, or the signaling complex may be stabilized with a prolonged half-life. 
While there is still some disagreement in the literature, it is likely that these receptor 
complexes are induced by VEGF binding [9, 42]. Furthermore, VEGF may directly 
bind NRP, and while NRPs lack intrinsic catalytic activity, they may associate with 
other transmembrane proteins to stimulate signal transduction [9]. This potential 

1 Endothelial Growth Factor Receptors in Angiogenesis
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alternative signaling pathway may be a mechanism for resistance to anti-angiogenic 
therapies, as supported by the augmentation of the effects of Bevacizumab when used 
in combination with anti-NRP antibodies [43].

Heparan sulfate proteoglycans (HSPGs) have been identified as co-receptors to 
VEGFR during angiogenesis and vasculogenesis, where it acts to augment the duration 
and magnitude of the response and influences localization of VEGF/VEGFR complexes. 
In situ studies showed a direct interaction between HSPG and VEGFR, and blockade of 
HSPG interactions inhibited in vivo hyperpermeability. This supports the possibility of 
targeting HSPGs in ischemic disease [44]. Chondroitin sulfate proteoglycans bind 
angiogenic growth factors, and their production is increased in cells lacking HSPGs 
in vitro. It appears that there may be functional overlap with HSPGs during sprouting 
angiogenesis but the in vivo implications of this interaction remain unclear [45].

4  The Role of the Endothelial Growth Factor Receptors 
in Angiogenesis and Neovascularization

4.1  The Role of the Endothelial Growth Factor Receptors 
in Tumorigenesis

Tumor growth is restricted by the availability of a suitable vascular supply, and angio-
genesis is required for a tumor to develop beyond a few millimeters in diameter. In 
vivo anti-VEGF antibody administration inhibits tumor growth. The VEGF- VEGFR 
pathway may also exert a direct effect on the proliferation and growth of tumor cells 
themselves [16]. However, immunohistochemical analyses of several human cancers 
have indicated that VEGFR-2 and VEGFR-3 are not expressed by tumor cells. Hence, 
animal models and in vitro experiments should be interpreted with caution [46].

4.1.1  VEGFR-1

VEGFR-1 is known to be upregulated in several tumors. In pancreatic cancer cells, 
VEGFR-1 stimulated upregulation of transcription factors associated with motility and 
invasion [47], and a similar effect is seen in colonic cancers [48]. In vitro multiple 
myeloma cells were found to express only VEGFR-1, and ablation of VEGFR-1 signal-
ing was sufficient to inhibit cell proliferation and motility [49]. Other tumors in which 
VEGFR-1 is upregulated include prostate, glioblastoma, and malignant melanoma [16].

sVEGFR-1 has been identified in breast, pancreatic, lung, and ovarian cancers 
and leukemias [16]. sVEGFR-1 shows antitumor effects when administered in vitro 
and in vivo. This is likely due to its interception of VEGF-A. In a rat hepatocellular 
carcinoma model, tumor weight was decreased 19-fold in cells transduced with 
sVEGFR-1 [50]. Consequently, it may be that the soluble isoform of VEGFR-1 
could be developed for cancer treatment.
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4.1.2  VEGFR-2

A rat anti-VEGFR-2 antibody, known as DC101, inhibits the spread and growth of 
metastases in several models via apoptosis of vascular endothelial cells [51]. In 
vitro, DC101 inhibits neovascularization, while in vivo models showed inhibited 
growth of several cancers including breast, melanoma, and both primary and sec-
ondary lung tumors. Growth was also repressed in human xenografts of epidermoid, 
glioblastoma, pancreatic, and renal cancers [52]. In a murine lymphoma model, 
inhibition of either VEGFR-1 or VEGFR-2 led to altered vessel growth and devel-
opment. However, inhibition of both was required for tumor regression [53] sup-
porting the use of multi-targeted inhibitors in antitumor therapies.

4.1.3  VEGFR-3

VEGFR-3 is a key receptor in lymphangiogenesis and is strongly expressed in 
human tumours including lung, cervical, breast, prostate and colorectal cancers. 
Higher levels of both VEGF-C and VEGFR-3 correlate with increased metastases 
and shorter survival [54]. VEGFR-3 is upregulated on the tumor vasculature but 
poorly expressed in cells from a number of human tumors. Therefore, it is unlikely 
to affect the tumor cells directly [46]. Overexpression of VEGF-C induced hyper-
plasia in peri-tumor lymphatics and led to an increased lymph flow rate, an effect 
which was suppressed by anti-VEGFR-3 antibody administration [55].

4.1.4  Prognosis

VEGFR-1 and VEGF expressions were found to correlate closely to microvessel 
density and were important predictors of poor prognosis and clinical progression in 
nephroblastoma [56]. Similarly, VEGFR-1 and VEGFR-2 were upregulated in glio-
blastoma vascular cells, but not in low-grade blastoma [57]. In non-small cell lung 
cancer patients, co-expression of VEGFR-1 and VEGF was associated with a shorter 
survival time. Co-expression of VEGFR-1 and VEGFR-2 was an independent prog-
nostic factor [58]. Thus, VEGF/VEGFR signaling could potentially provide useful 
prognostic information in the clinical setting.

4.1.5  Metastasis

Tumor angiogenesis is preceded by recruitment of endothelial precursor and hema-
topoietic cells which may act to “prepare” microenvironments for metastatic spread 
[59]. VEGFR-1 induces MMP9 which degrades ECM to allow remodeling. The 
upregulation of MMP9 in healthy lung appears to promote lung metastasis, but this 
effect was abolished in VEGFR-1 knockout mice [60]. However, the rate of metas-
tases formation in murine models was not affected by VEGFR-1 blockade, which 
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may be due to alternate signaling pathways for inducing the “pre-metastatic niche” 
[61]. In human gastric cancer patients, the rate of metastasis was increased in those 
patients expressing high levels of VEGFR-1 in bone marrow and blood [62]. Further 
work is needed to elucidate the precise role of VEGFR-1 in metastatic spread.

4.1.6  Autocrine Signaling

VEGF may act in an autocrine or paracrine manner to amplify the malignant poten-
tial of cells co-expressing VEGFR-1 and VEGFR-2 [58]. In a study of myelodys-
plastic patients, monocyte and myeloid precursor cells were found to co-express 
VEGFR-1 or VEGFR-2 in a majority of patients. It is speculated that VEGF may act 
in an autocrine fashion to promote leukemia cell survival [63]. Autocrine signaling 
has also been suggested to occur with VEGF/VEGFR-1 signaling present on breast 
cancer cells to increase cell invasion [64]. Autocrine signaling via the VEGF- 
VEGFR2-NRP1 axis has been suggested as a mechanism of resistance to anti- 
angiogenic therapies, associated with VEGFR2-NRP1 recycling and a pool of 
VEGFR2 present in the cytosolic compartment of glioblastoma multiforme (GBM) 
cells. Bevacizumab transiently reduces GBM tumor growth, but in vitro inhibition 
of VEGFR2 attenuates glioma stem-like cell viability, thus suggesting a possible 
role of VEGF receptor inhibition to augment current anticancer therapies [65].

4.1.7  Therapeutic Applications

Tumor cells are inherently heterogeneous and genetically unstable. The high mutation 
rate leads to the evolution of resistant cell lines. Endothelial cells are more stable with 
a lower mutation rate, although there is data to suggest that tumor endothelial cells 
may be derived from tumor stem cells. In a murine in vivo model, repeated adminis-
tration and discontinuation of an angiogenesis inhibitor did not lead to drug resis-
tance, and tumors remained dormant for longer following repeated treatment. 
However, there has been a lack of reproducibility of these findings [66]. Nevertheless, 
inhibitors of angiogenesis provide an intriguing method of restricting tumorigenesis.

Murine models of VEGFR-2 and VEGFR-3 inhibition show a reduction in 
metastases in lymph nodes and lung. However, simultaneous inhibition of both has 
a more potent effect [67]. In another experiment, gene therapy-mediated inhibition 
of VEGFR-1, VEGFR-3, Tie-1, and Tie-2 led to significantly decreased ovarian 
tumor mass [4]. Thus, targeting multiple VEGF receptors and interacting pathways, 
such as the angiopoietin network, may increase the efficacy of treatment.

Inhibition of VEGFR in tumors may help to normalize the vasculature and allow 
effective delivery of drugs and decrease resistance to radiotherapy. Blockade of 
VEGFR-2 creates a “normalization window” during which period combined treat-
ment led to the most marked tumor regression in murine brain tumors [68]. However, 
excessive destruction of tumor vessels may hinder drug delivery and generate undue 
hypoxia. The inhibition of VEGFR2 leads to angiopoietin-1 upregulation, pericyte 
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proliferation, and MMP activation and the breakdown of pathologically thick vascu-
lar basement membrane. Measurement of the levels of hypoxia could allow optimiza-
tion of the schedules of anti-VEGFR and radiotherapy combination therapy [69].

Several small-molecule tyrosine kinase inhibitors (TKIs) have entered clinical 
development. These inhibitors were originally identified by screening large peptide 
libraries, but more recently the use of molecular modeling analysis using X-ray crys-
tallographic data has provided a more targeted approach. The TKIs commonly com-
pete for the ATP-binding site within the tyrosine kinase, thus ablating phosphorylation 
and consequent downstream signaling. The ATP-binding region within the kinase 
domain is well conserved between several receptor tyrosine kinase families; thus, 
several VEGFR TKIs have been found to also inhibit other receptor pathways [70].

Initial trials of inhibitors were disappointing with several drugs failing in clinical 
trials. However, the field has been reinvigorated following the successful licensing 
of the VEGF inhibitor Bevacizumab which provided the proof of concept for the 
field. Several inhibitors of the VEGF receptor are in development and a number of 
licenses have been granted for their use (Table 1.4) [70]. A TKI known as SU11248 
(Sunitinib) which targets class II/V RTKs, including VEGFR, PDGFR, c-kit, and 
FLT3, has been licensed for gastrointestinal stromal tumors [71] and renal cell car-
cinoma [72] following successful Phase III trials. Further trials are underway look-
ing at its potential use in breast, non-small cell lung, and hepatocellular cancer [70]. 

Table 1.4 Some antitumor VEGFR inhibitors in clinical development [70]

Drug Trade name Target receptors Trial phase

AG-013736 Axitinib VEGFR, 
PDGFR, c-kit

III

AMG-706 Motesanib VEGFR, 
PDGFR, c-kit

III

ZD2171 Cediranib/Recentin VEGFR, 
PDGFR, c-kit

III

PTK787 Vatalanib VEGFR III
BMS582664 Brivanib VEGFR, FGFR III
SU11248 Sutent/Sunitinib VEGFR1, 

VEGFR2, FLT3, 
PDGFR, c-kit, 
cRET

IV licensed for use in 
gastrointestinal stromal tumors 
and renal cell carcinoma

ZD6474 Vandetanib VEGFR1, 
VEGFR2, 
EGFR1

III

TKI 258 Dovitinib VEGFR1, 
VEGFR2, 
PDGFR, FGFR, 
c-kit

III

BAY43-9006 Sorafenib/Nexavar VEGFR2, 
VEGFR3, 
PDGFR, c-kit, 
FGFR1, B-raf

IV licensed for use in 
hepatocellular carcinoma and 
renal cell carcinoma
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The multi-targeted nature of SU11248 is a key factor in its efficacy. This is demon-
strated by the selective VEGFR inhibitor called SU10944  in combination with 
Gleevec (a PDGF receptor inhibitor) which showed similar in  vitro and in  vivo 
activity compared to SU11248. However, when only one of SU10944 or Gleevec 
was given, the efficacy was significantly inferior [73]. Another successful VEGFR 
inhibitor is BAY 43-9006 (Sorafenib) which was originally developed to inhibit 
Raf-1 and the RAF/MEK/ERK pathway. Again, BAY 43-9006 may owe its efficacy 
to the inhibition of several RTKs. BAY 43-9006 prolonged patient survival in Phase 
III trials in hepatocellular carcinoma and renal cell carcinoma [70], but at present its 
prohibitive cost has limited its use [74]. In orthotopic murine models of human non- 
small cell lung cancer, MEK inhibition in combination with the VEGFR inhibitor 
Cediranib led to superior anti-angiogenic and antitumor effects [75].

More specific targeting of VEGFRs can be achieved by the use of monoclonal 
antibodies. The use of monoclonal antibodies to target VEGF/VEGFR signaling has 
seen success in Bevacizumab, a monoclonal antibody to VEGF-A, which is licensed 
for use in several cancers [76]. The anti-VEGFR antibody DC101 has been shown 
to reduce tumor growth in murine models of colon cancer [77]. However, results of 
VEGFR-targeted antibodies have been less successful in humans. One of the most 
advanced is IMC-1121B (Ramucirumab) which entered Phase II trials for gastric 
cancers, breast cancer, hepatocellular carcinoma, and non-small cell lung cancer 
[70]. The use of small interfering RNA (siRNA) to depress VEGFR-2 expression 
has been shown to reduce invasion in vitro, but the use of this strategy remains a 
distant prospect [78].

One advantage of VEGFR inhibition is the anticipation of a relatively favorable 
toxicity profile compared to conventional chemotherapy. Life-threatening adverse 
events associated with cytotoxic agents have been rarely seen with angiogenesis 
inhibitors [79]. Side effects may be due to the inhibition of VEGF signaling or off- 
target effects, for example inhibition of other kinases. Off-target effects are more 
dependent on patient- or treatment-specific factors, such as comorbidities and dis-
ease stage, whereas the on-target effects tend to be seen with all TKIs [11]. While 
multi-targeted TKIs have shown more efficacy in the treatment of tumors, this is 
associated with an increase in off-target adverse events [80]. Therefore, a careful 
balance must be met between improving efficacy and minimizing toxicity.

4.2  The Eye

VEGF-A is produced by retinal pigment epithelium (RPE) in humans. There is 
limited knowledge of the role of VEGF in the maintenance of the adult ocular vas-
culature, but VEGF-A may act in a paracrine fashion between the RPE and chorio-
capillaries. Currently, inhibition of VEGF does not appear to have adverse effects on 
the ocular vasculature [81]. However, intraocular angiogenesis and changes in vas-
cular permeability underlie the development of retinal vascular disorders including 
retinal vein occlusion, diabetic retinopathy, and age-related macular degeneration 
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(AMD) [82]. Disease activity reflects the balance between pro-angiogenic and anti- 
angiogenic factors. There is impairment of vascular autoregulation, macular edema, 
and aberrant development of retinal vessels [83]. Levels of VEGF-A are high in 
these conditions. In animal models, specific isoforms of VEGF-A are increased in 
certain disorders. Tissue displaying choroidal neovascularization in patients with 
AMD expresses both VEGF121 and VEGF165 isoforms of VEGF-A [81]. VEGF164 
(the murine orthologue of VEGF165) is a potent in vivo inducer of angiogenesis and 
inflammation in the eye. It stimulates ICAM-1 expression on endothelial cells via 
VEGFR2 and chemotaxis of monocytes via VEGFR1. In vitro VEGF165 induces 
activation of human VEGFR1 more efficiently than other isoforms [84].

Soluble VEGFRs are found in the vitreous in patients with vitreoretinal disease. 
sVEGFR-1 levels were found to increase with age, and lower levels were associated 
with more active proliferative diabetic retinopathy. This suggests that sVEGFR may 
be a useful tool in tipping the balance to hinder neovascularization [82]. However, 
it has also been suggested that increased levels of sVEGFR-2 in the vitreous may 
contribute to increased vascular permeability in macular edema. Further work is 
required to elucidate the role of sVEGFR in the eye and evaluate its potential for 
therapeutic use [83].

4.2.1  Therapeutic Applications

VEGF-inhibition is known to be effective for treatment of ocular diseases involving 
neovascularization, and anti-VEGF treatments have been licensed for use. 
Pegaptanib (Macugen) is a ribonucleic aptamer which selectively binds VEGF165 
and thus attenuates VEGFR2 activation. The VISION trials validated the use of 
Pegaptanib in neovascular AMD with significantly reduced loss of vision compared 
to placebo. Subsequently, the VEGF inhibitors Ranibizumab (Lucentis) and 
Bevacizumab (Avastin) were developed, although only Ranibizumab is FDA 
approved. Both agents are derived from the same murine anti-VEGF mAb, but 
Ranibizumab consists of the Fab fragment and has a binding affinity 20-fold greater 
than Bevacizumab. The MARINA trial of Ranibizumab not only showed a reduc-
tion of vision loss but an improvement in acuity in 1 in 3 patients. Ranibizumab is 
superior to the previous benchmark, photodynamic therapy, and it has shown a 
favorable safety profile in Phase IV trials. Bevacizumab has shown similar efficacy 
but is not FDA approved, largely due to financial implications for the pharmaceuti-
cal industry [85].

A number of other therapies targeting the VEGF/VEGFR pathway in the eye are 
under investigation. VEGF trap is a fusion protein containing the VEGFR1 and 
VEGFR2 binding sites and thus inhibits VEGF-A and PlGF [81]. A Phase I/II study 
of intravitreal administration to 21 patients showed improvements in vision, and 
Phase III trials are currently underway [85].

Inhibitors of the VEGFRs themselves are also in development, and small- molecule 
TKIs have shown some promise in preclinical models of ocular neovascular disease. 
PTK/ZK is a TKI which acts on all the VEGFRs. A murine model of ischemia-induced 
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retinopathy showed that intravitreal injection of this TKI significantly reduced angio-
proliferative retinopathy [86]. Another TKI named SU5416, which selectively inhib-
its VEGFR2, also inhibits neovascularization in mouse cornea [87]. Subsequently, 
several TKIs have entered early clinical trials (Table 1.5). Unfortunately, a Phase I/II 
study of the TKI AG-013958 for the treatment of choroidal neovascularization was 
recently terminated due to a lack of efficacy [88]. siRNA has been used to target both 
VEGF and VEGFR.  SIRNA-027 targets the VEGFR, and while initial trials are 
encouraging, the overall clinical benefit is still uncertain [85].

These are still in the early stages of development with trials in Phase II. These 
TKIs target VEGFR but some, such as Pazopanib, also have activity against other 
tyrosine kinases such as PDGFR and c-kit [81, 89, 93].

Anti-VEGF therapy is undoubtedly beneficial in the treatment of neovascular 
eye disease, but there is scope for development. Other approaches to targeting this 
pathway have not been as successful as anti-VEGF mAb therapy, but many of these 
alternative drugs have shown early promise. The development of drugs which can 
be delivered topically or orally would be a major step forward in increasing the 
availability of anti-VEGF/VEGFR therapies to patients.

4.3  Pro-angiogenic Therapies

VEGF/VEGFR signaling is known to be involved in the maintenance of vascular 
function and homeostasis in the adult. VEGF stimulates endothelial production of 
nitric oxide and prostacyclin which act as vasodilators and inhibit platelet aggrega-
tion and smooth muscle cell proliferation within the vasculature [42]. Genetic dele-
tion of endothelial VEGF in a murine model caused endothelial degeneration and 
apoptosis, which led to vascular pathology including hemorrhage, perforation, 
infarcts, and sudden death. Exogenous VEGF could not rescue these defects sug-
gesting involvement of autocrine VEGF signaling [90]. Consequently, anti- 
angiogenic therapies targeting the VEGF/VEGFR axis have significant 
cardiovascular side effects which must be monitored [42].

PlGF, a member of the VEGF family, is produced during angiopoiesis in the 
placenta. Additionally it is produced by infarcted myocardium and its expression is 
also significantly higher in brain microvascular endothelial cells following oxygen 

Table 1.5 Tyrosine kinase inhibitors (TKIs) in development for eye disease

TKI Route Sponsor

Pazopanib Topical GlaxoSmithKline, PA, USA
TG100801 Topical TargeGen, CA, USA
TG101095 Topical TargeGen, CA, USA
AG013958 Sub-Tenon Allergan, CA, USA
AL39324 Intravitreal Alcon, TX, USA
PTK787 (Vatalanib) Oral Novartis, CH
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and glucose deprivation in  vitro. PlGF administration led to significantly higher 
VEGFR-2 expression and it may be that VEGFR2 plays a role in PlGF-mediated 
neuroprotection [91]. In vivo models have shown a beneficial effect of simvastatin, 
which may be due to VEGFR2 activation of Akt and nitric oxide synthase [92].

Pro-angiogenic therapies may provide an important treatment modality for those 
patients with vascular disease unsuitable for invasive revascularization procedures. 
The premise would be to induce the formation of collateral blood vessels in order to 
revascularize ischemic tissue. At present most research is focused on the use of 
angiogenic growth factors such as VEGF-A. Preclinical animal models have pro-
vided the evidence for the development of these therapies, but so far there has been 
limited success in translating this success in clinical trials [42].

5  Conclusion

VEGF-mediated signaling influences a range of cellular events underpinning blood 
vessel growth and has a firmly established role in vasculogenesis and angiogenesis. 
While this axis has been intensely dissected, many of the subtleties are yet to be 
understood. The activity of the VEGF receptor is modulated by co-receptors such as 
NRP [43] and HSPG [44] and downstream there is a web of interacting signaling 
pathways, such as the angiopoietin-Tie pathway [1].

The advent of successful novel therapies targeting the VEGF/VEGFR axis gave 
impetus to the research in this field. Currently, clinical trials are revealing the potential 
of inhibiting the VEGF receptor to combat cancer [70] and neovascular eye disease 
[85]. Conversely, its use as a pro-angiogenic treatment following infarction has also 
been explored [91]. Furthermore, due to the targeted nature of VEGFR inhibitors, the 
side effect burden is reduced compared to standard cytotoxic chemotherapy [79].

The VEGF receptor itself provides a tempting target for novel therapeutic strate-
gies, but despite this it has only limited clinical applications at present. The most 
promising drugs appear to be useful as adjuvants to chemotherapy regimens [70]. 
Elucidating the signaling mechanisms based around VEGF and its receptor will not 
only enable us to better understand the fundamental underpinnings of vascular 
development and regrowth; it will provide us with the tools required to manipulate 
this axis.
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Chapter 2
The Role of Integrins in Angiogenesis

Ghazaleh Tabatabai

Abstract Angiogenesis critically depends on environmental factors. In particular, 
cellular adhesion and migration events play a critical role in the formation of new 
blood vessels from pre-existing cells in multiple pathological conditions. Integrins 
are a large family of cell surface receptors that transfer signals from the extracellular 
microenvironment into the intracellular compartment of endothelial cells or tumor 
cells. In this chapter, we review the role of integrins in inducing and maintaining 
angiogenesis by regulating the survival, proliferation and migration of endothelial 
cells as well as of tumor cells. Furthermore, we summarize some pharmacological 
approaches for modulating integrin signaling in tumor angiogenesis.

Keywords Integrins • Angiogenesis • Cancer • Glioma • Integrin inhibition

1  Introduction

The growth of new vessels from preexisting vessels depends on the migration and 
invasion of endothelial cells through the extracellular matrix (ECM). During this 
process, cellular adhesion to the ECM plays a crucial role. Endothelial cells are con-
nected to the ECM via adhesion molecules that are critical for their survival, growth 
and migration [1].

Integrins constitute a large family of cell surface transmembrane molecules and 
are the main cell surface receptors mediating adhesion to the ECM. They are com-
posed of α and β subunits. Eighteen α subunits, 10 β subunits and 24 different het-
erodimeric integrin molecules have been identified. Alpha and β subunits can form 
heterodimers in multiple ways, e.g. αv can associate with many different β-subunits. 
Other α-subunits, however, only form heterodimers with one specific β-subunit 
partner (Fig. 2.1). Of note, the α-subunit seems to be important for determining the 
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ligand-binding properties of the integrin heterodimer. Each heterodimer is capable 
of binding to a subset of ligands. In turn, a single ECM ligand can bind to several 
different integrins. In addition to ECM ligands, integrins mediate binding to matrix 
metalloproteinases (MMPs) and cell surface immunoglobulin-type receptors such 
as vascular adhesion molecule (VCAM). Taken together, integrin-induced endothe-
lial cell migration is a key regulator of physiological and pathological angiogenesis. 
In tumors, integrins enable the crosstalk between tumor cells and the surrounding 
stromal components [2, 3].

2  Bidirectional Signaling by Integrins Regulates 
Cellular Fate

Many integrins are not constitutively activated, i.e. the ligand binding site of the 
integrins is closed, and the affinity for ligand binding is low. Activation occurs by 
binding of extracellular ligands, i.e. laminins or vitronectins. Engagement and clus-
tering of integrin receptors lead to the formation of focal contact sites where cells 

Fig. 2.1 The integrin 
family is a diverse family 
of heterodimeric proteins 
each containing an α and a 
β subunit (Modified from 
Tabatabai et al. [50])
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adhere to ECM. These contact sites are called focal adhesions. They function as a 
nexus for attracting elements of the cytoskeleton, signaling molecules and adaptor 
proteins. The transmembrane helices and short cytoplasmic tails of the integrin 
α-subunit and β-subunit are important for initiating and coordinating cellular 
responses. Integrin cytoplasmic tails are between 15 and 78 amino acids in length 
for α-subunits and between 46 and 68 amino acids in length for β-subunits. These 
cytoplasmic tails of integrins do not contain enzymatic activity. Therefore, interac-
tion with cytoplasmic adaptor proteins is crucial for mediating intracellular signal-
ing [3]. These adaptor proteins can associate with the cytoplasmic tails of integrins 
and form a bridge between the cell surface and the cytoplasm.

Classical focal adhesions contain signaling complexes composed of growth fac-
tor receptors, focal adhesion kinase, integrin-linked kinase, Src, phosphoinositide 
3-kinase (PI3K), and actin-associated cytoskeletal proteins [4]. Often, the activation 
of the Rho family of GTPases occurs by integrins upon the formation of focal adhe-
sions. This activation induces immediate cellular migration events including forma-
tion of lamellipodia at the invading front of the cell as well as releasing of ECM 
adhesion contacts at other parts of the cell to enable directed migration and inva-
sion. Not only migration and invasion events are the results of integrin-induced 
signaling that occur in these focal adhesions. The induction of the Ras GTPase fam-
ily, for example, mediates signals to the PI3K/Akt and the Ras/mitogen activated 
protein (MAP) kinase signaling pathway leading to the activation of several tran-
scription factors, including NF-kB, HoxD3 or Id proteins [5, 6] that are key players 
in cell cycle regulation and cell survival. These examples illustrate that integrin- 
mediated signaling from the ECM to the intracellular compartment, so called out-
side- in signaling, regulates migration, invasion, cytoskeletal organization, cell 
survival and cell cycle progression. These are critical events during angiogenesis. In 
reverse direction, integrin-mediated binding can be modulated from the intracellular 
to the extracellular compartment, so called inside-out signaling. Certain changes 
from the intracellular domain of the integrin heterodimers can regulate the binding 
affinity of the extracellular integrin receptor to the ECM components [7]. This bidi-
rectional signaling leads to the formation of a complex crosstalk network regulating 
the activation status of integrins. Thus, depending on the activation status, even 
opposite effects might occur, e.g. either enhancement of cell survival or induction of 
apoptosis, indicating that integrin signaling is among the key regulators for deter-
mining cell fate [8, 9].

3  Integrin Binding to Proteolytic Protein Fragments

Migration and invasion of endothelial cells is facilitated by MMP-mediated degrada-
tion of ECM. However, these proteolysis events also lead to the formation of proteo-
lyzed protein fragments including tumstatin [10], endostatin [11] and PEX [12], that 
have antiangiogenic activity by antagonizing integrin signaling in endothelial cells.

2 Integrins in angiogenesis
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4  Crosstalk of Integrins with Other Signaling Pathways

Since angiongesis is a highly regulated process involving several signaling path-
ways, a coordinated crosstalk between the key signaling pathways is a necessity. 
This holds also true for integrin signaling in angiogenesis. Crosstalks with several 
other signaling pathways exist, e.g. with Notch, VEGF or TGF-β signaling.

4.1  Notch Signaling

Notch signaling is an evolutionary highly conserved pathway that plays crucial 
roles, e.g. for cellular fates during embryogenesis. A role of Notch signaling in 
angiogenesis has recently been established including vascular development, vessel 
patterning and vascular maturation [13]. Notch signaling leads to the recruitment of 
vascular smooth muscle cells to newly formed vessels. This leads to perivascular 
coverage and stabilization of the newly formed vessels. In this process of vascular 
maturation, vascular smooth muscle cells interact with the Notch ligand Jagged 1 on 
endothelial cells. This interaction leads to upregulation and activation of αvβ3. 
Thus, αvβ3 acts downstream upon Notch activation and allows vascular smooth 
muscle cells to adhere to endothelial basement membrane [14].

4.2  VEGF Signaling

The VEGF family has several members and mediates multiple functions including 
vascular permeability, angiogenesis, lymphangiogenesis and tumorigenesis. In 
angiogenesis, VEGF-A is the predominant VEGF family member. Due to several 
gene splincing events, diverse mature VEGF-A isoforms exist. The best studied 
isoform so far is VEGF-A165. It binds to VEGF-R2 for mediating downstream sig-
naling. The small GTPase Rap1 activates and promotes VEGF-A signaling in endo-
thelial cells. This activation occurs partly via αvβ3 activation [15].

Recent evidence suggests that VEGF-A can directly bind to integrins, specifi-
cally to integrin α9β1 or αvβ3. The direct interaction of VEGF-A with α9β1 occurs 
via a three-amino acid sequence, EYP, that is encoded by the exon 3 of VEGF-A. Upon 
binding of VEGF-A to α9β1, endothelial cell migration is induced [16]. Direct inter-
action of VEGF-A with αvβ3 contribute to the adhesion, migration and survival of 
human umbilical arterial endothelial cells [17, 18].
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4.3  TGF-β Signaling

TGF-β is a key molecule controlling a variety of cellular processes, including pro-
liferation, differentiation, apoptosis and migration. The TGF-β isoforms and the 
corresponding receptors are expressed by many different cell types. TGF-β is 
released as an inactive cytokine. The latent complex must be activated. The regula-
tion of this activation step provides a site-specific control of TGF-β function and 
might explain the diversity of TGF-β effects depending on the composition of the 
respective microenvironment. For this activation step, integrins seem to play an 
important role. Six integrins can bind latent TGF-β including avb1, avb3, avb5, 
avb6 and avb8 and a8b1. The binding of integrins is mediated by an RGD motif that 
is present in the latency-associated peptide region of the latent complex. Of note, the 
latent forms of TGF-β 1 and TGF-β 3, but not TGF-β 2, contain the RGD motif. 
TGF-β 1 activity is highly dependent on the activation step by integrins: Transgenic 
mice were generated carrying a single point mutation in the RGD integrin binding 
motif of latent TGF-β 1 that changed RGD to RGE. TGF-β 1RGE/RGE mice expressed 
latent TGF-β 1 in a form that cannot bind integrins. TGF-β 1RGE/RGE mice developed 
defects identical with those seen in mice that are TGF-β 1 deficient, i.e. vasculogen-
esis defects during embryonic development and multi-organ inflammation at the age 
of 2–3 weeks postnatal. These data strongly indicated that integrin-mediated activa-
tion of latent TGF-β 1 is absolutely required for TGF-β 1 functions in vivo [19]. 
Inhibition of β8 integrin in glioma cells leads to reduced activation of latent TGF-β 
[20]. Moreover, treatment of glioma cells with the integrin inhibitor cilengitide (see 
below) results in detachment and decreased TGF-β1 and TGF-β2 mRNA and protein 
expression, reduced phosphorylation of Smad2 and reduced TGF-β-mediated 
reporter gene activity [21].

5  Integrin Inhibition in Tumor Angiogenesis

Angiogenesis is necessary for tumor growth, dissemination and metastasis. Integrins 
are key regulatory proteins for tumor angiogenesis. In view of current clinical appli-
cations of integrin inhibitors, we will focus on the role of integrins and integrin 
inhibition in brain tumor models.

In malignant gliomas, the integrins αvβ3 and αvβ5 are predominantly expressed. 
They are detected on angiogenic tumor endothelial cells and on tumor cells [22, 23]. 
Interestingly, αvβ3 is selectively expressed in gliomas and is absent in normal brain as 
demonstrated by positron emission tomography (PET) imaging studies using the tracer 
[18F] Galacto-RGD. The positive PET signals have been confirmed by biopsy and his-
tological analysis of the tumor tissue [24]. These findings support αvβ3 as a rational 
candidate for specific therapeutic targeting in glioblastomas. Currently, the standard 
therapeutic strategies for patients with glioblastoma include surgical resection as feasible 
or biopsy, and radiotherapy plus concomitant and adjuvant  temozolomide chemotherapy 
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[25, 26]. Even with this multimodality approach, the median survival of these patients 
does not exceed 15 months. Therefore, new therapeutic targets are needed to improve the 
prognosis of patients with glioblastoma. In this regard, integrins have become attractive 
candidate molecules for therapeutic intervention and have been explored in preclinical 
and clinical studies.

Preclinical studies have suggested important biological functions of integrins in 
malignant gliomas via tumor cell migration, invasion and adhesion, and angiogen-
esis [27–29]. The correlation of expression levels and activities of MMP-2 and -9, 
of Bcl-2 family members and of αvβ3 integrin in 12 human glioma cell lines to 
glioma cell migration and invasion revealed that αvβ3 integrins alone did not predict 
a migratory or invasive phenotype. A neutralizing αvβ3 integrin antibody, however, 
inhibited migration and invasion selectively in cell lines with αvβ3 integrin expres-
sion. This indicates that αvβ3 integrin has a key role in migration and invasion of 
malignant glioma cells.

Most glioma cell lines detach from the cell culture dish, but do not die when 
exposed to integrin αvβ3/5 antagonists, either antibodies or the RGD-mimetic pep-
tide cilengitide. These observations suggest that the potential anti-glioma activity of 
integrin antagonists (see below) are unlikely to be related to direct cytolytic activity 
against glioma cells. However, others have reported that cilengitide leads to detach-
ment of glioma cells from the ECM with subsequent apoptosis [28].

Treatment of animals with combined treatment of experimental U87MG gliomas 
with the RGD peptide mimetic S247 and fractionated radiation therapy has been 
more effective than either treatment alone, suggesting antiangiogenic activity with 
reduced microvessel densitiy resulting in improved survival. Tumor cell prolifera-
tion was also significantly reduced after S247 or irradiation of U87 tumors as 
assessed by Ki67 staining of histological sections. Importantly, the combination of 
S247 and radiotherapy resulted in better results. CD31 staining showed reduced 
vessels after combined treatment as compared to S247 treatment or irradiation 
alone. Further, histological sections from S247-treated and irradiated xenografts 
showed pronounced reduction of Akt phosphorylation and increased TUNEL 
immunostaining indicating endothelial cell apoptosis. This suggests that αvβ3 
antagonism might confer sensitization towards radiotherapy. It remains to be clari-
fied whether the combination of S247 and radiation therapy results in synergistic or 
additive effects.

Concurrent treatment of orthotopic U251 gliomas with cilengitide and radio-
therapy in vivo increased the rate of apoptotic cell death and the survival of ani-
mals compared with either treatment modality alone. Interestingly, a critical 
parameter for a successful combination of integrin antagonism and radiotherapy 
seems to be the time-line of treatment modalities. For example, single dose of 
cilengitide led to synergistic effects when administered 4–8 h before radiation, but 
not when administered 2 h before or after radiation [30]. Combined treatment with 
cilengitide and radiation therapy significantly increased the rate of apoptotic and 
autophagic cells. It remains unclear, however, whether the observed treatment-
induced apoptosis in vivo in this study was occurring primarily in the U251 glioma 
cells or in the endothelial cell compartment, and whether the induction of apopto-
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sis may be considered a valid surrogate marker for prolonged survival of the ani-
mals. In vitro, the treatment of glioma cell lines with cilengitide induces detachment 
in a concentration- dependent manner without significantly affecting proliferation 
and survival [28]. The effect of integrin inhibition prior to radiation might indicate 
that cilengitide induces changes in the vascular architecture. Of note, tumor ves-
sels that are formed by highly proliferating angiogenic endothelial cells are often 
functionally inefficient leading to reduced perfusion, hypoxia and resistance to 
irradiation. Thus inhibition of tumor angiogenesis by αvβ3 antagonism may 
restore normal perfusion and reduce tumor hypoxia by normalizing the vascula-
ture. A recent MRI-based study by Muldoon and colleagues [31], however, dem-
onstrated that inhibition of αv integrins actually increased vascular permeability 
questioning the value of vascular normalization. Another explanation might be the 
interference with hypoxia-regulated pathways. Indeed, hypoxia increases αvβ3 
and αvβ5 expression. Depletion of αvβ3 and αvβ5 integrins by siRNA decreased 
the transcriptional activity of hypoxia-inducible factor 1 α (HIF-1α) and reduced 
hypoxia [32]. Thus targeting αvβ3 and αvβ5 might sensitize tissues to radiation by 
reduction of hypoxia. Taken together, the “correct” scheduling of radiation therapy 
and cilengitide might reduce hypoxia by induction of vascular changes and 
enhances the beneficial effects of radiation. This, however, remains to be proven 
by imaging studies such as refined MRI modalities or vascular- specific PET imag-
ing in humans. Indeed, a clinical trial using MRI and PET imaging studies during 
Cilengitide treatment has just been launched in patients with glioblastoma to 
address the question of vascular changes in patients. The above- mentioned obser-
vations, nonetheless, demonstrate important role of integrins for glioma angiogen-
esis. Integrin inhibition is, therefore, considered a promising target for the 
treatment of malignant glioma because both endothelial and tumor cells express 
this target. The following paragraphs will briefly review clinical experience with 
integrin inhibitors against malignant glioma.

6  Integrin Inhibitors in Clinical Development

6.1  GLPG0187

GLPG0187 (Galapagos SASU, Romainville, France) is a Arg-Gly-Asp (RGD) 
antagonist targeting integrin receptors avb1, avb3, avb5, avb6, avb8 and a5b1. Thus, 
compared with cilengitide (see paragraph below), the range of targeted integrin 
receptors is broader. Preclinical studies suggested anti-tumor activity including 
recuced tumor growth and metastasis [51, 52]. A dose-escalating phase 1 clinical 
trial recently evaluated dose-limiting toxicity, safety and tolerability in patients with 
advanced or metastatic tumors that did not have any other options for standard ther-
apies. While the drug showed dose-propotional pharmacokinetic profile, no maxi-
mal tolerated dose was established [53].
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6.2  Cilengitide

Cilengitide (Merck Serono, Darmstadt, Germany) is a synthetic Arg-Gly-Asp 
(RGD) pentapeptide with a molecular weight of 588.7 mass units. In general, maxi-
mal plasma concentrations are reached within 1 h after the injection and the half-life 
is approximately 3–5 h. Cilengitide binds to the RGD ligand-binding motif (ligand 
binding site) on the integrin receptors αvβ3 and αvβ5 and has no effect on adhesions 
mediated by α1β1, α2β1, α5β1 integrins [33]. Cilengitide reduces vascular endothe-
lial growth factor (VEGF)-induced angiogenesis in chorioallantoic membranes [34] 
and the proliferation of human umbilical vein endothelial cells [35].

Phase I studies with cilengitide demonstrated that the drug is well tolerated when 
given intravenously twice a week. No dose limiting toxicity was observed up to a 
dose of 2400  mg/m2. Cilengitide was also well tolerated in adult and pediatric 
patients with recurrent glioma or other brain tumors. Tumor responses were 
observed both at lower and higher doses. Enzyme-inducing anticonvulsants did not 
interfere with the pharmacokinetics of cilengitide. In a study by Gilbert and col-
leagues [36], cilengitide was given for 2 weeks at two doses before surgical inter-
vention. Drug concentrations were significantly higher in the tumor than in the 
corresponding plasma. Of note, cerebrospinal fluid concentrations were approxi-
mately in the range of 1% of the plasma concentrations and were reached within 3 h 
after injection. This study supports the concept that cilengitide penetrates blood 
brain barrier and is enriched in the tumor tissue of patients with glioblastoma [36].

In a randomized phase II trial enrolling 81 patients with glioblastoma, utility of 
a lower and a higher dose of cilengitide (500 and 2000  mg, flat dosing) were 
explored. Objective responses were observed in 5% (500 mg) and 13% (2000 mg) 
of the patients. Progression-free survival at 6 months was 10% and 15%, and overall 
survival was 6.5 versus 9.9 months in the low-does and high-dose groups, respec-
tively [37]. Four-year survival rate was 2.4% in patients treated with 500 mg and 
10% in patients treated with 2000 mg [38].

A European phase II trial in 52 newly diagnosed patients with glioblastoma evalu-
ated the addition of cilengitide (500 mg) to standard radiation and chemotherapy with 
temozolomide. Treatment was well tolerated. Progression-free survival at 6 months 
was 69%, median survival 16.1 months, with a 2-year survival rate of 35%. Compared 
with historical controls, the 23 patients with a methylated O6- methylguanine–DNA 
methyltransferase (MGMT) promoter appeared to benefit most from the addition of 
cilengitide. Overall survival at 15 months was 75% in patients with a methylated and 
47% in patients with an unmethylated MGMT promoter [39]. The relation between 
MGMT methylation status and benefit from cilengitide is, however, controversial. 
Glioma cell response in in vitro studies was unaffected by cilengitide alone or cilengit-
ide in combination with temozolomide after modulation of MGMT expression levels, 
i.e. by ectopic expression of MGMT in MGMT-negative or by shRNA-mediated MGMT 
silencing in MGMT-positive glioma cells [28]. It seems that vascular normalization and 
improved tumor perfusion might be a key mechanism of action of cilengitide in this 
setting. Enhanced perfusion allows better “delivery” of temozolomide chemotherapy to 
which tumor cells with a methylated MGMT promoter are particularly sensitive [40].
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Nabors and colleagues [41] reported on a safety run-in and randomized phase II 
study of cilengitide and standard radio and temozolomide chemotherapy in newly 
diagnosed glioblastomas comparing the addition of 500 mg vs 2000 mg cilengitide. 
The primary endpoint, median overall survival was compared with historical con-
trols. The combination of cilengitide with radiation and temozolomide chemother-
apy was well tolerated. The median overall survival was 19.7 months for all patients, 
17.4 months for those who received 500 mg of cilengitide, and 20.8 months for 
those who received 2000 mg cilengitide. For future trials, the authors suggested use 
of 2000 mg cilengitide. However, these data from uncontrolled phase II clinical tri-
als need to be interpreted with caution as there was no control arm without the new 
agent. Larger randomized trials are required to confirm the efficacy of these novel 
treatment approaches.

Based on the benefit observed in particular in patients with a methylated MGMT 
promoter in the tumor, a phase III trial was conducted in patients with glioblastoma 
with methylated MGMT promoter. Patients were screened upfront for MGMT pro-
moter methylation by methylation-specific PCR. Eligible patients were randomized 
either to standard therapy consisting of temozolomide and radiation, or to 2000 mg 
cilengitide twice weekly in addition to standard therapy. Maintenance cilengitide 
therapy was continued for up to 18 months. The trial was performed in 25 countries 
including 146 study sites. The primary endpoint was overall survival. In the cilen-
gitide group, median overall survival was 26.3 months (95% CI 23.8–28.8), in the 
control group 26.3 months (95% CI 23.9–34.7), hazard ratio was 1.02. The 2-year 
survival rate did not differ between treatment groups, either and was 56% in both 
groups. Taken together, the trail did not show a benefit from the addition of cilengit-
ide to standard therapy in MGMT-methlyted newly diagnosed glioblastoma patients. 
The authors discussed potential reasons for this negative result despite promising 
phase 1 and phase 2 trial results. Probably, the twice weekly administration was not 
appropriate for a drug with a serum half-life in the range of 2–4 h [54]. Other rea-
sons might include the lack of a predictive biomarker that would have allowed to 
guide patient selection for this integrin-targeted compound.

In parallel, a randomized phase II study in patients with newly diagnosed glio-
blastomas with an unmethylated MGMT promoter was conducted ongoing. The 
CORE trial evaluated safety, feasibility and efficacy of intensified daily cilengitide 
2000 mg with radiation and temozolomide. Thereafter, all patients received 6 cycles 
of standard 5-day out of 28 days temozolomide plus cilengitide dosed at 2000 mg 
twice weekly. The treatment was continued until progression or toxicity. Patients 
were randomized into the following 3 arms: first arm, cilengitide 2000 mg twice 
weekly with standard radiation and temozolomide chemotherapy and with 6 adju-
vant cycles of temozolomide followed by cilengitide maintenance; second arm, 
cilengitide 2000 mg from Monday through Friday with radiation and concomitant 
temozolomide chemotherapy, followed by cilengitide twice weekly with 6 adjuvant 
temozolomide cycles followed by cilengitide maintenance; third arm, standard radi-
ation and temozolomide chemotherapy with 6 cycles of temozolomide. In total, 265 
patients were randomized. Median overall survival was 16.3  months in arm 1, 
14.5 months in arm B and 13.4 months in the control arm. Median progression-free 
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survival was 5.6 months in arm 1, 5.9 months in arm 2 and 4.1 months in the control 
arm. Both cilengitide dosages were well tolerated. However, the trial does not pro-
vide evidence for clinical efficacy of cilengitide in newly diagnosed MGMT- 
unmethylated glioblastoma patients [55].

Taken together, CENTRIC and CORE failed to show convincing efficacy of 
cilengitide in newly diagnosed glioblastoma. Immunohistochemistry studies in the 
biomarker cohort of both trials, i.e. cohort of patients with tumor tissues for further 
translational studies, included correlations of integrin stainings with clinical out-
come. Interestingly, higher avb3 expression correlated with improved progression- 
free and overall survival in the CORE biomarker cohort, but not in the CENTRIC 
biomarker cohort. Limitations of this study might include the fact that integrin 
expression does not necessarily reflect actual integrin activity [56].

6.3  ATN-161

ATN-161 (Tactic Pharma, Evanston, IL) is a α5β1 integrin antagonist and decreased 
the phosphorylation of mitogen-activiated protein kinase [42, 43]. Treatment with 
ATN-161 in a breast cancer model induced a significant dose-dependent decrease in 
tumor volume and metastasis to bone and soft tissues. Histological analysis revealed 
reduced microvessel density and cell proliferation. In a phase I study, ATN-161 was 
administered to patients with advanced solid tumors excluding brain tumors. 
Treatment was well tolerated at all dose levels from 0.1 through 16 mg/kg [44]. The 
clinical development, however, seems not to be further continued.

6.4  DI17E6

DI17E6 (Merck Serono, Darmstadt, Germany) is a pan anti-αV antibody. In a preclini-
cal melanoma study, DI17E6 was covalently coupled to doxorubicin-loaded human 
serum albumin nanoparticles. These tailored nanoparticles specifically targeted αvβ3-
positive melanoma cells and displayed significantly higher cytotoxic activity than the 
free drug alone [45]. Phase I evaluation has recently been completed, and it will be 
further investigated in combination with cetuximab in colorectal cancer.

7  Conclusions

Integrins play a crucial role in physiological and pathological angiogenesis. 
Endothelial cell invasion events critically depend on integrin-mediated signaling. 
Bidirectional integrin signaling regulates cell proliferation, cell cycle progression, 
migration, invasion of tissues and cell survival. Integrin antagonists occur naturally 
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and are derived from proteolytic degradation of ECM. Integrin inhibition, particu-
larly in combination with cytotoxic chemotherapy and/or radiation therapy is a 
promising strategy for targeting angiogenesis and tumor cells in certain tumor 
entities.

Indeed, preclinical evidence suggests that inhibition of integrins is an attractive 
approach for anti-glioma therapies. It seems crucial to design treatment algorithms 
while paying attention to the schedule, e.g. time point of injection when combined 
with radiation therapy or choosing the right dose. Of note, administration of low 
nanomolar concentrations of RGD mimetics led to a pro-angiogenic and pro- 
invasive tumor phenotype in melanoma and lung cancer models. This was mainly 
explained by an activation of the Rab4 pathway by nanomolar RGD mimetics. This 
activation promotes the recycling of internalized VEGF-R2. This, in turn, inhibits 
the degradation of VEGF-R2 and allows relocalization of VEGF-R2 to the cell sur-
face and thus promotes cellular responses to VEGF [46]. Yet, the plasma concentra-
tions achieved with the doses of cilengitide used in the ongoing clinical trials exceed 
the potentially proangiogenic concentrations by orders of magnitude [47].

Taken together, integrins are among key mediators of angiogenesis, and thus 
attractive targets for therapy of diseases with pathological angiogenesis. For ensur-
ing therapeutic success, however, it will be crucial to carefully define which integ-
rins to selectively target in which disease at which dosage and which timepoints 
[48, 49]. Furthermore, it seems necessary to identify rational combination therapies 
with further compounds to exploit potential synergies. The involvement of molecu-
lar imaging tools for diagnosing and monitoring integrin activation, e.g. RGD PET 
[57] seems crucial. An integrative profile of these parameters might allow the estab-
lishment of biomarkers for predicting clinical benefit from integrin inhibition as an 
important prerequisiste for accurate patient stratification in further clinical investi-
gations of integrin-targeted approaches.
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Chapter 3
Toll-Like Receptors in Angiogenesis

Karsten Grote, Jutta Schuett, Harald Schuett, and Bernhard Schieffer

Abstract Mammalian Toll-like receptors (TLRs) represent pattern recognition 
receptors of the immune system and are related to the Toll protein of Drosophila. 
Pathogen-associated molecular patterns (PAMPs) of microbial and viral origin bind 
to TLRs and initiate the innate and adaptive immune response. However, TLRs are 
not solely found on cells of the immune system but also on non-myeloid cells in 
various tissues, e.g., on vascular cells. In addition to PAMPs, there is increasing 
evidence that TLRs also recognize endogenous ligands. Recent studies demonstrate 
the contribution of distinct TLRs in different inflammatory disorders such as cardio-
vascular diseases, rheumatoid arthritis, systemic lupus erythematosus, and cancer. 
Many of these disorders are characterized by enhanced angiogenesis which is 
mainly trigged by inflammation. However, this inflammation-induced angiogenesis 
is not only important for pathogen defense during acute infection or chronic inflam-
matory disorders but as well involved in regenerative processes during wound heal-
ing and tissue repair. There is cumulative evidence that TLR activation by exogenous 
as well as endogenous ligands especially contributes to the angiogenic process in 
this scenario. The present chapter will summarize the current understanding of 
TLR-linked signal transduction in angiogenesis during inflammatory processes 
with future prospects for pro- or antiangiogenic therapy.

Keywords Angiogenesis • Toll-like receptors • Pathogen-associated pattern 
• Damage-associated molecular patterns • Inflammation

1  Introduction: Toll! Everything Started in Drosophila

A group of maternal effect genes are necessary for the embryo patterning of the fruit 
fly Drosophila melanogaster including the Toll gene. Lack of function experiments 
revealed that the Toll gene product provides the source for a morphogen gradient in 
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the dorsal-ventral axis of the Drosophila embryo [1, 2]. Mutants in this gene were 
originally identified in 1985 by the group of Christiane Nüsslein-Volhard at the 
Max-Planck-Institute in Tübingen/Germany. The name of the gene derives from her 
exclamation “Das ist ja toll!” which translates as “That’s amazing!” during micro-
scopic observation of the drosophila mutants. Three years later, the Toll gene of 
Drosophila was cloned in the lab of Kathryn Anderson, the first author of the initial 
studies [3]. In 1992, Christiane Nüsslein-Volhard was awarded with the Nobel Prize 
for her groundbreaking research. Later on, Toll was found to play an important role 
in the fly’s immune response by the group of Jules Hoffmann [4, 5]. In total, nine 
Toll receptors are encoded in the Drosophila genome, including the Toll pathway 
receptor Toll. The induction of the Toll pathway by fungi or by gram-positive bac-
teria leads to the activation of antimicrobial peptides. After proteolytical cleavage, 
binding of the extracellular ligand Spaetzle to the Toll receptor controls the expres-
sion of the antifungal peptide gene drosomycin. Mutations in the Toll signaling 
pathway dramatically reduce survival after fungal infection demonstrating the 
importance of this pathway for immune response.

2  Toll-Like Receptors in Mammalians

The identification of the Drosophila Toll pathway and the subsequent characteriza-
tion of Toll-like receptor (TLR) function have reshaped the current understanding of 
the immune system. Mammalian homologues of the Drosophila Toll protein have 
been discovered 10 years later in the mid-1990s of last century which were conse-
quently named TLRs [6, 7]. A scientific highlight in mammalian TLR discovery 
was the identification of TLR4 as the functional receptor for bacterial lipopolysac-
charide (LPS) in mice carrying a mutation in the TLR4 gene by Bruce Beutler [8]. 
Based on this important discovery, Bruce Beutler was awarded with the Nobel Prize 
in 2011 which he shared with Jules Hoffmann for his findings in Drosophila and 
Ralph Steinmann who discovered dendritic cells. The discoveries of Hoffmann and 
Beutler triggered an explosion of research in innate immunity. Around a dozen dif-
ferent TLRs have now been identified in humans and mice comprising an entire 
receptor protein family [9]. All of them have initially been described as guardians of 
the innate immunity recognizing invading pathogens in the front line on the plasma 
membrane or after phagocytosis and processing on endosomal membranes, respec-
tively. TLRs represent cognate pattern recognition receptors (PRRs) of the innate 
immunity and recognizing a high diversity of molecules common in pathogens of 
bacterial and viral origin referred to as pathogen-associated molecular patterns 
(PAMPs). The specificity of TLRs for their ligands was mainly investigated in mice 
with functional mutations carrying an increased risk of infection. TLR ligation 
induces the activation of inflammatory pathways such as the mitogen-activated pro-
tein kinase (MAPK) cascade or nuclear factor κB (NFκB) and finally leads to the 
expression of cytokines and co-stimulatory molecules [10]. Thus, TLRs activate a 
potent immunostimulatory response and the signal that is transmitted from TLRs 
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must therefore be tightly controlled. Structurally, all TLRs are type I integral mem-
brane proteins consisting of an ectodomain comprised of leucine-rich repeats 
(LRRs) and a cytoplasmic domain containing a Toll/interleukin-1 receptor homol-
ogy domain (TIR), which is required for signaling. TLRs occur as dimers; different 
receptor assemblies as mono- or heterodimers are known [11–13]. TLR2 builds 
heterodimers; in this regard TLR2/1 dimers sense bacterial triacylated lipopeptides 
were as TLR2/6 dimers sense bacterial diacylated lipopeptides. The LPS receptor 
TLR4 and TLR9, the receptor for unmethylated CpG-motifs in bacterial and viral 
DNA homodimerize and TLR4 may additional forms heterodimers with TLR2 in 
microglial cells in response to ethanol [14]. Homodimerization is presumed to be 
the case for TLR3 which senses synthetic and double-stranded RNA of viral origin 
(dsRNA) as well as for TLR5 which detects flagellin from bacteria. TLR7 and TLR8 
recognize synthetic imidazoquinolines components and single- stranded RNA 
(ssRNA) and TLR8 has been shown to dimerize with TLR7 and TLR9. TLR10 is 
the only pattern-recognition receptor without known ligand specificity and biologi-
cal function and maybe is a modulatory receptor with mainly inhibitory effects [15]. 
It has been demonstrated that TLR10 can heterodimerize with TLR1 or TLR2 [16]. 
More recently, TLR11, 12 and 13 have been identified in mouse. Interestingly, an 
eukaryotic ligand have been described for TLR11, namely a profilin-like molecule 
from the obligate intracellular protozoan parasite Toxoplasma gondii [17], which is 
recognized in cooperation with TLR12 [18]. Finally, it has been shown that TLR13 
is the functional receptor for a conserved sequence in the 23S ribosomal RNA 
(rRNA) from bacteria [19]. The number of putative TLR interaction partners and 
identified PAMPs that bind to TLRs is already large and diverse and is still growing 
(Fig. 3.1, Table 3.1) [20].

A fundamental basis of TLR signaling is dependent upon the recruitment and 
association of adaptor molecules that contain the structurally conserved TIR domain. 
Signaling by TLRs involves five so far identified adaptor proteins known as myeloid 
differentiation primary response gene 88 (MyD88), MyD88-adaptor-like (MAL, 
also known as TIRAP), TIR-domain-containing adaptor protein inducing interferon-β 
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(TRIF; also known as TICAM1), TRIF-related adaptor molecule (TRAM; also 
known as TICAM2), and sterile α- and armadillo-motif-containing protein (SARM). 
These adaptor molecules provide the necessary framework to recruit and activate 
downstream kinases and transcription factors that regulate the host inflammatory 
response. The canonical TIR pathway is dependent on MyD88, the immediate 
adapter molecule that is common to all TLRs, except TLR3. An alternative MyD88-
independent pathway is controlled by TRIF, the only TLR3 adaptor, whereas TLR4 
binds both MyD88 and TRIF.  The remaining three adaptor proteins serve as co-
adaptors (MAL, TRAM) or even as a negative regulator (SARM). MAL and TRAM 
are just used by few TLRs. MAL recruits MyD88 to TLR2 and TLR4, whereas 
TRAM recruits TRIF to TLR4 [13]. After ligand binding to the specific TLR and 
assembly of the adaptor proteins, the activated membrane receptor complex induces 
the interleukin-1 receptor-associated kinase (IRAK) and tumor necrosis factor 
receptor-associated factor (TRAF) family members. The IRAK family – with their 
four members: IRAK1, IRAK2, IRAK4, and IRAKM – plays a pivotal role in medi-
ating almost all TLR-mediated functions. All IRAK family members contain an 
amino-terminal death domain and a serine/threonine kinase domain. IRAK4 is 
known to be essential for TLR-mediated cellular responses. After TLR ligation, 
IRAK4 phosphorylates IRAK1 [21]. IRAK activation results in the recruitment/acti-
vation of TRAF family members such as TRAF3 and TRAF6, along with other E2 
ubiquitin protein ligases which activate a complex containing transforming growth 
factor-β-activated kinase 1 (TAK1), TAK1-binding protein 1 (TAB1), TAB2, and 
TAB3 [22]. MyD88dependent TAK1 activation induces the NFκB pathway and 
MAPK members such as the extracellular signal-regulated kinase (ERK)1/2, p38, 

Table 3.1 TLRs and their PAMPs

TLR PAMP Pathogen

TLR1 Triacylated lipopeptides Bacteria
TLR2 Diacylated lipopeptides

Triacylated lipopeptides
Peptidoglycan
Lipoteichoic acid

Bacteria
Bacteria
Bacteria
Gram-positive bacteria

TLR3 Double-stranded RNA Viruses
TLR4 Lipopolysaccharide

Heat shock proteins
Viral proteins

Gram-negative bacteria
Bacteria
Viruses

TLR5 Flagellin Bacteria
TLR6 Diacylated lipopeptides Bacteria
TLR7 Single-stranded RNA Viruses
TLR8 Single-stranded RNA Viruses
TLR9 Unmethylated CpG DNA Bacteria
TLR10 Unknown
TLR11 Profilin-like molecule Protozoa (Toxoplasma gondii)
TLR12 Profilin-like molecule Protozoa (Toxoplasma gondii)
TLR13 23S rRNA Bacteria
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and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) to initiate 
the expression of inflammatory cytokines [9–11]. The TLR3 pathway is MyD88-
indendent but TRIF-dependent that activates TRAF6 and NFκB, resulting in the 
expression of inflammatory cytokines [23]. But TLR3 engagement also induces the 
expression of type I interferons (IFNs) via interferon regulatory transcription factor 
(IRF) 3 [24]. TLR7 and TLR9 engagement induces the secretion of inflammatory 
cytokines through the activation of NFκB via MyD88. However, TLR7 and TLR9 
can also induce the expression of type I IFNs through the activation of IRF7 [25]. 
Taken together, PAMP ligation to TLRs leads to the expression of effector molecules 
which finally organize the body’s immune responds to pathogens (Fig. 3.2).

There is accumulating evidence from recent research that TLRs have distinct 
different functions beyond simple pathogen recognition. In a more complex immu-
nologic view, an important role in dendritic cell maturation and T cell activation 
established TLRs as a link between innate and adaptive immunity [26]. Furthermore, 
the detection of several TLR members in multiple tissues and cell types – besides 
cells of the immune system – led to a more wide-ranging view on TLRs. Especially 
inflammatory disorders such as ischemic coronary artery disease [27] and liver dis-
ease [28] but also autoimmune diseases [29] are critically influenced by TLRs. 
Moreover, an involvement of TLRs in allograft acceptance/rejection during trans-
plantation [30] or contact allergy to nickel [31] has been shown. Of interest, an 
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interaction of TLRs with endogenous ligands released during tissue damage and 
fibrosis or from apoptotic cells has recently been discovered and seems to regulate 
many sterile inflammatory processes [32]. In this regard the term danger or damage- 
associated molecular patterns (DAMPs) has been introduced. These ligands include 
proteins and peptides, polysaccharides and proteoglycans, nucleic acids, and phos-
pholipids, which are cellular components or extracellular matrix (ECM) degrada-
tion products (Table 3.2). Recent studies provided clear evidence that endogenous 
ligand-mediated TLR signaling is involved in pathological conditions such as tissue 
injury, autoimmune diseases, and tumorigenesis. The ability of TLRs to recognize 
endogenous ligands appears to be essential for their function in regulating noninfec-
tious inflammation. Furthermore, a novel role for TLRs in wound healing [33, 34] 
and liver regeneration [35] also in response to endogenous ligands [32] has been 
reported, suggesting even a regenerative aspect in TLR biology.

3  Angiogenesis: General Remarks

Physiological tissue function depends on adequate supply of nutrients and oxygen 
through blood vessels. Consequently, the cardiovascular system is the first organ 
system that develops during embryogenesis. Blood vessels in the embryo form the 
hemangioblast by differentiation of common mesodermal progenitor cells. The 
hemangioblast forms aggregates that evolve into hematopoietic precursor cells and 
angioblasts which further assemble the primary capillary plexus as differentiated 
endothelial cells. The formation of this primitive network on the basis of progenitor 
cells is called vasculogenesis. On the contrary, angiogenesis describes the enlarge-
ment of capillaries which sprout or become divided by pillars of periendothelial 
cells (intussusception) or by transendothelial cell bridges followed by remodeling 

TLR Endogenous Ligand

TLR2 Hyaluoran
Biglycan
Heat shock proteins
High-mobility-group-protein B1

TLR3 RNA
TLR4 Fibronectin

Fibrinogen
Hyaluoran
Biglycan
Heparin sulfate
Heat shock proteins
High-mobility-group-protein B1
Oxidized low density lipoprotein

TLR9 Mitochondrial DNA
High-mobility-group-protein B1

Table 3.2 Endogenous TLR 
ligands
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and maturation processes that transform the primary capillary plexus into a complex 
network of functional vessels [36]. Further covering and stabilization of vessels by 
smooth muscle cells as well as the enlargement of preexisting collateral arterioles is 
summarized as arteriogenesis. Although in the adult most vessels arise through 
angiogenesis, vasculogenesis may also be involved to some extent. Therefore, both 
processes are summarized in the hypernym neovascularization, which is involved in 
organ growth and wound healing but also contributes to pathological processes in 
malignant and inflammatory disorders [37–39].

Angiogenesis through sprouting and subsequent remodeling of capillaries into 
larger vessels has been extensively studied, and several essential steps have been 
described. Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) 
have been identified as central regulators of both vasculogenesis and angiogenesis 
[40]. Until now, five VEGF ligands have been identified which occur in different 
spliced and processed variants and all of them represent secreted dimeric glycopro-
teins of ~40 kDa. In addition to VEGF A–D, also placenta growth factor (PLGF) 
belongs to the VEGF family as well. These ligands bind to the three receptor tyro-
sine kinases VEGFR1–3 with an overlapping pattern and co-receptors such as hepa-
ran sulfate, proteoglycans, and neuropilins. Different VEGFRs have distinct 
different functions; VEGFR1 is involved in the recruitment of hematopoietic 
 progenitor cells and migration of monocytic cells whereas VEGFR2 and 3 are 
essential for the function of endothelial cells, especially during angiogenesis. 
Initially, VEGF was described to increases vascular permeability [41], thereby per-
mitting extravasation of plasma proteins that establish a preliminary scaffold for 
migrating endothelial cells. For the emigration of endothelial cells from their resi-
dent site, interendothelial cell contacts and periendothelial cell support have to be 
dissolved, leading to destabilization of the mature vessel. Angiopoietin (Ang) 2, an 
inhibitor for tyrosine kinase with Ig and epidermal growth factor (EGF) homology 
domains (Tie) 2 signaling are involved in detaching smooth muscle cells and break-
ing up the ECM [42, 43]. Especially during angiogenesis, the interaction of the 
Ang-Tie system with the VEGF system becomes apparent. Capillaries sprout and 
subsequently grow alongside a VEGF gradient. Endothelial cells at the leading edge 
of the migration front, so-called tip cells, exhibit numerous filopodia and express 
members of the VEGFR family. Subjacent endothelial cells could be subdivided in 
highly proliferative and differentiating stalk cells and resting phalanx cells which 
both express components of the Ang/Tie system [43]. Furthermore, proteinases of 
the plasminogen activator, matrix metalloproteinases (MMPs), and chymase fami-
lies influence angiogenesis by degrading ECM and by liberating growth factors, 
e.g., VEGF, basic fibroblast growth factor (bFGF), and insulin-like growth factor 
(IGF)-1, sequestered within the ECM. When the path has been cleared, endothelial 
cells can proliferate and migrate to remote sites [39].

Angiogenic sprouting is controlled by a tightly regulated balance of activators 
and inhibitors. In addition to VEGF, Tie2 phosphorylation by Ang1 is chemotactic 
for endothelial cells and stabilizes VEGF-initiated endothelial networks by stimu-
lating the interaction between endothelial cells and periendothelial cells [43]. 
Members of the FGF and platelet-derived growth factor (PDGF) family support 

3 Toll-Like Receptors in Angiogenesis



44

angiogenesis presumably by recruitment of mesenchymal or inflammatory cells. 
Another key component of sprouting angiogenesis by regulating tip cell vs. stalk 
cell communication is the highly conserved Delta/Notch signaling pathway. 
Mammalians possess four different notch receptors, referred to as Notch1–4. Notch 
receptors are single-pass transmembrane receptors and capable of binding the 
membrane- bound ligands Delta-like (Dll) 1–4 and Jagged. Notch signaling in the 
stalk cells induces a quiescent and non-sprouting phenotype in endothelial cells 
whereas adjacent tip cells express Dll4, therefore promoting sprouting activity [44]. 
In addition, molecules are involved which mediate cell-cell or cell-matrix interac-
tions, e.g., αvβ3 which localizes MMP-2 at the endothelial cell surface and promotes 
endothelial cell spreading. Moreover, a continuously number of molecules are dis-
covered which are proangiogenic upon exogenous administration, including eryth-
ropoietin, leptin, hepatocyte growth factor (HGF), EGF, IGF-1, tissue factor (TF), 
and several other cytokines, chemokines, and growth factors [39, 45]. Even hema-
topoietic growth factors such as granulocyte colony-stimulating factor (G-CSF) and 
granulocyte-macrophage colony-stimulating factor (GM-CSF) have been shown to 
exhibit proangiogenic potential [46]. On the contrary, angiogenesis inhibitors sup-
press endothelial cell proliferation and migration, e.g., angiostatin, endostatin, anti-
thrombin III, IFN-β, leukemia inhibitory factor (LIF), and platelet factor 4 [39, 47]. 
Thus, various pro- and antiangiogenic factors cooperate to regulate the angiogenic 
process.

Finally, vessel maturation finalizes the angiogenic process. Proliferating endo-
thelial cells initially assemble as solid cords which acquire additional lumen forma-
tion. Lumen formation is accomplished by thinning of endothelial cells or fusion of 
preexisting vessels, mediated by VEGF, Ang1, and integrins such as αvβ3 or α5 and 
controlled by the inhibitory effects of thrombospondin-1. Additional important 
steps after lumen establishment involve the differentiation of endothelial cells 
according to the environmental demands, maturation into a functional three- 
dimensional endothelial network, and the protection of quiescent endothelial cells 
against apoptosis [39, 45]. Periendothelial cells are essential for vascular maturation 
and completion of angiogenesis. Nascent vessels are stabilized by pericytes in case 
of capillaries. In case of arteries, arterioles, veins, and venules, smooth muscle cell 
recruitment and growth mediated by VEGF or PDGF are crucial for vessel stabiliza-
tion. They thereby provide hemostatic control and protect the new endothelium- 
lined vessel against rupture and regression [39, 47].

Blood vessel formation in the adult includes vasculogenesis, angiogenesis, and 
arteriogenesis. Impaired neovascularization represents a therapeutic target in sev-
eral pathologies associated with insufficient blood supply, e.g., acute myocardial 
infarction or chronic peripheral artery disease. Formation of new vessels and remod-
eling of the preexisting vasculature are essential for a successful therapy. Therefore, 
different treatment strategies involving administration of growth factors, cytokines, 
or progenitor cells are considered [48]. Important for the understanding of angio-
genic mechanisms in these pathologies is the knowledge of variations from physi-
ologic angiogenesis. In contrast to the physiological processes, pathologic 
angiogenesis is often promoted by inflammation. Monocytes, platelets, mast cells, 
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and other leukocytes are recruited to sites of inflammation or wound healing, partly 
by proangiogenic factors such as VEGF [37, 39]. Moreover, development of solid 
tumors strictly depends on a growing capillary network – termed as tumor angio-
genesis – ensuring sufficient supply with oxygen and nutrients. Accordingly, antian-
giogenic concepts aim at the inhibition of tumor angiogenesis and thereby tumor 
nutrient supply [49]. In this regard, the first antitumor therapy with a VEGF- 
neutralizing monoclonal antibody for the treatment of metastasizing bowel cancer 
was approved by the US Food and Drug Administration in 2004.

4  Inflammation-Induced Angiogenesis

Disorders associated with perpetuated angiogenesis are considered to be angiogenic 
inflammatory diseases. Inflammation plays not only a key role in pathogen defense 
during infection; it also plays a key role in repair mechanisms, e.g., wound healing 
and subsequent tissue regeneration. Physiological wound healing requires the inte-
gration of complex cellular and molecular events. The repair process is tightly con-
trolled involving different cell types during the phases of initial inflammation as 
well as the successive cell migration, cell proliferation, and angiogenesis. Several 
angiogenic mediators, including growth factors, cytokines, MMPs, matrix macro-
molecules, cell adhesion receptors, chemokines, and chemokine receptors, have 
been implicated in the process of capillary formation [50]. Of note, cytokines and 
growth factors released at the site of injury are essential for the repair process [51]. 
In this regard, angiogenesis, the reestablishment of a capillary network by endothe-
lial cells, is mainly initiated and maintained by the major proangiogenic factor 
VEGF. Besides endothelial cells, the angiogenic process involves also other cell 
types including inflammatory cells which represent a major source of growth factors 
and critically contribute to angiogenesis [52]. Platelets, mast cells, primarily mono-
cytes/macrophages, neutrophils, and other leukocytes are recruited to sites of wound 
healing, partly by the action of the proangiogenic factors such as VEGF. All these 
cells in turn release proangiogenic factors such as VEGF, bFGF, TGF-β, PDGF, 
tumor necrosis factor (TNF)-α, insulin-like growth factor (IGF)-1, monocyte che-
motactic protein (MCP)-1, interleukin (IL)-6, IL-8, and many more. All these fac-
tors finally attract endothelial cells, smooth muscle cells, pericytes, and fibroblasts 
to accomplish vessel growth in order to restore sufficient blood supply [39]. Newly 
formed blood vessels again enhance inflammatory cell recruitment setting up a 
stimulating forward loop. In this regard, inflammation often promotes angiogenesis 
establishing the term inflammation-induced angiogenesis.

In inflamed tissues a regulatory network is involved in the control of angiogen-
esis. Accumulating evidence suggests an association between angiogenesis and 
inflammation in pathological situations. Therefore, angiogenesis and inflammation 
seem to be intimately involved in many chronic inflammatory disorders with dis-
tinct etiopathogenic origin, including rheumatoid arthritis, diabetes, cancer, and 
many more. For example, there is considerable evidence of an interrelationship 
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between the mechanisms of angiogenesis and chronic inflammation in inflamma-
tory bowel disease (IBD). The increased expression of endothelial junction  adhesion 
molecules found in IBD patients indicates the presence of active angiogenesis. 
Evidence that angiogenesis is involved in IBD was also obtained from animal mod-
els of colitis, most notably from studies of angiogenesis inhibition. Moreover, serum 
levels of VEGF correlate with disease activity in human IBD [53]. This concept has 
been further supported by the finding that several previously established non inflam-
matory disorders, such as obesity, display both inflammation and angiogenesis in an 
exacerbated manner [54]. In addition, the interplay between recruited inflammatory 
cells and local endothelial cells and fibroblasts at sites of chronic inflammation, 
together with the fact that inflammation and angiogenesis can actually be triggered 
by the same molecular events, further strengthen this association. Angiogenesis 
might be targeted by several specific approaches that could be therapeutically used 
to control inflammatory diseases.

5  Toll-Like Receptors in Inflammation-Induced Angiogenesis

It is experimentally well established that angiogenesis and inflammation represent 
two prominent processes involved in normal physiologic responses and pathologi-
cal states. Emerging evidence also suggests that TLRs have an important role in 
maintaining tissue homeostasis by regulating the inflammatory and tissue repair 
responses to injury. Infectious disorders result in inflammation which in turn pro-
motes angiogenesis mainly by the action of growth factors released by different 
leucocytes. Even though the association of inflammation and angiogenesis has been 
established for a while the knowledge about the role of TLRs in this context is still 
limited [55]. However, a significant number of publications demonstrate that several 
TLR agonists are able to induce the expression and secretion of angiogenic factors 
from different cell types in vitro. The majority of these studies remain rather descrip-
tive in this context and are very much focused on LPS and VEGF. Up to know, only 
few data document a direct involvement of TLRs in angiogenesis, both in physio-
logical and in pathophysiological settings.

6  Toll-Like Receptors in Infection-Induced Angiogenesis

Accumulating evidence points to a direct contribution of TLRs to the angiogenic 
process following bacterial infections, also referred to as infection-induced angiogen-
esis. In this regard, PAMPs from various bacterial species – super abound in an infec-
tion setting – are known to act via different TLRs. A possible influence of TLRs on 
angiogenic processes was first discovered in the context of adenosine and its A2A 
receptor (A2AR). The nucleoside adenosine was found to stimulate angiogenesis 
through upregulation of VEGF, thereby participating in tissue protection following 
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ischemic events. In 2002 Leibovich et al. described a synergistic interaction of A2AR 
agonists with LPS through the TLR4 pathway. This interaction resulted in a strong 
upregulation of VEGF and downregulation of TNF-α in macrophages [56] and could 
also be demonstrated for TLR2, 7, and 9 [57], representing an angiogenic switch. 
This synergy observed in vitro seems to play an important role in vivo, too. Given the 
fact that MyD88-deficient mice showed markedly slower wound healing and reduced 
generation of new capillaries in response to an A2AR agonist [34]. In terms of TLR4, 
it is very likely that LPS induces adenosine which in turn promotes angiogenesis 
through A2AR by the upregulation of VEGF expression in macrophages [58].

Independent of the A2AR system, Pollet et al. showed that the TLR4 ligand LPS 
directly stimulates endothelial sprouting in vitro via a TRAF6-, NFκB-, and JNK- 
dependent mechanism. However, the responsible angiogenic growth factors 
remained elusive in this context [59]. Furthermore, a so far unidentified TLR ligand 
seems to be involved in the formation of angiogenic lesions resulting from infection 
with the facultative intracellular bacterium Bartonella henselae. This bacterial 
infection leads to the activation of hypoxia-inducible factor-1 (HIF-1) and thus to an 
enhanced MCP-1 production in endothelial cells which in turn induces chemotaxis 
of monocytes in order to initiate angiogenesis by VEGF production. Interestingly, 
MCP-1 production was independent of LPS/TLR4 but dependent on NFκB [60, 61]. 
A serious problem of severe ocular infection is pathological corneal neovasculariza-
tion which could finally lead to visual disorders. In this regard, it has been shown 
that VEGF and TLR4 expression are upregulated in response to LPS and that VEGF 
expression is TLR4-dependent [62].

But angiogenesis also contributes to the regeneration process during liver fibro-
sis which is associated with increased endotoxin levels in the gut and portal circula-
tion. Jagavelu et  al. recently demonstrated a key role for the TLR4/MyD88 axis 
during VEGF production and the subsequent angiogenic process in liver endothelial 
cells following LPS stimulation [63]. Likewise, mycoplasma infections could be 
accompanied by enhanced angiogenesis and microvascular remodeling which are 
features of the chronic inflammation as elicited by Mycoplasma pulmonis infections 
of the respiratory tract [64]. In this regard, we recently investigated the highly 
angiogenic properties of the specific TLR2/6 agonist macrophage-activating lipo-
peptide of 2 kDa (MALP-2), a diacylated lipopeptide which occurs in Mycoplasma 
species and gram-positive bacteria. Interestingly, this process seems to be indepen-
dent of VEGF. We discovered a TLR2/6-dependent induction of the MAPK cascade 
and NFκB and a strong secretion of GM-CSF in particular from endothelial cells 
and to a lesser degree from monocytes. Accordingly, MALP-2-induced angiogene-
sis in vitro and in vivo could be suppressed by inhibition of GM-CSF [65]. Similarly, 
human bone marrow mesenchymal stem cells (MSCs) secreted growth factors in 
response to a TLR2/6-dependent stimulation by MALP-2. This process in turn pro-
moted proangiogenic properties of endothelial cells such as migration, prolifera-
tion, and tube formation in vitro in a paracrine manner. MSCs isolated from the 
bone marrow of sheep and co-cultivated with MALP-2 ex  vivo significantly 
enhanced capillary density of skeletal muscle after autogenic implantation of these 
MSCs [66]. This renders MALP-2 potentially eligible for therapeutic angiogenesis 
or cell therapy.
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In addition to an acute infection upon injury, there are different acute or chronic 
inflammatory disorders which are also associated with bacterial infection indepen-
dent of an initial injury. Arthritis is characterized by inflammatory cell infiltration 
into the concerned joint. Progression of the disease includes self-perpetuating 
destruction of articular cartilage and extensive angiogenesis in the synovial mem-
brane. Especially TLR2 ligands of gram-positive bacteria such as peptidoglycan 
(PGN) seem to be responsible for this angiogenic phenotype characterized by the 
induction of VEGF in chondrocytes [67] and accordingly VEGF and IL-8 in fibro-
blasts [68]. In light of immune defense, infection-induced angiogenesis might rep-
resent a general mechanism to restore blood flow in order to recruit immune cells 
for pathogen clearance and tissue regeneration with implication for future angio-
genic therapy.

7  Toll-Like Receptors in Tumor Angiogenesis

The development of cancer has been associated with microbial infection, injury, 
inflammation, angiogenesis, and tissue repair. The role of TLRs in tumor angiogen-
esis is quite diverse just as cancer itself. Tumor inflammation could promote tumor 
angiogenesis, immunosuppression, and finally tumor growth. However, the mecha-
nism controlling inflammatory cell recruitment to the tumor is not well understood. 
Cyclooxygenase (COX)-2 is known to play a crucial role in Helicobacter pylori- 
associated gastric cancer. In this regard, Chang et al. demonstrated that H. pylori 
acts through TLR2 and TLR9 to activate the MAPK cascade leading to COX-2- 
dependent prostaglandin E2 (PGE2) release and thereby contributing to cancer cell 
invasion and angiogenesis [69]. Furthermore, extracellular HSP70 peptide com-
plexes are able to promote the proliferation of hepatocellular carcinoma cells in a 
TLR2/4 dependent manner [70]. Besides exogenous ligands that contribute to 
TLR- mediated tumor angiogenesis, also parts of the extracellular matrix (ECM) 
which are implicated in a variety of human cancers can induce VEGF expression in 
endothelial cells. Biglycan as one component of the ECM increases the interaction 
of NFκB and the HIF-1α promotor in a TLR2- and TLR4-dependent manner result-
ing in VEGF secretion, enhanced cell proliferation and tube formation. VEGF 
released by endothelial cells in turn promotes cancer cell migration and metastasis 
[71]. On the other hand, stimulation of TLRs with particular agonists can also 
cause antitumor activity, interfering with cancer proliferation and angiogenesis by 
mechanism still incompletely understood. For instance, the immunomodulatory 
TLR9 agonist IMO inhibited microvessel formation and tumor growth [72]. 
Likewise, TLR3 agonists not only affect tumor microenvironment by suppressing 
angiogenesis but also directly induce tumor cell apoptosis and inhibit tumor cell 
migration [73]. Interestingly, siRNAs may produce therapeutic effects in a target-
independent manner through the stimulation of the TLR3/interferon pathway and 
suppression of angiogenesis. Injection of siRNAs against different targets led to a 
comparable reduction in liver tumors and to an inhibition of tumor vasculature 
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remodeling. In addition, polyI:C treatment reduced liver tumors and decreased 
hepatic arterial blood flow, indicating that TLR3 may mediate antiangiogenic and 
antitumor properties [74].

In all likelihood, there are two different possibilities for TLR agonists to limit 
tumor growth. First, by altering the tumor microenvironment and inhibiting angio-
genesis and second, by clearing tumor cells due to enhanced activity of natural killer 
and tumor-reactive T cells. In this regard, the TLR7 agonist imidazoquinoline and 
the TLR9 agonist unmethylated CpG oligonucleotides were shown to exhibit strong 
local activity against leukemia, and respective phase I trials are currently in progress 
at different centers [75]. We recently identified proangiogenic properties for the 
TLR2/6 ligand MALP-2 [65]. Interestingly, there are also antitumor activities 
reported for MALP-2 [76–78]. However, whether MALP-2 affects tumor angiogen-
esis is currently unknown. Concanavalin-A (ConA) is another TLR2/6 agonist that 
promotes endothelial cell proliferation trough a JAK/STAT3-mediated increase in 
the expression of colony-stimulating factor-(CSF) 2 and -3 in human mesenchymal 
stromal cells [79]. TLR4 expression in the tumor microenvironment was found to be 
associated with adenocarcinoma in human samples and in the murine model. 
Adenocarcinoma patients with higher TLR4 expression in stromal compartment 
had a significantly increased risk in disease progression. These data suggest that 
high TLR4 expression in the tumor microenvironment represents a possible marker 
for disease progression in colon cancer [80]. So far, there are different polymor-
phisms in several TLR gene clusters known which may shift balance between pro- 
and anti-inflammatory cytokines, modulating the risk of infection, chronic 
inflammation, and cancer. This may offer the possibility for improved diagnostics in 
patients. Future studies in large populations should shed light on the significance of 
TLR polymorphisms for cancer prevention [81].

8  Endogenous Toll-Like Receptor Ligands in Angiogenesis

Sustained pro-inflammatory responses in diseases such as rheumatoid arthritis, ath-
erosclerosis, diabetic retinopathy, and cancer are often associated with increased 
angiogenesis that contributes to tissue disruption and disease progression. In recent 
years, there was accumulating evidence that also endogenous ligands which are 
released during ECM breakdown or by apoptotic cells could bind to different TLRs 
(Table 3.2). In this context, the high-mobility group B1 (HMGB1) which is released 
by necrotic cells has been recognized to signal through the receptor for advanced 
glycation end products (RAGE) and via TLR2 and TRL4. Activation of these recep-
tors resulted in the activation of NFκB and the upregulation of angiogenic factors 
like VEGF in both hematopoietic and endothelial cells [82]. HMGB1 released at 
wound sites initiates TLR4-dependent responses that contribute to angiogenesis by 
regulating endothelial permeability and vascular growth [83, 84]. The interaction of 
HMGB1 and TLR4 also mediates the recruitment of endothelial progenitor cells to 
the sites of neovascularization by upregulation of stromal cell-derived factor-1 
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(SDF-1) [85]. Recent data by van Beijnum et  al. identified HMGB1 even as an 
important modulator of tumor angiogenesis [86]. Thus, targeting the HMGB1 sig-
naling cascade may constitute a novel therapeutic approach to angiogenesis-related 
diseases. Following this line, inflammation-induced oxidative stress and angiogen-
esis is emerging as an important mechanism underlying numerous processes from 
tissue regeneration and remodeling to cancer progression. Interestingly, West et al. 
recently reported that end products of lipid oxidation such as ω-(2-carboxyethyl)
pyrrole (CEP) are generated and accumulate during inflammation, wound healing, 
and in tumors. CEP is specifically recognized by TLR2 but not TLR4 or scavenger 
receptors in endothelial cells, leading to a MyD88-dependent angiogenic response 
that is independent of VEGF [87]. In this regard, stress-sensing by TLR2 seems to 
be a major driver of angiogenesis [88, 89]. Apparently, also endogenous ligands, 
which accumulate during inflammatory tissue disruption and enhanced oxidative 
stress conditions, are capable of promoting angiogenesis via a TLR-dependent path-
way. Thus, TLRs are activated not only in response to tissue-invading pathogens but 
also pathogen-independent. In both cases TLRs have important functions in the 
recruitment of immune cells in order to initiate a regenerative program: in the first 
case mainly to eliminate invading pathogens and in the second case to clear the 
affected tissue from apoptotic cells and cellular debris. Obviously, angiogenic pro-
cesses are involved in both scenarios (Fig. 3.3).
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Fig. 3.3 Tissue regeneration through TLRs

K. Grote et al.



51

9  Oxidative Stress and Toll-Like Receptor-Dependent 
Angiogenesis

Increased oxidative stress is closely related to many disease pattern, e.g. to the 
pathology of cardiovascular diseases like atherosclerosis, myocardial infarction and 
stroke. If the well-balanced homeostasis of oxidative and anti-oxidative processes is 
shifted towards increased formation of reactive oxygen species (ROS), the resulting 
oxidative stress leads to the onset of various inflammatory processes. However, 
there is growing evidence of a potential regenerative crosstalk between oxidative 
stress and TLRs in angiogenesis in recent years. In this regard, Chen et al. reported 
that decreased NADPH oxidase (NOX)1 and 4 expression, ROS formation as well 
as increased vascularization in fat grafts after enrichment with adipose-derived stem 
cells is TLR4-dependent [90]. In addition, Menden and colleagues described a new 
mechanism which could be involved in microvascular remodeling after sepsis in the 
lung. They reported that NOX2 inhibition attenuated LPS-mediated Ang2 signaling 
and capillary network formation in human pulmonary endothelial cells in vitro [91]. 
This signaling axis involves the NFκB and MAPK pathways and suggests a tied 
cooperation of TLR- and NADPH oxidase-dependent signaling to coordinate endo-
thelial regeneration after infection. Interestingly, we observed a related cooperation 
of TLRs and the NADPH oxidase. In an ongoing project, we identified NOX2- 
derived superoxide anions as important regulators for GM-CSF release from endo-
thelial cells in response to TLR2/6 stimulation (unpublished data). In this regard, we 
have already shown that TLR2/6-induced GM-CSF release mediates endothelial 
proliferation, migration and angiogenesis [65]. The already in the last section men-
tioned study by West et al. additionally suggested that endogenous end products of 
augmented oxidative stress could represent a new class of TLR ligands [87]. Since 
ROS do not only accelerate pathological processes, but are also important for many 
signaling transduction pathways, an interaction with TLRs in a regenerative aspect 
seems logical and opens up new possibilities for future research. Particularly 
because the number of studies in the field is still small.

10  A Side Glance on NOD Receptors and Angiogenesis

Although this chapter is focused on the role of TLRs in angiogenesis we want to 
take a brief look at a subfamiliy of the nucleotide-binding oligomerization domain 
(NOD)-like receptors at this point. The NOD receptors NOD1 and NOD2 are intra-
cellular receptors, which sense conserved motifs of bacterial peptidoglycan and are 
the founders of the entire NOD-like receptor family. Just as TLRs, they belong to 
the class of PRRs with important functions in immune defense [92]. They were 
identified at the turn of the millennium by sequence homolog searches. Receptor 
ligation leads to recruitment of the receptor-interacting protein kinase 2 (RIPK2) 
followed by the activation of the MAPK and NFκB pathway and subsequently to the 
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induction of many well-known inflammatory genes such as IL-6 and TNF-α. 
Besides immune defense, recent work showed the involvement of NOD1 and 
NOD2 in many inflammatory diseases, e.g. IBD, cardiovascular disease and meta-
bolic disease [93]. Campbell and colleagues reported, that NOD2-deficient mice 
displayed a substantial delay in acute wound repair [94] pointing to an even regen-
erative role of NOD receptors. However, reports on angiogenesis are very limited so 
far and to our knowledge there is up to now only one single study existing. 
Interestingly, Schirbel et al. demonstrated that NOD1 and NOD2 agonist – just like 
TLR agonists – are capable of inducing proliferation, migration, transmigration and 
tube formation of human intestinal microvascular endothelial cells in vitro as well 
as angiogenesis in a mouse model in vivo [95]. These processes were consequently 
mediated via RIPK2, MAPK and NFκB signaling. Different to TLRs, no endoge-
nous NOD ligands have been identified so far which might play a role in angiogen-
esis. This new research field as well offers many opportunities to shed more light on 
the overall picture of PRRs in angiogenic processes.

11  Summary and Therapeutic Perspectives

Accumulating evidence points to a crucial role of TLRs in angiogenesis. However, 
the mode of action of TLRs in this context is quite diverse. TLR activation consis-
tently promotes angiogenesis in various inflammatory settings in response to both 
exogenous and endogenous ligands. In regard to an acute local infectious scenario, 
the angiogenic process seems to be important for sufficient blood supply and the 
recruitment of immune competent cells for pathogen clearance and subsequent tis-
sue regeneration. In contrast, chronic local infection or prolonged pathogen- 
independent inflammation leads to excessive angiogenesis with eventually 
pathological consequences. It should not be left unmentioned here that TLRs may 
also prevent angiogenesis. In endothelial progenitor cells isolated from umbilical 
cord blood, TLR3 activation specifically inhibits their proangiogenic properties 
[96]. Similar, blocking TLR2 in endothelial cells has been shown to promote angio-
genesis by a crosstalk between TLR2 and CXCR4 and the activation of proangio-
genic kinases downstream of CXCR4 [97]. Moreover, TLR2-deficient mice 
undergoing hindlimb-ischemia exhibit an augmented capacity to stimulate angio-
genesis. A process, that seems to be mediated by immune cells rather than endothe-
lial cells [98]. However, specific ligands for these antiangiogenic effects have not 
been described yet. Pro- and antiangiogenic properties of TLRs are likewise reported 
in tumor angiogenesis.

In the future, modulation of TLR signaling could provide the basis for the devel-
opment of novel therapeutic approaches in diverse settings. Stimulation of TLRs 
with specific ligands could be used for future therapeutic angiogenesis. However, 
beneficial effects of therapeutic angiogenesis may be negatively impacted by side 
effects of pharmacological substances such as statins or non-pharmacologic hor-
mones such as erythropoietin. Moreover, certain requirements for this therapeutic 
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process are warranted. First, as simple as it may sound but no harm should be 
induced especially tumor induction or tumor growth should be avoided. Second, in 
order to promote a sustained recovery, endogenous mechanisms of angiogenesis 
should be induced rather using an excessive administration of exogenous factors 
which may also act as antigens or inducing tolerance when applied over a long 
period of time. Finally, organ-specific requirements for recovery should be consid-
ered, e.g., for cerebral reconstitution angiogenesis, neurogenesis, synaptogenesis, 
and neuronal and synaptic plasticity should be induced in parallel [99].

Thus, therapeutic modulation of TLR signaling is a very attractive and novel but 
also sophisticated therapeutic approach to promote angiogenesis. In order to induce 
long-term organ repair and restoration after ischemic events, for example, detrimen-
tal TLR signaling should be inhibited and in parallel beneficial TLR signaling 
should be induced. From this point of view, inhibitory strategies targeting TLR sig-
naling seem to be plausible in chronic and persistent infectious situations such as 
rheumatoid arthritis. Small molecules or siRNA against specific TLRs or their 
downstream targets may provide novel tools to combat local inflammation via inhi-
bition of angiogenesis. Especially advanced tissue penetration properties of those 
engineered molecules render them applicable and superior for the use in tissues 
which are inaccessible for antibiotics. Likewise, inhibitory strategies targeting 
TLRs could be used to inhibit pathological tumor angiogenesis in order to limit 
tumor growth. In particular, modulation of TLR3, TLR7, and TLR9 activity seems 
to be a potential future therapeutic target [72–74]. However, great caution is required 
since pro- and antiangiogenic properties with subsequent pro- or antitumorigenic 
properties of different agonists recognized by the same TLR are reported.

The potentially most promising future therapeutic approach is the application of 
specific TLR agonists in damaged ischemic or hypoxic tissues in order to promote 
angiogenesis and subsequent tissue regeneration, especially when the tissue damage 
is not initiated or accompanied by severe infection, e.g., in peripheral arterial occlu-
sive disease. In such settings, a single application of TLR agonists mimics an infec-
tious scenario without prolonged local pathogen presence. Such an initial therapeutic 
boost of the immune system with specific TLR agonist aims to launch a defined 
regenerative program including enhanced angiogenesis. Of note, the application of 
single proangiogenic growth factors has already been tested in clinical trials. 
However, in the case of VEGF monotherapy, large-scale trials have not yet yielded 
consistent beneficial results [100, 101]. This may be related to recent observations 
that several other potent proangiogenic factors act in concert with VEGF for proper 
vessel formation and maturation [43, 44, 47]. In this regard, stimulation of specific 
TLRs (e.g., TLR2/6) may provide an opportunity to induce a specific pattern of 
proangiogenic growth factors for sufficient vessel growth and tissue regeneration. 
Thus, we raised our hope on biologicals such as the lipopeptide and TLR2/6 agonist 
MALP-2. Recent results from our group indicated that the proangiogenic properties 
of MALP-2 critically depended on the induction of the growth factor GM-CSF in 
endothelial cells and monocytes [65]. Additional experiments in a vascular endothe-
lial denudation model in mice revealed promising effects of MALP-2 on endothelial 
regeneration after vascular injury [102]. Those experimental data are the basis for 

3 Toll-Like Receptors in Angiogenesis



54

studies in larger experimental animals and future applications using MALP-2 or 
related agonists in patients, who suffer from peripheral vascular damage or occlu-
sion in diabetes or post percutaneous vascular interventions or even following 
stroke. Nevertheless, the question remains how to apply such substances since local 
delivery is preferred in order to avoid side effects and promote endogenous proan-
giogenic restoration effects downstream of the site of application. Therefore, we 
aim to test coating procedures on traditional devices such as drug-eluting stents or 
coated balloons widely used in interventional cardiovascular medicine. However 
more innovative devices/treatment approaches such as nanofibers, polymer biode-
gradable soaked stents with TLR ligands, or endovascular patches placed in the 
occluded vessel or as seal on the balloon-disrupted vascular segment are in the focus 
of our interest.

In summary, modulation of TLR activity may offer the possibility for different 
future therapeutic concepts. Inhibition of TLRs is maybe favorable in settings of 
prolonged infection/inflammation to rescue the inflamed tissue or to inhibit patho-
logical tumor angiogenesis to limit tumor growth. The contrary concept, TLR stim-
ulation, offers a promising option to promote therapeutic angiogenesis for tissue 
regeneration.
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Chapter 4
Vascular Stem Cells in Regulation 
of Angiogenesis

Jingwei Lu, Vincent J. Pompili, and Hiranmoy Das

Abstract Angiogenesis is the process by which new vessels are generated from the 
preexisting blood vessels, which is the major contributor of postnatal neovascular-
ization process. Disruption or dysregulation of angiogenesis is involved in various 
pathological conditions, such as ischemia and tumor progression. Stimulation of 
angiogenesis was proposed to be able to restore the blood flow and contribute to the 
tissue recovery in ischemia, while inhibition of angiogenesis can impede tumor pro-
gression. The importance of angiogenesis has generated tremendous interest in 
studying the mechanisms and to find out major contributors of the process. The 
current stem cell research has significantly improved our understanding of angio-
genesis and its possible therapeutic application. Hypoxia is the most important driv-
ing force of angiogenesis, while other factors, such as chemokines and cytokines, 
haptotaxis, and mechanotaxis, are also important in regulating neovascularization 
process. In this chapter, we will focus on the progenitor cells that contribute to the 
angiogenesis and the underlining mechanisms involved in this process.

Keywords Angiogenesis • Stem cells • Hypoxia • Cytokines • Hypotaxis 
• Mechanotaxis • Signaling molecules • MicroRNA

1  Introduction

Galen, the second-century physician, speculated that the vascular system served to 
carry blood and provide nutrition to the human body [1]. It is now well established 
that the vascular system provides the main network of channels for nutrients (such 
as amino acids, electrolytes, oxygen, and hormones) to all the body tissues. 
Disturbances in the vascular system, mainly blocking the blood supply to the 
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tissues, cause a variety of circulatory diseases, from peripheral artery disease to 
peripheral venous disease, and include among them vascular diseases like aneu-
rysms, renal artery stenoses, and Buerger’s disease [2]. Disruptions of angiogenesis 
play a critical role in the pathological progression of various ischemic diseases, 
such as stroke, ischemic heart disease, and the multiple peripheral vascular disease 
syndromes, resulting in a shortage of blood supply and which eventually induce 
apoptosis and necrosis of cells and the tissues of the vascular system. Angiogenesis, 
however, plays an important role in the regeneration of such ischemic tissues. In a 
seemingly contradictory role to that in the ischemic diseases, angiogenesis contrib-
utes to damage caused by the progressive growth of malignant tumors. Targeting 
tumor growth by targeting tumor angiogenesis, as in using various drugs to reduce 
blood supply to the tumor, is one of the major therapeutic considerations for effec-
tive control. Rapid proliferation of tumor cells, with lack of blood supply and lack 
of oxygen, triggers upregulation of vascular endothelial growth factor (VEGF) 
secretion, which promotes the angiogenesis process. The importance of angiogen-
esis in pathological conditions has generated interest in studying the mechanisms 
and signaling pathways for angiogenesis. Various stem cells were proposed to be 
important for initiation of the angiogenesis process. Mesenchymal stem cells 
(MSCs) and hematopoietic stem cells (HSCs), which were shown to repair ischemic 
tissues, have great ability to promote angiogenesis via neovascularization and 
thereby to reduce the amount of ischemic tissue damage [3, 4]. Other cell types such 
as smooth muscle stem cells and vascular pericytes were also shown to be beneficial 
for the process of angiogenesis. In this chapter, we will focus on the role of various 
stem cells on the angiogenesis process and on the molecular mechanisms that pro-
mote these stem cells to form new blood vessels.

2  Angiogenesis and Stem Cells

The wall of blood vessels contain endothelial cells, mural cells, and extracellular 
matrix (ECM). The inner lining of blood vessel is the endothelium, which is a thin 
layer of endothelial cells. Mural cells are specified as determined by the location of 
the vessel; they could be pericytes, smooth muscle cells, and fibroblasts. The mural 
cells are embedded in the extracellular matrices [5]. The various types of cells form-
ing blood vessels could be derived from multiple stem/progenitor cells. Circulating 
endothelial progenitor cells (EPCs) and HSCs could differentiate into endothelial 
cells thus directly contributing to the angiogenesis process. MSCs, though they may 
not be able to directly differentiate into endothelial cells, can secrete factors, such as 
VEGF, and promote the neovascularization process. Other progenitor cells, such as 
vascular pericytes and smooth muscle progenitor cells, can also contribute to angio-
genesis (Fig. 4.1).
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2.1  Circulating Endothelial Progenitor Cells

The first study on putative EPCs was based on isolation of CD34+ mononuclear 
blood cells. The isolated cells were adhered to plastic and differentiated into endo-
thelial cells upon culture [6]. Since the discovery of EPCs, various markers have 
been proposed to identify EPCs, such as CD34, CD133, expression of both CD133 
and vascular endothelial growth factor receptor (VEGFR) 2, and expression of 
monocyte/macrophage-related molecule CD14 with minimal CD34 molecule [7]. 
The functional role of circulating EPCs has been actively investigated during the 
past few years. It was shown that higher level of VEGF may induce a rapid mobili-
zation of HSCs and bone marrow-derived circulating endothelial precursor cells, 
which contribute to postnatal angiogenesis and hematopoiesis [8]. However, further 
study has shown that bone marrow-derived cells do not significantly contribute to 
tumor- or cytokine-induced angiogenesis rather tumor- or VEGF-induced angiogen-
esis is involved [9]. Based on their proliferation properties, two different categories 
of EPCs were identified in the peripheral blood, early EPCs and late EPCs. Early 
EPCs secrete more angiogenic cytokines, such as VEGF and interleukin (IL)-8 than 
do late EPCs; however, late EPCs produce more nitric oxide and incorporate more 
readily into human umbilical vein endothelial cell monolayers and form capillary 
tubes as compared to early EPCs [10].

Cell Types

Circulating
Endothelial
Progenitor Cells

Differentiate into endothelial cells
secret various factors:
VEGF, IL-8, nitric oxide, etc.

Perivascular precursor cells,
secret factors: VEGF, basic FGF,
PIGF, etc.

Differentiate into precursor cells,
secret factors: VEGF,
Ang1, MMP-2, MMP-9, etc.

Support endothelial cell
differentiation and proliferation,
differentiate into SMCs,
fibroblasts, and other cells upon
stimulation

Provide structural integrity,
secret VEGF

MSCs

Hematopoietic
Stem Cells

Vascular
Pericytes

Smooth Muscle
Progenitor Cells

Differentiation & Functions Angiogenesis

Fig. 4.1 Contribution of various stem/progenitor cells and their secretory molecules in the angio-
genesis process (MSCs mesenchymal stem cells, SMCs smooth muscle cells, VEGF vascular endo-
thelial growth factor, IL-8 interleukin-8, FGF fibroblast growth factor, PlGF placental growth 
factor, Ang1 angiopoietin 1, MMP matrix metalloproteinases)
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2.2  Hematopoietic Stem Cells

HSCs and EPCs develop in close proximity to each other within the embryo. 
HSCs share the same ancestor with EPCs, called the hemangioblast. The exis-
tence of hemangioblasts was supported by various experimental observations, 
but its role during development is still controversial. Even though evidence has 
shown that single cell-derived colonies could produce both hematopoietic and 
endothelial cells in vitro, only a small portion of hematopoietic and endothelial 
cells were derived from hemangioblasts during development, which indicated 
that hemangioblasts might not be as significant as originally expected [11]. 
However, these studies illustrated the relationship of hematopoietic and endothe-
lial lineage and indicated the possibility that HSCs might facilitate the angiogen-
esis during embryonic development and postnatal development. Indeed in acute 
myeloid leukemia (AML)-1- deficient embryos, which lack definitive hematopoi-
esis, defective angiogenesis in the head and in the pericardium was observed. The 
disruption in angiogenesis of para-aortic splanchnopleural (P-Sp) explant culture 
was rescued by addition of HSCs [12]. The recruitment of myeloid cells was 
found to be associated with formation of new blood vessel during pathological 
angiogenesis, and depletion of circulating myeloid cells significantly reduced the 
density of microvessels in a bioengineered human vascular implant [13]. The 
functional role of HSCs during angiogenesis may come from expression of pro-
angiogenic factors such as VEGF and Ang1 and remodeling factors such as 
matrix metalloproteinase (MMP)-2 and MMP-9, which promote angiogenesis 
and guide the migration of endothelial cells [12]. It was found that hematopoietic 
cytokines SDF-1, induced by soluble Kit ligand, thrombopoietin, erythropoietin, 
and granulocyte-macrophage colony- stimulating factor (GM-CSF) released from 
platelets, enhanced neovascularization through mobilization of chemokine recep-
tor (CXCR)-4+ VEGFR1+ hemangiocytes [14]. The important role of hemato-
poietic cells in angiogenesis has received great attention and proposed to be 
important target for anti-angiogenesis therapy following radiotherapy during 
treatment of tumor progression [15].

2.3  Mesenchymal Stem Cells

MSCs are present in many organs and function to maintain and regenerate connec-
tive tissues and replace damaged tissues following injury or inflammation. MSCs 
could efficiently stabilize nascent blood vessels in vivo acting as perivascular pre-
cursor cells, although differentiation of MSCs into endothelial cells was not detect-
able [16]. Co-implant human primary endothelial cells with human bone marrow 
MSCs showed enhanced formation of a network of functional, mature blood vessels 
accessed by in vivo whole body bioluminescence imaging in immunodeficient mice 
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[17]. Transplantation of MSCs was shown to be able to decrease fibrosis and myo-
cardial scarring and improve myocardial regeneration in infarct-damaged hearts, 
through paracrine effects, via secretion of VEGF, basic fibroblast growth factor 
(bFGF), and placental growth factor (PlGF), even though MSC differentiation into 
ECs was not clearly demonstrated [18].

2.4  Smooth Muscle Progenitor Cells

Smooth muscle cells in the vascular system provide the structural integrity of the 
vessel wall. Recent study has shown that smooth muscle progenitor cells may have 
a potential role in angiogenesis. In a murine stroke model, it was shown that co- 
injection of smooth muscle progenitor cells with EPCs gave better results than 
administration of EPCs alone for vascular remodeling, cell proliferation, and neuro-
blast migration [19]. Perturbation in the signaling of transforming growth factor 
(TGF)-β, which is a multifunctional cytokine and plays an important role in carci-
nogenesis, was reported to affect endothelial and smooth muscle cell function and 
to contribute to tumor angiogenesis and tumor progression [20]. Smooth muscle 
cells can also contribute to angiogenesis by secreting mitogens, such as VEGF upon 
response to the hypoxia [21].

2.5  Vascular Pericytes

Pericytes are located surrounding the endothelial cells of the capillaries. Clonally 
isolated cells expressing pericyte markers were shown to be myogenic in culture 
in vivo [22]. It was proposed that pericytes derived from MSCs retain nascent stem 
cell properties, were recruited to the nascent microvascular wall during develop-
ment and postnatal growth, and remained in a growth-arrested state until triggered 
to resume proliferation and differentiation later [23].

3  External Factors Regulate Angiogenesis Process

There are three distinct mechanisms, which promote cell migration during angio-
genesis, chemotaxis, haptotaxis, and mechanotaxis. Chemotaxis directs cell migra-
tion toward a gradient of soluble chemoattractants, such as VEGF and 
bFGF. Haptotaxis attracts cells toward a gradient of immobilized ligands such as 
integrins binding to ECM components. Mechanotaxis promotes cell migration by 
mechanical forces, such as fluid shear stress [24]. Other factors including hypoxia 
will also be discussed here (Fig. 4.2).
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3.1  Chemotaxis: Cytokines, Chemokines, and Growth Factors

Various cytokines and soluble proteins, such as VEGF, bFGF, angiopoietins, FGF-2, 
hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), epidermal 
growth factor (EGF), TGF-β, interleukins, and tumor necrosis factor (TNF)-α, pro-
mote the migration of endothelial cells during angiogenesis. VEGF is a major factor 
that regulates angiogenesis. Various factors can induce the production of VEGF, and 
hypoxia was reported to be one of them. Hypoxia is able to enhance the production 
of VEGF and its receptors [25]. Production of reactive oxygen species (ROS), for 
example, hydrogen peroxide (H2O2), also upregulates the gene expression of VEGF 
in endothelial cells [26]. VEGF was also found to be expressed by almost all solid 
tumor as an angiogenic mitogen and so is now targeted for anti-angiogenesis ther-
apy for tumor metastasis [27]. VEGF and its family members stimulate cellular 
responses by binding to the tyrosine kinase receptors called VEGFRs. VEGFR1 
(Flt-1) is required for the recruitment of hematopoietic precursors and migration of 
monocytes and macrophages [28]. VEGFR1-deficient mice die in utero between 8.5 
and 9.5 days post-coitum due to early defects in the development of hematopoietic 
and endothelial cells [29]. The functional role of VEGFR2 (KDR/Flk-1) has been 
linked with proliferation, migration survival, and increased permeability, all of 
which contributes to the angiogenesis process [30].

VEGF plays critical roles in endothelial differentiation, in acquisition of arterial 
endothelial cell identity, and in the vascular patterning of vertebrate embryos. VEGF 
ligands and receptors such as VEGF-A, the prototype of VEGF ligand, VEGFR1, 
VEGFR2, and VEGFR3 regulate vasculogenesis and angiogenesis during various 
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VEGF, bFGF, angiopoietins,
CXCL1, CXCL2, CXCL3 etc.

Secrets various factors

Hypoxia

Tissue ischemia

Sheared stress
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Fig. 4.2 Factors regulating angiogenesis process. Hypoxia, chemokines and cytokines, hypotaxis, 
and mechanotaxis are the major factors induce and regulate angiogenesis process (EPCs endothe-
lial progenitor cells, SMC smooth muscle cells, VEGF vascular endothelial growth factor, bFGF 
basic fibroblast growth factor, CXCL chemokine (CXC-motif) ligand, MMP matrix 
metalloproteinases)
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stages of growth [31]. By studying a series of nerve-specific Cre lines, it was shown 
that peripheral nerve-derived VEGF promotes arterial differentiation through the 
VEGF164-NRP1 positive-feedback loop [32]. It was further demonstrated that VEGF 
acted downstream of sonic hedgehog (Shh) and upstream of Notch pathway in the 
differentiation of endothelial cells to arterial fate [33].

Other factors also play important roles in promoting angiogenesis including 
bFGF, angiopoietins, HGF, PDGF, EGF, TGF-β, TNF-α, etc. Slow release of bFGF 
(using gelatin hydrogels) can promote new blood vessel formation compared with a 
control group in a murine limb ischemia model [34]. Angiopoietin was required for 
endothelial development from progenitors circulating in human cord blood. More 
specifically, endogenous angiopoietin-1 regulates initial endothelial cell commit-
ment, while angiopoietin-2 improves expansion of the endothelial cell progeny [35]. 
Angiopoietin-1 and angiopoiein-2 may also play important role in regulating recruit-
ment of mural cells during angiogenesis [36]. It was shown that overexpression of 
HGF in smooth muscle cells can be beneficial in EPC differentiation, proliferation, 
and migration [37]. Further study has shown that HGF stimulates migration and tube 
formation of human umbilical vein endothelial cells in a Nox2-dependent manner 
[38]. However, transplantation of bone-derived MSCs showed no significant differ-
ences in promoting angiogenesis with or without HGF, which indicated that further 
study is needed to investigate the interplay between HGF and MSCs [39].

Chemokines are a family of small chemotactic cytokines and are classified by the 
presence of four cysteine residues in conserved locations. Members of the chemo-
kine family are divided into four groups CC chemokines, CXC chemokines, C che-
mokines, and CX3C chemokines. Many chemokines were proven to be angiogenic 
such as CXCL1, CXCL2, and CXCL3. These chemokines activate endothelial cells 
upon binding with their receptors. It was reported that functional differences among 
endothelial cells is dependent on the level of expression of CXC chemokine recep-
tors [40]. It was also proposed that CXC chemokine IL-8; growth-related oncogenes 
alpha, beta, and gamma; granulocyte chemotactic protein 2; and epithelial neutrophil- 
activating protein-78 mediate angiogenesis in the absence of preceding inflammation 
partially through interaction with CXC chemokine receptor 2 (CXCR2) [41]. 
CXCR2 is a member of the G-protein-coupled receptor family and is expressed in 
endothelial cells. CXCR2 knockout mice exhibited defective neutrophil recruitment, 
an altered temporal pattern of monocyte recruitment, significant delay in epitheliali-
zation, and decreased neovascularization in wound-healing processes [42]. It was 
shown that upon binding to IL-8, CXCR2 activates the Rac pathway, which leads to 
cell retraction and formation of gaps between neighboring cells. Translocation of 
Rac into the plasma membrane eventually results in endothelial activation [43]. 
These experiments suggest that CXCR2 plays an important role in the recruitment of 
cells and promoting angiogenesis. Other than CXCR2, VEGF- and bFGF-activated 
angiogeneses were also partially mediated through CXCR4. Stimulation of human 
umbilical vein endothelial cells with VEGF or bFGF was shown to be able to induce 
upregulation of CXCR4. It was further shown that  chemokine SDF-1α, which spe-
cifically bind CXCR4, is a potent chemoattractant for endothelial cells and partici-
pates in angiogenesis stimulated by VEGF and bFGF [44].
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3.2  Haptotaxis

Haptotaxis is the directional motility of cells by the ligands typically presented in 
the ECM. Exposure of ECM and binding to integrin help homing and recruitment of 
the immune cells during the angiogenesis process. These ECM and integrin mole-
cules are also critical for homing of transplanted HSCs to the bone marrow and the 
recruitment of inflammatory cells to the sites of inflammation [45]. It was shown 
that hematopoietic progenitor cells of β2 integrin-deficient mice are less capable of 
homing to the ischemic site and that improving neovascularization and preactiva-
tion of the β2 integrins expressed on EPCs augmented the EPC-induced neovascu-
larization [46]. Antagonists of integrin α4β1 were shown to be able to block the 
adhesion of monocytes to endothelium and prevented monocyte stimulation during 
angiogenesis [47]. It was further shown that administration of α4 integrin antibody 
resulted in increased numbers of circulating EPCs in vivo and systemic administra-
tion of anti-α4 integrin antibody increased recruitment and the incorporation of bone 
marrow EPCs in newly formed vasculature of hind-limb ischemia and myocardial 
infarction models [48]. Integrin-dependent homing of progenitor cells can be 
enhanced by various factors. It was reported that high-mobility group box 1 
(HMGB1) activated EPC migration in a RAGE (HMGB1 receptor expressed on 
EPCs)-dependent manner and was inhibited by β1 and β2 integrin inhibition. 
HMGB1 could rapidly increase the affinity of integrin and induce polarization of 
integrin, which might be related to the corresponding enhanced adhesion capability 
of EPCs [49]. Pharmacologic activation of Epac1, a nucleotide-exchange protein for 
Rap1, could increase Rap1 activity and stimulate the adhesion of various human 
progenitor cells. EPCs, CD34+ hematopoietic progenitor cells, and MSCs are acti-
vated through increased β2 and β1 integrin-dependent adhesion and activated pro-
genitor cells home to the ischemic muscles in an increased amount as a result, 
neovascularization occurs [50].

3.3  Mechanotaxis

Mechanotaxis is the directed movement of cells by mechanical cues, such as fluidic 
shear stress and stiffness of substrate. Endothelial cells which make up the inner 
lining of blood vessels are constantly under fluid-mediated shear stress in vivo, and 
it was shown that this mechanical stress-mediated signaling contributes to each step 
of endothelial migration, cell-ECM adhesion, and cell–cell adhesion processes [51]. 
Shear stresses were reported able to induce changes in the shape of endothelial cells 
and partial disassembly of adherent junctions [52]. It was shown that endothelial 
cells, cultured on type I collagen-coated coverslip and wounded later, enhanced 
wound healing under higher shear stress [53]. The endothelial cell alignments 
induced by fluid shear stress were proposed to act through the p38/mitogen- activated 
protein (MAP) kinase-activated protein kinase 2 (MAPKAP kinase 2)/heat shock 
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protein (HSP) 25/27 pathway due to its critical role in actin dynamics. It was shown 
that by inhibiting p38 signaling, endothelial elongation and alignment were blocked 
in the direction of flow, elicited by shear stress [54]. Other mechanisms involving G 
protein have also been studied. It was shown that shear stress-induced cytoskeletal 
reorientation was abolished in cells overexpressing dominant negative Rac 1. This 
indicated that the Rac GTPase might play a role in regulating endothelial cytoskel-
eton by shear stress [55]. The endothelial cell reorientation in response to shear 
stress was further studied and was proposed to follow a two-step process involving 
Rho-induced depolarization, followed by Rho−/Rac-mediated polarization and 
migration in the direction of flow [56].

3.4  Hypoxia

Hypoxia plays a critical role in neovascularization, both in embryonic development 
and in postnatal development. During embryonic development, the vascular system 
is stimulated by an inadequate supply of oxygen, which is caused by rapid expan-
sion of embryonic tissues. In adult tissues, the blood vessels do not undergo signifi-
cant growth, and the oxygen concentrations remain relatively constant between 30 
and 50 mm of Hg. In pathological conditions, however, as in ischemia, hypoxia is 
created by the lack of blood, which is the main carrier of oxygen, and reduction of 
the oxygen level triggers angiogenesis. Important molecules involved in the hypoxia 
response include prolyl hydroxylase domain-containing proteins (PHDs) and 
hypoxia-inducible factors (HIFs). PHDs play an important role in oxygen sensing 
by inhibiting HIFs expression and by promoting HIFs degradation. HIF is a key 
transcription factor governing a large set of gene expressions for hypoxia adapta-
tion, for example, the inhibition of PHD suppressed lipopolysaccharide-induced 
TNF-α expression. Reducing oxygen will lead to poor hydroxylation activities by 
PHDs and thus lead to accumulation of HIF-α. Hundreds of proteins were regulated 
by HIFs in response to hypoxia. It was shown that hypoxia, by regulating HIF, 
stimulates the production of various angiogenic cytokines such as VEGF and angio-
poietin- 1 and promotes proliferation of embryonic hemangioblasts [57]. Hypoxia 
can also promote recruitment of bone marrow-derived vascular modulatory cells 
through HIF-1α, which enhances the synthesis and secretion of endothelial mole-
cules on vascular progenitor cells, such as CD31, VEGFR2, and endothelial NO 
synthase (eNOS) [58]. Even though hypoxia has been demonstrated to be useful in 
maintaining undifferentiated stem cells, researchers have found that hypoxia can 
also stimulate differentiation of stem cells in certain condition [59]. Hypoxia may 
stimulate adipose stromal cells (ASCs) into endothelial-like cells. It was shown that 
secretion of VEGF correlates inversely with oxygen concentration, and ASCs 
assumed an endothelial phenotype characterized by their ability to form tubes when 
seeded with differentiated endothelial cells on Matrigel assays [60]. ASCs were 
reported to be able to express endothelial markers when cultured with VEGF and 
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differentiated in response to local cues into endothelial cells, which contributed to 
neoangiogenesis in a hind-limb ischemic model [61]. HIF-α, in response to hypoxia, 
regulates a variety of genes such as uPAR, collagen prolyl 4-hydroxylases, matrix 
metalloproteinases, and tissue inhibitors of matrix metalloproteinases, which were 
proposed to facilitate endothelial transition from a stable growth-arrested state to a 
plastic proliferative phenotype [62].

4  Signaling Molecules Involved in Angiogenesis

Several complex signaling pathways are involved in angiogenesis. However, two 
major signaling pathways play critical roles in angiogenesis, the Notch-signaling 
pathway and the hedgehog-signaling pathway, and these will be discussed here. We 
shall also discuss miRNAs, which are involved in the angiogenesis process 
(Fig. 4.3).
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Fig. 4.3 Signaling molecules involved in cellular angiogenesis. Various cellular signaling mole-
cules are involved in the angiogenesis process includes notch pathway, hedgehog pathway, 
hypoxia, and growth factors. MicroRNAs are also participating in the regulation of angiogenesis 
process (Shh sonic hedgehog, CSL combination of three proteins CBF1, Su (H), and Lag-2, miR 
microRNA, VEGF vascular endothelial growth factor, Ang angiopoietin)
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4.1  Notch and Delta Signaling

Notch-signaling pathway is highly conserved with four different Notch receptors, 
NOTCH1, NOTCH2, NOTCH3, and NOTCH4, and five ligands from the jagged 
(Jagged-1 and Jagged-2) and Delta (Delta-like 1, Delta-like 3, and Delta-like 4) 
families plus modifier proteins from the Fringe family (lunatic, manic, and radical 
fringe) [63]. Notch proteins play critical role throughout embryonic development, 
such as cell survival, self-renewal for stem cells, and lineage determination for 
developing cells. Upon ligand activation, the cytoplasmic domain of Notch is pro-
teolytically released, translocates into the nucleus, activates CSL [CBF1, Su (H), 
Lag-2], and converts them to transcriptional activators. The Notch/CSL-dependent 
signaling directly targets HERP families of transcriptional repressors, which are 
involved in multiple aspects of vascular development including muscle differentia-
tion, angiogenic processes, arterial-venous cell fate determination, and vascular 
morphogenesis in mice [64]. The Delta-Notch-signaling pathway also targets mem-
bers of the Hey family, the loss of which led to global lack of vascular remodeling 
and massive hemorrhage [65]. It was also shown that the differentiation-associated 
growth arrest in endothelial cells activated by Notch pathway was mediated by 
mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase 
(PI3K)/Akt pathway [66].

4.2  Hedgehog Signaling

Hedgehogs interact with heparin on the cell surface through N-terminal basic 
domains. The molecular weight of this class is around 19 kDa. The role of hedgehog 
signaling in angiogenesis was brought to attention a decade ago. It was shown that 
Shh, a hedgehog homolog in mammals, can induce expression of two families of 
angiogenic cytokines, including all three VEGF-1 isoforms and angiopoietins-1 and 
-2 in interstitial mesenchymal cells. Shh was able to induce robust angiogenesis and 
augment blood flow recovery and limb salvage in an induced hind-limb ischemia 
model of aged mice [67]. By studying murine brain capillary endothelial cells (IBE 
cells) and human umbilical endothelial cells, it was shown that Shh-induced capil-
lary morphogenesis through stimulating PI3-kinase activity [68]. During develop-
ment, it was demonstrated that hedgehog proteins participate in the embryonic 
endothelial and fibroblast cell migration and play a role in the angiogenesis process 
[69]. In a diabetic wound-healing murine model, gene therapy of Shh together with 
bone marrow transplantation resulted in accelerated wound recovery partially by 
enhanced recruitment of bone marrow-derived progenitor cells and promoting pro-
duction of angiogenic cytokines [70].
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4.3  MicroRNA

In recent years it was found that microRNAs play an important role in regulating 
endothelial differentiation and in promoting angiogenesis. By studying zebra fish 
embryos, it was found that mechano-sensitive zinc finger transcription factor klf2 
activates the VEGF-signaling pathway by inducing expression of endothelial- 
specific microRNA mir-126 [71]. Dicer is key enzyme, which contributes to the 
maturation of microRNA. Specific silencing of Dicer using siRNA has led to altered 
expression of key regulators of angiogenesis such as TEK/Tie-2, KDR/VEGFR2, 
Tie-1, endothelial nitric oxide synthase, and IL-8  in endothelial cells [72]. 
Furthermore, reduction of endothelial microRNAs by inactivation of Dicer reduces 
postnatal angiogenic response to exogenous VEGF, tumors, limb ischemia, and 
wound-healing models [73]. These findings indicate that microRNAs play impor-
tant roles in regulating endothelial cells during the angiogenesis process. Multiple 
microRNAs have been found to influence the angiogenesis process including 
microRNA-17, 92, 23, 27, 24, 130a, 181a, and 210. Till recently, few microRNAs 
have been identified to regulated endothelial differentiation, and microRNA- 
mediated control of endothelial differentiation remains to be explored [74].

5  Conclusions and Future Directions

Major efforts were given in studying the mechanisms of angiogenesis in various 
pathological conditions. These efforts will significantly improve our understanding 
of therapeutic angiogenesis. Various regulating factors including microRNAs were 
found to be important during angiogenesis. Numerous treatments are under devel-
opment targeting appropriate regulatory factors of angiogenesis in the context of 
pathological condition of the disease. Results are now available from many clinical 
trials using various stem cells for the treatment of ischemia [3, 75, 76]. It was shown 
that HSCs and MSCs were indeed able to improve the vascularization process in 
ischemic tissues and to improve clinical outcomes in both animal model and in 
clinical use [77]. Nevertheless, the future role of stem cell treatment compared to 
current pharmacologic treatment remains undetermined. Moreover, the best timing 
for the possible administration of stem cells is still unknown. As we learn more 
about the molecular mechanisms of angiogenesis, we are likely to find an effective 
window for future stem cell therapy to improve the outlook for the recovery of isch-
emic tissues.
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Chapter 5
Role of Transforming Growth Factor Beta 
Family in Angiogenesis

Alicia Viloria-Petit, Amy Richard, Sonja Zours, Mai Jarad, 
and Brenda L. Coomber

Abstract Transforming growth factor-beta (TGFβ) is a pleiotropic factor that plays 
pivotal roles in both vasculogenesis and angiogenesis, and thus is indispensable for 
development and homeostasis of the vascular system. TGFβ drives vascular 
responses via its binding to a TGFβ receptor complex formed by type I and type II 
receptors, as well a type III co-receptors present on both endothelial and mural cells. 
Signaling by these receptors is context dependent and tightly regulated, particularly 
on cultured endothelial cells, where TGFβ can either promote or suppress endothe-
lial migration, proliferation, permeability and sprouting. These, together with evi-
dence obtained from knock-out animals for different TGFβ receptor types, and 
genetic studies in humans linking mutations in TGFβ signaling components to car-
diovascular syndromes, suggest that TGFβ is a central mediator of angiogenesis, 
where it may play contrasting roles depending on the stage of the process. This 
review presents an overview of knowledge accumulated to date on TGFβ’s role in 
angiogenesis as well as vascular biology and vascular disease, and discusses poten-
tial applications of this knowledge to the treatment of angiogenesis-dependent dis-
eases such as cancer.
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1  TGFβ Molecule Family- Sources, Activation 
and Regulation of Transcription

1.1  The TGFβ family

The transforming growth factor beta (TGFβ) superfamily consists of 33 members, 
most of which are dimeric, secreted polypeptides that regulate proliferation, sur-
vival/apoptosis, migration, adhesion, invasiveness and self-renewal properties in 
responsive cells [49, 107]. Depending on the cell and tissue type, modulation of 
these cellular properties by TGFβ superfamily members will regulate different pro-
cesses ranging from gastrulation to formation of a functional vascular system during 
embryonic development, as well as organ morphogenesis and homeostasis at vari-
ous post-natal stages [107].

The TGFβ superfamily is conserved through metazoan evolution and includes 
TGFβs (1–3), bone morphogenic proteins (BMPs 1–20), growth and differentiation 
factors (GDFs including myostatin), activins (A and B), inhibins (A an B), nodal, 
leftys (1 and 2), and Mullerian inhibiting substances (MIS) [49]. The TGFβ family, 
the focus of this review, comprises 3 different isoforms encoded by separate genes: 
TGFβ1, 2 and 3. Human TGFβ2 and TGFβ3 have a 70% homology with TGFβ1 
[86]. TGFβ1 is the predominant and most ubiquitous isoform, while the other two 
are expressed in a more limited spectrum of cells and tissues. The three isoforms 
have overlapping functions in vitro; however, mice deficient in individual isoforms 
show non-overlaping phenotypes suggesting that each TGFβ isoform has distinct 
functions in vivo [30].

1.2  TGFβ Sources

TGFβ ligands are not specific to a particular cell type, as their secretion has been 
observed in a variety of normal and malignant cells. In addition, almost every cell 
in the body expresses TGFβ receptors (TGFβRs) and so is capable of responding 
to TGFβ [157]. TGFβ was initially isolated from platelets, due to their high con-
tent of the ligand. However, bone cells, particularly osteoblasts, are the highest 
producers of TGFβ currently known. Strong intracellular TGFβ staining has also 
been reported in adrenal cortex, megakaryocytes, cardiac myocytes, chondro-
cytes, renal distal tubules, ovarian glandular cells and chorionic cells of mouse 
placenta, among others (reviewed in [120]). In carcinomas, as well as in sites of 
wound healing, TGFβ is expressed by epithelial cells, associated fibroblasts and 
myofibroblasts, and infiltrating immune cells, such as macrophages and T lym-
phocytes [148].
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1.3  Synthesis and Activation of TGFβ

All TGFβ ligands are synthesized as precursor polypeptides, containing a longer 25 kDa 
N-terminal pro-peptide, followed by a C-terminal, 12.5 kDa mature polypeptide. Two 
of these precursors form a dimer via disulfide bonds. The pro-peptide and mature pep-
tide are cleaved by furin-like proteases while trafficking via the exocytic pathway, 
but remain associated by the disulfide bonds. Once cleaved, the pro- peptide becomes 
the “latency associated peptide” (LAP), which acts as a chaperone during exocytosis of 
the complex. LAP also aids in TGFβ deposition into the extracellular matrix (ECM) 
and keeps TGFβ inactive within its core once the complex is secreted [107]. LAP-
TGFβ is known as the small latent complex (SLC) that often exists in association with 
the latent TGFβ binding protein (LTBP), which, together with the SLC, forms the large 
latent complex (LLC) [157]. LAP’s direct interaction with LTBP as well as with ECM 
components such as fibronectin and fibrillin, among others, mediates TGFβ’s deposi-
tion into the ECM [107]. Cleavage-dependent activation of the mature C-terminal 
dimeric TGFβ ligand from its ECM-deposited form is mediated by a number of prote-
ases including, thrombospondin 1 (TSP-1), plasmin, cathepsin D, matrix metalloprote-
ase (MMP) 2 and 9, calpain, chymase, elastase, endoglycosidase F, and kallikrein. In 
addition, acidic environment, reactive oxygen species (ROS), heat and sheer stress have 
also been shown to activate TGFβ (reviewed in [10, 49, 157]). However, in many physi-
ological situations, integrins have been shown to be the critical players in TGFβ activa-
tion. An RGD sequence present in TGFβ’s LAP mediates its binding to all αv integrins, 
and αvβ3, αvβ5, αvβ6 and αvβ8 have all been shown to release active TGFβ via both 
proteolysis- independent and dependent mechanisms [157].

1.4  Regulation of Transcription by TGFβ

Once activated, TGFβ initiates signalling by inducing the activity of specific serine/
threonine kinase type I and type II receptor heterotetrameric complexes. These in 
turn phosphorylate specific effector proteins called SMADs (small mothers against 
decapentaplegic), which then translocate to the nucleus (signalling events discussed 
in more detail below). Nuclear SMAD complexes bind to chromatin, and, together 
with other transcription factors regulate gene expression. A list of SMAD target 
genes have been published elsewhere [107]. Among these, the inhibitors of differen-
tiation (Id) family of transcription factors, vascular endothelial growth factor (VEGF), 
and thrombospondin-1 (TSP-1) are important modulators of angiogenesis. TGFβ 
also signals in a non-canonical manner to modulate the level and function of effector 
proteins in the absence of changes in gene transcription [147]. Misregulation of 
TGFβ signalling plays roles in a number of pathologies, including autoimmune and 
cardiovascular disorders, and cancer [99]. Cardiovascular disorders resulting from 
abnormal TGFβ signalling include hereditary hemorrhagic telangiectasia (HHT), 
cardiac remodelling/fibrosis and pulmonary arterial hypertension, among others [53].
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1.5  TGFβ’s Role in Angiogenesis

Genetic studies in mouse and human have provided evidence for the importance of 
components of the TGFβ signalling pathway in vascular morphogenesis, including 
formation of the primitive vascular plexus, and the recruitment of pericytes/smooth 
muscle cells necessary for vessel wall integrity [53]. Deletion of TGFβ1 in the mouse 
results in embryonic lethality because of defective yolk sac vasculogenesis. Targeted 
deletion of ALK1, ALK5, TGβRII and endoglin results in similar phenotypes. All of 
these knockout embryos die during mid-gestation due to hyper-dilated, impaired, 
leaky vessels [119]. These vascular abnormalities are similar to those described in 
patients with HHT [53]. Endothelial and smooth muscle cell-specific targeting of 
TGFβRII and ALK5 suggests that TGFβ signalling in both compartments is required 
for proper vessel development, but likely at different stages [53, 118].

In the next sections, we present a detailed overview of current knowledge on 
TGFβ signalling in endothelial and associated vascular cells, such as pericytes and 
smooth muscle cells, and the role of this signalling at the various stages of the 
angiogenesis process. We also provide some evidence of differential TGFβ signal-
ling in physiologic versus pathologic angiogenesis and discuss potential applicabil-
ity in therapeutic intervention.

2  TGFβ Receptors and Signalling

TGFβ members signal through type I and type II serine/threonine kinase receptors. 
There are 7 members of the type I receptor family, also known as Activin-receptor 
like kinases (ALK) 1–7, and 5 members of the type II receptor family (TGFβRII, 
BMPRII, ActRIIA, ActRIIB, and MISRII) [132]. TGFβ also signals via accessory, 
type III, TGFβ receptors: endoglin and betaglycan (discussed in a later section). 
Reflective of its role in signalling in a multitude of cell types, there are relatively 
fewer studies devoted specifically to TGFβ signalling in vascular endothelium. In 
the sections below, except where explicitly stated, the signalling events and out-
comes described have not yet been validated in endothelial cells.

In most cell types TGFβ 1–3 isoforms signal through an ALK5-TGFβRII com-
plex, however endothelial cells also express, and signal through an ALK1-TGFβRII 
complex [112]. The balance between activation of these two signalling pathways 
regulates endothelial cell functions such as proliferation and migration, and this bal-
ance is believed to regulate the switch of endothelial cells from quiescent mature 
vessels into activate angiogenic sprouts. In fact, genetic mutants of TGFβ receptors, 
ALK5 and endoglin, inhibit angiogenesis in vitro, and result in embryonic lethality 
in mice due to vascular defects [119].

In the absence of ligand, type I and II receptors form homodimers with them-
selves, which upon ligand binding complex with each other to form a heterotetramer 
[162]. Formation of this tetrameric complex brings together the constitutively active 
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type II receptor with the type I receptor, resulting in auto- and trans-phosphorylation 
at various serine residues in the receptors’ GS domain. Once activated by these 
phosphorylation events the TGFβ receptors become functional serine/threonine 
kinases, and subsequently phosphorylate and activate several intracellular signal-
ling molecules [94].

Although TGFβ receptors are classically referred to as serine/threonine kinases, 
upon ligand binding TGFβRII also becomes auto-phosphorylated at multiple 
tyrosine residues [78]. These phosphorylated tyrosines then act as docking sites for 
various Src homology 2 (SH2) and phospho-tyrosine binding (PTB) domain con-
taining molecules, such as: Src homoly and collagen homology (Shc), and growth 
factor receptor bound protein 2 (Grb2) [123]. These adaptor molecules function as 
scaffolding proteins, bringing together the TGFβ receptor’s tyrosine kinase function 
with various protein substrates [44]. TGFβ receptors, through their action as both 
serine/threonine and tyrosine kinases, are able to activate several intracellular 
signalling cascades, including the canonical Smad signalling pathway, as well as 
several non-canonical signalling pathways, such as: PI3K/AKT, RhoA dependent, 
and JNK, p38 and ERK MAPK pathways (reviewed in [169]).

2.1  Canonical SMAD Signalling

The SMAD family of proteins is composed of three classes: receptor SMADs 
(R-Smads 1, 2, 3, 5 and 8), inhibitory SMADs (I-Smads 6 and 7), and the common 
SMAD (Co-SMAD4) [132]. R-SMADs are recruited to TGFβRI following receptor 
activation, and interact indirectly via auxillary proteins such as smad anchor for 
receptor activation (SARA) [144]. Once recruited R-SMADs become phosphorylated 
by TGFβRI in their C-terminal SSXS domain; R-SMADs 1, 5 and 8 are activated by 
ALKs 1–3 and 6, whereas R-SMADs 2–3 are activated by ALKs 4, 5 and 7 [103].

Once activated, R-SMADs dissociate from TGFβRI and form heterodimers with 
Co-SMAD4, or heterotrimers containing two R-SMADs and one SMAD4, which 
then translocate to the nucleus [61]. This translocation is guided by nuclear local-
ization sequences (NLSs) in the MH1 domains of SMAD3 and SMAD4, which 
mediate their interaction with importin proteins β1 and α, respectively [73, 159]. 
Other mediators of SMAD nuclear translocation and retention include components 
of the nuclear pore complex, and the Hippo signalling transcriptional co-activators 
TAZ (transcriptional co-activator with PDZ binding domain) and YAP1 (Yes- 
associated protein 1) (reviewed in [48]). Interestingly YAP1 was recently identified 
as a key mediator of angiogenesis in the developing retina [21]. In this study, active 
YAP1 promoted endothelial sprouting, which was mediated by Angiopoietin 2 
(ANG-2), a transcriptional target of YAP1 [21]. Whether YAP1’s role in angiogen-
esis relates to its function in TGFβ signalling remains unclear.

Once in the nucleus, SMAD complexes function as transcription factors and 
regulate transcription through their direct interaction with DNA containing SMAD- 
Binding Elements (SBEs), as well as co-repressors, co-activators (CBP and p300), 
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and other transcription factors [134]. The diversity of these transcriptional com-
plexes directs the tissue and dose-dependent regulation of transcription by the 
SMAD proteins.

TGFβ stimulation affects the transcription of several hundred genes [68]. Targets 
of R-SMAD and Co-SMAD transcriptional regulation include proteins involved in 
regulating cellular proliferation, apoptosis and the epithelial-to-mesenchymal tran-
sition (EMT) or its endothelial equivalent, the endothelial-to-mesenchymal transi-
tion (EndoMT) [155]. Additionally, TGFβ signalling results in expression of 
I-SMADs 6 and 7, whose promoters contain SBEs [138]. The I-SMADs then estab-
lish a negative feedback circuit on TGFβ signalling through their ability to nega-
tively regulate signalling pathway activation on multiple levels; with SMAD7 
expressed in response to, and antagonizing all TGFβ signalling, and SMAD6 
expressed specifically in response to, and antagonizing the SMAD1, 5, and 8 signal-
ling pathways [164].

I-SMADs contain various functional domains that enable their inhibitory func-
tion. Through their MH2 domain SMADs 6 and 7 are able to compete with 
R-SMADs for TGFβRI binding; thus inhibiting R-SMAD phosphorylation and sub-
sequent Co-SMAD4 complex formation [104]. I-SMADs are also capable of 
recruiting E3 ubiquitin ligases, Smurf1 and Smurf2 (Smad ubiquitination-related 
factor 1/2), to activated TGFβRI leading to its polyubiquitination and subsequent 
proteasomal degradation [66]. Smad7 can additionally interfere with TGFβ signal-
ling at the level of receptor activation via its ability to recruit the phosphatase 
GADD34-PP1c to the activated receptor complex [133].

In addition to their functioning in the cytoplasm, at the level of receptor and 
R-SMADs inhibition, I-SMADs also function in the nucleus at the level of tran-
scriptional repression. Through its MH2 domain SMAD7 is able to bind directly to 
DNA to prevent SMAD2, 3 and 4 binding [134]. Finally, once bound to DNA, 
I-SMADs recruit histone deacetylases (HDACs) to the promoter regions of SMAD 
target genes, leading to chromatin compaction and transcriptional inhibition [59].

2.2  Non-canonical Signalling Pathways

MAPK: TGFβ signalling can also lead to activation of MAPK (mitogen activated 
protein kinase) signalling pathways, including ERK (extracellular signal-regulated 
kinase), p38 and JNK (Jun N-terminal kinase) signalling. This activation is likely 
independent of SMAD-dependent transcription, due to the rapid onset of MAPK 
phosphorylation (5–15 minutes) [114], and the ability of cells genetically deficient 
in Smad activation, to maintain their ability to activate MAPK signalling in 
response to TGFβ [35]. ERK MAPK becomes activated through a receptor tyrosine 
kinase (RTK)/RAS/ERK pathway. Following TGFβ ligand binding to TGFβRII, 
type I and II receptors becomes phosphorylated on 3 tyrosine residues, Y259, Y336 
and Y424, in the receptors’ cytoplasmic domain [78]. These phosphorylated tyro-
sine residues are then bound by SH2 and PTB domain containing adaptor 
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molecules. Grb2 is a SH2 domain containing protein that complexes with SOS in 
the cytoplasm and upon RTK phosphorylation is recruited to the receptor. Once 
localized to the RTK, the GRB2/SOS complex is able to activate membrane-local-
ized RAS, bridging TGFβ receptor activation with the MAPK signalling pathway. 
In its activated, GTP-bound state, RAS is able to phosphorylate and activate the 
RAF-MEK-ERK MAPK cascade [44, 123].

ERK, through its functioning as a serine/threonine kinase, regulates intracellular 
mitogen signalling in the cytoplasm, but also translocates to the nucleus where it 
regulates the activity of various transcriptional regulators [168]. Through its modu-
lation of gene transcription ERK mediates TGFβ-induced disassembly of adherens 
junctions and enhanced migration, two key events in TGFβ-induced EMT [114]. As 
such, ERK activation is required, however insufficient (must cooperate with Smad 
signalling), for TGFβ-induced EMT [28]. In endothelial cells, TGFβ-mediated acti-
vation of ERK was found to promote migration in a context-dependent manner, 
whereby co-expression and interaction of TGFβ co-receptor endoglin and the scaf-
folding protein β-Arrestin2 antagonizes TGFβ-dependent ERK signalling and endo-
thelial cell migration [82]. In addition, endoglin targets ERK signalling and its 
downstream effectors c-Myc and cyclin D1  in a TGFβ-independent manner. 
This  mechanism possibly cooperates with SMAD-dependent downregulation of 
c-Myc by TGFβ, and its overall growth inhibitory effect in endothelial cells [117].

JNK and p38 MAPK signalling pathways are also activated in response to TGFβ 
signalling. This activation is dependent on the scaffolding protein TRAF6 (TNF 
receptor associated factor 6), which associates with activated TGFβRII through its 
C-terminal TRAF domain. TGFβRII-bound TRAF6 undergoes auto- 
polyubiquitination, leading to its association with the MAP3K (MAP kinase kinase 
kinase), TAK1 (TGFβ-activated kinase 1) [150]. TAK1 is required for activation of 
both the JNK and p38 MAPK pathways, via activation of MKK4-JNK and 
MKK3/6-p38 cascades, respectively [135]. In fact, TAK1 is indispensable for JNK 
and p38 MAPK activation and embryos deficient in TAK1 suffer from vascular 
defects whose phenotype is similar to ALK1 and endoglin mutants [60]. The activa-
tion of TGFβ-TAK1-JNK/p38 MAPK pathways is independent of SMAD-mediated 
transcription, however these signalling pathways cooperate with SMAD signalling 
in order to regulate TGFβ-induced cellular functions such as apoptosis [89] and 
EMT [163]. Recent studies revealed that different isoforms of p38 MAPK are 
responsible for the differential effects of VEGF and TGFβ on endothelial cells. In 
particular, TGFβ is able to shift the outcome of VEGF signalling by directing 
VEGF-dependent activation of p38 isoforms, specifically from p38β (pro-survival) 
to p38α (pro-apoptotic). Thus, in the absence of TGFβ, VEGF supports endothelial 
proliferation but when TGFβ is also present, endothelial cell death can occur [40].

Rho-GTPase: TGFβ also rapidly activates RhoA (Ras homolog A) signalling in a 
SMAD-independent manner [33]. However, TGFβ signalling has also been shown to 
lead to localized down regulation of RhoA protein in response to TGFβ activation of 
the Par6 polarity pathway [116]. Par6 (Partitioning-defective member 6) is a scaffold-
ing protein that complexes with TGFβRI at tight junctions. Following ligand binding 
to TGFβRII, it travels to the tight junction where it complexes with TGFβRI, and 
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phosphorylates Par6 at serine 345. Activated Par6 recruits the E3 ubiquitin ligase, 
Smurf1, to tight junctions where it ubiquitinates and targets RhoA for degradation; 
leading to localized RhoA down regulation at tight junctions [116]. This localized 
degradation is responsible for the dissolution of tight junctions, reorganization of the 
actin cytoskeleton and extension of filopodia [151], all of which are essential for EMT 
[116]. The potential role of the Par6 pathway in vascular biology has been recently 
highlighted by in vitro studies on EndoMT (discussed in detail in later sections), a 
process essential for heart valve formation in the developing embryo. It was observed 
that blockade of Par6 activation abrogated EndoMT in response to TGFβ2, and this 
was dependent on the presence of both ALK-5 and type III TGFβ receptor betaglycan 
[143]. We have recently demonstrated Par6 activation in response to TGFβ1 in bovine 
aortic endothelial cells, particularly at low (0.5 ng/mL and lower) TGFβ concentra-
tions (Richard et al., manuscript in preparation). Since low TGFβ concentrations have 
been previously observed to be pro- angiogenic [121] our results suggest that Par6 
activation might mediate angiogenesis in response to TGFβ.

PI3K/AKT: The phosphatidylinositol-3-kinase (PI3K)/ v-AKR mouse thymoma 
homolog (AKT) signalling pathway is also activated downstream of TGFβ through 
TGFβRI-dependent phosphorylation of PI3K, an upstream kinase of AKT. PI3K 
interacts with TGFβRII independent of receptor activation and upon ligand stimula-
tion is brought in contact with TGFβRI, where it is phosphorylated [165]. 
Downstream activation of the AKT signalling pathway is required for TGFβ-induced 
EMT, and does so by two proposed mechanisms; first, through its ability to mediate 
TGFβ-induced actin filament reorganization and enhanced cellular migration, and 
secondly, through AKT’s activation of downstream mTOR (mammalian target of 
rapamycin) [7]. The mTOR signalling pathway regulates cellular translation levels, 
and Akt-mTOR activation is believed to facilitate Smad-mediated transcriptional 
programs. The signalling crosstalk between TGFβ and PI3K in endothelial cells was 
rather unexplored until the past 5 years. Lee et al. [83] reported an indirect interac-
tion of endoglin with both the p85 and p110α subunits of PI3K, which facilitates 
modulation of PI3K activity by TGFβ ligands, whereby TGFβ1 inhibits while 
BMP9 promotes PI3K/Akt activity in an endoglin-dependent manner. A more recent 
study identified PI3K class II α-isoform (PI3K-C2α) as a key mediator of TGFβ- 
dependent angiogenesis, via its pivotal role in TGFβ receptor endocytosis, a critical 
process in SMAD signalling activation [3].

3  TGFβ and Endothelial Sprouting, Proliferation 
and Permeability

Extensive evidence suggests that TGFβ plays a role during the activation phase of 
angiogenic sprouting by promoting vascular permeability, proliferation and migration 
of endothelial cells. TGFβ also mediates the reverse events that occur during the resolu-
tion phase of angiogenesis, including inhibition of endothelial cell migration and prolif-
eration and decreased permeability, which are necessary for vessel stabilization [80].
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3.1  Endothelial Sprouting

Endothelial sprouting involves two distinct endothelial cell phenotypes: the tip cells 
which lead the newly forming vessel sprout, and the stalk cells, which proliferate 
and form the lumen of the new vessel [46]. These cells are initially part of a mature 
vessel. An increase in permeability and migratory characteristics allows these cells 
to delaminate from the endothelium and become involved in the newly forming 
vessel sprout. Proliferation must be suppressed in the tip cells and enhanced in the 
stalk cells to ensure their respective functions. Finally, when the new vessel is in 
place there must be a reversion back to characteristics of cells in a quiescent endo-
thelium, which includes a decrease in permeability, proliferation and migratory 
characteristics [46].

One of the key regulators of sprouting during angiogenesis is vascular endothelial 
growth factor (VEGF)-A, since tip cell migration largely depends on a gradient of 
VEGF-A, which binds to VEGF receptor 2 on endothelial cells [47]. Studies in mice 
and zebrafish have contributed to our understanding of the role of VEGF and Notch 
signalling in vessel sprouting. VEGF binding to VEGFR2 on a tip cell activates 
VEGFR signalling leading to increased expression of the Notch ligand Dll4 (Delta-
like ligand 4), which in turn binds to Notch1 receptor on adjacent stalk cells. Notch 
signalling in the latter reduces VEGR2 and VEGR3 expression, making them insensi-
tive to VEGF stimulation, thereby suppressing the tip cell phenotype [72].

TGFβ effects on in vitro endothelial cell sprouting are variable, including induc-
tion, repression or no effect depending on the concentration of TGFβ, the type of 
endothelial cells employed and the source of signalling activation; i.e. whether con-
stitutively activated receptors or exogenously added ligand were used [58]. The 
nature of the angiogenic response to TGFβ depends on the balance of ALK1 versus 
ALK5 signalling input, with ALK1 predominantly promoting sprouting and ALK5 
favoring the resolution/stabilization phase of angiogenesis [58]. The inhibitory 
effect of an ALK1 antibody on endothelial cell sprouting in vitro and on angiogen-
esis in two different tumor models supports this concept [102]. However, recent 
studies on developmental angiogenesis in mice suggest that, rather than promoting 
sprouting, ALK1 signalling cooperates with Notch signalling to repress VEGF 
responsiveness, tip cell formation and sprouting [77]. Whether these discrepancies 
represent differences in developmental versus pathologic angiogenesis remains to 
be determined. Interestingly, we observed that TGFβ1 decreases endothelial 
VEGFR2 [71] expression via ALK5 signalling. Thus, ALK5 signalling may poten-
tially contribute to endothelial cell insensitivity to VEGF stimulation that might be 
necessary for both maintenance of the stalk cell fate during sprouting and the reso-
lution phase of angiogenesis.

Finally, EndoMT has been hypothesized to be one of the mechanisms mediating 
angiogenic sprouting in response to TGFβ. EndoMT is the process whereby cells 
from a quiescent, stable endothelium delaminate from this cell layer and take on a 
fibroblastoid phenotype. During this process endothelial cells experience loss of 
adherens and tight junctions and their associated markers including: vascular endo-
thelial (VE)-cadherin, zona occludens (ZO)-1 and claudin-5. The cells transition 
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towards a mesenchymal phenotype is associated with the gain of mesenchymal mark-
ers such as α-smooth muscle actin and fibroblast specific protein-1, as well as motility 
[101, 166]. As previously mentioned, EndoMT mediates cardiac development and is 
also responsible for pathologic tissue fibrosis [166]. However, it was not until very 
recently that the involvement of EndoMT in angiogenesis was demonstrated, by the 
finding that both SLUG and SNAIL, two prototypical EMT/EndoMT- associated tran-
scription factors, are required for endothelial cell sprouting [154]. Complementary 
observations of enhanced SLUG levels in colorectal cancer blood vessels suggest that 
EndoMT is an important component of pathologic angiogenesis [154]. Our group’s 
assessment of various markers of EndoMT in response to TGFβ isoforms 1 and 2 in 
bovine aortic endothelial cells indicates that EndoMT-like changes, such as an 
increase in expression and nuclear translocation of SNAIL, SLUG and ZEB1, and 
reduction of VE-cadherin expression, occur in response to TGFβ1 and/or TGFβ2 as 
early as 6 hours after stimulation and might be enhanced by hypoxia in an isoform-
specific manner. Further, hypoxia enhances canonical TGFβ signalling via SMAD2, 
and appears to be a key determinant of SNAIL’s differential involvement in endothe-
lial cell sprouting in response to TGFβ2 but not to TGFβ1 [31].

3.2  Endothelial Permeability

Signalling via the ALK5 TGFβ receptor has been shown to both promote and inhibit 
vascular permeability, depending on cell context. TGFβ can induce permeability in 
pulmonary endothelial cell monolayers, which is attenuated by treatment with 
SB-431542, an ALK5 kinase inhibitor [12]. Specifically, SB-431542 up-regulates 
the expression of the endothelial specific tight junction component, claudin-5 [153]. 
In contrast, in vivo blockade of TGFβ signalling in mouse retinal endothelial cells 
leads to increased permeability and decreases vessel barrier function. Both in vivo 
and in vitro analyses demonstrated that TGFβ blockade resulted in increased endo-
thelial permeability characterized by decreased interaction between the tight junc-
tion proteins occludin and ZO-1 [149].

As mentioned above, TGFβ-mediated EndoMT may contribute to an increase in 
endothelial permeability that is necessary for angiogenic sprouting. During EndoMT 
there is a decrease in expression of the adherens junction protein VE-cadherin, as 
well as tight junction proteins ZO-1 and claudin-5. TGFβ has been shown to down-
regulate claudin-5 at the transcriptional level, and VE-cadherin has been observed 
to upregulate expression of claudin-5 [115, 139]. Thus, TGFβ-mediated downregu-
lation of VE-cadherin during EndoMT [31] can indirectly decrease expression of 
claudin-5, resulting in the loss of both adherens junctions and tight junctions with a 
concomitant increase in endothelial permeability.

Along with TGFβ, VEGF has also been shown to be an important mediator of 
endothelial permeability during angiogenesis [56]. VEGF has a demonstrated func-
tion in modulating VE-cadherin at the adherens junctions through tyrosine phos-
phorylation, which leads to an increase in permeability [37]. Since TGFβ induces 
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VEGF expression in vascular endothelial cells, this relationship may provide an 
alternative mechanism whereby TGFβ can modulate VE-cadherin expression and 
therefore increase endothelial cell permeability [39]. TGFβ’s ability to downregu-
late VEGF receptor 2 expression can also provide an additional means by which 
TGFβ can regulate and perhaps reverse vascular permeability during the resolution 
phase of angiogenesis. Finally, vascular permeability is also modulated by interac-
tions between endothelial cells and the smooth muscle cells/pericytes that invest 
blood vessels. TGFβ’s role in these interactions is discussed in more detail below.

3.3  Endothelial Proliferation and Migration

TGFβ can enhance cell proliferation at low doses and suppress proliferation at high 
doses. The presence of both type I receptors ALK1 and ALK5 may provide a means 
by which TGFβ’s dual role in proliferation is regulated [51]. Activation of ALK1 
has been primarily shown to stimulate proliferation and migration of endothelial 
cells during the activation phase of angiogenesis [51, 52]. The downstream effector 
of ALK1 responsible for this process is ID1, an inhibitor of differentiation that is 
required for proliferation and migration. When ALK1 is active, both endothelial 
cells and fibroblasts are induced to express ID1 [25, 51]. However, it is important to 
mention that a constitutively active ALK1 in combination with ALK5 is a potential 
negative regulator of endothelial cell migration and proliferation. This effect was 
mediated by inhibition of JNK and ERK activation by ALK1, which may thus coop-
erate with ALK5 in the resolution phase of angiogenesis [27, 76, 98].

In contrast to ALK1, ALK5 seems to have more defined anti-proliferative roles 
during both the activation and the resolution phases of angiogenesis [51]. It is 
believed that activated SMAD2/3 proteins cooperate with nuclear co-repressors to 
repress the transcription of c-Myc and cyclin-dependent kinase (Cdk) genes, and 
with nuclear co-activators to activate transcription of p15 and p21, two major 
 inhibitors of the cell cycle, collectively inhibiting proliferation [29, 108]. ALK5 has 
been specifically shown to prevent proliferation and migration in endothelial cell 
spheroid assays and embryonic stem cell derived endothelial cells, whereas the 
ALK5 kinase inhibitor, SB-431542, has opposite effects [91, 153]. Furthermore, 
in vitro studies have found that ALK5-induced blood vessel maturation is mediated 
by the induction of plasminogen activator inhibitor (PAI)-1  in endothelial cells. 
PAI-1 prevents degradation of the provisional extracellular matrix that surrounds 
the nascent vessel, hence promoting vessel maturation during the resolution phase 
[51]. Thus, ALK5 likely plays roles in both inhibiting proliferation of the tip cells 
during the activation phase of angiogenesis, and in modulating both tip and stalk 
cell phenotypes during the resolution phase of angiogenesis. While a balance 
between ALK1 and ALK5 may be important to mediate the effects of TGFβ on the 
endothelium, their actions are not mutually exclusive and they may serve as regula-
tors of one another. This is further controlled by their differential interactions with 
endoglin and is discussed in more detail below. Thus, the variation in roles played 
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by ALK1 and ALK5 as well as the balance between these two type I TGFβ receptors 
is likely dependent on cellular context, with the cross-talk between them providing 
a mechanism whereby TGFβ can strategically regulate proliferation of the tip and 
stalk cells during angiogenesis.

Finally, it should also be noted that VEGF promotes proliferation of endothelial 
cells during angiogenesis in a concentration-dependent manner [47]. Since VEGF is 
a positive regulator of proliferation and TGFβ has been shown to be an inducer of 
VEGF expression in endothelial cells, this interaction provides yet another regula-
tory mechanism for TGFβ to control proliferation [39, 47].

4  TGFβ Co-receptors in Angiogenesis

The human type III TGFβ co-receptors endoglin and betaglycan are type I integral 
membrane glycoproteins [50, 105]. Betaglycan is universally expressed on nearly all 
cell types and is the most highly expressed of the TGFβ superfamily receptors [156]. 
However, the expression of betaglycan in some cell types, specifically vascular endo-
thelial cells with the exception of those forming the endocardium [15], appears to be 
weak or absent, and instead endothelial cells predominantly express the related TGFβ 
co-receptor, endoglin [156]. Both endoglin and betaglycan are generally expressed on 
the cell surface as homodimers, with endoglin homodimers being linked by disulfide 
bridges; however, endoglin and betaglycan are capable of forming heteromeric com-
plexes in microvascular endothelial cells [105, 156]. Both type III co-receptors also 
exist as soluble forms. Betaglycan shedding is mediated in part by membrane-type 
metallo proteinase 1/matrix metalloproteinase 14 (MT1- MMP/MMP14) and plasmin 
[75], while soluble endoglin is produced by cleavage of the membrane-bound endog-
lin at close proximity to the transmembrane domain by MMP14 [65].

Endoglin expression is potently stimulated by hypoxia, BMP9, and TGFβ via 
ALK1, while TNFα exerts an inhibitory effect on endoglin expression in endothelial 
cells [86, 87, 129]. Both betaglycan and endoglin cytoplasmic domains can be phos-
phorylated by serine/threonine kinases [14, 69]. ALK5 is responsible for the phos-
phorylation of endoglin’s cytoplasmic tail, which has been shown to be necessary 
for the activation of TGFβ-dependent ALK1 signalling [124]. Thus, ALK5 is indi-
rectly responsible for ALK1 activation via endoglin, which in turn is necessary for 
endothelial cell proliferation. The phosphorylation of endoglin has been shown to 
influence its subcellular localization, by modulating its interaction with adhesive 
proteins such as zyxin and zyxin-related protein 1 (ZRP-1), hence modifying the 
adhesive properties of endoglin expressing cells [69, 167].

It is not fully understood how endoglin regulates TGFβ dependent responses. 
Endothelial cells that lack endoglin experience decreased proliferation due to 
diminished ALK1 activity and increased ALK5 activity [79]. The increase in ALK5 
activity and subsequent TGFβ-induced growth inhibition, even at low concentra-
tions of TGFβ which normally promote proliferation [51], may also be due in part 
to decreased inhibition of ALK5 by ALK1 [79]. ALK1 has been shown to interrupt 
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ALK5 signalling, likely acting downstream of SMAD2/3 phosphorylation [52]. 
Thus ALK1 may be involved in a negative regulatory mechanism that is able to 
mediate the anti-proliferative effects of ALK5 in endothelial cells. However, endo-
glin association with TβRII results in alteration of its phosphorylated status, thus 
ensuing loss of ALK5 from the TGFβ receptor complex, possibly explaining endo-
glin’s inhibitory effect on ALK5 signalling [13]. Furthermore, studies conducted on 
human umbilical vein endothelial cells demonstrate that ALK1-dependent inhibi-
tion of cell adhesion is counteracted by endoglin phosphorylation [13, 152]. These 
results suggest that endoglin interaction with TGFβ signalling receptors via both its 
extracellular and cytoplasmic domains might affect TGFβ cell responses.

4.1  Regulation of TGFβ Ligand Access to Co-Receptors

Betaglycan binds multiple members of the TGFβ family, including TGFβ1, TGFβ2, 
TGFβ3, Activin A, BMP2, BMP4, and BMP7 [36, 38, 67]. Betaglycan also plays a 
role in presenting the ligand to TβRII, leading to either enhanced or inhibited signal-
ling while interacting with the TβRII [125]. Unlike betaglycan, endoglin binds 
TGFβ1and TGFβ3 but not TGFβ2 [20]. Other endoglin ligands include activins and 
BMPs, and endoglin can also interact with activin type II receptors [8]. Therefore, 
functional differences and similarities found between betaglycan and endoglin 
could be due to differences between these two proteins’ ligand binding profiles.

In the case of the type III co-receptor betaglycan, its function as a co-receptor to 
specific members of the TGFβ superfamily is carried out through its ectodomain, 
which consists of two independent ligand-binding domains. The residual carboxy- 
terminal half of the protein is necessary for protein anchoring to the cell membrane 
[36]. Comparative studies between endoglin and betaglycan intracellular responses to 
TGFβ signalling found a distinctive role for the extracellular domains [84]. Exchanging 
the extracellular domain between these two co-receptors did not alter endoglin ligand 
binding potential, however, in contrast to betaglycan, TβRII is essential for endoglin 
binding of TGFβ1, activin A, BMP2 and BMP7 [8, 84]. The soluble form of endoglin 
reduced binding of TGFβ1 by interfering with its interaction with TGFβ receptor type 
II, and soluble endoglin suppressed TGFβ1 signalling in endothelial cells [146].

As previously mentioned, TGFβ can signal in endothelial cells through either 
ALK1 or ALK5, resulting in the stimulation of endothelial cell proliferation and 
migration (ALK1) or inhibition of these responses (ALK5) [79]. Forced expression of 
endoglin led to inhibition of TGFβ/ALK5 signalling and subsequent blockade of 
TGFβ induced growth inhibitory effect on endothelial cells [55, 79, 84, 130]. In mouse 
embryonic endothelial cells ALK1 and TGFβRII are directly bound to endoglin, but 
ALK5 can only bind to this complex via interaction with TGFβRII [122]. In the pres-
ence of ligand, this leads to dual phosphorylation of endoglin, first by ALK5 then by 
ALK1; thus signalling via SMAD2/3 is endoglin independent while downstream acti-
vation of SMAD1/5/8 is enhanced by endoglin in these cells [122]. Moreover, endog-
lin can block apoptosis in response to hypoxia and TGFβ. When endoglin-expressing 
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and endoglin-deficient endothelial cells were both exposed to TGFβ1 under hypoxic 
stress, the presence of endoglin was sufficient to block the synergistic pro-apoptotic 
effect of TGFβ1 and hypoxia [87]. Additionally, and as mentioned above, in endothe-
lial cells the endoglin cytoplasmic tail interacts with β-arrestin2, leading to endoglin-
mediated inhibitory effects on TGFβ induced ERK activation and migration [82]. 
Finally, endoglin is able to inhibit cell migration through its interaction with LIM 
domain containing focal adhesion proteins such as zyxin, possible in a TGFβ indepen-
dent fashion [23]. Endoglin deficient endothelial cells also have impaired localization 
of zyxin to their focal adhesions in response to BMP9, which may also involve mecha-
notransduction mediated cross-talk with the Hippo pathway leading to altered cell 
adhesion [167].

During embryogenesis, inflammation, and wound healing modifications in vas-
cular structure occur and endoglin expression is elevated during these modifications 
[64, 142]. The importance of endoglin function in maintaining normal vascular 
structure is underlined by the relationship between mutations in the endoglin gene 
and hereditary hemorrhagic telangiectasia (HHT), which is a disorder characterized 
by the formation of small dilated blood vessels and arteriovenous malformations 
(AVMs) in the vasculature of lung, liver, and brain [1, 85]. Studies done to elucidate 
the role endoglin plays in the enhancement of the TGFβ/ALK1 signalling pathway 
suggest that endothelial cell response to TGFβ is critically dependent on endoglin 
functional association with ALK1 [13]. The results from these studies agree with 
what is seen in cases of HHT where the predominant mutations are in either human 
endoglin (ENG) or ALK1 (ACVRL1) genes [62, 100].

4.2  TGFβ and Vascular Mural Cells

The structure of microvessels varies between different tissue beds, and one of the 
major alterations is in the nature and prevalence of mural cells. Pericytes are found 
in capillaries, venules and small arterioles, while true vascular smooth muscle cells 
are associated with larger arterioles and the macrocirculation [43]. In addition, there 
are significant differences in pericyte coverage and phenotype between vascular 
beds [126] and the ratio of pericytes to endothelium can vary from an almost 1:2 
ratio in retina [2] to less than one pericyte for every ten endothelial cells. Pericytes 
can also be additionally specialized for tissue specific vascular function, becoming 
glomerular mesangial cells (kidney) or Ito/stellate cells (liver), for example [43].

Mural cells play significant roles in the stabilization, functionality and pheno-
type determination of the microcirculation, and recruitment of these cells is an 
essential part of the so-called ‘resolution’ stage of sprouting angiogenesis [141]. 
During development, platelet derived growth factors (PDGFs) act as potent che-
moattractants for mural cell precursors and are produced by endothelial cells during 
vasculogenesis in the embryo and during sprouting angiogenesis in adult tissue. 
There is evidence from in vitro studies that PDGF-B can induce TGFβ production 
via the MAPK/ERK pathway, and angiopoietin 1 (ANG-1) production via the PKC 
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and PI3K pathways during vascular smooth muscle differentiation of 10 T1/2 cells 
[111]. Furthermore, TGFβ can downregulate this PDGF-B induction of ANG-1, and 
both TGFβ and ANG-1 synergistically reduce PDGF production by vascular endo-
thelial cells, suggesting that cross talk between endothelium and mural cell precur-
sors is essential for maturation of the microvascular bed [111].

Recently, the TGFβ co-receptor endoglin was implicated in integrin-mediated 
mural cell adhesion of vascular endothelium, and loss of endoglin can lead to 
increased vascular permeability modulated by pericytes [128]. TGFβ signaling in 
pericytes triggers basal lamina hypertrophy implicated in the loss of blood-neural 
barrier [136] and retinopathy [145] under diabetic conditions. There is also evi-
dence that monocyte chemoattractant protein 1 (MCP-1) is also a chemoattractant 
for vascular smooth muscle and 10 T1/2 cells [96]. MCP-1 is upregulated in isch-
emic regions of brain associated with endoglin positive microcirculation, and in 
human brain microvessel endothelial cells exposed to ischemia in vitro, highlight-
ing the potential role of TGFβ mediated pathways in angiogenic recovery of reper-
fused brain after stroke [137]. Neuropilin-1 expressing mononuclear cells are 
recruited to semaphorin3A expressing endothelial cells, where they respond by 
releasing TGFβ leading to endothelial SMAD2/3 activation [54]. This establishes a 
TGFβ-mediated feedback loop for enhanced semaphorin3A expression and further 
stabilization of nascent vessels, with no alteration in pericyte coverage. VEGF 
enhanced this pathway at low concentrations and inhibited it at high concentrations, 
providing a possible model for the biphasic action of this angiogenic factor [54]. 
Importantly, this work emphasizes that TGFβ-dependent stabilization of angiogenic 
vessels can also occur in a mural cell-independent fashion.

Culture of 10 T1/2 cells with vascular endothelial cells leads to activation of 
latent TGFβ (similar to what is seen with endothelial/smooth muscle cell co-culture 
[4]), and subsequent TGFβ driven 10 T1/2 cell differentiation into pericyte like cells 
[26]. Endothelial-mural cell precursor contact is required for this TGFβ activation, 
and co-culture of endothelial cells with mesenchymal precursors from mutant 
mouse embryos demonstrates that cell coupling via gap junction protein connexin 
43 is essential for this activity [57]. Co-culture of endothelial cells and 10 T1/2 cells 
enhances the survival of both cell types; ECs require active ALK5 signalling for 
this, while 10 T1/2 cells in co-culture employ other pathways for survival [149]. 
This TGFβ mediated reciprocal interaction between vascular components is rele-
vant for both vascular functionality (such as permeability/barrier function) and neu-
ral retinal cell survival in adult mice [149]. Proper pericyte/endothelial cell 
interactions are also essential for maintaining blood-brain barrier characteristics in 
cerebral vessels. This is mediated via endothelial cell SMAD4 signalling, which in 
cooperation with Notch signalling leads to increased N-cadherin expression and 
stable endothelial-mural cell adhesion [88]. In mesenchymal stem cells, TGFβ 
induces production of the Notch ligand Jagged1 and subsequent vascular smooth 
muscle cell specific gene expression via SMAD3 and Rho kinase pathways [74].

TGFβ signalling via endoglin or ALK1 is able to reduce endothelial activation via 
TGFβ/ALK5, and therefore tends to promote vessel destabilization and proliferation/
sprouting [79]. Endoglin in cooperation with αv integrin leads to TGFβ activation 
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and also signals for subsequent reduced pericyte migration. The matricellular protein 
‘secreted protein acidic and rich in cysteine’ (SPARC) is able to interfere with TGFβ 
mediated inhibition of pericyte migration via its ability to prevent endoglin from 
incorporating into pericyte focal contacts and associating with αv integrin [127]. 
Interestingly, endoglin is able to associate with αv integrin independent of the forma-
tion of focal adhesions, and endoglin may interfere with pericyte focal adhesion 
formation or maturation, partially accounting for its ability to reduce mural cell 
migration upon TGFβ stimulation [127]. Rivera et al. propose a model whereby, as 
pericytes come into contact with endothelial cells, SPARC is degraded or removed 
from the integrin complex, leading to TGFβRII/αv integrin/TGFβ interactions and 
subsequent signalling [127]. Recently, SMOC1(SPARC-related modular calcium- 
binding protein 1), a related protein of the matricellular family, was shown to regu-
late the balance of ALK5 vs ALK1 mediated TGFβ signalling in retinal endothelial 
cells [6]. These changes occurred via interactions with endoglin, and downregulation 
of SMOC1 lead to reduced expression of the TGFβ/ALK5 target α2 integrin, and 
subsequent alterations in angiogenic phenotype [6].

Mice null for endothelial expression of the tumor suppressor LKB1 (liver 
kinase B1) display early embryonic death associated with defective yolk sac ves-
sel recruitment of mesenchymal precursors of vascular smooth muscle cells, simi-
lar to what is seen in endoglin knockout murine embryos [17, 93]. Heterozygous 
deletion of LKB1 in endothelial cells (as driven by a Tie2-Cre system) resulted in 
normal microcirculation, but revascularization was impaired in an ischemic limb 
model [113]. LKB1 null endothelial cells were defective in TGFβ production, 
implicating this kinase in regulation of TGFβ synthesis [93]. LKB1 in complex 
with LIP1 is able to block SMAD4 binding to DNA thus further negatively regu-
lating TGFβ signalling [106], and activation of AMPK (AMP-activated protein 
kinase), a downstream effector of LKB1 inhibited TGFβ induced SMAD2/3 gene 
expression [90]. These latter two studies were not performed in endothelial cells, 
however, so the exact role of the LKB1/AMPK/ TGFβ pathway in angiogenesis 
remains to be clarified.

5  Pathological Angiogenesis

Angiogenesis plays key roles in reproduction, development, growth and wound 
healing, and can drive so-called angiogenesis dependent diseases such as diabetic 
retinopathy, chronic inflammation and cancer [41, 42]. There is growing evidence 
that, despite underlying fundamental similarities, the angiogenesis occurring under 
such pathological settings displays significant alterations in pathways and pro-
cesses. While such differences complicate our understanding of the angiogenic pro-
cess, they can also provide opportunities for therapeutic intervention specifically 
targeting pathological neovascularization [19, 24, 42]. In this section, we describe 
in more detail some examples of ‘pathological angiogenesis’ where TGFβ plays a 
significant role.
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5.1  HHT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant syndrome 
associated with epistaxis, arteriovenous malformations in multiple organs, and 
dilated regions of high capillary density or telangiectases [1]. Disruption of endo-
thelial TGFβ/BMP9 signalling leading to impaired mural cell attachment/function 
seems to be a major pathobiological event underlying this disease (as reviewed by 
[140]). There are two commonly identified genetic defects in this condition account-
ing for two types of HHTs; HHT1 arises due to mutation of the TGFβ type III recep-
tor endoglin, and HHT2 from mutation in the TGFβ type I receptor ALK1 [1]. 
Additionally, SMAD4 mutation has also been identified in patients with a syndrome 
characterized by both juvenile polyposis and HHT [45]. There are also at least two 
additional gene loci associated with familial HHT: HHT3 and HHT4 [9, 22]. More 
recently, interactome mapping identified the beta subunit of the protein phosphatase 
PP2A as complexing with endoglin, ALK1 and TGFβRII [161]. Interaction of PP2A 
with endoglin regulates nitric oxide synthase 3 (NOS3) activity, leading to endothe-
lial stabilization. Loss of PP2A functionality could thus lead to the endothelial dys-
function seen in HHT, and PP2A beta subunit is a candidate gene for HHT3 [161].

Pulmonary circulation is especially affected in all HHT cases, leading to poten-
tial for life threatening hemorrhage. Studies have found a general loss of pulmonary 
capillaries and gain of AVM with primarily venous identity endothelium, perhaps 
due to excessive endothelial proliferation. Thus, loss of TGFβ regulation of endo-
thelial quiescence and endothelial differentiation may be an underlying molecular 
defect in these individuals [97]. This is highlighted by a mutation in PTPN14 asso-
ciated with HHT, especially the pulmonary manifestations [11]. PTPN14 (protein 
tyrosine phosphatase non-receptor type 14) codes for a protein tyrosine phospha-
tase; its expression is modulated by both ALK1 and EphrinB2, and Ptpn14 knock-
down leads to increased angiogenesis in vitro due to enhanced number of tip cells 
[11]. In support of this, anti-angiogenic approaches are effective in murine models 
of HHT and show some clinical utility in human patients [5], perhaps by ‘normal-
izing’ vascular defects through enhanced recruitment of mural cells [81].

5.2  Organ Fibrosis

Due to the known association between TGFβ signalling and fibrosis in many sys-
tems, it is perhaps not surprising that vascular manifestations of this situation arise. 
Both the mural cell and endothelial cell components of the microcirculation are 
documented targets of TFGβ mediated fibrosis in several organs. For instance, dur-
ing the development of liver cirrhosis, hepatic stellate cells or Ito cells (the vascular 
sinusoidal mural cells) express excessive collagen upon TGFβ signalling, and in a 
neuropilin-1 dependent fashion [16]. TGFβ-mediated fibrosis in hepatic stellate 
cells is prevented by the activity of IQ motif containing GTPase activating protein 1 
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(IQGAP1), which acts to recruit SMURF1 to TGFβRII, thus regulating TGFβRII 
degradation [92]. In the kidney, the renal glomerulus is prone to mesangial cell 
proliferative glomerulonephritis. Mesangial  cells are modified and specialized peri-
cytes of the glomerular filtration capillaries, and their proliferation is driven in part 
by excessive TGFβ production [160]. Interestingly, the bioactive lipid mediator 
sphingosine-1 phosphate1 (S1P1) is able to cross activate TGFβ signalling in renal 
mesangial cells via Smad1, 2, and 3 [160], indicating possible transactivation of 
TGFβ signalling pathways. Partial deletion of TGFβRII in renal endothelial cells 
reduced EndoMT and concomitant fibrosis in a murine model of chronic kidney 
disease [158]. This was accompanied by reduced Smad2 mediated signalling with 
sparing of ‘proangiogenic’ Smad1/5 pathways in this model [158].

In addition to targeting vascular mural cells to promote fibrosis, TGFβ can also 
promote fibrosis via EndoMT (discussed above in the context of angiogenesis). This 
phenomenon is well documented in heart and kidney fibrosis, and is mediated by the 
SNAIL family of transcriptional repressors. Both canonical and non-canonical TGFβ 
signalling, including SMAD, MEK, PI3K, p38 MAPK, c-Abl and PKC-δ signalling 
have been reported to mediate an EndoMT response to TGFβ (reviewed in [102]). 
Apart from its role in somatic tissue fibrosis, TGFβ-induced EndoMT has been linked 
to cancer fibrosis in a variety of tumor types, including retinoblastoma [95] and esoph-
ageal adenocarcinoma [110]. Additional observations indicate that TGFβ-mediated 
fibrosis can contribute to cancer progression by enhancing metastasis [92].

5.3  Cancer

Perhaps the best-studied examples of pathological angiogenesis where TGFβ plays 
a significant role is in the neovascularization of solid tumors, and numerous clinical 
trials of anti-angiogenic approaches targeting this pathway are underway (as 
reviewed by [63]). TGFβ orchestrates a switch from vascular inhibition to pro- 
angiogenic activity, likely indirectly via stimulation of cancer cell production of 
pro-inflammatory and immune suppressive gene products (as reviewed by [141]). 
Proteomic comparison of angiogenesis in glioblastoma to physiological angiogen-
esis (endometrial tissue) found numerous TGFβ target genes overexpressed in gli-
oma vessels compared to endometrium, in particular TGFβ induced protein ig-h3, 
periostin, integrin-αv, and tenascin C [109]. We found that TGFβ was able to down-
regulate the expression of VEGFR2  in colorectal tumor vasculature in an Alk5/
SMAD2 dependent fashion [71]. VEGFR2 expression on glioma blood vessels 
increased with tumor progression, and the proportion of phospho-SMAD2-positive 
endothelial cells was significantly higher in tumor vessels compared to normal brain 
vasculature [70]. There is evidence that ALK1 signalling in cancer angiogenesis 
may modulate cross talk between EC and pericytes, and inhibition of ALK1 may be 
especially effective in VEGF refractory tumors [24]. Our results support the possi-
bility that ALK5 activation in endothelial cells may be, at least in part, responsible 
for development of tumor vessel refractoriness to VEGF inhibition.
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Finally, endoglin, an essential modulator of TGFβ signalling in endothelial cells 
has been shown to be significantly upregulated in tumor-associated endothelium and 
its expression correlated with poor prognosis in patients with various tumor types 
including breast, lung, colorectal, prostate, gastric, endometrial, hepatocellular, ovar-
ian, cervical and head and neck cancers, as well as glioblastoma (reviewed in [131]). 
Tumor growth and vascularization is reduced in ENG- heterozygous mice [32], and 
both endoglin-neutralizing antibodies [131] and soluble endoglin [18] target the tumor 
vasculature and inhibit tumor growth in experimental models, suggesting endoglin as 
another potential therapeutic target in cancer. Recently, studies using a murine model 
of pancreatic neuroendocrine cancer reported complex outcomes when TGFβ family 
signalling in angiogenesis is manipulated. In particular, while knockout of both endo-
glin and ALK1 reduced primary tumour growth synergistically, ablation of the ALK1 
ligand BMP-9 resulted in enhanced metastasis to liver, perhaps modulated by increased 
EndoMT [34]. Further, in vitro modelling of retinoblastoma angiogenesis suggested 
that retinal pericytes were an important source of angiogenesis suppression, mediated 
via TGFβ signalling [95]. These findings suggest caution is required when targeting 
TGFβ family induced angiogenesis in neoplasia.

In summary, this review highlights the central actions of TGFβ on the vascular 
components undergoing angiogenesis, which are broad ranging and context depen-
dent. In particular, the pleomorphic responses to TGFβ occurring in pathological 
versus physiological angiogenesis provide avenues for improved understanding and 
therapeutic control of these events.
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Chapter 6
Angiogenesis-Based Strategy by Hepatocyte 
Growth Factor for the Treatment of Ischemic 
Organ Diseases: From Biology to Clinical Trials

Shinya Mizuno

Abstract Hepatocyte growth factor (HGF) was originally identified as a potent 
mitogen of hepatocytes in 1980s. HGF induces mitogenic, motogenic and morpho-
genic activities in epithelial cells through tyrosine phosphorylation of its receptor, 
c-Met. HGF-c-Met axis is necessary for embryogenesis, organogenesis and tissue 
repair of almost epithelial organs. Indeed, a loss in HGF-c-Met signaling pathways 
leads to organ damage and dysfunction during acute and chronic diseases. In the 
early 1990s’, HGF was shown to be an angiogenic regulator via direct effects on 
endothelial cells (ECs). HGF plays an important part for vascular branching tubular 
formation via mitogenic, motogenic and morphogenic activities. HGF stabilizes 
endothelial barrier function via Rac1-dependent cascades. HGF is an anti- 
inflammatory ligand through inhibiting NF-κB activation in ECs. HGF protects ECs 
from injurious stresses. However, local HGF production is impaired due to cylic 
AMP depletion under an ischemic condition. In contrast, c-Met expression is up- 
regulated, in response to a local hypoxia. When HGF is exogenously injected to 
hypoxic regions, angiogenic regeneration is induced, associated with an increase in 
blood flow. This is a rationale why HGF supplemental therapy improves ischemic 
organ diseases, such as peripheral arterial disease (PAD) and cardial arterial disease 
(CAD) at least in animal models. Now, clinical trials are ongoing worldwide to 
determine an optimal condition of HGF supplemental therapy for the treatments of 
PAD and CAD. In this review, a therapeutic potential of HGF will be discussed, 
with a focus on biological mechanisms and preclinical or clinical outcomes during 
ischemic organ diseases.
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1  Introduction

Organogenesis and tissue regeneration depend on, more or less, angiogenesis (i.e., 
formation of new blood vessels) to supply nutrients and oxygen. The major blood 
vessels are lined by endothelial cells (ECs), are surrounded by mural cells such as 
pericytes and vascular smooth muscle cells (VSMCs). The proper interplay between 
ECs and VSMCs are required for the formation and physiological function of blood 
vessels [2]. Thus, sequential evens, such as growth, migration and morphogenesis of 
the vascular cells, should be tightly regulated during angiogenesis. In contrast, 
abnormal angiogenesis is an increased risk for vascular disorder, most of which are 
related to pre-existing diseases including hypercholesterolemia, diabetes and hyper-
tension. The end-stage vascular deterioration leads to onset of a life-threatening 
disease, such as peripheral arterial disease (PAD) and coronary arterial disease 
(CAD) [88]. For the medical control of these diseases, it is important to elucidate 
the molecular mechanism whereby angiogenesis is induced, maintained or deterio-
rated under pathological conditions.

HGF is discovered as a mitogen for rat hepatocytes in primary culture. HGF 
cDNA was cloned, based on the purified HGF protein [53, 62]. On the other hand, 
c-Met was identified as an oncogenic protein that induces malignant formation of 
normal cells [11]. c-Met was identified as a functional receptor for HGF [6]. HGF 
is a multi-functional growth factor that exerts mitogenic, motogenic and morpho-
genic functions in various cells via c-Met signaling (Fig. 6.1), hence contributing to 
embryogenesis and organ regeneration. Using animal models, numerous scientists 
demonstrated that organ failures become evident, due to an insufficient production 
of HGF, while HGF supplemental therapy improve these pathological conditions 
[20, 56, 89]. HGF exerts regenerative and protective effects on parenchymal cells, 
such as epithelial cells, cardiomyocytes and neuron [22, 26, 63]. Thus, an initial 
attention was paid to a direct effect(s) of HGF on functional cells, to explain the 
possible therapeutic outcomes in vivo.

HGF targets not only parenchymal cells but also ECs to induce angiogenic 
actions at least in vitro [7]. Morishita and his co-workers accumulated evidence that 
HGF administration is useful for the attenuation of CAD, PAD and other ischemic 
diseases [58]. This review describes a new concept that loss of HGF-c-Met signal-
ing causes CAD or PAD along with decreased angiogenesis, while gain of HGF-c- 
Met function leads to improvement in ischemia, in part, via the enhancement of 
angiogenesis [3, 78, 85]. There is now ample evidence to show the therapeutic 
effects of HGF on ischemic diseases in animals, and more importantly in human. 
Prior to discussion of in vivo effect, biological functions of HGF, required for vessel 
formation without edema, should be described in the following two sections.
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2  Biological Aspect for Angiogenic Roles of HGF

In the early 1990s, basic scientists suggested that HGF is a crucial regulator for sus-
taining homeostasis of endothelial morphology and its function. Rosen and his col-
leagues found for the first time that “scatter factor (SF)” stimulates motility and 
migration of ECs in vitro [75, 76]. In addition, “tumor cytotoxic factor (TCF)” 
enhances mitogenic activity of human ECs (i.e., HUVEC) in the culture [83]. Of inter-
est, SF or TCF was identical to HGF following its cDNA cloning. The angiogenic 
actions by HGF were reproducible in the rabbit cornea [7], or in mouse sub- skins [15]. 
The sequential effects of HGF, such as mitogen, motogen and morphogen (i.e., 3 M 
activities) are necessary for HGF to acquire the angiogenic phenotypes. Here, molecu-
lar basis of HGF-mediated angiogenesis is discussed, mainly focusing on the physio-
logical roles of HGF in endothelial growth, migration and tubular formation.

Fig. 6.1 Structure and biological functions of HGF. HGF is produced and secreted as pro-HGF by 
stroma cells such as fibroblasts (FB), macrophages (Mφ) and so on. Secreted pro-HGF is cleaved 
at Arg494 and Val495 by HGF-activators, such as urokinase-type plasminogen activator. The accurate 
binding of HGF to c-Met triggers signaling transduction. The ATP-dependent phosphorylation at 
three residues in the c-Met active loop kinase domain, Tyr-1230/34/35 is an initial step for activat-
ing c-Met. Phosphorylation at Tyr-1349/56 in the C-terminal docking site is required for various 
bio-functions via recruiting down-stream adaptors. For example, phospho-Tyr1349/56-dependent 
recruitment of Grb2-SOS activates Ras-ERK cascades, leading to cellular proliferation. Association 
and tyrosine phosphorylation of Gab-1, a docking protein that couples c-Met with multiple signal-
ing proteins such as PI-3kinase, PLC-γ, Shp-2, and Crk-2, plays definite roles in HGF-induced 
morphogenesis and motility [64]

6 Angiogenic effects of HGF on ischemic organs
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2.1  Molecular Basis for Mitogenic Actions

The mitogenic activity of HGF was well conserved in various types of ECs [7]. 
VEGF and FGF2 are also known to induce proliferation of ECs, but HGF is the 
most potent mitogen among three growth factors [65]. The MAPK downstream 
cascades are important for HGF-c-Met axis to elicit mitogenic actions. Actually, 
c-Met tyrosine phosphorylation by HGF leads to a rapid activation of MAPKp42/44 
(i.e., ERK1/2), while ERK1/2-inhibitors diminished the angiogenic roles of 
c-HGF. Next, activated ERK1/2 causes STAT3 phosphorylation and subsequent 
c-Jun promoter activation [60]. In the culture of ECs, NOS inhibitor (i.e., LAME) 
attenuated the HGF-primed ERK1/2 activation. Of note, K+-channel blocker 
attenuated the eNOS activation and HGF-induced mitogenesis. These results sug-
gest that an initial enhancement of K+ influx by HGF triggers eNOS activation, 
MAPK activation, and eventually, mitogenic phenotypes are induced in HUVEC 
cells [38]. In contrast to other cytokines such as FGF2, HGF does not stimulate 
proliferation of vascular smooth muscle cells, although these cells express c-Met 
on the cell surface [45, 65].

2.2  Mechanisms of HGF-Induced EC Motility or Migration

Sequential events for endothelial migration include: (i) attachment of ECs to extra- 
cellular matrix protein (ECM) such as collagens in an initial phase; and (ii) cyto 
skeletal re-arrangement and cell motility post-lamellipodia formation; and (iii) 
ECM degradation for invasion across the basement membrane in a late phase. In the 
initial or middle step, sphingoshine1-phosphate (S1P) and its catalyzing enzyme, 
ShpK1 are involved in HGF-induced lamellipodia formation [12]. Phosphorylation 
of ShpK1 by HGF-c-Met-ERK1/2 pathway leads to an increase in S1P levels, 
assembly of p-ShpK1 to actin-cortaclin and subsequent migration. Gab1 is a dock-
ing protein of c-Met and governs c-Met downstream signaling via changing adaptor 
molecule partners. For example, phosphorylation of Gab1 by HGF-c-Met leads to 
Gab1-SHP2 complex, and then its downstream pathway of ERK1/2-Erg (and of 
ERK5/KLF2) contributes to endothelial migration and stabilization, respectively 
[81]. In the late step of migration, HGF reduces the expression of an adhesion mol-
ecule (i.e., VE-cadherin) to facilitate cell motility via the loss in cell-cell contact 
[48]. ECM degradation is required for ECs to invade in neighboring tissues across 
basement membranes. For this purpose, HGF activates ECM-degrading enzymes, 
such as MT1-MMP and MMP2 in ECs [15, 99]. Activation of iNOS by HGF is also 
involved in EC motility [72]. Each molecular event in “each phase” is required for 
EC migration.
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2.3  Molecular Basis for Morphogenesis

HGF has a unique morphogenetic activity, which forms polarized, tubular and 
branching structure of epithelial cells in collagen gels. HGF also induces in vitro 
and in vivo capillary tube formation of ECs [15]. In matrigel plug assay, HGF 
induces blood vessel formation that contains vasculature with surrounding VSMCs 
[15]. The adaptor protein Gab1 is required for HGF-induced morphogenesis of ECs. 
EC-specific Gab1-knockout mice (Gab1-ecKO mice) showed no abnormality of 
vascular development, but showed little angiogenic response in a mouse model of 
limb ischemia. Indeed, HGF did not induce the migration, morphogenesis and 
sprouting in a culture of Gab1-null ECs [109].

Src signaling pathway is required for HGF-mediated morphogenic actions, 
because Src gene deletion led to the loss in HGF-mediated vessel formation [30]. 
In HGF-induced vascular lumen and cord formation, sprouting of vessels was also 
inhibited by the several inhibiters that target Rho kinase and MMPs, which is a key 
player for migration or ECM degradation [87]. Overall, HGF-c-Met-Gab1-induced 
downstream responses (such as Rho activation and MMP induction) are required for 
vessel formation and functional maturation.

Recently, Arf6, a small GPTase, was shown to be a key mediator for HGF- 
mediated endothelial tubular formation in a collagen-gel based 3-D culture [23]. 
Briefly, activation of Arf6 by HGF leads to up-regulation of integrin-β on surface, 
and this is critical for tight contact of ECs-ECM, focal adhesion formation and mor-
phogenesis. However, it is still unclear whether Arf6 activation is linked with Gab1- 
SHP2 complex, and future studies would shed more light on this notion.

Overall, activation of c-Met by HGF is critical for ECs to induce its morphology 
and function through the alteration of downstream signaling molecules (Table 6.1). 
HGF is also important for “lymphatic” vessel formation via 3 M–based biological 
activities in vitro, and more importantly, in vivo [14, 31, 77]. Angiogenic actions by 
HGF are inducible in animal models, in response to hypoxic stresses, as discussed 
later (see, Sects. 5 and 6).

3  Anti-edematous Mechanisms by HGF

Peri-vascular edematous lesions, occasionally associated with local inflammation, 
produce pathological events, such as pain, swelling and so on. Thus, it is important 
to stabilize the barrier function of ECs during therapeutic angiogenesis, especially 
in capillary tubular formation. Notably, VEGF gene therapy often induces edema-
tous changes even if it may be effective in patients [74]. In contrast, HGF has mul-
tiple roles, such as anti-edematous, anti-inflammatory and anti-apoptotic outcomes 
(Table 6.1) to prevent peri-vascular edema, as described below.

6 Angiogenic effects of HGF on ischemic organs
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Table 6.1 Biological functions and pathways of HGF-c-Met signalings for neovascularization

1. Mitogenesis 4. Barrier stabilization
Discovery in HUVEC 
model

Shima et al. 
[83]

TER up via GSK3β Liu et al. [44]

MAPK p42/44 
(ERK1/2)

Nakagami et al. 
[60]

Tiam1→Rac1 pathway Birukova et al. [4]

Stat3 – c-Jun Nakagami et al. 
[60]

Met-CD44v10 interaction Singleton et al. [79]

K+ influx Kuhlmann et al. 
[38]

Arf→Rac1 pathway Tian et al. [95]

eNOS pathway Kuhlmann et al. 
[38]

Arf-Rac1 activation on 
IQGAP

Tian et al. [96]

2. Motility Inhibition of VEGF-Rho 
path

Birukova et al. [5]

Discovery in EC culture Rosen et al. [75] 5. Anti-inflammation
ERK1/2→S1p-ShpK1 
pathway

Fu et al. [12] Inhibition of VEGF- 
NFkB path

Min et al. [52]

Gab1-SHP2→ERK-Erg 
pathway

Shioyama et al. 
[81]

EC growth without 
inflammation

Kaga et al. [28]

ECM degradation by 
MMPs

Wang and 
Keiser [99]

Inhibition of NF-κB and 
ICAM1

Mizuno and 
Nakamura [54]

iNOS-NO pathway Purdie et al. 
[72]

Inhibition of LPS→NFκB 
path

Meng et al. [51]

3. Morphogenesis 6. Anti-apotosis
In vivo cornea assay Bussolino et al. 

[7]
PI3K-AKT path Nakagami et al. [60]

In vivo angiogenesis Grant et al. [15] (stimuli: TNF-α, AGE, 
LDL)

Zhou et al, [110], Yu 
et al. [106]

Gab1 pathway Zhao et al. 
[109]

ERK1/2 path (stimuli: 
Ang-II)

Lee et al. [40]

Src dependency Kanda et al. 
[30]

Bcl-2 induction Yamamoto et al. 
[101]

Rho, MMP pathways Somlyo et al. 
[87]

FOX1/3 phosphoryration Zhang et al. [108]

Arf→integrin-β for 
focal adhesion

Hongu et al. 
[23]

7. Pericyte recruitment

Lymph vessel formation 
(in vitro)

Kajiya et al. 
[31]

PI3K-AKT path Taher et al. [90]

Lymph vessel formation 
(in vivo)

Saito et al. [77] FAK or Pyk2 path Ma et al. [46]

Angiopontin-1 induction Kobayashi et al. [36]

For abbreviations see text

S. Mizuno



111

3.1  Molecular Basis for Barrier Stabilization

Transendothelial electrical resistance (TER) is a physiological indicator of the per-
meability in a monolayer culture of ECs. VEGF causes a decrease in TER as its 
original name (i.e., vascular permeability factor) indicates. In contrast, HGF enhance 
the TER, associated with cortical actin thickening and GSK-3β phosphorylation 
[44]. Such an effect of HGF on barrier stabilization is mediated via Tiam1, a gua-
nine nucleotide exchange factor (GEF) of Rac-GTPase. HGF inhibits thrombin 
induced loss of endothelial barriers via Tiam1-activated Rac1-GTPase pathway [4]. 
CD44v10 is an isoform of cellular surface CD44 and is necessary for c-Met phos-
phorylation and internalization by HGF, possibly during an initial phase of caveolin- 
based endocytosis [79].

Birukova and his co-workers have accumulated evidence that another GEF, Arf 
is also critical for HGF-induced stabilization of barrier function: Arf is necessary 
for a rapid activation of Rac1-GPTase by HGF, possibly via microtubule-dependent 
pathway [95, 96]. In this process, a downstream adapter, IQGAP1 acts as a platform 
anchorage for recruiting actin-filament or microtubules. Of note, Asef active-form, 
primed by HGF, targets and activates Rac1 on IQGAP1 platform, and then cyto- 
skeletal molecules (such as cortactin and Arp2/3) are recruited in periphery for cor-
tical actin ring formation. Such a molecular hierarchy likely contributes to the 
enhancement of endothelial barrier function by HGF.  Indeed, endogenous Arf is 
necessary for HGF administration to prevent pulmonary edema in a mouse model of 
acute lung injury [51].

VEGF-induced Rho-GPTase activation is a key event for a loss in endothelial 
barrier. Indeed, VEGF randomizes focal adhesions via a Rho pathway. In contrast, 
activation of Rac1 by HGF leads to redistribution of focal adhesions to cell periph-
ery. Of note, VEGF-induced Rho-dominant events (including randomized focal 
adhesions) are counteracted by HGF-Rac1 pathway [5]. As a result, HGF can block 
EC barrier dysfunction and VEGF-mediated vascular permeability.

3.2  Anti-inflammation

Previous studies revealed the unexpected inflammatory role of angiogenic factors. 
For example, VEGF enhances leukocyte adhesion to ECs by up-regulating the pro-
duction of adhesion molecules such as ICAM-1 in an NF-κB-dependent manner, 
contributing to the inflammation [34]. In addition, FGF2 evokes inflammatory 
response by activating NF-κB and increasing levels of inflammatory cytokines 
(such as IL-8 and MCP-1) in VSMCs [28].

In contrast to these growth factors, HGF exerts anti-inflammatory effect on ECs. 
Adhesion molecules (such as ICAM-1 and E-selectin) are induced via NF-κB path-
way, and this is necessary for transendothelial migration of leukocytes. In culture of 
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ECs, HGF counteracted the TNF-α-mediated induction of ICAM-1 through the 
inactivation of NF-κB. As a result, ICAM-1 induction was blocked by HGF in a 
model of HUVEC [54]. Such an inhibitory effect of HGF was also seen in a culture 
model of E-selectin induction in ECs [47]. As mentioned, VEGF induces endothe-
lial inflammation, while HGF prohibits the VEGF-induced NF-κB activation and 
ICAM1 induction in ECs [52].

Of interest, HGF directly targets ECs or macrophages to suppress the production 
of pro-inflammatory cytokines, such as IL-6 and IL-8, in part, via inactivation of 
NF-κB pathway [29, 51]. These anti-inflammatory but not pro-inflammatory actions 
of HGF have a beneficial effect on the protection of vascular and organ cells.

3.3  Anti-apoptosis

Protection of resident ECs is also important for HGF to block veri-vascular 
edema. Indeed, HGF protects ECs from various types of injury via activating 
anti-apoptotic signaling cascades. For example, ECs become apoptotic, in 
response to TNF-α exposure, while HGF blocks apoptosis via a PI3K-AKT 
pathway [60]. Likewise, HGF protects ECs from apoptosis, caused by advanced 
glycation end products (AGE) and low-density lipoprotein (LDL) cholesterol 
[106, 110], possibly in a PI3K-AKT-dependent manner. Angiotensin-II (Ang-II) 
is crucial for not only hypertension but also tissue fibrosis during chronic organ 
failure. Ang-II also induces apoptosis in ECs, while HGF inhibits Ang-II-
mediated apoptotic events via activating ERK1/2 pathways [40]. Moreover, 
induction of Bcl-2, an anti-apoptotic molecule by HGF contributes to protection 
of ECs from apoptosis, caused by hypoxia, glucose and AGE [61, 101, 111]. 
Under hypoxia and reperfusion injuries, reactive oxygen species (ROS) causes 
apoptosis in ECs via activating xanthine oxidase (XO). Of note, HGF inhibits 
XO-induced ROS production through XO inactivation and Ca2+ influx [108]. As 
a result, ROS-induced apoptosis is largely blocked by HGF. Additionally, HGF 
inhibits superoxide-induced apoptosis via a rapid phosphorylation of FOXO1/3, 
a member of FOXO family [41]. Such anti-apoptotic effects of HGF on ECs will 
contribute to prohibit or reverse numerous ischemic diseases through the main-
tenance of local blood flow.

3.4  Pericyte Recruitment

Recruitment of pericytes in small vessels plays a critical role in the maintenance of 
vascular homeostasis (including avoidance of vascular leak syndrome). Indeed, 
HGF contributes to motility of VSMCs. In response to HGF, VSMCs rapidly form 
lamellipodia to acquire migratory phenotypes via PI3K-AKT pathway [90]. In addi-
tion, HGF-mediated focal adhesion re-distribution and activation of FAK or of Pyk2 
depends on MAPK-ERK1/2 cascade [46].
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Angiopoietin-1 (Angp1) is a key molecule for the recruitment of VSMCs to EC 
wall. Notably, Angp1 up-regulates the HGF production, while Angp1-induced 
VSMC migration is largely diminished by anti-HGF antibody, hence suggesting 
HGF as a key mediator for Angp1 to recruit pericytes in pre-vascular regions [36]. 
Endothelium-derived HGF recruits pericytes or VSMCs in microvessels, and this 
event contributes to the inhibition of vascular permeability and inflammation, pos-
sibly through the paracrine mechanism.

As a result, HGF was shown to be a physiological regulator to block edematous 
lesion, via a GEF-Rac1 pathway(s) in ECs. Anti-inflammatory and anti-apoptotic 
effects of HGF also participate in anti-edematous mechanisms. In addition, pericytes, 
recruited by Angp1→HGF cascade, supports the endothelial integrity. All of them are 
contributable for HGF to induce neovascularization without edema (Fig. 6.2).

4  Preclinical Evaluation of HGF During PAD

PAD is a representative disease that develops when the inner wall of arteries, 
frequently in the legs, are occluded by the plaques made of fat, cholesterol and 
calcium. Diabetes, hypertension and obesity often cause this disease. Drugs with 

Fig. 6.2 Anti-edematous effects of HGF on vascular cells. Under ischemic or septic conditions, 
VEGF, FGF2 or LPS can activate NF-κB via degradation of inhibitory anchor, I-κB. In contrast, 
HGF counteracts these inflammatory signaling pathways, leading to the reduced ICAM-1 expres-
sion and suppressed leukocyte infiltration. HGF also inhibits VEGF-mediated Rho pathway to 
prevent a loss in endothelial barrier function. Furthermore, HGF inhibits vascular cell apoptosis 
via PI3K-AKT pathways, along with Bcl2 up-regulation. These direct effects of HGF on ECs lead 
to prevention of edematous lesions during ischemic organ. Recruitment of pericytes by HGF is 
also contributable for anti-edematous outcomes, possibly as a compensated reaction against local 
inflammation
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anti-platelet or vasodilator effect, and vascular surgical manipulation with a bal-
loon catheter or metal stent are used for the treatment of PAD. Neovascularization 
induced by growth factors are considered as a promissing therapy for 
PAD. During the past 20 years, Morishita et al. have accumulated evidence to 
provide POC for HGF treatment in PAD [78]. In this section, the regulation of 
HGF production under PAD-related conditions and the therapeutic effects of 
HGF on PAD are discussed.

4.1  Loss of Local HGF Production During Experimental PAD

Production of HGF in stroma cells in injured organs is ordinarily increased in 
response to tissue damages [64]. In the animal models of PAD, however, HGF pro-
duction in vascular tissues is decreased, due to hypoxia. Indeed, cyclic-AMP 
(cAMP) is known as a transcriptional inducer of HGF mRNA, whereas cAMP is 
depleted under hypoxia [20]. Persistent hypoxia enhances expression of TGF-β, an 
inhibitor of HGF production. Overall, local HGF production is impaired in the rab-
bit model of PAD.  In patients with arterioscrelosis obliterans (ASO), HGF tran-
scription and protein production are also decreased in hypoxic legs than in normal 
tissues [56]. Thus, it is likely that the local self-defensive system (i.e., paracrine 
system) is impaired due to hypoxia.

Oppositely, circulating levels of HGF is elevated in patients of PAD, particularly with 
collateral formation (i.e., enhancement of endocrine system) [105]. High serum concen-
tration of HGF is positively correlated with collateral vessel formation. Thus, serum 
HGF could be a clinical marker for PAD and/or collateral formation. The increase in 
serum HGF levels might be a compensation for the loss of ‘local’ HGF production by 
distant organs, but this is not sufficient for the complete inhibition of skin ulcer, as seen 
in diabetic mice [103].

4.2  Pre-clinical POC of Recombinant HGF for Treating PAD

Hypoxia down-regulates HGF production in vascular tissues, while its receptor, 
c-Met is up-regulated in response to hypoxia-inducible transcriptional factor, HIF1. 
This reciprocal effect by local hypoxia prompted researchers to examine whether 
HGF supplemental therapy is reasonable for treating PAD under HGF-deficient and 
c-Met-sufficient conditions. When recombinant HGF protein was injected into the 
ischemic hindlimb of rabbits via a femoral artery during PAD, angiogenesis was 
successfully induced. As a result, muscular necrosis, due to ischemia, was improved 
in HGF-treatment group [20]. Such an effect by the local application was reproduc-
ible when HGF was intravenously administered [56], along with the collateral ves-
sel formation. The neovascular density is higher in HGF group than in VEGF group 
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in vivo [98]. The initial studies in the late 1990s provide a proof-of-concept (POC) 
in the potential use of HGF for treating PAD (Table 6.2), followed by clinical trials, 
as discussed later.

4.3  HGF Naked Plasmid Therapy

The loss of HGF production in hypoxic tissues provides a rationale why HGF 
supplemental therapy is useful for reducing PAD-associated pathological condi-
tions, such as ulcer, massive necrosis and infection. Given that a half-life of HGF 

Table 6.2 Preclinical proof-of-concept of HGF-induced therapeutic effects in animal models of 
PAD

Diseases, strategy, route
Animal 
models Therapeutic outcomes References

1. HGF alone
Recombinant HGF, 
lintra-artery injection

CLI rabbit Angiogenesis, Inhibited 
muscular necrosis

Hayashi et al. [20]

Recombinant HGF, 
lintra-artery injection

CLI rabbit Angiogenic collateral 
growth

Morishita et al. [56]

Recombinant HGF, local 
application

Diabetic 
mouse

Angiogenesis, reduced skin 
ulcer

Yoshida et al. [103]

Naked HGF-plasmid, im CLI rat and 
rabbit

Increased blood flow Taniyama et al. [92]

HVJ-HGF cDNA, im Diabetic rat Increased blood flow Taniyama et al. [93]
Naked HGF-plasmid, im Lipo-A TG 

mouse
Increased blood flow Morishita et al. [57]

Naked HGF-plasmid 
(VM202), im

CLI rabbit Collateral vessel growth, 
Improved hypoxia

Pyun et al. [73]

2. Combination therapy
HGF + prostacyclin 
synthase

Diabetic rats Additive effects on 
neuropathy

Koike et al. [37]

HGF + FGF2 in collagen 
microsphere

CLI mouse Additive effect via 
enhanced angiogenesis

Marui et al. [49]

Naked HGF-plasmid im + 
GCSF s.c.

CLI mouse Synergic effect via BM cell 
recruitment

Ieda et al. [25]

BM-MN cells + Ad-HGF 
vector, local

CLI mouse Enhanced angiogenesis via 
anti-apoptosis

Yamamoto et al. 
[102]

3. HGF-inducible therapy
Wnt1-transfected EPCs, 
systemic

CLI mouse HGF induction, 
angiohgenesis

Gherghe et al. [13]

HVJ-Ets1 cDNA, local 
application

CLI rat HGF up, VEGF up, 
enhanced angiogenesis

Hayashi et al. [18]

Abreviattions: HVJ-HGF HVJ liposome containing HGF cDNA, Lipo-A TG lopoprotein-A trans-
genic, BM-MN bone marrow mononuclear, EPCs endothelial progenitor cells. For other keys see 
text.
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protein is very short (<5 min) in vivo, it is important to develop a method for 
stable production and/or retention of HGF, specifically in the injured tissues. HGF 
cDNA- containing ‘naked’ plasmid vector is now available for this purpose.

Morishita’s group found that naked plasmid-based HGF supplement improved 
the PAD-related conditions in an animal model [92]. They for the first time demon-
strated the angiogenic outcomes (such as an increase in collateral vessel density) in 
the ischemic hind limbs of rats post-HGF gene transfection. Consistently, local 
blood flow was increased in the HGF-transfected rats, and this was associated with 
the local detection of human (i.e., exogenous) HGF.  Such a beneficial effect by 
HGF-expressing naked plasmid was also reproducible in a rabbit model of 
PAD. Overall, intra-muscular injection of HGF-plasmid around ischemic areas was 
effectivey for minimizing PAD. Such a simple method using ‘naked’ plasmid is also 
useful for improving hind-limb ischemia in diabetic mice [93], or in lipoprotein-A- 
transgenic mice [57].

In this method, subjective genes (such as HGF) are not incorporated into host 
genome. Furthermore, HGF cDNA-containing plasmid does not stimulate malig-
nant metastasis in a tumor-bearing mouse model [50], hence sporting its safety even 
in the long-term application in muscular tissues. In addition, Korean group newly 
constructed an HGF-expressing plasmid vector (i.e., genomic-cDNA hybrid). This 
construct, pCK-HGF-X7 vector (VM202), produces full from HGF (i.e., HGF728aa) 
and 5 amino acid-deleted HGF (i.e., HGF723aa) to acquire the possible additive effect. 
As expected, this vector efficiently improved the local blood flow via an increase in 
collateral vessels in a rabbit model of hind limb ischemia [73]. Both vectors, devel-
oped in Japan and Korea, are now in the process of clinical trials for treating human 
PADs, as described later.

4.4  Alternative Strategy for HGF-Based Angiogenesis in PAD

Prostaglandins (such as PG-E1/E2 or PG-I1/I2) are known to enhance HGF produc-
tion [64]. FGF2 has an additive effect on HGF-induced mitogenesis of ECs [65]. 
Moreover, FGF2 or Wnt1 also induces HGF production in ECs. Growing evidence 
indicates that these HGF-inducing cytokines are also available for attenuating PAD-
related conditions, as summarized.

Prostacyclin (PGI) synthase enhances HGF-mediated biological actions via 
PGI1/2 generation. Indeed, co-transfection of HGF plasmid with PGI synthase 
gene markedly promoted the neoangiogenesis in a mouse model of hind-limb isch-
emia [37]. A slow release of FGF2 did not significantly improve the hind-limb 
ischemia in mice. However, when FGF2 was administered together with HGF in the 
slow release system, a decrease in local blood flow was restored, as evidenced by a 
laser Doppler [49]. GCSF plays a critical role for the recruitment of bone marrow-
derived progenitor cells into regenerating vessels. Combination of HGF with GCSF 
synergistically improved the hind-limb hypoxia in mice, along with the increase in 
bone marrow-derived cells in neovessels [25]. Such a synergistic effect was also 
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reproduced: an adenovirus-based HGF gene therapy was performed in a mouse 
model of ischemia, together with an injection of autologous bone marrow-derived 
cells [102]. GCSF and HGF are effective for bone marrow cell- and resident endo-
thelium-based regeneration, respectively.

Wnt1 is a ligand to activate β-catenin signaling. Local injection of Wnt1 protein 
leads to an increase in vessel density in ischemic muscles of mice, and this was 
associated with up-regulation of HGF in the local cites [13]. Ets1 is a common tran-
scriptional regulator to initiate HGF and VEGF mRNA transcription. Forced induc-
tion of Ets1-expressing cDNA via an HVJ-liposome method leads to local 
up-regulation of HGF (and VEGF) [18]. Under such an HGF-sufficient condition, 
hind-limb hypoxia was improved, along with an increased vessel density in rats. 
Thus, combined and/or alternative methods may be helpful for promoting therapeu-
tic potentials of HGF during the PAD treatment.

PAD is a representative model for rationalizing HGF supplemental therapy as a 
pathogenesis-based strategy (Fig. 6.3). Morishita and his co-workers provided this 
principle in 1999, using animal models. Now, this effort leads to a practice of HGF 
plasmid therapy in clinical trials of PAD, as described latter (see, Sect. 6).

Fig. 6.3 HGF-based therapeutic angiogenesis during PAD progression. In an early phase of PAD, 
local HGF production is up-regulated in response to inflammatory cytokines, such as TNF-α. 
However, persistent hypoxia down-regulates endogenous HGF (endoHGF) production, in part, via 
a loss in local levels of cAMP that is necessary for HGF transcription. Under such a hypoxic condi-
tion, vascular structure and function are damaged via apoptotic cell death. In reciprocal to a loss in 
ligand HGF, c-Met is up-regulated via a HIF1-dependent transcriptional pathway. When exoge-
nous HGF (exoHGF) or its gene is injected into damaged areas, angiogenic reaction is induced via 
HGF-mediated functions, such as mitogen, motogen and morphogen. In addition, a rapid phos-
phorylation of nitric oxide synthase (NOS) by HGF contributes to an increase in blood flow via 
NO-dependent vessel tone relaxation. Overall, skin ulcer is repaired via HGF-mediated prolifera-
tion and migration of keratinocytes under such an aerobic condition
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5  Therapeutic Angiogenesis in Other Ischemic Organs

The direct angiogenic effects of HGF contribute to the improvement in ischemia in 
other organs. Coronary artery disease (CAD) is the most common type of heart 
disease and is now the leading cause of death worldwide. The decrease in coronary 
artery flow causes local hypoxia and loss in cardiomyocytes, leading to myocardial 
infarction (MI), sometimes associated with cardiac dysfunction and fibrosis. Forced 
induction of angiogenesis by HGF leads to the attenuation of other ischemic organs, 
such as brain, lung, kidney and so on. The preclinical POC of HGF has been accu-
mulated in animal models, as followed.

5.1  HGF-Based Angiogenic Treatment for Heart Diseases

Circulating HGF is markedly increased in the patients of acute MI [86]. In the late 
phase of MI-manifesting rats, the expression of local HGF becomes faint [3]. 
Inversely, the expression of c-Met is augmented in the capillary ECs after heart 
ischemia [68], suggesting the role of HGF during CAD. The angiogenic actions of 
HGF in the heart were shown in the model of acute MI [3]. HGF gene transfection 
into rat hearts by HVJ-liposome method increased the number of vessels in the 
ischemic hearts, especially near the infarcted myocardium. This effect was associ-
ated with the increase in cardiac blood flow and in the attenuation of cardiac func-
tions, as measured by the left ventricular (LV) ejection fraction [3]. Such an 
HGF-mediated angiogenic activity was also reproducible in a rat model of chronic 
MI: an adenoviral vector containing human HGF cDNA was injected into the limb 
muscles 3  days after heart ischemia, resulting in an increase in plasma human 
HGF in treated mice, followed by an increase in the number of coronary vessels 
[43]. Overall, LV remodeling and dysfunction were improved in the HGF-treated 
mice compared with controls, as indicated by the greater % of fractional shorten-
ing and LV+/−dP/dt. Similar angiogenic effect by HGF was seen in a hamstor 
model of dilative cardiomyopathy [94]. Of note, HGF gene therapy is useful for 
suppressing neointimal formation post-PTCA.  When HGF cDNA-containing 
HVJ-liposome was injected into the carotid artery of rabbits soon after the balloon 
injury, neointimal hyperplasia was suppressed via the induction of re-endothelial-
ization [19], hence indicating that a rapid restoration of EC integrity by HGF is a 
reasonable strategy to suppress re-stenosis after angioplasty. Overall, HGF-
induced angiogenesis should be considered as a new option to for treating cardio-
vascular diseases [58].
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5.2  Cerebrovascular Diseases

Cerebrovascular disease is characterized by a pathological condition that affects the 
arteries supplying the brain, frequently caused by a clot deposition in the brain 
(thrombosis or embolism). These vascular disorders reduce local nutrients and oxy-
gen tension, followed by the ischemia, stroke with hemorrhage or embolization. 
Sustained disease leads to massive neuronal cell death, cerebreal edema and increase 
in intracranial pressure, which is a risk for attendant complications such as lethal 
brain herniation occasionally resulting in brain death. Thus, therapeutic strategies 
adopted for the treatment of cerebrovascular disease are to prevent clot deposition 
by using thrombolytic or anti-platelet agents, to inhibit neuronal cell death and to 
recover the cerebral blood flow while decreasing vascular permeability.

In a cerebral ischemia model, intra-ventricular administration of HGF stimulated 
angiogenesis and increased vascular lumens [97]. Pre-ischemic transfection of HGF 
gene using HVJ-liposome method into subarachnoid space also resulted in the 
increase in vessel number and blood flow after occlusion of carotid artery [104]. 
HGF gene transfer immediately after occlusion also stimulated angiogenesis on the 
brain surface and improved cerebral blood flow [104]. Importantly, angiogenic 
action of HGF on the brain is obtained without edematous formation and disruption 
of the brain-blood barrier [84]. Rather, HGF protects ECs from apoptotic cell death 
and inhibits the leakage of brain-blood barrier [10]. Such an angiogenic effect of 
HGF was also observed in the mouse model of Alzheimer’s disease, followed by the 
prevention of behavior dysfunction [91].

5.3  Lung Emphysema and Other Pulmonary Diseases

Lung emphysema, mostly caused by a long-term smoking, is a type of chronic pul-
monary disease in which alveolar architecture is destructed and overinflated, along 
with the impairment of gas exchange (i.e., hypoventilation). Transfection of HGF 
gene into normal lung increased capillary density and blood flow, suggesting that 
HGF administration assists the recovery of respiratory diseases through the induc-
tion of angiogenesis [69]. In a rat model of elastase-induced lung emphysema, 
endogenous HGF levels were transiently elevated, but decreased along with the 
disease progression, while transfection of HGF gene into the rats increased vascular 
density, resulting in improvement in lung ischemia and exercise intolerance in vivo 
[80]. Interestingly, HGF also increased the fraction of circulating EC progenitor 
cells (Sca-1+, c-kit+, Flk+) and their engraftment into the lung capillary endothelium 
[27]. Thus, HGF promotes angiogenesis by enhancing the in situ proliferation of 
resident ECs, and by inducing engraftment of bone marrow-derived progenitor cells 
in vessels. Anyway, such an angiogenic response was well conserved during HGF- 
mediated recovery from other pulmonary diseases, such as acute lung injury or 
pulmonary hypertension in rodent models [51, 70].
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Table 6.3 Angiogenesis-based preclinical studies on HGF supplemental therapy in various 
ischemic organs

Diseases, strategy, 
route Animal models Therapeutic outcomes References

1. Heart
HVJ-HGF cDNA, 
intra-myocardium

MI, rat (acute) EC proliferation, reduced 
infarction

Aoki et al. [3]

Adeno-HGF, 
intra-myocardium

MI mouse (chronic) Angiogenesis, anti-fibrosis, 
improved LV function

Li et al. [43]

HVJ-HGF cDNA, 
intra-anterium

DM, hamster Angiogenesis, anti-fibrosis, 
improved LV function

Taniyama et al. 
[94]

HVJ-HGF cDNA, 
coronary arterial

BA injury, rabbit Re-endothelialization, 
inhibited neointimal 
hyperplasia

Hayashi et al. 
[19]

2. Brain
Recombinant 
HGF, ventricular 
injection

Brain ischemia, rat Increased vessels, Bcl2 
induction in neurons

Tsuzuki et al. 
[97]

HVJ-HGF cDNA,  
subarachoid space

Brain ischemia Increased blood flow, 
neoangiogenesis

Yoshimura et al. 
[104]

Recombinant 
HGF, local 
injection

Brain ischemia, mouse Anti-apotosis in EC, 
improved larning memory

Date et al. [10]

HVJ-HGF cDNA, 
via cisterna 
magna

Brain ischemia, rat Engiogenesis, inhibition of 
neurological defect

Shimamura 
et al. [84]

Naked HGF- 
plasmid, 
ventricular 
injection

Amyroid-β, mouse Better congnityve function, 
angiogenesis, BDNF up

Takeuchi et al. 
[91]

3. Lung
HVJ-HGF cDNA, 
testis iv

Emphysema, rat Angiogenesis, Increased 
blood flow, Alveolar repair

Shigemura et al. 
[80]

Recombinant 
HGF, systemic 
injection

Emphysema, mouse Increase in BM-EPCs, 
BM-based angiogenesis

Ishizawa et al. 
[27]

HVJ-HGF cDNA, 
testis iv

PH, rat Angiogenesis, Anti- 
stenosis, Angio-protection

Ono et al. [70]

Recombinant 
HGF, iv

LPS-ALI, mouse Synergic effect via BM cell 
recruitment

Meng et al. [51]

4. Kidney, liver and skin
Recombinant 
HGF, ip

Glomerulonephritis, rat Increased vessels, better 
renal function

Mori et al. [55]

Naked HGF 
plasmid, 
intra-kidney

GM-renal fibrosis, rat Increased vessel, anti- 
fibrosis, better renal 
function

Chen et al. [8]

(continued)
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Angiogenic action is also involved in HGF-mediated regenerative outcomes in 
renal fibrosis [8, 55], liver cirrhosis [67] and scleroderma [66]. In summary, HGF 
supplement therapy was found to be effective in various types of ischemic diseases, 
such as CAD, PAD, brain ischemia, lung emphysema, renal fibrosis, etc., in part, 
through angiogenesis without edema (Table 6.3). These experimental studies also 
encourage clinical practice of HGF gene therapy, especially with a focus on chronic 
CAD, as followed.

6  Clinical Trials of HGF for the Treatment of Ischemic 
Diseases

HGF is now one of the most potent angiogenic ligands among growth factors. HGF 
causes an increase in local blood flow, possibly via a nitric oxide-dependent path-
way. HGF production is impaired due to a local loss in cAMP under an ischemic 
condition, while c-Met is up-regulated via HIF1-dependent pathway [64]. Of impor-
tance, compensation for a loss in endogenous HGF by adding exogenous HGF leads 
to improvement in the ischemic conditions, in part, through the induction of angio-
genesis with enhanced blood flow in preclinical studies. Several lines of clinical 
trials suggest a potential use of HGF for the treatment of ischemic diseases in 
humans, without significant adverse effects.

6.1  Naked Plasmid Containing HGF cDNA (Collategene)

During the past 20 years, Morishita et al. accumulated POC in animal models. They 
found that local application of a naked plasmid of HGF cDNA produces an angio-
genic effect on CAD and PAD in animals [3, 92, 93]. Based on this background, they 
first designed a clinical trial (i.e., as an open-labeled study) for the evaluation of 
safety and effectiveness of naked HGF-plasmid therapy, with a focus on critical limb 

Table 6.3 (continued)

Diseases, strategy, 
route Animal models Therapeutic outcomes References

Naked HGF (w/o 
VEGF) plasmid, 
iv

Cirrhosis+70%PHx, rat EC proliferation, Enhanced 
liver growth

Oe et al. [67]

HVJ-HGF cDNA, 
local application

Skin wound, rat Neovascularization, 
re-epithelization, anti-scar

Nakanishi et al. 
[66]

Abbreviations: LV left ventricular, DM dilated cardiomyopathy, BA injury balloon catheter- 
mediated arterial injury; PH pulmonary hypertension, LPS-ALI lipopolysaccharide-induced acute 
lung injury, GM gentamicin, 70%PHx 70% partial hepatectomy. For other keys see text or table/
figure legends
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ischemia (CLI). The HGF plasmid consists of cDNA fragment of human HGF 
inserted into pVAX1 vector (3.0 kb), called “Collategene”. This HGF-plasmid DNA 
was injected in ischemic limbs of 6 CLI patients (arteriosclerosis obliterans [n = 3]; 
Buerger disease [n = 3]), with the primary endopoint of 12 weeks [59]. This therapy 
improved the local blood flow, as evidenced by an increase in ankle pressure index 
in 5 of 5 patients. The size of 8 of 11 ischemic ulcers in 4 patients was reduced 
>25%. Apparent edema was not observed in any patient throughout the trial. As a 
result, there was a reduction of pain scale in 5 of 6 patients, suggesting HGF’s effect.

This group further evaluated the potentials of Collategene in CLI patients via 
“multicenter, double-blind, placebo-controlled” study [82]. Placebo or plasmid was 
injected on days 0 and 28, followed for 12 weeks. The overall improvement rate of 
the primary end point was 70.4% (19/27) in HGF group and 30.8% (4/13) in pla-
cebo group, with a significant value. In Rutherford 5 patients, HGF achieved a sig-
nificantly higher improvement rate (100% [11/11]) than placebo (40% [2/5]). 
HGF-plasmid improved QOL. There were no major safety problems.

Such an effect of HGF-plasmid was also confirmed in a clinical trial in the U.S 
[71]. In this study, HGF-plasmid was injected in the ischemic muscles of CLI 
patients (i.e., 0, 0.4 and 4 mg with 2 or 4 weeks interval). As a result, HGF-plasmid 
dose-dependently improved the hypoxia, as checked by oxygen tension. No signifi-
cant adverse effects were seen among all groups.

6.2  VM202

Korean group newly constructed pCK-HGF-X7 (VM202), a naked cDNA plasmid 
designed to express two isoforms of HGF (HGF723aa and HGF728aa) under the control 
of human CMV promoter. Previous studies suggested the effectiveness of VM202 
for treating CAD or PAD in animals [17, 73]. Based on this POC, some groups 
attempted to evaluate the potential of VM202 in clinical trials.

Phase-I clinical study of VM202 was performed in Seoul National University for 
evaluating its safety in patients with severe ischemic heart disease [35]. Intra-cardial 
transfer of VM202 (0.5 or 2.0 mg) was performed in a right coronary artery (RCA) 
territory following the coronary artery bypass grafting (CABG). No serious compli-
cations were seen throughout the 6-month follow-up period. This therapy improved 
global myocardial function, such as wall motion score. In the RCA region, there 
was a significant increase in the stress perfusion or wall thickness of the diastolic 
and systolic phases. Overall, intra-cardial injection of VM202 was shown to be 
promising during CAGG, with a tolerable dose of 2 mg.

The usefulness of VM202 was also evaluated in diabetic neuropathy through a 
double-blind, placebo-controlled study of HGF gene therapy in the US [32]. In this 
study, patients were randomized to receive 8 mg or 16 mg VM202 per leg (or pla-
cebo) via the intra-muscular injections on day 0 and 14. This naked plasmid therapy 
improved the pain scores at least for 3 months, without a significant adverse effect. 
This clinical study suggests that 2 days of treatment may be sufficient to provide 
symptomatic relief with improvement in QOL for several months.
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Such a beneficial effect of VM202 was also confirmed in PADs (including CLI), 
by other studies, with a statistical significance in clinical score, in Korea or the U.S 
[16, 21, 33]. Another naked type of HGF-plasmid (i.e., pUDK-HGF) may be avail-
able for symptomatic relief of CLI, especially of pain, tested in a small-sized clini-
cal study in China [9].

6.3  Ad-HGF Vector

Adenovirus vector is one of the most popular vectors used in human gene therapy. 
Preclinical studies imply that an adenovirus vector carrying HGF-plasmid (Ad-HGF) 
produces therapeutic effects, including chronic MI in rats [43]. Chinese group 
developed the method of Ad-HGF for the induction of collateral arterial growth and 
improvement of post-infarct heart function in a pig model [100]. This group 
designed a phase-I clinical trial for evaluating safety and usefulness of Ad-HGF. The 
18 patients were randomized to receive 3 doses of Ad-HGF (5 × 109 pfu, 1 × 1010 
pfu and 2 × 1010 pfu), followed by an arterial transfer of Ad-HGF via a coronary 
catheter. No serious complication was seen up to 35 days in an acute phase and 
11–14 months in follow-up. They next evaluated the effect of intra-cardial Ad-HGF 
transfer during CABG surgery as an open-labeled clinical trial [107]. Myocardial 
hypoxia in the Ad-HGF-injected area was improved in 3 cases of the low-dose 
group, 5 cases of the middle-dose group, and all of the high-dose group, hence sug-
gesting a therapeutic potential of Ad-HGF during cardiac surgery such as CABG.

Clinical results of HGF are still hopeful, especially for the treatment of PAD or 
CAD.  Indeed, there is now emerging evidence to show the promising results of 
HGF in various ischemic diseases, tested in humans (Table 6.4). Further studies are 
necessary for the establishment of an optimal condition for use of recombinant HGF 
(or HGF-plasmid) therapy in the treatment of PAD or CAD.

7  Summary and Perspective

HGF was, as its name indicated, originally identified as a potent mitogen for hepato-
cytes [64]. But now, HGF is an essential and sufficient regulator to elicit embryogene-
sis, organogenesis and tissue repair in numerous organs. The initial studies in the early 
1990s delineated HGF as an angiogenic factor (see, Sect. 3). HGF is necessary for 
neovasculization through mitogenic, motogenic and morphogenic effects on ECs. A 
rapid activation of Rac1 by GEFs (such as Arf) is involved in HGF- mediated stabiliza-
tion of endothelial barrier. HGF inhibits inflammatory actions via the repression of 
NF-κB-mediated cascade. However, persistent ischemia leads to HGF down-regulation 
via cAMP depletion, and then organ damage or dysfunction is further accelerated, due 
to a loss in the intrinsic repair mechanism. Notably, hypoxia up-regulates c-Met expres-
sion (i.e., SOS sign), in reciprocal to a decrease in HGF. Thus, HGF supplemental 
therapy is reasonable to overcome the hypoxia- induced pathological status (Fig. 6.4).
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Table 6.4 Clinical trials of HGF gene teraphy in patients with PAD, CAD or diabetic neuropathy

HGF gene, route, contry Subjects Therapeutic outcomes References

1. PAD
Naked HGF cDNA 
(Collategene), im
(open-labeled, n = 6), im, Japan

ASO or Buerger 
disease

No edema, Reduced 
pain, Reduced ulcer
Increase in ankle 
pressure index

Morishita et al. 
[59]

Naked HGF cDNA 
(Collategene), im
(double-blind, placebo- 
controlled study n = 40), Japan

CLI Improved QOL 
(p = 0.014, significant)

Shigematsu et al. 
[82]

Naked HGF cDNA 
(Collategene), im
(HGF-STAT trial, n = 93), USA

CLI Improved TcPO2 Powell et al. [71]

Naked HGF cDNA (VM202), 
im
(Phase-I, 2 mg vs. 16 mg, 
n = 12), USA

CLI Improved ankle 
brachial index (12 
months follow-up),
Improved toe brachial 
index (12 months 
follow-up)

Henry et al. [21]

Naked HGF cDNA (VM202), 
im
(Phase-I, 4, 8, 12, 16 mg, 
n = 21), China

CLI Improved pain score, 
Increased TcPO2,
Improved wound 
healing (66.7%)

Gu et al. [16]

Naked HGF cDNA (pUDK- 
HGF), im
(Phase-I, 4-16 mg, n = 21), 
China

CLI No adverse effect, 
decreased pain score,
Ulcer healing, 
improved TcPO2

Cui et al. [9]

Naked HGF cDNA (VM202), 
im

CLI Ulcer healing rate 
(p < 0.005, high dose 
vs. placebo)

Kibbe et al. [33]

 (Phase-II, placebo, low, high, n=52), USA Improved TcPO2 
(p<0.05, high dose vs. 
placebo)

2. CAD
Naked HGF cDNA (VM202), 
intra-myocardium during 
CABG (Phase-I, 0.5 and 2.0 
mg), Korea

Chronic MI Improved wall motion 
score (p = 0.0084, 
significant),
Improved stress 
perfusion (p = 0.024, 
significant)

Kim et al. [35]

Ad-HGF, intra-myocardium 
during CABG
(low, middle, high doses), 
China

Chronic MI Improved hypoxia 
(dose-dependent)
No significant adverse 
effect

Yuan et al. [107]

3. Diabetic neuropathy
Naked HGF cDNA (VM202), 
im
(placebo, 8 or 16 mg, double- 
blind), USA

Diabetic 
neuropathy

Improved pain score 
(p = 0.03, significant 
at 3 months)

Kesseler et al. 
[32]

Abbreviations: ASO arteriosclerosis obliterans, TcPO2 trans-cutaneous oxygen tension. For other 
keys see text or table/figure legends
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How exogenous HGF is efficiently and specifically accumulated in injured areas? 
Some medical “devices” supports the efficient method of HGF gene transfection. 
Japanese group developed a unique method using a spring-powered Jet injector for 
this purpose [39]. Indeed, local gene expression ratio in the skin was 100-fold higher 
in Shima-Jet group than in non-Jet group, leading to a rapid angiogenesis and wound 
healing in animal models. Ultrasound-targeted micro-bubble technique enhanced 
the transfection of HGF-plasmid in the infracted hearts in rats, along with the 
enhanced angiogenesis [42]. A laser-induced stress wave-based gene transfer of 
HGF is also considered as a promising strategy for local transfection, as evidenced 
in a rat model of free-skin graft [1].

Tissue engineering also supports HGF-based regenerative therapy. Tabata and 
his coworkers in Kyoto University developed a slow release method using a bioma-
terial anchorage. For example, collagen microshere is useful as a sustained release 
carrier, which contributed to the HGF-enhanced angiogenesis in an animal model of 
PAD [49]. Drug-eluting stent (DES) is used as a slow release carrier of drug to pre-
vent in-stent restenosis of coronary arteries post-angioplasty. HGF-treated DES 
may be available for reducing in-stent neointima formation [24], possibly via a 
rapid restoration of endothelial integrity.

Fig. 6.4 Pathogenesis-based HGF therapy for curing ischemic diseases. A balance between HGF 
and hypoxia is involved in determining the prognosis of ischemic organ diseases, such as CAD, 
brain ischemia and so on. In the early stages of ischemic disorders, HGF production is transiently 
enhanced to suppress local hypoxia. When HGF dominates this aerobic balance, regenerative, 
protective and anti-fibrotic events occur as a compensatory response. However, local hypoxia is 
gradually enhanced during the advanced stage to prohibit HGF production, due to a decrease in 
cyclic AMP level. Under such a hypoxia-dominant condition, impairment in vascular network 
leads to a rapid progression of organ damage and/or dysfunction. To reverse the pathogenic bal-
ance, HGF supplementation therapy should be considered as a promising strategy for the induction 
of neo-angiogenesis, a common pathway leading to recovery from organ failure in numerous 
organs, such as heart, lung, liver, kidney and possibly the nervous system as well

6 Angiogenic effects of HGF on ischemic organs
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Now, several lines of clinical trials are ongoing worldwide to determine an opti-
mal condition of HGF therapy for curing PAD or CAD.  A naked HGF-plasmid 
(such as Collategen or VM202) is one of the most practical drugs for an angiogenic 
therapy, because of its simple preparation. Some medical devices or biomaterials 
facilitate the efficient production or retention of HGF in the injured areas under 
organ ischemia. HGF is a physiological ligand to drive an intrinsic repair system 
under an aerobic condition. Thus, HGF supplemental therapy may provide a new 
avenue for the development of self-repair therapy, because angiogenesis is a com-
mon event for producing aerobic condition. Therapeutic angiogenesis will be a key 
card for future development of cytokine-based regenerative medicine.
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Chapter 7
Functions of MicroRNAs in Angiogenesis

Xiao Li, Yuqiao Chang, Zufeng Ding, Zhikun Guo, Jawahar L. Mehta, 
and Xianwei Wang

Abstract Angiogenesis is defined as formation and growth of new blood vessels 
that sprout from existing vascular network. Angiogenesis plays a very important 
role in the physiological and pathological situations such as development, ischemia, 
atherosclerosis, wound healing, and cancer growth and metastasis. MicroRNAs 
(miRNAs or miRs) are endogenous, short, noncoding RNAs found in eukaryotic 
cells. MiRs are major posttranscriptional regulators that negatively regulate gene 
expression by binding to their target messenger RNAs for degradation and/or trans-
lational repression. The main function of miRs is gene regulation. MiRs have been 
found to modulate many pathophysiological process including cell differentiation, 
contraction, migration, proliferation, apoptosis, and tissue inflammation. There are 
more than 1, 000 miRs in human genome, some of them are involved in angiogen-
esis. In this review, we will summarize the recent progress on function of miRs in 
angiogenesis.

Keywords MicroRNAs • Angiogenesis • Endothelial cells • Vascular endothelial 
growth factor

Xiao Li and Yuqiao Chang contributed equally to this work.

X. Li • Y. Chang • Z. Guo 
College of Life Science and Technology and Henan Key Laboratory of Medical Tissue 
Regeneration, Xinxiang Medical University, Xinxiang, China 453003 

Z. Ding 
Central Arkansas Veterans Healthcare System, and the Division of Cardiology, 
University of Arkansas for Medical Sciences, Little Rock, AR, USA

J.L. Mehta 
Divison of Cardiovascular Medicine, University of Arkansas for Medical Sciences Central 
Arkansas Veterans Healthcare System, Little Rock, AR, USA 

X. Wang, MD, PhD (*) 
College of Life Science and Technology and Henan Key Laboratory of Medical Tissue 
Regeneration, Xinxiang Medical University, Xinxiang, China 453003 

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 
Xinxiang, China
e-mail: wangxianwei1116@126.com

mailto:wangxianwei1116@126.com


134

Abbreviations

Ang  Angiotensin
bFGF  Basic fibroblast growth factor
CTGF  Connective tissue growth factor
ECs  Endothelial cells
EGF  Endothelial growth factor
EGFL7  Epidermal growth factor-like domain 7
eNOS  Endothelial nitric oxide synthase
FLT1  FMS-related tyrosine kinase 1
Fus-1  tumor suppression candidate 2
HGS  Hepatocyte growth factor-regulated tyrosine kinase substrate
HIF  Hypoxia-inducible factor
IFN-γ  Interferon γ
IGF-1  Insulin-like growth factor 1
IRS1  Insulin receptor substrate 1
MAPK  Mitogen-activated protein kinase
MCP-1  Monocyte chemoattractant protein 1
MMPs  Matrix metalloproteinases
MRE  MicroRNA responsive element
PDGF  Platelet-derived growth factor
PE  preeclamptic
PGF  Placental growth factor
PIK3R2  Phosphoinositol-3 kinase regulatory subunit 2
PTEN  Phosphatase and tensin homolog
RCC  Renal cell carcinoma
RL  Renilla luciferase
ROS  Reactive oxygen species
SCF  Stem cell factor
SGA  Small-for-gestational-age
Shh  Sonic hedgehog
SPRED1  Sprouty-related peotein
Sufu  Suppressor of fused
TGF-β1  Transforming growth factor β1
TIMP  Tissue inhibitor of metalloproteinase
VEGF  Vascular endothelial growth factor

1  Introduction

Angiogenesis is defined as the formation of new blood vessels that sprout from 
existing vascular network. It is a complex process that involves differentiation, pro-
liferation, migration, and maturation of endothelial cells (ECs) [1]. Angiogenesis is 
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an important phenomenon not only in physiological situations but also in pathologi-
cal conditions like myocardial, cerebrovascular, renal, and limb ischemia [2]. As 
described elsewhere in this book, angiogenesis plays a central role in the develop-
ment of certain cancers and cancer metastasis. Basic fibroblast growth factor (bFGF) 
was the first growth factor identified to play an important role in angiogenesis, fol-
lowed by vascular endothelial growth factor (VEGF), platelet-derived growth factor 
(PDGF), tyrosine kinase receptors Tie-1 and Tie-2, and the Tie-2 angiopoietin 
ligands [3, 4].

Endothelial migration and proliferation enhance the generation of primary capil-
laries that undergo remodeling by sprouting, branching, or intussusception [5]. 
There is increasing evidence to support the concept that angiogenesis participates in 
the progression of atherosclerotic plaque [6]. Enhanced angiogenesis is a major 
cause of tumor growth and progression defining an angiogenic switch [7]. The 
development of plaque angiogenesis in the process of atherosclerosis is regulated by 
multiple signals such as hypoxia, reactive oxygen species (ROS), and inflammation, 
which are also closely associated with the development of certain cancers [2, 4].

MicroRNAs (miRNAs or miRs) are endogenous, small, noncoding RNAs that 
negatively regulate gene expression by binding to their target messenger RNAs for 
degradation and/or translational repression [8]. miRs are critical modulators for vas-
cular functions such as cell differentiation, contraction, migration, proliferation, and 
apoptosis [9]. MiRs have been associated with inflammation, oxidative stress, and 
angiogenesis. Several miRs are involved in vascular function, and some of them, 
such as miR-15, -16, -17, -21, 27a, -92, -296, -130a, -378, -210, -214, -221/-222, 
-467, -195/497, -424/503, Let7f, and -126, have been identified to participate in 
angiogenesis.

2  MiR-16 Family and Angiogenesis

Accumulating evidence indicates that miR-16 family has a close relationship with 
angiogenesis in physiological and pathophysiological conditions. Members of 
this family include miR-15a/b, miR-16, miR-195, miR-424 and miR-497. miR-
103, miR-107, and miR-646 have also been included into the “extended” miR-16 
family [1].

2.1  MiR-15 and miR-16 and Angiogenesis

MiR-15 and miR-16 were firstly reported to inhibit VEGF expression in human 
carcinoma cell line [2]. Both of miRs belong to the miR-16 family. Several studies 
profiling miRNA expression in ECs demonstrated that these two miRs are expressed 
at high levels, indicating their potential importance in angiogenesis [3]. Multiple 
computational programs have predicted that potential regulation of VEGF by 
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miR-16 through a miR responsive element located ~260 bases downstream of the 
translation stop in the VEGF 3′-UTR. Karaa et al. verified this regulation by using 
VEGF expression together with miR-16 in Hela cells, which validated the targeting 
of miR-16 to a predicted binding site in the VEGF 3′UTR [2].

In hypoxic conditions, miR-15b and miR-16b display anti-angiogenic activities 
through regulating the expression of hypoxia-inducible factor-1α (HIF-1α), Ang2, 
VEGF-A, VEGF kinase insert domain receptor and FGF-R1 in vitro [4]. 
Overexpression of miR-15/-16 decreases hypoxia-induced VEGF expression, while 
knockdown of them increases VEGF expression in ECs [5]. A further study shows 
that miR-15/-16 also regulates tumor angiogenesis, which is involved in hypoxia 
and the expression HIF-2α [2]. Increase of HIF-2α stabilizes c-Myc/Max heterodi-
mer that represses the transcription of miR-15/-16 in hypoxic condition, and then 
promotes tumor angiogenesis and hematogenous metastasis of colorectal carcinoma 
[2]. It has also been shown that the enhanced miR-16 expression decreases cell 
growth and proliferation and induces apoptosis through reduction cyclin D1 and 
BCL2 levels in MCF-7 cell line [6]. Chen et al. [7] demonstrated that miR-16 is 
down-regulated in human glioblastoma samples in contrast to the normal brain tis-
sues. Additionally, overexpression of miR-16  in the A172 and U87 glioblastoma 
cell lines represses the function of co-cultured ECs (including proliferation, migra-
tion, extension, tube formation) and angiogenesis by targeting Bmi-1.

Ischemic diseases are always characterized by hypoxia. It has been shown that 
miR-15/-16 cluster regulates angiogenesis in ischemic tissues. For example, Spinetti 
et al. showed that the circulating miR-15a and -16 were marked increased in the 
serum of critical limb ischemia (CLI) patients with and without T2DM in a clinical 
study [8]. The increase of circulating miR-15a was positively associated with 
increased risk of adverse events in type 2 diabetes mellitus (T2DM) patients [8]. 
The expression of miR-15a and miR-16 regulated functions of proangiogenic cells 
and further promoted the formation of new blood vessels [8]. In an animal study, 
anti-miR-15a/-16 treatment improved post-ischemic blood flow recovery and mus-
cular arteriole density in an immune-deficient mouse model [8]. This findings indi-
cate that the circulating miR-15a and miR-16 may serve as a prognostic biomarker 
in CLI patients undergoing revascularization.

2.2  MiR-195/-497 and Angiogenesis

A recent study shows that overexpression of miR-195 and miR-497 reduces prolif-
eration of human primary mesenchymal stromal/stem cells (MSCs) [9]. Conditioned 
medium from MSCs overexpressed miR-195 or miR-497 and markedly decreased 
VEGF expression and reduced the formation of endothelial vessels in chicken 
embryo eggs [9]. Of note, the inhibitory effect of miR-195 on angiogenesis was 
much greater than miR-497 [9].

Expression of miR-195 was greatly increased in human endothelial progenitor 
cells (hEPCs), and inhibition of miR-195 expression could promote cell  proliferation, 
autophagy, migration and angiogenesis of hEPCs under hypoxic conditions [10]. 
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MiR-195 was also found to inhibit breast cancer growth and angiogenesis through 
inversely modulating the expression of insulin receptor substrate 1 (IRS1) and sup-
pressing the function of IRS1-VEGF pathway [11].

MiR-497 expression was low in human ovarian cancer tissues, which may result 
the increase of angiogenesis [12]. A further study disclosed that miR-497 exerted its 
function of anti-angiogenesis by suppressing VEGFA expression and, in turn, 
impairing the VEGFR2-mediated PI3K/AKT and MAPK/ERK pathways. MiR-497 
was found to be downregulated in non-small cell lung cancer, and its ectopic expres-
sion significantly inhibited tumor growth and angiogenesis [13]. Wang et al. clari-
fied the role of miR-497 in ovarian cancer angiogenesis by using in vitro assays and 
clinical ovarian cancer tissues. They found that downregulation of miR-497 in ovar-
ian cancer tissues was associated with the increased angiogenesis [12].

2.3  MiR-15/-107 Group and Angiogenesis

The miR-15/-107 group regulates gene expression involved in cell division, prolifera-
tion, metabolism, stress response, and angiogenesis [14]. The miR-15/-107 group has 
also been implicated in human cancers, cardiovascular diseases, and neurodegenera-
tive diseases. Yamakuchi et al. [15] suggested that miR-107 can mediate p53 regula-
tion of hypoxic signaling and tumor angiogenesis by targeting HIF-1β. A study by 
Finnerty et al. [16] provides insights into upstream regulation of miR-107 expression 
through specific p53-responsive promoter regions. It was shown that overexpression 
of miR-107 inhibited the vascular density of tumor xenografts in vivo. Further, upreg-
ulation of miR-107 in glioma cells leads to an inhibition of human brain microvascu-
lar endothelial cell proliferation, migration, and vascular tube formation via 
downregulation of VEGF expression in the in vitro co-culture conditions [17]. Karaa 
et al. [2] reported that miR-16 strongly regulated VEGF expression in the process of 
the formation of new blood vessels. In addition to miR- 15/-107, miR-17-92 cluster, 
miR-210, miR-221/-222, miR-126 and -130a have also been shown to participate in 
blood vessel development in normal and/or tumor tissues [18, 19] (Fig. 7.1).

3  MiR-17-92 Custer and Angiogenesis

MiRs are frequently transcribed together as polycistronic primary transcripts that 
are processed into multiple individual mature miRs in animals. The genomic orga-
nization of these miR clusters is often highly conserved, indicating an important 
role for coordinated regulation and function. As a polycistronic miR gene in human 
genome, the miR-17-92 cluster encodes six miRs, including miR-17, miR-18a, 
miR-19a, miR-20a, miR-19b-1, and miR-92-1, which are tightly grouped within an 
800 base-pair region in human chromosome 13 [21, 22]. Both sequences of these 
mature miRs and their organization are highly conserved in all vertebrates. For 
example, MiR-17, miR-20a, and miR-20b have overlapping function via targeting 
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similar sets of genes, including interleukin 8 (IL-8), HIF-1α, VEGF-A, ephring-B2, 
tissue inhibitor of metalloproteinases 2, matrix metallopeptidase 2 (MMP2), and 
Eph receptor B4 [23].

MiRs encoded by the miR-17-92 cluster and its paralogs are known to act as 
oncogenes. Expression of these miRs promotes cell proliferation, suppresses apop-
tosis of cancer cells, and induces tumor angiogenesis [24]. C13orf25 gene  expression 
in association with genomic amplification and may play an important role in tumor-
igenesis and resulting poor prognosis [25]. The highly conserved human miR- 17- 92 
cluster is located in the third intron of an approximately 7 kb primary transcript 
known as C13orf25 [26]. It evolved two miR-17-92 cluster paralogs in mammals 

Fig. 7.1 Role of miRNAs for vascular biology. Schematic illustration of the specific functions of 
miR-221/miR-222, miR-17-92, miR-210, miR130a, and miR-126 for vascular biology (Urbich 
et al. [20])
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due to ancient gene duplications: (1) the miR-106b-25 cluster that is located within 
the thirteenth intron of the protein-coding gene MCM7 (chromosome 7) and (2) the 
miR-106a-363 cluster that is located on the X chromosome. MiR-17- 92 and miR-
106b-25 clusters are both abundantly expressed across many tissues and cell types. 
Of note, the miR-106a-363 cluster is undetectable or expressed at trace levels in all 
settings that have been examined [27].

The miR-17-92 cluster first attracted attention following a series of observations 
linking these miRs to cancer pathogenesis [24]. Overexpression of miR-17-92 in 
Ras expressing murine carcinoma cells resulted in enhanced tumor angiogenesis 
in vivo in a non-cell autonomous manner. The downregulation of the potent endog-
enous inhbitor of angiogenesis thrombospondin-1 together with several proteins 
containing thrombospondin type 1 repeats has been shown to be involved in this 
pathway [28]. Transfection of ECs with components of the miR-17-92 cluster, 
induced by VEGF treatment, rescued the induced expression of thrombospondin-1 
and the defect in endothelial cell proliferation and morphogenesis initiated by the 
loss of Dicer [29]. Inhibition of miR-17 and miR-20a increased the number of blood 
vessels in Matrigel plugs, but antagomiRs that target miR-18a and miR-17-92 were 
less effective [29]. The aforementioned study support that miR-17-92 promotes 
tumor angiogenesis by targeting antiangiogenic proteins thrombospondin-1 and 
connective tissue growth factor (CTGF), therefore regulating angiogenesis in a non- 
cell- autonomous manner [30] (Fig. 7.2).

Normal arteries

miR-15b
miR-16
miR-20a
miR-20b
miR-145
miR-214
miR-221/222
miR-328
miR-195/497
miR-503

miR-27a
miR-27b
miR-130a
miR-210
miR-296
miR-378
miR-467
Let-7b, f

Anti-angiogenic

Pro-angiogenic

VEGF
PDGF
Bcl-2
HIF-1α/β
SPEED-1
Sufu
Fus-1
Homebox gene

Mainly Targets
miR-21
miR-17-92
miR-126
miR-424

Fig. 7.2 Regulation of angiogenesis by antiangiogenic miRNAs (miR-15b, miR-16, miR-20a, 
miR-20b, miR-145, miR-214, miR-221/-222, miR-328, miR- 195/-497, miR-503), dual-directional 
miRNAs (miR-21, miR-17-92, miR-126, miR-424) and pro-angiogenic miRNAs (miR-27a, miR-
27b, miR-126/-126*, miR-130a, miR-210, miR-296, miR-378, miR-467, Let-7b, f). MiRNAs 
regulate the angiogenic responses to growth factors by targeting angiogenic factors, receptors, and 
signaling molecules
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Bioinformatic binding prediction tools suggest that the transcriptional activator 
ELK-1 (member of ETS oncogene family) potentially binds to the miR-17-92 cluster 
promoter sequence, which is positively regulated by mitogen-activated protein kinase 
(MAPK) [31]. Chamorro-Jorganes, Lee et al. [32] demonstrated that VEGF- induced 
upregulation of miR-17-92 cluster in ECs is mediated by ERK/ELK1 activation sug-
gesting that ELK-1 and the miR-17-92 cluster are the targets of MAPK. Recent stud-
ies also indicate that the upregulation of miR-17-92 cluster in vitro is necessary for 
endothelial cell proliferation and angiogenic sprouting. Additionally, genetic evidence 
indicates that miR-17-92 iEC-KO mice have blunted physiological retinal angiogen-
esis during development and diminished VEGF- induced ear angiogenesis and tumor 
angiogenesis via upregulation of THBS1 [32]. Shuang et al. [33] reported that miR-
17a and miR-92-1 play crucial roles in argonaute 2-mediated angiogenesis by target-
ing angiogenesis-related gene in myeloma angiogenesis.

The miR-17-92 cluster is now considered one of the oncogenes. Whereas, Huabin 
Ma [34] demonstrated that miR-17-92 suppressed tumor progression in colorectal 
cancer mouse model by inhibiting multiple angiogenesis inducing genes, including 
TGF-β type II receptor, HIF-1α, and VEGF-A. It has also been reported that miR-17 
and miR-19 negatively regulate the expression of pro-angiogenic Janus kinase 1 
(JNK-1) and cyclin D1 [35]. Hinkel et al. [36] observed that inhibition the  expression 
of miR-92a exerts cell-protective, pro-angiogenic, and anti-inflammatory effects. 
Downregulated miR-92a can significantly reduce infarct size and postischemic loss 
of function in pigs. According to above views, miR-17-92 cluster has a dual role in 
tumor development.

Landskroner-Eiger et al. [37] demonstrated that miR-17-92 EC KO mice exhibit 
accelerated blood flow recovery and enhanced arterial vessel density after limb 
ischemia. MiR-17-92 EC KO mice also have greater numbers of the hindlimb and 
coronary arterial vessels in the absence of ischemia, suggesting that the endogenous 
miR-17-92 cluster plays a critical role in developmental arteriogenesis/collateral 
vessel genesis. More importantly, miR-19a/b plays a central role in this process. 
Frizzled-4 (FZD4) and low-density lipoprotein receptor-related protein-6 (LRP6) 
are main targets of miR-19a/b [37]. The expression of miR-19a negatively regulates 
FZD4, LRP6 and WNT signaling, and antagonism of miR-19a/b can improve blood 
flow recovery after ischemia through reducing the repression of WNT signaling by 
targeting FZD4 and LRP6 in the aged mice, which is similar with that in the miR- 
17- 92 EC-specific KO mice. These findings suggest that the miR-17-92 cluster, 
especially miR-19a/b, physiologically suppresses arteriogenesis.

4  MiR-126/miR-126* and Angiogenesis

Recently, a protein named epidermal growth factor-like doman 7 (EGFL7, also 
known as VE-statin, MEGF7, Notch4-like protein, or Zneu1) was described as 
novel endothelial cell-derived factor that is involved in the regulation of the spatial 
arrangement of cells during vascular tube assembly or blood vessel formation [38]. 
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This protein is conserved among vertebrates but an orthologue is also found in 
Drosphila melanogaster [39]. In humans, there are three alternative isoforms con-
taining the same open reading frame but are transcribed from separate promoters 
[40]. Gene analysis revealed that EGFL7 is expressed within the neurons of adult 
mice, indicating that EGFL7 serves diverse biological functions in various tissues 
and not only in the vascular system [41]. Soncin et  al. [42] showed that EGFL7 
inhibits human aortic smooth muscle cells’ migration, but not proliferation, indicat-
ing that EGFL7 might have a role in new vessel maturation, parker et al. [43] estab-
lished the role of EGFL7 as an important tubulogenic factor in the process of 
vasculogenesis. Recently, schmidt et  al. provided another compelling clue for 
resolving the function of EFGL7 protein in angiogensis [44].

MiR-126 (also referred to as miR-126-3p) and its complement miR-126* (miR- 
126- 5p or miR-123) are derived from EGFL7 gene and harbor both miRNAs within 
intron 7 in all vertebrates [45]. Both miR-126 and miR-126* are relevant for the 
development of the cardiovascular system, cardiovascular diseases, and the forma-
tion of certain cancers [46]. MiR-126 performs an abundant expressed level in 
highly vascularized tissues, and it is the only miRNA known to be expressed specifi-
cally in the endothelial lineage and hematopoietic progenitor cells [47].

Function of miR-126/miR-126* in angiogenesis, though it remained an enigma 
for quite some time, has now been clarified. MiR-126 seems to regulate endothe-
lial cell angiogenic activity in response to angiogenic growth factors such as 
VEGF and bFGF, through targeting multiple proteins that modulate angiogenesis 
and vascular integrity [46]. Fish et  al. [48] found that miR-126 regulates the 
response of ECs to VEGF.  In addition, knockdown of miR-126  in zebrafish 
resulted in loss of vascular integrity and hemorrhage during embryonic develop-
ment. MiR-126 functioned in part by directly repessing negetive regulators of the 
VEGF pathway, including the Sprouty-related, EVH1 domain-containing pro-
tein 1 (SPRED1), and phosphoinositol- 3 kinase regulatory subunit 2 (PIK3R2). 
SPRED1 contains a predicted target sequence for miR-126, and it plays a key role 
in miR-126 mediated pro-angiogenic action [49]. Increased expression of SPRED1 
or inhibition of VEGF signaling in zebrafish resulted in defects similar to miR-126 
knockdown [45]. Both MiR-126 overexpression and PIK3R2 downregulation in 
endothelial progenitor cells led to similar pro-angiogenic functions [50]. In addi-
tion, ultrasound-mediated miR- 126- 3p delivery in chronic ischemic hindlimb 
muscles of the rats demonstrated that miR-126 improved tissue perfusion and vas-
cular density by inhibiting SPRED1 and PIK3R2 and upregulating VEGF and 
angiopoietin-1 signaling [51].

MiR-126 promotes proliferation, migration, and angiogenic capacity of umbili-
cal endothelial progenitor cells. In the pregnant rats, it was found that miR-126 
increased vascular sprouting, placenta and fetus weights [50]. A positive correlation 
was found between miR-126 and VEGF expressions [52]. MiR-126 overexpression 
significantly upregulated VEGF expression in BeWo cells, whereas miR-126 down-
regulation decreased VEGF expression [53]. Similarly, deletion of miR-126 (miR- 
126-/-) in the mice leads to the formation of fragile and leaky vessels, lumen collapse, 
aberrant endothelial tube hierarchy, hemorrhages, and impaired endothelial cell 

7 Functions of MicroRNAs in Angiogenesis



142

proliferation and migration. The above information indicates a crucial role of miR- 
126 in embryonic and postnatal angiogenesis, post-traumatic vascular regeneration, 
and endothelial function.

Studies by Parker et al. [43] showed that loss of EGFL7 function in zebrafish 
embryos specifically blocks vascular tubulogenesis. EGFL7 is downregulated in 
quiescent ECs, but is upregulated in the endothelium of proliferating tissue, such as 
some tumors. Angiogenesis and vascular integrity can be disrupted through modula-
tion of miR-126 expression. Since miR-126 is embedded within EGFL7, it is pos-
sible that miR-126 increases the sensitivity of these activated ECs to VEGF or other 
growth factors through repression of SPRED1 and/or PIK3R2 expression. Sessa 
et al. [54] reported that miR-126-dependent suppression of PIK3R2 increased the 
expression of pro-angiogenic factor angiopoietin-1, whose function is to facilitate 
stabilization and maturation of growing blood vessels. Work by nicoli et al. [55] 
demonstrated that mediated by the mechanosensitive zinc finger-containing tran-
scription factor klf2a, miR-126 can be induced by blood flow, leading to the activa-
tion of VEGF signaling in the endothelium. Due to damage of vascular integrity and 
defects in endothelial cell proliferation, migration, and angiogenesis, endothelial- 
specific deletion of miR-126 in mice causes leaky vessels, hemorrhage, and partial 
embryonic lethality. Subsequent miR-126 knockdown studies in zebrafish showed 
that miR-126 induced hemorrhage and collapse of lumen-containing vascular struc-
tures [56]. These observations are consistent with the concept of miR-126 binding 
to the 3′UTR of the VEGF-A mRNA [57]. Considering the key role of miR-126 in 
the regulation of angiogenesis and vascular integrity, it has been proposed that miR- 
126 may be an important target for pro- or antiangiogenic therapies.

MiR-126 plays a crucial role in tissue repair by inducing angiogenesis and vas-
cular tissue remodeling in the injured blood vessels. Jansen et al. [58] reported that 
miR-126 was transported into recipient cells by endothelial microparticles, func-
tionally regulated the target protein SPRED1, and promoted vascular endothelial 
repair. It has also been reported that miR-126 maintains silencing in adult ECs and 
represses endothelial proliferation and migration. However, in the injured cardiac 
muscles, the regenerative activity of miR-126 initiates vascular repair and results in 
the induction of anti-apoptotic and cardioprotective effects [59, 60]. Furthermore, 
ECs and EPCs could also release miR-126-containing microparticles that can be 
taken up by VSMCs and cardiac muscle cells, and lead to miR-126-driven resident 
cells reprogramming to a regenerative program [58]. MiR-126 can also promote the 
migration of EPCs by targeting the regulator of Gprotein signaling 16 (RGS16), 
which is an inhibitor of the CXCL12/CXCR4 signaling [61]. It has been reported 
that the CXCL12/CXCR4 axis and hypoxic gradients induces EPC migration and 
promotes VEGF production by lymphoid precursors. MiR-126 also involves in the 
regulation of CXCL12/CXCR4 pathway by repressing the axis in quiescent ECs 
and HIF-1α-dependent activation of this pathway in hypoxic and vascular injury 
conditions [62].

However, several studies reported a controversial role of miR-126 in tumor pro-
gression. Evidence shows that miR-126 can suppress tumor growth and tumor 
angiogenesis through inhibition of VEGF signaling. The interaction of miR-126 on 
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the 3′UTR of VEGF mRNA in colorectal cancer and gastric cancer cells was vali-
dated by luciferase reporter assay [63, 64]. Zhang et al. [63] reported that miR-126 
was markedly downregulated in the colorectal cancers, and the silence of miR-126 
was induced by the promoter methylation of its host gene, EGFL7. Chen Li. et al. 
[64] reported that low expression of the miR-126 was observed in gastric carcinoma 
tissues, and the enhanced miR-126 expression obviously suppressed the expression 
of VEGF-A and the activity of the downstream signals such as Akt, mTOR and 
Erk1/2 in gastric cancer cell lines SGC-7901, MKN-28 and MKN-45. In contrast, 
the decreased expression of miR-126 increased the expressions of VEGF-A and its 
downstream signals [64]. Du et al. [65] found that the expression of miR-126-3p 
were significantly downregulated in the hepatocellular carcinoma tissues and cells. 
The expression of miR-126-3p inhibits cell migration and invasion, and suppresses 
the formation of capillary tubes from ECs in vitro. Overexpression of miR-126-3p 
reduces the size of tumor and the density of microvessels in vivo. It was also found 
that the under-expression of miR-126 was significantly correlated with the expres-
sion of VEGF in thyroid cancers tissues [61]. MiR-126 marginally expressed in 
thyroid cancer tissues and cell lines. Overexpression of miR-126 in human papillary 
thyroid carcinoma (K1 cells) and human normal thyroid follicular cell line could 
markedly reduce VEGF-A level and inhibit cell proliferation of these cells [66]. 
Zhou et al. [67] also revealed that miR-126 has dual function in pathological angio-
genesis of retina. MiR-126-/- mice showed defective postnatal retinal vascular devel-
opment and remodeling. However, in retinal pigment epithelial cells, miR-126-3p 
suppressed VEGF-A function via a novel mechanism by regulating αB-Crystallin 
promoter activity and by directly targeting VEGF-A 3′UTR.

5  MiR-221/-222 and Angiogenesis

MiR-221 and miR-222 belong to the same family and control common targets, 
which are located in close proximity on Xp11.3 chromosome and might be regu-
lated in a coordinated manner [68]. MiR-221/-222 are highly expressed in human 
umbilical vein endothelial cells and are known to regulate the angiogenesis. These 
miRs inhibit endothelial cell migration, proliferation, and angiogenesis in vitro by 
targeting stem cell factor (SCF) receptor, c-kit (a receptor tyrosine kinase that binds 
stem cell factor and mediates VEGF expression) [69]. Antisense miR-221 oligonu-
cleotide was shown to reduce the expression of miR-221, to restore c-kit expression 
in HUVECs, and to abolish the inhibitory effect of high glucose on HUVECs trans-
migration [70]. Interestingly, Li et  al. observed that miR-221 expression was 
induced by high glucose while c-kit expression was reduced, indicating that miR- 
221- c-kit pathway may play an important role in diabetes-associated vascular dys-
function [71].

Recently, miR-221/-222 have been shown to be deregulated in gliomas, which is 
involved in a variety of biological processes in glioma cells such as cell proliferation, 
apoptosis, migration and cell cycle progression. Fan et al. found that miR- 221/-222 
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were significantly upregulated in human glioma tissues and cell lines, and played 
vital roles in glioma cell invasion, migration, and angiogenesis by directly targeting 
TIMP2 [72]. On the other hand, TIMP-2 could interact with integrin α3β1, which 
negatively regulates some tyrosine kinase receptor signal transduction pathways 
leading to cell cycle arrest of ECs and suppressing angiogenesis [73, 74]. These 
studies indicate that suppression of miR-221/-222 is a potential therapeutic strategy 
for treatments glioma from the view of angiogenesis in the future.

More recent studies have also shown that these two miRs control different target 
genes: miR-222 is a main regulator for inflammatory signals including IL-3 or 
bFGF and participates in the inflammation-mediated vascular remodeling [75]. 
However, miR-221 is involved in proliferative signals, and controls EC prolifera-
tion, migration, and angiogenesis [76]. Similarly, miR-221, but not miR-222, pro-
moted proliferation of HCC cell lines and tumor growth in a recent study on liver 
tumorigenesis [77]. These evidences indicate that miR-221 is the key factor for cell 
growth and angiogenesis in the miR-221/-222 cluster.

6  MiR-378 and Angiogenesis

MiR-378 is highly expressed in CD34+ hematopoietic progenitor cells, which func-
tion as an oncogene by enhancing angiogenesis, tumor cell survival, and tumor 
growth. By inhibiting the expression of two tumor suppressors Sufu (suppressor of 
fused) and Fus-1 (tumor suppression candidate 2), miR-378 reduces caspase-3 
activity and enhances cell survival, tumor growth and angiogenesis [78]. Cell sur-
vival assays showed that transfection with a construct expressing an antisense 
sequence against miR-378, cell survival decreased significantly [78]. Sonic hedge-
hog (Shh) is a prototypical morphogen known to regulate epithelial/mesenchymal 
interactions during embryonic development. Sufu functions as a negative regulator 
of Shh signaling. Shh promotes large-diameter vessel formation by inducing expres-
sion of angiogenic cytokines, including VEGF and angiopoietin-1 and -2 [79]. MiR- 
378 can also repress the effect of Sufu in the present of the 3′-UTR, which promotes 
cell survival, confirming that the Sufu 3′-UTR is a target of miR-378 [80]. These 
findings suggest that miRNA-378 promotes cell survival and regulates tumor angio-
genesis through regulating Sufu and Fus-1.

Lee et al. revealed the role of miR-378a in tumorigenesis, tumor growth, and 
tumor vascularization in glioblastoma for the first time [81]. They indicated that 
miR-378a-5p enhanced cell survival, reduced caspase-3 activity, and promoted 
tumor growth and angiogenesis through repression of Sufu and Fus-1 too. MiR-378 
has been shown to affect VEGF-A in two ways: miR-378 directly affects VEGF-A 
by competing with hsa-miR-125a for the same seed-region in the VEGF-A 3′UTR 
causing upregulation of VEGF-A [82]; however, miR-378a-5p indirectly regulates 
VEGF-A affecting Shh signaling via inhibition of Sufu that is a key inhibitory com-
ponent of this signaling pathway [81]. The Shh pathway in turn positively regulates 
VEGF-A and other regulators for the formation of new blood vessels and expression 
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of Ang-1and Ang-2 [83–85]. A recent study shows that miR-378a also participates 
in wound healing [86]. The anti-miR-378a transgenic mice show an enhanced heal-
ing as compared to WT mice following 1-week wounding [81]. MiR-Pirate378a 
targets integrin beta-3 and vimentin that stimulate of VEGF expression and promote 
EC migration and angiogenesis.

However, no studies have been performed on the angiogenic effects of miR-378a 
in the physiological settings or disorders such as diabetes and myocardial infarction 
where angiogenesis plays important roles. So, it is necessary to perform further 
studies to assess the mechanisms of miR-378a functions in blood vessel formation 
in physiological or pathophysiological conditions.

7  MiR-21 and Angiogenesis

MiR-21 is one of the firstly identified microRNAs in mammalian. Accumulating 
evidence indicates that miR-21 can negatively modulate angiogenesis. Plenty of 
studies have shown that miR-21 is highly expressed in ECs, and ERK1/2 and bFGF 
are the key regulators for miR-21 expression [87]. Overexpression of miR-21  in 
HUVECs inhibits angiogenesis including EC proliferation, migration and vascular 
network formation in vitro, whereas silencing endogenous miR-21 expression in 
ECs increases the migration of ECs about 40%, and increases the tube formation 
numbers and the total tube length by 2.3 and 1.9 fold, respectively [87]. The inhibi-
tory effect of miR-21 is due to its inhibitory role in RhoB expression and cytoskel-
eton organization. Silencing miR-21 leads to marked increases of RhoB expression 
and EC migration, and silencing RhoB leads to a reduced migration of ECs [87]. 
Intravitreal injection also inhibits pathological angiogenesis and wound healing in a 
laser-induced mouse model of choroidal neovascularization [87].

However, many other studies show that miR-21 is a potential pro-angiogenic fac-
tor in some biological systems. For example, a recent study by Hu et al. shows that 
the increase of miR-21 promotes survival, migration and tube formation of ECs, and 
inhibition of miR-21 expression by antagomir exerts an opposite effect [88]. The 
tissue inhibitor of metalloproteinases-3 (TIMP3) is the functional target gene of 
miR-21 in regulating angiogenesis. MiR-21 by targeting TIMP3 regulates expres-
sion of MMP2 and MMP9, and further affects the formation of new blood vessels 
[88]. The animal study shows that miR-21-deficient mice display an impaired post-
ischemic angiogenesis [89]. It is also shown that miR-21 mainly plays its biological 
activity in adult angiogenesis-promoting cells [89].

MiR-21 is observed to be upregulated in various cancers, and miR-21 can stimu-
late invasion and metastasis in cancer [90]. MiR-21 inhibits phosphatase and tensin 
homolog (PTEN) or RhoB, leading to pro-/anti-angiogenesis [91]. In cancer, miR- 
21 promotes tumorigenesis through its regulation of cellular ROS levels inhibited 
the metabolism of superoxide to hydrogen peroxide, produced either by endogenous 
basal activities triggers the generation of ROS [91]. MiR-21 inhibited the metabo-
lism of O 2 • − to H2O2, by directing attenuating SOD3 or by an indirect mechanism 
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that limited TNFα production, thereby reducing SOD2 levels. Therefore, miR- 21- 
induced tumorigenesis is partially due to the high O2 • − level generated in the cells. 
MiR-21 has also been reported to induce tumor angiogenesis through targeting 
PTEN in human prostatic cancer cells, leading to activating AKT and ERK1/2 sig-
naling pathways, and thereby enhance HIF-1α and VEGF expression [92]. HIF-1α 
is a key downstream target of miR-21 in regulating tumor angiogenesis.

Accordingly, it is generally believed that miR-21 is highly expressed in ECs, but 
its role in angiogenesis remains controversial in in vitro study on ECs and in in vivo 
study on cancers.

8  MiR-210 and Angiogenesis

MiR-210, a hypoxia-induced miRNA, is a crucial element of endthelial cell response 
to hypoxia, affecting cell survival, migration, and differentiation [93]. In normoxic 
conditions, overexpression of miR-210  in ECs was shown to stimulate VEGF- 
induced cell migration and formation of capillary-like structures (angiogenesis). 
Conversely, blockade of miR-210 by transfection of anti-miRNA inhibited tube for-
mation stimulated by hypoxia and cell migration in response to VEGF [94]. It has 
also been reported that miR-210 regulates renal angiogenesis under ischemia/perfu-
sion conditions through activating VEGF signaling pathway in vivo and in vitro [94, 
95]. This information shows that miR-210 probably retains the integrity vascular 
vessels by enhancing angiogenesis, providing a new target for modulating vascular 
formation.

In hypoxic HCC [96] and CRC cells [97], vacuole membrane protein 1 was iden-
tified as the direct and functional downstream target of miR-210, which mediated 
cancer cell migration and invasion supported by angiogenesis. Meanwhile, miR- 
210 contained in exosomes released by cancer cells could be transported to ECs to 
induce angiogenesis. In addition, miR-210 is also located in mitochondria and spe-
cifically targets the mitochondrial components [87]. MiR-210 can modulate mito-
chondrial respire, metabolism, and ROS production with consequences on the 
regulation of cell death and survival [87].

9  MiR-503/-424 Cluster and Angiogenesis

MiR-503 is an intragenic miRNA clustered with miR-424 [1]. MiR-503 is modu-
lated by HIF-1α in the primary tumors with a hypoxic condition and its expression 
is very low in these tumors. MiR-503 simultaneously decreases VEGFA and FGF2 
expression in cancers, demonstrating the antiangiogenesis role in tumorigenesis 
[98]. The low expression of miR-503  in primary tumors is due to the epigenetic 
mechanism. The forced overexpression of miR-503 reduces tumor angiogenesis 
in vitro and in vivo [98]. Further, miR-503 has also been shown to cooperatively 
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work with other the miR-16 family (including miR-15a/b, miR-16, miR-195, miR-
424, and miR-497) and impact angiogenesis [1].

The effect of miR-424 on angiogensis still remains controversial too. A recent 
study shows that miR-424 contributes to post-ischemic vascular remodeling and 
angiogenesis [99]. The expression of miR-424 is driven by hypoxia in the cultured 
ECs [99]. And, the expression of miR-424 is also found to be increased in parallel 
with the upregulation of HIF-1α in experimental models with myocardial ischemia 
[99]. The expressed miR-424 can promote angiogenesis from the cultured ECs in vitro 
and in the athymic nude mice transplated the Matrigel containing HUVECs [99].

On the contrary, some other studies show that miR-424 inhibits angiogenesis. 
For example, Naskashima reported that downregulation of miR-424 contributes to 
the abnormal angiogenesis via regulation of MEK1 and cyclin E1 signals in senile 
hemangioma [100]. Specific inhibition of miR-424 induced the cell proliferation 
and angiogenesis of human dermal microvascular endothelial cells (HDMECs) 
[100]. Liu et  al. also reported that miR-424 played a negative role in regulating 
endothelial differentiation and growth of human dental pulp cells (hDPCs) [101]. 
Overexpression of miR-424 decreased the expression of the vascular endothelial 
growth factors and resulted in low angiogenesis, and inhibition of miR-424 contrib-
uted to dental pulp repair and regeneration [101].

10  Other MiRs Related to Angiogenesis

Endothelial nitric oxide synthase (eNOS) is one of the key factors for angiogenesis. 
Inhibition of eNOS production in vivo inhibits angiogenesis [102]. MiR-214 
expressed highly in vascular system [103] has been demonstrated to inhibit angio-
genesis via inhibit of eNOS production [104]. Recently, van Mil et al. showed that 
miR-214 can negatively regulate in vivo and in vitro angiogenesis by inhibiting the 
expression of pro-angiogenic growth factors such as VEGF and PDGF [104].

MiR-296 is also an important regulator for angiogenesis [105]. Hepatocyte 
growth factor-regulated tyrosine kinase substrated (HGS), which mediates the deg-
radative sorting of PDGFR as well as VEGFR and EGFR, has been identified as a 
target for miR-296 that mediates angiogenic function [106]. MiR-296 is upregu-
lated in human gliomas tumor ECs, and it seems that this miR downregulates HGS 
expression and upregulates VEGFR2 and PDGFRβ in glioma blood vessels. Other 
studies have confirmed that EGF could induce miR-296, suggesting a role for miR- 
296 in promoting angiogenesis in tumors [105, 106].

MiR-467 affects angiogenesis in response to high glucose. It has also been iden-
tified as a translational suppressor of TSP-1 that is implicated in the pathogenesis of 
several diabetic complications [107]. MiR-467 was upregulated by high glucose in 
microvascular ECs and in breast cancer cells, where it suppressed the production of 
TSP-1 by sequestering its mRNA in the nonpolysomal fraction. In in vivo angiogen-
esis models, miR-467 promoted the growth of blood vessels, and TSP-1 was the 
main mediator of this effect [107].
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Let-7f and miR-27b are also involved in angiogenesis. Inhibition of let-7f signifi-
cantly reduces vascular sprouting while let-7b controls EC proliferation and moti-
lity and affects tube formation by regulating antiangiogenic factor TIMP-1 [108, 
109]. Downregulation of miR-27a induces ZBTB10, a repressor of specificity pro-
tein (Sp) transcription factors, and therefore causes repression of Sp and Sp-regulated 
gene products that can decrease expression of other proteins such as VEGF and 
VEGF-R1 regulating angiogenesis [110]. In turn, the expression of miR-27a can be 
upregulated by treatment with VEGF in breast cancer stem like cells (BCSLCs). 
Increase of miR-27a paralleling downregulation of ZBTB10 in BCSLCs promotes 
angiogenesis and tumor metastasis in vivo [111]. In addition, miR-27a also medi-
ates angiogenesis through downregulation of angiogenic factor with G patch and 
FHA domains 1 (AGGF1) in high-grade bladder urothelial carcinoma cells [112]. 
AGGF1 is newly identified as a potent angiogenic factor that highly expresses in 
ECs and promotes angiogenesis via regulation of VEGF [106].

MiR-130a, a miRNA strongly upregulated after exposure to fetal bovine serum 
in ECs, is able to antagonize the antiangiogenic activity by regulating the expression 
of its target gene homeobox gene GAX (growth arrest-specific homeobox) and 
homeobox A5 (HOXA5) [113]. MiR-20a is a member of the miR-17-92 cluster, and 
miR-20b is a member of the miR-106a cluster located on X chromosome, both of 
them are potential antiangiomiRs by targeting VEGF for repression [114, 115].

MiR-145 inhibits tumor growth and angiogenesis by targeting N-Ras and VEGF 
[116]. A recent study, however, revealed a novel role and mechanism of Argonaute 
2 as an enhancer of myeloma angiogenesis through miRNA dysregulation, includ-
ing the upregulation of pro-angiogenic miRs such as the let-7 family members and 
miR-17/-92 cluster and downregulation of the anti-angiogenic miRNA miR-145 
[33]. The pro-angiogenic let-7 family miRs, the miR-17/-92 cluster and the anti- 
angiogenic miRNA miR-145 play crucial roles in AGO2-mediated angiogenesis by 
targeting angiogenetic genes [33]. It has been shown that overexpression of miR- 
21 in prostate cancer cells (DU145 cells) induces tumor angiogenesis by targeting 
phosphatase and PTEN, which in turn activates Akt and extracellular-signal- 
regulated kinases1/2 (ERK1/2) signaling pathways and finally enhances HIF-1α 
and VEGF expression, two of the strongest angiogenesis inducers [92].

11  Conclusion

Although a number of studies summarized here have provided much needed infor-
mation on the pathways and mechanisms of miRs involved in angiogenesis, but 
most of studies were performed in the cultured endothelial cells and animal models. 
Scarcely any studies on the regulation of miRs in angiogenesis were therapeutically 
used in clinic, but anyway the discovery of miRs has led to discoveries of new thera-
peutic targets. Obviously, we need await human trails to see if these targets are suc-
cessful in ameliorating human diseases states associated with angiogenesis.
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Chapter 8
Mast Cells in Angiogenesis: The Role 
of Angiogenic Cytokines

Domenico Ribatti

Abstract The proximity of mast cells to blood vessels has long suggested a relation-
ship between these cells and angiogenesis. Moreover, the role of mast cells in this 
process is mostly certain related to the release of a large spectrum of angiogenic cyto-
kines, including vascular endothelial growth factor (VEGF), fibroblast growth factor-2 
(FGF-2), transforming growth factor beta (TGFβ), tumor necrosis factor alpha (TNFα), 
interleukin-8 (IL-8) and angiopoietin-1 (Ang-1). In this context, mast cells might act 
as a new target for the adjuvant treatment of tumors through the elective inhibition of 
angiogenesis. Preclinical studies in experimental models using anti-cKit antibodies, or 
the mast cell stabilizer disodium cromoglycate have shown promising results.

Keywords Angiogenesis • Cytokines • Inflammation • Mast cells • Tumor growth

1  Introduction

Angiogenesis is stimulated by numerous ‘classic’ factors and other ‘non-classic’ 
regulators . Classic stimulators mostly include growth factors and cytokines, among 
which vascular endothelial growth factor (VEGF), placental growth factor (PlGF), 
platelet derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), trans-
forming growth factors (TGFs), angiopoietins (Angs).

Moreover, evidence has been accumulated that in addition to the “classic” factors, 
many other “non-classic factors”, including numerous endogenous peptides, among 
which erythropoietin (Epo), granulocyte-colony stimulating factor (G-CSF), granu-
locyte-macrophage colony stimulating factor (GM-CSF), interleukins (ILs), angio-
tensin II (Ang II), endothelins (ETs), adrenomedullin (AM), proadrenomedullin 
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N-terminal 20 peptide (PAMP), urotensin-II (U-II), leptin, adiponectin, resistin, 
neuropeptide-Y, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase- 
activating poly-peptide (PACAP) and substance P, play an important role [35].

Both innate and adaptive immune cells are involved in the mechanisms of endo-
thelial cell proliferation, migration and activation, through the production and 
release of a large spectrum of pro-angiogenic mediators. There is increasing evi-
dence to support the view that angiogenesis and inflammation are mutually depen-
dent. During inflammatory reactions, immune cells synthesize and secrete 
pro-angiogenic factors that promote neovascularization. On the other hand, the 
newly formed vascular supply contributes to the perpetuation of inflammation by 
promoting the migration of inflammatory cells to the site of inflammation [37].

Pathological angiogenesis is linked to a switch in the balance between positive 
and negative regulators, and mainly depends on the release by inflammatory cells of 
specific growth factors for endothelial cells, that stimulate the growth of the host’s 
blood vessels or the down-regulation of natural angiogenesis inhibitors [36].

The link between chronic inflammation and tumorigenesis was first proposed by 
Rudolf Virchow in 1863 after the observation that infiltrating leukocytes are a hall-
mark of cancer. Virchow was the first to establish a causative connection between 
the lymphoreticular infiltrate at sites of chronic inflammation and the development 
of cancer (Table 8.1).

In neoplastic tissues, inflammatory cells act in concert with tumor cells, stromal 
cells and endothelial cells to create a microenvironment that is critical for the survival, 
development and dissemination of the neoplastic mass . These interactions within the 
tumor microenvironment may represent important mechanisms for tumor develop-
ment and metastasis by providing an efficient vascular supply and an easy escape 
pathway [43]. Among inflammatory cells that have been identified as modifiers of 
tumor microenvironment, mast cells play a crucial role [40]. Tables 8.2 and 8.3  
summarize mast cell mediators and their possible effects on tumor biology.

Table 8.1 Different types of 
cancers and associated with 
chronic inflammatory 
disorders

Colorectal cancer, ulcerative colitis and Chron’s disease
Cholangiocarcinoma, primary sclerosing cholangitis
Gastric cancer, chronic gastritis (Helicobacter pylori)
Lung cancer, inflammation caused by asbestsos, smoking, 
and sylica
Prostate cancer, Escherichia coli infection of prostate
Hepatocellular carcinoma, infection casued by hepatitis 
virus B and virus C
Melanoma, UV irradiation and associated skin 
inflammation
Endometrial carcinoma, endometriosis
Gallbladder carcinoma, gallbladder stone-associated 
chronic cholecystitis
Esophageal cancer, Barrett’s esophagitis
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Table 8.2 Pro-tumorigenic mediators contained in mast cell granules

Mediator Effects and function

Histamine Increase of vascular permeability, angiogenesis, immunosuppression
Heparin Increase of vascular permeability, angiogenesis, matrix reorganization
Tryptase Tissue remodeling, neovascularization, facilitate metastases
Chymase Facilitate metastases, tissue damage and remodeling
NGF, SCF Promote tumor growth, mast cell chemoattractant
PDGF Promote tumor growth
VEGF Promote angiogenesis, mitogenesis of endothelial cells
FGF-2 Promote tumor growth, neovascularization, matrix reorganization and 

degradation
TGF-β Promote tumor growth, mitogenesis of endothelial cells, angiogenesis
CCL2, CCL5 Chemoattractants for mast cells and other immune cells
CXCL8 Promote neovascularization, matrix reorganization and degradation
TNF-α Promote immunosuppression neovascularization
IL-3, 4 Promote matrix reorganization and degradation
Ang-1 Promote angiogenesis

Legend: NGF nerve growth factor, SCF stem cell factor, PDGF platelet derived growth factor, 
VEGF vascular endothelial growth factor, FGF-2 fibroblast growth factor-2, TGF-β transforming 
growth factor, CCL, C-C motif chemokine ligand, CXCL, C-X-C motif chemokine ligand, TNF-α 
tumor necrosis factor alpha, Il, interleukin, Ang angiopoietin

Table 8.3 Anti-tumorigenic mediators contained in mast cell granules

Mediator Effects and function

IL-1, 6, 9, 10 Inflammation, leukocyte migration
IL-3 Mast cell proliferation, eosinophil activation
IL-4 Tumor cell apoptosis, TH2 differentiation
IL-5 Leukocyte migration, eosinophil activation
TNF-α Inflammation, tumor cell death
IFN-ϒ Inflammation, leukocyte proliferation and activation
GM-CSF Inflammatory cell proliferation, eosinophil activation
TGF-β Inflammatory cell proliferation
PAF Platelet activation, leukocyte chemotaxis
PGD2, PGE2 Vasodilation, neutrophil chemotaxis
LTB4, LTC4 Leukocyte chemotaxis, increase vascular permeability
MIP-α Chemoattractant for monocytes, macrophages and 

neutrophils
MCP-3/4 Chemoattractant for leukocytes
Tryptase Inflammation
NO Vasodilation

Legend: IL interleukin, TNF-α tumor necrosis factor alpha, INF-γ interferon gamma, GM-CSF 
granulocyte macrophage coolly stimulating factor, TGF-β transforming growth factor beta, PAF 
platelet activating factor, PG prostaglandin, LT leukotriene, MIP macrophate inflammatory pro-
tein, MCP monocyte chemotactic protein, NO nitric oxide
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2  Mast Cells and Angiogenesis

Mast cells originate from progenitor cells in the bone marrow, which move through 
the circulation and become mature mast cells after homing to different organs under 
the influence of the local microenvironment [44]. Mast cell progenitors enter the 
blood and exit into tissues by transendothelial migration and are undetectable in the 
blood. Indeed, mast cells are found in human mucosal and epithelial tissues through-
out the body, in all vascularized tissues except for the central nervous system and 
the retina [9].

Mast cells are localized in connective tissues and are more numerous near the 
boundaries between the external environment and the internal milieu [15] including 
the skin [14], the respiratory tract [47], the gastrointestinal tract [13] and the con-
junctiva [7].

It is believed that the role of mast cells to physiologic and pathological processes 
extends far beyond the allergic disease; they are involved in wound healing, in 
chronic inflammation, tumor growth, and angiogenesis, and may be considered as a 
component of the immune system [3, 38] .

Mast cells contain inside their secretory granules powerful biologically active 
molecules including cytokines, histamine, proteases and proteoglycans, which are 
released when mast cells are activated, exert sometimes opposing biological effects 
and affecting the functional profile of different resident tissue cells, like fibroblasts, 
smooth muscle cells, endothelial cells, epithelial cells and nerve fibers. Moreover, 
mast cells synthesize several pro-angiogenic molecules (Table 8.4).

Mast cells play a role in tumor growth and tumor-related angiogenesis, by releas-
ing in the tumor stroma cytokines and growth factors, which have detrimental 
effects to the host by stimulating tumor cell expansion.

Table 8.4 Angiogenic 
factors stored in mast cells

Adrenomedullin
Chymase
Fibroblast growth factor-2 (FGF-2)
Heparin
Histamine
Interleukin-8 (IL-8)
Nerve growth factor (NGF)
Transforming growth factor beta 
(TGF-β)
Tryptase
Tumor necrosis factor alpha (TNF-α)
Vascular endothelial growth factor 
(VEGF)
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3  Angiogenic Cytokines Involved in Mast Cell Angiogenesis

Mast cells migrate in vivo and in vitro in response to VEGF, PDGF, FGF-2, and 
PlGF-1 [10, 11, 18]. Human lung mast cells express VEGF-A, VEGF-B, VEGF-C 
and VEGF-D (Fig.  8.1), VEGF receptors-1 and -2 (VEGFR-1 and VEGFR-2). 
Supernatants of prostaglandin E2 (PGE2)- and 5′-N-ethylcarboxamido- adenosine 
(NECA)-activated lung mast cells induced angiogenic response in the chick embryo 
chorioallantoic membrane (CAM) assay that was inhibited by an anti-VEGF-A 
antibody (Fig. 8.2) [33].

Granulated murine mast cells and their granules are able to stimulate an intense 
angiogenic reaction in the chick embryo CAM assay, partly inhibited by anti-FGF-2 
and anti-VEGF antibodies [33]. Certain mast cell populations released pre-formed 
stores of VEGF after IgE-dependent upregulation of FCεRI expression [4]. Human 
mast cells are a potent source of VEGF in the absence of degranulation through the 
activation of the EP(2) receptor by PGE2 [1], and selective release of VEGF by 
human mast cells is regulated by corticotropin releasing hormone (CRH) [6].

Qu et al. [32] demonstrated that FGF-2 is localized in the cytoplasmic granules 
of mast cells, and Gruzkau et al. [19] showed the expression of VEGF in human 
mast cell line HCM-1 and in human skin mast cells.

An association between VEGF, mast cells and angiogenesis has been demon-
strated in laryngeal carcinoma [46], in non-small cell lung cancer, in which intratu-
moral mast cells express VEGF ([22, 51]). In non-small cell lung cancer a high 
correlation was observed between intratumoral mast cells and microvessel counts 
and double staining showed that most intratumoral mast cells express VEGF [22]. 
In melanoma, mast cells express both VEGF [52] and FGF-2 (Fig.  8.3) [34].  
In prostate cancer, peritumoral mast cells express high levels of FGF-2 [23]. 
Moreover, after the injection of tumor cells in a rat orthotopic model, FGF-2 
expressing mast cells were recruited [23].

Prevete et al. [31] demonstrated that the Ang receptor Tie2 is highly expressed on 
human lung mast cells and that Ang1 is a potent stimulus for mast cell chemotaxis, 
and Tie2 overexpression in mice induces dermal infiltration of mast cells [55]. 
Primary murine mast cells express Ang-1 and mast cells promote marked neovascu-
larization, which was prevented by neutralization of VEGF-A and Ang-1 [27]. Guo 
et al. [20] reported that Ang-1 may be involved in tryptase-positive mast cell induced 
angiogenesis in pancreatic cancer, and demonstrated an increased expression of 
Ang-1 in tryptase-positive-treated mice.

4  Therapeutic Approach

Mast cells might act as a new target for the adjuvant treatment of tumors through the 
selective inhibition of angiogenesis, tissue remodeling and tumor promoting mole-
cules, allowing the secretion of cytotoxic cytokines and preventing mast cell mediated 
immune-suppression. Pre-clinical studies in experimental models, using anti-cKIT 
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Fig. 8.3 Percentages of tumor cells expressing FGF-2 in various melanocytic lesions at distinct 
steps in tumor progression. Each triangle represents a single lesion. The percentages of cells stained 
per lesion were divided into five intensity groups (0–5, 6–25, 26–50, 51–75 and 76–100%). The 
percentages of lesions of each intensity group are reported (Reproduced from Ribatti et al. [34])

Fig. 8.2 A mast cell suspension has been delivered on the top of the chick embryo chorioallantoic 
membrane. Macroscopic observation shows the sponge surrounded by numerous allantoic vessels 
that develop radially towards the implant in a ‘spoked-wheel’ pattern. The histological analysis 
shows among the sponge trabeculae metachromatic mast cells and their secretory granules 
(Reproduced from Ribatti et al. [33])
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antibodies [21, 28], anti-TNFα antibodies [17], or the mast cell stabilizer disodium 
cromoglycate (cromolyn) [50] have shown promising results.

The tyrosine kinase receptor Kit (CD117) is upregulated in tumor cells and 
mutations in c-kit are associated to the development of gastrointestinal stromal 
tumor (GIST), in various forms of mastocytosis and mast cell leukemia [29]. Mast 
cells express high levels of c-kit and stem cell factor (SCF), the ligand for kit, is 
involved in mast cell development, survival, migration, and function [41].  
SCF enhances tumor growth through increased production of VEGF, IL-6, IL-10, 
and TNFα [21], and inhibition of the SCF/Kit axis in vivo inhibits the migration of 
mouse bone marrow–derived cultured mast cells to tumors in a transplanted tumor 
model in mice [21].

Systemic mastocytosis is a myeloid disorder characterized by abnormal growth 
and accumulation of neoplastic mast cells in internal organs [25]. The first tyrosine 
kinase inhibitor introduced into the clinic STI571 (Imatinib mesylate, Gleevec) has 
been used for some varieties of mastocytosis, although some kit activating muta-
tions involved in mastocytosis are resistant to its inhibitory activity [2]. In a murine 
model of breast carcinoma, depletion of mast cells with imatinib mesylate enhanced 
tumor growth [45].

In a majority of patients with systemic mastocytosis the kit inhibitors cannot 
block the mutated Kit [53]. KitD816V has been developed as a therapeutic target in 
mast cell tumors and several of the new tyrosine kinase inhibitors, including 
midostaurin (PKC412), nilotinib (AMN107), toceranib, masitinib, imatinib, and 
dasatinib, counteract malignant cell growth in patients with aggressive systemic 
mastocytosis or mast cell leukemia [16, 48, 49, 54]. Sunitinib inhibits c-kit muta-
tions in systemic mastocytosis [30]. Masatinib is a tyrosine kinase inhibitor that 
targets c-kit receptors and is clinically developed and approved for treatment of 
recurrent or unresectable dog mast cell tumors and is the first approved anticancer 
drug in veterinary medicine [12]. Masatinib has been translated to human clinical 
trials for evaluating in GIST, mastocytosis and pancreatic cancer [24, 26].

Mast cell stabilizers, including gabexate mesilate and nafomostat mesilate, two 
inhibitors of trypsin-like serine protease, inhibit tryptase, an angiogenic factor 
stored in mast cell granules (Fig. 8.4) [42].

Bosquiazzo et al. [5] demonstrated that cromolyn inhibited mast cell degranulation 
in rat uterine cervix, which is correlated to expression of VEGF-mRNA and endo-
thelial cell proliferation. In mouse models of pancreatic cancer, cromolyn treatment 
induced apoptosis of tumor cells due to clotting in blood vessels [50]. In prostate 
tumors of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice express-
ing the SV40T oncoprotein under the prostate-specific rat probasin promoter, 
cromolyn chronic treatment inhibited the development of adenocarcinoma [29]. 
Cimpean and Raica [8] demonstrated that cromolyn inhibited VEGF and PDGF 
expression in A375 chick melanoma tumor cells implanted on the chick CAM.

Therapeutic strategies may include inhibition of recruitment of mast cells to the 
tumor microenvironment and blockade of pro-tumoral effects and pro-angiogenic 
functions. Chemoprevention with an anti-inflammatory approach has the potential 
to inhibit neovascularization before the onset of the angiogenic switch, resulting in 
a significant delay in tumor growth.
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Abstract Angiogenesis is one of the hallmarks of cancer. Many primed cells 
endowed with all cancer characteristics arise in our body but they cannot progress 
to become cancer-disease without activating angiogenesis. This chapter addresses 
the factors involved in tumor angiogenesis and the progress made to exploit this 
phenomenon. Tumors are very heterogeneous in their angiogenic pathways and 
drugs targeting angiogenesis are moderately effective in the metastatic setting with 
variable efficacy in different tumor types and within the same type. Antiangiogenic 
agents do not have any role in the adjuvant setting. The biggest challenge facing this 
discipline is the identification of biomarkers to select patients who are more likely 
to respond to these expensive treatments and those likely to suffer severe toxicity. 
Hence, the complexity of the task and the need to embed the study of these markers 
in the design of phase III randomized controlled trials.
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1  Introduction

Targeting angiogenesis in cancer is now a reality. This chapter reviews the biologic 
foundations of cancer angiogenesis and major therapeutic advancements targeting 
this aspect of cancer biology.

2  Tumor Angiogenesis

2.1  Tumor Initiation, Prevascular Phase  
and Tumor Dormancy

Incipient cancer cells acquire proliferative and/or survival advantages as a results of 
random or inherited genetic and epigenetic changes. These tumor-initiating cells 
belong either to the stem cell compartment or to the compartment of progenitor cells 
that have acquired stemness characteristics. In normal circumstances, most initiated 
cells are likely to be eliminated by internal and external control mechanisms. Other 
possible outcomes include the correction of the abnormality and the return of these 
cells to the pool of normal cells or the suppression of the growth of these cells in 
their initiation site until the suppressive mechanisms weaken, allowing the trans-
formed cells to progress toward open cancer-disease. Transformed cells are detected 
by the immune system that may play either a host-protective role by detecting and 
eliminating them or a tumor-promoting role by amplifying the microenvironmental 
response and triggering the angiogenic switch.

Transformed cells undergo many changes under the pressure of the immune sys-
tem, called immunoediting. Three phases of this interaction were described: 
Elimination, equilibrium and escape [1, 2]. Elimination leads to the eradication of 
transformed cells by a competent immune system. In this case, transformed cells are 
recognized via their neoantigens (resulting from mutations or translocations) by the 
adaptive arm of the immune system or via the distress signals expressed on their 
surface secondary to chromosomal changes (aneuploidy or hyperploidy) by the 
innate immune system [3, 4]. When the immune system prevents the progression of 
transformed cells without eliminating them, an equilibrium or a immune dormancy 
is reached. Equilibrium is marked by a balance between elimination-promoting 
cells and cytokines (IL-12, IFNγ, TNFα, CD4 Th1, CD8+ T cells, NK cells, γδT 
cells) and those that promote persistence (IL-23, IL-6, IL10, TGFβ, NKT cells, CD4 
Th2, Foxp3+ Treg cells, and MDSCs) of the transformed tumor cells [5–7]. Under 
the influence of tumor microenvironment monocytes may differentiate into pro- 
inflammatory M1 or anti-inflammatory M2 types, which play a role in the angio-
genic switch (see below) [8, 9].

The mechanism that tilts the balance established during the equilibrium phase 
toward tumor progression remains unclear. The production of new B and T lympho-
cytes in the bone marrow and the thymus, respectively and the functioning of mature 
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immune cells are all reduced with age [10]. In breast cancer, systemic inflammation 
associated with aging and local pro-inflammatory microenvironment promote can-
cerous progression of mammary cells primed by the loss of tumor suppressor genes 
[7, 11]. Pro-inflammatory cytokines (TNFα and IL-6) lead to COX2 and aromatase 
enzyme overexpression [12], which results in increased local concentrations of 
estrogens. Estrogens induce the expansion of Tregs and the inhibition of antigen 
presenting cells [13–15]. In addition to the gradual decline of the systemic and local 
immune system, dietary factors, commensal gut microbiota, use of antibiotics, 
physical activity and hormonal factors play variable roles in tilting the balance from 
equilibrium to escape [16–19].

2.2  Angiogenesis

Angiogenesis is the process by which an adult organism creates new blood vessels 
to meet the demand of growth or healing of injured tissues. This is a highly orches-
trated process that requires the intervention of soluble mediators, cell-cell and cell- 
matrix interactions. Soluble mediators released after a tissue injury or in presence of 
a nascent tumor destabilize the quiescent endothelial cells (EC) and induce their 
proliferation, migration and arrangement in tube-like structures. These structures 
undergo a maturation process after recruitment of pericytes in capillary vessels or 
smooth muscle cells in larger blood vessels. As blood vessels mature they become 
less leaky and enter into quiescence. EC survival no longer depends on the presence 
of soluble mediators but on cell-cell direct or autocrine signaling. ECs that are not 
covered by pericytes regress [20, 21].

2.3  Soluble Factors (Table 9.1)

Vascular endothelial growth factors and placental growth factor (VEGF A, B, C and 
D; PlGF) and their receptors (VEGFR 1–3) are the most important and most studied 
system among these factors [22]. Alternative splicing of a single VEGF A gene 
generates six isoforms with variable length and biologic activity: 121, 145, 165, 
183, 189, and 206 amino acids. VEGF121 and 165 are the most physiologically 
relevant. The expression of VEGFR1, 2 and 3 is not limited to endothelial cells but 
it extends to smooth muscle cells and bone marrow cells [20]. However, the mito-
genic effects of VEGF A are only seen in endothelial cells. The angiogenic effects 
of VEGF A are mediated by its interaction with VEGFR2 to which it has lower 
affinity than to VEGFR1. It is possible that VEGFR1 functions as a decoy receptor 
modulating the amount of VEGF A available to interact with VEGFR2. However, 
the binding of VEGF A to VEGFR2 is facilitated by the expression of neuropilin-1 
on endothelial cells. This membrane receptor does not have intracellular signaling 
activity but it preferentially binds VEGF A and presents it to VEGFR2 to facilitate 
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its interaction with the receptor [23]. VEGFR3 does not interact with VEGF A but 
with VEGF-C and VEGF-D and is involved in lymphangiogenesis [24]. VEGF-B 
binds and activates VEGFR-1 as well as neuropilin-1.

VEGF A increases endothelial cell permeability by loosening adherence junc-
tions between ECs or by enhancing the activity of vesicular-vacuolar organelles that 
facilitate transport of metabolites between luminal and abluminal plasma mem-
branes; the net result is to increase extravasation of plasma proteins and formation of 
extracellular matrix favorable to endothelial and stromal cell migration. Furthermore, 
the production of plasminogen activators (uPA) plasminogen activator inhibitor-1 
(PAI-1) and interstitial collagenase by ECs enhances stromal proteolysis, which 
helps with extracellular matrix remodeling necessary for angiogenesis [25, 26]. 
Furthermore, VEGF A induces proliferation and migration of destabilized endothe-
lial cells and inhibits EC apoptosis. The production of VEGF A is induced by hypoxia 
through the hypoxia inducible factor (HIF) pathway [27]. It is also produced by most 
tumors as a result of their activated oncogenes and by several cell types including 
fibroblasts and inflammatory cells attracted to the tumor site [28, 29].

Angiopoietins (Ang 1–4) and TIE receptors (Tie1 and 2) are the other system that 
is involved in angiogenesis and is responsible for the integrity and survival of ECs 
once blood vessels are formed [30]. Four angiopoietins were identified; Ang1 binds 
to Tie-2, antagonizes the effects of VEGF A and increases the girth and stability of 
endothelium in newly formed angiogenic sprouts [31]. Ang2 binds to Tie2 and works 
as Ang1 antagonist. ECs activated by VEGF A increase their production of Ang-2, 
which acts by autocrine mechanism on the same cells. Overexpression of Ang2 in 
many cancers portends more aggressive phenotype and poor prognosis [32, 33].

Fibroblast growth factors (acidic-FGF and basic-FGF) belong to a large family 
that consists of 23 members, 18 function as ligands that interact with four receptors 
(FGFR1–4) [34]. Like VEGFs, they stimulate EC proliferation, migration, tube for-
mation and production of uPA/PAI and they inhibit apoptosis [20, 34]. There is no 
proven role for FGFs in physiologic angiogenesis. However, it is possible that these 
factors play a role in  local reparative angiogenesis following tissue injury where 
they are deposited in the extracellular matrix. Different genetic hits result in their 
overexpression in many cancers (gain of function mutations, gene amplification, 
translocations, gene fusions and altered gene splicing) [35]. Their upregulation may 
occur after exposure to antiangiogenic treatment and may drive resistance to endo-
crine therapy in breast cancer [36].

Platelet-derived growth factors (PDGFs) exist as homodimers (PDGF-AA or 
-BB) or heterodimers (PDGF-AB) and they bind to dimeric PDGF receptors (αα, 
ββ, or αβ) [37, 38]. The role of PDGFs is in inducing the maturation of blood vessels 
by stabilizing pericytes that are initially recruited by mechanisms dependent or 
independent of PDGFs.

Transforming growth factor-β is produced by ECs, pericytes and other cells. It 
inhibits the proliferation and migration of ECs but favor development of tube-like 
structures through the modulation of the extracellular matrix and the establishment of 
a scaffold favorable to vessel tubes formation and induces pericyte differentiation [20].
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Other soluble factors with angiogenic activity include tumor necrosis factor-α 
(TNF-α), epidermal growth factor (EGF), transforming growth factor-α (TGF-α), 
colony-stimulating factors (CSFs), angiogenin, angiotropin, tissue factor, factor V, 
prostaglandins, nicotinamide, and monobutyrin [20] (Table 9.1).

2.4  Membrane-Bound Factors

Integrins, especially αvβ3, may regulate localized degradation of the extracellular 
matrix by localizing proteases to the advancing end of the blood vessel and then 
mediate endothelial cell migration by adhering to the modulated matrix. Integrins 
play a major role in tumor cell migration, invasion, proliferation and survival [39]. 
VE-cadherin localizes to adherens junctions and mediates contact inhibition of 
endothelial cell growth [40]. Eph-B4/ephrin-B2 localize at the arterio-venous inter-
face and play a major role in remodeling established primary capillary plexus [41].

2.5  Biomechanical Forces

Non-perfused vessels eventually regress while blood perfusion stimulates the 
growth and maturation of capillary ECs. Hence, in addition to soluble and mem-
brane bound factors mechanical forces contribute to the pruning and remodeling of 
normal angiogenesis [42].

2.6  Endogenous Inhibitors of Angiogenesis

Various inhibitors of angiogenesis, including angiostatin, endostatin and thrombos-
pondins and others are found in the body. The reasons for having so many inhibitors 
is not clear nor is fully known how these inhibitors overcome the effects of angio-
genesis stimulators. Table 9.2 summarizes the effects of the most important endog-
enous angiogenic inhibitors [43].

2.7  The Angiogenic Switch (AS) (Fig. 9.1)

The local balance between endogenous angiogenic stimulators and inhibitors con-
trols regulation of angiogenesis. In cancer, the balance between stimulator and 
inhibitor levels tilts toward stimulators leading to an “angiogenic switch  – AS”. 
Cancer precursor lesions (such as carcinoma in situ of the breast) are usually 
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microscopic and prevascular and a basement membrane separates their cells from 
the host microvessels. Experimental studies demonstrated that prevascular lesions 
exist in a stable state due to balanced proliferation and tumor cell death [44] and 
may remain in this state for months to years. The onset of neovascularization, or AS, 
often associated with the emergence of the invasive phenotype, can be relatively 
sudden [45, 46]. The AS can also start at the preinvasive phase in certain cases [47]. 
AS can be preceded or associated with immune escape and is understood as a shift 
in the net balance between positive regulators (e.g., bFGF, VEGF) and negative 
regulators of angiogenesis (e.g., thrombospondin-1, 16-kD prolactin, interferon 
(IFN)-a, IFN-b, platelet factor 4, angiostatin, endostatin, and others such as interleu-
kin IL-12) [48]. The importance of the immune/inflammatory mechanisms is illus-
trated by the role of tumor-associated macrophages and other cells (Myeloid derived 
suppressor cells – MDSC – fibroblasts and adipocytes) in triggering the AS. Once 
the macrophages are polarized to the M2 phenotype, they secrete proangiogenic 
factors that participate in the AS. This permissive environment remains local allow-
ing the nascent cancer to grow, invade and release cancer cells in the lymphatic or 
vascular systems. However, disseminated cancer cells land in distant organs and 
have to negotiate with their destination environment a new “license to grow” that 
would vary depending on the new environment.

Four mechanisms for neovascularization or AS were identified. First, direct 
recruitment of blood supply from neighboring blood vessels by prevascular tumors. 
Invasive cells secrete proteinases that breach the basement membrane and allow 
cancer cells to enter the stroma and induce ECs to proliferate following a concentra-
tion gradient toward the source of proangiogenic factors. Cancer cells form multiple 
layers (the radius of which is restricted by the oxygen diffusion limit between 80 

Fig. 9.1 Time line for progression from incipient cancer cells to immune escape and the angio-
genic switch. Once the angiogenic switch is triggered the tumor may grow locally and cancer cells 
may access the blood vessels and spawn metastases to distant organs

I. Makhoul et al.
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and 150 μm) that surround every new capillary vessel [49]. Second, recruitment of 
endothelial progenitor cells (EPC). Vascular endothelial growth factor receptor −1 
(VEGFR-1) positive bone marrow cells are recruited to the invasive focus [50, 51]. 
The contribution of EPCs varies in different malignancies; in lymphomas, their role 
is predominant (>90%) while in solid tumors (example breast cancer) they play a 
more limited role [52]. Third, vessel cooption where cancer cells grow and cluster 
around preexisting blood vessels [53]. And the last mechanism to provide tumors 
with blood supply is vascular mimicry; tumor form tube-like structures by dedif-
ferentiation of epithelial cells into an endothelial phenotype [54].

2.8  Consequences of the Angiogenic Switch

New blood vessels enrich the local tumor environment with oxygen and important 
nutrients needed for growth and remove waste products. Furthermore, endothelial 
cells can provide paracrine growth and survival signaling to the tumor even before 
the blood starts flowing [55, 56]. The AS leads to decreased apoptosis of cancer 
cells by up to seven folds while their proliferation rate remains similar to the prevas-
cular stage, leading to a rapid expansion of the tumor mass [57]. Once angiogenesis 
is launched, the tumor may grow locally and shed isolated cells or clusters of cells 
(disseminated tumor cells – DTCs) into the blood stream. Most DTCs die by anoikis 
or as a result of the attack of the immune system. A few DTCs may land in distant 
organs and go to another phase of dormancy then awaken at some point to form 
cancer metastases [58, 59]. Metastases are responsible for 90% of mortality in 
breast cancer and other solid tumors [60, 61].

Angiogenic dormancy is the phase that extends from the formation of the prevas-
cular tumors to the point of the AS and is a part of tumor dormancy where immune 
and local factors play an important role to maintain the tumor at the prevascular 
stage. Tumor dormancy is common in most primary solid tumors and in DTCs and 
may extend to several years or decades. Local inflammation and age-related deterio-
ration of the immune system in addition to the acquisition of genetic/epigenetic 
abnormalities lead eventually to a break of the equilibrium that maintains the dor-
mant state and allows the tumor to start growing.

It was believed by some investigators and the lay public that surgical removal of 
the primary tumor might allow the micrometastases or DCTs to start growing as a 
result of removing a putative angiogenesis suppressive factor released by the pri-
mary (angiostatin) [62]. To date, this scenario is considered very uncommon and the 
search for this putative inhibitor in humans has been unsuccessful. When rapid pro-
gression of metastatic disease happens after surgery, it is very likely the result of 
dumping large amounts of cytokines and growth factors in the blood rather than the 
removal of a putative angiogenesis suppressive substance with the surgical resection 
of the tumor [63].

A few patients present with metastases at the same time the primary tumor is 
discovered. However, the most common pattern of cancer behavior is the long 
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 interval between the radical removal of the primary tumor and the diagnosis of meta-
static disease. This pattern is observed in most solid tumors such as breast cancer, 
colon cancer, kidney cancer, melanoma, Ewing’s sarcoma and many other tumor 
types. Continuous growth model does not explain this pattern. Recent reports indi-
cate that once metastases become clinically detectable, they display similar growth 
rate to the primary tumor that is independent of the number of years of dormancy 
and suggest that cancer cells undergo different dynamic during this phase [64]. The 
dormancy phase depends on the suppressive role of the immune system that succeed 
in overcoming the proliferative and angiogenic drive of cancer cells for many years.

A good example of the interaction between cancer cells, the microenvironment 
and the immune system is breast cancer. Breast cancer DTCs locate preferentially 
to the bone [65–67]. The bone marrow microenvironment offers DTCs two nurtur-
ing niches: the osteoblastic (for dormant hematopoietic stem cells -HSCs) and the 
vascular (for actively dividing HSCs) niches [68]. Using CXCR4, breast cancer 
DTCs interact with fibroblasts that express stromal derived factor-1 (SDF-1) or 
CXCL12, CXCR4 ligand [68]. Osteoblasts secrete many cytokines such as angio-
poietin- 1 and stromal cell factor that help retain HSCs and cancer cells in the niche 
and by activating the Notch pathway they promote cancer cell stemness and block 
their differentiation, which sustain tumor dormancy [69]. Post-menopausal estrogen 
deprivation increases bone turn-over and allows the release of many growth factors 
embedded in the bone (IGFs, TGFb), which may rescue estrogen deprived cancer 
cells (IGFs) or suppress the immune cells infiltrating and surrounding the tumor 
(TGFb). Finally, age-associated immune deterioration may create the conditions for 
the emergence and growth of metastases.

Pericyte recruitment is an important step in blood vessel maturation. This step is 
largely imperfect or missing in tumor angiogenesis leaving blood vessels immature 
and leaky [70]. The recruitment of these cells is considered essential to provide sur-
vival signaling to ECs of nascent blood vessels and to control blood flow to the tumor 
and fluid shifts between the blood vessels and the tumor interstitial compartment [70].

2.9  Physiologic Competence of Tumor Blood Vessels

Tumor blood vessels have been extensively characterized in a variety of animal 
models and in many imaging and histological studies in human tumors [71–74]. The 
basic understanding is that the vasculature supporting a human tumor is comprised 
of many different components, including co-opted vasculature that existed in the 
tissue of origin before the tumor grew, new blood vessels formed from the natural 
process of angiogenesis as a tissue increases its demand for nutrients and a portion 
of vascular structures that may be created due to the unique nature of rapid tumor 
cell growth (vascular channels, vascular mimicry etc.) [75–77]. As a result, there are 
heterogeneous regions of flow, nutrient diffusion and hypoxia/necrosis in most solid 
tumors. The mixture of vascular supply routes that a solid tumor employs to con-
tinue to grow and progress result in a variety of abnormal features to be present in 
the solid tumor that rarely, if ever, occur in normal tissues. The major features of 
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tissue physiology that are found to be at levels above or below that found in normal 
tissue are what are commonly referred to as the ‘5 Ps’ or, Perfusion, Pressure, Partial 
pressure of oxygen, Permeability and PH. Any one of these microenvironment read-
outs can drive altered stress response and expression of genes thought to be involved 
in tumor progression, involving an angiogenic response [78, 79].

2.10  Evaluation of Angiogenesis and Prediction  
of Response to Angiogenic Therapy

The true angiogenesis that occurs in the tumor as the nascent blood supply is out-
grown and microenvironmental cues are rapidly produced by cells that become 
hypoxic or acidic can be monitored and even quantified by a variety of methods. One 
of the hallmarks has been to measure the levels of VEGF in the circulation in a 
patient. Other proteins involved in the growth and maintenance of blood vessels have 
also shown to have promise. An example is the family of receptors and ligands related 
to VEGF function. For example, we observed that circulating tie2 receptor was impli-
cated in response to anti-angiogenic therapy with bevacizumab in a clinical trial of 
breast cancer patients [80]. Additionally, germline variants that are present in varying 
levels in different patients of various proteins involved in angiogenic activity can be 
shown to track with treatment outcome [81]. Classical methods to assess angiogen-
esis in preclinical models include live tissue monitoring with intravital microscopy, 
histological evaluation of vessel density and a variety of in  vitro endothelial cell 
assays that can assess growth rate, formation of tubules or other vascular-like struc-
tures, migration and branching of cell structures. Examples of these are as follows:

In vitro The most basic assessment of an anti-angiogenic effect in vitro is to evalu-
ate the ability of a drug or other agent to inhibit EC proliferation. Therefore, a number 
of cytotoxic or cytostatic agents have been suggested to be anti-angiogenic. However, 
to truly be anti-angiogenic and not simply cytotoxic, the agent should also have more 
specific and selective action against cellular hallmarks of blood vessel development 
such as motility, migration and ability to form microtubules suggestive of a lumen in 
an actual blood vessel. These approaches have been well tested and studied for a host 
of therapeutic approaches thought to have anti-angiogenic properties [82–84].

In vivo The available assays to assess ongoing or completed angiogenesis in a tumor 
tissue are mostly limited to various imaging approaches that measure aspects of the 
circulation (volume, velocity, total flow) and histological tests that look for the 
amount, size and density of vascular structures in a tissue [85–87]. There are also 
several ‘ex vivo’ tissue based assays that can be used to assess various aspects of 
angiogenesis potential and completion. These include the chick choriollantoic mem-
brane (CAM) assay and the aortic ring assay. In the CAM, the agent of interest is 
added to a developing chick embryo and the qualitative changes in amount and nor-
mal appearance of vessels in the egg are imaged [88]. The aortic ring assay involved 
the preparation of a cross section of aortic tissue from either rat, mouse or other small 
animal. The cross section (appearing like a ring) is bathed in a maintenance medium 
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and the therapeutic agent is added as desired. Over several weeks, the normal response 
of the ring is to sprout new blood vessels which grow outward from the ring. The 
amount and length of these ‘angiogenic’ protrusions can be measured and used as a 
guide to understand the potential of the approach to inhibit natural angiogenesis [89]. 
We and others have also measured the angiogenic capacity of ECs in soft agar or 
matrigel by assessing the degree by which ‘vessels’ or tubes form in the medium [89, 
90] and the extent to which ECs inoculated into matrigel plugs can grow into func-
tional vascular networks when the plug is implanted into experimental animals.

2.11  Clinical Evaluation of Prognostic and Predictive Markers 
of Angiogenesis

To date, no validated marker (or markers) is available to predict response of cancer 
to anti-angiogenic therapy, to assess escape or resistance mechanisms or predict tox-
icity from these agents [91]. Anti-angiogenic agents were introduced to clinical prac-
tice more than 10  years ago (first anti-angiogenic drug was approved in 2004, 
bevacizumab in mCRC) without clear understanding of their mechanism of action 
and without biomarkers for patient selection. These markers are needed to help select 
the patients who are more likely to respond to these expensive and potentially toxic 
treatments and to help evaluate mechanisms of resistance, so appropriate actions can 
be undertaken [91]. Considering that cancer is a dynamic and heterogeneous process 
in space and time and due to the complexity and redundancy of angiogenesis one 
marker may not be appropriate for all cancers, all the time and with all anti-angio-
genic drugs. Hence the difficulty that this field has encountered from its inception.

Several methods have been used to assess angiogenesis in the clinical setting. (1) 
Systemic markers. One of the findings of clinical trials using angiogenic inhibitors 
was the possible correlation between the development of hypertension and benefit 
from these treatments. However, this marker develops while the patients are on 
treatment and cannot be used for pre-treatment selection. (2) Circulating blood 
markers are very interesting because of easy accessibility to blood or urine samples 
and the possibility to repeat the tests as needed. However, no marker (or group of 
markers) has shown to date a strong predictive or prognostic value to be used 
 routinely in the clinic. (3) Tumor tissue-based markers are difficult to adapt to rou-
tine practice but may inform our understanding of the biology of angiogenesis and 
the effects of different interventions on the system. For example, microvessel den-
sity is now accepted as a prognostic marker but it was unable to predict for response 
to treatment. (4) Imaging methods need to be refined and validated. Their role may 
become crucial in the future as we discover new imaging modalities with better 
predictive and prognostic value [92]. Most, if not all, of these markers were discov-
ered from the retrospective analysis of prospectively conducted phase III clinical 
trials or from single arm phase II trials. Based on the experience with different 
cancers and agents, it is unlikely that we will be able to find one markers that would 
fit all [91]. Table 9.3 summarizes the available makers.
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Table 9.3 Prognostic and predictive markers of angiogenesis

Agent Value Tumor type
Strength of 
the evidence

Clinical
Hypertension Bevacizumab Predictive CRC, 

breast, 
RCC

Moderate

Blood and germ line SNPS
Circulating VEGF Bevacizumab, sunitinib Prognostic CRC, 

NSCLC, 
RCC

Weak

SNPs in VEGF and 
VEGFR2

Bevacizumab Predictive CRC, 
breast

Weak

SNP VEGF-2578AA Bevacizumab Prognostic Breast Moderate
Circulating PlGF Anti-VEGF Tx ? CRC, 

others
Weak

Blood LDH Bevacizumab Prognostic CRC Weak
Il-8A-251 T Bevacizumab Predictive Ovarian Moderate
Increase plasma IL-6 
on bevacizumab

Bevacizumab Predictive CRC, 
ovarian and 
HCC

Moderate

High serum EGF & 
macrophage-derived 
chemokine and low 
IL-10, IL-6, and IL-8

Anti-VEGF Tx Predictive CRC Moderate

Circulating EC and 
bone marrow-derived 
EPC

Bevacizumab Predictive CRC, HCC Weak

Tumor-based methods
Tumor expression of 
VEGF

Bvacizumab Predictive CRC, 
breast

Weak

Microvessel density 
(MVD)

Multiple angiogenic Tx Prognostic CRC, 
others

Moderate

Elevated LDH and 
VEGFR1 mRNA in 
tumors

Vatalanib Prognostic 
(high = better)

CRC Moderate

Increased HIF and 
VEGFR2 mRNA 
levels in tumor

Vatalanib Prognostic 
(high = worse)

CRC Moderate

MVD Vatalanib Prognostic 
(high = better)

CRC Moderate

MMR-D vs. MMR-P Multiple angiogenic Tx Prognostic 
(MSI 
high = better)

CRC Moderate

TAMs (CCL18) Multiple angiogenic Tx Prognostic 
(high = worse)

CRC, 
breast

Weak

(continued)
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3  Tumor Lymphangiogenesis

Most solid tumors are thought to have a deficit in the available lymphatic vascula-
ture present in comparison to the blood supply vasculature, and this is why there are 
documented features of solid tumors that include a higher than normal interstitial 
pressure and a general immune suppressive environment [93–95]. However, albeit 
deficient and abnormal, there is a lymphatic angiogenic response as the tumor grows 
which may be as important as or more important to understand than the more tradi-
tional angiogenic response of blood supply vessels [96]. It is also of interest to note 
that a healthy/normal lymphatic vasculature could be critical for the body to control 
solid tumor development. Thus, while some or many anti-angiogenic agents may be 
able to control or slow the progression of tumors initially due to the blockage of an 
adequate blood supply, a later and unwanted effect of these therapies may be the 
destruction or inhibition of lymphatic function, ultimately leading to a residual 
tumor mass less able to be addressed by the immune system and more resistant to 
other drug-based therapies due to exacerbated interstitial fluid pressure imbalances 
between the mass and the surrounding normal tissue environment. Various targeting 
strategies against lymphangiogenesis or tumor cell trafficking in the lymphatics 
have been developed and are waiting for clinical testing to prove if they are feasible 
approaches to control metastasis and/or the primary tumor [97–99].

4  Targeting Angiogenesis

4.1  FDA Approved Drugs

Approved angiogenic inhibitors developed over the past two decades fall into two 
categories. (1) Small molecules that target the tyrosine kinase function of VEGFR 
alone or with other receptors involved in angiogenesis (Table 9.4) [100, 101]. (2) 

Table 9.3 (continued)

Agent Value Tumor type
Strength of 
the evidence

Imaging methods
MRI and dynamic- 
contrast enhanced – 
DCE MRI

Multiple angiogenic Tx Prognostic CRC, 
breast

Weak

DEC CT Multiple angiogenic Tx Prognostic CRC, 
breast

Weak

PET Multiple angiogenic Tx Predictive CRC Weak
Contrast enhanced 
US

Multiple angiogenic Tx Predictive CRC, HCC Weak

CRC colorectal cancer, HCC hepatocellular carcinoma, RCC renal cell carcinoma; strength of the evi-
dence was defined by the type of studies used to validate the marker. Strong If the marker is validated 
in prospective RCTs, Moderate when the marker is validated in retrospectively in phase III clinical 
trial,Weak when the marker is derived from phase II studies or results conflict regarding the findings
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Table 9.4 Small molecules targeting angiogenesis.

Agent US approval indications Targets Side effects

Axitinib Advanced RCC (after 
failure of one prior 
systemic therapy)

VEGFR-1 to -3, 
PDGFR-b, and 
c-KIT

Diarrhea, hypertension, 
fatigue, and decreased 
appetite

Cabozantinib Metastatic MTC 
(progressive) advanced 
RCC in patients who have 
received prior anti-
angiogenic therapy

VEGFR-1 to -3, 
c-Met, RET, 
c-KIT, TRKB, 
FLT-3, AXL, and 
TIE2

Gastrointestinal (GI) 
perforation, GI fistula, and 
severe hemorrhage

Lenvatinib Radioactive iodine 
refractory differentiated 
thyroid cancer and 
advanced RCC

VEGFRs Hypertension, fatigue, 
diarrhea, nausea/vomiting, 
arthralgia/myalgia, 
proteinuria, palmar-plantar 
erythrodysesthesia, and 
dysphonia

Nintedanib Idiopathic pulmonary 
fibrosis

VEGFR-1 to -3, 
PDGFR-a and -b, 
and FGFR-1 to -3, 
FLT-3 and Src

Thromboembolism, 
myocardial infarction,
GI perforation,
Cardiomyopathy, stroke,
Hypertensive crisis

Pazopanib Advanced RCC, advanced 
STS (after prior 
chemotherapy)

VEGFR-1 to -3, 
PDGFR-a and -b, 
FGFR-1 and -3, 
and c-KIT, Itk, 
Lck, c-Fms

Severe and fatal 
hepatotoxicity has been 
reported

Regorafenib Metastatic CRC 
(previously treated); GIST 
(locally advanced, 
unresectable or metastatic; 
previously treated with 
imatinib mesylate or 
sunitinib malate)

VEGFR-1 to -3, 
PDGFR-a and -b, 
FGFR-1 and -2, 
TIE2, c-KIT, RET, 
RAF-1, and 
BRAFV600E, 
DDR2, TrkA, 
Eph2A, SAPK2, 
PTK5 and Abl

Fatal hepatotoxicity has 
been reported

Sorafenib Unresectable HCC; 
advanced RCC; thyroid 
carcinoma (locally 
recurrent or metastatic, 
progressive, differentiated; 
refractory to radioactive 
iodine treatment)

c-CRAF, BRAF, 
mutant BRAF, 
c-KIT, FLT-3, 
RET, RET/PTC, 
VEGFR-1 to -3, 
and PDGFR-b

Lymphopenia,
Hypophosphatemia,
Exfoliative, dermatitis,
Hypertension, MI, diarrhea, 
fatigue, renal failure, 
abdominal pain weight loss, 
neutropenia, 
thrombocytopenia,
Dyspnea,

Sunitinib GIST (after disease 
progression or intolerance 
to imatinib mesylate); 
advanced RCC; pNET 
(progressive, well 
differentiated; unresectable 
locally advanced or 
metastatic)

VEGFR-1 to -3, 
PDGFR-a and -b, 
FLT-3, c-KIT, 
CSF-1R, and RET

Fatal hepatotoxicity may 
occur

(continued)
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Monoclonal antibodies or fusion proteins that target VEGF, VEGFR or other angio-
genic pathways (Table 9.5) [101].

4.2  Mechanism of Action of Antiangiogenic Drugs

VEGF/VEGFR pathway is a typical example of angiogenic pathways (Fig. 9.2). 
The VEGFR is a trans-membrane protein with an extracellular domain, transmem-
brane domain and intracellular domain that carries the tyrosine kinase activity. 
Upon binding of the ligand (VEGF A) with the ligand binding site, two VEGFR 
monomers dimerize and undergo conformational changes that activate their tyro-
sine kinases leading to cross phosphorylation and activation of down stream signal-
ing pathways and the execution of the intended functions of proliferation, increased 
vascular permeability, migration and survival of ECs.

Antiangiogenic small molecules are hydrophobic and diffuse easily intracellu-
larly then interact with the tyrosine kinase function by competing with ATP of the 
tyrosine kinase and inhibit down stream signaling. Monoclonal antibodies interact 
either with the ligand, VEGF (bevacizumab, aflibercept) or the receptor, VEGFR 
(ramucirumab).

Inhibiting the VEGF/VEGFR pathway leads to interruption of survival and pro-
liferative signaling of ECs. The ultimate outcome is variable depending on the con-
text in which ECs exist. ECs that depend exclusively on VEGF will undergo 
apoptosis leading to “collapsed vessels,” while the ones that have started maturing 
may be able to go on to complete their pericyte coverage and become more “normal 
like” ECs [102]. Due to cancer heterogeneity and the presence of variably vascular-
ized areas of the tumor, the areas of the tumor supplied by the “collapsed blood 
vessel” will undergo hypoxic cell death while the areas supplied by the  “normalized” 
blood vessels will grow faster. The ultimate outcome will depend on the ratio of 
“collapsed to normalized” vessels. If the tumor mass is now served by a “normal-
ized” vascular network, interstitial fluid pressure drops and blood flow increases in 
the tumor. This may be associated with better delivery of chemotherapy to the center 
of the tumor, explaining the synergistic effect of the combinations of chemotherapy 
and the antiangiogenic bevacizumab [103]. Conversely, tumors served by predomi-
nantly immature vessels may respond with massive collapse of their vasculature and 
an abrupt necrosis of the tumor ensues. Triple negative, highly proliferative breast 
cancers are an example of this phenotype [104].

Table 9.4 (continued)

Agent US approval indications Targets Side effects

Vandetanib MTC (unresectable, locally 
advanced or metastatic)

VEGFR-2 and 
VEGFR-3, EGFR, 
RET, BRK, TIE2, 
EPH receptors, 
and Src signaling 
pathways

Prolongs QT interval; 
restricted distribution 
program
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4.3  Resistance to Antiangiogenic Drugs

The therapeutic benefits of antiangiogenic agents are real but limited in duration. 
When these agents work they result in improvement of progression free survival or 
response rate in the metastatic setting that are translated into survival benefits in 
some but not all cancers. In the adjuvant setting, antiangiogenic agents were not 

Table 9.5 Monoclonal antibodies and fusion proteins targeting angiogenesis

Agent US approval indication Targets Side effects

Bevacizumab Approved for metastatic 
colorectal cancer, renal cell 
cancer, non small cell lung 
cancer (NSCLC), cervical 
cancer, ovarian cancer, and 
malignant glioma; used in 
combination with 
chemotherapy or as a single 
agent

VEGF Gastrointestinal 
perforation, surgery/
wound healing 
complications, and 
hemorrhage

Ramucirumab Advanced gastric or 
gastro-esophageal junction 
adenocarcinoma, as a single 
agent or in combination with 
paclitaxel; for metastatic 
non-small cell lung cancer in 
combination with docetaxel; 
and for metastatic colorectal 
cancer in combination with 
FOLFIRI

VEGFR2 Increased risk of 
hemorrhage that may 
be severe and 
sometimes fatal
Neutropenia
Hypertension, asthenia
Fatigue, stomatitis
Bleeding
GI bleeding

Olaratumab Soft tissue sarcoma not 
amenable to curative 
treatment with radiotherapy 
or surgery, in combination 
with doxorubicin

PDGFR-alpha Infusion-related 
reactions (IRR)

Ranibizumab Age-related macular 
degeneration (AMD), 
macular edema after retinal 
vein occlusion, diabetic 
macular edema (DME), 
diabetic retinopathy in 
patients with DME, and 
myopic choroidal 
neovascularization (CNV)

VEGFs NA

Ziv-aflibercept Metastatic colorectal cancer 
in combination with 
FOLFIRI chemotherapy in 
tumors resistant to or that 
progressed following an 
oxaliplatin-containing 
regimen

Humanized 
recombinant 
fusion protein that 
binds with high 
affinity to 
VEGF-A, 
VEGF-B, and 
placental growth 
factors

Gastrointestinal 
perforation, surgery/
wound healing 
complications, and 
hemorrhage
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able to show any benefits in colon, breast or lung cancers when they were added to 
standard of care in phase III RCTs.

Primary resistance to antiangiogenic therapy is defined by the absence of any 
benefits when these drugs are compared to best supportive care or to standard of 
care with and without the agent. This is reflective of the lack of a marker that prese-
lects patients upfront before treatment administration. Secondary resistance is the 
progression of the cancer after an initial response. Resistance to small molecule 
tyrosine kinase inhibitors, usually used as single agents, can be conceived as either 
related to the development of mutations at the binding sites or as a result of inactiva-
tion of the drug by the tumor or as a result of activation of other angiogenic path-
ways that would compensate for the inhibited one. To date, there is no convincing 

Fig. 9.2 VEGFA is the preferred ligand of VEGFR2, which is the main signaling receptor involved 
in angiogenesis. Binding of VEGFA to the ligand binding pocket of the VEGFR2 is followed by 
dimerization and trans-phosphorylation of the intracellular domain on tyrosine moieties. This is 
followed by the activation of cascade of downstream steps leading to the expression of genomic 
programs involved in proliferation, survival, migration and increased vascular permeability of the 
endothelial cells. The signal can be interrupted by targeting the ligand (PlGF and/or VEGF; exam-
ple: aflibercept and bevacizumab), the extracellular domain of the VEGFR with antibodies (exam-
ple: ramucirumab) or its intracellular domain with small molecules (tyrosine kinase inhibitors: 
sunitinib). VEGFR1 participate in angiogenesis but it is more involved in bone marrow cell traf-
ficking and VEGFR3 is involved in lymphangiogenesis. NRP1, 2, neuropilin 1 and 2. NRP1 and 2 
do not possess intracellular domains (From Ferrara and Adamis [105] with modifications)
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evidence of the presence of mutations in VEGFA or its cognate receptors [105]. 
Monoclonal antibodies and protein conjugates are used in combination with 
 chemotherapy in most cases and progression can be conceived as a result of resis-
tance to the chemotherapy, the antiangiogenic therapy or to both. The strategy of 
continuing the antiangiogenic agent beyond progression with a different chemo-
therapy is based on the assumption that progression occurs as a result of resistance 
to chemotherapy no to the antiangiogenic therapy. RCTs built on this premise 
showed real but modest clinical benefits [106].

Another model for resistance to antiangiogenic therapy assumes that alternate 
angiogenic pathways are activated by the tumor to circumvent the therapeutic block-
ade. These include FGF, PDGF and other pathways [107–110]. Alternatively, protec-
tion of the tumor vasculature may be provided by recruiting pro-angiogenic 
inflammatory cells [111–114] or by reinforcing the pericyte coverage, which  provides 
contact and paracrine survival signaling to endothelial cells obviating the need for 
VEGF [102, 115, 116]. Other mechanisms include co-option of normal vasculature 
and increased metastatic seeding in lymph nodes and distant organs [107].

Some experimental models suggested that the inhibition of the VEGFA/VEGFR 
pathway leads to more aggressive and metastatic phenotype as a result of hypoxia 
and activation of EMT that takes all its magnitude at the time of interruption of the 
antiangiogenic treatment [117]. Pooled analysis of disease course patterns of 
patients randomized on bevacizumab phase III trials who discontinued the drug did 
not seem to confirm this hypothesis [118].

5  Therapeutic Implications in Different Cancers

5.1  Colorectal Cancer

5.1.1  Major Angiogenic Pathways

For colorectal cancer, the oncogenic hits are not clearly defined but upwards of 50% 
of such tumors are driven by a mutant Ras oncogene(s) (mainly K-ras and to lesser 
degree N-ras and H-ras). B-raf, HER-2 and activation of Akt/PTEN loss account for 
additional ~15%. VEGFA is a prominent player downstream of many of these onco-
genic pathways, which explains the actual pharmacologic antiangiogenic agents 
studied and eventually approved in colorectal cancer. All approved agents either 
directly target the ligand—VEGFA (bevacizumab and aflibercept) or its receptors 
(ramucirumab). Ancillary role is possible for other pro-angiogenic factors such as 
other members of the VEGF family, VEGFB, VEGFC, VEGFD and VEGFE, or the 
placental growth factors (PlGF)-1 and -2 and their receptors, VEGFR1, VEGFR2 
and VEGFR3. VEGFR2 is mainly expressed in the vasculature and is the key medi-
ator of VEGF-induced angiogenesis and has been pharmacologically targeted with 
small molecule tyrosine kinase inhibitor (e.g. regorafenib) or monoclonal antibod-
ies (e.g. ramucirumab).
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5.1.2  Approved and Studied Drugs Targeting Angiogenesis  
in Colorectal Cancer

Bevacizumab: was first approved in colorectal cancer and is the agent that was 
studied more than any other antiangiogenic agents as attested by the number of tri-
als and the bulk of the data available. Moreover, many oncologists view the other 
available agents as ‘very similar’ to bevacizumab with reasonable justification for 
that stand.

Historically, bevacizumab represented the inaugural product for angiogenic ther-
apy in cancer. It was studied in combination with the then-standard regimen of bolus 
5FU/leucovorin + irinotecan (IFL), a regimen used as first-line therapy for meta-
static colorectal cancer [119]. In the pivotal study led by Hurwitz, the addition of 
bevacizumab to IFL was proven in this large prospective clinical trial to be superior 
to the cytotoxic regimen alone [120]. The impact on median overall survival 
exceeded 4 months (20 vs. 16 months) with acceptable toxicity, a finding that has 
very few parallels in medical oncology. The drug, and in fact the whole concept of 
angiogenesis as a novel approach to cancer therapy was met with sensational enthu-
siasm and almost considered a triumph of cancer biology. Later, far less impressive 
results and reports about some serious toxicities were generated but were actually 
insufficient to shake this initial aura of success and the drug continues to be used 
widely in today’s oncology clinics across the US [121].

Bevacizumab has been added to the two commonly utilized chemotherapeutic 
regimens (FOLFOX and FOLFIRI). Moreover, the drug has been used even after 
progression on first line therapy with reasonable support of such use [106].

The results of individual trials tend to vary and at times seem conflicting. To 
objectively estimate the impact of angiogenic therapy in metastatic colorectal can-
cer, and realizing the substantial heterogeneity that complicates most clinical oncol-
ogy datasets, pooled analysis emerge as our best tool to provide such estimate. One 
such pooled analysis of trials comparing chemotherapy with or without bevaci-
zumab in untreated patients, bevacizumab was associated with 19% reduction in the 
risk of death, and a mere 2 months gain in the median overall survival (19.8 com-
pared with 17.6 months) [121].

Lastly, bevacizumab has been the only anti-angiogenic drug to be tested in the 
adjuvant setting in colon cancer. The study—as designed was definitely negative 
with no benefits in disease-free or overall survival. That negative study is probably 
the main reason to extinguish any interest in examining this drug in the adjuvant 
setting. Issues that need to be reconsidered include, at a minimum, the dose 
(antagonizing microscopic disease as opposed to gross macroscopic metastatic 
cancer) and the duration of therapy (the risk of relapse post-operatively clearly 
extends beyond the 1  year applied in the pivotal National Surgical Adjuvant 
Breast/Bowel Project NSABP C-08 trial) [122]. The differences between the adju-
vant and metastatic settings require special considerations and appropriate 
adjustments.
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Aflibercept Aflibercept (VEGF Trap, Zaltrap) is a recombinant fusion protein 
made of VEGF binding domains of human VEGFR 1 + 2 fused to the Fc portion of 
human immunoglobulin G1 [123]. Though this novel pharmacologic intervention, a 
circulating decoy receptor is theoretically an advantage antagonizing factors that 
bind to the VEGFRs 1 + 2, (VEGF-A, VEGF-B, and PlGF), the clinical results are 
certainly no better than bevacizumab. This may be considered as an indirect confir-
mation of the importance of VEGFA in tumor angiogenesis.

When added to irinotecan-regimen (the widely used FOLFIRI) in patients pro-
gressing after 1st treatment with or without bevacizumab. In a prospective random-
ized trial, a rather modest increment in median overall survival was observed in 
patients treated with aflibercept (13.5 vs. 12.1 months). Given the modest impact 
and its considerable cost, this drug is used at markedly less frequency in the US 
oncology clinics [123].

Ramucirumab This is a recombinant monoclonal antibody with specificity to 
VEGFR-2, antagonizing its activation. The efficacy of ramucirumab has been 
tested in second-line treatment of metastatic colorectal cancer patients in a 
RCT.  Results of this intervention again produced rather modest results with 
approximately 6-week increment in the median overall survival [124]. The FDA 
did grant approval in second line (as tested) but the incorporation of this drug into 
the US oncology clinics has been again sluggish as one can understand. Of note, 
the toxicities reported in ramucirumab and aflibrercept have been categorically 
similar to those seen with bevacizumab, lending support to the idea that antiangio-
genic agents have a class effect—hypertension, proteinuria, wound healing and 
fistula formation.

Regorafenib This is an oral drug which was introduced as a multi-kinase inhibitor 
with known effects against VEGFR1–3, among other tyrosine kinases implicated in 
angiogenic and tumor growth-promoting pathways. The drug’s activity in refractory 
metastatic colorectal cancer was proven against placebo with modest impact at best. 
Median overall survival was prolonged by 1.4 months, and the drug was approved 
by the FDA [125]. The drug is used as a salvage treatment in patients who have 
generally exhausted combination therapies and especially in patients who favor oral 
therapy, an opinion that attract increasing proportions of patients approaching the 
end of life.

5.1.3  Future Directions

The failure to identify a biomarker to preselect patients for angiogenic therapy and 
the use of a simplistic scheme (with the same dose regardless of tumor bulk, degree 
of angiogenic anomaly, or even the treatment setting—metastatic versus adjuvant) 
remain pressing issues that will determine future progress in the field of CRC cancer 
angiogenesis.
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5.2  Gastric Cancer

5.2.1  Major Angiogenic Pathways

Although, gastric cancer is approached as one entity with minor sub-classification 
(Histologically, gastric adenocarcinoma can be classified into the intestinal type – 
cohesive neoplastic cells forming gland like tubular structures – and the diffuse type 
with a thickening of the stomach wall without a discrete mass) modern genomics 
provided more information about the underlying genetic abnormalities (expression 
of EGFR or VEGF and amplification of HER2 or c-MET) [126, 127].

One can infer that VEGF signaling is a player in this disease given the activity of 
VEGFR-2 monoclonal antibody. Moreover, elevated serum and tumor levels of 
VEGF are associated with a poor prognosis in patients with resectable gastric ade-
nocarcinoma [128, 129].

5.2.2  Anti- angiogenesis Drugs in Gastric Cancer

The impact of ramucirumab on disease outcome in this malignancy is rather modest 
again as seen in other indications, approved agent will need better biologic 
classification.

Ramucirumab was subjected to the gold standard testing in 2 large RCT s. The 
first trial was against placebo in 355 patients after progression on standard chemo-
therapy (second line). Though the benefit was statistically significant, the impact 
was very modest with less than a month difference in progression (2.1 versus 
1.3 months), and overall survival results were equally underwhelming (5.2 versus 
3.8 months) [130]. The second trial added Ramucirumab to paclitaxel chemother-
apy in second-line, and was a rather large randomized trial (665 patients). Overall 
median survival increment of 2.2 months was reported (9.6 versus 7.4 months) pro-
viding justification for the FDA approval [131].

Multiple trials examining antiangiogenic agents were performed but many were 
small single arm trials (no comparator arm) that were all negative. Noteworthy 
among all these trials is the negative trials of bevacizumab. A large prospective ran-
domized trial tested the addition of bevacizumab to capecitabine and cisplatin and 
failed to confirm significant survival advantage [132]. Other agents tested and found 
to be ineffective included sunitinib, regorafenib, apatinib, aflibercept, and sorafenib.

5.2.3  Future Directions

Not unlike other malignancies in the GI track or elsewhere, better classification of 
disease on sound biologic (as opposed to anatomic) basis and work towards bio- 
marker development to allow clinicians and scientists to identify the appropriate 
patients and guide treatment in real time seems to be unavoidable for more mean-
ingful progress in this field.
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5.3  Liver Cancer

5.3.1  Major Angiogenic Pathways

Hepatocellular cancer (HCC) is notorious for having limited responsiveness to cyto-
toxic chemotherapy. The main stay of treatment is surgery (when possible and if the 
remaining remnant of the liver is normal), liver transplant, chemo- or radioemboli-
zation or directly inducing cellular damage using extreme temperatures. In the last 
decade or so, modest efficacy for a number of agents was reported and those sys-
temic agents—mostly kinase inhibitors with broad list of putative targets, have been 
added to the armamentarium. Most of these drugs have the canonical angiogenesis 
receptors (e.g. VEGFR-2) among their potential targets. Whether they exert their 
effect – as limited as it may be – through action on tumor vasculature remains an 
open question even today.

5.3.2  Drugs Targeting Angiogenesis in HCC and Results of Clinical Trials

Sorafenib, a multi-kinase inhibitor is the only FDA-approved drug for HCC 
(approved in 2007) [133]. This is a small molecule that inhibits tumor-cell prolifera-
tion and tumor angiogenesis and increases the rate of apoptosis in a wide range of 
tumor models. Six hundred two HCC patients with Child-Pugh class A were ran-
domized to receive sorafenib or placebo. Median overall survival was 10.7 months 
in the sorafenib group and 7.9 months in the placebo group (hazard ratio in the 
sorafenib group, 0.69; 95% confidence interval, 0.55–0.87; P < 0.001). Toxicity was 
manageable. Subsequently, a number of anti-angiogenic drugs were tested in 
HCC. Some of these agents were tested in first line and others after failure of the 
first line drug sorafenib and produced modest benefits at best. One unique notion in 
HCC might be that bevacizumab as a single agent had small impact on the disease 
while the general opinion in clinical oncology is that monotherapy with bevaci-
zumab elsewhere was ineffective.

Regorafenib was compared to placebo in patients with well-preserved overall 
and liver health (573 patients of whom 379 were randomized to regorafenib and 194 
to placebo) whose disease progressed after sorafenib first line and produced signifi-
cant prolongation of median overall survival (10.6 versus 7.8  months; HR 0.63, 
95% CI 0·50–0·79; one-sided p < 0·0001) [134].

Bevacizumab several small phase II studies using bevacizumab in combination 
with erlotinib or with oxaliplatin or capecitabine in second line showed variable 
times to progression (1.8–7.2 months) or overall survival (4.3–13.7 months). These 
results were not judged adequate to launch a larger phase III study especially when 
the side effects and quality of life were factored into the decision [135].

Sunitinib: Another orally active TKI that targets a variety of angiogenic recep-
tors such as VEGFR, platelet-derived growth factor receptors (PDGFRs), KIT, RET, 
and FLT3. In a large head to head comparison between sunitinib (n  =  530) and 
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sorafenib (n = 544) in first line treatment of HCC patients, sunitinib was not supe-
rior or equivalent but was significantly inferior to sorafenib [136].

Ramucirumab: in a large phase III trial, ramucirumab was compared to placebo 
in patients with HCC. Overall survival benefit was seen in patients with a Child- 
Pugh score of 5 (HR 0.80; 95% CI, 0.63–1.02; P = .06) and patients with baseline 
αFP levels of 400 ng/mL or more. Patients with Child-Pugh scores of 6 or 7 and 8 
seem to derive no benefit from this treatment [137].

Brivanib inhibits VEGFR and FGFR [138]. A group of 395 patients with 
advanced HCC who received sorafenib in first line were randomly assigned (2:1) to 
receive brivanib or placebo plus BSC. Brivanib did not significantly improve OS.

5.3.3  Future Directions

The molecular basis of HCC remains only poorly understood. This will likely need 
better mechanistic classification in the future to subdivide the disease to its major 
subtypes—for example, the pathogenesis of cancers emerging due to Hepatitis B 
will differ from those arising after other viruses, or other carcinogens. In a recent 
sequencing effort of 81 Hepatitis B virus (HBV) positive cases, the most frequently 
noted oncogene was beta-catenin (~16%) followed by the Janus kinase 1 (JAK1), in 
~9% of cases [139]. It follows then, that for the vast majority of cases, even within 
Hepatitis B positive cases remain to be determined or could vary substantially with-
out a unifying disease mechanism. A more recent and more comprehensive study of 
HCC including Hep B and Hep C associated cases again revealed no dominant 
driver oncogene [140].

5.4  Lung Cancer

Angiogenesis plays a role in the tumor progression in general [141] and lung cancer 
in particular has been identified as a tumor type where angiogenesis (with VEGF 
pathway being the most important) is critical in tumor growth and metastasis [142]. 
Several clinical studies in patients with lung cancer have shown that the VEGF 
expression in tumor specimens is related to increased blood vessel formation, poor 
prognosis and decreased overall survival [143]. It is possible that certain VEGF 
isoforms that result from alternative splicing of the mRNA may contribute more to 
tumor development [144]. Different types of VEGF receptors also contribute differ-
ently to the neoplastic angiogenesis. VEGF receptor 2 appears to be more critical.

Two chemotherapy drugs that inhibit angiogenesis pathways are currently 
approved in the treatment of lung cancer: bevacizumab and ramucirumab. Both 
block the VEGF pathway in a different way and have been approved in combination 
to chemotherapy. Several others have shown promise and are currently being evalu-
ated in clinical trials. The prototypic drug, which was approved in 2006 for the 
treatment of lung cancer, is bevacizumab.
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5.4.1  Drugs Targeting Angiogenesis in Lung Cancer  
and Results of Clinical Trials

In a randomized phase III trial conducted by the Eastern Cooperative Oncology 
Group (ECOG), patients with advanced disease were randomized to bevacizumab 
with carboplatin and paclitaxel or carboplatin and paclitaxel alone [145]. Patients 
with squamous histology, hemoptysis and brain metastases were excluded. The pri-
mary end point was overall survival. Median overall survival was 12.3 months for 
the bevacizumab/chemotherapy arm and 10.3  months for chemotherapy alone 
(Hazard Ratio 0.79; p  =  0.003). Median progression-free survival was 6.2 and 
4.5 months (hazard ratio for disease progression, 0.66; P < 0.001) and response rates 
was 35% and 15% (P < 0.001), respectively. Rates of clinically significant bleeding 
were 4.4 and 0.7% (P < 0.001). There were 15 treatment-related deaths in the beva-
cizumab group, including 5 from pulmonary hemorrhage. VEGF levels before treat-
ment did not correlate with overall survival.

In another randomized phase III trial the Avastin in Lung (AVAil), bevacizumab 
was tested in combination with another chemotherapy regimen (cisplatin and gem-
citabine). In this trial there were 3 arms: bevacizumab at 15 mg/kg, bevacizumab at 
7.5  mg/kg and placebo all in combination with chemotherapy in patients with 
advanced lung cancer [146]. Similarly to the ECOG study patients with squamous 
lung cancer, hemoptysis and brain metastases were excluded. Progression free sur-
vival was significantly improved in the bevacizumab arm compared to placebo (haz-
ard ratio 0.75, P = 0.0003 and 0.85, P = 0.0456) both for the 7.5 and the 15 mg/kg 
group, respectively. Overall survival (OS) was not significantly increased with beva-
cizumab compared to placebo. It was thought that better or more effective second 
line therapies might have accounted for the lack of overall survival. A systematic 
review and meta-analysis [147] with data from 2194 patients from four phase II and 
III trials showed that bevacizumab significantly prolonged OS and PFS when added 
to first line platinum based chemotherapy in patients with advanced lung cancer. 
Bevacizumab significantly increased the risk of proteinuria, hypertension, hemor-
rhagic events, neutropenia, and febrile neutropenia.

Although, bevacizumab has shown efficacy in the first line setting in combina-
tion with platinum-based chemotherapy, the results of bevacizumab in combination 
with EGFR inhibitors have been disappointing [148]. Similarly, the recent results 
from a large randomized trial in the adjuvant setting where the addition of bevaci-
zumab for up to 1 year to four cycles of standard chemotherapy did not lead to 
overall survival benefit [149].

In 2014, the Food and Drug Administration (FDA) approved ramucirumab for 
use in combination with docetaxel as a second line therapy after treatment with 
platinum-based chemotherapy. Ramucirumab is a fully humanized monoclonal 
antibody (IgG1) that binds to the extracellular domain of the VEGFR2. In a multi-
center, double blind, randomized phase III trial (REVEL), patients with squamous 
or non-squamous NSCLC who had progressed after a first-line platinum-based che-
motherapy regimen were randomized to receive docetaxel and either ramucirumab 
or placebo until disease progression, unacceptable toxicity, withdrawal, or death. 
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The primary endpoint was overall survival [150]. Median overall survival was 
10·5 months for the ramucirumab arm and 9·1 months the placebo arm (hazard ratio 
0·86; p = 0·023). Median progression-free survival was 4·5 months for the ramuci-
rumab group compared with 3·0 months for the placebo group (hazard ratio 0·76; 
p < 0·0001). The most common grade 3 or worse adverse events in the ramucirumab 
were neutropenia, febrile neutropenia, fatigue and hypertension.

Given the success of monoclonal antibodies targeting angiogenesis in the treat-
ment of lung cancer patients in the first and second line setting, a number of small 
molecule kinase inhibitors targeting the intracellular domain of the VEGFR 
(sorafenib, pazopanib, vandetanib, sunitinib, axitinib) have been studied. Results 
have been disappointing despite the fact that several of these agents have shown 
success in other tumor types.

5.4.2  Future Directions

The success of immunotherapy agents such as the PD-1, PD-L1 inhibitors and 
CTLA-4 inhibitors in lung cancer and other tumor types has created a lot of enthu-
siasm in regards to combination treatments. It appears that immunosuppression is 
possibly mediated by the VEEGF/VEGFR2 axis [151] and therefore the combina-
tion of one of these agents with existing or new anti-angiogenesis inhibitors should 
be explored. A phase I trial with ipilimumab and bevacizumab in melanoma patients 
showed a safe profile. Other trials with pembrolizumab and nivolumab with bevaci-
zumab in variety of tumor types are currently ongoing.

Questions in regards to optimal drug scheduling/sequencing and potential bio-
markers are currently being explored. In a study where positron emission tomogra-
phy and radiolabeled docetaxel were used, bevacizumab resulted in significant 
reduction in the delivery of chemotherapy within 5 h and up to 4 days after the beva-
cizumab infusion [152]. These results are intriguing and raise the question for dif-
ferent drug sequencing. Similarly, there is no biomarker to improve the selection of 
patients who could benefit from this treatment. Ongoing efforts in other tumor types 
have also resulted in disappointing results [153].

A series of novel antiangiogenic agents have also emerged. These include vascu-
lar disruptive agents such as bavituximab, a monoclonal antibody against phospha-
tidylserine, a membrane phospholipid that is abundant in ECs. Recently, a phase III 
study (SUNRISE) was discontinued since the interim analysis demonstrated that the 
bavituximab plus docetaxel group did not show a sufficient improvement in overall 
survival as compared to the docetaxel group.

NGR-hTNF another vascular disruptive agent, which originates from the fusion 
of human tumor necrosis factor (hTNF) to the CNGRC peptide, is currently being 
explored. The CNGRCG peptide selectively targets tumor blood vessels by binding 
to an isoform of the CD13 receptor, which is present on endothelial cells of the 
tumor vasculature, while sparing the CD13-expressing molecules of normal tissues. 
An ongoing randomized phase II trial explores its role in the second line setting 
(NCT00994097).
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In summary anti-angiogenesis in patients with lung cancer has shown a modest 
but true clinical benefit in a group of patients with advanced lung cancer. Most clini-
cal questions at this point are focusing on selecting patients using a biomarker, 
identifying new agents and combining currently existing treatments with 
immunotherapy.

5.5  Breast Cancer

VEGF is the most important proangiogenic factor in breast cancer [154–156]. As 
breast cancer progresses, other proangiogenic factors get activated [157–159].

Animal studies using bevacizumab in xenograft models showed that tumors 
regress when the VEGF pathway is targeted [160]. However, results in humans have 
been disappointing. E2100 Intergroup phase III trial compared the combination of 
bevacizumab and paclitaxel with paclitaxel alone in first line metastatic breast can-
cer. The addition of bevacizumab led to a doubling of the response rate (18% vs. 
36%) and progression free survival (PFS) (5.8 vs. 11.6 mo) [161]. Based on these 
results bevacizumab was first approved for breast cancer in first line metastatic 
breast cancer. The approval was contingent on the results of further studies, which 
ultimately did not demonstrate significant improvements in overall survival. Thus, 
FDA approval of bevacizumab for breast cancer was officially withdrawn in 2010. 
Studies of bevacizumab in the adjuvant setting were disappointing [162].

In the neoadjuvant setting, the addition of bevacizumab to chemotherapy results 
in increased pathologic complete response (pCR) [163]. The significance of achiev-
ing pCR with bevacizumab is not clear. While the results of neoadjuvant studies are 
promising, it is apparent that clinical response to bevacizumab is highly variable. 
For this reason, biomarkers are urgently needed to identify patients most likely to 
benefit.

5.6  Kidney Cancer

5.6.1  Major Angiogenic Pathways

Renal cell carcinoma (RCC) is well known to be a hypervascular tumor. Clear cell 
carcinoma is by the far the most common type of RCC. It appears that Hypoxia- 
Inducible- Factor-1 (HIF-1) activation plays a significant role in clear cell renal car-
cinoma progression. This activation could result from two major pathways: decrease 
in VHL which marks HIF-1 for degradation and, to a lesser degree, mTOR depen-
dent pathway which is downstream from phosphatidylinositol 3-kinase (PI3K) 
pathway [164].

As a consequence of HIF-1 stabilization and activation, there is an increase in the 
expression of multiple genes contributing to the angiogenic process. HIF-1 induced 
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proteins to include VEGF and bFGF, which promote vascular permeability [165] 
and EC growth [166], respectively.

As the renal cell carcinoma grow, the immaturity of the newly formed vessels 
increases [167].

Drugs targeting RCC depends on the inhibition of VEGF or mTOR pathways. 
Two classes of medications can inhibit VEGF, tyrosine kinase inhibitors (TKI) or 
monoclonal antibodies.

5.6.2  Approved Drugs from Clinical Trials

The first class of drugs is TKI’s targeting VEGF pathway:
Sunitinib is a TKI targeting VEGF as well as PDGF receptor. Active angiogen-

esis as measured by the presence of phosphorylated VEGF-receptor 2 can predict 
the response of RCC to sunitinib [168]. Motzer et al. compared the activity of suni-
tinib to interferon in a randomized clinical trial and resulted in statistically signifi-
cant 5 month improvement in median overall survival in the first-line setting for 
metastatic good or intermediate risk RCC, despite about 7% crossover [169]. This 
improvement in survival established sunitinib as a standard control arm for future 
clinical trials. Side effects were notable for hypoglycemia and adrenal toxicity.

Pazopanib is another oral TKI. It has additional properties that include inhibi-
tion of FGFR 1& 3. This drug was compared to sunitinib in a RCT.  Pazopanib 
showed PFS around 8.4 months with a similar overall survival benefit compared to 
sunitinib with probably less adverse side effects [170, 171].

The CABOSUN trial compared cabozantinib to sunitinib for intermediate or 
high-risk metastatic RCC. Cabozantinib is unique by its ability to inhibit additional 
target genes including MET and AXL genes; this inhibition might have contributed 
to its efficacy. The progression-free survival was better in the cabozantinib arm by 
about 3 months [172].

Axitinib is another oral TKI targeting VEGF receptors 1,2 and 3. There are no 
clinical trials to compare axitinib with sunitinib or pazopanib in the first line setting. 
The approval for this medication came from the fact that axitinib has higher efficacy 
with higher adverse events compared to sorafenib. However, this agent has a great 
clinical advantage as it allows for dose titration to increase tumor response depend-
ing on clinical tolerability. Median PFS was around 14.5 months with dose escala-
tion [173]. Patients with severe uncontrolled hypertension should avoid axitinib.

Sorafenib is a potent small-molecule inhibitor of multiple TKIs, including VEGF 
receptor 2, PDGF receptor, and FGF receptor-1. Sorafenib did not show any 
improvement in PFS as compared to interferon. Therefore it has a limited role in the 
treatment of RCC.

TKI’s, in general, are notable for causing hypertension and QTc prolongation. 
Therefore frequent EKGs are recommended (Tables 9.6 and 9.7).

The second class of drugs is monoclonal antibodies:
Bevacizumab is a monoclonal antibody to VEGF and prevents VEGF from 

binding and interacting with its receptor. AVOREN and CALGB 90206 trials tested 
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the activity of bevacizumab when added to interferon in a randomized fashion [174, 
176]. IFNa plus bevacizumab significantly increased progression-free survival in 
both trials.

Sequential inhibition of the VEGF pathway has been shown to be beneficial. 
Therefore, if a patient is suffering from tumor progression after a TKI or bevacizumab 
a trial of another TKI might be helpful. Examples are the use of axitinib after progres-
sion on sorafenib [177] or the use of sorafenib after procession on sunitinib [178].

The third class is mTOR inhibitors:
Previous clinical trials had shown temsirolimus to be more active than interferon 

as the first line for metastatic RCC [179]. Based on the results of this trial, temsiro-
limus was recommended for a patient with a high-risk disease. However when tem-
sirolimus was compared with sorafenib in second line after progression on sunitinib, 
sorafenib was more effective [180].

mTOR inhibitors are associated with multiple side effects including hypersensi-
tivity and pneumonitis.

Finally, lenvatinib, everolimus or the combination of lenvatinib and everolimus 
were compared in a 3-arm phase II study after progression on VEGF-targeted ther-
apy [181]. The arms containing the antiangiogenic Lenvatinib results in significant 
PFS benefit.

5.6.3  Future Clinical Trials

Multiple new randomized trials are aiming at comparing the combination of antian-
giogenic drugs with immune check point inhibitors. Below is a list of open trials:

A Phase III, Open-Label, Randomized Study Of Atezolizumab (Anti-PD-L1 
Antibody) in Combination With Bevacizumab Versus Sunitinib in Patients With 
Untreated Advanced Renal Cell Carcinoma. NCT02420821.

A Multicenter, Open-label, Randomized, Phase 3 Trial to Compare the Efficacy 
and Safety of Lenvatinib in Combination With Everolimus or Pembrolizumab 

Table 9.6 clinical trials results for anti-angiogenic drugs used in RCC compared to interferon 
alpha

Drug
Hazard ratio (HR) for PFS with 95% confidence 
interval (CI)

Sunitinib [169] HR 0.53, 95% CI, 0.45–0.64
Bevacizumab plus interferon [174] HR 0.63, 95% CI 0.45–0.72

Table 9.7 clinical trials results for anti-angiogenic drugs used in RCC compared to sunitinib

Drug Hazard ratio (HR) for PFS with 95% confidence interval (CI)

Pazopanib [170, 171] HR: 1.05; 95% CI, 0.90–1.22
Cabozantinib [172] HR: 0.65; 95% CI, 0.48–0.99
Sorafenib [175] HR: 1.49; 95% CI, 0.92–2.38
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Versus Sunitinib Alone in First-Line Treatment of Subjects With Advanced Renal 
Cell Carcinoma. NCT02811861.

A Phase III Randomized, Open-label Study to Evaluate Efficacy and Safety of 
Pembrolizumab (MK-3475) in Combination With Axitinib Versus Sunitinib 
Monotherapy as the First-line Treatment for Locally Advanced or Metastatic Renal 
Cell Carcinoma (mRCC) (KEYNOTE-426) NCT02853331.

A Phase 3, Multinational, Randomized, Open-label, Parallel-arm Study Of 
Avelumab (msb0010718c) In Combination With Axitinib (Inlyta(Registered)) 
Versus Sunitinib (Sutent(Registered)) Monotherapy In The First-line Treatment Of 
Patients With Advanced Renal Cell Carcinoma. NCT02684006.

5.7  Ovarian Cancer

Angiogenesis promotes tumor growth, ascites formation, and metastasis of epithe-
lial ovarian cancer (EOC). Multiple clinicopathologic studies suggest that higher 
microvessel counts are associated with poorer outcome in both early and advanced 
stage EOC [182]. VEGF expression is higher in ovarian carcinoma compared to 
nonmalignant ovarian tumors and is associated with ascites, advanced disease, and 
poorer prognosis [183]. Furthermore, upregulation of VEGF and VEGF receptors in 
EOC has been associated with activation of signal transducers and activators of 
transcription suggesting that VEGF autocrine loops may stimulate growth and pro-
gression [184]. Multiple studies also suggest a role for PDGF and FGF in ovarian 
carcinogenesis. PDGF, FGF, and their receptors are expressed in EOC [185–190]. 
PDGF and receptor expression is associated with higher tumor grade and shorter 
survival, and receptor activation may stimulate angiogenesis through increased 
VEGF secretion in EOC [191, 192].

Bevacizumab is the most studied anti-angiogenesis agent in EOC in both the 
upfront and recurrent setting. The Gynecologic Oncology Group (GOG) protocol 
218 was a 3-arm double-blind, placebo-controlled, randomized phase III trial that 
investigated the integration of bevacizumab in front line therapy for advanced 
EOC. Eligible patients included optimally and suboptimally cytoreduced stage III 
and any stage IV epithelial ovarian, fallopian tube, and primary peritoneal carci-
noma. All arms included carboplatin and paclitaxel chemotherapy. The control arm 
received placebo with chemotherapy and placebo maintenance, the bevacizumab- 
initiation arm received bevacizumab with chemotherapy and placebo maintenance, 
and the bevacizumab-throughout arm received bevacizumab plus chemotherapy fol-
lowed by bevacizumab maintenance. The bevacizumab-throughout arm had a lon-
ger progression free survival (PFS) compared to chemotherapy alone (median PFS 
14.1 vs 10.3 months; HR 0.717; 95% CI 0.625–0.824; P < 0.001). There was no 
difference in PFS between the chemotherapy alone and the bevacizumab-initiation 
arms, nor was there a difference in overall survival (OS) between the three treatment 
arms [193]. The International Cooperative Group for Ovarian Neoplasia (ICON) 7 
study was a 2 armed randomized trail comparing carboplatin and paclitaxel for 
5–6  cycles to the same regimen plus bevacizumab starting cycle 2 followed by 
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maintenance bevacizumab. This trial included high-risk early stage (stage I or IIA 
with clear cell or grade 3 histology) and advanced stage (stage IIB-IV) EOC patients 
following primary surgery. Similar to GOG 218, ICON 7 showed that the addition 
of bevacizumab to standard adjuvant platinum-based chemotherapy followed by 
maintenance bevacizumab improved PFS compared to chemotherapy alone (median 
PFS 19 vs. 17.3 months; HR 0.81; 95% CI 0.7–0.94; P = 0.004), but did not provide 
a benefit in OS [194, 195].

The role of bevacizumab in the treatment of recurrent EOC has been investigated 
in both the platinum-sensitive and platinum-resistant setting. OCEANS, an industry 
sponsored trial, was a double-blind, placebo-controlled, randomized phase III trial 
that studied carboplatin and gemcitabine with or without bevacizumab in platinum- 
sensitive recurrent EOC patients. Bevacizumab or placebo were continued as mainte-
nance following chemotherapy until disease progression or unacceptable toxicity 
occurred. The addition of bevacizumab improved PFS (median PFS 12.4 vs 8.4 months; 
HR 0.484; 95% CI 0.388–0.605, P < 0.001), but no significant difference in OS was 
detected [196, 197]. The AURELIA trial investigated single-agent chemotherapy 
(paclitaxel, topotecan, or liposomal doxorubicin) with or without bevacizumab in 
platinum-resistant EOC patients. Compared to single agent chemotherapy, the addi-
tion of bevacizumab improved PFS (6.7 vs 3.4 months; P < 0.001), but did not pro-
duce an overall survival benefit. The use of bevacizumab in the treatment of EOC is 
debated within the gynecologic oncology community due to the lack of proven benefit 
in overall survival [198]. Currently, bevacizumab is the only anti-angiogenesis therapy 
approved by the U.S. Food and Drug Administration for the treatment of EOC.

Recently other anti-angiogenic agents have been investigated in EOC including 
pazopanib and cediranib. Pazopanib maintenance following primary chemotherapy 
in advanced EOC patients provided improved PFS without survival benefit in a 
randomized phase III trial [199]. Cediranib has shown activity in recurrent EOC as 
a single agent and in combination with olaparib, a PARP inhibitor in phase II studies 
[200, 201]. Cediranib in combination with chemotherapy followed by maintenance 
therapy improved PFS in a platinum-sensitive recurrent EOC population [202]. The 
combination of anti-angiogenesis agents with other biologic agents represents a 
new treatment opportunity in EOC given its genomic complexity. There is currently 
an ongoing phase III trial comparing standard platinum-based chemotherapy to 
olaparib alone and olaparib plus cediranib in patients with platinum-sensitive recur-
rent ovarian cancer (NCT02446600).

5.8  Brain Tumors

5.8.1  Major Angiogenic Pathways and Related Chemotherapy/
Radiotherapy Resistance

Angiogenesis plays a significant role in the development of highly aggressive glio-
blastoma multiforme (GBM). As a tumor grows rapidly, neo-angiogenesis is needed 
to supply tissues with oxygen and nutrients. Despite continuous activation of 
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 angiogenic process, the inefficient immature neo-vasculature production results in a 
shortage of supply and causes necrotic tissues to form. In fact, the presence of tissue 
necrosis is considered one of the hallmarks of GBM’s pathology. Moreover, the 
angiogenesis process involves increased production of hypoxia-related peptides, 
which seem to be related to tumor resistance to chemotherapy [203] and radiation 
[204]. Therefore, neo-angiogenesis is considered as a marker for worse outcomes.

Von Hippel–Lindau (VHL) is not commonly mutated in GBM. However, over-
expression of hypoxia-induced factor 1 (HIF-1), typically degraded through VHL- 
mediated ubiquitination, might contribute to increased angiogenesis activity and 
chemoresistance in GBM [205]. Most aggressive GBM will have increased expres-
sion of both HIF-1 and vascular endothelial growth factor (VEGF) [206].

The other activated angiogenesis pathway is downstream from EGFR with the 
loss of PTEN, which opposes EGFR through AKT pathway. The loss of PTEN 
results in stem cell resistance to radiotherapy [207].

The concept of chemotherapy and radiotherapy resistance through those angio-
genesis pathways is of particular importance in aggressive brain tumors because of 
those are extremely hypervascular tumors heavily dependent on angiogenesis.

5.8.2  Pseudoprogression and Angiogenesis:

De Wit et al. [208] (REF6) in 2004 described new tumor bed enhancement for GBM 
tumors treated with radiation therapy with or without carmustine. Recently this phe-
nomenon was described in association with other therapies like temozolomide and 
radiation. Pseudoprogression happens as a result of increased tumor vessels perme-
ability due to rapid and inefficient angiogenesis. The presence of this enhancement 
highlights the importance of angiogenesis and the inefficient neovascular formation 
in brain tumors pathology [209].

5.8.3  Approved Drugs Targeting Angiogenesis

Glioblastoma multiforme is one of the most highly vascularized of human tumors, 
which makes antiangiogenic therapy an attractive option for treatment.

Bevacizumab showed promising results in phase II GBM trials [210–212]. 
However, 2 phase III clinical trials did not translate those benefits into an overall 
survival benefit in the first-line setting:

AVAglio study randomized newly diagnosed GBM to radiotherapy plus temo-
zolomide with or without bevacizumab followed by maintenance bevacizumab 
[213]. After completion of radiation, patients were treated with six cycles of monthly 
temozolomide plus bevacizumab or placebo every 2 weeks; this was followed by 
maintenance bevacizumab or placebo every 3 weeks until progression. Unfortunately, 
this trial did not show any overall survival benefit.

RTOG 0825 study had a similar design [214]. Patients were assigned to bevaci-
zumab vs. placebo starting at week four of standard chemoradiation with temozolo-
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mide, followed by 6–12 cycles of maintenance temozolomide plus bevacizumab or 
placebo. Overall survival did not improve with the use of bevacizumab in first-line 
therapy for patients with newly diagnosed glioblastoma.

5.8.4  Future Directions

Multiple new agents targeting HIF-1 are in the making.
Several drugs are being tested. These drugs may interrupt HIF-1 production like 

103D5R [215] (REF13), or prevent binding to DNA like AP endonuclease 1/REF-1 
E3330 [216], or inhibit HIF-1 binding to HRE like Echinomycin (NSC 13502) 
[217] or blocks HIF-1 mediated VEGF transcription like Geldanamycin [18].

Below is a list of clinical trials enrolling for an anti-angiogenesis approach in 
brain tumors:

 1. A Phase II/III Study of High-dose, Intermittent Sunitinib in Patients With 
Recurrent Glioblastoma Multiforme: the STELLAR Study. NCT03025893.

 2. A Phase 3, Randomized, Controlled, Double-Arm, Open-Label, Multi-center 
Study of VB-111 Combined With Bevacizumab vs. Bevacizumab Monotherapy 
in Patients With Recurrent Glioblastoma. NCT02511405.

 3. A Phase 3, Randomized, Controlled, Double-Arm, Open-Label, Multi-center 
Study of VB-111 Combined With Bevacizumab vs. Bevacizumab Monotherapy 
in Patients With Recurrent Glioblastoma. NCT02511405.

 4. A Phase III Study of Conventional Radiation Therapy Plus Thalidomide 
(NSC#66847) Versus Conventional Radiation Therapy for Multiple Brain 
Metastases. NCT00033254.

6  Conclusion

Targeting cancer angiogenesis is one of the most important achievements of cancer 
research in the twenty-first century culminating by the approval of bevacizumab in 
2004. Since then, the FDA approved multiple drugs for patients with metastatic 
cancers. The first lesson is that angiogenesis, like all robust natural phenomena, is a 
complex process characterized by redundancy and plasticity.

However, cancer does not need angiogenesis until it starts growing beyond a 
certain volume. This is perhaps the reason why antiangiogenic therapy does not 
work in the adjuvant setting where the major targets of the treatment are dissemi-
nated tumor cells that usually enter a dormancy phase during which they do not 
need angiogenesis to survive. It is only when DTCs enter an active phase of prolif-
eration that angiogenesis becomes important for them to grow and spawn metastasis 
again. Antiangiogenic agents add a small benefit to traditional therapies in many 
solid tumors and may have more substantial benefit in the most vascular ones 
amongst them such as liver and kidney cancer.
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The most important challenge facing the field is the identification of biomarkers 
that would predict response of a specific tumor to a specific therapy. Until then, 
these expensive treatments will continue being used indiscriminately in all patients 
adding modest gains in survival to huge financial and morbidity burden. The only 
rational action will consist of conducting the appropriate prospective randomized 
controlled clinical trials to validate predictive biomarkers.
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NSCLC behavior and, therefore, clinical response to therapeutic targets, such as 
epidermal growth factor (EGF) and its receptor (EGFR) and vascular endothelial 
growth factor (VEGF) and its receptor (VEGFR). Angiogenesis-related genetic 
polymorphisms are of primary interest in NSCLC research. Angiogenesis genetic 
polymorphisms, such as VEGF − 2578 C/A and VEGF − 1154 G/A, were corre-
lated in previous studies with increased tumor VEGF expression, vascular density 
and poor survival. However, anti-angiogenic drugs did not show to be cost- 
effectiveness in NSCLC. This topic will address research involving angiogenesis 
genetic polymorphisms and NSCLC behavior.

Keywords Non-small-cell lung cancer • Vascular endothelial growth factor 
• Bevacizumab

Abbreviations

EGF Epidermal growth factor
EGFR EGF receptor
EGFR Epidermal growth factor receptor
GWAS Genome-wide associate study
HBO Hyperbaric oxygen
HIF Hypoxia inducible factor
KDR receptor Kinase insert domain receptor
mTOR Mammalian target of rapamycin
NSCLC Non-small cell lung cancer
OS Overall survival
PFS Progression free survival
PIK3 Phosphoinositide 3-kinase
PlGF Placental growth factor
SNP Single nucleotide polymorphism
SOS Guanine nucleotide exchange factor sos
TKI Tyrosine kinase inhibitor
VEGF Vascular endothelial growth factor
VEGFR VEGF receptor

1  Introduction

Lung cancer management has changed in the last decade [1–4]. Advances in molecu-
lar tools and targeted therapies have provided new insight for the field of oncology 
[5]. Targeted therapies play a major role in this field [3, 5]. Further options are also 
promising for lung cancer treatment, including stereotaxic radiotherapy and its use in 
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combination with induction chemoradiotherapy, as recently reported in a Japanese 
trial [6]. In light of the current knowledge, clinicians have begun selecting optimized 
populations that could receive improved benefits from these innovative therapeutic 
modalities [5, 7]. Tumor carcinogenesis pathways are now of primary interest in the 
field of oncology [2, 8–11]. First, angiogenesis pathways seem to be one of the key 
players in many cancers, including lung cancer [10]. Vascular endothelial growth 
factor (VEGF) and its receptor (VEGFR) are indeed important in the angiogenesis 
cascade [11]. Additionally, epidermal growth factor (EGF) and its receptor (EGFR) 
were demonstrated to be useful in the angiogenic mechanisms and clinical manage-
ment of non-small cell lung cancer (NSCLC) [12]. Figure 10.1 summarizes the most 
important VEGF pathways. Mutations in exon 19 and exon 21 of the EGFR gene are 
a predictive factor for a positive response to EGFR tyrosine kinase inhibitors (TKIs) 
[13, 14]. Recent trials showed favorable outcomes regarding overall survival (OS) 
and progression-free survival (PFS) in selected patients treated with gefitinib [15, 16] 
and erlotinib [17, 18], two EGFR TKIs [19, 20]. In this framework, it is important to 
focus on angiogenesis research. Until recently, the role of many angiogenesis genetic 
polymorphisms was under investigation in NSCLC patients [12, 21, 22]. A polymor-
phism is a variation in a gene that leads to two or more alleles existing at a frequency 
of at least 1% in the general population [23–25]. A variation at a single nucleotide is 
referred to as a single nucleotide polymorphism (SNP) [26]. The human genome 
contains more than 1,000,000 SNPs, and at least 60,000 of these are in exons [25, 
27]. A SNP has a functional consequence if it exists within a coding or regulatory 

Fig. 10.1 Summary of the main VEGF and EGF pathways. Abbreviations: EGF epidermal growth 
factor, EGFR EGF receptor, VEGF vascular endothelial growth factor, VGEFR VEGF receptor, 
KDR receptor Kinase insert domain receptor, PI3K Phosphoinositide 3-kinase, mTOR Mammalian 
target of rapamycin, Shc Src homologous and collagen protein, PCL-γ Phospholipase Cγ, PI3K 
Phosphatidylinositol 3-kinase, STATs Signal transducer and activator of transcription, PKC Protein 
kinase C, Grb2 Growth factor receptor bound protein 2, SOS Guanine nucleotide exchange factor 
sos, MAPK mitogen-activated protein kinase

10 Angiogenic genetic polymorphisms and NSCLC
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region of a gene [27]. Otherwise, a SNP may be silent if it resides in a non-coding 
region of the DNA or if it results in a synonymous amino acid substitution, except in 
rare situations [25]. Thus, this chapter will provide a discussion regarding the state of 
genetic polymorphisms related to angiogenesis and non-small cell lung cancer tumor 
behavior, with a particular focus on risk assessment and prognosis.

2  Effects of Tumor Hypoxia and Clinical Issues

Interesting insights into the complex relationship of tumors with hypoxia can be 
gained by addressing the role of hypoxia as a predictor of response to different treat-
ments. One field of active research focuses on the effect of oxygen on the response 
to radiotherapy (Fig. 10.2).

Tumor hypoxia influences the outcome of treatment not only in the setting of 
large tumors with extensive necrotic areas, but also in small tumors [26]. Hypoxia 
generally occurs as a result of insufficient vascularization, indicative of a long dis-
tance between the tumor cells and a functional blood vessel. Besides areas of chronic 
hypoxia, areas with intermittent hypoxia within tumors have also been described, 
thereby establishing persistent or transient resistance to radiotherapy [26, 28, 29].

Improving oxygenation 

Increasing radiosensitivity

Selective destruction of hypoxic cells

Transfusion 
Erythropoietin

Hyper- and 
normobaric oxygen

Carbogen

Nicotinamide

Nitroimidazoles

• Misonidazole

• Nimorazole

Hypoxic cytotoxins

• Mitomycin C

• Tirapazamine

• AQ4N

• PR-104

Hypoxic tumour cells

Fig. 10.2 Mechanisms of tumor hypoxia: different mechanisms which could led to influence the 
hypoxic tumor cells metabolism: increasing radiosensitivity, selective destruction of hypoxic cells 
or improving oxygenation

R.A. De Mello et al.
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The role of molecular oxygen (O2) as a critical determinant to the response of cells to 
radiation has been described as early as the beginning of the last century [30, 31]. The 
radio-sensitizing effect of O2 is explained by the chemical properties of the molecule, 
whose affinity for electrons predisposes it to participate in chemical reactions that lead 
to DNA damage if cells are exposed to ionizing radiation. Hypoxia reduces the radiosen-
sitivity of cells, which require approximately 3 times as much radiation to become sen-
sitized as cells with normal oxygen tension. In addition, hypoxia has been described as 
an important factor for tumor aggressiveness, a fact that should be taken into account 
when analyzing the poor response of hypoxic tumors to radiotherapy [26, 32, 33].

To circumvent the radioprotective approaches of hypoxia, 3 main approaches of 
hypoxic modification have been studied: improving tumor oxygenation, increasing 
the radiosensitivity of hypoxic cells and selectively killing hypoxic tumor cells.

Improvement of tumor oxygenation can be achieved by pursuing hematocrit val-
ues above a certain threshold in patients. The hematocrit is an important clinical mea-
sure, considering that 40–60% of cancer patients are anemic at the beginning of 
radiotherapy [34]. Clinical trials examining the effects of transfusions and erythropoi-
etin on the outcome of therapy have produced mixed results; nevertheless, hematocrit 
monitoring is a standard procedure in patients treated with radiotherapy [34, 35].

Hyperbaric oxygen (HBO) breathing yielded encouraging results beginning in 
the 1950s [36]. The physiological effects of HBO can be divided into short-term 
effects, such as enhanced oxygen delivery, phagocytosis activation and anti- 
inflammatory effects, and long-term effects, including neovascularization and stim-
ulation of collagen production by fibroblasts [37]. Issues have been raised concerning 
a possible enhancement of tumor growth or metastasis by HBO, but current evi-
dence precludes such an effect [38]. Procedural difficulties in delivering both HBO 
therapy and radiotherapy as well as a reduced number of patients limited the useful-
ness of data obtained in the first clinical trials. Meta-analyses of more recent trials 
showed evidence that HBO improves local tumor control and reduces patient mor-
tality for cancers of the head and neck, local tumor recurrence in cancers of the head 
and neck, and cervical cancer [39, 40]. Administration of normobaric oxygen and 
carbogen has also been studied, with results in animal models and clinical trials 
showing greater variability in outcome than with HBO [41]. Carbogen breathing is 
often combined with other modalities that might improve response, particularly 
nicotinamide (a vitamin B6 analog with vasoactive properties). The accelerated 
radiotherapy with carbogen and nicotinamide (ARCON) protocol consists of com-
bining accelerated therapy and nicotinamide. Phase I and II trials with this protocol 
reported promising results in head and neck and bladder cancer [42, 43].

Increasing the radiosensitivity of hypoxic cells has been pursued with oxygen- 
mimetic radiosensitizers, particularly 2-nitroimidazoles such as misonidazole and 
nimorazole, as shown in Fig. 10.2. Clinical trials note a possible role for these radio-
sensitizers as adjuncts to radiotherapy, with promising results in some tumors but 
little improvement in local tumor control and disease-free survival. Delayed periph-
eral neuropathy is an important concern with these agents, limiting their routine 
clinical use [41, 43].
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The third approach, selectively killing hypoxic cells, involves hypoxic cytotoxins, 
which could play an important role in combination with radiotherapy and conven-
tional cytotoxic chemotherapeutic agents, as these are generally more toxic to rap-
idly proliferating and well-perfused cells. Promising results have been reported with 
mitomycin C, a quinone that yielded positive results in local control and disease- 
free survival in head and neck and cervical carcinomas [44, 45]. Another agent, the 
benzotriazine tirapazamine, has a different mechanism of action on hypoxic cells 
from quinones and requires less pronounced hypoxia. Pre-clinical studies demon-
strated the efficacy of tirapazamine in combination with radiotherapy and chemo-
therapy; however, phase III trials revealed issues of toxicity, and conflicting results 
have been reported [46]. Other agents in this group, such as the alkylaminoanthra-
quinone N-oxide AQ4N and the 3,5-dinitrobenzamide-2-mustard PR-104 are being 
actively explored [47, 48].

In a systematic review, Overgaard [41] identified 10,108 patients in 86 random-
ized trials designed to modify tumor hypoxia in patients treated with curative 
attempted primary radiation therapy alone. Overall modification of tumor hypoxia 
significantly improved the effect of radiotherapy on the outcome of local regional 
control and was associated with a significant overall survival benefit. No significant 
influence was found on the incidence of distant metastases or on the risk of radiation- 
related complications.

Importantly, the implementation of these therapeutic modalities results in a bet-
ter understanding of the molecular processes involved in the relationship between 
hypoxia and tumor growth. An appropriate selection of patients is also important: 
various minimally invasive and non-invasive methods hold promise for monitoring 
tumor oxygen distribution before and after treatment begins, thereby allowing the 
clinician to tailor specific regimens for different patients [29, 43].

3  Genetic Polymorphisms Related to Angiogenesis Pathways

A brief consideration of angiogenesis in lung cancer
Angiogenesis is a crucial step for lung cancer progression [49–51]. The creation of 
new vessels from pre-existing vessels influences tumor growth, invasion and metas-
tasis [52]. Recently, many studies have shown that NSCLC patients presented with 
higher serum VEGF than healthy controls [21, 53, 54]. Additionally, microvessel 
density was demonstrated to be linked with tumor aggressiveness in some studies 
[55, 56]. In light of this knowledge, it was hypothesized that VEGF expression 
could have clinical implications in disease outcome [57]. In addition, the interaction 
between EGF and EGFR is associated with tumor angiogenesis, as shown in 
Fig. 10.2. The EGF/EGFR intracellular signaling stimulates gene transcription in 
the nucleus and is responsible for the creation of new vessels, cell migration and 
metastasis [58]. Tables 10.1 and 10.2 summarize the main genetic polymorphisms 
studied in the lung cancer field.

R.A. De Mello et al.
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VEGF and VEGFR genetic polymorphisms in cancer
The interaction between VEGF and VEGFR is one of the key regulators of 
angiogenesis [59–62]. Genetic variability of VEGF may play an important role in 
modifying cancer development and progression [57, 61, 63, 64]. The VEGF gene is 
located on chromosome 6p21.3 and contains 8 exons [65]. It is highly polymorphic, 
with more than 20 polymorphisms showing up in cancer risk studies. The polymor-
phisms located on regulatory regions, such as promoter regions or 5′ and 3′ untrans-
lated regions, are of primary interest in cancer susceptibility and outcome because 
they may modulate VEGF expression [65]. Tables 10.1 and 10.2 summarize the 
main VEGF polymorphisms and their influence on cancer.

Variants in VEGFR2 and micro vessel density in lung cancer
Recent studies assessed the role of VEGFR2 genetic variants and NSCLC [21, 56]. 
Microvessel density (MVD) is considered a good experimental tool for evaluation 
of angiogenesis in NSCLC tissue. An American study [56] had defined VEGFR2 
genetic variation in 3 populations (African American, Caucasian and Asian) and 
identified common variants that impact tumor VEGFR2 expression and vasculariza-
tion. VEGFR2 re-sequencing led to the discovery of 120 genetic variants, of which 
25 had not been previously reported. The Q472H point mutation increased VEGFR-2 
protein phosphorylation, and also was associated with increased MVD in NSCLC 
tumor samples. -2854C and -2455A increased luciferase expression and were asso-
ciated with higher KDR mRNA levels in NSCLC samples. -271A reduced lucifer-
ase expression and was associated with lower VEGFR-2 levels in NSCLC samples. 
-906C and 23408G were associated with higher KDR mRNA levels in NSCLC 
samples. These findings are important because they elucidate a genetic signature 
that may influence clinical phenotypes related to VEGFR2 function.

EGF+61 A/G genetic polymorphisms and cancer risk
The EGF gene is located on chromosome 4q25-q27 [66], and EGF polymor-
phisms are associated with cancer susceptibility [66–69]. In 2002, Shahbazi 
et  al. elucidated the role of the EGF+61 A/G polymorphism in melanoma 
patients [66]. They suggested that cells from individuals homozygous for the 
+61 A allele produce significantly less EGF than cells from homozygous +61 G 
(p = 0.0004) or heterozygous 61A/G  individuals (p = 0.001). Furthermore, 
Shahbazi’s study showed that elevated EGF production is important for mela-
noma development [66]. In 2004, Bhowmick et al. demonstrated that the EGF 
+61 A/G polymorphisms were associated with an increased frequency of glio-
blastomas [70]. In 2007, our group also described the role of the EGF +61A/G 
polymorphism in glioma susceptibility in a Portuguese population and showed 
that the +61G allele was associated with an elevated EGF expression level in 
vitro [69]. Other studies revealed that this genotype, along with the +61 G allele, 
is likely associated with a risk of pancreatic cancer development [71]. 
Furthermore, in 2009, Wu et al. also found a statistically significant association 
between both the EGF +61G/G genotype and the +61 G allele and the risk for 
colorectal cancer [71].
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Initial studies on the role of EGF +61A/G polymorphisms in lung cancer risk 
were controversial and restricted to Asian populations [72, 73]. In 2012, a Portuguese 
study first showed that the cumulative influence of EGF + 61 A/G polymorphisms 
in Caucasian NSCLC patients increased susceptibility [74]. This is in agreement 
with a South Korean study that found a similar result in a comparative study in a 
schizophrenic population and healthy controls [73].

EGFR and EGFR genetic polymorphisms
EGFR is a 170 kDa transmembrane glycoprotein with an intracellular tyrosine 
protein kinase domain that plays critical cellular signaling roles in diverse path-
ways [20]. EGFR activation leads to many biological processes, including cell 
cycle progression, cell invasion, metastasis, angiogenesis and cell differentia-
tion, all of which are closely related to tumor progression [5]. In transgenic mice, 
overexpression of EGFR initiates the formation of oligodendroglioma [75] and 
breast cancer [76]. In humans, EGFR is overexpressed in 50–81% of NSCLC, 
and its overexpression correlates with poor prognosis of NSCLC [14]. Currently, 
EGFR mutation is a noteworthy predictive biomarker in NSCLC management. In 
particular, in non-smoking women with adenocarcinoma histology, a mutation in 
exons 19 or 21 of the EGFR gene is predictive of an improved response to EGFR 
TKIs. A study conducted among 3 major hospitals of north Portugal retrospec-
tively assessed EGFR status in 621 NSCLC patients [77]. This study showed that 
EGFR was mutated in 14.3% of all NSCLC patients (17.5% adenocarcinoma and 
9.5% squamous cell carcinoma). Exon 19 was mutated in 43.8% of patients, and 
exons 20, 21, and 18 were mutated in 37.1%, 21.4%, and 6.7% of patients, 
respectively [77]. Given these results, EGFR genetic polymorphisms are also of 
key interest. In 2012, a Chinese study enrolled 568 NSCLC patients and exam-
ined 54 SNPs of the EGFR and VEGF genes [78]. The authors found that sub-
jects carrying EGFR rs3735061 A/A and rs6958497 A/G and G/G genotypes 
showed significantly shorter survival times [median survival time (MST): 22.2 
and 19.4  months, respectively] than those carrying rs3735061 A/G and G/G 
(MST: 25.1 months) and rs6958497 A/A (MST: 25.9 months) genotypes (log-
rank p = 0.015 for rs3735061 and log-rank p = 0.028 for rs6958497). Nevertheless, 
subjects carrying EGFR rs759165 A/G and A/A genotypes survived significantly 
longer (MST: 38.7  months) than those carrying the rs759165 G/G genotype 
(MST: 24.7 months, log-rank p = 0.024). Multivariate Cox regression analyses 
showed that the genotypes of rs3735061 A/A and rs6958497 A/G and G/G were 
associated with a significantly increased risk of death from NSCLC [hazard ratio 
(HR) = 2.82, 95% confidence interval (CI) = 1.66–4.78 for rs3735061 A/A and 
HR = 1.69, 95% CI 5 1.26–2.28 for rs6958497 A/G and G/G], whereas the 
rs759165 A/G and A/A genotypes were associated with a significant 44% 
decreased risk of death from NSCLC (HR = 0.56, 95% CI 5 0.39–0.83). 
Furthermore, a stepwise Cox regression analysis suggested that EGFR rs373506, 
rs759165 and rs6958497 may be independent candidate biomarkers to predict 
NSCLC survival in this population [78].
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4  Genetic Polymorphisms and Risk of Lung Cancer

GWAS variants and risk of lung cancer
Since 2009, the genome-wide association study (GWAS) group has found significant 
associations in chromosomes 5p15.33, 15q25, and 6p21 variants and lung cancer risk 
[79–82]. In the 5p15.33 locus, the most prominent were rs4635969 (OR 0.87, 95% 
confidence interval [CI], 0.82–0.93, p = 9.80 × 10−5), followed by rs31489  in 
CLPTM1L (also named CCR9 [MIM 612585], OR 0.90, 95% CI 0.86–0.95, p = 2.80 
× 10−4) and rs2736100 in TERT (MIM 187270, OR 1.09, 95% CI, 1.03–1.15, p = 
0.001) [79]. Additionally, the rs2736100 SNP was associated only with adenocarci-
noma histology (OR 1.23, 95% CI, 1.13–1.33, p = 3.02 × 10−7) but not to other his-
tologic types (OR 1.01, p = 0.84 and OR = 1.00, p = 0.93, for squamous cell carcinoma 
and small cell carcinoma, respectively; p = 0.001. The test for heterogeneity across 
histology was corrected for multiple comparisons.), as shown in Table  10.1 [79]. 
Thus, this study associated the rs2736100 variant in chromosome 5p15.33 with lung 
adenocarcinoma risk. The rs2736100 variant is located in intron 2 of the TERT gene 
[83]. TERT is a ribonucleoprotein that extends TTAGGG nucleotide repeats at telo-
meres, which progressively shorten with each cell division. Telomere shortening is 
associated with increased genomic instability and therefore increased risk of overall 
cancer development [84]. In cancer cells, reactivated TERT is linked to cellular pro-
liferation and abnormal telomere maintenance [85]. Interestingly, TERT expression 
is lower in adenocarcinoma than in other histological subtypes [86]. Its re-expression 
may be related to the progression from bronchiolo- alveolar carcinoma to adenocarci-
noma [87]. Moreover, Landi et  al. also reported that other nicotinic acetylcholine 
receptor gene variants in chromosome 15q25 (rs4635969, CLPTM1L gene; 
rs12914385, CGRNA3 gene; rs1051730, CHRNA5 gene; and rs8034191, LOC 
123688) were associated with an elevated overall risk of lung cancer [79]. These 
SNPs were also strongly associated with all major histology groups of patients who 
were current and former smokers [79]. In rs4324798 on chromosome 6p21.33, the 
association with lung cancer was weak and inconsistent throughout the studies [79, 
88]. In 2012, Ito et al. reported a study in Japan with 716 lung cancer patients and 716 
controls [80]. It was found that the variants of rs12914385 and rs931794 on 15q25 
modified the effect of cumulative tobacco smoking on lung cancer risk, but that these 
two loci showed no statistically significant effects on lung cancer risk. Furthermore, 
association of the TERT- CLPM1L locus on 5p15 with lung cancer risk in Japanese 
patients was of a similar magnitude to that in Caucasians. Therefore, Ito’s study con-
firmed the contribution of 15q25 and 5p15 to lung cancer susceptibility [82].

VEGF polymorphisms and controversies in assessing the risk of lung cancer
The VEGF gene is located on chromosome 6p21.3 and consists of 8 exons that 
undergo alternate splicing to form a family of proteins [89]. Several genetic poly-
morphisms have been described, and they are associated with variation of VEGF 
production and expression [8, 10, 11, 21, 65, 78, 90–93] (Tables 10.1 and 10.2). 
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Regarding the VEGF −1154 G/A polymorphism, the data are inconclusive and a 
recent meta-analysis conducted by Hong et al. [65] suggested that although VEGF 
-1154G/A may not be associated with cancer risk in the general population, the 
−1154 GG homozygote allele may confer an elevated risk of cancer in non- 
Caucasians compared to −1154 A carriers.

EGF+61 genetic polymorphisms and their role in lung cancer susceptibility
In 2002, EGF+61 A/G polymorphisms were first associated with cancer susceptibil-
ity in a melanoma model [66]. One decade later, only two Asian studies have 
addressed their role in lung cancer risk [72, 73]. However, in 2012, a Portuguese 
group showed that EGF+61 A/G polymorphisms are also associated with the risk of 
NSCLC in a population from North Portugal [74]. It was the first study in a 
Caucasian population and confirmed the results reported by Lim and colleagues 
[73] in a Korean population. Only a small number of studies addressed the role of 
EGF+61 A/G polymorphisms and lung cancer risk because EGF+61 A/G and 
EGF+61 G/G genotypes influence high EGF serum levels [66] and thus favor carci-
nogenesis in the lung [68, 94, 95]. Despite this data looks interesting, the clinical 
applicability is still limited and needs further larger studies for validation.

5  Genetic Polymorphisms and Non-small-cell  
Lung Cancer Prognosis

Current lung cancer prognostic factors
Many factors influence lung cancer prognosis [2, 4, 14, 58, 94, 96–105]. The tumor 
node metastasis (TNM) classification system [97], smoking status [106] and perfor-
mance status [105] give physicians important clues to improve the clinical approach [4]. 
Currently, many platinum-based chemotherapy protocols with or without bevacizumab, 
EGFR TKIs, crizotinib and most recently the immune-checkpoints inhibitors (nivolumab 
and pembrolizumab) are interesting weapons against disease aggressiveness [5, 21]. 
Moreover, many efforts have been undertaken toward the genomic and molecular 
research to find prognostics and predictive biomarkers for lung cancer management [15, 
103, 104, 106–110]. As they play a main role in angiogenesis and the overall biology of 
NSCLC, genetic polymorphisms in the VEGF [21, 90, 93, 111–113], VEGFR [92, 114], 
EGF [12, 72–74] and EGFR genes [78] will be discussed in the following paragraphs.

VEGF −2578 C/A and VEGF −1154 G/A polymorphisms and NSCLC 
survival
Many VEGF genetic polymorphisms have been studied alongside NSCLC survival 
and outcome [78, 104, 115]. In 2004, VEGF -2578 C/A and VEGF-1154 G/A played 
a key role in lung cancer vasculature [115]. Koukourakis et al. reported that tumors 
with the VEGF −2578 C/A genotype had significantly higher VEGF expression than 
those expressing the VEGF −2578 A/A genotype. Furthermore, the authors reported 
that the VEGF-1154 G/A polymorphism seemed to be related with poor vascularization, 
but the difference was not significant [115]. In 2009, a Japanese group demonstrated 
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that the VEGF −1154 AA and AG genotypes (HR, 1.482; 95% CI, 1.144–1.897; P = 
0.0034) and the VEGF −2578AA genotype (HR, 1.797; 95% CI, 1.219–2.495; P = 
0.0047) had a significant prognostic effect on survival based on univariate analysis. 
Based on multivariate analysis of a current and former smoker (HR, 1.407; 95% CI, 
1.095–1.840; P = 0.0070), poor PS (HR, 2.249; 95% CI, 1.309–3.468; P = 0.0058) 
and the VEGF -1154AA and AG genotypes (HR, 1.419; 95% CI, 1.033–1.901; P = 
0.0316) were significant independent prognostic factors for survival [104]. However, 
in 2010, Dong et al. studied 56 SNPs in 568 NSCLC patients [78], but the VEGF 
-2578 C/A polymorphisms did not influence survival and prognosis.

VEGF variants [−460 T / C (rs833061), 405 G/C (rs2010963), and +936 C / T 
(rs3025039), −2489 C/T (rs1005230)] and survival
In a previous study, VEGF serum levels were also associated with the OS of NSCLC 
patients treated with bevacizumab [53]. The reason for this association was that some 
genotypes, such as VEGF (−2578 C/A, −1498 C/T, −1154 G/A, −634 G/C, 936 C/T, 
and VEGF –1498 T/T), were correlated with toxicity, bevacizumab-related grades 3 
and 4 hypertension, and disease outcome in patients treated for metastatic cancer 
[92]. In spite of controversial studies [21, 61, 90], VEGF – 460 T/C polymorphisms 
were associated with a better OS in locally advanced NSCLC after chemoradiother-
apy [61]. In 2012, Naik et al. reported that the VEGF +405 C/G SNP, also called 
VEGF -634 G/C SNP, showed an association with age, pathological grade, and stage 
[90]. However, no results were consistent with survival [21]. Furthermore, VEGF 
−2489 C/T polymorphisms were not associated with OS in advanced NSCLC [78].

VEGFR2 copy number as a predictive and prognostic factor
In 2011, experimental and translational research concerning angiogenesis and 
NSCLC was published to assess the role of VEGFR2 in tumor behavior [56, 116]. 
In vitro, VEGFR2 copy number gains were significantly associated with resistance 
to platinum chemotherapy as well as increased levels of nuclear HIF-1α in both 
NSCLC tumor specimens and cell lines [116]. VEGFR2 genetic variation (Q472H, 
− 2854 C, and - 2455 A) in 3 populations had an impact on tumor VEGFR2 expres-
sion and vascularization [56]. In light of these data, it is understandable that the role 
of angiogenesis and NSCLC are not completely elucidated. It is true that bevaci-
zumab did not show a satisfactory cost effectiveness relationship in advanced 
NSCLC treatment [21, 117]. Clinicians should expect further improved research 
about enhanced approaches involving anti-angiogenic therapies and NSCLC. At this 
moment in UK, we don’t use bevacizumab to treat advanced NSCLC due to the lack 
of significant improvement in overall survival.

EGF+61 A/G, EGFR polymorphisms and outcome
Although the current role of EGFR mutations in exons 19 and 21 in advanced NSCLC 
treatment [5] has been elucidated, the roles of EGF+61 A/G polymorphisms, EGFR A/A 
(rs3735061) polymorphisms, EGFR A/G (rs6958497) polymorphisms and outcome still 
need clarification [12, 78, 118]. In 2010, a Chinese study showed that the EGFR geno-
types rs3735061AA and rs6958497AG/GG were associated with a significantly increased 
risk of death for NSCLC [hazard ratio (HR) = 2.82, 95% confidence interval (CI) = 
1.66–4.78 for rs3735061AA and HR = 1.69, 95% CI = 1.26–2.28 for rs6958497AG/GG], 
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whereas the rs759165AG/AA genotype was associated with a 44% decreased risk of 
death of NSCLC (HR = 0.56, 95% CI 5 0.39–0.83) [78]. Furthermore, other genetic 
polymorphisms in genes involved in the EGFR pathway (MAP3K1, RAF1, NRAS, and 
GPX7) were associated with NSCLC survival in a cohort study involving 1076 lung 
cancer patients [119]. In addition, a Chinese study involving 88 NSCLC patients treated 
with gefitinib showed that the EGFR rs2293347 G/G genotype was associated with the 
efficacy of gefitinib [120]. The response rate for the rs2293347 GG genotype was signifi-
cantly higher than that of the GA or AA genotypes (71.4% versus 36.0%, p = 0.002). The 
rs2293347 GG genotype was also associated with a longer PFS compared with the GA 
or AA genotypes (10 months versus 3 months, p = 0.005). However, no significant differ-
ence was observed regarding OS, p = 0.409 [120]. Moreover, another Chinese study 
[121] with 115 NSCLC patients treated with EGFR TKIs showed a synergistic effect of 
the CYP1A1*2A and the EGFR intron 1 (CA) repeat polymorphisms, and this effect 
influenced patient clinical responses to EGFR-TKIs. Nevertheless, the EGF+61 A/G 
polymorphism was only assessed with regard to lung cancer risk [72–74] and not clinical 
outcome [118]. Thus, changes in the expression of EGF-EGFR pathway components 
may be very important in NSCLC carcinogenesis and clinical outcome. Further studies 
are warranted to validate this hypothesis.

6  Current and Future Developments

Lung cancer continues to be one of the major cancers around the world. Genomic 
profiling to improve its characterization is of particular interest in clinical practice 
[21, 118]. In the new era of targeted therapies, and more recently the immunothera-
pies, a thorough understanding of NSCLC molecular issues and immune system is 
crucial for clinical management [122]. It is true that angiogenic molecular mecha-
nisms throughout the VEGF and EGFR pathways are key players of NSCLC patho-
genesis. Therefore, studying genetic polymorphisms that regulate VEGF, VEGFR, 
EGF, and EGFR expression may be useful for improving screening strategies, thera-
peutic selection and patients’ prognoses. However, there is no currently yet antian-
giogenic effectiveness to treat NSCLC.
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Abstract A key-hallmark of cancer is the promotion of angiogenesis. While there 
are currently no markers of the net angiogenic activity of prostate cancer (PCa) that 
can help investigators to design specific anti-angiogenic strategies, it is reasonable 
to assume that the quantification of various aspects of tumor vasculature may pro-
vide an indication of angiogenic activity. It has been ascertained that malignant 
tumors can generate their vasculature in seven distinct ways, including sprouting 
angiogenesis, vasculogenesis, intussusceptive angiogenesis, vascular co-option, 
mosaic vessels, vasculogenic mimicry and trans-differentiation of cancer stem-like 
cells into tumor endothelial cells. Here we briefly review these ways to get blood 
supply for the progression of PCa, its predictive and prognostic role and the actual 
discrepancies in the quantitative evaluation of neovascularity.

Keywords Prostate cancer • Angiogenesis • Vascularity • Microvessel density  
• Biomarkers

1  Introduction

Cancer research has undergone radical changes over the last few years. The issue 
today is no longer the amount of basic and clinical information available, but how 
to handle it. However, despite this continuous progress, PCa remains a major public 
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health problem throughout the world [1]. Essential for the tumor growth and 
progression is blood and new vascular segments are needed to supply the growing 
tumor mass with oxygen and nutrients [2]. Angiogenesis, the development of new 
branching vessels from existing vasculature, is a complex process observed in fetal 
growth, wound healing and endometrial hyperplasia associated with the menstrual 
cycle. Under these conditions, it is highly regulated: i.e., “turned on” for brief peri-
ods of time and then completely inhibited [3]. However, many human diseases, 
including tumors, are driven by persistently up-regulated angiogenesis [4, 5]. In 
some non-malignant diseases, such as lobular capillary hemangioma or keloid for-
mation, angiogenesis is self-limited, on the contrary, in tumor once begun continues 
indefinitely until the entire tumor is eradicated or the host dies. Angiogenesis is 
regulated by a balance of pro- and anti-angiogenic molecules [5], secreted from 
cancer cells, endothelial cells and stromal cells [6, 7]. The relative contributions of 
which are likely to change with tumor type and site, as well as with tumor growth, 
regression and relapse. Angiogenesis, defined as the formation of a new capillary 
network from preexisting capillaries, has been proposed for the first time in 1971 by 
Judah Folkman and, at now, is the most study of neovascular growth in cancer [8, 9]. 
In the majority of cancer, vessel growth is stimulated and they are abnormal in all 
aspects of their structure and function. These impede the function of immune cells 
in tumors and the transport of the oxygen, creating favorable environment for tumor 
progression and metastasis [2]. In this mechanisms are involved angiogenic regula-
tors, such as vascular-endothelial growth factor (VEGF) family with their receptors 
(VEGFR1, VEGFR2 and VEGFR3), basic fibroblastic growth factor (b-FGF) and 
angiopoietin family (Ang-1, Ang-2 and Ang-4), leading to hypoxic and acidic 
tumoral regions [10]. Although it is commonly believed that the endothelial cells 
making-up tumor vessels are genetically stable, tumor vasculature seems to be 
much more unpredictable [11]. These conditions reduce the effectiveness of treat-
ments, modulate the production of pro- and anti-angiogenic molecules, and select a 
subset of more aggressive cancer cells with higher metastatic potential. The signifi-
cance of angiogenesis in PCa still remains controversial [12]. The complexity of 
angiogenesis has been one of the greatest challenges in translation research so far. 
Angiogenesis is an ubiquitary process and though not being the synonym for neo-
vascularization sometimes is misused in broader sense [13]. Therefore, neovascu-
larization is defining revascularization of particular tissue and in certain extent is 
significant for solid tumors among which we include PCa as well, which we will 
additionally address on this occasion. The process of neovascularization comprises 
mainly of dysfunctional endothelium, which is constantly present in a chronic 
inflammatory tissue milieu. Endothelial dysfunction refers among other at disruption 
of vascular permeability and vascular tone regulation, inflammatory and immuno-
logical reactions and cell growth [14].
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2  Angiogenesis and Inflammation

In physiological settings the endothelial cells have properties necessary to 
metabolize, synthesize and release a variety of substances [15]. Among them growth 
factors and both, reactive oxygen species (ROS) and reactive nitrogen species 
(RNS), actively participate in reactions of oxidation and protein nitrosylation pro-
moting cell growth [15, 16]. When activated endothelial cells gain ability to produce 
several inflammatory and immune mediators. They are consistent with morphologi-
cal changes visible as process of adaptation upon inflammation. It has been shown 
that inflammation mediated by immune mediators increases the endothelial perme-
ability and promotes processes of leucocyte adhesion, dyapedesis and migration to 
site of inflammation [17]. The extent of endothelial dysfunction can be measured 
in  vivo by determination of some circulating biomarkers such as endothelin-1, 
E-selectin and von Willebrand factor, all of them being unspecific [18]. The factors 
that influence angiogenesis and neovascularization are main contributors to its 
pathophysiological alterations. Inflammation has been already described as process 
closely linked to the abnormal angiogenesis. It has been also shown that inflammatory 
microenvironment inevitably relies different cytokines stimulating pro-angiogenic 
activity by continuous vascular endothelial activation. There are numerous molecular 
pathways orchestrating and influencing prostate cancer progression [19].

Recently, different mechanisms have been proposed when explaining how mol-
ecules of adhesion molecular family promote angiogenesis and favorite tumor cell 
capacity to invade and metastasize [20, 21]. On of them is adhesion molecule mem-
ber of the Ig superfamily ALCAM/DM-GRASP, first described by Burns et al. [22]. 
This adhesion molecule has several synonyms including DM-GRASP, SC1, BEN, 
ALCAM and CD166 [23–25] presumably since was recognized in wide variety of 
cancers. It was described in vivo mouse studies to be important in cancer progres-
sion [26]. Its regulation is either up-regulated or down-regulated depending on tis-
sue of origin [21]. This makes its characterization tissue/tumor and organ functions 
more specific and complex [22]. Due to its expression in cancer cells it is used more 
and more frequently as a biomarker of cancer progression in several tumors among 
which is prostate cancer. Previously we analyzed CD44 and its ability to recruit and 
accumulate matrix metalloproteinase on the cellular surface. This way tumor cells 
gain pro-angiogenic immunophenotype and capacity to invade [27].

Once initiated a cascade comprises growth factors release, which additionally 
promote the signal transduction at cellular level. Consequently, the angiogenic 
switch results in increased endothelial sprouting observable at tissue architectural 
level. The characterization of microvascular architecture has gained increasing 
attention during diagnostic procedures of cancer diagnosis and is emerging target in 
new treatment modalities and evaluation of new drugs [28]. However, this charac-
terization requires thorough immuno-histologic analysis on biopsy material obtained 
upon radical prostatectomy. It has been shown that the immunohistological analysis 
is comparable with well-known concept of Benoit Mandelbrot, which allows us 
interpretation of vascular networks as fractal objects in connection to the regional 
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blood flow distribution and outlined by their fractal dimension [19, 29]. This 
morphological observations could be useful during histological sub-classification 
within tumor namely, tumor pathological grade determination [20].

Inflammation has been well described in the literature as one very well linked 
process toward cancer evolution. In prostate the chronic inflammation additionally 
promotes progress of preexisting conditions such as benign prostatic hyperplasia 
(BPH) [30]. There is also interaction of chronic inflammatory process and prolifera-
tion. In BPH, chronic prostatic disease proliferation index is increasing, and epithe-
lial changes can be observed progressing throughout prostatic intraepithelial 
neoplasia (PIN) [22]. This is considered to be the effect of sustained p38 MAP 
kinase pathway activity [31].

Several authors have proven that previously identified p38-MAPK is critically 
involved in the sensitivity of cancer cells to the anti-tumor effect of nitrogen- 
containing bisphosphonates (N-BPs), such as zoledronic acid (ZOL) [32–34].

Proliferation is one of the fundamental biological processes means rapid cell 
multiplication often referring to both pathological adaptive processes of hyperthro-
phia and hyperplasia depending on tissue histotype [35]. The proliferation is initi-
ated among other triggers very often with hypoxia. The hypoxic state in PCa can be 
observed in microenvironment, which consists of disorganized vasculature with 
increased permeability [36]. The vascular mesh and intercellular leakage often pres-
ent are responsible for eventual oxygen deprivation (hypoxia) and hyponutrient 
state. Hypoxic state in prostate microenvironment might influence the development 
of androgen independence in prostate cancer patients, since there is clinical evi-
dence suggesting that after withdrawal of androgens reduction in hypoxia in tumor 
regions of prostate cancer occurred [37].

3  Angiogenesis and the Epithelial-Mesenchymal Transition

The prostate is an endodermal tissue that arises during late embryogenesis prostate 
is formed through ductal budding from the anterior urogenital sinus epithelium. 
Formation of the prostate is an inductive event that requires reciprocal interactions 
between the urogenital sinus mesenchyme and epithelium, and is dependent on tes-
ticular androgen synthesis.

Although the adult prostate lacks discernible lobular structure, the seminal 
papers by McNeal [38–40] defined the human prostate as having a zonal architec-
ture, corresponding to central, periurethral transition, and peripheral zones, together 
with an anterior fibromuscular stroma [41].

Cunha et al. defined the fundamental parameters of these epithelial- mesenchymal 
interactions [42, 43]. These studies demonstrated that an AR-dependent signal from 
the urogenital mesenchyme is required for prostate formation, while AR is not ini-
tially required in the urogenital epithelium for prostate organogenesis, but is subse-
quently necessary for epithelial differentiation and secretory protein expression.
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4  Prostate Cancer and Angiogenesis: More Than One 
Alternative

Different alternative mechanisms of tumor vascularization occur in PCa, including 
sprouting angiogenesis, vasculogenesis, intussusceptive angiogenesis, vascular co- 
option, mosaic vessels, vasculogenic mimicry and trans-differentiation of cancer 
stem-like cells into tumor endothelial cells [44].

Prostate cancer and the sprouting angiogenesis
Sprouting angiogenesis is a process that involves a single endothelial cell (tip cell) 
selected from the vasculature, overcoming its quiescent environment and forming a 
new vessel. This is a slow process, more than 24  h before a new capillary loop 
become perfused and is integrated into the vascular system. This process follows a 
well-defined program: endothelial tip cell migrates towards a chemoattractant 
angiogenic signal, such as growth factors secreted by tumor cells and their stroma. 
After migration, endothelial cells proliferate during the sprouting process in tumors 
and form a slit-like lumen that is continuous with the lumen of the “mother vessel”. 
In the end, proliferating pericytes of “mother vessel” migrate along the basement 
membrane of the sprout, resulting in the maturation of the new vessel [2].

Prostate cancer and the intussusceptive angiogenesis
Intussusceptive microvascular growth (IMG), also called intussusceptive angiogen-
esis, is the other major angiogenic mechanism and describes the formation of a new 
vessel by vascular invagination, intra-luminar pillar formation and splitting [45]. 
This type of angiogenesis, which has been observed in a wide variety of normal and 
malignant tissues, is faster and more economical than sprouting and does not primar-
ily depend on endothelial cell proliferation, basement membrane degradation, and 
invasion of the connective tissue [44, 46]. However, in contrast to sprouting, IMG 
can work only on existing vessel networks. Therefore, the most important feature of 
IMG seems to be its ability to increase the complexity and density of the tumor 
microvessel network already built by sprouting, independent of endothelial cell pro-
liferation. In addition, IMG can provide more surface area for further sprouting. 
Vascular intussusception has initially been described in physiological vascular devel-
opment [47] but more recently has been expanded to experimental tumors. It has 
been suggested that sprouting angiogenesis may switch to vascular intussusception 
to allow rapid development of new vessels [48]. Intussusception has been implicated 
in three processes of vascular growth and remodeling: a) IMG permits rapid expan-
sion of the capillary plexus, furnishing a large endothelial surface for metabolic 
exchange; b) Intussusceptive arborization causes changes in the size, position, and 
form of preferentially perfused capillary segments, creating a hierarchical tree; c) 
Intussusceptive branching remodeling (IBR) leads to modification of the branching 
geometry of supplying vessels, optimizing pre- and postcapillary flow properties. 
The molecular mechanisms that drive vascular intussusception are currently poorly 
understood and whether the intussusception occurs or plays a role in PCa or tumor 
biology in general is currently unclear. It is now known that local stimuli, such as 
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intravascular shear stress, might induce a cascade of physiological or pathological 
reactions in endothelial cells, and new capillary development by tissue pillar forma-
tion could be one of them [49]. Furthermore, intussusception is certainly synchro-
nized by several cytokines. Major candidates are those capable of mediating 
information between endothelial cells or from endothelial cells to mural cells, such 
as PDGF-BB, angiopoietins, and their Tie receptors, TGF-β, monocyte chemotactic 
protein-1, and ephrins and Eph-B receptors. In PCa, the role of IMG is still unknown.

Prostate cancer and the vasculogenesis
A major mechanism involved in the de novo formation of blood vasculature is called 
“vasculogenesis”. This term describes the formation of a capillary-like network from 
either a dispersed or a mono-layered population of endothelial cells. Vasculogenesis 
has long been thought to occur only in the early phases of vascular development. 
However, recent studies have demonstrated that circulating bone marrow- derived 
endothelial progenitor cells home to sites of physiological and pathological neovas-
cularization and differentiate into endothelial cells. Endothelial progenitor cells may 
be mobilized by tumor tissue derived cytokines from the bone marrow [2]. Best char-
acterized among these cytokines is VEGF that mediates vasculogenesis through pro-
moting endothelial cell growth, migration and mitosis, and has involvement in cancer 
pathogenesis, progression and metastasis. Actually, there are few evidence on the 
role of vasculogenesis in PCa. Recently, Wang et al. evaluate the prognostic value of 
VEGF in PCa, and summarize the results of related research on VEGF [50]. Although 
a more definitive conclusion enabling the clinical use of VEGF in PCa need more 
high-quality interventional original studies following agreed research approaches or 
standards, they found that VEGF might be regarded as a prognostic marker for PCa 
[50]. During tumor progression, the level of circulating VEGF has been shown to 
rise, and this level was found to correlate with the number of endothelial progenitor 
cells in the circulation. Yang et al. have shown that human bone metastatic LNCaP-
derivative C4-2B PCa cell line expressed higher level of VEGF than its parental pri-
mary PCa cell line LNCaP [51]. Moreover, other studies demonstrated that PCa cells 
seems to modulate their microenvironment and facilitate bone-marrow-derived 
endothelial progenitor cells (BM-EPCs) migration and vasculogenesis by secretion 
of cytokines in the early stage of hypoxia [52].

Prostate cancer and the vessel co-option
Vessel co-option, also known as mosaic vessel formation, is a new way to obtain 
blood supply [2]. The use of pre-existent vessels was described first in the brain, one 
of the most densely vascularized organs in the body. It has been shown that vascular 
co-option may facilitate the infiltration of human gliomas [53]. Although in 1987 
Thompson [54] had already proposed that tumors acquire their vasculature by 
incorporation of host tissue capillaries, the first study suggesting the existence of 
vessel co-option was not published until 1999 by Holash et al. [55]. In this process, 
vessels are surrounded, co-opted by tumor cells and no sprouts are observed. This 
host vascularization does not immediately undergo angiogenesis to support the 
tumor [2]. Co-option of pre-existing blood vessels might persist during the entire 
period of primary or metastatic tumor growth. In cutaneous melanoma, we found 
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that during tumor growth, there are no signs of directed vessel ingrowth; instead, 
these tumors appear to grow by co-opting the massive vascular plexus present in the 
peritumoral connective tissue [56]. The role of vessel co-option in tumorigenesis is 
still debated and, at our knowledge, there are still no studies in PCa.

Prostate cancer and the vasculogenic mimicry
Aggressive tumors may gain blood and nutrients from de novo vessels produced by 
themselves. Maniotis et al. in 1999, described the ability of highly aggressive mela-
noma cells to dedifferentiate into multiple cellular phenotypes, including those with 
endothelial-like characteristics that could form vessel-like structures to provide blood 
supply [57]. These channels are called vasculogenic mimicry (VM), because the chan-
nels are formed de novo and mimicry because the channels are not true blood vessel 
[58, 59]. The term VM describes the formation of fluid-conducting channels by highly 
invasive, genetically dysregulated, aggressive tumor cells without endothelial cell par-
ticipation. As describe in melanoma, this channel is lined by thin basal lamina corre-
sponding to the wall of the vessel, but no endothelial cells are detected [2]. Two 
distinctive types of VM have been described. VM of the tubular type may be confused 
morphologically with endothelial cell-lined blood vessels. Vasculogenic mimicry of 
the patterned matrix type in no way resembles blood vessels morphologically or topo-
logically. This study is based on the principle that the walls of VM channels are similar 
to blood vessels in having an extracellular matrix and glycosaminoglycans that offer 
them PAS sustainability; however, by definition the VM channels have no endothelial 
lining and do not stain with endothelial markers such as CD31 or CD34. Moreover, 
tumor cells are aligned with external superficies of the channel [60] which was recently 
visualized with d2–40 immunorectivity showing concomitantly low grade PIN pro-
gression toward high grade PIN (Fig. 11.1). Blood plasma and red blood cells (RBCs) 
can flow through the channel, but no inflammatory cells or necrosis is found in it. VM 
has been found in many tumors, such as breast cancer, hepatocellular carcinoma, osteo-
sarcoma, melanoma, ovarian carcinoma and PCa. In 2002, Sharma et al. revealed sup-
portive evidence that VM occurs in invasive, heterogeneous PCa cell lines, and in 
aggressive rat and human tumors [61]. Green fluorescent protein (GFP) labeling of 
prostatic clonal subpopulations revealed unique cooperative interactions of epithelial- 
and fibroblastic- like tumor cells in the formation of perfusable vasculogenic-like net-
works. Furthermore, prostatic tumor cell-lined channels were also detected in vivo in 
high-grade tumors, and occurred in some cases in close proximity to conventional 
endothelial-lined vasculature [61]. Liu et al. investigated the role of VM in the progres-
sion of PCa and found that VM mainly exists in the high-risk PCa patients and is an 
independent marker of poor prognosis [62]. Recently, an in vitro study has shown that 
VM in PCa may be principally involved in bone metastasis.

Prostate cancer and the trans-differentiation of cancer stem-like cells into 
tumor endothelial cells
Recent studies have shown that cancer stem cells (CSCs) and epithelium-to- 
endothelium transition (EET), a subtype of epithelial-to-mesenchymal transition, 
accelerate VM formation by stimulating tumor cell plasticity, remodeling the extra-
cellular matrix (ECM) and connecting VM channels with host blood vessels.
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5  Prostate Cancer and the Microvessel Density Evaluation

While there are currently no markers of the net angiogenic activity of PCa that can 
help investigators to design specific anti-angiogenic treatment strategies, it is reason-
able to assume that the quantification of various aspects of tumor vasculature may 
provide an indication of angiogenic activity. One often-quantified parameter of PCa 
vasculature is microvessel density (MVD), which is used to allow a histological 
assessment of tumor angiogenesis. In the last decade, studies have suggested the value 
of using MVD as a prognostic index in PCa, and it has also assumed that may reveal 
the degree of angiogenic activity in PCa. MVD scoring appears to be an important, 
simple, and applicable histologic tool for PCa evaluation in daily practice.

However, MVD has a number of limitations. The conflicting results in PCa are 
likely due to the differences in study designs: variability in patient population size, 
tumor topography, approach to selection of representative tumor areas, choice of endo-
thelial marker, and actual counting method. The selection of the tumor area for MVD 
assessment has been based on two different approaches: [1] analysis of a few micro-
scopic “hot spots” containing the maximal vascular density, and [2] selection of ran-
dom representative areas of the tumor. The first approach is the most applied due to its 
simplicity, although there is no agreement among investigators regarding optimal 
microscope magnification, the number of vascular hot spots, and cut off values for low 
vs high MVD. The second approach of MVD assessment within larger representative 
areas or whole tissue may be more objective but involves more tedious examination.

Despite its importance as a prognostic indicator in untreated tumors, MVD has 
not been shown to be a valid measure to guide or evaluate anti-angiogenic treatment 
[63]. MVD does not appear to be predictive of tumor response under anti- angiogenic 
treatment and therefore may not be useful for stratifying patients for clinical trials 
[63–66]. Tumor MVD may not vary in accordance with the tissue or blood levels of 
any single pro-angiogenic factor. The MVD of a tumor need not to be higher, and is 
often lower, than that of its corresponding normal tissue, which is experiencing no 

Fig. 11.1 The D2–40 
immunoreactivity showing 
concomitantly low grade 
PIN progression toward 
high grade PIN, 
(x200HPF). The 
immunohistochemical 
expression is preserved in 
basal cell layer of glands 
with intraepithelial change
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net growth. The efficacy of anti-angiogenic agents cannot be simply visualized by 
alterations in MVD during treatment [63, 67]. In addition, MVD is substantially 
limited by the complex biology characterizing tumor vasculature [68], and the 
highly irregular geometry that the vascular system assumes in real space, which 
cannot be measured using the principles of Euclidean geometry because it is only 
capable of interpreting regular and smooth objects that are almost impossible to find 
in Nature [69]. Quantitative descriptors of its geometrical complexity can be, how-
ever, abstracted from the Fractal geometry introduced by Benoit Mandelbrot in 
1975 [3, 70]. The complex geometry of tumor vasculature, its structural and func-
tional heterogeneity mean that vascular network cannot be measured on the basis of 
MVD estimates alone. Tretiakova et al., applying an automated image analysis to 
conventional and tissue microarray sections in large representative areas, demon-
strated that there was no significant increase in MVD parameters in PCa versus 
matched normal peripheral zone prostatic tissue [71]. Paradoxically, several mor-
phological indexes were higher within normal glandular prostatic tissue. Study of 
two-dimensional vascularity of PCa by Taverna et al. (2009) divided all cases in two 
groups with 56% of cases showing increase of vascular surface in PCa vs. non- 
tumoral areas and 44% showing a decrease of vascular surface in PCa. The second 
group of patients had a poorer outcome indicating that tumor progression is inde-
pendent of angiogenesis [72]. These findings parallel recent data by Steiner et al. 
(2012) that showed no significant difference for CD31 mRNA levels from normal 
prostate and matched PCa (P = 0.78). No significant correlation for CD31 between 
mRNA and protein levels, show by immunohistochemistry, implies that in the typi-
cal slow growth of PCa, the angiogenesis dynamics are also quite low [73].

A non-invasive imaging technique that could reflect MVD would hold great 
promise in tumor detection and characterization [74]. An imaging method that could 
indicate an increase in MVD could have value in choosing targets for prostate biop-
sies [75]. This will lead to a change in biopsy strategies, bringing about a higher 
detection rate of PCa, and hence, a more appropriate therapeutic strategy. Preliminary 
data suggested that the hemodynamic indices obtained from contrast-enhanced 
ultrasound imaging were different between low- and high-grade PCa. Franiel et al. 
attempt to determine whether established histologic parameters of prognostic 
importance, including MVD, correlate with parameters obtained at pharmacoki-
netic dynamic contrast material–enhanced (DCE) dual-contrast-enhanced magnetic 
resonance (MR) imaging [76]. They found that blood volume and interstitial vol-
ume did not reliably correlate with the histologic parameters, mainly due to the 
heterogeneous vascularization of both normal prostate tissue and PCa [77]. 
Variability over patients is large with patients showing both increased and decreased 
vascularity in the tumor. Thus, determination of vascularization in a two- dimensional 
histological slide is not representative of the vascularity of the tissue as a whole 
[66]. The antibody used also seems to play a role, since it has been shown that MVD 
immunohistochemically determined by CD31 antibody staining was significantly 
lower than that obtained with CD34 antibody staining (Fig. 11.2) [78]. Moreover, 
correlation of histologic and MR data sets was limited by the fact that the paraffin 
sections are 4 μm-tick, whereas the corresponding T2-weighted images have a slice 
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thickness of 3 mm and the dynamic susceptibility weighted MR DCE-MR sequence 
is acquired with a slice thickness of 5 mm. Computer-based 3D prostate models 
may in the future enable the desired detail correlation between histologic and MR 
imaging findings. The lack of correlation between histologic and functional param-
eters also raises the question of the biologic significance of functional parameters of 
tumor microcirculation quantified with dynamic imaging enhanced with small- 
molecule contrast medium. Although, Osimani et al. have recently shown that blood 
volume and permeability surface-area product measurements obtained with perfu-
sion computed tomography have the highest correlation with immunohistochemical 
markers of angiogenesis in PCa but, before routine implementation, additional stud-
ies on larger series are needed [79].

6  Concluding Remarks

MVD as an angiogenesis predictor is inefficient per se in cancer prognosis [7]. We 
aimed to provide a view on novel factors that could possibly influence angiogenic 
switch consequently leading to progression from low grade prostatic intraepithelial 
neoplasia (PIN) to high grade PIN and beyond to PCa or even more aggressive, 
poorly differentiated, and androgen-independent histological subtypes. Angiogenic 
switch by its definition implies impaired angiogenesis and importance of high 
VEGF and VEGF receptor levels holding responsible for PCa progression has been 
shown. PCa is the most frequently diagnosed malignancy among men in Europe, 
and in the majority of countries is among the first three causes of cancer-related 
deaths too. If we look upon clinical prognostic parameters several of them (tumor 
stage, progression, metastasis and survival) strongly correlated in different studies 
with levels of angiogenic markers. But not only the clinical parameters have predic-
tive value, it is also known that morphological scale of Gleason scoring system is 
independent prognostic marker and in the same time correlates with angiogenesis 

Fig. 11.2 The comparison of CD31 (a) antibody staining and CD34 (b) antibody staining, later 
one was of significantly lower intensity and distribution. This observation should be taken into 
consideration when immunohistochemically estimating and validating MVD
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level in PCa. This concept isn’t the new one and several clinical researches are 
involved in this issue aiming to prove that blockage of angiogenesis could resolve 
the progression from an indolent to aggressive PCa. In the recent publications quan-
titative methodology used for angiogenesis detection gave us controversial results 
showing decrease of mean MVD in areas infiltrated with PCa, while relatively 
increased or better to consider preserved angiogenesis in cancer unaffected areas 
[6]. Is there rationale explanation for this observation? A plausible answer to that 
question can be simple as relative tissue density – meaning when you have tumor 
glands otherwise not present in prostatic fibrous stroma normal vascular network- 
will be deranged and number of vascular spaces would diminish. Yet we must admit 
that two structures cannot occupy the same space at the same time. This solves only 
one part of the problem being the tumor glands when present.

But the loose of vascular mesh is gradual also present in PIN lesions, how is this 
explainable? We propose the model of hypoxia inducing epithelial metabolic disrup-
tion in otherwise normal cells. Namely, in benign prostatic hyperplasia epithelial 
cells are proliferating, while microenvironment is preserving normal oxygenation. In 
the chronic prolonged inflammation due to secretory function obstruction the num-
ber of inflammatory cells and macrophages is increased leading to hypoxic state in 
stroma. Impaired epithelial secretory function in prostate at different levels of its 
utilization was previously described. This may have open potentially new therapeutic 
targets, which could be even broaden if we consider chemokines and chemokine 
receptors as markers of prostatic secretory metabolic change. Namely, hypoxic envi-
ronment induces Akt activation and induction of Hypoxia inducible factor 1 (HIF 1) 
in his alpha conformation. Direct and consequent effect of activated HIF is activation 
of VEGF production and it’s binding at receptor (VEGFR) sites. From that point 
onward the epithelial cell is promoting anti-angiogenic micro environmental state. 
Once the tumor cells have finished transformation from normal, benign, proliferative 
and hyperplasic phenotype toward abnormal, malignant, highly proliferating and 
dysplastic epithelia they have also gained the property of invasiveness. The malig-
nant gland has lost basal cell layer due to hypoxic preconditioning or oncogenic 
mutation causing basal cell apoptosis and vanishing of the basal cell layer.
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Abstract Age-related macular degeneration (AMD), diabetic retinopathy (DR), 
myopic choroidal neovascularization (mCNV) and retinal vein occlusion (RVO) 
taken together are leading cause of blindness worldwide. Neovascularization in 
these retinal disorders is induced largely by vascular endothelial growth factor A 
(VEGF-A) and progresses rapidly to blindness if left untreated. VEGF-A, with a 
central role in both normal and pathologic vascular growth within the eye, binds to 
VEGF-A receptors (e.g., Flt-1) on the vascular endothelium and promotes angio-
genesis in response to hypoxia and other stimuli. The current standard of care in 
managing AMD, DR, mCNV and RVO is VEGF antibodies administered through 
intravitreal route to block VEGF activity, which underlies the CNV. Although this 
therapy improves visual acuity in a substantial proportion of patients, significant 
number of patients experience persistent CNV leakage, fibrotic scarring and/or 
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 geographic atrophy. Most patients do not achieve substantial visual improvement 
and a third of treated eyes progress to legal blindness. Thus, a novel therapeutic 
strategy, which improves outcomes while providing inhibition of angiogenesis with 
acceptable safety profile, is an urgent and unmet medical need. In this review, we 
discuss the role of VEGF and VEGF receptors in angiogenesis and the current and 
potential future angiogenesis based therapies for AMD, DR, mCNV and RVO.

Keywords Angiogenesis • Macular Degeneration • Diabetic Retinopathy • Retinal 
Vein Occlusion • Vascular Endothelial Growth Factor

1  Angiogenesis

The term angiogenesis was used for the first time in medicine in 1935 by the pathol-
ogist Arthur Herting to describe the formation of new blood vessels in the placenta. 
Angiogenesis plays a central role in various physiological processes, not only dur-
ing fetal development but also in tissue repair after surgery or trauma. Angiogenesis 
is also critical during wound healing, menstrual cycle, cancer, and various ischemic 
and inflammatory diseases. Dysregulated angiogenesis is considered as one of the 
cause of many common diseases, like cancer, blindness, ischemic heart disease, 
psoriasis and arthritis [1–3]. Under normal physiological conditions quiescent 
endothelial cells are protected against insults by the autocrine action of various 
growth factors such as VEGF, NOTCH, angiopoietin-1 (ANG-1) and fibroblast 
growth factors (FGFs) in adult blood vessels. The endothelial cells are covered by 
pericytes, which stabilizes the endothelial cell proliferation and protects from 
release of cell-survival signals such as VEGF and ANG-1. However, under stress 
conditions such as hypoxia, endothelial cells release hypoxia inducible factor 
HIF-1α that activates the release of VEGF and detachment of pericytes from endo-
thelial cells, weakening of tight junctions and increased vascular permeability and 
migration of endothelial cells onto this ECM surface in response to integrin signal-
ing and release of several growth factors such as VEGF and FGF, placental growth 
factor (PlGF).

Endothelial cells (EC) and the mural cells (pericytes in medium-sized and 
smooth muscle cells (SMCs) in large vessels) are two main players in angiogenesis. 
Endothelial cells line the interior surface of blood vessels forming the interface 
between circulating blood and the rest of the vessel wall. Mural cells are contractile 
cells that wrap around endothelial cells keeping the homeostasis of the endothelial 
cells organization by communicating with the ECs both by direct physical interac-
tion or paracrine signalling [4].
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2  Molecular Mechanisms of Angiogenesis

The secretion of angiogenic factors is the triggering event that leads to vessel 
branching through multiple sequential steps (Fig.  12.1); from exiting the pro- 
quiescence program of the existing vessel, to the activation of endothelial cells and 
creation of a new vessel, to the consolidation and maturation of it. In adults, angio-
genesis occurs when an injury or diseased tissues cause the secretion of angiogenic 
growth factors that diffuse in the nearby tissue, binding specific receptors situated 
on the surface of endothelial cells of nearby preexisting vessels activating the quies-
cent endothelial cells. The growth of new capillaries from preexisting blood vessels, 
is a complex process involving endothelial cell activation, disruption of vascular 
basement membranes, and migration and proliferation of endothelial cells. 
Migration of endothelial cells involves three major mechanisms: chemotaxis, hap-
totaxis and mechanotaxis (Fig. 12.2). In chemotaxis, activation of endothelial cells 
leads cell migration towards angiogenic growth factors (chemoattractants) such as 
vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF) 
followed by degradation of the basement membrane in haptotaxis where they 
migrate in response to integrins binding to ECM. Whereas, mechanotaxis is associ-
ated with fluid shear stress that modulates the various phases of cell migration 
including extension at the leading edge, adhesion to the matrix, and release of 

Fig. 12.1 Brief overview of angiogenesis process
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adhesions at the rear edge. There are several proteins involved in the polarization 
and detachment steps including ENac, NHE1, NKCC1, AE2 and AQP1 to name just 
a few. Further, during migration cells undergo rapid changes in shape and cell vol-
ume. These changes require rapid fluid influx in order to cell polarize into frontal 
lobe and detach from the rear part. Finally, cells establish new basement membrane 
by secreting cytokines, platelet derived growth factor (PDGF) and angiopoietins to 
attract pericytes to stabilize the newly formed vessels [5], which can further grow or 
undergo remodeling to form new capillaries. In addition to endothelial cell activa-
tion, endothelial progenitor cells (EPCs) that are capable of proliferation and migra-
tion are also involved in the formation of new blood vessels in response to injury or 
hypoxia. However, the participation of EPCs in the formation of new blood vessels 
is still controversial. Prolyl hydroxylase domain 2 (PHD2) and hypoxia-inducible 
factor-1α (HIF-1α) modulate blood vessel shape and maintain optimal blood flow. 
Tight junction molecules (claudin, occluding, jam-1), adherens junction molecules 
(VE-cadherin), gap junction molecules (connexin-37, −40, −43), PECAM-1/
CD-31, as well as a molecular crosstalk between ECs and neighboring mural cells 
are crucial in regulating vessel stability and permeability [6].

At rest, endothelial cells and pericytes, produce a common basement membrane. 
When a quiescent vessel intercept a pro-angiogenic signal, such as VEGF, ANG-2, 
FGFs or chemokines released by a hypoxic, inflammatory or tumor cell, pericytes 
will first detach from the basement membrane by proteolytic degradation mediated 
by secreted matrix metalloproteinases (MMPs). VEGF also stimulates the phos-
phorylation of β- and γ-catenins as well as p120-catenin, which are intracellular 
intermediary of VE-cadherin signaling. Consequently, VE-cadherin fails to cluster 
at the cell-cell interface and redistributes along the cell surface [7].

Fig. 12.2 Mechanisms involved in cell migration
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During the first steps of angiogenesis, Ang-2 levels increases, facilitating the 
destabilization of cell-cell adhesion and inhibiting Ang-1/Tie-2 pro-quiescence pro-
gram, promoting endothelial cell-cell junction rearrangement and mural cells 
detachment. All these events together cause an increase in permeability of the pre- 
existing vessel and a consequent extravasation of plasma proteins, allowing deposi-
tion of a provisional matrix of fibrin that will serve as a substrate for migration of 
endothelial cells. This provisional matrix is loaded with pro-angiogenic factors such 
as VEGF and FGF that once liberated by the action of proteases, will guide the 
migration of ECs.

In order to create a new perfused tube from pre-existing vessels, nature has engi-
neered a very smart process defined as sprouting (other mechanisms are known, 
such as intussusception, vessel co-option and vascular mimicry but the relevance of 
these processes is still not well understood). In this process, just one endothelial 
cell, known as the tip cell, equipped with filopodia to sense environmental guidance 
from ephrins and semaphorins, will be selected to move toward the angiogenic sig-
nal (guided by VEGF receptors, neuropilins (NRPs) and the NOTCH ligands DLL4 
and JAGGED1), preventing an “en masse” disorganized movement of ECs. This tip 
cell will be then followed by nearby endothelial cells known as stalk cells, which 
will divide and elongate the growing vessel (the stalk) in response to NOTCH, 
NOTCH-regulated Ankyrin repeat protein (NRARP), WNTs, placental growth fac-
tor (PlGF) and FGFs. Once the stalk cells will reach the optimal number to create a 
new vessel they will start to organize and establish the lumen of the vessel (medi-
ated by VE-cadherin, CD34, VEGF, and hedgehog).

The last step in angiogenesis is the consolidation of the new born vessel. Only 
matured and perfused vessels will survive, and to function properly, they must be 
covered by mural cells. Platelet-derived growth factor B (PDGF-B), ANG-1, trans-
forming growth factor-β (TGF- β) contribute to this process [8]. To stabilize endo-
thelial cells channels, angiogenic endothelial cells secrete PDGF-B to chemoattract 
PDGF receptor- β (PDGF- β) expressing pericytes [9, 10]. When the pericytes will 
be enough to fully cover the new vessel they will start to express ANG-1 inducing 
clustering of its receptor TIE-2 in trans at cell-cell junctions to maintain endothelial 
cells quiescence [11]. ANG-1 also stimulates basement membrane deposition. The 
basement membrane also provides signals for stabilization of the vessel, thus, inhib-
itors of metalloproteinases (TIMPs) and plasminogen activator inhibitor-1 (PAI-1) 
help the deposition of basement membrane that with act as a scaffold for stable ECs 
interactions.

3  VEGF Signaling

Despite the complexity of angiogenic process it is remarkable that VEGF regulates 
angiogenesis in such a predominant way. In mammals, there are five VEGF family 
members: VEGF-A, Placenta Growth Factor (PlGF), VEGF-B, VEGF-C, and 
VEGF-D. A numbers of VEGF-related proteins encoded by viruses (VEGF-E) and 
in the venom of some snakes (VEGF-F) have also been discovered [12].

12 Angiogenesis-Based Therapies for Eye Diseases



264

VEGF-A and its receptors VEGFR-1 and VEGFR-2 play major roles in physio-
logical as well as pathological angiogenesis. VEGF-C/D and their receptor VEGF-3 
can regulate angiogenesis at early embryogenesis but mostly function as regulators 
of lymphangiogenesis [12, 13]. PlGF on the other hand is a multitasking cytokine 
that stimulates angiogenesis by direct or indirect mechanisms, however, unlike 
VEGF-A, PlGF is dispensable for development and is relevant only for diseases, 
especially for tumor cells [14, 15]. For all these reasons, in this review, we will 
focus our attention on the role of VEGF-A.

VEGF-A exert a variety of functions, including pro-angiogenic activity, vascular 
permeability activity, and stimulation of cell migration in macrophage populations 
and endothelial cells. In humans, through alternative splicing, VEGF-A can gener-
ate four different isoforms named upon the length of their amino acidic sequence: 
121, 145, 165, and 189. VEGF-A165 has a weak affinity for acidic materials such as 
heparin/heparan sulfate and to neuropilin-1, a membrane protein involved in neuro-
nal cell regulation and a co-receptor for VEGF-A. VEGF-A189 has a strong binding 
affinity for heparin/heparan sulfate, so, most of the VEGF-A189 molecules are local-
ized on the cell surface or in the extracellular matrix.

The VEGF-A gene is unique in term of its haploid insufficiency. Heterozygotic 
VEGF-A knockout mice die at embryonic day 10 due to immature formation of the 
circulatory system [16]. This highlight the importance of fine tuning of VEGF-A 
levels in angiogenesis and vasculogenesis. Among the isoforms of VEGF-A, 
VEGF-A165 is the most critical, both quantitatively and qualitatively, and is suffi-
cient and essential for angiogenesis in a VEGF-A-null genetic background in mice 
[17]. VEGF-A binds to and activates both VEGFR-1 and VEGFR-2, promoting 
angiogenesis, vascular permeability, cell migration and changes in endothelial cells 
transcriptional regulation via an autocrine loop of VEGF-A and its receptors con-
tributing to endothelial functions [18].

4  Role of VEGF Receptors in Angiogenesis

Neovascularization is largely induced by vascular endothelial growth factor A 
(VEGF-A) [19–21]. This growth factor, with a central role in both normal and 
pathologic vascular growth within the eye [21–25], binds to VEGF-A receptors 
(e.g., Flt-1) on the vascular endothelium. Whereas, Neuropilins such as NRP1 and 
NRP2, VEGF co-receptors, enhance the activity of VEGF receptors and PlGF 
improves vessel perfusion and maturation and increases the revascularization of 
ischemic tissues. VEGFR-1 exists both as a membrane bound and as a soluble 
secreted form (also known as sFLT-1). The sFLT-1 regulates neovascularization by 
interacting with its ligand VEGF. VEGFR-1 signaling also promotes the growth of 
tumor cells in response to autocrine VEGF production.

VEGFRs are classic tyrosine kinase receptors composed of an extracellular 
domain for ligand binding, a transmembrane domain and a cytoplasmic domain 
including a tyrosine kinase domain [12]. VEGFs act through three structurally 
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related VEGF receptors named as VEGFR1, VEGFR2, and VEGFR3. Despite new 
finding that revealed a wider expression pattern of VEFGRs than initially antici-
pated, studies about VEFGRs expression highlighted a major role of VEGFR1 in 
monocytes and macrophages, VEGFR2 in vascular endothelial cells, and VEGFR3 in 
lymphatic endothelial cells. The binding of VEGF to its receptors induces a receptor 
homo- or hetero-dimerization. After dimerization, changes in the receptor confor-
mation will lead to exposure of ATP binding site in the intracellular kinase domain 
with a consequent activation of the kinase domain and auto- or trans- phosphorylation 
of the receptor tyrosine residues as well as phosphorylation of downstream signal 
transducers. The cascade of tyrosine phosphorylation is tightly regulated by inter-
nalization and degradation of VEGFRs dimers or by dephosphorylation by phos-
photyrosine phosphatases (DEP1, VEPTP, SHP2, PTP1B) [26]. Phosphorylated 
tyrosine residues act as binding sites for cytosolic signaling mediators with SH2 
domains that will amplify the signal propagation eventually resulting in biological 
responses such as cell proliferation, migration and self-organization to form vascu-
lar perfused tubes.

Role of VEGFR1 in angiogenesis is still poorly understood and its action remains 
quite elusive. Its kinase activity is almost 10-fold weaker compared to VEGFR2 and 
it is not required for endothelial cell function. On the other hand, VEGFR1 binds 
VEGF-A with an affinity one order superior of that of VEGFR2. VEGFR1 null mice 
die at embryonic day 9 because of increased number of endothelial progenitors and 
formation of disorganized lumen-less vessels, while the deletion of tyrosine kinase 
domain from VEGFR1 results in mice with a normal vascular development. Thus, 
VEGFR1 appears not to be required as a signaling receptor in angiogenesis, but it 
may serve to capture VEGF and spatially regulates VEGFR2 signaling and vessel 
sprouting [27, 28]. VEGFR1 kinase activity has been shown to intervene in condi-
tions involving inflammation such as rheumatoid arthritis [29] and early phase post 
stroke condition [30]. Thus, at least in part, VEGFR1 regulates endothelial function 
in indirect ways, through macrophagic recruitment and deposition of pro- angiogenic 
factors by these cells [31].

VEGFR2 is the main VEGF receptor on endothelial cells. It is essential for ECs 
biology during development in the adult organism, in normal or diseased angiogen-
esis. VEGFR2 is by far the most studied of the three VEGF receptors and it is the 
target of several small molecules engineered to block pathological angiogenesis in 
cancer. A soluble isoform of VEGFR2 is present in many tissues such as the skin, 
ovary, hearth, kidney, spleen and in plasma. It binds VEGFC and prevents its bind-
ing to VEGFR3 inhibiting lymphatic cells proliferation [32]. VEGFR2 knockout 
mice have a phenotype similar to that of VEGF-A knockout mice, resulting in death 
at embryonic day 8.5 by impairment of development of endothelial cells and hema-
topoietic cells [33]. VEGFR2 is mostly expressed in vascular endothelial cells and 
their embryonic precursors with the point of maximal expression occurring during 
the embryonic vasculogenesis or during pathological processes associated with neo-
vascularization, as in the case of tumor angiogenesis [34]. For all these reasons 
VEGFR2 is believed to be the main signal transducer of VEGFA, allowing ECs 
proliferation, migration and differentiation during the process of sprouting of new 
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blood vessels from pre-existing ones. The endothelial cells proliferation is strongly 
induced in the case of VEGF-A/VEGFR2 binding via RAS/RAF/ERK/MAPK 
pathway.

VEGFR3 binds to VEGF-C and VEGF-D and it is an essential regulator of lymph 
endothelial function. It is strongly expressed during vasculogenesis in the develop-
ing embryo vascular endothelial cells, but later in development and in adult organ-
isms, VEGFR3 expression is restricted to lymphatic endothelial cells. However, 
endothelial cells engaged in active angiogenesis, such as tumor vasculature or endo-
thelial tip cells of sprouting vessels in the developing retina express VEGFR3 [35].

5  Anti-VEGF Therapies

Anti-VEGF stands for ‘anti vascular endothelial growth factor’. Currently, three 
anti-VEGF drugs have been approved by the U.S. Food and Drug Administration 
(FDA) for the treatment of wet macular degeneration. The first breakthrough anti- 
VEGF therapy for the treatment of wet AMD was pegaptanib (Macugen®). 
However, it is generally considered to be less effective than the other anti-VEGF 
agents and is not used in practice much anymore [36].

The current approved drugs used for anti-VEGF therapy are shown in Table 12.1 
and are from the same class and work by stopping the proliferation of blood vessels 
in the eye. Since 2005, ophthalmologists had to face a dilemma choosing between 
the two closely related anti-VEGF drugs Ranibizumab (Lucentis®) and 
Bevacizumab (Avastin®) in treating wet AMD [37]. Bevacizumab is not a generic 
form of ranibizumab; ranibizumab and bevacizumab are different molecules pro-
duced in different ways. Although both are murine-derived humanized monoclonal 
antibodies, the active binding site of ranibizumab shows stronger binding affinity 
for its target. Bevacizumab (149  kDa) is larger than ranibizumab (48  kDa), but, 
despite the difference in size, retinal penetration studies have shown no difference 
in their ability to pass through the retinal tissue from the site of injection. 
Bevacizumab also includes the Fc portion so it may be a more potent antigenic 
stimulus [38]. Ranibizumab has been rigorously tested for use in neovascular AMD 
patients, whereas bevacizumab has been rigorously tested for intravenous use in 
colorectal cancer patients and used in AMD as “off-label”. However, the presumed 
equivalent efficacy and the fact that ranibizumab is almost 40 times as costly as 
bevacizumab pushed doctors to engineer several head-to-head trials around the 
world. The comparison of AMD treatment trials (CATT) study examined the effi-
cacy, dosing and cost-effectiveness of ranibizumab and bevacizumab for the treat-
ment of neovascular AMD [39]. This prospective, randomized, trial revealed a 
significant improvement in vision with both treatments in terms of visual acuity and 
no significant difference between the two molecules except for the economic advan-
tage of using bevacizumab.

The availability of the newer drug aflibercept has recently gained more atten-
tion. Aflibercept is a recombinant human fusion protein that acts as a soluble decoy 
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receptor for VEGF family members VEGF-A, VEGF-B and placental growth factor, 
preventing these ligands from binding to, and activating, their receptors. The effi-
cacy of intravitreal aflibercept in neovascular AMD has been compared with that of 
intravitreal ranibizumab, the current gold standard for this indication, in two impor-
tant phase III studies of virtually identical design (VIEW 1 and 2) [40]. In both tri-
als, the recommended regimen of aflibercept [2 mg every second month (after three 
initial monthly doses)] was shown to be non-inferior to the recommended regimen 
of ranibizumab (0.5 mg every month) in terms of proportion of patients who main-
tained their vision after 1 year of treatment; similar results were seen when monthly 
dosing with aflibercept (0.5 or 2 mg) was compared with ranibizumab. During a 
96 week period of observation in the VIEW studies, patients receiving the recom-
mended regimen of aflibercept during the first year, followed by modified quarterly 
treatment during the second year had a similar visual acuity gain to those receiving 
the recommended regimen of ranibizumab, but on average required five fewer injec-
tions. So, doctors are looking forward to use this drug with the aim of reducing 
hospital appointments, emotional burden and treatment costs without compromis-
ing visual outcome.

In addition to demonstrating the efficacy of aflibercept, the VIEW trials provided 
valuable information regarding peak efficacy and durability of anti-VEGF therapy. 
Increasing the monthly dose of aflibercept from 0.5 mg to 2 mg did not appear to 
improve peak efficacy (maximum letters gained); similarly, the HARBOR trial 
showed that increasing the monthly dose of ranibizumab from 0.5 mg to 2 mg did 
not lead to further gains in vision (+10.1 letters versus +9.2 letters) [41]. These stud-
ies suggest that anti-VEGF monotherapy for neovascular AMD has reached its limit 
and that, in the future, combination therapy with drugs that target other biological 
pathways, will be necessary to improve AMD treatment.

KH-902 (Conbercept®), is another anti-vascular endothelial growth factor 
(VEGF) drug approved for the treatment of wet age-related macular degeneration in 
China. Similar to aflibercept, it is a recombinant fusion protein of key extracellular 
domains from human VEGF receptors 1 and 2 and IgG Fc produced in a Chinese 
hamster ovarian cell line. However, conbercept also contains the fourth domain of 
the VEGF receptor 2 [42].

Table 12.1 Current approved drugs for Anti-VEGF therapy

Product name Manufacturer Relevance Website

Macugen® 
(Pegaptanib)

Eyetech 
pharmaceuticals
and Pfizer

VEGF antagonist 
approved in 2004

www.macugen.com

Lucentis® 
(Ranibizumab)

Genentech (Roche) and
Novartis Ophthalmics

VEGF inhibitor 
approved in 2006

www.lucentis.com

Eylea® 
(Aflibercept)

Regeneron and Bayer 
healthcare

VEGF trap 
inhibitor 
approved in 2011

www.Eylea.US

Avastin® 
(Bevacizumab)

Genentech (Roche) Off label use www.Avastin.com
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Compared with aflibercept, conbercept is slightly larger, has a lower VEGF dis-
sociation rate and higher binding affinity, exhibits decreased adhesion to the extra-
cellular matrix, and has a lower isoelectric point that results in a longer clearance 
time.

6  Natural Anti-angiogenic Molecules

Many of the FDA approved anti-angiogenic factors in use are synthetic chemicals 
or humanized monoclonal antibodies directed against angiogenic factors or their 
tyrosine kinase receptors. Although these chemicals have been proved to be effec-
tive in inhibiting angiogenesis, many of them are extremely expensive, display sig-
nificant toxicity, and are susceptible to resistance mechanisms. For all these reasons, 
the identification of natural, low toxicity, inexpensive molecules will be highly 
desirable. Several natural compounds have been used for centuries in different parts 
of the world to treat diverse disorders and nowadays, these compounds, have 
attracted the attention of scientists in search of natural anti-angiogenic molecules 
[43]. They have been tested for their potential therapeutic effects in many diseases 
such as cancer and inflammatory and cardiovascular diseases. In addition, several 
classes of natural compounds such as flavonoids, resveratrol, curcumin and genis-
tein have been studied as antiangiogenic compounds for their potential therapeutic 
effects in various ocular neovascular diseases including AMD, DR and ROP using 
in vitro and in vivo models of angiogenesis [44].

Polyphenols, for example, are members of a large class of chemical compounds 
that are present in high concentration in several plants and fruits, such as tea, cur-
cumin, grapes and berries [45]. Polyphenols exhibit anti-proliferative effects on 
tumor cells and ECs, inhibiting tumorigenesis through their anti-angiogenic, anti-
oxidant and anti-proliferative properties [46–48]. Polyphenols are loosely defined 
as having several hydroxyl groups on aromatic rings. They are divided into classes 
such as phenolic acids, flavonoids, stilbenoids and lignans, according to the number 
of phenolic groups and the structures that connect these rings to one another [45]. 
The flavonoids are the most common class of polyphenolic compounds that are 
found ubiquitously in plants. They share a common structure of two aromatic rings 
that are connected together by three carbon atoms that form an oxygenated hetero-
cycle [45]. They are divided into subclasses according to the substitutions on the 
heterocycle and the position and length of the linker between the cyclic moieties, 
and include flavonols (e.g., quercetin), flavones (e.g., luteolin and apigenin), isofla-
vones (e.g., genistein), flavanones (e.g., hesperetin) and homoisoflavanones (e.g., 
cremastranone). Many flavonoids have been studied for their beneficial roles in ocu-
lar diseases. Among the polyphenols members, resveratrol, a molecule especially 
present in grape and berries, can restrain tumor growth in mice by inhibiting ECs 
migration, proliferation and new blood vessel formation interfering with FGF2 and 
VEGF receptor-mediated activation of MAPK in ECs. In ovarian cancer cells, res-
veratrol is able to inhibit HIF-1α expression [46, 49, 50]. Catechin derivatives, pres-
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ent in green tea, also inhibit VEGF and angiogenesis through suppression of protein 
kinase C (PKC), c-fos and c-jun in human breast cancer cells [51], or through sup-
pression of Erk-1/2 phosphorylation in human colon cancer cells [52]. In another 
study, the catechin derivative epigallocatechin-3-gallate (EGCG) was shown to 
interfere with neutrophil-induced angiogenesis [53]. Curcumin, isolated from tur-
meric (Curcuma Longa) showed anti-angiogenesis properties and the ability to 
inhibit bFGF-mediated endothelial cell tube formation in vitro [54, 55].

Another important class of natural molecules that showed promising anti- 
angiogenesis effect is the alkaloids class. Castanospermine, an alkaloid extracted 
from Castanospermum austral is able to inhibit both migration and invasion of 
endothelial cells through the basement membrane, preventing new blood vessel for-
mation [56]. Sanguinarine and brucine have been reported to suppress VEGF- 
mediated EC migration and sprouting both in vitro and in vivo interfering with Akt 
phosphorylation and Src, Erk, Akt, mTOR pathways respectively [57–59]. Other 
two alkaloids, 6′-debromohamacanthin A and tylophorine inhibit VEGF- and 
VEGFR2-mediated angiogenesis through similar mechanisms, suppressing PI3K/
Akt/mTOR pathway [60, 61].

Recently, anti-angiogenic properties through inhibition of VEGFR2 phosphory-
lation were found in the medicinal mixture triphala churna (THL), a mixture formu-
lated in the traditional Indian system of medicine. The tannin compounds chebulinic 
acid and chebulagic acid present in this mixture were the responsible for the anti- 
angiogenic action [62].

7  Angiogenic Retinal Diseases

7.1  Age-Related Macular Degeneration (AMD)

AMD is a leading cause of central vision loss in patients older than 65 years of age 
[63], and its prevalence is increasing due to increased life expectancy affecting 
almost 1 in 4 people by age 80 [64]. The projected number of people with AMD in 
2020 is estimated ~196 million [65]. There are two main types of AMD, the dry and 
wet forms. Dry AMD causes some degree of visual impairment and may sometimes 
progress to blindness from geographic atrophy, a form of chorioretinal degeneration 
affecting the macula. In wet AMD, patients experience sudden loss of vision from 
subretinal exudation or hemorrhage caused by abnormal neovascularization, origi-
nating from the choroid (choroidal neovascularization; CNV) and less commonly, 
originating in the outer retina (retinal angiomatous proliferation; RAP). Left 
untreated, loss of photoreceptors, retinal pigment epithelial (RPE) atrophy and sub-
retinal scarring ensue, leading eventually to irreversible blindness. CNV is induced 
largely by vascular endothelial growth factor A (VEGF-A) [19–21]. This growth 
factor, with a central role in both normal and pathologic vascular growth within the 
eye [21–25], binds to VEGF-A receptors (e.g., Flt-1) on the vascular endothelium.
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Many growth factors are involved in the pathogenesis of neovascular 
AMD. Increased oxidative stress in the RPE and outer retina lead to increased levels 
of hypoxic inducible factor-1 (HIF-1), which up regulates several angiogenic gene 
products including VEGF, angiopoietin 2 (Ang2), vascular endothelial-protein tyro-
sine phosphatase (VE-PTP), platelet-derived growth factor (PDGF-B), stromal- 
derived growth factor (SDF-1) and placental growth factor (PIGF). HIF-1 also up 
regulates VEGF receptors (VEGFR1 and VEGFR2), PDGF receptor (PDGFRB) 
and chemokine receptor type 4 (CXCR4). In the presence of a compromised Bruch’s 
membrane and RPE, these vasoactive factors contribute to CNV.

7.1.1  Current Anti-angiogenic Therapies for AMD

Macugen, a pegylated RNA aptamer directed specifically against the VEGF-165 
isoform, and bevacizumab [66] represent the first 2 anti-VEGF agents approved for 
use in human. While visual acuity was maintained in patients given macugen, it has 
largely been replaced due to superior visual acuity gains seen in patients receiving 
non selective VEGF inhibitors like Ranibizumab (Lucentis), bevacizumab (Avastin), 
and aflibercept (Eylea) [39, 67].

In the landmark ANCHOR and MARINA trials, Ranibizumab was shown to 
deliver visual gains over 2 years of treatment with monthly intravitreal injections. In 
real world scenarios, however, most patients are unable to keep up with such an 
intensive treatment regime. Hence subsequent trials have focused on reducing the 
treatment burden by assessing pro-re-nata (PRN) and quarterly treatment regimens 
following a standard loading dose of 3 monthly injections. These trials showed that 
less frequent administration of ranibizumab produced inferior results compared to 
the monthly regime. PRN treatment regimens were comparable but still required 
patients to attend monthly follow up with their retina physicians. The burden of 
treatment is reflected in the poorer long term outcomes after patients exit the clinical 
trial, with most patients unable to keep up with the rigorous treatment and clinic 
attendance. Bevacizumab, which was originally developed for treatment of colorec-
tal cancer, has been widely used as an open label drug for CNV.

Aflibercept is the latest anti-VEGF agent to be approved for use in wet 
AMD. Compared to ranibizumab and bevacizumab, aflibercept has a much higher 
binding affinity to VEGF. It is thus able to effectively block VEGF even at low con-
centrations and theoretically be able to offer longer dosing intervals than the other 
anti-VEGF agents [68].

Although anti-VEGF-therapy (Avastin®, Lucentis®, Eylea®) has been hugely 
successful in treating a previously blinding disease, there is still a significant num-
ber of wet AMD patients who do not respond to treatment [69, 70]. Further, a recent 
7-year follow up study (SEVEN UP; Seven-year outcomes in ranibizumab-treated 
patients in ANCHOR, MARINA, and HORIZON trials) observed that initial visual 
gains could not be sustained with anti-VEGF therapy [71]. The mean best corrected 
visual acuity decreased to −8.6 letters worse than baseline after 7 years. This long- 
term decline in the efficacy of intravitreal anti-VEGF therapy is concurrent with 
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substantial rates of sub retinal fibrosis (61% at 7  years) and geographic atrophy 
(90% at 7 years) [72, 73]. Long term follow up of patients from the CATT trial 
cohorts showed that 45.3% of patients developed subretinal scars at 2  years, of 
which more than half were classified as “fibrotic” [74]. An additional concern with 
repeated anti-VEGF therapy is the potential to induce RPE degeneration [74]. The 
SEVEN-UP study found that 98% of subjects showed RPE atrophy and other stud-
ies (CATT and IVAN studies) also noted that macular atrophy was associated with 
poorer visual outcome [75, 76]. Clearly, there is a need for new therapeutics to 
overcome these limitations with current anti-angiogenic therapy for wet AMD.

7.1.2  Novel/Experimental Agents

Anti-platelet Derived Growth Factor (PDGF) Pericytes play an important role 
in the maintenance of neovascular endothelial cells by secreting VEGF and other 
growth factors. Fovista (Ophthotech, New York, NY) is a 32-mer pegylated DNA 
aptamer that selectively binds to PDGF-BB and PDGF-AB receptors on pericytes. 
In addition, inhibition of PDGF can reduce the recruitment of non-neovascular 
components such as myofibroblasts, RPE, and glial cells around the neovascular 
endothelial cells to limit the amount of fibrovascular and fibrous tissues. In combi-
nation with an anti-VEGF agent, Fovista enhances the anti-angiogenic effect by 
stripping pericytes from neovascular endothelial cells. In the multi-centered ran-
domized control phase IIb trial, combination therapy of fovista and ranibizumab 
achieved a 62% incremental benefit in terms of visual outcome compared to ranibi-
zumab alone in patients with subfoveal classic CNV.  The combination therapy 
group also had less severe subretinal fibrosis, as well as less progression of subreti-
nal fibrosis compared to the ranibizumab monotherapy group [77]. Unfortunately, 
the phase III trials failed to demonstrate superiority of fovista combination therapy 
over ranibizumab monotherapy.

Rinucumab (Regeneron Pharmaceuticals, Inc.) is a PDGFR β inhibitor. In Phase 
II CAPELLA trial, rinucumab co-formulated with aflibercept did not demonstrate 
benefit over aflibercept alone at 12 weeks, both in terms of visual acuity and ana-
tomical improvement. In fact, the occurrence of ocular adverse events were higher 
in the combination group, driven by a higher rate of conjunctival hemorrhage, eye 
pain and irritation.

Brolucizumab (Alcon) is a single chain humanized antibody fragment that binds 
to all isoforms of VEGF-A. With a molecular weight of just 26 kDa, it is the small-
est anti-VEGF molecule developed for the treatment of wet AMD to date, with the 
potential advantage of better subretinal penetration and less risk of systemic toxicity 
[78]. Phase 1/2 randomized clinical trials comparing brolucizumab with ranibi-
zumab have demonstrated non-inferiority in reduction of central retinal thickness, a 
longer treatment duration compared to ranibizumab, and no unexpected safety con-
cerns [78]. Phase 3 studies are currently underway to test specifically the longer 
activity of brolucizumab and the possibility of a 12 weekly dosing regimen.
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Abicipar Pegol (Allergan) is a designed ankyrin repeat protein (DARPin) with 
highly specific and high affinity binding to VEGF A isoforms. Phase 2 study of this 
compound for diabetic macular edema have shown encouraging results, achieving 
functional and anatomical results compared to monthly ranibizumab with fewer 
injections over a 28-week period. A Phase 3 trial (CEDAR) is currently enrolling 
patients and initial results are expected to be announced in 2018.

Bevasiranib (Opko Health, Inc.) is a first in class, small interfering ribonucleic 
acid (siRNA) designed to silence genes that produce VEGF by degrading messenger 
RNA (mRNA) molecules, thus preventing the translation and synthesis of 
VEGF.  Although Phase II trials have shown promising results of bevasiranib in 
combination with ranibizumab [79], the Phase III trial (COBALT study) has been 
terminated as the treatment has been deemed to be unable to meet the primary end-
point of the study.

Tyrosine Kinase Inhibitors Pazopanib (GlaxoSmithKline, Brentford, UK) is a 
multi-targeted tyrosine kinase inhibitor that inhibits tumor growth factors such as 
stem cell growth factor (c-KIT), fibroblast growth factor receptor (FGFR), PDGFR 
and VEGFR1–3. Pazopanib was developed as an eye drop for the treatment of wet 
AMD, offering a potentially less invasive way of treating this disease. In a large Phase 
III clinical trial, pazopanib eye drops administered daily in conjunction with monthly 
or as needed ranibizumab did not provide additional therapeutic benefit compared to 
ranibizumab alone and did not reduce the number of as needed ranibizumab injections 
by the prespecified ≥50% criteria [80]. Similarly, Regorafenib (Bayer Pharma, 
Leverkusen, Germany) is another multi-kinase inhibitor that exerts anti-angiogenic 
effects by targeting the VEGFR-TIE2 tyrosine kinase and was evaluated as an eye 
drop therapy for wet AMD. In the DREAM study, a single arm open label Phase 2a/b 
study, regorafenib was unable to achieve similar visual acuity gains to established 
anti-VEGF therapies and was terminated after completion of phase 2a.

Multiple Growth Factor Inhibitors Squalamine is a small molecule inhibitor of 
multiple growth factors, including VEGF, PDGF and basic fibroblast growth factor 
(bFGF). In the IMPACT study, a randomized, multi-center, masked, placebo- 
controlled, Phase II clinical trial completed in 2015, squalamine lactate eye drops 
(OHR-102) demonstrated a 5.1 letter incremental benefit in visual acuity when used 
in combination with an anti-VEGF agent versus anti-VEGF monotherapy. The 
 combination group also had a greater proportion of patients (42%) who achieved 
a ≥ 3-line gain in vision at 9 months, compared to the anti-VEGF monotherapy 
group (28%). Pan-90806 (PanOptica, Bernardsville, NJ, USA) is a topically admin-
istered inhibitor of VEGF receptor 2, fibroblast growth factor 1–3, tyrosine kinase 
endothelial receptor 2, and other proangiogenic factors [81]. Initial results from the 
Phase1/2 study are promising, with 45–50% of treated patients with a positive 
response with regards to vision, lesion morphology and retinal thickness.

Integrins Integrins are a set of cell adhesion and cell signaling receptors that have 
been implicated in various systemic diseases from cancer to autoimmune diseases 
and also ocular angiogenic diseases including CNV and proliferative diabetic reti-
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nopathy [82]. Targeting integrins in the treatment of CNV is promising because 
integrins have the advantage of targeting pathways both upstream and downstream 
of VEGF signaling. Anti-integrin therapy inhibits endothelial cell proliferation well 
before neovascular tissue can sprout, and prevents further growth of existing neo-
vascular tissue.

ALG-1001 (Luminate, Allegro Ophthalmics) is a first in class multi-integrin 
receptor inhibitor designed for the treatment of neovascular AMD and diabetic mac-
ular edema [82]. In phase 1b/2a study intravitreal ALG-1001 monotherapy demon-
strated visual acuity gains of 4 letters at 6 months with a prolonged treatment effect 
that lasted 4 months with almost complete resolution of subretinal fluid.

7.1.3  Gene Therapy

Modification of anti-angiogenic gene expression via viral vectors has the potential 
to provide long term sustained anti-angiogenic effect, thus overcoming the need for 
repeated intravitreal injections. RetinoStat (Biomedical, Oxford, UK) is a lentiviral 
Equine Infectious Anemia Virus (EIAV) vector expressing endostatin and angio-
statin, angiogenic inhibitors that block endothelial cell migration and proliferation. 
The Phase I trial (GEM study) has shown that Retinostat has a favourable safety 
profile and demonstrated sustained expression after subretinal delivery [83]. AVA- 
101 (Avalanche Biotechnologies, Inc), a subretinal gene therapy for neovascular 
AMD, is comprised of the adeno-associated virus serotype 2 (AAV2) vector con-
taining the gene encoding soluble fms-like tyrosine kinase-1 (sFlt-1), which binds 
to and reduces the levels of VEGF and PIGF thus blunting the pro-angiogenic drive 
[84]. In Phase 2a study however, AVA-101 delivered a mean VA improvement of 
only 2.2 letters and mean retinal thickness increased by 25 mm at 12 months.

7.2  Myopic Choroidal Neovascularization

Myopic choroidal neovascularization mCNV is a sight threatening complication of 
pathologic myopia (PM) and is the second common form of CNV after age related 
macular degeneration [85, 86]. The mCNV is often bilateral and results in permanent 
and profound visual loss in younger individuals often during their working years [87] 
and shares some similarities in pathophysiology with other retinal angiogenic dis-
eases. Over the past few years, clinical trials and real world experience have demon-
strated the efficacy of intravitreal injections of anti-vascular endothelial growth factor 
(anti-VEGF) for treating mCNV and is now considered first line therapy [88].

Pathophysiology of mCNV The mechanism responsible for the pathogenesis of 
mCNV is complex and multifactorial. While there are similarities between mCNV 
and AMD-CNV [89, 90], additional factors specific to myopia are considered 
equally important. Most importantly, the development of mCNV is suggested to be 
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a progression of myopic maculopathy and pathologic myopia (PM) [91]. The 
mCNV occurs in about 5–11% of eyes with PM [92], and three theories have been 
proposed to explain the pathophysiology of mCNV. First theory suggests a mechan-
ical stress on the retina from the progressive elongation of the eye [93]. This distor-
tion of the RPE is believed to lead to an imbalance between pro and anti angiogenic 
factors which results in mCNV formation [94]. The second theory assumes the 
development of mCNV is related to a choroidal filling delay at the macular site and 
diffused thinning of the choroid [95]. The third theory suggests a heredo- degenerative 
process that results in pathologic myopia and mCNV. This theory is backed up by 
strong evidence for a genetic basis as suggested by twin and familial studies in 
pathologic myopia [96]. Further research in the pathophysiology of mCNV will 
likely provide insight for the optimal treatment for mCNV.

7.2.1  Current Anti-angiogenic Therapies for mCNV

Anti-vascular Endothelial Growth Factor Drugs Prior to the use of anti-VEGF 
therapy, treatment options for mCNV were limited to thermal laser photocoagula-
tion, photodynamic therapy (PDT) with verteporfin and macular surgery. These 
treatments were largely unsatisfactory and lacked significant visual improvement 
and have now been superseded by anti-VEGF therapy. In mCNV, similar VEGF 
driven pathogenesis as AMD is postulated to occur [97]. With the success of anti- 
VEGF therapy in treating other retinal angiogenic diseases, it is no surprise that 
mCNV, has also shown good response to anti-VEGF therapy and now has become 
the first line treatment [88]. The strongest evidence of anti-VEGF use for mCNV 
comes from two large multi-centered, double-masked, randomized, controlled clini-
cal trials [98, 99]. The RADIANCE (The Ranibizumab and PDT with verteporfin 
evaluation in myopic choroidal neovascularization) study was a 12-month, phase 
III, randomized double-masked, multicenter study comparing the efficacy and 
safety and efficacy of ranibizumab 0.5 mg given intravitreal versus verteporfin PDT 
in patients with mCNV [98]. This trial demonstrated the superiority of ranibizumab 
0.5 mg over PDT with verteporfin as assessed by change in best corrected visual 
acuity (Ranibizumab regimens, BCVA gain 10.5–10.6 letters versus PDT with 
verteporfin, BCVA gain 2.2 letters up to month 3). The improvement in vision for 
the ranibizumab groups was maintained at 12  months with low total number of 
injections (3.5 to 4.0 injections) depending on retreatment regimen. In the disease 
activity group, patients were assessed for retreatment based on vision impairment 
attributable to presence of intra or subretinal fluid or active leakage secondary to 
mCNV.  This regimen was shown to be non-inferior to retreatment according to 
visual acuity stabilization, at the same time with lower retreatment needs. The 
RADIANCE study confirmed the results of the REPAIR trial, a phase II prospec-
tive, multicenter study of intravitreal ranibizumab 0.5  mg in mCNV.  The study 
proved the safety and efficacy ranibizumab as primary first line therapy in a cohort 
of treatment naïve patients with mCNV [100].
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The MYRROR trial was a 48-weeks, phase III, multicenter, randomized, double- 
masked, sham-controlled study designed to investigate the efficacy and safety of 
intravitreal aflibercept 2 mg administered in patients with mCNV. 122 patients were 
recruited and patients in the intravitreal aflibercept group had a mean BCVA gain of 
12 letters compared to a 2-letter loss in the sham group with improvement in BCVA 
maintained to week 48. Re-treatment was allowed in patients after the first intravit-
real aflibercept at baseline based on a predefined criterion which included those 
who had a reduction in BCVA, increased activity clinically or on imaging, or 
deemed necessary by the investigators. The mean number of injections was also low 
in this study (4.2 injections over 48 weeks). Significant improvement in quality of 
life (National Eye Institute Visual Function Questionnaire 25 and EuroQol-5 
Dimension score) was also demonstrated in patients treated with aflibercept [99]. 
These results support the early initiation of anti-VEGF treatment after diagnosis of 
mCNV to achieve maximal visual gains.

Although non-randomized controlled trials have been performed using bevaci-
zumab in mCNV, many case series have also reported favorable visual outcomes. 
Prospective non-randomized interventional clinical studies reported significantly 
improved vision after treatment with bevacizumab. Gharbiya et al. reported a sig-
nificant improvement in mean BCVA to 44 letters from baseline of 24.8 letters 
[101]. Chan et al. reported an improvement in mean BCVA logMAR (0.38 com-
pared to 0.62 at baseline) with 72.4% achieving an improvement of 2 lines or more 
[102]. Iacono et al., reported improvement of mean BCVA from 54.8 letters to 59.2 
letters at 24 months [103]. Ruiz-Moreno et al. reported an improvement from BCVA 
logMAR 0.55 to 0.38 at 12 months [104].

While anti-VEGF therapy has been used successfully in both mCNV and CNV 
secondary to age-related macular degeneration (AMD), key differences in the regi-
men has been shown in all the above studies. In CNV secondary to AMD, intensive, 
long term repeated injections are required. In contrast, the retreatment load is much 
lower in mCNV. On average, only 3–4 injections were needed over the first year in 
the RADIANCE and MYRROR study. Several other studies have also reported a 
mean number of injections of ranibizumab to be between 4–5 in the first year which 
tapers to 1–2 over the second and third years [105, 106]. The only time more injec-
tions were needed was when recurrence occurred with a mean of 6.9 injections for 
eyes with recurrence and 2.7 injections for eyes without recurrence [107]. Another 
difference from the treatment of AMD is that in mCNV, a 3-monthly loading phase 
appears to be unnecessary [108–111]. After initial treatment and stabilization, the 
mCNV can be monitored based on a combination of functional and morphological 
features. The treatment strategy suggested by the RADIANCE study used visual 
acuity stabilization criteria (no change in BCVA as compared to 2 preceding visits) 
and disease activity criteria (based on morphological features defined as intra or sub 
retinal fluid or active leakage secondary to mCNV as seen on OCT or leakage seen 
on FA) [112]. Visual acuity stabilization criteria required that vision be lost before 
re-treatment while disease activity guided criteria aimed to treat anatomical changes 
that preceded vision loss. Both strategies showed good outcomes however number 
of injections using disease activity (2 injections) was lower than visual acuity stabi-
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lization criteria (4 injections). This suggest that the disease activity criteria provides 
a more sensitive approach to evaluating disease recurrence and provides earlier 
intervention resulting in less treatments for similar gains [98].

Data on long-term visual outcome in mCNV treated with anti-VEGF therapy are 
limited. Several studies have reported good visual outcomes up to 3–4 years [101, 
113, 114]. Results from studies reporting follow up of 4 years and beyond are less 
favorable. In a retrospective cross sectional study Oishi et al. evaluated the outcome 
of eyes treated with intravitreal bevacizumab with follow up of at least 4 years and 
reported significant visual improvements at 1, 2 and 3 years, however the improve-
ment became non-significant at 4 years after treatment. The main reason for the 
decline at 4 years might be related to chorioretinal atrophy (CRA), which affected 
73% of eyes [106]. Sarao et al., reported similar findings in a prospective interven-
tional study with an extension phase with mean BCVA improvement of −0.13 at 
24 months in 101 eyes with mCNV treated with bevacizumab and an increase in 
CRA area in the same time period [115].

Strategies for Managing mCNV The optimal current management of patients 
with mCNV is prompt diagnosis and prompt treatment with intravitreal anti-VEGF 
therapy [116–118]. A possible strategy of treatment involves a single injection at 
diagnosis followed by a pro-re-nata regimen. Subsequent follow up should be 
monthly for the first 2 months [102, 119]. Monitoring for follow up can either be 
based on disease activity, which is defined as a drop in vision, new symptoms, or 
signs of mCNV activity on OCT or FA. If activity is noted anti-VEGF therapy is 
indicated. An alternative monitoring strategy is based on visual stability. Wong et al. 
suggest that, if there is no activity after an injection and 2 successive monthly visits, 
it is reasonable to prolong follow up to 3 monthly for the first year. Patients should 
be educated to return immediately if they experience any metamorphopsia or 
decrease in vision.

7.3  Diabetic Retinopathy (DR)

Diabetic retinopathy (DR), a specific microvascular complication of DM, remains 
the leading cause of acquired vision loss worldwide in middle-aged and therefore 
economically active people [120]. The prevalence of DR and vision-threatening DR 
were 34.6% and 10.2%, respectively [121]. With the increasing number of people 
with diabetes, the number of DR and vision-threatening DR (VTDR), which 
includes severe non-proliferative DR (NPDR), proliferative DR (PDR) and diabetic 
macular edema (DME), has been estimated to rise to 191.0 million and 56.3 million 
respectively by 2030 [120].

Pathophysiology of DR The pathogenesis of DR is multifactorial. Chronic hyper-
glycemia is thought to be the primary cause for its development [122, 123]. 
Development of diabetic retinopathy changes are summarized in Fig. 12.3. It com-
promises a retinal autoregulatory mechanism, vascular changes and retinal isch-
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emia. Various other biochemical pathways have also been suggested to play a role 
in the development and progression of DR in people with diabetes—for example, 
the accumulation of sorbitol and advanced glycation end (AGE) products [124, 
125], impaired autoregulation of retinal blood flow [126], increased level of protein 
kinase C [127], intraocular and serum angiotensin-converting enzyme (ACE) [128–
130], plasma prekallikrein [131], erythropoietin [132] and various growth factors 
(e.g., vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), 
platelet-derived growth factors and pigment-derived factor (PEDF)) [133–135]. The 
accumulation of sorbitol damages vascular cells and pericytes, leading to the thick-
ening of retinal vascular endothelial cell basement membranes and the closure of 
retinal capillaries.

Many angiogenic and anti-angiogenic factors had been implicated in the patho-
genesis and progression of diabetic retinal disease, including vascular endothelial 
growth factor (VEGF) [136–143], platelet-derived growth factor (PDGF) [144, 
145], increased level of nitric oxide (NO) [146], hepatocyte growth factor (HGF) 
[141, 142, 147], angiopoietin-2 [148, 149], cysteine-rich 61 (CYR61) [150–152] 
and sCD200 [153]. VEGF promotes angiogenesis and disassembly of junctions 

Fig. 12.3 Development of diabetic retinopathy changes
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between endothelial cells causing formation of new vessels and macular edema in 
patients with diabetes. Its effect is amplified by basic fibroblast growth factor 
(bFGF) [154, 155], which is also increased in proliferative diabetic retinopathy 
(PDR) [156]. Hypoxia and AGEs increase VEGF levels in the vitreous that causes 
neovascularization in PDR through complex signaling pathways [157]. VEGF also 
has the ability to induce vascular leakage in the retina by lowering the levels of 2 
proteins that are critical for the maintenance of tight junctions, occludin and zonula 
occluden 1 (ZO-1) [158, 159]. In addition, Pigment Epithelium-Derived Factor 
(PEDF), a natural inhibitor of angiogenesis in the vitreous [160, 161] is decreased 
under hypoxic conditions in PDR eyes [147, 162–165] and decreased TGF-β levels 
were found in the vitreous of NPDR [147] and PDR [166] patients. TGF-β, secreted 
by the retinal pigment epithelial (RPE) cells [167, 168] and pericytes [169] in the 
retina, regulates the growth of new vessels.

7.3.1  Current Anti-angiogenic Therapies for DR

Panretinal photocoagulation (PRP) is the current gold standard treatment for patients 
with severe NPDR and PDR. In type 2 diabetes with severe NPDR and non-high- 
risk PDR, the risk of severe visual loss and vitrectomy was reduced by 50% (2.5% 
vs 5%, p = −0001) for those who received prompt PRP, compared to those who have 
deferred PRP until the development of high-risk PDR. More recently, the Diabetic 
Retinopathy Clinical Research Network (DRCR.net) showed that intravitreous 
Ranibizumab (IVR) could be a potential treatment for patients with PDR [130]. The 
IVR group showed less frequency of peripheral visual field loss (−422  dB vs 
−23 dB, p < 0.001), less need for vitrectomy (4% vs 15%, p < 0.001) and less inci-
dence of DME (9% <28% p < 0.001) compared to the group that received PRP. For 
IVR, the reported risk of endophthalmitis was 0.5% (1 out of 2581).

For diabetic macular edema (DME) involving the fovea center, anti-VEGF treat-
ment (e.g. Aflibercept, Ranibizumab and Bevacizumab) had been shown to provide 
a better visual acuity and anatomical outcomes, compared to focal/grid laser treat-
ment alone. Based on DRCR.net protocol T (2-years results), both aflibercept and 
ranibizumab yielded more superior visual and anatomical outcomes compared to 
bevacizumab, with aflibercept achieving quicker recovery in the first year for those 
with presenting visual acuity of 20/50 or worse [131]. The addition of deferred laser 
treatment (>24 weeks) has also been shown to reduce the need for repeat anti-VEGF 
injections. RISE and RIDE studies showed patients with ranibizumab (0.3 mg and 
0.5 mg) achieved approximately 10 letters more, compared than the sham group at 
24 months (p < 0.05). The adverse events were no different between the ranibi-
zumab groups versus sham [170]. For aflibercept, VIVID and VISTA showed 
aflibercept (every 4 weeks and every 8 weeks) can achieve best-corrected visual 
acuity improvement from baseline to week 148 of 10.4, 10.5 and 1.4 letters 
(p < 0.0001) in VISTA and 10.3, 11.7 and 1.6 letters (p < 0.0001) in VIVID, respec-
tively [171].
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Novel/Experimental Agents Apart from the above-mentioned therapies, research 
on various potential agents for DR/DME is currently underway. These include inter-
leukin- 6 inhibitor (tocilizumab) [133], Teprotumumab [134], ASP8232 [135], 
Abicipar Pegol [172], Luminate (ALG-1001) [173], AKB-9778 (Tie2 upregulators) 
[174] and anti-angiopoietin 2 therapy [175].

7.4  Retinal Vein Occlusion (RVO)

An estimated 16 million adults are affected by retinal vein occlusions (RVO) [176]. 
RVO is classified into branch retinal vein occlusion (BRVO) where there is occlu-
sion at the arteriovenous intersection and central retinal vein occlusion (CRVO) 
where the occlusion occurs proximal or at the lamina cribrosa of the optic nerve 
[177]. The prevalence of BRVO is five times that of CRVO [176]. Complications 
that ensue include macular edema, macular ischemia and retinal or anterior segment 
neovascularization. Untreated BRVO can have devastating visual loss from vitreous 
hemorrhage and tractional retinal detachment, while non-perfused CRVO may lead 
to neovascular glaucoma.

Pathogenesis of RVO While the exact pathophysiology of retinal vein occlusions is 
not well elucidated, the associated complications are thought to be VEGF driven. 
Following a venous occlusion, hypoxia occurs in the retina. Hypoxia causes up 
regulation of growth factors, integrins and proteinases, which result in endothelial 
proliferation and migration [178, 179]. In ischemic retinal vein occlusion, ocular 
neovascularization occurs as a result of increased VEGF levels and various cyto-
kines and growth factors such as interleukin-6 (IL-6), IL-8, interferon induced pro-
tein- 10, monocyte chemotactic protein-1 and platelet derived growth factor-AA 
[180–182]. While macular edema was previously thought to be a result of transuda-
tion of fluid into the retina due to high intravenous pressure, current evidence point 
towards VEGF as a major cause of macula edema [183].

7.4.1  Current Anti-angiogenic Therapies for RVO

Anti VEGF Agents Anti VEGF agents are currently standard of care in managing 
retinal vein occlusions. The three main agents include ranibizumab and aflibercept 
which are FDA approved, and off label use of bevacizumab.

Ranibizumab Major initial randomized controlled trials assessing the efficacy of 
ranibizumab in RVO were the BRAVO and CRUISE studies [184–186]. In the 
BRAVO study, the authors investigated ranibizumab vs sham injections up till 
6 months in BRVO related macular [186]. In the extension trial, the sham group had 
monthly ranibizumab injections till month 12 [185] where 56.0%–60.3% of the 
ranibizumab group and 43.9% of the sham/ranibizumab group achieved 3 lines or 
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more improvement. This study showed that with delayed treatment, visual improve-
ment can still occur, but not to the level of those patients treated early.

The CRUISE study assessed the use of ranibizumab in CRVO related macular 
edema [184–186]. Its research methodology is similar to the BRAVO study whereby 
after 6 months the sham group could receive ranibizumab. At month 12 [185], the 
mean BCVA change was 13.9 letters in the ranibizumab group and 7.3 letters in the 
sham/ranibizumab group. This is despite a reduction of central foveal thickness of 
more than 400 μm in all groups. The authors also found that VEGF suppression not 
only results in resolution of macula edema, but also resolution of retinal hemor-
rhages. The mechanism by which retinal hemorrhages resolve is unknown, but pos-
tulated to be the effect of ranibizumab reducing the influx of RBCs, tipping the 
balance towards hemorrhage removal [187].

Long term data was provided by the HORIZON trial and the RETAIN study 
[188, 189]. The HORIZON trial found that decline in visual acuity was associated 
with fewer injections in CRVO patients, but BRVO patients remained stable despite 
fewer injections [189]. The RETAIN study confirmed that CRVO patients generally 
had worse prognosis than BRVO patients [188]. CRVO patients were likely to have 
a higher VEGF load compared to BRVO patients due to peripheral ischemia, which 
could account for the need for more VEGF blockade (i.e. more injections) in order 
to maintain vision.

The SHORE study was conducted to assess the optimal treatment regimen after 
RVO patients were stabilized by monthly injections for 7 months [190]. There was 
no difference in patients treated by PRN or monthly regimen, with over 70% achiev-
ing 20/40 or better vision at month 15. The PRN treatment group received about half 
the number of injections compared to monthly treatment, which strengthened the 
evidence for a criteria driven treatment regimen.

Aflibercept Major treatment trials with aflibercept in RVO include the VIBRANT, 
COPERNICUS and GALILEO study [191–194]. The VIBRANT study compared 
aflibercept to grid laser in treating BRVO related macular edema [191]. The grid 
laser group was eligible to receive intravitreal aflibercept from week 24 onwards. At 
week 52, 57.1% in aflibercept group and 41.1% in the laser/aflibercept group had 3 
lines or more improvement in vision. Rescue intravitreal aflibercept given at week 
24 onwards resulted in substantial improvements in vision and reduction in central 
retinal thickness. Similar to the bevacizumab trials, despite rescue with intravitreal 
anti-VEGF therapy the final visual outcome was still significantly worse compared 
to the aflibercept group (i.e. early treatment with anti-VEGF gave better visual 
outcome).

The COPERNICUS and GALILEO studies were phase III, randomized, double 
masked trials which were designed to evaluate the efficacy of aflibercept on CRVO 
related macular edema [192–195]. In the COPERNICUS trial, patients were ran-
domized to receive monthly intervals of aflibercept or sham injections for 6 months 
[192]. In the extension trial the sham group received PRN monthly aflibercept up till 
month 12, and the aflibercept group received PRN treatment [193]. A 3 lines or 
more visual improvement was seen in 55.3% of aflibercept group and 30.1% of 
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sham/aflibercept PRN group [193]. In GALILEO study [194, 195], patients were 
initially randomized to receive 4 weekly aflibercept or sham injections up till 
20 weeks. Then, from week 24 to 48, the aflibercept group received aflibercept in a 
PRN regimen, while the sham group continued to receive sham injections, differing 
in methodology from the COPERNICUS trial. At week 52, 60.2% in aflibercept 
group had more than 3 lines improvement compared to 32.4% in the sham group.

Bevacizumab Epstein et al. compared intravitreal bevacizumab to sham injection 
in a randomized trial for patients with macular edema secondary to CRVO [196, 
197]. In the first part of the study, patients received either 6 monthly injections of 
bevacizumab or sham up to a period of 6 months [197]. In the extension trial, both 
groups received 6 monthly injections of bevacizumab up till month 12 (delayed 
treatment for the sham group). At month 12, 60% of the early treatment group 
achieved 3 lines or more improvement in vision, compared to 33% in the delayed 
treatment group. Bevacizumab was also found to be beneficial in reducing anterior 
segment neovascularization. After 12 months of treatment, no patients developed 
rubeosis in both groups [196]. This study also showed that early treatment was 
required in order to obtain satisfactory visual improvement. A study by Hikichi 
et al. [198] confirmed the long term benefit of intravitreal bevacizumab over 2 years. 
The percentage of patients with VA 20/40 or better was 4% at baseline and 66% at 
2 years. There were no ocular adverse events and no cataract surgery was required 
at 2 years.

The MARVEL study compared bevacizumab to ranibizumab in the treatment of 
macular edema secondary to BRVO [199] where 59.4% of ranibizumab and 57.8% 
of bevacizumab groups had 3 or more lines improvement at 6 months. There were 
no significant differences in terms of reduction in central retinal thickness. Due to 
its small sample size (n  =  75), this study failed to prove non-inferiority of 
bevacizumab.

There is a lack of evidence regarding the ideal treatment regimen for bevaci-
zumab. Even though a small retrospective study showed that a treat and extend regi-
men may be as efficacious as a PRN regimen for BRVO related macular edema 
[200]. Additional studies are required to draw definite conclusions. It is also impor-
tant to note that while the use of bevacizumab to treat retinal vein occlusions is 
efficacious and safe, it remains largely as an off-label use.

Currently, there is a lack of head to head trials comparing different anti-VEGF 
agents for retinal vein occlusions. Comparisons across studies are difficult due to 
differing patient characteristics and recruitment.

Novel/Experimental Agents Anti-VEGF therapy is currently the mainstay of 
treatment in retinal vein occlusions. There are newer agents being tested currently 
in phase I/II trials which target the angiogenesis pathway [201]. For example, AKB 
9778 (Aerpio therapeutics), a competitive inhibitor of vascular endothelial protein 
tyrosine phosphatase (VE-PTP) is being tested in 6 patients with diabetic macula 
edema administered via subcutaneous injections of varying doses with no safety 
concerns [202]. In mice models, AKB 9778 promotes the activation of tyrosine 
kinase with immunoglobulin and epidermal growth factor homology domain 2 (Tie- 
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2), thus reducing vascular leakage and neovascularization [202]. A phase II clinical 
trial using conbercept for patients with macular edema secondary to RVO reported 
benefits for both BRVO and CRVO patients [203].

8  Future Directions in Angiogenesis Based Therapies

Currently, anti-VEGF therapy is the preferred treatment for retinal angiogenic dis-
orders, but frequent need for intravitreal re-injections and their associated risks, 
treatment burden and financial costs, pose a serious problem. Also, a considerable 
number of the patients with wet AMD do not respond to anti-VEGF treatment. For 
example, intervention with ranibizumab only improves vision in one-third of 
patients and around 10% do not respond to the therapy. With more than 70% of wet 
AMD patients showing no significant vision improvements with anti-VEGF agents, 
high potential exists for alternative therapies. However, to compete with current 
treatments, new therapies will need to improve on many different areas, such as 
convenience, increased efficacy as well as improved safety and tolerability [204]. 
Some of the potential future anti-angiogenic targets are discussed below.

PPAR γ Peroxisome proliferator-activated receptor γ (PPAR γ) is a ligand acti-
vated nuclear receptor that plays an important role as a transcription factor in the 
regulation of gene expression linked to a variety of physiological processes. It is 
expressed in many different tissues such as adipose tissue, immune/inflammatory 
cells (monocytes, macrophages), skeletal muscle, heart, kidney, liver, lung, and the 
eye ball. Many of these tissues are relevant in AMD etiology, since lipid metabo-
lism, inflammation and retinal cells are particularly involved in the progression of 
the disease [205]. PPAR γ is involved in many aspects of biology such as fat cell 
differentiation, glucose and lipid metabolism, aging, inflammation and immune 
response [206–208] and recent studies showed substantial anti-angiogenesis effects 
of activated PPAR γ in different organs [209–211]. Furthermore, PPAR γ is involved 
in oxidative stress mediated apoptosis and regulation of inflammatory gene expres-
sion. Since AMD often presents neo-angiogenesis, inflammation and oxidative 
stress mediated cell death, evidences are accumulating on the potential of PPAR γ 
as a pharmaceutical target for AMD treatment. PPAR γ has been reported to be 
highly expressed in AMD patients [212] and its ligands troglitazone and rosigli-
tazone, inhibit choroidal angiogenesis and RPE migration in vitro [213]. Intake of 
omega-3 long-chain poly unsaturated fatty acids (ω-3 LCPUFAs), agonists of 
PPARs, is associated with attenuation of retinal angiogenesis [214, 215]. Even 
phagocytosis of the photoreceptor outer segment by RPE cells, one of the most 
important event in retinal homeostasis, leads to activation of PPAR γ. For all these 
reasons PPAR γ could be a key molecule in AMD prevention and treatment, but 
more studies are needed to prove clinical relevance of its modulation by different 
natural and synthetic ligands.
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Anti-immune or Anti-inflammatory Pathways Recently, comparative transcrip-
tome analysis of AMD patients and normal human donor eyes has shed light on the 
molecular pathways underlying AMD’s onset and progression [216]. Newman et al. 
[216] reported cell mediated immune responses as a pivotal feature of all AMD 
phenotypes. For this reason, working on the role of the immune system to treat 
neovascular AMD, could be a promising way to develop new treatments and dis-
cover new pharmacological targets.

mTOR Mammalian target of rapamycin (mTOR) is an evolutionarily conserved 
serine/threonine kinase that plays a central role in integrating environmental cues 
and cues from the immune microenvironment. Sirolimus (previously known as 
rapamycin, Santen Pharmaceutical, Inc. and MacuSight, Inc.) was found to possess 
potent immunosuppressive and antiproliferative properties. Sirolimus blocks the 
T-lymphocyte activation and smooth muscle and endothelial cell proliferation that 
occurs in response to antigenic and cytokine (interleukins IL-2, IL-4, and IL-15) 
stimulation. Sirolimus arrests cell cycle progression by direct interaction with two 
intracellular proteins (immunophilin FK binding protein 12 (FKBP-12) and the 
mammalian target of rapamycin (mTOR)) [217]. Sirolimus markedly inhibits 
response of vascular endothelial cells to stimulation by VEGF [218] and inhibits 
hypoxia-inducible factor-1𝛼, a major upstream regulator of VEGF [219]. In a mice 
model of AMD, administration of sirolimus inhibited both choroidal and retinal 
neovascularization [220]. A phase 1 study of 30 patients found that a single intravit-
real administration of sirolimus (352 𝜇g) was associated with improvement in visual 
acuity and reduction in retinal thickness. Preliminary findings suggested that sub-
conjunctival administration (sirolimus 1320 𝜇g) was as effective as intravitreal 
injection, and this feature of Sirolimus will be greatly welcomed by patients and 
ophthalmologists since it decrease patients discomfort for intravitreal injection.

TNF-α Tumor necrosis factor alpha (TNF-𝛼) is a key molecule that plays a central 
role in inflammation, apoptosis, and immune system and the anti-TNF-𝛼 monoclo-
nal antibody infliximab (Remicade, Centocor, Inc.) is successfully used in the treat-
ment of many inflammatory diseases. Three wet AMD patients treated with 
intravenous infliximab for inflammatory arthritis showed blood vessel regression 
and improvement of visual acuity [221]. It has been reported that intravitreal inflix-
imab also inhibited laser-induced CNV in rats [222]. In another study, three patients 
treated with intravitreal infliximab displayed an improved visual acuity and central 
foveal thickness [223]. A phase 1 study is currently ongoing to specifically evaluate 
infliximab efficacy for wet AMD.

Complement Component 3 Complement component 3 (C3), is a key activator of 
the complement pathway and part of the molecular program that activate innate 
immunity. C3, as well as others complement factors, are often found in proximity of 
drusen or even inside them [224] and genetic studies revealed correlation between 
AMD and certain C3 variants [225]. C3 induces VEGF expression in vivo and in 
vitro, and certain C3 gene polymorphism increases the risk of AMD [225]. Thus, 
inhibition of C3 has the ability to stop the complement cascade activation leading to 
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a decrease of local inflammation, tissue damage, and down regulation of VEGF. Thus, 
inhibition of immune pathways may play a therapeutic role in wet AMD. POT-4 
(Potentia Pharmaceuticals) binds and inhibits C3 [226] displaying a long-lasting 
effect (3 to 6 months). A phase 1 study will provide safety and tolerability informa-
tion on POT-4 injected into wet AMD patients.

The general idea, sustained by many different studies on the association between 
inflammation and neovascularization, is that, the inhibition of inflammation could 
prevent or slow down many of the early events in AMD pathophysiology, such as 
inflammatory damage to retinal tissue, drusen formation, macrophages recruitment 
and the establishment of a chronic inflammatory hot-spot that will establish the 
conditions that sustain neovascularization.

Integrin Receptor Antagonist Integrins are transmembrane proteins that mediate 
the attachment between a cell and its surrounding extra cellular matrix. They are 
composed of 𝛼 and 𝛽 subunits that heterodimerize to produce more than 20 different 
receptors. In pathologic condition such as proliferative vitreoretinopathy, altered 
patterns of integrin expressions are associated with RPE activation, migration, and 
proliferation [227] that in turn could lead to instability of the RPE monolayer and 
detachment from the intra-photoreceptor matrix [228]. These changes are thought 
to perturb RPE functions disrupting oxygen supply, nutrients uptake, and growth 
factors secretion, interfering with the homeostasis of the choroid/RPE/photorecep-
tor system [229]. It has been revealed that 𝛼v𝛽1, 𝛼v𝛽3, and 𝛼v𝛽5 integrins were 
expressed in neovascular ocular tissue from patients with wet AMD [230]. Hammes 
et  al. [231] showed that subcutaneous injection of 𝛼v𝛽3 and 𝛼v𝛽5 antagonists 
remarkably prevented retinal neovascularization in a mouse model of hypoxia 
induced proliferative retinopathy. These results indicate the possibility that 𝛼v𝛽3 
and 𝛼v𝛽5 integrins might be a therapeutic target for AMD [232]. Additionally, the 
effectiveness of 𝛼v𝛽1 and 𝛼v𝛽5 integrin antagonists (JNJ-26076713) against ocular 
neovascularization has been well documented [233]. There are two therapeutic can-
didates to antagonize 𝛼v𝛽1 integrin, JSM6427 and volociximab, for the treatment of 
AMD.

PEDF It is a neurotrophic factor secreted by the RPE and widely expressed in 
central and peripheral nervous system. RPE cells are known to secrete PEDF api-
cally to sustain photoreceptor functions and VEGF on the basal side to promote 
correct vascularization. PEDF is also an endogenous inhibitor of angiogenesis in the 
eye [234] and the correct balance between PEDF and VEGF secretion by RPE cells 
in the retina is extremely important. Inappropriate expression levels of PEDF and 
VEGF are associated with neovascularization [235]. Increases in VEGF and its 
receptor VEGFR2 and simultaneous decrease in PEDF were found in aged rats. 
These results suggest that normal aging retina is at increased risk for neovascular 
changes. A critical balance appears to exist between PEDF and VEGF, with PEDF 
counteracting the angiogenic potential of VEGF [236]. A decrease in PEDF may 
disrupt this balance and create a permissive environment for the formation of CNV 
in AMD.
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ATG003 Cigarette smoking is the strongest environmental risk factor for wet 
AMD. Recently, it has been reported that PEDF protein expression was decreased 
in RPE from smoker patients with AMD compared with controls. It was also 
reported that nicotine, a potent angiogenic agent, increased VEGF/PEDF ratio in the 
RPE through nicotinic acetylcholine receptor (nAchR) [237]. In this context, a 
unique therapeutic eye drop for AMD treatment, ATG003, has been developed. 
ATG003 (CoMentis, formerly Athenagen) antagonizes nAchR pathway that medi-
ates angiogenesis. It is the first noninvasive eye drop therapy for AMD, and phase 2 
clinical trial has recently been completed. Evaluation of ATG003 therapy in combi-
nation with ranibizumab or bevacizumab are ongoing.

AdGVPEDF.11D (GenVec, Inc.) is an adenoviral vector allowing the expression 
of large amount of PEDF in the target tissue upon intravitreal injection. PEDF over-
expression inhibits ocular neovascularization in murine AMD models [238]. A 
phase 1 single dose trial enrolled 28 patients with severe neovascular AMD [239]. 
The percentage of patients who had no change or improvement in lesion size at 
6 months was 71% in the high-dose group versus 50% in the low-dose group. A 
clinical study suggested the possibility that anti-angiogenic activity may last for 
several months (up to 6 months) after a single intravitreous injection as half of the 
treated lesions did not change in size from baseline [239]. Although anti-VEGF 
therapy (intravitreal injection of ranibizumab, pegaptanib, aflibercept, and bevaci-
zumab) is regarded as the more effective treatment for AMD now [240], the poten-
tial therapeutics of PEDF may be positive indication for future treatment of AMD.

9  Conclusions

Angiogenesis is a complex process largely induced by VEGF. Although the molecu-
lar mechanisms by which VEGF is upregulated in retinal disorders in response to 
hypoxia and other insults is not clear, VEGF plays a critical role in the retinal angio-
genic disorders such as AMD, DR, RVO and myopic CNV. The anti-VEGF agents 
are the most commonly used to prevent the disease progression and provide visual 
improvement for these retinal diseases and they have become standard of care in 
treating these conditions. Bevacizumab, aflibercept, and ranibizumab suppress 
VEGF levels in eye when administered via intravitreal route. However, despite suc-
cess with anti-VEGF-therapy, a significant number of AMD patients do not respond 
with appreciable clinical improvement. In fact, the mean visual outcomes actually 
drop below baseline visual acuity with anti-VEGF therapy observed in a 7 year fol-
low up study. The non-responsiveness of AMD patients and insufficient efficacy of 
anti-VEGF drugs is not due to their inability to block VEGF pathway but rather 
involvement of other than VEGF angiogenic pathways in the abnormal neovascular-
ization and therefore anti-VEGF therapies alone are not sufficient to treat neovascu-
larization. Further, it has been demonstrated that multiple intravitreal injections of 
anti-VEGF antibodies induce RPE degeneration. Thus, an alternative therapeutic 
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strategy, which is independent of VEGF signaling pathway, is an urgent and unmet 
medical need. The ongoing clinical trials using non-VEGF agents such as angiopoi-
etin 2 or vascular endothelial-protein tyrosine phosphatase and PEDF may provide 
benefit in suppressing the VEGF levels more effectively in AMD and other retinal 
disorders. In addition, sustained delivery of either existing VEGF agents or novel 
VEGF and/or non-VEGF agents alone or in combination may provide more effec-
tive approach to treat the angiogenesis based retinal diseases in future. Till then, 
frequent intravitreal injections of VEGF antibodies will continue to be the first line 
medical therapy for the retinal and choroidal neovascular diseases.

References

 1. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug 
Discov 6:273–286

 2. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660
 3. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogen-

esis. Nature 473:298–307
 4. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. 

Neuro-Oncol 7:452–464
 5. Coulon C et al (2010) From vessel sprouting to normalization: role of the prolyl hydroxylase 

domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb 
Vasc Biol 30:2331–2336

 6. Carmeliet P et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene 
in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

 7. Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of 
the vascular endothelial growth factor family. Cardiovasc Res 49:568–581

 8. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693
 9. Hellberg C, Ostman A, Heldin C-H (2010) PDGF and vessel maturation. Recent Results 

Cancer Res Fortschritte Krebsforsch Progres Dans Rech Sur Cancer 180:103–114
 10. Gaengel K, Genové G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in 

vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638
 11. Saharinen P et al (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endo-

thelial cell-cell and cell-matrix contacts. Nat Cell Biol 10:527–537
 12. Shibuya M (1995) Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv 

Cancer Res 67:281–316
 13. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation 

of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560
 14. Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and 

PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8:942–956
 15. Carmeliet P et al (2001) Synergism between vascular endothelial growth factor and placental 

growth factor contributes to angiogenesis and plasma extravasation in pathological condi-
tions. Nat Med 7:575–583

 16. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974
 17. Maes C et al (2002) Impaired angiogenesis and endochondral bone formation in mice lack-

ing the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 
111:61–73

 18. Lee S et  al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 
130:691–703

R. Patil et al.



287

 19. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular degen-
eration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293

 20. Amin R, Puklin JE, Frank RN (1994) Growth factor localization in choroidal neovascular 
membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 35:3178–3188

 21. Rajappa M, Saxena P, Kaur J (2010) Ocular angiogenesis: mechanisms and recent advances 
in therapy. Adv Clin Chem 50:103–121

 22. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. 
Cell 146:873–887

 23. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA (2009) An essential 
role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl 
Acad Sci USA 106:18751–18756

 24. Saint-Geniez M et al (2008) Endogenous VEGF is required for visual function: evidence for 
a survival role on müller cells and photoreceptors. PLoS One 3:e3554

 25. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer 
and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

 26. Kappert K, Peters KG, Böhmer FD, Ostman A (2005) Tyrosine phosphatases in vessel wall 
signaling. Cardiovasc Res 65:587–598

 27. Kappas NC et al (2008) The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and 
blood vessel branching. J Cell Biol 181:847–858

 28. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor 
receptors. Cold Spring Harb Perspect Med 2:a006502

 29. Murakami M et al (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine 
kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 
108:1849–1856

 30. Beck H et al (2010) VEGFR-1 signaling regulates the homing of bone marrow-derived cells 
in a mouse stroke model. J Neuropathol Exp Neurol 69:168–175

 31. Murakami M et al (2008) VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as 
well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 
28:658–664

 32. Albuquerque RJC et al (2009) Alternatively spliced vascular endothelial growth factor recep-
tor- 2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15:1023–1030

 33. Shalaby F et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient 
mice. Nature 376:62–66

 34. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhib-
ited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579

 35. Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular 
network formation. Nature 454:656–660

 36. Gragoudas ES et al (2004) Pegaptanib for neovascular age-related macular degeneration. N 
Engl J Med 351:2805–2816

 37. Sivaprasad S, Hykin P (2013) What is new in the management of wet age-related macular 
degeneration? Br Med Bull 105:201–211

 38. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF 
monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333:328–335

 39. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research 
Group et al (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related 
macular degeneration: two-year results. Ophthalmology 119:1388–1398

 40. Heier JS et  al (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular 
degeneration. Ophthalmology 119:2537–2548

 41. Stewart MW (2012) Clinical and differential utility of VEGF inhibitors in wet age-related 
macular degeneration: focus on aflibercept. Clin Ophthalmol Auckl NZ 6:1175–1186

 42. Wang Q et al (2013) Novel VEGF decoy receptor fusion protein conbercept targeting multi-
ple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo. PLoS One 8:e70544

12 Angiogenesis-Based Therapies for Eye Diseases



288

 43. Lu K, Bhat M, Basu S (2016) Plants and their active compounds: natural molecules to target 
angiogenesis. Angiogenesis 19:287–295

 44. Majumdar S, Srirangam R (2010) Potential of the bioflavonoids in the prevention/treatment 
of ocular disorders. J Pharm Pharmacol 62:951–965

 45. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources 
and bioavailability. Am J Clin Nutr 79:727–747

 46. Wang Z et  al (2015) Broad targeting of angiogenesis for cancer prevention and therapy. 
Semin Cancer Biol 35(Suppl):S224–S243

 47. Fotsis T et al (1997) Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro 
angiogenesis. Cancer Res 57:2916–2921

 48. Fotsis T et al (1995) Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and 
in vitro angiogenesis. J Nutr 125:790S–797S

 49. Bråkenhielm E, Cao R, Cao Y (2001) Suppression of angiogenesis, tumor growth, and wound 
healing by resveratrol, a natural compound in red wine and grapes. FASEB J Off Publ Fed 
Am Soc Exp Biol 15:1798–1800

 50. Cao Z, Fang J, Xia C, Shi X, Jiang B-H (2004) Trans-3,4,5′-Trihydroxystibene inhibits 
hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human 
ovarian cancer cells. Clin Cancer Res Off J Am Assoc Cancer Res 10:5253–5263

 51. Sartippour MR et al (2002) Green tea inhibits vascular endothelial growth factor (VEGF) 
induction in human breast cancer cells. J Nutr 132:2307–2311

 52. Jung YD et al (2001) EGCG, a major component of green tea, inhibits tumour growth by 
inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 84:844–850

 53. Donà M et al (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated 
angiogenesis, and pulmonary fibrosis. J Immunol Baltim md 1950(170):4335–4341

 54. Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S (2006) Effects of cur-
cumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carci-
noma cell-implanted nude mice. Clin Hemorheol Microcirc 34:109–115

 55. Fotsis T et al (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl 
Acad Sci USA 90:2690–2694

 56. Pili R et al (1995) The alpha-glucosidase I inhibitor castanospermine alters endothelial cell 
glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res 55:2920–2926

 57. Eun J-P, Koh GY (2004) Suppression of angiogenesis by the plant alkaloid, sanguinarine. 
Biochem Biophys Res Commun 317:618–624

 58. Xu J-Y et al (2013) Sanguinarine is a novel VEGF inhibitor involved in the suppression of 
angiogenesis and cell migration. Mol Clin Oncol 1:331–336

 59. Saraswati S, Agrawal SS (2013) Brucine, an indole alkaloid from Strychnos nux-vomica 
attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro 
and in vivo. Cancer Lett 332:83–93

 60. Kim GD, Cheong OJ, Bae SY, Shin J, Lee SK (2013) 6-Debromohamacanthin a, a bis (indole) 
alkaloid, inhibits angiogenesis by targeting the VEGFR2-mediated PI3K/AKT/mTOR sig-
naling pathways. Mar Drugs 11:1087–1103

 61. Saraswati S, Kanaujia PK, Kumar S, Kumar R, Alhaider AA (2013) Tylophorine, a phenan-
thraindolizidine alkaloid isolated from Tylophora Indica exerts antiangiogenic and antitumor 
activity by targeting vascular endothelial growth factor receptor 2–mediated angiogenesis. 
Mol Cancer 12:82

 62. Lu K, Basu S (2015) The natural compound chebulagic acid inhibits vascular endothelial 
growth factor a mediated regulation of endothelial cell functions. Sci Rep 5:9642

 63. Klein R, Wang Q, Klein BE, Moss SE, Meuer SM (1995) The relationship of age-related 
maculopathy, cataract, and glaucoma to visual acuity. Invest Ophthalmol Vis Sci 36:182–191

 64. Friedman DS et  al (2004) Prevalence of age-related macular degeneration in the United 
States. Arch Ophthalmol Chic ill 1960(122):564–572

R. Patil et al.



289

 65. Wong WL et al (2014) Global prevalence of age-related macular degeneration and disease 
burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob 
Health 2:e106–e116

 66. Ferrara N, Hillan KJ, Gerber H-P, Novotny W (2004) Discovery and development of bevaci-
zumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

 67. Schmidt-Erfurth U et al (2014) Intravitreal aflibercept injection for neovascular age-related 
macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology 
121:193–201

 68. Stewart MW, Rosenfeld PJ (2008) Predicted biological activity of intravitreal VEGF trap. Br 
J Ophthalmol 92:667–668

 69. Patel RD, Momi RS, Hariprasad SM (2011) Review of ranibizumab trials for neovascular 
age-related macular degeneration. Semin Ophthalmol 26:372–379

 70. Mitchell P (2011) A systematic review of the efficacy and safety outcomes of anti-VEGF 
agents used for treating neovascular age-related macular degeneration: comparison of ranibi-
zumab and bevacizumab. Curr Med Res Opin 27:1465–1475

 71. Rofagha S et al (2013) Seven-year outcomes in ranibizumab-treated patients in ANCHOR, 
MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 
120:2292–2299

 72. Kuiper EJ et al (2008) The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic 
retinopathy. PLoS One 3:e2675

 73. Van Geest RJ et al (2012) A shift in the balance of vascular endothelial growth factor and con-
nective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative 
diabetic retinopathy. Br J Ophthalmol 96:587–590

 74. Takeda A et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and 
therapy. Nature 460:225–230

 75. Grunwald JE et al (2014) Risk of geographic atrophy in the comparison of age-related macu-
lar degeneration treatments trials. Ophthalmology 121:150–161

 76. Chakravarthy U et al (2013) Alternative treatments to inhibit VEGF in age-related choroidal 
neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet Lond 
Engl 382:1258–1267

 77. Jaffe GJ et al (2017) Dual antagonism of PDGF and VEGF in neovascular age-related mac-
ular degeneration: a phase IIb, multicenter. Randomized Controlled Trial Ophthalmology 
124:224–234

 78. Holz FG et al (2016) Single-chain antibody fragment VEGF inhibitor RTH258 for Neovascular 
age-related macular degeneration: a randomized controlled study. Ophthalmology 
123:1080–1089

 79. Singerman L (2009) Combination therapy using the small interfering RNA bevasiranib. 
Retina Phila pa 29:S49–S50

 80. Csaky KG et  al (2015) Clinical evaluation of pazopanib eye drops versus ranibizumab 
intravitreal injections in subjects with neovascular age-related macular degeneration. 
Ophthalmology 122:579–588

 81. Tolentino MJ, Dennrick A, John E, Tolentino MS (2015) Drugs in phase II clinical trials for 
the treatment of age-related macular degeneration. Expert Opin Investig Drugs 24:183–199

 82. Sides media., www.sidesmedia.com. Retina Today – integrin peptide therapy in choroidal 
and retinal Neovascularization. Retina Today. Available at: http://retinatoday.com/2013/09/
integrin-peptide-therapy-in-choroidal-and-retinal-neovascularization/

 83. Campochiaro PA et al (2017) Lentiviral vector Gene transfer of Endostatin/Angiostatin for 
macular degeneration (GEM) study. Hum Gene Ther 28:99–111

 84. Rakoczy EP et al (2015) Gene therapy with recombinant adeno-associated vectors for neo-
vascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical 
trial. Lancet Lond Engl 386:2395–2403

 85. Morgan IG, Ohno-Matsui K, Saw S-M (2012) Myopia Lancet Lond Engl 379:1739–1748

12 Angiogenesis-Based Therapies for Eye Diseases

http://www.sidesmedia.com/
http://retinatoday.com/2013/09/integrin-peptide-therapy-in-choroidal-and-retinal-neovascularization/
http://retinatoday.com/2013/09/integrin-peptide-therapy-in-choroidal-and-retinal-neovascularization/


290

 86. Chan NS-W, Teo K, Cheung CMG (2016) Epidemiology and diagnosis of myopic choroidal 
neovascularization in Asia. Eye Contact Lens 42:48–55

 87. Wong TY, Ferreira A, Hughes R, Carter G, Mitchell P (2014) Epidemiology and disease 
burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based 
systematic review. Am J Ophthalmol 157:9–25.e12

 88. Lai TYY (2012) Anti-vascular endothelial growth factor therapy for myopic choroidal neo-
vascularization: do we need more evidence? Retina Phila Pa 32:1443–1445

 89. Tong J-P et al (2006) Aqueous humor levels of vascular endothelial growth factor and pig-
ment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovas-
cularization. Am J Ophthalmol 141:456–462

 90. Okamoto N et al (1997) Transgenic mice with increased expression of vascular endothelial 
growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am 
J Pathol 151:281–291

 91. Hayashi K et al (2010) Long-term pattern of progression of myopic maculopathy: a natural 
history study. Ophthalmology 117:1595–1611., 1611.e1–4

 92. Curtin BJ, Karlin DB (1971) Axial length measurements and fundus changes of the myopic 
eye. Am J Ophthalmol 71:42–53

 93. Curtin BJ (1979) Physiologic vs pathologic myopia: genetics vs environment. Ophthalmology 
86:681–691

 94. Seko Y et  al (1999) Induction of vascular endothelial growth factor after application of 
mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci 
40:3287–3291

 95. Wakabayashi T, Ikuno Y (2010) Choroidal filling delay in choroidal neovascularisation due 
to pathological myopia. Br J Ophthalmol 94:611–615

 96. Young TL (2004) Dissecting the genetics of human high myopia: a molecular biologic 
approach. Trans Am Ophthalmol Soc 102:423–445

 97. Bennett MD, Yee W (2007) Pegaptanib for myopic choroidal neovascularization in a young 
patient. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 
245:903–905

 98. Wolf S et al (2014) RADIANCE: a randomized controlled study of ranibizumab in patients 
with choroidal neovascularization secondary to pathologic myopia. Ophthalmology 121:682–
692.e2

 99. Ikuno Y et al (2015) Intravitreal Aflibercept injection in patients with myopic Choroidal neo-
vascularization: the MYRROR study. Ophthalmology 122:1220–1227

 100. Tufail A et  al (2013) Ranibizumab in myopic choroidal neovascularization: the 12-month 
results from the REPAIR study. Ophthalmology 120:1944–1945.e1

 101. Gharbiya M et al (2010) Intravitreal bevacizumab for treatment of myopic choroidal neovas-
cularization: the second year of a prospective study. Clin Ter 161:e87–e93

 102. Chan W-M, Lai TYY, Liu DTL, Lam DSC (2009) Intravitreal bevacizumab (Avastin) for myo-
pic choroidal neovascularisation: 1-year results of a prospective pilot study. Br J Ophthalmol 
93:150–154

 103. Iacono P et al (2011) Intravitreal bevacizumab therapy on an as-per-needed basis in subfoveal 
choroidal neovascularization secondary to pathological myopia: 2-year outcomes of a pro-
spective case series. Retina Phila pa 31:1841–1847

 104. Ruiz-Moreno JM et al (2009) Intravitreous bevacizumab to treat subfoveal choroidal neovas-
cularization in highly myopic eyes: short-term results. Eye (Lond) 23:334–338

 105. Franqueira N et  al (2012) Long-term follow-up of myopic choroidal neovascularization 
treated with ranibizumab. Ophthalmol Int J Ophthalmol Z Augenheilkd 227:39–44

 106. Oishi A et al (2013) Long-term effect of intravitreal injection of anti-VEGF agent for visual 
acuity and chorioretinal atrophy progression in myopic choroidal neovascularization. Graefes 
Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 251:1–7

R. Patil et al.



291

 107. Yang HS, Kim J-G, Kim JT, Joe SG (2013) Prognostic factors of eyes with naïve subfo-
veal myopic choroidal neovascularization after intravitreal bevacizumab. Am J Ophthalmol 
156:1201–1210.e2

 108. Ruiz-Moreno JM, Montero JA, Amat-Peral P (2011) Myopic choroidal neovascularization 
treated by intravitreal bevacizumab: comparison of two different initial doses. Graefes Arch 
Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 249:595–599

 109. Wakabayashi T, Ikuno Y, Gomi F (2011) Different dosing of intravitreal bevacizumab for 
choroidal neovascularization because of pathologic myopia. Retina Phila Pa 31:880–886

 110. Niwa Y et al (2012) Comparison between one injection and three monthly injections of intra-
vitreal bevacizumab for myopic choroidal neovascularization. Ophthalmic Res 47:135–140

 111. Kung Y-H, Wu T-T, Huang Y-H (2014) One-year outcome of two different initial dosing regi-
mens of intravitreal ranibizumab for myopic choroidal neovascularization. Acta Ophthalmol 
92:e615–e620

 112. Muether PS, Hermann MM, Viebahn U, Kirchhof B, Fauser S (2012) Vascular endothelial 
growth factor in patients with exudative age-related macular degeneration treated with ranibi-
zumab. Ophthalmology 119:2082–2086

 113. Lai TYY, Luk FOJ, Lee GKY, Lam DSC (2012) Long-term outcome of intravitreal anti- 
vascular endothelial growth factor therapy with bevacizumab or ranibizumab as primary 
treatment for subfoveal myopic choroidal neovascularization. Eye (Lond) 26:1004–1011

 114. Wang E, Chen Y (2013) Intravitreal anti-vascular endothelial growth factor for choroidal 
neovascularization secondary to pathologic myopia: systematic review and meta-analysis. 
Retina Phila Pa 33:1375–1392

 115. Sarao V, Veritti D, Macor S, Lanzetta P (2016) Intravitreal bevacizumab for choroidal neo-
vascularization due to pathologic myopia: long-term outcomes. Graefes Arch Clin Exp 
Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 254:445–454

 116. Hampton GR, Kohen D, Bird AC (1983) Visual prognosis of disciform degeneration in myo-
pia. Ophthalmology 90:923–926

 117. Yoshida T et  al (2003) Myopic choroidal neovascularization: a 10-year follow-up. 
Ophthalmology 110:1297–1305

 118. Teo KYC, Ng WY, Lee SY, Cheung CMG (2016) Management of Myopic Choroidal 
Neovascularization: focus on anti-VEGF therapy. Drugs 76:1119–1133

 119. Calvo-Gonzalez C, Reche-Frutos J, Donate J, Fernandez-Perez C, Garcia-Feijoo J  (2011) 
Intravitreal ranibizumab for myopic choroidal neovascularization: factors predictive of visual 
outcome and need for retreatment. Am J Ophthalmol 151:529–534

 120. Ting DSW, Cheung GCM, Wong TY (2016) Diabetic retinopathy: global prevalence, major 
risk factors, screening practices and public health challenges: a review. Clin Experiment 
Ophthalmol 44:260–277

 121. Yau JWY et  al (2012) Global prevalence and major risk factors of diabetic retinopathy. 
Diabetes Care 35:556–564

 122. Rema M, Srivastava BK, Anitha B, Deepa R, Mohan V (2006) Association of serum lip-
ids with diabetic retinopathy in urban south Indians--the Chennai urban rural Epidemiology 
study (CURES) eye study--2. Diabet med J Br Diabet Assoc 23:1029–1036

 123. Lyons TJ et al (2004) Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/
EDIC cohort. Invest Ophthalmol Vis Sci 45:910–918

 124. Raman R et al (2010) Influence of serum lipids on clinically significant versus nonclinically 
significant macular edema: SN-DREAMS report number 13. Ophthalmology 117:766–772

 125. Henricsson M et al (2003) The incidence of retinopathy 10 years after diagnosis in young 
adult people with diabetes: results from the nationwide population-based diabetes incidence 
study in Sweden (DISS). Diabetes Care 26:349–354

 126. Chaturvedi N et al (2001) Markers of insulin resistance are strong risk factors for retinopathy 
incidence in type 1 diabetes. Diabetes Care 24:284–289

12 Angiogenesis-Based Therapies for Eye Diseases



292

 127. van Hecke MV et  al (2005) Diabetic retinopathy is associated with mortality and cardio-
vascular disease incidence: the EURODIAB prospective complications study. Diabetes Care 
28:1383–1389

 128. Klein R, Klein BE, Moss SE (1997) Is obesity related to microvascular and macrovascular 
complications in diabetes? The Wisconsin epidemiologic study of diabetic retinopathy. Arch 
Intern Med 157:650–656

 129. Diabetic retinopathy PPP  – updated 2016. American Academy of Ophthalmology 
(2016). Available at: https://www.aao.org/preferred-practice-pattern/
diabetic-retinopathy-ppp-updated-2016

 130. Writing Committee for the Diabetic Retinopathy Clinical Research Network et  al (2015) 
Panretinal photocoagulation vs Intravitreous Ranibizumab for proliferative diabetic retinopa-
thy: a randomized clinical trial. JAMA 314:2137–2146

 131. Wells JA et al (2016) Aflibercept, Bevacizumab, or Ranibizumab for diabetic macular edema: 
two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 
123:1351–1359

 132. Andrade GC et al (2016) Intravitreal injections of Ziv-aflibercept for diabetic macular edema: 
a pilot study. Retina Phila pa 36:1640–1645

 133. Ranibizumab for edema of the mAcula in diabetes: protocol 4 with Tocilizumab: The 
READ-4 Study. Available at: https://www.smartpatients.com/trials/NCT02511067

 134. A phase 1, open-label study of teprotumumab in patients with Diabetic Macular Edema 
(DME) – full text view – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/
NCT02103283

 135. A study to evaluate ASP8232 in reducing central retinal thickness in subjects with Diabetic 
Macular Edema (DME) – full text view – ClinicalTrials.gov. Available at: https://clinicaltri-
als.gov/ct2/show/NCT02302079

 136. Behl T, Kotwani A (2015) Exploring the various aspects of the pathological role of vascular 
endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol Res 99:137–148

 137. Han L et al (2014) The associations between VEGF gene polymorphisms and diabetic retinop-
athy susceptibility: a meta-analysis of 11 case-control studies. J Diabetes Res 2014:805801

 138. Praidou A et al (2010) Angiogenic growth factors and their inhibitors in diabetic retinopathy. 
Curr Diabetes Rev 6:304–312

 139. Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y (2011) Expression profiles of 
cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein 
occlusion. Jpn J Ophthalmol 55:256–263

 140. Praidou A et al (2009) Vitreous and serum levels of platelet-derived growth factor and their 
correlation in patients with proliferative diabetic retinopathy. Curr Eye Res 34:152–161

 141. Simó R et al (2006) Intravitreous hepatocyte growth factor in patients with proliferative dia-
betic retinopathy: a case-control study. Diabetes Res Clin Pract 71:36–44

 142. Katsura Y et al (1998) Hepatocyte growth factor in vitreous fluid of patients with proliferative 
diabetic retinopathy and other retinal disorders. Diabetes Care 21:1759–1763

 143. Ting DSW et al (2016) Biomarkers of diabetic retinopathy. Curr Diab Rep 16:125
 144. Campochiaro PA et al (1994) Platelet-derived growth factor is an autocrine growth stimulator 

in retinal pigmented epithelial cells. J Cell Sci 107(Pt 9):2459–2469
 145. Vinores SA et  al (1995) Isoforms of platelet-derived growth factor and its receptors in 

epiretinal membranes: immunolocalization to retinal pigmented epithelial cells. Exp Eye Res 
60:607–619

 146. Burgos R et al (1997) Vitreous levels of vascular endothelial growth factor are not influenced 
by its serum concentrations in diabetic retinopathy. Diabetologia 40:1107–1109

 147. Patel JI, Tombran-Tink J, Hykin PG, Gregor ZJ, Cree IA (2006) Vitreous and aqueous con-
centrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopa-
thy patients with macular edema: implications for structural differences in macular profiles. 
Exp Eye Res 82:798–806

R. Patil et al.

https://www.aao.org/preferred-practice-pattern/diabetic-retinopathy-ppp-updated-2016
https://www.aao.org/preferred-practice-pattern/diabetic-retinopathy-ppp-updated-2016
https://www.smartpatients.com/trials/NCT02511067
http://www.clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02103283
https://clinicaltrials.gov/ct2/show/NCT02103283
http://www.clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02302079
https://clinicaltrials.gov/ct2/show/NCT02302079


293

 148. Watanabe D et al (2005) Vitreous levels of angiopoietin 2 and vascular endothelial growth 
factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol 139:476–481

 149. Loukovaara S et  al (2013) Ang-2 upregulation correlates with increased levels of MMP- 
9, VEGF, EPO and TGFβ1  in diabetic eyes undergoing vitrectomy. Acta Ophthalmol 
91:531–539

 150. You JJ, Yang CM, Chen MS, Yang C-H (2012) Elevation of angiogenic factor cysteine- 
rich 61 levels in vitreous of patients with proliferative diabetic retinopathy. Retina Phila Pa 
32:103–111

 151. Zhang X, Yu W, Dong F (2012) Cysteine-rich 61 (CYR61) is up-regulated in proliferative 
diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin 
Exp Ophthalmol 250:661–668

 152. You J-J, Yang C-H, Chen M-S, Yang C-M (2009) Cysteine-rich 61, a member of the CCN 
family, as a factor involved in the pathogenesis of proliferative diabetic retinopathy. Invest 
Ophthalmol Vis Sci 50:3447–3455

 153. Xu Y et  al (2015) Increased sCD200 levels in vitreous of patients with proliferative dia-
betic retinopathy and its correlation with VEGF and Proinflammatory cytokines. Invest 
Ophthalmol Vis Sci 56:6565–6572

 154. Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular 
endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis 
in vitro. Biochem Biophys Res Commun 189:824–831

 155. Hata Y et  al (1995) Hypoxia-induced expression of vascular endothelial growth factor by 
retinal glial cells promotes in vitro angiogenesis. Virchows Arch Int J Pathol 426:479–486

 156. Li J-K et al (2015) Changes in vitreous VEGF, bFGF and fibrosis in proliferative diabetic 
retinopathy after intravitreal bevacizumab. Int J Ophthalmol 8:1202–1206

 157. Simó R, Carrasco E, García-Ramírez M, Hernández C (2006) Angiogenic and antiangiogenic 
factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98

 158. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endo-
thelial growth factor induces rapid phosphorylation of tight junction proteins occludin and 
zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy 
and tumors. J Biol Chem 274:23463–23467

 159. Antonetti DA et al (1998) Vascular permeability in experimental diabetes is associated with 
reduced endothelial occludin content: vascular endothelial growth factor decreases occludin 
in retinal endothelial cells. Penn State retina research group. Diabetes 47:1953–1959

 160. Tombran-Tink J, Chader GG, Johnson LV (1991) PEDF: a pigment epithelium-derived factor 
with potent neuronal differentiative activity. Exp Eye Res 53:411–414

 161. Dawson DW et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogen-
esis. Science 285:245–248

 162. Spranger J  et  al (2001) Loss of the antiangiogenic pigment epithelium-derived factor in 
patients with angiogenic eye disease. Diabetes 50:2641–2645

 163. Ogata N et  al (2001) Pigment epithelium-derived factor in the vitreous is low in diabetic 
retinopathy and high in rhegmatogenous retinal detachment. Am J Ophthalmol 132:378–382

 164. Boehm BO et al (2003) Proliferative diabetic retinopathy is associated with a low level of 
the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aque-
ous humor. A pilot study. Horm Metab Res Horm Stoffwechselforschung Horm Metab 
35:382–386

 165. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Unbalanced vitreous 
levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic 
retinopathy. Am J Ophthalmol 134:348–353

 166. Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1999) Deficient activation 
and different expression of transforming growth factor-beta isoforms in active proliferative 
diabetic retinopathy and neovascular eye disease. Exp Clin Endocrinol Diabetes Off J Ger 
Soc Endocrinol Ger Diabetes Assoc 107:21–28

12 Angiogenesis-Based Therapies for Eye Diseases



294

 167. Holtkamp GM, De Vos AF, Peek R, Kijlsta A (1999) Analysis of the secretion pattern of 
monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-beta 2 (TGF- 
beta2) by human retinal pigment epithelial cells. Clin Exp Immunol 118:35–40

 168. Eichler W et al (2001) Hypoxia: modulation of endothelial cell proliferation by soluble fac-
tors released by retinal cells. Neuroreport 12:4103–4108

 169. Katsura MK, Mishima HK, Minamoto A, Ishibashi F, Yamashita H (2000) Growth regulation 
of bovine retinal pericytes by transforming growth factor-beta2 and plasmin. Curr Eye Res 
20:166–172

 170. Nguyen QD et al (2012) Ranibizumab for diabetic macular edema: results from 2 phase III 
randomized trials: RISE and RIDE. Ophthalmology 119:789–801

 171. Heier JS et al (2016) Intravitreal Aflibercept for diabetic macular edema: 148-week results 
from the VISTA and VIVID studies. Ophthalmology 123:2376–2385

 172. A study of Abicipar Pegol in patients with diabetic macular edema  – full text view  – 
ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02186119

 173. A phase 2 randomized, controlled, double-masked, multicenter clinical trial designed to eval-
uate the safety and exploratory efficacy of luminate® (ALG-1001) as compared to Avastin® 
and focal laser photocoagulation in the treatment of diabetic macular edema – full text view – 
ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02348918

 174. Campochiaro PA, Peters KG (2016) Targeting Tie2 for treatment of diabetic retinopathy and 
diabetic macular edema. Curr Diab Rep 16:126

 175. Anti-vasculaR endothelial growth factor plUs anti-angiopoietin 2 in fixed comBination ther-
apY: evaluation for the treatment of diabetic macular edema – full text view – ClinicalTrials.
gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02712008

 176. Rogers SL et al (2010) Natural history of branch retinal vein occlusion: an evidence-based 
systematic review. Ophthalmology 117:1094–1101.e5

 177. Wong TY, Scott IU (2010) Clinical practice. Retinal-vein occlusion. N Engl J  Med 
363:2135–2144

 178. Das A, McGuire PG (2003) Retinal and choroidal angiogenesis: pathophysiology and strate-
gies for inhibition. Prog Retin Eye Res 22:721–748

 179. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascu-
lar endothelial growth factor in retinal cells. Arch Ophthalmol Chic ill 1960(113):1538–1544

 180. Aiello LP et al (1994) Vascular endothelial growth factor in ocular fluid of patients with dia-
betic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

 181. Funk M et  al (2009) Intraocular concentrations of growth factors and cytokines in reti-
nal vein occlusion and the effect of therapy with bevacizumab. Invest Ophthalmol Vis Sci 
50:1025–1032

 182. Noma H, Funatsu H, Mimura T, Harino S, Hori S (2009) Vitreous levels of interleukin-6 
and vascular endothelial growth factor in macular edema with central retinal vein occlusion. 
Ophthalmology 116:87–93

 183. Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal vascular diseases. 
Prog Retin Eye Res 49:67–81

 184. Brown DM et al (2010) Ranibizumab for macular edema following central retinal vein occlu-
sion: six-month primary end point results of a phase III study. Ophthalmology 117:1124–
1133.e1

 185. Brown DM et  al (2011) Sustained benefits from ranibizumab for macular edema follow-
ing branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology 
118:1594–1602

 186. Campochiaro PA et  al (2010) Ranibizumab for macular edema following branch retinal 
vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 
117:1102–1112.e1

 187. Campochiaro PA et  al (2011) Sustained benefits from ranibizumab for macular edema 
following central retinal vein occlusion: twelve-month outcomes of a phase III study. 
Ophthalmology 118:2041–2049

R. Patil et al.

http://www.clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02186119
http://www.clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02348918
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02712008


295

 188. Campochiaro PA et  al (2014) Long-term outcomes in patients with retinal vein occlusion 
treated with ranibizumab: the RETAIN study. Ophthalmology 121:209–219

 189. Heier JS et al (2012) Ranibizumab for macular edema due to retinal vein occlusions: long- 
term follow-up in the HORIZON trial. Ophthalmology 119:802–809

 190. Campochiaro PA et al (2014) Monthly versus as-needed ranibizumab injections in patients 
with retinal vein occlusion: the SHORE study. Ophthalmology 121:2432–2442

 191. Clark WL et al (2016) Intravitreal Aflibercept for macular edema following branch retinal 
vein occlusion: 52-week results of the VIBRANT study. Ophthalmology 123:330–336

 192. Boyer D et al (2012) Vascular endothelial growth factor trap-eye for macular edema second-
ary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study. 
Ophthalmology 119:1024–1032

 193. Brown DM et  al (2013) Intravitreal aflibercept injection for macular edema secondary to 
central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am 
J Ophthalmol 155:429–437.e7

 194. Korobelnik J-F et  al (2014) Intravitreal Aflibercept injection for macular edema result-
ing from central retinal vein occlusion: one-year results of the phase 3 GALILEO study. 
Ophthalmology 121:202–208

 195. Holz FG et al (2013) VEGF trap-eye for macular oedema secondary to central retinal vein 
occlusion: 6-month results of the phase III GALILEO study. Br J Ophthalmol 97:278–284

 196. Epstein DL, Algvere PV, von Wendt G, Seregard S, Kvanta A (2012) Benefit from bevaci-
zumab for macular edema in central retinal vein occlusion: twelve-month results of a pro-
spective, randomized study. Ophthalmology 119:2587–2591

 197. Epstein DLJ, Algvere PV, von Wendt G, Seregard S, Kvanta A (2012) Bevacizumab for 
macular edema in central retinal vein occlusion: a prospective, randomized, double-masked 
clinical study. Ophthalmology 119:1184–1189

 198. Hikichi T et al (2014) Two-year outcomes of intravitreal bevacizumab therapy for macular 
oedema secondary to branch retinal vein occlusion. Br J Ophthalmol 98:195–199

 199. Narayanan R et al (2015) A randomised, double-masked, controlled study of the efficacy and 
safety of intravitreal bevacizumab versus ranibizumab in the treatment of macular oedema 
due to branch retinal vein occlusion: MARVEL report no. 1. Br J Ophthalmol 99:954–959

 200. Rush RB, Simunovic MP, Aragon AV, Ysasaga JE (2014) Treat-and-extend intravitreal 
bevacizumab for branch retinal vein occlusion. Ophthalmic Surg Lasers Imaging Retina 
45:212–216

 201. Bremond-Gignac D (2016) Investigational drugs for retinal vein occlusion. Expert Opin 
Investig Drugs 25:841–850

 202. Campochiaro PA et al (2015) Treatment of diabetic macular edema with an inhibitor of vascu-
lar endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology 122:545–554

 203. Sun Z et al (2016) Efficacy and safety of intravitreal conbercept injections in macular edema 
secondary to retinal vein occlusion. Retina Phila Pa. doi:10.1097/IAE.0000000000001404

 204. Syed BA, Evans JB, Bielory L (2012) Wet AMD market. Nat Rev Drug Discov 11:827
 205. Zhang S, Gu H, Hu N (2015) Role of Peroxisome proliferator-activated receptor &#x3b3; in 

ocular diseases. Aust J Ophthalmol 2015:e275435
 206. Rosen ED, Spiegelman BM (2001) PPARγ: a nuclear regulator of metabolism, differentia-

tion, and cell growth. J Biol Chem 276:37731–37734
 207. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: 

tissue- specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234
 208. Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a 

nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363
 209. Panigraphy D, Huang S, Kieran MW, Kaipainen A (2005) PPARγ as a therapeutic target for 

tumor angiogenesis and metastasis. Cancer Biol Ther 4:687–693
 210. Bishop-Bailey D (2011) PPARs and angiogenesis. Biochem Soc Trans 39:1601–1605

12 Angiogenesis-Based Therapies for Eye Diseases

http://dx.doi.org/10.1097/IAE.0000000000001404


296

 211. Giaginis C, Giagini A, Theocharis S (2009) Peroxisome proliferator-activated receptor- 
gamma (PPAR-gamma) ligands as potential therapeutic agents to treat arthritis. Pharmacol 
Res 60:160–169

 212. Herzlich AA et  al (2009) Peroxisome proliferator-activated receptor expression in murine 
models and humans with age-related macular degeneration. Open Biol J 2:141–148

 213. Murata T et al (2000) Peroxisome proliferator-activated receptor-γ ligands inhibit Choroidal 
neovascularization. Invest Ophthalmol Vis Sci 41:2309–2317

 214. Vanden Heuvel JP (2012) Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids. 
Prog Mol Biol Transl Sci 108:75–112

 215. Chong EW-T, Kreis AJ, Wong TY, Simpson JA, Guymer RH (2008) Dietary omega-3 fatty 
acid and fish intake in the primary prevention of age-related macular degeneration: a system-
atic review and meta-analysis. Arch Ophthalmol Chic Ill 1960(126):826–833

 216. Newman AM et al (2012) Systems-level analysis of age-related macular degeneration reveals 
global biomarkers and phenotype-specific functional networks. Genome Med 4:16

 217. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945
 218. Guba M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangio-

genesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135
 219. Wang W et al (2009) Antitumoral activity of rapamycin mediated through inhibition of HIF- 

1alpha and VEGF in hepatocellular carcinoma. Dig Dis Sci 54:2128–2136
 220. Peyman GA, Fiscella R, Conway M (2009) Combination angiostatic therapies: current status. 

Retina Phila pa 29:S18–S20
 221. Oh H et al (1999) The potential angiogenic role of macrophages in the formation of choroidal 

neovascular membranes. Invest Ophthalmol Vis Sci 40:1891–1898
 222. Olson JL, Courtney RJ, Mandava N (2007) Intravitreal infliximab and choroidal neovascular-

ization in an animal model. Arch Ophthalmol Chic Ill 1960(125):1221–1224
 223. Theodossiadis PG, Liarakos VS, Sfikakis PP, Vergados IA, Theodossiadis GP (2009) 

Intravitreal administration of the anti-tumor necrosis factor agent infliximab for neovascular 
age-related macular degeneration. Am J Ophthalmol 147:825–830., 830.e1

 224. Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and 
inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye 
Res 73:887–896

 225. Yates JRW et al (2007) Complement C3 variant and the risk of age-related macular degenera-
tion. N Engl J Med 357:553–561

 226. Shah CP, Heier JS (2011) In: Ho AC, Regillo CD (eds) Age-related macular degeneration diag-
nosis and treatment. Springer, New York, pp 135–153. doi:10.1007/978-1-4614-0125-4_9

 227. Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E (1997) Phagocytosis of 
rod outer segments by retinal pigment epithelial cells requires αvβ5 integrin for binding but 
not for internalization. Proc Natl Acad Sci USA 94:12932–12937

 228. Al-Ubaidi MR, Naash MI, Conley SM (2013) A perspective on the role of the extracellular 
matrix in progressive retinal degenerative disorders. Invest Ophthalmol Vis Sci 54:8119–8124

 229. Jackson GR, Owsley C, Curcio CA (2002) Photoreceptor degeneration and dysfunction in 
aging and age-related maculopathy. Ageing Res Rev 1:381–396

 230. Friedlander M et al (1996) Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular 
neovascular diseases. Proc Natl Acad Sci USA 93:9764–9769

 231. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT (1996) Subcutaneous injection 
of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascu-
larization. Nat Med 2:529–533

 232. Fu Y et  al (2007) Angiogenesis inhibition and choroidal neovascularization suppression 
by sustained delivery of an integrin antagonist, EMD478761. Invest Ophthalmol Vis Sci 
48:5184–5190

 233. Santulli RJ et al (2008) Studies with an orally bioavailable alpha V integrin antagonist in 
animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular 
permeability in diabetic rats. J Pharmacol Exp Ther 324:894–901

R. Patil et al.

http://dx.doi.org/10.1007/978-1-4614-0125-4_9


297

 234. Holekamp NM, Bouck N, Volpert O (2002) Pigment epithelium-derived factor is deficient in 
the vitreous of patients with choroidal neovascularization due to age-related macular degen-
eration. Am J Ophthalmol 134:220–227

 235. Kolomeyer AM, Sugino IK, Zarbin MA (2011) Characterization of conditioned media col-
lected from aged versus young human eye cups. Invest Ophthalmol Vis Sci 52:5963–5972

 236. Steinle JJ, Sharma S, Chin VC (2008) Normal aging involves altered expression of growth 
factors in the rat choroid. J Gerontol A Biol Sci Med Sci 63:135–140

 237. Pons M, Marin-Castaño ME (2011) Nicotine increases the VEGF/PEDF ratio in retinal 
pigment epithelium: a possible mechanism for CNV in passive smokers with AMD. Invest 
Ophthalmol Vis Sci 52:3842–3853

 238. Mori K et al (2002) Regression of ocular neovascularization in response to increased expres-
sion of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 43:2428–2434

 239. Campochiaro PA et al (2006) Adenoviral vector-delivered pigment epithelium-derived fac-
tor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum 
Gene Ther 17:167–176

 240. Cheung LK, Eaton A (2013) Age-related macular degeneration. Pharmacotherapy 33:838–855

12 Angiogenesis-Based Therapies for Eye Diseases



299© Springer International Publishing AG 2017 
J.L. Mehta et al. (eds.), Biochemical Basis and Therapeutic Implications  
of Angiogenesis, Advances in Biochemistry in Health and Disease 6, 
DOI 10.1007/978-3-319-61115-0_13

Chapter 13
Anti-angiogenesis Therapy in Diabetic 
Retinopathy

Michael W. Stewart

Abstract Angiogenesis plays a central role in the development of diabetic reti-
nopathy and its visually debilitating complications diabetic macular edema (DME) 
and proliferative diabetic retinopathy (PDR). Inflammation and ischemia, which 
result from hyperglycemia-induced oxidative stress, are primary drivers of diabetic 
retinopathy and vision loss. Several chemokines and cytokines are upregulated in 
eyes with diabetic retinopathy, and vascular endothelial growth factor (VEGF) is 
pivotal to the development of DME and PDR. Three VEGF inhibitors (aflibercept, 
bevacizumab, and ranibizumab) and three corticosteroids (triamcinolone, dexa-
methasone, and fluocinolone) are commonly used to treat the retinal complications 
of angiogenesis. Several phase III trials that were used to obtain regulatory approv-
als have produced level I evidence showing that these drugs are superior to standard 
therapy (laser photocoagulation or observation). Research into new anti-VEGF and 
corticosteroid drugs and formulations, delivery routes and devices, and molecular 
targets, promises to provide physicians and patients with additional treatment 
options in the future.
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1  Introduction

The number of patients with diabetes mellitus (DM) throughout the world is pro-
jected to increase from 285 million in 2010 to 592 million in 2035. The increase is 
being driven by growth in both the overall population and the prevalence of the 
disease. Improving standards of living, widespread adoption of technology, and 
westernization of diets have increased the prevalence of metabolic syndrome, which 
is the major contributor to the development of DM.

Diabetes mellitus has become the leading cause of blindness in working-aged 
individuals in industrialized countries, with most of these cases resulting from 

Fig. 13.1 This fundus 
photograph shows typical 
findings of diabetic 
retinopathy – 
microaneurysms, 
hemorrhages, and hard 
exudates – involving the 
posterior pole. Though it is 
difficult to determine 
macular thickness from a 
single photograph, the hard 
exudates near the fovea, 
loss of choroidal detail, 
and yellow spot in the 
fovea strongly support the 
diagnosis of diabetic 
macular edema

Fig. 13.2 This fundus 
photograph of an eye with 
proliferative diabetic 
retinopathy shows 
pre-retinal 
neovascularization inferior 
to the macula. Pre-retinal 
fibrosis extends from the 
superior arcade across the 
fovea
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 complications of diabetic retinopathy (Fig.  13.1). Approximately 1/3 of patients 
with DM have diabetic retinopathy (DR) and approximately 1/3 of these have dia-
betic macular edema. Seventy-five percent of diabetes-related vision loss results 
from diabetic macular edema and the remaining 25% arise from complications of 
proliferative diabetic retinopathy (PDR) (Fig. 13.2).

Neural dysfunction represents the first pathophysiologic retinal abnormality 
caused by diabetes but it cannot be visualized during routine ophthalmic examina-
tions and it does not directly lead to vision loss. Diabetes induced angiogenesis, 
resulting from damage to retinal capillary endothelial cells, develops more slowly 
but closely correlates with vision loss. Manifestations of angiogenesis include 
breakdown of the blood-retinal barrier (BRB) and neovascularization. Anti- 
angiogenesis therapy aims to prevent and reverse vision loss due to these two 
processes.

This chapter will briefly discuss the pathophysiology of DR and will detail the 
recent advances in ocular pharmacotherapy that target vision loss due to 
angiogenesis.

2  Angiogenesis and Diabetic Retinopathy

Severe vision loss from unchecked angiogenesis has long been recognized as a 
major complication of DR. Michaelson (1948) postulated the contribution of a sol-
uble “factor X” that he believed led to vitreous hemorrhage, traction retinal detach-
ments, and iris neovascularization [43]. Vascular permeability factor (1983) was 
associated with breakdown of the blood-retinal barrier. Ferrara and Connolly (1989) 
independently discovered vascular endothelial growth factor (VEGF) and deter-
mined that it was identical to vascular permeability factor [15, 26]. These discover-
ies ushered in nearly three decades of prolific research that centered on the biology 
of VEGF and the development of drugs to block its actions.

Elevated concentrations of both VEGF and VEGFR2 have been found in animal 
models of diabetic retinopathy [31]. Early assays discovered that intravitreal con-
centrations of VEGF are elevated in patients with both DME and PDR [2], with 
higher concentrations generally correlating with neovascularization and not just 
BRB breakdown. Eyes with DME have higher aqueous VEGF concentrations than 
do those with nAMD and vein occlusions [28], and the concentrations correlate 
with the severity of the DME [29]. Vitreous VEGF concentrations in eyes with PDR 
fall after successful pan-retinal photocoagulation. The importance of retinal 
hypoxia, a major contributor to VEGF upregulation, to the development of DME 
was demonstrated in a proof-of-concept study in which 3  months of continuous 
oxygen administration significantly reduced the severity of DME [48].

VEGF is an important contributor to BRB breakdown during the early phase of 
DME but it may become less important when DME becomes chronic (defined as 
3 years in one study). By this time chemokines and other inflammatory cytokines 
may drive BRB breakdown [16]. Elevated intraocular concentrations of  brain- derived 
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neurotrophic factor, interleukin (IL)-1a, IL-6, IL-8, interferon protein-10, intercel-
lular adhesion molecule-1, monocyte chemotactic protein-1, nerve growth factor, 
thymocyte growth factor-β, tumor necrosis factor-α, and placental growth factor [4, 
35, 65] have been discovered in eyes with DME. Though VEGF has been the most 
studied cytokine in eyes with DR, these other molecules contribute to angiogenesis 
and emphasize the importance of inflammation in the development of DR.

3  Anti-VEGF Medications and Clinical Trials

Pre-clinical evidence suggesting that anti-VEGF therapy might be beneficial in eyes 
with advanced DR emerged from several sources. Injections of VEGF into monkey 
eyes causes retinal vascular changes – hemorrhages, increased capillary permeabil-
ity, and neovascularization – that are similar to those of DR [54, 62]. The discovery 
that these changes could be prevented by the co-administration of VEGF-Trap A40 
[52] was an important driver of drug development. Elevated concentrations of pla-
cental growth factor have been found in rats with experimental DR though its con-
tribution to the development of DR is not yet known.

Neovascular AMD is the leading cause of blindness in developed nations and 
most anti-VEGF drug development initially focused on treating this condition. 
DME trials have generally lagged behind their nAMD counterparts by one phase, 
which has delayed approval by the United States Food and Drug Administration 
(US FDA) for the treatment of DME by 3–5 years.

Four VEGF-binding medications (aflibercept, bevacizumab, pegaptanib, and 
ranibizumab) have been used to treat the vascular complications of DR. Drug manu-
facturers pursued different development strategies, which has resulted in drugs with 
different structures (aptamer, antibody binding fragment, full-length antibody, and 
fusion protein) and pharmacokinetic behaviors, though their efficacies and adverse 
effects profiles are remarkably similar. Hundreds of studies reporting the efficacy of 
anti-VEGF therapy for DME have been published, but this chapter will concentrate 
on the major registration trials, from which the most reliable data has been obtained 
(Table 13.1).

3.1  Pegaptanib

Pegaptanib is a 50 kDa pegylated aptamer that binds to the heparin binding domain 
of VEGF165 [55]. Pegaptanib was approved for the treatment of nAMD but since the 
mean change in BCVA was a disappointing loss of seven letters [33], pegaptanib use 
fell dramatically after the introduction of the other VEGF-binding drugs. Because 
the development of DME (compared to nAMD) appears to be more dependent on 
VEGF165 than other isomers, some investigators have posited that pegaptanib may 
be better suited for the treatment of DME.
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Table 13.1 The table lists several of the most important pharmacotherapeutic trials for diabetic 
macular edema and proliferative diabetic retinopathy with selected results

Important drug trials for the treatment of diabetic macular edema and proliferative diabetic 
retinopathy

Bevacizumab

DRCR.net Trial Laser vs. Bevacizumab (1.25 mg or 2.5 mg)
Bevacizumab improvement in BCVA 1 line better than laser at 
12 weeks
Half of bevacizumab eyes had 11% decrease in thickness at 3 weeks

BOLT Trial 2 year trial of bevacizumab vs. laser
BCVA of bevacizumab vs. laser (+8.6 vs. −0.5 letters)
Change in CRT (−146 μm vs. −118 μm)

Ranibizumab

RISE/RIDE 3 year trial of ranibizumab (0.3 mg and 0.5 mg) vs. sham
24 month BCVA improvements (+13,+12; +12,+11; +3,+0.5 letters)
Changes in CFT (−250,-259; −253,−270; −133,-125 μm)

RESTORE 1 year trial of ranibizumab 0.5 mg vs. ranibizumab + laser vs. laser
12 month BCVA improvements (+6.1, +5.9 and +0.8 letters)
Changes in CRT (−118.7, −128.3, −61.3 μm)

DRCR.net Protocol I 5 year trial of ranibizumab + deferred laser, ranibizumab + prompt 
laser,
triamcionlone + laser, laser + sham
12 month BCVA improvements (+9, +9, +4, +3 letters)
At 5 yrs. ranibizumab + prompt vs. ranibizumab + preferred (+7.2 vs. 
+9.8
letters; P = 0.09)

DRCR.net Protocol S 1-year trial of ranibizumab 0.5 mg vs. ranibizumab + laser vs. laser
ΔBCVA ranibizumab vs. laser (+2.2 vs. +0.2 letters)
Less visual field loss in ranibizumab patients

Aflibercept

VIVID/VISTA 3 year study (1 year primary endpoint) aflibercept 2 mg q4w vs. 
aflibercept
q8w vs. laser
ΔBCVA of +12.5,+10.5; +10.7,+10.7; +0.2,+1.2 letters
ΔCRT of −185.9,−195.0; −183.1,−192.4; −73.3,−66.2 μm

Combination Trial

DRCR.net Protocol T 2 year study of aflibercept vs. bevacizumab vs. ranibizumab for DME
ΔBCVA in 20/40 or better eyes of +8.0, +7.5, +8.3 letters at 1 year
ΔBCVA in 20/50 or worse eyes of aflibercept and ranibizumab better 
than bevacizumab

Triamcinolone

DRCR.net Protocol B 2 year study of laser vs. triamcinolone 1 mg and 4 mg
ΔBCVA of +1, −3, −2 letters at 2 years
Elevated IOP in 13%, 16%, and 33% of eyes

(continued)
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Pegaptanib was studied in a small number of DME trials with encouraging 
results. In a phase II trial, 172 patients were treated every 6 weeks until the 36-week 
endpoint. Significantly more patients receiving 0.3 mg pegaptanib than sham had 
+10 letter improvements (34% vs. 10%; P = 0.003) and +15 letter improvements 
(18% vs. 7%; P = 0.12) in BCVA. Patients receiving 0.3 mg pegaptanib had greater 
mean improvements in BCVA (+4.7 vs. −0.4 letters; P = 0.04) and macular thick-
ness (−68 μm vs. +4 μm; P = 0.02) compared to those in the sham arm [39].

In a phase II/III trial, 260 patients with center-involving DME were randomized 
to receive 0.3 mg pegaptanib or sham injections every 6 weeks [60]. Compared to 
patients randomized to sham, significantly more patients receiving 0.3 mg pegap-
tanib improved by +10 letters (36.8% vs. 19.7%; P = 0.0047) but not +15 letters 
(16.5% vs. 10.2%; P = 0.2466). At the 102-week concluding visit, patients receiv-
ing pegaptanib had greater mean gains in BCVA (+6.1 vs. +1.3 letters; P < 0.01). 
Fewer patients receiving pegaptanib required grid laser photocoagulation for persis-
tent edema by week 54 (23.3% vs. 41.7%; P = 0.002) and week 102 (25.2% vs. 
45.0%; P = 0.003).

Pegaptanib showed promise for the treatment of DME, but since it produced 
disappointing results in patients with nAMD, further testing of pegaptanib was 
halted.

3.2  Bevacizumab

Bevacizumab is a humanized, monoclonal antibody that attaches to the VEGF bind-
ing domain (amino acids 81 through 92) of all VEGF-A isoforms. Bevacizumab is 
approved for the intravitreal treatment of several advanced solid tumors but intra-
ocular injections for chorioretinal vascular conditions are off-label.

The Diabetic Retinopathy Clinical Research network (DRCR.net) evaluated the 
short-term (12-week primary endpoint) efficacy of bevacizumab in a phase II DME 

Table 13.1 (continued)

Important drug trials for the treatment of diabetic macular edema and proliferative diabetic 
retinopathy

Dexamethasone

MEAD trials 3 year study of DEX 0.7 mg, 0.35 mg vs. Sham
15-letter improvements in BCVA (22.2% vs. 18.4% vs. 12.0%; 
P < 0.018).
Only 0.4% required incisional surgery for glaucoma

Fluocinolone

FAME trials 3 year study of FA 0.2 mg, 0.5 mg vs. sham
10-letter improvements in BCVA 28.7%, 28.6%, 16.2% (P = 0.002 for 
each)
Incisional surgery for glaucoma in 3.7%, 7.6%, and 0.5%

BCVA best corrected visual acuity, CRT central retinal thickness, CFT central foveal thickness, 
DME diabetic macular edema, IOP intraocular pressure, DEX dexamethasone insert, FA fluocino-
lone acetonide insert
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trial. One hundred twenty-one patients were randomized to receive laser photoco-
agulation or intravitreal injections of 1.25 or 2.5 mg bevacizumab every 6 weeks, 
with or without laser. Patients receiving bevacizumab experienced a one-line 
improvement in BCVA compared to those treated with laser. Approximately one- 
half of the bevacizumab treated patients experienced a decrease in macular thick-
ness of at least 11% at week 3, but additional improvements through week 12 were 
not seen [17].

The prospective, single-center, 2-year Bevacizumab or Laser Therapy in the 
Management of Diabetic Macular Edema (BOLT) trial demonstrated the superiority 
of bevacizumab over laser [42, 58]. Eighty eyes were randomized to receive bevaci-
zumab every 6 weeks as needed or laser photocoagulation every 4 months as needed. 
A median of 13 bevacizumab injections and 4 laser treatments were performed 
through 2 years. At 1 year, more patients receiving bevacizumab than laser achieved 
BCVA improvements of at least +15 letters (11.9% vs. 5.3%) and at least +10 letters 
(31% vs. 7.9%), and fewer lost more than −15 letters (2.4% vs. 26.3%) and more 
than −30 letters (0% vs. 5.3%). Patients receiving bevacizumab achieved greater 
mean improvements in BCVA compared to laser at 1 year (+8.0 vs. −0.5 letters, 
P = 0.0002) and 2 years (+8.6 vs. −0.5 letters). At 2 years, 49% of patients treated 
with bevacizumab improved by at least +10 letters and 32% by at least +15 letters, 
compared to only 7% and 4% of patients treated with laser photocoagulation. Fewer 
patients treated with bevacizumab lost at least −15 letters (0% vs. 14%, P = 0.03). 
Eyes receiving bevacizumab experienced greater decreases in mean macular thick-
ness compared to those treated with laser (−146 μm vs. −118 μm).

In a post hoc analysis of the BOLT data, eyes with subretinal fluid at baseline 
were most likely to have persistent edema at 2 months [58]. The authors noted that 
resolution of edema by 4  months is a strong predictor of a favorable long-term 
response. They found that 20% of eyes with persistent edema at 12 months achieved 
dry retinas at 24 months and most of these eyes achieved BCVA improvements of at 
least +15 letters. They stated that though the 4-month response may correlate with 
the long-term outcome, it should not lead to withholding of therapy.

Intravitreal injections of bevacizumab have been used as surgical adjuvents to 
decrease intraoperative hemorrhage, facilitate fibrovascular membrane dissection 
[13], and reduce the incidence of postoperative vitreous bleeding [1]. Concern that 
pre-operative bevacizumab can worsen fibrovascular traction [5] has prompted 
some surgeons to recommend that bevacizumab be administered only within a few 
days of planned surgery. In this way, prompt intervention can be taken if a traction 
retinal detachment worsens or a traction-rhegmatogenous detachment develops.

A meta-analysis of randomized, controlled trials compared the safety and func-
tional outcomes of vitrectomy for PDR that were performed with or without pre- 
operative intravitreal bevacizumab [68]. Eight trials (414 eyes of 394 patients) were 
included. The authors reported that pre-operative bevacizumab shortened the mean 
surgical time by 26.89 min (P < 0.00001) and reduced the mean number of endodia-
thermy applications by 3.46 (P = 0.02). The bevacizumab group experienced less 
intraoperative bleeding (P = 0.003) and recurrent vitreous hemorrhage within the 
first post-operative month (P  <  0.0001), but the incidence of recurrent vitreous 
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 hemorrhage after the first month was comparable between the two groups. No sig-
nificant differences in other complication rates were noted except that iatrogenic 
retinal breaks were more likely to occur in the vitrectomy-alone group (OR 0.27; 
P = 0.003).

3.3  Ranibizumab

Ranibizumab is an antibody binding fragment with a high affinity for VEGF165 
(KD = 46 pM – 192 pM) [27, 50]. Ranibizumab passes unaltered through the tra-
becular meshwork and choroid into the systemic circulation where, because of rapid 
excretion by the kidneys, it has a half-life of only 2 h. Ranibizumab does not sup-
press serum VEGF concentrations [6].

3.3.1  Pilot Studies

In the READ-1 study, 10 eyes with DME received ranibizumab injections at base-
line, and 1, 2, 4, and 6 months [49]. A rapid reduction in macular edema (median of 
−88 μm, mean of −130 μm) was seen by day 7 and a strong correlation between 
macular thinning and visual improvement was noted (r2 = 0.78). By the 7-month 
endpoint, significant decreases in mean foveal thickness (503–257 μm) and macular 
volume (9.22–7.47 mm2) had occurred, and the mean BCVA improved by +12.3 
letters. Patients experienced slight increases in blood pressure but no important 
safety signals were seen.

In a second, unrelated study, 10 patients received 0.3 or 0.5  mg ranibizumab 
injections at baseline, and 1 and 2 months [14]. At the 3-month primary endpoint, 
eyes receiving 0.3 and 0.5 mg experienced significant improvements in BCVA (+12 
and +7.8 letters) and central retinal thickness (−45.3 and −197.8 μm). The BCVA 
decreased between 3 and 6 months.

Following these pilot studies, further ranibizumab development for DME 
(Fig.  13.3) progressed along 3 lines of investigation: READ/RISE/RIDE trials 
(United States trials sponsored by Genentech); RESOLVE/RESTORE (ex-US trials 
sponsored by Genentech); and Diabetic Retinopathy Clinical Research Network 
(National Eye Institute sponsored). The first 2 lines of investigation led to the regu-
latory approval of ranibizumab for the treatment of DME in the Unites States and 
ex-US nations respectively.

3.3.2  READ-2 and READ-3 Trials

The phase II, READ-2 trial was the first prospective, double-masked, multi-center 
ranibizumab DME trial [46]. One hundred twenty-six patients were randomized to 
receive intravitreal injections of 0.5 mg ranibizumab at baseline, and months 1, 3, 
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and 5; focal/grid laser photocoagulation of the macula at baseline and at month 3 if 
needed; or intravitreal 0.5  mg ranibizumab followed by laser photocoagulation 
1 week later. Mean improvements in BCVA and CMT at the 6-month primary tem-
poral endpoint were +7, 0 and +4 letters and −95 μm, −82 μm, and −117 μm.

A protocol modification at 6 months allowed patients in the first 2 treatment arms 
to receive ranibizumab every 2 months PRN, whereas patients originally treated 
with laser and ranibizumab became eligible for additional laser and ranibizumab 
every 3  months if the CMT was greater than 250 μm. At 24  months, the mean 
improvements in BCVA and CMT were +8, +5, and +7 letters, and 340, 286, and 
258 μm. Visual acuity improvements among patients in the laser group approached 
those in the ranibizumab monotherapy group but the excess macular thickness indi-
cated that bimonthly injections constituted under-treatment [47].

At 24 months, a second protocol modification allowed patients to receive monthly 
PRN ranibizumab injections during year 3. From the 24-month to 36-month visits, 
patients achieved mean BCVA gains of +3, −2, and +2 letters, with each group 
receiving an average of 5, 2, and 3 ranibizumab injections.

In the READ-3 trial, patients with DME received either 2.0 mg or 0.5 mg ranibi-
zumab monthly for 6 months then PRN through 12 months. The 0.5 mg dose pro-
duced greater improvements in BCVA (+10.88 letters vs. +7.39 letters) and more 
patients receiving the 2.0 mg dose died during the trial (3% vs. 0%).

Fig. 13.3 This figure shows optical coherence tomography scans of an eye with diabetic macular 
edema that responded successfully to intravitreal injections of 0.3 mg ranibizumab. The top row 
(baseline) shows cystoid macular edema (central subfield thickness of 342 μm) with a mild epireti-
nal membrane. After 2 monthly ranibizumab injections (bottom row), the macular edema has com-
pletely resolved (central subfield thickness of 274 μm
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3.3.3  RISE and RIDE

Lessons learned from READ-2, particularly regarding the consequences of under- 
treatment, were incorporated into the randomized, multi-center, double-masked, 
3-year, phase III RISE and RIDE registration trials [45]. Seven hundred fifty-nine 
patients were randomized to three treatment arms: monthly 0.3 mg ranibizumab, 
monthly 0.5 mg ranibizumab, or sham injections. Patients were eligible for laser 
photocoagulation at 3 months if the CRT was >250 μm and if the change in CRT 
following the previous injection was <50 μm.

At the 24-month primary endpoint, significant proportions of patients random-
ized to 0.3 mg ranibizumab, 0.5 mg ranibizumab, and sham improved by at least 
+15 letters in RISE (45%, 39%, 18%) and RIDE (34%, 46%, 12%). Mean improve-
ments in BCVA and CFT in RISE and RIDE were +13, +12, +3 letters and +12, +11, 
+0.5 letters, and −250 μm, −253 μm, and −133 μm, and −259 μm, −270 μm, and 
−125 μm respectively. Patients receiving ranibizumab required fewer lasers (means: 
0.3–0.8) than those receiving sham injections (means: 1.8 and 1.6).

The median diabetic retinopathy severity scores (DRSS) improved from moder-
ately severe NPDR to mild NPDR in patients receiving ranibizumab but remained 
at moderately severe NPDR throughout the study in patients randomized to sham/
laser. Fewer patients receiving ranibizumab experienced a 2-step worsening in the 
DRSS (1.7–2.1% vs. 9.6%) and fewer ranibizumab eyes developed vitreous hemor-
rhage. A dose-dependent risk of stroke was noted in the ranibizumab arms. The US 
FDA approved (2012) the 0.3  mg ranibizumab dose for the treatment of center- 
involving DME and the label was subsequently (2015) expanded to include the 
treatment of diabetic retinopathy in eyes with DME.

Patients originally randomized to ranibizumab continued receiving monthly 
injections during year 3 and those randomized to sham became eligible to receive 
monthly PRN 0.5 mg ranibizumab [10]. Patients in the ranibizumab arms had stable 
BCVA during year 3, whereas those in the sham arms improved to +4 (RISE) and 
+5 (RIDE) letters above the baseline acuities.

Following the 36-month visit, 582 patients from RISE and RIDE were enrolled 
in the extension study [9]. All patients were eligible to receive 0.5 mg ranibizumab 
every 4 weeks if DME was identified by the investigator or BCVA worsened by at 
least 5 letters compared to month 36. Patients received a mean of 4.5 injections 
(annualized: 3.8) during a mean follow-up of 14.1  months but 25% of patients 
required no injections during the extension. Best corrected visual acuity in all 
groups remained stable throughout the extension and mean CFT increased slightly. 
Few patients developed PDR and those originally randomized to ranibizumab had a 
lower overall rate of progression to PDR than those originally randomized to sham.

Patients with macular non-perfusion at baseline had lower VA scores than those 
with good perfusion but by the trials’ completion, those with non-perfusion experi-
enced greater improvements in BCVA. Non-perfused areas did not increase in size 
when exposed to ranibizumab.
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3.3.4  RESOLVE and RESTORE

The phase II RESOLVE trial and phase III RESTORE trials were performed in 
Europe, Asia, and Australia and served as the basis for regulatory approval in these 
areas. The 12 month RESOLVE trial randomized 152 patients to receive 3 monthly 
0.3 mg ranibizumab, 0.5 mg ranibizumab, or sham injections [41]. After 1 month, 
the dose of ranibizumab was doubled for the following reasons: CRT > 300 μm; or 
CRT > 225 μm if the reduction was <50 μm since the previous injection. At 3 months, 
patients were eligible for rescue laser and additional monthly PRN injections or 
sham. At the 12-month primary temporal endpoint, mean BCVA improved by +10.3 
letters in the pooled ranibizumab groups but declined by −1 letter in the sham 
group. Visual acuity gains of +2 lines and +3 lines were achieved by 60.8% and 33% 
of ranibizumab treated eyes but by only 18.4% and 5% of sham treated eyes. 
Improvements in mean CST were −194 μm for the pooled ranibizumab groups and 
−48 μm for the sham group. Doubling the dose of ranibizumab was required by 
86% of all eyes and 68% of those receiving ranibizumab (70–78% of these occurred 
at the 1-month exam). The mean number of injections was 10.2 and only 4.9% of 
ranibizumab treated eyes (compared to 34.7% of sham eyes) required rescue laser.

The multi-center (75 sites), phase III RESTORE trial randomized 345 patients to 
ranibizumab + sham laser, ranibizumab + laser, or sham injections + laser. 
Ranibizumab injections were given monthly ×3 then PRN, and laser was performed 
at baseline then every 3 months PRN [44]. At the 12-month visit, patients in the 
ranibizumab monotherapy, ranibizumab + laser, and sham/laser groups had improve-
ments in mean BCVA (+6.1, +5.9 and +0.8 letters), BCVA score > 73 letters (53%, 
44.9%, and 23.6%) and mean CRT (−118.7 μm, −128.3 μm and −61.3 μm). A mean 
of 7 ranibizumab/sham injections were administered. Health related quality of life 
scores (measured by the NEI VFQ-25 questionnaire) improved more in the ranibi-
zumab monotherapy and ranibizumab + laser groups compared to sham/laser 
(P < 0.05 for each). Subgroup analyses showed that patients with baseline BCVA of 
≥73 ETDRS letters or CRT <400 μm had similar visual acuity improvements with 
laser photocoagulation as with ranibizumab injections. There were no cases of 
endophthalmitis and no additional cases of cardiovascular or cerebrovascular events 
with ranibizumab therapy.

Following the 12-month visit, 240 patients were enrolled in the 24-month exten-
sion trial. All patients were eligible to receive 0.5 mg ranibizumab injections accord-
ing to BCVA, disease progression criteria, and the investigators’ discretion. 
Additional laser photocoagulation was performed according to ETDRS guidelines. 
At the pre-planned 24-month interim analysis, patients who originally received 
ranibizumab monotherapy and ranibizumab + laser maintained gains in mean best 
corrected visual acuity (+7.9 letters, +6.7 letters from baseline), CRT (−140.6 μm, 
−133.0 μm) and NEI VFQ-25 composite scores (5.6, 5.8) [37]. Patients originally 
treated with sham/laser experienced significant improvements (+5.4 letters, 
−126 μm, 4.3), most of which occurred after becoming eligible for ranibizumab. 
Similar numbers of injections were performed in each group (3.9, 3.5, and 4.1). No 
cases of endophthalmitis occurred and the incidences of non-ocular SAEs were low.
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Two hundred and eight (86.7%) patients completed the 24-month extension 
study [56]. Improvements in mean BCVA at the 36-month visit were +8.0 letters 
(ranibizumab monotherapy), +6.7 letters (ranibizumab + laser) and +6.0 letters 
(sham/laser + PRN ranibizumab after 12 months). Patients in the three treatment 
arms required 4.0 to 6.8 (mean for each group) injections over the final 2 years.

3.3.5  DRCR.net PROTOCOL I

The 5-year, double-masked, multi-center DRCR.net Protocol I trial produced the 
first level I evidence that supported the use of ranibizumab in eyes with DME. Eight 
hundred fifty-four eyes with center-involving DME were randomized to receive 
0.5 mg ranibizumab with prompt macular laser photocoagulation, 0.5 mg ranibi-
zumab with deferred laser (for at least 6 months), intravitreal triamcinolone with 
prompt laser, or sham injections with prompt laser [19]. During the first year of the 
trial, patients received ranibizumab injections according to the 4:2:7 rule  – 4 
monthly injections, followed by 2 injections if fluid persisted, followed by 7 monthly 
visits during which injections were performed at the investigator’s discretion. Laser 
photocoagulation and intravitreal triamcinolone (4  mg) injections were repeated 
quarterly as needed. Patients randomized to the deferred laser group were not obli-
gated to receive laser if the macula was dry.

At 1 year, the median improvements in BCVA in the ranibizumab + prompt laser, 
ranibizumab + deferred laser, triamcinolone + laser, and sham + laser groups were 
+9, +9, +4, and +3 letters respectively, with most gains seen by the 8-week visit. The 
BCVA in patients receiving triamcinolone improved rapidly during the first 3 months 
but then worsened through 12 months because of corticosteroid-induced cataracts. 
Eyes that were pseudophakic at baseline had similar 1-year improvements in VA 
with triamcinolone as with ranibizumab. Diabetic retinopathy was less likely to 
progress in eyes treated with ranibizumab. In subgroup analyses, none of the follow-
ing factors affected final visual outcomes: prior treatment for DME, baseline BCVA, 
baseline CST, baseline severity of DR. Three patients receiving ranibizumab (0.8%) 
developed endophthalmitis, and patients receiving triamcinolone were most likely 
to develop cataracts and elevated intraocular pressure.

During year two of the trial, the interval between visits could be extended to 
8 weeks if treatment had been withheld at 3 consecutive visits, and to 16 weeks if 
treatment was not performed at the 8-week visit. Patients in the triamcinolone + 
laser and laser/sham groups became eligible to receive ranibizumab for persistent 
edema without improved vision as early as week 74. The 2-year anatomic and func-
tional outcomes were similar to those seen at 1 year. Fifty percent of ranibizumab 
treated eyes improved by at least +10 letters and 33% improved by at least +15 let-
ters [20]. Compared to the group randomized to sham/laser, the changes in mean 
BCVA for patients receiving ranibizumab + prompt laser, ranibizumab + deferred 
laser, and triamcinolone + prompt laser were +3.7, +5.8, and −1.5 letters. Forty- 
three eyes in the sham/prompt laser group were switched to ranibizumab within the 
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first 2 years because of “failure of treatment”, whereas none of the patients random-
ized to ranibizumab were regarded as treatment failures.

By the 3-year visit, the median numbers of injections given to patients in the 
ranibizumab + prompt laser and ranibizumab + deferred laser groups were 12 and 
15 respectively [21], and the median numbers of lasers were 3 and 0 respectively. 
Improvements in mean BCVA were +2.9 letters better in patients treated with 
ranibizumab + deferred laser than in those receiving ranibizumab + prompt laser 
(P = 0.02). The percentages of eyes with CST <250 μm were 36% in both ranibi-
zumab groups.

At the 5-year visit, the improvements in mean BCVA from baseline were +7.2 
letters in the ranibizumab + prompt laser group and +9.8 letters in the ranibizumab 
+ deferred laser group (P = 0.09) [25]. The proportions of eyes experiencing loss of 
≥ −10 letters (9% and 8%), improvement of ≥ +10 letters (46% and 58%), and 
improvement of ≥ +15 letters (27% and 38%) were similar. From baseline through 
5 years, 56% of patients in the deferred group did not require laser. The mean num-
bers of ranibizumab injections during the trial were 13 and 17; 54% and 45% of 
eyes did not receive ranibizumab during year four, and 62% and 52% did not receive 
injections during year five.

3.3.6  RETAIN

The RETAIN trial evaluated the efficacy of a treat-and-extend strategy (T&E), the 
most commonly used anti-VEGF regimen, in patients with DME [51]. Three hun-
dred seventy-two patients were randomized to receive T&E 0.5 mg ranibizumab 
plus laser (G1), T&E 0.5 mg ranibizumab (G2), or monthly PRN 0.5 mg ranibi-
zumab (G3). Monthly injections were given to all patients until the vision stabilized, 
at which time patients in G1 and G2 could be extended at 1-month intervals up to a 
maximum of 3 months. At 24 months, median BCVA improvements in the G1, G2, 
and G3 groups were +8, +7, and +8 letters. Compared to the PRN regimen, patients 
receiving T&E required 40% fewer clinic visits, and 70% were extended to a treat-
ment interval of at least 2 months.

3.3.7  Ranibizumab for PDR

Ranibizumab not only restores the blood-retinal barrier but it also suppresses neo-
vascularization (Fig.  13.4). The DRCR.net Protocol S trial enrolled 305 patients 
with PDR to compare panretinal photocoagulation with intravitreal 0.5 mg ranibi-
zumab [64]. Complete PRP was performed at baseline and ranibizumab was given 
every 4 weeks PRN. Eyes in both treatment arms with co-existing DME were eli-
gible to receive ranibizumab. At 2 years, improvements in BCVA for the ranibi-
zumab and PRP groups were +2.2 and +0.2 letters respectively (95% CI, −0.5 to 
+5.0). The group receiving ranibizumab experienced less peripheral visual field 
sensitivity loss (−23 dB vs. −422 dB; P < 0.001), fewer vitrectomies (4% vs. 15%; 
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P < 0.001), and less DME (9% vs. 28%). A median of 7 ranibizumab injections 
were administered through year one and 10 injections through year two. Forty-five 
percent of eyes randomized to PRP required additional laser after baseline and 53% 
required ranibizumab for DME. Only one eye developed endophthalmitis after a 
ranibizumab injection. The authors concluded that ranibizumab may be a reason-
able alternative to PRP over the course of 2 years.

3.4  Aflibercept

Aflibercept is a fusion protein comprized of the second binding domain from 
VEGFR1 and the third binding domain from VEGFR2 bound to the Fc fragment of 
an IgG molecule. Aflibercept has a high binding affinity for VEGF165 (KD = 0.5 pM) 
and also binds VEGF-B and placental growth factor [34]. Aflibercept passes unal-
tered from the vitreous into the systemic circulation where its half-life is approxi-
mately 6 days. Aflibercept decreases plasma VEGF concentrations below the lower 
detection limit of some assays (10 pg/ml) for at least 7 days [6].

3.4.1  Pilot Study

In a small pilot study, 5 patients with DME each received single intravitreal injec-
tions of 4 mg aflibercept. Excess macular thickness decreased from a median of 
108–59 μm and the BCVA improved by a median of +9 letters at 4  weeks. By 

Fig. 13.4 This ultra-widefield fluorescein angiography frame shows broad areas of capillary non- 
perfusion of the peripheral retina. Several areas of pre-retinal neovascularization are present, as 
evidenced by significant fluorescein dye leakage
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6  weeks, the therapeutic effects had waned as excess macular thickness had 
increased to 74 μm and the improvement in BCVA had dropped to +3 letters [24].

3.4.2  DA VINCI

The prospective, multi-center, phase II DA VINCI trial randomized 221 patients 
with center-involving DME to 5 treatment arms: 0.5 mg every 4 weeks (0.5q4), 
2 mg every 4 weeks (2q4), 2 mg every 8 weeks after 3 monthly loading injec-
tions (2q8), 2  mg PRN after 3 monthly loading doses (2PRN), and quarterly 
laser PRN/sham injections [23]. Patients receiving aflibercept were not eligible 
for rescue laser until 6 months. At 1-year, the mean BCVA improvements were 
+11.0, +13.1, +9.7, +12.0, and −1.3 letters for each arm, the proportions improv-
ing by at least +15 letters were 40.9%, 45.5%, 23.8%, 42.2%, and 11.4%, and 
the mean improvements in CST were −165.4  μm, −227.4  μm, −187.8  μm, 
−180.3 μm, and −58.4 μm. Patients in the 2PRN and 2q8 groups received an 
average of 7.4 and 7.2 injections respectively. Patients in the laser/sham group 
received more laser treatments than those in the aflibercept arms (2.5 vs. 0.5–
0.8). Improvements in DRSS were experienced by 31%–64% of aflibercept 
treated patients but by only 12% of laser treated patients. Worsening in DRSS 
was experienced by only 0%–14% of aflibercept treated patients compared to 
24% of laser treated patients.

3.4.3  VIVID and VISTA

The VIVID and VISTA trials [36] were similarly designed, double-blind, random-
ized, phase III trials that enrolled a total of 872 patients with center-involving 
DME. Eyes were randomized 1:1:1 to receive intravitreal 2 mg aflibercept injec-
tions (IAI) every 4 weeks (2q4), or every 8 weeks (2q8) after 5 monthly loading 
doses, or laser photocoagulation/sham injection. Patients were eligible for laser 
photocoagulation every 12 weeks if ETDRS defined edema was present. All study 
eyes were eligible for rescue treatment (IAI for patients randomized to laser and 
laser for patients randomized to IAI) beginning at 24 weeks if they lost ≥10 letters 
of BCVA on 2 consecutive visits or ≥15 letters at any visit from the previous best 
measurement and the BCVA was worse than baseline. Patients receiving IAI contin-
ued to receive injections through 148 weeks and patients randomized to laser/sham 
were eligible for IAI during year 3. VISTA enrolled a greater proportion of Black 
patients and VIVID enrolled a greater proportion of Asian patients. More eyes in 
VISTA, compared to VIVID, had previously received anti-VEGF injections (42.9% 
vs. 8.9%).

Mean BCVA changes from baseline to the 52-week primary temporal endpoint 
for the groups receiving IAI 2q4, IAI 2q8, and laser/sham were +12.5, +10.7, and 
+0.2 letters (P ˂ 0.0001) in VISTA and +10.5, +10.7, and +1.2 letters (P ˂ 0.0001) in 
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VIVID. When eyes receiving rescue therapy were included in the analysis, improve-
ments in the IAI groups ranged from +10.7 to +12.4 letters whereas those in the 
laser groups improved by +4.2 and +3.5 letters. The corresponding proportions of 
eyes improving by ≥ +10 letters were 64.9%, 58.3%, and 19.5% (P ˂ 0.0001) in 
VISTA and 54.4%, 53.3%, and 25.8% (P ˂ 0.0001) in VIVID.  The proportions 
improving by ≥ +15 letters were 41.6%, 31.1%, and 7.8% (P ˂ 0.0001) in VISTA 
and 32.4%, 33.3%, and 9.2% (P ˂ 0.0001) in VIVID. The proportions that lost ≥ 
−15 letters were 0.6%, 0.7%, and 9.1% (P ˂ 0.0001) in VISTA and 0.7%, 0%, and 
10.6% (P ˂ 0.0001) in VIVID. Significantly more patients treated with IAI 2q4 and 
2q8 experienced a 2-step improvement in DRSS in both VISTA (33.8% and 29.1% 
vs.14.3%) and VIVID (33.3% and 27.7% vs. 7.5%). Mean changes in CRT were 
−185.9 μm, −183.1 μm, and −73.3 μm in VISTA and −195.0 μm, −192.4 μm, and 
−66.2 μm in VIVID. The mean (+/− SD) in NEI VFQ-25 scores for the IAI 2q4 
groups were significantly different from the laser groups only for the near activities 
subscale scores in VISTA (9.0 +/− 20.6 vs. 5.4 +/− 20.4; P = 0.0168). For patients 
treated with laser/sham, the mean numbers of lasers were 2.7 and 2.1 in VISTA and 
VIVID respectively. More patients in the laser group than the IAI groups received 
rescue therapy (VISTA: 31.2% vs. 0.7% and 2.6%; VIVID: 24.1% vs. 4.4% and 
8.1%).

Incidences of ocular and non-ocular adverse events, and serious adverse events, 
including Anti-Platelets Trialists Collaborative defined vascular events and deaths, 
were similar among all groups. Serious non-ocular adverse events were uncommon 
(hypertension: 9.7%; cerebrovascular accidents: 1.1%; and myocardial infarction: 
1.1%).

The improvements in mean BCVA from baseline to week 100 in the 2q4, 2q8, 
and laser arms in VISTA (+11.5, +11.1, and +0.9 letters) and VIVID (+11.4, +9.4, 
and +0.7 letters) resembled those at the 52-week primary endpoint [11]. The propor-
tions of eyes that gained ≥ +15 letters were 38.3%, 33.1%, and 13.0% (P < 0.001) 
in VISTA and 38.2%, 31.1%, and 12.1% (P < 0.001) in VIVID. Significantly more 
eyes receiving aflibercept than laser achieved ≥2-step improvements in DRSS in 
both VISTA (37.0%, 37.1%, and 15.6%) and VIVID (29.3%, 32.6%, and 8.2%).

Eyes receiving aflibercept maintained previous improvements in VA and CRT 
through the 148-week visit. Eyes in the laser groups were eligible for monthly 
aflibercept after week 100, but experienced mean BCVA improvements of only +1 
letter. Rescue or as-needed aflibercept was given to 82% of laser treated eyes in 
VIVID and 87% of eyes in VISTA. Eyes in the laser groups that required rescue 
therapy achieved better final visual acuities than those that did not require rescue 
therapy [Justus Ehlers, Macula Society, Miami Beach, FL, February 26, 2016]. 
Only 12% of aflibercept treated eyes required laser at some point during the trials. 
Eyes with limited responses at 12 weeks (<10% improvement in CRT) ultimately 
went on to mean visual acuity improvements of +7.8 letters [Rishi Singh, Macula 
Society, Miami Beach, FL, February 25, 2016].

Eyes in the laser groups averaged −84 μm of macular thinning at week 100, but 
after crossing over to aflibercept this increased to −110 μm by week 148. In  contrast, 
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the IAI 2q4 and 2q8 groups achieved significantly better thinning of the macula 
(−200 and −190 μm).

Aflibercept received US FDA approval for the treatment of center-involving 
DME (2014) and then for the treatment of diabetic retinopathy in patients with 
DME (2015). It has been approved by the European Medicines Agency and the 
recent approval in Egypt brings the total to 31 countries.

The ability of intravitreal aflibercept to prevent DR progression in eyes without 
DME and PDR is being evaluated in the PANORAMA trial and in the DRCR.net 
Protocol W trial. Patients with moderately severe NPDR are randomized to receive 
sham injections or aflibercept every 8 or 16 weeks.

3.5  Comparison Trials

The only trial to directly compare aflibercept, bevacizumab, and ranibizumab treat-
ment of DME was the prospective, randomized, multi-center DRCR.net Protocol T 
trial [22]. Six hundred sixty patients at 89 sites received 1.25  mg bevacizumab, 
0.3 mg ranibizumab, or 2 mg aflibercept every 4 weeks unless the BCVA reached 
20/20 or better with a CST below the eligibility threshold, or if the BCVA changed 
by fewer than 5-letters over the past 2 injections, or if the CST changed by less than 
10%. Beginning at week 24, injections were withheld if the changes in BCVA and 
CRT were ˂5 letters and ˂10% over the previous 2 injections regardless of absolute 
BCVA. At 24 weeks, patients were eligible for laser photocoagulation if they had 
persistent edema.

By 52 weeks, the mean numbers of injections given to patients in each arm were 
9 (aflibercept), 10 (bevacizumab) and 10 (ranibizumab) (P = 0.045) and laser pho-
tocoagulation was performed in 37%, 56%, and 46% of eyes (P < 0.001). Mean 
changes in BCVA were +13.3 letters (aflibercept), +9.7 letters (bevacizumab), and 
+11.2 letters (ranibizumab) (P ˂ 0.001, aflibercept versus bevacizumab; P = 0.03, 
aflibercept versus ranibizumab). A pre-planned subgroup analysis showed that for 
eyes with baseline BCVA of 20/32 to 20/40, mean BCVA changes were +8.0 
(aflibercept), +7.5 (bevacizumab), and +8.3 letters (ranibizumab). For eyes with 
baseline BCVA of 20/50 or worse, however, the mean changes in BCVA measured 
+18.9 (aflibercept), +11.8 (bevacizumab), and +14.2 letters (ranibizumab). The 
mean changes in CST for all ranges of BCVA were −169  μm, −101  μm, and 
−147 μm. Only 2 eyes developed endophthalmitis and there were no significant dif-
ferences in the rates of serious adverse events (P = 0.40), hospitalization (P = 0.51), 
death (P = 0.72), or major cardiovascular events.

Gains in best corrected visual acuity were sustained by all groups during year 2 
but the differences in BCVA gains between the drugs narrowed. Even among eyes 
with baseline BCVA of 20/50 or worse, aflibercept produced significantly better 
visual acuity gains than bevacizumab, but not significantly better than ranibizumab 
[Wells J, Macula Society, Ft. Lauderdale, FL, Feb. 23, 2016].
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4  Corticosteroids and Clinical Trials

Glucocorticoids were the first drug class shown to improve DME in randomized 
clinical trials. Corticosteroids counteract the effects of angiogenesis via several 
mechanisms. They bind to the promoter region of the VEGF gene and downregulate 
VEGF synthesis [30, 57]. The resultant free VEGF levels drop significantly, though 
remain 100-fold higher than after the intravitreal injection of anti-VEGF drugs. By 
promoting vasoconstriction, steroids reduce the hydrostatic pressure gradient and 
decrease exudation by favorably altering the Starling’s Law equilibrium.

Corticosteroids reduce inflammation by repressing several key pro-inflammatory 
transcription markers such as nuclear factor-kappa B (NFĸB) and activator protein 
1 [61, 67], inhibiting phospholipase A2 [59], downregulating the release of prosta-
glandins and histamines [66] and inhibiting the synthesis of endothelial nitric oxide 
synthase (eNOS), a potent vasodilator [38]. Corticosteroids decrease the synthesis 
of several chemokines, intercellular adhesion molecules, and growth factors that 
inhibit the migration and margination of polymorphonuclear leukocytes.

Steroids maintain and restore the blood-retinal barrier by preventing phosphory-
lation of tight junction proteins [32, 63]. Corticosteroids increase fluid movement 
through the retina by stabilizing Müeller cells and improving aquaporin-4 (AQP-4) 
and potassium channels [53, 69].

4.1  Triamcinolone

Pilot studies showed that intravitreal injections of triamcinolone acetonide (IVTA) 
effectively reduce DME [7, 40]. In the prospective, randomized, DRCR.net Protocol 
B trial, 1 and 4 mg IVTA every 4 months were compared to laser photocoagulation. 
At 4 months, patients receiving 4  mg IVTA were more likely to have +10-letter 
improvements in BCVA compared to laser (27% vs. 17%) and had greater mean 
decreases in CRT (−98 μm vs. −39 μm). At the 2-year primary endpoint, however, the 
mean BCVA improvement in the laser group, 1 mg, and 4 mg IVTA groups were +1, 
−3, −2 letters. Elevated IOP was seen in 13%, 16%, and 33% of eyes. More patients 
receiving triamcinolone required glaucoma medications (4 mg: 13%; 1 mg: 6%; laser: 
3%) and more developed cataracts (4 mg: 61%; 1 mg: 23%; laser: 13%) [18].

4.2  Dexamethasone

Single intravitreal injections of dexamethasone phosphate have been used to control 
inflammation associated with bacterial endophthalmitis but its short half-life (5.5 h) 
prevents it from being used to treat chronic conditions. The dexamethasone 
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posterior- segment drug delivery system (DEX, Ozurdex®, Allergan Inc., Irvine, 
CA, USA) is a biodegradable, sustained release reservoir that releases 0.7 mg of 
dexamethasone over 3 months. The cylinder is pre-loaded into a single use applica-
tor and then injected across the pars plana into the anterior vitreous through a 
22-gauge needle (Fig. 13.5).

The long-term safety and efficacy of the dexamethasone insert in eyes with DME 
was compared to sham injections in the randomized, double-blind, multicenter, 
phase III MEAD registration trials [8]. From baseline to 3  years, more patients 
receiving the 0.7 mg and 0.35 mg inserts compared to sham experienced ≥ +15- letter 
improvements in VA (22.2% vs. 18.4% vs. 12.0%; P < 0.018). The mean improve-
ment in BCVA among patients receiving the 0.7 mg insert was +7 letters. Patients 
that were pseudophakic at baseline experienced rapid improvements in BCVA fol-
lowed by stability throughout the balance of the trial, whereas those who were pha-
kic at baseline experienced rapid improvements in VA, a decline beginning at week 
24 due to the formation of cataracts, and finally an improvement in VA after week 
52 as cataracts were removed.

More patients receiving the insert experienced IOP readings of at least 
25 mmHg (29.7% vs. 4.3% sham). The increase in IOP was transient in most cases 
with a peak at 6 weeks followed by a rapid return to baseline. In most cases, pres-
sure elevations were managed with topical medications or by observation, and 
only 3 patients (0.4%) required incisional glaucoma surgery. IOP elevations 
tended to occur early, as 75% of spikes were diagnosed after the first 2 insertions 
and 85% after the first 3.

Among eyes that were phakic at baseline, 66.0% of those treated with DEX 
experienced development or progression of cataracts (cortical, nuclear, or subcap-

Fig. 13.5 The photograph, 
taken immediately after an 
injection, shows a 
dexamethasone insert 
suspended in the posterior 
vitreous just above the 
retina
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sular), compared with 20.4% of sham-treated patients. Nearly 56% of DEX 
treated patients compared with 7.2% of sham treated patients underwent cataract 
surgery. The incidence of cataract-related adverse effects increased throughout 
the duration of the study with most cataract surgeries performed during the sec-
ond and third years.

In addition to cataract progression and IOP elevation, the most frequent adverse 
events were conjunctival hemorrhage (23.5%), vitreous hemorrhage (10.0%), mac-
ular fibrosis (8.3%), conjunctival hyperemia (7.2%), eye pain (6.1%), vitreous 
detachment (5.8%), and dry eye (5.8%). Retinal tear, retinal detachment, vitreous 
loss, and endophthalmitis occurred in approximately 2% of patients.

4.3  Fluocinolone

The fluocinolone insert (FA, Iluvien®, Alimera Sciences, Alpharetta, GA) is a non- 
biodegradable, tubular device that releases fluocinolone into the vitreous for 3 years. 
The insert was evaluated in two parallel, randomized, phase III registration trials 
(FAME) that randomized 956 patients to receive sham (185), a 0.2 mg (375), or a 
0.5 mg insert (393) [12]. Six weeks after randomization, subjects were eligible for 
rescue laser, and 1 year after randomization, additional inserts or sham injections 
could be given if necessary.

The mean duration of DME at baseline had been 3.5–3.9 years. Significant visual 
acuity improvements were noted in both FA treatment groups at 3 weeks and at 
every time point thereafter. The proportions of patients improving by at least +10 
letters were 28.7% (low dose), 28.6% (high dose), and 16.2% (sham; P = 0.002 for 
each). The mean improvements in BCVA at month 24 were +4.4, +5.4 and +1.7 let-
ters (P = 0.02 and P = 0.016 compared to sham). A final VA of 20/40 or better was 
achieved in 33%, 31%, and 16% of eyes (P = 0.0185 and P = 0.0064 compared to 
sham) whereas a final acuity of ≤20/200 was achieved in 14% of insert eyes and 
12% of sham eyes. For eyes with at least 3 years of DME prior to the study, 34% in 
the low dose group improved by at least 15 letters (versus 13.4% of sham; P < 0.001) 
[16]. Eyes receiving the insert had significantly greater improvements in foveal 
thickness at all time points. Final CST of ≤250 μm was achieved in 40%, 47%, and 
51% of eyes. Because of recurrent or persistent edema, 23.5% (low dose) and 26.4% 
(high dose) of eyes required at least 2 insert injections. Fewer insert than sham 
patients required laser photocoagulation treatments (36.7%, 35.2%, and 58.9%). 
Significantly more phakic patients receiving the insert (74.9% and 84.5% vs. 23.1% 
sham) required cataract surgery and their final BCVA improvements were similar to 
eyes that were already pseudophakic at baseline. Incisional surgery to control glau-
coma was required in 3.7%, 7.6%, and 0.5% of eyes. A secondary analysis showed 
that eyes receiving the 0.2 mg insert experienced less progression of PDR compared 
to controls (17% vs. 31%; P < 0.0001) [3].
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5  Future Therapies

Most patients suffering from the ocular complications of angiogenesis respond well 
to initial anti-VEGF regimens but up to 40% have an incomplete response to ther-
apy. Ongoing pharmaceutical development is attempting to provide new delivery 
methods (sustained release devices, nanoparticle systems, encapsulated cell tech-
nology, iontophoresis delivery, mucous penetrating platforms, adenovirus delivered 
gene therapy), new injectable anti-VEGF drugs (abicipar, conbercept, RTH256, ziv- 
aflibercept), new routes of administration (oral, topical), and drugs that target other 
contributory molecules (angiopoietin-2, integrins, interleukins, vascular adhesion 
proteins, phospholipase A2, RAF proto-oncogene serine/threonine-protein kinase, 
hypoxia-inducible gene, plasma kallikrein, mTOR, Tie 2, and insulin-like growth 
factor).

Vascular endothelial growth factor inhibition will continue to be first-line ther-
apy for the complications of DR well into the future, and new medications will 
probably be used as second-line therapy or in combination with anti-VEGF drugs.

6  Conclusions

Currently available data shows that aflibercept, bevacizumab, and ranibizumab each 
improves visual acuity in most patients with DME. For patients with visual acuities 
of 20/40 or better, any of these drugs is a reasonable therapy. Most physicians in the 
United States choose bevacizumab, primarily because of its low cost. For eyes with 
BCVA of 20/50 or worse, physicians often select a higher binding-affinity drug 
(aflibercept or ranibizumab). Corticosteroids effectively resolve macular edema but 
their use is frequently accompanied by cataracts and glaucoma. Randomized head- 
to- head trials between corticosteroids and anti-VEGF drugs are needed to better 
understand the potential of corticosteroids as primary therapy. Consequently, corti-
costeroids are generally regarded as second-line or third-line therapies by most phy-
sicians except in specific circumstances.

Only ranibizumab has been shown to be equally effective as laser for the treat-
ment of PDR, but physicians are likely to use off-label bevacziumab for this condi-
tion. Trials investigating the use of these drugs for new DR-related indications are 
ongoing and favorable results may convince some physicians to start anti- 
angiogenesis therapy for earlier stages of diabetic retinopathy.
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Abstract Peripheral Arterial Disease (PAD) is one of the major complications of 
systemic atherosclerosis where occlusions along the major arterial pathway that sup-
plies blood to the lower extremities is interrupted and blood flow to the distal limb 
becomes dependent on the presence, extent, and function of collateral blood vessels. 
Estimates are PAD is present in ~8.5 million Americans at or over the age of 40 and 
the two major clinical manifestations of PAD are intermittent claudication (IC) and 
critical limb ischemia (CLI) (Go et al., Circulation 129(3):e28–e292, 2014). Across 
the two major clinical manifestations of PAD the types of leg symptoms, amputation 
rates, and mortality differ greatly (Norgren et al., J Vasc Surg 45(Suppl S):S5–S67, 
2007). Medical therapies for PAD subjects are designed to limit complications 
from systemic but no medical therapies are reliably able to improve blood flow to the 
ischemic limb. Here we will review how trials of therapeutic angiogenesis using gene 
or cell therapy have fared to treat PAD.
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1  Frequency and Clinical Manifestations of PAD

Peripheral arterial disease (PAD) is caused by atherosclerosis that results in a narrow-
ing of, or frequently complete occlusion in, one or more arteries that supply the lower 
extremities. A reduced ankle-brachial blood pressure index (ABI) defines the pres-
ence of PAD and this finding is present in ~8.5 million Americans at or over the age 
of 40 [1]. There are two major clinical manifestations of PAD: intermittent claudica-
tion (IC) and critical limb ischemia (CLI), though interestingly many patients with 
PAD are asymptomatic when asked standard medical questions. The time-honored 
Rose Criteria is used to define IC by the presence of leg pain/cramping with walking 
that relieves with rest. Patients with reduced ABI, with or without classic symptoms 
of IC, have similar endurance capacities on exercise testing. CLI is defined as pain 
present at rest, with or without, present or imminent tissue loss, of ischemic ulcers or 
gangrene, and CLI is classified as Rutherford Class 4–6 or Fontaine Class III and IV.

Importantly PAD should not be viewed as a disease this runs as a continuum from 
asymptomatic, to IC, to CLI. Patients with CLI are quite different than those with 
IC. The 1 year mortality rate in patients with CLI is approximately 25%, and the over-
all amputation rate over 1 year is approximately 30%, while patients with IC have 
amputation rates of 1–2%/limb/year [2]. Medical therapies for PAD are viewed as 
those that affect the limb or are designed to limit complications from atherosclerosis 
and reduce general cardiovascular mortality from myocardial infarction and stroke. 
There are no medications that have demonstrated the ability to reliably improve blood 
flow to the ischemic limb and thus treat the underlying problem in PAD.

The primary problem in PAD is reduced blood flow, or more accurately, perfusion to 
the lower limb with the clinical goal of treatment to augment blood flow to relieve isch-
emic (rest) leg pain, promote wound healing, reduce limb loss, and improve exercise 
capacity. Currently, endovascular and/or surgical revascularization remains the corner-
stone of therapy in patients with CLI and those with IC and life-style limiting claudica-
tion. A large fraction of patients with PAD are not suitable candidates for revascularization 
based on their vessel anatomy, or the procedure is often unsuccessful due to graft failure 
and/or stent thrombosis or re-stenosis. With no specific medical treatment able to 
improve blood flow distal to a vascular occlusion, investigational approaches have 
emerged. Angiogenesis is defined as the growth and proliferation of blood vessels from 
an existing vascular structure while therapeutic angiogenesis seeks to use angiogenesis 
to enhance tissue perfusion distal to a vessel occlusion. This chapter summarizes key 
approaches designed to induce therapeutic angiogenesis using cell or gene therapy.

2  Angiogenesis

The arterial anatomy of the leg is such that the vast majority of the blood flow to the 
distal leg is carried along a single dominant vessel and in the setting of an occlusion 
along that pathway perfusion becomes dependent on the growth of new blood 
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vessels or neo-vascularization which is a physiological process that occurs as an 
adaptation to ischemia. The net final product from the extent of angiogenesis, arte-
riogenesis, and vasculogenesis is termed the degree of neovasculariazation [3–5]. 
Angiogenesis is the formation of new blood vessels/capillaries (8–12 μm in diam-
eter) from pre-existing vessels and angiogenesis results from a combination of 
endothelial cell proliferation, differentiation and migration. Angiogenesis is actively 
under positive and negative regulation from local factors, the tissue micro- 
environment (i.e. hypoxia), and the extent to which genetic and epigenetic factors 
regulate modulate the balance of the conditions. Arteriogenesis involves the de- 
novo formation, and/or remodeling, of pre-existing vessels that are in the 20–50 μm 
diameter range while vasculogenesis is the formation of new vascular structures and 
involves the contribution of cells outside of the native vasculature.“Therapeutic 
angiogenesis” whether achieved by drug, gene, or cell should be viewed as being 
agnostic to the exact processes but are able to improve the delivery of oxygene and 
the removal of toxins from the distal bed.

3  Therapeutic Angiogenesis and Peripheral Arterial Disease 
(PAD)

In patient with PAD arterial occlusion result in hypoxia in the distal muscle bed and 
in the adult should result in activation of the hypoxia inducible factor 1 − α, a tran-
scription factor to induce hypoxia mediated angiogenesis. At least in principle, this 
should result in the generation of several pro-angiogenic cytokines and receptors, 
which would initiate endothelial cell sprouting, differentiation and proliferation, 
thereby initiating the process of angiogenesis to alter shear forces and drive arterio-
genesis to enhance tissue perfusion. To some extent this process occurs in all patients 
and in some the response is likely to be so extensive, that patients are absolutely or 
relatively symptomatic. Indeed, it is highly likely that greater the functional perfor-
mance of PAD patients the greater is the vascular remodeling that follows vessel 
occlusion. We showed that in human subjects with PAD (intermittent claudication, 
IC) the lower the capillary density in the gastrocnemius (ischemic) muscle the 
worse was the functional performance and this was independent of the ankle- 
brachial blood pressure index in those patients [6]. Moreover while supervised exer-
cise training is widely regarded as the most effective treatment for IC, in patients 
with PAD who undergo supervised exercise training, angiogenesis in the ischemic 
calf muscles precedes changes in functional capacity and despite the improvement 
in functional capacity this without an appreciable increase in blood flow [7], indi-
cating a role of micro-circulation in enhancing muscle performance independent of 
macro-vascular measurable blood flow. Thus, capillaries and angiogenesis are 
important in PAD and may be a site for therapeutic modulation.
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4  Gene and Cell Approaches to Induce Therapeutic 
Angiogenesis

Therapeutic angiogenesis seeks to improve tissue perfusion by creating an environ-
ment in the ischemic tissue that allows for an increase in blood vessels through 
some combination of angiogenesis, arteriogenesis, and vasculogenesis. Experimental 
approaches have included the direct injection of growth factors as protein into ves-
sels of tissue from patients’ legs, extra-vascular or intra-muscular delivery of DNA 
within some vector to increase angiogenic growth factors in ischemic tissue and 
stem/progenitor cell therapy to promote angiogenesis in the ischemic tissue. Direct 
protein therapy rapidly fell out of favor due to difficulty in routes of delivery, limited 
uptake by muscle cells, and short half -life of proteins. Gene and cell therapy and 
are currently the focus of investigations in therapeutic angiogenesis.

In gene therapy a patients own cells must ultimately provide the machinery for 
protein production and the nucleic acids encoding the protein must reach (trans-
duce) the cells in the organ and be transcribed into product. Gene therapy has an 
interesting history in medicine with its origin dating back to 1960s, when the first 
evidence was provided that nucleic acids could be taken up and expressed in mam-
malian cells was obtained [8]. Theoretically, gene therapy has numerous advantages 
over protein delivery which include more prolonged and controlled expression of 
the transgene products certainly when compared to exogenous protein delivery.

4.1  Nucleic Acid Delivery in Gene Transfer

Vectors for gene transfer revolve around viral and non-viral vectors and each has 
different properties which should not be equated to advantages/disadvantages. 
Viruses and discussion will be largely focused on adenoviral vectors have the potent 
capability to infect (transduce) host cells and have their limited genetic package 
utilize mammalian cell machinery for gene expression. These viruses can readily 
achieve high transfection efficiency and have robust expression of the target gene; 
albeit for limited time span. Adenoviral vectors for human use have defective repli-
cation and they retain an extra-chromosomal location and thus largely, or totally, 
avoiding incorporation into the host genome and the oncogenic risks to the recipi-
ent. Other important characteristics of the adenoviruses are that they are immuno-
genic which limits redelivery and existing antibodies have the (theoretical) potential 
to limit transduction efficiency. Lentivirus (retrovirus that can infect both dividing 
and non-dividing cells and can enter cells through intact cell membrane by mem-
brane fusion) have the ability to provide high levels of gene expression. Adeno- 
associated viruses (AAV) are emerging as promising vectors for gene therapy with 
AAV serotype 9 being known to have selectivity for skeletal muscle and even greater 
selectivity to ischemic skeletal muscle [9]. Sendai virus and even other vectors may 
eventually come into use.
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Non-viral gene delivery systems such as plasmid DNA have been extensively 
used in humans for research. When compared to viral vectors there is no inherent 
ability for the nucleic acids to obtain access to translational machinery with the 
exception of direct physical, or chemical, facilitation. There are examples of physi-
cal forces to facilitate transfection such as electroporation and particle bombard-
ment but in reality most of the activity is simple hydrodynamic forces from the 
needle injection. Certain lipid/polymers serve aide in chemical transfer but need to 
consider within clinical trial design. Plasmid vectors have lower transfection effi-
ciency but actually have the advantage of low immunogenicity and the potential for 
repeat dosing.

5  Gene Therapy Mediated Therapeutic Angiogenesis 
in Critical Limb Ischemia (CLI)

The primary problem in PAD is reduced blood flow/perfusion and the goal of thera-
peutic angiogenesis is to improve blood flow to relieve pain, improve wound heal-
ing, and limit the risk of amputation. Table 14.1 summarizes agents that have been 
tested to promote angiogenesis. Table 14.2 summarizes many of the key clinical 
trials PAD patients with CLI.

5.1  Vascular Endothelial Growth Factor Gene Therapy

Vascular Endothelial Growth Factor (VEGF) includes a family of genes that are the 
most extensively studied angiogenic growth factors. First identified in 1983 by 
Senger and Colleagues [24]. Today, the VEGF family of ligands consists of 
VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E and PLGF.  The ligands have 
varying affinities both for binding and activating VEGF receptors 1, 2 and 3 with 
VEGFR2 being the dominant VEGF receptor in post-natal angiogenesis and the role 
of VEGFR1 being the least well understood. The lengths of the VEGF-A isoforms 
identified are 121, 145, 165,189 and 206 amino acids and the properties vary with 

Table 14.1 Factors tested for therapeutic angiogenesis

Growth factors VEGF A-E, PLGF, FGF-1, 2, 3, 5, Angiopoietin-1 and 2, HGF, PDGF, 
GM-CSF, Neurotrophin, IGF-1 and 2.

Chemokines MCP-1, SDF-1
Trascription factors HIF-α, EGR-1, Prox-1

VEGF Vascular endothelial growth factor, PLGF Placenta growth factor, FGF Fibroblast growth 
factor, HGF Hepatocyte Growth Factor, PDGF Placenta-derived growth factor, GM-CSF 
Granulocyte-macrophage colony stimulating factor, IGF Insulin-like growth factor. MCP 
Monocyte chemoattractant protein, SDF Stromal Derived Factor, HIF Hypoxia-inducible Factor, 
EGR Early growth response protein, Prox Prospero homeobox
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VEGF 189 and 206 have extensive matrix and heparin binding ability while 121 and 
165 no or limited heparin binding and thus are found in the circulation [25, 26]. 
Genetic deletion studies of all VEGF-Receptors are embryonically lethal [27–30] 
such a critical role in developmental vasculogenesis. Even the well-studied VEGF 
ligands are becoming more complex and reports have described that not all VEGF-A 
is angiogenic with anti-angiogenic forms having a potential role in PAD [31].

VEGF 121 and VEGF 165 are the isoforms that have been most extensively stud-
ied and many preclinical trials with VEGF gene therapy showed promising results in 
pre-clinical models of PAD [32–34], The late Dr. Jeffery M. Isner et al. conducted the 
first human clinical trial using VEGF more than 20 years ago [10]. Back then, a 

Table 14.2 Clinical trials of growth factors in CLI

Reference Year
Study 
type Gene Vector

Route of 
Delivery Improvements in

Isner et al. 
[10]

1996 Phase I VEGF Plasmid Intra-arterial Collateral vessels 
and distal flow

Baumgartner 
et al. [11]

1998 Phase I VEGF165 Plasmid Intramuscular Distal flow, ulcer 
healing

Simovic et al. 
[12]

2001 Phase I VEGF165 Plasmid Intramuscular Symptom score, 
neurological exam, 
ABI, collaterals

Kim et al. [13] 2004 Phase I VEGF165 Plasmid Intramuscular Collaterals
Makinen et al. 
[14]

2002 Phase 
II

VEGF Adenovirus Intramuscular Vascularity

Kusumanto 
et al. [15]

2006 Phase 
II

VEGF165 Plasmid Intramuscular Ulcer healing
Hemodynamics

Comerota 
et al. [16]

2001 Phase I FGF-1 Plasmid Intramuscular Pain
Ulcer healing
ABPI
Transcutaneous 
oxygen pressure

Nikol et al. 
[17]

2008 Phase 
II

FGF-1 Plasmid Intramuscular Risk of amputation

Belch et al. 
[18]

2011 Phase 
III

FGF-1 Plasmid Intramuscular No benefit

Morishita 
et al. [19]

2004 Phase I HGF Plasmid Intramuscular Pain, ABI, ulcer size

Powell et al. 
[20]

2008 Phase 
II

HGF Plasmid Intramuscular Transcutaneous 
oxygen pressure

Pwel et al. 
[21]

2010 Phase 
II

HGF Plasmid Intramuscular Rest pain

Shigematsu 
et al. [22]

2010 Phase 
III

HGF Plasmid Intramuscular Rest pain, ulcer size, 
QOL

Rajagopalan 
et al. [23]

2007 Phase I HIF-1α Adenovirus Intramuscular Rest pain, ulcer size

VEGF Vascular Endothelail Growth Factor, FGF Fibroblast Growth Factor, HGF Hepatocyte 
Growth Factor, HIF-1α Hypoxia-inducible transcription factor-1α
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patient was given a plasmid DNA encoding VEGF 165 to vessel wall of the distal 
popliteal artery using the hydrogel polymer coated balloon. The report used digital 
subtraction angiography and 4 weeks after gene therapy showed an increase in col-
lateral vessels, intra-arterial ultrasound showed increased resting and maximum 
flows. Only a couple of years later, Baumgarther et al. administered the same plasmid 
(VGEF 165) by intramuscular (IM) injection into ischemic limbs of patients with 
CLI and showed improvements in ankle brachial index (ABI), collateral vessels by 
angiography in the VEGF treated patients [35]. Other studies followed. Simvoic 
et  al. [12] used VEGF165 as a plasmid in patients with CLI and IM VEGF165 
resulted in increased ABI, less symptoms, improved motor and nerve functions, indi-
cating a role of VEGF165 in chronic ischemic neuropathy. Then, Kim et al. [13] used 
IM VEGF 165 gene into patients with CLI and reported reduced leg pain, improved 
rates of ulcer healing, greater ABI and increased collaterals even 6 months out.

Randomized trials are needed to establish efficacy. The first such report of VEGF 
165 gene therapy was published by Makinen et al. [14], where is a 2002, random-
ized, double-blind, placebo-controlled trial patients received either an adenoviral of 
VEGF-plasmid vs. ringers lactate injections via an intra-arterial catheter during a 
lower extremity angioplasty with imaging (digital subtraction angiography, DSA) 
as the primary endpoint. Vascularity by DSA was significantly increased in either 
VEGF compared to controls. Then, Kusumanto and colleagues reported a phase II, 
double-blinded placebo controlled study of VEGF gene carrying plasmid (phVEGF 
165) vs. saline in patients with CLI and superimposed diabetes [15]. In these 54 
patients, the primary end-point studied was amputation rate at 100  days was no 
altered but the secondary endpoints were a 15% or more increase in ABI/toe bra-
chial index, clinical improvement and safety were improved along with improve-
ments in ulcer healing.

5.2  Fibroblast Growth Factor (FGF)

Though the VEGF family is complex, the fibroblast growth factors (FGF) family of 
>20 structurally related angiogenic growth factors and receptors is far more complex 
[36]. Beyond a role in developmental angiogenesis FGF ligand and receptor signaling 
also plays a significant role in post-natal angiogenesis with FGF-1 (acidic) and FGF-2 
(basic) have been the focus of therapies for promoting angiogenesis [17, 18, 37, 38].

In 2002, the first phase I clinical trial using FGF gene therapy was reported by 
Comerota et al. [16]. Here, a “naked” or simple plasmid vector encoding FGF-1 
(NV1FGF) was given IM to the ischemic limbs of patients with CLI to assess safety 
and tolerability of increasing and repeated (though only 2 doses) of NV1FGF. Of 
course, the trial also examined changes in hemodynamic and clinical parameters at 
12 months follow-up. NV-1FGF was safe, well tolerated and there were significant 
improvements in ABI, reductions in pain, better aggregate ulcer size reductions 
were noted along with an increase in transcutaneous oxygen pressure compared 
when compared to pretreatment values. This studied was followed by a phase II 
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clinical trial with FGF in patients with CLI [17]. Here, in this double-blinded, 
randomized placebo-controlled trial, investigators injected IM NV1FGF or placebo 
in ischemic limbs of patients with CLI. Interestingly, though there was no signifi-
cant improvement in ulcer healing, the use of NV1FGF did significantly reduced the 
secondary but important end-points of all amputations and major amputations com-
pared to placebo. Unfortunately for patients with CLI what followed was a large 
phase III trial, that was published in 2011 [18]. Here, 525 CLI patients who were 
deemed unsuitable for revascularization were randomized to IM placebo or 
(NV1FGF1) DNA plasmid. The study showed no difference in the primary endpoint 
of time to major amputation or death and an increase in peripheral edema drove 
greater adverse effects in plasmid DNA vs. placebo and development was halted.

5.3  Hepatocyte Growth Factor (HGF)

Hepatocyte growth factor is (HGF, originally called “Scatter Factor”) is a potent 
mitogen or migration factor in many cells, acting through the tyrosine kinase recep-
tor encoded by the MET proto-oncogene [39, 40]. Morishita et al. reported the first 
Phase I human study using HGF in PAD in 2004 [19]. The group studied the safety 
and efficiency of IM HGF plasmid DNA in 6 patients with CLI. Follow-up was at 
3  months and no significant complications or adverse effects were detected. 
Interestingly, no edema was observed as opposed to all other gene therapy trials. 
This open-label study had reductions in pain, increases in ankle pressures and 
reduced ulcer size. What followed was a phase II IM study of HGF in patients with 
CLI which showed that HGF plasmid was safe and as well tolerated as placebo [20, 
21]. The study showed significant improvements in transcutaneous oxygen pressure 
[20], and decrease rest pain [21] with HGF compared to placebo. Investigation with 
HGF was investigated in a multicenter, randomized, double-blind placebo- controlled 
trial [22]. Placebo or HGF plasmid was injected to ischemic limbs of patients with 
CLI. After 12-weeks follow-up, there was improvement in rest pain and reduction 
of ulcer size in the HGF group, and HGF plasmid group also had improved quality 
of life. There were no major safety problems. Investigations using HGF have con-
tinued but ultimately a multinational phase III trial NCT02144610 of the hepatocyte 
growth factor (HGF) plasmid for critical limb ischemia (CLI) (http://www.anges-
 mg.com/en/pdf.php?pdf=100886.pdf) was halted for slow enrollment.

5.4  Hypoxia Induced Factor-1 Alpha (HIF-1α)

Hypoxia Induced Factor-1 α is a transcription factor that is a central mediator in the 
cellular adaptation/response to ischemia or (as its name-sake) hypoxia. HIF-1 is a 
complex heterodimer with a constitutively expressed β subunit (HIF-1β) and oxygen 
regulated α subunit HIF-1α [41, 42]. The control of this protein is also important for 
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its potential action because under normoxic conditions, the HIF-1α subunit undergoes 
rapid proteosomal degradation, while under hypoxic condition the HIF-1α is stabi-
lized, accumulates and dimerizes with HIF-1β [43]. What follows is this heterodi-
mer, translocates to the nucleus and binds to conserved hypoxia response elements 
(HREs), which then drives transcription of potentially hundreds of genes that encodes 
proteins involved in the processes of neovascularization, making HIF-1α an attrac-
tive therapeutic target to modulate angiogenesis. It is interesting to note that that 
HIF-1α over-expression designed to promote therapeutic angiogenesis only has the 
potential for success in situations where endogenous activation is submaximal.

Rajagopalan et  al. reported the first, phase I, trial using a constitutively active 
form of HIF-1α [23]. This report of 34 no-option patients included both a random-
ized, double-blinded, placebo-controlled study and an open-label extension study. 
The study reported no serious agent attributed adverse events at 1 year of follow-up, 
the study of the “limb”included complete rest pain resolution in 14 of 32 patients and 
complete ulcer healing in 5 of 18 patients. Overall, the therapy was well tolerated, 
with the most common adverse events reported being peripheral edema. HIF-1α then 
switched to patients with intermittent claudication where the agent was unable to 
promote therapeutic angiogenesis but did induce a significant degree of edema [44].

5.5  Overview/Summary of Gene Therapy for Angiogenesis

Despite wide-spread positive results from pre-clinical studies and encouraging data 
from small phase I and phase II clinical trials, therapeutic angiogenesis for CLI 
must be viewed as a failure and while some research in this area is ongoing, success-
ful programs will need to identify systems for improved gene delivery. Studies that 
will seek to combine growth factors and /or delivery of growth factors with cell 
therapy need to be considered as opposed to single gene therapy approach. 
Alternatives in trial design such as gene therapy as an adjunctive therapy to surgical/
endovascular therapies, as opposed to stand alone studies to promote neo- 
vascularization need to be considered. Perhaps, out-of-box ideas such as the use of 
therapy to be used in conjunction with surgical and endovascular therapies to limit 
graft failure and to limit in-stent re-stenosis need to be considered.

6  Cell Therapy for Therapeutic Angiogenesis

Stem cells can be derived from multiple sources and this area has opened new ave-
nues of investigation for disease treatment. Embryonic tissue provides a rich source 
for stem cells but for this any clinical use is complicated by ethical issues and the 
strong potential for these cells to differentiate into uncontrolled tumors and cause 
immune reaction such as a graft vs. host disease. Adult tissue provides a source of 
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stem cells with many with many if not all adult tissue containing some cells with 
pluripotentcy that can be modulated by the micro-environment. Adult tissue also 
contains committed stem cells or better referred to as progenitor cells, where local 
environmental stimuli can lead to differentiate into specific cell populations. Tissue 
regeneration using stem or progenitor cells has led to many studies in CLI.

Theoretically, cell therapy administration has numerous advantages over the use 
of a specific growth factor as the “cells’ can contain or produce numerous cytokines 
not only a single cytokine and a fixed dose. Stem/progenitor cells can have multiple 
effects on angiogenesis by having the capacity to localize to tissue and then differ-
entiate into endothelial cells at sites of high ischemia, and/or the cells can differenti-
ate into supporting cells with paracrine effect on proliferation. Cell therapy therefore 
has the potential to be a more efficient and durable treatment for therapeutic angio-
genesis but theory must be tested and as yet has not reached reality.

6.1  Different Modes of Delivery Cell Therapy

Currently, several different modalities for the delivery of cells for cell therapy are 
under investigation. There is direct intramuscular or intra-arterial injection for 
delivery of cells such as bone marrow-derived mononuclear cells (BMMNCs). The 
same IM approach can be used for cytokine-mobilized and apheresed/concentrated 
peripheral mononuclear cells (PB-MNC). Finally, attempts can be made to mobilize 
cells (self stem cells) at sites of ischemia.

6.2  Clinical Trials of Cell Therapy in Patients with CLI

Within any population of bone marrow-derived mononuclear cells or peripheral 
blood mononuclear cells are a fraction of endothelial progenitor cells (EPCs) that 
can incorporate and enlarge existing vascular networks and augment limb perfu-
sion. While simple in theory, there is no definitive agreement to identify these cells. 
Different and varying cell surface markers are used to identify and sort putative 
EPCs by different laboratories. Despite the variability, the surface markers of 
CD-34, CD-133, and KDR (VEGF−/receptor 2) are used by many groups. 
BMMNCs also contain cells that are of the monocyte/macrophage lineage that con-
tribute to angiogenesis by secreting angiogenic cytokines and matrix metallopro-
teinases. Bone marrow derived cells can augment neovascularization by promoting 
pericyte or other support cells to stabilize new vascular endothelial networks.

Table 14.3 contains many of the clinical trials that have established the safety and 
feasibility of IM injections into the ischemic limb of bone marrow derived stem 
cells in patients with CLI. In-toto, these studies have shown that IM of bone-marrow 
derived stem cells is clinically safe with no untoward signal of increases in major 
adverse events. Much like the gene therapy reports of improvements in pain, 
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improvements in quality of life measures, improve rates of limb salvage, increases 
in ABI and transcutaneous oxygen levels have been reported.

An alternative approach for cell therapy is the mobilization of stem cells out 
from the bone marrow and to the periphery using chemokine agents and then har-
vesting the mobilized mononuclear cells which can then by apheresed and concen-
trated; eventually cells could be modulated before administration. The collected 
cells can then be transplanted to ischemic tissue using IM or intra-arterial injections. 
Cell mobilization avoids bone marrow aspiration of course the approach provides 
lower number of cells and carries the risks from the mobilization agents. Table 14.3 
contains several clinical trials of cell therapy where studies have suggestions for 
ABI a d wound healing mprovements with and increased formation of collaterals.

Cell therapy approaches using the mobilization of “self” stem cells to sites of leg 
ischemia have also been reported for example using injection of cytokines. Granulocyte 
colony stimulating factor when given IM appears relatively safe and this approach 
effectively mobilizes stem cells from bone marrow to peripheral blood, where cells can 
access sites in ischemic tissue in response to chemotactic factors present in ischemic 
tissue. Conceptually this method seems simpler but of course the relative lack of blood 
flow and vessels in ischemic limbs may affect delivery of adequate number of cells for 
neovascularization. A few small clinical trials have reported clinical outcomes [63, 64].

6.3  Overview of Cell Therapy Trials for Therapeutic 
Angiogenesis

In CLI, various studies of stem cell therapy have been reported and in general the 
approach has proven to be safe and feasible in smaller clinical trials. Still few ran-
domized, controlled, clinical trials have been completed [45, 49, 54, 58–60, 62, 63, 
65, 66]. Trials completed to date have been complicated to interpret due to the mul-
tiple variables of cell lineage, routes of delivery, doses and relative-dose compari-
sons, routes of delivery and duration of follow-up. These studies have been 
conducted on the most extremely of the CLI severity and studies must be moved 
into larger patient populations for sizable enough randomized clinical trials, with 
more standardized methods of stem cell selection and delivery to establish if cell 
therapy can be a therapy for vascular regeneration.
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Chapter 15
Cell-Based Therapy in Ischemic Heart Disease

Adnan Khan, Akshay Menon, and Jörn Tongers

Abstract Despite continuous advances in primary prevention and secondary manage-
ment of arteriosclerotic disease, ischemic cardiovascular disease constitute an increas-
ing socioeconomic burden. A solid body of evidence has previously indicated a 
regenerative capacity of stem and progenitor cell-based therapy in preclinical and early-
phase clinical studies. Clinical application of stem and progenitor cells in ischemic 
heart disease have included patients with coronary artery disease after revascularized 
acute myocardial infarction, ischemic cardiomyopathy, or refractory angina. Larger 
scale clinical studies subsequently generated mixed data partly due to differences in 
study design and employed techniques. While the therapeutic application of different 
cell populations appears safe, therapeutic efficacy of stem and progenitor cells needs yet 
to be proven at a larger scale in properly designed randomized-controlled trials. Vast 
efforts have been undertaken to overcome practical limitations and conceptual chal-
lenges that were encountered in praxis over time. Multiple strategies such as supportive 
use of biomaterials, combination of different cell sources, genetic modification of cells 
prior to application, and addition of factors turned out to be promising overly in the 
preclinical evaluation To optimize and fully leverage the regenerative potential of cell-
based therapies further aspects including identification of a potentially ideal cell linage 
as well as timing, repetition and dosing of cell delivery need to be addressed.
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CAD Coronary artery disease
CSC Cardiac stem cell
EPC Endothelial progenitor cell
ESC Embryonic stem cell
GM-CSF Granulocyte-macrophage colony stimulating factor
HPSC Hematopoietic stem cell
ICM Ischemic cardiomyopathy
iPS Inducible pluripotent stem cell
MSC Mesenchymal stem cell
SM Skeletal myoblast

1  Background

Ischemic cardiovascular diseases that subsume coronary artery disease (CAD), cere-
brovascular, and peripheral artery disease constitute a leading cause for quality of life 
impairment, morbidity and mortality in developed industrial countries [1]. For the 
purpose of the present chapter, we will exclusively focus on ischemic heart disease 
that comprises of refractory angina, ST-elevation myocardial infarction (STEMI, 
equals acute myocardial infarction, AMI), and ischemic cardiomyopathy (ICM). 
Gold standard therapy of these conditions comprise of optimized medical therapy, 
(immediate) complete revascularization, and, where indicated, modern heart failure 
management to reduce symptoms, minimize myocardial ischemia as well as isch-
emia-related ventricular dysfunction, and adverse remodeling. Beyond, it is crucial 
to attenuate CAD progression by secondary prevention including medication and 
risk profile optimization. Despite modern treatment, a significant portion of patients 
remain symptomatic (i.e., angina) and/or prognostically threatened lacking revascu-
larization options. In addition, recurrent hospitalizations due to acute coronary syn-
dromes and acute heart failure cause socioeconomic burden [2].

Despite substantial progress on disease prevention and progression, interven-
tional and surgical revascularization strategies are often required to improve perfu-
sion of manifest ischemic tissue. In cases of later-stage ischemic cardiovascular 
disease, revascularization of ischemic tissue may not be a viable option any longer 
despite practical and technical experiences as well as development of modern 
devices and materials. In light of this unmet medical need, regenerative strategies 
have been developed in the last two decades. Previously, the therapeutic concept of 
cardiovascular gene therapy that aims at overexpression of certain target genes via 
encoding plasmids or viruses had emerged. In the context of ischemic  cardiovascular 
disease, therapeutic overexpression of several proangiogenic factors has been advo-
cated based on promising preclinical data and early phase clinical studies. Due to 
many conceptual and practical limitations, at least in part, angiogenic gene therapy 
has not made its clinical breakthrough.
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More recently the field of cell-based therapies has emerged. Since the identification 
of stem cells by Asahara and co-workers in 1997, the therapeutic concept to repair 
or regenerate ischemic tissue by the application of stem or progenitor cells has been 
developed. Earlier the idea was that stem/progenitor cells would differentiate into 
organotypic cells and integrate structurally into the organ architecture and thereby 
replace dysfunctional areas. In the meanwhile, the community reached a consensus 
that paracrine effects via secretion of factors such as proangiogenic and/or anti- 
apoptotic proteins constitute the key mechanism of the underlying beneficial effects 
ascribed to cell-based therapies. At present, multiple stem/progenitor cell populations 
are being discussed to leverage a regenerative potential. Almost independent of a 
given stem/progenitor cell population, transplanted cells are challenged by the 
harmful environment of ischemic tissue. As a consequence, poor viability, impaired 
homing, low retention, and impaired functionality of cells have been recognized as 
limiting factors [3, 4]. Traditionally, bone-marrow mononuclear cells (BMC) have 
most extensively been studied in the clinical arena. More recently, resident stem 
cells and inducible pluripotent cells have gained momentum, although practical and 
ethical concerns are pertinent.

After years of smaller, uncontrolled clinical studies, the field of cell-based in 
ischemic cardiac disease stands at the verge to proof its efficacy in randomized- 
controlled studies (Table  15.1). Underpowered, smaller-size, methodologically 

Table 15.1 Randomized-controlled trials in ischemic heart disease

RCT Indication N
Route of 
delivery

Cell 
source Key results

REPAIR-AMI AMI 204 IC BMC At 4 months:
  ↑ LV-EF
At 1 year:
  ↓ cardiovasc. events
At 2 years:
  ↓ cardiovasc. events
  ↑ regional contractility

BOOST AMI 60 IC BMC At 6 months:
  ↑ LV-EF
At 18 months:
  ↑ diastolic function
At 5 years:
  no effect

Cao et al. AMI 86 IC BMC At 6 months
  ↓ LV-EF
At 1 year
  ↓ LV-EF
At 4 years
  ↓ LV-EF

(continued)
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Table 15.1 (continued)

RCT Indication N
Route of 
delivery

Cell 
source Key results

Janssens et al. AMI 67 IC BMC   No effect
Lunde et al. AMI 100 IC BMC   No effect
TIME AMI 120 IC BMC   No effect
LATE-TIME AMI 87 IC BMC   No effect
END-HF ICM 28 EM BMC   No effect
FOCUS-CCTRN ICM 92 TE BMC   No effect
MSC-HF ICM 60 IM MSC   ↑ LV-ESV

  ↑ SV
  ↑ myocardial mass

TAC-HFT ICM 65 TE MSC
BMC

  ↓ NYHA
  ↑ 6-min walk
  ↓ infarct size
  ↑ reg. myocard. function

PRECISE ICM 27 TE ADRC   ↑ MVO2

  ↑ LV mass
  ↑ LV wall motion

van Ramshorst 
et al.

RA 50 IM BMC   ↓ angina
  ↑ quality-of-life

PROTECT-CAD RA 28 EM BMC   ↑ exercise time
  ↑ LV-EF
  ↓ NYHA

ACT34-CMI RA 167 IM CD34+   ↑ angina
  ↑ exercise tolerance

RENEW RA 112 IM CD34+   Early terminated
  ↑ total exercise time
  ↓ angina

PROGENITOR RA 28 TE CD133+   ↓ angina episodes
  ↓ angina class
  ↑ SPECT summed core

Summary of randomized controlled cell-therapy trials in patients with ischemic heart disease. AMI 
acute myocardial infarction, ICM ischemic cardiomyopathy, RA refractory angina, BMC bone 
marrow-derived mononuclear cells, MSC mesenchymal stem cells, ADRC adipose tissue derived 
regenerative cells, EM endomyocardial, IC intracoronary infusion, TE transendocardial.

flawed studies will not be of value for the progress of the field. Thus, we here give 
a critical overview on the randomized-controlled studies of the cell-based therapies 
in ischemic heart disease. Furthermore, we will make an attempt to appraise limita-
tions, remaining challenges and potential solutions to potentially leverage the 
regenerative efficacy that has been proposed (Fig. 15.1).
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2  Methodological Aspects of Clinical Cell-Based Therapy

The heterogeneity of existing early-phase clinical data may be related in part to 
relevant differences between investigated patient populations, design and methodol-
ogy of previous studies. Particularly difference making aspects to consider are pop-
ulation, delivery route, timing, dosing and repetition of cell transfer.

2.1  Cell Populations

Stem cells (stemness) are defined by the capacity of self-renewal and the ability to 
differentiate into further developed progenitor cells that itself can differentiate into 
lineage specific mature cells. Progenitor cells, in turn, entail a limited differentiation 
capacity, capable of dividing for a limited number of cell cycles, and also having the 
ability of self-renewal. Until today, various cell sources such as unselected bone mar-
row cells (BMC), resident cardiac stem cells (CSC), mesenchymal stem cells (MSC), 
and skeletal myoblasts have clinically been evaluated for cell-based repair of the 
ischemic myocardium. Each population shows its own set of advantages vs. disad-
vantages, and practical feasibility vs. limitations [5]. Some populations have been 
employed in clinical studies with success, others have yet merely been investigated 

stem/progenitor
cells

trans-differentiationvascular 
incorporation

secretion: 
paracrine factors

vascular repair,
(re-)endothelialization

endothelial cells cardiomyocytes

modulation: matrix 
remodeling

(MMPs, collagen)

recruitment/
activation of 

resident cardiac 
stem cells

recruitment of 
additional stem 
and progenitor 

cells

prevention of 
apoptosis

(endothelial cells, 
cardiomyocytes)

angiogenesis,
vasculogenesis

Fig. 15.1 Mechanisms of regenerative efficacy proposed for stem and progenitor cells-mediated 
repair of ischemic tissue
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in the preclinic with great promise. Of the cell populations shortly characterized 
below, only BMC, HPSC, MSC, and skeletal myoblasts have clinically been used 
yet.

Bone Marrow Cells Unselected BMC have by far most been studied at bedside. 
BMC are easy to harvest and their preparation is straightforward not requiring pro-
longed ex-vivo manipulation. Thus, BMC contain a broader range of cell types 
including small fractions of stem and progenitor cells. Opposed to selected, non-
expandable stem cell populations, BMC use is not restricted by the number of cells 
that can be obtained.

Selected Hematopoietic Stem and Progenitor Cells Stem and progenitor cells 
are defined by surface markers. CD133 and CD34 surface markers are commonly 
used to isolate and enrich for hematopoietic stem cells. Isolating CD34+ cells, for 
example, from the pool of circulating mononuclear cells has been proposed to 
increase regenerative potency [6]. This observation has raised particular interest in 
selection strategies with a vague preference for selected stem vs. unselected BM 
cells. In physiological states, merely low levels of hematopoietic stem cells (HPSC) 
are circulating. To augment levels of circulating cells and thereby optimize the 
yield, pharmaceutical agents have been used to mobilize HPCS from the bone mar-
row into the circulation before consecutive enrichment via leukapheresis.

Mesenchymal Stem Cells Mesenchymal stem or stromal cells (MSC) are derived 
from stromal cells localized in adipose tissue and bone marrow stroma. These cells 
have generated interest because of their anti-apoptotic and anti-inflammatory para-
crine properties [7]. This potential immunosuppressive paralleling effect has led to 
the notion that MSC may be particularly useful for allogeneic applications. As one 
of the features of an ideal cell therapy, allogenic application of MSC (off-the-shelf) 
would be of interest. On the downside, use of MSC requires ex-vivo expansion 
given limited cell numbers.

Emerging Cell Populations Beyond the “established” cell populations, other prom-
ising ones are also emerging, but neither of these have been assessed clinically yet.

The adult heart has been shown to undergo an age-dependent cardiomyocyte 
turnover of 0.5–1.0% annually [8]. This turnover arises from resident cardiac stem 
cells generating cardiomyocytes and other cardiac cell types including endothelial 
and smooth muscle cells [9]. Because of very low number of cardiac-derived resi-
dent stem cells (CSC), these need to be expanded ex-vivo after isolation from car-
diac specimen for therapeutic utilization [10].

Resident stem cells in the skeletal musculature are resting under normal condi-
tions and are capable of generating new myocytes following injury. These so called 
skeletal myoblasts (SM) are easily accessible via muscle biopsies for ex-vivo 
 expansion. Preclinical evidence suggests that SM may be driven into cardiomyo-
cytes in a targeted fashion. A regenerative potential has already been described in 
models of ischemic myocardium [11, 12].

The capability to differentiate into any cell lineage is the defining feature of 
embryonic stem cells (ESC) [13, 14]. Limited availability as well as ethical and 
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regulatory concerns have been discussed heavily. So far, their therapeutic use has 
been restricted by these and other aspects. One hampering concern, however, is 
the potential risk of developing tumors such as intra- and extra cardiac teratoma 
[15, 16]. It has been challenging to come up with effective methods to regulate and 
control the differentiation of ESC, although different concepts are explored to pre-
vent tumor formation while enhancing cardiopoietic differentiation of ESC. Whether 
ESC functionally integrate electromechanically and structurally into the ischemic 
myocardium, remains to be answered.

The development to reprogram adult cells into stem cells in 2006 has revolution-
ized the field [17]. These cells termed inducible pluripotent stem cells (iPS), are 
able to form all three germ layers. This invention enables to produce autologous iPS 
from its patient won somatic cells using nuclear reprogramming with ectopic stem-
ness factors [17, 18]. The ability of human iPS to differentiate into functional car-
diomyocytes has already been demonstrated [19]. Although this concept is still 
distant from the translation to the bedside, hectic research activity is progressing 
this therapeutic concept forward.

2.2  Routes of Cell Delivery

Different modes of cell delivery have been established aiming at the treatment of 
ischemic myocardium: for cell transfer. The route mainly depends on the revascu-
larization status of the myocardial region. The overall aim is to safely deliver the 
therapeutically efficacious number of functional cells to the therapeutic target zone 
with the least possible risk but via the conceptual meaningful route. Intracoronary 
infusion and direct or respectively indirect intramyocardial injection have been 
most accepted. The advantage of intracoronary infusion allows homogenous distri-
bution, but on the other side requires target vessel revascularization. Similar to the 
methods of coronary interventions, an angioplasty balloon catheter is inflated to 
stop blood flow and minimize spillback. This stop-flow techniques enables contact 
of cells to the vessel wall and the efficiency of adhesion and transmigration [20]. It 
is particularly suitable for patients after acute revascularization of AMI. If the target 
vessel is not patent or chronically occluded, intramyocardial injection of cells is 
conceptually more suitable. Intramyocardial injection can be achieved from the 
endomyocardial side via needle-tipped delivery catheters or from the epimyocardial 
side with limited risk. Despite the choice of several injection sites, this route of 
delivery leads to a more heterogenous distribution of cells. Guidance of cell injec-
tion to ischemic but viable myocardium by means of electromechanical mapping 
(EEM, e.g. NOGA-mapping) can enhance efficacy.

The vast majority of adult stem and progenitor cells are confined to the bone mar-
row niche. By systemic application of certain mobilizing cytokines such as 
granulocyte- macrophage colony-stimulating factor (GM-CSF), the circulating frac-
tion can be augmented. Adopting the scenario of bone marrow transplant before its 
ablation in hematology, it was previously conceptualized that higher circulating levels 
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per se may contribute to ischemic tissue repair. Earlier phase clinical studies failed to 
prove efficacy of this strategy in ischemic heart disease (summarized in: [21]). The 
safety profile, on the other hand, was at least questionable in CAD. Given the unfavor-
able risk-benefit profile of mobilization strategies, RCTs have not been reported yet 
and may not be advocated. Furthermore, there are also no convincing clinical data for 
other pharmaceutical mobilization agents aiming at endogenous stem/progenitor cell 
trafficking (e.g., dipeptidylpeptidase IV inhibition, CXCR4-antogonism AMD3100) 
available.

3  Randomized-Controlled Evidence on Cell-Based Therapy 
for Ischemic Heart Disease

Traditionally bone-marrow mononuclear cells (BMC) have most extensively been 
studied for the clinical application. More recently, resident cardiac stem cells and 
inducible pluripotent cells have gained momentum although practical and ethical 
concerns are limiting their clinical use. Cell-based therapy has been employed to 
treat the following pathologies: acute myocardial infarction (AMI), chronic, refrac-
tory angina pectoris, and ischemic cardiomyopathy (ICM).

3.1  Acute Myocardial Infarction

Randomized-controlled trials have shown mixed results in early-phase clinical stud-
ies. In addition to a proof-of-concept, these studies suggested safety and feasibility 
of intracoronary BMC-infusion after revascularized AMI [20, 22–24]. Two RCTs 
embarking on intracoronary infusions (Reinfusion of Enriched Progenitor Cells and 
Infarct Remodeling in Acute Myocardial Infarction, REPAIR-AMI; Bone Marrow 
to Enhance ST-Elevation Infarct Regeneration, BOOST) reported an increase in 
left-ventricular ejection fraction (LV-EF) 4–6 months after BMC transfer while left- 
ventricular end-diastolic volume (LV-EDV) remained unchanged [25, 26]. In 
REPAIR-AMI, the improvement of LV-EF persisted until 12  months follow-up. 
Although the study was not powered accordingly, the authors also described fewer 
adverse cardiovascular events over 2 years. However, in case of BOOST trial, the 
initial improvement in left ventricular function was not sustained. By contrast, two 
other RCTs did not show an improvement of LV function or dimensions at 
4–6  months after BMC application [27, 28]. Notably, Janssens and co-workers 
found smaller infarct sizes 4 months after very early BMC infusion within 24 h after 
AMI [27]. Similarly, Lunde et al. did not find an effect of a single BMC intracoro-
nary infusion two to three weeks after AMI as assessed by global LV-function in 
their ASTAMI (Autologous Stem cell Transplantation in Acute Myocardial 
Infarction) trial. The REGENT investigators did not find a significant difference in 
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LV function and dimensions 6 months after intracoronary cell delivery neither in the 
unselected nor in the CD34+/CXCR4+ cell treated group. Notably, they observed a 
trend in cell-treated patients with severe LV impairment and longer delay of the cell 
application after AMI.  The randomized, double blind, placebo-controlled TIME 
(Timing in Myocardial infarction Evaluation) trial was designed to assess the aspect 
of timeliness of autologous intracoronary BMC therapy on global and regional LV 
function comparing cell application 3 vs. 7 days after AMI. There was no difference 
in LV-EF 6 months impendent of the time point of cell delivery. Furthermore, there 
was no significant effect of therapy on regional left ventricular function in both 
infarct and border zones [29]. Along the same line, Late-TIME was meant to address 
the relevance of BMC therapy 2–3 weeks after AMI. Regional as well as global LV 
function turned out to be unchanged after 6 months [30].

Long-term follow-up data on the REPAIR-AMI and BOOST collectives were 
subsequently reported. A sustained improvement of LV function was found after 
12 months, [25] and was related with a significant reduction of major adverse car-
diovascular events after AMI in REPAIR-AMI [31]. These observations were robust 
up to 2 years [32]. In the BOOST trial, there was no relevant difference in LV-EF 
after 18 months [33]. While there was a persistently improved diastolic function in 
an echocardiographic substudy [34]. Furthermore, there was not cardiac benefit nei-
ther in systolic and diastolic LV function 5-year after a single BMC infusion after 
AMI [35]. It needs to be acknowledged that subgroup analyses revealed a greater 
benefit from BMC infusion in patients with a more severe LV dysfunction at 
baseline. On the other hand, in a study conducted by Cao et al. intracoronary BMC 
infusion improved LV-EF beyond initial 6  months follow-up up to 4  years after 
inclusion while there was no effect in viability [36].

Differences in protocol and design including time lag between coronary revascu-
larization and cell injection, type, cell number and isolation procedure, follow-up 
design differences may reasons for the heterogeneity of results. Exemplary, intra-
coronary BMC infusion has generally taken place within the first seven post-AMI 
days, while in the Janssen’s trial cell transfer took place within 24  h [27]. 
Furthermore, there were differences in LV imaging. MRI was not performed before 
2–3 weeks after cell transfer while only echocardiography was done at baseline in 
the ASTAMI trial. In this study cells by contrast were prepared differently accord-
ing to the Lymphoprep technique [28].

3.2  Ischemic Cardiomyopathy

Several RCTs have evaluated the regenerative use of different cell populations in 
patients with severe LV dysfunction and chronic heart failure due to ischemic 
cardiomyopathy:

BMC In contrast to the borderline efficacy of BMC-infusion after AMI, the use of 
BMC in ischemic cardiomyopathy is not supported by evidence so far. In the 
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END-HF no significant changes in LV-EF and LV-ESV were detected 6  months 
after viability-guided endomyocardial injection of autologous BMC [37]. Similarly, 
in the FOCUS-CCTRN trial LV-ESV, myocardial perfusion and maximal oxygen 
consumption remained unchagned following transendocardial BMC injection in 
patients with chronic ischemic heart failure [38].

MSC The MSC-HF trial aimed at investigating the effects of intramyocardial 
injection of BM-derived, expanded MSCs in severe ischemic heart failure [39]. 
There were significant improvements of LV-EF and myocardial mass associated 
with a decrease in LV-ESV after 6 months. Similarly, in TAC-HFT (Transendocardial 
Autologous Mesenchymal Stem Cells and Mononuclear in Ischemic Heart Failure) 
trial, infarct size was decreased and regional myocardial function improved by tran-
sendocardial injection of MSC in patients with ischemic cardiomyopathy with LV 
dysfunction while there were no effects in the paralleling BMC group. These obser-
vations were associated with a clinical improvement in 6 min walk 1  year after 
transendocardial cell injection [40].

ADRC The regenerative utility of adipose tissue-derived cells (ADRC) has been 
studied in patients with severe ischemic cardiomyopathy by the PRECISE investi-
gators. They describe an improvement in LV function, myocardial perfusion, and 
exercise capacity following transendocardial after application of autologous 
ADRC [41].

All in all, there is no evidence for the efficacy of BMC-therapy, while there are 
sign of bioactivity for MSC and ADRC for in patients with ICM.

3.3  Refractory Angina

A substantial number of patients suffer from refractory angina despite optimal med-
ical and/or surgical therapy [42]. Early phase clinical trials revealed mixed results.

BMC  In a randomized-controlled trial conducted by von Ramhorst et al., angina 
frequency and quality of life were improved 3 months after intramyocardial injec-
tion of BMC [43]. The PROTECT-CAD (Prospective Randomized Trial of direct 
Endomyocardial Implantation of Bone Marrow Cells for Treatment of Severe 
Coronary Artery Diseases) studied patients with intractable angina. In this  collective 
patients refractory to conventional therapy angina symptoms, exercise time, and LV 
function were improved after BMC-injections [44].

HPSC In contrast to unselected BMC, the selection for hematopoietic stem cell 
markers is considered to increase efficacy. Along this line, the ACT34-CMI investi-
gator surrounding Losordo locally injected CD34+ cells in refractory patients. Six 
months after NOGA-guided intramyocardial application of autologous cells, exer-
cise tolerance and angina frequency were improved [42]. The subsequent phase-3 
RENEW (Efficacy and Safety of Targeted Intramyocardial Delivery of Auto CD34+ 
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Stem Cells for Improving Exercise Capacity in Subjects With Refractory Angina) 
trial was designed to similarly evaluate the efficacy of intramyocardial deliver of 
autologous CD34+ cells in refractory angina and chronic myocardial ischemia. 
Unfortunately it was prematurely terminated by the sponsor due to strategic internal 
reasons despite favorable trends in total exercise time and angina frequency for 
intramyocardial CD34+ application [45]. Selecting hematopoietic stem cells for the 
surface marker CD133 was also employed in the randomized controlled multi- 
center PROGENITOR (Endothelial Progenitor Cells and Refractory Angina) trial in 
patients with refractory angina. Transendocardial administration of CD133+ stem 
cells was related to less angina episodes and functional class. Additionally myocar-
dial perfusion was also enhanced based on the SPECT summed score [46].

4  Challenges and Limitations in Clinical Cell-Based 
Therapies

The field of cell-based therapies faces the dilemma that robust preclinical and early- 
phase clinical studies suggested therapeutic efficacy delivering stem or progenitor 
cells to potentially regenerate ischemia tissue. Subsequent larger-scale and 
randomized- controlled trials, however, have not uniformly proven efficacy. On the 
other end available clinical evidence suggest safety of using BMC, HPSC, MSC and 
SM in elder and fragile cardiac patients suffering from ischemic heart disease. 
As outlined above, part of the heterogeneity may be due to methodological differ-
ences amongst the studies. At this point the field will only progress if upcoming trials 
are thoughtfully designed, randomized-controlled, and properly powered. This is 
particularly true if trials are aimed to address clinical or prognostic endpoints.

4.1  Beside-to-Bench: Modeling of Ischemia

To systematically address limitations focused preclinical studies aligned to the 
remaining clinical challenges may be warranted. In order to understand behavior 
and demands of stem and progenitor cells challenged by the ischemic microenviron-
ment after transfer, for example, true models of ischemic milieu are needed. Further 
understanding of schema and its impact on exposed cells may provide us with new 
avenues to optimize cell-based therapy. In-vivo models are known to show relevant 
variability of the ischemic phenotype. Available in-vitro models do not closely 
mimic the ischemic milieu. Current models only reflect of the multiple features such 
as hypoxia, acidosis, or hypoglycemia. More complex models that reflect the total-
ity of ischemic features including an altered metabolic state, inflammation, cytokine 
storm and many others are not yet available. Thus, some efforts may be redirected 
to preclinical work I order to facilitate the field.
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4.2  Ideal Cell Population

Many cell populations have been proposed. It is entirely uncertain, which popula-
tion may be more suitable than others. Suitability may also be determined by the 
clinical indication. This may be particularly true in the setting of autologous cell 
therapy, where cells harvested from patients may be dysfunctional due risk profile 
and/or comorbidities and may impair the regenerative capacity [47–55]. Different 
unselected or selected cell types may show varying patters of bioactivity or biologi-
cal behavior. In the ischemic target zone [56]. Over the last years the notion of the 
underlying mechanism by which cells exert their regenerative potential shifted to 
the paracrine concept [57]. It is unknown, however, whether this paracrine theory 
can be generalized.

4.3  Selection of Study Endpoints

The field of angiogenic gene therapy has been struggling to proof efficacy according 
to established endpoints, which is even more difficult in peripheral-artery disease. 
In terms of therapeutically recover or prevent adverse remodeling of the myocar-
dium multimodal measures of LV function and dimensions are established. A sig-
nificant and lasting improvement of global LV function may be the gold standard 
but presumably difficult to achieve. Additional parameters such as infarct size, 
regional contractility, diastolic function, and myocardial perfusion are of interest 
particularly for indications such ischemic cardiomyopathy and refractory angina. 
Based on if at all smaller impact of cell-therapy meeting clinical or prognostic end-
points may be even more difficult. Notably, there is evidence that infarct size is a 
strong predictor of outcome in ischemic heart disease. Beyond, none of the estab-
lished variables assessing the myocardium does address the microcirculation, a 
function that is thought to be beneficially affected by cell-therapy in light of pre-
clinical findings of pro-angiogenic effects.

4.4  Timing and Dosing of Cell Transfer

Efficacy of stem/progenitor cells appears to be dose-dependent [6, 58], and to follow 
a dose-effect relationship [58]. For each any every constellation dose titration may be 
needed before making a final call on the field of cell-based therapy. Cell population, 
route of delivery, indication and disease severity may also influence the optimum 
dose. Furthermore, it appears to be over asking to gain a global functional impact 
from a single, one-time injection. Repetitive cell applications may boost efficacy. 
Previous studies have not addressed this aspect. In addition, timing of application 
may also be relevant. In the REPAIR-AMI trial, patients showed a better response in 
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LV-EF when BMC were administered later than day 5 [25]. This may be explained by 
an even more detrimental ischemic environment early after acute ischemia. In con-
trast, homing of proangiogenic progenitors has been shown early (≤14 days) [59].

4.5  Local Retention of Viable Cells

The number of viable cells has been reported to vary from roughly 30% to nearly 
1% with a rapid decrease within the first 7 days after application [60, 61]. Imaging 
of labeled stem and progenitor cells in the preclinic early on suggested that cells do 
not remain in the therapeutic target zone [62, 63]. Retention of viable cells (cell 
fate) is multi-factorial. Mode and route of application does also affect cell viability. 
Clinical observations showed a rapid washout of labeled BMC with a 1  h after 
application. The signal then further declines over the next 3–4 days. Along the same 
line, 4% of radiolabeled CD34+ cells in the myocardium 1 h after intracoronary 
infusion in ischemic cardiomyopathy [64]. Uptake and retention of cells is probably 
also influenced by the state of ischemia. Presence and magnitude of inflammatory 
factors may beneficially affect homing and retention while the even more hostile 
microenvironment early after ischemia may alter injected cells.

5  Perspective

The combination of a lack of satisfying efficacy data, technical limitations and 
unmet conceptual challenges have triggered intensive research. These activities 
overly aim at the protection of cells within the hostile ischemic environment. This 
may be achieved at different levels of cell therapy cascade.

5.1  Cell Modification

An intriguing strategy to manipulate stem and progenitor cells prior to the ischemic 
exposure more viable and thereby resistant is to precondition or modify the cells 
upfront. This strategy is adopted from previous pre-clinical observations [52]. Any 
functional modification aiming at improved homing, adhesion, transmigration, sur-
vival, engraftment, differentiation, cell-cell interaction, and retention might help to 
increase the potency of cell-based therapy. Various techniques to precondition or 
modify cells have been evaluated with success, but none of theses has yet been 
tested in the clinical setting. These strategies include exposure to hypoxia, pretreat-
ment with small molecules and drugs, epigenetic reprogramming, and transfection 
for overexpression of certain genes of potential benefit by means of plasmids or 
viruses such as hemeoxygenase-1 [65, 66].

15 Cell-Based Therapy in Ischemic Heart Disease



356

5.2  Supportive Biomaterials

Given the complex nature of biology cell-cell and cell-matrix interactions are cru-
cial for viability and functionality of cells. Cells loosing these interfaces are nega-
tively affected. This is of particular relevance in the setting of stem and progenitor 
cells harvest, isolation and ex-vivo expansion. It is therefore critical to maintain the 
homeostasis of cells for the purpose of an efficient cell transfer [67]. In recent years 
the field of biomaterials and nanotechnology has rapidly evolved. Building up on 
biological and synthetic compounds this technology allows to design smart materi-
als that combine mechanical, 3-dimensional support resembling the extracellular 
microarchitecture as well to integrate signals of bioactivity by incorporation of epi-
topes, functional groups, compounds, viruses, genes and biological factors. Rigidity, 
shape, structure, and dimensions of these materials are relevant to resemble local 
architecture as close as possible. In addition to mechanical support of cells novel 
materials that incorporate bioactive signals such as insulin growth factor (IGF), 
stromal derived factor-1 (SDF1), or the integrin binding domain of fibronectin 
(RGDS) have been shown to positively influence cellular functions [68]. Ideally 
such materials would be build from biological compounds, be injectable, biode-
grade into harmless by products, and form a 3-dimensional matrix.

5.3  Combined Approaches

To ultimately accomplish the wholly grail of repairing cardiac tissue is challenging 
given shortcomings and limitations at present is challenging. In light of highly com-
plex mechanisms in embryology and biology, it may be questionable to believe that 
a single application of genes or cells results in a regeneration of damaged tissue. 
Following this notion recent studies aim at combined biological repair, which may 
be more efficacious than the one-time, single-strategy approaches. Combination of 
various types of stem/progenitor cells plus stromal cells seems conceptual attrac-
tive. Unselected and selected cells, for example showed different spatial patterns of 
homing [56]. To add another level of complexity, combination with gene therapeutic 
approaches may be warranted [3].

Such combinatorial approaches of tissue regeneration, however, need to be pre-
cisely timed, may require various types of stem/progenitor and stromal cells, the 
addition of (paracrine) factors, and specifically designed biomaterials in order to 
really advance the this exciting field to the next level of “true ischemic tissue repair”.
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Chapter 16
Angiogenesis and Atherosclerosis
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Abstract Atherosclerotic heart disease is the leading cause of morbidity and mortality 
worldwide. Despite recent advances in our understanding of atherosclerosis the role of 
angiogenesis in atherosclerosis is still being debated. The use of therapeutic angiogen-
esis has been widely regarded as an attractive approach in treatment of ischemic heart 
disease. On the other hand, there is growing evidence that neovascularization contrib-
utes to the progression of atherosclerotic lesions, and that it may play key role in 
intraplaque hemorrhage, plaque destabilization and rupture. Most trials on therapeutic 
angiogenesis using growth factors like VEGF (vascular endothelial growth factor)/
FGF (fibroblast growth factor) have used single agents and are inconclusive. Bench 
and bedside research continues to bring insight into new mechanisms of atherosclero-
sis and tumor growth. Further understanding of different facets of angiogenesis may 
help in the development of novel and specific therapies.

Keywords Plaque neovascularization atherosclerosis • Arteriogenesis • Therapeutic 
angiogenesis • Growth factors

1  Introduction: Angiogenesis in Health and Disease

Atherosclerotic heart disease is the leading cause of morbidity and mortality world-
wide. Despite recent advances in our understanding of atherosclerosis the role of 
angiogenesis in atherosclerosis is still being debated. Angiogenesis is the process of 
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formation of new blood vessels and it plays an important role in many physiological 
and pathological processes in human body. Angiogenesis plays an important role in 
many physiological processes in adults (Fig. 16.1). This includes wound healing, 
tissue repair, exercise-induced skeletal and cardiac muscle hypertrophy, normal 
menstrual cycle in females, embryogenesis and organogenesis in pregnancy.

Physiological angiogenesis is highly regulated with checks and balances at many 
steps. Dysregulation of this process, also known as pathological angiogenesis can 
lead to many disease states such as dysfunctional uterine bleeding, benign condi-
tions such as vascular malformations, hemangiomas/hemartomas to malignancies 
such as colon and lung cancers. Exaggerated angiogenesis is the key in the patho-
genesis of many other diseases like proliferative retinopathy, psoriasis, rheumatoid 
arthritis and other chronic inflammatory diseases. On the other hand, insufficient 
vessel growth results in disease processes like ischemic heart disease, cerebrovascu-
lar disease, peripheral arterial disease, delayed wound healing and scleroderma. 
Hence, understanding mechanisms and regulation of angiogenesis is necessary for 
understanding the pathophysiology of disease processes and their management.

2  Mechanism of New Vessel Formation

Angiogenesis is a process involving a complex interplay of various growth signals 
and their cellular receptors (Fig. 16.2). Formation of new blood vessels depends on 
three major factors: angiogenesis switch, expression of receptors, and second mes-
senger systems in the target cells and the matrix environment. The process begins 
when the delicate balance between angiogenesis and anti-angiogenesis factors shift 
towards angiogenesis (Fig. 16.3). This is generally characterized by up- regulation 
of growth factors and/or their receptors in the endothelial cells.

Fig. 16.1 Role of angiogenesis in health and diseases
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Our understanding of blood circulation in human body has been constantly 
evolving since first described by William Harvey in sixteenth century. The blood 
flows in conduits was first described by the studies of Malphigi when he described 
the capillary circulation in the lung of a frog and later von Reckingausen postulated 
that these vessels are not just conduits but also lined by cells [1]. The endothelial 
cell surface in an adult human is composed of approximately 1–6 × 1013 cells and 
covers a surface area of approximately 1–7 m2 [2, 3]. Endothelial cells are one of the 
most quiescent and genetically stable cells of the body with a very prolonged turn-
over time of about 100  days. When these quiescent cells detect pro-angiogenic 
signal/s, their cell-cell junctional contacts develop gaps, proteases are activated, 
basement membrane is degraded, and the cells acquire motile behavior; this initiates 
new blood vessel sprouting. There are several pro-angiogenic factors such as vascu-
lar endothelial growth factor A (VEGF-A) which is secreted by tissues in response 
to inflammation, hypoxia or ischemia [4]. Platelet derived growth factor (PDGF), 
fibroblast growth factor (FGF), interleukins and other pro-angiogenic factors act 
synergistically with VEGF.

VEGF binds to three structurally related receptor tyrosine kinases (RTKs) named 
VEGFR-1, VEGFR-2 and VEGFR-3. VEGFRs have an extracellular ligand binding 
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portion consisting of 7 immunoglobulin-like domains, a transmembrane region, a 
juxta-membrane domain, an intracellular split tyrosine kinase domain and a C-terminal 
tail [5]. VEGFR-3 is a regulator of lymphoendothelial function. VEGF-A, the prin-
ciple regulator of angiogenesis, binds to VEGFR-1 and VEGFR- 2. VEGFR-1 is 
expressed in both endothelial and non-endothelial cells. It plays important role during 
vasculogenesis in embryo and it also has a role in inflammation- induced angiogenesis 
by recruiting inflammatory cells followed by deposition of angiogenic growth factors. 
VEGFR-2 is expressed only on endothelial cells and regulates endothelial prolifera-
tion, migration and formation of the vascular tubes [5]. Integrins mediate cell matrix 
adhesion by binding to extracellular components. VEGF induces complex formation 
between integrin αVβ3 and VEGFR-2 which is required for angiogenesis [5].

Proteinases, like matrix metalloproteinases (MMPs), chymase, and heparanase, 
degrade extracellular matrix, liberate growth factors from matrix. Proliferating solid 
cords of endothelial cells reach at distant sites once the matrix has been disrupted. 
PDGF is a chemoattractant for smooth muscle cells. Once recruited angiopoietin 1 
and transforming growth factor β1 (TGFβ1) stabilize the newly formed vessels by 
increasing interactions between endothelial cells and peri-endothelial vascular 
smooth muscle cells and pericytes [6]. These newly assembled endothelial cells 
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develop lumen, and anastomose with other buds or capillaries. They persist as long 
as they are required or differentiate into mature venules and arterioles as per meta-
bolic requirements of local tissue. A complex interaction of proliferation, migration 
and interaction of endothelial cells, perivascular smooth muscle cells and pericytes 
is essential for angiogenesis [6]. Angiogenesis is regulated not only by activating 
signals but also by inhibitory signals, such as thrombospondin-1, interferon-α, 
platelet factor-4, and angiostatin (Fig. 16.3).

3  Angiogenesis in Atherosclerosis: A Historical Perspective

The association of neovascularization and atherosclerosis was first noted by Koester 
over a century ago [7]. Paterson postulated in 1930s that rich vascular channels 
namely vasa vasorum (VV) surrounding and penetrating atherosclerotic lesions were 
the source of the plaque hemorrhages [8, 9]. Later, Barger et al. [10] hypothesized 
that adventitial VV of coronary arteries played important role in atherosclerotic 
plaque pathophysiology and may play a role in supplying oxygen and nutrients to the 
atherosclerotic lesions. Moreno et al. [11] emphasized a correlation between neovas-
cularization in arterial wall and atherosclerosis progression in coronary arteries in 
human autopsy studies. They found that microvessel density was higher in lipid-rich 
and ruptured plaques as well as in lesions with intraplaque hemorrhage and a thin 
fibrous cap. This was further substantiated by Virmani et al. [12] who found that the 
number of VV was increased 2-fold in vulnerable plaques and up to 4-fold in plaque 
ruptures compared with stable plaques with severe luminal narrowing. Other charac-
teristic features found were arborization of VV around the necrotic core, the forma-
tion of immature vessels and loss of basement membrane around functional 
capillaries [12]. The deficiency of PDGF receptors may contribute to some of these 
findings [12]. Of note, Barger and Beeuwkes [13] suggested in 1990 that the athero-
sclerotic plaque with neovascularization is fragile, prone to rupture and therefore 
leads to plaque destabilization and clinical manifestation of the disease.

More convincing evidence for the concept that angiogenesis is not just a 
bystander; rather a key player in atherosclerosis progression came from mouse 
models of atherosclerosis. Moulton et al. [14, 15] found that angiogenesis inhibitors 
endostatin, TNP-470 and angiostatin reduced plaque area in ApoE−/− mice signifi-
cantly. In 2001, Celletti et al. [16] reported that intraperitoneal administration of 
recombinant human VEGF protein enhanced atherosclerotic plaque progression in 
ApoE−/−ApoB100−/− mice. Similarly, Khurana et  al. [17] in two different animal 
models showed that pro-angiogenic molecules such as VEGF or a proline/arginine- 
rich peptide (PR39) can promote the growth of the intimal lesions. Additional evi-
dence that VEGF has a pro-inflammatory and pro-angiogenic cytokine function in 
plaque development was provided by Zhao et al. [18].
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4  Determinants of Atherosclerotic Plaque Angiogenesis: Role 
of Hypoxia, Oxidative Stress and Endothelial Dysfunction

The process of plaque angiogenesis in atherosclerosis is regulated by multiple sig-
naling such as hypoxia, oxidative stress (release of reactive oxygen species or ROS) 
and local inflammation. Hypoxia within the thickened atherosclerotic plaque is a 
major driving force for growth of new blood vessels in and around the plaque [19]. 
NADPH oxidase-mediated ROS production plays an important role in angiogenesis 
which is an adaptive response to hypoxia. Hypoxia leads to an increase in hypoxia 
inducible factor (HIF)-1 and -2 which in turn upregulates the expression of VEGF-A, 
PDGF and other growth factors. ROS also upregulates the VEGF expression at both 
the mRNA and protein levels [20–22].

NADPH oxidases (Nox1, Nox2 and Nox4) are the major source of ROS in the 
cardiovascular system. Nox1 in smooth muscle cells and Nox4 in endothelial cells 
are upregulated by hypoxia. Hypoxia-induced upregulation of Nox1 increases 
HIF-1 and Nox4 stabilizes HIF-2α [20]. Additionally, Nox1 upregulates VEGF and 
increases the production of MMPs. Nox4 increases the expression of VEGF and 
PDGF in endothelial cells. PDGF in turn upregulates Nox1 in smooth muscle cells 
leading to recruitment of smooth muscle cells and pericytes around newly formed 
blood vessels. Nox2 in monocytes and endothelial cells also plays an important role 
in angiogenesis [20]. It has also been seen that Nox2 and Nox4 are activated or 
upregulated in endothelial cells during diabetes and dyslipidemia and their activa-
tion may be the basis of endothelial dysfunction in these conditions [20]. NADPH 
oxidase-induced angiogenesis may play a tissue protective role in chronic ischemia; 
however, time for angiogenic response in the setting of acute ischemia is limited, 
and acute burst of ROS during the early stages of reperfusion may be detrimental to 
the tissues. Indeed, in experimental studies Nox1 and Nox2 deficient mice had 
decreased tissue injury after ischemic stroke [23, 24].

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor for 
oxidized low density lipoprotein (ox-LDL), is highly expressed in endothelial cells. 
Endothelial cells when exposed to ox-LDL show expression of LOX-1 expression, 
up-regulation of adhesion molecules, pro-inflammatory proteins, tissue factor and 
tissue remodeling proteins like metalloproteinases and collagens. Many of the 
MMPs are stimulators of angiogenesis [21, 22]. Small concentrations of ox-LDL 
(<5 μg/ml) promote capillary tube formation by transcription of LOX-1, which acti-
vates NADPH oxidase/mitogen-activated protein kinases/NF-κB pathway 
(Fig. 16.3) [25]. Ox-LDL has been reported to markedly increase the expression of 
VEGF and activate a peroxisome proliferator activated receptor (PPAR)-gamma; 
both are attenuated by anti-LOX-1 antibody [26].

Hu et al. demonstrated that capillary sprouting induced by angiotensin II is also 
related to the elevated expression of VEGF, and anti–LOX-1 antibody markedly 
inhibits angiotensin II-induced VEGF expression [27]. Moreover, angiotensin II–
induced capillary sprouting from aortic rings from LOX-1 null mice is minimal com-
pared to the sprouting from aortic rings of wild-type mice [27]. They also suggested 
that angiotensin II, which is over-expressed in atherosclerotic region, plays a major 
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role in angiogenesis in the rapidly growing plaque by LOX-1 up-regulation. These 
observations collectively suggest that LOX-1 may turn out to be an important regula-
tor of angiogenesis in atherosclerosis. Hypoxia, a primary driver of angiogenesis in 
atherogenesis is also found to induce angiogenesis through up-regulation of LOX-1 
and the LOX-1-mediated p47(phox) subunit of NADPH oxidases [28]. The factors 
that regulate angiogenesis are shown in a simple form in Fig. 16.3.

5  Plaque Neovascularization and Its Consequences

Recent studies suggest that plaque angiogenesis makes the plaque vulnerable by 
promoting plaque inflammation, destabilization, progression and rupture [12]. 
Histological characteristic of plaque angiogenesis reveal that these microvessels 
often lack pericytes and smooth muscle cells, and have poorly formed endothelial 
cell junctions [12]. Therefore, the neovascular network in coronary atherosclerotic 
plaques is more fragile and prone to rupture. Rupture of plaque capillaries can trig-
ger intraplaque hemorrhage, leading to plaque destabilization and its consequences. 
Close observation of such sprouting vessels in the atherosclerotic plaque reveals 
their clustering in the shoulder regions, and to some extent at the plaque base (the 
intima–media border) and in the fibrous cap of the atherosclerotic plaque. These are 
areas that are more prone to fissuring and rupture. Such sprouting vessels supply 
oxygen and nutrients to the core of the atherosclerotic plaques; thereby increasing its 
size [10, 12]. Finally, these microvessels are generally surrounded by macrophages 
(foam cells), mast cells, T cells, red blood cells, albumin and/or lipoproteins. All this 
suggests that these vessels actually bring in more inflammatory cells to the athero-
sclerotic plaque, and thus may play a role in the perpetuation of atherosclerosis.

Similar concept of plaque neovascularization leading to plaque instability holds true 
for atherosclerotic disease elsewhere. For example, recent studies of carotid artery 
plaque emphasize the significance of intraplaque hemorrhage in causation of symp-
tomatic cerebrovascular ischemia [29, 30]. Horie et al. [30] showed that in patients with 
moderate to severe carotid atherosclerosis the patients with early appearance of neovas-
cularization exhibited larger infarctions and had more severe intra plaque hemorrhages. 
Relative to the origin of the hemorrhage, pathologic studies suggest that angiogenesis 
is significantly increased in carotid artery plaques from symptomatic patients when 
compared with matched individuals with asymptomatic plaques. It has been shown that 
plaque angiogenesis and angiogenetic factors, such as VEGF, are critical in the pro-
gression of atherosclerotic carotid plaque and intraplaque hemorrhage [31].

Another example of pathological angiogenesis in human body leading to leaky 
vessels and hemorrhages is diabetic retinopathy. In diabetic retinopathy, there is 
enhanced secretion of VEGF in the vitreous fluid of the eye as well as enhanced 
expression of VEGFR-1 and VEGFR-2 receptors [32, 33]. This leads to formation of 
new capillaries, which are leaky, have immature extracellular matrix and have greater 
tendency to rupture leading to retinal hemorrhage and subsequently, blindness. 
Evidence from a variety of angiogenesis-related diseases supports the fact that neo-
vascularization leads to the formation of frail and leaky blood vessels.
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6  The Angiogenesis Paradox: To Be or Not to Be?

Angiogenesis research has gained momentum from different perspectives. On one 
hand, data from histopathology of atherosclerotic plaques suggests that angiogene-
sis has an important role in the pathogenesis of atherosclerotic disease and its clini-
cal sequlae. On the other hand, drugs that inhibit angiogenesis paradoxically 
increase the incidence of thromboembolic events. In normal tissue, there is a system 
of checks and balances between pro-angiogenic factors like VEGF, bFGF and IL-8, 
and anti-angiogenic molecules like thrombospondin-1 and -2, endostatin and angio-
statin [6]. If this balance tips in favor of pro-angiogenic molecules, abnormal angio-
genesis ensues contributing to plaque destabilization and rupture. Hence, at first 
glance, anti-angiogenic agents might be of benefit to prevent neovascularization and 
normalize the leaky vasculature that promotes plaque destabilization and hemor-
rhage. A variety of agents have been developed in the last few years that can inhibit 
the process of angiogenesis at various stages. Action of some of these agents vis-a- 
vis angiogenesis are shown in Fig. 16.3.

Our understanding of these agents and their effects on cardiovascular system 
mainly comes from their use in oncology. Some of these agents have been approved 
for management of various cancers for over a decade now, and bevacizumab is a 
prototype example of these agents. Bevacizumab binds to VEGF and blocks its activ-
ity. Pooled analysis of five randomized controlled trials with a total of 1745 patients 
with various metastatic carcinomas treated with either conventional chemotherapy 
vs. chemotherapy with bevacizumab demonstrated significantly more thromboem-
bolic events in the latter group (hazard ratio = 2.0, p = .031). Most thromboembolic 
events were coronary or cerebrovascular. Further, upon multivariate analysis, a his-
tory of atherosclerosis was found to be an important risk factor for such adverse 
events. Similarly increased cardiovascular risk with bevacizumab has been replicated 
in other studies as well [34, 35]. Of note, thalidomide, and lenalidomide have also 
been associated with high (8–17%) incidence of thrombotic complication [36, 37].

Recently, it has been suggested that VEGF not only plays a significant role in 
human disease states as mentioned earlier, but it is of utmost importance in maintain-
ing vascular homeostasis [38]. Endothelial-derived VEGF constitutes only a small 
proportion of total body VEGF and does not contribute significantly to the overall 
angiogenic response. Nonetheless, there is compelling evidence that such autocrine 
VEGF signaling is required for endothelial cell survival, and removal of endothe-
lium-derived VEGF in vivo results in systemic endothelial apoptosis [39, 40]. In 
murine models [38], removal of endothelium-derived VEGF resulted in devastating 
systemic vascular pathologies in the form of multiple hemorrhagic and thrombotic 
events, and sudden deaths. Interestingly, in mice with endothelium- specific loss of 
VEGF, systemic vascular catastrophe could not be compensated for by VEGF 
secreted from adjacent types or circulating VEGF [38].

A role for VEGF in adaptive cardiac growth is also being recognized. VEGF is 
upregulated in myocardium in pathological conditions such as myocardial isch-
emia, and hemodynamic overload. Data from murine models of pressure overloaded 
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heart suggests that VEGF derived angiogenic response is essential for coronary vas-
cular network growth to provide compensatory cardiac hypertrophy [40]. A reduc-
tion in available VEGF contributes to the rapid progression from compensatory 
cardiac hypertrophy to its failure in pressure overloaded hearts. Further, treatment 
with VEGF receptor decoy has been shown to attenuate cardiac hypertrophy induced 
by pressure overload. Hence, stress-induced heart growth may depend on the status 
of the vascular bed in a manner that is similar to tumor growth [40]. In summary, 
VEGF signaling seems essential for adaptive cardiac growth, and disruption of such 
signaling may impair cardiac function under stress.

7  Understanding Different Angiogenesis Pathways: 
Collateral Arteriogenesis vis-à-vis Plaque Angiogenesis

As opposed to plaque angiogenesis, collateral arteriogenesis is characterized by the 
enlargement of arteriolar anastomoses to collateral vessels through growth and pro-
liferation results in formation of new arteries possessing fully developed tunica 
media. It is not a merely a passive dilation of collateral, but an active proliferation 
and remodeling of the arteriole resulting in formation of large vessels that can take 
over the role of an artery when occluded [41, 42]. While plaque neovascularization 
results in the formation of the immature, pericyte-lacking capillaries, collateral arte-
riogenesis involves endothelial tubulogenesis, in association with pericyte recruit-
ment and smooth muscle cell proliferation and envelopment resulting in mature 
vessel formation. Hence, arteriogenesis is the preferred type of neovascularization 
for purposes of restoring myocardial perfusion. The pre-existing collateral arteri-
oles can give rise to conductance vessels with up to 20-fold increase in their diam-
eter. In some patients, occluded coronary arteries can be completely compensated 
for by collateral arteries [41, 42].

While the major stimulus for plaque angiogenesis is hypoxia, arteriogenesis 
involves interplay between shear stress and circulating monocytes. In response to isch-
emia, shear force and blood flow increases through these collaterals. This leads to the 
activation of normally quiescent endothelial cells in the collateral arterioles. The acti-
vated endothelium releases monocyte chemoattractant protein-1; simultaneously there 
is upregulation of receptors for docking the monocytes [41, 42]. The adherent mono-
cytes, in turn, release a variety of growth factors and cytokines, such as monocyte 
chemoattractant protein-1, granulocyte-monocyte colony-stimulating factor, trans-
forming growth factor-β1 that creates the environment for collateral artery growth. 
Among these factors, PDGF and bFGF are directly mitotic for endothelial- and smooth 
muscle cells [41, 42]. In plaque angiogenesis, VEGF is the primary growth factor 
while compensatory arteriogenesis is mediated by an array of growth factors, among 
which FGF and PDGF appear to be of key significance [43]. The major differences 
between these two processes have been summarized in Table 16.1.
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8  Specificity and Heterogeneity in the Expression 
of Angiogenesis

Human vasculature comprises of a variety of endothelial cells forming a pattern 
well-suited to the functional requirement of the specific organ. Although endothe-
lial cells have a number of characteristics in common, they exhibit great variation 
phenotypically, genetically and in functionality. For instance, liver sinusoids are 
lined by discontinuous endothelial cells that permit greater movement of materi-
als between intercellular gaps, kidneys are lined by fenestrated endothelial cells 
that facilitate selective permeability required for filtration, absorption and secre-
tion, central nervous system is lined by continuous thin endothelial cells that form 
an effective blood-brain barrier [44]. Endothelial cells also differ in their surface 
phenotype and protein expression [45], antigen expression [46] and response to 
growth factors [47].

It is a common clinical observation that when saphenous vein is grafted to coro-
nary artery, it acquires artery-like properties and exhibits an increased tendency to 
develop atherosclerosis. Studies suggest that endothelial cells in regions of dis-
turbed flow acquires a pro-inflammatory phenotype in response to systemic insult 
[48, 49]. Hence, endothelial cells are not only heterogenous, but also very dynamic. 
These differences have been attributed mainly to genetic control (nature) and envi-
ronmental influences under which these cells thrive (nurture) [50, 51]. Understanding 
this heterogeneity in endothelial cell biology and the factors governing such 
 heterogeneity is essential as microvascular involvement in various pathologies is 
strongly governed by the behavior of these cells.

Besides the differences in endothelial cell biology at different sites, there is also 
a significant heterogeneity in angiogenic response induced by endothelial growth 
factors in different sites. For example, a recent study by Pettersson et al. involving 
adenoviral vector delivery of VEGF to the heart, skin, fat and skeletal muscle 
showed that there was a common initial angiogenic response in the form of 
pericyte- poor leaky microvessels among all these tissues followed by tissue spe-
cific progression of angiogenesis [52]. In muscle (cardiac and skeletal), smaller 
caliber or disorganized tangles of daughter vessels were formed. Although similar 
response occurred in skin and fat with a greater intensity, some of the resultant 

Table 16.1 Key differences between two major processes operant in adult neovascularization: 
angiogenesis and collateral arteriogenesis

Characteristics Arteriogenesis Angiogenesis

Stimulus Shear stress Ischemia
Key growth factor VEGF FGF, PDGF, MCP-1
Substrate Pre-existing arterioles Pre-existing capillaries
Result New arteries Increased capillaries
Time frame Days to weeks Days
Max increment in blood flow 10–20 fold 1.5–1.7 fold
Ability to compensate for an occluded artery Yes No
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vessels acquired muscular coat and progressed to form conduits that closely 
resembled medium-sized arteries and veins that persisted indefinitely. Interestingly, 
these microvessels were similar to the collateral vessels formed by the process of 
arteriogenesis in ischemic hearts [52]. These findings led the authors to postulate 
that the clinical benefits in ischemic limb salvage via VEGF therapy in animal 
models might have resulted from spillage of injected cytokine or its encoding 
DNA into perimuscle fat tissue [52].

Finally, data from experimental animal models suggest that heterogeneity in 
angiogenic response and differential sensitivity to angiogenesis inhibitors is largely 
governed by genetic factors [53–55]. Rohan et  al. showed in the corneal micro-
pocket assay of various inbred mice that there exists nearly 10-fold range of response 
angiogenesis by growth factor among different strains [56]. Further, differential 
sensitivity to angiogenesis inhibitors was seen between strains. Although, at this 
time there is paucity of information on genetic control of angiogenic heterogeneity, 
it is possible that a similar heterogeneity as described in inbred mouse strains by 
Rohan et al. [56] is seen in human beings also. This might explain the individual 
differences in angiogenic potential and the different rate of progression of angio-
genesis related diseases in different individuals.

9  Therapeutic Angiogenesis: Promises and Problems

Ischemic heart disease continues to exert a tremendous burden on healthcare system 
worldwide. It is the leading cause of morbidity and mortality. As per the latest Heart 
and Stroke statistics by American Heart Association the cardiovascular diseases still 
accounted for 31% of all-cause mortality in United States or approximately 1 of 
every 3 deaths in the United States [57]. While most of them undergo surgical or 
catheter-based revascularization, many of them are not optimal candidates for any 
form of revascularization procedures for various reasons. Similarly, cerebrovascular 
diseases resulting in transient ischemic attacks and strokes leads to a major socio- 
economic burden on the society [57]. In this regard, therapeutic angiogenesis has 
attracted interest as an alternative treatment for patients with ischemic heart disease 
or cerebrovascular disease.

Therapeutic angiogenesis vis-a-vis ischemic heart disease refers to induction of 
new blood vessels that can effectively supply blood to the area of myocardium jeop-
ardized by occluded native coronary arteries. Results of numerous preclinical stud-
ies have provided evidence that angiogenic growth factors can promote collateral 
artery development and hence reduce ischemia in animal models of peripheral and 
coronary circulation [58]. Yet, clinical trials on therapeutic angiogenesis have not 
been as impressive [59].

The first clinical trial (VIVA trial) by Henry et al. [60] used a combination of 
intracoronary and intravenous Recombinant human vascular endothelial growth 
factor protein (rhVEGF) infusions. rhVEGF seems to be safe and well tolerated. 
However, at 60 days, there were no significant differences in exercise tolerance or 
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angina class between the treated and control groups. In the same trial it was found 
that high-dose rhVEGF resulted in significant improvement in angina class 
(p = 0.05) and but nonsignificant trends in exercise treadmill test time (p = 0.15) and 
angina frequency [60].

Similarly, FIRST (The FGF-2 Initiating Revascularization Support Trial) trial 
was a multicenter double blinded placebo controlled trial that randomized patients 
to receive a single intracoronary infusion of recombinant FGF2 (rFGF2). 
Unfortunately, rFGF2 did not show any improvement in exercise tolerance or myo-
cardial perfusion, although there was some symptomatic improvements on day 90 
after rFGF2 administration, but the improvement was not observed on day 180 [61]. 
Similarly, several studies with granulocyte colony stimulating factor (G-CSF) have 
shown that though it is safe and feasible to administer but it does not improve car-
diovascular outcomes [62, 63]. Although preclinical studies of VEGF and FGF gene 
delivery using plasmid and adenoviral vectors have shown impressive improve-
ments in heart function and perfusion in different animal models of myocardial 
ischemia, results of clinical studies have not yielded impressive results [64, 65].

The key limitations of VEGF/FGF protein therapy are the relatively short half- 
life and method of delivery of these growth factors which may have prevented expo-
sure of the target tissue to VEGF/FGF at concentrations and for times sufficient to 
promote a viable and sustained improvement in collateral blood flow. For example, 
only 3–5% of the dose is typically retained in the myocardium 150 min after intra-
coronary injection of basic FGF [66]. However, after pericardial administration 
19% of FGF was present at 150 min. The optimal preparation and delivery strategy 
for therapeutic neovascularization is the subject of ongoing clinical investigation.

Another major factor which might explain the failure of these trials is the use of 
a single growth factor in all the studies. Major trials on therapeutic angiogenesis 
have hovered around a single growth factor. Unlike angiogenesis, the process of 
collateral arteriogenesis involves a cocktail of chemokines, growth factors and pro-
teases. It is difficult to envision that the complex process of endothelial tubulogen-
esis, combined with pericyte recruitment and smooth muscle cell proliferation, can 
be achieved with a single agent given as a single dose. Combination therapy for 
collateral arteriogenesis has not been studied at this time but is an interesting avenue 
for future molecular cardiologists!

10  Summary

Angiogenesis is operative in human beings right from the embryonic stage and 
involves a complex interplay of various cells, growth factors, cytokines and the 
environment in which such process takes place. While this process plays a key role 
in many physiological processes and in the development of cardiovascular system, 
inadvertent angiogenesis is also a major pathologic factor in the development of 
many disease states including tumors and atherosclerosis.
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Use of therapeutic angiogenesis has been widely regarded as an attractive 
approach in treatment of ischemic heart disease. On the other hand, there is growing 
evidence that neovascularization contributes to the progression of atherosclerotic 
lesions, and that it may play key role in intraplaque hemorrhage, plaque destabiliza-
tion and rupture. Despite the failure of early clinical trials with angiogenic agents, 
bench and bedside research interest in using angiogenic stimuli has continued to 
bring about more insight into the mechanisms of this phenomenon. Understanding 
the basis of only limited success in early trials of angiogenic therapy may help in the 
development of novel and specific therapies. Again combination of various growth 
factors and gene therapy are the future avenues for research in this field.
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Abstract MicroRNAs are short non-coding regulatory RNA molecules that control 
post-transcriptional gene expression and are involved in several physiological and 
pathological processes in different species, as well-conserved characters. Their dys-
regulation has been described in various cardiovascular diseases, including athero-
sclerosis, coronary heart disease and acute myocardial infarction. A possible role as 
novel biomarkers has been proposed for some circulating microRNAs with poten-
tial prognostic implications. Though still in their infancy, microRNA-based thera-
pies have been enthusiastically welcomed as innovative treatments. This chapter 
briefly outlines the role of microRNAs in the diagnosis and prognosis of atheroscle-
rosis and coronary heart disease as well as their therapeutic use for patients afflicted 
with these diseases.
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Abbreviations

ACS Acute coronary syndrome
AMI Acute myocardial infarction
apo Apolipoprotein
CAD Coronary artery disease
CV Cardiovascular
DGCR8 Di George syndrome critical region 8
DNA Deoxyribonucleic acid
EC Endothelial cell
ECM Extracellular matrix
EPC Endothelial progenitor cell
HDL High-density lipoprotein
hs-cTNT High-sensitivity cardiac troponin T
HUVEC Human umbilical vein endothelial cells
KO Knockout
LDL Low-density lipoprotein
LNA Locked nucleic acid
MAP kinase Mitogen-activated protein kinase
miRNA microRNA
mRNA messenger RNA
qRT-PCR Quantitative real-time polymerase chain reaction
RNA Ribonucleic acid
SOCS1 Suppressor of cytokine signaling 1
STAT3 Signal transducer and activator of transcription 3
TF Tissue factor
TGF-β Transforming growth factor-β
TRBP TAR RNA-binding protein
VEGF Vascular endothelial growth factor
VLDL Very low-density lipoprotein
VSMC Vascular smooth muscle cells
UTR Untranslated region

1  Introduction

The proportion of non-coding to coding genome increases with developmental com-
plexity. Therefore, in mammals the vast majority of the genome is never translated 
into proteins but is extensively transcribed, generating ribonucleic acid (RNA). In the 
past RNA was regarded as an intermediate product formed in the pathway from 
deoxyribonucleic acid (DNA) to proteins (messenger RNA, mRNA), or as a constitu-
tive element (ribosomal RNA); however, the discovery of its regulatory tasks changed 
the way RNA would be regarded forever. Both short (<200 nucleotides, nt) and long 
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(>200 nts) non-coding RNAs are now recognized as playing important roles in gene 
regulation and function [1]. MicroRNAs (miRNAs), short single-stranded RNAs 
(18–24 nts) that act as post-transcriptional regulators of mRNA decay or inhibition, 
represent the vast majority of short non-coding RNAs. A single miRNA can have 
hundreds of mRNA targets that are often functionally related. Different miRNAs can 
also regulate a single mRNA, creating a dense regulatory network for approximately 
two thirds of all genes. [2]. There are specific software programs that predict which 
mRNAs are the targets of a specific miRNA (TargetScan, http://www.targetscan.org; 
miRanda, http://www.microRNA.org; TarBase (http://www.microrna.gr/tarbase).

The history of microRNAs began in 1993, when Lee et al. [3] described the first 
miRNA -lin 4- in the nematode C. elegans that acts by negatively regulating the 
level of lin-14 protein. The authors demonstrated that lin-4 does not encode for a 
protein, but it contains sequences complementary to a repeated sequence element in 
the 3'-untranslated region (UTR) of lin-14 mRNA, regulating it via an antisense 
RNA-RNA interaction. Seven years later, the second miRNA -let-7- involved in C. 
elegans larval development, was discovered [4]. Since then, thousands of miRNAs 
have been described in animals, plants, and viruses and have been catalogued in the 
online database miRBase [5]. Moreover, their role in physiological and pathological 
processes have been progressively elucidated.

2  microRNA Biogenesis

miRNAs are primarily transcribed in the nucleus by RNA polymerase II as primary 
miRNAs (pri-miRNAs) with hundreds or thousands of nucleotides folded in a 
canonical hairpin structure, including a 5' cap and a 3' poly-A tail [6]. The pri- 
miRNA is then cleaved by the ribonuclease III Drosha/DGCR8 (Di George 
Syndrome Critical Region Gene 8) microprocessor complex into a 70 nts hairpin 
precursor miRNA (pre-miRNA), which is then transported to the cytoplasm by 
Exportin-5. The pre-miRNA is then processed by another ribonuclease III, Dicer 
and its cofactor TRBP (TAR RNA-binding protein), producing a short, double- 
stranded microRNA duplex, formed by the miRNA guide and the passenger strands. 
The Argonaute protein family and in particular Ago 2, undergoes conformational 
changes to allow the binding of the miRNA-miRNA* duplex [7]. At this point, 
miRNA strand selection (the -3p or -5p strand) depends on several factors, includ-
ing thermodynamic features, as the strand with the weakest binding at its 5'-end is 
more likely to be incorporated into the RNA-Induced Silencing Complex (RISC) to 
target mRNA expression. However, both strands are potentially functional [8].

Other non-canonical miRNA biogenesis pathways have also been described [9]. 
miRNAs can: (1) act intracellularly; (2) transfer through gap junctions in proximal 
cell-to-cell communication; or (3) be released into the bloodstream, packaged in 
microvescicles, exosomes, microparticles, apoptotic bodies or in association with 
RNA-binding proteins (as Ago 2) or lipoprotein (as High-Density Lipoprotein, 
HDL). Figure 17.1 summarizes miRNA biogenesis.
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3  Atherosclerosis-Associated microRNA

Cardiovascular disease is the leading cause of death worldwide, and atherosclerosis 
is recognized as a major contributor. Several miRNAs are associated to the progres-
sion and clinical complication of atherosclerosis. Most studies have been performed 
in small animal models of atherosclerosis using miRNA transgenic mice, apolipo-
protein E–deficient mice (Apo E−/−), and low-density lipoprotein receptor knock-
out mice (LDLR−/−). A smaller number of studies have also been conducted on 
human atherosclerotic plaques.

3.1  miR-126

The endothelial cells (EC)-enriched miR-126 is a pivotal regulator of vascular 
homeostasis and angiogenesis with vasculoprotective and atheroprotective features. 
Both mature strands, miR-126-3p and miR-126-5p, are abundant in EC. miR-126 

Fig. 17.1 microRNA biogenesis. In the canonical microRNA biogenesis pathway, the DNA is 
transcribed into pri-microRNA in the nucleus then the Drosha/DGCR8 complex cleaves it to pro-
duce pre-microRNA, which is transported in the cytoplasm by Exportin-5, where another RNase 
III, Dicer cleaves it into a microRNA duplex, to finally obtain a single stranded microRNA. The 
mature microRNA can act intracellularly or in a cell-to-cell interaction or can be secreted packed 
in microvesicles, exosome, microparticles or associated to lipoproteins. (Adapted from Cavarretta 
and Frati [10])
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contributes to vascular homeostasis by inhibiting angiogenesis and maintaining the 
quiescent EC phenotype associated with increased vascular integrity, inhibiting EC 
proliferation and motility. Platelets are also an important source of circulating miR- 
126, thus controlling vascular homeostasis and inflammation [11]. miR-126 inhibits 
vascular cell adhesion molecule 1 (VCAM-1), which has an important role in the 
development of atherosclerosis. In fact, decreasing endogenous miR-126 levels 
increases leukocyte adherence to ECs [12]. Moreover, in vascular injury and hypoxic 
ischemia, up-regulation of miR-126 demonstrates a proangiogenic activity as it 
stimulates recruitment and migration of endothelial progenitor cells (EPCs) to 
injured sites [13]. This activity is reduced in diabetic patients, where miR-126 
expression has been found down-regulated in EPCs with enhanced Spred-1 expres-
sion, a negative regulator of mitogen-activated protein kinase (MAP kinase) signal-
ing [14]. In particular, the link between miR-126 and atherosclerosis has been 
demonstrated in miR-126−/− mice, where miR-126-5p is the predominant atheropro-
tective regulator, targeting Delta-like 1 homolog (Dlk1), which controls endothelial 
cell proliferation and lesion formation [15]. In ECs, DLK1 acts as a negative regula-
tor of angiogenesis by inhibiting NOTCH signaling [16]. The treatment with anti- 
miR- 126-5p has been shown to cause an increase in the atherosclerotic area and 
impaired EC recovery and proliferation, though treatment with anti-miR-126-3p 
has not [15]. In diabetic patients, low miR-126 levels are associated with markedly 
increased tissue factor (TF) protein and TF-mediated thrombogenicity. Furthermore, 
the reduction of miR-126 expression is accompanied by increased vascular inflam-
mation, as evident from the heightened levels of vascular adhesion molecule-1 and 
fibrinogen, as well as increased leukocyte counts [17]. miR-126 expression responds 
to shear stress and mechanical forces in a flow-dependent manner so that it has been 
called a “mechanosensitive athero-miR,” similarly to the vascular-related miRs: 
miR-17–92, miR-21, miR-663, miR-92a, miR-143/145, miR-101, miR-126, miR- 
712, miR-205, and miR-155 [18]. Briefly, ECs at athero-protected regions show the 
capacity to proliferate and regenerate (proliferative reserve), which is amplified by 
laminar flow and high shear stress, due to an increased miR-126-5p expression [19]. 
In athero-sensitive regions, such as arterial bifurcations, ECs are damaged by turbu-
lent flow. This causes an increased regenerative EC proliferation, but with a less 
significant proliferative reserve, not capable of compensating for the hyperlipidemia- 
induced suppression of the EC proliferation [20].

3.2  miR-143/145

Both miRs are distinct in sequence, yet, are transcribed together as one primary 
cluster, which is a master regulator of the differentiation, plasticity and contractile 
phenotype of vascular smooth muscle cells (VSMC). This promotes the VSMC phe-
notypic switch from a contractile/nonproliferative to a migrating/proliferative state 
[21]. The consequent increase in migratory ability generates the basis of neointimal 
formation and progression in atherosclerosis. In a miR 143/145 knockout (KO) 
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mouse model, loss of miR-143 and miR-145 expression results in reduced vascular 
tone and blood pressure control because of an incomplete differentiation of VSMCs 
[22]. Overexpression of miR-145 in apolipoprotein E knockout mice resulted in an 
increased fibrous cap area and plaque collagen content with a reduced necrotic core 
area, and an overall reduction of aortic plaque size, shifting the balance toward 
plaque stability [23]. Furthermore, in miR-143/145/LDL-R double KO mice, the 
atherosclerotic plaque size and macrophage infiltration was significantly reduced. 
This was associated with an improvement in total plasma cholesterol, specifically 
with the reduction of LDL and very-low-density lipoprotein (VLDL) cholesterol 
[24]. miR 143/145 has also been demonstrated to control ECs as it is exchanged 
intercellularly through fine nanotubules from VSMCs to ECs; transforming growth 
factor-β (TGF-β) and vessel stress trigger this intercellular traffic [25]. Interestingly, 
the transfer of miR-143/145 via exosomes has also been described to occur in the 
opposite direction, from ECs to VSMCs as an anti-atherosclerotic signal induced by 
laminar flow in ECs [26]. Further studies are needed to better clarify this intercel-
lular communication between ECs and VSMCs [27].

3.3  miR-17-92 Cluster

The miR-17-92 cluster is a polycistronic miR gene that encodes for 7 mature miRs 
that can be grouped into 4 families: miR 17/20, miR-18, miR-19 and miR-92a. This 
cluster has been studied in oncogenesis as a promoter of angiogenesis [28], but it is 
also highly expressed in ECs. Vascular Endothelial Growth Factor (VEGF)-mediated 
up-regulation of the miR-17-92 cluster via ERK/ELK1 activation has recently been 
proved to be necessary for EC proliferation and angiogenic sprouting in vitro and 
physiological angiogenesis in vivo [29]. In particular, among the others, miR-92a 
controls the angiogenesis that targets the mRNAs corresponding to several proan-
giogenic proteins, including the integrin subunit alpha5 [30]. In mouse models of 
limb ischemia and myocardial infarction, systemic administration of a miR-92a 
antagomir led to enhanced blood vessel growth and functional recovery of damaged 
tissue [30]. The miR-17-92 cluster is also regulated by changes in shear stress, and 
members of this cluster are mechano-sensitive miRs. Specifically, turbulent flow in 
cooperation with oxidated LDL triggers the expression of miR-92a in a signal trans-
ducer and activator of transcription 3 (STAT3)-dependent manner and miR-92a is 
up-regulated in atherogenic sites in the aortic arch endothelium of swine [31]. 
Moreover, in LDL R(−/−) mice in vivo the blockade of miR-92a expression reduced 
endothelial inflammation and altered the development of atherosclerosis, decreas-
ing plaque size and promoting a more stable lesion phenotype [31]. miR-17-92 
cluster is also critical in physiological and ischemia-triggered arteriogenesis, as 
EC-specific deletion of miR-17-92 resulted in increased arterial vasculature density 
in ischemic limbs and consequently improved blood flow recovery [32]. In addition, 
overexpression of miR-19b plays a key role in the attenuation of TNF-α-induced 
endothelial cell apoptosis via the Apaf1/caspase-dependent pathway, and miR-19b 
levels in patients with coronary artery disease (CAD) are reduced [33].
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3.4  miR-155

MiR-155, an inflammation-related microRNA, is highly expressed in macrophages, 
lymphocytes, human umbilical vein endothelial cells (HUVECs) and VSMCs. In 
macrophages, miR-155 expression promotes cardiac inflammation, hypertrophy, 
and failure in response to pressure overload. miR-155 also influences cardiomyo-
cyte growth through paracrine signaling [34]. In a mouse model of acute viral myo-
carditis, miR-155 was up-regulated, and its systemic inhibition by a systemically 
delivered locked nucleic acid-modified antisense oligonucleotides (LNA)-anti-miR 
led to reduced cardiomyocyte/macrophage infiltration, decreased T lymphocyte 
activation and reduced myocardial damage [35]. In angiotensin II-stimulated 
HUVECs, Ets-1, a key endothelial transcription factor for inflammation and tube 
formation, and its downstream genes, including VCAM1, MCP1 (monocyte chemo-
tactic protein 1) and FLT1, a member of the vascular endothelial growth factor 
receptor (VEGFR) family, were upregulated. This effect was partially reversed by 
overexpression of miR-155 [36]. In ischemia-reperfusion injury, miR-155 aggra-
vates the inflammatory response, leukocyte infiltration and tissue damage via modu-
lation of suppressor of cytokine signaling 1 (SOCS-1)-dependent generation of 
reactive oxygen species [37]. Expression of miR-155 is involved in atherogenic 
programming of proinflammatory macrophages to sustain and enhance vascular 
inflammation, because miR-155 is specifically expressed in atherosclerotic plaques, 
where it represses B cell lymphomaBLC6, a transcription factor that attenuates pro-
inflammatory NF-κB signaling [38]. Systemic delivery of an antagomiR-155, in an 
Apo E−/− mice, significantly reduced atherosclerotic plaque and decreased lipid- 
loading in macrophages [39]. Since opposing effects of miR-155 have been reported, 
as pro- and anti-inflammatory, the question of what specific effects miR-155 has 
remains unanswered [40]. Last but not least, miR-155 and miR-29b were found 
significantly up-regulated in ECs of atherosclerotic abdominal aortic aneurysm tis-
sue (AAA) and significantly reduced in plasma of patients affected by AAA [41].

3.5  miR-21

Expression of miR-21 has been extensively demonstrated in ECs and VSMCs where 
it targets phosphatase and tensin homolog (PTEN) and B cell lymphoma 2 (BCL2), 
thus promoting VSMC proliferation and inhibiting apoptosis [42]. In addition, miR- 
21 promotes differentiation of VSMC in response to transforming growth factor-β 
(TGF-β) and bone morphogenetic protein (BMP) [43, 44]. While its role in cardiac 
fibrosis has been extensively reported [45], its exact relationship with atherosclero-
sis is still to be defined. In VSMC, miR-21 regulates the contractile phenotype, 
especially in dedifferentiated VSMCs, with respect to mature differentiated VSMCs. 
In a humanized rat model of balloon-injured human internal mammary arteries, 
anti-miR-21 eluting stents were implanted and local miR-21 suppression was 

17 microRNAs, Angiogenesis and Atherosclerosis



384

effective in reducing neointimal lesion formation, while systemic administration of 
anti- miR- 21 showed off-target effects, due to the miR-21 ubiquitary expression in 
the liver, kidney, heart and lung [46]. This promising antiproliferative effect of the 
anti- miR- 21 local delivery needs to be further investigated.

3.6  miR-29 Family

The miR-29 family has been implicated in vascular remodeling as a key regulator of 
extracellular matrix (ECM) deposition. Up-regulation of miR-29 family members 
was associated with a profound down-regulation of matrix metalloproteinase and 
other ECM proteins in abdominal aortic aneurysm. In the Angiotensi-II-induced 
aneurysm model in ApoE−/− mice, the inhibition of miR-29 by locked nucleic acid- 
modified antisense oligonucleotides (LNA-29) prevented aortic dilation and 
increased the protein levels of elastin, a miR-29 target [47]. Moreover, this miR 
family regulates fibrosis after acute myocardial infarction by targeting mRNA cod-
ing for ECM proteins such as collagens, fibrillin and elastin [48], and in hypertro-
phic cardiomyopathy it is associated with both hypertrophy and fibrosis [49].

4  Circulating microRNAs

Given the fact that the majority of miRNAs are located intracellularly, the discovery 
of circulating miRNAs in blood in 2008 [50] has created a new perspective on miR-
NAs: their potential use as novel biomarkers. Since then, miRNAs have been exten-
sively described in all body fluids [51], including serum, plasma, urine, breast milk 
[52], and saliva [53], and they gained momentum. Circulating microRNAs can be 
released into the bloodstream by different mechanisms, including cell necrosis, 
apoptosis and active secretion. Despite the extracellular RNase activity, miRNAa 
are stable molecules in the circulatory system, as they are packaged in exosomes 
(50–100  nm), microvesicles (100–1000 nm), microparticles or apoptotic bodies 
(1–5 μm), and due to their association with proteins and lipoproteins [54]. De iure 
circulating miRNAs are the ideal biomarkers: they have a simple chemical composi-
tion, less complexity in comparison with proteins, a small size, and a long half-life 
within the sample, which allows for a rapid and cost-effective laboratory detection 
by real-time polymerase chain reaction (qRT-PCR). Moreover, they are obtained 
non-invasively from body fluids and are resistant to extreme pH changes, prolonged 
storage at room temperature and repeated cycles of freeze-thaw [55, 56]. Up- or 
down-regulated levels of circulating miRNAs have been linked to several cardiovas-
cular diseases, including acute myocardial infarction, atherosclerosis, heart failure 
and cardiomyopathies [57] as they are disease-specifically modulated and consis-
tent among individuals of the same species. Pros and cons of miRNAs clinical use 
as biomarkers have been extensively reviewed elsewhere [10].
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4.1  Circulating microRNAs as Prognostic Biomarkers 
of Coronary Artery Disease

Several miRNAs such as cardiomyocyte-enriched (miR-133, miR-208a), endothelial 
cell-enriched (miR-126, miR-17-92a cluster), vascular smooth cell (mir- 143/145) and 
inflammatory cell-enriched (miR-155), platelet-enriched (miR-199a) miRNAs were 
associated to coronary artery disease (CAD) in stable patients [58], but in particular 
lipometabolism-related miR-122 and miR-370 increased as the severity of CAD quan-
tified by the Gensini score increased [59]. In a population- based study, Zampetaki 
et  al. identified miR-126 as a possible prognostic marker of incident myocardial 
infarction [60]. Jansen et al. confirmed this result [61], by demonstrating that microves-
icles-associated miR-126 and miR-199a could predict the occurrence of CV events in 
patients with stable CAD.  Using miR-1, miR-126 and miR-485-3p, D’Alessandra 
et al. [62] were able to identify patients with stable angina in comparison to control 
subjects, but failed to discriminate between stable and unstable angina, suggesting that 
these miRs probably reflect atherosclerosis. In addition, the expression of miR-146a 
was positively correlated with CAD when compared to controls, and it significantly 
decreased after a 12-month therapy with statin and angiotensin-converting enzyme 
inhibitor or angiotensin receptor blocker [63]. In a recent study, only transcoronary 
levels of miRs were associated with coronary atherosclerotic plaque phenotypes eval-
uated by optical coherence tomography in a cohort of 52 patients undergoing coronary 
angiography. Levels of miR-29b-3p were found to be inversely associated with plaque 
fibrosis. In addition, miR-126-3p and miR-126-5p concentrations in the coronary ves-
sels were negatively associated with high plaque load or vulnerable plaques [64]. The 
lack of correlation with systemic miR concentration does not encourage the use of 
these miRs as biomarkers for vulnerable plaque. Table 17.1 resumes selected studies 
on coronary artery disease. Various confounding factors may have influenced the sys-
temic measurement of circulating miRs, as anti-platelet drug or heparin use [67].

4.2  Circulating microRNAs as Prognostic Biomarkers  
of Acute Myocardial Infarction

The diagnosis of acute myocardial infarction (AMI) relies on the use of cardiac 
troponin, even if this biomarker is not able to discriminate between AMI caused by 
atherosclerotic plaque rupture or because of supply/demand mismatch or other con-
ditions presenting with an unspecific troponin elevation, such as non-ischemic heart 
failure, renal failure or myocarditis. The possible role of miRNAs in the diagnosis 
of AMI has been extensively evaluated by different authors, who independently 
reported a possible role for the cardiomyocyte-enriched miRNAs: miR-1, miR- 
133a, miR-133b, miR-208 and miR-499. These were found to be up-regulated in the 
plasma of AMI patients [68–72]. Unfortunately, when these results were translated 
in a large multicenter study of 1155 unselected patients with acute chest pain, none 
of the proposed miRNAs provided an additional diagnostic value when combined 
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with cardiac troponin T, though miR-208b provided the highest diagnostic accuracy 
[66]. In meta-analysis of 19 studies, miR-499 and miR-133a were identified as pos-
sible biomarkers of AMI, showing a sensitivity of 0.88 (95%CI:0.86–0.90; P = 
0.0000) with a specificity of 0.87 (95%CI:0.84–0.90; P = 0.0000), and a sensitivity 
of 0.89 (95%CI:0.83–0.94; P = 0.0047) with a specificity of 0.87 (95%CI:0.79–
0.92; P = 0.0262), respectively [73]. The prognostic role of miRNAs in AMI is even 
more interesting. The cardiomyocyte-enriched miRNAs [66] failed to predict long- 
term mortality at a 2-year follow-up after the AMI. Similarly, miR-133a and miR- 
208b levels were significantly associated with the risk of death in acute coronary 
syndrome (ACS) patients, but in an adjusted analysis their independent association 
with outcome was lost [74].

Very recently Karakas et al. [75] demonstrated that peripheral-blood miRNAs 
(miR-132, miR-140-3p, and miR-210) could predict CV mortality in a cohort of 
1112 patients with CAD at a 4-year follow-up.

5  MicroRNA-Based Therapeutic Strategies

The observation that administration of oligonucleotides, that mimic or inhibit the 
activity of specific miRNAs in the animal models, can have therapeutic effects has led 
to considerable interest in the therapeutic target of miRNAs in the clinic. To prevent 
the instability of the delivered oligonucleotides, protective features such as the encap-
sulation in lyposomes or polymer-based nanoparticles and addition of chemical 

Table 17.1 Selected studies on circulating microRNAs in coronary artery disease

miR Regulation Specimen Study population Reference

miR-126, 
miR-17, 
miR-92a, 
and 
miR-155

Down-regulated in CAD 
patients

Plasma and 
serum

44 stable CAD patients + 
25 healthy  controls

[65]

miR-126 Positively associated 
with incident AMI

Plasma 820 participants 
(Bruneck study)

[60]

miR- 
208b, 
miR-499 
and 
miR- 
320a

Up-regulated miR-208b 
in AMI

Plasma 1155 chest pain patients [66]

miR-122, 
miR-370

Up-regulated in 
hyperlipidemia, 
associated with the 
severity of CAD

Plasma 255 hyperlipidemia 
patients with or without 
CAD + 100 controls with 
normal lipidemia

[59]

miR-29b, 
miR-126

Inversely associated 
with plaque fibrosis

Plasma and 
serum from 
coronary sinus 
and aorta

52 patients undergoing 
coronary angiography

[64]
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modifications as conjugation of cholesterol groups occur [76]. Two main miRNA-
based strategies have been taken: miRNA replacement approach and miRNA target-
ing approach. In the first approach, a small oligonucleotide that mimics the activity of 
a specific miRNA is delivered to restore the lost suppressor function of miRNA. Many 
pre-clinical studies are ongoing, but two miRNA-based therapeutics have reached 
clinical trials. The first liposome-formulated mimic of miR-34, MRX34, was tested in 
a phase I trial for treatment of metastatic cancer with liver involvement and unresect-
able primary liver cancer, but the study was terminated early because of the occur-
rence of five serious adverse events related to the immune system (NCT01829971). 
Greater success will probably be achieved by targeting the specific miRNA-mRNA 
interaction or a specific miRNA pathway for therapeutic fine-tuning, rather than 
studying a broad inhibition of all miRNA targets. In the inhibition strategy, the main 
approaches are antagomirs, locked nucleic acids and miRNA sponges. A LNA-based 
antisense miR-122 inhibitor (miravirsen), led to successful results with long-lasting 
suppression of hepatitis C virus viremia with negligible side effects in patients with 
chronic hepatitis C, even after a long- term follow-up. The study is currently in phase 
II [77, 78]. The recent Food and Drug Administration approval of the first antisense 
oligonucleotide drug, Mipomersen, that inhibits translation of apolipoprotein (apo) 
B-100 mRNA, thereby reducing hepatic synthesis of apo B-100 and lowering its con-
centration. This has been regarded as a huge step forward in the treatment of homozy-
gous familial hypercholesterolemia [79, 80] because it significantly reduced LDL 
cholesterol, apo B, and lipoprotein(a) in a double-blind randomized study. This suc-
cess could pave the way for other oligonucleotides-based drugs. The role of miRNAs 
in cholesterol homeostasis and their impact on atherosclerosis progression are two key 
points. Preclinical studies in non-human primates showed that inhibition of miR- 33a 
and miR-33b by an anti-miRNA oligonucleotide increased hepatic expression of 
ABCA1, a key regulator of HDL biogenesis, and induced a sustained increase in 
plasma HDL levels over 12 weeks, with reduction of VLDL levels [81]. Indeed, miR-
33a/b could be an attractive target to promote atherosclerosis regression. Furthermore, 
in a swine model of ischemia/reperfusion injury, administration of LNA-modified 
antisense miR-92a showed a cell-protective, proangiogenic, and anti-inflammatory 
effects with reduction of infarct size and improved recovery of cardiac function [82]. 
Unfortunately these promising results have not yet progressed to human trials.

6  Conclusion

Atherosclerosis-related processes have been shown to be linked to miRNA expression 
in several cell cultures, from animal to human studies, but the complexities of the 
miRNA signature in human atherosclerosis remain veiled. We elucidated how the most 
studied miRNAs expressed in atherosclerotic lesions may have a clinical role as diag-
nostic and prognostic biomarkers. Furthermore, though they are still in their infancy, 
miRNA-based therapies may progress to clinical trials. As this is a relatively novel 
field of research, the full clinical potential of miRNAs in atherosclerosis and coronary 
artery disease remains to be discovered in a time of evolving personalized medicine.
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Abstract Therapeutic angiogenesis is a novel method to create endogenous bypass 
conduits around the occluded coronary arteries. After the success in animal studies, 
therapeutic angiogenesis has been studied in humans with ischemic heart disease 
not responding to (or in addition to) conventional treatments. The most commonly 
studied angiogenic cytokines are vascular endothelial growth factor, fibroblast 
growth factor and granulocyte colony stimulating factor. Delivery as a protein, or 
vector with gene encoding for specific protein have been tested in clinical trials. 
These cytokines, using a multitude of delivery routes ranging from direct intramyo-
cardial transfer either from epicardial or endocardial side, intracoronary infusion, 
systemic administration via subcutaneous route, have been introduced to myocar-
dial tissues. Small sample size phase I studies have shown promising results. But 
large sample size, controlled studies have failed to demonstrate any significant 
improvement in various clinical, radiographic and angiographic outcomes in isch-
emic heart disease patients. Angiogenesis is influenced by a multitude of variables 
including duration of exposure, type of vector and need for co-factor. They also vary 
based on the individual patient characteristics. Further studies accounting for these 
variables are needed to fully determine the potential of therapeutic angiogenesis in 
ischemic heart disease.
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1  Introduction

Ischemic heart disease (IHD) is the end result of insufficient blood supply to myocar-
dium due to narrowing of coronary blood vessels. Both macrovascular and microvas-
cular disease may contribute to this. Clinically significant macrovascular coronary 
artery disease is treated by revascularization using percutaneous or surgical approaches. 
Many patients, nearly one-fifth, are not a candidate for interventional procedures due 
to increased risk, poor target arteries or associated medical comorbidities [1]. 
Moreover, interventional procedures treat only a segment of coronary artery and the 
rest of the diseased vessel remains. The stent itself is at a higher risk for stenosis com-
pared to the native artery [2]. Treatment options for microvascular coronary artery 
disease is limited to medical management. Hence, scientists for a long time evaluated 
therapeutic angiogenesis as a novel method to create endogenous bypass conduits 
around the occluded arteries. Collateral blood vessels exist in humans even in the 
absence of coronary artery disease (CAD). Well- developed collateral function was 
related to improved survival in patients with CAD, though it is a poor prognostic 
marker, likely from an increased prevalence in patients with severe CAD [3].

Data generated from in vitro and in vivo animal models for the past three decades 
supports the feasibility of therapeutic angiogenesis in IHD. Angiogenic cytokines 
such as basic fibroblast growth factor (b-FGF or FGF-2), vascular endothelial 
growth factor (VEGF) and granulocyte colony stimulating factor (G-CSF) were 
used in various experiments to promote neovascularization of myocardium. Variety 
of techniques are used to deliver these angiogenic cytokines to the target tissue. 
Intracoronary infusion, direct injection into the myocardium either from epicardial 
or endocardial end and gene therapy are some of them. Gene therapy involves trans-
ferring genes encoding the angiogenic cytokines through viral vectors or via non- 
viral methods using naked plasmid DNA.  Gene therapy can produce sustained 
exposure to angiogenic factors, as growth factors are secreted in vivo for a given 
period of time. Genes can be transferred directly to specific biological site, limiting 
their side effects. However introduction of foreign genetic material and exposure to 
viral vectors may mediate an immune and inflammatory response. There is also a 
potential for long term, low level systemic exposure to secreted angiogenic factors. 
Duration and level of gene expression are unpredictable in gene therapy. Potential 
long term adverse effects can arise, due to excessive vascular growth in non-target 
tissues such as in retina in diabetic patients and in malignant tumors.

2  Human Trials of Cardiovascular Protein Therapy

Human trials of angiogenic therapy have been conducted since late 1990s. Here we 
review all the major trials of therapeutic angiogenesis reported in English literature. 
Biology of therapeutic angiogenesis including role of growth factors has been dis-
cussed in previous sections. The important trials involving the various cardiovascu-
lar protein therapies are shown in tables (18.1–18.5).

A.J. Kattoor et al.
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2.1  Fibroblast Growth Factor (FGF)

The first study evaluating the effects of FGF on humans was conducted on patients 
undergoing CABG. FGF-1 was injected into the myocardium close to the internal 
mammary artery (IMA) – left anterior descending (LAD) anastomosis (Table 18.1). 
Twenty patients received active FGF-1 and another 20 who were controls received 
denatured FGF-1. Twelve weeks later, IMA bypass grafts were selectively imaged 
by intra-arterial digital subtraction angiography. The imaging demonstrated forma-
tion of capillary network sprouting around the injection site in all the patients who 
received active FGF-1 and the capillary sprouting was not present among any of the 
controls. The study was limited, as it did not measure any clinical outcome and 
provided data for a relatively small period of time, but it was valuable in proving the 
safety of these procedures [4].

Incorporating FGF into heparin alginate slow-release beads provided a sustained 
and controlled release of the growth factor. Sellke et al. looked into 8 patients who 
underwent implantation of these devices into epicardial fat in patients undergoing 
CABG who had atleast one major arterial distribution not amenable to revascular-
ization [5]. These devices were implanted into the regions of unrevascularizable 
territory. The results of this phase 1 trial showed that there was no mortality or evi-
dence of renal, hematologic or hepatic toxicity related to sustained release of 
bFGF. But one patient suffered perioperative myocardial infarction in the area of 
bFGF administration. Three month stress myocardial perfusion imaging (MPI) 
done on 7 of the patients showed varied results in terms of neovascularization but 
their contractile function either improved or remained similar and all patients were 
angina free. Three of the patients had clear enhancement of perfusion to the unre-
vascularized myocardium, 1 had new fixed defect and minimal overall change in the 
other three. A randomized double blind placebo controlled trial was done using the 
same technique in 24 patients using different bFGF doses (10 μg of bFGF (n = 8) Vs. 
100 μg of bFGF (n = 8) vs. placebo (n = 8)). It showed a significant improvement of 
defect size per stress MPI in the 100 μg-bFGF group (19.2–9.1%, p = 0.01), no 
significant change in the 10-μg group and a trend towards worsening defect size in 
placebo group (20.8–23.9%, p = 0.06). There was no treatment related mortality, or 
signs of systemic toxicity from bFGF administration. The study concluded that 
combination CABG/bFGF therapy did not have an excess rate of complication [6].

Multiple paraenteral routes were explored for delivery of b-FGF, so that it could 
be used for treatment of patients who does not require CABG, due to the inherent 
risk associated with thoracotomy. First trial on intracoronary delivery of FGF in 
humans was conducted to evaluate its safety, tolerability, pharmacokinetics and 
pharmacodynamics [7]. Twenty-five patients with CAD and stable angina were ran-
domized in 2:1 ratio to single dose bFGF or placebo. bFGF ranging from 3–100  μg/
kg were delivered to the left main coronary artery. Sustained hypotension and 
 bradycardia were the common side effects with doses of 30–100  μg/kg. Doses 
<30 μg/kg were generally well tolerated. Systemic angiogenesis was not observed 
in any patients. Exercise time and electrocardiographic indexes of ischemia did not 

18 Angiogenesis trials in IHD
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change at 29 days, between the two groups. This study was not primarily designed 
to assess therapeutic efficacy. Results suggests that prolonged exposure to the 
growth factors may be required for therapeutic angiogenesis of target tissue. 
Tolerable dosage of intracoronary bFGF was determined through the studies by 
Laham et al. [8]. Twenty minutes infusions of FGF were well tolerated upto a dose 
of 36 μg/kg in patients with IHD not amenable to CABG or PTCA. Again, systemic 
hypotension was the main side effect of bFGF infusions. This study also suggested 
an improvement in Seattle angina questionnaire, exercise tolerance by treadmill 
testing, and regional wall thickening by MR imaging at 180 days. In addition to 
adding on previous data on feasibility and safety, it provided evidence for dose 
effect of FGF therapy in myocardial angiogenesis.

Based on the results of above mentioned phase I studies, Simons et al. conducted 
a phase II FGF Initiating RevaScularization Trial (FIRST) to evaluate further the 
efficacy and safety of recombinant FGF2 (rFGF-2) [9]. This was a multicenter, ran-
domized, double-blind, placebo-controlled trial of a single intracoronary infusion of 
rFGF-2 at 0, 0.3, 3, or 30 μg/kg (n = 337 patients). Efficacy was evaluated at 90 and 
180 days by exercise tolerance test, myocardial nuclear perfusion imaging, Seattle 
Angina Questionnaire, and Short-Form 36 questionnaire. Exercise tolerance was 
increased at 90 days in all groups and was not significantly different between pla-
cebo and FGF-treated groups. FGF-2 reduced angina symptoms as measured by the 
angina frequency score of the Seattle Angina Questionnaire (overall p = 0.035) and 
the physical component summary scale of the Short-Form 36 (pairwise p = 0.033, 
all FGF groups versus placebo). These differences were more pronounced in highly 
symptomatic patients (baseline angina frequency score  ≤40 or Canadian 
Cardiovascular Society score of III or IV). None of the differences were significant 
at 180 days because of continued improvement in the placebo group as well. Adverse 
events were similar across all groups, except for hypotension, which occurred with 
higher frequency in the 30 μg/kg rFGF2 group. The authors concluded that single 
intracoronary infusion of rFGF2 does not improve exercise tolerance or myocardial 
perfusion but does show trends toward symptomatic improvement at 90 (but not 
180) days. Lack of improvement with FGF despite it being a potent angiogenic fac-
tor may represent variability in effect secondary to delivery route. Intracoronary 
delivery may result in transient exposure of myocardium to FGF and thus a non- 
sustained effect. But, unlike FIRST trial, previous studies with intramyocardial 
administration of FGF which had resulted in significant clinical improvement were 
performed on a small sample size of patients.

Further human studies using FGF alone, were limited due to lack of efficacy from 
clinical trials. Recent work by Jang et al. on improving the ‘bioefficacy’ of FGF-2 
holds promise for the field of therapeutic angiogenesis using FGF. Proteo- liposomal 
preparation of FGF-2 with a proteoglycan syndecan-4, markedly enhanced neovascu-
larization in animal model by improving biological activity [10]. Another interesting 
strategy is dual delivery of growth factors PDGF and FGF in self-assembling peptide 
fibers that provide microenvironment to help recruit endothelial cells [11]. Studies in 
rats showed myocardial protection, stable vessel formation and improvement in car-
diac function. These newer strategies are yet to be tested on human IHD patients.

18 Angiogenesis trials in IHD
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2.2  Vascular Endothelial Growth Factor (VEGF)

Recombinant human VEGF (rhVEGF) was studied for its effects of angiogenesis in 
IHD patients (Table 18.2). Initial studies demonstrated safety of intracoronary infu-
sions of rhVEGF.  In a small group of 14 patients, serial SPECT studies demon-
strated improvement in myocardial perfusion with high doses of intracoronary 
rhVEGF at 60 days of therapy [12]. But quantitative analysis failed to demonstrate 
statistical significance.

Similar to the FGF, dose related hypotension was the most common side effect 
of rhVEGF therapy. In the phase 1 clinical study by Henry et al., designed to deter-
mine the safety and tolerability, intracoronary rhVEGF was well tolerated at infu-
sion rates upto 0.005 μg/kg/min [13]. Seven out of 15 patients who received rhVEGF 
in this study, demonstrated improved perfusion on SPECT-MPI and increased col-
lateral density score on follow up angiograms at 60 days.

The above mentioned clinical trials played pivotal role in helping design the 
subsequent large clinical trials. Vascular endothelial growth factor in Ischemia for 
Vascular Angiogenesis (VIVA) was a relatively large sample size (178 patients) 
double blind, placebo controlled trial in stable IHD patients who were unsuitable for 
standard revascularization [14]. Endpoints included exercise treadmill testing, qual-
ity of life assessments and nuclear perfusion imaging at 60  days. There was no 
improvement beyond placebo in all measurements by day 60. By day 120, high dose 
rhVEGF resulted in significant improvement in angina (p-0.05), but non-significant 
favorable trends in treadmill exercise time (p-0.15) and angina frequency (p-0.09). 
There were no difference in clinical event rates of death, myocardial infarction, 
angina requiring hospitalization between the placebo and rhVEGF groups. Similar 
to the previous phase I trials, this study also demonstrated excellent short-term 
safety of using intracoronary rhVEGF. The study also demonstrated benefit with 
regard to symptomatic improvement in angina at longer follow up duration in 
patients treated with high dose rhVEGF. However further studies needs to be done 
to assess the true therapeutic efficacy of this approach.

2.3  Granulocyte Colony Stimulating Factor (G-CSF)

Like VEGF and FGF, G-CSF has been shown to promote neovascularization in 
IHD.  In contrast to VEGF and FGF which promote local angiogenesis, G-CSF 
injection promotes mobilization of progenitor cells from bone marrow into isch-
emic myocardium. These cells once localized to tissue of interest lead to secretion 
of angiogenic cytokines which promote local angiogenesis. An important difference 
between G-CSF therapy and treatment with FGF and VEGF is that in addition to 
neovascularization, G-CSF also leads to replacement of necrotic myocytes by stem 
cells. Thus G-CSF therapy may really represent a dual pronged strategy in manage-
ment of IHD patients. In-stent restenosis and accelerated atherosclerosis were some 
of the concerns in using this treatment modality.

A.J. Kattoor et al.
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The first human study evaluating safety and efficacy of G-CSF in IHD was 
performed by Kuethe et al. [15] in 2005 on patients with acute myocardial infarc-
tion. In this non randomized open label study, 14 patients in the treatment group was 
administered G-CSF subcutaneously for a mean duration of 7 ± 1 days, 48 h after 
successful PCI following acute myocardial infarction. Nine patients served as con-
trols. No severe side effects were observed in the treatment group. Myocardial per-
fusion and regional wall motion measured using SPECT at discharge and 3 months 
showed significant improvement between treatment and control groups (Table 18.3). 
This initial trial provided proof for utility of G-CSF in promoting angiogenesis fol-
lowing recanalization of coronary arteries.

Similar to the prior study, Valgimigili et al. randomized 20 patients with STEMI 
to receive GCSF or placebo, subcutaneously for 4 consecutive days [18]. G-CSF 
therapy induced a significant increase of white blood count, CD34(+) cells, and 
CD34(+) cells co-expressing AC133 and VEGFR-2. The treatment and placebo 
groups showed similar pattern of perfusion defect recovery at 3 and 6 months. Trend 
towards improvement in ejection fraction (p = 0.068) and lowering of left ventricu-
lar end-diastolic volume (p = 0.054) was observed in the study. No clinical or angio-
graphic adverse events were observed throughout the study.

Ellis et al. [20] performed randomized double blind trial on 18 patients for evalu-
ating rupture free survival and recovery of Left ventricular function. The study 
included patients who were post MI and was reperfused after 4 h. They were given 
subcutaneous G-CSF within 48 h. One month follow up showed no difference in left 
ventricular systolic or diastolic function in treatment and placebo group.

A larger sample size phase two study that evaluated effects of autologous bone 
marrow stem cell mobilization induced by G-CSF was the G-CSF STEMI trial [23]. 
This randomized double blinded, placebo controlled study included 44 patients with 
late revascularized STEMI (STEMI >6 h and <7 days of onset of complaints and 
clinically stable). They were treated with subcutaneous administered G-CSF after 
PCI. At 1 and 3 months their myocardial function and infarct size were analysed. 
It was concluded that G-CSF was not superior to placebo in improving myocardial 
function at any of the follow up periods in patients with subacute myocardial infarc-
tion in whom delayed PCI was performed. Myocardial perfusion at 1  month 
appeared to be more in the treatment group but the difference was non-significant at 
3 months follow up. One year follow up of the G-CSF STEMI trial [24] demon-
strated no difference in event-free survival such as death, MI, CABG or target lesion 
revascularization between the two groups. Also ejection fraction, myocardial perfu-
sion, infarct size, left ventricular end systolic and diastolic volumes remained simi-
lar between the two groups. The study again demonstrated the safety of G-CSF 
treatment over 1 year period. Hence G-CSF administration after subacute STEMI 
did not improve myocardial function or survival when used as a single agent. It 
should be noted that around half of the study subjects were lost at 1 year follow up.

Front Integrated Revascularization and STem Cell Liberation IN Evolving Acute 
Myocardial Infarction (FIRSTLINE-AMI) trial tested the impact of integrating 
G-CSF with PCI in the acute myocardial infarction [25]. Fifty patients were ran-
domly assigned to either placebo or subcutaneous G-CSF treatment group in this 
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non-blinded study. Within 89 ± 35 min after successful PCI, G-CSF was adminis-
tered for 6 days in addition to the standard care. Ejection fraction at 4 months in 
G-CSF group was significantly improved compared to a control group p < 0.01). 
This trial was done in a predominantly male population (92%) and included patients 
with only one vessel coronary disease.

REgenerate VItal myocardium by Vigorous Activation of bone marrow stem 
celLs (REVIVAL-2) trial was a larger phase 2, double-blind, randomized placebo- 
controlled trial to assess the efficacy of stem cell mobilization with G-CSF in 
patients with myocardial infarction [19]. One-hundred and fourteen patients diag-
nosed with ST-segment elevation acute myocardial infarction who had successful 
reperfusion by PCI within 12  h after onset of symptoms were randomized after 
5 days to receive subcutaneously either a daily dose of 10 μg/kg of G-CSF (n = 56) 
or placebo (n = 58) for 5 days. Treatment with G-CSF produced a significant mobi-
lization of stem cells. Between baseline and follow-up, left ventricular infarct size 
according to scintigraphy was reduced by a mean (SD) of 6.2% (9.1%) in the G-CSF 
group and 4.9% (8.9%) in the placebo group (p = 0.56) and left ventricular ejection 
fraction was improved by 0.5% (3.8%) in the G-CSF group and 2.0% (4.9%) in the 
placebo group (p-0.14). Angiographic restenosis occurred in 19 (35.2%) of 54 
patients in the G-CSF group and in 17 (30.9%) of 55 patients in the placebo group 
(p = 0.79). The most common adverse event among patients assigned to G-CSF was 
mild to moderate bone pain and muscle discomfort. Thus stem cell mobilization by 
G-CSF therapy in patients with acute myocardial infarction and successful mechan-
ical reperfusion had no significant influence on infarct size, left ventricular function, 
or coronary restenosis when compared to standard care. Seven year follow up of the 
REVIVAL-2 trial in the form of a long term outcome analysis showed that the com-
bined incidence of death or myocardial infarction was similar in G-CSF and placebo 
groups (p = 0.85) [34]. Thus long term follow up data show that G-CSF does not 
improve clinical outcomes of patients with acute myocardial infarction.

In a slightly different version of the above trial, Kang et al. examined the efficacy 
of intracoronary infusion of peripheral blood stem cells collected after G-CSF therapy 
in the MAGIC trial. This trial involved 27 patients with myocardial infarction who 
underwent coronary stenting for the culprit lesion and were prospectively  randomized 
into three groups; cell infusion (n = 10), G-CSF alone (n = 10), and control group 
(n = 7). At 6 month follow up exercise capacity as assessed by treadmill exercise time, 
myocardial perfusion and systolic function improved significantly in patients who 
received cell infusion. However, an unexpectedly high rate of in-stent restenosis at 
culprit lesion in patients who received G-CSF was noted and thus the trial was termi-
nated prematurely. Two-year follow up data from this study supported a persistent 
improvement in group which received intracoronary infusion of stem cells, though it 
was not statistically significant when compared with control group [21].

In MAGIC trial the G-CSF was injected prior to revascularization. Hence there 
is a potential to destabilize the coronary plaques due to mobilization of progenitor 
cells and inflammation induced by G-CSF, which could explain the high in-stent 
restenosis rate in that study. MAGIC trial incorporated a heterogenous group of 
patients including those with chronic infarction. The study had incomplete follow up. 

18 Angiogenesis trials in IHD
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Therapeutic success with MAGIC trial strategy in comparison to strategy used with 
REVIVAL trial may be related to more direct availability of stem cells to injured 
myocardium. But waning of significant benefit at 2 years in MAGIC trial raises the 
question of performing repeated injection of stem cells/G-CSF therapy to promote 
myocardial angiogenesis and regeneration.

STEMI-AMI trial (STEM cell mobilization In Acute Myocardial Infarction 
trial – 2010) evaluated patients with anterior STEMI who underwent PCI [26]. The 
symptom to reperfusion time of the study group was 2–12 h and EF of the patients 
after PCI was <45%. They were randomized to placebo (n = 25) or G-CSF group 
(n = 24). G-CSF group received subcutaneous G-CSF (5 μg/kg b.i.d). At 6 month 
follow up there was no difference in improvement of ejection fraction or perfusion 
between the placebo and G-CSF groups. G-CSF was generally well tolerated by the 
patients and there were no significant difference in major adverse cardiac event 
(MACE) between the groups. Three year follow up of the patients again did not 
show any significant adverse or beneficial clinical outcome [27].

From the results of prior studies it was becoming clear that the benefit of G-CSF 
therapy appears to become less significant as the time of administration increased 
from the onset of myocardial infarction. MAGIC Cell-3-DES trial [28] evaluated the 
differential effect of intracoronary infusion of peripheral blood stem cells (PBSC) in 
acute MI vs Old MI. Ninety six patients who underwent coronary revascularization 
with DES were randomly allocated to 4 groups (25 Acute MI cell infusion and 25 
Acute MI controls; 16 Old MI cell infusion and 16 Old MI controls). PBSC’s were 
mobilized for 3  days using G-CSF and administered to infarcted myocardium by 
intracoronary infusion. The study showed that PBSC infusion in Acute MI had a sig-
nificant improvement in LVEF compared to controls at 6  months. There was no 
improvement in LVEF or ventricular remodeling old MI cell infusion group. Thus Old 
MI patients had no short term benefit from PBSC therapy. Unlike the previous ver-
sions of MAGIC trial which saw an increase in in-stent restenosis rate, the MAGIC 
cell-3-DES trial did not have an increase in ischemia or thrombosis. It is believed that 
DES was effective in preventing neointimal growth aggravated by G-CSF and G-CSF 
in turn facilitated re-endothelialization of DES. A 5 year follow up of the study includ-
ing additionally recruited patients (total sample size of 169 patients) suggested a 
decline in major adverse cardiac events i.e. non fatal MI, hospitalization for heart 
failure/ angina, cardiac death in cell infusion group (acute + old MI, n = 79) compared 
to the control group (n = 84) (22.8 Vs. 39.3, p = 0.015) [29]. The improvement of 
LVEF in Acute MI group compared to control which was present in the short term 
follow up was not observed after 2 years. Hence there was no long term improvement 
in LVEF in cell infusion and control groups in both acute MI and old MI groups.

Chih et al. in 2012 evaluated efficacy of repeated low dose G-CSF in patients 
with severe chronic ischemic disease who were having Canadian Cardiovascular 
Society (CCS) Class III-IV angina [30]. In this 14 patient randomized, double blind 
cross over trial, G-CSF was administered for 5  days every fortnightly for three 
cycles. Groups were crossed over at 6 weeks. At 42 weeks after the study onset, 
G-CSF, when compared with placebo had no effect on myocardial ischemia by 
MRI or EST despite effective endothelial progenitor cell mobilization. There were 
no improvement in angina between the two groups.

A.J. Kattoor et al.
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The latest in the series of studies of G-CSF in acute myocardial infarction is the 
Cardiovascular Percutaneous Intervention TriAL group’s G-CSF for STEM cell 
mobilization post Myocardial infarction trial (CAPITAL STEM MI) [31]. In this 
prospective, randomized placebo control trial, patients with anterior wall MI were 
randomized to G-CSF group (n = 43) or placebo group (n = 43) after PCI. G-CSF 
group received subcutaneous G-CSF (10 μg/kg daily) on day 3 or 4 of STEMI. Six 
week follow up demonstrated similar EF in G-CSF and placebo group. Six month 
follow up showed a lower ejection fraction in the G-CSF group compared placebo 
group. Major adverse cardiac events (MACE) were similar in both groups at 
6 months.

Combining G-CSF with sitagliptin has showed to increase homing of bone mar-
row derived progenitor cells to injured myocardium in animal studies. Brenner et al. 
performed a randomized placebo controlled, double blind, phase III trial on the 
efficacy and safety of G-CSF + sitagliptin in acute MI patients (SITAGRAMI trial) 
[32]. After revascularization, 174 patients were randomized in 1:1 fashion and either 
received G-CSF + sitagliptin or placebo. No difference in right or left ventricular 
ejection fraction was observed between the two groups at 12 months. MACE also 
remained similar in both groups.

Roman et al. compared different methods of stem cell delivery on STEMI reperfu-
sion (TECAM trial – Trial of Hematopoeitc stem Cells in acute myocardial infarction) 
[33]. In this open label, prospective study, 120 patients were randomized to G-CSF 
mobilization group, intracoronary injection of bone marrow autologous mononuclear 
cell (BMMC) group, combination of both and conventional treatment group. Again, 
no significant change in LVEF and LVESV was observed between the groups.

Thus majority of the large sample size human studies show no major beneficial 
effect of using G-CSF in patients with CAD. Most of the studies found that G-CSF 
therapy as a safe procedure, but few studies have shown concern regarding its 
safety due to its pro-atherogenic effect. Currently undergoing STEMI-AMI 
OUTCOME trial tries establish whether G-CSF improves hard clinical long term 
outcomes [35]. This is a multicenter randomized trial which includes a large sam-
ple size of 1530 patients. Completion of this rigorous controlled phase III trial 
will conclusively assess efficacy of G-CSF treatment in STEMI with adequate 
statistical power.

3  Granulocyte Monocyte Colony Stimulating Factor 
(GM-CSF)

Granulocyte Monocyte-Colony Stimulating Factor (GM-CSF) was also evaluated 
for safety and efficacy in improving collateral flow in CAD patients (Table 18.3). In 
2001, Seiler et al. [16] reported, in 21 patients with extensive coronary artery dis-
ease not eligible for CABG, effect of granulocyte-macrophage colony-stimulating 
factor (GM-CSF, Molgramostim) on quantitatively assessed collateral flow index 
(CFI) in a randomized, double-blind, placebo-controlled fashion. The study 
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protocol involved both intracoronary and intravenous infusion of GM-CSF.  The 
treatment- induced difference in CFI was +0.11 ± 0.12 in the GM-CSF group and 
−0.07 ± 0.12 in the placebo group (P = 0.01) which was suggestive of improvement. 
This was the first clinical study investigating the potential of GM-CSF to promote 
angiogenesis in IHD patients.

Same group reported, in 2005, on the safety and efficacy of short-term subcuta-
neous GM-CSF therapy for promoting coronary collateral growth [17]. This was a 
randomized, double-blind, placebo-controlled trial of a 2-week period with subcu-
taneous GM-CSF (10 μg/kg; n = 7) or placebo (n = 7) in 14 men with chronic stable 
IHD. Efficacy measurements were made in a stenotic as well as a normal coronary 
artery before and after GM-CSF administration. There was significant improvement 
in CFI in the treatment group. Among 11 determined cytokines, chemokines and 
their monocytic receptor concentrations, the treatment-induced change in CFI were 
predicted by the respective change in tumor necrosis factor-alpha concentration. In 
this trial, 2 of the 7 patients in the GM-CSF group and none in the placebo group 
suffered an acute coronary syndrome during the treatment period raising questions 
about its safety. It was speculated that the precipitation of coronary syndromes with 
GM-CSF might have been related to its pro-atherogenic effects.

4  Human Trials Using Other Agents that Promote 
Angiogenesis

 1. Dipyridamole
Belardinelli et al. [36] evaluated the effect of oral dipyridamole in inducing coro-
nary collateral growth in IHD. They randomized 30 male patients with coronary 
artery disease and left ventricular systolic dysfunction (ejection fraction >40%) 
into three matched groups to receive dipyridamole alone (n  =  10) orally for 
8 weeks or exercise training at 60% of peak VO(2) three times a week for 8 weeks 
along with dipyridamole (n = 10), or neither exercise testing nor dipyridamole 
(n  =  10). Thallium uptake of the collateral-dependent myocardium, coronary 
collateral score and wall thickening score increased significantly only in groups 
receiving dipyridamole. Further studies are needed to better define the role of 
oral dipyridamole as sole therapy or in combination with growth factors in treat-
ment of ischemic heart disease.

 2. Erythropoeitin
Low dose erythropoietin was successful in improving neo-angiogeneis and car-
diac regeneration in experimental models. In a human placebo controlled, ran-
domized, double blind pilot trial involving 28 patients, the efficacy and safety of 
low dose epoetin-β was evaluated [37]. The study included patients who had 
symptomatic heart failure due to IHD involving proximal segment of LAD, RCA 
or circumflex coronary arteries. The patients received weekly 35  IU/kg of 
epoetin-β, 3 weeks after successful PCI, for 6 months. At 6 months no adverse 
events due to treatment were reported. There was a significant increase in ejection 
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fraction in epoetin group compared to placebo when measured using ECHO 
(p = 0.019) and cardiac MRI (p = 0.042). Futher larger studies are essential to 
determine the generalizability of study results.

 3. Physical exercise
Association between coronary collaterals and exercise training is unclear. Impact 
of exercise training on coronary collateral circulation in patient with stable coro-
nary artery disease trial (EXCITE trial) grouped 60 patients with significant 
coronary artery disease (ffr < 0.75) to high intensity exercise group, moderate 
intensity exercise group and control group (current recommendations of 2–3 ses-
sions of 20 min each per week) [2]. This prospective, open label randomized 
study showed that collateral flow index (CFI) significantly improved in exercise 
group (10 h per week) when compared to control group in 4 weeks. In addition 
the exercise threshold, peak oxygen uptake and ischemic threshold increased 
significantly in exercise group. There was no difference in these parameters 
between high intensity and moderate intensity groups. Angiography failed to 
show increase in epicardial collateral vessels in response to prolonged exercise. 
This may be because, increase in CFI may be mediated by higher recruitment of 
preexisting vessels or by an improvement in endothelial function.

5  Human Trials of Gene Therapy

5.1  VEGF Gene Trials

VEGF gene transfer in humans was first evaluated by Losordo et al. in 1998 [38]. In 
5 patients with angina who failed conventional therapy, mini-thoracotomy was per-
formed and naked plasmid DNA encoding VEGF (phVEGF165) was injected into 
the myocardium (Table 18.4). All patients had significant improvement in angina 
frequency and severity at 60 days, which correlated with increased myocardial per-
fusion on SPECT-MPI imaging. Coronary angiography also showed improved 
Rentrop score. This study provided the first evidence for favorable clinical effects of 
direct myocardial injection of naked DNA encoding VEGF.

Following this landmark study, there were three more phase 1 clinical studies 
where phVEGF165 was delivered directly into ischemic myocardium via mini left 
anterior thoracotomy in patients with medically intractable angina. These studies 
demonstrated trend towards reduced clinical symptoms, reduced evidence of ischemia 
on SPECT imaging and improved collateral filling of at least one occluded vessel on 
angiography. More importantly, intramyocardial injection of phVEGF165 did not 
appear to produce any increased adverse events, atleast in short term [39–41].

In a study done by Rosengart et al. [42] the viral vector expressing the 121-amino- 
acid form of human VEGF was administered to individuals with clinically signifi-
cant coronary artery disease. It was administered directly to an ischemic area of the 
myocardium as an adjunct to conventional CABG surgery in a region that could not 
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be bypassed, in 15 patients (group A) or through a mini-thoracotomy as sole therapy 
in 6 patients (group B). There was no evidence of systemic or cardiac adverse events 
related to vector administration. In both groups, coronary angiography, and stress 
sestamibi scan assessment of wall motion 30 days after therapy suggested improve-
ment in the area of vector administration but no improvement in relative blood flow. 
All patients reported improvement in angina class after therapy, but in group A. This 
could not be solely attributed to vector administration (had concomitant CABG). In 
group B, in which gene transfer was the only therapy, treadmill exercise assessment 
suggested improvement in most individuals assessed 30 days after therapy and at 
6 month follow up. Trends toward improvement in angina class and exercise tread-
mill testing at 6-month follow-up in the sole therapy group suggest that the effects 
of this therapy are persistent for or ≥6 months. Long term follow up these patients 
(median follow up 11.8 years) suggested that the incidence of malignancy and reti-
nopathy were similar to that of age matched population [43]. The study lacked a 
control group and was of a small sample size, hence it is difficult to reliably assess 
the efficacy of VEGF gene therapy.

Stewart et al. performed the phase 2 trial, Randomized evaluation of VEGF for 
Angiogenesis (REVASC), that enrolled 67 patients with severe angina pectoris with 
no option for revascularization. They used adenovirus containing vascular endothelial 
growth factor (AdVEGF121) for intramyocardial injection. Of the 67 patients enrolled, 
35 continued maximum medical treatment and 32 received AdVEGF121. Exercise 
time to 1 mm ST-segment depression, the predefined endpoint, was increased in the 
AdVEGF121 group compared to control at 26 weeks (p = 0.026), but not at 12 weeks. 
Total exercise duration and time to level 2 angina were also significantly improved in 
the AdVEGF121 group compared to control at weeks 12 (p = 0.008 and p = 0.006) and 
26 (p = 0.015 and p = 0.003). Significant improvements in the Canadian Cardiovascular 
Society class score was evident in the AdVEGF121 group as compared to control as 
early as 6 weeks and continued to improve at 12 and 26 weeks (p = 0.001 at all time-
points). Despite the inability to blind for treatment assignment due to performance of 
mini-thoracotomy, this study provided the first large scale objective data for the effi-
cacy of therapeutic angiogenesis in patients with severe symptoms who are not candi-
dates for traditional revascularization procedures.

Through studies mentioned above, efficacy and safety of gene transfer in isch-
emic myocardium was established. But the use of operative thoracotomy to deliver 
DNA precluded the use of randomization against placebo effect. Though mini- 
thoractomies were well tolerated even in individuals with advanced heart disease, 
the procedure is associated with risk of general anesthesia and surgical manipula-
tion. Animal models had demonstrated equivalence of gene expression and protein 
secretion whether AdvVEGF121 is injected from endocardial or epicardial side of 
heart [48]. Thus catheter based techniques of left ventricular injections and intra-
coronary infusion of viral vectors encoding angiogenic growth factors were tried 
and thus initiated trials of non-operative gene transfer in ischemic myocardium.

Laitinen et  al. studied the safety and feasibility of catheter-mediated VEGF 
plasmid/liposome (P/L) gene transfer in human coronary arteries after PCI in a 
randomized, double-blinded, placebo-controlled study [44]. Ten patients received 
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VEGF P/L, three patients received beta-galactosidase P/L, and two patients 
received Ringer lactate. Catheter-mediated intracoronary gene transfer performed 
after angioplasty was found to be safe and well tolerated. There were no VEGF 
plasmid or recombinant VEGF protein present in systemic circulation after gene 
transfer. However, there were no differences in the degree of coronary stenosis 
between treatment and control groups on angiography after 6 months.

Left ventricular injections of using a steerable deflectable catheter with the guid-
ance of NOGA left ventricular electromechanical mapping was performed in 
patients with chronic myocardial ischemia. In this single blind, placebo controlled 
pilot study of catheter based myocardial gene transfer, patients were randomized to 
receive 200  μg of naked plasmid DNA encoding phVEGF-2 or placebo [47]. 
phVEGF-2 transfected patients had reduced angina and improved myocardial per-
fusion. But due to FDA regulations, the needle was not deployed into the myocar-
dium in the placebo group though all the other steps were performed. Hence it is not 
clear whether the injection itself is contributing to improvement in recruitment of 
progenitor cells leading to improved myocardial perfusion.

Another double blind placebo control trial involving injection of naked plasmid 
DNA encoding phVEGF-2 into left ventricular myocardium via catheter in escalat-
ing doses of 200 μg (n = 9), 800 μg (n = 9) or 2000 μg (n = 1) was reported by 
Losordo et al. [48]. Placebo group received injections of saline into the left ventricu-
lar myocardium. At 12 week follow up, angina class was decreased (p = 0.04). Mean 
duration of exercise, functional improvement by ≥2 Canadian Cardiovascular 
Society classes and Seattle Angina questionnaire data showed strong trend favour-
ing phVEGF.

The first randomized double blind, placebo controlled trial evaluating the use of 
intracoronary infusion of VEGF gene for promoting myocardial angiogenesis was 
the Kuopio Angiogenesis trial (KAT) [45]. This phase 2 study involved 103 patients 
who had CCS II-III angina. PTCA was performed in these patients and 90% of them 
received stents. Following PCI, 37 patients received VEGF-adenovirus, 28 patients 
received VEGF plasmid liposome and 38 patients received ringer’s lactate. There 
were no differences in clinical restenosis rate or minimal lumen diameter as mea-
sured by quantitative coronary angiography between the groups at 6 months follow 
up. Significant improvement was detected in myocardial perfusion in the VEGF- 
Adv- treated patients. But, no statistically significant differences were observed 
between the study groups in CCS classification, working ability or need for oral 
nitrates. Eight year safety follow up of the study demonstrated no significant 
between group mortality, MACE, cancer or diabetes [46]. Hence intracoronary 
VEGF gene transfer can be considered a relatively safe procedure.

The first study to use placebo plasmid as a control was the EUROINJECT-ONE 
trial. In this phase 2 trial, 80 patients with severe stable IHD with no other treatment 
option were randomized to direct intramyocardial plasmid phVEGF-A165 or pla-
cebo plasmid [49]. Intramyocardial delivery was performed with the help of cathe-
ter based delivery system. The study failed to show significant improvement in 
stress-induced myocardial perfusion abnormalities compared with placebo (38 ± 3% 
and 44 ± 2%, respectively). However, improved regional wall motion, as assessed 
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both by NOGA (p-0.04) and by ventriculography (p = 0.03) was evident in VEGF 
group compared to placebo. There were no adverse events attributable to phVEGF-
 A165 therapy. Further sub-study of this randomized trial was done to analyze 
changes in myocardial perfusion in NOGA-defined regions with intramyocardial 
injections of plasmid encoding human phVEGF-A165 [55]. The projection of 
NOGA-guided injection area onto the SPECT maps permitted quantitative evalua-
tion of myocardial perfusion in regions treated with angiogenic substances. No dif-
ferences were found between VEGF and placebo groups at baseline with regards to 
the perfusion defect severity. At follow-up, a trend toward improvement in perfu-
sion defect severity at stress was observed in VEGF group as compared with pla-
cebo (68.5 ± 11.9% versus 62.5 ± 13.5%, p = 0.072).

Ripa et al. [50] performed a pilot study of combined VEGF165 gene therapy and 
stem cell mobilization in patients with IHD who were symptomatic but were not 
candidates for revascularization. Sixteen patients received intramyocardial injec-
tions of VEGF165 plasmid followed by administration of G-CSF 1 week later to 
mobilize progenitor cells from the bone marrow. The historical control groups con-
sisted of 16 VEGF plasmid–treated patients and 16 control plasmid–treated patients 
from the Euroinject One trial. The number of circulating progenitor cells (identified 
via CD34+ cells) increased significantly after G-CSF treatment, but there was no 
improvement in the primary end-point of change in myocardial stress perfusion. 
The authors speculated that the homing of mobilized stem cells to the ischemic area 
may have been inadequate and suggested that co-transfer of a plasmid encoding 
stromal cell– derived factor 1, a progenitor cell–homing factor or higher doses of 
VEGF plasmid may be required to get full therapeutic benefit. Other explanations 
for a lack of benefit must also be considered. SPECT scanning has not been vali-
dated for documenting changes in perfusion that may occur following local therapy, 
which could potentially result in sub-segmental, non-transmural alterations in flow. 
In addition, the timing of G-CSF administration may not have coincided with the 
peak of VEGF gene expression, thereby diminishing the possibility of synergy.

The NORTHERN trial (NOGA angiogenesis Revascularization Therapy assess-
ment by RadioNucleotide imaging) was a double blind, placebo-controlled trial in 
which VEGF165 DNA was delivered to left ventricular myocardium. Seventy-two 
no-option and 21 patients with single vessel coronary occlusion or diffuse in-stent 
restenosis patients were randomized to receive gene therapy (n = 48) or saline pla-
cebo (n = 45). Primary end point, which was the change in myocardial perfusion did 
not differ between the VEGF-treated and the placebo group at 3 or 6  months, 
assessed by SPECT imaging. A significant reduction in the ischemic area and 
improvement in perfusion scores was seen in both groups over time. Also, there was 
no difference between placebo and treatment arms exercise treadmill time and 
angina symptoms in both groups at 3 and 6 months [51].

NOVA trial, another randomized double-blind placebo-controlled multicenter 
gene therapy trial, was conducted to study the efficacy of adenovirus carrying 
VEGF121 (BIOBYPASS) in patients with refractory advanced coronary artery 
disease [52]. Seventeen patients with severe CAD were randomized to receive 
BIOBYPASS (n = 12) or placebo (n = 5) as 12 intra-myocardial injections into 
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the ischemic area using the NOGA mapping. Direct intramyocardial injection of 
BIOBYPASS was safe but did not improve exercise capacity, time to ischemia 
threshold or myocardial perfusion compared to sham injection in patients with 
refractory myocardial ischemia.

Previous controlled trials showed little benefit for VEGF gene transfer in 
CAD. Favaloro et al. postulated that this may be due insufficient doses of VEGF. Based 
on success in animal studies, higher doses of VEGF genes were tried in the GENESIS-1 
trial [53]. This phase 1, open label trial was performed to assess safety of high doses 
of VEGF in no-option severe CAD patients. The trial had a 2 year follow up. High 
dose intramyocardial pVEGF165 was found to be safe at 2 year follow up. Further 
controlled trials with high dose VEGF gene are yet to be performed.

5.2  FGF Gene Trials

These trials involved transfer of genes for human fibroblast growth factor (FGF) 
(Table 18.5). First trial in this series was the Angiogenic GENe Therapy (AGENT) 
trial which evaluated the safety and anti-ischemic effects of 5 ascending doses of 
adenovirus (Ad) containing a human FGF gene in patients with chronic stable 
angina [56]. Seventy-nine patients underwent the study and they were randomized 
in a 3:1 ratio (Ad5-FGF n = 60; placebo n = 19). Single intracoronary infusion of 
Ad5-FGF5 was found to be safe and well tolerated. Serious adverse events during 
follow-up (mean, 311  days) were not different between placebo and treatment 
group. Patients who received Ad5-FGF4 tended to have greater improvements in 
exercise time at 4 weeks (1.3 versus 0.7 min, NS). A protocol-specified, subgroup 
analysis showed the greatest improvement in patients with baseline ETT <10 min 
(1.6 versus 0.6 min, p = 0.01).

AGENT  2 was a randomized, double blind trial which was performed to assess 
the effect of adenoviral gene for FGF in improving myocardial perfusion [57]. Of the 
52 patient in study with stable angina and reversible ischemia, 35 patients were given 
intracoronary injection of Ad5FGF4. At 8 weeks, Ad5FGF4 resulted in significant 
reduction in ischemic defect on SPECT. Additionally, there was significant change 
in reversible perfusion defect size compared to placebo after removing an outlier.

AGENT 3 and 4 trials were parallel randomized placebo controlled double blind 
trials designed to evaluate the efficacy of low and high dose of Ad5FGF4 for thera-
peutic angiogenesis in myocardial ischemia [58]. Patients who remained symptom-
atic despite anti-anginal medications and who did not require immediate PCI or 
CABG were enrolled in AGENT-3, whereas those who were unsuitable for PCI or 
CABG were enrolled in AGENT 4 study. The primary end point was change from 
baseline in total exercise time at 12 weeks, and at secondary time points of 4 weeks 
and 6 months. These randomized, double blind, placebo controlled trials included 
532 patients. Both the studies were halted when an interim analysis could not find 
any significant difference between the active groups and the placebo for the pri-
mary end-point in both trials. There were no differences between the dose group 
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and placebo for any of the secondary end points except for Canadian Cardiovascular 
Society angina class in high dose group. There was significant improvement of 
angina class in all patients over placebo at 12 week, 6 month, and 12 month in high 
dose group (p < 0.05). This was be driven by the female population as the male 
only subgroup, had no significant change in Canadian Cardiovascular Society 
class. This may be explained by the significantly lower placebo effect in the female 
subgroup. Other secondary end points such as time to 1 mm ST segment depression 
and time to angina also showed gender specific significance or nearly so effects in 
females at 12 weeks and 6 months in both dose groups. Though these trials were 
stopped prematurely, subgroup analysis on pooled data revealed gender differences 
in angiogenic response which may suggest effect of differential hormonal milieu 
on the biology of angiogenesis.

5.3  Other Gene Therapy Trials

VIF-CAD is a randomized, placebo-controlled, double-blind trial that was 
designed to study therapeutic angiogenesis by percutaneous intramyocardial 
transfer of bicistronic (vascular endothelial growth factor/fibroblast growth factor 
[VEGF/FGF]) plasmid (Pvif) in patients with refractory heart ischemia [59]. 
Fifty-two patients with refractory angina were randomized to receive VEGF/FGF 
plasmid (n = 33) or placebo plasmid (n = 19) into myocardial region showing 
stress-induced perfusion defect. Stress and rest perfusion defect at 5 months did 
not differ in groups. Canadian Cardiovascular Society functional class improved 
after 5 months (p = 0.02) in the treatment group, but results were non-significant 
at 12 months (p = 0.06).

Similarly, Endothelial Modulation in Angiogenic Therapy (EMAT) phase 1 dou-
ble blind, placebo controlled trial tested safety and efficacy intramyocardial 
VEGF165 combined with L-arginine, in patients undergoing CABG [54]. It was 
thought that L-arginine being a nitric oxide donor may potentiate angiogenesis. 
Nineteen patients with surgical 3-vessel coronary disease and a severely diffusely 
diseased left anterior descending artery were randomized to receive placebo injec-
tion + placebo oral supplementation, placebo injection + oral L-arginine supple-
mentation, intramuscular VEGf165 + placebo oral supplementation, or intramuscular 
VEGf165 + oral L-arginine supplement. Patients who received the combination of 
VEGF and L-arginine had improved anterior wall perfusion on positron emission 
tomography (p  =  0.02), a trend toward smaller rest and stress perfusion defects 
(P  =  0.10), and better anterior wall contractility (P  =  0.02, Kruskal-Wallis) at 
3 months versus baseline. Thus concomitant endothelial modulation with L-arginine 
not only has the potential to make angiogenesis effective but also may have implica-
tions for cell therapy trials.
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6  Conclusion

The success of therapeutic angiogenesis in in vitro and animal models could not be 
extrapolated into human studies. Most of the large sample size, placebo controlled 
trials did not show any significant beneficial effect in clinical or imaging outcomes 
in IHD patients. This reflects the complex biology of IHD in humans and helps us 
realize that simplistic preclinical models of therapeutic approach may not always 
be successful in real life situations. Future research in co-delivery of growth factors, 
prolonging time of exposure of ischemic myocardium to a given growth factor 
without causing systemic effects, discovering newer selective and efficacious 
angiogenic factors are some of the few approaches that can help define this novel 
field in coming years.
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Abstract Ocular neovascularization (NV) is the primary cause of catastrophic loss 
of vision in vast majority of ocular diseases including age-related macular degen-
eration, proliferative diabetic retinopathy and retinopathy of prematurity. The devel-
opment of abnormal blood vessels in these patients is driven by a complex signaling 
process involving pro-angiogenic mediators such as vascular endothelial growth 
factor (VEGF) and anti-angiogenic factors, such as pigment epithelium-derived fac-
tor. Current anti-VEGF drugs such as ranibizumab, aflibercept and “off-label” beva-
cizumab are effective in only 30–40% of patients and are typically associated with 
undesirable route of administration, increased risk of infection and high clinical 
costs. This therefore increases the urgency to discover and develop additional thera-
peutics that are safer and more efficacious. In the last few years, several studies have 
contributed to understanding the underlying pathogenesis of ocular NV and the 
roles of different signaling cascades. Thus, this article aims to review molecular 
mechanisms regulating ocular NV and emerging therapeutic strategies to treat this 
group of diseases.
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1  Introduction

Ocular neovascularization (NV), the final common pathway seen in ocular 
disorders such as age-related macular degeneration (AMD), proliferative dia-
betic retinopathy (PDR), retinopathy of prematurity (ROP), occlusive retinal 
vasculopathies and other ocular inflammatory diseases is characterized by 
abnormal or excessive in- growth of blood vessels, a process known as angiogen-
esis. Together, these debilitating eye complications represent the leading causes 
of human blindness and remain a huge socioeconomic burden for health care 
systems and patients worldwide. For example, recent research by the National 
Eye Institute estimates that the number of expected cases of AMD will increase 
from ~2 million to over 5 million by the year 2050 (https://nei.nih.gov/eyedata/
amd). The burden placed by vision loss, not only on the healthcare system, will 
continue to grow unless greater steps are taken to understand and treat eye con-
ditions that cause vision impairment. The “common denominator” shared by the 
aforementioned diseases is the excessive growth of unwanted vessels either at 
early or later stages of life, which often lead to vision impairment and blindness. 
Over the years, researchers have successfully mimicked some of these ocular 
pathologies in animal models, for example the oxygen-induced retinopathy 
(OIR) model to study ROP, and the laser-induced choroidal neovascularization 
(CNV) to study AMD [1, 2]. The understanding of these neovascular- related 
complications led to the identification of the well-recognized anti-vascular 
endothelial growth factor (VEGF) molecules, ranibizumab and aflibercept as 
treatment strategies [3]. However, the limitations of these drugs include high 
costs, limited population of responders (over two-thirds of patients fail to 
respond), an invasive route of administration and adverse drug reactions cer-
tainly calls for identification of improved therapies [4]. Thus, this review will 
discuss the current and emerging therapies for the treatment of ocular NV.

2  Ocular Neovascularization and Related Eye Diseases

Under normal physiological milieu, angiogenesis is tightly regulated by a stringent 
balance between pro-angiogenic factors, such as VEGF and anti-angiogenic mole-
cules such as pigment epithelium-derived factor (PEDF). In contrast, excessive 
blood vessel growth is usually preceded by an imbalance between both pro- and 
anti-angiogenic molecules [5], consequently giving rise to a wide range of vascular 
diseases such as AMD, PDR, RVO, and ROP. Together, these ocular complications 
make up the leading causes of irreversible blindness and visual impairment 
worldwide.
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2.1  Age-Related Macular Degeneration

AMD, the most prominent form of vision loss affecting elderly individuals aged over 
50, is an ocular condition caused by defective function of the retinal pigment epithe-
lium (RPE) which in turn leads to the development of degenerative lesions in central 
region of the retina, known as the macula. Located in the macula, are specialized 
photoreceptors cells responsible for detailed and sharp focus. As such, the breakdown 
of these light-sensitive cells in patients with AMD results in a gradual and steady loss 
of central vision. Clinically, AMD can be diagnosed as either “dry” AMD or “wet” 
AMD. Dry AMD, also known as non-exudative or atrophic AMD, is the most com-
mon form and occurs in 80–90% of AMD patients [6]. This is usually characterized 
by the accumulation of ophthalmoscopically visible yellow deposits known as drusen 
between the RPE and the Bruch’s membrane [7]. It is understood that the presence of 
localized drusen (“soft” or “hard”) is the result of undigested material from dysfunc-
tional phagocytic cells that increases with aging and accumulates in the RPE [8, 9]. 
Typically, dry AMD begins with its early stages featuring a few drusen deposits caus-
ing slight blurred vision [9]. However, this can then progress slowly to a more 
advanced dry AMD (without turning into the wet form) where drusen deposits grow 
in size. This classic feature of late stage dry AMD causes breakdown or damage of 
light-sensitive retinal cells (atrophy) and as a result leads to loss of central vision.

Dry AMD can sometimes progress to wet AMD, also known as exudative or neo-
vascular AMD, which is more severe but less prominent as it occurs in 10–20% of all 
AMD patients [10, 11]. In wet AMD, there is an abnormal growth of blood vessels 
from the choroid layer through the Bruch’s membrane and into the macula, a process 
known as choroidal neovascularization (CNV) [12]. As these vessels are fragile, they 
often leak blood content and fluid into the retina, therefore leading to damage of light-
sensitive cells and scarring of the macula. These pathological features usually result in 
the classic hallmark; presence of blind spots and loss of central vision. Wet AMD is 
responsible for ~90% of severe visual loss in AMD [12]. Interestingly, it is possible to 
experience both forms of AMD at the same time, in one or both eyes. In addition, the 
onset and progression of either type does not follow any particular pattern.

2.2  Proliferative Diabetic Retinopathy and Diabetic Macula 
Edema

DR reflects disruptions of the retinal vasculature resulting from elevated blood glu-
cose. In addition to chronic hyperglycemia, there is evidence suggesting hyperlipid-
emia and hypertension also contribute to the development of DR [13]. Characteristic 
pathologies of this disease include pericyte loss, basement membrane changes, 
microaneurysms (vessel wall swelling), capillary occlusion, vascular leakage or 
blood retinal barrier breakdown and retinal NV [14]. DR is commonly classified 
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into non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic 
retinopathy (PDR) [15]. The former, characterized by presence of hard exudates, 
vascular leakage and aneurysm, is subdivided into mild, moderate and severe stages. 
PDR on the other hand, is a more advanced stage of the disease and is characterized 
by the development of abnormal retinal microvessels (retinal NV).

These proliferative changes, in most cases, trigger the onset of macular edema 
(DME) whereby the fragile and thin vessels can leak fluid into the macula, causing 
it to swell [15]. DME can develop at any stages of DR but mostly occurs as the 
severity of DR increases. PDR and DME, the two sight-threatening features of dia-
betes, make up the most prevalent causes of blindness and visual impairment 
amongst working-age individuals (20–65) of most developed countries [16].

2.3  Retinopathy of Prematurity

Retinopathy of Prematurity (ROP) is a common vasoproliferative disorder of the 
retina and a major cause of blindness in ~50,000 premature infants of developed 
countries [17]. In the normal human fetus, the development of retinal vasculature 
occurs in-utero and commences from approximately 16th week of gestation till the 
40th week of gestation, where the eyes become fully vascularized. However, pre- 
term delivery of infants results in incomplete vascularization of the retina and as a 
consequence predisposes the immature retina to debilitating complications. ROP 
can be classically segregated into two distinct phases, consisting of phase I whereby 
initial retinal vessel growth is ceased and secretion of pro-angiogenic factors, such 
as insulin-like growth factor-1 and VEGF, is down-regulated at the time of preterm 
birth [18]. As development continues, the avascular retina becomes increasingly 
hypoxic therefore triggering increased metabolic activity. In phase II of ROP, the 
hypoxic condition from the prior stage stimulates the secretion of pro-angiogenic 
factors and as such triggers retinal NV as in other proliferative retinopathies [19]. 
With increasing severity, this second stage progresses as an uncontrolled fibrovas-
cular proliferation into the vitreous and ultimately leads to tractional retinal detach-
ment and the associated blindness [20].

3  Angiogenesis

In the developing mammalian embryo, vascular development occurs via two dis-
tinct, yet interrelated processes termed, vasculogenesis and angiogenesis [21]. The 
former involves differentiation of mesodermal cells into hemangioblasts. The 
peripheral hemangioblasts then differentiate into endothelial precursor cells, angio-
blasts, leading to the formation of tube-like endothelial structures [22]. The latter on 
the other hand, is characterized by the subsequent sprouting and remodeling from 
pre-existing vessels into a mature vascular network [23]. Altogether, vascular 
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development is typically an essential requirement for biological processes such as 
wound healing, organ development and the female reproductive cycle.

Similar to other organs, development of the mammalian eye is influenced by the 
intense process of angiogenesis which is necessary for the oxygenation of ocular 
tissues [24, 25]. The molecular basis of angiogenesis is characterized by an orderly 
cascade of complex events regulated by angiogenic molecules and degrading 
enzymes [26]. The release of pro-angiogenic factors such as VEGF, fibroblast 
growth factor and angiopoietin 2 are largely in response to hypoxia or other endog-
enous stimuli. Upon their release, these proangiogenic factors bind to surface recep-
tors of neighboring vessels, thereby promoting endothelial cell activation [27]. 
Subsequently, enzymes such as matrix metalloproteinases are secreted by activated 
endothelial cells. These extracellular proteases are responsible for the degradation 
of the basement membrane. Therefore, this allows the proliferation and migration of 
endothelial cells towards angiogenic stimuli such as VEGF. The proliferating cells 
connect with nearby endothelial cells, and specific adhesion molecules, such as 
intergrins (αvβ3, αvβ5) are released to accommodate cell migration and neovessel 
sprouting [28]. As the sprouts elongate, proliferating endothelial cells are re- 
organized to form tube-like structures with a central lumen. Each individual blood 
vessel tube buds with adjacent tubes, thereby producing a functional vascular net-
work capable of circulating blood. Additionally, pericytes and smooth muscle cells 
are then recruited to stabilize the newly formed vessels [27].

4  Mammalian Ocular Angiogenesis and the Role of VEGF 
in Mammalian Retina

The mammalian retina receives its nutrition from two discrete circulations, the reti-
nal and choroidal circulations [29, 30]. The choroidal and hyaloid vessel which 
conducts ~80% of retinal circulation nourishes the outer retina, to ensure the oxy-
genation of the retina during the initial development of the eye as the inner retinal 
vasculature is absent [29]. In contrast, the remaining ~20% circulation is carried by 
the central retinal artery emerging from the optic nerve head, to nourish the inner 
retinal layers during the late eye development [24]. During development, the mam-
malian ocular vascular network undergoes key physiological changes.

The matured retinal vasculature is made up of two laminar layers: the primary 
superficial layer and the deep vascular layer involved with the development of astro-
cytes and Müller cells, respectively. By virtue of its induction by hypoxia-inducible 
factor 1, a transcription factor which binds to the hypoxia responsive element in the 
promoter region of the VEGF gene, VEGF is the principal mediator needed for 
stimulating retinal vascular development [31]. Studies by Miller et  al. and Alon 
et al. report a correlation between the spatial and temporal changes in VEGF mRNA 
levels in a rat model of retinal ischemia [32, 33]. Furthermore, Aiello et al. also 
assess the anti-angiogenic effect of VEGF-neutralizing proteins in a mouse OIR 
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model. Here, authors report the human Flt or murine Flk chimeric protein resulted 
in complete inhibition of retinal NV in treated mice [34]. Ozakia and colleagues 
demonstrated that PTK787, a VEGF inhibitor, blocked the phosphorylation of 
VEGF, completely inhibited retinal NV in a murine OIR model and partially inhib-
ited retinal vascularization during development, therefore suggesting that VEGF 
plays a vital role in retina NV [35].

5  Current Therapies for Ocular Neovascularization

The importance of ocular NV is crucial to the pathology of the aforementioned 
ocular complications, with growth factors such as VEGF implicated in the disease 
process. As such, therapeutic targeting of VEGF in the posterior eye has been a 
central focus for the treatment of these diseases.

5.1  Vascular Endothelial Growth Factor Inhibitors 
(Anti-VEGFs)

Pegaptanib (Macugen®; Eyetech, Palm Beach Gardens, FL) a ribonucleic acid 
aptamer directed against the VEGF165 isoform, was the first anti-angiogenic ther-
apy approved for neovascular AMD in 2004 [36]. Bevacizumab (Avastin®; 
Genentech/Roche, San Francisco) is a full-length, humanized monoclonal antibody 
that binds to all VEGF-A isoforms. In 2004, Avastin was approved exclusively for 
the treatment of metastatic colon cancer and often used as off-label to treat ocular 
NV following its tolerability and efficacy evaluation [3]. In 2006, in an effort to 
improve retinal penetration and systemic half-life, Ranibizumab (Lucentis®, 
Genentech, San Francisco), a corresponding Fab fragment of full-length 
Bevacizumab was specifically designed and approved by FDA for treatment of 
CNV due to AMD [37]. It is a humanized, recombinant, monoclonal antibody Fab 
fragment which binds and neutralizes all identified VEGF-A isoforms. Aflibercept 
(Eylea® (VEGF Trap-Eye), Regeneron), which was approved by FDA in 2011 for 
treatment of exudative AMD, is a humanized, recombinant VEGF-receptor fusion 
protein that binds to all forms of VEGF-A, VEGF-B and the associated placental 
growth factor with high affinity, thereby preventing activation of cognate VEGF 
receptors [38].

Table 19.1 summarizes the features of current anti-VEGF drugs.
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5.2  Photodynamic Therapy (PDT) and Laser 
Photocoagulation

Besides the broadly used anti-VEGF’s, visudyne photodynamic therapy (PDT) and 
laser photocoagulation represent other therapeutic strategies for the clinical manage-
ment of ocular NV [39]. PDT is a two-step procedure whereby a pharmacological 
photosensitizer (e.g. verteporfin (Visudyne®)) is first administered intravenously, 
followed by its subsequent activation using a laser light. This visible light induces a 
photo-oxidative damage of vascular endothelium, thereby selectively destroying 
unwanted retinal vessels. However, PDT appears to stimulate the release of VEGF 
and other inflammatory mediators [40], an initial problem in ocular NV. Thus, com-
bination of PDT therapy with an intravitreal steroid (e.g. triamcinolone acetonide) or 
anti-VEGF (e.g. ranibizumab) adjunct is increasingly being studied and applied to 
inhibit the expression of VEGF and other inflammatory mediators [41]. Laser photo-
coagulation, on the other hand, uses laser burns to directly reduce retina vessel leak-
age or, in some case, destroys tissue in the peripheral retina, therefore reducing 
oxygen demand and alleviating ischemia in central retina. These procedures are often 
used to halt disease progressing to a more serious condition such as PDR and DME.

5.3  Limitations

Typically, these anti-VEGF biologicals are administered through intravitreal injec-
tions into the vitreous of the patients’ eye. Despite their therapeutic benefits in some 
AMD patients, long-term visual improvements of anti-VEGF therapies are impeded 
in 60–70% of patients due to sub-optimal dosing, genetic variations, rapid drug 

Table 19.1 Molecular characterization of select FDA-approved anti-VEGF drugs

Name

Molecular 
weight 
(KD)

Half- 
life 
(days)

Binding 
specificity Fc fragment Structure components

Pegaptanib 50 10 VEGF- 
164/165

No Pegylated 
oligonucleotide aptamer

Bevacizumab 149 5.6 VEGF Humanized 
IgG

Full length humanized 
anti-VEGF monoclonal 
antibody

Ranibizumab 48 3.2 VEGF-A No Humanized monoclonal 
antibody with only Fab

Aflibercept 115 4.8 VEGF-A, 
VEGF-B, 
PIGF

Human IgG Chimeric receptor 
comprised of the second 
Ig domain of VEGFR-1, 
the third Ig of domain 
VEGFR-2 in the Fab, 
and a human IgG fc
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clearance, tachyphylaxis and poor access to clinics [4, 38, 42]. As such, patients 
usually require monthly in-clinic injections in order to obtain significant therapeutic 
efficacy. Owing to their invasive route of administration, this classic treatment 
modality is associated with potentially severe complications including increased 
risk of infectious endophthalmitis (up to 1.6% occurrence following intravitreal 
anti-VEGF injection) [43], ocular hemorrhage (up to 10% occurrence) [44]; intra-
ocular inflammation (1.4–2.9% occurrence) [45], retinal detachments (less than 
1%) [46] and not to exclude the enormous yearly cost of ranibizumab and 
aflibercept.

Although the application of verteporfin PDT and laser photocoagulation are less 
common, the major drawback of these treatment strategies is that they can entail 
small retinal scars which can cause blind spots in patients’ field of view and may 
induce vision loss [41]. A complementary approach to circumvent these drawbacks 
is to engineer the development of VEGF-independent molecules that are more effi-
cacious and could be delivered topically or as sustained release implants, therefore 
reduce the frequency of intravitreal injections.

6  Emerging Therapies to Treat Ocular Neovascularization

Aside from the anti-VEGF drugs, there are several potential treatment strategies 
emerging through the pipeline and hold promise for improving treatment of ocular 
NV. These include endostatin, PDGF inhibitors, PEDF, integrin receptor blocker, 
complement cascade inhibitors, gene therapies and anti-immune/inflammatory 
molecules.

6.1  Endostatin

Endostatin, another endogenous inhibitor of angiogenesis, has been demonstrated 
to have significant inhibitory effect on retinal NV [47]. Here, authors showed that 
endostatin prevented endothelial cell migratory and tubular network formation pro-
cesses, as well as the secretion of VEGF in endothelial cells. Moreover, intraocular 
injection of endostatin convincingly reduced neovascular areas in mouse OIR 
model. However, as endostatin is unstable in properties and is unable to penetrate 
through the BRB, efforts are being made to improve the permeability of endostatin. 
Recently, Li et al. used a genetic engineering method to fuse Tat PTD, a protein 
transduction domain of the Tat protein of HIV-1, with endostatin. The successful 
generation of Tat PTD-endostatin (Tat PTD-Es) not only resulted in increased ocu-
lar barrier penetrance following topical administration, but also maintained inhibi-
tory effects on CNV [48]. Tat PTD-Es has been modified by the introduction of a 
tripeptide of arginine-glycine-aspartic (RGD) to its structure, which improves its 
binding specificity to αvβ3 integrin that is highly expressed on endothelial cells in 
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pathologic conditions [49]. Tat PTD-Es-RGD similarly demonstrates high BRB 
permeability and inhibits abnormal retinal angiogenesis and therefore could offer an 
innovative therapeutic option for the prevention of retinal NV through eye drop 
formulations.

6.2  Pigment Epithelium-Derived Factor

Pigment epithelium-derived factor (PEDF), a glycoprotein secreted by most cells, is 
well understood to have neurotropic and anti-angiogenic activity in mammalian 
retina [50]. As a potent endogenous inhibitor of ocular angiogenesis, PEDF halts the 
development of neo-vessels by inducing apoptosis of endothelial cells activated for 
new vessel formation [51]. Studies reporting decreased PEDF levels in the vitreous, 
aqueous humors and retinas of PDR-affected eyes highlight the importance of 
PEDF to human blindness [52, 53]. As several ocular NV pathologies are character-
ized by neuronal loss, PEDF presents as an attractive therapeutic protein as a result 
of its multifunctional activity.

Emerging as a therapeutic strategy, Mori et  al. demonstrated that adenovirus- 
mediated gene transfer of human PEDF by intraocular injection destabilized CNV 
in mouse eyes [54]. Amaral and Bacerra also reported that PEDF34-mer (Asp(44)-
Asn(77)), a functional PEDF N-terminal peptide, exerted significant PEDF-like 
anti-angiogenic effect in a rat model of laser-induced CNV [55]. According to the 
study, subconjunctival administration of 0.1 and 1 pmol/d of the synthetic peptide 
dose-dependently reduced CNV lesion volumes compared to vehicle [55]. 
Furthermore, supporting evidence has also shown that PEDF over-expression delays 
photoreceptor and neural retinal cell death – a contributing factor in retinal diseases 
[56]. Conversely, it has been postulated that increased circulatory PEDF in Type 1 
and Type 2 diabetes patients may exacerbate systemic symptoms of diabetes such as 
impaired wound healing due to impaired peripheral angiogenesis [57, 58]. However, 
the local delivery of PEDF into the affected eye of PDR or AMD patients to bolster 
the declining levels of PEDF in ocular tissues may result in the inhibition of 
unwanted vessel growth and potentially overcome unwanted side effects.

In theory, this approach may hold up for ocular neovascular diseases including 
PDR and AMD, and also serve as an adequate means to combat the activity of pro- 
angiogenic stimuli, such as VEGF.

6.3  Platelet-Derived Growth Factor Inhibitors

Platelet-derived growth factor (PDGF) is a potent mitogen known to be active on 
several cell types, in particular fibroblasts and vascular smooth muscle cells [59]. 
This growth factor is involved in enhancing vascular growth by promoting migra-
tory and proliferative responses of endothelial cells as well as recruitment of 
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pericytes [60]. Four PDGF ligands namely A, B, C and D make up the PDGF family 
[61]. The aforementioned polypeptide chains which function as homodimers 
(PDGF-AA, BB, CC and DD) and heterodimers (PDGF-AB) recognize and bind to 
tyrosine kinase receptors PDGFRα and PDGFRβ [61]. Several studies have docu-
mented the role of PDGF in retinal NV. According to Seo et al., PDGF expression 
specific to photoreceptor results in severe retinal NV and retinal detachment [62]. 
Supportive evidence by Freyberger and colleagues also reveal increased PDGF lev-
els in vitreous fluid of PDR patients [63]. Thus, the inhibition of PDGF remains an 
attractive option to treat ocular NV.

From a therapeutic standpoint, the antagonism of PDGF by a designed Ankyrin 
repeat protein (DARPin) which selectively binds to PDGF-BB has been shown to sup-
press retinal angiogenesis [64]. In this study, intraperitoneal injection (10 mg/kg) or 
intraocular injection (1.85 μg) of the anti-PDGF-BB DARPin significantly reduced sub-
retinal and retinal NV in mouse laser-induced CNV and OIR, respectively. Furthermore, 
E10030 (Fovista – Ophthotech, New York, USA), an anti- PDGF pegylated aptamer, is 
in advanced stages of clinical trial for treatment of wet-AMD. Following the successful 
completion of a phase I safety and tolerability study which recorded no dose-related 
toxicities of E10030 in combination with ranibizumab in NVAMP subjects, data from 
the phase II study reported a similar favorable safety and efficacy profile in wet AMD 
participants [65]. In this study, E10030 in combination with anti-VEGF demonstrated 
statistically and clinically significant superiority in visual acuity gain compared to 
ranibizumab alone. Taking together these promising findings, a phase III study which 
will assess the safety and efficacy of E10031 in combination with anti-VEGF drugs 
compared to anti-VEGF alone has been initiated (Phase 3).

6.4  Integrin Receptor Blocker

Integrins, which are a group of heterodimeric transmembrane proteins expressed by 
endothelial cells, are composed of α and β subunits and orchestrate the attachment 
between a cell and its surrounding extracellular matrix components including fibro-
nectin, laminin, collagen, thrombospondin and fibrinogen [66]. The role of specific 
integrins 𝛼v𝛽1, 𝛼v𝛽3 and 𝛼v𝛽5 has been reported in AMD [28]. In particular, integrin 
𝛼v𝛽3 is known to be highly expressed within the endothelial cells of developing reti-
nal blood vessels of DR patients and conversely, choroidal and retinal NV can be 
suppressed by 𝛼v𝛽3 antagonists [28], thus indicating that integrin 𝛼v is a promising 
therapeutic target to treat ocular NV. Additional evidence has emerged from the use 
of a potent 𝛼v integrin antagonist, JNJ-26076713, in rodent models of ocular vascu-
lopathy [67]. Oral administration of this peptide which targets both 𝛼v𝛽3 and 𝛼v𝛽5, 
significantly attenuates retinal NV and reduces retinal vascular permeability in 
mouse OIR and diabetic rats, respectively [67].

Currently in clinical trial are two 𝛼v𝛽1 integrin antagonists, JSM6427 and 
Volociximab, for the treatment of AMD. Reports from Phase 1 clinical trial reveal 
JSM6427 to increase mean best corrected visual acuity in patients with exudative 
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AMD (https://clinicaltrials.gov/ct2/show/record/NCT00536016). Interestingly, 𝛼v 
integrin mediates its effect in association with other pro-angiogenic factors, in par-
ticular VEGF. In line with this, it may appear prudent to develop combination ther-
apy including 𝛼v integrin antagonists and VEGF inhibitors. For example, a Phase 1 
clinical trial assessing the safety and efficacy of intravitreal Volociximab in combi-
nation with ranibizumab for treatment of neovascular AMD showed to improve 
visual acuity in human subjects (https://clinicaltrials.gov/ct2/show/NCT00782093). 
Taken together, the potential of integrin antagonists may be positive indication for 
therapeutic intervention for ocular NV.

6.5  Thrombospondin-1 (TSP)

Thrombospondin-1 (TSP1), a large extracellular glycoprotein, is a member of the TSP 
gene family typically secreted by RPE and vascular endothelial cells [68, 69]. TSP1 is 
widely known to orchestrate a wide array of cellular processes including cell migra-
tion, regulation of TGF-β during inflammation, wound healing and angiogenesis. TSP1 
has been shown to be a major mediator of ocular homeostasis and congruently, retinal 
vascular development and NV are mitigated by increased levels of TSP1 [70]. The 
observations of low levels of TSP1 in choriocapillaries of AMD patients, and vitreous 
of DR patients also highlight the significant role that TSP1 plays in overall retinal vas-
cular homeostasis [71, 72]. Recently, Wang and colleagues investigated the impact of 
TSP1 deficiency in a mouse model of CNV and the antiangiogenic influence of TSP1 
peptide agonist. Here, it was evident that TSP1-deficient mice developed significantly 
larger areas of CNV compared to WT animals. Furthermore, this effect was shown to 
be reversed in TSP1-deficient mice following treatment with TSP1 mimetic peptide but 
to a greater extent in WT mice [73]. The archetypal phenomenon of AMD and DR is 
the display of both angiogenesis and inflammation in an exacerbated manner. Thus, 
TSP1 has also been reported to exert anti-inflammatory activity in the eye via the 
upregulation of TGFβ in RPE cells [74]. Altogether, these findings suggest that TSP1 
plays a key role in the progression of CNV in AMD and that its modulation through 
TSP1 mimetic peptides could be perhaps complement current gold standard therapies 
for ocular NV diseases.

6.6  Peroxisome Proliferator-Activated Receptor Alpha 
(PPARα) Agonist

Peroxisome proliferator-activated receptor-alpha (PPARα), a member of the nuclear 
receptor superfamily, is a ligand-activated transcription factor expressed in several 
tissues including the liver, intestine, kidney and skeletal muscle [75]. In association 
with its role in modulating lipid and glucose metabolism, this transcription factor 
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has also been reported to have anti-inflammatory and anti-angiogenic activities [76, 
77]. The activation of PPARα is initiated via the binding of endogenous or synthetic 
ligands such as fatty acids or fibrate. Compelling evidence for therapeutic effects of 
PPARα agonist in retinal vascular leakage and NV is obtained from two large clini-
cal trials; the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and 
the Action to Control Cardiovascular Risk in Diabetes (ACCORD) which revealed 
preventive effects of Fenofibrate (PPARα agonist) in diabetes-related microvascular 
complications including DR in type 2 diabetes [78, 79].

In light of this, our group first demonstrated that fenofibrate significantly inhibits 
hallmarks of PDR and DME in rodent DR models [77]. Here, oral administration of 
fenofibrate suppressed retinal vascular leakage, leukostasis and levels of pro- 
inflammatory factors in STZ-diabetic rats and Akita mice. Furthermore, in STZ- 
diabetic rats and a separate OIR model of ischemic retinopathy, intravitreal injection 
of fenofibrate also attenuated retinal inflammation/hyperpermeability and retinal 
NV, respectively. Therefore, this indicates that the protective effect of fenofibrate on 
retinal inflammation and angiogenesis are independent of its systemic effect, and 
instead may be attributed to a direct ocular effect. Moreover, compared with current 
anti-VEGF drugs which are administered via invasive intraocular injections, the 
robust ocular effects of fenofibrate on DR and DME achieved by oral delivery along 
with its distinct pharmacokinetic behavior make PPARα agonists highly advanta-
geous for the treatment of ocular NV diseases.

6.7  Wnt Pathway Blocker

Wnts are a family of secreted cysteine-rich glycoproteins which regulate gene 
expression via both canonical and non-canonical Wnt signaling pathways. Of the 
two distinct cascades of Wnt signaling, the former has been reported to play signifi-
cant roles in vascular development and angiogenesis [80]. Typically within the 
canonical pathway, the binding of Wnt ligands to the co-receptor complex of friz-
zled (Fz) receptors and low-density lipoprotein receptor-related protein 5 or 6 
(LRP5/6), induces the subsequent phosphorylation and activation of downstream 
kinase nodes, leading to transcription of Wnt target genes such as VEGF, PDGF and 
TNF-α [81]. As previously reported by our group, retinal levels of total β-catenin, a 
key signaling factor of the canonical Wnt pathway, is significantly more abundant in 
patients with NPDR [82]. Additional confirmation of Wnt pathway activation in 
pathologic retina stemmed from data which also showed increased retinal levels of 
β-catenin and LRP5/6 co-receptors in several rodent models of retinal NV [82].

With this, it would appear prudent to inhibit the Wnt signaling pathway as a 
therapeutic strategy to treat ocular NV. In light of this, our group has convincingly 
shown the anti-inflammatory and anti-angiogenic activities of DKK1, a specific 
inhibitor of the Wnt pathway. Intraocular injection of this peptide decreased retinal 
levels of inflammatory marker, ICAM-1, and retinal vascular leakage in STZ- 
diabetic rats. In the same study, local injection of DKK1 into the vitreous of OIR 
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rats also appeared to reduce neovascular areas and tufts, as well as VEGF levels in 
rat retina, thereby demonstrating anti-angiogenic efficacy in vivo [82]. In a separate 
study, we also demonstrated the inhibitory effect of a monoclonal antibody (Mab) 
specific for the E1E2 domain of LRP6, Mab2F1, on canonical Wnt signaling and its 
therapeutic potential for DR [83]. In summary, Mab2F1 blocks the accumulation of 
β-catenin and overexpression of angiogenic/inflammatory factors in retinal cells. In 
vivo studies also reveal its anti-angiogenic and anti-permeability effects in OIR rats 
and late stages of STZ-induced diabetic rats [83]. Altogether, these studies show-
case the therapeutic and beneficial effects of canonical Wnt signaling pathway 
inhibitors in ocular NV.

6.8  Corticosteroid Implants

As noted, inflammation is a common pathological feature in PDR and DME. In light 
of this, corticosteroids have been noted to exert anti-inflammatory activity by block-
ing macrophage release of angiogenic factors and suppressing ICAM-1 expression, 
thereby stabilizing the BRB through increased tight junction proteins [84]. Three 
sustained-release corticosteroid implants currently in the development for treatment 
of DME include Ozurdex (Allergan), Iluvien (Alimera Science) and Retisert [85]. 
Ozurdex is a tiny biodegradable implant that slowly releases 0.7 mg dexamethasone 
into the vitreous and has been approved by the FDA for the treatment of DME sec-
ondary to BRVO or CRVO [86]. Both Iluvien (a nonbiodegradable polymer) and 
Retisert (a nonbiodegradable implant) release 0.19 mg and 0.59 mg fluocinolone 
acetonide into the vitreous, respectively [85]. The latter, which is typically inserted 
intravitreally, releases active steroid and has been approved in some European coun-
tries to treat chronic DME but not in the United States. Moreover, clinical efficacy 
studies in the United States have reported that Iluvien significantly reduced foveal 
thickness for up to 36 months [87].

6.9  Complement Cascade Inhibitors

Typically, the complement system contributes to innate immunity and mediates the 
inflammatory responses seen in physiological and pathological conditions. There 
are several elegant studies implicating the link between ocular NV and the comple-
ment system as shown by increased levels of plasma C3adesArg in NVAMD sub-
jects; and deposits of complement C5b-9 complexes in choriocapillaries of DN 
subjects [88, 89]. Complement targeted drug molecules are recognized as a promis-
ing therapeutic strategy for ocular NV diseases. A number of these compounds are 
currently in early stages of clinical trials. For example, POT-4/Compstatin (Potentia 
Pharmaceuticals/Alcon) is a “gel-like” synthetic peptide which binds and inhibits 
the cleavage of complement component 3 (C3) to its active form C3a and C3b [90]. 
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Intravitreal injection of compstatin has been shown to suppress drusen formation in 
cynomolgus monkeys, primate model with early-onset macular degeneration [91]. 
Successful phase 1 safety and efficacy studies demonstrate therapeutic efficacy in 
AMD patients with subfoveal CNV (NCT00473928. http://www.clinicaltrials.gov/
ct2/show/NCT00473928) and phase 2 clinical studies is in the pipeline to test effi-
cacy of intravitreal POT-4 in neovascular AMD.

ARC1905 (Optotech Corporation) is a pegylated aptamer designed to target and 
prevent the cleavage of C5 into its active C5a and C5b forms [92]. A phase 1 clinical 
trial assessed the safety and tolerability of this anti-C5 aptamer in combination with 
anti-VEGF, Lucentis, in patients with wet AMD (NCT00709527. https://clinicaltri-
als.gov/ct2/show/NCT00709527)

6.10  Other Small Molecule Inhibitors

Activation of cysteinyl leukotriene (CysLT) receptors, which are expressed in several 
tissues, mediates increased vascular permeability and ischemic retinopathy [93]. Of 
recent, Kennedy et  al. identified an inhibitor of CysLT1 and CysLT2 receptor 
(CysLT1/2R), quininib, which demonstrated significant anti-angiogenic activity in 
vitro in EC tubular network assay, ex vivo in a mouse aortic ring assay and in zebraf-
ish developmental angiogenesis assays. This CysLT1/2R antagonist was also reported 
to be safe and effective on preventing retinal NV in mouse OIR model when injected 
intravitreally [94]. Furthermore, to enhance its ocular release for up to 4 weeks, qui-
ninib was formulated into hyaluronan (HA) microneedles which showed to maintain 
its ocular anti-angiogenic and safety profile. In addition, intravitreal quininib-HA 
also attenuated CysLT-induced retinal vascular permeability in rats [95].

The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/
Akt/mTOR) signaling pathway has also been reported to be an alternative or adjunct 
target to treat ocular NV [96, 97]. Individual or combinations of PI3K/Akt/mTOR 
inhibitors including LY294002, NVP-BEZ235, PI-103 and rapamycin (Sirolimus) 
display significant anti-angiogenic effect in developmental and pathological angio-
genesis in zebrafish and mouse retina [96, 98–100]. In particular, the development 
of sirolmus has transitioned up to Phase II clinical testing for treatment of AMD and 
DME (NCT01445548, http://www.clinicaltrials.gov/ct2/show/NCT01445548).

7  Conclusion and Perspective

Significant advances have been made towards understanding the molecular mecha-
nisms regulating physiological and pathological angiogenesis. This progress has led 
to a comprehensive understanding of ocular NV which has yielded the discovery of 
current drug molecules to treat ocular NV-related diseases. The most common of 
these therapeutics are FDA approved anti-VEGF’s such as ranibizumab and 
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aflibercept, and the off-label bevacizumab. It must be ceded that the future 
development of anti-VEGF therapies to treat ocular NV is undergoing a paradigm 
shift as a result of their limited therapeutic efficacies, high clinical costs, invasive 
intravitreal injections and unwanted side effects. Furthermore, ongoing research in 
the field of ocular anti-angiogenic therapy has offered what may prove to be alterna-
tive ways of treating NV-related blindness. A vast majority of the emerging drug 
therapies include, but not limited to those highlighted in this review. Among these, 
the PPARα agonist, fenofibrate, seem to be the most promising drug molecule for 
the prevention of ocular NV.  Fenofibrate boasts high anti-angiogenic efficacy in 
animal models which recapitulate many of the clinical manifestations of CNV and 
retinal NV in humans. Moreover, the biopharmaceutical characteristic of the fenofi-
brate enables it to be delivered orally or as microparticles facilitating its sustained 
release over extended periods. In conclusion, indeed great strides have been made 
in the identification of novel therapies for the treatment of retinal NV, and the dis-
covery of these new drug targets brings us one step closer toward the goal of deliver-
ing innovative therapies that are safe and more efficacious for patients affected by 
ocular NV.
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Abstract Sex steroids such as estrogen and testosterone are key mediators of 
angiogenesis. They are implicated in both physiological and pathological angiogen-
esis such as during the menstrual cycle, wound healing and cancer growth and pro-
gression. Sex steroids regulate many aspects of angiogenesis through both classic 
genomic transcription modulation and rapid non-genomic signaling pathways. In 
this capacity, sex steroids modulate endothelial and progenitor cell functions such 
as proliferation, migration and attachment, which are all essential components 
involved in neovascularization. Since sex steroids are known to augment angiogen-
esis which is vital to tumor progression and growth, common treatment of hormone 
responsive tumors is through sex steroid receptor antagonists or hormone depriva-
tion. Due to the involvement of sex steroids in necessary physiological functions as 
well as the potential to promote pathological angiogenesis, it is fundamental that the 
mechanisms behind sex steroid-mediated neovascularization are understood.
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Abbreviations

AR Androgen receptor
ARE Androgen response element
bFGFR Basic fibroblast growth factor receptor
BSA Bovine serum albumen
CDK Cyclin-dependent kinases
CFU Colony-forming unit
cGMP Cyclic guanosine monophosphate
DHT Dihydrotestosterone
ECM Extracellular matrix
EDC Estrogen-dendrimer conjugates
EGF Epidermal growth factor
eNOS Endothelial nitric oxide synthase
EPC Endothelial progenitor cells
ER Estrogen receptor
ERE Estrogen response element
ERK Extracellular signal regulated kinases
FAk Focal adhesion kinase
FGF-2 Fibroblast growth factor-2
Flt1 VEGF receptor-1
Grb2 Growth factor receptor-bound protein 2
HGF Heptocyte growth factor
HIF-1 Hypoxia-inducible factor-1
HRE Hormone-responsive elements
HUVEC Human umbilical vein endothelial cells
IL-1 Interleukin-1
IL-1Ra IL-1 receptor antagonist
KDR/Flk-1 VEGF receptor-2
MAPK Mitogen-activated protein kinases
mTOR Mammalian target of rapamycin
NF-κB Nuclear factor-κB
PAF Platelet-activating factor
PAI Plasminogen activator inhibitor
PDGF Platelet-derived growth factor
PI3K Phosphatidylinositol 3-OH kinase
RhoA Ras homolog gene family member A
ROCK Rho-associated protein kinase
SDF-1 Stromal cell-derived factor-1
SHC-1 SHC-transforming protein 1
Sos Son of sevenless
TAM Tumor-associated macrophages
TERT Telomerase reverse transcriptase
TNF-α Tumor necrosis factor-α
VEGF Vascular endothelial growth factor
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1  Introduction

There is accumulating evidence that sex steroids regulate key events in angiogenesis 
(the formation of new blood vessels from pre-existing ones) and vasculogenesis 
(involvement of bone marrow-derived progenitor cells to new blood vessel forma-
tion). The direct modulation of pathological angiogenesis such as tumor neovascu-
larization by estrogens and androgens are extensively studied. While estrogens are 
also well known for its direct effects on the recurrent hormone-regulated neovascu-
larization of the female reproductive tract, emerging data also demonstrates a role 
for androgens on the regulation of angiogenesis. This chapter will discuss the role 
of sex steroids in angiogenesis and the mechanisms by which they function.

2  Sex Steroids and Angiogenesis: Basic Mechanisms

2.1  Overview of the Actions of Sex Steroid

Classic genomic regulation involves the binding of sex steroids to specific intra-
cellular hormone receptors which regulate gene expression and protein synthesis 
as illustrated in Fig.  20.1. Ligand-bound receptors become active through 

Fig. 20.1 Genomic actions of sex hormones. Sex hormones (SH) bind to sex hormone receptors 
(SHR) which translocate to the nucleus following dimer formation. The SHR binds to a hormone 
response element (HRE) within the promoter region of specific genes to initiate transcription. 
Transcription can also be initiated through growth factor (GF) binding to growth factor receptors 
(GFR) which activate specific kinases. These active kinases then lead to SHR activation of other 
transcription factors (TF) which bind to transcription factor response elements (TF-RE) causing 
gene transcription
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dimerization before translocation to the nucleus. Once in the nucleus, the hor-
mone receptors interact with their specific hormone responsive elements (HRE) 
present on DNA.  This interaction causes the induction or repression of target 
genes through gene transcription which ultimately regulate many cellular func-
tions. Sex steroids also act via rapid non-genomic signaling pathways which 
involve sex steroid binding to specific membrane-associated receptors. This 
modulates other membrane- associated or cytoplasmic proteins, and subsequently 
activates signaling cascades.

2.2  Estrogen-Mediated Neovascularization

Estrogen directly modulates the growth and survival of blood vessels in vivo. In 
oophorectomized rabbits, the withdrawal of endogenous estrogen causes vascu-
lar degeneration in the bladder, which is restored by exogenous estrogen admin-
istration [1]. Estrogen administration in ovariectomized rats improves 
reendothalialization following endothelial injury [2]. Estrogen administration 
also enhances the recovery of blood perfusion after ischemic injury by capillary 
regeneration within the tissue, which is associated with an increase in hypoxia 
inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) 
expression, that are key inducers of angiogenesis [3]. Furthermore, estrogen-
mediated neovascularization is accomplished by complex molecular pathways 
that regulate specific endothelial and progenitor cell functions which collec-
tively enable new blood vessel regrowth.

2.3  Estrogen and Genomic Pathways of Regulation

Estrogen receptors (ERs) are ligand-activated nuclear transcription factors that are 
expressed in human vascular endothelial cells [4, 5]. ERs mediate the effects of 
estrogen on gene regulation which modulate many facets of the angiogenic features 
of endothelial cells [4–6]. Of the two known ERs, ERα is most often implicated in 
angiogenesis and plays a larger role in endothelial progenitor stimulation than ERβ 
[7]. In the absence of both receptors, estrogen-promoted vascular protective mecha-
nisms are ineffective [8]. Estrogen induces temporally distinct cascades of tran-
scriptional events in the whole vasculature. ERs mediate the earliest modulation of 
gene expression by estrogen. These ER-mediated gene targets are transcriptional 
factors that are enriched with direct ER binding sites in their promoters. Subsequently, 
these early-induced transcription factors recruit others transcription factors that are 
involved in lipid metabolism and cellular growth and proliferation, leading to a 
propagation of transcriptional cascades that eventually modulate the long-term 
effects of estrogens on vascular functions [9].
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2.4  Estrogen and Non-genomic Rapid Signaling

In addition to the classic genomic pathway, increasing evidence suggests estrogen 
stimulates endothelial cell functions, such as vasodilation, cell growth, migration 
and survival via non-genomic signaling [10–12]. Using membrane-impermeable 
estrogen conjugates, estrogen- bovine serum albumen (BSA) or estrogen-den-
drimer conjugates (EDC), estrogen has been shown to bind to membrane-associ-
ated ERα and activate phosphatidylinositol 3-OH kinase (PI3K) signaling events 
and Akt phosphorylation. This is achieved through the binding of ERα with Gαi, 
c-Src (cellular- src) tyrosine kinase, and p85 (the regulatory subunit of PI3K). 
Subsequently, endothelial nitric oxide synthase (eNOS) is activated, leading to a 
rapid release of nitric oxide (NO) from endothelial cells as shown in Fig. 20.2 [13, 
14]. Furthermore, estrogen stimulates sphingosine kinase 1 signaling via ERα and 
increases intracellular production of sphingosine-1-phosphate which in turn is an 
upstream mediator of PI3K/Akt/eNOS signaling activation [15]. Via the ER 
membrane- binding mechanism, mitogen-activated protein kinases (MAPK) path-
ways are also rapidly induced by estrogen, which corresponds to an increase in 
cyclic guanosine monophosphate (cGMP), the second messenger of NO [16]. On 
the other hand, the presence of eNOS itself, rather than its enzymatic activity for 
NO production, is critical for estrogen-induced rapid signaling of extracellular 

Fig. 20.2 Non-genomic estrogen signaling. Estrogen binding to membrane associated estrogen 
receptors (ER) activates PI3K signaling though Gαi, Src tyrosine kinase and p85 subunit binding. 
This leads to the phosphorylation of Akt and activation of PIP3 which increases nitric oxide (NO) 
production through endothelial nitric oxide synthase (eNOS)
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signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation [17]. Altogether, mul-
tiple signaling pathways are rapidly activated by estrogen via ERα, which in turn 
stimulate eNOS activation and result in the production and release of NO. NO is 
known to be vascular protective by controlling vascular tone and vasodilation, but 
is also critical for the stimulation of angiogenesis via the induction of cell growth, 
proliferation and migration of endothelial cells.

Recently, a “KRR” triple-point region in the ERα has been identified to cause 
ERα-mediated rapid signaling. Mutation in the “KRR” causes a defect in 
estrogen- induced rapid signaling, but ERα-mediated transcriptional regulation is 
maintained through the classic genomic pathway. Endothelial cells expressing 
the KRR mutant version of ERα have impaired estrogen-induced proliferation 
and migration [18]. The vascular protective effects of estrogen are lost in trans-
genic mice expressing the KRR mutant ERα [19]. Interestingly, the numbers of 
genes modulated by estrogen are markedly reduced in human endothelial cells 
expressing the KRR mutant ERα, when compared to wild type ERα. A distinct 
set of transcription factors are upregulated by estrogen-induced rapid signaling 
via the membrane bound ERα and act as downstream effectors to induce gene 
transcription. Therefore, the transcriptional regulation of estrogen-responsive 
genes is also dependent on ERα-mediated rapid signaling.

Membrane-impermeable estrogen signaling that provides vascular protec-
tion, but does not stimulate cancer growth, making selective activation of 
membrane- associated ERs a potentially attractive therapeutic target. For exam-
ple, membrane- impermeable EDC does not stimulate the growth of Ishikawa 
cells (a uterine endometrial carcinoma cell line) or MCF-7 breast cancer cells, 
which are normally stimulated by membrane permeable estrogen [20]. A natural 
estrogen produced by the human fetal liver during pregnancy, estetrol, differen-
tially regulates estrogen effects by uncoupling nuclear and membrane ERα acti-
vation [21]. Estetrol antagonizes estradiol-induced mammary tumor formation 
in rat [22] and prevents cell invasion of human T47D breast carcinoma cells 
stimulated by estradiol [23].

2.5  Estrogens and Endothelial Cells

Estrogen regulates many facets of endothelial cell function. Through receptor bind-
ing, estrogen initiates the rapid signaling pathway (Table 20.1) and/or modulates 
gene transcription, which is associated with proangiogenic growth factors and 
accompanying receptors. These growth factors collectively enhance the angiogenic 
capacity of endothelial cells by promoting cell proliferation, migration, tubule for-
mation and attachment to extracellular matrix [24].
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2.5.1  Estrogen and Endothelial Cell Attachment, Migration and Tubule 
Formation

Estrogen promotes endothelial cell migration and capillary formation by stimu-
lating pathways that regulate changes in adhesion molecules and actin cytoskel-
eton. Estrogen upregulates the mRNA and protein expression of integrins β1, α5 
and α6 which allow endothelial cells to attach to extracellular matrix (ECM) 
such as laminin and fibronectin [25]. Estrogen enhances integrin-mediated sig-
naling via the phosphorylation of focal adhesion kinase (FAK). Estrogen-
mediated activation of ERα signaling recruits Gα/Gβ proteins and triggers the 
formation of ERα complex with c-Src, PI3K and FAK, where FAK is phosphory-
lated. Estrogen-induced FAK phosphorylation also leads to rapid remodeling of 
actin cytoskeleton which mediates the interaction between cell movement and 
ECM. As FAK is activated by phosphorylation, it is translocated toward plasma 
membrane and forms focal adhesion complexes that facilitate actin remodeling 
and promote endothelial cell migration [26].

Estrogen also upregulates the expression and activity of Ras homolog gene fam-
ily member A (RhoA), and RhoA-regulatory proteins such as RhoGEF1  in an 
ER-dependent manner [27]. RhoA is a small GTPase protein that regulates actin 
cytoskeleton by activating Rho-associated protein kinase (ROCK), Lim kinase and 
cofilin. Estrogen induced G-protein/PI3K and ROCK-II signaling upregulate c-Fos 
and c-Jun (the AP-1 early response transcription factor). This leads to an increase in 
plasminogen activator inhibitor (PAI-1) expression, which plays a role in the hori-
zontal migration of endothelial cells [28]. Additionally, estrogen modulates cyto-
skeleton remodeling by post-translational modification of cofilin, a family of 
actin-binding proteins that disassembles actin filaments. Estrogen directly 
 nitrosylates (covalent addition of a nitric oxide moiety) cofilin at the cysteine resi-
due Cys80 with NO derived from eNOS, and activates cofilin by dephosphorylation 
of the serine residue Ser3 [29]. Altogether, these proteins allow endothelial cells to 

Table 20.1 The role of estrogen in endothelial function

Estrogen Proliferation/cell survival Migration/Adhesion
Increases

 Cyclins
  CDK
  MAPK/ERK1/2
  PI3K/Akt
  HIF1α
  VEGF/VEGFRs
  eNOS
  bFGF

Increases

 RhoA/ROCK/RhoGEF1
  Notch1/Jagged1
  c-Fos/c-Jun
  PAI-1
  VEGF/VEGFRs
  eNOS
  FAK
  LIM kinase
  Cofilin
  Focal adhesions

Decreases

 p27
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form stress fibers which function in cell spreading during migration and attachment. 
Regulation of Notch1 and Jagged1 pathways, which ensure effective communica-
tion between adjacent cells, are also involved in estrogen-induced endothelial tubule 
formation and capillary stabilization [30].

2.5.2  Estrogen and Endothelial Cell Proliferation

Estrogen promotes cell proliferation in culture by downregulating genes associated 
with cell cycle inhibition, such as p27 which specifically inhibits cyclin-dependent 
kinases (CDK) [27]. Estrogen-stimulated cell proliferation is further enhanced by 
increasing gene expression that promotes the cell cycle such as Cyclin-D1, Cyclin-A2, 
Cyclin-B1, CDK1, CDK2 and CDK4. VEGF production is also increased by estro-
gen through transcriptional upregulation as ERs bind to the estrogen response ele-
ment (ERE) in the VEGF gene promoter [6]. VEGF stimulates endothelial cell 
proliferation and migration mainly via its binding to VEGF receptor 2 (VEGFR2/
KDR), which activates the MAPK/ERK pathway and FAK signaling. Additionally, 
estrogen activation of MAPK and ERK1/2 signaling pathways and phosphorylation 
of basic fibroblast growth factor receptor (bFGFR) promotes cell proliferation [31]. 
Cell proliferation requires a cross-talk between ERα-mediated genomic transcrip-
tional regulation and non-genomic rapid signaling induced by estrogen. Post-
translation modification of ERα upon estrogen binding, such as monoubiquitination 
(attachment of a single ubiquitin) within the ERα ligand binding domain, synchro-
nizes ERα-mediated transcriptional activity and PI3K/Akt signaling cascades. For 
example, activation of PI3K/Akt phosphorylates CREB1 transcription factor, which 
in turn drives estrogen-induced Cyclin-D1 transcription activation via non-ERE [32, 
33]. Together, estrogen modulates transcriptional activation via both ERE and non-
ERE pathways and promotes cell survival and proliferation.

2.6  Estrogen and Endothelial Progenitor Cells (EPCs)

Endothelial progenitor cells (EPCs) are directly involved in vascular repair by facil-
itating reendothelialization and angiogenesis [34–36]. In women, there is a correla-
tion between a higher plasma estrogen level and increased circulating EPC levels 
[37]. Male EPCs only contain ERα, whereas female EPCs express both receptors, 
even so, both male and female EPCs are responsive to estrogen [38].

Similar to its effects in differentiated endothelial cells, estrogen stimulates the key 
angiogenic activities of EPCs including migration, proliferation and tubulogenesis as 
outlined in Fig. 20.3 [39, 40]. The effects are mediated by both ERα and ERβ with a 
stronger contribution by ERα, at least in part, due to its higher expression in EPCs. 
Increasing evidence indicates that the non-genomic action of membrane ERα plays a 
significant role in mediating the effects of estrogen on EPCs. Membrane imperme-
able estradiol-conjugated BSA promotes EPC proliferation via ERα by increasing 
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caveolin expression and activating PI3K and ERK1/2 signaling pathways [41]. 
Estrogen also stimulates capillary formation by human EPCs via an ERα- genomic 
independent mechanism. Actinomycin, an antibiotic that inhibits gene transcription, 
does not suppress estrogen’s action on EPCs. In fact, estrogen activates receptor 
tyrosine kinases (RTKs), including receptors for VEGF, hepatocyte growth factor 
(HGF) and stromal cell-derived factor-1 (SDF-1) via ERα. The activation of RTKs 
increases the expression of heme oxygenase 1, which is an angiogenesis- stimulating 
enzyme, as well as phosphorylation of Akt and Erk1/2 signaling pathways [40].

Estrogen also prolongs the lifespan of EPCs in culture through a number of 
mechanisms. Estrogen inhibits EPC apoptosis by decreasing caspase-8 activity. 
EPC senescence is also delayed by an estrogen-mediated increase in telomerase 
activity and telomere length [42]. Estrogen increases the catalytic subunit of telom-
erase, known as telomerase reverse transcriptase (TERT) via the activation of PI3K/
Akt signaling pathway [42]. ER-mediated activation of the PI3K/Akt pathway is 
also involved in estrogen-enhanced EPC proliferation and migration [43], that are 
necessary processes in facilitating EPC-mediated angiogenesis.

Estrogen stimulates EPC mobilization from the bone marrow to the circulation 
and promotes cell homing to sites of vascular injury or in response to ischemia. 
Estrogen replacement enhances EPC-mediated reendothelialization in ovariecto-
mized mice subjected to carotid artery denudation [37, 44] and enhances recovery 
after myocardial infarction (MI) by augmenting EPC incorporation into the isch-
emic sites [45]. The enhanced EPC recruitment is due to an increase in myocardial 

Fig. 20.3 The role of sex steroids in endothelial progenitor cell functions. Endothelial progenitor 
cells (EPC) are stimulated by sex steroids which lead to an increase in EPC proliferation, differen-
tiation, mobilization, and homing. Sex steroids also upregulate hypoxia inducible factor-1 α 
(HIF-1α), and its downstream proangiogenic factor, such as vascular endothelial growth factor 
(VEGF) and stromal cell-derived factor-1 (SDF-1). The upregulation of proangiogenic factors 
enhances EPC mobilization and homing, resulting in increased neovascularization. Sex steroids 
also decrease apoptosis and senescence of EPCs
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expression of SDF-1α induced by estrogen following rat MI [46], in which SDF-1α 
is a cytokine that regulates EPC mobilization and homing. Additionally, ex vivo 
preconditioning of EPCs with estrogen also enhances cell recruitment to infarcted 
myocardium when administrated to mice, improving cardiac function following 
MI. The augmented EPC migratory activity by estrogen is associated with an upreg-
ulation of the SDF-1α receptor, CXCR4. Treatment of EPCs with CXCR4 inhibitor 
AMD3100 abrogates the beneficial effects of EPCs from estrogen preconditioning 
[47]. The estrogen contribution to EPC mobilization and homing is mediated by 
both ERα and ERβ, with a greater role indicated for ERα [39]. In support of this, 
ERα expression in both endothelial cells and bone marrow-derived progenitor cells 
is required to mediate estrogen-induced augmentation in reendothelialization fol-
lowing carotid injury. Absence of ERα expression in either the bone marrow or 
endothelial cells attenuates estrogen-enhanced reendothelialization [48]. 
Furthermore, estrogen-mediated augmentation of EPC mobilization and homing 
appears to be eNOS-dependent, in which the effects of estrogen are absent in eNOS 
knockout mice after arterial injury or in response to ischemia [44].

2.7  Androgens and Angiogenesis

Increasing evidence indicates that androgens play a significant role in regulating 
angiogenesis. Depletion of endogenous androgens caused by castration decrease a 
range of angiogenic cytokines, such as VEGF, placenta growth factor, fibroblast 
growth factor-2 (FGF-2) and FGF-8 in mice [49]. The alteration in cytokine levels is 
associated with vascular regression [50]. Castrated male mice exhibit reduced neo-
vascularization following hindlimb ischemia, which is associated with decreased 
mRNA expression of angiogenic mediators such as HIF-1α, SDF-1α and KDR in the 
ischemic tissues of castrated mice. Androgen replacement rescues castration- induced 
impairment in neovascularization [51, 52]. Topical application of testosterone on rats 
fitted with a human skin graft also improves angiogenesis with increased vascular 
density in the dermis of the skin graft compared with placebo treated rats [53].

Despite the regulation of angiogenesis by androgens in vivo, the underlying 
mechanisms for the effects of androgens on endothelial cells remains controversial. 
Similar to ERs, the androgen receptor (AR) is a ligand bound transcription factor. 
Dihydrotestosterone (DHT), a potent natural androgen that is non-aromatizable to 
estrogen, has a higher affinity for AR than testosterone. Upon the binding of andro-
gens to AR, AR is then translocated to the nucleus and modulates gene transcription 
via an androgen response element (ARE) [53]. Androgen enhancement of ischemia- 
induced HIF-1α upregulation and angiogenesis is dependent on the transcriptional 
activation of AR. Following ischemia, male knockout mice with a transcriptionally 
inactive AR, that is incompetent to exert androgen-induced genomic modulation, 
display attenuated angiogenic responses with reduced HIF-1α levels when given 
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DHT treatment [54]. DHT enhances VEGF secretion in fibroblasts and subsequently 
stimulates angiogenic functions of endothelial cells via a paracrine-mediated mecha-
nism. Androgen responsiveness is attenuated in fibroblasts from older men with 
reduced VEGF secretion. Age-related androgen insensitivity is associated with 
impairment in AR nuclear translocation and AR transcriptional activation [55]. 
Through AR, androgens also enhance endothelial cell proliferation by increasing 
VEGF mRNA and protein secretion that upregulates Cyclins A and D1 which in turn 
activate CDK to promote cell cycle [56]. In addition to its genomic action, AR also 
mediates androgenic effects via a non-genomic action which is involved in cell 
growth and survival. AR forms a triple complex with Src and p85α, the regulatory 
subunit of PI3K, to mediate androgen-induced activation of PI3K/Akt and MAPK 
signaling [57]. Furthermore, the AR/Src/p85α complex also interacts with KDR to 
induce eNOS phosphorylation upon VEGF stimulation [58]. AR itself also plays a 
role in vascular biology. Knockout mice with a total deletion of AR exhibit an impair-
ment in angiogenesis following hindlimb ischemia [58]. Male AR knockout mice 
also display increased neointimal hyperplasia caused by carotid ligation, which is 
associated with increased outgrowth of vascular smooth muscle cells [59]. Mice with 
selective deletion of AR from vascular smooth muscle cells exhibit an impairment in 
angiogenic vascular remodeling and limits blood perfusion following ischemia [60].

2.8  Androgens and Progenitor Cells

Progenitor cell homeostasis is closely related to endogenous androgens. Circulating 
EPC levels are reduced in the peripheral blood of hypogonadal men [61]. In cas-
trated rat, circulating CD34+ progenitor cell levels are decreased following MI. 
Testosterone replacement increases the mobilization and homing of CD34+ pro-
genitor cells in the castrated rats with increased HIF-1α, VEGF and SDF-1 in the 
ischemic myocardium [62]. DHT augments the production of Sca1+/CXCR4+ pro-
genitor cells in the bone marrow and enhances progenitor cell mobilization into the 
circulation of male mice following hindlimb ischemia [54]. Ex vivo, DHT increases 
the formation of progenitor cell colonies isolated from the bone marrow in mice 
after ischemia [51]. In vitro, DHT increases the proliferation and adhesion of cul-
tured EPCs from the peripheral blood of healthy men, in a dose- and time-dependent 
manner via AR-mediated PI3K/Akt activation [63, 64]. Androgens induce AR 
nuclear translocation in EPCs [63] that differentially modulates the expression of 
over 300 genes. These genes are related to early growth response, angiogenesis, cell 
cycle and signaling cascades [65]. In male knockout mice with an AR incompetent 
of inducing genomic action, DHT-induced augmentation of Sca1+/CXCR4+ pro-
genitor cell production and mobilization is abolished following hindlimb ischemia 
[54]. The effects of androgens on progenitor cell dynamics in response to ischemia 
is therefore dependent on AR transcriptional activation.
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2.9  Sex Specificity of Steroid Action

There are striking sex differences regarding the incidence of cardiovascular dis-
ease, atherogenesis, angiogenesis and cardiovascular adaptation and repair in 
response to ischemia and infarcts [66–69]. Similarly, sex differences in isch-
emia-induced neovascularization are observed in murine models. Female mice 
have lower levels VEGF and eNOS in the ischemic muscle tissues and exhibit 
impaired blood flow recovery compared to males post-ischemia [70]. These dif-
ferences have led researchers to explore the impact of sex-steroids on the regu-
lation and function of the cardiovascular system. In both male and female mice 
gonadectomy severely impairs neovascularization in vivo [51]. Exogenous DHT 
or estrogen improve angiogenesis in gonadectomized male and female mice, 
respectively, following hindlimb ischemic injury. Interestingly, ovariectomized 
female mice do not benefit from exogenous DHT treatment following ischemia 
[51]. In contrast to this, male mice receiving estrogen treatment recover faster 
from hindlimb ischemic injury than placebo treated mice through progenitor 
cell recruitment [71].

Gender specific differences in sex hormone-mediated angiogenesis are due, 
at least in part, to differences in sex steroid receptor expression in vascular tis-
sues. Both male and female mice exhibit high binding affinity to estrogen in 
aortic tissue, and surprisingly male mice contain twice as many binding sites for 
estrogen than females, which is independent of the fact that females have higher 
circulating estrogen levels [72]. In male mice, ERα mRNA is expressed at low 
levels in vascular endothelial and smooth muscle cells, whereas ERβ mRNA is 
greatly increased on endothelial cells following aortic denudation injury [73]. 
These studies demonstrate that the male vasculature can respond to an estrogen 
stimulus. In contrast to this, endothelial cells from women express much lower 
AR levels. Male endothelial cells have a 2-5-fold higher AR expression level 
than female cells [51, 74]. Monocyte- derived macrophages from men also 
express significantly higher levels of AR than those from women [75]. In mac-
rophages these differences in AR expression translate to marked sex differences 
in transcriptional responses to androgen exposure, with male-donor macro-
phages exhibiting an upregulation of genes that are involved in angiogenesis 
while genomic responses in female-donor cells to androgens are much less 
striking [76]. Despite the evidence that AR-mediated androgen responses seem 
to be sex-specific, the AR itself regulates angiogenesis independent of gender. 
Loss of total AR impairs angiogenesis in both male and female mice following 
hindlimb ischemia in the absence of exogeneous androgen treatment. The sex- 
independent functions of AR are associated with its ability to interact with KDR 
through the recruitment of p85 and Src [58].
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3  Sex Steroids and Angiogenesis: Role in Health and Disease

3.1  Estrogen and Menstruation and Angiogenesis

Blood vessel growth and regression is a major part of the ovarian and menstrual 
cycles which are regulated by the female hormones estrogen and progesterone [77–
79]. An increase in estrogen production also accompanies the development of the 
placenta during pregnancy, establishing an extensive vascular network [80]. These 
processes are mediated by complex signaling and the production of numerous 
growth factors and angiogenesis-promoting proteins as demonstrated in Fig. 20.4.

Estrogen regulates angiogenesis in the endometrium by influencing the prolifera-
tion and stimulation of many endometrial cells including uterine endothelial and 
epithelial cells, as well as stromal cells, and smooth muscle cells associated with the 
vascular wall [81]. Estrogen stimulates cell proliferation by increasing VEGF 
expressions in isolated endometrial vascular cells via both ERα and ERβ [82]. ER 
expression fluctuates throughout the menstrual cycle, and thereby allowing vascular 
growth and regression [83]. The production and secretion of VEGF in the endome-
trium is attributed to the glandular epithelial cells, which produce large amounts of 
VEGF with increased estrogen stimulation [84]. VEGF then exerts its proangio-
genic effects by binding VEGFRs on endometrial endothelial cells, causing an 
increase in proliferation, tubulogenesis and blood vessel growth in the endome-
trium. Human endometrial endothelial cells are more sensitive to VEGF stimulation 
than dermal, coronary, and umbilical endothelial cells, which results in higher levels 
of cell proliferation and angiogenic capacity [85]. This may be attributed to that fact 
that uterine endometrial cells having higher mRNA expression levels of the 
VEGFRs, KDR and Flt-1 [86]. Furthermore, estrogen-induced VEGF production is 
augmented in luminal epithelial cells via ERα-mediated activation of HIF-1α and 
the PI3K/Akt pathway [87, 88]. Along with VEGF, FGF-2, epidermal growth factor 
(EGF) and platelet derived growth factor (PDGF) are also produced in the normal 
human endometrium and influence endometrial angiogenesis [89]. Their receptors 
VEGFRs, FGFR2, EGFR and PDGFR are all expressed within and close to endo-
metrial blood vessels with the strongest expression coinciding with the start of the 
secretory phase as sub-epithelial capillary density increases.

Furthermore, bone marrow-derived circulating EPC levels peak at the periovula-
tory (the most intensive angiogenesis phase) and middle luteal phases of the men-
strual cycle. The circulating EPC levels are correlated with serum levels of estrogen, 
VEGF and angiogenesis-related factor granulocyte colony stimulating factor 
(G-CSF) [90]. Estrogen stimulates the proliferation of peripheral blood-derived 
EPCs from women during the menstrual phase, but not the luteal phase. This is 
associated with upregulation of ERα expression in the EPCs from women during 
their menstrual phase, which is subsequently downregulated in the luteal phase [91].
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3.2  Sex Steroids and Tumor Angiogenesis

Sex steroids promote angiogenesis through cell proliferation, migration and capil-
lary formation, which are all key factors in tumor growth, progression and metasta-
sis. It is therefore a major concern regarding the relationship between sex steroids 
and cancer development and progress. The roles of estrogen and testosterone in 
tumorigenesis have been mostly studied in the context of breast and prostate cancer 
respectively. However, they may also be implicated in the progression of tumors in 
other endocrine organs such as in the uterus, ovaries [92], pituitary, adrenal glands, 
thyroid and parathyroid [93]. Figure 20.5 details the association of sex steroids in 
tumor growth and angiogenesis, and includes common treatments that target 
hormone- mediated angiogenesis to restrict tumor growth and metastasis.

3.2.1  Estrogen and Tumor Angiogenesis

The balance of local estrogen levels in hormone-dependent tumors and in non- 
pathological tissues related to the vascular system is critical in regulating estrogen- 
sensitive cancer development. Steroid sulfatase (STS) is an enzyme that hydrolyses 
biologically inactive estrogen sulfates to active estrogens. STS activity is found to 
be higher in breast cancer tissues than in normal breast tissues. STS reactivity is also 
positively associated with tumor size. On the other hand, estrogen sulfotransferase 
(EST) converts active estrogens to estrogen sulfates and is associated with decreased 
risk of recurrence and improved prognosis [94].

Fig. 20.4 Estrogen in endometrial angiogenesis. During specific phases of the menstrual cycle, 
estrogen stimulates the growth of uterine blood vessels and capillaries through glandular epithelial 
cell secretion of growth factors such as vascular endothelial growth factor (VEGF), fibroblast 
growth factor (FGF) and epidermal growth factor (EGF)
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Estrogen exposure induces neovascularization, which corresponds with the 
growth and enlargement of tumor blood vessels in ovariectomized Fisher 344 rats 
that develop spontaneous pituitary tumors [95]. This vessel growth is stimulated by 
an elevated production of VEGF from both endothelial and non-endothelial tumor 
cells. The VEGF production is accompanied by increased VEGFR2 levels on tumor 
endothelial cells which respond by increased tumor angiogenesis. Similarly, in 
MCF-7 breast cancer cells, treatment with estrogen also increases VEGF secretion, 
which leads to an increased expression of VEGFR2 on HUVECs cultured with 
breast cancer conditioned medium [96]. Additionally, estrogen reduces negative 
regulators of VEGF-mediated angiogenesis such as soluble VEGFR1 production 
[96, 97]. In matrigel plugs containing breast cancer cells given to mice with an 
estrogen or placebo implant, decreased VEGFR1 expression in estrogen treated 
mice was accompanied by a significant increase in angiogenesis [97]. Estrogen- 
induced downregulation of VEGFR1 is blocked by pretreatment of ER-positive 
breast cancer cells with an ER antagonist. While ERα mediates estrogen-induced 
tumor cell proliferation and growth, ERβ has an opposite effect. Overexpression of 
ERβ is associated with a reduction in tumor volume in estrogen-treated mice which 
exhibit reduced microvessel density and decreased expression of angiogenic factors 
such as VEGF and PDGF-β. [98].

Fig. 20.5 The involvement of sex steroids in tumor growth and angiogenesis. Estrogen and testos-
terone both stimulate the growth of hormone specific tumors such as breast and prostate respec-
tively by increasing tumor angiogenesis. Tumor angiogenesis is augmented through 
hormone-induced upregulation of proangiogenic mediators and growth factors, in addition to the 
downregulation of anti-angiogenic factors. Treatment of hormone responsive tumors with anti- 
estrogens or anti-androgens suppress tumor growth by reducing tumor angiogenesis
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Estrogen also enhances expression of many other proangiogenic factors including 
tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), and bFGF [99]. The expres-
sion of these proangiogenic factors is mediated through the activation of nuclear 
factor-kappaB (NF-κB), via platelet activating factor (PAF). Importantly, long term 
estrogen deprivation, such as in post-menopausal women, causes breast tumors to 
develop a heightened sensitivity to estrogen [100]. These cells adapt through an 
upregulation of ERα at the membrane, which activates growth factor pathways via 
SHC transforming protein-1 (SHC1), growth factor receptor-bound protein-2 (Grb-
2) and son of sevenless homolog-1 (Sos-1). Estrogen deprivation also upregulates 
growth factors related to cell proliferation as well as other proangiogenic pathways, 
including MAPK, PI3K and mammalian target of rapamycin (mTOR) pathways.

In addition to the effects of estrogen on ER-mediated tumor cell growth and 
proliferation, estrogen also impacts the tumor microenvironment. This occurs with-
out directly influencing the ERα-negative tumor cells [101, 102]. For example, 
estrogen promotes the outgrowth of xenograft tumors from patient-derived ER neg-
ative breast cancer cells in mice by enhancing angiogenesis through the mobiliza-
tion and recruitment of proangiogenic, bone marrow-derived hematopoietic myeloid 
cells. In mice transplanted with ERα-knockout bone marrow, estrogen treatment has 
no effect in promoting tumor angiogenesis and growth. Therefore, ERα expression 
in bone marrow-derived cells alone is sufficient to mediate estrogen-induced mobi-
lization of hematopoietic myeloid cells to the tumor cells, whereas ERα expression 
in the host cells or non-bone marrow-derived cells is not necessary [102]. Estrogen 
also increases the proliferation and angiogenesis of ERα-negative high grade serous 
ovarian cancer (HGSOC) xenografts in mice by promoting infiltration of tumor- 
associated macrophages (TAM). Consistent with this, immunohistochemical 
 analysis of ERα-negative tissue samples from premenopausal HGSOC patients dis-
play a greater TAM infiltration than those from postmenopausal women [101].

The prevention of angiogenesis is a known therapeutic target to block tumor 
growth [103]. Tamoxifen and raloxifene are selective estrogen receptor modulators 
(SERMs), that are the most commonly used ER-antagonists to treat hormone- 
responsive breast cancers. Patients treated with tamoxifen have the best prognosis 
when tumors are ER-positive. Tamoxifen directly reduces endothelial cell prolifera-
tion in culture and decreases endothelial cell proliferation and migration in vivo 
when given orally to rats with a matrigel plug containing VEGF [104]. Tamoxifen 
reduces the effects of estrogen on tumor angiogenesis by reducing the secretion of 
VEGF and proangiogenic factor, angiogenin, from the tumor cells. This leads to a 
decrease in tumor vessel area and the overall tumor vasculature [105, 106]. It also 
inhibits estrogen-mediated reduction of soluble VEGFR1, which functions as a nega-
tive regulator of VEGF stimulated angiogenesis [96]. Along with phytoestrogens 
(dietary estrogens) such as flaxseed and enterolactone, tamoxifen decreases tumor 
microvessel density by inhibiting endothelial cell proliferation which is associated 
with a reduction in proangiogenic factor IL-1β levels and increase in IL-1 receptor 
antagonist (IL-1Ra) levels [107]. Phytoestrogens are also able to  counteract estro-
gen-induced tumor growth and angiogenesis in ovariectomized mice injected with 
human breast cancer cells by decreasing VEGF secretion from cancer cells [108].

Y.T. Lam et al.



461

Despite being a cornerstone in breast cancer therapy, tamoxifen treatment only 
reduces the risk of recurrence by 30–50% [109] and is associated with side effects 
such as thromboembolic events, endometrical cancer and joint pain [110]. Therefore, 
there is a need to identify novel estrogen-dependent targets to improve cancer therapy. 
In vivo sampling of human chemokines by microdialysis reveals high levels of extra-
cellular CCL2 and CCL5 in ER-positive breast cancer tissues compared to normal 
breast tissues. Estrogen promotes the activation and infiltration of TAM by increasing 
the release of CCL2 and CCL5 from cancer cells. These effects are inhibited by anti-
CCL2 or anti-CCL5 therapy, resulting in an inhibition of tumor growth [111].

In recent years, estrogen-related receptor alpha (ERRα), an orphan nuclear 
receptor that regulates gene expression in association with coactivators and core-
pressors, has shown to be involved in cancer initiation and progression of a wide 
variety of endocrine-related cancers [112]. Knockdown of ERRα with siRNA sup-
presses angiogenesis and tumor growth via reduction of VEGF expression and 
induction of cell cycle arrest and caspase-3-mediated apoptosis, which inhibits cell 
proliferation [113]. Given that endogenous ligands for ERRα are absent naturally, it 
is considered a suitable direct target for pharmacological intervention.

3.2.2  Testosterone and Tumor Angiogenesis

The pathogenesis of prostate cancer is highly dependent on the presence of andro-
gens. This is highlighted by the fact that men who undergo castration before puberty, 
or men with 5α-reductase deficiency have never been reported to develop prostate 
cancer [114]. Androgen deprivation therapy (ADT) is the standard systemic treat-
ment for patients with prostate cancer, in which ADT suppresses androgen produc-
tion and AR activity. Androgens directly stimulate proliferation and inhibit apoptosis 
of prostate cancer cells, but also largely regulate prostate tumor growth by promot-
ing angiogenesis. Castration induces a regression of prostatic vasculature. In cas-
trated rats, prostatic endothelial cell proliferation, weight of total blood vessels and 
endothelial cell numbers decrease in addition to a decrease in epithelial cells and 
total organ weight [115]. Castration in mice implanted with androgen-sensitive 
Shionogi tumors showed that androgen withdrawal leads to vascular regression 
from the tumor periphery within 24 h, followed by tumor regression after 1–2 days 
[116]. Vascular regression and endothelial cell apoptosis precedes epithelial apopto-
sis. The initial vascular regression is attributable to a sharp decrease in VEGF 
expression induced by androgen ablation, followed by a decrease in microvessel 
density and a subsequent decrease in overall tumor size in mice with androgen- 
sensitive tumors [117–119]. Androgens upregulate VEGF mRNA and protein secre-
tions in normal prostate cells as well as androgen-responsive LNCaP prostate cancer 
cells via PI3K-mediated HIF-1α activation [117, 120–122]. Non-steroidal anti-
androgens such as flutamide and bicalutamide inhibit DHT-induced upregulation of 
HIF-1α, as does inhibiting the PI3K signaling pathway. In hormone- independent 
PC3 cells, androgen-induced HIF-1α-mediated upregulation of VEGF is not 
observed, thereby VEGF reduction by androgen withdrawal is ineffective [121]. 
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Alternatively, ligand-bound AR forms a nuclear complex with transcription factor 
Sp1 and upregulates VEGF gene expression, in which three AR binding sites are 
located within the promoter region of VEGF [123]. In addition to an elevation in 
proangiogenic cytokine levels, prostate cancer tissues also have increased levels of 
CD34+/CD31+ EPCs compared with normal tissues. ADT is able to decrease these 
EPC levels transiently [124].

Following the initial vascular regression induced by ADT, tissues become 
hypoxic and this is eventually accompanied by an angiogenic burst. Mice implanted 
with Shionogi tumor exhibit a re-expression of VEGF levels and tumor regrowth 
after 2 weeks of castration [116], mirroring the development of a more malignant 
form of androgen-independent prostate cancer termed castration-resistant prostate 
cancer (CRPC) [125]. The recurrent prostate cancers are often found to have a sig-
nificantly higher expression of AR.  This indicates that androgen-independent 
tumors continue to require a functional androgen signaling pathway to regulate 
tumor growth and angiogenesis following androgen withdrawal. Androgen- 
independent cancer cell line PC3 secretes a wide range of CXC chemokine ligands 
that are involved in metastatic migratory functions, a crucial feature during the tran-
sition of androgen-dependent prostate cancer into the more aggressive androgen- 
independent state [126]. Although ADT decreases CD34+/CD31+ EPCs levels in 
the prostate cancer tissues, the decreased EPC levels gradually recover over time 
and increase as the cancer progress into CRPC [124]. Within the prostate microen-
vironment, endothelial cells increase interleukin-6 (IL-6) secretion, leading to acti-
vation of transforming growth factor-β (TGF-β)/metalloproteinase-9 (MMP-9) 
signaling that promotes the invasion of prostate cancer cells [124]. ADT also modu-
lates the prostate tumor microenvironment by augmenting the infiltration of inflam-
matory mast cells. The recruited mast cells increase stem/progenitor cell populations 
and MMP9 expression by suppressing AR signaling [127]. Furthermore, ADT- 
induced hypoxia upregulates gene expression involved in epithelial-to- mesenchymal 
transition (EMT), exerting selection pressure for cancer clones with a more proan-
giogenic, stress-resistance genotype that are advantageous in tumor cell invasion 
and metastatic spread [128]. In mice transplanted with human prostate xenografts, 
castration upregulates transcription factors that are involved in reprogramming, 
self-renewal and pluripotency in differentiated somatic cells, namely Oct4, Sox2, 
Klf4 and NANOG [129]. Androgen deprivation enhances the “stem-ness” features 
in prostate cells that contributes to the recurrence of aggressive cancer cells.

Other angiogenic mediators are required for the continuation of vascular repres-
sion following ADT.  Thrombospondin-1 (TSP-1) functions as an angiogenesis 
inhibitor and is strongly expressed in normal prostate tissues. In human prostate 
cancer tissues, TSP-1 expression is downregulated while proangiogenic VEGF and 
FGF-2 levels are increased [130]. Patients that undergo ADT show an increase in 
TSP-1 expression and a decrease in tumor microvessel density [131]. Similarly, in 
rats, androgen withdrawal via castration increases TSP-1 synthesis and decreases 
vascularization of the normal prostate, which is reversed with androgen replace-
ment [131]. TSP-1 inhibits angiogenesis via activation of TGF-β, which in turn 
suppresses epithelial and stromal cell proliferation, contributing to the continued 
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vascular regression [132]. For patients with androgen-dependent prostate cancer, 
combining ADT with TSP-1 therapy that targets the TGF- β pathway, or anti- 
angiogenic therapy such as a VEGF-inhibitors or VEGFR tyrosine kinase inhibitors 
[133], could delay the recurrence time of androgen-independent cancer.

Polymorphisms in the AR gene, especially the CAG repeat length within the first 
exon that encodes the polyglutamine tract in the N-terminal domain of the AR pro-
tein, are related to the variable outcomes of ADT and relapse of CRPC. The length 
of the CAG repeat in the AR gene is also associated with prostate cancer-specific 
mortality and serves as a molecular marker to determine ADT efficacy [134]. 
Despite low serum testosterone levels, patients with a shorter CAG repeat length in 
the AR gene have higher AR density and higher microvessel density within the 
tumor with increased metastatic potential [135]. The CAG repeat length alters AR 
transactivation and transrepression functions by modifying transcriptional coactiva-
tors and corepressors, respectively, enhancing AR response to low androgen levels. 
A shorter CAG repeat length is associated with greater transactivation function of 
the AR [136–139]. On the other hand, a long CAG repeat length is more effective in 
recruiting a corepressor, one of which is known as the silencing mediator for reti-
noic acid and thyroid hormone receptor (SMRT), that dampens AR transcriptional 
activation upon androgen binding [140].

Interestingly, genes associated with ER signaling are also used to predict the recur-
rence of prostate-specific antigen and 5-year cancer-specific survival [141]. Estrogen 
administration has been shown effective for advanced, androgen- insensitive prostate 
cancer [142, 143]. While androgen modulation of tumor microenvironment stimulates 
endothelial cell growth via a paracrine-mediated mechanism, co-administration of 
estrogen attenuates androgen-induced endothelial cell growth in vitro as well as 
angiogenesis in xenograft prostate tumors [144]. Estrogen has a biphasic effect on 
prostate tumor growth. A lower dose of estrogen increases tumor growth in mouse 
xenograft model using human PC3 cancer cells, while a higher dose of estrogen inhib-
its tumor growth. High estrogen levels suppress prostate tumor growth by modulating 
krüppel-like zinc finger transcription factor 5 (KLF5)-dependent transcription through 
ERβ, subsequently lowering the levels of proangiogenic PDGFA [145].

4  Conclusion

It is evident that sex steroids are fundamentally involved in the regulation of key 
angiogenic processes. This chapter has detailed the known mechanisms by which 
sex steroids mediate basic endothelial and progenitor cell functions that are neces-
sary in both physiological and pathological neovascularization. Given the complex 
nature of sex steroid-mediated angiogenesis, further research is necessary in under-
standing the pathways which contribute to angiogenesis in both health and disease. 
This will lead to improved treatment of hormone-responsive cancers, as well as the 
potential to utilize sex steroids in promoting angiogenesis following injury such as 
during wound healing.
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Abstract Stroke remains a major health problem worldwide, and is the leading cause 
of serious long-term disability. Although many advances have been made in terms of the 
basic molecular mechanisms underlying neuronal death, clinically effective neuropro-
tective drugs in stroke have not yet been discovered. Recent findings now suggest that 
strategies to enhance angiogenesis after focal cerebral ischemia may provide unique 
opportunities to improve clinical outcomes during stroke recovery. This chapter aims at 
summarizing current knowledge on mechanisms and potential targets for angiogenic 
therapies in brain after stroke. Crosstalk between cerebral endothelial cells and their 
neighboring cells may provide substrates for plasticity and remodeling in the recovering 
brain. A better understanding of the molecular interplay between all these complex path-
ways may lead to novel therapeutic approaches for this devastating disease.

Keywords Stroke • Angiogenesis • Cerebral • Endothelial • Cell • Neurovascular 
unit • Neurovascular niche • Oligovascular niche • Biphasic response • Brain 
remodeling

1  Introduction

Stroke is the second leading cause of death and a leading cause of adult disability 
worldwide. Under stroke conditions, brain function is perturbed due to cerebral 
ischemia caused by thrombosis or hemorrhage. In the central areas of ischemic 
regions, blood flow deficits are severe and brain cells die rapidly. In the peripheral 
penumbral areas, blood flow deficits are relatively mild, so that therapeutic salvage 
is theoretically possible (Fig.  21.1). However, therapeutic options for clinical 
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management in stroke remain quite limited. In the acute phase, thrombolytic reper-
fusion with recombinant tissue plasminogen activator (t-PA) is still only used in less 
than 3% of all ischemic stroke patients worldwide [1]. During the chronic phase 
after stroke, standard treatments involving rehabilitation provide some support for 
recovering patients. However, many high-profile failures in a wide spectrum of 
pharmacologic neuroprotection trials have led to some pessimism in the field [2]. In 
recent years, accumulating data suggest that damaged brain can be surprisingly 
plastic, and intriguing mechanisms of neurogenesis and angiogenesis might provide 
novel substrates for brain repair [3, 4]. In this chapter, we will focus on key findings 
that emphasize interactions between growth factors, progenitor cells, and neurovas-
cular/oligovascular signaling as potential mechanisms that may be augmented to 
stimulate cerebral angiogenesis and enhance stroke recovery.

2  Brain Angiogenesis After Stroke

Angiogenesis is a key restorative mechanism in response to ischemia in several non- 
CNS tissues. For example, myocardial infarction and limb ischemia can trigger 
endogenous angiogenesis in each organ, and therapeutics that enhanced angiogen-
esis can sometimes reduce injury in these disorders. Also in the brain, angiogenic 
responses may play important roles on brain remodeling after ischemic injury. 
Increasing evidence in both human stroke patients and animal stroke models sug-
gests that the post-stroke penumbra is extremely resilient and is a site of intense 

Fig. 21.1 Schematic of stroke brain. Under stroke conditions, brain function is perturbed due to 
cerebral ischemia (lack of blood supply to the brain). In central areas of ischemic regions (ischemic 
core), blood flow deficits are severe and brain cells die rapidly. In peripheral areas (ischemic pen-
umbra), blood flow deficits are relatively mild and cell death progresses are slower. Hence, thera-
peutic salvage is theoretically possible, and angiogenesis may occur during the chronic phase
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remodeling and active angiogenesis. Autopsy studies show that brain ischemia 
stimulates angiogenesis in part via stereo-typed hypoxia-inducible factor (HIF-1) 
[5]. Proliferation of endothelial cells starts at several days after ischemic events [6]. 
Studies using mice with middle cerebral artery occlusion demonstrated that endo-
thelial cell proliferation might begin as early as 12–24 h after ischemia and persist 
for up to several weeks thereafter [7, 8]. Studies using human brain samples also 
suggested that active angiogenesis takes place at 3–4 days after stroke, and the num-
ber of vessels appeared to be correlated longer survival times in ischemic stroke 
patients, suggesting that active angiogenesis may be beneficial [5, 9, 10]. In con-
trast, older patients who tend to do worse after stroke seem to have reduced new 
vessel formation after stroke [11, 12]. Furthermore, patients who develop dementia 
after stroke may suffer from reduced blood flow in adjacent cortical regions [13]. 
This raises the possibility that angiogenesis may improve cerebral perfusion and 
function as part of a network repair. However, the purpose of this angiogenic 
response remains speculative. Lyden and colleagues have proposed a “clean-up 
hypothesis,” whereby newborn vessels serve to facilitate macrophage infiltration 
and clear up and remove cellular debris from pan-necrotic tissue [14, 15]. They 
demonstrated that microvessel density was always associated with increased num-
bers of macrophages. Ischemic brain areas without macrophages displayed no vas-
cular changes compared with normal animals. This alternate hypothesis would 
suggest that post-stroke brain angiogenesis is only transient and not permanently 
involved in neuronal recovery. Nevertheless, the data in aggregate support a benefi-
cial role for brain angiogenesis during recovery phase after ischemic stroke.

2.1  Growth Factors for Brain Angiogenesis

After focal cerebral ischemia, brain cells manufacture and secrete angiogenic pep-
tides to stimulate angiogenesis. The precise regulatory mechanisms that underlie 
angiogenesis after ischemia still remain elucidated. But, several growth factors have 
been found to be upregulated after stroke to promote angiogenesis for brain remod-
eling. So far, at least 20 growth factors are known to induce angiogenesis, and here 
we will review the well-characterized growth factors.

2.1.1  Vascular Endothelial Growth Factor

Vascular endothelial growth factor (VEGF) is a major mediator for angiogenic 
responses in the brain. VEGF can accelerate angiogenesis and neurogenesis in the 
delayed stroke phase [16, 17]. VEGF can trigger remodeling responses in both 
endothelial cells and neurons. VEGF was increased within hours after ischemia and 
had a strong effect on the new vessel growing. Beginning minutes after stroke in 
rodents, VEGF signals appear in neurons for days after ischemic onset, and can be 
found in astrocytes for up to a few weeks [18, 19]. In human, mRNA and proteins 
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of VEGF165, VEGF189, and the receptor flk-1 were found to be upregulated in 
brain tissue or serum of patients following acute ischemic insult [20]. Elevated 
serum levels of VEGF were correlated to infarct volumes and clinical disabilities. 
An increase in angiogenesis by VEGF in rats was also associated with reduced neu-
rological deficits after focal cerebral ischemia [19]. Boosting VEGF also seems to 
promote recovery. An intra-cerebroventricular injection of VEGF via osmotic pump, 
starting 24 h after onset of focal cerebral ischemia, stimulated angiogenesis and 
decreased infarct volume in rodent models of focal cerebral ischemia [21]. In addi-
tion to these biochemical and pharmacologic findings, genetic data have also been 
obtained. In transgenic mice overexpressing human VEGF165, brain microvessel 
density was significantly elevated compared with wild-type mice before ischemia, 
and the increase in microvessel density 3 days after stroke onset was improved [22]. 
These data show that VEGF promotes revascularization after stroke. Recently, 
encapsulated cell grafts overexpressing VEGF were implanted into rat striatum 
before induction of focal cerebral ischemia resulting in brain edema [23]. 
Angiogenesis was significantly increased around the area of the encapsulated graft 
after 24 h concomitant with a reduction in infarct size, but interestingly, there was 
no increase in cerebral blood flow at 1, 7, and 14  days compared with control 
untreated animals. These data suggest that the link between increased vasculariza-
tion, increased blood flow, and recovery may not be interrelated or concomitant.

2.1.2  Fibroblast Growth Factor-2 (FGF-2/bFGF)

FGF-2 is a potent stimulator of endothelial cell migration, proliferation, sprouting, 
and tube formation. FGF-2 signaling also promotes mitogenesis and differentiation 
in neural progenitor cells in vivo [24]. In rat MCAO models, FGF-2 was elevated in 
neuron adjacent to infarct after 1 day following cerebral ischemia. Besides, endo-
thelial cell, reactive astrocyte, and macrophage also expressed FGF-2  in the first 
2  weeks after ischemia [6, 25]. The clinical findings were consistent with these 
experimental models. In human, mRNA and protein of FGF-2 were reported to be 
upregulated in the brains, serum, and cerebrospinal fluid (CSF) of patients who died 
of acute ischemic stroke [26]. The cellular localization of FGF-2 was found to be in 
endothelial cells in peri-infarct region of surviving patients after stroke, confirming 
its important role in angiogenesis in human as well as animal models [26]. Many 
studies examined the effect of FGF-2 administration on brain damage and recovery 
in animal stroke models. In rodent, FGF-2 administration 2 h after focal cerebral 
ischemia markedly reduced infarct volume [27]. Injection of FGF-2 enhanced 
recovery of sensorimotor function in rat stroke models [28, 29]. Later administra-
tion increased neuronal sprouting and enhanced neural recovery, though it could not 
reduce infarct volume [28, 30]. This effectiveness after later administration consid-
ered FGF-2 as a suitable therapy for human patients where treatment is often 
delayed; then human clinical trials have been carried out [31]. However, human 
clinical trials conducted in the USA were curtailed because of high dose toxicity.
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2.1.3  Platelet-Derived Growth Factor-Beta

Platelet-derived growth factor-beta (PDGF-beta) and its receptor PDGFR-beta are 
essential for the recruitment of pericytes to cerebral endothelium. This step contrib-
utes to maintain the homeostasis of microvessel and the mechanical stability of 
capillary [32]. Thus, following cerebral ischemia, PDGF-beta is thought to support 
angiogenesis and vascular remodeling by mediating interactions of endothelium 
with pericytes. Analysis of the expression pattern following experimental cerebral 
ischemia showed that PDGFR-beta was specifically upregulated in vascular struc-
tures in the infarcted area mainly associates with pericytes 48 h after MCAO [33]. 
In human, PDGF-beta and its receptor can be detected on microvessel endothelial 
cells around cystic infarction for weeks after stroke following stroke [34].

2.1.4  Transforming Growth Factor-Beta

Transforming growth factor-beta (TGF-beta) controls proliferation, cellular differ-
entiation, and other functions in most cells. TGF-beta contributes to angiogenesis 
by stabilizing newly formed capillary sprouts. Many studies of TGF-beta in mice 
and humans have demonstrated its pivotal role in modulation of angiogenesis. In 
rodent, TGF-beta was upregulated after hypoxia/ischemia, resulting in reduced 
infarct size and neuroprotection [35]. TGF-beta was detected to occur in astrocytes, 
activated microglial cells, and microvessels after cerebral ischemia. In the human 
brain, TGF-beta mRNA was upregulated in microvascular cells of the penumbra 
region of patients following ischemic stroke [36, 37]. Further human studies dem-
onstrated that TGF-beta level was increased in CSF but not in serum [38]. 
Upregulation of TGF-beta seems to be associated with NOS1 in the serum and tis-
sue of patients after stroke, suggesting that this interaction mediates pro-angiogenic 
function of TGF-beta [39, 40]. When TGF-beta was injected into animals prior to 
ischemia, it decreased infarct size, showing its neuroprotective role [41]. However, 
it had no beneficial effect if injected after the ischemic injury [42].

2.2  Biphasic Responses of Angiogenic Factors After Stroke

The biphasic nature of many mediators in neurobiology is now well known. For 
example, trophic factors such as NGF and BDNF promote cellular survival via their 
primary receptors TrkA and TrkB, respectively. But in contrast to these neuropro-
tective effects, both factors can also be neurotoxic via overactivation of the p75NTR 
receptor. As noted, the responses and regulatory mechanisms that underlie brain 
remodeling are highly complex. Growth factors seen above (and also other angio-
genic factors) promote brain angiogenesis after stroke. Angiogenesis is an essential 
step for restoring brain function in injured brain, but those angiogenic factors may 
not be always supportive for the brain. As introduced, one major mediator in 
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vascular responses after stroke is VEGF. VEGF is the prototypical biphasic mediator. 
VEGF can trigger remodeling responses in both endothelial cells and neurons [16, 
17], and accelerate angiogenesis and neurogenesis responses in the delayed stroke 
phase. By contrast, in the acute phase in stroke, VEGF increases blood–brain barrier 
(BBB) permeability, which causes cerebral hemorrhage and brain edema [43, 44]. 
In fact, VEGF administration worsens BBB leakage by ischemic insults [19]. Within 
the context of the vascular remodeling, similar biphasic properties of many factors 
and mediators may also emerge. Therapies that can boost these endogenous signals 
and substrates of vascular remodeling might be a new direction for stroke treat-
ments [45]. However, it remains to be fully elucidated how these approaches can be 
utilized in clinic. It is worth noting that most molecular targets for stroke therapy 
have biphasic roles in stroke pathophysiology [46, 47]. Here we will overview three 
major examples of the so-called biphasic responses in vascular remodeling after 
stroke.

2.2.1  Matrix Metalloproteinase

In recent years, dysregulation of neurovascular proteases has been implicated as cen-
tral in neurovascular injury and remodeling after stroke. Hence, neurovascular prote-
ases such as matrix metalloproteinases (MMPs) may have the biphasic properties 
after brain injury. The MMP family of extracellular proteases has been well studied 
in our field. MMPs comprise a family of zinc endopeptidases with major roles in the 
physiology and pathology of the mammalian CNS. To date, MMP-2 (gelatinase A), 
MMP-3 (stromelysin 1), MMP-7 (matrilysin), MMP-9 (gelatinase B), and MMP-13 
(collagenase-3) are known to contribute to infarct extent and⁄or BBB disruption in 
the acute phase after stroke [48–52]. On the contrary, however, these same proteases 
may have a beneficial role during neurovascular repair. In a mouse stroke model, 
peri-infarct cortical areas demonstrate a secondary elevation in MMP-9 in endothe-
lial and glial cells within networks of regrowing microvessels [53], and inhibition of 
MMPs during this delayed phase actually made outcomes worse with the develop-
ment of hemorrhagic and malformed blood vessels and enlarged volumes of infarc-
tion and cavitation. Beyond the peri-infarct zone, other brain areas were also involved. 
Secondary MMP-9 signals co-localized with streams of migrating neuroblasts from 
the subventricular zone, and inhibition of these MMPs also blocked the movement of 
these neuroblasts, originally headed toward damaged brain [54].

2.2.2  High-Mobility Group Box 1

Besides VEGF and MMPs, attention is currently focused on the roles of high- 
mobility group box 1 (HMGB1) as well on brain remodeling after stroke. HMGB1, 
a highly conserved non-histone nuclear DNA-binding protein, is widely expressed 
in most eukaryotic cells including neural cells in several animal species including 
humans [55]. Traditionally, HMGB1 acts as a nuclear and cellular danger signal 

K. Hayakawa et al.



479

[56]. HMGB1 can exert different functions depending on its cellular localization. It 
can be passively released from damaged cells or actively secreted from stimulated 
cells. Release of HMGB1 is observed after traumatic brain injury and ischemic 
stroke. In rodent middle cerebral artery occlusion models, levels of HMGB1 in the 
ischemic core are immediately decreased, and in turn, serum HMGB1 is rapidly 
increased [57–59]. In clinical stroke patients, HMGB1 is upregulated in serum of up 
to day 7 after stroke onset [60]. HMGB1 is also increased in CSF of subarachnoid 
hemorrhage patients on day 3, 7, and 14 after onset [60]. In addition, plasma 
HMGB1 in patients is acutely elevated 30 min after severe trauma in comparison to 
healthy subjects [61]. However, in contrast to the negative effects, HMGB1 may 
also possess beneficial actions. HMGB1 signaling can promote endothelial activa-
tion [62] and sprouting [63]. And it has also been reported that HMGB1 may 
increase neurite outgrowth and cell survival in neurons [63–66].

2.2.3  c-Jun N-Terminal Kinase (JNK)

The concept of biphasic angiogenic responses may apply more broadly to a large 
spectrum of other mediators such as intracellular signals. The stress-activated pro-
tein kinase JNK pathway is known to trigger many cell death pathways including 
caspases, and many studies have shown that JNK inhibitors are neuroprotective in 
rodent stroke models [67]. However, more recent data clearly support a beneficial 
role for JNK in CNS disease and repair [68]. JNK signaling is involved in neuronal 
precursor cell migration, microtubule assembly, and axonal guidance during brain 
development. After injury, this signal can contribute to dendritic sprouting and axo-
nal regrowth. More recently, JNK has also been shown to mediate angiogenesis 
[69]. JNK mediates the regulation of both VEGF and MMPs, and blockade of JNK 
cascades with inhibitors can suppress angiogenesis [70, 71]. Whether similar path-
ways are activated in cerebral neurovascular repair and remodeling remains to be 
determined, but very recent paper reported that delayed JNK inhibition worsened 
vascular remodeling in rat stroke model PMID: 22,699,892.

2.3  Endothelial Progenitor Cell in Brain Angiogenesis

Interactions between angiogenesis and functional remodeling after stroke can be 
also manifested in terms of circulating endothelial progenitor cells (EPCs). EPCs 
are immature endothelial cells circulating in peripheral blood and are under matura-
tion process to become endothelial cells [72]. Hence, EPCs possess functional and 
structural characteristics of both stem cells and mature endothelial cells. As dis-
cussed above, angiogenesis in the penumbra area is an important natural response to 
stroke. Although circulating EPCs represent only ~0.01% of cells in the blood under 
steady-state conditions, EPC numbers are highly affected by stroke onset. Emerging 
studies are beginning to elucidate the relationship between stroke outcome and the 
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number of circulating EPCs. In rodent models of focal cerebral ischemia, there was 
a strong correlation between the volume and severity of infarcts and the absolute 
number of circulating EPCs [73]. In clinical stroke patients, an increase in circulat-
ing EPCs after acute ischemic stroke was associated with good functional outcome 
and reduced infarct growth and maturation [74, 75]. Importantly, EPC levels were 
significantly lower in patients with severe neurological impairment compared with 
patients with less severe impairments at 48 h after ischemic stroke [75]. In mouse 
cerebral ischemia models, bone marrow-derived EPCs homed to the ischemic core 
and participated in cerebral neovascularization [39]. Recent experiments suggest 
that HMGB1 and interleukin-1beta can promote EPC homing and proliferation, 
respectively [76, 77]. Moreover, very recent study indicates that HMGB1 from reac-
tive astrocytes recovers neurological function through EPC accumulation in the 
injured area after stroke [78]. These observations raise the possibility that EPCs can 
be used as a therapeutic approach for promoting repair [79]. However, the precise 
mechanisms of the EPC contribution to postnatal angiogenesis remain to be eluci-
dated. It has been reported that bone marrow-derived EPCs did not incorporate into 
the adult growing vasculature [80, 81]. These reports suggest that EPCs support 
angiogenesis indirectly through growth factor release.

3  Neurovascular and Oligovascular Signaling for Brain 
Angiogenesis

Thus far, we have discussed the mechanisms of brain angiogenesis after stroke. But 
again, regulating mechanisms for brain angiogenesis after stroke are quite complex, 
and it may not be sufficient to focus on only endothelial cells (and their progenitor 
cells) to understand how new blood cells appear in the remodeling brains. In recent 
years, the concept of the “neurovascular unit” has emerged as a new paradigm for 
understanding the pathology in the CNS diseases including stroke [82–86]. This 
modular concept is defined at an intercellular level that comprises dynamic interac-
tions between cerebral endothelial cells, glia, neurons, and other brain cell types 
(Fig. 21.2). Dysfunctional crosstalk between neurons, glia, and vascular compart-
ments contributes to multiple aspects of acute pathophysiology in CNS disease. 
Impaired glutamate release–reuptake mechanisms in neurons and astrocytes can 
amplify excitotoxicity [87]. Perturbed signaling between cerebral endothelium, 
astrocytes, and pericytes can disrupt BBB integrity [85]. Dysfunctional coupling 
between neuronal activation and vascular responses can promote deleterious spread-
ing depression [88]. Moreover, disordered signaling between all neurovascular and 
gliovascular elements can underlie the evolution of neuroinflammation and cell 
death [89]. In addition to the acute phase, the concept of the neurovascular unit has 
now been applied to discuss the mechanisms of the chronic phase after stroke 
(Fig.  21.3). The evolution of brain injury and neurodegeneration comprises a 
dynamic balance and imbalance between initial triggers of injury and evolutionarily 
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conserved responses of brain plasticity, remodeling, and compensation [90]. And 
just as cell–cell signaling in the entire neurovascular unit mediates acute injury, 
delayed recovery should also recruit analogous non-cell-autonomous mechanisms 
in the brain. Hence, dissecting these various signals and substrates within the neu-
rovascular unit may reveal opportunities for developing novel therapeutic targets for 
stroke. In this section, we briefly outline the principles of the neurovascular unit and 
discuss recent data that may help us find common mechanisms of injury and repair 
after stroke, focusing on brain angiogenesis.

3.1  Neurovascular Damage in the Acute Phase

The fundamental mechanisms of brain cell death in the acute stroke phase are mul-
tifactorial. Accumulated data over the past two decades have implicated excitotoxic-
ity, oxidative stress, and, in some circumstances, apoptotic-like pathways [82, 91]. 
When brain fails to generate sufficient ATP by reduction of blood flow supply, 
energy failure occurs and ionic gradients are lost. Glutamate reuptake processes are 
impaired, and accumulated glutamate promotes excessive calcium entry and release. 
Calcium-dependent synthases and proteases contribute to neuronal death by degrad-
ing key cytoskeletal and enzymatic proteins. Abnormality of calcium homeostasis 
also generates nitric oxide and peroxynitrite, which directly strike neighboring 
cells. Moreover, mitochondrial functions such as oxidative phosphorylation fail and 
reactive oxygen radicals are released that further compromise cells by attacking 
proteins, lipids, and nucleic acids. In parallel with these ionic and free radical path-
ways, deleterious molecules such caspases may also promote cell death by suicidal 
endogenous mechanisms. However, most of the cell death pathways outlined here 
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Fig. 21.2 Schematic of the neurovascular unit. This schematic depicts a cerebral blood vessel and 
surrounding brain cells such as astrocyte, neuron, pericyte, and oligodendrocyte
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after stroke, neurovascular signaling may also be critically important with repair mechanisms that 
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are well documented for neurons. Whether similar mechanisms should be targeted 
for glial and vascular compartments remains to be carefully assessed. Besides basic 
cell death mechanisms, one of the most important facets of early neurovascular 
damage is manifested as perturbations in BBB function. The BBB homeostasis is 
remarkably dependent on endothelial–astrocyte–matrix interactions [85, 92]. 
Perturbation of the neurovascular matrix (type IV collagen, heparan sulfate proteo-
glycan, laminin, fibronectin, etc.) disrupts the cell–matrix and cell–cell signaling 
that maintain neurovascular functions. Many proteinases might contribute to extra-
cellular matrix proteolysis, and the extracellular protease systems become dysregu-
lated under diseased conditions. As discussed, roles of the MMP family have been 
focused in the neurovascular damage after stroke [93]. MMP levels are increased in 
both experimental models of stroke [94–96] and stroke patients [49, 97]. Those 
excessive MMP activities might be deleterious. MMPs can degrade the extracellular 
matrix that comprises the basal lamina, thus damaging the BBB directly. In experi-
mental stroke models, MMP inhibition reduces infraction and edema [98, 99]. In 
addition to BBB disruption, MMP-induced proteolysis of the neurovascular matrix 
might also promote programmed cell death by detachment of cells from the extra-
cellular matrix (so-called anoikis) [100, 101]. These findings suggest that MMPs 
(and other extracellular proteases) mediate neurovascular damage during the acute 
stages of stroke. Ultimately, these neurovascular perturbations can also be inter-
preted as dysfunctional crosstalk between components of the neurovascular unit. 
However, none of above cell death pathways or neurovascular mechanisms have 
been successfully exploited for treating acute stroke patients. Although many trans-
lational barriers are involved, the heterogeneity of patients and tight timelines dur-
ing acute pathology makes it difficult to block these early targets efficiently. 
Therefore, a recent emphasis in the field is beginning to assess opportunities for 
promoting neurovascular recovery (especially for angiogenesis) after stroke.

3.2  Neurovascular Repair in the Chronic Phase

Most stroke patients show some degree of recovery over time. For example, func-
tional MRI studies demonstrate that peri-infarct areas are highly plastic [3, 102]. 
Representational areas shift as latent networks are unmasked, and parallel circuits 
are recruited adjacent to damaged regions [103]. One of the best early examples of 
cell–cell signaling in the neurovascular unit may be found in the original observa-
tions of the so-called neurovascular niche for neurogenesis and angiogenesis. From 
an evolutionary perspective, the underlying molecular mediators of neurogenesis 
and angiogenesis overlap and are highly conserved [104]. Molecular mechanisms of 
angiogenesis and neurogenesis have been evolutionarily conserved so that similar 
mediators and pathways are involved in both phenomena [105]. It is now accepted 
that cell–cell signaling between cerebral endothelium and neuronal precursor cells 
helps mediate and sustain pockets of ongoing angiogenesis and neurogenesis in 
adult brain [3, 84, 85, 106, 107]. Crosstalk between the vascular and neuronal 
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compartments in the neurovascular niche is mediated by an exchange of soluble 
signals. This phenomenon is partly mediated by the ability of cerebral endothelium 
to secrete a rich repertoire of trophic factors [108–110]. In the normal brain, the 
neurovascular niche defines these complex mechanisms of cell–cell signaling 
between cerebral endothelium and neural precursors in the subventricular and sub-
granular zones of ongoing neurogenesis. In the context of post-stroke recovery, 
these close relationships between neurogenesis and angiogenesis are maintained. 
Neuroblasts migrate along perivascular routes [111]. Promotion of neurogenesis 
enhances vascular regrowth, and conversely, angiogenic stimulation enhances neu-
rogenesis [112, 113]. Angiogenesis in peri-infarct regions has been detected in 
rodent models of cerebral ischemia [114] as well as in human stroke [36]. Hence, 
brain recovery after stroke comprises interdependent neurovascular plasticity and 
remodeling processes that recruit multiple common mediators and signals [105].

3.3  Cell–Cell Trophic Coupling in White Matter

For the most part, the concept of the neurovascular unit is used to guide investiga-
tion in gray matter. However, cell–cell trophic interactions are likely to be important 
in white matter as well. White matter is vulnerable to ischemic stress, and white 
matter damage is a clinically important part of stroke [82, 115]. Therefore, without 
considering white matter mechanisms, we may not be able to protect/recover the 
brain function against ischemic insults. Compared to the cellular mechanisms of 
neurovascular damage/repair in gray matter, white matter pathophysiology remains 
relatively understudied and poorly understood. However, the idea of the neurovas-
cular unit is now applied to the white matter stroke research. The main components 
of white matter are the neuronal axon, oligodendrocyte (myelin), astrocyte, and 
endothelium. As in the neurovascular unit in gray matter, astrocytes and cerebral 
endothelial cells work together to maintain BBB in white matter [115]. In addition, 
astrocytes are in close apposition to OLGs within white matter [116], and couple 
with OLGs through gap junctions to maintain their functions [117]. Furthermore, 
astrocyte-derived soluble factors were also reported to nourish oligodendrocyte lin-
eage cells [118, 119]. And, of course, myelin–axon interactions are essential for 
white matter homeostasis. OLGs not only myelinate axons but also maintain their 
functional integrity and survival through OLG-specific proteins and/or trophic fac-
tor release [120, 121]. Similar to gray matter, during the acute phase of stroke, 
several deleterious factors/cascades are activated. For example, MMPs are upregu-
lated, and direct attack of MMPs on myelin components affects OLG survival and 
function [122]. Even if outright cell death does not occur, metabolic dysfunctions in 
OLGs might still affect the normal replenishment of myelin and synthesis of myelin- 
associated proteins, which eventually impair myelin–axon interactions. In the 
chronic phase, some endogenous responses might work for repairing white matter 
damage. However, it remains to be fully elucidated how angiogenesis and oligoden-
drogenesis occur during the chronic phase after stroke. As in the neurovascular 
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niche, an oligovascular niche in the white matter may play an important role in 
supporting trophic interactions between brain endothelium and oligodendrocytes 
[123]. Brain endothelium-derived VEGF promotes OPC migration through focal 
adhesion kinase and reactive oxygen species-dependent mechanisms [124, 125]. On 
the contrary, after white matter injury, oligodendrocytes produced MMP-9 which 
may promote vascular remodeling [126]. Future studies should carefully examine 
the precise mechanisms of the cell–cell trophic coupling in white matter for better 
understanding the brain angiogenesis after stroke.

4  Therapeutic Implication

Therapeutic options for clinical management in stroke still remain quite limited. 
The treatment of only one FDA-approved drug t-PA is not easy due to its narrow 
therapeutic time window and related risks of brain hemorrhage [127]. Because 
recent preclinical studies have revealed that brain injury activates cellular signaling 
for angiogenesis and neurogenesis, strategies to promote angiogenesis are part of 
larger neurorestorative approaches in order to increase the diversity in therapeutic 
options for a variety of patients. Although there are no agents and manipulations in 
clinical use that can boost angiogenesis after stroke yet, we should discuss some key 
promising seeds here.

4.1  Combination Therapy with VEGF

As introduced, VEGF is the prototypical mediator for brain angiogenesis after stroke. 
Therefore, in theory, VEGF therapies could promote neurorestoration either directly as 
a neuroprotective agent or indirectly by inducing angiogenesis [21, 128, 129]. However, 
the function of VEGF as a vascular permeability factor also means that an untitrated 
response may lead to blood–brain barrier leakage, brain edema, vasodilation, and aber-
rant systemic hemodynamics [130–133]. In addition, VEGF- induced angiogenic ves-
sels are hemorrhagic, aggravating inflammatory responses in the recovering penumbra 
[134, 135]. Nevertheless, recent findings now suggest that combinatorial therapy with 
other agents would be beneficial. The untoward side effects of VEGF were partially 
obviated by treatment with a combination of angiopoietins [136]. An alternate strategy 
might be to apply HIF prolyl hydroxylase inhibitors. These reagents may raise HIF-1 
levels and increase expression of several hypoxia-response proteins that could avoid 
vascular leakage [137]. Moreover, several downstream effectors of VEGF have been 
tested as selective modulators for VEGF signaling [138]. The Roundabout (Robo) pro-
tein 4/Slit2 axis has been shown to selectively inhibit VEGF-165-induced migration, 
tube formation, and permeability in  vitro and VEGF-165-stimulated vascular leak 
in vivo by blocking Src family kinase activation [139]. Thus, targeting the Robo4-Slit2 
signaling or in recovering vessels may open newer therapeutic options along with 
VEGF to minimize tissue injury and maximize its beneficial effects [140].
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4.2  Cell Junction Molecule

In addition to VEGF signaling, cell junction molecules would be interesting target 
for promoting brain angiogenesis. Cell junction molecules exist at the interface of 
multiple cellular decisions and play important roles in vascular permeability, quies-
cence, invasion, and differentiation [141–143]. Anti-integrin therapy for tumor 
angiogenesis has gained ground in the recent times [144]. GPIIb/IIIa and αvβ3 inte-
grins mediate endothelial–platelet interaction, and several antagonists targeted 
against these molecules have been found to have anti-angiogenic effects in  vivo 
[145, 146]. Those findings suggest that modulation of cell adhesion molecules and 
their signaling might be a useful strategy in stroke therapy because of their ability 
to alter responsiveness to growth factors—either potentiate growth factor signaling 
or attenuate its effects where necessary [147–149]. Hence, the use of soluble adhe-
sion molecules may deliver survival signals, alter growth factor responsiveness, and 
facilitate pertinent cell–cell communication within the remodeling penumbra. For 
example, soluble N-cadherin fragments were found to stimulate migration of endo-
thelial cells through the FGF receptor [150, 151]. During vasculogenesis, N-cadherin 
mediates adhesion, recognition, and signaling between pericytes and endothelial 
cells and is required for normal vascular morphogenesis. The significant diversity in 
expression of cell junction molecules, the expression of tissue-specific isoforms, 
and their spatiotemporal functions in the CNS can be exploited for better vascular 
morphogenesis and neurogenerative outcomes.

4.3  Cell-Based Therapy

As noted in the section of EPCs, beyond the cell signaling targets, cell-based thera-
pies would be promising approaches for the treatment of brain injury [152, 153]. Cell 
therapies using neural stem/progenitor cells (NSPCs) may replace lost brain cells, 
promote endogenous neurogenesis, and improve functional recovery [152]. NSPCs 
stabilize vasculature during ischemia, suggesting therapeutic application of NSPCs 
to promote revascularization and repair after brain injury [154]. Of course, there is 
little evidence to assess the applicability of NSPCs to stroke patients, and therefore, 
well-designed clinical trials are necessary to evaluate safety, toxicity, and efficacy as 
well as optimal cell type, route, and time of delivery for NSPCs [155, 156]. Another 
candidate for cell-based therapy would be mesenchymal stem cells (MSCs) isolated 
from bone marrow, adipose tissue, umbilical cord blood, placenta, and pancreas. 
MSCs exert powerful immunomodulatory effects, which include inhibition of prolif-
eration and function of T cells, B cells, and natural killer cells. Those effects reduce 
immune reactions and increase tolerance of MSC recipients [157]. Moreover, MSCs 
secrete various growth factors including BDNF, VEGF, and FGF, which promote 
angiogenesis after stroke [158–162]. Hence, genetically engineered MSCs (and 
NSPCs) with overexpression of growth factors may be an improved source for cell 
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therapy for stroke [163]. Finally, recent landmark experiments have shown that tran-
sient overexpression of a small number of transcription factors can reprogram dif-
ferentiated cells into induced pluripotent stem (iPS) cells that resemble embryonic 
stem cells [164]. These iPS cells avoid the ethical issue inherent in embryonic tissues 
or oocytes and have the potential to generate patient- specific cell types for cell 
replacement therapy. iPS cells may offer promising opportunities for the treatment of 
brain injury. But again, pharmacological and cell- based therapies to induce rapid 
angiogenesis run the danger of leading to dysfunctional tissue architecture and exac-
erbating neuronal damage. How these promising experimental approaches can be 
tested long term in stroke patients remains to be carefully assessed.

5  Conclusion

The adult mammalian brain can be surprisingly plastic, especially after stroke and 
brain injury. Under normal conditions, newborn neurons in the subventricular and 
subgranular zones migrate to olfactory regions and the hippocampus. After brain 
injury, the birth rate of new cells seems to increase, and neuroblasts are rerouted 
toward damaged tissue. Along with neurogenesis, the recovering brain also exhibits 
complex patterns of vascular remodeling. This chapter provided an abbreviated 
summary and survey of major pathophysiological concepts in stroke, focusing on 
mechanisms of brain angiogenesis. Thus far, drugs that can be cyto-protective 
against stroke are not yet developed. Therefore, an emerging emphasis on promot-
ing recovery after brain diseases is beginning to take shape in our field. Although 
there are many difficulties in translating findings in basic research into clinical 
applications, therapies that can boost endogenous angiogenic properties would be 
promising approaches for stroke patients in the future.
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Chapter 22
Stimulated Microgravity and Induction 
of Angiogenesis; A New Perspective  
in Wound Healing

Selvaraj Vimalraj, Kasiviswanathan Dharanibalan, and Suvro Chatterjee

Abstract The current research interest in the therapeutic management of wound 
healing is to attain a complete and rapid healing of chronic wounds with minimal 
scar. There is an urge to apply a novel approach to prompt the wound healing pro-
cess because of the huge economic burden worldwide. Hence, the current article 
initially focuses on the management and care of wounds from classic to currently 
available techniques and vulnerability of wound. Several propositions for better 
wound healing has been proposed, one of them is simulated microgravity which 
heals the wounds by promoting microgravity. Stimulated microgravity induces 
changes in cytoskeleton; thereby it regulates the behavior of endothelial cells in 
terms of cell proliferation, adhesion, migration, production of extracellular matrix 
and translocation of bioactive molecules inside the cells. Additionally, we have 
listed around 40 genes which are potentially involved in angiogenesis and are dif-
ferentially expressed in endothelial cells under microgravity conditions. The coor-
dinated cellular and molecular events in endothelial cells in microgravity promote 
angiogenesis which in turn facilitates wound healing process.
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1  Introduction

Wound healing is a process by which the integrity and homeostasis of the tissue is 
restored by activating several coordinated intra and extra cellular signaling path-
ways [23]. In addition to immune cells, neutrophils, monocytes, lymphocytes den-
dritic cells, keratinocytes, fibroblasts and endothelial cells also endure phonotypical 
changes which results in cellular proliferation, apoptosis, differentiation and migra-
tion in wound milieu [23]. If these processes are not coordinated well in response to 
injury it causes impairment in wound healing process. It could also lead to the 
malignant transformation in the tumorogenic wound environment [45]. A hyper- 
activated healing process promotes scar formation due to disorganized extracellular 
matrix and patch formation in the wound [61, 50].

Gravity has its influence in the evolution of organism by shaping up genetic 
makeup and physiology. Hence, alterations in the gravity could have the potency to 
manipulate the functions of the system [31]. The long term exposure to microgravity 
leads to mechanical unloading of tissues organization which results in alterations of 
physiological function. The spaceflight and space mission lead to bone loss, muscle 
loss, cardiac dysfunction, impairment in wound repair and immune system dysfunc-
tion [4]. Alteration of gravity in a controlled manner can be used in therapeutic appli-
cations. For instance, there are reports which indicate that alteration in the gravity 
could facilitate bone fracture repair [54]. The mechanical stretch involved in the 
asymmetric migration of keratinocytes by increasing EGF secretion thereby it facili-
ties wound healing process [33]. We have reported that the short term microgravity, 
2 h exposure promotes endothelial monolayer of wound [48, 49]. Microgravity expo-
sure is involved in the regulation of vasoactive, inflammatory and adhesion signaling 
molecules by remodeling the cytoskeleton and the distribution of caveolae. These 
molecular events regulate angiogenesis, cell survival, apoptosis, proliferation, dif-
ferentiation and migration [34, 48, 49, 11]. Since these molecular and cellular events 
are key components of wound healing steps we anticipate that a controlled use of 
stimulated microgravity may facilitate a faster and efficient wound healing.

2  Wound Healing

Wound healing is the process by which injured tissue repairs itself after trauma. 
Normal skin consists of two layers, epidermis (outer layer) and dermis (inner layer) 
which acts as a protective barrier against the external environment. A series of bio-
chemical cascades are activated at the time of injury. This process consists of four 
consecutive steps that are hemostasis, inflammation, tissue growth and remodeling 
phase [19]. Homeostasis is an immediate post-injury phase which promotes attach-
ment of platelets to the injury site. This event facilitates blood clotting by forming 
fibrin-mesh to avoid excessive bleeding. In inflammation phase, damaged and dead 
cells are removed by phagocytosis process. Next, platelet derived growth factors are 
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secreted at the site of injury to initiate migration and division of cells in tissue 
growth phase. Simultaneously, formation of granulated tissue, epithelization, col-
lagen deposition and wound contraction occur. Also, a new extracellular matrix 
formed to provide a new tissue at the site of injury followed by migration of cells at 
the top of wound area. Where cells are no longer alive in proliferation or tissue 
growth phase, those are removed by apoptosis process.

3  Wound Inflammation, Chronic Inflammation Switch 
Over to Tumor

It is suggested that to avoid infection at the site of wound the process of its healing 
should be speedy one [3]. However, impairment in wound healing process leads to 
chronic skin disorders like ulcers (e.g., diabetic ulcer) and hypertrophic scarring. 
Hypertrophic scars are raised, red, hard and have abnormal sensations including 
pain and tenderness [13, 1]. Hypertrophic scars are associated with dermal wounds 
and it not only causes disfigurement of skin but also cause loss of functionality if 
occurring over a joint [27]. Hypertrophic scarring is common when epithelialization 
is delayed in the healing process or when wound occurs in areas of high tension like 
deltoid or sterna regions [27, 38, 39]. Scarring may also occur if wound is deep 
seeded as fibroblasts of scar site which resembles fibroblasts derived from deep 
dermis [58].

However, a significant number of studies have been done to understand the rela-
tionship between chronic wounds with cancer. In many cases, the formation of 
malignant occurs at the site of chronic injury. The site of chronic wound is prone to 
develop malignant tumors and the chronic inflammation is considered to be an 
important risk factor for the pathogenesis of malignant disease [45, 46]. Disturbance 
in vascular integrity releases the plasma proteins and deposition of fibrin at the site 
of injury. But, these changes are non-permanent process and are not involved in 
tumor growth. In inflammation phase, secretion of cytokines induces the growth 
factors, especially M1 like macrophage phenotype. But, in cancerous tissue cyto-
kines induce differentiation of M1 to M2 like macrophage phenotype. Understanding 
differentiation of macrophages of M1 to M2 phenotype at the site of injury will give 
better perception of wound nature [26].

4  Wound Care and Management: A Chronology

The primary aim for any open wound care is to attain a quick closure of ruptured 
skin, decrease the potential risk for infection at the exposed area and minimized scar 
formation. Various methods have emerged to cater the above condition ranging from 
topical use of antiseptics to skin grafts. Wounds can be classified based on their 
etiology into acute and chronic wounds. Rapid wound healing is very important for 
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severe trauma or burns wound to obtain scar less healing. Chronic wounds take a 
long time to heal rather than acute wounds. But, in both pathological conditions, 
formation of biofilm, accumulation of microorganisms in the site of injury is an 
important factor which delays the complete wound healing.

Traditionally, burns were allowed to heal on its own without the application of 
any topical agents. Hydro-therapy was used for sub eschar suppuration and debride-
ment [51, 24]. Topical aids such as sulfamylon cream, mafenide acetate (11.1%), 
para-aminomethylbenzene sulphonamide penetrate deep into full-thickness eschars 
that give a major advantage compared to other antimicrobials specifically when 
treating full-thickness of burn wounds. Silver acts as nanoparticles and can pene-
trate through the cell wall of bacteria and thus bring about anti-bacterial effect. 
Moyer and Monafo introduced 0.5% silver nitrate (AgNO3) in 1964 as a topical 
agent for anti-infection prophylaxis. Further, silver sulfadiazine (1% cream) was 
developed [16] by amalgamating silver nitrate and sulfadiazine. These approaches 
are effective if begun immediately post burn injury. Moreover silver ion precipitates 
on contact with chloride ion to form AgCl2. It does not penetrate the eschar and thus 
has no antibacterial action within burned tissue. Another drawback of these drugs is 
depletion of silver ions at the site of wound due to “leeching” across the open 
wound. Surgical methods have been applied for wound care management. The tan-
gential excision of deep partial thickness burns, excision to fascia of extensive full 
thickness burns and implanting of autologous skin graft has shown improvement in 
survival of patients, especially where excision was done within the first 72 h after 
injury. In patients with absence of sufficient donor site for autologous grafts, bio-
logic dressing like cadaver allograft is also used to close wounds. Such dressings 
help in re-establishment of skin barrier function and prevent contamination of 
underlying tissue with exogenous bacteria [5]. However, if the allograft is placed 
over non-viable tissues the sub-graft suppuration may occur which result in grafts 
rejection. Stem cells based therapies are potential approach for wound healing 
through release of secretary molecules, growth factors and cytokines that triggers 
new vessel formation and controls inflammation. However, there are barriers in the 
clinical translation of stem cell based therapies for wound healing. Immunogenicity 
and tumorigenicity are the possible risk of stem cells based therapies. Additionally, 
identification of suitable stem cells population and choosing or optimizing the stan-
dard delivery vehicles are considerable challenges for wound healing management 
[12]. Addressing these problems and speeding up the wound healing process still 
warrant new therapeutic strategies.

5  Proposing Microgravity as a Technique for Wound Healing 
by Promoting Angiogenesis

Alteration of haemostatic phase by regulating growth factors, activating platelets 
involved in proliferation and function of inflammatory cells by microgravity leads 
to a decrease in wound healing process [14].
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The sustained microgravity stimulation impaired the wound healing process by 
decreasing growth factors and collagen content in the rat [10]. Microgravity pro-
motes nitric oxide (NO) supported angiogenesis via the iNOS–cGMP–PKG path-
way in macrovascular endothelial cells [34, 48, 49]. Maier et al., [34] have reviewed 
how microgravity and hypergravity is involved in endothelial cells functions and 
discussed the controversial statement of microgravity on endothelial cells. 
Microgravity alters the expression of signaling molecules involved in vasolation, 
inflammation and cell adhesion, which result from alteration in cytoskeleton remod-
eling. These molecular events regulate cell proliferation, apoptosis, migration and 
angiogenesis. The methods employed to stimulate the microgravity, experimental 
condition and different cells used for the study are the main reason for controversial 
outcome of microgravity involved systems’ function.

6  Microgravity Perturbs Vascularization in Wound Milieu?

Angiogenesis is a process of formation of new blood vessels from preexisting blood 
vessels. This process has been initiated by endothelial activation and release of 
nitric oxide synthase (NOS). NOS is a well known mediator for pro angiogenic 
characteristics. Activation of vascular endothelial growth factor (VEGF), fibroblast 
growth factors (FGF), increased cell proliferation and migration along with 
increased flow in micro circulation is mainly regulated by NOS derived NO [15]. 
Recent reports have indicated that the ECs on the interior surfaces of vessels are 
highly sensitive to microgravity and undergo series of morphological and functional 
changes [8]. Several studies have been directed to understand the implications of 
microgravity in endothelial functions. It has been observed that simulated micro-
gravity increase the rate of proliferation of endothelial cells [6]. Also, expression 
profile of many angiogenic molecules, such as NOS, VEGF and endothelin-1 are 
modified under microgravity conditions. These studies indicate that microgravity 
conditions intrigue angiogenesis.

7  Experimental Approach

7.1  Cell Viability Under Simulated Microgravity

The cell viability was measured after 2 h of microgravity treatment followed by 
Fluorescein diacetate (FDA) staining of EAhy926 (Fig. 22.1a). The procedure for 
FDA staining was performed as described elsewhere [44].
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7.2  Migration of Endothelial Cells Under Simulated 
Microgravity

In order to examine the dynamics of migratory response of ECs under microgravity 
conditions, we have used Boyden’s chamber assay. Results showed that 60% of 
cells were migrated from upper chamber to lower under microgravity compared 
with 1G (gravity) treated cells. Wound healing assay for studying migration of ECs 
monolayers revealed that microgravity sensitized cells promotes the migration 
rather than 1G group (Fig. 22.1b). Tube formation characteristics of ECs analyzed 
by subjecting ECs suspension to microgravity for 2 h then seeded in matrigel coated 
coverslips. Then the number of tube formation was evaluated after 24 and 48  h 
(Fig.  22.1c). Further, to document the refined angiogenesis pattern under micro-
gravity condition day 1 fertilized chicken eggs were treated for 2 h under micro-
gravity conditions and then incubated for 3 days at 37 °C in CO2 incubator prior to 

Fig. 22.1 Microgravity elevates the distinctive features of angiogenesis. (a) Cell viability. After 
2 h of microgravity stimulation the cells were washed with 1× PBS (pH 7.4) and then cells were 
treated with Fluorescein Diacetate (FDA -30 ug/ml) solution to visualize the viable cells. A signifi-
cant increase in migration (Boyden chamber assay, wound healing assay) (b), tube formation (c) 
was observed under microgravity exposed EAhy926 cell suspension.*P < 0.001 vs gravity control 
and P < 0.001 vs microgravity control
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experiment. Quantification of vasculature pattern was validated by Angioquant soft-
ware (Fig. 22.2). These results clearly indicate that the microgravity is involved in 
the promotion of angiogenesis.

7.3  Prediction of Microgravity Stimulated Genes Involved 
in Angiogenesis

A series of studies have been performed in recent years to understand the effects of 
microgravity on endothelial functions [21]. Differential gene expression has been 
well documented in ECs under simulated microgravity [6, 21, 25, 35]. Available 
reports indicate that eNOS can induce angiogenesis process through PI3K-Akt 
dependent pathway in low gravity [47]. Additionally, members of GTPase family 
genes are shown to be modulated by MAPK intracellular signaling pathways under 
simulated microgravity [32]. Present section explored that a set microgravity stimu-
lated genes are involved in the activation of endothelium. We anticipate that results 
of this study would offer mechanistic insight of microgravity mediated endothelial 
activation.

Fig. 22.2 Microgravity promotes the angiogenesis. Fertilized chicken eggs (1 day) were treated 
for 2 h microgravity conditions then incubated for 3 days at 37 °C to investigate the CAM angio-
genesis. Vasculature pattern of chick eggs from gravity and microgravity quantified by using 
angioquant software also total number of junctions, length of tubule complexes and size of tubule 
complexes are tabulated (*P < 0.05)
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Microgravity involved in differential expression of genes in a system thereby it 
influence several physiological role. Based on the literatures we have listed around 
40 genes, potentially involved in angiogenesis and are differentially expressed in 
ECs by microgravity influence [9, 20, 22, 30, 36, 47, 52, 55]. The differentially 
expressed genes are tabulated in Table 22.1. These differentially expressed genes 
were further subjected into ToppCluster (http://toppcluster.cchmc.org/) [28] and 
Cytoscape (http://www.cytoscape.org/), bioinformatics tools to identify their func-
tional annotations (Fig. 22.3). The differentially expressed genes by microgravity in 
ECs were used to generate regulatory network clusters by hierarchical clustering in 
ToppCluster. The resulted files in the format of xgmml (XGMML is an XML appli-
cation based on GML which is used for graph depiction) were then subjected to 
Cytoscape for the preparation of visualizable networks [37, 56, 57]. In the detailed 
network result, round boxes were represented in different size based on their relative 
importance which means the number of edges joined to particular gene with their 
interacting genes (Fig. 22.3a). Additionally, the same data were represented in bar 
diagram for better understanding, molecular function (Fig. 22.3b), molecular pro-
cess (Fig.  22.3c), Pathways interaction (Fig.  22.3d). The molecular functions of 
genes implicated under microgravity conditions are listed in Table 22.1. In Molecular 
function (Fig. 22.3b), More than 60% of the genes are involved in molecular func-
tions related to angiogenesis. Such as cell migration, cell proliferation, actin polym-
erization, cell polarity, histone deacetylation process. The total list of the genes 
involved includes enzyme, sequence-specific DNA, cytokine activity, regulatory 
region DNA binding regulatory region nucleic acid binding, collagen binding, type 
2 fibroblast growth factor receptor binding, type 1 fibroblast growth factor receptor 
binding, DNA insertion or deletion binding, MutLalpha complex binding, chaper-
one binding, CCR5 chemokine receptor binding, cAMP-dependent protein kinase 
activity transmembrane receptor protein tyrosine kinase activator activity, vascular 
endothelial growth factor receptor 2 binding, satellite DNA binding. In molecular 
process (Fig. 22.3c), in silico approach revealed the functionally active and distinct 
role of genes which implicated in angiogenesis under simulated microgravity condi-
tions. Most of the genes associated with a response to hormone, single organism cell 
adhesion, regulation of cellular component movement, regulation of locomotion, 
regulation of phosphorylation, cell migration, response to steroid hormone, regula-
tion of cell migration, and positive regulation of cell proliferation. Additionally, a 
list of genes involved to initiate actin cytoskeleton reorganization, actin filament 
organization, actin cytoskeleton organization, actin filament-based process, actin 
filament bundle assembly, actin filament bundle organization, actin filament reorga-
nization, actin filament severing to enhance the mobility and polarity rearrangement 
of the cells. Systematic analysis shows that a list of 237 potential molecular pro-
cesses are positively regulated the angiogenesis process, such as positive regulation 
of cellular protein metabolic process, positive regulation of protein metabolic pro-
cess, positive regulation of cell proliferation, positive regulation of catalytic activity, 
positive regulation of molecular function, positive regulation of cellular component 
organization, positive regulation of multicellular organism process, positive regula-
tion of protein phosphorylation, positive regulation of phosphorylation, positive 
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Table 22.1 List of genes stimulated by microgravity

Gene name Abbreviation Function References

RhoA Small GTPase protien RhoA 
family

Regulation of cytoskeletal 
dynamics, transcription, cell 
cycle progression and cell 
transformation.

[30]

p21 Cyclin-dependent kinase 
inhibitor 1 or CDK- interacting 
protein

Cell cycle arrest protein. [52]

Hsp70 Heat shock proteins Protein folding processes. [9]
Cav Caveolin Signal transduction. [20]
eNOS Endothelial nitric oxide 

synthase
Nitric oxide signaling. [47]

VEGF Vascular endothelial growth 
factor

Vaculogenesis and 
angiogenesis.

[30, 55]

EDN1 Endothelin 1 Receptor binding and 
hormone activity.

[22]

ABL2 ABL proto-oncogene 2 Rassignallin pathway and 
ERK signaling.

AMPK 1 5′ AMP-activated protein 
kinase

Cellular energy homeostasis.

Integrins Integrins Cell signaling.
TNFRSF12A TNF receptor superfamily 

member 12A
Promotes angiogenesis and 
the proliferation of 
endothelial cells.

FN Fibronectin Cell adhesion molecule.
LM Laminin Cell adhesion molecule. [36]
α-actin Alpha actin Cell motility, structure and 

integrity.
β-actin Beta actin Cellular processes.
α-Vbeta 3 
intergrin

AlphaVbeta 3 intergrin Endothelial cell migration.

IL-1α, IL-1β, IL-1 
RA, IL-6, IL-8

Cytokines family Involved in immune 
function.

IP-10 Interferon gamma-induced 
protein 10

Promotion of T cell adhesion 
to endothelial cells.

Eotaxin Eosinophil chemotactic 
protein

Chemotaxis.

Rantes VCAM-1 Vascular adhesion molecule 1 Leukocyte-endothelial cell 
signal transduction.

ICAM-1 Intercellular adhesion 
molecule 1

Cell signaling

IFN-α Interferon alpha Activates NK cells

(continued)
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regulation of developmental process, positive regulation of phosphate metabolic 
process, positive regulation of phosphorus metabolic process, positive regulation of 
cell migration, positive regulation of immune system process, positive regulation of 
cell motility and positive regulation of cellular component movement. Also, its dis-
plays a list of genes associated with immune response are negatively regulated, 
negative regulation of interleukin-8 production, negative regulation of lymphocyte 
activation, negative regulation of cell development, negative regulation of CD4- 
positive, alpha-beta T cell differentiation, negative regulation of protein catabolic 
process, negative regulation of cell morphogenesis involved in differentiation, nega-
tive regulation of T-helper cell differentiation, negative regulation of receptor bind-
ing negative regulation of type 2 immune response, negative regulation of activated 
T cell proliferation, negative regulation by host of viral transcription, negative regu-
lation of collateral sprouting, negative regulation of neuron projection regeneration, 
negative regulation of sprouting angiogenesis and negative regulation of necroptotic 
process. In pathway Interactions (Fig. 22.3d), the involvement of genes implicated 

Table 22.1 (continued)

Gene name Abbreviation Function References

TNF-α Tumor necrosis factor alpha Inflammation [55]
TXNIP Thioredoxin interacting 

protein
Regulator of cellular redox 
signaling

TP53INP1 Tumor protein p53-inducible 
nuclear protein 1

Regulates transcription of 
cell death genes and p53 
pathway

ID1 DNA-binding protein inhibitor 
ID-1

Cell growth, senescence, and 
differentiation

SLITRK4 SLIT and NTRK like family 
member 4

Neurite-modulating activity

DPM1 Dolichyl-phosphate 
mannosyltransferase subunit 
1, catalytic

Transferase activity

CD58 Lymphocyte function- 
associated antigen 3

T-cell activation

CASP8 Cysteine-aspartic acid 
protease

Involved in the programmed 
cell death induced by Fas 
and various apoptotic stimuli

BNIP3 BCL2/adenovirus E1B 19 kDa 
protein-interacting protein 3

Cellular anti-apoptosis 
proteins.

CCNF G2/mitotic-specific cyclin-F Phosphorylation-dependent 
ubiquitination.

NDUFS4 NADH:ubiquinone 
oxidoreductase subunit S4

Cellular ATP production.

NDUFA2 NADH:ubiquinone 
oxidoreductase core subunit 
S2

ROS generation.
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under microgravity mediated angiogenesis in other cellular pathways shown in 
Fig. 22.3d. The cellular processes which involve ≥80% of alcohol related angiogen-
esis genes among the total list of the genes involved includes Leukocyte trans endo-
thelial migrating signaling via TRKA from the plasma membrane, signaling events 
mediated by VEGFR1 and VEGFR2, oncostatin M signaling pathway, phosphoryla-
tion of proteins involved in G1/S transition by active Cyclin E:Cdk2 complexes, 
G2/M DNA damage checkpoint, Cellular responses to stress, TSH signaling path-
way, cell cycle, mitotic, EGF receptor (ErbB1) signaling pathway, retinoic acid 
receptors-mediated signaling. Also <60% of genes are involved in Rap1 signaling 
pathway, platelet activation, signaling and aggregation, plasma membrane estrogen 
receptor signaling, neuropeptides VIP and PACAP inhibit the apoptosis of activated 
T cells, G2/M DNA replication checkpoint, Chk1/Chk2 (Cds1) mediated inactiva-
tion of Cyclin B: Cdk1 complex, E2F transcription factor network, cell cycle: G1/S 
check point, recruitment of mitotic centrosome protein complexes and centrosome 
maturation as signaling pathway. This analysis framed a list of molecular process 
which interacts with wide range of molecular process such as blood vessel forma-
tion, blood vessel maturation, patterning of blood vessels, anatomical structural 
morphogenesis, vasculature development, cell differentiation, cell maturation, epi-
dermis development, hair follicle formations and tissue remodeling. We performed 
REACTOME functional analysis based on the genes which are differentially 
expressed under microgravity (Fig. 22.4). This analysis gives the information that 
the functions activated by microgravity and the functions involved in the activation 
of endothelium. The functions includes signal transduction, immune response, 
DNA replication, cell cycle, diseases, homeostasis, cellular response to stress, cell 
death, metabolism of proteins, extracellular matrix organization, gene expression, 
developmental biology and cell-cell communication.

This pathway diagram exhibits the entire network interaction of pathways and 
incorporates the additional data to generate the experimental hypothesis. Hence, 
these current knowledge based studies will help to discover the unexpected func-
tional relationships of genes implicated in microgravity conditions and its interplay 
with other pathways. Therefore, we concluded that genes up regulated in micro-
gravity condition are mainly involved in angiogenesis process. And also, overlap-
ping functions of genes implicated in microgravity condition are documented in this 
study. These results give a clue that microgravity may play a role in the regulation 
of angiogenesis thereby it regulates wound healing.

7.4  Microgravity Activates Endothelium

In physiological milieu, endothelial cells play an important role in maintaining the 
durability and functionality of vascular wall. It controls wide range of biological 
functions such as vaso-relaxation and contraction, smooth muscle cell growth, sup-
plies nutrition for tissue growth and homeostasis [41, 63]. The imbalance between 
vaso-relaxation and contraction modulated by endothelium is known as endothelial 
activation. Also, it is considered that the main factor for many vascular diseases 
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such as atherosclerosis, hypertension, diabetes, coronary artery diseases and throm-
bosis [17, 41]. Activation of endothelium by external stimuli is carried out in two 
ways. (1) Endothelium activation type I, it is an immediate response to the external 
agents which occurs rapidly without activation of genes. (2) Endothelium activation 
type II, it is activating genes and protein synthesis and occurs leisurely [42]. 
Endothelium activation synchronous happens in many ways rather than external 
pathological agents. Changes in endothelium integrity, local permeability, oxidative 
stress leads to chronic endothelial activation. Discharge of fluids from intravascular 
space exposed through sub endothelium happens in loss of vascular integrity [17, 
41, 42, 53]. This adverse effect activates the leucocyte adhesion molecules, ICAM1, 
VCAM1 and E-selectin and it moves into tissues and then prothrombotic effects of 
endothelium enhances the loss of surface anticoagulant, activation of plasminogen 
activator inhibitor type 1, activation of platelet activating factor, NO and cytokines 
[53]. Among these, NO plays an important role in endothelial activation [43]. 
Reduced bioavailability of NO is considered as a marker for endothelial dysfunc-
tion. NO a gaseous molecule widely known as endothelium derived relaxation fac-
tor (EDRF) which interacts most of the biological functions such as vasodilation, 
activation of leukocytes to bind with endothelium, platelet aggregation and immune 
response. Arginine derived NO synthesized by three NOS isozymes; iNOS (induc-
ible Nitric Oxide Synthase), eNOS (Endothelial Nitric Oxide Synthase) and nNOS 
(Neuronal Nitric Oxide Synthase) [18, 42, 53]. In this, iNOS produce NO through 
phagocytes (monocytes, macrophages and neutrophils) as part of immune response 
[18, 29, 53]. Intracellular NO free radicals have less half life time, acting as toxic 
molecule to pathogens in divergent pathways. On the other hand, NO plays a unique 
role in angiogenesis process. In our report, it is emphasized that the simulated 
microgravity promotes NO supported angiogenesis via the iNOS–cGMP–PKG 
pathway in macrovascular endothelial cells [48, 49]. The NO production analysis by 
DAR-4AM fluorescence probe and wound healing assays was performed in 
EAhy926 cells under microgravity with and without NO donor and inhibitor 
(Fig. 22.5a, b). The result indicated that the increased NO production and migration 
under microgravity in EAhy926 cells.

In last decade, new mechanism has been identified which describes the role of 
mechanical force in endothelial activation [7].EC activation in cultured bovine aortic 
under cycle strain and shear stress has been proved [2]. Regulation of differential 
gene expression and proliferation in mechanical stress were proven in human dermal 
microvascular endothelial cells (HDMEC). These mechanical force perceived by the 
cell membrane converted into biochemical force which regulates the wide range of 
intracellular molecular process, known as mechanotransduction [59]. 
Mechanotransduction studies have been conducted in vitro models by using different 
methods such as clinostat, drop tower, microfluidics and rotatory wall cell culture. 
Among these, clinostat a well-defined established model to promote the mechano-
transduction in in vitro models. Output of mechanotransduction process well equated 
with microgravity conditions, in other ways mentioned as free fall state. Free fall or 
microgravity or low gravity state has been observed in space station and well docu-
mented for its extreme physiological changes in astronauts. Astronauts experience 
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the free fall condition in space travel along with its adverse effects. Longer stays in 
these harsh environment mainly creates muscle loss, neurovestibular system, cardiac 
function, bone mass loss problems, however, mechanisms behind these defects are 
not understood well [60].

On the other hand, weightless or free fall or microgravity condition has its own 
potential to enhance the endothelial cell proliferation and migration. Also, it has 
been shown that ECs are more sensitive in low gravity conditions. These observa-
tions are analyzed and well documented using different in vitro models [47]. Freefall 
and parabolic flight can be used to simulate microgravity but this way of micrograv-
ity stimulation is typically too short to alter cell functions. Now, there are several 
alternative methods under practice to generate microgravity in Earth. Clinostats are 
convincingly successful ground based apparatus to stimulate microgravity.

7.5  Effect of Microgravity on Endothelial Cells in Relation 
to Wound Healing

Various reports by the use of a variety of in vitro models have thrown light on the 
fact that ECs are highly sensitive to microgravity and undergo morphological, func-
tional and biochemical changes under microgravity condition [34]. Promotion in 
wound healing can be characterized by migratory, proliferators, cytoskeleton and 
extracellular matrix properties of cells. Shi et al. [47] has demonstrated that, after 
24 h of exposure to simulated microgravity in a clinostat, human umbilical vein 
endothelial cells (HUVEC) migration is significantly promoted through the eNOS 
pathway up regulation by means of PI3K-Akt signaling. Simulated microgravity 
increased cellular migration of sensitized ECs by 25% compared to non-sensitized 
ECs by modulating actin and releasing nitric oxide [48, 49]. Microgravity enhances 

G
0

5

–1400W
+1400W

10

15

20

MG

Gravity MG

–1400W +1400W –1400W +1400W

%
 o

f 
w

o
u

n
d

 h
ea

lin
g

 a
t 

2h

(a) (b)

Fig. 22.5 NO production and wound healing in macro-vascular EC, Eahy926 under microgravity. 
(a) The cells were kept under microgravity with and without NO donor (1400 W) and measured 
NO production by DAR-4AM fluorescence probe. (b) Wound healing assay with and without 
1400 W was assayed in microgravity treated Eahy926. **P < 0.001 vs gravity; P < 0.001 vs micro-
gravity (Adapted from Siamwala et al. [48]. License Number: 3932580979460)
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the proliferation of ECs without inducing apoptosis and compromising cell viability 
[48, 49]. The cytoskeleton plays a key role in the adaptation to mechanical stress, 
including alterations of gravity. This property of cytoskeleton to undergo changes 
can be a key to explain the effects of weightlessness on cells [40]. Reports suggested 
that [6] actin microfilaments in HUVEC exposed to microgravity showed elongated 
and extended podia. The disorganization of actin microfilaments clustered in the 
perinuclear area and decrease in stress fibers compared to normal HUVECs. Further 
studies [48, 49] has also shown the key migratory structures of cells, filopodia and 
lamellipodia, formed by EC to be more in simulated microgravity compared to 
gravity. In detail, Eahy926 cells were kept under microgravity for 2 h followed by 
time measured NO production image using DAR-4F Mfluorescent probe. The result 
showed that NO production by Eahy926 is increased under microgravity. To further 
investigate the possibility of the simulated microgravity increase NO production by 
actin remodeling, the Eahy926 cells were analyzed NO production under micro-
gravity with and without cytochalasin D (CD) and followed by performed dual 
staining of actin and nucleus with phalloidin and DAPI, respectively. The result 
indicates that the number of central microfilaments was observed more in cells 
treated with microgravity compared to gravity treated cells. Additionally, direction-
less, shorter central microfilaments were observed in microgravity treated cells 
(Fig.  22.6a). Notably, the CD simulated stress fiber formation was significantly 
attenuated in microgravity treated cells compared to gravity treated cells (Fig. 22.6b). 
This evidence concludes that the microgravity involved in endothelial cells’ actin 
remodeling and thereby it stimulates NOS to induce NO motivated migration.

8  Consolidation of the Outcome of Cell Biology and Omics 
Results and Future Direction

The relationship between the endothelial cells and altered gravity suggests the 
options for bridging microgravity and wound healing via endothelial activation and 
thereby angiogenesis. The microgravity induced changes in the cytoskeleton can 
strongly affect the behavior of endothelial cells in terms of adhesion, migration, 
production of extracellular matrix and can interfere with other processes such as 
translocation of molecules inside the cells, trans endothelial migration and even 
inflammation and angiogenesis, in turn effecting wound healing process as wound 
healing is the amalgamation of the above processes. Further, it has been suggested 
that the unloading, weightlessness sensitization of endothelial cells’ conditioned 
media have the pro-healing properties on bone cells [54] and they can be used in 
clinical management of wound healing. But the precautions should be taken for no 
gangrene, tumor/cancer formation and least scar. It is reasonable that the stimulated 
microgravity will be the way forward in future developments for advanced manage-
ment of wound healing. However, being and emerging area of microgravity on 
wound healing is not conclusive yet. Several studies are underway in various 
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Fig. 22.6 Microgravity stimulates NO production by actin remodeling. (a) The cells were exposed 
to microgravity with and without CD and stained with phalloidin and DAPI. The images of actin 
pattern, NO, nucleus, and a merge of all three. (b) Data presented as fold increase of membrane 
ruffles, filopodia, and NO production in Eahy926 cells treated with microgravity with and without 
CD.* Membrane ruffles vs gravity, ψ filopodia vs gravity, # NO production vs gravity (Adapted 
from Siamwala et al. [49]. License Number: 3932501093561)
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laboratories. Some of them are cell-based assays and limited number of animal stud-
ies. Elaborated evidences using higher model is required for further confirmation. 
We understand that there are several challenges still remain in the management of 
wound healing, and it is evident that a single strategy for the management of wound 
healing is not always solution for the problems encountered in wound healing pro-
cess. Therefore, a combination of therapeutic strategies is required and this stimu-
lated microgravity for wound healing management could be one of them in near 
future.
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Abstract Peripheral artery disease is a major circulatory disorder, which is charac-
terized by obstruction of arteries mainly due to atherosclerosis and thrombosis, 
leading to reduced blood supply and ischemia in the hind limb. On the basis of their 
actions on blood constituents and blood vessels, several interventions such as anti-
atherosclerotic, antithrombolytic, antihypertensive, antidiabetic, and vasodilating 
agents are commonly used for the treatment of this disease but none of these drugs 
are satisfactory. Since angiogenesis is an adaptive process, which is concerned with 
promoting blood flow in different organs, it is plausible that the development of 
angiogenesis in the skeletal muscle may serve as a novel target for the treatment of 
peripheral artery disease. Because the formation of several factors such as vascular 
endothelial growth factor and nitric oxide as well as reduction of oxidative stress 
and inflammatory cytokines is known to promote angiogenesis, manipulation of 
these mechanisms by newer interventions including stem cell therapy can be seen to 
produce beneficial effects. In this context, both exercise training and CO2-bath ther-
apy have been shown to induce angiogenesis and increase blood flow in the isch-
emic limb. Thus the development of angiogenesis-based therapies is suggested for 
improving blood flow in the treatment of peripheral arterial disease.
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1  Introduction

Angiogenesis, the formation of new blood vessels from the existing vasculature, has 
been shown to occur in several organs including skeletal muscle under different 
physiological and pathological conditions [1–6]. This phenomenon was first 
described during placental growth [7] and was observed in ear upon implanting a 
transparent chamber [8]. It is considered to play an adaptive role in wound healing 
following myocardial infarction, stroke, ulcers and neurodegeneration in addition to 
its involvement in the growth of female reproductive tract [9–12]. On the other 
hand, angiogenesis is also associated with cancer, inflammatory disorders, pulmo-
nary hypertension and eye diseases and can be seen to play a pathogenic role [13–
16]. Nonetheless, in view of the dynamic role of blood vessels in supplying oxygen 
and nutrients for the maintenance of skeletal muscle homeostasis and function [17], 
the development of angiogenesis, particularly arteriogenesis, plays a critical role in 
both health and disease [1, 2, 18–20]. There are several physiological, pathological 
and therapeutic conditions including exercise training, different hormones, hypoxia/
ischemia and CO2 water-bath therapy (Fig. 23.1), which have been experimentally 
shown to induce angiogenesis in the skeletal muscle. This article is therefore 
focussed to describe the general characteristics of the skeletal muscle angiogenesis. 
In addition, the epidemiology, pathophysiology and therapy of peripheral arterial 
disease are discussed to highlight the importance of angiogenesis as a target for 
drug development. Furthermore, the possible mechanisms for the occurrence of 
angiogenesis are outlined in peripheral arterial disease upon treatments with differ-
ent interventions.

2  General Characteristics of Angiogenesis

It is now well known that collateral circulation due to the formation of new blood 
vessels in the skeletal muscle occurs in response to the development of severe isch-
emia as a consequence of decrease in blood supply due to atherosclerosis and/or 
thrombosis in peripheral arteries [21, 22]. It should be noted that the formation of 
new blood vessels (vasculogenesis) is considered to play a role in the maintenance 
of skeletal muscle homeostasis. The process of vasculogenesis is predominant 
 during embryogenesis but is also known to occur in adulthood due to the presence 

Skeletal muscle 
angiogenesis

CO2-bath therapyHypoxia

Exercise HormonesFig. 23.1 Different 
interventions which are 
known to induce 
angiogenesis in skeletal 
muscle as an adaptive 
mechanism in peripheral 
arterial disease
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of progenitor cells [23]. Furthermore, blood vessels are known to have the capacity 
to grow (arteriogenesis) as well as form new blood vessels from the pre-existing 
capillary bed (angiogenesis). There are two forms of angiogenesis, namely the 
sprouting and non-sprouting angiogenesis. The non-sprouting form of angiogenesis 
is more common in the skeletal muscle but also occurs in the heart and brain. The 
non- sprouting angiogenesis happens either due to cytoplasm invagination or inva-
sion of pericytes and myofibroblast; however, these processes are closely related to 
the formation of pillars in capillaries followed by their enlargement in size [20, 24]. 
Since there occurs less cell migration and proliferation in non-sprouting angiogen-
esis, there is a less expenditure of energy and thus this process is more efficient [25].

The sprouting angiogenesis occurs in a sequential process originating from endo-
thelium and requires two specific cells, tip cells and stalk cells, for the formation of 
new blood vessels [26]. The endothelial cells normally stay in a quiescent state and 
are positioned in a layer of pharynx cells, followed by smooth muscle cells, peri-
cytes and the basement membrane [27]; as these structures assure the maintenance 
of the flow inside the blood vessel. But when a stimulus, such as hypoxia interacts 
with quiescent cells, these become activated [28–30]. The formation of tip cells 
depends on the exposure of endothelial cells to vascular endothelial growth factor 
(VEGF) and Notch ligands such as delta-like ligand 4 (Dll4) and JAGGED [31–33]. 
Some endothelial cells are more sensitive to VEGF, thus leading to the selection of 
tip cells which become more polarized than stalk cells and are characterized for 
being on the tip of sprouts [32, 34]. The main function of tip cells is migratory and 
thus these are responsible for the guidance of sprouting in a process called filopodia. 
In addition to the expression of VEGF, the tip cells also express Dll4, platelet derived 
growth factor b (PDGFb), unc-5 homolog b (UNC5b), vascular endothelial growth 
factor receptor 2 (VEGFR-2) and VEGFR-3/Flt-4, neuropeptide Y, and a small 
amount of molecules of the Notch signaling pathway. In contrast, the function of 
stalk cells relies on proliferation, following the tip cells activity; these are also 
responsible for the formation of branches and the vascular lumen [30, 35].

After the activation of tip cells, electron density of the basement membrane of the 
deriver vessel is diminished [34]. Enzymes such as metalloproteinases (MMP) are 
released from endothelial cells, which then degrade the basement membrane [36, 
37]. This step permits a loosening between cell junctions and migration of tip cells, 
and is assisted by the relation between MMP and integrins (transmembrane mole-
cules present on the cell surface) [38]. When VEGF is released, it binds to VEGFR-2 
and increases filopodia of tip cells in addition to enhancing Dll4, which binds to the 
Notch signaling pathway and decreases VEGFR-2. This mechanism regulates the 
amount of tip cells that are released as well as increases the formation of stalk cells 
[38]. With this well balanced process, the stalk cells start to operate in response to 
Notch, Notch-regulates Ankyrin repeat protein (NRARP), WNTs, placental growth 
factor (PIGF), and fibroblast growth factor (FGF) [29, 39]. It promotes the forma-
tion of a solid cord of endothelial cells by stalk cells and due to their intense 
 proliferation, this cord is elongated [34]. The next step is the formation of vascular 
lumen, and for this purpose, stalk cells release vacuoles which develop a lumen of 
the new vessel [40, 41]. Lastly, the cells of the new endothelium regress to the 
 quiescent state and the junction adhesion becomes tight again for diminishing the 
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cellular permeability. The levels of VEGF return to the normal state and pericytes 
become involved in the new vessels, concluding the angiogenesis process [30].

From the discussion outlined in this section, it is evident that angiogenesis is a 
complex but a highly regulated process. It involves the stimulation of quiescent 
endothelial cells by interventions such as hypoxia, exercise, some hormones and 
CO2, which trigger the activation of tip cells and formation of filopodia in the pres-
ence of VEGF and different inflammatory cytokines. This leads to the activation as 
well as proliferation of stalk cells and the formation of a solid cord. The release of 
MMP results in the degradation of basement membrane. The process of maturation 
of new blood vessels is associated with the formation of lumen, quiescence of endo-
thelial cells and normalization of VEGF levels. It is pointed out that although angio-
genesis has been shown to develop in the ischemic skeletal muscle, the exact factors 
associated with angiogenesis in peripheral artery disease are not clear at present. 
During the development of peripheral arterial disease, the occurrence of angiogen-
esis may be triggered by several factors (Fig. 23.2) including VEGF, hypoxia induc-
ible factor, inflammatory cytokines and nitric oxide. In addition, mechanical factors 
(changes in shear and stress as well as muscular activity) and metabolic factors 
(formation of AMP and adenosine) have been demonstrated to affect the occurrence 
of angiogenesis in the skeletal muscle. Thus in view of the complexities involved in 
the regulation of angiogenesis, and to understand the role of angiogenesis in the 
development of peripheral arterial disease, it is considered appropriate to describe 
the epidemiology, pathophysiology and therapeutics of peripheral vascular disease.

3  Pathophysiology and Therapy of Peripheral Arterial 
Disease

Peripheral arterial disease is the third most prevalent cardiovascular disease as it 
affects more than 200  million people worldwide [42]. It is mainly age-related 
because most of the incidence of the disease occur in individuals who are within the 
age-range of 60–70 years whereas the chances of its occurrence are very low in 
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people who are less than 50 years old [43]. Gender and ethnicity are other risk fac-
tors for the peripheral artery disease because males are more susceptible than 
females [44] and the incidence of this disease is about 2 fold in the African- 
Americans in comparison to the non-Hispanic White people [45]. The major symp-
toms of this disease include discomfort in legs and feet which are associated with 
cramps, achiness, burning and fatigue.

The spectrum of peripheral arterial disease varies from asymptomatic to critical 
ischemia as the most severe scenario, leading to a possibly gangrene and amputation 
of the limb. Related to presentation of this disease, the most relevant risk factors are 
hypertension, obesity, dyslipidemia, diabetes, smoking, cold temperature, emo-
tional stress and physical inactivity [46–48]. It should be mentioned that atheroscle-
rosis obliterans and arterial insufficiency are two forms of peripheral arteries disease 
whereas deep vein thrombosis and intermittent claudication are commonly associ-
ated with peripheral veins disease. All these clinical conditions and risk factors lead 
to the development of skeletal muscle ischemia and thus limiting locomotion and 
mobility [49, 50].

The arteries obstruction happens mainly because of the formation of an athero-
sclerotic plaque or thrombus. It is noted that atherosclerosis is a multifactorial 
chronic disease, which is progressive and inflammatory. It begins early in life and 
depending of genetic factors and environment risks, the disease may progress and 
cause reduction in blood flow [51, 52]. The most important cells involved with ath-
erosclerosis are endothelial cells, smooth muscle cells and macrophages [53, 54]. 
The process is initialed by dysfunction of the endothelial cells, which decreases the 
production of nitric oxide (NO), an important vasodilator [55, 56]. Also, it increases 
the production of vasoconstrictors agents leading to platelet aggregation and forma-
tion of thrombosis. When the endothelium is damaged, free radicals are released, 
which make the endothelial cells more permeable [57], and low-density lipoproteins 
(LDL) start to accumulate on the subendothelial space. The interaction between 
LDL and free radicals results in the oxidation of LDL [55, 58], which transforms the 
complex of leucocytes, macrophages and phagocyte into foam cells. The accumula-
tion of these cells forms the core of an atherosclerotic plaque, which along with 
apoptotic and fibrotic smooth muscle cells (vascular remodeling) narrows the vessel 
lumen [59]. The atherosclerotic plaque upon rupture can become hemorrhagic 
through vasa vasorum and thus increases the risk of thrombosis formation [60].

While atherosclerosis and vascular remodeling are associated with narrowing the 
lumen of peripheral blood vessels, the formation of thrombosis results in the 
obstruction of blood flow. Furthermore, endothelial dysfunction and subsequent 
insufficiency of NO formation is invariably associated with the inability of blood 
vessels to dilate and can be seen to reduce blood flow under stressful conditions. All 
these mechanisms (Fig. 23.3) are considered to play an important role in the patho-
genesis of peripheral arterial disease by reducing blood flow and thereby leading to 
the development of ischemia in the skeletal muscle. This disease process is associ-
ated with a wide variety of complications such as blood clots in small arteries, leg 
pain, wounds and dead tissues in limbs, heart attack, stroke and even death 
(Fig. 23.4). It is therefore of paramount importance that some appropriate strategies 
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be developed for improving the quality of life in this devastating disease. Some of 
the preventive, surgical and medical treatments which are currently being used in 
this regard are outlined in Fig. 23.5.

The therapeutics of this disease starts generally with some conservative mea-
sures. Reducing cardiovascular risks [44, 46] upon changing the smoking habits and 
increasing the physical activity; in addition, angioplasty and thrombolytic therapy 
are recommended for the management of peripheral artery disease. In some patients 
with severe disease, bypass surgery, and amputation are required [61]. Furthermore, 
several medical interventions, which are known to promote blood flow by their 
actions on the vascular smooth muscles or by affecting the vessel lumen, are used 
for the treatment of peripheral arterial disease (Fig. 23.6). Since none of the existing 
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treatments are satisfactory, several new interventions including stem cell therapy are 
being developed to promote the formation of collateral blood vessels [62–64]. In 
particular, several mechanisms including angiogenesis, changes in signal transduc-
tion and increase in NO production, as well as reduction in both oxidative stress and 
inflammation have been proposed for the improvement of blood circulation in the 
ischemic limb (Fig. 23.7).
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4  Mechanisms of Skeletal Muscle Angiogenesis

It has now become evident that angiogenesis in the skeletal muscle plays an adap-
tive role in promoting blood flow in the peripheral arterial disease. Several molecu-
lar mechanisms have been suggested for the development of angiogenesis [1, 6, 19, 
20]. Different angiogenic growth factors, particularly VEGF, have been demon-
strated to play a critical role in this process [28, 30, 31, 39, 61, 62]. Inflammatory 
cytokines such as TNF-α, reduction in the production of oxidative stress and the 
formation of NO have also been shown to participate in promoting the occurrence 
of angiogenesis [3–6, 29, 58]. Various studies using stem cells and other types of 
cells have been carried out for promoting angiogenesis in the skeletal muscle [23, 
33, 48, 65]. Since exercise training, hypoxia, different hormones and CO2-bath ther-
apy have been reported to induce angiogenesis in the peripheral arterial disease, this 
section is devoted to discussion of mechanisms of angiogenesis in the skeletal mus-
cle under these physiological and clinical conditions.

Exercise-Induced Angiogenesis In exercise training, certain events occur to stimu-
late angiogenesis; these events involving the skeletal muscle and the endothelium 
include metabolic factors, the release of angiogenic compounds and mechanical fac-
tors such as shear stress and muscular stretch [66]. The levels of VEGF are markedly 
increased due to the formation of AMP and adenosine due to exercise [67]. 
Furthermore, the occurrence of shear stress due to high pressure on capillaries [20] 
leads to the production of NO and VEGF [68]. The proteases, MMP-2 and MMP-9 
are also increased during the muscle stretch in exercise [69, 70] and these then stim-
ulate the production of VEGF [71], which is stored in the skeletal muscle cells [72]. 
VEGF thus produced due to the formation of adenosine, production of NO and pro-
tease activation can be seen to induce angiogenesis during exercise training. It should 
also be mentioned that VEGF receptors, VEGFR-1 and VEGFR-2 are also activated 
due to the formation of NO as well as other metabolites in the skeletal muscle [66, 
72]. The exact sequence of events leading to exercise-induced angiogenesis involv-
ing VEGF and other angiogenic factors have been described recently [90].

Hormone-Induced Angiogenesis Several vasoactive hormones including angio-
tensin II have been shown to exert angiogenic effect. Likewise, sex hormones which 
exert vasoactive actions have been reported to induce angiogenesis [73]. For years, 
androgens have been thought as factors for increasing cardiovascular risk; however, 
testosterone is now considered as an important vasoactive substance, which imparts 
protection to atherosclerosis [74, 75]. Dihydrotestosterone (DHT), an analogue of 
androgen, has been reported to stimulate angiogenesis via increasing VEGF expres-
sion in a dose and sex-dependent manner. It means that the application of DHT in 
females does not increase VEGF or angiogenesis. Although DHT acts by binding to 
androgen receptors in endothelial cells in males, it is not clear whether it increases 
VEGF through the production of NO [76]. In contrast to androgens, the amount of 
research related to the role of estrogens in vasculature is extensive. Estrogens act 
cyclically in the female endometrium, pathologically in breast cancer and induce 
angiogenesis in response to ischemic stimulus [77]. There are three forms of estro-
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gen, but the most important for angiogenesis is estrogen-2 as it promotes endothe-
lial cell migration and proliferation. This form can act by both genomic and 
non-genomic pathways. In the genomic pathway, estrogen-2 stimulates transcrip-
tion directly in the nucleus. On the other side, it binds to estrogen receptors in endo-
thelial cells (ERα and ERβ). ERα is most active in the endothelium as it stimulates 
the production of VEGF by phosphatidylinositol 3-kinase and mitogen activated 
protein kinase pathways for promoting the angiogenesis process [36].

Hypoxia-Induced Angiogenesis Hypoxia has been reported to be an important 
factor for promoting angiogenesis [77–79]. There are three main molecules which 
are involved in this mechanism, namely NO, hypoxia-inducible factor (HIF) and 
VEGF [80–82]. HIF is a heterodimer transcriptional factor and is a part of the Per/
ARNT/Sim (PAS) subfamily. There are three different types of HIF including 
HIF- 1, HIF-2, HIF-3. Each type is formed by two subunits: HIF-α and HIF-β bind 
to each other, the α subunit being sensitive to oxygen; the most important of these 
for the formation of new blood vessels are HIF-1α and HIF-2α [83, 84]. When the 
levels of oxygen are normal, HIF-1α remains unstable and it is broken by propyl- 
4- hydroxylase-2 (PHD2) [85, 86]. However, in hypoxic situations, this enzyme 
production decreases and HIF-1α becomes more stable [87]. After this, HIF-1α is 
transported to the nucleus, forming a dimer with HIF-1β and binding to the 
hypoxia response element present in the DNA region where there are genes for 
VEGF production; it then stimulates the production of VEGF and several other 
angiogenic factors [88]. Although the complete mechanism of HIF-2α activation 
is not entirely understood, it has been suggested to play a role in increasing the 
formation of NO [82].

The most recognized angiogenic factor in the ischemic/hypoxic tissue is VEGF and 
its role is essential in angiogenesis [89–91]. VEGF family is compounded as dimeric 
glycoproteins by seven members, namely VEGF-A, VEGF-B, VEGF-C, VEGF-D, 
and PIGF presented in mammals; VEGF-E in parapoxvirus and VEGF-F in snake 
venom. It is noted that VEGF-A is the most important molecule which is related to 
angiogenesis, causing cell migration, sprouting, proliferation, and lumen formation. It 
is normally called VEGF and is known to have at least six isoforms: VEGF-121, 
VEGF-145, VEGF-165, VEGF-183, VEGF-189 and VEGF-206; the most vasoactive 
in skeletal muscle is VEGF-165 [92, 93]. The role of VEGF-B is not completely 
understood yet, but it does not seem to be essential in angiogenesis [94]. On the other 
hand, VEGF-C and VEGF-D have been shown to have some role in both angiogenesis 
and lymphogenesis [95, 96]. PIGF has four different isoforms: PIGF-1, PIGF-2, 
PIGF-3, and PIGF-4 and is considered to increase the arteriogenesis process.

When activated, VEGF binds to different tyrosine kinase receptors: VEGFR-1, 
VEGFR-2, and VEGFR-3 as well as neuropilin-1(Nrp-1) and neuropilin-2 (Nrp-2). 
All receptors are present in the vascular endothelium but VEGFR-3 is more specific 
for lymphatic endothelium, as well as Nrp-2. In addition, Nrp-1 is more  characteristic 
for arterial endothelium whereas Nrp-2 is for venous endothelium [92, 97]. Different 
VEGF receptors have affinity for different angiogenic factors. For example, 
VEGFR-1 binds to VEGF-A, VEGF-B and PIGF whereas VEGFR-2 has affinity for 
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VEGF-A, VEGF-C, and VEGF-D. On the other hand, VEGFR-3 binds to VEGF-C, 
and VEGF-D, Nrp-1 and Nrp-2 bind to VEGF-A and PIGF (especially VEGF-165 
and PIGF-2). VEGF-B binds only to Nrp-1 and VEGF-C binds only to Nrp-2 [98, 
99]. After binding to their respective receptors, VEGF increases the formation of 
NO and promotes sprouting angiogenesis [100]. It is pointed out that hypoxia is an 
important stimulus that evokes an adaptive response to ischemia through the HIF-
dependent production of inflammatory cytokines such as TNF-α and growth factors, 
which induce angiogenesis in the ischemic skeletal muscle [101].

CO2-Induced Angiogenesis CO2 is essential in the human body as it maintains pH 
homeostasis during respiration and has been shown to increase blood flow and 
angiogenesis [102]. Since the middle ages, CO2 baths have been used for the treat-
ment of different disorders. In 1859, the beneficial health effects of CO2 were 
described and in 1880, CO2 balneotherapy was recommended for cardiovascular 
disorders in patients by immersion in the well “Carbonated Springs of Bad Nauheim” 
in Germany [103, 104]. Balneotherapy consists of body immersion in the natural 
thermal mineral water and it has been used in Europe for ages [105, 106].

When applied locally by baths, CO2 increases vasodilation and blood flow; this 
process is complex and may have several mechanisms [107, 108]. Due to local aci-
dosis, CO2 increases the vessel diameter and decreases the hematocrit. Other expla-
nations are related to the stimulation of the parasympathetic system and inhibition 
of the sympathetic system as well as the increase in NO production [109, 110]. 
Other effects of CO2 include bradycardia by reducing the sympathetic activity, low-
ering of core temperature and elevation of the thermal sensation caused by heat 
exchange due to increase of cutaneous blood flow and inhibition of cold nerve 
receptors [111]. It has been demonstrated that CO2 stimulates local VEGF produc-
tion and VEGF mRNA expression for promoting angiogenesis. Although the exact 
mechanism for this action of CO2 is not well elucidated, it is thought to be related to 
the production of NO as well as the progenitor endothelial cells activity [112, 113]. 
Clinically CO2 has been shown to improve physical tolerance in patients with 
peripheral arterial disease as well as blood flow in the skin and the hind limb muscle 
[105, 107, 109, 111]. Recent experimental studies [114–116] have provided the 
evidence that the increase in blood flow in the ischemic skeletal muscle by CO2-bath 
treatment was associated with the development of angiogenesis. Thus it appears that 
the CO2-bath therapy may increase the blood flow in the ischemic limb by inducing 
angiogenesis due to the production of both NO and VEGF.

5  Conclusions

From the foregoing discussion, it is evident that reduction in blood supply mainly 
due to atherosclerosis and thrombosis in the peripheral arteries leads to ischemia in 
the limb muscles, which results in the occurrence of peripheral artery disease. These 
changes are invariably associated with the development of angiogenesis as an 
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adaptive mechanism for maintaining the skeletal muscle homeostasis and muscle 
function in the ischemic limb. In view of the insufficiency of this adaptive response, 
several surgical and medical treatments, which are known to reduce the blockade to 
blood flow, increase the lumen of vessels or affect remodeling of the vessel wall, are 
used for the treatment of peripheral arterial disease. However, none of these inter-
ventions are satisfactory and it is thus important that some newer strategies be 
developed to deal with this devastating disease. Accordingly, several therapies such 
as exercise training, stem cell therapy, and CO2-water bath therapy, which are known 
to promote the production of VEGF and other growth factors as well as NO and 
induce angiogenesis, are being recommended for the treatment. Thus angiogenesis 
seems to be a novel target for the development of newer drugs, interventions and 
therapies for improving blood flow to the ischemic limb in peripheral arterial 
disease.
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