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Abstract. In this study, we simulated a manual assembly operation, where
participants were exposed to two distinct ways of information presentation,
reflecting two task conditions (monotonous and more demanding task condi-
tion). We investigated how changes in mental workload (MWL) modulate the
P300 component of event-related potentials (ERPs), recorded from wireless
electroencephalography (EEG), reaction times (RTs) and quantity of task
unrelated movements (retrieved from Kinect). We found a decrease in P300
amplitude and an increase in the quantity of the task unrelated movements, both
indicating a decrease in attention level during a monotonous task (lower MWL).
During the more demanding task, where a slightly higher MWL was imposed,
these trends were not obvious. RTs did not show any dependency on the level of
workload applied. These results suggest that a wireless EEG, but also Kinect,
can be used to measure the influence of MWL variation on the cognitive state of
the workers.

Keywords: Wireless EEG � Kinect � Reaction times � Mental workload �
Attention

1 Introduction

Modern industry tends to automate industrial processes to a wide extent in order to
optimise mental workload imposed on the operators. However, the industry still con-
sists of many processes where automation does not apply. This is especially notable in
assembly tasks and processes where costs related to the process automation are

© Springer International Publishing AG 2017
L. Longo and M.C. Leva (Eds.): H-WORKLOAD 2017, CCIS 726, pp. 213–224, 2017.
DOI: 10.1007/978-3-319-61061-0_14



generally not justifiable [1]. Manual assembly work is often repetitive and monotonous
and as such, it carries low mental workload (MWL). Importantly, mental underload can
be as dangerous as overload [2, 3] because the probability of error occurrence and
MWL exposure are mutually related, according to the U-shaped curve [4], i.e. extre-
mely high/low MWL increases the probability of error occurrence, while the optimal
MWL leads to the smallest probability of error occurrence. Therefore, there is an
increasing need to find the methodology for objective assessment of the influence of
MWL on human operators for both the automated and manual processes. Human
factors and ergonomics (HF/E) is the scientific discipline that investigates the inter-
action between system and human operators [5–7]. Classical ergonomics’ approach to
studying human cognitive state and the interaction between humans and operating
systems mainly utilises qualitative and subjective methods, such as questionnaires and
measurements of overt performance [8]. However, these methods are often unreliable
and unable to investigate the covert cognitive processes of workers during their
everyday routine in industrial environments [8]. For that reason, neuroergonomics
emerged as a novel path in ergonomics research [8, 9]. Neuroergonomics merges
knowledge from ergonomics and neuroscience, and it is defined as the science disci-
pline that studies the human brain in relation to work [10].

One of the most powerful neuroimaging methods in neuroergonomics research is
electroencephalography (EEG), since wireless EEG is capable of direct recording of
electrical brain activity in real world [11]. A commonly employed EEG method for
evaluating cognitive state is the extraction and investigation of event related potentials
(ERPs). ERPs are defined as voltage fluctuations in continuous EEG signal that are
associated in time with certain physical or mental occurrences [12]. ERP components
are usually defined in terms of polarity, and latency with respect to a discrete stimulus,
and have been found to reflect a number of distinct perceptual, cognitive and motor
processes. In that sense, the so-called P300 component is represented by the positive
deflection in terms of voltage, appearing around 300 ms after the stimulus presentation
[13]. The P300 component is often used to identify the depth of cognitive information
processing and is not influenced by the physical attributes of the stimuli [13]. For these
reasons, the P300 ERP component is assumed to reflect the attention level of the person
[14] and its amplitude is modulated by mental workload [15].

It is important to stress that the goal of neuroergonomics is not only to investigate
the brain’s functions, but also to put it in the context of human behavior in everyday
environments [9]. As such, it is important to investigate the neural basis of physical
performance, e.g. body movements and reaction times (RTs). Traditionally, RTs were
used to estimate the cognitive state of the person. The main reason behind the wide use
of RT measurements is that they are easy to measure and simple to interpret [16]. RT
represents a time interval from the indicated start of a work process or operation
(stimulation), until the moment of the action initiation. However, as it was pointed out
in [17], reaction-time experiments usually consist of a stimulus followed by the
response, without direct possibility to observe the mental processing that occurs in
between.

Physical performance measurements are ubiquitous in ergonomics studies, mainly
in the domain of physical ergonomics. These became even more prominent with rapid
development of the motion capture (MoCap) sensors that are nowadays affordable and
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unobtrusive. The majority of research related to operators’ motion is related to posture
estimation or action recognition [18], while significantly less studies are oriented
towards linking cognitive processes to motor actions. One study that investigated the
relationship between gestures and the cognitive state of the person showed that during
the task that carries less mental workload, the quantity of the task unrelated movement
increases [19]. This study investigated behavioral activity offline and indirectly, since
the participants were recorded with a video camera and manual analysis was subse-
quently performed with replaying the video [19]. Advances in computer vision tech-
nology (namely structured light technology) nowadays allows for automated analysis.
This enabled us to develop and use a simple behavioral model, based on movement
energy (ME; [20]). Ultimately, the combination of brain dynamics and behavioral
modalities can open a deeper understanding of the influence of the mental workload on
human mental states during complex work activities [21].

The aim of the present study is to investigate how changes in mental workload
during a simulated industrial manual assembly task are influencing the P300 ERP
component’s amplitude, but also the behavioral modalities of RTs and ME. We
investigated the influence of the task duration on these modalities, where the expectation
was that the ME and RTs should show an increasing trend, while the P300 component’s
amplitude should decrease as the task progresses. Additionally, we investigated whether
the changes in mental workload modulate the P300 component’s amplitude.

2 Methods

2.1 Participants

Ten subjects, aged between 19 and 21 years old. volunteered as participants in the
study. Participants were instructed not to drink any alcohol on the day before and the
day of their participation in the study, as well as not to drink coffee at least three hours
prior to their participation in the study. All participants had normal or
corrected-to-normal vision. They had agreed to participation and had signed the
informed consent, after reading the experiment summary. The study was approved by
the Ethical Committee of the University of Kragujevac.

2.2 Replicated Workplace

Reliable EEG recording still relies on wet electrodes, thus the on-site industrial EEG
recording still represents a big challenge, since it may cause discomfort to the workers
on the industrial floor. For that reason, we replicated a workplace (Fig. 1) in the
building of the Faculty of Engineering (University of Kragujevac) and we simulated the
production process of the rubber hoses, used in the hydraulic brake systems in auto-
motive industry. Once the replicated workplace was created, the participants in the
study were equipped with the wearable EEG. Participants’ movements were recorded
using Kinect sensor, which was placed in front and above the participants. Foot switch
was used with the aim of recording the RTs, as will be explained in Sect. 2.7. The
sensor placement is presented in Fig. 1.
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2.3 Sensors Used in the Study and Multimodal Synchronization

EEG data were recorded with the SMARTING (mBrainTrain, Serbia) wireless EEG
system. The small and lightweight EEG amplifier (85 � 51 � 12 mm, 60 g) was
tightly connected to a 24-channel electrode cap (Easycap, Germany). The communi-
cation between the SMARTING and the recording computer was established through a
Bluetooth connection. The electrode cap contained sintered Ag/AgCl electrodes that
were placed based on the international 10–20 System. The experimental procedure
imposed that the electrode impedances must be set below 5 kX, which was confirmed
by the device acquisition software.

To investigate the body movements, we used the Microsoft Kinect sensor. Kinect
has a sampling frequency of 30 frames per second (fps) and it is capable of representing
the human body with a stick figure, where the most prominent human body joints (e.g.
shoulder, elbow) are represented with the key-points. For this study, we used a 10
key-point seated model, since in the experimental setup. the replicated machine
occluded the lower part of the participants’ body.

To synchronize the data coming from different, above-mentioned, sensors, we used
the Lab Streaming Layer (LSL) framework (https://github.com/sccn/labstreaminglayer).
As explained in [21], LSL is a real-time data collection and distribution system that
allows multiple continuous data streams as well as discrete marker timestamps to be
acquired simultaneously by Lab Recorder, in an eXtensible Data Format (XDF). This
data collection method provides synchronous, precise recording of multi-channel,
multi-stream data that are heterogeneous in both type and sampling rate [21], and all of
the sensors mutually communicate over a local area network (LAN).

Fig. 1. Replicated workplace and the sensors placements
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For running the experimental tasks (explained in detail in Sect. 2.4) we used the
SNAP environment. SNAP allows relatively simple, script-level development of
complex, interactive experimental paradigms and it can retrieve the signals from var-
ious input devices. This feature was used to attach the foot switch through a USB port
to the recording computer, with the aim of recording the RTs. with the aim of
extraction of the behavioral modality of RTs.

The overall system architecture for synchronous recording of all described streams
is graphically depicted in Fig. 2.

2.4 Experimental Task

Simulated Assembly Task
In the production process, an operator carries out the crimping operation in order to join
a metal extension to a rubber hose. This single operation, carried out in a sitting
position, consists of eight simple steps (actions). The simulated operation consists of
eight major production steps that can be summarised as follows (Fig. 3): first, the
information to initiate the simulated assembly operation is presented to the participant,
in the form of visual stimulus (step 1), upon which he is instructed to instantly initiate
the operation by taking the metal part (step 2) and the rubber hose (step 3). Following
this, participants should place the metal part on the hose (step 4) and place both inside
the crimping machine (step 5). The participants then proceed by promptly pressing the
pedal, which initiates the improvised machine and replicates the real machines’
crimping sound (step 6). Upon completion of the simulated crimping process, the
participant removes the component and places it in the box with completed parts (step
7). Finally, the participant sits still and waits for subsequent stimulus (step 8).

Experimental Procedure
Experimental procedure was similar for all the experiments and it was described in
detail in [11]. The participants were subjected to the modified sustained attention to

Fig. 2. Overall system architecture
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response task (SART) and Arrows task, simultaneously with the simulated task. The
tasks were balanced across the participants and duration of each task was around one
and a half hours, upon which the participants had a 15 min break, before starting the
second task. Both tasks were presented on a 24” screen from a distance of approxi-
mately 100 cm. Upon presentation of the stimuli on the screen, the participants were
instructed to complete the previously explained assembly operation.

As explained in [11], the original SART paradigm consists of consecutively pre-
senting digits from ‘1’ to ‘9’ and participants are required to give the speeded response
on all stimuli, with the exception of digit ‘3’. The main difference between the original
SART and in modified SART paradigm is that the digits in Numbers are randomized,
with the condition that forbid the appearance of two consecutive digits ‘3’ (‘no-go’
stimulus) and in between two ‘no-go’ conditions at least two ‘go’ conditions must
appear. The participants in the study were instructed to initiate the assembly operation as
soon as the digit appeared on the screen, with whichever hand they felt more com-
fortable (they could freely choose, previously explained step 2 and 3, presented in
Fig. 3).

The Arrows task was presented and explained in [11]. The Arrow task is a choice
reaction “go/no-go” task, where the arrows pointing to the left and right appear on the
screen; the white arrows represent the ‘go’ (target) condition, whereas the red arrows
represent the “no-go” stimulus. Similarly to the SART task, the stimuli sequence in
Arrows was randomised with the condition that forbade two consecutive appearances of
the “no-go” stimuli. Contrary to SART, the participants were required to initiate the
action altering the hand according to the direction in which the white arrow on the screen
was pointing, i.e. in the Arrows task the participants should initiate the action with the
right hand (step 2) if the white arrow is pointing to the right, or with the left hand (step 3)
if pointing left. Regardless of the task, all the stimuli were presented for 1000 ms on a
black screen background. Each task consisted of 500 stimuli, where the probability of
the appearance of the ‘no-go’ stimuli was set to 10% (50 in total), while the ‘go’ stimuli
were presented 450 times.

Fig. 3. Graphical presentation of the step-by-step simulated crimping operation (Color figure
online)
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2.5 EEG Processing

EEG signal processing was performed offline using EEGLAB [20] and MATLAB
(Mathworks Inc., Natick, MA, USA). EEG data were first bandpass filtered in the 1–
35 Hz range, followed by re-referencing to the average of the TP9 and TP10 channels.
Further, an extended Infomax Independent Component Analysis (ICA) was used to
semi-automatically attenuate contributions from eye blinks [21]. After the data pre-
processing, ERP epochs were extracted from −200 to 800 ms with respect to times-
tamp values of “go” and “no-go” stimuli. Baseline values were corrected by subtracting
mean values for the period from −200 to 0 ms from the stimuli occurrence. The
identified electrode sites of interest for the ERP analysis in this study were Fz, Cz, CPz
and Pz, as the P300 component is most prominent over the central and parieto-central
scalp locations [14]. The P300 amplitude was calculated for both the “go” and “no-go”
conditions and for each experimental condition, using mean amplitude measure [12] in
the time window from 350 to 450 ms, with regard to the timestamps of the stimuli.

2.6 Movement Energy (ME) Calculation

During the simulated assembly operation, the upper-body movement of participants
was recorded with the Kinect. The Kinect was placed in a position above and in front of
participants (as shown in the Fig. 1). The motion data are acquired in a form of a stick
figure with the 10 key-points seated model that represent the joints of the upper body.

Automatic quantification of the task unrelated ME was based on the kinetic energy
of the key-points. The motion data were extracted and analyzed in the period between
the operators’ completion of each operation and the consecutive stimuli that was pre-
sented to the participants (Step 8, Fig. 3). In that period, the participants had no pre-
scribed activity and the expectation was that they would spend that time relatively still.
Further, the kinetic energy of movement was calculated for each simulated operation
and for each of the key-points in all-three axes (as explained in [20]). Finally, the ME
for each trial was calculated as the summation of kinetic energies in all three axes.

2.7 Reaction Times

The experimental design did not allow subjects to react to the button press on seeing the
visual ‘go’ stimulus, thus the reaction time (RT) could not be measured in the traditional
way (as the time elapsed between the stimulus presentation and the speeded response by
the participants). For that reason, RTs in our study were defined as the time elapsed
between the stimulus presentation (step 1) and the foot switch press (step 6 from Fig. 3).
This allows the calculation of RTs, as the difference between timestamps from simu-
lated operation initiation and the beginning of the machine simulated crimping process.

2.8 Statistical Analysis

Prior to statistical analysis, we averaged our data using a 15-point and one-step moving
average window, as explained in [22]. The statistical analysis was performed using
IBM SPSS software. We performed Spearman correlation in order to investigate the
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changes in behavioral and neural features as the time of the task progressed, i.e. the
general trend of P300 amplitude, RTs and ME.

Additionally, in order to investigate whether the mental workload modulates the
P300 amplitude, we performed a paired t-test between P300 amplitude in SART and
the Arrows task, on four electrode sites of interest (Fz, Cz, CPz, Pz). It is noteworthy
that we compared the values of P300 amplitudes only in the “go” condition.

3 Results

The Spearman correlation results are presented in Table 1. These results revealed the
general negative trend of RTs, regardless of the task and order of the task presentation.
Regarding other modalities, the ME data showed a positive trend, whereas the P300
amplitude showed a negative trend in most of the task conditions, with an exception in
the case of the arrows task presenting as the second task, i.e. when a more demanding
task was following the monotonous task.

The general trends of P300 amplitude at the Pz electrode location and ME are
graphically shown in Fig. 4. Regarding the P300 amplitude’s analysis, we found that
P300 component’s amplitude in the “go” conditions elicited higher P300 amplitude in
the Arrows task, compared to the SART task (p < .05). The t-test results for all four
electrode sites are provided in Table 2.

4 Discussion

In this study, we investigated the influence of mental workload on the cognitive state of
the workers during the manual assembly operations. We imposed two different levels of
mental workload on the workers during the simulated manual assembly operations and
observed its effect on the behavioral modalities of ME and RTs, as well as on the
modulation of the P300 component’s amplitude. P300 component’s amplitude and ME
showed comparable results. From Table 1 and Fig. 4, it can be seen that the P300
amplitude is decreasing during the task, reflecting that the attention of the participants is
showing negative trend, the amount of the task unrelated movement (ME) is increasing
in almost all experiment conditions (also shown in Fig. 4). These results are in line with
our hypothesis that the amount of task unrelated movement should increase during the
monotonous task [19], while the P300 amplitude is expected to decrease. The exception
from the general trend is the experimental condition in which the task that carries higher

Table 1. Spearman correlation results

Task/task order ME RTs Fz
P300

Cz
P300

CPz
P300

Pz
P300

SART first .512** −.309** −.501** −.538** −.567** −.595**

SART second .473** −.277** −.274** −.375** −.218** −.217**

Arrows/first .183** −.322** −.693** −.621** −.593** −.531**

Arrows/second −.265** −.194** .311** .385** .414** .546**
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MWL (Arrows) is performed upon completion of the more monotonous (SART) task.
The difference in MWL is the consequence of the choice action in the Arrows task that
does not exist in the SART task. Our results suggest that if the more monotonous task is
followed by the more demanding task, the amount of the task unrelated movements is
decreasing, while at the same time, there is a positive influence on the participant’s
attention level, as the P300 amplitude shows an increasing trend as the task progresses.
Additionally, the t-test revealed that the P300 amplitude elicited during the Arrows was
of higher magnitude than during the SART task. This can be expected, since in the
Arrows task the participants are exposed to slightly higher demands of the arriving
stimuli evaluation, as they are unaware of the arrow stimuli direction. On the contrary,
the digit stimuli from SART task carries significantly lower information, which can

Table 2. T-test results for P300 amplitude comparison between the task conditions
(Arrows/SART task) and for all electrode sites under study.

Electrode site Task N Mean STD STD error mean

Fz Arrows 40 4.45 5.23 0.70
SART 40 2.38 5.04 0.67

Cz Arrows 40 4.81 4.70 0.63
SART 40 2.57 4.85 0.65

Cpz Arrows 40 5.35 4.32 0.58
SART 40 2.76 3.99 0.53

Pz Arrows 40 6.36 4.17 0.56
SART 40 3.22 3.41 0.46

Fig. 4. graphical representation of general trends of P300 amplitude from Pz electrode site (red
color) and ME (black color). (Color figure online)
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cause the participants to stop evaluating the content of the stimuli after some time [11],
i.e. in SART task participants should just pay attention to whether it is a “go” or “nogo”
condition, while in the Arrows task they should also pay attention to which hand they
will initiate the operation. All these results confirm our hypothesis that the modulation of
mental workload also modulates the P300 amplitude, but also ME. On the other hand,
we found that the RT results did not depend on the level of the imposed mental
workload. Although we hypothesised that RTs will decrease over the time course of the
task, they showed a negative trend in all cases under study, i.e. the participants were
faster in executing the task as the experiment progressed. This may not be surprising,
since the participants in the study were students, without any prior working experience
in similar tasks. Therefore, the decrease of the RTs can be attributed to the effect of
rehearsing [23], as the students seemed to become increasingly familiar with the sim-
ulated assembly operation.

The results from this study suggest that the overt performance monitoring, as
observed through RTs, may not be reliable enough, since we did not observe any
difference in reaction times between different experiment conditions. Notably, this
finding is in line with one of the main premises of neuroergonomics [8]. Additionally,
this study suggests that a slight increase in mental workload in a manual assembly
operation, compared to an entirely repetitive and monotonous task, has a positive
influence on the cognitive state of the operators. Finally, findings from this study may
be also implemented in the job rotation strategy in factories. Job rotations in assembly
lines are often proposed as a method of reducing the monotony of the task, thus
keeping the workers more focused [24]. We propose that job rotations on assembly
tasks should be organised in such a way to avoid cases in which a more demanding task
is followed by a task that is more monotonous in nature. However, this observation
should be investigated thoughtfully in future studies.

5 Conclusion

This study demonstrated how neuroergonomics methods can be successfully applied in
investigating the influence of changes in mental workload to the cognitive state of the
workers. The monotonous task showed a decrease in P300 component’s amplitude and
an increase in ME, both indicating a decrease in the attention level of a worker, as the
task progresses. It is noteworthy that in the more demanding task, this result was not
consistent. Furthermore, we also showed that the P300 amplitude was more prominent
in the task that carried a slightly higher cognitive demand, in comparison to a highly
monotonous and repetitive task. All these results suggest that the wireless EEG, but
also Kinect, can be successfully utilised in the measuring of the influence of mental
workload modulation on the cognitive state of the workers.
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