
Chapter 18
Electrostatics

The electrostatic potential Φ(r) of a charge distribution ρ(r) is a solution1 of Pois-
son’s equation

�Φ(r) = −ρ(r) (18.1)

which, for spatially varying dielectric constant ε(r) becomes

div(ε(r) grad Φ(r)) = −ρ(r) (18.2)

and, if mobile charges are taken into account, like for an electrolyte or semiconductor,
turns into the Poisson–Boltzmann equation

div(ε(r) grad Φ(r)) = −ρfix(r) −
∑

i

n0
i Zie e−ZieΦ(r)/kBT . (18.3)

In this chapter we discretize the Poisson and the linearized Poisson–Boltzmann
equation by finite volume methods which are applicable even in case of discontin-
uous ε. We solve the discretized equations iteratively with the method of successive
over-relaxation. The solvation energy of a charged sphere in a dielectric medium is
calculated to compare the accuracy of several methods. This can be studied also in
a computer experiment.

Since the Green’s function is analytically available for the Poisson and Poisson–
Boltzmann equations, alternatively the method of boundary elements can be applied,
which can reduce the computer time, for instance for solvation models. A computer
experiment simulates a point charge within a spherical cavity and calculates the
solvation energy with the boundary element method.

1The solution depends on the boundary conditions, which in the simplest case are given by
lim|r|→∞ Φ(r) = 0.
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400 18 Electrostatics

18.1 Poisson Equation

From a combination of the basic equations of electrostatics

div D(r) = ρ(r) (18.4)

D(r) = ε(r)E(r) (18.5)

E(r) = −grad Φ(r) (18.6)

the generalized Poisson equation is obtained

div(ε(r) gradΦ(r)) = −ρ(r) (18.7)

which can be written in integral form with the help of Gauss’ theorem

∮

∂V
dA div(ε(r) gradΦ(r)) =

∫

V
dV ε(r) gradΦ(r)) = −

∫

V
dV ρ(r). (18.8)

If ε(r) is continuously differentiable, the product rule for differentiation gives

ε(r) �Φ(r) + (grad ε(r)) (grad Φ(r)) = −ρ(r) (18.9)

which for constant ε simplifies to the Poisson equation

ΔΦ(r) = −ρ(r)
ε

. (18.10)

18.1.1 Homogeneous Dielectric Medium

We begin with the simplest case of a dielectric medium with constant ε and solve
(18.10) numerically. We use a finite volume method (Sect. 12.3) which corresponds
to a finite element method with piecewise constant test functions. The integration
volume is divided into small cubes Vijk which are centered at the grid points (Fig. 18.1)

rijk = (hi, hj, hk). (18.11)

Integration of (18.10) over the control volume Vijk around rijk gives

∫

V
dV div grad Φ =

∮

∂V
grad ΦdA = −1

ε

∫

V
dV ρ(r) = −Qijk

ε
. (18.12)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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Fig. 18.1 (Finite volume for
the Poisson equation) The
control volume is a small
cube centered at a grid point
( full circle)
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Qijk is the total charge in the control volume. The flux integral is approximated by
(12.85)

∮

∂V
grad Φ dA = −h2

(
∂Φ

∂x
(xi+1/2, yj, zk) − ∂Φ

∂x
(xi−1/2, yj, zk)

+∂Φ

∂y
(xiyj+1/2, zk) − ∂Φ

∂y
(xi, yj−1/2, zk) + ∂Φ

∂z
(xi, yj, zk+1/2) − ∂Φ

∂z
(xi, yj, zk−1/2)

)
.

(18.13)

The derivatives are approximated by symmetric differences

∮

∂V
grad Φ dA = −h

{(
Φ(xi+1, yj, zk) − Φ(xi, yj, zk)

)

− (
Φ(xi, yj, zk) − Φ(xi−1, yj, zk)

)

+ (
Φ(xi, yj+1, zk) − Φ(xi, yj, zk)

)

− (
Φ(xi, yj, zk) − Φ(xi, yj−1, zk)

)

+ (
Φ(xi, yj, zk+1) − Φ(xi, yj, zk)

)

− (
Φ(xi, yj, zk) − Φ(xi, yj, zk−1)

)}

= −h
(
Φ(xi−1, yj, zk) + Φ(xi+1, yj, zk) + Φ(xi, yj−1, zk) + Φ(xi, yj+1, zk)

+Φ(xi, yj, zk−1) + Φ(xi, yj, zk+1) − 6Φ(xi, yj, zk)
)

(18.14)

which coincides with the simplest discretization of the second derivatives (3.40).
Finally we obtain the discretized Poisson equation in the more compact form

6∑

s=1

(Φ(rijk + drs) − Φ(rijk)) = −Qijk

εh
(18.15)

which involves an average over the 6 neighboring cells

dr1 = (−h, 0, 0) . . . dr6 = (0, 0, h). (18.16)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_3
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18.1.2 Numerical Methods for the Poisson Equation

Equation (18.15) is a system of linear equations with very large dimension (for a
grid with 100 × 100 × 100 points the dimension of the matrix is 106 × 106 !). Our
computer experiments use the iterative method (Sect. 5.5)

Φnew(rijk) = 1

6

(
∑

s

Φold(rijk + drs) + Qijk

εh

)
. (18.17)

Jacobi’s method (5.121 on p. 80) makes all the changes in one step whereas
the Gauss–Seidel method (5.124 on p. 80) makes one change after the other. The
chessboard (or black red method) divides the grid into two subgrids (with i + j + k
even or odd) which are treated subsequently. The vector drs connects points of
different subgrids. Therefore it is not necessary to store intermediate values like for
the Gauss–Seidel method.

Convergence can be improved with the method of successive over-relaxation
(SOR, 5.128 on p. 81) using a mixture of old and new values

Φnew(rijk) = (1 − ω)Φold(rijk) + ω
1

6

(∑
Φold(rijk + drs) + Qijk

εh

)
(18.18)

with the relaxation parameter ω. For 1 < ω < 2 convergence is faster than for ω = 1.
The optimum choice of ω for the Poisson problem in any dimension is discussed in
[225].

Convergence can be further improved by multigrid methods [226, 227]. Error
components with short wavelengths are strongly damped during a few iterations
whereas it takes a very large number of iterations to remove the long wavelength
components. But here a coarser grid is sufficient and reduces computing time. After
a few iterations a first approximation Φ1 is obtained with the finite residual

r1 = ΔΦ1 + 1

ε
ρ. (18.19)

Then more iterations on a coarser grid are made to find an approximate solution Φ2

of the equation

ΔΦ = −r1 = −1

ε
ρ − ΔΦ1. (18.20)

The new residual is

r2 = ΔΦ2 + r1. (18.21)

http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
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Function values of Φ2 on the finer grid are obtained by interpolation and finally the
sum Φ1 + Φ2 provides an improved approximation to the solution since

Δ(Φ1 + Φ2) = −1

ε
ρ + r1 + (r2 − r1) = −1

ε
ρ + r2. (18.22)

This method can be extended to a hierarchy of many grids.
Alternatively, the Poisson equation can be solved non-iteratively with pseudospec-

tral methods [228, 229]. For instance, if the boundary is the surface of a cube, eigen-
functions of the Laplacian are for homogeneous boundary conditions (Φ = 0) given
by

Nk(r) = sin(kxx) sin(kyy) sin(kzz) (18.23)

and for no-flow boundary conditions ( ∂
∂nΦ = 0) by

Nk(r) = cos(kxx) cos(kyy) cos(kzz) (18.24)

which can be used as expansion functions for the potential

Φ(r) =
∑

kx,ky,kz

ΦkNk(r). (18.25)

Introducing collocation points rj the condition on the residual becomes

0 = �Φ(rj) + 1

ε
ρ(rj) =

∑

kx,ky,kz

k2ΦkNk(rj) + 1

ε
ρ(rj) (18.26)

which can be inverted with an inverse discrete sine transformation, (respectively an
inverse discrete cosine transformation for no-flux boundary conditions) to obtain the
Fourier components of the potential. Another discrete sine (or cosine) transformation
gives the potential in real space.

18.1.3 Charged Sphere

As a simple example we consider a sphere of radius R with a homogeneous charge
density of

ρ0 = e · 3

4πR3
. (18.27)
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Fig. 18.2 (Discretization of the discontinuous charge density)Left the most precise method divides
the control volumes at the boundary into two irregularly shaped parts. Middle assigning either the
value ρ0 or zero retains the discontinuity but changes the shape of the boundary. Right averaging
over a control volume smears out the discontinuous transition

The exact potential is given by

Φ(r) = e

4πε0R
+ e

8πε0R

(
1 − r2

R2

)
for r < R

Φ(r) = e

4πε0r
for r > R. (18.28)

The charge density (18.27) is discontinuous at the surface of the sphere. Integration
over a control volume smears out this discontinuity which affects the potential values
around the boundary (Fig. 18.2). Alternatively we could assign the value ρ(rijk) which
is either ρ0 (18.27) or zero to each control volume which retains a sharp transition
but changes the shape of the boundary surface and does not conserve the total charge.
This approach was discussed in the first edition of this book in connection with a
finite differences method. The most precise but also complicated method divides the
control volumes at the boundary into two irregularly shaped parts [230, 231].

Initial guess as well as boundary values are taken from

Φ0(r) = e

4πε0 max(r, h)
(18.29)

which provides proper boundary values but is far from the final solution inside the
sphere. The interaction energy is given by (Sect. 18.5)

Eint = 1

2

∫

V
ρ(r)Φ(r)dV = 3

20

e2

πε0R
. (18.30)

Calculated potential (Fig. 18.3) and interaction energy (Figs. 18.4, 18.5) converge
rapidly. The optimum relaxation parameter is around ω ≈ 1.9.
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Fig. 18.3 (Electrostatic
potential of a charged
sphere) A charged sphere is
simulated with radius
R = 0.25 and a
homogeneous charge density
ρ = e · 3/4πR3. The grid
consists of 2003 points with
a spacing of h = 0.025. The
calculated potential (circles)
is compared to the exact
solution (18.28, solid curve),
the initial guess is shown by
the dashed line
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Fig. 18.4 (Influence of the
relaxation parameter) The
convergence of the
interaction energy (18.30,
which has a value of
34.56 eV for this example) is
studied as a function of the
relaxation parameter ω. The
optimum value is around
ω ≈ 1.9. For ω > 2 there is
no convergence. The dashed
line shows the exact value
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Fig. 18.5 (Influence of grid
size) The convergence of the
interaction energy (18.30)
and the central potential
value are studied as a
function of grid size. The
dashed lines show the exact
values
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Fig. 18.6 Face center of the
control volume

drs

drs

2

(i,j,k)’

(i,j,k)

18.1.4 Variable ε

In the framework of the finite volume method we take the average over a control
volume to discretize ε2 and Φ

εijk = ε(rijk) = 1

h3

∫

Vijk

dV ε(r) (18.31)

Φijk = Φ(rijk) = 1

h3

∫

Vijk

dV Φ(r). (18.32)

Integration of (18.7) gives

∫

V
dV div (ε(r) grad Φ(r)) =

∮

∂V
ε(r) grad ΦdA = −

∫

V
dV ρ(r) = −Qijk .

(18.33)

The surface integral is

∮

∂V
dA ε gradΦ =

∑

s∈faces

∫

As

dA ε(r)
∂

∂n
Φ. (18.34)

Applying the midpoint rule (12.77) we find (Fig. 18.6)

∮

∂V
dA ε gradΦ ≈ h2

6∑

r=1

ε

(
rijk + 1

2
drs

)
∂

∂n
Φ

(
rijk + 1

2
drs

)
. (18.35)

2But see Sect. 18.1.5 for the case of discontinuous ε.

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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The potential Φ as well as the product ε(r) ∂Φ
∂n are continuous, therefore we make

the approximation [230]

ε

(
rijk + 1

2
drs

)
∂Φ

∂n

(
rijk + 1

2
drs

)
= ε(rijk)

Φ
(
rijk + 1

2 drs
) − Φ(rijk)

h
2

= ε(rijk + drs)
Φ(rijk + drs) − Φ

(
rijk + 1

2 drs
)

h
2

. (18.36)

From this equation the unknown potential value on the face of the control volume
Φ(rijk + 1

2 drs) (Fig. 18.6) can be calculated

Φ

(
rijk + 1

2
drs

)
= ε(rijk)Φ(rijk) + ε(rijk + drs)Φ(rijk + drs)

ε(rijk) + ε(rijk + drs)
(18.37)

which gives

ε

(
rijk + 1

2
drs

)
∂

∂n
Φ

(
rijk + 1

2
drs

)
= 2ε(rijk)ε(rijk + drs)

ε(rijk) + ε(rijk + drs)

Φ(rijk + drs) − Φ(rijk)

h
.

(18.38)

Finally we obtain the discretized equation

−Qijk = h
6∑

s=1

2ε(rijk + drs)ε(rijk)

ε(rijk + drs) + ε(rijk)
(Φ(rijk + drs) − Φ(rijk)) (18.39)

which can be solved iteratively according to

Φnew(rijk) =
∑ 2ε(rijk+drs)ε(rijk)

ε(rijk+drs)+ε(rijk)
Φold(rijk + drs) + Qijk

h
∑ 2ε(rijk+drs)ε(rijk)

ε(rijk+drs)+ε(rijk)

. (18.40)

18.1.5 Discontinuous ε

For practical applications models are often used with piecewise constant ε. A simple
example is the solvation of a charged molecule in a dielectric medium (Fig. 18.9).
Here ε = ε0 within the molecule and ε = ε0ε1 within the medium. At the boundary
ε is discontinuous. In (18.40) the discontinuity is replaced by a smooth transition
between the two values of ε (Fig. 18.7).

If the discontinuity of ε is inside a control volume Vijk then (18.31) takes the
arithmetic average
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Fig. 18.7 (Transition of ε)
The discontinuous ε(r)
(black line) is averaged over
the control volumes to obtain
the discretized values εijk
(full circles).
Equation (18.40) takes the
harmonic average over two
neighbor cells (open circles)
and replaces the
discontinuity by a smooth
transition over a distance of
about h

n

ε

Fig. 18.8 Average of ε over
a control volume

ε1

ε2

V1 V1

ε2

ε1

2V
ε1 ε2

V2

ε1 ε2

εijk = V (1)

ijk ε1 + V (2)

ijk ε2 (18.41)

which corresponds to the parallel connection of two capacities (Fig. 18.8). Depending
on geometry, a serial connection may be more appropriate which corresponds to the
weighted harmonic average

εijk = 1

V (1)

ijk ε−1
1 + V (2)

ijk ε−1
2

. (18.42)

18.1.6 Solvation Energy of a Charged Sphere

We consider again a charged sphere, which is now embedded in a dielectric medium
(Fig. 18.9) with relative dielectric constant ε1.

For a spherically symmetrical problem (18.7) can be solved by application of
Gauss’s theorem
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Fig. 18.9 (Solvation of a
charged sphere in a dielectric
medium) Charge density and
dielectric constant are
discontinuous at the surface
of the sphere

ε=

ρ=

ε=ε

ρ=ρ

1
0

1

o

4πr2ε(r)
dΦ

dr
= −4π

∫ r

0
ρ(r′)r′2dr′ = −q(r) (18.43)

Φ(r) = −
∫ r

0

q(r)

4πr2ε(r)
+ Φ(0). (18.44)

For the charged sphere we find

q(r) =
{

Qr3/R3 for r < R
Q for r > R

(18.45)

Φ(r) = − Q

4πε0R3

r2

2
+ Φ(0) for r < R (18.46)

Φ(r) = − Q

8πε0R
+ Φ(0) + Q

4πε0ε1

(
1

r
− 1

R

)
for r > R. (18.47)

The constant Φ(0) is chosen to give vanishing potential at infinity

Φ(0) = Q

4πε0ε1R
+ Q

8πε0R
. (18.48)

The interaction energy is

Eint = 1

2

∫ R

0
4πr2dr ρΦ(r) = Q2(5 + ε1)

40πε0ε1R
. (18.49)

Numerical results for ε1 = 4 are shown in Fig. 18.10.

18.1.7 The Shifted Grid Method

An alternative approach uses a different grid for ε which is shifted by h/2 in all
directions (Fig. 18.11) [232] or, more generally, a dual grid (12.74).

εijk = ε(ri+1/2,,j+1/2,k+1/2). (18.50)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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Fig. 18.10 (Charged sphere
in a dielectric medium)
Numerical results for ε1 = 4
outside the sphere and 2003

grid points (circles) are
compared to the exact
solution (18.46,18.47, solid
curves)
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Fig. 18.11 (Shifted grid
method) A different grid is
used for the discretization of
ε which is shifted by h/2 in
all directions Φ

Φ

ε ε
ε ε

ijk+1

i−1jk

i−1j−1k ij−1k

ijk

ijk

εijk

The value of ε has to be averaged over four neighboring cells to obtain the discretized
equation

− Qijk

h2
=

∑

s

ε(rijk + drs)
∂Φ

∂n
(rijk + drs)

= Φi,j,k+1 − Φi,j,k

h

εijk + εi,j−1,k + εi−1,j,k + εi−1,j−1,k

4

+ Φi,j,k−1 − Φi,j,k

h

εijk−1 + εi,j−1,k−1 + εi−1,j,k−1 + εi−1,j−1,k−1

4

+ Φi+1,j,k − Φi,j,k

h

εijk + εi,j−1,k + εi,j,k−1 + εi,j−1,k−1

4
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Fig. 18.12 (Comparison of
numerical errors) The
Coulomb interaction of a
charged sphere is calculated
with several methods for
1003 grid points. circles
(18.40, ε averaged)
diamonds (18.40, ε−1

averaged) squares (18.51,
ε averaged), triangles (18.51,
ε−1 averaged), solid curve
analytical solution (18.49)
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+ Φi−1,j,k − Φi,j,k

h

εi−1jk + εi−1,j−1,k + εi−1,j,k−1 + εi−1,j−1,k−1

4

+ Φi,j+1,k − Φi,j,k

h

εijk + εi−1,j,k + εi,j,k−1 + εi−1,j,k−1

4

+ Φi,,j−1,k − Φi,j,k

h

εij−1k + εi−1,j−1,k + εi,j−1,k−1 + εi−1,j−1,k−1

4
. (18.51)

The shifted-grid method is especially useful if ε changes at planar interfaces.
Numerical results of several methods are compared in Fig. 18.12.

18.2 Poisson–Boltzmann Equation

Electrostatic interactions are very important in molecular physics. Bio-molecules
are usually embedded in an environment which is polarizable and contains mobile
charges (Na+, K+, Mg++, Cl− · · · ).

We divide the charge density formally into a fixed and a mobile part

ρ(r) = ρfix(r) + ρmobile(r). (18.52)

The fixed part represents, for instance, the charge distribution of a protein molecule
which, neglecting polarization effects, is a given quantity and provides the inhomo-
geneity of the equation. The mobile part, on the other hand, represents the sum of all
mobile charges (e is the elementary charge and Zi the charge number of ion species i)

ρmobile(r) =
∑

i

Zie ni(r) (18.53)
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which move around until an equilibrium is reached which is determined by the mutual
interaction of the ions. The famous Debye–Huckel [233] and Gouy–Chapman models
[234, 235] assume that the electrostatic interaction

U (r) = ZieΦ(r) (18.54)

is dominant and the density of the ions ni is given by a Boltzmann-distribution

ni(r) = n(0)
i e−ZieΦ(r)/kBT . (18.55)

The potential Φ(r) has to be calculated in a self consistent way together with the
density of mobile charges. The charge density of the free ions is

ρmobile(r) =
∑

i

n(0)
i eZie

−ZieΦ/kBT (18.56)

and the Poisson equation (18.7) turns into the Poisson–Boltzmann equation [236]

div(ε(r) gradΦ(r)) +
∑

i

n(0)
i eZie

−ZieΦ/kBT = −ρfix(r). (18.57)

18.2.1 Linearization of the Poisson–Boltzmann Equation

For small ion concentrations the exponential can be expanded

e−ZieΦ/kT ≈ 1 − ZieΦ

kBT
+ 1

2

(
ZieΦ

kBT

)2

+ · · · . (18.58)

For a neutral system

∑

i

n(0)
i Zie = 0 (18.59)

and the linearized Poisson–Boltzmann-equation is obtained:

div(ε(r) grad Φ(r)) −
∑

i

n(0)
i

Z2
i e2

kBT
Φ(r) = −ρfix. (18.60)

With

ε(r) = ε0εr(r) (18.61)

and the definition
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κ(r)2 = e2

ε0εr(r)kBT

∑
n(0)

i Z2
i (18.62)

we have finally

div(εr(r) grad Φ(r)) − εrκ
2Φ = − 1

ε0
ρ. (18.63)

For a charged sphere with radius a embedded in a homogeneous medium the solution
of (18.63) is given by

Φ = A

r
e−κr A = e

4πε0εr

eκa

1 + κa
. (18.64)

The potential is shielded by the ions. Its range is of the order λDebye = 1/κ (the
so-called Debye length).

18.2.2 Discretization of the Linearized Poisson Boltzmann
Equation

To solve (18.63) the discrete equation (18.39) is generalized to [237]

∑ 2εr(rijk + drs)εr(rijk))

εr(rijk + drs) + εr(rijk))

(
Φ(rijk + drs) − Φ(rijk)

)

− εr(rijk)κ
2(rijk)h

2Φ(rijk) = −Qijk

hε0
. (18.65)

If ε is constant then we iterate

Φnew(rijk) =
Qijk

hε0εr
+ ∑

Φold(rijk + drs)

6 + h2κ2(rijk)
. (18.66)

18.3 Boundary Element Method for the Poisson Equation

Often continuum models are used to describe the solvation of a subsystem which is
treated with a high accuracy method. The polarization of the surrounding solvent or
protein is described by its dielectric constant ε and the subsystem is placed inside a
cavity with ε = ε0 (Fig. 18.13). Instead of solving the Poisson equation for a large
solvent volume another kind of method is often used which replaces the polarization
of the medium by a distribution of charges over the boundary surface.
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Fig. 18.13 Cavity in a
dielectric medium

ε = ε

dA

(r)

0

ρ

ε = ε  1

In the following we consider model systems which are composed of two spatial
regions:

• the outer region is filled with a dielectric medium (ε1) and contains no free charges
• the inner region (“Cavity”) contains a charge distribution ρ(r) and its dielectric

constant is ε = ε0.

18.3.1 Integral Equations for the Potential

Starting from the Poisson equation

div(ε(r)gradΦ(r)) = −ρ(r) (18.67)

we will derive some useful integral equations in the following. First we apply Gauss’s
theorem to the expression [150]

div
[
G(r − r′)ε(r)grad(Φ(r)) − Φ(r)ε(r)grad(G(r − r′))

]

= −ρ(r)G(r − r′) − Φ(r)ε(r)divgrad(G(r − r′)) − Φ(r)gradε(r)grad(G(r − r′))
(18.68)

with the yet undetermined function G(r − r′). Integration over a volume V gives

−
∫

V
dV

(
ρ(r)G(r − r′) + Φ(r)ε(r)divgrad(G(r − r′))

+Φ(r)gradε(r)grad(G(r − r′))
)

=
∮

∂V
dA

(
G(r − r′)ε(r)

∂

∂n
(Φ(r)) − Φ(r)ε(r)

∂

∂n
(G(r − r′))

)
. (18.69)

Now choose G as the fundamental solution of the Poisson equation
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Fig. 18.14 Discontinuity at
the cavity boundary

ε0S

n d

ε
1
ε

0

G0(r − r′) = − 1

4π|r − r′| (18.70)

which obeys

div gradG0 = δ(r − r′) (18.71)

to obtain the following integral equation for the potential:

Φ(r′)ε(r) =
∫

V
dV

ρ(r)
4π|r − r′| + 1

4π

∫

V
dV Φ(r)gradε(r)grad

(
1

|r − r′|
)

− 1

4π

∮

∂V
dA

(
1

|r − r′|ε(r)
∂

∂n
(Φ(r)) + Φ(r)ε(r)

∂

∂n

(
1

|r − r′|
))

. (18.72)

First consider as the integration volume a sphere with increasing radius. Then the
surface integral vanishes for infinite radius (Φ → 0 at large distances) [150].

The gradient of ε(r) is nonzero only on the boundary surface (Fig. 18.14) of the
cavity and with the limiting procedure (d → 0)

gradε(r)dV = n
ε1 − 1

d
ε0dV = dAn(ε1 − 1)ε0

we obtain

Φ(r′) = 1

ε(r′)

∫

cav

dV
ρ(r)

4π|r − r′| + (ε1 − 1)ε0

4πε(r′)

∮

S
dA Φ(r)

∂

∂n

1

|r − r′| . (18.73)

This equation allows to calculate the potential inside and outside the cavity from
the given charge density and the potential at the boundary.

Next we apply (18.72) to the cavity volume (where ε = ε0) and obtain

Φin(r′) =
∫

V
dV

ρ(r)
4π|r − r′|ε0

− 1

4π

∮

S
dA

(
Φin(r)

∂

∂n

1

|r − r′| − 1

|r − r′|
∂

∂n
Φin(r)

)
. (18.74)
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From comparison with (18.73) we have

∮

S
dA

1

|r − r′|
∂

∂n
Φin(r) = ε1

∮

S
dAΦin(r)

∂

∂n

1

|r − r′|
and the potential can be alternatively calculated from the values of its normal gradient
at the boundary

Φ(r′) = 1

ε(r′)

∫

cav

dV
ρ(r)

4π|r − r′| +
(

1 − 1
ε1

)
ε0

4πε(r′)

∮

S
dA

1

|r − r′|
∂

∂n
Φin(r).

(18.75)

This equation can be interpreted as the potential generated by the charge density ρ
plus an additional surface charge density

σ(r) =
(

1 − 1

ε1

)
ε0

∂

∂n
Φin(r). (18.76)

Integration over the volume outside the cavity (where ε = ε1ε0) gives the following
expression for the potential:

Φout(r′) = 1

4π

∮

S
dA

(
Φout(r)

∂

∂n

1

|r − r′| − 1

|r − r′|
∂

∂n
Φout(r)

)
. (18.77)

At the boundary the potential is continuous

Φout(r) = Φin(r) r ∈ A (18.78)

whereas the normal derivative (hence the normal component of the electric field) has
a discontinuity

ε1
∂Φout

∂n
= ∂Φin

∂n
. (18.79)

18.3.2 Calculation of the Boundary Potential

For a numerical treatment the boundary surface is approximated by a finite set of
small surface elements Si, i = 1 · · · N centered at ri with an area Ai and normal
vector ni (Fig. 18.15). (We assume planar elements in the following, the curvature
leads to higher order corrections).

The corresponding values of the potential and its normal derivative are denoted
as Φi = Φ(ri) and ∂Φi

∂n = ni gradΦ(ri). At a point r±
j close to the element Sj we

obtain the following approximate equations:
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Fig. 18.15 Representation
of the boundary by surface
elements
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Φin(r−
j ) =

∫

V
dV

ρ(r)

4π|r − r−
j |ε0

− 1

4π

∑

i

Φi

∮

Si

dA
∂

∂n

1

|r − r−
j | + 1

4π

∑

i

∂Φi,in

∂n

∮

Si

dA
1

|r − r−
j | (18.80)

Φout(r+
j ) = 1

4π

∑

i

Φi

∮

Si

dA
∂

∂n

1

|r − r+
j

− 1

4π

∑

i

∂Φi,out

∂n

∮

Si

dA
1

|r − r+
j | .
(18.81)

These two equations can be combined to obtain a system of equations for the potential
values only. To that end we approach the boundary symmetrically with r±

i = ri±dni.
Under this circumstance

∮

Si

dA
1

|r − r+
j | =

∮

Si

dA
1

|r − r−
j |

∮

Si

dA
∂

∂n

1

|r − r+
i | = −

∮

Si

dA
∂

∂n

1

|r − r−
i |

∮

Si

dA
∂

∂n

1

|r − r+
j | =

∮

Si

dA
∂

∂n

1

|r − r−
j | j �= i (18.82)

and we find

(1 + ε1)Φj =
∫

V
dV

ρ(r)
4πε0|r − rj|

− 1

4π

∑

i �=j

(1 − ε1)Φi

∮

Si

dA
∂

∂n

1

|r − r−
j | − 1

4π
(1 + ε1)Φj

∮

Sj

dA
∂

∂n

1

|r − r−
j | .

(18.83)

The integrals for i �= j can be approximated by

∮

Si

dA
∂

∂n

1

|r − r−
j | = Ai nigradi

1

|ri − rj| . (18.84)

The second integral has a simple geometrical interpretation (Fig. 18.16).
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Fig. 18.16 Projection of the
surface element

dA

Since grad 1
|r−r′ | = − 1

|r−r′ |2
r−r′
|r−r′ | the area element dA is projected onto a sphere

with unit radius. The integral
∮

Sj
dA gradr−

1
|rj−r−

j | is given by the solid angle of Sj

with respect to r′. For r′ → rj from inside this is just minus half of the full space
angle of 4π. Thus we have

(1 + ε1)Φj =
∫

V
dV

ρ(r)
4π|r − rj|ε0

− 1

4π

∑

i �=j

(1 − ε1)ΦiAi
∂

∂ni

1

|ri − rj| + 1

2
(1 + ε1)Φj (18.85)

or

Φj = 2

1 + ε1

∫

V
dV

ρ(r)
4πε0|r − rj| + 1

2π

∑

i �=j

ε1 − 1

ε1 + 1
ΦiAi

∂

∂ni

1

|ri − rj| . (18.86)

This system of equations can be used to calculate the potential on the boundary. The
potential inside the cavity is then given by (18.73). Numerical stability is improved by
a related method which considers the potential gradient along the boundary. Taking
the normal derivative

∂

∂nj
= njgradrj± (18.87)

of (18.80, 18.81) gives

∂

∂nj
Φin(r−

j ) = ∂

∂nj

∫

V
dV

ρ(r)

4π|r − r−
j |ε0

− 1

4π

∑

i

Φi

∮

Si

dA
∂2

∂n∂nj

1

|r − r−
j | + 1

4π

∑

i

∂Φi,in

∂n

∮

Si

dA
∂

∂nj

1

|r − r−
j |

(18.88)
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∂

∂nj
Φout(r+

j ) = 1

4π

∑

i

Φi

∮

Si

dA
∂2

∂n∂nj

1

|r − r+
j |

− 1

4π

∑

i

∂Φi,out

∂n

∮

Si

dA
∂

∂nj

1

|r − r+
j | . (18.89)

In addition to (18.82) we have now

∮

Si

dA
∂2

∂n∂nj

1

|r − r−
j | =

∮

Si

dA
∂2

∂n∂nj

1

|r − r+
j | (18.90)

and the sum of the two equations gives

(
1 + 1

ε1

)
∂

∂nj
Φin,j

= ∂

∂nj

⎛

⎝
∫

V
dV

ρ(r)
4πε0|r − rj| + 1 − 1

ε1

4π

∑

i �=j

Ai
∂Φi,in

∂n

1

|ri − rj|

⎞

⎠

+ 1 + 1
ε1

2π

∂Φj,in

∂n
(18.91)

or finally

∂

∂nj
Φin,j = 2ε1

ε1 + 1

∂

∂nj

∫

V
dV

ρ(r)
4πε0|r − rj|

+ 2
ε1 − 1

ε1 + 1

∑

i �=j

Ai
∂Φi,in

∂n

∂

∂nj

1

|ri − rj| . (18.92)

In terms of the surface charge density this reads:

σ′
j = 2ε0

(1 − ε1)

(1 + ε1)

⎛

⎝−njgrad
∫

dV
ρ(r)

4πε0|r − r′| + 1

4πε0

∑

i �=j

σ′
iAi

nj(rj − ri)

|ri − rj|3

⎞

⎠ .

(18.93)

This system of linear equations can be solved directly or iteratively (a simple damping
scheme σ′

m → ωσ′
m + (1 − ω)σ′

m,old with ω ≈ 0.6 helps to get rid of oscillations).
From the surface charges σiAi the potential is obtained with the help of (18.75).
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18.4 Boundary Element Method for the Linearized
Poisson–Boltzmann Equation

We consider now a cavity within an electrolyte. The fundamental solution of the
linear Poisson–Boltzmann equation (18.63)

Gκ(r − r′) = − e−κ|r−r′|

4π|r − r′| (18.94)

obeys

div gradGκ(r − r′) − κ2Gκ(r − r′) = δ(r − r′). (18.95)

Inserting into Green’s theorem (18.69) we obtain the potential outside the cavity

Φout(r′) = −
∮

S
dA

(
Φout(r)

∂

∂n
Gκ(r − r′) − Gκ(r − r′)

∂

∂n
Φout(r)

)
(18.96)

which can be combined with (18.74, 18.79) to give the following equations [238]

(1 + ε1)Φ(r′) =
∮

S
dA

[
Φ(r)

∂

∂n
(G0 − ε1Gκ) − (G0 − Gκ)

∂

∂n
Φin(r)

]

+
∫

cav

ρ(r)
4πε0|r − r′|dV (18.97)

(1 + ε1)
∂

∂n′ Φin(r′) =
∮

S
dAΦ(r)

∂2

∂n∂n′ (G0 − Gκ)

−
∮

S
dA

∂

∂n
Φin(r)

∂

∂n′

(
G0 − 1

ε1
Gk

)
+ ∂

∂n′

∫

cav

ρ(r)
4πε|r − r′|dV . (18.98)

For a set of discrete boundary elements the following equations determine the values
of the potential and its normal derivative at the boundary:

1 + ε1

2
Φj =

∑

i �=j

Φi

∮
dA

∂

∂n
(G0 − ε1Gκ) −

∑

i �=j

∂

∂n
Φi,in

∮
dA(G0 − Gκ)

+
∫

ρ(r)
4πε0|r − ri|dV (18.99)

1 + ε1

2

∂

∂n′ Φi,in =
∑

i �=j

Φi

∮
dA

∂2

∂n∂n′ (G0 − Gκ)

−
∑

i �=j

∂

∂n
Φi,in

∮
dA

∂

∂n′

(
G0 − 1

ε1
Gk

)
+ ∂

∂n′

∫
ρ(r)

4πε|r − ri|dV . (18.100)
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The situation is much more involved than for the simpler Poisson equation (with
κ = 0) since the calculation of many integrals including such with singularities is
necessary [238, 239].

18.5 Electrostatic Interaction Energy (Onsager Model)

A very important quantity in molecular physics is the electrostatic interaction of a
molecule and the surrounding solvent [240, 241]. We calculate it by taking a small
part of the charge distribution from infinite distance (Φ(r → ∞) = 0) into the
cavity. The charge distribution thereby changes from λρ(r) to (λ + dλ)ρ(r) with
0 ≤ λ ≤ 1. The corresponding energy change is

dE =
∫

dλ · ρ(r) Φλ(r)dV

=
∫

dλ · ρ(r)

(
∑

n

σn(λ)An

4πε0|r − rn| +
∫

λρ(r′)
4πε0|r − r′|dV ′

)
dV . (18.101)

Multiplication of the equations (18.93) by a factor of λ shows that the surface
charges λσn are the solution corresponding to the charge density λρ(r). It follows
that σn(λ) = λσn and hence

dE = λdλ

∫
ρ(r)

(
∑

n

σnAn

4πε0|r − rn| + ρ(r′)
4πε0|r − r′|dV ′

)
. (18.102)

The second summand is the self energy of the charge distribution which does not
depend on the medium. The first summand vanishes without a polarizable medium
and gives the interaction energy. Hence we have the final expression

Eint =
∫

dE =
∫ 1

0
λdλ

∫
ρ(r)

∑

n

σnAn

4πε0|r − rn|dV

=
∑

n

σnAn

∫
ρ(r)

8πε0|r − rn|dV . (18.103)

For the special case of a spherical cavity with radius a an analytical solution by a
multipole expansion is available [242]

Eint = − 1

8πε0

∑

l

l∑

m=−l

(l + 1)(ε1 − 1)

[l + ε1(l + 1)] a2l+1
Mm

l Mm
l (18.104)
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with the multipole moments

Mm
l =

∫
ρ(r, θ,ϕ)

√
4π

2l + 1
rlYm

l (θ,ϕ)dV . (18.105)

The first two terms of this series are:

E(0)
int = − 1

8πε0

ε1 − 1

ε1a
M0

0 M0
0 = − 1

8πε0

(
1 − 1

ε1

)
Q2

a
(18.106)

E(1)
int = − 1

8πε0

2(ε1 − 1)

(1 + 2ε1)a3
(M−1

1 M−1
1 + M0

1 M0
1 + M1

1 M1
1 )

= − 1

8πε0

2(ε1 − 1)

1 + 2ε1

μ2

a3
. (18.107)

18.5.1 Example: Point Charge in a Spherical Cavity

Consider a point charge Q in the center of a spherical cavity of radius R (Fig. 18.17).
The dielectric constant is given by

ε =
{

ε0 r < R
ε1ε0 r > R

. (18.108)

Electric field and potential are inside the cavity

E = Q

4πε0r2
Φ = Q

4πε0r
+ Q

4πε0R

(
1

ε1
− 1

)
(18.109)

and outside

E = Q

4πε1ε0r2
Φ = Q

4πε1ε0r
r > R (18.110)

Fig. 18.17 Surface charges
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Fig. 18.18 (Solvation
energy with the boundary
element method) A spherical
cavity is simulated with
radius a = 1Å which
contains a point charge in its
center. The solvation energy
is calculated with 25 × 25
(circles) and 50 × 50
(squares) surface elements of
equal size. The exact
expression (18.106) is shown
by the solid curve
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which in terms of the surface charge density σ is

E = Q + 4πR2σ

4πε0r2
r > R (18.111)

with the total surface charge

4πR2σ = Q

(
1

ε1
− 1

)
. (18.112)

The solvation energy (18.103) is given by

Eint = Q2

8πε0

(
1

ε1
− 1

)
(18.113)

which is the first term (18.106) of the multipole expansion. Figure 18.18 shows
numerical results.

Problems

Problem 18.1 Linearized Poisson–Boltzmann Equation

This computer experiment simulates a homogeneously charged sphere in a dielec-
tric medium (Fig. 18.19). The electrostatic potential is calculated from the linearized
Poisson Boltzmann equation (18.65) on a cubic grid of up to 1003 points. The poten-
tial Φ(x) is shown along a line through the center together with a log-log plot of the
maximum change per iteration
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Fig. 18.19 Charged sphere
in a dielectric medium
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Fig. 18.20 Point charge
inside a spherical cavity
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z

|Φ(n+1)(r) − Φ(n)(r)| (18.114)

as a measure of convergence.
Explore the dependence of convergence on

• the initial values which can be chosen either Φ(r) = 0 or from the analytical
solution

Φ(r) =
{

Q
8πεε0a

2+ε(1+κa)

1+κa − Q
8πε0a3 r2 for r < a

Qe−κ(r−a)

4πε0ε(κa+1)r for r > a.
(18.115)

• the relaxation parameter ω for different combinations of ε and κ
• the resolution of the grid

Problem 18.2 Boundary Element Method

In this computer experiment the solvation energy of a point charge within a spherical
cavity (Fig. 18.20) is calculated with the boundary element method (18.93).
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The calculated solvation energy is compared to the analytical value from (18.104)

Esolv = Q2

8πε0R

∞∑

n=1

s2n

R2n

(ε1 − ε2)(n + 1)

nε1 + (n + 1)ε2
(18.116)

where R is the cavity radius and s is the distance of the charge from the center of the
cavity.
Explore the dependence of accuracy and convergence on

• the damping parameter ω
• the number of surface elements (6 × 6 · · · 42 × 42) which can be chosen either as

dφdθ or dφd cos θ (equal areas)
• the position of the charge
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