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Preface

The pervasive use of technologies in daily activities and working environments in the
last decade is defining a changed environment where the requirement for cognitive
resources seems to be increasing while the level of physical effort seems to be
decreasing. The rapid developments in the Internet of Things (IoT) and its novel
automation archetypes in cyber-physical systems as well as the upscaling of big data
analytical requirements are a few examples of underpinning elements marking an
increased cognitive demand on individuals to perform control tasks and achieve an
overview of the distributed systems we are required to monitor. The principal reason
for measuring mental workload is to quantify the mental cost of performing tasks and
its implications on human performance. The modeling of human mental workload
(MWL) can be used to inform the design of interfaces, technologies, and
information-processing activities better aligned to the human mental limited capacities.
Understanding the mechanisms of MWL, its main drivers, and how MWL affects
human performance is an open fundamental problem. Research on mental workload
can be traced back to the early 1960s; since then there have been hundreds of studies on
the measurement of mental workload. However, as pointed out by Wickens in this
volume, the scientific and industrial communities still need to be provided with a
validated set of models and metrics for MWL. There are many operational definitions
of MWL from various fields but they often disagree about its main contributing factors,
its dimensions, and the mechanism to aggregate these dimensions and their impact on
human performance. This trend is also confirmed by the best papers selected in this
book from the proceedings of H-WORKLOAD 2017: the First International Sympo-
sium on Human Mental Workload. The selected papers went through a strict review
process, with an average of four reviews for each paper. Some authors considered
task-specific dimensions, while others chose a combination of task- and user-specific
dimensions. Primary researchers have mainly employed self-reporting measurements or
a combination of psychophysiological techniques. However, the development of a
generally applicable model that manages to incorporate task, user, and context-specific
dimensions is yet to be achieved.

As pointed out by Hancock in one of the chapter in this volume, the development of
new models should consider subjective, task-objective, and physiological measures
together and not in an isolated way, so as to address the scope of cross validation.
Brookhuis’s contribution at the symposium recommended further efforts in the area of
convergence of various measurement techniques for MWL. Past and present research
on MWL modeling has had a tendency to focus on complex safety-critical systems
generating a plethora of simulations and applications that seems to be rather “ad hoc”
and specific to the domain or area of application (such as the models and measures
adopted in the rail, aviation, and nuclear industry etc.). However, various researchers in
other fields are now highlighting the need for robust and transferable MWL models for
predicting human performance employable for design purposes in everyday activities



and in domains like manufacturing of electronic goods, human–device interaction,
teaching, learning, and training, which are significantly different from the original
safety-critical ones.

This book endeavors to stimulate and encourage further discussion on mental
workload, its measures, dimensions, models, applications, and consequences. We
believe this discussion should be multidisciplinary, and not only confined to ergo-
nomics. It should be at the intersection of the fields of human factor, computer science,
psychology, neuroscience, and statistics. This book presents recent developments in the
context of theoretical models of MWL and practical applications aimed at task support
and MWL management in operations. Thus, the contributions have been organized in
two sections: models of MWL and applications.

The idea for the book and its central theme arose in the context of the First Interna-
tional Symposium on Mental Workload, Models and Applications (H-WORKLOAD
2017. We wish to thank all the people who helped in the Organizing Committee of the
First International Symposium on Mental Workload, Models and Applications
(H-WORKLOAD 2017), in particular Dr. Nora Balfe, Dr. Dervla Horgan, Dr. Sarah
Sharples, Dr. Bridget Kane, Ms. Paula Hicks, Mr. Rory Carrick, Dr. Leonard O’Sullivan,
Dr. Matjaz Galicic, Mr.MauriceWilkins, Ms. Alison Kay, Ms. EileenMurphy, andmany
more of the members of the Scientific Committee. We want to also thank the sponsors
of the event, the Irish Ergonomics Society, The ADAPT Center (Global Center for
Excellence in Digital Content and Media Innovation), without whom neither the con-
ference nor the book would have been realized. Our gratitude is extended to the Chartered
Institute of Ergonomics and Human Factors, the Dublin Institute of Technology, Science
Foundation Ireland, as well as all the reviewers of the Program Committee who provided
constructive feedback. A special thanks goes to the researchers and practitioners who
submitted their work and attended the event allowing us to meet and share our experi-
ences on this fascinating topic.

May 2017 Luca Longo
M. Chiara Leva
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Whither Workload? Mapping a Path for Its
Future Development

P.A. Hancock(&)

Department of Psychology, and Institute for Simulation and Training,
University of Central Florida, Orlando, FL 32816, USA

Peter.Hancock@ucf.edu

Abstract. I present a number of looming barriers to a smooth path of progress
for cognitive workload assessment. The first of these is the AID’s of workload
(i.e., association, indifference, and dissociation) between its various reflections
(i.e., subjective, physiological, and performance measures). The second is the
manner in which the time-varying change in imposed task demand links to the
workload response, and what specific characteristics of the former drive the
latter. The third is the persistent but largely unaddressed issue of the mean-
ingfulness of the work undertaken. Thus, does interesting and involving work
result in lower workload and vice-versa? If these foregoing and predominantly
methodological concerns can be overcome, then the utility of the workload
construct can continue to grow. If they cannot be resolved then workload
assessment threatens to be ineffective in a world which desperately requires a
valid and reliable way to index cognitive achievement.

Keywords: Cognitive workload � Neuropsychological assessment � Future
challenges

1 Introduction

From a radical materialist perspective, cognitive workload is an emergent property of
the active brain which is tasked with a mission of survival in an incompletely specified
and under-explained world. While I do not share such a philosophical stance com-
pletely (Hancock 2015),1 I am persuaded that this is the most promising foundation
from which to take our next pragmatic steps along the path of workload’s journey. And
of course, this voyage is not one simply of philosophical dispute and debate. Rather,
there are many, much more practical everyday issues involved here in solving the
problems of cognitive workload assessment. Consider only two examples. First, how
do we measure and remunerate cognitive work? We generally accept that in our
modern world the cognitive dimensions of work have grown and continue to grow
across the global society. We also know that for an economic system to flourish we

1 I am, rather, a real illusionist. That is, I subscribe to the existence of matter but believe all perceived
patterns in such matter are iatrogenic illusion. Such illusions are embedded in the standard narrative
of living existence, the final illusion of which is time. As a tool, time can be a useful servant but a
poor master.

© Springer International Publishing AG 2017
L. Longo and M.C. Leva (Eds.): H-WORKLOAD 2017, CCIS 726, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-61061-0_1



have to be able to specify what connotes value. So how we measure, index and reward
cognitive achievement is not a question simply for the hallowed halls of academe.
Actually, it is front and center on the Wall Streets and Main Streets around the world.
A second example of such practical concerns revolves around the issue as to how much
cognitive load can one individual, or team of individuals sustain before they become
incapacitated and/or unable to respond effectively. Such a concern is central to many
systems which inevitably have to place high demands on these operators in both normal
and emergency situations. Knowing these thresholds and ‘redlines’ may well help in
alleviating incipient disaster. So, while we behavioral scientists research and discourse
about the fundamental nature of cognitive workload, the world awaits. Whether it
realizes it or not, or acknowledges this dependence explicitly or not, greater society
needs reliable and valid methods to assessment workload.

As an emergent brain state, workload does not stand alone. It has a number of
closely related conceptual cousins. Stress, anxiety, and fatigue among many others are
each socially recognized cognitive attributes about which sufficient people express
sufficient agreement so that we persist in considering them concepts of interest and
even states of objective reality. Alongside these ‘energetic’ descriptors sit allied terms
such as (i) attention (e.g., Wickens 2002), (ii) situation awareness (e.g., Endsley 1995)
and (iii) consciousness (e.g., Smith and Hancock 1995) each of which similarly
describe specific, discrete aspects of emergent states of mind. It is one of the central
conundrums of all psychology to distill how each of these concepts relate one to
another, and which possess precedence in the materialist cause and effect phe-
nomenology. Questions intrinsic to this multi-dimensional Venn diagram populate our
own particular area of scientific discourse since, as a group, we are primarily concerned
with understanding human behavior. Thus, questions like, do you have to be conscious
to possess situation awareness? Can we pay attention to our own stress to the exclusion
of the demands of the greater environment? And most trenchantly for the present
discussion, to what degree does attention mediate and/or moderate the experience of
workload? Such puzzles tend to concern us particularly. We can all generate potential
answers to the foregoing interrogatories, but the degree to which they apply to one
single individual (such as yourself for example) and can then be expressed across the
whole human population, is one of the primary intellectual challenges that fuels our
specific scientific enterprise. And again, the world is watching, as evidenced by almost
any of the contemporary, lurid newscasts which tragically revel in the most recent and
noteworthy systemic failure in which shortfalls to human response capacities are
invoked as the primary causal mechanism (e.g., the ubiquitous, human error).

Conceptual foundations are important of course. However, in the present work I
want to explore three very specific and very practical issues which represents barriers to
our immediate road to understanding. The first is concerned with what happens when
we witness divergent information from our various workload measurement techniques
and sources. That is, what happens when differing reflections of cognitive workload
disagree with each other. Here, the empirical picture can quickly become very confused
and confusing. Thus, I look to bring some order to counteract this confusion and offer a
descriptive taxonomy which provides an initial parsing of the panoply of the differing
possible patterns that may be observed. Second, I want to offer up some potential
reasons for these problematic association-insensitivity-dissociation patterns and some
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avenues of potential progress by which we might recognize systematic resolutions.
Finally, I want to consider the thorny issue of the meaning of work (and see Hancock
1997). With respect to the latter concern, we have to date, in large part, treated task
demand as some rather antiseptic and sterile conception. Either we choose prototypical
‘psychological’ tasks (e.g., a Sternberg memory task) and then claim that results
derived from such experiments somehow generalize to actual work contexts, or we
explore some specific, complex (often military) mission whose generality is highly
limited. Even for these two putative ‘testbeds,’ the value and meaning of the work itself
can vary wildly. The source of motivation in such research investigations is often
extrinsic to the task (e.g., course credit, TDY completion). The nature of the work
undertaken, whether adverse and imposed, or pleasant and sought by the individual, is
rarely factored into workload assessment. Here, I want to argue for the important, if
daunting, inclusion of this dimension of meaning into our future deliberations. I con-
clude with some observations concerning specific future avenues of progress and
remarks about the continuing importance of workload, even in a world that is threat-
ened to be overrun with automation and autonomy (Hancock 2014; 2017).

2 Associations, Insensitivities and Dissociations: The AID’s
of Workload

One of the greatest challenges to be faced by the evolving workload domain concerns the
degree of convergence, and/or divergence, and/or insensitivity across the multiple
approaches that have been employed to measure it. The three primary reflections of
workload have traditionally been couched in terms of (1) primary task performance
(2) subjective perceptions and (3) physiological responses (Hancock andMeshkati 1988;
Meshkati et al. 1989; Moray 1979). Each of these respective categories has, contained
within it numerous possible elements (i.e., specific methods such as, TLX, fNIR, Error
Rate, etc.). Thus, primary tasks are typically indexed by representations of Efficiency,
Error, Time, etc. We have extensive experience with response speed and response
accuracy and have reason to believe that we have a solid foundation in such forms of
assessment (see e.g., Fitts 1954; Hancock and Newell 1985). Similarly, we have some
decades or more experience in eliciting subjective perceptions of events. Finally, and to a
degree more recent, we have vastly increased our armory of physiological assessment
techniques. This increase is especially the case as new brain imaging capacities have
come on line. Let us then examine the patterns that can accrue when we employ the full
array of these measurement techniques to attack any particular problems to hand.

To accomplish this, let us imagine for a moment, a fairly straightforward experi-
ment. Across a defined period of time, the imposed demand of some particular task is
sequentially increased. Perhaps this is a driving task with the driver going from a quiet
sub-urban backwater onto an urban arterial and then onto a crowded, multi-lane
freeway. The context, pro tem, is not constrained and so you are free to imagine your
own example from your own specific domain if you wish. Now we look at the outcome
workload response. Here, we expect to see primary task measures show some form of
systematic decline, especially as the demand progressively increases. Perhaps the

Whither Workload? Mapping a Path for Its Future Development 5



variability of steering, reflected in lane positioning, goes up in the case I have cited.
Perhaps response time to unexpected ambient events slows and/or exhibits greater
error. Although the driver may adapt to such imposed demands, to the degree possible,
we might well envisage that eventually some reflection of the progressively increasing
task demand will become evident in changes in primary task response efficiency. Now
imagine that we ask that driver for their subjective assessment of this same progression.
We might well anticipate that on the leafy back roads they experience little perceived
workload but that it would increase with the transition to the arterial roadway and then
subsequently again to the freeway experience also. This direct mapping between the
primary task response and the subjective assessment is an example of what I have
called association (Hancock 1996). Now, suppose we also had the opportunity to
measure certain established physiological reflections of cognitive load and that these
measures also confirmed that the lowest workload occurred in the lowest demand and
the highest workload in the highest demand condition. This would be an example of
what I term here, double association (see Fig. 1). In workload terms, so far so good.
However, such associations and especially these double associations do not always
occur. In fact, such associations appear to be far from ubiquitous.

Fig. 1. The response to imposed task load by the three primary measures of workload, viz:
(i) primary task performance, (ii) subjective response, and (iii) physiological processes. Patterns of
association, insensitivity, and dissociation can be plotted within the identified taxonomic matrix.

6 P.A. Hancock



So, let us now take an intermediate case. Here again, the degradation in primary
performance efficiency tracks along with the increasing task demand, but now when we
ask people for their subjective assessment, they report no difference between the three
driving conditions. This is an example of what I have termed insensitivity, and to be
explicit, this case specifically it refers to subjective insensitivity since the expectation is
that both primary task performance and subjective response will track imposed task
demand. While there may be, and indeed are, many reasons why the link between the
task response and subjective perceptions of workload fail to agree, let us leave
explanatory constructs to the side for the moment and return to them later so that we
can complete the full descriptive picture. You might very well note, however, that in
this latter case of subjective insensitivity we still retain that other arrow in our
investigative quiver in the form of the aforementioned physiological measures. Let us
further suppose here that these latter measures now accord with the pattern of primary
response, but which relationship do we believe? Do we assume a form of scientific
democracy and go with the majority vote? But this may not be advisable, for after all,
as Gilbert (2005) has noted, in many ways it is the subjective reaction of the individual
which is the principle measure of concern since they actually compose the very
experiences of life. It leaves us in a methodological (and theoretical) quandary. But
there are further descriptive patterns yet to consider.

The illustration in Fig. 1 shows responses to imposed task demand by the three
primary measures of workload, viz: (i) primary task performance, (ii) subjective
response, and (iii) physiological processes. As a result of increasing task load, primary
task performance can show an improvement (+), stay the same (o), or decrease (−).
Similarly, subjective responses can indicate that with increasing task load the indi-
vidual can think the task is harder (−), the same (o), or even easier (+). The same
pattern adheres to physiological reflections (see Fig. 1). When workload responses
track to external task load we have associations, when reflections of workload do not
change with task load we have insensitivities. Finally, when workload measures con-
tradict the increase in the externally imposed task load (e.g., the task load increases but
the operator reports that it is getting easier), then we have dissociations (see also: Yeh
and Wickens 1988). Doubled associations, insensitivities and dissociations are also
possible as we shall see.

Now suppose, for the sake of consistency, that primary measures still directly
co-varied with what we have previously identified as increasing task demand2. But
now, the driver reports progressively less subjective workload, even as the primary
tasks measures indicate exactly the opposite. This represents an example of what I have
previously termed dissociation (Hancock 1996; see also Yeh and Wickens 1988). It is
not enough here that these differing reflections of workload do not agree (for that
pattern can also include insensitivities). Rather, they must actively contradict one
another. We might again choose to appeal to our suite of physiological reflections (if
we have taken them) as some form of arbiter, but in this specific instance, they provide

2 Of course, exactly how we determine, a priori, what represents increasing ‘task demand’ is itself an
issue fraught with the problem of subjective assessment. For the present example, I have based the
arguments on an assumption of increasing demand but need to acknowledge the potential flaws in
this foundation.
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no determining pattern. I refer to such collective disagreements as double dissociations.
These cases provide very problematic outcomes for our science. Of course, they are not
so prevalent in our experimental library as might be expected from pure random
distributions of outcomes. Understandably, positive associations are reported much
more frequently that these other patterns. However, there may well be a very con-
siderable ‘file-drawer effect’ in operation here. That is, we all have the tendency to
report the positive results. We also have a tendency to report consistent results, not
through some malevolent motive, but through the natural tendency to seek a coherent
narrative for our immediate findings. Further, in the editorial process, we are often
encouraged to provide a concise results section in which null associations (e.g.,
insensitivities) are often ‘lost’ or excised in the process.

Nor is this the worst case of dissociation or insensitivity. Imagine for a moment that
you have taken several reflections of each of the three major methods. You have
recorded both TLX and SWAT for subjective reflections, HRV and fNIR as physio-
logical measures, and time and accuracy as primary task response characteristics. Now
suppose that you encounter dissociations and insensitivities within each of these three
orders of measure. What do you do? How do you pick and choose between the
intra-method dissociations and insensitivities and the inter-method dissociations and
insensitivities? And, of course, some of the intra-method disagreements will now
negate some of the inter-method disagreements. This represents a conceptual,
methodological, and even moral conundrum. As a conscientious researcher, which do
you choose? It is why I refer to this whole concern as the AIDs of workload. Of course,
as is clear from the foregoing observations on inter- and intra-method conflicts, the
illustration in Fig. 1 underestimates the complexity of this overall issue. While it does
not feature the inter- versus intra-method concern, critically, it does it illustrate the
perennial and problematic issue of time. Hence, all such patterns of association,
insensitivity, and dissociation are contingent upon the time-scale at which they are
elicited. What are associations in one selected epoch can become dissociations in
another. This is particularly the case with punctate or monetary performance measures
(e.g., reaction time) compared to, for example, subjective measures which are often
summed (in memory) across a much longer period. As we shall see in the coming
discussion, there is strong reason to believe that each of these methods (and each of
their component elements) possess their own inherent time-scale and that certain, if not
many, of the associations, dissociations and insensitivities are contingent upon such
temporal differences. And to pile pain upon pain, I now have to return to the vexing
issue of context.

The reader will recall that, pro tem, I suspended contextual considerations. I did this
so that we could consider a full (if static) taxonomic description of all the general AIDs
patterns that can be experienced. However, I cannot pass over the issue of context
without at least some words of caution. There are many ways in which the context of
operations influence the workload response beyond the primary performance demand
alone. Humans are no simple linear transducers of imposed (input) loading (Hancock
and Warm 1989). Rather, their non-linear responses are complex and time-varying.
Efforts to understand contextual influences, in all their diversity and profundity has, in
our science, led to a more ready focus on the ‘systems’ approach to practical problem
resolution (see e.g., Carayon et al. 2015). In respect of such ‘systems’ perspectives,
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perhaps one of the primary, proximal concerns here revolves around the adaptive
capacity of the exposed individual. As I noted earlier, to a degree externally imposed
cognitive task demand can be absorbed by the inherent buffering capacity of the engaged
respondent with little or no overt evidence of change. To this extent, in the middle
ranges of externally imposed task demand, it is reasonable, at least a priori, to
hypothesize no significant change in any reflection of cognitive workload. Thus, in
driving a vehicle, which is predominantly a satisficed task, we may register no extra
variation in lane position, no overt change in throttle behavior, and even exhibit
capacities to respond to multiple tasks at modest levels of roadway demand without any
clear decrement. Drivers themselves may feel no different, and measures such as heart
rate variability will also exhibit no significant change with minor variations in imposed
task demand. This evidence of workload insensitivity to putative changes in objective,
externally imposed task demands does not then mean the individual is oblivious to, or
careless of, the task in front of them (and see Hancock and Caird 1993). It simply means
that the demand is insufficient to disturb what has been traditionally identified as
homeostatic balance. The simple fact here is that there is quite a large range of externally
imposed demands that will not induce workload changes in our grosser measures. It may
even be difficult in signal to noise terms, to pick up even minor response variations via
even much more sophisticated neurophysiological techniques. Thus, the very assump-
tion of a baseline of association is not necessarily a simple or straightforward one. Being
enmeshed in this forest of methodological mysteries, can we find a systematic path
forward? I think there is reason for hope that, in this case, we can.

3 Dimensions of the Workload Response

In the battle to increase our comprehension of, and use of, cognitive workload mea-
sures however, we should not seek to engage all of our forces on all fronts at the same
time. We need a road map for progress, but this does not mean dawdling along the path
to gorge on the putatively attractive “low hanging fruit.” What we require is a prin-
cipled exploration of the strengths and weaknesses of the respective tools we possess.
One important step along this path can be achieved by evaluating the respective
properties of the workload signal. Again, for illustrative purposes, I have shown this in
Fig. 2. Here, an operator’s response proves to be a combination of certain intrinsic
underlying rhythms (both acute and chronic) which are then adapted to the time-
varying environmental presentation of information. This compromise between internal
and external states is periodically updated as the individual seeks to calibrate their
response to the external demands that surround them and the goals that they themselves
possess. This action-reaction synthesis forms a general picture which acts as an
over-arching framework for the driving influences which are then more fully specified
in Fig. 3.

Figure 2 shows the compromise then between certain intrinsic operator rhythms,
which are driven by first, the internal variations and second, the imposed demands of an
external environment. Each of these have been expressed as a function of information
rate. Since intrinsic rhythms are overwhelmingly dealt with by implicit processes and
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Fig. 2. Compromise between certain intrinsic operator rhythms driven by internal variations of
differing intrinsic frequencies (rhythms at the bottom of the illustration), and the imposed
demands of an external environment (shown at the top of the illustration). The outcome is the
resultant, momentary operator capacity

Fig. 3. Some of the major demand characteristics that feature in eliciting workload response.
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are relatively regular in nature, they provide little in the way of explicit and formal
information (surprise). In contrast the external environment provides constant surprise
and the actions of the operator often actively seek such an important sources of novelty
and process it to the limits of their own individual capacity. The window in the
illustration features the step-wise nature of such up-dating processing as iterative
epochs of demand are resolved and updated in memory. Based upon the forgoing
general conception, we can now begin an examination of a number of potential triggers
of the workload response. Each of these are contingent upon the changing nature of
dynamic task demand. I have provided a limited number of examples of these triggers,
sufficient to engage discussion, but not so many as to exhaust it.

3.1 Trigger 1: Standard Statistical Properties of the Overall Pattern
of Demand

We can begin with the typical and traditional reflections that we have used. These are
composed of the standard statistical (moment-based) representations of demand dis-
tribution. I have shown these as the mean and standard deviation, denoted by Carayon
et al. (2015) in Fig. 3. It may be that cognitive workload responds to any one of these
single moment of the distribution (e.g., mean, SD, skewness, kurtosis, etc.), or it may
be that workload responds to a concatenation of more than one of these together (e.g.,
coefficient of variation) which thus prove influential. Our knowledge of these influ-
ences represent the largest body of reported understanding at the present time. But note
here that each of the cited distributional moments are time dependent. That is, their
absolute values co-vary with the time epoch over which they are recorded. We believe
in trends such as ‘regression to the mean,’ indicating an assumption of stability across
time or multiple observations. However, as regards to determining what specific ele-
ment of each statistical moment underlies the workload response we may have to look
further than such aggregated data to moment by moment response.

3.2 Trigger 2–3: Prospective of Retrospective Demand Patterns

What has begun to receive more experimental focus alongside the traditional mean and
standard deviation scores are the influences of retrospection (Fitts 1954) and
prospection (Flach and Voorhorst 2016). The former effect is a reflection of the
influence of memory. We might take it as evident that human beings are influenced by
their memory but there are powerful theories of human performance (e.g., signal
detection theory) in which the effects of memory are compartmentalized. My protes-
tation here is that both immediate (acute) experience and prolonged (chronic) memory
contents each have effects on the perceived workload of the moment. Since retro-
spection is thought to play an important role, so prospection also exerts potential
influences. Each of these effects (Fitts 1954; Flach and Voorhorst 2016), can be
envisaged as reflections of hysteresis. Such hysteretic effects have been the topic of a
series of recent investigations (see Jansen et al. 2016; Morgan and Hancock 2011; Prytz
and Scerbo 2015). These studies demonstrate, generally, that the remembered past and
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prospective future, experienced by the individual, each exert significant effects upon
the current level of cognitive workload. Such tendencies have been explored previously
(see Hancock et al. 1995) but it is only now that a more systematic body of evidence is
emerging. A strong step toward progress in workload research would be to generate a
much fuller comprehension of these temporally distal influences on momentary
reactions.

3.3 Trigger 4–6: Effects of Peak Experiences

If the memory of past events in general is pertinent to the momentary experience of
workload, it may well be that especially meaningful memories (or prospective antici-
pations for that matter) disproportionately affect the summed experience of workload
across a particular interval of performance. We see evidence of this in some of Kah-
neman’s work on pain perception during surgical procedures involving partial anes-
thetization (Kahneman 2011). By controlling incidents of peak pain, the overall
experience is rated as less aversive than when some moments of excruciation are
permitted. The analogy with workload, expressed in trend (Gilbert 2005), suggests that
minimizing such peaks of overload could reduce the overall workload reported. Pre-
cisely whether this amelioration is a good thing in relation to operator assessment in
mission critical situations is open to discussion. For example, it might be misleading to
underestimate exactly how arduous a particular task is solely by altering or manipu-
lating these rare ‘peaks’ of demand. Those designing such missions or tasks in the
future might then be misled into under-estimating the workload experienced. However,
such minimization may be valuable for mitigating some longer-term adverse health
effects of high workload. The principle here, which applies to overload, is presumed to
also be reflected in epochs of underload (Hancock 1997).

3.4 Trigger 5–7: Sensitivity to Rates of Change

One of the more well-established principles that we do have in the behavioral sciences
is that humans frequently prove more sensitive to change rather than the absolute level
of a stimulus array. If we translate this principle to the way in which task-load and
cognitive workload are linked then the rate of change in demand may be more
influential on perceived load than any stable, absolute level (e.g., mean demand). This
rate of change characteristic is shown as (Hancock 1996) in Fig. 3. This curve is meant
to be representative of all such differentiates, including all rates of change (e.g., curve
acceleration) also. Of course, many of these dimensions (Carayon et al. 2015; Fitts
1954; Flach and Voorhorst 2016; Gilbert 2005; Hancock 1996) follow or replicate
descriptions of tracking behavior in motor control. However, for cognitive reactions,
the association is rather less intimate since many imposed tasks are more punctate in
nature. In terms of such discrete changes in demand, the step function shown in
Hancock (2014) is representative of all such shifts in demand. This might, for example,
be the equivalent of adding a secondary or even tertiary task in driving. Such things as
answering a phone or responding to GPS instructions occur as momentary variations in
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task demand. In general, such demand profiles alter in the form of a square wave, rather
than a continuously varying analog signal such as the primary demand of vehicle
control which is, of course, a tracking task itself.

3.5 Trigger 5–7: Consciousness of Challenge and Recovery of Stability

In the same way that perceived workload may be sensitive to ‘peak’ demand (or of
‘peak’ underload) so it may be the absolute number of such memorable experiences in
any one performance session (Hancock 2015) that represents the key value that ties
perceived workload to imposed task load. Further, it may well also be where the level
of stability is established following any demand perturbation that is of prime impor-
tance (Hancock and Ergonomics 2017). Lastly, of the present examples I have illus-
trated (see Fig. 3), it may be the totality of the time spent in acute underload or acute
overload which proves critical for the mapping between imposed demand and expe-
rienced workload (Hancock and Caird 1993). As noted, these ten instances are
examples only and do not represent an exhaustive listing (and see Longo 2015). Yet,
some further comments are warranted. Firstly, the natural and intrinsic time-scale of
each of the varying methods of workload assessment means that some such workload
reflections will respond almost instantly. In contrast, others will possess a much longer
latency between the variation in task load and the outcome workload response. Some
measures, of course, are a summary of experiences across the whole task, mission, or
operation. Others occur within milliseconds. Our science must distinguish these dif-
fering latencies in order to assure that dissociations are not merely categorical,
time-scale errors. The illustration given in Fig. 3 shows the various characteristics that
could drive the outcome workload response. On the ordinate is the time of exposure, on
the abscissa is the fluctuating level of dynamic task demand. Workload may be driven
by any of the moments of the task load distribution across the epoch of interest (1). It
may also be sensitive to retrospective performance (2) or anticipated load (3). It may be
especially sensitive to peak events (4) or rates of change (5) or calibrated to periods of
acute underload (6). Workload may be driven by sudden, momentary step functions
(7), the sum of overload experienced (8), or the pitch of recovery; whether within or
outside stable limits (9). Workload may be sensitive to the total amount [as opposed to
discrete number of ‘peak’ events (10)]. This is not an exhaustive listing but indicates
the complexity of what can drive the workload response.

4 The Meaning of Work in Works of Meaning

In trying to understand workload as a response to task demands, we have to possess a
strong grasp on what the nature of those demands are. In short, we have to understand
the meaning of work (Hancock 1997). In the pragmatic aspiration to capture the
‘scientific’ flavor of workload, we have largely, albeit sometimes implicitly, relied
upon behavioristic antecedents and engineering conceptions of work. Ever since Smith
(1776), this perspective has rendered work as relatively colorless transformations of
states of matter and/or information. As with Henry Ford and Frederic Taylor, it is often
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easy to even inadvertently ‘dehumanize’ work when we approach it from this stance.
The unit of analysis is the level of work productivity and the degree of happiness or
misery of the worker involved, within a strict interpretation of such a view, is largely
superfluous. Of course, one wants to know about the health and efficiency of one’s
workforce, especially as it pertains to avoiding errors and failures. But the inner mental
life of that working individual has about as much meaning to the production as the
noise produced by moving machinery that surrounds them. In the end, however, this
antiseptic view of the worker is self-defeating. For the worker is also the consumer.
Like the illusory separation of church and state, one cannot dispassionately and
effectively parse the totality of the human experience, however financially or prag-
matically convenient it may be to do so.

The issue of meaning is bought into even more stark contrast when information is
the currency of work. This is not to say that skilled physical workers cannot, and do
not, find great meaning and satisfaction in some expressions of their work also.
Assuredly they do. However, our modern world tends much more to be a cognitive
enterprise and here the flexibility of the proximal tool. Most often the computer makes
cognitive gratification all the more likely. What we have not done in workload
assessment is to sufficiently value, nor sufficiently evaluate this hedonic dimension of
the workload response. In the same way that we can ask whether beauty is a contributor
to the optimization of design, so we can also ask whether satisfaction is a governor of
perceived workload? That is, do individuals engaged in appealing, self-sought and
interesting work experience different workload responses even to the same task? Put
another way, can we find ways in which to make even the most rote task interesting and
appealing (at least for someone)? Here, I am advocating that we can. Further, I believe
we can accomplish this by design (and see Hancock et al. 2005). Obviously this
requires that we venture from the fairly certain waters of physical workload evaluation
(e.g., lifted weight, lift frequency, etc.), across the less well mapped regions of cog-
nitive workload assessment, where we are today, to the rough and daunting passages of
assessing what connotes meaning. But we will not be alone in this venture (see Flach
and Voorhorst 2016).

Like the specification of beauty, the quantification of the aesthetic and the math-
ematics of desire, the concatenation of the hardest of hard sciences alongside the softest
of soft sciences currently sounds strange in our ears. I believe it will not ring so to our
progeny. I have no recipe for exactly how the full determination of meaning is to be
established and this is our forthcoming challenge. I simply assert that if we do not
embrace this challenge, our science will remain impoverished, incomplete, and ulti-
mately disappointing. This is especially true for its predictions of real world behavior
where, without the incorporation of such critical dimensions as meaning, it is almost
certainly bound to fall short. Finally, I might ask whether had I made this narrative
more interesting and involving, you would have had a lower frustration (workload)
reading it? I think the case is clear, our persuasions toward a task influence how we
react to its demands and even whether we perhaps choose ever to perform such work
again. On an optimistic note, I do believe that we can make substantive headway in this
dimension of workload assessment.
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5 Summary and Conclusion

Assessing just how hard someone is working when the primary form of demand
requires principally cognitive as opposed to muscular response, is an issue that remains
to be resolved. This situation accrues from our knowledge that brains are more difficult
to understand than muscles. The problem is a non-trivial one since such assessments
underpin the very way we conceive of work and look to reward those who accomplish
it. What I have chosen to address in the present chapter have been rather concrete
methodological barriers that still exist which prevent us from achieving our desired
state of knowledge. Emphasizing problems can be a pessimistic enterprise and so in
these final remarks I want to point to a more positive perspective.

First let me say that I do not see any of the present challenges that I have raised as
being insuperable. As far as I am concerned, none of the three challenges represents a
‘show-stopper.’ The association, insensitivity, dissociation (AIDs) issue is indeed a
difficult one, but with some resolution to the intrinsic time-scale of measurement
problem there is no reason to believe that we cannot conquer the methodological
cohesion issue. That being so, even patterns such as double dissociations and multiple
insensitivities can still prove informative. Our knowledge is not always predicated upon
the positive results but the negative and null ones also. If all such patterns are
context-contingent (i.e., they work in one mission scenario but are completely different
in another workplace context) then we are in deep waters indeed. However, the
commonalty of the human performer and the design-ability of the work environment,
provides hope that such radical, situation to situation divergences will not be ubiqui-
tous. In this respect, I offer a roadmap for future progress (see Table 1).

Table 1. A principled roadmap for future workload research

Proximal Challenges
• Distill patterns of pairwise comparisons of primary task, subjective and physiological
reflections within a single, real-world performance relevant task (e.g. PVT)

• Compare the pairwise bases against three-way evaluation of the same common task
• Evaluate whether common patterns elicited from the above persist in more complex contexts

Medial Challenges
• Establish whether the patterns of association, indifference and dissociation (AIDs) map to the
intrinsic frequency of the methods used to elicit them

• Compare and contrast intra-method AID observations with inter-method AID observations.
Then, employ appropriate meta-analytic screening to guide targeted experimentation

• Define method-driver vs. task-driven influence. Compare and contrast different workload
drivers intrinsic to the profile of imposed task demand

Distal Challenges
• Seek a validated measure of meaning
• Evaluate the affective dimensions of work in contrast to the ‘objective’ dimension of imposed
load

• Generate a unified theory of cognitive workload. Calibrate to the spectrum of operator
individual differences. Link to a context sensitive model to derive workload prediction

Whither Workload? Mapping a Path for Its Future Development 15



The meaning question is of a different order of concern. What this demands is that
we become more catholic in our thinking and look to incorporate dimensions of
experience that do not sit well with mathematics, computation, modelling, and the
general perception of what makes things ‘scientific.’ Affect has always been our
stock-in-trade (Hancock et al. 2002). Yet, we have often shied away from terms like
affection, interest, beauty and the like. Sometimes we have sought to disguise our
interest through the invention of new terms which are sufficiently ambiguous and
imprecise to allow us to explore the former, meaningful terms and yet retain a sturdy
veneer of scientific respectability.

We must now throw off any such need for approval from our wider peers in the
academy and embrace such difficult and demanding integrations fully. Questions such
as: does a beautiful task necessarily impose lower levels of cognitive demand? Can we
regulate perceived workload through designed interest? While still somewhat strange to
us, these question will be those that tax our progeny. I believe the challenges of
cognitive workload assessment are set before us. I believe our science is mature enough
to embrace these cross-disciplinary challenges. In short, I am optimistic about our
future.
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Abstract. I describe below the manner in which workload measurement can be
used to validate models that predict workload. These models in turn can be
employed to predict the decisions that are made, which select a course of action
that is of lower effort or workload, but may also be of lower expected value (or
higher expected cost). We then elaborate on four different contexts in which
these decisions are made, with non-trivial consequences to performance and
learning: switching attention, accessing information, studying material, and
behaving safety. Each of these four is illustrated by a series of examples.

Keywords: Mental workload � Human performance � Effort

1 Introduction

A fatigued motorist, driving at night, along a 4-lane motorway decides to change lanes
while half of his resources are diverted to a fascinating story about Brexit on BBC.
A quick glance at the side view mirror suggests clear passage, but he does not rotate his
head and body far enough to “check the blindspot” behind, an implicit decision, or
choice of non-action, that throws his car directly into the path of the overtaking car in
the next lane. It simply required too much effort to turn his head, and the accident
resulted. The concept of effort or mental workload can be examined from three per-
spectives, those of measurement, of prediction and of consequences. We describe each
of these perspectives in turn, show how they are interrelated and then focus our greatest
attention on the consequences of high mental workload (MWL), particularly to deci-
sion making, as this has, I believe, been an under-represented field of research. To
preview, our argument is that an underappreciated value of research on measurement of
MWL is has been to provide objective criteria against which to validate predictive
metrics of MWL. And the greatest value of such predictive metrics, is to be able to
predict the consequences of high mental workload to performance, and particularly the
decision to engage in one type of behavior (e.g., risky behavior) over another (e.g., safe
behavior). There are of course a multitude of other factors that influence such choices;
but the impact of effort is profound, and represents one of the most important rami-
fications of the MWL field of study. In the following, I will use the term “effort” and
“mental workload” interchangeably.
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2 Measurement of Workload

In the last half century, there have been hundreds of studies of the measurement of
mental workload; and of the four major categories of techniques that can be used to
assess the relative demands of tasks on the limited information processing capabilities
of the human operator: performance of primary and secondary tasks, subjective mea-
sures and physiological measures (e.g., [1, 2]). Many of these were triggered by the
foundational book edited by Moray [3]; and Fig. 1 indicates the growth of MWL
studies over the last half century with the arrow signaling the acceleration of research.
Certainly the recent development of new brain imaging technologies and the
neuro-ergonomics approach to MWL have added to this continued growth, which
shows little sign of leveling off.

While I applaud this continued line of research, I cannot help but think that there
may be some diminishing returns as progressively more papers appear, often repeatedly
examining the same techniques (e.g., NASA-TLX). The workload research community
has done a pretty good job of assessments, and it is now time to shift our efforts more
toward the most critical application of assessment: the validation of models and metrics
of MWL.

3 Predictive Models of Mental Workload

The value of predictive models of human performance and cognition in complex
systems is realized because of the problems with systems that are fielded and then may
be found out, in human-in-the-loop simulation testing or real world operations to

Fig. 1. Growth of the number of workload studies, as published in human factors and
ergonomics journals
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impose excessive demands on the human operator, leading to their disuse or to
workload-overload accidents. To prevent such loss of money and more tragically, the
loss of life or limb, the problems above can potentially be avoided by harnessing
predictive models of workload and multi-tasking capability (See Wickens and Sebok,
[4] for a review of such models in aviation). Such models can be of two types: models
of how multiple tasks interfere, and their performance breaksdown, such as Threaded
Cognition [5] or Multiple Resources [6], and models of how the demands of individual
tasks, impose on the limited resources of the performer, such as models of relational
complexity [7], of working memory capacity [8], or imposed information processing
bandwidth [9].

These metrics have great value because a careful tasks analysis, can reveal prop-
erties of task demand that may push performance over “the red line” of MWL where
performance begins to suffer, as there is no more spare capacity remaining: the supply
of cognitive effort is exhausted. Here again, as with predictive models of workload
metrics, they can be implemented before complex systems are built, fielded and then
found to be wanting. Their value then is to predict performance breakdowns. Naturally
the models of individual task MWL can then feed directly into models of multiple task
interference because such models as multiple resources have joint inputs of demand
level and competition for common resources as predictors of dual task interference [6].

4 Consequences of High Mental Workload

When workload becomes excessive, three things can happen. First, over the long run,
high workload can exert a toll on health and well being; thus workload is often
classified, along with such factors as sleep disruption and anxiety as a stressor [10].
Second, when workload is driven over the “red line”, performance can start to fail:
errors begin to appear when time stress is excessive, or when digital phone numbers
exceed the classic 7 ± 2 capacity limits. Third, and the focus of the remainder of this
paper, because people are typically effort conserving, often wishing to avoid the stress
of high MWL, they often make decisions to avoid high workload; and many of these
decisions have major negative consequences to performance.

The underlying framework adopted in the following pages is the decisions that
people make to choose between one of two alternatives; one of higher value, and the
other of lower effort. At its most elementary level, we can think of a choice between
engaging in a task, for example submitting a job application, which requires a lot of
effort, or not doing so, which allows us to relax. Both options have utility. The former
clearly leading to the expectancy of income (but not guaranteed, it is risky and may be
wasted effort if we are not offered the job). The latter conforms to an inherent
effort-conserving tendency exhibited by all species [11, 12]. Indeed this latter option
should not be given the pejorative label of “laziness”, because in many instances,
particularly when resources are scarce, it is adaptive to conserve those resources (avoid
effort). The critical influence of the metrics of mental workload, is to help predict the
degree of influence of effort conservation on this choice; particularly the extent to
which a high-valued option is discarded. That is, to the extent that we can predict both
value (or expected value) of one option, versus the effort (saved) by the other, the
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choice tendency or degree of preference itself can be predicted. In the following, we
consider four classes or contexts of choice, and show how they can be driven by effort
conservation. These “4 Ss” are the choice:

• To Switch attention between tasks.
• To Seek information.
• To Study material.
• To Safely behave.

We consider these diverse applications in order to demonstrate the ubiquity of the
concept of effort and mental workload, and the vital role that its prediction and mea-
surement play in all aspects of human endeavor.

4.1 Switching Tasks

Two recent domains of human factors interest – interruption management [13–15] and
voluntary task switching (e.g., [16, 17]) have been integrated into a multi-tasking
model called STOM (Strategic Task Overload Management; [18, 19]. This is essen-
tially a multi-attribute decision model that predicts, based on four task attributes, which
task a person will choose to switch attention to (and hence, by default, which ones they
will neglect or avoid), amongst a multi-task ensemble in overload situations. Such
might describe the management of an off-shore oil rig disaster [20] or the aircraft pilot
trying to handle an in-flight emergency in which troubleshooting, maintaining stability,
navigation and emergency communications must all compete for attention. In the
STOM model, the attributes of the tasks which are competing for the operators limited
attentional capacity are priority, interest, salience and, most important for the current
paper, task difficulty.

Two aspects of the STOM model cry out for valid predictive models of task
difficulty, MWL or effort demands. First, within the four attributes, difficulty or effort
demand has been found to produce a fairly robust influence on task switching: people
are inclined to choose the easier of a set of tasks to switch to (assuming that all other
attributes are roughly equivalent; [17, 19]. But how much of an influence does diffi-
culty exert relative to other attributes? To determine this, it is necessary to establish a
reliable metric of task difficulty, a commodity offered by a well validated predictive
model of task load. Second, a fundamental component of the model is that human’s
have an inherent “switch resistance”, or bias to keep doing what they are doing. In
extreme, this can evolve into undesirable cognitive tunneling. [21] Such a bias results
from the effort costs imposed by the executive functioning that underlies the very
decision to switch [18]. When resources are more scarce, as when an ongoing task is
more effortful, or when the operator is fatigued, the central executive is less likely to
decide to switch at all. Thus the effort, or MWL of a component task in a multi-task
ensemble can negatively influence the decision to switch, and if a switch is in fact
chosen, what task to switch to.
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4.2 Seeking and Accessing Information

As we described above, the STOM model describes the movement of mental attention
around the “task space” in the brain. A model called SEEV (Salience, Effort, Expec-
tancy, Value) is closely related to STOM because it describes the movement of visual
attention (via some combination of scanning, head movement and body rotation)
around the visual space in order to acquire information necessary to accomplish a
specific task. That is, SEEV is a model of visual scanning [22]. As the second term in
the model indicates, this too involves the role of effort in the decision of where and
whether to look, in a very vital way.

These two terms, where and whether define different classes of decisions. In the
first case, “where”, describes an effort function, shown in Fig. 2, that approximates,
roughly, the amount of effort required to move the fixation of the eyeballs from straight
ahead, to various angles to the side. The function consists of three segments [23, 24]
(1) an eye-field, within which there is little effort cost to move the eyes, and minimal
increased costs for longer movements up to about 20°. The fact that eye movements are
cheap (but not free) is because the eyeball has minimal inertia in rotation. (2) a head
field, in which typical neck rotation is required, extending from 20 to about 90°. Here,
because of the greater inertia of the head, and the increasing resistance to progressively
larger neck rotations, there is a growing cost with increasing eccentricity relative to the
forward orientation of the torso. (3) a body field, typically requiring torso rotation, and
still greater muscular effort. As these effort costs grow, so does the effort conserving
resistance to expending them in seeking information. Hence we can account for the

Fig. 2. Information access effort as a function of distance from the forward view: the legends on
the X-axis represent the access of two different kinds of information: a view behind a vehicle (top
row) and a reference citation (bottom row). From [22].
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unfortunate driver’s failure to decide to check the blind spot in our opening example,
amplified by the added inhibition on this choice imposed when resources for peripheral
information seeking were scarce (allocated to listening to BBC, and diminished by
fatigue). Thus, in this case, the “where” (looking behind) influences the “whether” (the
decision not to scan).

In the above example, the effort-driven decision was whether or not to seek
information at all. This decision is also manifest in whether to seek information in the
world, or to rely in information “in the head” (i.e., memory; [25]). As an example, I
have often decided to trust my memory for the accurate date or spelling of a reference
citation in a text that I am typing, rather than to take the effort to look it up, and
particularly walk to the book shelf and locate the right book where I know that
reference appeared in print. (Clearly the internet and computer are designed to make
access to information in the world less effortful). The consequences of effort avoidance
in the example of finding the book reference citation are relatively minor, a wrong
citation in my text. However sometimes this effort-avoidance choice can have serious
safety consequences.

As an example Yang and her colleagues [26] examined a health care professional’s
important decision, when communicating patient information from a departing to an
arriving professional at the medical handover between shifts; this is the decision of
whether to consult their memory of patient condition, or to access this information in
printed medical records. The former option (knowledge in the head) is less effortful; the
latter (knowledge in the world) is more valuable (i.e., more likely to be accurate).
While both options were sometimes chosen by participants, a point critical to the
argument here is that seeking information in the world (medical records) was signifi-
cantly (4 times) less likely when those records were 5 m distant from the handover
point, than when they were directly in front of the worker. This difference could have
serious safety implications given that memory information was also observed to be
23% less accurate. In a second finding of the study, this tendency to sacrifice accuracy
over effort conservation was further exacerbated to the extent that participants were
overconfident in the accuracy of their memory, thus under-estimating the cost of the
effort-reducing reliance on memory. The phenomenon of overconfidence, in biasing
toward the low-effort option, will be addressed again in the following section. An
important issue illustrated by the above example is the linkage it illustrates between
ergonomics above the neck (decision) and below the neck (the effort of walking) [27].

4.3 Studying and Learning

Many of the choices that students make in study strategies result, in part, from the false
belief that easier (less effortful) study and learning strategies signal better retention or
transfer of learning; that is, higher value [28–32]. In other words, learners have a belief
that cognitive ease [12] is a proxy for quality of learning. In the previous two contexts
when a user decides on a low effort option, such a decision is arrived at knowing that
value or accuracy may be sacrificed as a consequence. However in the case of studying,
if it is believed (falsely) that the low effort option is also of higher value, the
effort-avoidance tendency is likely to be particularly pernicious. In particular, Table 1
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provides four examples of contrasting learning or training strategies, listed in each row.
On the left is a low effort strategy that mistakenly signals better retention or transfer to
the learner. On the right is a contrasting higher effort strategy that has been empirically
shown to produce higher retention of studied material or transfer of training of a
learned skill.

• Massed practice involves studying a given type of material (or practicing a given
task) repeatedly, and doing no studying of alternative material in between trials, or
periods of study of this target material. Massed practice does indeed often produce
faster learning which makes it seem to the learner like retention should be better.
However for longer term retention and transfer, the alternative strategy of inter-
spersing the study/practice of other material proves superior, even though (and
perhaps because) this other material provides some contextual interference with the
target of study and practice [30] Learning to filter out that interference is a useful
skill that can transfer beyond the learning environment.

• Pure listening or reading, even when a lecture or text is engaging and interesting, is
easier than taking notes about it, which requires effort; both the physical effort of
writing and the cognitive effort of deciding what to write about. Yet it is found that
the active generation of responses about something lead to better retention of that
material than passively experiencing it, a phenomenon known as “the generation
effect” [33]. This generation effect too describes the better retention of a route
followed by a driver making active navigational decisions, than that viewed pas-
sively by a passenger.

• While note taking comes out better than passive listening; it is also a poorer study
strategy when compared to actively quizzing one’s self about the material, fol-
lowing exposure to that material [34–36]. The former can be accomplished through
a relatively (mental) effort-lite process of just writing down verbatim what is heard;
the latter typically requires the active process of retrieving the material, a skill that
will be essential when the material is used in a later context (e.g., in transfer).

• Many complex skills, such as flying an aircraft, translating speech to a different
language, or playing an instrument with two hands (e.g., guitar, piano) require
concurrent task performance. The easier training strategy, part task training, is to
practice each task at a time, a strategy in which capacity is never overloaded. Yet
empirical data indicate that despite its greater effort demands, whole task training is
more effective for transfer [37, 38].

All of these examples and many more, can be characterized both by the general
tendency to reduce effort (choosing the strategy on the left of Table 1), and inflating its
subjective value by the simple heuristic: “if its easier to learn, I must be learning it

Table 1. Tradeoff of effort and value in study strategies

Lower effort and value (to retention and transfer) Higher effort and higher value

Massed practice Spaced practice (contextual interference)
Listening Note taking (active response generation)
Note taking Self quizzing (active retrieval practice)
Part task training Whole task training
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better” [27, 28]. The role of effort here, and its measurement, is at the fundamental core
of the cognitive load theory of instruction [39, 40]. This theory elaborates the single
concept of effort to distinguish between three sources of effort demands (MWL) im-
posed in the learning environment. (1) more complex tasks intrinsically demand more
effort to be performed (intrinsic load). (2) More effort can be invested into the more
physically and cognitively challenging but effective strategies on the right side of
Table 2: it is productive or “germane” for learning, known as germane load. (3) effort
can be demanded in the learning environment that has little effectiveness, it is “ex-
traneous load”. Extraneous load might include a clunky interface in computer-based
instruction; but could also include features of the learning environment that invite the
investment of resources, but have little proven effectiveness in training. Examples
include entertaining lecturers who tell several irrelevant jokes or anecdotes, or the
introduction of distracting animation [41]. Extraneous load will always consume scarce
resources in the learning environment, and hence amplify the undesirable tendency to
choose the reduced-effort strategies on the left of Table 2.

4.4 Safe Behavior

We in the human factors community we are advocates for safety, and as psychologists,
want to encourage or “nudge” people to make the decision to behave safely [42]. Such
decisions often weight the value of safe behavior (and reducing risk) against the utility
of effort reduction, or avoiding the “cost of compliance”. Four examples of these,
expressed in the same framework as in Table 1, are shown in Table 2.

In all of these examples, some effort cost can be attributed to the actions on the right
side of the table, although these may be manifest in different ways. In the first example
the “discomfort” of wearing a safety helmet is not truly a source of effort demands, but
imposes the same sort of negative or unpleasant valence as expending effort, particu-
larly if the driver is experiencing other sources of stress. In the second example, reading
long safety instructions on equipment or drug labels is clearly effortful, particularly if
they are not well worded and excessive in number. Safety researchers have concluded
that the best technique to induce safer behavior is to reduce the cost of compliance.
Like the bias to overestimate the benefits (value) of some training strategies discussed
above, so also the overconfidence bias to underestimate the expected costs or risks of
unsafe behavior (“it can’t happen to me” [43], can further amplify the effort-reduction
tendencies.

Table 2. Risky but low effort options (left column) versus safer but high effort options (right
column)

Lower effort Cost of compliance

No seat belt or safety helmet Time to fasten/discomfort of helmet
Ignore safety instructions Read safety instructions
Mind wandering while driving Concentrate on the road
Exploit high degree of automation (of actions) Perform manually: stay in the loop
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Regarding the third example of safe (or unsafe) behavior, in many boring tasks,
such as driving on a straight motorway late at night, and when fatigue diminishes the
capacity to mobilize effort, it is quite pleasurable, and we might say subjectively
valuable, to engage in mind wandering at the expense of mobilizing effort to stay in the
loop, continue to concentrate on the roadway and be vigilant for unexpected hazards;
this low effort preference is clearly one factor accountable for the higher per vehicle
accident risk exposure in night driving. The fourth contrast in Table 2 is directly related
to the third. Higher degrees of automation facilitate the ability to engage in effort-light
pleasure like mind wandering. Here “degree of automation” is defined with reference to
the taxonomy of automation proposed by Parasuraman and colleagues [44], by which
automation can support, and indeed replace progressively later stages of information
processing, and at each stage, higher levels of automation can carry out progressively
more cognitive work for the human (see also [45]). The combination of later stages and
higher levels within stages defines the higher degree of automation. In particular we
call attention to the distinction between earlier stage automation, that can integrate
information and provide an estimate of the state of the world (supporting situation
assessment), and later stage automation, that can recommend, and sometimes execute
actions based on that state, supporting or replacing decision making. Since automation
decision support must generally be based also on an automated assessment of the state,
the lower cognitive effort availed by later stage, than by earlier stage automation is
apparent. But here, explicitly, choosing to rely upon automation at all, and choosing to
rely on higher rather than lower degrees of automation, is a decision that incurs pro-
gressively greater risks (lower expected value) if the automation should unexpectedly
fail [46].

5 Conclusions

In all four domains above, effort or MWL imposed by a decision option is seen to
negatively influence the degree of preference for, and hence the decision to avoid that
option. Generally it is assumed that more effort imposes a negative weight, when
balanced against the perceived or actual value of the option; and this is particularly
likely when the resources are otherwise scare: depleted by fatigue, or demanded by
concurrent tasks. (Of course this is not always the case, and sometimes we do gain
intrinsic pleasure and value by investing more effort: the feeling of “flow” in working
hard at an engaging interesting task).

Naturally there are also other factors at play to influence the decision of what tasks
to attend to, where to look, what to study and whether to behave safely. Prominent
among these is a miscalibrated (and often overconfident) estimation of the value of the
low effort option (or under-estimation of its expected cost). We saw its operation in
both the choice to access information, to study and (not) to be safe. Nonetheless effort
is a vital component of all of these decisions, and if we wish to predict such choices
accurately in the workplace, in the vehicle and in the schoolhouse, then validated (via
assessment) and predictive quantitative metrics and models of mental workload remain
of enduring importance [47, 48].
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Abstract. Mental workload (MWL) measurement is a complex mul-
tidisciplinary research field. In the last 50 years of research endeavour,
MWL measurement has mainly produced theory-driven models. Some of
the reasons for justifying this trend includes the omnipresent uncertainty
about how to define the construct of MWL and the limited use of data-
driven research methodologies. This work presents novel research focused
on the investigation of the capability of a selection of supervised Machine
Learning (ML) classification techniques to produce data-driven compu-
tational models of MWL for the prediction of objective performance.
These are then compared to two state-of-the-art subjective techniques
for the assessment of MWL, namely the NASA Task Load Index and the
Workload Profile, through an analysis of their concurrent and conver-
gent validity. Findings show that the data-driven models generally tend
to outperform the two baseline selected techniques.

1 Introduction

Mental Workload (MWL) is a fundamental concept in human performance pre-
diction. It is a complex construct that is affected by several factors measur-
able with various methods [38,42]. Different approaches have been proposed to
aggregate these factors towards an index of MWL. However, difficulties exist in
defining MWL, in understanding which factors best describe it and in build-
ing a robust model for predicting performance that have a general applicabil-
ity [25,28]. State-of-the-art computational models are rather ad-hoc and their
applicability is confined to specific application fields [22,23,26]. Additionally,
the vast majority of these models are mainly theory-driven. This means from a
set of measurable factors, theoretically related to MWL, and a computational
model to aggregate these factors, an inference is made. This is usually an index
of mental workload that can be theoretically related to human performance
[29,30]. Not a lot has been done in the development of data-driven models of
MWL, which means computational models induced by learning from a set of
data that are capable of fitting human performance. One reason is that MWL
c© Springer International Publishing AG 2017
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is still an ill-defined construct, justifying the application of deductive research
methods [39]. Another reason is that MWL is a 50-year old construct, and at its
origins, inductive non-linear computational methodologies were not as popular
and developed as nowadays. Only in the last two decades, with the acceleration
and spread of Machine Learning (ML), researchers initiated to investigate MWL
using inductive data-driven research methodologies [3,12,20,43,51].

This paper is one of the few recent attempts to apply modern inductive data-
driven research methodologies, namely supervised Machine Learning, to induce
mental workload models from data acquired through subjective self-report mea-
sures. In particular, a unique comparison of the inferential capacity of two state-
of-the-art subjective MWL measurement techniques is performed, namely the
popular NASA Task Load Index and the Workload Profile instruments, against
the inferential capacity of novel inductive data-driven models of MWL, built
using Machine Learning.

The rest of the paper is organised as follows. Section 2 describes related
work in the specific field of MWL measurement, with an emphasis on subjective
self-reporting measurement methods, extracting relevant gaps and motivating
the need for data-driven methods for MWL. Section 3 focuses on the design
of an experiment and the description of the research methodology adopted for
the development of inductive data-driven MWL models. Section 4 presents the
results and critically evaluate these models through a rigorous comparison of
their concurrent and convergent validity against the ones of the two selected
baseline theory-driven MWL models. Finally, Sect. 5 concludes this research
study highlighting the contribution to the body of knowledge and suggesting
future research paths.

2 Related Work

Mental workload (MWL) is a fundamental design concept in Human-Computer
Interaction (HCI) and Ergonomics (Human Factors) and it is sometimes referred
to as Cognitive Load (CL), specifically in Cognitive Psychology. It is intrinsi-
cally complex and multifaceted [25,38]. There is no widely accepted definition of
MWL, however, it can be intuitively described as the total cognitive load needed
to accomplish a specific task under a finite period of time [5].

2.1 Mental Workload Measurement Methods

Measuring MWL is essential in predicting human performance and in turn
informing the design of technologies, interfaces, information-based procedures
and instructions. There are different methods that have been proposed for mea-
suring MWL. These can be clustered in three main classes:

– Subjective measures - this class relies on the analysis of the subjective feed-
back provided by humans interacting with an underlying task and sys-
tem. The feedback usually takes the form of a survey or questionnaire,
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often post-task. The most known methods are the NASA Task Load Index
(NASA − TLX) [15], the Workload profile (WP ) [47], and the Subjective
Workload Assessment Technique (SWAT) [38];

– Task performance measures - this class is often referred to as primary and
secondary tasks measures and it focuses on the objective performance mea-
surement related to an underlying task. The time to complete a task, the
reaction time to secondary tasks and the number of errors on the primary
task are examples of measures, as well as the tracking and analysing of the
different actions performed by a user during a primary task;

– Physiological measures - this class is based upon the analysis of physiolog-
ical indicators and responses of the human body. Examples include EEG
(electroencephalogram), eye tracking and heart rate measures.

2.2 Subjective Measurements Methods

This study is particularly focused on two subjective measures of MWL that
have been widely employed by several researchers in the last four decades: the
NASA-Task Load Index (NASA-TLX) [15] and the Workload Profile (WP) [47]
based on the Multiple Resource Theory [48]. The MWL instrument developed by
the NASA agency was originally conceived to support the measurement of the
mental workload of pilots during aviation tasks. Subsequently, the NASA-TLX
was adopted in many other fields and used as a benchmark in many research
studies [39,40]. The NASA-TLX scale is built upon six factors and their individ-
ual weights. The associated formula is shown in Eq. (1) where di represents the
rating provided by a person after the execution of an underlying task while wi is
the weight associated with that dimension and achieved by a pairwise procedure.
The questionnaire used by NASA can be found in [15].

NASA − TLXMWL =

(
6∑

i=1

di × wi

)
1
15

(1)

The Workload Profile (WP) is another subjective MWL assessment method
based upon the Multiple Resource Theory (MRT) proposed by Wickens [48]. The
WP index is built upon 8 dimensions: perceptual/central processing, response
processing, spatial processing, verbal processing, visual processing, auditory
processing, manual responses and speech responses. An operator is asked to
rate the proportion of attentional resources, in the range [0..1] ∈ �. The final
MWL index is a simple sum of the 8 factors as shown in Eq. 2.

WPMWL =
8∑

i=1

di (2)

For a further analysis of the questionnaires associated with the two aforemen-
tioned measurements methods, we refer the reader to [25].



Assessment of MWL: A Comparison of Machine Learning Methods 33

2.3 Criteria for the Development of MWL Measurement Methods

There are different criteria that have emerged in the last few decades in the
literature of mental workload for the evaluation of measurement methods and
for assessing their inferential capacity [35]. A method adhering to all the criteria
below is ideal, but unfortunately it is not always the case.

– Sensitivity: the method should be responsive to variations in task difficulties
and other factors believed to influence mental workload on the task level;

– Diagnosticity: the method should be diagnostic and be capable of identifying
the changes in workload variation and the causes of these changes;

– Intrusiveness: the method should not be intrusive or interfere with the pri-
mary task performance;

– Requirements: the method should demand minimum equipment to avoid influ-
encing the performance of humans during primary task execution;

– Acceptability: the method should achieve high acceptance from humans;
– Selectivity: the method should be highly sensitive to MWL factors and not

affected by other factors that are not related to MWL;
– Bandwidth and reliability: the method should be reliable during the tests and

should be able to detect changes in MWL;
– Validity: the capacity of the method to measure MWL (sometimes referred

to as reliability).

2.4 Gaps in Measurement Methods

The vast majority of the procedures for measuring MWL are theory-driven and
deductive in nature. Deductive inference of mental workload follows a top-down
approach. It starts with a hypothesis, or a set of hypotheses, based on existing
knowledge and theories, and then it moves towards the measurement and quan-
tification of those factors believed to influence mental workload, their aggregation
and a final inference, usually an index or score. However, as in other scientific
fields, inductive research methodologies can be applied to create models of mental
workload from data and produce alternative inferences. An inductive data-driven
inference of mental workload follows a bottom-up approach that starts with the
measurement and quantification of those factors believed to influence mental
workload. It then applies inductive learning classification techniques that can
learn from these quantities and produce computational models capable of fitting
human performance. Nowadays, one of the most popular research fields devoted
to the development of inductive models is Machine learning (ML), a sub-field of
Artificial Intelligence (AI). ML aims to develop algorithms and procedures that
can learn from data, extract trends, patterns and make predictions.

In MWL measurement, the need to use Machine Learning arises because of
the multifaceted characteristics of MWL itself, the ambiguity and uncertainty
associated with the many non-linear factors shaping this construct and the diffi-
culties associated with their aggregation and the development of computational
models. Not a lot has been done in the application of ML techniques to the
automatic construction of MWL models that consider subjective measures.
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2.5 Machine Learning and Inductive Data-Driven Methods
for MWL

Generally speaking, an inductive data-driven research approach is driven by
an observation and analysis of available data toward the extraction of mean-
ing, patterns, relationship and eventually the development of theories. From its
inception, Machine Learning (ML) has gone far beyond the pattern recogni-
tion capabilities. Nowadays, ML algorithms are able to adapt, encode, decode
and induce models from heterogeneous data not linearly related, with different
characteristics, types, ranges and scales.

Recent studies revealed that most of the applications of Machine Learning in
the field of Mental Workload focused on the processing of signals of physiological
measures and as a form of benchmark for other measurement techniques [41].
For instance, [10,33,44] focused on the analysis of eye-gaze patterns of humans,
while interacting with computer screens, and with other devices. Other stud-
ies focused on behavioural measures for assessing mental workload [9,13] and
on modelling techniques for representing this construct [19]. Some researchers
applied linguistic and keyboard dynamics for mental workload detection [34] or
functional near-infrared spectroscopy for mental workload classification [16,36].
Yet, others tackled the problem of mental workload modelling through simula-
tion, in multitask contexts [11], or in driving situations [50] employing Machine
Learning.

3 Design and Methodology

This section is devoted to the design of a comparative study that consider
models of mental workload, existing in the literature, and novel data-driven
models developed using Machine Learning classification techniques. An existing
dataset is employed for such purposes and the CRISP-DM methodology (the
Cross Industry Standard Process for Data Mining) [7] is followed.

3.1 Comparative Research Design

As described in Fig. 1, the main aim of the experiment is to compare the inferen-
tial capacity of two state-of-the-art models of MWL, used as a baseline, against
novel inductive models built upon an existing dataset [25]. On one hand, the
baselines are the MWL subjective assessment techniques described in the pre-
vious sections: the NASA task load index (NASA-TLX) [15] (Eq. 1) and the
Workload profile (WP) [47] (Eq. 2). On the other hand, the inductive data-
driven models are developed employing different Machine Learning classification
techniques, as described in Sect. 3.3. Baselines models and data-driven models
will generate different inferences, in the form of indexes of mental workload,
given the same input set, and these will be subsequently compared through an
analysis of their validity.
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Fig. 1. Experiment Design Diagram.

3.2 Dataset

An existing dataset containing self-reporting measures, provided by users who
executed a set of typical tasks over three popular web-sites, has been used [27].
The dataset contains data from more than 40 volunteers performing 9 web-
based tasks of varying difficulty and contexts, and requiring different human
modalities for processing information. A description of the tasks as well as the
self-reporting measures collected during the experiment can be found in [25]. The
participants, after each task, were asked to fill in the NASA-TLX questionnaire,
the Workload Profile questionnaire and another set of questions believed to be
useful for modelling mental workload. This last set of questions is not accounted
for in this research study. At the end of each task, a final objective performance
class was assigned to each volunteer:

– 0: the task was not completed as the user gave up;
– 1: the execution of the task was terminated because available time was over;
– 2: the task was completed and no answer was required by the user;
– 3: the task was completed, the user provided an answer, but it was wrong;
– 4: the task was completed and the user provided the correct.

3.3 Implementation of Machine Learning MWL Models

In order to build inductive MWL models from the chosen dataset, the Cross
Industry Standard Process for Data Mining (CRISP-DM) approach was followed
[7]. This process is built upon six stages; business goals, data understanding, data
preparation, modelling, and eventually model evaluation and deployment.
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Goals. The aim is to induce models of mental workload, from data, capable
of predicting as best as possible the previously described objective performance
class (dependent feature, Sect. 3.2) through a set of independent features. These
are exactly the same features employed in the selected baseline models (NASA-
TLX, WP). Induced models are expected to perform better than the baseline
models in the prediction of the objective performance class.

Data Understanding. The data involved in the creation of inductive MWL
models includes the information associated with the original NASA-TLX and
WP instruments. Data exploration is the first part in which an Analytic Base
Table (ABT) is built for discovering the nature of data and investigating its
characteristics, such as the type of features, their values and ranges. Likewise, it
highlights the quality of data, missing values and outliers (Table 1). It is possible
to observe that the target feature follows an imbalanced distribution (Fig. 2a).

Table 1. ABT table and features (R = Range, C = Categorical)

Independent feature type miss n mean sd median min max range skew kurtosis se

Feature set 1: questions of NASA-TLX

NASA Mental R 0 405 50.76 26.82 59 1 100 99 −0.25 −1.06 1.33

NASA Temporal R 0 405 39.54 29.8 33 1 100 99 0.34 −1.13 1.48

NASA Stress R 0 405 37.17 29 30 1 100 99 0.51 −0.91 1.44

NASA Effort R 0 405 56.38 25.75 63 1 100 99 −0.52 −0.73 1.28

NASA Performance R 0 405 67.95 29.41 76 1 100 99 −0.94 −0.15 1.46

Feature set 2: original pairwise comparisons of NASA-TLX

NASA MenTem C 0 405 0.37 0.48 0 0 1 1 0.56 −1.69 0.02

NASA MenPsy C 0 405 0.3 0.46 0 0 1 1 0.89 −1.21 0.02

NASA MenEff C 0 405 0.63 0.48 1 0 1 1 −0.52 −1.73 0.02

NASA MenPer C 0 405 0.51 0.5 1 0 1 1 −0.02 −2 0.02

NASA TemPsy C 0 405 0.42 0.49 0 0 1 1 0.33 −1.89 0.02

NASA TemEff C 0 405 0.63 0.48 1 0 1 1 −0.52 −1.73 0.02

NASA TemPer C 0 405 0.62 0.48 1 0 1 1 −0.51 −1.74 0.02

NASA PsyEff C 0 405 0.73 0.45 1 0 1 1 −1.02 −0.96 0.02

NASA PsyPer C 0 405 0.71 0.46 1 0 1 1 −0.9 −1.19 0.02

NASA EffPer C 0 405 0.52 0.5 1 0 1 1 −0.07 −2 0.02

Feature set 3: total preferences of pairwise comparison (weight) for NASA-TLX

NASA menTotPref R 0 405 3.2 1.13 3 1 5 4 −0.23 −0.72 0.06

NASA TemTotPref R 0 405 2.7 1.37 2 1 5 4 0.36 −1.12 0.07

NASA PsychTotPref R 0 405 2.28 1.34 2 1 5 4 0.7 −0.74 0.07

NASA EffTotPref R 0 405 3.46 1.1 4 1 5 4 −0.35 −0.64 0.05

NASA PerTotPref R 0 405 3.36 1.31 3 1 5 4 −0.27 −1.07 0.07

Feature set 4: original workload profile

WP CentralProcessing R 0 405 53.02 27.36 60 0 100 100 −0.35 −0.97 1.36

WP ResponseProcessing R 0 405 33.92 27.14 27 0 100 100 0.48 −0.97 1.35

WP SpatialProcessing R 0 405 23.97 24.34 18 0 100 100 1.05 0.23 1.21

WP VerbalProcessing R 0 405 51.59 34.43 60 0 100 100 −0.22 −1.43 1.71

WP VisualInput R 0 405 62.24 27.58 68 0 100 100 −0.66 −0.5 1.37

WP AuditoryInput R 0 405 33.25 37.78 13 0 100 100 0.67 −1.24 1.88

WP ManualResponse R 0 405 30.18 26 23 0 100 100 0.62 −0.7 1.29

WP SpeechResponse R 0 405 12.06 18.28 3 0 100 100 1.96 3.76 0.91

Dependent feature

Objective performance C 15 390 3.22 1.1 4 0 4 4 −1.28 0.63 0.06
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Data Preparation. The main aim of this stage is to construct the final dataset
for subsequent modelling. Here, the dataset is divided into two segments: inde-
pendent features and target (dependent) feature. The independent continuous
features and answers of the experimental questionnaires ([1..100] ∈ N), have
been normalised into a scale of unit norm [0..1] in � [17]. The following sets of
independent features were extracted:

– Raw-NASA - it contains the original NASA-TLX factors excluding the phys-
ical factor as it was not part of task activities (feature set 1 of Table 1);

– Original-NASA - it contains all the NASA-TLX factors in addition to the
binary preferences among the factors, which emerged from the pairwise com-
parison of the original NASA-TLX (feature sets 1 + 2 of Table 1);

– Weighted-NASA - it contains the NASA-TLX factors and the calculated
weight for each factor – number of times a factor has been preferred over
the others, in the original NASA-TLX pairwise comparison procedure (fea-
ture sets 1 + 3 of Table 1).

– WP - it includes the eight WP features (feature set 3 of Table 1).

Often, in Machine Learning, the imbalance of the target class can likely affect the
creation of robust models, which will tend to be better in predicting the majority
classes but not the minority classes. In order to solve this issue, an over-sampling
technique has been selected and applied to restore the target class balance. In
simple words, the concept of over-sampling is to reproduce relative samples for
only one minority class. However, in this specific case, four minority classes
exist (Fig. 2a) and hence the oversampling algorithm has been executed for all
the 4 minority classes. The Density-Based SMOTE (DBSMOTE) algorithm was
selected [4] among others tested in the preparation phase because of its higher
capacity to avoid overfitting of data [6]. Figure 2b shows a distribution obtained
using the oversampling method over the full dataset.

(a) Original distribution. (b) Illustrative over-sampled distribution.

Fig. 2. Original and oversampled distribution of target using the DB-SMOTE

Data Modelling. This stage is aimed at inducing computational models by
learning from data. This is a non-trivial task not only because the modelling
algorithm(s) must be selected from a large number of Machine Learning algo-
rithms, but also because an optimal configuration of these algorithms have to
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Fig. 3. Detailed design schema: model construction, validation and testing

be found. The selection of supervised learning techniques is done by type. The
rationale behind selecting different types is to tackle the MWL modeling prob-
lem from different perspectives to allow subsequent triangulation of results and
achieve robust findings. Four Machine Learning classification techniques have
been chosen:

– Probability based: Naive Bayes
– Similarity based: K-nearest Neighbors
– Information based: Random Forest (based on Decision Trees)
– Error Based: Support Vector Machines (with Radial Basis Function Kernel)

In order to induce robust models with a higher degree of generalisability, a com-
mon way of training models is to split the original data into training and test
sets (Fig. 3). Because of the limited dataset size (|dataset| = 405 instances),
the split ratio selected is 90% instances for training and 10% for testing. Addi-
tionally, because the original distribution of the independent feature is highly
imbalanced, random stratified sampling [45] is used to perform the split. This
technique allows to representatively sample even the smallest and most inacces-
sible subgroups both in training and test sets. Once the training set has been
formed, oversampling is applied to it. Subsequently, the K-folds cross validation
technique is used as the training method [1,18,37], always justified by the limited
size of available data. This technique divides the dataset into k subsets and, for
k iterations, one of the k subsets is used as the validation set and the other k−1
subsets are textcolorredcombined to form the training set. Usually, the average
error across all k trials is computed. In this research, k is set to 10 and the best
model emerged out of 10, in term of accuracy, is selected as the final representa-
tive model. Eventually, this final model is tested against generalisability with the
10% of instances held-out originally. The overall process is eventually repeated
again 10 times, shifting the test set, thus producing 10 accuracies for a given
selected learning algorithm X.



Assessment of MWL: A Comparison of Machine Learning Methods 39

Model Evaluation. This is the last stage aimed at evaluating the induced
models from the previous phase and their inferential capacity and performance.
Overall, 16 final models have been built (4 classifiers for 4 feature sets) each
having 10 associated accuracies. The metrics selected for evaluating these final
models are: prediction accuracy (observed accuracy) and the Kappa coefficient.

Accuracy is required for the overall interpretation of an induced model while
the Kappa coefficient provided a more in-depth interpretation, as it is sensitive
to imbalanced data. Several studies relied on the Kappa coefficient for evaluating
inductive multi-class models [2,8,14]. As shown in Eqs. 3 and 4, the P0 is the
probability of overall agreement for a specific label across all classes, the PC

e

represents the sum of the proportion of the number of samples assigned to a
class, times the proportion of true labels of that class. Ni: and N:i are the sums of
number in the i-th column and the i-th row of the confusion matrix, respectively.
The Kappa statistic is a metric that compares an observed accuracy with an
expected accuracy (random chance). It accounts for random chance (agreement
with a random classifier), which generally means it is less misleading than simply
using accuracy as a metric. An observed accuracy of 90% is less impressive with
an expected accuracy of 70% versus an expected accuracy of 50%.

κ =
(P0 − PC

e )
(1 − PC

e )
(3)

PC
e =

∑I
i=1 Ni:N:i

(N2
Total)

(4)

The criteria selected for the comparison of the inferential capacity of the base-
line models (NASA-TLX, WP) and the inductive data-driven models (emerged
from the previous modeling phase) are as follows.

– Concurrent validity : the extent to which a technique can explain objective
performance measures, as in this case, the objective performance class [25];

– Convergent validity : aims at determining whether different MWL assessment
techniques relate to each other [39].

4 Results and Evaluation

4.1 Concurrent Validity of Baseline MWL Models

To measure the concurrent validity of the selected baseline models (NASA-TLX,
WP), the Spearman’s correlation coefficient has been selected as it evaluates
the monotonic relationship between the two continuous MWL indexes with the
objective performance class. Table 2 depicts the correlations highlighting a weak
statistically significant correlation (P < 0.01) between the NASA-TLX and the
objective performance class and a non-significant correlation (P = 0.72) between
the WP and the objective performance class.
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Table 2. Concurrent validity: correlation of NASA-TLX, WP vs performance

*significant at the 0.01 level (2-tailed) WP NASA-TLX

OBJECTIVE PERFORMANCE –.019 –.246*

Sig. (2-tailed) .720 <0.0001

4.2 Concurrent Validity of Data-Driven MWL Models

The concurrent validity of the Machine Learning data-driven models is computed
by analysing the distribution of the accuracies and the Kappa scores obtained
with the 10-fold cross-validation technique used in the training phase, as high-
lighted in Fig. 3 (Model construction phase), across the different features sets (1,
2, 3, 4 of Table 1) and the different learning techniques (Naive Bayes, K-nearest
Neighbours, Random Forest, Support Vector Machines).

Fig. 4. Training accuracies, kappa scores grouped by Machine Learning classifier

From the boxplots of the accuracies and the kappa-scores of Fig. 4, it is possi-
ble to assess that the classification methods Random Forest and Support Vector
Machines (using a radial kernel) are the most robust methods emerged from the
training phase (model construction phase of Fig. 3). In details, according to the
distribution of accuracies, the Random Forest method is capable of producing
more accurate models of mental workload, for all the feature sets, and the dis-
tributions of the kappa scores confirm that these models are more reliable and
not in agreement with a random classifier (Sect. 3.2).
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Fig. 5. Training accuracies, kappa scores grouped by independent feature set

From the boxplots of Fig. 5, a clear picture does not emerge, and it is not
possible to clearly assess which feature sets are more useful in allowing the
construction of inductive MWL models from data with higher accuracy. As a
consequence, the models built with the Random Forest and the Support Vector
Machine methods have been extracted, as depicted in Fig. 6.

Fig. 6. Training accuracies and kappa scores grouped by independent feature set for
the best models induced by Random Forest and Support Vector Machines
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The boxplots of Fig. 6 suggest that the features set 4 (Workload profile of
the ABT Table 1) and the feature set 3 (Weighted Nasa of the ABT Table 1) are
slightly better than the others, although a statistical significance is not present.
These results refer to the model construction phase of the diagram of Fig. 3. In
this phase, 10% of the dataset instances was held out at each iteration, for 10
times, and this 10% was used to test the accuracies of the best model emerged
from each iteration, as depicted in the model validation phase (Fig. 3).

Models Validation Results. Figure 7 depicts the distributions of the accu-
racies achieved by the best models (out of 10), both grouped by the Machine
Learning methods used (a), and by the features sets (b).

(a) grouped by learning method (b) grouped by feature set

Fig. 7. Accuracies obtained by the best final models, emerged from the model con-
struction phase, using the held out validation sets

The accuracies obtained (Fig. 7a) with the test sets, are on average lower
than those which emerged in the model construction phase. This is reason-
able given that each held out validation set contains instances of the original
dataset never used in the model construction phase. However, the results show
the same trends emerged during the model construction phase, confirming how
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Random Forest and Support Vector machines are the most robust learning meth-
ods to build MWL models with the underlying dataset. This can be further
grasped from Fig. 8(a) which plots the density distributions of all the best final
models, obtained across all the features sets (4 sets × 10 iterations = 40 points
per method). From Fig. 7(b), it seems that the feature set 3 (the weighted-NASA
as described in Sect. 3.3) is the richest in terms of the information it carries for
building MWL models when compared to the other features sets. This is also
confirmed from the density plots of accuracies of Fig. 8(b) with the ‘weighted
NASA’ feature set showing a more compact and taller curve, meaning on aver-
age superior than the other features sets. It is important to note that, even
considering the best modelling methods (Random Forest and Support Vector
Machines), the testing accuracies varies from 0.4 to 0.6 (40% to 60%) indicating
that either more data is needed to build better MWL models or more descriptive
(independent) features, carrying other information, are needed to increase their
accuracies. These results are in line with current research on mental workload
and the well known difficulties in predicting human performance.

(a) grouped by earning method (b) grouped by feature set

Fig. 8. Accuracy densities, emerged from the model construction phase, using the held
out validation sets

Finally, to summarise the findings related to the concurrent validity of the
inductive data-driven models produced in this study, and the baseline state-of-
the-art models – namely the NASA-TLX and the Workload profile – an investi-
gation of the correlation of their assessments against objective performance has
been carried out, as depicted in Fig. 9.
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Fig. 9. Concurrent validity: distributions of the spearman correlations of the MWL
inductive and deductive models against objective performance

In details, the following correlations were computed:

– the objective performance class (Sect. 3.2) predicted by the induced learning
models against the objective real performance class assigned to a volunteer
executing an underlying task (the ground truth, Sect. 3.2);

– the MWL scores, produced by the baseline models (NASA-TLX, WP, in the
range [0..100] ∈ N) against the objective real performance class assigned to a
volunteer executing an underlying task (the ground truth, Sect. 3.2).

Due to the fact that at least one of the two variables, in each correlation
analysis, is always a categorical variable, the Spearman correlation method has
been adopted instead of the Pearson correlation method, as the former does
not require the variables being normally distributed, and the latter requires
both continuous variables. From Fig. 9, it is possible to note that, on one hand,
the box plots associated with the baseline models are closer to 0, suggesting
that there is no real correlation between their assessment and the objective
performance experienced by the volunteer in the experimental task. A similar
result is achieved by the data-driven models produced using the features set
4 (containing the attributes of the original Workload Profile instrument). On
the other hand, this situation is improved by the data-driven models of MWL
built using the feature sets 1, 2, 3 (Sect. 3.3, containing the attributes of the
original NASA-TLX). Correlations are more far away from 0, indicating that
a clearer and better relationship between the predicted objective performance
class, and the observed objective real performance experience by the volunteer
in the experimental task can be obtained.
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4.3 Convergent Validity of Baseline and Data-Driven MWL Models

The convergent validity of the Machine Learning-based induced models is com-
puted by analysing their correlation with the original NASA Task Load Index
and the Workload Profile instruments, baseline models. Figures 10 and 11 depict
the correlations and, as before, the Spearman correlation coefficient has been
preferred over the Pearson correlation coefficient because of the presence of cat-
egorical data and a relaxation of the assumptions of normality of variables.

The box-plots of Figs. 10 and 11 show a weak correlation between the base-
line and inductive data-driven MWL models. In detail, the Machine-Learning
based induced models correlate better to the assessments produced by the orig-
inal NASA-TLX and have nearly null correlation with those produced by the

Fig. 10. Convergent validity: distributions of the spearman correlations of the MWL
data-driven models against the NASA-TLX model

Fig. 11. Convergent validity: distributions of the Spearman correlations of the MWL
data-driven models against the WP model
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Workload Profile instrument. This suggests that incorporating the features of the
original NASA-TLX (or their manipulation) in a data-driven model is more use-
ful than using the features of the original Workload Profile instrument. In other
words, induced models, built using Machine Learning classification techniques
are closer to the NASA-TLX assessment instrument rather than the Workload
Profile instrument.

4.4 Summary of Findings

The findings achieved in this empirical research showed that:

– The concurrent validity achieved by the inductive data-driven models of
MWL, built using Machine Learning classification techniques, outperform the
concurrent validity of two state-of-the-art baseline models of MWL, namely
the NASA-TLX and the Workload Profile. In detail, Fig. 9 highlights the
capacity of the inductive data-driven models to correlate to human perfor-
mance better than the selected baseline models.

– The convergent validity of the inductive data-driven models, built using
Machine Learning classification techniques, and the baseline models of MWL,
namely the NASA-TLX and the Workload Profile assessment techniques, is
rather weak.

The weak convergent validity of the inductive data-driven models and the
baseline MWL models would suggest that, if the NASA-TLX and the WP instru-
ments are taken as benchmarking, then the assessments produced by the induc-
tive models is poorly assessing mental workload as a construct. However, the
concurrent validity of the induced models better explain human performance
than the NASA-TLX and WP instruments. Thus, because the main reason of
assessing MWL is to predict human performance, then the inferential capacity
of the inductive models is argued to be superior than the baseline models, high-
lighting the potential of Machine Learning as a method for modelling MWL and
increasing its understanding as construct.

5 Conclusion

This unique research study, the first of its kind to the best of our knowledge,
was aimed at comparing the inferential capacity of two baseline mental workload
(MWL) assessment techniques using self-reporting data – namely the NASA
Task Load Index and the Workload Profile instruments – against inductive
data-driven models of mental workload built using Machine Learning classifi-
cation techniques. The Cross Industry Standard Process for Data Mining was
followed for building inductive models using four Machine Learning classification
techniques of different types: Naive Bayes, based on probability measures; the
K-nearest Neighbors classifier, based on similarity measures; Random For-
est, based on Decision Trees and information measures; and Support Vec-
tor Machines, based on error measures. The underlying dataset [27], used for
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the comparison, is part of a bigger study [24] and already used in literature
[25,31,32,39]. This includes self-reporting data, obtained from human volun-
teers, after executing typical web-based tasks upon three popular websites. The
findings confirm the original hypothesis in which MWL models, built using clas-
sification techniques, were expected to outperform baseline theory-driven models
in the prediction of human performance (concurrent validity). In this context,
concurrent validity was the capacity of a MWL assessment technique to predict
an objective performance class (categorical variable) which was a real behav-
ioural indicator of the performance achieved by humans on experimental tasks.
Findings, although promising, cannot be generalised as only one dataset of small
size has been used. Further investigations and empirical research needs to be car-
ried out to strengthen this contribution and confirm the potential of Machine
Learning as a novel methodology for building data-driven models of mental work-
load and increasing our understanding of this fascinating complex construct.

Future work will be devoted to collect novel data, not using only self-reporting
assessment techniques, but also primary and secondary task measures as well
as physiological measures. Different contexts of application will be explored,
including for example virtual reality applications [21], simulation in safety criti-
cal environments [46], in educational settings [49] and clinical environments [28].
Additional Machine Learning classification techniques will be selected and fur-
ther existing theory-driven models of mental workload will be considered for
additional comparison.
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Abstract. Differences in workload inherent in a task have indirect and non-
linear relationships to performance differences because of coping strategies that
people can deploy. Thus subjective ratings of workload have become com-
monplace for evaluating task workload. It has become apparent, however, that
those ratings are affected by individual differences in personality and cognitive
traits that correspond to a general theme of elasticity versus rigidity. Addi-
tionally, workload can originate from both the task and group dynamics when
team work is involved. This study explored the relationship among 11 such
constructs related to anxiety, coping, and fluid intelligence and ratings of
individual and group workload. Participants were 360 undergraduates organized
into 44 groups of different sizes who engaged in an emergency response
(ER) simulation against one or two opponents. Regression analyses indicated
that task conditions accounted for 7–10% of variance in individual workload
ratings, and elasticity accounted for another 1–2% of the variance. Task con-
ditions accounted for 2–4% of the variance in group-level workload ratings, and
elasticity accounted for another 2–4%. Results support the continued investi-
gation of elasticity-rigidity in the understanding of workload arising from the
task and group dynamics.

1 Introduction

Widespread interest in cognitive workload problems started with Simon’s [1] concept
of bounded rationality and Broadbent’s [2] research on cognitive capacity. In the
ensuing decades two theories emerged: the fixed upper limit theory and the variable
upper limit theory [3]. According to the fixed upper limit theory, a person can perform
two or more tasks as long as the mental demand of the two add up to less than the upper
limit. When the upper limit is exceeded, errors proliferate or response time slows. In the
variable upper limit theory, the upper bound of mental capacity can stretch under
conditions of high motivation, a demand for emergency action or similar demands.
Later landmarks in cognitive workload theory now favour the variable upper limit
interpretation. According to Hancock and Warm [4], individuals have an acceptable
range of high and low workload which they attempt to maintain in order to maintain a
desired level of performance. When the acceptable range exceeds those boundaries,
they engage in coping strategies of various sorts to regain the desired level of
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performance once again. When the limits of their coping strategies are reached,
however, catastrophic declines in performance are likely to occur. Baddeley’s [5]
concept of working memory identified further degrees of flexibility. Working memory,
as we now understand it, consists of an executive function and specific functionalities
related to auditory and visual sensory processes. An auditory and a visual task can be
performed with relative impunity because of the separate neurocognitive channels that
are involved, but two tasks of the same relative size that place demand on the same
channel could produce challenges to accuracy and response time once again. We have
now learned since that time that the executive function of working memory recruits
workspace from specific brain regions, starting with the area most closely associated
with the task requirements. If there is not enough space, more workspace is recruited
from adjacent areas that are probably more often dedicated to other cognitive functions,
which now include psychomotor response and computational and verbal capacities
[6–9]. Wickens [10, 11] expanded on the channel principle by adding that tasks involve
stages of processing – perception, cognition, and action; action could also involve plural
channels. If the processing stages for two tasks are not simultaneous for any of the three
stages, the workload capacity is maximized, and the performance results are favorable.
Otherwise, bottlenecks, errors, and slowed response times are to be expected. Following
the reasoning about channel capacities and the recruitment of workspace from different
cognitive areas, the effect of excessive workload can be likened to that of squeezing a
balloon [12]. Pressure on one part of the system can induce breakage in another part of
the system. A substantial stream of research build-up on cognitive workload [13, 14]
alongside cognitive fatigue [15, 16]; the latter dates back more than century. Constructs
and experiments sometimes conflated the effects of workload and fatigue on perfor-
mance. The recommended remedy was to assess performance over time as workload and
fatigue conditions changed using two separate mathematical models (cusp catastrophes)
and designing experiments to capture the effects of both processes [17, 18]. The
workload model is the primary concern here; one of its features is the principle of
elasticity-rigidity, which is the primary concern in this chapter. Elasticity-rigidity is a
group of variables from personality and cognitive domains that predispose a person to
being more flexible with additional and varying demands. The role of elasticity-rigidity
is explained further in Sects. 1.2–3.

1.1 Subjective Workload Ratings

Differences in workload that arise from various task conditions are not always apparent
in task performance because individuals can employ coping strategies that buffer high
and low workload levels [4, 12]. As a result subjective ratings of workload, such as the
NASA Task Load Index (TLX) [19], have been valuable tools for research and system
design evaluation. The TLX rating constructs are mental demands, physical demands,
temporal demands, performance demands, effort required, and frustration as defined in
Table 1. Although the TLX is responsive to differences in workload [20–23], additional
variation in ratings have been traced to individual differences that could either be
personality or cognitive in origin [24, 25]. The specific trait variables would depend on
the mental resources required by the task.
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This study had two objectives. The first objective was to examine elasticity-rigidity
variables in conjunction with subjective workload ratings. Some individual differences
that influence TLX ratings are associated with skill level. Those with stronger skills
would have greater automaticity in the cognitive processes and would rate a task lower
in load compared to less skilled individuals [25]. Individuals with stronger skills would
also be expected to have greater flexibility for coping with increases in workload.
Attributes from the personality domain can also contribute to coping strategies. At this
time, a roster of about a dozen such variables have been identified on the basis of their
role in explaining performance differences in workload, and they are collectively

Table 1. Individual and group work scales

Individual scales, NASA TLXa Group workload scalesb

MENTAL DEMAND: How mentally
challenging (e.g. thinking, searching,
deciding) was the task?

COORDINATION DEMAND: How much
coordination activity was required (e.g.,
correction, adjustment)? Were the
coordination demands to work as a team low
or high, infrequent or frequent?

PHYSICAL DEMAND: How physically
challenging (e.g. pushing, pulling) was the
task?

COMMUNICATION DEMAND: How
much communication activity was required
(e.g. discussing, negotiating, sending and
receiving messages)? Were the
communication demands low or high,
infrequent of frequent, simple or complex?

TEMPORAL DEMAND: How much
pressure did you feel performing the task due
to the pace of the task?

TIME SHARING DEMAND: How difficult
was it to share and manage time between
taskwork (work done individually) and
teamwork (work done as a team)? Was it
easy or hard to manage individual tasks and
those tasks requiring work with other team
members?

PERFORMANCE: How successful were you
in achieving the goals of the task?

TEAM EFFECTIVENESS: How successful
do you think the team was in working as a
team? How satisfied were you with the
team-related aspects of performance?

EFFORT: How much energy was put forth to
achieve your level of performance in the
task?

TEAM SUPPORT: How difficult was it to
provide and receive support (providing
guidance, helping team members, providing
instructions, etc.) from team members? Was
it easy or hard to support/guide and receive
support/guidance from other team members?

FRUSTRATION: How discouraged,
bothered, irritated, and annoyed were you
because of the task?

TEAM DISSATISFACTION: How
emotionally draining and irritating vs.
emotionally rewarding and satisfying was it
to work as a team?

aReprinted from NASA Hart and Staveland [19]. In the public domain.
bReprinted from Helton et al. [30]. In the public domain.
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known as elasticity-rigidity variables [26, 27]. Some, but not all of them, have been
studied in conjunction with subjective ratings of workload.

The second objective of this study was to determine if group-level workload
(GWL) ratings are also influenced by elasticity-rigidity characteristics of the partici-
pants. The widespread nature of teamwork in sociotechnical systems has attracted some
new interest in group workload. The current thinking is that teamwork independently
adds workload in addition to individual workload constructs due to communication and
coordination demands and other group dynamics that might be involved [28, 29]. Thus,
Helton et al. [30] developed a set of subjective workload ratings for GWL – coordi-
nation demand, communication demand, time sharing demand, team efficacy, team
support, and team dissatisfaction – which were meant to be parallel to the TLX ratings
(Table 1).

1.2 Buckling Model for Workload

The model for cognitive workload invokes the concept of Euler buckling [31, 32].
A piece of material that is subjected to sufficient amounts of stress in the form of
repeated stretching will show a certain amount of deformity or strain. Rigid materials
break whereas flexible materials rebound. Similarly, if we took a rigid piece of material
and applied weights, nothing would happen until too much weight was placed on top of
the rigid material, whereas flexible materials are pliable and can deform and often
return to their original shapes.

The relationships between load, elasticity, and performance outcomes are captured
by the cusp catastrophe model (Fig. 1). Changes in performance that occur in response
to increasing workload can be relatively smooth and linear if bifurcation variables are
low in value. They are discontinuous if bifurcation values are high. Furthermore, high
bifurcation predisposes the performance to change upward or downward; thus the effect

Fig. 1. Buckling model for workload.
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of bifurcation variables might not be readily detected through linear modeling. This
study was concerned with the psychological variables that were identified in previous
research as bifurcation variables corresponding to the elasticity-rigidity construct and
their relationship to subjective workload. For further background on the cusp catas-
trophe model, means of data analysis, and its other applications in ergonomics, see
Guastello [33–35] and Guastello and Gregson [36].

The cusp model for workload has a companion cusp model for fatigue as both
processes are thought to operate simultaneously in a given task situation [26, 37]. As
the elasticity-rigidity principle only occurs in the workload model, the fatigue portion
of the theory is not considered further here except to offer two observations. First, the
relative amounts of workload and fatigue effects are traceable to the demands on the
channel capacity in working memory in the case of workload and the executive
function of working memory in the case of fatigue. Second, some tasks produce greater
amounts of workload effects than fatigue effects, whereas the opposite can occur for
other tasks.

In the case of workload effects, nearly one third of the performance variance is
accounted for by the nonlinear properties of the relationships among the variables [26].
The nonlinearities explain how performance responses to workload can be sudden
(high bifurcation or catastrophic), gradual and flexible (low bifurcation), or not
apparent at all (see Fig. 1). The latter would occur when the workload remains below a
person’s threshold for sudden change [4] and elements of rigidity are relatively high.
The tasks that were studied with the cusp catastrophe model were chosen to capture an
array of cognitive processes that place strong demands on working memory, and to find
what was generalisable about them: an episodic memory task [17], a pictorial memory
task that required verbal retrieval cues [18], perceptual-motor multitasking [38], a
vigilance dual task [24, 37, 39] a financial decision making task that captured both
optimising and risk taking behavior [27], and an N-back task [40].

1.3 Elasticity-Rigidity Variables

Anxiety Constructs
Trait anxiety, which is an important aspect of the personality trait neuroticism, can slow
response time, interfere with lucid decision making [41], and increase frustration with a
task [42], but it can also focus attention on details that others might miss [43, 44].
Anxiety is operative more often when interpersonal challenges or physical hazards are
present. Anxiety in this context was measured using a variation of the Taylor Manifest
Anxiety Scale [45], which is centered on psychosomatic symptoms that comprise of an
alternative medical diagnosis when they appear in relatively large numbers. Participants
in the vigilance task who scored higher on anxiety gave higher ratings of TLX temporal
demands than participants with lower anxiety scores. [24].

Emotional intelligence (EI) facilitates the understanding of one’s own emotions, the
emotional messages from other people, and the forming appropriate actions in response
to emotions. Low EI denotes rigidity in the form of indifference, which could be a
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buffer against stress effects. When stress gets too high, however, the system buckles
and snaps if the individual is not aware of his or her own emotional level or those of
other people [46]. EI was measured in the present study with the Schutte et al. [47]
scale, which favors the alexithymia construct more than it does cognitive judgment.
Participants in the vigilance task scored higher on EI rated TLX temporal demands,
effort, and frustration lower than participants with lower EI scores if they were working
alone; if they worked with another participant, EI had the opposite effect on the same
three ratings.

Empathy is usually defined with both a cognitive and an emotional component. The
cognitive component is the ability of a person to take the point of view of another. The
emotional component is the ability to experience vicariously the emotions of other
people. The latest thinking on the empathy trait is that it might contain other facets such
as self-regulation of emotion [48, 49], particularly when responding to co-workers [50].
Empathy was investigated here for the first time in conjunction with both TLX and
GWL ratings.

Coping Constructs
One construct of coping flexibility is centered on emotional adjustments in the clinical
sense of long-term life issues [51]. People who have a broader repertoire of coping
strategies are likely to be more resilient to stress and emotional hardship. Another
construct of coping is oriented towards cognitive strategies such as planning, moni-
toring, decisiveness, and inflexible responses to changing work situations [52]. These
aspects of coping all denote contributions from the executive function of working
memory. Both coping constructs were investigated here for the first time in conjunction
with both TLX and GWL ratings.

Fluid Intelligence Constructs
Working memory, which is the limiting ingredient in workload tolerance, has been
identified as part of the broader mental operations of fluid intelligence [53]. Field
independence is a cognitive style that separates perceptions of a figure from a back-
ground. People with high field independence likely use more of their working memory
capacity according to Pascual-Leone [54]. As such, field independence worked well as
a bifurcation variable in studies of problem solving in chemistry [55] and financial
decision making [27]. It was also associated with lower ratings of TLX physical
demand and higher levels of performance demand on the financial decision making
task [50].

Anagrams are one of several cognitive measures of creativity and are a part of fluid
intelligence [56]. The construct played a small but consistent role in performance
changes in cognitive workload or fatigue in the financial decision making task, which
was an optimising task; it did not register as a significant predictor of TLX ratings [27].
Anagrams were investigated again in the present study because the emergency response
(ER) task involved creative, strategic and adaptive behavior, which was the opposite of
the practical and formulaic financial decision making task.

Algebra flexibility is based on the idea that, in addition to learning the rules of
algebra, students should be flexible in their use of algebraic principles to solve prob-
lems [57]. It takes the form of a brief test with word problems and was an important
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factor in the workload model for N-back tasks [40], but algebra flexibility has not yet
been studied in conjunction with TLX and GWL ratings.

Conscientiousness Constructs
Conscientiousness is a trait that predisposes a person to pay close attention to details,
rules, task orientation, and a broader proclivity to focus attention. It thus implies a type
of rigidity [58]. Conscientiousness has been measured as a broad trait in the sense of
the five factor model of personality [59] in some of the workload experiments. In
others, it was broken down into two narrower traits. One of the narrower traits mea-
sured conscientiousness in the sense of Factor G on the 16PF [24, 60], and the other
measured impulsivity versus self-control, which would be similar to Factor Q3 on the
16PF. In principle, it is possible for people to be rigid in the sense of Factor G and
flexible in the sense of Q3 [27]. Impulsivity was correlated with higher ratings of TLX
temporal demand, and the narrower form of conscientiousness was correlated with
higher ratings of TLX performance.

1.4 The Present Study

The data collection for the present study of ER teams was organised around three
experimental conditions: a fixed effect for group size (3, 4, 7, or 8 individuals), a fixed
effect for number of opponents (1 or 2), and a time constraint. The time constraint
produced both a repeated effect and a fixed effect. The fixed effect was whether the time
constraint was introduced either sooner or later in the experiment. The repeated effect
was the two experimental sessions that differ in the use of the time constraint. The
foregoing experimental design also afforded an opportunity to investigate changes in
patterns in workload-elasticity relationships as the group matured.

A previous study [61] investigated the impact of the experimental manipulations on
TLX and GWL ratings using a mixed model MANOVA analysis. Group size affected
individual workload ratings but not group workload ratings. The number of opponents,
however, affected most individual and group ratings. The repeated main effect of
experimental session affected some individual and group ratings, indicating that work-
load experiences shifted as the group matured. The effect of the time constraint was
assessed as an interaction between session and whether it was introduced sooner or later;
the presence of the time constraint affected TLX performance and frustration scales only.

The hypotheses and analyses were structured as a hierarchical regression problem in
which the objective was to determine the extent to which elasticity-rigidity affects
ratings over and above that which could be accounted for by the experimental manip-
ulation alone. Because many specific elasticity variables were involved, the regression
strategy also allowed for some simplification of the experimental effects by dropping
unnecessary interaction terms. Data from the two sessions were analysed separately to
create a clearer picture of how workload experiences could shift over time. Another
aspect of the research strategy was to analyze TLX and GLW ratings separately and not
as total scores. Although there is evidence to support the use of total scores [30, 62],
there is also research showing that the separate ratings can be differentially affected by
experimental conditions [24, 61, 63, 64], and there was a similar amount of specificity
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between elasticity variables and ratings [24]. The general model for the hierarchical
regression analysis is:

WLi ¼ f1 Experimental conditionsð Þ þ f2 elasticity-rigidityð Þ

where WLi is a specific workload rating, and f1 and f2 are weighted combinations of
experimental conditions and elasticity-rigidity variables respectively. The objective is
to determine whether f2 adds anything to the prediction of workload ratings beyond
what is accounted for by f1.

The final analysis used canonical correlations to identify over-arching or emergent
patterns of experimental conditions and elasticity variables on the one hand that were
maximally related to weighted combinations of TLX and GWL ratings on the other:

f1 experimental conditions; elasticity-rigidityð Þ ¼ f2 TLXi þ GWLið Þ

Once the calculation routine finds the first canonical variate, it searches for a second
set of f1 and f2 that is orthogonal to the first. The maximum number of canonical
variates is equal to the number of variables in the smaller of the two variable sets. The
rationale behind the experimental conditions and specific hypotheses for this study are
described next.

Group Size
Relatively smaller groups are more likely to be psychologically homogenous and thus
more likely to be cohesive, which in turn bodes well for many types of tasks, although
smaller groups might not be sufficiently equipped for creative problem solving tasks
[65]. Relatively larger groups are more likely to be psychologically heterogeneous and
thus more likely to produce the critical mass of ideas that are both required for creative
problem solving tasks and for making the group more productive than the most com-
petent individual [66]. However, larger groups are more prone to conflict for the same
reasons [65]. Social loafing, in which some group members do more of the work than
others while they all share in the same reward [67], could potentially alter workload
demand on some group members. Social loafing is a potential in groups of any size but
more so in larger groups. Differential work production or participation input, however, is
not always a result of deliberate loafing but can be the result of poor team coordination
[68]. Communication in smaller groups tends to be more equal with regard to the
number of turns people take in a conversation. As groups become larger, however, larger
numbers of speech turns are taken by proportionately fewer people [69]. The foregoing
effects of group size could affect ratings of coordination demand, communication
demand, team effectiveness, team satisfaction, and possibly team support.

Speed and Load
The two-attacker scenario should add workload for the ER teams because it creates a
more challenging problem for the ER groups to overcome. Time pressure is another
form of workload that was manipulated in the experiment. In one of the earliest
ergonomics studies of workload, Conrad [70] showed that speed and load are important
sources of demand (or stress); when multiplied together they had a strong linear cor-
relation with task performance of individuals. Speed and load manipulations have also
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been studied as separate measures of workload [18, 24, 27, 39, 41, 71, 72]. Speed stress
typically does not have a visible impact on performance errors until it reaches a critical
point at which a speed-accuracy trade-off is observed.

Elasticity-Rigidity
Elasticity-rigidity variables were examined as correlates of the TLX and GWL ratings.
The regression analyses were organised to produce competitive tests of the experi-
mental conditions and elasticity variables for explanations of workload ratings. Indi-
vidual differences were included from the anxiety, coping, and fluid intelligence groups
of variables. The conscientiousness constructs were not included due to limitations on
the experimental participants’ time combined with the low expectation that it would be
relevant to an essentially creative and adaptive task in which following rules was part
of the experimental control.

Self-organisation
Self-organisation is a process in which a system that is in a high state of entropy
acquires a new structure that reduces the amount of entropy, or lost energy, in carrying
out its activities [73]. The new structures are often regarded as a form of emergence that
has a visible influence on the system’s continuing activities [74–76]. Human groups
develop and mature over time, although not necessarily in the same temporal patterns
[77, 78]. Groups engage in a variety of communication patterns, hypothetical strategies
for action, and attempts to coordinate actions; as such, groups eventually establish the
combination that works best for them. The specific task demands, physical workspace,
and the group members themselves all contribute to the final outcome of the
self-organising process. As groups evolve, their members learn coordination and
effective communication patterns simultaneously while learning appropriate perfor-
mance of the task; there are essentially two learning curves transpiring at once [68].
Task learning is usually regarded as explicitly learned while team coordination and
related processes are implicitly learned. Furthermore, groups tend to undergo a qual-
itative and discontinuous shift in their internal dynamics approximately half way
through their work time together; this phenomenon has been identified as punctuated
equilibrium [79]. Both bottom-up (individual-to-group) and top-down (group-to-
individual) processes are expected. They should be visible in multivariate patterns of
TLX and GWL ratings, such that TLX and GWL ratings occur in combination. The
alternative would be that TLX and GWL ratings remain separated and explained by
different combinations of individual differences and experimental conditions.

Summary of Hypotheses
The hypotheses for the present study can be summarised as follows:

1. Increased workload in the form of number of opponents that the ER teams had to
work against and speed demands would have an impact on workload ratings at the
individual and group level.

2. Group size would have an impact on workload ratings. The creative problem
solving nature of the task would favour lower individual ratings for larger groups.
Larger groups would suggest greater demand on group-level workload, however.

3. Elasticity-rigidity variables would be correlated with workload ratings and have an
effect beyond the more obvious workload conditions.
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4. Patterns of elasticity, experimental conditions, and workload ratings should reflect
both top-down and bottom-up dynamics.

5. There should be some changes in patterns of elasticity, experimental conditions, and
workload ratings as the group matures. It is not known a priori whether the changes
would be gradual or decisive.

2 Method

2.1 Participants

This study was approved by the university’s Institutional Review Board with regard to
all matters pertaining to the use of human research participants. Participants were 360
undergraduates who were enrolled as students in psychology courses in a Midwest-
ern US university. Their ages ranged from 18–31 (M = 19.04, SD = 1.32). There were
102 males, 255 females, and 3 people who did not report gender. They were organised
into 44 groups, who participated in three experimental sessions. The recruitment goal
was to assemble four or eight participants for the ER teams (see experimental task
description below), one or two to play the attackers, plus one more as a back-up in case
one player did not show up for an experimental session. Attrition usually occurred after
the first session. There were 252, 65, and 43 individuals participating as ER team
members, attackers, and observers, respectively, who completed the simulations for
data collection purposes. The breakdown of participants in the small and large group
conditions with one or two attackers appears in Table 2.

The participants took part in three experimental sessions that were scheduled for
two hours each. In the first session, they signed the consent form to participate in the
experiment, completed some timed tests and an untimed questionnaire, and learned
how to play the ER game. (The timed tests and questionnaire data were not analysed in
the present study.) In the second and third sessions, the ER members and the attacker(s)
played three games to generate data for the experimental analysis while wearing gal-
vanic skin response (GSR) sensors, and then provided ratings of workload and team-
mates’ participation and leadership contributions. Because of the apparent difficulty of
the simulation and absence of explicit time constraints, some groups facing two
attackers were only able to complete two games in session 2. GSR data were not

Table 2. ER Team sizes by experimental condition

Attackers Small Large
No. groups Size No. groups Size

1 5 3 4 7
6 4 8 8

2 2 3 1 7
9 4 9 8
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analysed here, but there was reason to expect that simply wearing the sensors could
contribute to either workload or fatigue [37, 80]. An analysis of leadership ratings from
the end of the sessions was reported separately [81].

2.2 Experimental Task

The experimental medium was a board game entitled The Creature that Ate Sheboygan
[82, 83]. For 28 of the groups, teams and attackers were given a time limit of 90 s per
turn during the second experimental session although most turns required only 10 to
70 s to complete. The other 16 groups were given a time limit of 90 s during the third
session only. Participants were given a 30 s warning if they took at least 60 s to make
their moves. The ER teams were given five minutes at the start of a game to position
their tokens on the board in any manner they thought was strategic while the attacker
waited in another room out of earshot. Attackers made the first move. A turn was
defined as an attacker’s move followed by a team response. Attackers could burn
buildings and eradicate ER teams’ military, police, firefighting, and air power. The
attacker, or pair of attackers, wins if it scores at least 40 points against the ER team.
The ER team wins if it cuts the attacker’s defense power (or each attacker’s defense
power in a two-attacker condition) to zero. Teams’ and attackers’ performance scores
required data analyses at the team level, rather than the individual level, and were thus
not included in this study. Of note, however, the game outcomes were close to even in
the one-attacker condition with the ER teams winning 53.7% of the games; ER teams
won 16.5% of the games when playing against two attackers. The median game, across
all experimental conditions, lasted 11 turns (95%ile = 31 turns) and 972.5 s
(95%ile = 2920.0) from the beginning of the monster’s first turn to the conclusion
wherein the ER teams or monsters scored enough points against the opponent to
define a win.

The laboratory layout is shown in Fig. 2. When the participants arrived for the
second session, they selected their own positions at the work table. After a roll of the
die, the high-rolling individual was assigned the role of attacker. The back-up person
was determined by another roll of the die. Participants switched places as necessary.
The ER team members were then given badges that identified them as ER1 through
ER4 or ER8 according to their positions shown in the diagram. Once the attackers and
back-ups were identified and the ER team members were numbered by distributing
name tags, they maintained those designations through the series of six games unless a
participant did not show up for the third experimental session. If a no-show occurred,
the back-up person replaced the missing individual. ER team members, once they were
numbered, were not required to stay stationary in the seating positions shown in the
diagram, but they usually did so. One research assistant (RA1) was positioned at the
laptop with the GSR equipment. The GSR equipment was not used in this study; some
analyses of that data were published separately [81]. The other research assistant was
positioned at the location RA2. The table with the computer behind RA2 was not used
in the experiment. Back-up participants who were not substituting for a player assisted
the RAs with counting game points. Back-up participants were usually positioned close
to RA1 but would move around to get a better view of the game board and players.
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2.3 Measurements

After the third game of each session, the participants were allowed to remove their
GSR sensors, and they immediately completed the TLX and GWL ratings of workload.
Both inventories (defined in Table 1) were formatted as 20-point scales (1–21)
anchored as 1 = “very low” and 21 = “very high.” Ratings were completed by ER
team members, attackers, and observers although only the ER teams’ ratings were used
in some of the analyses.

2.4 Statistical Analysis

In the first series of analyses, the hierarchical regression analysis was performed using a
stepwise multiple regression procedure; each of the workload ratings was evaluated as
a separate dependent measure. The stepwise procedure was used instead of block entry
of variables to identify the smallest number of independent variables that could account
for the ratings. The independent variables were experimental control variables and
elasticity-rigidity, which were tested on a competitive basis. The criterion for the F-test
to add a variable was set at p < .05, and the criterion to remove a variable was p > .10.
Because each rating was of interest separately, no corrections for Type I error were
introduced at this stage of analysis. The error term was ordinary least squares. The
analysis was performed using SPSS v.24 software. Canonical correlation was used in
the second series of analyses. These analyses sought for optimal combinations of
experimental conditions and elasticity-rigidity variables that correlated with configu-
rations of TLX and GWL ratings. This multivariate procedures controls for Type 1
error in much the same way as MANOVA controls for it relative to multiple ANOVA
with multiple, and probably correlated, dependent variables. Canonical correlation
analysis was performed separately for sessions 2 and 3. These analyses were expected

Fig. 2. Laboratory layout for the small (left) and large (right) groups.
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to uncover emergent patterns of experimental conditions, individual differences, and
ratings. Canonical correlation is also a least squares procedure that was calculated
through SPSS v.24.

3 Results

Regression results for TLX ratings appear in Table 3. Multiple R ranged from .197 for
physical demands in session 3 to .439 for frustration in session 2. Higher workload
ratings were consistently paired with teams having two opponents instead of one and
for smaller group sizes. The time constraint condition only affected TLX Performance;
ratings were lower for participants who received the time constraint earlier rather than
later. Elasticity-rigidity ratings were selectively attached to the ratings. Depending on
which trait was active, workload ratings were larger to the extent that EI, planning,
monitoring, anxiety, or indecisiveness was higher.

The average proportions of variance associated with experimental conditions and
elasticity-rigidity variables is shown in Fig. 3. The average level of prediction was 9%
of the variance accounted for in session 2, which was apportioned as 7 parts from
experimental conditions and 2 parts from elasticity. Each TLX rating was associated
with experimental conditions. The average level or prediction increased slightly to 11%
of the variance in session 3. Again all TLX ratings were associated with experimental
conditions. The relative proportions were 10 parts experimental conditions and 1 part
elasticity.

Regression results for GWL ratings appear in Table 4. Multiple R ranged from .00
(no variables entered the equation) for team support in session 2 and team efficacy in
session 3 to .310 for communication demand in session 3. The average level of pre-
diction for GWL ratings was generally less, accounting of an average of 6% of the
variance in session 2. The apportionment in session 2 was one part experimental
conditions and 2 parts elasticity. Four out of six GWL ratings were affected by
experimental conditions. The active elasticity variables were coping flexibility, anxiety,
EI, and inflexibility. Team support was not affected by either source of influence. The
average level of prediction of GWL did not change in session 3, but the apportionment
inverted to approximately two parts experimental conditions and one part elasticity.
Once again four out of six GWL scales were affected by experimental conditions. The
active elasticity variables were indecisiveness, empathy, and anxiety. Team efficacy
was unrelated to either source of influence.

The canonical correlation analysis (Table 5) indicated that if the canonical variate
contained experimental conditions their effects were exaggerated by the elasticity
variables. Two canonical variates were obtained for session 2 data. In the first function
(rc = .532, p < .001), more monsters, smaller groups, and earlier time constraints
produced several types of higher workload at the individual and group level and were
exaggerated by anxiety. In the second function (rc = .428, p < .10), there was a profile
of elasticity variables associated with a cluster of GWL ratings. The latter p-value was
high, but the model was retained because a preliminary analysis of elasticity variables
without experimental conditions produced the same function at p < .05.

Elasticity and Rigidity Constructs and Ratings 63



Table 3. Stepwise regression of experimental conditional and elasticity-rigidity variables with
subjective ratings of individual workload (TLX).

Independent variable b t R Adj. R2 (df) F

Session 2
Dependent: Mental Demand
Monster condition .204 3.255** .196 .034 (1, 239) 9.520**
Emotional intelligence .142 2.266* .236 .056 (1, 238) 7.050***
Team size −.147 −2.337* .276 .076 (2, 237) 6.494***
Dependent: Physical Demand
Planning .165 2.601** .161 .022 (1, 239) 6.382*
Monster condition .136 2.145* .211 .036 (2, 238) 5.540**
Dependent: Temporal Demand
Monster condition .190 3.015** .190 .032 (1, 239) 8.930**
Team size −.142 −2.251* .237 .048 (2, 238) 7.074***
Dependent: Performance
Monster condition −.367 −6.092*** .367 .131 (1, 239) 37.113***
Dependent: Effort
Monitoring .156 2.468* .158 .021 (1, 239) 6.114*
Team size −.161 −2.542* .222 .041 (2, 238) 6.168**
Dependent: Frustration
Monster condition .339 5.807*** .342 .114 (1, 239) 31.754***
Team size −.221 −3.776*** .415 .165 (2, 238) 24.770***
Anxiety scale .145 2.471* .439 .183 (3, 237) 18.903***
Session 3
Dependent: Mental Demand
Monster condition .314 5.140*** .313 .094 (1, 232) 25.188***
Team size −.194 −3.171** .368 .128 (2, 231) 18.113***
Dependent: Physical Demand
Monster condition .144 2.234* .142 .016 (1, 232) 4.743*
Planning .137 2.120* .197 .030 (2, 231) 4.654**
Dependent: Temporal Demand
Team size −.262 −4.283*** .257 .062 (1, 231) 16.324***
Monster condition .207 3.383*** .332 .103 (2, 230) 14.249***
Irresolute .181 2.956** .378 .132 (3, 229) 12.731***
Dependent: Performance
Monster condition −.356 −5.730*** .334 .108 (1, 232) 29.208***
Time condition −.136 −2.191* .360 .122 (2, 231) 17.244***
Dependent: Effort
Team size −.240 −3.769*** .240 .054 (1, 232) 14.205***
Dependent: Frustration
Monster condition .362 6.011*** .360 .126 (1, 232) 34.596***
Team size −.185 −3.069** .405 .157 (2, 231) 22.637***

*p < .05, **p < .01, ***p < .001
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Two canonical variates were also obtained for session 3 data. In the first function
(rc = .585, p < .001), the experimental conditions of larger teams and only one monster
resulted in higher ratings of TLX performance and lower ratings on seven other types
of workload; the effect was stronger for participants with lower entropy. In the second
function (rc = .476, p < .05), the effect of time constraint was exaggerated by lower
anxiety and greater flexibility; this combination of variables connected to higher ratings
of temporal demand and lower ratings on three other scales.

4 Discussion

People use coping strategies of different sorts to compensate varying amounts of
workload and maintain their desired performance levels. The perception and experience
of workload may vary based on individual traits and, if the task involves other people,
group-level factors. Individual cognitive workload is well-described by a cusp catas-
trophe model similar to Euler buckling for explaining the effects on performance.
Increasingly, more taxing demands place pressure on cognitive processes, which can
buckle once a critical point is reached and lead to suboptimal performance; however,
elasticity in the form of individual characteristics, like coping flexibility, or group-level

Fig. 3. Relative portions of rating variance accounted for by experimental and elasticity
variables.
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characteristics, like having more people to spread the load, can reduce task demands and
enhance performance. Thus, the purposes of this study were (a) to examine
elasticity-rigidity variables in conjunction with subjective workload ratings, (b) to
determine if group-level ratings are also influenced by elasticity-rigidity characteristics,

Table 4. Stepwise regression of experimental conditional and elasticity-rigidity variables with
subjective ratings of group-level workload (GWL).

Independent variable b t R Adj. R2 (df) F

Session 2
Dependent: Coordination Demand
Coping flexibility .192 2.940** .174 .026 (1, 224) 6.979**
Team size −.166 −2.536* .240 .049 (2, 223) 6.788***
Dependent: Communication Demand
Empathy scale .237 3.636*** .221 .040 (1, 224) 10.404***
Monster condition .153 2.382* .263 .061 (2, 223) 8.308***
Anxiety scale .137 2.099* .296 .075 (3, 222) 7.092***
Dependent: Time Sharing Demand
Monitoring .227 3.491*** .227 .047 (1, 224) 12.184***
Dependent: Team Efficacy
Emotional intelligence .231 3.489*** .193 .033 (1, 224) 8.701**
Monster condition −.161 −2.508* .252 .055 (2, 223) 7.568***
Monitoring −.141 −2.131* .287 .070 (3, 222) 6.639***
Dependent: Team Support .000 .000
Dependent: Team Dissatisfaction
Inflexibility −.178 −2.714** .167 .024 (1, 224) 6.427*
Monster condition .149 2.283* .224 .042 (2, 223) 5.880**
Session 3
Dependent: Coordination Demand
Monster condition .213 3.216** .208 .039 (1, 215) 9.710*
Irresolute −.145 −2.197* .254 .056 (2, 214) 7.354**
Dependent: Communication Demand
Monster condition .240 3.687*** .231 .049 (1, 215) 12.141**
Empathy scale .206 3.166** .310 .087 (2, 214) 11.337***
Dependent: Time Sharing Demand
Monster condition .216 3.290** .234 .051 (1. 215) 12.491***
Team size −.180 −2.739** .295 .078 (2, 214) 10.185***
Dependent: Team Efficacy .000 .000
Dependent: Team Support
Anxiety scale .159 2.368* .159 .021 (1, 215) 5.608*
Dependent: Team Dissatisfaction
Monster condition .207 3.123** .216 .042 (1, 214) 10.499***
Anxiety scale .142 2.138* .258 .058 (2, 213) 7.624***

*p < .05, **p < .01, ***p < .001
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(c) to capture an array of cognitive processes that place (e.g., inflexible thinking) or
reduce (e.g., fluid intelligence) strong demands on working memory, and (d) to inves-
tigate changes in patterns in workload-elasticity relationships as the group matured.

4.1 Task Conditions

Individual-level workload was measured by the TLX, which examines mental demand,
physical demand, temporal demand, perceptions of performance requirements, effort

Table 5. Canonical correlation analysisa

Experimental condition and
elasticity-rigidity

Canonical
loading

Subjective rating Canonical
loading

Session 2
Canonical Variate 1: rc = .592, K ¼ :366, F(143, 1729.324) = 1.523, p < .001
Anxiety .283 TLX Mental .590
Time Condition −.335 TLX Temporal .415
Team Size −.519 TLX Performance −.532
Monster Condition .526 TLX Frustration .760

GWL Coordination .351
GWL Communication .345
GWL Team

Dissatisfaction
.257

Canonical Variate 2: rc = .428, K ¼ :511, F(120, 1590.229) = 1.198 p < .10
Field Independence .314 GWL Coordination −.318
Emotional Intelligence −.270 GWL Communication −.319
Indecisiveness .338 GWL Time Sharing .426
Monitoring .596 GWL Team Efficacy −.624
Empathy −.360 GWL Team

Dissatisfaction
.258

Session 3
Canonical Variate 1: rc = .585, K ¼ :293, F(156, 1709.527) = 1.621, p < .001
Empathy −.297 TLX Mental −.690
Team Size .426 TLX Temporal −.573
Monster condition −.607 TLX Performance .450

TLX Effort −.450
TLX Frustration −.726
GWL Communication −.528
GWL Time Sharing −.459
GWL Team Support −.427

Canonical Variate 2: rc = .476, K ¼ :446, F(132, 1590.256) = 1.243, p < .05
Anxiety −.298 TLX Temporal .512
Inflexibility −.266 TLX Performance −.438
Time Condition .651 GWL Team Efficacy −.305

GWL Team Support −.335

Note: A criterion of 0.25 was used to interpret canonical loadings.
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needed to meet those requirements, and frustration. Group-level workload was mea-
sured by the GWL, which quantifies coordination demand, communication demand,
time sharing demand, and perceptions of team effectiveness, support, and dissatisfac-
tion. Several individual characteristics were investigated that had been previously
identified as elasticity-rigidity variables in workload-performance studies [24, 26,
27, 37]. They were investigated here for their possible positive or negative impact on
subjective ratings of workload; the list included trait anxiety, emotional intelligence,
empathy, coping flexibility, planning, monitoring, decisiveness, inflexibility, field
independence, creativity (anagrams), and algebra flexibility.

Hypothesis 1 stated that increased workload in the form of number of monsters and
speed demands would have an impact on workload ratings at the individual and group
level. This hypothesis was important because of the generally untested nature of the
GWL scales, which are relatively new [30]. Our results partially confirmed this
hypothesis. More monsters and greater time pressure significantly increased partici-
pants’ reports of individual workload, specifically worse perceived performance in
session 3. More monsters had the larger impact and predicted mental, physical, temporal
demands, and frustration in sessions 2 and 3 However, the time condition did not predict
workload as well. This could be explained by the fact that most turns took less than the
time pressure placed on participants. Future studies will need to analyse the impact of a
shorter speed demand on performance. For group workload, a similar pattern was
detected. Monster conditions predicted greater demands for communication and team
efficacy, and team dissatisfaction in session 2. These group-level demands were also
rated more severe in session 3 as were coordination and time sharing demands.

4.2 Group Size

Hypothesis 2 stated that group size would have an impact on workload ratings. The
creative problem solving nature of the task would favour lower individual ratings for
larger groups. Larger groups would suggest greater demand on group-level workload,
however. Greater group size predicted less individual mental and temporal demand as
well as better perceived effort and less frustration in sessions 2 and 3. This is as we
predicted under the reasoning that having additional resources through more team
members aids creative problem solving and task performance. Our hypothesis
regarding the effects of group size on group workload was inaccurate. Rather, we found
that larger groups had less coordination demands in session 2 and less time sharing
demands in session 3. These trends may have been due to the impact of leadership
emergence or enhanced synchrony.

4.3 Elasticity-Rigidity

Hypothesis 3 stated that elasticity-rigidity variables would be correlated with workload
ratings and have an effect beyond the more obvious workload conditions, which indeed
happened. Individuals have unique characteristics that contribute to their perceptions of
their own experiences of workload as well as their experiences of group workload.
Task conditions accounted for 7–10% of variance in TLX ratings and 2–4% of the
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variance in GWL ratings, and elasticity accounted for another 1–2% of the variance in
TLX ratings and another 2–4% in GWL ratings. The relative impact of elasticity
compared to task conditions was greater for group-level workload.

The elasticity variables that appeared most frequently in the multiple regression
analyses (Tables 3 and 4) were anxiety, monitoring, planning, empathy, and irresolute
(indecisiveness). Anxiety is known to significantly alter cognition through difficulty
concentrating; further, people with significant anxiety frequently have cognitive dis-
tortions that negatively impact their ability to monitor performance and plan effectively.
Empathy and emotional intelligence (which are correlated) made a greater contribution
to group workload than to individual workload. Monitoring, planning and indeci-
siveness were related to both individual and group workload ratings. The effect sizes
for the elasticity-rigidity variables were very small, although it is important that they
registered as statistically significant nonetheless. The large sample size probably helped
in that regard, but the sample size was necessary because of the large number of
variables and experimental conditions that were involved. It is important to remember,
however, that the elasticity-rigidity variables were identified in previous studies with a
nonlinear model for changes in performance in response to experimental conditions.
The rigidity pole of the variables is actually associated with positive and negative
changes in performance in the cusp catastrophe model, although linear comparison
models in those studies often showed a net-positive or net-negative impact on per-
formance for some of them. Only linear models were tested here. It is also an open
question as to how subjective ratings of workload connect to performance differences
within the nonlinear paradigm, given the way elasticity-rigidity variables tend to act.

The present study was concerned with individual-level measurements and their
relationships to subjective workload, but the performance measures are group-level
outcomes. A separate study is forthcoming that examines group-level performance in a
cusp catastrophe analysis. Part of the challenge is to figure out the pathway between
individual-level experiences and group-level performance with respect to both
elasticity-rigidity and subjective workload ratings.

4.4 Top-Down and Bottom-Up Trends

Hypothesis 4 stated that patterns of elasticity, experimental conditions, and workload
ratings should reflect both top-down and bottom-up dynamics. Such patterns were
found in the canonical correlation analysis, which contained mixtures of TLX and
GWL ratings on the criterion side of the functions. The predictor size of the functions
contained mixtures of experimental conditions and elasticity variables, where the latter
were seen to exacerbate or subdue the effects of experimental conditions. Here we also
observed that field independence, and time constraints, which played little or no role in
the multiple regression analyses with the single ratings as criteria, were part of the
canonical functions. The four canonical functions were, in essence, emergent variables
that were part of the group self-organizing process.
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4.5 Group Development

Hypothesis 5 stated that there should be some changes in patterns of elasticity,
experimental conditions, and workload ratings as the group matured. It was not known
a priori whether the changes would be gradual or decisive. There were changes in the
patterns of elasticity and experimental variables reaching significance in predicting
workload over time. Arguably the smaller effects could have occurred by chance given
the large number of statistical tests that needed to be made. Alternatively, however, the
relative influence of elasticity versus experimental conditions reduced from session 2 to
session 3 as participants presumably become more familiar with the task and each
other. The canonical correlation analysis, furthermore, reflected some simplification in
the arrays of active variables on both sides of the equations. Combinations of task
conditions and elasticity variables were generally reduced from session 2 to session 3.
The workload parts of the functions also changed. In session 3 there was a mixture of
TLX and GWL ratings plus a second function contained GWL ratings only. In the
session 3 the first function was similar, but included five out of six individual ratings
plus three GWL ratings in one function, and a more concise combination of temporal
demand and performance demand.

4.6 Generalisability of Results

The present study expanded on previous studies [24, 27] connecting elasticity-rigidity
variables and subjective ratings of workload by including a wider range of elasticity
constructs and group-level workload ratings. The previous tasks (vigilance and
financial decisions making) were not comparable to the present one, nor were the
experimental conditions, so the generalisability of results found here are limited to the
following: (a) People with higher levels of emotional intelligence recognised greater
mental demands. (b) Anxiety and emotional intelligence are more likely to be active
variables to the extent that participants work with others rather than alone; in the
present study team size was an important contributor to subjective workload. (c) Rat-
ings of individual (or group) workload are affected by elasticity characteristics. The
relative contributions of elasticity variables with TLX ratings were relatively equal
when they occurred at all in the vigilance task. Vigilance tasks are known to be
psychologically demanding because of their low workload most of the time. In the
present task individual differences played a smaller role in predicting TLX ratings, a
relatively equal role with GWL ratings, both of which reduced as the group became
more mature. Field independence played an important role in TLX ratings in the
financial decision task [27], in which participants worked alone in all experimental
conditions. On the one hand, that variable was thought to have a specific role in
financial decision making. On the other hand, it was thought to have a more general
role with regard to the participant’s utilisation of working memory capacity. Field
independence only played a role as part of one emergent canonical function in the
present study.
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4.7 Limitations and Future Research Directions

The present study was an abstraction of emergency response functions, and not a real
event in which life and death decisions are not merely a game and physical demands
such as removing building rubble to excavate survivors or gunfire with perpetrators are
involved. The present study does warrant closer attention to the personal characteristics
of ER teams and tracking of their performance and reactions during their most
demanding tasks to the extent possible. Laboratory research, however, does provide a
safe and flexible environment for testing ideas in which the consequences of failure are
“strictly academic.”

The present study expanded the roster of elasticity variables compared to previous
efforts, although the conscientiousness constructs were not included here. There was a
limitation on the participants’ available time, and it was necessary to confine the
pre-testing to variables that warranted the most attention and save the remainder of time
for learning the task. In this case the signature characteristics of conscientiousness –

low impulsivity, high attention to rules and details – would not be relevant to the task
which demanded strategy, adaptation, and random action to foil the opponents’ efforts.
Future research on elasticity and subjective workload should reinstate conscientious-
ness as a possible relevant variable insofar as it is relevant to the task.

Furthermore, no claim has been made here that the elasticity variables that have
been identified are an exhaustive list; new variables should be considered and studied.
Elasticity-rigidity variables are actually part of a cusp catastrophe model for workload
and performance. The cusp model was not studied here, although it is on the agenda for
continued research. Previous studies involved individual-level performance variables,
but performance for the present task was group-level only. There are additional issues
to be considered by which individual-level characteristics are organised into
group-level metrics and then used to study group-level performance. Although they
share a common function in the cusp model, adding the elasticity-rigidity variables
together into one scale is not recommended. They are not all responsive to the same
task conditions. Adding them together would only produce extraneous variance in the
composite measure and thus reduce the correlation with other variables such as
workload ratings and task conditions. Anxiety and conscientiousness (the latter not
studied here) are already known to be factorially independent [59]. The coping
strategies were developed by Cantwell and Moore [52] as independent factors also.

The time pressure manipulation was not as effective as we anticipated. Thus, it
should be more demanding in future research. The effectiveness of time constraints
would be relative to the task and other experimental conditions that are involved.
Emergent leadership is a group dynamic that was not considered in the present study.
The ER teams started as leaderless, but it is well-known that leaders emerge eventually
as part of a self-organising social structure [68]. The effects of leadership styles (or
other characteristics) on the distribution of workload is not known, however, either
with regard to how workload is shared by team members or with regard to
individual-level and group-level sources. The connection between leadership emer-
gence dynamics and the simultaneous top-down vs. bottom-up processes in workload
sources requires further investigation.
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Abstract. This paper presents some incidental findings and observations rela-
ted to cognitive workload and situational awareness from a number of research
projects investigating the impact of changes to systems used to support
decision-making in complex time-critical situations. It is hoped that these
observations will provide useful insights into the way cognitive workload affects
decision-making as well as providing guidance to future research, in the form of
specific aspects to investigate as well as considerations for the analysis process.
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1 Introduction

This paper is based on the findings of a set of seven extensive research programmes
undertaken for the UK Defence Science and Technology Laboratory (Dstl) over the
past eleven years. These various projects were investigating the problem space from
different angles or were concerned with specific sub areas: for this reason this paper is
in effect multi-faceted rather than one continuous smooth narrative. The understanding
of cognitive workload was developed in the context of predicting the benefits and/or
disadvantages of the introduction of changes to the socio-technical system. The
research was investigating the effect on decision making of making changes to the
manned system; these changes could be to equipment, information presentation
mechanisms, processes, procedures, manning levels, team structure, etc. or a combi-
nation of these: these changes (intended to be improvements) are referred to as “in-
terventions” as they are an intervention to the current socio-technical system. All of
these research projects were intended to recommend changes which would improve the
decision-making process within a team working in a situation where these decisions:

• were based on a large amount of potentially complex and potentially uncertain
information, usually from a variety of sources

• had to be made within a confined timeframe, and;
• where the results of these decisions could have critical consequences.
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The research conducted resulted in a number of findings related to how cognitive
workload can affect the way people conduct their decision-making activities in this type
of environment as well as mechanisms for visualising and analysing cognitive work-
load that support the research process. The projects from which the findings in this
paper were drawn involved different environments and different decision-making
contexts, therefore the individual studies differed in their scope, objectives, target user
group and details. These projects were all carried out in a military context (in the Land
and Maritime domains) and therefore the details cannot be reported here.

This paper presents a number of the incidental findings (i.e. those not directly
related to the objectives of the research projects) that have potential value for other
cognitive modelling projects. It is not intended to cover the mechanisms of collecting
workload and related data, although it might touch on the problems of comparing the
results of some of these mechanisms to the results of modelling approaches.

2 Context

The pressures of making operational decisions in safety-critical situations (which
includes the military environment) is often exacerbated by tasks having to be per-
formed within strict timescales. There are many human-related impactors on this
decision-making process and also many decision support aids aimed at reducing the
burden on the decision maker, however the relationships between the different
impactors and between the impactors and the support tools are complex and
inter-dependent, making it difficult to predict the effects of any changes to equipment,
systems and/or operational processes and procedures. The nature of human factors is
not just looking at equipments and environments; it is understanding the fundamental
capabilities of the human in the system and relating those to the demands of their tasks
in the context of the environment in which they have to work. Making critical decisions
under pressure, whether that pressure is due to time constraints, environmental con-
straints, cognisance of the importance and consequences of that decision or a combi-
nation of pressures, puts considerable stress on the individual making those decisions.
Another dimension to this problem is that the decision maker often does not have all
the necessary information and evidence to hand: the interplay between the effort they
are putting into gathering more information to make a better-informed decision and the
requirement to make the decision quickly puts additional stress and pressure onto the
individual.

There were several streams to the research projects that gathered the information
presented in this paper:

• Investigation of two of the major impactors on decision making: cognitive workload
and Situational Awareness (SA)

• Mapping of the gamut of human-related impactors on the decision-making process
to identify causal relationships

• Investigation of why people do not always adopt or fully utilise tools and tech-
niques that are introduced with the intention of aiding the decision-making process.
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The projects that resulted in the observations presented in this paper varied in both
the types of system under consideration and the military domain (Land and Sea)
however, they all adopted a similar general approach, which can be summarised as
model-experiment-model-experiment. A coherent modelling and analysis approach
was used for these multiple research projects investigating decision making: this
allowed results to be more easily read across from one domain or one individual study
to other domains or studies in this space. This approach involves:

• modelling a set of representative example scenarios (this could be an extensive set)
to predict the “hotspots” or points with the most likely potential for improvement:
these hotspots are generally caused by the combination of cognitive demands upon
the individual

• undertaking a representative human-in-the-loop/team-in-the-loop experiment (user
trial) using one or more of the representative scenarios to validate the predicted
results from the modelling

• modelling those interventions believed most likely to be beneficial
• undertaking a final team-in-the-loop experiment to verify the predicted benefits.

The modelling was conducted using a proprietary predictive model, which is
known as Blizzard. This model makes an assessment across team structure, individual
capability, training, workload and SA to provide a realistic prediction of the effect of
the introduction of an intervention on human performance (workload, SA, etc.),
facilitating early down-selection of concepts and ideas. More information on the
development of this model can be found in previously published papers [1, 2].

The workload measures for the team-in-the-loop experiments were collected using
a variation on NASA-TLX [3]: either the standard NASA-TLX questions, a subset of
these or an extended version. SA measures were collected through subjective ques-
tionnaire, usually based upon the Mission Awareness Rating Scale (MARS) [4], the
Crew Awareness Rating Scale (CARS) [5] or a combination of these. The question-
naires used to collect the workload and SA measures were individually tailored for the
different studies to ensure that the questions were relevant to the participants in those
studies and the scenarios being used for the experiments. They were administered at
suitable points throughout the experiments; in some cases subsets of questions were
used to minimise the impact of collecting the data, with the full question set only being
used at the conclusion of the experiment. It is important to note that there are two
aspects that were not considered in any of these projects:

1. The predictive model is not related to any physical indicators of cognitive workload,
such as heart rate, brain activity or gaze information.

2. Although individual variations (such as fatigue, training, etc.) can have a substantial
impact on an individual’s capability to complete a cognitive task in the time
required, the interventions considered during these research projects were not
intended to affect these aspects: they were focussed on making the task of making a
decision easier and/or more quickly.

One final point must be remembered when considering the observations made in
this paper: human beings are infinitely varied and infinitely adaptable. They are
capable of stretching their capabilities to perform when situations demand, even if
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these excessively high levels of workload can only be maintained for short periods
of time or in extreme circumstances. This dynamic variability coupled with the
complexity of human cognitive processes makes any generalised statement regarding
predicted cognitive workload problematic and subject to both assumptions and points
of view. The point of view taken in these research projects was to provide a mech-
anism to measure and rank improvements to the socio-technical system under
investigation.

2.1 Definition of Cognitive Aspects

There is no one agreed definition of cognitive workload or SA and consequently not
one agreed method of assessing or modelling it, therefore this subsection describes the
paradigms adopted within these research projects. Both cognitive workload and SA are
to some degree compartmentalisms of an individual’s cognitive activity: i.e. they are
conceptual entities constructed by psychologists and human factors practitioners to
allow them to analyse cognitive processes. Like other similar cognitive conceptual
entities such as memory, emotions or language processing they are interdependent
components of what takes place in an individual’s brain during the decision-making
process. The Blizzard model builds on a number of established and emerging theories,
including Hopkins’ Integrated Skills Theory (unpublished: in effect based upon [6, 7])
and Tuckman’s Group Development Model [8]. It utilises data capture and presentation
methods, such as GOTA (Goals, Objectives, Tasks and Activities) [9] and ETLX
(Extended Task Load Index – developed from NASA-TLX [3]). A number of accepted
and validated models have been combined within this workload model: the key models
within this model are Wickens’ Multiple Resource Theory [10, 11], McCracken &
Aldrich [12, 13] and Dstl’s STORM model [14, 15] which allows the consideration of
team and cultural dynamics.

Individual people develop their own mental model of the world around them, which
includes cognitive representations of the past, the present and the future, based on how
these affect them. These models are fuzzy, but people use their model as a basis for
their decisions. Although there is no coherent representation of these models within
human science, it is possible to have a coherent representation of the cognitive
workload involved in using these models. A component of these mental models can be
described as situational awareness (SA). The research projects adopted Endsley’s
definition of SA, “the perception of elements in the environment within a volume of
time and space, the comprehension of their meaning, and the projection of their status
in the near future” [16, 17].

Figure 1 below provides an overview of the conceptual framework that integrates
all of these elements and was used as the context for the human factors work conducted
during these research projects. In essence, this framework uses the stages of Wickens’
Multiple Resource Theory (perception, processing/analysis and decision/action) to
modify the rate (ability) of an individual to absorb and comprehend SA in terms of
Endsley’s levels of SA (perception, comprehension and projection). It also takes into
consideration external impactors and cross-cutting factors relevant for the individual
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(or team) and the scenario. The three measures that cross over between experimental
measures and modelling (predicted) measures are:

• Time to decision point
• Level of SA at decision point
• Workload to achieve decision point.

Fig. 1. Conceptual framework
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The research resulted in some concepts related to cognitive workload, SA,
decision-making and the relationships between them:

• Critical SA threshold: there is a clear indication that an individual aims to gain an
acceptable level of SA prior to making a command decision, which is referred to as
the critical SA threshold. The amount of SA needed to reach this critical SA
threshold is dependent on the style and experience of the individual.

• SA trigger: the cycle of actively gaining additional SA was always initiated by a
trigger event, such as a single report that posed a significant risk of significant
change to the individual’s SA picture at SA Level 2 (comprehension) and/or 3
(prediction), which is referred to as the SA trigger. If this SA trigger is late or wrong
then it has a direct consequence to an individual’s ability to reach an effective
decision point (EDP). There is an additional threshold for the SA trigger in that if
the information provided is inadequate the SA trigger does not initiate the proactive
SA gathering cycle by the individual.

Other findings of the research which provide additional context for the observations
reported in this paper include:

• the importance of having SA is not constant: i.e. it is more critical to the outcome to
have better SA for non-standard situations, such as points of high information
traffic, extraneous activity and unforeseeable events. These points/stressors are
likely to cause additional workload on the individuals and therefore affect their SA
and the time to EDP.

• the critical measure of operational performance in this context is the time to EDP,
which is also affected by the level of cognitive workload required to maintain the
individual’s background SA and achieve their critical SA threshold.

• there is a strong indication that an individual will trade workload, and to some
extent SA, to allow a faster decision to be made.

These findings and their consequences are discussed in the following sections.

3 Observations and Issues

This section discusses a number of the potentially useful incidental findings from the
research projects.

3.1 Paradox of Workload and SA

It could be argued that all decisions fall somewhere in the continuum between a com-
pletely time-sensitive decision (making a decision as quickly as possible) and a com-
pletely quality-sensitive decision (waiting until you have enough information to make
the best possible decision: i.e. a high level of SA). The research projects have found that
in these military contexts, decisions tend to fall into two bunches: a mostly
quality-sensitive decision or a mostly time-sensitive decision. An individual will decide
to make either a more time-sensitive (faster) or a more quality-sensitive (more accurate)
decision, depending on the requirements of the specific circumstance and their
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individual decision-making style, although it is often the case that secondary consid-
erations in the scenario drive individuals to make time-sensitive decisions.

When analysing the effects of interventions in terms of cognitive workload, the
relationships with SA and time can have a masking effect: i.e. workload is reduced but
the effect shows in SA or time, the benefit is taken in improved SA or reduced time
rather than reduced workload. Put simply, in the context of decision-making, workload
benefit can be taken in three possible ways:

1. As a reduction in cognitive workload
2. As an improvement in the level of SA
3. As a reduction in the time to effective decision point.

In effect, these three potential benefits form the axes of the 3-D space in which
benefits can be obtained. It should be noted that in reality, an individual is unlikely to
take 100% of the benefits provided by the intervention in one of these aspects, but trade
off the dimensions to best suit the circumstances. This relationship has a major impact
when comparing predicted cognitive workload to measured cognitive workload. When
modelling, all three axes cannot be left as variables: some assumptions must be made to
provide fixed points on which to base the modelling. Typically when investigating the
effect of the introduction of an intervention, the workload is calculated to achieve an
equivalent level of SA; this might result in a lower workload and/or a different time to
reach the decision point. However in an experiment, the individuals will select their
own trade-off point between these three possible improvements. This effect was noted
across five different human-in-the-loop experiments carried out in different domains,
over four years. During analysis, it was clearly seen that because of the context of some
of the experiments, all of the participants took the time-related advantage. In one
experiment they preferred to gain better SA and in another there were clear distinctions
between different individuals, some preferring to benefit in terms of SA and some in
terms of time.

Working hypothesis: an individual can dynamically take the benefit provided by an
intervention in different ways, dependent on the specific demands of the situation and
their own personal decision-making style. This paradox needs further research, both to
investigate its applicability in different domains and also to further investigate its
causes, effects and drivers.

3.2 Impact of Coping Strategies

For all of the task demand stressors it can be generalised that there will be a threshold
above which an individual cannot complete his tasks in the time required, however it is
highly likely that an experienced decision-maker will adopt coping strategies to address
each of these stressors. A simple example is to group objects into higher level units and
then only consider the behaviour and actions of the higher level unit. Another coping
strategy might be to hand off some tasks or some aspects of the decision to a colleague
or subordinate. These coping strategies are either dynamic or pre-emptive. Dynamic
coping strategies usually involve delaying lower priority tasks in preference to higher
priority tasks, and then trying to catch up with those tasks if there is a lull. This can
result in a “delay bow wave” where the delayed tasks build up to a level that affects
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subsequent tasks and ultimately can cause the individual to just stop coping completely,
for the task not to be completed in the required time or for the individual to have to
make the decision without sufficient information (low level of SA). This is in line with
the Cynefin framework [18] (originally developed for IBM), which supports
decision-making by making sense of human behaviours; it identifies domains or
contexts of decision-making moving from complex to chaotic. Pre-emptive strategies
are harder to identify: one strategy could be prior to any events the individual goes
through classes of what they believe is going to happen and define their default
response.

Working hypothesis: even for well formulated activities undertaken by well-trained
and practised individuals, the fundamental coping strategies are inherent in their exe-
cution of the tasks, when the task tempo puts pressure on the individuals in the system.

3.3 Workload Sensitivity

Many of the initial team-in-the-loop experiments showed variations in the levels of
workload across the different participants and the different runs of the experiment.
Although this could be put down to imprecise or non-identical interpretations within
the assessment process, it is more likely that it to some extent represents the variation
between different individual’s capabilities. It has long been argued in the anthropo-
metric world that an “average” person does not exist (or is extremely rare) and it seems
likely that this is also the case for cognitive capabilities, especially when differences
due to training, experience, fatigue, concentration, etc. are also taken into account. To
address this, the approach taken was that rather than investigating and modelling
human capabilities, the research in effect turned this on its head, by modelling the level
of human capability required to conduct the tasks within the scenario: i.e. the level of
cognitive demand of the socio-technical system. Then, in order to determine the level
of capability required for the tasks in the scenario, an arbitrary threshold was intro-
duced in the model that triggered workload coping strategies (such as delaying a task or
handing it over to a teammate). This threshold was incrementally decreased until the
model predicted that the individual could no longer cope. Comparison of the differ-
ences between these incremental runs of the model allowed the determination of points
of sensitivity: i.e. the “hotspots” where the introduction of an intervention that would
(in some way) reduce workload would be beneficial. Reflection of this degraded per-
formance caused by high workload into the consequences for acquiring SA also
identified points where the SA was catastrophically reduced, which would then lead to
insufficient SA to support the decision-making process. This gives both a workload and
an SA sensitivity for the socio-technical system, indexed against the time-steps of the
tasks in the scenario.

The team-in-the-loop validation exercise could then examine and identify an
equivalent level of workload coping strategies for an equivalent scenario, to allow the
band within that degradation set to be understood. This calibration of the model allows
the investigation of the sensitivity of the socio-technical system to variations in its
human component. The same calibration can also be applied to different scenarios in
the modelling environment to reduce the necessity for additional or extensive
team-in-the-loop trials. This approach proved to be useful in identifying where in the
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scenario workload problems would occur and understanding the data around any delay
bow waves that were then observed in an experiment.

Working hypothesis: from the perspective of improving a socio-technical system,
the surrogate measure of workload and SA sensitivity is sufficient to identify and
measure performance improvements.

3.4 Tipping Points

As well as the (in effect) negative tipping points of high workload causing a situation
where an individual cannot cope (cannot complete task in time, cannot complete task at
all), one of the research projects identified a positive tipping point effect, where the
combination of three elements reduced workload to such an extent that an individual
operator could perform tasks at speed and to an accuracy that they had been unable to
achieve with the predecessor (existing) system.

In essence, three independent interventions were derived that all showed individual
improvement, but when all were implemented at the same time for the same task, the
improvement was more than the sum of the individual improvements. It is the opinion
of the author that this effect was due to the fact that they were truly independent
interventions, in that not only did they address separate aspects of the design of the
system but they also addressed different cognitive areas:

• The first intervention was concerned with decreasing the workload for perceiving
the data that was being presented

• The second was concerned with decreasing the workload for navigation around the
functions of the system

• The third was concerned with decreasing the workload related to psychomotive
control of the system.

However as the aim of the research was not to understand this effect but to design a
more effective system, there was no opportunity during this project to investigate the
cause of this multiplying effect.

Working hypothesis: where the interventions address separate cognitive channel
paths, their combinational effect on the overall performance can be greater than the sum
of the effects of the individual interventions.

3.5 Robust Decisions

In this context, a robust decision is a decision that takes account of the uncertainty of
multiple courses of action and is most likely to leave more degrees of freedom for
future actions. In situations where a decision has to be made before the critical SA
threshold has been reached, an experienced and well-trained individual will tend to
make robust decisions. In effect this is changing the nature of the decision rather than
affecting the time to EDP. This is in line with Gary Klein’s Recognition-Primed
Decision (RPD) model [19], in which the decision-maker generates a course of action,
compares it to the constraints imposed by the situation and selects the first course of
action that is not rejected. It is a model specifically representing the way in which
people make quick, effective decisions in complex situations. The second stage of this

Observations and Issues in the Application of Cognitive Workload 85



model (the more important one) is that the individual imagines a range of likely
consequences of actions arising from implementing the decision made in the first stage
and then checks if they in themselves make sense in terms of the uncertainty they have
about the first assessment. This theory is independent of the amount of SA that the
individual has. Therefore, when a well-trained, experienced individual is faced with
having to make a decision when they have significantly less than optimum SA, they
construct a decision which they think is likely to lead to a positive outcome, under-
standing the information that they do not have, i.e. they are constructing the decision in
the certainty that they do not have that information: this is a robust decision.

When measuring workload in a decision-making context, the lack of SA may force
the individual to construct this robust decision, therefore the cognitive workload is
biased towards the processing and action levels of Wickens’ Multiple Resource Model
[10, 11], whereas when an individual has gained as much SA as they think they need,
the gaining of this SA is in the perception and processing level and the making of the
decision becomes more obvious (requires less workload).

Working hypothesis: the differing nature of a decision and the process for arriving
at that decision caused by different amounts of SA results in a bias in the type of
cognitive workload required to make that decision.

4 Consequences for Interpreting Results

The first predicted results are not the end of the story. Two critical questions must be
considered:

• What are the consequences for measuring and validating a predictive model, given
some of the effects described in the previous sections?

• What are the consequences for interpreting and deriving meaning from the results of
an experiment or a predictive model?

4.1 Measuring and Validating

Within the context of these research projects, it was important to consider and capture
three separate elements:

1. The cognitive workload
2. The relevant SA and SA level
3. The decision points and the time taken to reach the decision points.

In all experiments, it is important to compare apples with apples: i.e. if by intro-
ducing an element intended to reduce the cognitive workload, the strategy adopted by
the user to satisfy their overall intent of making a critical decision is affected, then the
other elements that are varied must also be measured. This is equally important in the
modelling, as well as in any measuring or validation experiments. This necessity for
comparing like to like is further aggravated by the fact that a model can provide
predictions second by second, whereas experimental data, particularly when concerned
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with what is going on in an individual’s head, is usually collected at periodic intervals
in order to minimise interference with the task being conducted.

There are a large number of techniques for collecting experimental data, but the
issue is not how to collect it, but what needs to be collected to be able to compare
between different experiments and between experimental and modelled data. This is
further discussed in a chapter in the 2nd Edition of the Handbook of Standards and
Guidelines in Ergonomics and Human Factors [20], which is specifically concerned
with the interplay between cognitive measures taken and the measurement techniques
used to collect these measures. Each of the working hypotheses presented in the
previous sections must be taken in turn and the data examined in relation to these
hypotheses in order to establish whether in order to compare like to like, adjustments
must be made to the assumptions or the model in order to compensate for any dif-
ferences between the expected behaviours and/or goals and those observed in an
experiment. Given that there are a myriad of subtle impactors that affect the decision
process, and that the individual trade-off between these impactors is rooted in the
domain of the decision and the user population, it is highly unlikely (in the opinion of
the author) that a universally applicable model of this trade-off process can be devel-
oped: it is likely that the best that can be achieved will be a framework and a process
for considering a specific population and domain’s trade-offs.

4.2 Interpreting and Deriving Meaning

Collapsing workload into a single figure can lose critical information. For example,
during a user trial it was found that although visual workload was often very high, it
was always the case that at the critical points it was the additional demands in
linguistic/cognitive reasoning that pushed an individual over the workload threshold.
This was true in that specific domain, but this combinational effect is highly likely to be
apparent yet different in different domains. Similarly when analysing the data from
experiments looking at the consequences of the introduction of new technology that is
intended to improve SA, two cases must be recognised and considered separately:

1. Where increasing the effectiveness of the SA component has resulted in an indi-
vidual making an earlier decision than baseline but with an equivalent level of SA;

2. Where increasing the effectiveness of the SA component has resulted in an indi-
vidual making a decision at approximately the same time as for baseline, but with a
higher level of SA.

Both of these cases can be considered as an improvement, but combining them in
the analysis is likely to mask the extent of these two separate improvements: i.e. the
average improvement in either speed of decision or level of SA across both groups is
not likely to represent the full extent of the benefit. It must be noted that this is a
generalisation and there are examples from previous studies where the data falls outside
these assumed bunch points: for example, there was one experiment where a class of
participants made a faster decision with a lower level of SA than baseline, as the new
technology provided them with the SA they needed for the decision but with less
extraneous SA resulting in a lower level of overall SA. These are two specific examples
that illustrate the general case that the devil is in the detail. This implies the requirement
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for a set of understood and related views that allow the movement between levels of the
data and perspectives on the data. These views should accommodate the difference
between an individual task and a composite activity within a time window, as well as
the different levels of view from detailed measures such as spatial reasoning, but also
allow the metaviews related to issues such as task and activity sensitivity to workload
requirements.

5 Conclusions

This paper is not intended to provide universally applicable conclusions or recom-
mendations for methods and mechanisms for predicting and analysing cognitive
workload. It is intended to present and describe a number of disparate observations,
suggestions and hypotheses derived from a number of research projects in the hope that
these will provide thought-provoking and useful inspiration to other researchers and
further the understanding of how cognitive workload affects the decision-making
process, especially in complex, time-critical situations. The working hypotheses pre-
sented are intended to illustrate some of the ways in which the author’s understanding
of workload has developed over the course of these projects and act as signposts to
guide future research.
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Abstract. Both workload and fatigue impair performance, and a high workload
can lead to an increase in fatigue. This paper reports on two studies regarding
workload and fatigue, and their impact on performance. Study 1 examined the
risk factors for fatigue and the outcomes of it in relation to the rail industry. The
results showed that workload is one of several predictors of fatigue. In Study 2
an online test integrating a single-item subjective measure and objective cog-
nitive tests was used to examine the association between workload, fatigue and
performance. Workload was found to be a factor that increased fatigue, which
then resulted in a change in performance.

Keywords: Workload � Occupational fatigue � Performance � Online measures

1 Introduction

Fatigue refers to the effects or after-effects of diverse activities, such as spending a busy
day at work, driving on a long journey, or even concentrating for a short duration of
time on highly demanding physical exercises. In the domain of occupational fatigue,
the terms ‘workload’ and ‘job demands’ may be interchangeable. A high workload may
contribute to the development of fatigue, illness, and other issues which can lead to a
reduction in performance. In previous studies, high job demands were considered to be
a predictor of fatigue [1, 2] with a higher workload leading to greater subjective fatigue
[3, 4]. Greth et al. [4] also suggested that the relationship between workload and fatigue
could be dynamic, and the optimal level of workload could change over time. Both a
high workload and fatigue result in performance impairments in daily work. A high
workload (referred to as “mental workload”) is related to the fit or gap between task
demands and people’s capacities. A study of driving examiners [5] provides an
example of an easy definition of high workload. It showed that a high workload could
be characterised by a person examining nine tests a day, while a low workload would
be examining seven tests. A useful concept of workload was proposed by Jahns [6]. In
this concept, Jahns suggested that workload involves three related components: input
load, operator effort, and performance (or result). The input load consists of the external
factors, such as work duration and workload, while the operator effort reflects the
subjects’ internal reaction to the input load, such as internal goals, motivation and task
criteria adopted. The intensity of effort is probably one of the most important parts in
determining workload [7]. The performance is the output of the above two components.
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It is maintained by the person and influences their tolerated error level [8], which
involves the probability of error, time to respond, response consistency, response range,
and response accuracy, etc.

Based on Jahns’ concept, two key features of workload can be measured, namely
the subjective workload and performance changes. The first feature, subjective work-
load, reflects the personal feeling of the input load and the human effort (described
above). Cain [9] reviewed mental workload measurements and suggests that an overall
subjective workload measure is sufficient if task demands and the resulting workload
can be characterised by one parameter. Subjective workload scores are usually related
to the task load. They often increase in proportion to the increase in task complexity
scores [10]. The second feature, performance changes, involves reduced functional
capacity during the work. The effect of workload could also be measured with the
before/after work technique. Broadbent [11] reviewed a series of fatigue tests, most of
which studies task load using the after-effect method which involves measuring per-
formance before and after work. The difference in performance between before work
and after work reflects the workload effect. In particular, the difference in the
before-after performance is greater with a high workload [5]. The after-effect symptoms
were usually slower reaction times and less accurate responses. This was supported by
Parkes’ workload study [5]. This classic study found that the response speed and
accuracy of visual search tasks and logical reasoning tasks showed a significant effect
on workload. Fatigue has also been found to be associated with performance change.
Although accurate fatigue data is difficult to obtain directly, fatigue can be assessed
through cognitive performance tests because it impairs people’s ability to perform
efficiently. A review from Krueger [12] states that fatigue appears to result in increased
reaction time, decreased vigilance, and perceptual and cognitive distortions.

Several cognitive tasks have been used in fatigue studies to investigate
fatigue-related performance change [13], including reaction time testing, logical rea-
soning tasks, visual search tasks, the Stroop task, and so on. Some studies have
assessed fatigue using subjective measures instead of cognitive tests. In earlier
research, Bartley and Chute [14] and Cameron [15] argued that subjective fatigue has
no predictive power. However, self-report of fatigue was found to be strongly asso-
ciated with poor performance in later studies [16, 17]. This, again, shows the strong
association between fatigue and performance change.

Two studies are described in this paper. The first involved a large-scale survey
investigating whether workload (high job demands) was associated with fatigue. The
second study (Study 2) then examined the effects of workload and fatigue on perfor-
mance using online performance measures. It also examined whether workload
increases fatigue, which then leads to changes in performance, or whether the effects of
workload and fatigue are independent.

2 Study 1

2.1 Background

Fatigue in railway workers is defined as a state of ‘perceived weariness that can result
from prolonged working, heavy workload, insufficient rest and inadequate sleep’ [18].
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This definition points out that heavy workload is a factor contributing to fatigue. Since
automation technology has been introduced into the workplace, work in the railway
industry imposes more cognitive demands while physical demands have diminished
[19]. Jobs in the modern railway industry requiring sustained vigilance may result in a
heavy mental workload and increased fatigue. However, there has been very limited
research investigating the risk factors and prevalence of rail fatigue, and this area has
historically been less researched than aviation and road transport fatigue [20]. Fatigue
is a daily stressor amongst workers. In the rail industry, fatigue can lead to issues such
as reduced performance [21, 22], which then increase the risk of train accidents and
incidents [23, 24] and ill health [25, 26]. This demonstrates that fatigue and its impact
on safety-critical performance is a key issue in the rail industry.

In general, the causes of prolonged work fatigue are varied. Firstly, fatigue is
considered to be a result of high job demands [1, 2] and low job control [27]. Job
demands refer to workload, while job control refers to the personal ability to control
work activities. Secondly, individual differences also play a role in fatigue, including
personality [28], coping types [29], and health-related behaviours [30]. Thirdly, fatigue
is closely related to shift work which disrupts the sleep-wake cycle [31] and deprives
workers of sleep, therefore reducing levels of performance [32]. Also, in the railway
industry, the working environment and tasks often require sustained vigilance which
may increase fatigue [18]. Lal and Craig [33] state that the known environmental
factors affecting vigilance are noise, vibration, environmental pollutants, and a variety
of stimulations.

A Fatigue Model. Cameron [15] suggested that the term fatigue is synonymous with a
generalised stress response over time. This provides the rationale for applying stress
models, such as the Demands, Resources, and Individual Effects (DRIVE) model to
assess fatigue. The DRIVE model includes the following three factors: job demands,
job resources (support and control), and individual differences [34]. According to this
model, people working in jobs with high demands and low control experience high
levels of stress and poor well-being. Also, individual differences (such as coping style)
play an important role in influencing health outcomes.

Rationale. To further manage and monitor rail fatigue, it is necessary to establish a
profile of fatigue among train staff working in the rail industry. The present study first
considered associations between occupational risk factors and perceived fatigue. It
aimed to examine the prevalence of fatigue and identify potential risk factors in UK
railway staff. The purpose was also to build a detailed picture of the relationship
regarding workplace stressors, individual differences, fatigue, and well-being outcomes
using the DRIVE model. The DRIVE model was applied as the theoretical framework
to investigate fatigue. This study assessed fatigue and potential risk factors included in
the DRIVE model, such as workload, job control and support, work environment,
personality and lifestyle. It also aimed to investigate the associations between fatigue,
work-related outcomes, and well-being during the last six months.
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2.2 Methods

Participants. Participants were recruited from a train company in the UK, 1067 of
whom completed the questionnaires (N = 1067, mean (±SD) age = 44.25 ± 10.763
yr.) with a response rate of around 50%. The main job types of participants were
conductors, drivers, station workers, engineers, administrators, managers, at-seat
catering stewards, and controllers.

Materials. This survey ran from 27th April to 18th May 2015. The questionnaire
consisted of twenty-six single-item questions, some of which were chosen from
Wellbeing Process Questionnaire (WPQ) [35]. It took approximately 15 min to com-
plete. Most of the questions were on a 10-point scale, the remaining were Yes/No
answers. The single-item measures were chosen because they have been noted to be
valid and reliable [36]. This methodology allowed for the identification of the overall
risks while saving time compared to administering multi-item measures. Fatigue was
the main variable that this survey focused on. Participants rated their physical and
mental fatigue from 1 (not at all) to 10 (very tired). The survey also measured the
variables which might predict fatigue. It included questions regarding workload, job
control and support, which were predictors in the DRIVE model and derived from
WPQ. Questions regarding the working environment (levels of noise and vibration) and
whether or not participants worked shifts or worked at night were also asked. In
addition to fatigue and its potential risk factors, single item measures were also used to
measure efficiency at work, work-life balance, and well-being (all measured from 1 [not
at all] to 10 [very much so]).

Procedure. Participants were given a letter detailing the information of the study and
an informed consent form. After the participants had signed and returned the forms,
they were asked to answer a paper questionnaire that consisted of 26 questions. Vol-
unteers were given the right to withdraw from the survey at any point. They were also
informed that they had the right to refuse to answer any questions that made them feel
uncomfortable. This study was reviewed and approved by the School of Psychology
Research Ethics Committee at Cardiff University.

Analysis. Data analysis were carried out using SPSS 23. The independent variables
tested were: workload, job control and support, shift work, exposure to noise and
vibration, exposure to fumes, health-related behaviours (or health lifestyle) and per-
sonality. The dependent variables tested were fatigue and well-being outcomes. An
analysis of the data assessed the associations between fatigue and risk factors, and
between fatigue and efficiency at work.

2.3 Results

Descriptive. The most common job types were conductors (25.9%), drivers (22.6%)
and station workers (21.3%), followed by managers, engineers, administrators and
at-seat stewards. There were 57 participants with missing data about their profession.
58.3% of participants rated their fatigue as high (threshold = 6). Issues of fatigue were
apparent in all the job roles mentioned. It was reported by the majority of the drivers
(74.7%), engineers (71.1%) and controllers (82.4%), and by less than half of the
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administrators and station workers. In the following analysis, jobs that reported a high
percentage of issues associated with fatigue were categorised as high fatigue job types,
while the other jobs were categorised as low fatigue job types.

Analysing Predictors of Fatigue. Logistic regressions were run to investigate the
predictors of low/high fatigue. These were used to assess the predictive ability of IVs
while controlling for social demographic and individual difference factors. The vari-
ables used in this analysis were categorised into high/low through the use of thresholds.
For example, fatigue scores above the thresholds were categorised as high fatigue,
while the others were categorised as low fatigue. A median split was used to re-code
both personality (M = 8, range = 1 to 10) and lifestyle (M = 7, range = 1 to 10) into
positive/negative groups. The dependent variable used here was categorical fatigue
(High/Low), and the independent variables were either categorical or continuous. The
variables included in the model were social demographic variables (age and gender),
personal risk factors (personality and lifestyle) and work-related risk factors (workload,
job control and support, shift-work, being exposed to noise and vibration at work,
being exposed to fumes at work, and fatigued job type), in which age was continuous,
and all others were categorical. The OR effect size for each of the IVs is shown in
Table 1 below.

Workload and Fatigue. Workload was the strongest predictor of reported high fatigue
in this model, recording an odds ratio of 3.45. This indicated that participants who
reported a high workload were over three times more likely to report a fatigue problem
than those reporting a low workload, controlling for all other factors in this model.

Other Job Characteristics and Fatigue. Other than workload, exposure to noise and
vibration, highly fatigued job types, low job control and support and doing shift-work
also predicted fatigue. The second strongest predictor was exposure to noise and

Table 1. Odds ratio of each IV on fatigue.

Variables Odds ratio 95% C.I for odds ratio

Social demographics
Age 1.000 [0.986, 1.014]
Gender 0.893 [0.618, 1.288]
Personal characteristics
Personality (negative) 1.590* [1.174, 2.154]
Lifestyle (unhealthy) 1.477* [1.089, 2.003]
Work characteristics
Workload (high) 3.447** [2.549, 4.659]
Job support and control (low) 1.692* [1.030, 2.780]
Noise and vibration (high) 2.211** [1.558, 3.140]
Fumes (high) 0.787 [0.546, 1.135]
Shift-work (yes) 1.745* [1.207, 2.522]
Job type (high fatigued) 2.143** [1.506, 3.049]
*p < 0.05, **p < 0.001
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vibration (OR = 2.21, p < 0.01). This was followed by shift-work with an odds ratio of
1.74, and low job control and support with an odds ratio of 1.69. Highly fatigued job
types (OR = 2.1, p < 0.01) were 2.1 times more likely to report a fatigue problem than
low fatigue job types. There was no unique statistically significant contribution from
the factor “exposed to fumes” in this model.

Personal Characteristics and Fatigue. Both personality and lifestyle predicted fatigue.
The odds ratio was 1.59 for personality, indicating that participants who had a negative
personality were 1.59 times more likely to report high fatigue than those with a positive
personality, controlling for other factors in the model. Similarly, the odds ratios of 1.47
for lifestyle indicated that participants who had a negative personality were 1.47 times
more likely to report high fatigue.

Association Between Fatigue and Outcomes. The association between fatigue and
outcomes was investigated using a Pearson correlation (shown in Table 2). The vari-
ables used were continuous. Fatigue showed a significant correlation with perceived
stress at work (r(1064) = .52, p < .01) and negative work-life balance (r(1061) = .48.
p < .01), with high levels of fatigue being associated with high levels of work stress
and poor work-life balance. Fatigue was also significantly correlated with most of the
negative well-being outcomes both in life and at work, including life satisfaction, job
satisfaction, life stress, job stress, life happiness, work happiness, life depression and
anxiety, job depression and anxiety, MSDs, and work-related ill health (r’s ranged from
.25 to .47, p < .01). Fatigue also showed a significant correlation with low-performance
efficiency, high presenteeism (both p < .001), and the greater number of days absent
(p < 0.05). The correlation between fatigue and the number of accidents at work was
also close to being statistically significant in a positive direction (p = .059).

2.4 Summary

Fatigue is currently a general problem in the railway staff population. Investigating
fatigue in railway staff requires the understanding and exploration of many potential
risk factors. The present study indicated that high workload, poor job control and
support, shift-work, exposure to noise and vibration, unhealthy lifestyle and negative
personality would result in fatigue. As one of the several predictors of subjective

Table 2. Correlations between fatigue and main outcomes.

Variables (1) (2) (3) (4) (5) (6) (7)

Fatigue (1) 1
Perceived stress at work (2) .516** 1
Presenteeism (3) .247** .249** 1
Performance efficiency (4) −.136** −.239** −.093** 1
Work-life balance (5) .477** .328** .222** −.172** 1
Absenteeism (6) .065* .023 .041 −.106** .050 1
Accidents at work (7) .059 .077* −.015 −.153** .039 .139** 1
*p < 0.05, **p < 0.001
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fatigue, high workload results in higher levels of subjective fatigue. Meanwhile, both a
high workload and high levels of subjective fatigue were found to correlate with poor
subjective reports of performance efficiency. Therefore, a further study was warranted
to provide an examination of the relationships between the workload, fatigue and
objective performance outcomes.

3 Study 2

3.1 Links Between Study 1 and 2

Study 1 was a large-scale survey using a sample of rail staff, but with only subjective
reports of the predictors and outcomes. Study 2 looked at the effects of subjective
reports of workload and fatigue on objective performance using a student sample. The
eventual aim is to use the objective performance measures with rail crew, but before
that it is necessary to confirm that each part works. Hence, there were two studies. In
Study 2, an online measure of fatigue was developed which integrated self-assessment,
psychomotor vigilance task (PVT), visual search and logical reasoning. The purpose of
the study was to use these online measures to examine whether workload increased
fatigue, which then led to performance changes, or whether the effects of subjective
fatigue and workload were independent.

3.2 Background

Online-based cognitive tests have been developed over the past two decades. A recent
review of these tests confirmed the main advantages of computerised cognitive eval-
uation [37], which include the ability to provide realistic simulations of cognitive tasks
in everyday life. Recently, there has been a growing interest in online experimentation
due to the development of HTML5 and JavaScript. Although Garaizar [38] raised the
problem an inherent timing issue in these technologies, the authors of QEREngine [39]
resolved this by using internal chronometry, which involves using time stamps of the
browser in milliseconds about the Unix epoch time, to check presentation and response
timing. The precision of timing with the QRTEngine was validated using a photodiode
time measurement, which was external chronometry.

Compared with offline tests or laboratory experiments, online tests are more con-
venient to apply in the occupational setting. Before using them, however, one needs to
examine whether the online objective performance tests are sensitive enough to detect
the effects of workload and subjective fatigue. Based on previous literature, it could be
predicted that both workload and subjective fatigue would be associated with a change
in performance. Parkes’ workload study [5] has shown that response speed, and
accuracy of cognitive performance of visual search and logical reasoning tasks show a
significant effect on workload. Meanwhile, Krueger [12] states that fatigue appeared to
result in a slower reaction time and decreased vigilance in several cognitive tasks.
However, as Study 1 has shown, a high workload was one of several predictors of
fatigue. This raises the question of whether workload and fatigue have independent
effects on performance change, or whether workload increases fatigue first, which then
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leads to performance change. To test these conflicting views, this study aimed to
examine the associations between workload, subjective fatigue, and objective perfor-
mance change by using online cognitive tests.

This study involved a pre-study session (8–11 am) and a post-study session
(3–6 pm). Four measurements were used in both sessions: the single-item self-
assessment of fatigue, the psychomotor vigilance task (PVT), visual search and logical
reasoning tasks. Use of the single item methodology for subjective fatigue and the online
PVT were the central fatigue and workload measures. In addition to these measures of
fatigue, online visual search tasks and logical reasoning tests were also selected as they
have been found to be sensitive to the effects of the workload in previous studies [5, 40].

3.3 Methods

Participants. Before recruiting participants, G*Power [41] was used to calculate an
appropriate sample size, setting the alpha level to 0.05 and power to 0.8. In this case, a
sample of twenty-one participants per group were required to detect a large effect size
of d = 0.8 using a one-tailed test. The one-tailed test was adopted because previous
literature has reported performance change to be affected by time of day and workload.
Forty-eight undergraduate students were recruited from Cardiff University. They were
assigned to either a high or low workload group after the experiment, based on their
self-rating of workload. This experiment was reviewed and approved by the School of
Psychology Research Ethics Committee at Cardiff University. All of the participants
were full-time undergraduate students.

Materials. Each session included a single-item self-assessment, a 10-min PVT, a
visual search and a logical reasoning task which was used to measure workload, fatigue
and performance. The fatigue self-assessment was used to measure subjective fatigue in
both pre-work and post-work sessions, and subjective workload was also measured in
the post-work session. The other three cognitive tests were used to assess objective
performance. Also, the Visual Analogue Mood Rating Scale (VAS mood rating) was
used to validate the single-item fatigue measure. All the tasks and data collection were
performed on the Qualtrics online survey platform.

Single-Item Measures of Fatigue and Workload. Participants rated their fatigue level
(measured from 0 [no fatigue] to 10 [maximally possible fatigue]) at the beginning of
each session. This subjective fatigue rating was used to measure any change before and
after work [42]. In the post-work session, participants also rated their workload level
over the day (measured from 0 [no workload] to 10 [extremely high workload]).
Participants were allocated to either high or low workload conditions. The allocation of
high or low workload condition was based on the participants’ self-rating of their
workload.

PVT. The PVT was 10 min in duration and with 2 to 10 s random inter-stimulus
intervals (ISIs) in each trial, as proposed by Dinges and Powell [43]. When the PVT
started, it was followed by a blank screen. Then, a big empty box appeared on the
screen. After the random ISIs, a small square appeared in the middle of the box and
timing started until the participant responded by pressing the ‘Space’ key on the
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keyboard. The RT, type of response, the number of trials in each minute and total were
measured. There were four different types of response which could be recorded; 1. the
response was too fast (response before stimulus appears), 2. normal response, 3. lapse
(RT > = 0.6 s), and 4. sleep (RT > = the 30 s). Only the type-2 response (normal
response) was marked as correct. If the number of type-1 responses was greater than
the sum number of type-2 and type-3 responses, the participant was excluded in the
following analysis. Additionally, meta information of the device, date and time of task
taken were also recorded. At the end of this test, the participants were presented with a
hyperlink which linked them to the next test, a visual search task.

Visual Search Test. The visual search task consisted of 12 trials which randomly
appeared from a total of 30 trials. On each trial, participants were shown a random
60-letter set and one target letter. They were required to find a set of target letters as
quickly and accurately as possible. The response time and accuracy for each trial was
recorded.

Logical Reasoning Task. This test was based on Baddeley’s [44] grammatical rea-
soning test, and it consisted of 24 trials. It required the subjects to make a decision from
two options as quickly and accurately as possible. The outcome features were response
time and percentage of correct responses.

Visual Analogue Mood Rating Scale (VAS). This was a subjective assessment of mood
using the VAS rating system [45]. It consisted of 18 items which ranged in value from
0 (negative end) to 100 (positive end), it also measured subjective mood. The outcomes
consisted of four factors: alertness (which reflected fatigue, eight items), anxiety (6
items), depression (1 item itself) and hedonic tone (3 items). This paper only focuses on
alertness which was used to validate single-item fatigue measure. The maximum value
of alertness was 800.

Procedure. The study involved two sessions on each day: pre-work in the morning (8
to 11 am) and post-work at the end of the working day (3 to 6 pm). Before the day on
which testing took place, a brief introduction to each cognitive test was emailed to
participants. The introduction included an example of each cognitive test and a
familiarisation session to ensure participants were able to complete the tasks correctly
before starting the study. On the testing day(s), participants were asked to complete a
series of tasks via a computer under a time frame. They were given two hyperlinks to
access the tasks via email (one for each session). The study took approximately 45–
60 min in total (20–25 min for each part). At the end of the experiment, the participants
were debriefed.

Analysis. Data analysis was carried out using SPSS 23. Data was analysed using
mixed ANOVAs. The independent variables tested were subjective fatigue and
workload. The dependent variables were performance outcomes from each test,
including mean reaction time and accuracy. The analysis assessed the associations
between:

1. Subjective fatigue and workload ratings
2. Workload, subjective fatigue and performance outcomes
3. Subjective fatigue and alertness (to validate single-item fatigue measure).
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3.4 Results

Forty-eight participants completed the tests, while two records were excluded in the
data analysis due to missing data or unacceptable low accuracy (more than 50%
incorrect response) in at least one task. Such low levels of accuracy were unusual and
unacceptable since a familiarisation session had already been provided to participants
to ensure they knew how to complete the tasks correctly before starting the experiment.
The excluded data records were neither reliable in PVT, or in the logical reasoning test.
Participants (N = 46) were in either the high or low workload condition. The allocation
of a high or low workload condition was based on the participants’ self-rating of
workload.

Association Between Workload and Fatigue. The association between workload and
fatigue was investigated using the Pearson correlation (shown in Table 3). The
workload rating was significantly correlated with fatigue ratings at the end of the
workday (r(46) = .382, p < 0.01), with higher workload ratings being associated with
higher levels of fatigue after work. A higher workload was also significantly correlated
with a greater post-pre change in fatigue rating (r (46) = .382, p < 0.01) which was
calculated by subtracting the pre-work fatigue from the post-work score.

Descriptive Statistics. Subjective workload scores were categorised into a high/low
workload using a median split. The mean changes in performance are summarised in
Table 4 below.

Table 3. Correlation between workload and fatigue.

Variables (1) (2) (3)

Workload (1) 1
Post-work fatigue (2) .382** 1
Post-pre change in fatigue (3) .382** .738** 1
*p < 0.05, **p < 0.001

Table 4. Mean change of performance scores by workload and fatigue.

Mean (S.D) High workload Low workload
Fatigue Increased Decreased Increased Decreased

PVT - RT (ms) 7.10 (28.39) 30.84 (20.56) 16.06 (22.49) −8.03 (27.57)
- Accuracy (%) −4.54 (7.86) −3.20 (6.67) −7.80 (8.28) 2.62 (6.96)
- Lapse 3.25 (5.40) 3.56 (3.32) 4.63 (7.19) −0.88 (4.84)
- Total responses 0.42 (4.76) −2.00 (4.53) −0.50 (3.89) 0.35 (3.12)
Visual search - RT (s) 0.49 (3.98) 0.92 (4.18) −0.08 (1.98) 1.18 (5.96)
- Accuracy (%) −2.83 (9.65) 2.56 (11.11) −3.37 (19.58) 10.24 (21.87)
Logical reasoning-RT(s) 1.27 (1.87) −2.16 (3.84) 0.50 (2.63) −0.15 (2.01)
- Accuracy (%) −0.42 (13.61) 2.22 (23.95) −11.13 (21.39) −5.12 (18.12)
Alertness (% change) 23.33 (78.83) 31.69 (39.65) −10.51 (27.55) 46.35 (41.60)
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Effect of Workload and Fatigue on Performance. MANOVAs were used to analyse
the effect of workload and the effect of a change in fatigue. The variables used in this
analysis were categorised into two groups by using a median split. Workload was
divided into high/low. The post-pre change of fatigue was split into increased/decreased
fatigue.

Effect of Workload and the Interaction with Fatigue. A two-way MANOVA was
conducted to explore the interaction between workload and change in fatigue. There
was no main effect of workload nor interaction between workload and fatigue.

Effect of Fatigue on Performance. There was a statistically significant difference found
between increased fatigue and decreased fatigue on the combined dependent variables,
F(8, 37) = 3.699, p < 0.01, partial eta squared = 0.44. When the results for the
dependent variables were considered separately, the differences that reached statistical
significance were accuracy of PVT, accuracy of visual search and the reaction time for
logical reasoning (shown in Table 5). In the PVT, response accuracy was significantly
affected by fatigue (F(1, 44) = 8.149, p < 0.01, partial eta squared = 0.15). Increased
fatigue not only reduced accuracy but also resulted in an increase in lapse responses (F(1,
44) = 3.873, p = 0.055, partial eta squared = 0.08) at the end of the workday. Also, an
effect of fatigue was found to be significant for the performance of both the visual search
and logical reasoning tasks. The accuracy of visual search declined more in the
fatigue-increased condition than in the fatigue-reduced condition (F(1, 44) = 4.423,
p < 0.05, partial eta squared = 0.91), while the reaction time for logical reasoning was
slower (F(1, 44) = 5.528, p < 0.05, partial eta squared = 0.11). This, again, confirmed
the association between subjective fatigue and the post-pre changes in performance.

Fatigue and Alertness in VAS. The results showed that increased fatigue significantly
affected the change in alertness (F(1, 44) = 106.425, p < 0.001). It is not surprising
that alertness and fatigue were associated since they represent the same thing. This
result also showed that the single-item fatigue measure was validated by an established
method of measuring alertness.

Table 5. Significant univariate fatigue effect on performance.

df df error F Fatigue Mean (SD)

PVT – accuracy (%) 1 44 8.149 Increased −5.85 (7.98)
Decreased 0.60 (7.29)

- Lapse 1 44 3.873 Increased 3.80 (6.03)
Decreased 0.65 (4.81)

Visual search – accuracy (%) 1 44 4.423 Increased −3.05 (13.97)
Decreased 7.58 (18.96)

Logical reasoning - RT(s) 1 44 5.518 Increased 0.96 (2.17)
Decreased −0.84 (2.87)
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3.5 Summary

Overall, subjective fatigue was found to predict objective performance. Fatigue not
only led to reduced accuracy and an increased number of lapses in the PVT, but it also
reduced accuracy in the visual search task and was associated with slower RT in the
logistic reasoning task. In PVT, performance reduced significantly further if subjective
fatigue increased, and significantly improved if fatigue decreased. Similarly, in the
other two cognitive tests, increased fatigue resulted in a greater reduction of perfor-
mance. If fatigue increased, the response speed of logical reasoning was increased, and
the accuracy in the visual search was further decreased.

The hypothesis predicted that either objective performance or subjective fatigue
would be reduced at the end of the workday because of workload, and the reduction
would be greater with a higher workload. The result showed that the effect of the
workload was significantly associated with a greater change in fatigue, but no main
effect of workload nor interaction between workload and fatigue was found.

The alertness dimension of VAS mood scale was used to validate the single-item
fatigue measure. The result showed that the change in alertness and the change in
fatigue strongly correlated with each other, and that increased fatigue resulted to
reduced alertness.

4 Discussion

The field of railway fatigue has historically been less-researched in comparison to
aviation and road transport fatigue. Study 1 sought to determine the risk factors and
outcomes of fatigue in the rail industry. The results confirmed that workload is one of
several predictors of fatigue, with a high workload resulting in higher levels of fatigue.
Many of the results of this study are in line with work of the previous researchers using
other professional group samples, such as truck drivers [22], seafarers [46] and nurses
[36], and it also supports the use of the DRIVE model in the context of railway fatigue
research. As expected, workload, job control and support, job characteristics, and
personality characteristics predicted fatigue. These results support the main paths of the
DRIVE model [34] and have initiated an investigation of risk factors for, and preva-
lence of, rail fatigue.

Fatigue was found to be significantly related to subjective reports of poor perfor-
mance efficiency and presenteeism, which could increase the risk of accidents. Also,
fatigue was associated with negative work-life balance and negative well-being out-
comes in both daily lives and work life, including life satisfaction, job satisfaction, life
stress, job stress, life happiness, work happiness, life depression and anxiety, job
depression and anxiety. Both workload and fatigue were found to result in performance
impairments in the previous literature, while workload was one of the strongest pre-
dictors of fatigue in Study 1. This raised the question of whether workload increases
fatigue which then leads to a reduction of performance, or whether there are inde-
pendent effects. Study 2 was designed to seek the answer to this by using single-item
measures of workload and fatigue and online cognitive tests. The results showed that a
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change in subjective fatigue predicted impaired performance, while workload affected
fatigue which then resulted in a change in performance.

The findings provide evidence for the effects of fatigue, but there was no inde-
pendent effect of perceived workload found on performance change. The change in
subjective fatigue significantly affected performance impairments in all three of the
cognitive tests. Therefore, it is largely subjective fatigue that predicted the changes in
objective performance. This probably reflects other factors affecting fatigue, and it may
be these factors which then result in performance change.

The results showed that the online fatigue test (single-item measure and cognitive
tests) did provide indicators of fatigue. The alertness dimension of VAS mood scales
was used to validate the single-item fatigue measure. The result of alertness was
consistent with the fatigue outcome which supported the validation of the single-item
fatigue measure. Meanwhile, the change in PVT performance outcomes was affected
by subjective fatigue and workload, indicating that the PVT was sensitive to these
changes in state. Also, the outcomes of the three performance tests showed similar
trends due to changes in fatigue. Therefore, these online measures were sensitive
enough to study fatigue further, and were potentially applicable to the occupational
setting.

In future research, such online measures will be applied for measuring perceived
workload, perceived fatigue, and objective performance with railway staff. Mental
workload has become a more important topic in the workplace as the work in modern
railway industry requires more cognitive demands rather than physical demands [19].
Detecting work-related fatigue and poor time performance will allow organisations to
provide adequate support to the staff and to take action to reduce the risks of incident or
accident, especially in safety critical work.

5 Conclusion

Both workload and fatigue were associated with performance impairments. The results
showed that workload is one of several predictors of occupational fatigue. High
workload is one of the factors which increases fatigue and then leads to a reduction of
performance. It is fatigue that mainly leads to performance impairments, and increased
fatigue performance declines. The two-part online fatigue measure which integrates a
single-item fatigue measure and cognitive tests acted as an indicator of the effects of
subjective fatigue and workload.
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Abstract. This paper presents a method to extract train driver taskload from
downloads of on-train-data-recorders (OTDR). OTDR are in widespread use for
the purposes of condition monitoring of trains, but they may also have appli-
cations in operations monitoring and management. Evaluation of train driver
workload is one such application. The paper describes the type of data held in
OTDR recordings and how they can be transformed into driver actions
throughout a journey. Example data from 16 commuter journeys are presented,
which highlights the increased taskload during arrival at stations. Finally, the
possibilities and limitations of the data are discussed.

Keywords: OTDR � Train driver taskload � Rail human factors

1 Introduction

In contrast to rail signalling, where several specific workload tools have been devel-
oped (e.g. [1]), train driver workload is under-researched. The train driver task has
however been extensively discussed in the human factors literature, with numerous
models, frameworks and task analyses produced to describe the task and influencers,
and several studies investigating train driver visual behaviour (e.g. [2, 3]). This paper
presents a new approach to investigating train driver workload using data from
on-train-data recorders (OTDR) to capture train driver activity and calculate driver
taskload. This section describes the work to date on measurement of workload in train
driving, and Sect. 2 proposes a new method for calculating train driver taskload from
OTDR. Section 3 presents a preliminary application of the methodology in a case study
of 16 commuter train journeys. Finally, the limitations, possible applications and fur-
ther research required are discussed in Sect. 4. Human factors research into the train
driving task dates back to Branton [4], who, in 1979, published a paper discussing the
nature of train driving and the need for drivers to anticipate future actions, develop
internal representations of the railway (route knowledge), and test these representations
against reality. Authors who have written about the train-driving task typically agree
that the key tasks involve processing information collected from inside and outside the
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cab and applying route knowledge to correctly control the speed and braking of the
train [5–7]. Additional tasks include:

• Maintaining an efficient speed profile [5]
• Making scheduled stops [5]
• Managing the train for fuel efficiency [6]
• Departing stations [8]
• Arriving at stations [8]

Gillis [9] notes that the train-driving task is primarily a visual-spatial task involving
constant perception and processing of information, and the majority of a train driver’s
physical actions are driven by information received (e.g. moving the traction handle in
response to a change in the speedometer). Hamilton and Clarke [10] include a high
level cognitive task analysis (CTA) goal structure, which was used as the basis of a
quantitative tool for the assessment of route drivability (Table 1).

However, despite the apparent simplicity of the task, Naweed [11] describes the
train-driving task as complex, dynamic, and opaque. Although the basic tasks may be
described reasonably simply, the actual practice is complicated by changing conditions,
event densities, and performance pressures that drive adjustments in motor skills and
problem solving strategies. The complexity is often further increased by conflicting
goals of time-accuracy, comfort and speed regulation, and the trade-offs of such required
to optimise the overall journey. The dynamism comes from the constant need to regulate
speed, while the opacity is due to the gaps in information when working with lineside
signalling. Drivers must use their route knowledge to infer future requirements. Thus,
driver performance is not simply a matter of perceiving and responding to stimuli as
suggested by the use of simple information processing models, but is driven by con-
tinuous, proactive prediction and planning [12]. The consensus in the literature is that,
despite the apparent simplicity, train driving is a complex task requiring processing and
integration of vestibular, kinaesthetic, acoustic, and peripheral visual information [13].

Table 1. CTA of the train driver task [10]

Execute a train
service

Prepare for
service

Prepare driver for driving duty

Assemble train (shunting)
Prepare train for service

Drive service Start from scheduled stop
Drive towards scheduled service stop in accordance
with movement authority
Stop for scheduled service stop
Perform service operations at stop
Perform operations for failed train

Close out train
after service

Relinquish possession of train

Perform formalities after service
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Naweed [11] describes a closed loop system of train driver performance based on
the perception of location from lineside features, and use of this information in con-
junction with the drivers’ knowledge base (i.e. route knowledge and train handling
knowledge) to establish location and apply appropriate controls (Fig. 1). Driving
strategies are informed by specific sources, including the rulebook and temporary
notices. Hamilton and Clarke [10] describe how train-driving goals are selected by a
plan (or rules) determined by operating conditions. For example, on passing a cau-
tionary aspect, a driver should decelerate, but when and by how much will depend on
situational factors including the specific aspect shown, railhead conditions, train per-
formance characteristics, etc.

These models adequately describe moment-to-moment train control, but are less
capable of representing the entirety of the train-driving task, particularly its contextual
and situated nature [14]. McLeod et al. [14] suggest instead a situational model of
driver performance which applies the concept of situation awareness to link driver
knowledge and experience with their actions and strategies (Fig. 2).

In addition to this more complex model, McLeod et al. [14] discuss additional
concepts that may be relevant to explore the complexity associated with the task:

Fig. 1. Model of the train driver task [11]
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• Strategic behaviour – how do train drivers develop and apply strategies for
managing workload, attention, and other influences?

• Situation awareness – how do drivers develop an understanding of the current
situation and apply this to predict future state?

• Situated behaviour and distributed cognition – how do the context, situation, tools
and surroundings inform and support or hinder driver actions?

• Distributed cognition – how do the artefacts and surrounding environment support
or hinder driver performance?

1.1 Train Driver Workload Measurement

Despite the number of models of train driving, measurement of train driver workload has
been specifically investigated in only a small number of papers. Dunn and Williamson
[15] examined the effect of underload on train driver performance in a simulated
train-driving environment. They suggest that the train-driving task can involve periods of
relatively high workload, but also involves “periods of repetitive low workload activity,
such as driving along a straight track at a steady speed and only responding to signals from
the in-cab ‘vigilance’ control device.” (pp. 998). As train drivers do not control lateral
positioning of the train (although theymust be vigilant approaching junctions that they do
not take the ‘wrong route’), their driving tasks are limited to controlling the throttle and
brake. Dunn andWilliamson [15] also state that the train-driving environment itself may

Fig. 2. Situational model of the train driver performance [14]
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add to the experience of monotony “with drivers subjected to either the repetitive,
unchanging stretches of train tracks moving beneath the train and off into the distance, or
the reduced external stimuli when driving underground in a tunnel or at night” (pp. 998).
They used self-report techniques (NASA-TLX) and primary task performance to inves-
tigate the differences in workload between a high and low monotony simulated
train-driving task and found the combination of low task demands andmonotony to have a
detrimental effect. Basacik et al. [16] also investigated measurement of train driver
underload through the use of physiological measurements during a non-train driving
related task, and produced some preliminary findings for the use of physiological sensors
in the train driving environment.

The widespread adoption of on-train-data-recorders (OTDR) offers a new approach
to measuring and potentially monitoring train driver workload through calculation of
the taskload imposed on the driver. OTDR are primarily used for train fault monitoring
and management, but as they log each and every input in the train cab they may also
have an application in monitoring train driver activities. Walker and Strathie [17]
suggest that train recorder output is an underused but potentially important data source
for understanding human performance and detecting risks in advance of accidents.
Their research used data from 107 train journeys over six days to investigate leading
indicators of risks associated with in-cab warning devices [18]. A second study,
Strathie and Walker [19] applied link analysis and graph theory to the movements of
the train controls. They found that individual drivers were consistent in their move-
ments, and there were differences between drivers in the pairs of movements. Broe-
khoven [20] used real-time data from operational signalling control systems to calculate
an External Cognitive Task Load (XTL) for rail signallers. The approach uses four
measures over five minute periods: the number of automatically executed plan rules
(monitoring load), the number of manually adjusted plan rules (planning load), the
number of non-executed plan rules (manual intervention load), and the percentage of
seconds spoken through the telephone (communications load). The four measures were
weighted to align with the Integrated Workload Scale for Signallers [1] and then
summed. This result was then multiplied by a switching cost calculated from the
number of trains delayed, the number of telephone calls made, and the number of
incidents. The XTL formula was found to discriminate between high and low perceived
workload in both the communication and manual actions.

The purpose of this paper is to describe a method of extracting train driver actions
from the OTDR, and present the results of a case study describing train driver taskload
as measured by the OTDR.

2 Method

2.1 Experiment Description

Data was collected from eight return journeys (16 journeys in total) over two routes.
Five drivers participated in the study. Table 1 describes the driver and route for each
journey included in the study. A researcher travelled with the driver on each journey
and noted any unusual events or deviations from standard practices. The researcher also
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collected subjective and physiological data; this data will not be presented in this paper.
The journeys were all scheduled passenger services, and the research did not cause any
interference with the timetabled journey.

2.2 Dataset Preparation

Following the journey, the OTDR data was downloaded from the Teloc (Hasler,
V3.11) via the Nexala remote condition monitoring system (Nexala, v2.8.01). The
resulting Teloc files were parsed and cropped to the relevant time frame. Relevant
signals were then selected, and exported to Excel using Eva 2 software (Hasler, v2.4
Pro). The following signals were regarded as relevant as they are directly attributable to
driver actions:

• Brake demand – provided in three bitcodes
• Acknowledgement of Continuous Automatic Warning System (CAWS)
• Aspect logged in the CAWS system (Green, Yellow, Double Yellow, Red)
• Gear (forward/reverse)
• Emergency brake application
• Headlight (dipped beam and full beam)
• Horn switch
• Left door opening
• Power demand – provided in three bitcodes
• Right door opening
• Vigilance alarm acknowledgement

All these signals were logged as bitcodes (0/1); in addition, analogue signals of
time, speed, and GPS coordinates were downloaded and exported for each journey.

The data was then pre-processed via the following steps:

1. Power and brake levels applied were determined from the relevant bitcodes for each
line of data;

2. The aspect (signal colour) was determined for each line of data;
3. Journey phases were added according to the framework described by Balfe and

Smith [21];

This dataset provided the basis for the analysis of train driver actions or taskload.

2.3 Driver Taskload Computation

The dataset was used to calculate driver taskload by identifying the times of driver
actions. The actions identifiable from the dataset are:

(a) Initiate braking – Drivers must use their route knowledge and timetable knowl-
edge to identify when they should start applying the brakes for the next station
stop, red signal stop, or to reduce or control speed;

(b) Change braking – Drivers adjust the level of braking according to the train and
braking performance;
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(c) Stop braking – Drivers remove brakes when they no longer wish to reduce train
speed, or the train is stopped;

(d) Change gear – Drivers may put the train into reverse – this is unusual during a
normal passenger journey and would usually be performed in shunting or per-
missive working (e.g. separating previously joined trains) movements;

(e) Acknowledge CAWS warning – Drivers receive a buzzer warning when they
approach a more restrictive aspect, and they must acknowledge this warning by
pressing a button within 7 s, or the train emergency brake will be automatically
applied;

(f) Headlights – Drivers change headlight settings as they move through the network;
(g) Horn switch – Drivers operate the train horn at required locations on the network,

and often as they enter or leave a station;
(h) Door opening – Drivers operate the door switches to open and close the train

doors at stations. There are several unlogged tasks associated with closing train
doors – specifically checking for passengers trapped in doors and checking that
the door interlock light has illuminated before leaving the station;

(i) Initiate power – Drivers apply power as they start from a stop, or to increase train
speed due to a change in signal aspect, line speed, or to maintain a speed profile;

(j) Change power – drivers change the power according to the train performance;
(k) Acknowledge vigilance alarm – drivers receive a buzzer warning at periodic

intervals, which they must acknowledge by toggling a foot pedal (vigilance
device; also known as dead man’s pedal). If they do not respond within 7 s, the
train emergency brake will be automatically applied.

The data therefore provides information on all routine actions performed by the
driver to control the train, and driver taskload can be calculated from this data by
summing the number of actions taken within a set time period (e.g. the number of
actions per minute). However, there are a number of driver tasks that are not logged in
the data, particularly those of communication and passenger interaction (e.g. operating
the passenger information system, responding to passenger queries, etc.) as well as
perception and interpretation of the visual environment. The OTDR also gives limited
insight into the cognitive processing associated with these actions. It may still be useful
for monitoring and comparing different journeys and different journey phases.

3 Case Study Results

Figure 3 shows an example histogram describing the number of actions in each minute
of one of the train journeys analysed. The graph clearly shows variation in activity
levels over the course of the journey, with a maximum of 19 and a minimum of
1 actions in each minute.

The actions can be analysed in terms of journey phase, i.e. station duties, departing
from stations, arriving at stations, and travelling between stations. The journey stages
were demarcated according to the model described by Balfe and Smith [21]. Figure 4
shows a typical journey speed profile and describes the four main stages repeated
throughout the journey.
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Figure 5 shows the mean number of actions per minute, along with the maximum
and minimum number of actions, for each of the four journey stages across all 16
analysed journeys. The graph shows that the “arrive at station” stage has the highest

Fig. 3. Train driver actions over a typical journey

Fig. 4. Train journey analysis framework (adapted from [21])
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number of actions per minute, due to adjustments in braking levels while approaching
stations. “Station duties” and “depart station” have similar levels of actions. It should be
noted that the 16 journeys analysed were all commuter journeys, with relatively few
instances of the “journey between stations” stage and three journeys had no instance of
this stage at all. “Between stations”may be expected to generate relatively little taskload
as drivers are simply required to maintain the appropriate speed profile. However this
stage can also involve stopping at red signals and this increases the actions required by
the driver.

Figure 6 shows a breakdown of the actions for each journey phase, shown as a
percentage of the total actions in each phase. Braking, applying power, and door
operations are the predominant activities. As would be expected, low levels of braking
actions are seen during station departures (comprising only 3% of station departure
actions). Drivers may apply the brakes when departing to test a train’s braking abilities,
known as a running brake test. Similarly, power applications are rare during arrival
phases (2% of arrival actions). Door operation is seen only in the station duties phase
and the arrival phase, as on some occasions the doors were opened before the train had
registered coming to a stop. Gear changes are also predominantly seen in the station
phase, as drivers put the train in neutral after stopping in the station and replace the gear
to forward when preparing to depart. Warning acknowledgements, headlight operations
and horn operations were spread across all four phases.

3.1 Weighted Method

Since all actions are not equal in terms of the underlying cognitive processing, a more
nuanced measurement of taskload could be constructed by weighting the different

Fig. 5. Average, maximum and minimum actions per minute for each of the four journey stages
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actions. A possible framework is described below as an illustration, although it should
be noted that this framework is based only on preliminary task analyses, and has not
been validated with train driving experts.

Table 2 shows the perception and memory activities associated with each of the
physical actions logged in the OTDR. Actions with more cognitive activities associated
with them can be assumed to place a higher load on the train driver. For example,
initiating braking requires the driver to be aware of the location and speed of the train,
drawing on route knowledge to determine the point at which to apply the brakes. The
reason for the brake application may be to maintain line speed, to respond to a change
of signal aspect, or to stop at a station. A more detailed framework could calculate
individual factors for each of these events.

In this example initiating braking, applying the emergency brake, initiating power
and closing train doors are all tasks with relatively higher load than the others. This is
because they draw more deeply on the drivers’ memory and/or require more perception
and analysis of the environment. Concluding braking, gear changes, opening doors,
and responding to the vigilance device are listed as low in relation to other tasks, as
they are all simple responses to a stimulus. Weighted coefficients can then be applied to
the high, medium and low rated actions for better estimation of cognitive task load
based on actions undertaken. For purposes of illustration, high rated actions in this
dataset were given a weight five times that of those rated low, and medium rated
actions were given a weight three times that of those rated low. Further research would
be required to determine the correct coefficients. Figure 7 shows the average, maximum
and minimum weighted actions per minute for the four journey stages. Braking is still
the dominant activity in this weighted method, and the braking associated with arriving
at stations is further highlighted in the weighted method.

Fig. 6. Proportion of actions across each of the four journey stages
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Table 2. Relative load for different actions

Action Perception Memory Relative load
Initiate braking Location

Speed
Signal aspect

Route knowledge
Signal aspect
Train characteristics

High

Change braking Braking performance Route knowledge Medium
Conclude braking Speed

Signal aspect
Low

Acknowledge CAWS Buzzer
Signal aspect

Signal aspect Medium

Emergency brake Emergency situation
Error

Rules High

Gear change Doors closed
Signal upgrade

Low

Headlight operation Approaching train
Location

Route knowledge
Rules

Medium

Horn operation Sign
Location

Route knowledge Medium

Initiate power Station checks
Signal upgrade

Rules
Signal aspect

High

Change power Train performance
Speed

Route knowledge Medium

Remove power Speed Route knowledge Medium
Doors open Train speed

Location
Low

Doors close Station checks Rules High
Vigilance device Buzzer Low

Fig. 7. Weighted average, maximum and minimum actions per minute
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4 Discussion and Conclusions

This paper has presented a method for calculating train driver taskload from OTDR
data, using transitions between states to infer driver actions. The results of this analysis
of 16 journeys illustrate the increase in taskload during arrival at stations, primarily due
to continuous adjustment of train braking. Of course, the taskload does not constitute
the entirety of train driver workload, but it provides one piece of information that may
be useful for monitoring driving performance, particularly in terms of underload. The
method is completely unobtrusive, as it uses already existing data to construct the
taskload model, and as such it may be a useful method of data collection in future
studies involving train drivers. The advantage of the method outlined here is in pro-
viding a completely unobtrusive method to evaluate train driver taskload, and hence an
aspect of their workload. This method could also be used to gather data in a variety of
operational situations; for example, comparing the taskload of novice train drivers to
that of more experienced drivers, in order to understand the strategies used by those
experienced train drivers to manage underload. Another possible application is in
comparing train driver taskload before and after infrastructure changes, in order to
understand how the changes have affected the train driver task, whether positively or
negatively. A further application could be the evaluation of overload through busy
urban areas. As the data is already being collected on trains equipped with OTDR, there
is no additional cost to collecting the data, only to the analysis.

In relation to the literature, the data presented here dovetails with the cognitive task
analysis undertaken by Hamilton and Clarke [10], although only the ‘Drive Service’
elements were presented in this paper. However, in contrast to the models more focused
on human information processing, the OTDR data only provides detailed insight into
‘actions’ performed by the driver. Where signal aspect data is available from the
OTDR, some small insight may be gained into perception – particularly through
analysis of reaction times to warnings of aspect changes. However this data is very
limited, and the wide range of other information used by drivers (e.g. landmarks,
signals from platform staff, etc.) throughout journeys is not captured by the OTDR.
Referring to the model of Naweed [11] (Fig. 1), little of the contextual information and
visual environment that drivers must perceive, analyse and respond to is directly
covered by this method. Similarly, it is difficult to make any inferences on information
analysis and driver decision-making from the data. The model of McLeod et al. [14]
describes the more contextual and cognitive processes that comprise train driving and
highlights the limitations of taskload calculation alone for estimating driver workload.
However, further analysis of large datasets from OTDR may provide some insight into
the range of strategies used by different drivers in different situations.

Future research could apply the methodology to more journey types (particularly
longer, intercity or high speed journeys) to compare key metrics with the shorter,
commuter-type journeys analysed here. As OTDR are in widespread international use,
future research could also examine national differences. The example weighted method
presented in this paper could also be further developed and the coefficients determined
through structured manual observations of drivers and a comprehensive cognitive task
analysis. They should also be validated with subject matter experts to ensure they
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accurately provide a more sensitive analysis of workload, as in Rizzo et al. and Rubio
et al. [22, 23]. The data may also be analysed using frameworks [e.g. 24] to better
aggregate heterogeneous records towards improved assessment of mental workload.
The data collected in conjunction with the OTDR data described in this paper will also
be analysed to determine whether there are any correlations between the OTDR
taskload model and subjective or physiological measures of workload, providing some
validation of the methodology.

References

1. Pickup, L., Wilson, J.R., Sharples, S., Norris, B., Clarke, T., Young, M.S.: Fundamental
examination of mental workload in the rail industry. Theor. Issues Ergon. Sci. 6(6), 463–482
(2005)

2. Naghiyev, A., Sharples, S., Ryan, B., Coplestone, A., Carey, M.: Real workload verbal
protocol data analysis of European Rail Traffic Management System train driving and
conventional train driving. In: 2016 IEEE International Conference on Intelligent Rail
Transportation (ICIRT), pp. 191–196. IEEE (2016)

3. Luke, T., Brook-Carter, N., Parkes, A.M., Grimes, E., Mills, A.: An investigation of train
driver visual strategies. Cogn. Technol. Work 8(1), 15–29 (2006)

4. Branton, P.: Investigations into the skills of train-driving. Ergonomics 22(2), 155–164
(1979)

5. Doncaster, N.: “By the seat of their pants” cues and feedback used by train crew. In: Wilson,
J.R., Mills, A., Clarke, T., Rajan, J., Dadashi, N. (eds.) Rail Human Factors around the
World: Impacts on and of People for Successful Rail Operations, pp. 484–494. CRC Press,
Leiden (2012)

6. Hamilton, W.I., Clarke, T.: Driver performance modelling and its practical application to
railway safety. Appl. Ergon. 36, 661–670 (2005)

7. Buksh, A., Sharples, S., Wilson, J.R., Coplestone, A., Morrisroe, G.: A comparative
cognitive task analysis of the different forms of driving in the UK rail system. In: Dadashi,
N., Scott, A., Wilson, J.R., Mills, A. (eds.) Rail Human Factors: Supporting Reliability,
Safety, and Cost Reduction, pp. 173–182. Taylor & Francis, London (2013)

8. Zoer, I., Sluiter, J.K., Frings-Dresen, H.W.: Psychological work characteristics, psycholog-
ical workload and associated psychological and cognitive requirements of train driver.
Ergonomics 57(10), 1473–1487 (2014)

9. Gillis, I.: Cognitive workload of train drivers. In: Wilson, J.R., Norris, B., Clarke, T., Mills,
A. (eds.) People and Rail Systems: Human Factors at the Heart of the Railway, pp. 91–101.
Ashgate, Aldershot (2007)

10. Hamilton, W.I., Clarke, T.: Driver performance modelling and its practical application to
railway safety. In: Wilson, J.R., Norris, B., Clarke, T., Mills, A. (eds.) Rail Human Factors:
Supporting the Integrated Railway. Ashgate, Aldershot (2005)

11. Naweed, A.: Investigations into the skills of modern and traditional train driving. Appl.
Ergon. 45, 462–470 (2014)

12. Elliot, A.C., Garner, S.D., Grimes, E.: The cognitive tasks of the driver: the approach and
passage through diverging junctions. In: Wilson, J.R., Norris, B., Clarke, T., Mills, A. (eds.)
People and Rail Systems: Human Factors at the Heart of the Railway, pp. 115–123. Ashgate,
Aldershot (2007)

13. Naweed, A., O’Keeffe, V., Tuckey, M.R.: The art of train driving: flexing the boundaries to
manage risk within an inflexible system. Eat Sleep Work 1 (2015)

118 N. Balfe et al.



14. McLeod, R.W., Walker, G.H., Moray, N., Mills, A.: Analysing and modelling train driver
performance. In: Wilson, J.R., Norris, B., Clarke, T., Mills, A. (eds.) Rail Human Factors:
Supporting the Integrated Railway. Ashgate, Aldershot (2005)

15. Dunn, N., Williamson, A.: Driving monotonous routes in a train simulator: the effect of task
demand on driving performance and subjective experience. Ergonomics 55(9), 997–1008
(2012)

16. Basacik, D., Waters, S., Reed, N.: Detecting cognitive underload in train driving: a
physiological approach. In: Proceedings of the 5th International Rail Human Factors
Conference, 14–17 September, London (2015)

17. Walker, G., Strathie, A.: Combining human factors methods with transport data recordings.
In: Stanton, N., Landry, S., Di Bucchianic, G., Vallicelli, A. (eds.) Advances in Human
Aspects of Transportation: Part 2 (2014)

18. Walker, G., Strathie, A.: Leading indicators of operational risk on the railway: a novel use
for underutilised data recordings. Saf. Sci. 74, 93–101 (2015)

19. Strathie, A., Walker, G.: Can link analysis be applied to identify behavioural patterns in train
recorder data? Hum. Factors 58(2), 205–217 (2015)

20. Broekhoven, R.F.G.: Comparison of Real-Time Relative Workload Measurements in Rail
Signallers. University of Twente, Twente (2016)

21. Balfe, N., Smith, B.: A framework for human factors analysis of railway on-train data. Paper
presented at HFES-Europe Chapter Conference, Prague, October 2016 (2016)

22. Rizzo, L., Dondio, P., Delany, S.J., Longo, L.: Modeling mental workload via rule-based
expert system: a comparison with NASA-TLX and workload profile. In: Iliadis, L.,
Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 215–229. Springer, Cham (2016).
doi:10.1007/978-3-319-44944-9_19

23. Rubio, S., Díaz, E., Martín, J., Puente, J.M.: Evaluation of subjective mental workload: a
comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. 53(1),
61–86 (2004)

24. Longo, L.: A defeasible reasoning framework for human mental workload representation and
assessment. Behav. Inf. Technol. 34(8), 758–786 (2015)

Estimation of Train Driver Workload 119

http://dx.doi.org/10.1007/978-3-319-44944-9_19


The Relationship Between Workload
and Performance in Air Traffic Control:

Exploring the Influence of Levels
of Automation and Variation in Task Demand

Tamsyn Edwards1(&), Lynne Martin2, Nancy Bienert1,
and Joey Mercer2

1 San Jose State University at NASA Ames Research Center,
Moffett Field, CA, USA

{tamsyn.e.edwards,nancy.bienert}@nasa.gov
2 NASA Ames Research Center, Moffett Field, CA, USA

{lynne.martin,joey.mercer}@nasa.gov

Abstract. In an air traffic environment, task demand is dynamic. However,
previous research has largely considered the association of task demand and
controller performance using conditions of stable task demand. Further, there is
a comparatively restricted understanding of the influence of task demand tran-
sitions on workload and performance in association with different types and
levels of automation that are available to controllers. This study used an air
traffic control simulation to investigate the influence of task demand transitions,
and two conditions of automation, on workload and efficiency-related perfor-
mance. Findings showed that both the direction of the task demand variation and
the amount of automation influenced the relationship between workload and
performance. Findings are discussed in relation to capacity and arousal theories.
Further research is needed to enhance understanding of how demand transition
and workload history affects operator experience and performance, in both air
traffic control and other safety-critical domains.

Keywords: Air traffic control � Workload transitions � Workload history �
Time-based metering � Automation

1 Introduction

Within the safety critical domain of air traffic control (ATC), workload “is still con-
sidered one of the most important single factors influencing operators’ performance”
[1, p. 639]. Workload has been defined within the ATC domain as the “activities, both
mental and physical, which result from handling air traffic” [2, p. 3]. Air Traffic
Controllers’ (ATCOs’) primary task is to ensure the safety of aircraft in their airspace
[3]. They have to ensure at least standard separation between the aircraft in the airspace
(sector) for which they are responsible, which includes changing the course of one or
more aircraft if they predict that the paths of these aircraft will, in the future, come too
close together (conflict). Secondly, controllers strive to efficiently manage their traffic,
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which, in airspace where aircraft are descending to arrive at an airport, includes cre-
ating strings of evenly spaced aircraft to assist in maximizing landings. ATCO tasks
can be thought of as a series of speed-time-distance trigonometry problems. Thus, their
workload stems mainly from cognitive demands, and is “mental” in nature, although a
sector that has many aircraft entering and exiting can have a high physical load, in
terms of the communication required with pilots.

Although there are many factors that can increase the complexity of an event for a
controller (e.g. sector structure, weather), amount of controller workload is closely
related to traffic density1. While there are procedures in place to limit traffic density
becoming too great in any one sector, controllers also manage task demand by
employing a range of strategies [4]. This behavior can be described by resource theory
[5], which assumes that the human operator has a limited capacity of cognitive resources
available to be allocated to a task. More tasks are understood to demand more processing
resources. At some point, the number of tasks lead to demands greater than the resources
available, and performance suffers, unless the operator (in this case the ATCO) can
change the task demand on cognitive resources. In ATC, safety performance is para-
mount, and so ATCOs develop a range of strategies to manage the demands of the task
and therefore, the available cognitive resources, as observed by [6, 7].

In ATC, as with many other safety critical environments, task demand and work-
load are dynamic. ATCOs frequently experience changes in traffic load and the com-
plexity of the traffic situation. These changes in task demand can potentially result in
changes to the cognitive complexity of managing the traffic and subsequently, ATCOs’
subjective experience of transitions between high and low workload. These transitions
can be expected by the controller, such as when traffic load changes based on the time
of day or known activities in surrounding sectors, or unexpected, for example, through
increased complexity resulting from an emergency situation. Transitions may also be
gradual or sudden [8]. Controllers, therefore, have to remain vigilant at all times when
they are ‘on position’ to make sure they are aware of events as they build, even if the
transition is sudden.

Research on task demand transitions, and the effect on both performance-influencing
covariate factors (such as workload) and task performance is limited, with studies
frequently utilizing a constant task demand [9] or changing demand only between
experimental conditions. Of the research available on demand transitions, there appears
to be conflicting findings. Some (e.g. [10]) have reported that overall performance
efficiency on a vigilance task was not affected by task demand transitions, regardless of
whether the transition was expected or unexpected. However, others (e.g. [10]) have
found that performance on vigilance tasks was influenced by a low-to-high demand
transition or high-to-low demand transition (e.g. [8]). Task demand and workload
transition research specific to an ATC environment is particularly underrepresented.
Consequently, there is limited understanding of the influence of demand transitions on
workload and performance in air traffic environments. To contribute to understanding in
this domain, [12] reported on a study that investigated task demand transitions on
workload, fatigue and an efficiency performance measure, metering accuracy. Findings

1 Traffic density refers to the number of aircraft an ATCO is managing in their sector.
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showed that a change in task demand appeared to affect both workload and fatigue
ratings, although not necessarily performance. In addition, participants’ workload and
fatigue ratings in equivalent task demand periods appeared to change depending on the
demand period preceding the time of the current ratings. However, the findings reported
specifically focused on a scenario in which the controller had full manual control. In
both the current and future planned (i.e. NextGen) air traffic systems, automation is
increasingly present to both assist (for example, the ground based separation assurance
tools offered to air traffic controllers in studies reported by [13]), and in some cases, take
over controller tasks (such as in automated handoffs). In order to increase National
Airspace (NAS) capacity, it is therefore important to investigate the association of
taskload variations, and taskload after-effects, with both current-day manual tasks and
tasks with functions that will potentially be automated in the future.

As discussed in [14], there can be a tradeoff for the operator between the situation
awareness (SA) that is generated by completing tasks and the accompanying workload
and time pressure. Automation adds another layer to these tradeoff considerations; if
implemented with the human/automation system in mind, automation can offer situa-
tion awareness-enhancing qualities, such as predictability and integrated information
[14], which together help the human to build and maintain situation awareness.

It is important to understand for which tasks air traffic controllers can continue to be
an effective part of the separation assurance system and which tasks are now more
suitable for automation. The tradeoff between the levels of automated aid with human
involvement in air traffic management performance was explored in a series of three
studies, the third of which is mentioned in detail below. The addition of automation
(that redefines a human system as a human/automation system) is intended to aid
human performance and increase system capacity.

The data reported in this paper was generated from a larger study reported in [9].
The authors extend the findings reported in [12] by investigating the association of
differing levels of automation on workload and efficiency-related performance in an
ATC simulation. The aim of the study reported here was to investigate the influence of
expected and gradual task demand transitions (high-low-high and low-high-low) on
workload and performance under two different levels of automation, within a high
fidelity ATC simulation environment. Due to the quantity of measures and data gen-
erated from this study, only a subset of the measures and findings that are most relevant
to this research aim are presented. Initial findings are reported in [12] which are
extended in the current paper.

2 Method

2.1 Design Overview

A within measures, en-route ATC human in the loop (HITL) simulation was utilized to
investigate task demand variation on workload and performance. Participants operated
a combined low and high altitude sector in Albuquerque Center (ZAB) and were
assigned to meter aircraft into Phoenix (PHX) and manage overflights. Metering is a
specific controller task of scheduling arrival traffic to meet a pre-planned schedule or
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time. Task demand was manipulated to create two scenarios. Efficiency-related per-
formance was inferred from delay to metered aircraft (in seconds) at three nautical
miles before a meter fix). Participants were eight retired-ATCOs who had previously
worked in enroute airspace in Oakland Air Route Traffic Control Center (ARTCC).
Pseudo pilots were paired with controllers, and completed standard pilot tasks such as
controlling the aircraft in accordance with controller instructions and communicating
with controllers. Each simulation session lasted for 90 min.

2.2 Airspace and Task Demand Scenarios

Participants operated a simulated, combined low and high altitude sector (segment of
airspace, Fig. 1), in Albuquerque Center (ZAB) that handles aircraft beginning their
arrival descent into the Phoenix Sky Harbor International Airport (PHX). This airspace
was selected for the complexity it offered through a mix of arrivals and overflights.
Scenarios were designed to have the mix of traffic present in this sector – overflights
passing through at level altitudes and transitioning aircraft either climbing out from
PHX and other airports in the area, or on a metered descent into PHX. The scenarios
included winds for the area, which were constant-at-altitude with a nominal forecast
error.

Fig. 1. Low-high altitude sector (shaded in grey) in ZAB with the routes that comprise the
“EAGUL6 STAR” marked
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Arrival traffic in both scenarios was metered through the HOMRR fix on the
EAGUL62 arrival (Fig. 1). Aircraft were initiated in the scenario with up to two-minute
delays (M = 76 s) as they entered the sector (on the right of Fig. 1). In addition, nine
conflicts were created in each scenario where an overflight would lose separation with
another overflight or an arrival if not adjusted. In the Start High scenario, four conflicts
were built to occur in the first thirty minutes, two in the second thirty minutes, and three
in the final thirty minutes. In the Start Low scenario, three conflicts were built to occur
in each of the three thirty-minute segments.

The direction of the task demand transition was manipulated to create the two
scenarios. Scenario 1 followed a high-low-high task demand pattern and scenario two
followed a low-high-low task demand pattern. The creation of three task demand
periods was implemented in order to better reflect the multiple task demand transitions
that can be experienced within an operational environment. In addition, this permitted
an extension of previous studies that had focused on the comparison of workload and
performance for one transition period (e.g. [8]).

Each simulation session lasted for 90 min and consisted of three, 20 min [15] periods
of stable task demand which alternated between high and low traffic levels, interspersed
with a total of three, 10 min transition phases. Task demand was created by the number
of aircraft under control [16] as well as the ratio of arrival aircraft and overflights. Arrival
aircraft create complexity in the task, which also influences task demand. Task demand
phases for equivalent stable task demand periods (i.e., high demand regardless of which
scenario the high demand was positioned in) were created using the same aircraft counts
and number of arrival aircraft, permitting comparability between demand variation
scenarios. Scenarios followed a counterbalanced presentation.

2.3 Study Condition – Amount of Automated Support

Automation was introduced into the study to different extents to create three conditions:
a manual condition, an arrival manager (AM) condition, and fully automated condition.
The fully automated condition will not be reported on during this paper as there was no
measure for metering performance. Instead, the focus is on comparing subjective
workload and controllers’ metering performance in the Manual and Arrival manager
(AM) conditions only.

In order to compare the effects of different levels of automation on subjective
measures and performance, key ATC tasks were identified and assigned to “the
automation” (actually a suite of tools) or the controller. The key tasks were conflict
detection, conflict resolution, arrival metering (schedule conformance), and monitoring
the automation while it was completing these tasks. Other ATC housekeeping tasks,
including handoffs, frequency changes, and climb and descent clearances, were auto-
mated for all conditions and the controller had to monitor these for all conditions.

2 Lining aircraft up for a runway begins many miles out from an airport as aircraft begin their descent.
Aircraft begin to fly on more formalized waypoint-to-waypoint routes that “channel” them to a
runway. Each set of routes is given a name, in this case “EAGUL”.
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The four key tasks were combined in the study conditions. The first “mostly
manual” condition was close to current day operations where the participants worked
all four key tasks (including monitoring the automated housekeeping tasks). In the
second, mid-level decision support condition (Arrival manager or “AM”), participants
were responsible for “metering” and monitoring the automation. Metering refers to the
controller task of contributing to arrival traffic schedule conformance. In this case,
controllers in this low-altitude en route sector are required to deliver the PHX arrival
traffic to meet a schedule. The scheduler is spacing aircraft to assure well-spaced
runway arrivals. The controller does not have to keep the aircraft exactly on time but
has to deliver them within a plus or minus (±)30 s window across a waypoint
(HOMRR) that is at the lower left of the sector. The automation was allocated the tasks
of conflict detection and resolution (CD&R) and housekeeping. The algorithms that
alerted and resolved strategic conflicts (looking from 3 to 12 min ahead) were based on
the Automated Airspace Concept [17, 18] and the tactical CD&R automation (looking
0–3 min ahead) was based on TSAFE [19].

During the study, each participant worked with each of the automation conditions
for four runs. For half of the runs they worked the Start High traffic scenario and for the
other half they worked the Start Low traffic scenario. Combined, this was a 3 � 2
design (level of automation by traffic density), which was repeated to give a data set of
twelve 90-minute runs. It was predicted that the increased amount of automation would
be reflected in lower workload ratings from the participants and increased efficiency
performance, measured by greater schedule conformance (more arrival aircraft crossing
the meter-fix in the ±30 s window).

2.4 Participants

A total of eight male retired-controllers took part in the simulation. Age ranged from
50–64 years. Participants responded to grouped age ranges and so an average age could
not be calculated. Participants had worked as en-route controllers in the Oakland,
California, ARTCC. Participants’ years of experience as active ATCOs (excluding
training) ranged from 22–31 years (M = 26.56, SD = 3.90).

2.5 Procedure

Participants were asked to work the traffic, as they would normally do, ensuring sep-
aration and metering the arriving aircraft to deliver them within a ±30 s delay window
across the HOMRR fix. It was emphasized that the participants could work any of the
traffic at any time in any condition if they wanted. That is, for the conditions with
greater amounts of automation, the controller could intervene if they did not think the
automation was going to achieve the separation criteria. In addition to the primary
tasks, the participants completed two other sets of tasks. Firstly, they were prompted to
rate their workload and then answer a situation awareness question every three minutes
for the duration of each run. Secondly, they were asked to verbalize whenever they saw
a “glitch” in the software, e.g., an aircraft not behaving as directed or overcorrecting.
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The study was run over five consecutive days. The first day and a half was devoted
to training the participants on the study environment and procedures. After an initial
briefing, six training scenarios were run with increasing levels of traffic and complexity
(two 45 min training runs and four 90 min training runs). Beginning in the afternoon of
the second day, participants worked 13 data collection runs (12 planned runs and one
repeat). They completed workload and awareness scales during each run and ques-
tionnaires at the end of each run, as well as a post-simulation questionnaire. The last
session on the fifth day was a debrief that provided an additional opportunity for
participants to offer feedback. As four of the twelve runs were under the “fully auto-
mated” condition, which incorporated metering in a different fashion to the other two
conditions, these four runs were removed from the data for the analysis presented
below.

Data from workstation logs and controller responses were analyzed from eight runs
for each participant. The results section below compares data across the levels of
automation to describe the relationships between automation and performance for
efficiency. The discussion explores relationships between the performance factors.

3 Results

3.1 Task Demand Variation Manipulation Check

A review of the descriptive statistics suggests that task demand did vary in the intended
direction (Fig. 2). Figure 2 confirms that the number of aircraft in the controller’s
sector were similar between equivalent task demand periods regardless of scenario
(high-low-high demand or low-high-low demand). The number of arriving aircraft was
also similar.
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Fig. 2. Count of aircraft under control by minute for scenario 1 (high-low-high demand) and
scenario 2 (low-high-low demand).
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3.2 The Relationship Between Taskload and Workload

Two sets of data were chosen for comparison – participants’ perceived workload,
recorded through a real-time rating that indicated how controllers thought they were
managing the scenario demands, and a task performance metric of schedule confor-
mance that indicated how well the human-automation system was maintaining the
delay goals for the sector.

Participants rated their workload in real time using an ISA-type rating scale and
prompt. Every three minutes during a run, when the scale illuminated on the work-
station banner, they rated their level of workload between 1 (very low) and 6 (very
high). Figures 3 and 4 show the mean perceived workload ratings at each time point
during the runs split by the type of scenario and then plotted by the two task-sets that
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Fig. 3. Mean real time workload rating of the AM and manual conditions during the
High-Low-High traffic scenario

Fig. 4. Mean real time workload rating of the AM and manual conditions during the
Low-High-Low traffic scenario

The Relationship Between Workload and Performance in Air Traffic Control 127



the controllers were given (Manual and Arrival manager). Overall, participants rated
themselves as having low to moderate workload during the H-L-H scenario, with the
lowest mean rating being 2.5, and the highest 4.1, out of a possible 6 (Fig. 3). Mean
ratings for the Arrival manager task set were very similar to those given for the Manual
task set. During the L-H-L scenario (Fig. 4), participants also rated their workload, on
average, as moderate to low, with the lowest mean rating being 2.0, and the highest 3.6.
Mean ratings for the two task sets were not so similar for this traffic scenario. The mean
workload reported under the AM task set was consistently slightly lower than that
given for the Manual task set.

As the level of traffic in the scenario was assumed to be one of the main influences
on workload, the number of aircraft in each scenario (traffic count) is also plotted in
Figs. 3 and 4. The correspondence between workload ratings and traffic count is very
high (please note the two y-axes in the figures). Significant, positive relationships were
found between the traffic count and workload ratings for both the AM condition
(r = 0.71, p < 0.001) and Manual condition (r = 0.79, p < 0.001) in the
High-Low-High demand scenario and workload and the AM condition (r = 0.85,
p < 0.001) and Manual condition (r = 0.81, p < 0.001) in the Low-High-Low demand
scenario. One point of interest is that, although the curves of the mean workload and
traffic lines are very similar for both traffic scenarios when the traffic is increasing to a
“High” phase, the mean workload reported begins to rise slightly before the traffic (see
39–63 min on Fig. 3 and 15–33 min on Fig. 4). Conversely, when the traffic is
decreasing to a “Low” phase, the mean workload reported begins to decline slightly
after the traffic (see 72–90 min on Fig. 3 and 42–69 min on Fig. 4). To further
investigate any differences between the task demand and automation conditions on
reported workload, a one-way repeated measures analysis of variance (ANOVA) was
conducted for each scenario. The first reported findings [12] for the manual condition
are repeated below, but did not extend the analysis to comparison with the arrival
manager (AM) condition. Therefore the following analysis extends previous findings.

3.2.1 The Relationship Between Taskload and Workload in the AM
Condition
Workload ratings were averaged across the 20 min periods of stable task demand to
facilitate comparison between the separate task demand periods. A review of the
descriptive statistics (Table 1) suggests that workload in both demand scenarios varied

Table 1. Mean and standard deviation for workload (as rated by ISA) in both transition phases
for the AM condition.

Workload (ISA) Task demand
period 1 (0–20 min)

Task demand
period 2 (31–50 min)

Task demand
period 3 (61–80 min)

M SD M SD M SD

Scenario 1 workload
(High-low-high)

3.48 0.82 2.85 0.77 3.98 0.76

Scenario 2 workload
(Low-high-low)

2.59 0.62 3.60 0.69 3.01 0.78
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as expected with task demand. In the high-low-high demand scenario (scenario 1)
workload appears to be rated slightly higher in the third task demand period (high
demand) compared to the first task demand period (high demand). In the low-high-low
demand scenario (scenario 2), workload was rated highest in the high demand phase.
However, on average, participants perceived workload to increase in the second low
demand period compared to the first. Comparing across low demand periods between
conditions, workload is rated similarly in the first period of scenario 2 and the middle
period of scenario 1. However, the low demand period in the third period of scenario 2
is rated as higher workload than either of the other low demand periods.

To further examine the changes in perceived workload, a one-way repeated mea-
sures analysis of variance (ANOVA) was conducted for each scenario [5]. In the
high-low-high demand AM condition, Mauchly’s test indicated that the assumption of
sphericity had been violated (X2(2) = 7.08, p < 0.05); therefore degrees of freedom
were corrected using Greenhouse-Geisser estimates of sphericity (E = 0.59). The
results show that there was a significant main effect of task demand period on
self-reported workload F(1.18,8.27) = 28.79, p < 0.001. Pairwise comparisons
revealed that workload was significantly lower in task demand period 2 (low demand)
than high task demand period one (p < 0.005) and three (p < 0.001). Workload was
not rated as being significantly different between high demand period 1 and high
demand period 3(p = 0.2). In scenario 2 (low-high-low demand) a significant main
effect of task demand period was found on self-reported workload (F(2,14) = 11.18,
p < 0.005). Pairwise comparisons revealed that workload was rated significantly higher
in the high demand period than the first low demand period (p < 0.05) and was not
significantly higher than the final low demand period (p = 0.13). Workload ratings in
the second low demand period were not significantly higher than the first low demand
period (p = 0.061).

3.2.2 The Relationship Between Taskload and Workload in the Manual
Condition
Workload ratings were again averaged across the 20 min periods of stable task demand
(Table 2). A similar pattern of workload between demand scenarios was seen in the
manual condition and the metering condition. A review of the descriptive statistics
(Table 2) suggests that workload in both scenarios varied as expected with task
demand. In scenario 1 (high-low-high demand) workload appears to be rated slightly
higher in the third task demand period (high demand) compared to the first task demand
period (high demand). In scenario 2 (low-high-low demand), workload was rated
highest in the high demand, here the second task demand phase. However, on average,
participants rated perceived workload to increase in the third task demand period (low
demand) compared to the first low demand period. Comparing between scenario 1 and
2, the high demand period is perceived to generate the most workload for participants
in the low-high-low demand scenario, although the high demand periods were objec-
tively equivalent between scenarios. Comparing across low demand periods between
conditions, workload is rated similarly in the first period of scenario 2 and the middle
period of scenario 1. However, the low demand period in the third period of scenario 2
is rated as higher workload than either of the other low demand periods.
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A repeated measures ANOVA was applied to each scenario, to explore differences
within-scenarios. In relation to scenario 1 (high-low-high demand) a significant effect
of task demand period was found on self-reported workload (F(2,14) = 44.23,
p < 0.001). Pairwise comparisons revealed that workload was significantly lower in
task demand period 2 (low demand) than high task demand period one (p < 0.005) and
three (p < 0.001). Workload was not rated as being significantly different between high
demand period 1 and high demand period 3(p = 0.68). In scenario 2 (low-high-low
demand) a significant main effect of task demand period was found on self-reported
workload (F(2,14) = 32.72, p < 0.001). Pairwise comparisons revealed that workload
was rated significantly higher in the high demand period than the first low demand
period (p < 0.001) and second low demand period (p < 0.005). It was also identified
that the workload ratings in the second low demand period were significantly higher
than the first low demand period (p < 0.05).

3.2.3 Workload Across Demand Scenarios and Automation Conditions
Figure 5 presents a comparison of the mean workloads for the task demand periods for
the task demand transition direction variable (low-high-low and high-low-high) and the

Table 2. Mean and standard deviation for workload (as rated by ISA) in both demand transition
scenarios for the manual condition.

Workload (ISA) Task demand
period 1
(0–20 min)

Task demand
period 2
(31–50 min)

Task demand
period 3
(61–80 min)

M SD M SD M SD

Scenario 1 workload
(High-low-high)

3.67 0.77 2.87 0.61 3.85 0.62

Scenario 2 workload
(Low-high-low)

2.78 0.64 4.06 0.71 3.33 0.61
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Fig. 5. Mean metering delay under two taskloads during the H-L-H traffic scenario
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automation variable (AM or manual). It is interesting to note that based on the
descriptive statistics, workload ratings in the low-high-low demand scenario overall are
lower for the AM condition than the manual condition. The same pattern is not seen for
the high-low-high scenario. In addition, the high workload period in the low-high-low
manual condition is rated higher than either of the high workload periods in the
metering and manual conditions for the high-low-high scenario.

3.3 The Relationship Between Taskload and Task Performance

The metering task involved reducing the scheduled delay on the arrival aircraft to meet
the delay goal of being within ±30 s of the scheduled time at the HOMRR waypoint.
The controller was required to do the metering with only the help of a trial planning
function – a tool that marked on the sector display predicted route of the aircraft. The
meter-fix accuracy metric describes an aircraft’s successful delivery at HOMRR.
Aircraft crossing the meter-fix were counted as successful if the aircraft arrived within
±30 s and crossed within the 3 nmi gate around HOMRR.

Overall, 90.4% of the aircraft were successfully delivered across the HOMRR
meter-point. Approximately the same percentage of flights was successfully delivered
under the two task-sets (91.0% and 90.4%). On average (when the mean was calculated
with absolute values), aircraft in the Manual condition were delivered with 11.9 s of
delay and they had 10.7 s of delay in the Arrival manager condition. The mean delay
over time per task-set was calculated and is charted in Figs. 6 and 7. The pattern of delay
for both task sets during the H-L-H scenario (Fig. 6) is similar, with larger mean delays
occurring when the traffic is High, and lower mean delays during the Low traffic in the
middle of the runs. While there is a good amount of variation in the delay over the meter
fix, the goal for the arrivals was to be within ±30 s, and at most of the time-points the
average delay across the aircraft within that time bin is less than 30 s. It should be noted
that individual aircraft within that time bin may not have been delivered successfully
(under 30 s) but that the group average is successful. For the AM task set, there was only

Fig. 6. Mean metering performance under two taskloads during the H-L-H traffic scenario
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one time point when mean delay was above 30 s; this occurred at 66 min into the run
when the traffic load was High. For the Manual task set, there were two time points when
mean delay was above 30 s, again traffic load was High – at 12 min and 66 min into the
run. Since both sets of data show a marked increase in metering delay at the beginning of
phase 3 (66 min) and in the middle of phase 1 (12 min), it is possible that the controllers
were more focused on other tasks at those times and this caused their metering efficiency
to reduce. In the H-L-H scenario, there were two planned conflicts between 10 and
14 min into the scenario, and the seventh planned conflict was at 62 min. It is suggested
that, even when CD&R was allocated to the automation in the AM condition, the
participants traded-off fine-tuning aircraft in their metering task to ensure these conflicts
did not occur. However, an important difference between the Manual and AM delay is
that the standard deviation of delay for phase 3 (61 to 90 min) under the Manual task set
is much larger (at 21.44 s) than for the other three High phases represented in Fig. 7
(which are 13.11, 13.53 and 13.73 s respectively). The pattern of delay for both task sets
during the L-H-L traffic (Fig. 7) is also similar, with larger mean delays occurring in
phase 3, when the traffic is Low. As for the H-L-H traffic, there is a good amount of
variation in the delay over the meter fix and, at most of the time-points, the average delay
across the aircraft within each time bin is less than 30 s. However, although the delay
patterns are similar, they seem slightly offset from each other, with delay rising or falling
slightly sooner (by about 3 min) in the Manual condition compared to the Arrival
manager condition.

For both task sets, there are only two time points when mean delay is above 30 s;
for the AM task set they are at 66 and 87 min into the run when the traffic load is Low
or increasing; and, for the Manual task set, they are at 63 and 78 min into the run. In
this L-H-L scenario, the last three planned conflicts were between 60 and 85 min into
the scenario. Again, the observed decline in metering efficiency suggests that the
participants traded accuracy on their metering task to ensure these conflicts did not
occur. Since both sets of data show a marked increase in metering delay during phase 3
(61–90 min), the standard deviation of delay for this phase were compared. Under the

Fig. 7. Mean metering performance under two taskloads during the L-H-L traffic scenario
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Manual task set, the standard deviation of the delay in phase 3 is much larger (at
16.43 s) than for the other three Low phases represented in Fig. 7 (which are 10.15,
9.55 and 9.43 s respectively).

3.4 The Relationship Between Task Performance and Workload

The main inquiry of this analysis was to explore the relationship between taskload,
performance efficiency, and how these are related to perceived workload. The data that
is shown in Figs. 3, 4, 5, 6 and 7 above was combined to compare workload with task
performance (represented by metering delay) under each traffic scenario and automa-
tion set. Table 3 compares the mean metering delay and mean workload during the
H-L-H traffic. For both the AM and Manual conditions, the delay was correlated with
workload across the whole scenario and then by the three phases of traffic load. There is
a significant correlation of the Arrival manager task set workload with delay (p < .01),
which is above 0.5 overall and across each phase of traffic – broadly, as workload
ratings rise and fall metering delay also rises and falls. The correlation between
workload and delay in the Manual task set is lower, only 0.39 overall, but still sig-
nificant (p < .05). While the correlations for phase 1 and 2 are close to the overall
correlation, there is a noticeable reduction in the correlation during phase 3, down to
0.12 between workload and delay (Table 3).

This process of correlation was completed for each task set under L-H-L traffic load
(Table 4). The unexpected finding is that the correlations between workload with delay
for both task sets are very low, the overall correlations are slightly negative for both
task sets. Despite the correlations being so low, a slight trend similar to that in the
H-L-H traffic load can be seen – the relationship between delay and workload reduces
over the phases of the scenario. For both task sets, phase 3 shows the least correlation
between workload and delay, which for the L-H-L traffic is negative.

Table 3. Correlation of workload with delay under H-L-H traffic load (**p < .01; *p < .05)

Overall
correlation

Phase 1 (High
traffic)

Phase 2 (Low
traffic)

Phase 3 (High
traffic)

Metering task
set

0.58** 0.53 0.51 0.58

Manual task
set

0.39* 0.49 0.35 0.12

Table 4. Correlation of workload with delay under L-H-L traffic load

Overall
correlation

Phase 1 (High
traffic)

Phase 2 (Low
traffic)

Phase 3 (High
traffic)

Metering
task set

−0.10 0.09 0.10 −0.13

Manual task
set

−0.09 0.15 −0.26 −0.26

The Relationship Between Workload and Performance in Air Traffic Control 133



4 Discussion

A within-measures design was used to investigate task demand variation and
automation levels on subjective workload and efficiency performance, measured by
delay accuracy of arrival aircraft. The direction of the task demand transition was
manipulated to create two scenarios: H-L-H and L-H-L. Results showed that task
demand varied as intended. Descriptive statistics confirmed that equivalent demand
periods, regardless of scenario or position, were composed very similarly in terms of
controlled aircraft count and arrival aircraft count. This suggests that changes in the
covariates or dependent variable are unlikely to be attributed to demand differences
between the created scenarios.

4.1 The Relationship Between Taskload and Workload

In general, task demand and workload had high covariance for both H-L-H and L-H-L
scenarios, across automation conditions. However, a key finding of interest is that
perception of workload appears to differ depending on the demand period preceding the
current ratings, in line with previous findings [5], and the level of automation in the
control task. In the H-L-H condition, workload in the manual condition was reported on
average a little higher than the Arrival manager condition, although this trend is
reversed in the second high taskload period. This is an interesting data trend. As
discussed in [14], more manual tasks can increase situation awareness (SA) for the
operator. It may be possible that during the ramp up transition, the increased
automation resulted in controllers requiring more cognitive effort to build the picture
with the increasing traffic, creating a perception of higher workload.

In the L-H-L scenario there is still a high correlation between taskload and
workload overall, but some differences can be observed compared to the H-L-H sce-
nario. In the manual L-H-L condition, as expected, workload starts low with an average
rating of around 2.5. This is similar to the workload ratings for the low taskload period
in the H-L-H manual condition. However, when transitioning into the high workload
period, the workload ratings appear to ramp up faster than in the comparable period of
the H-L-H scenario. In addition, workload is rated higher than in either of the two high
taskload periods in the H-L-H scenario, suggesting that there is a difference in per-
ceived workload in the ramp up phases of the L-H-L scenario compared to the ramp up
phase of the H-L-H scenario. As the traffic counts were the same in all high taskload
periods for all scenarios, this is likely not due to objective differences in the traffic
scenario. Workload is also perceived to be significantly greater in the second low
demand period than the first, potentially suggesting that workload is perceived to be
greater after the high demand period. This increased workload would not be the result
of working to resolve delays from the previous period, as any remaining delays were
absorbed in the 10-minute transition period between the stable demand periods. These
findings indicate that the workload appears to be perceived differently depending on
what precedes the time of rating. More specifically, results suggest that in this ATC
task, a demand transition pattern of low-high-low demand may result in operators
perceiving subsequent high and low demand periods after the initial low demand period
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as generating a greater workload than equivalent demand periods in a high-low-high
demand transition pattern.

As expected, when comparing the workload ratings in the manual and Arrival
manager conditions, reported workload appears to be lower in the AM condition than
the manual condition in the L-H-L scenario. Interestingly and unexpectedly, this
finding was not replicated in the H-L-H scenario, where manual and AM conditions
appear to have similar workload ratings. In addition, the workload ratings in the high
taskload period of the L-H-L AM condition were lower than the high taskload periods
of the H-L-H scenario. This suggests that in the L-H-L condition, the application of
automation, and the associated removal of specific controller tasks, provided support to
the controller, and possibly increased available resources [5]. This results in lower
workload ratings. As the same effect of the metering task was not observed in the
H-L-H scenario, it may be that the L-H-L scenario created higher demand on the
controller overall, and as such the removal of tasks in the AM condition had a
noticeable effect on reported workload. If controllers did not feel that same demand in
the H-L-H scenario, then the AM condition may not have had a notable influence on
subjective workload.

4.2 Taskload and Task Performance

Task performance was assessed by the accuracy attained in metering arriving aircraft.
Overall performance was good, with most aircraft arriving within the task criterion
(30 s of the metered time). As expected, accuracy seems to co-vary with taskload, with
higher delay seen in High workload times, in the H-L-H condition. This relationship is
less obvious in the L-H-L condition however, with accuracy unexpectedly decreasing
in the last low taskload period, possibly due to fatigue or time spent on task effects.
Another interesting finding is that, in general, the AM and manual conditions do not
appear to be too different in terms of metering, although there appears to be more
variation between the conditions in the L-H-L scenario. This may suggest that the
influence of the Arrival manager condition on workload that was found in the L-H-L
scenario did not extend to improve performance. Finally, the standard deviations of
delay in phase 3 are larger than the equivalent phase 1 period, for both conditions and
scenarios. Performance variability therefore appears to have increased across task
demand period. Increases in performance variability over time have been documented
previously, although for vigilance-based performance [10]. The increase in perfor-
mance variability may suggest that controllers have to work harder to maintain effi-
ciency performance, with this becoming harder to maintain.

4.3 Workload, Automation Level and Performance

Analysis of the correlations between workload and arrival aircraft metering provides
further detail about the relationship between workload and performance under different
automation levels and taskload variation scenarios. In the H-L-H condition, a signifi-
cant correlation was found between workload and metering; as workload ratings rise
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and fall metering delay also rises and falls. The correlation between workload and delay
in the Manual task set was lower, although still significant. There is a noticeable
reduction in this correlation during phase 3. The lower correlation is not unexpected, as
in the Manual condition, participants had to work on conflict detection and resolution
tasks in addition to the metering task. Controllers are not passive in their environment.
With a higher experienced workload, controllers may have applied strategies to ensure
maintenance of performance even under a high workload [7]. This is not seen in the
Arrival manager conditions, however. The added automation may have resulted in less
strategic options for maintaining performance. The differential application of strategy
and how the controller elected to control and manage the traffic could contribute to the
reduced covariance.

An unexpected finding was the low correlation between performance and workload
for both manual and AM conditions in the L-H-L scenario. In fact, there appears to be
hardly any relationship at all. The small covariance that is observed is often negative,
with delay increasing with low workload and decreasing in association with high
reported workload. There is therefore a clear effect of workload transition direction on
the association between workload and performance. In the H-L-H scenario, the rela-
tionship between workload and performance is more predictable, although less so in the
manual condition. This is potentially due to application of individual control strategies,
or perhaps more choice in the control approach. In the L-H-L scenario, the transitions
appear to influence the workload-performance relationship.

Although there is a lack of common agreement regarding the mechanisms by which
task demand transitions may impact covariate factors [20], this collection of workload
findings may be interpreted in the context of Limited Resource theory [5] and arousal
theories. Potentially, in H-L-H scenario, the low demand period may have enabled
controllers to use this time to recover resources and prepare for the next high task
demand period. As has been previously documented in [6] this is an active control
strategy that controllers use during low demand periods, when it is considered safe to
do so. Arousal theories may provide some insight into why this effect may not be seen
in the L-H-L demand transition pattern. Arousal theories suggest that low workload (or
underload) may lead to lower arousal, which may limit attentional resources and create
boredom and lack of motivation. If a human operator started a task from this point, it
may be that the following demand periods are perceived to be more demanding. By the
final low demand period, the operator may find it difficult to pay attention. Attentional
resources theories suggest, however, that if preceded by a higher demand, lower
demand periods can be utilized to replenish attentional resources, not necessarily
reducing arousal to a level that would create negative effects. The application of these
theories therefore potentially account for the disparate findings between the different
task demand transition patterns. If this effect occurred in the L-H-L scenario but not the
H-L-H scenario, this also may explain why the AM condition had noticeably lower
workload rating in the L-H-L scenario but not the H-L-H scenario.

The result of improved metering may also be the result of controllers applying
strategies to support performance across the demand periods [7]. Although controller
strategies were not a direct focus of this research, this finding highlights an important
issue for future research considerations. Although this measure of performance (arrival
metering) indicates that performance was maintained in the L-H-L scenario, controllers
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also reported greater perception of workload. It is therefore possible that controllers
may have experienced having to work harder to maintain performance, even though
this was not observable in the performance measure itself. This result emphasizes that
in order to detect, and prevent, performance declines, further research should focus on
measures that are sensitive to the operators’ experience, and that can be monitored and
utilized to detect potential performance decline prior to a performance related incident.

It is acknowledged that these results are provisional, and need to be interpreted
within context. For example, in an air traffic environment, it is easier for the controller
to build a picture of the traffic by gradually increasing demand levels alongside the
increasing traffic, rather than beginning a session in the middle of a high demand period
[6]. However, findings do have important implications for the prediction of controller
performance in an operational environment. Findings suggest that high and low
demand periods can affect controller perception of covariate factors such as workload
differentially depending on what has happened prior to the current situation. Thus,
supervisors may need to pay close attention to the number and direction of transitions
that a controller experiences per session to most effectively support controller
performance.

Future research should further explore the relationship between previous task
demands and the relationship on present controller experience, including the explo-
ration of sudden, and unexpected, transitions. Better predictions are needed to identify
and prevent potential performance declines and associated performance-related inci-
dents. Such predictions may be particularly relevant for adaptive automation tech-
nologies that support operator performance.

5 Conclusion

The effect of task demand transitions on workload, and one efficiency related perfor-
mance measure, was investigated within the context of an air traffic control task. Initial
findings suggest that task demand variations affected participants’ perceptions of
workload, although the effect appeared to be influenced by the direction of the previous
demand periods. This was also influenced by the level of automation available to the
controller, with the controller experiencing less workload when controlling with
automation in an Arrival manager condition in the L-H-L scenario. Performance
appeared to vary to some extent with taskload, in the direction expected, although
findings were again disparate between scenarios. The most interesting findings suggest
that the relationship between workload and performance was affected both by level of
automation available to the controller, and direction of taskload. This finding has
potential implications for the assessment of new automation and applying increased
levels of automation in the control room. Previous research has infrequently considered
transitions of task demand in an applied environment. Findings are consistent with the
description of workload history effects [8], and suggest that equivalent task demand
periods can elicit different experiences for a human operator depending on what pre-
cedes the time of rating. Attentional resource and arousal theories appear to support
interpretation of the results. Further research is required to enhance understanding of
demand transition and history effects. Practical applications include guidance for

The Relationship Between Workload and Performance in Air Traffic Control 137



operations room supervisors, and implications for predictions of performance in high
and low demand periods, with important implications for identifying and preventing
potential performance declines and associated performance-related incidents.
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Abstract. The Dutch infrastructure manager builds new track yards or enlarges
existing track yards to facilitate service and maintenance of new rolling stock to
be commissioned next few years. One of the design issues is the choice for a
certain level of automation. A high level of automation requires higher invest-
ment in technology, but will result in lower mental workload of a train dis-
patcher and therefore require lower staffing and lower operational costs for the
train dispatching process; a low level of automation result in higher mental
workload of train dispatchers and has higher operational costs for train dis-
patching due to higher staffing. Or this design issue the WASCAL-tool was
developed. The tool calculates staffing for train dispatching for all levels of
automation, currently in operation in the Netherlands. The tool is validated
based on observations of train service on several track yards. The output of the
tool in terms of staffing is reliable enough for the choices to be made during the
design process of a new track yard.

Keywords: Staffing � Workload � Train dispatching � Prediction � Design �
Track yards � Level of automation

1 Introduction

In the period 2017 to 2022 the Dutch Railways (NederlandseSpoorwegen, NS) com-
mission new rolling stock in train service. This new rolling stock is meant for extra or
new train services on current and new trajectories in the Netherlands. The new rolling
stock has to be serviced, cleaned and maintained on track yards. The currently available
track yards do not have the capacity to facilitate these processes. Therefore ProRail, the
Dutch infrastructure manager, must build new track yards or enlarge existing track
yards. One of the design issues for building or enlarging a track yard is the choice of a
certain level of automation. A high level of automation with signals and train detection
enables computerized route setting, which lowers mental workload of train dispatchers.
A lower mental workload will result in a lower level of staffing for train dispatchers.
A low level of train automation (no signals, no train detection) requires procedural train
dispatching with communication between dispatcher and train driver for use of routes
along the yard. This will raise mental workload and therefore a higher level of staffing
for train dispatchers is required. So a high level of automation requires higher
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investment in technology, but has lower operational costs for the train dispatching
process, a low level of automation is cheaper from the point of view of investments in
technology, but has higher operational costs for train dispatching. For the design issue
mentioned, the WASCAL-tool (Workload And Staffing Calculation tool) was devel-
oped. This tool calculates staffing for train dispatching, based on the levels of
automation, and is currently in operation in the Netherlands.

2 Processes and Characteristics of a Track Yard
in the Netherlands

In general, staff involved in the processes of logistics (normal line) and planning
(dashed line) on a track yard can be represented as shown in Fig. 1.

Several service and maintenance processes can take place on a track yard. Currently
these processes are:

• Servicing of rolling stock
• Maintenance of rolling stock (limited)
• Cleaning of the interior of rolling stock
• Cleaning of the exterior of rolling stock
• Combining or dividing carriages
• Parking of carriages

Planning of routes and setting of routes is highly dependent on the level of train
automation, characteristics of the infrastructure, and computerized assistance of the
train dispatcher. The several combinations of these elements, currently in operation in
the Netherlands, are shown in Table 1. As shown in Table 1, train dispatchers are
involved in different ways in the processes within a track yard. The higher the level of
automation for route setting and planning, the fewer activities the train dispatcher
performs. In order to incorporate activities of the train dispatcher in the desired tool for

Fig. 1. Staff involved in processes for logistics and planning on a track yard in the Netherlands
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calculation of staffing for train dispatching, a task analysis is performed. Workload is
calculated based on task performance, and staffing is calculated based on workload
calculations.

3 Staffing and Mental Workload

Staffing is, in a way, related to mental workload. When demands imposed by a task
increase and level of automation and working organization cannot be changed, more
staffing is needed to assure the required task performance with an acceptable workload
for the operator. The character of the job of train-dispatching for a track yard is such
that for determining acceptable workload, attention should be paid to longer-lasting
workload and to peak load. When discussing workload, there are many terms and
dimensions that can reflect workload. So, the first choice to be made is which
dimension of workload should be assessed when calculating or predicting staffing.

Model of Mental Workload
In literature there are several terms and concepts regarding mental workload. Words like
working pressure, workload, task load, mental strain, stress etc. are used [10] and there
seems to be no clear definitions. Also, in international standards there are differences in
terms regarding workload. To avoid the unintelligibility mentioned above, a model of
the concept of workload based on ISO 10075 [4] is being used [19]. Figure 2 and
Table 2 illustrate this model. The model shown is a heuristic model, suitable to explain
the concept of workload to lay persons, but it is also connected to scientific views on the
multidimensional construct of mental workload and determined by characteristics of the
tasks (e.g. demands, performance), the operator (e.g. skill, attention) and, to a degree,
the environmental context in which the performance occurs [10, 14].

Table 1. Characteristics of track yards in the Netherlands.

Level of
automation

Infrastructure Route setting/logistics Planning

High level Signals, train
detection,
automated control
of switches

Computer-assisted route
setting

Computer assisted
planning of all routes

Medium
level

Train detection,
computerized
control of switches
by train dispatcher

Verbal route setting,
computer assistance for
judgment of safety of
routes based on train
detection

Computer assisted
planning of routes into
and out of the yard,
manual planning of routes
on the yard

Low level Manual control of
switches by train
driver

Verbal route setting,
computer assistance for
judgment of safety of
routes based on input of
train dispatcher

Computerized planning of
routes into and out of the
yard, manual planning of
routes on the yard
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The required tool should be part of the design process for a track yard, especially
regarding the choice for a certain level of automation. The level of automation is part of
the working environment within the model of mental workload, as presented in
Table 2. Because of task allocation, (i.e. which tasks are performed by automation and
which tasks are performed by humans) the choice of a certain level of automation
directly impacts the task demands within a job (e.g. number of activities, complexity,
time-occupancy etc.). The levels of automation to be chosen are all currently in
operation in The Netherlands and all train dispatchers are skilled to perform the train
dispatching process using the related systems. For the purpose of the tool individual
characteristics, as representation of the characteristics of the operator, remain constant.
Therefore, it was chosen to choose task demands as the basis for the tool to be
developed. This choice also meets insights about objective task demands as input
parameters for determination of acceptable workload [10].

Fig. 2. Heuristic model of workload (based on ISO 10075 [4] and [19]).

Table 2. Elements of workload (based on ISO 10075, [4]).

Task demands Individual characteristics
(subjective/individual)

Working environment (objective)

Examples Examples Examples
- Amount of work - Competencies - Possibilities for regulation

of task fulfilment- Variation in
complexity

- Stress resistance

- Quality - Coping - Management support
- Speed of task
performance

- Commitment - Social pressure
- Private circumstances - Procedures/intelligibility

- .. - Individual differences - Management style
- .. - .. - Salary
- .. - ..Etc. - Support tools like MMI/GUI
- ..Etc. - Working

environment/workplace
-..Etc.
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The Task Weighing TM Tool for Calculation of Task Demands
For the calculation of task demands related to train dispatching in the Netherlands, the
tool Task Weighing™ [1, 19]) was developed earlier. Development of this tool took
place in close cooperation with train dispatchers. Task WeighingTM itself is a calcu-
lating formula, based on elements and descriptors of the job of train dispatching [19].
Task WeighingTM knows 5 base task components, which are described in base ele-
ments and descriptors:

1. Monitoring of trains;
2. Control by preparation of routes;
3. Communication by short messages;
4. Communication by consultation;
5. Adjustment of the plan.

An example of the base task component ‘Communication by short messages’ is a
short telephone call with simple communication. For instance, a telephone call with a
more complex request consisting of several information elements is an example of the
base component ‘Communication by consultation’. In Task WeighingTM judgement of
information (puzzling and checking) is a separate base element, with distinction to
judgment of timing of a required route and safety related judgements. Also, there are
several base elements regarding control of the current computerized train dispatching
systems with its current MMI characteristics. The mental workload related to the base
elements and descriptors of Task WeighingTM are weighed by comparison of executing
an activity that comes together with that certain element or descriptor [1, 19].

Standard for Staffing Based on Threshold Values for Task Demands
A calculated number of workload points has no meaning if there is not a threshold for
acceptable workload. During the development process of Task WeighingTM these
thresholds are formulated together with train dispatchers in a participative way. Table 3
outlines the Task Weighing™ thresholds for acceptable workload due to task demands.
They represent the resources of 1 train dispatcher, comparable to the relationship
between mental workload, demand for resources imposed by a task and the ability to
supply the resources by the operator, as stated by Wickens [15, p. 161]. So, for example,
regarding lasting workload with a duration of 4 h, in terms of Task Weighing™ a
workload due to task demands of maximum 400 points per hour represents the resources
of 1 train dispatcher.

In Table 3, the notice on each threshold in terms of workloads points due to task
demands is related to workload. These notices are formulated with an ‘average’ train
dispatcher performing his or her job in an ‘average’ working environment in mind. Of
course, the actual occurring workload and performance delivered by a certain train
dispatcher will depend on his or her own individual characteristics and environmental
factors of the moment of task execution. It is difficult to formulate valid quantified
thresholds for mental workload, which is also stated in [14], but the thresholds shown
in Table 4 showed their purpose in workload assessment of train dispatchers, aimed for
optimization of workload since the development of Task WeighingTM.
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4 Task Analysis and Task Demand of Train Dispatching

Task analysis of train dispatching for a track yard is performed based on train dis-
patching regulation and manuals [3, 6–9, 13, 17, 18], as well as interviews and
observations of train dispatching for several track yards.

Train Dispatching for a Track Yard in General
The first step in task analysis is performing a hierarchical task analysis (HTA, [12]) of
train dispatching for a track yard. In general, the job of train dispatching consists of two
elements: the setting of routes and the planning of routes. The planning of routes is more
complex and more comprehensive than the setting of routes. Planning requires moni-
toring of the train service, updating the plan when a delay occurs, changing the plan
when the original plan cannot be executed anymore, and (in the Netherlands) registering
the causes of delays. Figure 3 shows results of the HTA for train dispatching for a track
yard in general.

Table 3. Task Weighing™ thresholds for acceptable workload due to task demands

Threshold in workload points due
to task demands

Notice in terms of workload

Less than 150 Low workload, possible boredom
Around 250 Good workload for a shift of 8 h (average load per hour)
Between 250 and 400 Acceptable lasting workload during several hours

(about 4 h). Overload possible if duration is longer than
mentioned number of hours

Between 400 and 500 Acceptable peak workload during one (1) hour
Between 500 and 600 Acceptable peak workload during a maximum of one

quarter of an hour (15 min)
Above 600 Overload, very high risk of human error

Table 4. Task demands of verbal authorization for a single route based on Task Weighing™

Activity Workload points due to task demands

Interaction with the train driver 3
• Hearing telephone call (ringing)
• Communication with train driver (request for route)
Judgement and registration in computer system 3
• Selection of tracks
• Judgment availability of route
• Decision making: timing of route execution
• Decision making (double check): safety
Communication with train driver (authorization) 2
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Settings of Routes for a Track Yard
For a yard with a high level of automation, the setting of a route is relatively simple:
either a route is set by an automatic route setting application, or a route is set by manual
control of the computerized route setting system. When using automatic route setting,
there is no mental workload accompanying the route setting itself. When using manual
control of the computerized route setting system, mental workload is very limited,
because the computerized route setting system performs all judgements regarding safe
availability of the route on the required time.

In the Netherlands, the setting of routes for a track yard using medium or low level of
automation requires at least 2 moments of communication by phone between the train
dispatcher and the train driver. A train driver calls the train dispatcher and requests a
certain route. The train dispatcher judges the safe availability of that route by using a
computerized system (the train dispatcher puts the required route in into the computer
system, the computer system shows the required route on the monitor together with other
earlier requested routes which are being used at the moment, and the train dispatcher
judges possible conflicts between routes) and authorizes the train driver for execution of
the requested route or not. When not authorized, the train driver has to call again later to
request the same route again. After having executed the authorized route completely, the
train driver calls the train dispatcher to inform him about the clearance of the route.

The results of the HTA are linked to mental workload by performing a cognitive
task analysis (CTA, [2]). Results of the CTA of setting routes for a track yard with
medium and low level of automation are shown in Fig. 4.

Next step was ‘weighing’ all steps in the communication and decision making
process of setting a route. For this weighing, the weighing scores of the base elements
of Task WeighingTM were used. Table 4 shows the results of weighing task demands of
all elements in the CTA for verbal authorization of a single required route.

Because the communication between the train dispatcher and the train driver
regarding routes and the execution of routes takes a certain amount of time, e.g. the
aspect of time-occupancy as part of task demand, the duration of the process of
requiring and authorization of routes and the execution of routes was assessed. For the

Fig. 3. Results of the HTA for train dispatching for a track yard in general.
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communication process between the train dispatcher and the train driver, result was that
it takes about 1.5 min per request and authorization of a route [13]. This means that a
train dispatcher can handle a maximum of 3 requests for a route per 5 min. For the
execution of routes, e.g. driving the train along the route, it is needless to say that the
distance of a route is an important factor in process time. However, there are also
differences in process time between a high and medium level of automation of the track
yard, and a low level of automation. In high and medium level of automation, a
computerized system controls the switches timely for the approaching train. For the low
level of automation of the track yard the train driver has to control the switches
manually, and this itself also takes time.

Planning of Train Service for a Track Yard
In the Netherlands the track yards with a medium and low level of automation do not
have a plan for routes on the track yard, only a plan for routes into and out of the track
yard. The track yards with a high level of automation also have a plan for routes on the
track yard. Changes in the plan can be carried out in two different ways. One is with the
aid of a computerized planning system. With the use of this system, the logistic officer
of the train operating company requests a change of plan by filling in the time and track
usage (route) related to the desired change for a specific train. The train dispatcher
judges the desired change of plan and authorizes it when possible. After authorization,

Fig. 4. Results of the CTA of setting of routes, track yard medium and low level of automation.

Table 5. Task demands for judging a request for change of plan based on Task Weighing™

Activity Workload points due to
task demands

Perception of signal ‘request for change of plan’ and accepting
request for judgment

1

Reading of request, judgment of request 4
Input result of judgement into planning system 1
Input of request for route in the execution plan 6
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the train dispatcher processes the desired change of plan for execution. The other way
is for the logistics officer to send a request to the train dispatcher by telephone. Table 5
shows results of the weighing of all steps in the process for a change of plan by the
computerized planning system.

5 The WASCAL-Tool

5.1 Input for the Tool

The WASCAL-tool requires as input these characteristics of the track yard to be
examined:

• Capacity of the track yard (number of trains, average carriages per train)
• Level of automation of the track yard
• Type of processes for service and maintenance on the track yard
• Number of routes necessary to move a train from one service or maintenance

process to the other.

After inputting the characteristics, the tool makes it possible to calculate a pre-
diction of staffing based on a concrete plan for routes during the day, or based on a
frequency model for routes during the day. When applying the frequency model, a
percentage of daily amount of trains per hour has to be chosen and filled into the tool.
For each specific hour the tool randomly times the routes to be set and executed.

5.2 Output of the Tool

The WASCAL-tool delivers calculations for workload due to task demands over
several certain periods of time. These periods are based on the thresholds mentioned in
Sect. 3 Because the thresholds of Sect. 3 are related to resources of 1 train dispatcher,
the results of calculation of workload due to task demands and comparison of the
calculation results with the defined thresholds, an indication for staffing can be made.
Figures 5 and 6 show the output of calculation of workload during a maximum
duration of 4 h, as well as for a low level of automation and a high level of automation
of train dispatching. The calculation of total workload during 4 h shown in Figs. 5 and
6 is the moving sum of calculated workload per 5 min over a period of 4 h prior to the
moment of calculation. Both figures are based on a real life train service (track yard city
of Groningen, Dec 12th, 2016, 18.00–24.00 p.m.), where the low level of automation of
train dispatching represents the current situation for this specific track yard, and the
high level of automation is fictional.

Figure 5 shows that in a low level of automation of train dispatching a single train
dispatcher can handle the calculated workload due to task demands easily: the graph
shows no exceeding of the upper straight line, representing acceptable workload during
a maximum of 4 h. Figure 5 also shows that there is a reasonable chance of underload:
the graph is below the lower dotted line during most of the time period, representing
underload. In a high level of automation of train dispatching workload is very low with
a certainty of underload (Fig. 6) and would be too low to be acceptable in real train
dispatching.
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Figures 7 and 8 show for the same real life train service the output of calculation of
peak load due task demands during a maximum of 15 min, again both in a low level of
automation and in a high level of automation of train dispatching. The calculation of
peak load due to task demands during 15 min shown in Figs. 7 and 8 is the moving
sum of calculated workload per 5 min over a period of 15 min prior to the moment of
calculation. Again the low level of automation of train dispatching (Fig. 7) represents
the current situation for this track yard, and the high level of automation of train
dispatching (Fig. 8) is fictional. Figure 7 shows that in a low level of automation of
train dispatching a single train dispatcher can also handle peaks (short, maximum
duration of 15 min) that occur: the graph is under the straight line the whole period. For
a track yard with a high level of automation, Fig. 8, there are hardly any peaks in the
workload.

Fig. 5. Output of the WASCAL-tool: calculated lasting workload, duration of 4 h, low level of
automation (track yard Groningen, Dec 12th, 2016, 18.00–24.00).

Fig. 6. Output of the WASCAL-tool: calculated lasting workload, duration of 4 h, high level of
automation (track yard Groningen, Dec 12th, 2016, 18.00–24.00).
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5.3 Validation

The tool is validated by comparing calculation of mental workload based on obser-
vations of train dispatching in real train services with calculations applying the tool.
Observations were enriched with loggings of the computer systems of the traffic control
room to ensure that certain activities that were not observed, but took place, were part
of the validation. Results of observations were discussed with train dispatchers during
and after observation.

Validation took place for 2 track yards, during 6 h each: a track yard with a low
level of automation (city of Groningen) and a track yard with a high level of
automation (city of Amersfoort). Both mental workload over a period of one hour as

Fig. 7. Output of the WASCAL-tool: calculated peak workload, duration of 15 min, low level
of automation (track yard Groningen, Dec 12th, 2016, 18.00–24.00).

Fig. 8. Output of the WASCAL-tool: calculated peak workload, duration of 15 min, high level
of automation (fictional, track yard Groningen, Dec 12th, 2016, 18.00–24.00).
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fluctuation in workload, including peak load, was subject of validation. Table 6 shows
the results of calculated workload based on observations and calculated workload based
on the use of the WASCAL-tool (using a concrete plan for routes and using the
frequency model) for the track yard with a low level of automation.

As shown in Table 6, the WASCAL-tool predicts workload per hour very well.
Both the frequency model and the calculation based on a concrete plan show a good
resemblance to the observations, in which the latter scores best. Analysis also delivered
that the longer the period of calculation of workload and staffing (e.g. from 15 min
peak load to lasting workload during a shift length of 8 h) the smaller differences
between using a concrete plan and using the frequency model as input. For example,
we analyzed the calculated number of workload points due to task demands per hour as
output of the WASCAL-tool, and calculated workload points per hour based on
observations. The output of WASCAL using a concrete plan as well as using the
frequency model was strongly related to the calculation based on observations (Pear-
son’s r, r = 0.99, p < 0.01).

Despite the good resemblance there are also differences between calculated
workload based on observations and calculated workload applying the WASCAL-tool.
This has several reasons:

• The monitoring of the train service is one of the task components within the job of
train dispatching. The monitoring of the train service is difficult to recognize and
related workload is difficult to assess when observing the train dispatcher doing his
job. Therefore the monitoring of the train service is not part of the calculation of
workload points based on observations, shown by the lower average number of
points in Table 6. Bases for the way of monitoring of the train service are discussed
with train dispatchers during observations. The WASCAL-tool uses a calculating
formula for the monitoring of the train service based on results of observations and
this formula incorporates the number of trains at the moment and the characteristics
of routes along the track yard. For the monitoring of the train service during the

Table 6. Calculated workload: observations and output of the WASCAL-tool (low level of
automation, track yard city of Groningen, Dec 12th, 2016, 18.00–24.00 p.m.).

Time of day Observations Workload
points due to task demands

Output of the WASCAL-tool
Workload points due to task demands

Dec 12th, 2016 Input: concrete
plan

Input: frequency
model

18.00–19.00 188 184 198
19.00–20.00 212 222 223
20.00–21.00 168 199 174
21.00–22.00 31 39 40
22.00–23.00 71 85 89
23.00–24.00 85 108 104
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observed hours of train dispatching, the WASCAL-tool calculates 5 to 20 workload
points per hour more than the number of workload points calculated based on
observations.

• Because of the short distances of routes in the specific track yard of the city of
Groningen, there is less than 5 min between the telephone call of the train driver
requesting for a route and the telephone call to confirm that the route is completely
being used. For the track yard of the City of Groningen (low level of automation)
the WASCAL-tool takes 10 min between both telephone calls as a basis. This
means that calculated workload during observations is slightly differently dis-
tributed over the hours of observation than applying the WASCAL-tool. For the
hours of validation the difference is about 10 points per hour.

• During observations there sometimes were activities with low workload, like short
telephone calls or contact with a colleague train dispatcher, not related to route
setting or planning of routes. These activities, weighing 5 to 10 points per hour, are
not incorporated in the WASCAL-tool.

Also, the calculated number of workload points due to task demands per 5 min was
analysed by comparing the output of the WASCAL-tool and the calculated workload
based on observations (Pearson’s r). The output of WASCAL using a concrete plan
was strongly related to the calculation based on observations (r = 0.78, p < 0.01). The
output of WASCAL using the frequency model was not strongly related to the cal-
culation based on observations (r = 0.19, p = 0.11). This difference can be clarified by
assessing the fluctuation in calculated workload points per 5 min.

Figure 9 shows the result of the calculation of fluctuation in workload per 5 min
based on observations. For the same hour, Fig. 10 shows output of the WASCAL-tool
using a concrete plan for routes. Figure 11 shows output of the WASCAL-tool using
the frequency model. Fluctuation in calculated workload using a concrete plan as input
for the tool (Fig. 10) most resembles fluctuation in workload during observations
(Fig. 9). This good resemblance occurred for all hours which were subject of
validation.

Fig. 9. Fluctuation in calculated mental workload based on observations (low level of
automation, track yard Groningen, Dec 12th, 2016, 20.00–21.00).

The WASCAL-Tool: Prediction of Staffing for Train Dispatching 155



Differences between calculated workload based on observations and calculated
workload using the tool were present for several reasons. For the hour of train dis-
patching as shown in Figs. 9, 10 and 11 there was this following clarification: during
observations, workload exceeds the straight upper line of overload (peak load) between
20.40 and 20.45. In this short period there were 3 telephone calls from a train driver
related to requested routes and during observation, a colleague train dispatcher assisted
the train dispatcher of track yard Groningen. The tool using a concrete plan (Fig. 10)
doesn’t count on assistance of a colleague, but has a different strategy for this kind of
situations: when there are 3 or more telephone call in 5 min, all fourth and more request
will not be authorized, and these routes will be requested later again. This explains the
second peak of workload around 20.50 h shown in Fig. 10. The tool using the fre-
quency model as input (Fig. 11) distributes requests for routes randomly on a hourly
basis, so fluctuation in calculated workload will differ from observations by definition,
but can be more like workload during the observations by simulating several times.

Fig. 11. Output of the WASCAL-tool with use of the frequency model for routes: fluctuation in
workload (low level of automation, track yard Groningen, Dec 12th, 2016, 20.00–21.00).

Fig. 10. Output of the WASCAL-tool with input of a plan for routes: fluctuation in workload
(low level of automation, track yard Groningen, Dec 12th, 2016, 20.00–21.00).
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The validation of the WASCAL-tool was concentrated on the calculation of
workload due to task demands, because the calculation of staffing is based on appli-
cation of the thresholds for workload points due to task demands per train dispatcher
(see Sect. 3). But task demands are not the only relevant issue for the decision about
staffing. Cooperation between train dispatchers, as seen during observations of train
dispatching for the track yard of the city of Groningen, can be a solution to handle peak
load, without increasing the total staffing. Also, the choice for a higher level of
automation can be a way to handle peak load for the same situation, see Figs. 7 and 8
as an illustration of the possible influence of level of automation on peak load. Another
way to handle peak loads is to change the planning of routes in order to avoid too many
requests for a route within a limited time frame. The WASCAL-tool doesn’t incor-
porate these issues at the moment.

6 Discussion

The study showed that the WASCAL-tool predicts workload due to task demands per
hour very well. Both the calculation using the frequency model as the calculation based
on a concrete plan show a good resemblance with the observations, in which the latter
scores best. Differences in results of calculated workload per hour between the tool and
real life observations are limited and can be clarified.

Predictions of the fluctuation in workload are less accurate. However, the calcula-
tions of the tool using a concrete plan are still fairly good, including peak load. The
longer the period of calculation of workload and staffing, e.g. from 15 min peak load to
lasting workload during a shift length of 8 h, the smaller the differences between output
of the tool using a concrete plan as input and output of the tool using the frequency
model as input. For track yards with medium and low level of automation perhaps the
frequency model could predict peaks in workload in a more accurate way if time
between the telephone call for request for a route and the call for clearance of a route can
be configured in a dynamic way instead of a solid starting point only depending on the
level of automation. Application of the WASCAL-tool using a concrete plan requires
much more detail and higher accuracy in required input information than using the
frequency model as input for the tool. Application of the tool using a concrete plan as
input is more appropriate in the final design stage in designing a track yard when a final
decision has to be made about the level of automation for the track yard and therefore
about the way of train dispatching and related staffing. A reliable assessment of peak
load requires the application of the WASCAL-tool using a concrete plan as input.

Because of the lower required accuracy, the use of the frequency model is more
convenient early in the design process of a track yard. When using the frequency model
as input for the tool, the output of 1 simulation run of the tool must not be regarded as
the only result. Because of the nature of the frequency model, with execution of routes
randomly distributed over an hour, several simulation runs are necessary to gain a more
reliable image of workload, especially peaks in workload, and related staffing necessary
for train dispatching for the track yard to be designed.

In its origin, the weighing of activities in terms of workload points and the
thresholds for acceptable workload, used for calculation of staffing, date to the early
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nineties of the last century when a high level of automation was introduced for the
process of train dispatching in the Netherlands [5]. In the middle of the first decade of
this century, the weighing of activities and thresholds for acceptable workload were
assessed again based on experience with the high level of automation with automatic
route setting [19]. In these assessments the train dispatching process for a track yard
was not taken into account. When it is considered that a higher accuracy of calculations
of workload due to task demands and related staffing for the low level of automation of
train dispatching is necessary, it is desirable to assess possible differences in the
weighing of activities in a highly automated train dispatching process and in a train
dispatching using a low level of automation. This could be done in the same partici-
pative way as was performed when developing Task WeighingTM for a high level of
automation for train dispatching. Also, the validity of the thresholds for acceptable
workload for train dispatching with high level of automation should be assessed for
train dispatching with a low or medium level of automation. This could be done by
parallel assessment of workload in observations using the WASCAL-tool and assess-
ment of experienced workload using a validated tool for assessment of experienced
workload of train dispatchers, for example a tool like the Integrated Workload Scale
(IWS) [11]. In [16] it was shown that several train dispatching activities, like time spent
on monitoring, communication by phone, communication with colleagues, reading and
writing correlated significantly with IWS-workload scores and these activities are also
distinguished in the cognitive task analysis, performed for the development of the
WASCAL-tool.

The WASCAL-tool is developed as input for the decision making process
regarding the level of automation for a track yard under design in conjunction with
workload and staffing. But there are more choices to be made when it comes to making
a final decision about staffing for train dispatching of a track yard, especially when the
outcome of the tool indicates the necessity to pay special attention to underload or peak
load. Choices to be made are related to:

• Cooperation between train dispatchers for the track yard and train dispatcher for the
adjacent area (in the case of an unacceptable peak load).

• Expansion of the train dispatching area or combining the train dispatching process
for the track yard under design with the train dispatching process for another area.

• A more robust plan for train service with a decreased chance of ‘simultaneous’
requests for routes within a limited time frame.

• Performance criteria for execution of train service in terms of delay or deviation
from the original planned train service.

• Explication of the business case in terms of monetized consideration of investment
in technology and operational costs for train dispatching.

Currently the WASCAL-tool doesn’t incorporate the issues above, but can provide
a basis for development of a complete decision support tool.
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Abstract. The objective of this paper is to present a new adaptive automation
concept which offers an innovative ‘team’ centred approach to solving human
factors/workload management problems. The A-PiMod concept/approach is
defined by the concept of partnership – specifically, the “Third Pilot” and the
crew and automation are in charge together. We are proposing partnership as
opposed to dynamic changes in control function where changes can be con-
trolled autonomously by the system. In support of this, a new multimodal
concept is proposed which supports improved assessment of crew
state/workload (i.e. information inputs re crew activity/interactions provides a
means to communicate with the crew in relation to crew state and decision
support, and allows for flexible crew/cockpit interaction).

Keywords: Adaptive automation � Workload � Crew state monitoring � Pilot
decision making � Stakeholder evaluation � Multimodal interaction and cockpit
displays

1 Introduction

Given automation advances over the last decade, pilots share responsibility for different
flight tasks with cockpit systems. Adaptable systems are systems which require human
delegation of task and ‘function authority’ to automation during real-time operational
performance (i.e. the task distribution is controlled by the user) [1]. Adaptive
automation (AA) is defined as a ‘form of automation that allows for dynamic changes
in control function allocations between a machine and human operator based on states
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of the collective human–machine system’ [2, 3]. As such, task distribution changes can
be controlled autonomously by the system.

Today’s automation is indifferent to the emotional and cognitive state of the crew.
Automation only supports the crew based on explicit and static task assignments, with
no adaptive capabilities, even though it is capable of higher or lower levels of support if
needed or when the capabilities of the crew are challenged.

The air accident and flight safety literature reports on the many still-open issues in
relation to automation design. For example, Flight Air France 447 (2009) [4], Flight
Spanair 5022 (2008) [5], Flight Helios Airways HCY 522 (2005) [6], Flight China
Airlines 140 (1994) [7], and Flight Air Inter 148 (1992) [8]. Critically, several human
factors problems have been documented. This includes: automation surprises, degraded
situation awareness, unintentional blindness, workload concerns and issues pertaining
to over-reliance on automation.

Human operators and automated systems have to act together, cooperatively, in a
highly adaptive way. They have to adapt to each other and to the context in order to
guarantee fluent and cooperative task achievement maintaining safety at all times. With
increasing flight hours, fatigue and increased traffic growth, all crews can benefit from
an “experience aid”. Ideally, the user and the “experience aid” (or assistance system)
constitute a cooperative system - they share tasks and perform them as a team.

1.1 Introduction to the a-PiMod Project

The Applying Pilots’ Model for Safer Aircraft (A-PiMod) project aims to address
problems relating to crew/automation teamwork and workload management. The
objective of the A-PiMod project is to demonstrate a new approach/concept (and
associated technologies) for an adaptive automation and multimodal cockpit which will
reduce human error. Specifically, the objective is to support adaptive distribution of
tasks between the crew and automation, based on real-time analysis of the crew’s
cognitive state and behavior and on the risk associated with the mission. In relation to
cognitive state, the focus is on situation awareness and workload and not emotional
state. This research was funded by the European Commission and has been undertaken
between September 2013 and September 2016.

2 Research Design

2.1 Overview

The high level Human Machine Interaction (HMI) design/evaluation methodology
combines formal HMI design/evaluation activities (i.e. interviews and simulator
evaluation), informal HMI design/evaluation approaches (i.e. participatory design
activities), along with an integrated stakeholder approach to evaluation [9–11]. The
A-PiMod safety case addresses the cockpit team concept (i.e. third pilot concept) and
Human Multimodal Interaction (HMMI). Overall, the A-PiMod safety case has sup-
ported (1) the definition of user requirements and associated user interface design
activities, and (2) the assessment of potential impact/benefits. This has involved twenty
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seven COP sessions and two phases of simulator evaluation. For more information
about specific methodologies, please see [9–11]. The assessment of potential
impact/benefits has been undertaken in relation to actual end user/operational scenarios.
Scenarios have been developed as part of (1) formal evaluation activities (VC1 and
VC2), and ongoing research with the A-PiMod COP.

2.2 Quantification of Safety Impact

The safety impact of the A-PiMod adaptive automation and multimodal cockpit con-
cept was quantified by a systematic approach using the Total Aviation Risk model and
structured feedback on change factors for base events in this risk model. The assess-
ment of safety impact was undertaken for the A-PiMod concept, rather than for its
particular implementation as achieved in the A-PiMod project (i.e.
software/technology). For more information, please see [12].

2.3 Community of Practice and Stakeholder Participation

The concept of a Community of Practice (COP) proposed by Wenger underpins the
stakeholder evaluation approach [13]. Stakeholder participation involves consultative
interaction along with engagement in technical research tasks [14]. Overall, twenty seven
COP sessions and two phases of simulator evaluation have been undertaken. The first
phase of simulator evaluation involved eight participants, while the second phase
involved twelve participants. The COP panel comprised fifteen participants (see Fig. 1
below). The Radar Diagram below (see Fig. 1) shows the two overlaying levels of
expertise both from the internal and external stakeholders. The composition of the internal
stakeholders is represented in blue, while the composition of the external stakeholder is
represented in amaranth. The red dotted line corresponds to the 2-level expertise.

Fig. 1. Current state of stakeholder competency knowledge in A-PiMod (Color figure online)
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3 Adaptive Automation and Multimodal Concept

3.1 Objectives and Overall Concept

The goal is to support crew in situations when they may need help irrespective of
experience and/or in situations when the crew has less experience, and/or in situations
where the crew is experiencing high workload, under pressure and potentially fatigued.
Automation is conceptualized as a third crew member, providing support to crew in
both high and low workload situations, to optimize flight safety and ensure the mission
level goal is achieved.

The A-PiMod concept/approach is defined by the concept of partnership –

specifically, the “Third Pilot” and the crew and automation are in charge together. The
team comprises the pilot flying (PF), the pilot monitoring (PM) and automation.
Automation is a virtual team-member. The team co-operates in relation to mission level
decisions. Critically, this partnership concept is underscored by a core notion of Pilot
authority. The system continuously monitors the operational situation and the allied
crew/automation/aircraft state, to determine the tasks the team has to perform together,
and how to best distribute them between the crew and automation. A-PiMod flags
potential risks - providing operational guidance in relation to managing those risks. The
crew forms their own judgement/ideas as to risk status of situation and the appropriate
course of action. The crew is not mandated to follow the decision support provided by
A-PiMod (this is an aid, not a requirement). Overall, the crew can over-ride system
proposals/decisions, except in certain critical situations (i.e. incapacitation). As such,
the crew have final control (i.e. make the final decisions), but are responsible and
accountable for their decisions/actions.

A-PiMod adopts a team-centred approach as opposed to a crew centred approach.
We are focusing on the outcome; considering what is best for the safe and efficient
completion of the mission/flight, and not particularly trying to adapt to human needs. If
the Pilot Flying/Pilot Monitoring is overloaded and this threatens the completion of the
mission, the task distribution is adapted at the agent level. Automation is adapted to the
crew states and capabilities, so that at all times the cockpit-level tasks that have to be
performed for safe and efficient mission completion are achieved. The emerging Third
Pilot concept can be conceptualized on several levels - (a) automated task distribution,
(b), crew workload monitor, (c) crew task performance monitor, (d) scanning cycles
monitoring, and (4) a risk assessment/decision support aid, enabling briefing and sit-
uation awareness. The Third Pilot concept is underpinned by the A-PiMod multimodal
cockpit – which (1) enables monitoring of crew interactions with cockpit systems (i.e.
provides inputs to crew state inference module), (2) facilitates crew interaction with
automation (MCM Display) and (3), allows for flexible and natural interactions (i.e.
touch and voice) with cockpit displays.

3.2 Architecture Concept

The adaptive automation system integrates three key components: (1) model-based
evaluation of flight crew state, (2) real-time automated risk assessment, and
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(3) adaptation of the Human Machine Interface. These components are currently
missing in cockpit systems and are essential for safe crew-automation interaction. The
A-PiMod architecture allows adapting the organization of the cockpit (task distribution
between the crew and automation) and the circulation of information between the crew
and the cockpit systems (including automation) to the current - and forthcoming -
situation(s).

As detailed in Fig. 1, the whole A-PiMod architecture is based on a 3-layers
hierarchy of tasks. The highest level is the mission level. The middle one is the cockpit
level. The lowest level is the agent level, where tasks are executed by the agents in the
cockpit: the crew and automation.

Tasks at a given level are translated - or instantiated - into the tasks of the level
below based on the context of their execution. For the mission level for example, the
context of execution is the context in which the A/C is flying (e.g., weather, ATC,
traffic) and the A/C state. At the cockpit level, the cockpit context is mostly defined by
the state of the cockpit agents (crew & automation) and of the cockpit equipment (e.g.,
displays). This contextual adaptation of tasks into the tasks of the level below is one of
the main mechanisms by which adaptiveness is provided by the A-PiMod architecture
each level providing additional degrees of freedom to perfectly tune the execution of
the mission to current circumstances (at each level).

We are proposing partnership as opposed to dynamic changes in control function
(where changes can be controlled autonomously by the system). A main aspect of the
concept is the A-PiMod architecture, which describes at a high level the means for the
adaptive distribution of tasks between the crew and automation, such as the real-time
analyses of the crew’s state (situation awareness and workload), and the mission risks.
The new, improved automation system will permanently assess what the crew is - or is
not - doing, as well as what they should be doing at the current time (i.e. recover from a
stall, avoid ground obstacles etc.). How automation is adapted is through task distri-
bution. Task distribution is the end result of the situation management process where
the crew and other automated processes cooperate to assess the situation, its risks, what
has to be done (cockpit level tasks), their risks, and produce an appropriate task
distribution.

The cockpit is viewed as a ‘cooperative system of human and machine agents that
adapts its task distribution at all time in order to perform a mission, safely and effi-
ciently’. Automation is adapted to the crew states and capabilities, so that at all times
the cockpit-level tasks that have to be performed for safe and efficient mission com-
pletion are achieved (Fig. 2) .

3.3 Pilot Interaction in the Cockpit and User Interface Design

Pilot interaction in the cockpit can be characterized in relation to the following points:

• User friendly and flexible information/decision support
• The crew interact using voice/touch and traditional controls
• This interaction is tracked by the system (i.e. what tasks performing, level of

fatigue, involvement in activity): this is referred to as ‘crew state monitoring’
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• The crew obtain feedback via a new cockpit user interface (Mission and Cockpit
Level Management Display - MCMD) as to:

• The risk status of the operational situation (this includes an assessment of the status
of joint crew/automation system)

• What to do – including the provision of best options/alternatives based on different
‘technical’ contributing factors (i.e. fuel remaining, status of alternates etc.)

• The proposed MCMD features two related sub-displays – the mission and cockpit
level displays

• The crew can over-ride system proposals/decisions – except in certain critical sit-
uations (i.e. incapacitation)

The A-PiMod MC-M Display (i.e. the Mission & Cockpit Management Display) is
the A-PiMod interface between the user and the proposed A-PiMod adaptive
automation technologies. The MC-M Display supports all crew activities related to
Mission management, as well as to Cockpit management. The Cockpit is seen as a team
made of the crew itself and a series of dedicated A-PiMod modules that provides
adaptive automation (Fig. 3).

The MC-M Display has been implemented on a tablet/Microsoft Surface. The
tablet/Microsoft Surface is a touch display, and it can be operated via touch by the
crew. High level features of the MC-M Display include:

• The device was shared for use by both the PF and PM
• The screen had a portrait orientation to include both the ML (Mission Level, top

half) and CL (Cockpit Level, bottom half) interfaces.

Fig. 2. Architecture concept
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3.4 Systems to Monitor Observed Behavior

Several systems (i.e. eye tracking, gesture recognition and head pose) are linked to the
A-PiMod components (i.e. crew state estimation/task determination), to infer possible
errors, missed events and missed piece of information. Specifically, visual analysis of
pilots’ behavior is recorded to infer human operator’s (pilot’s) mental state, stress level,
and general workload. For more information, please see Appendix 1.

3.5 Benefits & Impact

This research indicates that the ‘Third Crew Member’ will provide many operational
and safety benefits. This includes:

• Improving teamwork between crew and automation
• Providing task support in safety critical situations (i.e. operational risk

assessment/decision support)
• Providing task support in high workload situations (i.e. operational risk

assessment/decision support)
• Supporting workload management
• Improving team situation awareness
• Augmenting Pilot monitoring performance (i.e. avoid monitoring errors, link to

error chain)
• Providing support in relation to error detection and management

Fig. 3. MCMM display (Prototype)
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Overall, this new concept/approach will significantly improve the safety of flight,
especially in abnormal situations and during situations of crisis management. Critically,
A-PiMod will not eliminate human error. Rather, it will reduce it. That is, it will reduce
the accident rate, given improvements in error detection and error management. As
validated in field research, the A-PiMod concept/approach will allow for an improved
partnership between crew and automation (the “team players” idea), which will reduce
human error and make substantial progress in relation to the EU aim of reducing the
accident rate by 80%.

3.6 Quantification of Safety Impact

Overall it is assessed that the A-PiMod concept facilitates a reduction in the probability
of fatal accidents by 43% from 4.0E−7 to 2.2E−7 fatal accidents per flight. This is
about half of the FP7 Area 7.1.3 objective to reduce the accident rate by 80%. For more
information, please see [12]. A cockpit that is designed with the A-PiMod approach in
mind will extend automation capabilities in an adaptive way, to the extent necessary to
support a safer flight. Potentially, such an adaptive automation approach might prevent
many accidents. For more information, please see [11, 12].

4 Discussion

4.1 Innovation

The Third Pilot/A-PiMod system (1) reflects a mix of the logic associated with
adaptable systems and adaptive automation, and (2) provides something new (i.e.
multimodal cockpit concept). In relation to (1), we are

• Going beyond notions of assistance (adaptable systems), where the crew are fully in
charge (i.e. in all situations/all of the time)

• Adopting certain aspects of adaptive automation – that is, supporting the pilots
based on an understanding of crew state (situation awareness and workload)

• Proposing partnership as opposed to dynamic changes in control function where
changes can be controlled autonomously by the system

In our concept, the crew is in charge together with automation (team concept)

• In principle, the pilot remains in charge/in command
• However, there are certain special situations when automation can take charge (i.e.

fully adaptive)

In relation to (2), we have developed new multimodal concepts which supports
improved assessment of crew state/workload (i.e. information inputs re crew
activity/interactions), provides a means to communicate with the crew re crew state and
decision support (i.e. MCM Display – enabling assistance), and allows for flexible
crew/cockpit interaction.

The third pilot has different modes of operation. This includes (1) passive moni-
toring, (2) active monitoring and (3) over-ride. In relation to A-PiMod, we expect that
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(1) and (2) will be the standard/typical modes - operating as an adaptive automation
supporting the pilots, based on understanding of crew state/workload. In extreme cases
(3) will occur. Here A-PiMod/third pilot will take charge of the aircraft control (i.e.
fully adaptive). We are calling (1) + (2) + (3) a third pilot or partnership concept. If
automation would progress, aspect (3) might become more normal and (1) and (2) less
typical. Of course major development and certification would need to be taken,
especially for (3).

The A-PiMod architecture has been developed to support the transition towards
more automation while staying in the same framework (something that is impossible in
the assistive paradigm). This is possible because each component in the architecture is a
small cooperative system made of the crew + a module. When there is no crew (full
automation), there is just the module. When there is no automation (manual flight),
there is just the crew (or a single pilot). A single pilot during manual flight superposes
all the components.

4.2 Cockpit Centred vs. Task Centred Approach

A-PiMod adopts a team centred approach as opposed to a crew centred approach. We
are focusing on the outcome; considering what is best for the safe and efficient com-
pletion of the mission/flight, and not particularly trying to adapt to human needs. As
indicated in the architecture concept [15, 16], if the pilot flying/pilot monitoring is
overloaded and this threatens the completion of the mission, the task distribution is
adapted at the agent level.

Underpinning the A-PiMod concept is the idea that automation operates with a
better understanding of the Pilots/crew state. In this way, automation is a ‘true’ member
of the team. That said, we are trying to see what is best for the safe and efficient
completion of the flight, and not particularly trying to adapt to human needs (that’s a
means more than an end). As such, automation delivers on mission/cockpit require-
ments (i.e. what is best for the safe and efficient completion of the flight). If we see that
the human is overloaded and this threatens the completion of the mission at the mission
level we will adapt the task distribution, at the agent level. This is not necessarily at
odds with human centred automation insofar as it considers the Pilot position (i.e.
situation awareness and workload status) and the Pilot provides feedback as to whether
he/she accepts the suggestions of the automation system (i.e. decision support and task
functions undertaken by automation).

4.3 Partnership Concept

A-PiMod is intended as an ‘experience aid’, a ‘Smart Pilot Assistance’. This does not
mean that A-PiMod will supplant Pilot experience; rather, it is intended to complement
existing experience, and compensate for when someone might not be at his or her best.
As such, A-PiMod needs to be seen as, and behave as a team-player. Anything that
could be interpreted as undermining the authority or command held by the Captain will
undermine A-PiMod’s effectiveness in strengthening the team. A-PiMod should be a
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support, and not thought of as behaving like a tell-tale child constantly running to the
teacher. Thus, it is important that changes are implemented at the ‘right’ pace, to enable
to address safety issues properly.

4.4 Crew State Monitoring

The real gain in A-PiMod relates to crew state monitoring – that is focusing the pilot’s
attention on their state (i.e. crew state) along with that of their crew member - and on the
current and future state of the aircraft. If over-loaded and/or under pressure, pilots may
forget or not consider all the safe options. However the 3rd crew member (automation)
will not, so a quick check will refresh the possible options, to allow a safe decision to be
made. In this context, a key challenge is how to get the two human crew members to
share their ‘current state’ with the 3rd crew member such that it is mean-influx, infor-
mative but not self-incriminating in any post hoc analysis. Normal human interactions
can easily accommodate this in simple pre-flight social interactions. Formalizing it such
that the 3rd crew member can make useful sense of it may be more problematic.

The assessment of crew state is not just about workload, it’s about the crew
experience, flight hours, familiarity with route, when last flown there and training
background. If the Pilots are not familiar with the route, then the crew state might be
assessed as less optimal. From a pilot’s perspective, the starting point for crew state
monitoring is the crew briefing/flight planning. This might occur a week before the
flight. Or at least, at the time of the preflight, flight planning and briefing task. For crew
state monitoring to work, we need to establish a picture/sense of the crew state from the
very beginning of the flight. The A-PiMod system needs to know what the join crew
status is and any threats associated with this. Potentially, we will need the crew to
provide feedback about their state in advance of the flight. Further, it takes into account
real-time crew behavior. This involves monitoring the crew state via the assessment of
(1) crew activity (gesture), and (2) crew interaction with cockpit systems including new
multi-modal input (i.e. touch, voice and gesture) and traditional controls.

4.5 Airline SOP

The introduction of the A-PiMod concept might drastically change airline
SOP. Existing SOPs are premised on enabling different crew members with different
levels of experience, knowledge or skill find ‘common ground’ to conduct consistent
and safe operations. One significant factor to be considered in that respect would be
how to handle introducing the A-PiMod concept on a mixed fleet basis, given that it
would inevitably be introduced over a considerable period of time and pilots would
have to operate on mixed aircraft (with and without the system). Given the nature of the
system, this could prove quite challenging. Furthermore, final authority to override the
A-PiMod systems’ actions should reside with the operating crew. As a specific
exception to that principle, the occasions on which A-PiMod could take action that
could not be overridden by the crew would need very careful and very detailed SOP
specification.
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5 Conclusions

The A-PiMod concept/approach is defined by the concept of partnership – specifically,
the “Third Pilot” and the crew and automation are in charge together. A-PiMod adopts
a team centred approach as opposed to a crew centred approach. We are proposing
partnership as opposed to dynamic changes in control function where changes can be
controlled autonomously by the system. A main aspect of the concept is the A-PiMod
architecture, which describes at a high level the means for the adaptive distribution of
tasks between the crew and automation, such as the real-time analyses of the crew’s
mental state and the mission risks. Automation is a virtual team-member (third pilot)
and the team co-operates in relation to mission level decisions. Task distribution is the
end result of the situation management process where the crew and other automated
processes cooperate to assess the situation, its risks, what has to be done (cockpit level
tasks), their risks, and produce an appropriate task distribution.

An advanced A-PiMod system cannot supplant experience. However, it is ready to
provide extra information in relation to risks/hazards and potential courses of action – if
required by crew. In this way, an advanced A-PiMod system features different “levels”
of response, similar to the way a Captain would have with different co-pilots of varying
experience. Ideally, the A-PiMod system would provide an airline with the most
experienced and capable crew possible in any situation, where skill level is constant,
across all weather/routes/airports/time zones. A-Pimod helps avoid dramas – everything
is routine (i.e. the crew is briefed about all possibilities). The third pilot/cockpit team
concept and HMMI has been demonstration at two levels – namely (1) at a conceptual
level and (2) at a level of software demonstration. The assessment of safety impact
mostly relates to what has been advanced at a conceptual level (i.e. A-PiMod concept),
rather than for its particular implementation as achieved in the A-PiMod project.

In the course of the A-PiMod project a particular implementation of the concept
was achieved by development of a set of tools, and these tools were used in validation
experiments in a flight simulator context (i.e. validation sessions 1 and 2). This set of
tools can be viewed as a first technical instantiation of the A-PiMod system, and the
sophistication, scope and integration of the tools can be improved in future research
and development.

Acknowledgments. The research leading to these results/preliminary outcomes has received
funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement N. 605141 - Applying Pilot Models for Safety Aircraft (A-PiMod) Project.
We would like to thank member of the A-PiMod Project Team and our COP members –

particularly, Paul Cullen, William Butler, Martin Duffy and Stephen Duffy.

Appendices

Systems to Monitor Observed Behavior

Eye Tracking. In both sets of simulator evaluation sessions, SMI Eye Tracking
Glasses 2 were used to measure the gaze positions. Please note that his was
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demonstrated – but not implemented in real time. SMI Eye Tracking Glasses is a
binocular tracking device which operates with 60 Hz. It is connected with a Laptop via
USB on which videos of the eyes and the scene camera are recorded and the gaze
position is calculated. The system is combined with an A.R.T Optical Head Tracking
system. Retro reflective targets are attached to the glasses which are recorded by
infrared cameras installed in the simulator. This system allows us to calculate the head
position and orientation. With both systems combined, it is possible to calculate a 3D
gaze vector for each eye.

Gesture Recognition. The Gesture recognition is meant to recognize the upper body
parts of a human operator – aeronautic pilot – in order to detect “implicit gestures”.
Implicit gestures refer to movements of the upper body parts, which are normal actions
taken by the crew (e.g. controlling different parts of the cockpit, or interaction among
the crew).

Head Pose Recognition. The head pose estimation functionality serves to provide
information about where the pilot is looking within the cockpit (which instruments,
screens, control elements, etc.). The technology is designed to be completely passive
and non-intrusive in the sense that the pilot does not wear (or otherwise consciously
interact with) any additional pieces of equipment, such as eye-tracking glasses. Also,
the head pose estimation device does not emit any infrared light, which would be the
case for contemporary remote eye trackers or depth cameras (based on structured light
projection or infrared time-of-flight sensors). In A-PiMod, the first application of the
said technology in the cockpit is detecting “missed events” – when the pilot is provided
with a piece of information by the cockpit, but she misses it by not looking at the
appropriate display for a time period. The cockpit display (MC-M Display) provides a
notification of the missed event. Depending on the Pilots response, the saliency of such
message is increased. The second application is contribution to the estimation of the
pilot’s state of mind and workload level from the patterns of the head motion.
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Abstract. Demand factors are understood to play a substantial role in the
experience of workload in rail signalling operations. Quantifying these demand
parameters in signalling operations can inform both decisions about operational
practice as well as technology design. To date, however, tools to estimate
demand have either relied on assessor judgement of static or aggregated
parameters, can be time-consuming to produce, and challenging when a work-
station is changing or being developed. In order to anticipate the evolution of
railway signalling, the Dynamic Modelling of Operator Demand (D-MOD) tool
uses signalling simulation to derive accurate demand parameter measurements.
This paper presents the architecture and design of the D-MOD platform, as well
as the types of parameters that have been identified and quantified. Different
categories of parameter, including static, dynamic and performance parameters
have been captured and validated. Future directions for the tool are discussed.

Keywords: Rail signalling � Demand �Workload � Simulation � Quantification

1 Introduction

There has been a steady transition from distributed, physical control of railways in
signal boxes located close to their area of control, to centralised control centres,
sometimes located at several miles from their controlled area. Recently, the appearance
of automation has further reduced even more the physical actions required by signallers,
putting them in a more intense monitoring role [1]. These modifications have generated
major changes in terms of signalling tasks, shifting from physical to cognitive tasks, and
requiring the consideration of an increasing level of information from expanding areas
of control. Great Britain, like many other countries, is experiencing further, rapid
transition with the launch of new Traffic Management Systems (TMS), which brings
greater unification of the traditional signalling/dispatch type function with higher order
traffic replanning functions into a single role. This will have several consequences on
organisation of work, workstation boundaries, and number of staff. All of this is taking
place at a time of unprecedented demand on the railway system that must seek new
ways of generating capacity within the existing infrastructure wherever possible [2].
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The rail sector is cognizant of the need to design both technology and processes
(including timetables, and planning of track maintenance) with a view to their impli-
cations for workload for those who regulate trains [3]. A key component of workload is
the demand associated with running a particular service pattern over a given area of
infrastructure. [3] conceptualise the relationship as overt task characteristics, leading to
specific signaling goals and an imposed load. Combined with internal load, perceived
load and individual characteristics, an input load generates demands that lead to effort,
effects on performance and wellbeing and, ultimately, the work result. The challenge to
date has been to capture and articulate the nature of the task characteristics. These task
characteristics underpin demand, and therefore drive both objective and experienced
workload, but are highly sensitive to the very specific nature of not only the work-
station, but the physical reality of the geography and traffic that are controlled through
the workstation [4].

While tools such as ODEC [5] and Presto [6] are available, and have a successful
pedigree within rail workload, there are limitations

(1) Tools such as Operational Demand Evaluation Checklist (ODEC) involve quan-
tifying key parameters that represent demand, and therefore shape workload.
Some of these are static infrastructure parameters (e.g. numbers of points in the
area of control) but the relevance of some of this infrastructure (e.g. how often a
point is actually used or not) is rarely accommodated in the estimate.

(2) Additionally, tools such as ODEC aim to capture more dynamic operational
factors such as number of services per hour or day. The limitation is that these
numbers are averages based on the timetable and may fail to capture the expe-
rience of running the service. For example, are the trains regularly spaced or do
they come in clusters and/or involve combinations of fast and slower or freight
trains? This is crucial given that workload is generated as much by a small but
concurrent tasks, including regulation decisions, as it is by significant singular
events [7].

(3) For both of the above points, this data are captured through inspection of the
workstation and timetable and discussion with the staff controlling them. This
requires experience, and time, and is open to variability and interpretation with
less experienced assessors.

(4) While tools such as Presto more accurately capture time occupancy for particular
infrastructure, the challenge is to have accurate timetable information and models
of the infrastructure. This may be particularly problematic when the infrastructure
is at a design (or re-design) phase.

The solution to these problems is to have a tool that can accurately and objectively
capture the demand-shaping characteristics of a work-station. Furthermore, it should do
so in a manner that captures not just static or averaged demand estimates, but can
reflect moment to moment changes in demand resulting from the interaction between
trains and the infrastructure. Finally, it would be highly desirable that planned changes
and design options could be reviewed (for either infrastructure or timetable) as well as
being able to evaluate current operations.

The Dynamic Modelling of Operational Demand (D-MOD) project [8, 9] is a
collaboration between Hitachi Information Control Systems Europe and the University
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of Nottingham Human Factors Research Group. Funded as a 2 year Knowledge
Transfer Partnership, the project aimed to apply Hitachi ICSE’s (HICSE) capability in
providing signalling simulation software and tools to the problem of workstation
demand measurement. The remainder of this paper describes existing measures of
demand and workload in the rail signalling domain. It then discusses the architecture of
the D-MOD platform, before presenting the types of measures that are possible. The
paper then presents indicative test results, concluding with ideas for how the tool could
be used in future.

2 Existing Measures

Many demand simulating tools exist and have been applied to many domains such as
aircraft, defence, nuclear, automobile. [10] used Dynamic Density (DD) metrics to
measure and predict air sector complexity. This model based on mathematical variables
includes several complexity factors which are defined as the reason that contributes to
the difficulty. Their algorithms were tested with a panel in order to compare DD
predictions with subjective workload ratings through regression analysis. The results
obtained through regression analysis showed coherent results between subjective rating
and DD predictions.

Aldrich et al. [11] introduced a workload computer model in 1989 called the VACP
model (Visual, Auditory, Cognitive and Psycho-motoric) applied in defence. This
model is based on task analysis and task demands, in which each task demand is
detailed in micro entities which are then linked with a resources, time to perform an
action/mental process, and complexity or estimated workload ratings provided by
experts. This method provides good prediction of workload profile but requires a lot of
time dedicated for the task analysis, and provides a granularity for the results which are
sometimes not required. Balfe [9] also confirmed this point of view after applying a
similar method called Multiple Resource Questionnaire in a signalling study.

In railway several tools have been developed: such as ODEC (Operator Demand
Evaluation Checklist) [5], PRESTO [6] (Prediction of Operator Time Occupancy),
AAT (Activity Analysis Tool) [5], IWS (Integrated Workload Scale) [5] and ASWAT
(Adaptative Subjective Workload Tool) [5]. ODEC is a tool which provides an indi-
cation of the workload associated with a workstation by the study of its operational
rules, infrastructure features and events that can occur. Key factors listed in the
checklist (number of trains, number of phone calls), are mostly objective and provided
by control centres through data analysis. This method is applied in the railway and
known to be efficient, easy to set up, however the output it can provide is sometimes
viewed as “limited”: results obtained cannot help in the definition of solutions to be
adopted in context of high and medium workload. Furthermore, the level of detail of
the analysis sometimes omit important information about the traffic pattern and its
operation (i.e. parameter “number of regulating locations” is probably not sufficient to
describe regulating tasks).

AAT is another objective method which aims to record signallers activities during a
day, provides indications on when, how long, and why these activities were performed
(i.e. 5 min phone call at 10am: due to point failure). This technique is very useful in
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order to provide an indication of the distribution of signallers activities in terms of time
and amount of tasks performed in parallel. This method is sometimes considered as
limited in some human factors studies to the extent that even if activities are objectively
tracked, and workload is not necessarily proportional with the amount of activities
performed by the signaller.

PRESTO is another objective method which allows the definition and replay of a
signalling scenario in a subarea of the workstation. This method is presented as a
software in which the human factors professional is invited to enter information from
the workstation (level crossings, routes, reaction time, phone calls duration…), a
simulation is then made which consist in running the trains according to the timetable
in the workstation. Outputs provided are detailed as much as in the AAT analysis, and
also include a prediction of the level of occupation of the signaller. This tool h is
efficient and provides a good overview of the traffic pattern and operation. However,
the overheads in terms of time and effort for the analyst can be high.

IWS and ASWAT aim to capture the signaller’s perceptions of workload using
different rating scales. IWS rating scale focus on the rating of the perception of the
demands and way to cope with them. ASWAT focus more on the rating of indicators
such as time pressure, mental effort and pressure (same principle as NASA TLX [12]
method). These methods are applied worldwide and succeeded to capture relevant data,
which confirms their relevance and consistency. However, Human Factors professional
often feel the need to complete these subjective methods with more objective data as
the focus on subjective methods only provide subjective inputs and thus different point
on views depending on individuals.

Other researchers [6, 13], have further methods using complexity/weighing ratings
to quantify signalling effort during regulating context. These methods consisted in
describing regulating tasks into different demand factors which can be measured
(number of regulating locations, number and types of train movements, number of
movements in parallel etc.) and can be factorised according with complexity rules
defined.

In the context of our project, the requirements linked with the existing simulator
called TREsim were clear from the beginning: the new module D-MOD must include
parameters related with the infrastructure, timetable and technology – as these are data
with which the simulator is actually working. Data shall be as much as possible
objective to provide indicators totally external from human point of view (this is
reinforced by the fact that subjective tools already exist and efficient). Manual inputs
can be provided to add external data to the analysis but has to be limited and controlled.
Keeping in mind these requirements, the D-MOD project started with a wide explo-
ration of existing human factors tools (described above) in the railway and other
domains, capable to evaluate workload related with task demands. In parallel, an
internal study on demand parameters was performed with signalling experts from
HICSE. From these studies, we extracted a preliminary list of demand parameters
which were analysed in collaboration with a Subject Matter Expert. After this analysis,
the project had to take a first direction to build its first proof of concept software in
order to evaluate the capacity of the simulator to deliver awaited data. The analysis of
the simulating tools pointed towards ODEC as a starting set of parameters, as it
provides an indication of task demand with an acceptable level of granularity for our
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proof of concept: “ODEC is related to the view that workload is a function of the work
that loads, and thereby a demand independent of the individual, and assesses the key
factors of the system within which a rail signaller works which might impact on their
workload” [3].

3 Architecture

TREsim is a simulator platform, primarily used for the training of new signallers,
familiarisation of existing simulators with design or process changes, or new locations,
and with the ability to replay events both derived from the simulator or capture through
operational data. As well as giving feedback on performance, TREsim allows the
introduction of faults or events into a signalling scenario. TREsim is integrated with a
larger portfolio of tools allowing the testing of new signalling scheme designs, or
integration with automatic route setting. Critically, the TREsim platform is very high
fidelity, with accurate models of trains, timetable and infrastructure that can faithfully
recreate actual or envisioned operational scenarios.

TREsim is divided into two entities, see Fig. 1: one signaller (trainee) workstation,
and one observer (trainer) workstation. Underpinning the TREsim platform are a
number of elements that, as well as enabling the simulator, also enable demand
estimation.

• Infrastructure model – each simulated workstation has a model of the track,
including points and signals, it comprises. Therefore it is possible to scan this model
to quantify any modelled infrastructure elements to capture potential demand
shaping parameters (e.g. number of points, number of platforms).

Fig. 1. Overview of TREsim simulation suite.
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• Timetable model – this is a model of the planned trains for a workstation. As well as
generating trains to run on the simulation, this model can also be scanned to
calculate number of trains (and types of trains) expected for a given timetable (e.g.
number of trains per day, per hour). There is also a timetable editor.

• Train movement simulator – this generates the movement of trains across the
workstation given either a planned train according to the timetable, or as inserted by
an assessor in real-time (e.g. to simulate the arrival of an unplanned freight train).
The train movement simulator therefore presents an accurate simulation of actual
(rather than aggregated) train movements.

• Interlocking simulation – this functional aspect of the simulator allows a realistic
recreation of signal and route setting given input from either a signaller or an
automated route setting module. As a result, permission cannot be granted to
another route once a route is set or a train is in a signalling section, thereby
preventing collisions between trains. Therefore, once routes have been set and trains
are moving across a workstation, the impact of these events is linked realistically to
the availability of other infrastructure, which can be a source of demand or impact
performance.

• Faulting and scenarios – The assessor has control over events such as infrastructure
faults, arrival of unplanned trains, or can mimic phone calls to the signaller using
the simulator. In real-time use of the simulation, this can generate demand, with a
subsequent implication for performance. Additionally, faulting can be used to
restrict infrastructure and therefore change the more static parameters that can be
scanned to calculate demand.

• Automatic route setting – Many workstations in Great Britain are now supported by
some form of automatic route setting, and many of the simulated workstations
available on TREsim are therefore supported by automation. This allows many
simulation scenarios/timetables to be run with minimal intervention from a
signaller.

When running in combination, all interactions from the signaller or automation, and
impact on the interlocking, can be recorded. Additionally, all train movements,
including delays and deviations from the timetable, down to positions in specific track
sections, are also recordable. As a result, a high level of accuracy of both planned and
actual train movements is possible. The D-MOD proof of concept has been developed
to include different functionalities to enable end-users to perform their analysis in an
accurate and optimised way.

Here are listed below some of the main functions of the software:

• A “navigation tree” providing information about the TT, start time, workstation
simulated and displaying the list of areas created by end-users.

• A “period” tool enabling end-users to choose an hour/day slot for results
granularity.

• A “colour filter” tool enabling end-users to have access to the most busy/used places
in the infrastructure.

• A “selection area” tool enabling end-users to select any portion of the workstation
that requires an evaluation.
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And different tabs displaying results:

• Data tabs: external parameters available in control centres can be entered manually
and complexity levels (high/medium/low) are listed in these tabs (see Fig. 2).

• ODEC tab: ODEC results of each D-MOD parameters are displayed in these tabs, as
well as a graph displaying the number of timetabled trains per hour.

• Flow tabs: train traffic is displayed. These tabs report both the expected number of
timetabled trains and the number of trains in a simulation run. These indicators aim
to reflect signallers work according to a timetable and the feasibility of a timetable.

• Route tabs: total of route sets manual/ARS is reported.

4 Parameters

From the architecture described above a number of classes of parameters are open to
capture. These are:

(1) Static infrastructure parameters – These are parameters based around the
unchanging aspects of the infrastructure for a given workstation design, such as
the number of points. For the purposes of proof of concept, several of these
parameters have been adopted from ODEC. The advantage of D-MOD is that they
can be calculated swiftly and accurately.

(2) Aggregated parameters – These are parameters regarding train movements but, as
per the original ODEC, rely on aggregated totals. However, with D-MOD they
can be calculated swiftly and accurately, and include detail regarding the head-
code of the services involved.

Fig. 2. D-MOD demand dashboard incorporating tabbed interface for different parameters. The
current view shows ODEC scores on the right with a calculation of trains per hour on the left.
Red, orange and green indicates high, medium and low ODEC scores. See [5] for further
explanation. (Color figure online)
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(3) Dynamic parameters – These are parameters arising from running trains and the
inputs required to regulate them. This can be captured in great detail (specific train
movements or specific route settings at a sub-second accuracy), that in practice
can be averaged at an appropriate level of granularity.

(4) Performance parameters – As well as generating data regarding demand on the
workstation, TREsim also generates metrics of performance. This can be in terms
of delay accumulated, though signallers may also be able to improve the delay
associated with trains that arrive on the workstation in a delayed state. Also,
recording specific events such as trains approaching red signals can be used as a
measure of safety, as approaching a red signal when this is not in accord with
usual operations or timekeeping increases the risk of a signal passed at danger
[15].

Table 1 presents a list of these categories with indicative parameters, along with the
origin of that parameter – ODEC indicating a parameter taken from the ODEC tool,
whereas D-MOD indicates a parameter that has been developed specifically within the
context of the current project.

Table 1. List of parameters generated by D-MOD

Parameter name Origin Category

Number of platforms used to terminate trains ODEC Static
Number of point ends ODEC Static
Number of controlled signals ODEC Static
Number of automatic signals (R&E) ODEC Static
Number of locations for permissive working/No. permissive
routes

ODEC Static

Number of types of traction power systems ODEC Static
Maximum number of trains per hour ODEC Aggregated
Maximum number of trains per day ODEC Aggregated
Subtract the slowest traffic speed from the fastest traffic speed to
obtain Min and Max class speed

ODEC Aggregated

Number of trains per hour (Timetabled and simulated) D-MOD Dynamic
Number of trains per minute (Timetabled and simulated) D-MOD Dynamic
Flow per hour on track circuit block D-MOD Dynamic
Flow per day on track circuit block D-MOD Dynamic
Number of static routes in workstation D-MOD Static
Total number of route sets per hour (both ARS and manual) D-MOD Dynamic
Number of cumulating delay D-MOD Performance
Number of trains stopped at red signals D-MOD Performance
Duration of trains stops at red signals D-MOD Performance
Number of minutes gained/lost per train service D-MOD Performance
Initial and terminal delay per train service D-MOD Performance
Delay curves per train service D-MOD Performance
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5 Validation

Following on from a phase of requirements, software development and piloting [6], the
project has looked to validate a number of performance metrics. Prior evaluation
activities in the project have demonstrated the general feasibility of quantitative
demand measures, showing that static demand measures can be rapidly captured from a
workstation simulation. Additionally, dynamic demand measures can be captured and
show surface validity in comparison to other forms of demand and workload analysis
such as AAT. However, to date these pilots had been conducted on only one type of
workstation, and had not included performance measures. Therefore, the final phase of
validation had two aims:

1. To demonstrate the feasibility of capturing performance measures - in this case
cumulating delay and number of trains stopped at a red signal. NB Those signals
where trains routinely stop at a red signal (e.g. at the end of a station platform can be
and, in this case, were filtered out of the analysis).

2. To demonstrate that the metrics could be applied to a different workstation.

The validation was therefore conducted with a new workstation (Upminster) under
three conditions – with normal operating conditions with or without automation and a
third trial without automation and with an unplanned delay. This was a train running at
a restricted speed resulting in a queue of trains building behind until the issue was
resolved. In each scenario an experienced signaller operated the workstation therefore
static, dynamic and performance data were generated. Each trial was conducted in real
time covering approximately one hour of service (7.30am to 8.30am) at the morning
peak. The delayed train was inserted at 7.29am. To provide more feedback on scenario
complexity, the Integrated Workload Scale (IWS) tool was used to provide measures of
the signaller’s workload reported every 1 min. This subjective tool aimed to provide
additional information about workload variation. Also AAT was used to check the
signallers interactions with the workstation against the automated measures.

Scenario Results. Figure 3a, b and c show graphs of several key dynamic and per-
formance parameters.

Actual and timetabled trains – The data shows a steady increase from the start of the
scenario up to typically 19 or 20 trains concurrently on the workstation. In all three
scenarios the operator (and in scenario 1, the combination of operator and automation)
is able to able to keep pace though delay in both manual conditions is significant.

Number of manual route sets – Scenarios 2 and 3 indicate significant levels of input
from the operator to maintain the service. In particular, there is a building spike in
scenario 3 around 8.10 min where the signaller is working to clear the backlog of trains
that has built up behind the slow running service. The number of routes set by the
signaller is greatly reduced in the automated condition (1) but still involves a peak of
input around 8.00am.

Cumulating delay – There is a large cumulating delay in scenario 3, demonstrating the
viability of this metric. Notably, the cumulative delay drops to a similar level as other
scenarios as the signaller is able to work clear the backlog.
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Number of trains stopped at a red signal – There is a small increase in the number of
trains held at a red signal in scenario 3 over the other two scenarios. This, again,
indicates the ability to extract this metric from the simulation, though it may be more

Fig. 3. a, b and c –Demand and performance measures for automated and non-automated normal
condition, and non-automated with delay. X axis represents 5 min time blocks for period of
evaluation. Y axis represents counts for number of trains, minutes of cumulating delay, number of
timetabled trains, number of trains stopped at red signal and number of manual routes set.
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useful in other scenarios (e.g. if a very inexperienced signaller was working the panel,
or the delay was more severe).

Finally, while the data are not presented here, it is possible to drill down into further
detail on many of these parameters. For example, it is possible to show how delay
accumulates for any specific train service, to list the trains that are on the workstation
for any given instant and thereby compare over scenarios, or identify which trains are
held by which specific red signals. This analysis could be essential for identifying
specific sources of demand or impacts on performance.

6 Discussion

The work completed so far has demonstrated the feasibility of capturing both demand
and performance for a different workstation from the one previously used as the basis
of trials. Critically, the generation of the data presented here is near instantaneous, and
therefore provides a major saving in the time of the human factors assessor. The
emphasis on work to date has primarily shown the feasibility of capturing the kind
measures presented in Table 1. The next step is to validate these measures are repre-
sentative of actual events. The work to date [8, 9] and review by subject matter experts
of trails data so far strongly indicates good validity on this data, but this validation can
be formally confirmed by correlation between the data presented here, and other
sources of data such as AAT and IWS captured during trials.

It is important to note that this approach does not invalidate other tools that have
previously looked to capture demand. Rather, it is anticipated that the rich source of
data that is available through the D-MOD tool can facilitate these other tools by
allowing their rapid capture. Indeed, one of the anticipated benefits of D-MOD is that it
can expedite the practical process of capturing most specified demand and performance
measures in support of the development of new theory of demand and workload. For
example, one aspiration would be to use the measures presented here in combination
with eye-tracking or physiological data. The combination of different types of data
raises a more general point that, to date, the data streams that have been captured have
been treated as distinct. That is, there has been no attempt yet, other than through visual
inspection of the results, to link one parameter with another. A future development of
D-MOD would look to couple data streams together. For example, can the setting of
specific routes or the approach of trains to specific regulation points be linked to
specific sources of demand? Another use of D-MOD that has been considered is also
how strategies of signallers may differ and how this might link to sources of demand
and performance.

There are three limitations of D-MOD tool and process. First, as noted above, there
needs to be more concrete comparison between existing measures such as ODEC and
the data generated by the D-MOD tool. Second, is that the tool is currently only
concerned with demand associated with the core tasks of managing the workstation.
In practice, many other tasks can be a source of demand including the communications
with other rail staff or public, completing or reading paperwork associated with pro-
tection arrangements, or dealing with level crossings [17]. It may be possible to
‘overlay’ non-signalling events into a scenario to indicate time occupancy. Related to
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this point is the third limitation, that D-MOD is focused on demand at this stage and
rather than the implications for workload. At some point, the D-MOD tool could be use
D-MOD to study the tighter coupling between either demand or performance (as
knowing you are behind the timetable may be a considerable source of pressure), in
order to establish the link with experienced workload.

7 Conclusion

The changing face of rail signalling demands new approaches to anticipating the
workload implications for those operating the network. The D-MOD project has
applied simulation capabilities to help in the quantification of one crucial aspect of
workload, operational demand. It goes beyond existing tools (though can also
accommodate and complement these existing tools) by providing a platform for the
rapid capture of static workstation characteristics and detailed data on dynamic demand
and performance factors. While the D-MOD tool is yet to cross the bridge between
demand and experienced workload, the aspiration is that D-MOD can present a
valuable tool in both the practical development of workload assessment tools for
signalling, and serve as a research incubator for the development of theory.
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Abstract. Educational theory derives from a number of disparate scientific
disciplines, which provides an opportunity for rich dialogue. However, in a time
of austerity and reduction in the budgets of many educational organisations, it
has refocussed research into educational activities which provide real and
measurable benefits to students. With a focus on medical education, this paper
outlines the position that mental workload theory provides both a unifying
theory and the methodology required to evaluate the learning of students.

Keywords: Mental workload � Educational theory � Medical education

1 Introduction

Education lacks a unifying theoretical perspective, but rather derives its principles from
a range of associated scientific sources to provide both its philosophy and experimental
methodology. This is important, as every education endeavour is inevitably situated
within the confines of its chosen sources, which perhaps explains why education
remains a subject around which argument frequently rages. This paper particularly
references medical education, but the principles are generalizable to other educational
domains. While Mental Workload has developed as a theoretical concept with validated
measures and proved itself to provide unique insights into human performance [1], it has
had little impact on the measurement of educational outcomes. Cognitive load theory
has an established literature [2] and uses the principle that excessive mental workload
impairs learning. It has been used to ensure that educational materials both present
critical information in easily understood formats and to reduce the inclusion of extra-
neous information. A critical weakness in this approach is that the experimental evi-
dence is based on classroom-based educational activities with outcomes measured by
performance in written assessments. While such an approach may be valid within purely
academic disciplines, it must be questioned whether such an approach is applicable to
educational activities which aim to prepare students for real world activities. An
example of the above is the difference between a study of tracheal intubation (a key
clinical skill) in the laboratory, which suggested that it is possible to train a complete
novice using three attempts in the laboratory using success as the criteria [3] compared
to a real world study of experienced staff who required an average of 76 attempts to
master the same skill. The role of complexity in educational design will be further
explored below.

© Springer International Publishing AG 2017
L. Longo and M.C. Leva (Eds.): H-WORKLOAD 2017, CCIS 726, pp. 187–197, 2017.
DOI: 10.1007/978-3-319-61061-0_12

http://orcid.org/0000-0001-9289-1995


This paper is an attempt to outline a coherent philosophy which can guide its use in
educational activities with practical real world outcomes. Unfortunately, the huge range
of educational philosophies makes it impossible to include them all in a single paper
and I have, therefore, chosen three philosophies to illustrate what such a philosophy
would imply. In each case, the philosophy is described in terms of its theoretical
source, its view of learning, the teaching/learning methods adopted, the assessment
tools used and its chosen outcomes.

Firstly, the philosophy of Behaviourism [4] is based on laboratory studies of (often
animal) behaviour in response to changes in their environment, with the work of Pavlov
[5] on dog salivation as perhaps the best known. Learning is viewed as a ‘conditioned
response’ to an environmental stimulus with the organism (learner) changing their
behaviour in response to a reward or punishment. The educational process is therefore
simple; repeatedly present the learner with a problem and if the answer is right, provide
a positive stimulus and if the answer is wrong, a negative stimulus. In the past this may
have been characterised as a ferocious teacher teaching mathematics using frequent
application of the edge of a ruler on the knuckles and a rare sweet. However, the same
principles apply to learning high level skills such as sports, where athletes usually
repeat the same processes over and over, receiving feedback from their coach.
Assessment is therefore a simple matter of providing the correct stimulus and mea-
suring how often the learners pick the correct response. The lab rats press a lever in the
cage and the human learners pick the correct answer in multiple choice tests. Success is
a simple matter of measuring the % of correct responses and with a direct correlation
between % correct and educational success, often published in the media as ‘pass
rates’, ‘A grades’ or ‘core indicators’. While such an approach is undoubtedly effective,
it is frequently denigrated by higher level educators as mindless ‘training’ which can
produce high levels of performance within a narrow domain, but which does not
develop understanding, wider knowledge or the ability to transfer skills to other
domains. The view of learners as little more than lab rats to be punished or rewarded
sits uncomfortably with professional values.

Secondly, the philosophy of ‘competence’ [6] developed from workplace based
analysis of tasks splits any complex task into a series of ‘competences’ which can be
taught and then assessed in a structured and objective way. For example, during the
induction of anaesthesia, the doctor needs to insert a cannula (tube) into a vein to give
drugs, needs to communicate effectively with the patient and needs to administer an
appropriate dose of drug. These tasks can be taught and tested separately, so for
example, the insertion of cannula can be tested in the laboratory on a plastic arm,
communication can be tested with an actor in an office and the dosage of drugs tested
with a paper based exercise in an examination setting. The abilities of learners can
therefore be easily tested in a series of structured assessments with each competency
achieved ‘ticked off’ and when all the competencies have been achieved, then the
learner is defined as fully competent and fit to practise. Unfortunately, for many
practitioners, this logic is a flawed. For example, if you assume that if any musician can
demonstrate that they can play each note of their instrument in turn, comment on some
recorded music and also identify all the notation marks on a musical score, they are
competent to play in an orchestra, you are likely to be disappointed. Complex tasks are
far more than the sum of their components and need to be assessed as wholes.
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Thirdly, the concept of Situated Learning [7], developed from ethnographic studies
and views the learner starting as an outsider and then gradually becoming a full
member of a community. The focus is therefore not so much on the acquisition of
specific knowledge or skills, but rather on personal change and development. The
primary learning activity is therefore working within the community alongside
peers/mentors and with success attained when the individual is accepted by the com-
munity as one of their own. The medieval apprenticeship with the apprentice working
alongside masters and being finally accepted once they produce their own ‘master-
piece’ perhaps illustrates this philosophy best. While such a philosophy has obvious
attractions, its lack of objectivity and scope for excluding minority groups means that it
is rarely used in professional settings as the sole means of assessment.

Although the above are described as distinct and mutually exclusive philosophies,
in practice, they are often combined. While such combinations are understandable in
response to external pressures such as cost, the need to provide a hard pass/fail
boundary and the need to defend decisions against legal challenge, the results are
predictably incoherent. For example, trainee anaesthetists, who are already qualified
doctors with at least two years’ work experience are required to join a training pro-
gramme [8] (apprenticeship) and work alongside senior staff (masters) who provide
mentorship and ultimately decide whether the learner has achieved the level of skill
required to be accepted to the community of (master) anaesthetists. However, during
this period, they are also required to learn vast amounts of abstract knowledge and pass
multiple choice examinations, as well as being required to demonstrate specific com-
petencies in real world and laboratory settings. The result is entirely predictable, with
some trainees rated as excellent by senior staff who fail the exams and others who are
regarded as incompetent who nevertheless pass the exams. The result is frustration,
wasted resources and a failure to reliably discriminate between those who will perform
to a high standard in the workplace and those who will not.

2 Mental Workload as Educational Theory

The question then, is how Mental Workload should be viewed as an educational
philosophy?

Wicken’s Multiple Resource Theory [9] is widely cited within the Mental Work-
load literature and provides a framework on which to base a wide range of assessment
methodology. However, it also underpins a philosophy of perception and cognition
which can be brought into the educational domain. These can be expressed as:

• The world is a highly complex and rapidly changing environment which cannot be
fully comprehended by our limited perceptual resources.

• Our senses can be trained to convert the overwhelming complexity of reality into a
manageable and coherent ‘perception’ of our world. However, by necessity that
perception is fragmentary and may be inaccurate.

• Our decisions are largely driven by subconscious processes, with consciousness
perhaps seen as a largely retrospective and rationalising process.
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• Our responses to our environment are highly dependent on learned and complex
patterns of response which coordinate a wide range of resources to achieve each
task.

For example, this can easily be applied to the role of a pilot in combat. The
environment is complex and there are a lot of things to do, such as fly, navigate and use
weapons. Pilots gradually learn strategies to simplify their world, so that radar contacts
are either ‘friend’ or ‘foe’ and firing weapons, at least initially, becomes a simple matter
of eliminating a ‘foe’. Pilots also learn that the majority of rapid responses cannot be
thought through, but have to become automated responses to specific problems. In the
same way, responses cannot be theoretical notions of how to respond, but rather as
highly automated psychomotor patterns learned through long practice. However, the
same principles can be applied to a doctor in General Practice seeing a patient, with for
example, an older lady with back pain. While the symptoms are usually simple, a
consultation provides a wealth of verbal and nonverbal cues as to the severity and
nature of the pain, so that the way the patient opens the clinic door, their gait across the
room, the way they sit down and their facial expression as they describe the pain may
be far more informative than the symptoms as described. Further, doctors need years of
practice to learn how to notice these clues, but also may miss or misinterpret clinical
information. The subconscious nature of these processes is readily evident in the
common descriptions of doctors who refer patients for further investigation because
they ‘knew something was wrong’ (rather than what) and those who describe the
identification of a diagnosis ‘before the patient even sat down’. However, the two
examples above provide a key distinction in the work of those investigating the use of
Mental Workload as a method to improve performance and that difference is in how we
view the complexity of our environment.

In high risk industries, such as aviation, complexity has been seen as a challenge to
the limited capacity of the human mind, with the result that it has been systematically
designed out of high risk processes [10]. The main application of studies involving
mental workload has been to identify processes where cognitive demand are too high
so that the workload can be reduced, for example, through simplification, workload
sharing or better training. The most widely known example in the UK is perhaps the
ban on the use of mobile phones while driving, partly at least based on simulation
studies using a secondary task methodology [11]. In the above cases, the theoretical
stance taken supports the use of laboratory or simulation based studies in that the task
and operator actions can usually be reduced to a small number of defined correct and
incorrect options and the environment can be reproduced to a high degree of fidelity. If
the mental workload of subjects is measured within a simulator, then interventions
which produce a reduction in their workload can be accepted as a successful inter-
vention. For example, if redesigning a computer interface reduced the workload of
operators, then we can predict that the performance of operators will increase and their
error rates will decline [12].

In contrast, within domains such as medicine, the environment, actions and possible
outcomes are in most cases very poorly defined and the mental workload associated
with the task can be extremely high [13]. As noted above, a doctor in a clinic setting is
required to monitor a wide range of verbal and nonverbal clues, to consider whether

190 A. Byrne



each clue is relevant to an existing diagnosis, to consider whether a new diagnosis is
possible, to run through the usual questions, to develop new questions depending on
previous answers and at the same time, to appear calm, sympathetic and to respond
appropriately to whatever they are told. It is perhaps no wonder that patients complain
that doctors ‘don’t listen’ as they are engaged in so many different tasks [14]. Although
the distinction between the ‘complexity’ of aviation and the ‘complicatedness’ of
medicine can be seen as medical hubris, its reality is evidence by the failure of sim-
ulation to produce improved clinical performance in many studies [15–17]. The key
suggestion here is that in complex systems it is still possible to design training and
assessment systems which closely link to operator performance; for example, pilots can
be tested on a simulator using outputs like approach speed and altitude, with a high
certainty that those outputs will predict real world performance. In contrast, in com-
plicated domains like medicine, where there are no high fidelity simulators and few
agreed outputs, it is not possible to use the same educational strategies.

As an educational philosophy, therefore, learning is seen as the ability to deal with
complexity without excessive mental workload. That is, someone who has learned
effectively can make sense of complex information/situations and respond effectively
without evidence of mental workload, with the maximum complexity that can be
accommodated as a measure of performance. So for example, the performance of a
doctor could be measured by the complexity of patients with which they can cope and
the performance of a musician with the complexity of the musical score they can play.
While the units with which complexity are measured are domain-specific, the principles
are universal.

3 Practical Application to Education

What is suggested here is that our view of complexity is the key to the use of mental
workload studies in the educational domain. If complexity is viewed as a problem, then
it suggests that educational processes should be simplified with material introduced to
learners within controlled environments and with the complexity of the material
gradually increased once they have mastered the basic elements. In contrast, if we view
complexity as the essential characteristic of the domain, then it suggests that exposing
learners to that complexity at the earliest possible stage and maximising their exposure
to it during their educational is essential. This approach is supported by studies which
appear to characterise expertise as ‘knowing where to look’ rather than ‘knowing what
to look for’ [18], and those which characterise expertise as highly context dependant
[19]. This conclusion is controversial in that most educational processes have relied in
the past on the principle that learners must ‘understand the basic principles’ before they
engage in realistic practice. This has led to, for example, a medical student being
ejected from an operating theatre because they hadn’t studied enough anatomy on the
basis that if they didn’t know anatomy, they couldn’t learn from the experience of
observing surgery. It’s difficult to determine whether some of this resistance is based on
educational belief, on a feeling that anyone without appropriate professional knowledge
is not worthy to be admitted to a professional environment or it is a case of ‘I had to go
through two years of lectures to get here, so you should too’.
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An adherence to existing methods and assessment techniques also obscures the
problem that the accepted measures of student performance in medical schools, such as
the results of entrance interviews, multiple choice exams, essays and projects do not
predict future performance as a doctor and do not even correlate well with each other
[20]. What we do know is that ‘knowing’ and ‘understanding’ or even ‘doing in a
laboratory setting’ are not adequate to define ‘safe to practice’. The explanation sug-
gested here is that they fail to predict future performance because they provide a
challenge which avoids the complexity of the real world.

In other high risk domains such as aviation, this problem has been addressed
through the development of simulation [21], so that learners can be developed through
a programme of part task simulators which mimic small aspects of a single task in
real-time, such as navigation computers, to full scale, high fidelity simulators which
allow an entire day’s work to be completed in real time. For many industries, including
healthcare, simulators have limited utility, for three reasons [22]. Firstly, people do not
come with a manual and individual people do not always behave the way you would
expect. This means that people can suddenly behave in unexpected and unusual ways,
but also, their physiology can also confound expectation. When learners have to deal
with real people, they have to be prepared for the unexpected and it is hard to design
simulators that do not behave predictably. Secondly, most industries where simulation
has become embedded deal with information provided either verbally or in the form of
instrumentation, both of which can be simulated relatively easily. In contrast, the
simulation of skin colour, joint movement or nonverbal communication are extremely
difficult and unlikely to be simulated effectively in the near future. Thirdly, pilots are
few in number and the cost of flying an aircraft for training is very high, making
simulation a financially viable option. Healthcare workers are numerous and training on
the job is cheap, making simulation training financially impossible. While simulation
provides obvious advantages, it can prove to be prohibitively expensive to implement
in low income areas [17]. A shift to mental workload as an educational outcome can
shift the focus from how a simulator works (anatomical fidelity) and works (functional
fidelity) toward more simple devices which just target the effectiveness of training
(psychological fidelity) [23, 24].

Mental workload provides us with a new way of looking at the problem of
assessing the performance of individuals dealing with complex environments in that the
ability of an individual to deal with a complex situation without becoming cognitively
overloaded can be used to define expertise [1]. This is characterised by sensory systems
which effectively reduce the complexity to comprehensible concepts, an ability to make
sense of those concepts as a whole as well as the ability to rapidly produce a coor-
dinated and effective response. The difference between the novice and expert is perhaps
most graphically described by those involved in large scale conflicts, where those new
to combat are described as becoming overwhelmed by the situation and becoming
completely paralysed and unable to respond at all. In contrast, with even a few days
experience, soldiers become able to deal with the experience and start to respond
appropriately [25].
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4 Links to Other Education Theories

This concept of expertise links closely to the concept of the four stages of competence
[26], with novices moving from Unconscious incompetence, conscious incompetence,
conscious competence and finally unconscious competence. However, while the label
of ‘unconscious competence’ is correct in that the primary reason for the improved
performance is the development of subconscious cognitive processes which allow the
operator to complete the task without conscious effort (low mental workload), the
suggestion here is that the process of developing expertise does not pass through four
different developmental stages. Rather, the subconscious processes are the key ele-
ments of expertise and are developed from the beginning of the training process. The
conscious monitoring of action and the decision to practice are obviously important to
make sure an individual continues to train, but is not an essential part of the devel-
opment of expertise. For example, those learning to play the piano usually go through a
process of being told about musical notation, learning how to convert the notes to key
strokes and eventually, at the highest level, being told to ‘forget the notes and just play
the music’. However, there are many people who have just sat down at a piano and
learned to play music without any instruction or theory. That is, they develop
unconscious competence without going through a stage of unconscious incompetence
or conscious competence. In this context, the use of the term ‘competence’ is also
problematic as noted above.

Often linked to the concept of unconscious incompetence is Miller’s pyramid of
competence [27], which describes an increase in performance from Knows, Knows
How, Shows How and Does. That is a learner progressing from knowing theory, to
being able to describe how something would be done in practice, to being able to
demonstrate how and finally being able to complete the task in the real world. How-
ever, the problem with this description of learning is that it is a greater reflection of the
teaching methods commonly used than the development of expertise. That is, learners
are usually taught the theoretical principles first, the practicalities next and then taken
through simple practical teaching before being allowed to move into the workplace.
The example of the self-taught pianist readily demonstrates that it is not necessary to
acquire theoretical knowledge before engaging in practice. However, an important
distinction must be made here between what is necessary for effective learning and
what is possible in the real world. For example, while it might be acceptable to allow a
novice free rein on a piano to learn through experimentation, the same would not apply
to those learning how to control a nuclear reactor. The suggestion is that Mental
Workload can provide the basis for a new educational concept of expertise in that
learning is a process by which we learn to respond to complexity without developing
cognitive overload. The level of educational attainment achieved is therefore defined by
the complexity/speed of the task which can be completed successfully. ‘Command’
appears an appropriate term to describe an individual who has achieved a level of
expertise at which they have acquired the ability to cope with the cognitive demands of
the most difficult predicted situation and yet still maintain a cognitive workload within
their capacity so that they retain spare capacity to monitor their own performance. Such
an individual would therefore be able to explain and justify their decisions after the
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event. While this concept is perhaps most easily applied to pure psychomotor tasks,
such as typing, where expertise can be defined in terms of ‘words per minute’, it can
also be applied to much more complex tasks. An objection to this definition could be
that professional occupations perceive their own occupations as far more than the
successful completion of tasks, but this does not negate the concept of mental workload
as an educational outcome.

5 Practical Implementation

The follow will describe previous studies using mental workload within an educational
setting to demonstrate these principles. As noted above, a medical consultation pro-
vides a complex cognitive challenge for even experienced healthcare workers due to
the need to ask questions, monitor the answers, watch for nonverbal clues, make
diagnoses, empathise etc. There are few studies of mental workload during consulta-
tions, but they appear to confirm that the consultation is a high workload task [28]. An
interesting observation is that the observed levels of workload appear consistent with
periods of overload that could be associated with significant levels of error or poor
performance.

A recent study [unpublished] in medical students measured the effect of combining
a listening task with the physical task of taking a blood sample. While the simple task
of listening to a recording of clinical information appeared to be a low workload task,
students taking a blood sample showed evidence of cognitive overload. The more
interesting finding was that when the two tasks were combined, there was no increase
in mental workload, which was unexpected. However, the performance of the students
on the listening task deteriorated. The explanation appears to be that in response to the
excessive cognitive workload, the students ‘shed’ the listening task in order to be able
to complete the physical task of taking blood. If confirmed in future studies, the
implication is that during a consultation, healthcare workers are routinely overloaded
and are likely to ignore patients in order to complete tasks such as filling in forms or
entering data into a computer. This would provide an explanation of the problem that
patients frequently complain that healthcare workers don’t listen to them and suggest
that rather than staff being uncaring, they are simply overwhelmed with the number of
tasks they have to perform.

Studies in medicine have largely used subjective reporting of workload using the
NASA-TLX scale [29], and secondary task methods using mental arithmetic/visual
change/vibrotactile stimulus as outcomes. Although the methodology varies, all studies
have used deterioration in second task performance as evidence of cognitive overload.
These studies confirm that the mental workload of staff correlates well with their
perception of the difficulty of the tasks, with, for example, higher levels of mental
workload during the induction of anaesthesia and emergence from anaesthesia (often
compared to takeoff and landing for pilots) and lower during the maintenance (cruise)
phase. Although the average levels of workload appear closely linked to the task, the
workload of individuals appears to vary widely, which was an unexpected finding and
one at odds with studies in other fields. The explanation may be that while admission to
many high risk occupations depends on a selection process which includes a range of
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psychomotor and cognitive tasks, admission to medicine is almost exclusively based on
written examinations and interviews. It is therefore possible for an individual with
cognitive problems with psychomotor coordination (dyspraxia) or other limitations to
qualify as a doctor who would never qualify, for example, as a pilot. This suggests that
the inclusion of mental workload as an educational outcome could provide learners
with valuable feedback on their aptitude for a variety of medical specialities at an early
stage of their career and avoid them investing years in a speciality for which they are
unsuited.

A study looking at the mental workload of anaesthetists during their seven year
training programme confirmed that delivering anaesthesia appears to be a high work-
load task and confirmed that training reduces mental workload, with a near linear
decrease in workload in relation to the number of years training completed [30].
Interestingly, those tested in their final year of training, who should have completed all
the compulsory aspects of their training and were engaged in training for sub-specialist
tasks did not show evidence of cognitive overload, suggesting that a seven year pro-
gramme successfully trains subjects to an appropriate level of expertise and that this
expertise can be reliably determined by measuring mental workload. The interesting
finding from this research was that the mental workload of qualified, permanent staff
was also measured and was shown to be higher than that of final year trainees. This
unexpected finding indicates that either the expertise of qualified staff had deteriorated
once they had completed their training or could be associated with a decrease in
cognitive capacity with age, as qualified staff were inevitably older than trainees. This
suggests that healthcare workers in high cognitive load tasks could face significant and
different challenges as they get older.

In addition to the challenges of healthcare working, we have observed that the
assessment process can also be challenging for observers. For example, the most
common assessment of clinical practice involves the observation of a learner by a
trained observer, who then ticks off each aspect of the performance that has been
completed. A study of observers during a practice exam suggested that the mental
workload of the observers was indeed very high, which is explained by the need to
observe for up to 28 different actions, to rate the completeness of each action and then
to record the action on a chart [31]. Importantly, a follow-up study showed that a short
training period had no effect on either the accuracy or mental workload of observers
which supports the concept that the performance of complex tasks depends on sub-
conscious processes developed through long periods of practice rather than simply
understanding or knowing what to do [32].

6 Conclusion

In conclusion, this paper suggests that human performance should be viewed as three
tightly-knit and largely subconscious processes: a highly sophisticated analysis of sen-
sory input to derive comprehensible wholes, the synthesis of those wholes into situa-
tional awareness and the coordinated response to the situation. Expertise is defined as the
ability to complete those three processes in response to a complex situation without
cognitive overload and professional expertise requiring the ability to consciously justify
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the actions taken. This level of performance is characterised by not just the ability to
perform at an expert level, but to also retain enough spare cognitive capacity to monitor
the performance and adapt as necessary and therefore should be regarded as achieving
‘Command’. Mental workload therefore provides a unifying theory of educational
activity with well-developed links to appropriate assessment methodologies.
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Abstract. The purpose of the study is to analyse the directional compatibility
of control-display design and its effects on the mental workload of helmsmen.
An experiment is then carried out on a simulator designed by a world leader in
military naval shipbuilding. This experiment follows a unique scenario includ-
ing four usual submarine maneuvers. It is achieved by two groups, each carrying
out a perceptual-motor task on a specific steering control-display configuration,
proposed by the naval shipbuilder (one with a standard numeric display and one
with a new visual-spatial representation, both tasks controlled by the same
joystick). The findings of this study show that the control-display compatibility
produces increased mental workload when a direction-of-motion stereotype is
violated (upward-forward relationship).

Keywords: Direction-of-motion stereotype � Control-display compatibility �
Mental workload

1 Introduction

Submarine steering is a specific case in the activities of complex system supervision.
Controlling the three-dimensional movement of the submarine is carried out without
direct visualisation, neither of the environment nor of the submersible actuators.
Moreover, activities consist of a set of routine procedures and phases carried out by a
helmsman, usually inexperienced, responding to compass heading and immersion
instructions transmitted by the Chief of the Watch (COW). This relative inexperience is
explained by the low level of decisions taken by these operators, who only execute the
instructions. The position of the helmsman is one of the first appointments of young
submariners. Helmsmen are generally recruited with an A-level diploma, and they are
assigned to steering tasks after just a short formation lasting 8 weeks, with 20 h spent
on a simulator. A few authors have investigated the working activities carried out in a
submarine control room. For instance, McLane and Wolfe [15] focused on display
concepts for submarine manual control, and more recently, Stanton and Bessell [22]
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proposed a work analysis of the activities involved in returning the submarine to
periscope depth. However, these analyses relative to submarine control were mostly
descriptive or narrative, and were little concerned with performance and the effects
experienced by the driver [25]. The lack of in-depth studies is explained by the diffi-
culties of accessing the domain context because of the physical constraints and con-
fidentiality issues. There is, however, a startling contrast with the research conducted in
the aviation or automotive domains, where numerous studies provide fine-scale mod-
elling of cognitive steering tasks [1, 16, 19], an analysis of perceptual-motor interac-
tions with a human-machine steering interface [13, 23], and a regular or periodic,
objective or subjective, assessment of the effects of steering on mental workload. This
assessment is often carried out in simulation environments with strong ecological
validity, and it is based on, inter alia, physiological and ocular measurements or
questionnaires such as the NASA Task Load Index (NASA-TLX) to determine mental
workload [7, 10, 17, 20].

The purpose of this article is thus to partially open this “black box” by analysing
submarine steering and measuring the effects of perceptual-motor tasks on the
helmsmen’s mental workload. Submarine steering can be carried out according to
different modes ranging from full automation to complete manual control. This paper
deals with the manual mode only, because it is the most “costly” for helmsmen in terms
of task load. To this end, through a simulator-based experiment, we present an analysis
of helmsmen’s cognitive and perceptual-motor tasks in an ecologically valid scenario.

2 Related Works

In this section, we first present a state-of-the-art review of models related to
direction-of-motion stereotypes, and we then transpose the models to the case of
submarine steering in order to analyse perceptual-motor requirements and the way
pilots interact manually with steering controls and displays (Sect. 2.1). Finally, we
present studies on the assessment of steering effects on mental workload (Sect. 2.2).

2.1 Models of Perceptual-Motor Tasks, and Analysis of Manual Steering
in New Submarines

In the later generations of submarines, all the elements needed for helm supervision
(control and display) are found in one unit: the steering station. The monitoring and the
command of three-dimensional steering parameters (immersion gap, compass heading
deviation, trim of the vessel), within tactical and operational phases, involve low-level
perceptual-motor tasks with the steering control-display configuration [18, 25]. These
perceptual-motor tasks are often dependent on the activation of a direction-of-motion
stereotype, i.e. the expectations of the relevant user population in terms of directional
control-display compatibility [27]. The following paragraphs explore these generic
stereotype issues that are then used to compare the perceptual-motor tasks resulting
from the interactions with two different control-display configurations for submarine
steering.

Effect of Control-Display Compatibility on the Mental Workload 199



Generic Models About Direction-of-Motion Stereotypes
Once the physical requirements for display readability and control motions have been
met, the direction-of-motion stereotype or movement compatibility is a preponderant
key factor for the successful design of controls and displays [16]. The design of
systems that do not follow stereotypes reduces performance or safety, especially in
emergency situations or under time pressure [30]. An important study evaluating
possible types of directional stimulus-response compatibility for systems, in which a
control must be moved to bring about the goal-oriented motion of an object, is that of
Worringham and Beringer [29]; the issue is also dealt with in the work of
Burgess-Limerick et al. [3] and Chan and Hoffmann [6]. In particular, these authors
refer to two common stereotypes that may exist between control and display move-
ments and should guide the design of compatible configurations:

– Control-display compatibility (CD): the directional relationships in which the
control and resulting movement on the display moved in the same direction were
the least likely to cause error.

– Visual Field compatibility (VF): The principle suggests that compatible control–
response relationships are those in which the direction of movement of the response
in the operator’s visual field matches the direction of movement of the control in the
operator’s visual field if the operator is looking at the control. This principle has
been demonstrated to predict task performance correctly.

Wickens et al. [26] also analyse these direction-of-motion stereotypes when visual
spatial thinking requires transformations between the different reference frames of the
control and the display. In particular, they investigate the case where the control is in
the horizontal frame whereas the display is vertically oriented. Contrary to the rather
symmetrical lateral axis, where left and right are easy to confuse, the vertical and the
fore-aft axes share an asymmetry (due to the gravitational forces, up is different from
down, and because of the vision and the locomotion systems, forward is different from
backward). As a consequence, the authors notice a strong association between the two
marked endpoints of these two asymmetrical axes, especially between “forward” and
“upward” directions.

The Specific Case of Two Specific Submarine Steering “Control-Display”
Configurations
As part of the development of a submarine, studies were conducted in close collabo-
ration with a shipbuilder. Work focused on the design of a new steering configuration,
i.e. a visualisation interface coupled with a joystick as a motion control. This new
configuration (henceforth called configuration B) could be deployed in future boats, as
an alternative to the standard interface currently in use in submarines (henceforth called
configuration A). As shown in Table 2, the joystick must be pushed for diving and
pulled for rising.

The interface of configuration B aims at replacing the numerical data related to
steering parameters by a visual-spatial information synthesis. In particular, it uses
certain proposals from Temme et al. [23] who used two metaphors to build an aircraft
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cockpit display for the US Naval Air Station. These metaphors were adapted to the
submarine case:

– The “starfield” metaphor shows the system’s behaviour and its localisation in the
external world. It is a reference framework that showcases the vertical and hori-
zontal translations as well as the transverse rotations of the submarine.

– The “aircraft” metaphor (in the present case, “submarine”) is a 2D image that
symbolizes the vessel. Its position is fixed on the screen; the relative position of the
starfield metaphor shows the vessel’s behaviour and trajectory. Breakdowns (e.g.
jammed rudder blades) may also be shown on this metaphor, which accounts for the
orientation and movement limits of the system.

Application of Stereotype Models to the Two Control-Display Configurations
Table 1 shows a comparative analysis of the two control-display configurations A and
B, where only the interface changes (the joystick stays the same). The stereotype
violation in configuration B was confirmed by the feedback of submariners of two
French naval bases, to whom this new configuration was submitted. Several sub-
mariners pulled the joystick to increase the submarine immersion, which caused the
opposite effect of the desired goal. It is worth remembering that when pushing the
joystick, the star moves towards the lower end of the submarine and the latter dives,
whereas when pulling the joystick, the star moves towards the high end of the diamond
shape and the submarine rises (see Fig. 1).

This control system thus follows the usual pattern, particularly in the aviation
domain: when pilots pull back the stick, the aircraft ascends, and when they push, it
descends. The interface, more precisely the diamond-star set-up, may have misled some
participants. They may have pulled back the joystick to try and bring the star towards
the bottom of the diamond: “When you try to make the star go up, you pull the joystick
and then you reverse the command”. At the opposite, the movements of control and
display are parallels for counter clockwise and clockwise turns.

Fig. 1. The disturbing reverse motions in configuration B
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2.2 Analysis of Helmsmen’s Mental Workload

The foregoing literature review enables us to make hypotheses related to these
perceptual-motor aspects of submarine steering tasks. The perceptual-motor tasks
require indeed compliance with the “upward/forward” direction-of-motion stereotype.
To assess the effects of this aspect of steering tasks, helmsmen’s mental workload need
to be measured. According to the literature, different indicators can be identified.

Table 1. Comparison of the two control-display configurations in terms of direction-of-motion
stereotype

No direction-of-motion stereotype is involved between control and display. The 
interface is spatially static; only digits change over time for vertical speed and 

compass heading.
Configuration B

Configuration A

There is a compatibility of control and display for the compass heading monitoring, 
but there is also a control-display incompatibility for the vertical speed control. The 

joystick must be pushed forward to dive, implying vertical descending of the 
diamond-star inside the aircraft metaphor on the display. Hence, the upward/forward 

stereotype is violated (see [26]).
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Many studies propose subjective and objective measures to assess mental workload.
Among the subjective techniques, there are two main multi-dimensional methods:
SWAT [21] and NASA-TLX [11]. When the SWAT scale is compared to the
NASA-TLX, the TLX scale is generally considered to be the better scale for measuring
mental workload [12]. The NASA-TLX rating scale (TLX stands for task load index) is
designed to assess the different factors causing mental workload in a questionnaire that
enables a periodic, multidimensional, and subjective evaluation of the load experienced.
This questionnaire examines six dimensions of workload assessment: cognitive demand,
physical demand, temporal demand, effort, performance, and frustration. Hence, the
different dimensions characterise the perception of the demand by the participants and
their cognitive activity and effort. At the end of the main task, the participants score each
dimension from 0 to 100. These six dimensions are then displayed in pairs and the
participants select the dimension that contributed most to their load. Byers et al. [4]
proposed an alternative to Hart and Staveland’s [11] NASA-TLX, called NASA-rTLX
(standing for raw task load index), whereby the weight gradings of the different
dimensions are identical instead of being weighted by each subject. The authors showed
a strong correlation between the two indicators. In addition to this subjective assess-
ment, many studies have shown the contribution of objective, physiological measures
for estimating mental workload, such as heart rate or skin conductance [24, 28]. In
particular, several authors focused on another physiological indicator, the pupillary
diameter, as remote eye tracking sensors are minimally intrusive and do not interfere
with operators’ activity. Hence, Beatty and Lucero-Wagoner [2] showed that an increase
of the mean value of pupillary diameter results from the cognitive effort increase needed
to face a more difficult task. Cegarra and Chevalier [5] argued that pupillary response
can be considered a very sensitive indicator that can complement and be combined with
the NASA-TLX technique. Dehais et al. [8], De Greef et al. [9], Marshall [14], and
Recarte et al. [16] also identified this relationship in real or simulated activities, under
various driving or steering tasks such as piloting an airplane, driving a car or operating a
naval warship.

The next paragraphs present an experiment designed to verify the modelling of the
specific case of manual submarine steering proposed in Sects. 2.1 and to determine
precisely the effect of this perceptual-motor activity on the mental workload of
helmsmen with the indicators presented in Sect. 2.2.

3 Material and Method

A first experiment designed to measure the effect of steering tasks upon mental
workload and performance had already been conducted with 20-odd submariner
helmsmen in two French naval bases. The sample, however, was highly heterogeneous,
whether in terms of length of service in the Navy (ranging from 18 months to 10 years),
campaigns at sea, or job profiles (certain participants had received helmsman training
only while others had added COW or Officer of the Deck training). Moreover, con-
figuration A (see Sect. 2.2) was familiar to all these submariners, which consequently
skewed the configuration comparison. Additionally, a helmsman’s job is to execute
simple instructions; it can be entrusted to inexperienced submariners. Hence, we
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decided to reproduce the experiment with a novice homogeneous population having a
solid scientific knowledge level. The population knew neither of the two steering
interfaces (hence the bias of the first experiment was avoided) but was knowledgeable
enough to comprehend and control the dynamic behaviour of the submarine; the group
of participants thus closely resembled the average submarine helmsman profile. The
experiment protocol is detailed in the following sections.

3.1 Participants

The participants were recruited from undergraduate and doctoral students in an engi-
neering school in Brittany, France. Twenty students participated in the study (average
age = 23.80; standard deviation = 3.105); they were randomly distributed into two
equal groups corresponding to the two experimental conditions: one group carried out
the simulation with configuration A, the other with configuration B (see Sect. 2.1).
Furthermore, all subjects worked with the same experimental scenario (see Sect. 3.2).
Group homogeneity was controlled through two variables: video game playing and
visual correction. Both groups had the same number of participants who did not play
video games (N = 3), the same number of participants who played video games at least
once a week (N = 3), and the same number of participants wearing contact lenses or
glasses (N = 4).

3.2 Simulation Set-up and Experimental Situation

The Simulator
The simulation set-up was designed to reproduce an ecological situation:

– at the operating level, the participants used a joystick; this device corresponds to
what will replace the current supporting-bracket system in the future submarines;

– at the visualisation level, the interface of configuration A reproduced the current
interface in submarines but on a smaller scale, and the interface of configuration B
was an alternative tested by the shipbuilder for the future submarines;

– finally, at the behaviour level, the software part of the simulator reproduced a
submarine’s hydrodynamic model for both standard maneuvers and degraded sit-
uations (technical breakdown, damage, etc.). In accordance with the instructions
issued through the commands, the simulation software computed the submarine
behaviour in real time and displayed the information as it normally would appear on
the submarine steering station.

The Scenario
For this study, an ecological scenario with four steering maneuvers was developed and
validated in association with a submarine captain (see Fig. 2). The values of speed,
immersion, and trim limits of the scenario were chosen with this expert; the French
Navigation School of Submariners also validated this scenario. The four maneuvers
result from the repetition of two sequences; each sequence included one submersion
maneuver carried out at fast propulsion speed (16–20 knots) and one surfacing
maneuver carried out at moderate speed (8–10 knots).
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These maneuvers reflected the pilots’ response to instructions regarding immersion
depth changes (±50 m on a relative basis); their difficulty depended upon the
propulsion speed and the steering phase (i.e. steering time requirements and reactive
approach or proactive stabilization (see Sect. 2.1)), manipulated by the experimenter.
Participants had to reach the ordered immersion depth (within ±7 m of receiving the
instruction) and stabilise the submarine for 10 s so that the maneuver was evaluated as
completed. There was no time limit but each participant was given a maximum of four
attempts per maneuver to reach immersion depth. If all four attempts were used, the
experimenter ended the maneuver. This threshold of four attempts was chosen for a
practical reason; namely to prevent underperforming participants from being subjected
to never-ending sessions. Moreover, in agreement with the submarine captain helping
to design the scenario, it was considered a good indicator of the operators’ (in)ability to
achieve the requested task. To change immersion depth, pilots act on the trim of the
vessel only, hence on the submarine’s rate of climb.

3.3 Data Collection and Processing

Mental workload was evaluated using the NASA-rtlx and the analysis of pupil
diameter.

Using the NASA-rtlx to Measure Mental Workload
After each maneuver, participants answered the French, pen-and-paper version of the
NASA-rtlx questionnaire: it is an alternative to Hart and Staveland’s [8] NASA-TLX,
whereby the weight gradings of the different dimensions are identical, instead of being
weighted by each subject. Byers et al. [3] showed a strong correlation between the two
indicators. The questionnaire retained its six dimensions. For each of these, participants
answered on a Likert-type scale ranging from weak to high levels. Each dimension was
explained verbally.

Fig. 2. Experimental scenario with 4 maneuvers (2 repeated sequences of one submersion and
one submersing)
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Using Eye-Tracking Data to Estimate Mental Workload
For this study, we used a binocular eye-tracker with a 60 Hz recording frequency
allowing precision readings of between 0.5° and 1.0°. The recorded data was then
processed using Seeing Machines software:

– faceLAB™ 5 enables the continuous measure of pupil diameter, head posture, and
gaze direction.

– EyeWorks™ provides the link between the ocular data and the experimental
environment. It provides screenshot video capture and records gaze direction and
data breakdown according to the phases of the scenario or areas of interest.

The eye-tracker was placed at the bottom of the screen and behind the control box
(see Fig. 3). To avoid ocular behaviour variations (pupil diameter, blinks, etc.)
resulting from changes in ambient light conditions, the luminosity of the test venue was
kept constant.

The raw data were cleansed and processed with MATLAB software (see Table 2).
Consistent with the literature [2, 10], physiological ocular data (pupil diameter) is
considered an indicator of mental workload. Only pupil diameters between 2 and 8 mm
were retained (which corresponds to the maximal dilation range of the human eye);
similarly, fixation time was taken into account from 15 hundredths of a second (0.15 s)
only. Pupil diameter was also subject to centring-reducing operations so as to eliminate
inter-subject differences related to average diameter and dilation variations.

Synthesis of the Selected Indicators
Dividing the scenario in four maneuvers was performed by coding the starting times of
each maneuver from the video captures. This division enabled the calculation of
indicators for each maneuver; these were the dependent variables (DVs) under inves-
tigation in this study.

Statistical Processing
Analysis of the distribution of the dependent variables and of the control variables then
helped determine the nature of the applicable statistical tests. The conditions of

Fig. 3. Experimental set-up (eye-tracking system, questionnaire, control box and interface)
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normality, homogeneity, and sphericity of variances were met by only the mean of
z-normalized pupil diameter and certain dimensions of NASA-rtlx. Repeated measures
univariate ANOVA and a t-test were then applied using STATISTICA software.

3.4 Experimental Protocol

The experiment was conducted in the LOUSTIC laboratory (Brest, France), a multi-
disciplinary research platform for the uses of information and communication tech-
nology. Participants took the test individually. The test lasted about 2 h and was
divided into six phases:

1. greeting participants: completing the profile questionnaire;
2. explaining the steering principles: a slide presentation was used to explain (ver-

bally) the steering tasks and the interface;
3. practicing: participants carried out three maneuvers to familiarise themselves with

the steering activities, the control box, and the interface;
4. eye-tracking parameter and calibration setting: Eye-Works Record software was

launched to record the participants’ eye movements after faceLAB software had
calibrated the head, eyes, and test environment;

5. carrying-out the steering task: participants carried out the maneuvers and completed
the NASA-rtlx questionnaire at the end of each maneuver;

6. debriefing and thanking: participants were questioned regarding the set of maneu-
vers, the interface, and the simulator in order to obtain their comments, and the test
purpose was revealed. To ensure the inter-subject independence of the collected
data, participants were asked not to reveal test contents to those around them.

3.5 Experimental Design

The protocols of only 16 out of 20 subjects were analysed because of a problem with
pupil diameter data acquisition for certain maneuvers. In the end, the configuration A

Table 2. Synthesis of the dependent variables

Variable Raw data Filtered and
standardized data

Calculation

NASA-rtlx
(for each
manoeuvre)

Likert-type
scale for
each
dimension

Overall indicator
calculated from the
mean of all
dimensions NASA� rtlx ¼

experienced physical demand
experienced mental demand
experienced temporal demand

experienced effort
experienced performance
experienced frustration

overall indicator of experienced load

2
666666664

3
777777775

PD (for
each
manoeuvre)

Raw pupil
diameter

Cleaned and
z-normalized pupil
Diameter DPz
(Diameter between
2 and 8 mm, then
z-normalizing
operations)

Mean pupil diameter for each phase PD ¼ P1...n
DPz2 phase

PDz
n
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group included 8 subjects and the configuration B group included 8 individuals; the
control-display configuration thus constituted an inter-subject variable. All of them
were subject to the same scenario (presented in Fig. 1), with 2 repeated sequences of 2
different maneuvers (submersion and surfacing). Our experimental design was thus a
mixed factorial design, written as in

Subject8\ControlDisplayConfiguration2[ *Sequence2*Maneuver2:

The tables presented below show these independent variables (related to
perceptual-motor requirements) and the dependent variables (related to mental work-
load) (Table 3).

3.6 Hypotheses

In terms of the distinction between perceptual-motor tasks and different control-display
configurations (stereotype compliance or violation), presented in Sect. 2, we posit the
following hypothesis:

H – The control-display configuration has an effect on the operators’ mental
workload. The mental workload experienced by operators for steering tasks should
be higher for participants using configuration B due to the control-display incom-
patibility. Hypothesis H is broken down into two operational hypotheses:

H1 – The interface type has an effect on mental workload as measured by the
NASA-TLX. We expect the NASA-TLX score to be higher for participants using
configuration B.

H2 – The interface type has an effect on mental workload as measured from pupil
dilation. The pupil diameter of participants using configuration B should be higher
than that of participants using configuration A.

4 Results

4.1 Effect of Control-Display Compatibility upon NASA-rtlx

The dimensions investigated in the mental workload questionnaire were mental
requirements, physical requirements, time requirement, effort, performance, and

Table 3. Independent and dependent variables
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frustration (variance homogeneity was controlled and accepted for all dimensions of the
questionnaire with the value a = .05). For a macroscopic analysis, the dimension-based
means of all maneuvers were examined (the means normality was controlled and
accepted, and variance homogeneity was controlled and accepted for all means of all
four maneuvers with the value a = .05). Results show a significant effect of the
interface on the mean of the Effort dimension (t (18) = 2.45; p < 0.05). Configura-
tion B users (mean = 70.00; standard deviation = 9.57) report a perceived effort higher
than that of configuration A users (mean = 58.75; standard deviation = 10.86). More
detailed analyses were performed to check whether there were differences according to
the different maneuvers. Distribution normality was checked, then parametric and
nonparametric tests were carried out (normality was respected for all questionnaire
dimensions except for the Effort dimension in maneuver 1).

The score statistical analysis showed a significant effect of the interface on the
Effort dimension only in the first maneuver (Mann-Whitney U Test: U = 1.98;
p < 0.05) and the second maneuver (t test: t (18) = −2.22; p < 0.05). The mean values
of the Effort dimension of the first two maneuvers are significantly higher for con-
figuration B users (maneuver 1 mean = 71.00; standard deviation = 11.25, maneuver 2
mean = 68.00; standard deviation = 16.02) than for configuration A users (maneuver 1
mean = 55.00; standard deviation = 18.86, maneuver 2 mean = 52.50; standard
deviation = 15.14). In other words, configuration B brought about a higher perceived
effort than configuration A.

4.2 Effect of Control-Display Compatibility upon Pupil Diameter

Table 4 shows the analysis of the “mean of z-normalized pupil diameter” variable in
terms of the variables interface, sequence, and maneuver in the entire scenario.

The analysis highlighted two main observations:

– The pupil diameter mean is significantly higher with configuration B than with
configuration A.

– The pupil diameter mean is significantly higher in submersion maneuvers carried
out at fast propulsion speed than in surfacing maneuvers carried out at moderate
propulsion speed.

Table 4. Effects of the independent variables on pupil diameter

Significant effects of pupil
diameter upon

F P Power Group means

Control-display type F(1,14) = 10,13 0,007 0,84 Configuration A: −0,01
Configuration B: 0,27

Maneuver F(1,14) = 8,79 0,010 0,79 Rapid: 0,16
Moderate: 0,01
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5 Discussion

These findings confirm all the hypotheses posited regarding the effects of the
perceptual-motor requirements (stereotype compliance or violation) onmental workload:
those effects do exist and are significant. Consistent with hypotheses H1 andH2, there is a
significant effect of the perceptual-motor requirements on mental workload. The par-
ticipants using configuration B experienced higher mental workload concerning the
Effort dimension measured by NASA-rtlx. Similarly, the participants’ average pupil
diameter was significantly higher than that of the other participants using configurationA,
regardless of themaneuver or the phase being examined (approach or stabilization phase).

The statistical results regarding the performance and mental workload experienced
with configuration B therefore confirm the comments and the observed behaviours of
submariners (see Sect. 2.1). The subjective assessment of these professionals matches
completely with the objective measures carried out in our experiment. The joystick
moves, opposite to the diamond-star moves on the display of configuration B, increases
errors and mental workload. The violation of the upward/forward stereotype defined by
Wickens [20] is consequently demonstrated by these results.

6 Conclusion

This experiment has brought useful information on methodological and practical
aspects. It also has limitations that should be emphasised. From a methodological
perspective, it demonstrates the benefits of combining several measures to enable
interface comparison and evaluation. The two measures of mental workload
(NASA-rtlx and pupil diameter) provided convergent and complementary input for
discussion. Following Cegarra and Chevalier [4], we observe that the pupil diameter
measure is more fine-tuned than that of NASA-rtlx (as it is carried out online, it
distinguishes the different phases of a maneuver) and that NASA-rtlx helps to account
for the load participants perceived. In this case, the issue is that of effort, namely the
effort that is necessary to go against what appears to be the right action. From a
practical point of view, the experiment has also shown that it is necessary to rethink the
control-display configuration B design, so as to comply with the direction-of-motion
stereotypes (especially the upward-forward compatibility of joystick and interface), to
simplify the perceptual-motor tasks and to avoid overload. However, this study pre-
sents some limitations that should be taken into account. It has been conducted in an
experimental situation with participants who were not helmsmen. Although the situa-
tion and the scenario were designed in order to be as ecological as possible, the study
must be considered as a first approach to the activity of submarine helmsmen. Ideally,
this approach should be complemented and strengthened through an analysis of
helmsmen’s activity in a naturalistic setting.
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Nistico, C., Judas, S., and Toumelin, N. (2016). Analysis of submarine steering: effects of
cognitive and perceptual–motor requirements on the mental workload and performance of
helmsmen. Cognition, Technology and Work, 18(4), 657–672.

210 P. Rauffet et al.



References

1. Anzai, Y.: Cognitive control of real-time event-driven systems. Cogn. Sci. 8(3), 221–254
(1984)

2. Beatty, J., Lucero-Wagoner, B.: The pupillary system. Handb. Psychophysiol. 2, 142–162
(2000)

3. Burgess-Limerick, R., Krupenia, V., Wallis, G., Pratim-Bannerjee, A., Steiner, L.:
Directional control-response relationships for mining equipment. Ergonomics 53(6), 748–
757 (2010)

4. Byers, J.C., Bittner Jr., A.C., Hill, S.G.: Traditional and raw task load index (TLX) cor-
relations: are paired comparisons necessary? In: Mital, A. (ed.) Advances in Industrial
Ergonomics and Safety, pp. 481–485. Taylor & Francis, London (1989)

5. Cegarra, J., Chevalier, A.: The use of Tholos software for combining measures of mental
workload: toward theoretical and methodological improvements. Behav. Res. Methods
40(4), 988–1000 (2008)

6. Chan, A.H.S., Hoffmann, E.R.: Movement compatibility for configurations of displays
located in three cardinal orientations and ipsilateral, contralateral and overhead controls.
Appl. Ergon. 43(1), 128–140 (2012)

7. Chen, S., Epps, J.: Using task-induced pupil diameter and blink rate to infer cognitive load.
Hum.-Comput. Interact. 29(4), 390–413 (2014)

8. Dehais, F., Causse, M., Pastor, J.: Embedded eye tracker in a real aircraft: new perspectives
on pilot/aircraft interaction monitoring. In: Proceedings from the 3rd International
Conference on Research in Air Transportation. Federal Aviation Administration Fairfax,
March 2008

9. de Greef, T., Lafeber, H., van Oostendorp, H., Lindenberg, J.: Eye movement as indicators
of mental workload to trigger adaptive automation. In: Schmorrow, D.D., Estabrooke, I.V.,
Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 219–228. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02812-0_26

10. Engstrom, J., Johansson, E., Ostlund, J.: Effects of visual and cognitive load in real and
simulated motorway driving. Trans. Res. 8, 97–120 (2005)

11. Hart, S., Staveland, L.: Development of NASA-TLX (Task Load Index): results of empirical
and theoretical research. Adv. Psychol. 52, 139–183 (1988). Elsevier

12. Hill, S.G., Iavecchia, H.P., Byers, J.C., Bittner Jr., A.C., Zaklade, A.L., Christ, R.E.:
Comparison of four subjective workload rating scales. Hum. Factors 34(4), 429–439 (1992)

13. Jamson, A.H., Merat, N.: Surrogate in-vehicle information systems and driver behaviour:
effects of visual and cognitive load in simulated rural driving. Trans. Res. Part F: Traffic
Psychol. Behav. 8(2), 79–96 (2005)

14. Marshall, S.P.: Identifying cognitive state from eye metrics. Aviat. Space Environ. Med.
78(5), B165–B175 (2007)

15. McLane, R.C., Wolf, J.D.: Symbolic and pictorial displays for submarine control. IEEE
Trans. Hum. Factors Electron. 2, 148–158 (1967)

16. McRuer, D.T., Allen, R.W., Weir, D.H., Klein, R.H.: New results in driver steering control
models. Hum. Factors: J. Hum. Factors Ergon. Soc. 19(4), 381–397 (1977)

17. Nilsson, R., Gärling, T., Lützhöft, M.: An experimental simulation study of advanced
decision support system for ship navigation. Trans. Res. Part F: Traffic Psychol. Behav.
12(3), 188–197 (2009)

18. Peters, B., Nilsson, L.: Modelling the driver in control. In: Cacciabue, C. (ed.) Modelling
driver Behaviour in Automotive Environments, pp. 85–104. Springer, London (2007)

Effect of Control-Display Compatibility on the Mental Workload 211

http://dx.doi.org/10.1007/978-3-642-02812-0_26


19. Ranchet, M.: Effet de la maladie de Parkinson sur la conduite automobile – Implication des
fonctions executives. Thèse de doctorat, Université de Lyon 2 (2011)

20. Recarte, M.A., Perez, E., Conchillo, A., Nunes, L.M.: Mental workload and visual
impairment: differences between pupil, blink and subjective rating. Span. J. Psychol. 11,
374–385 (2008)

21. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling
procedure for measuring mental workload. Adv. Psychol. 52, 185–218 (1988)

22. Stanton, N.A., Bessell, K.: How a submarine returns to periscope depth: analysing complex
socio-technical systems using Cognitive Work Analysis. Appl. Ergon. 45(1), 110–125
(2014)

23. Temme, L.A., Still, D.L., Kolen, J.: OZ: a human-centered computing cockpit display. In:
45th Annual Conference of the IMTA, Pensacola, Florida (2003)

24. Veltman, J.A., Gaillard, A.W.K.: Physiological indices of workload in a simulated flight
task. Biol. Psychol. 42(3), 323–342 (1996)

25. Verney, J.: Pilotage intégré pour sous-marins. Navigation 43(171), 372–387 (1995)
26. Wickens, C.D., Vincow, M., Yeh, M.: Design Applications of Visual Spatial Thinking: The

Importance of Frame of Reference. Cambridge University Press, Cambridge (2005)
27. Williams, K.W.: A Summary of Unmanned Aircraft Accident/incident Data: Human Factors

Implications (Technical report DOT/FAA/AM-04/24). U.S. Department of Transportation,
Federal Aviation Administration, Office of Aerospace Me, Washington, DC (2004)

28. Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple
psychophysiological measures. Int. J. Aviat. Psychol. 12(1), 3–18 (2002)

29. Worringham, C.J., Beringer, D.B.: Directional stimulus-response compatibility: a test of
three alternative principles. Ergonomics 41(6), 864–880 (1998)

30. Zupanc, C.M., Burgess-Limerick, R.J., Wallis, G.: Performance consequences of alternating
directional control-response compatibility: evidence from a coal mine shuttle car simulator.
Hum. Factors 49(4), 629–636 (2007)

212 P. Rauffet et al.



Neuroergonomics Method for Measuring
the Influence of Mental Workload Modulation

on Cognitive State of Manual
Assembly Worker

Pavle Mijović1(&), Miloš Milovanović2, Vanja Ković3,
Ivan Gligorijević1, Bogdan Mijović1, and Ivan Mačužić4

1 mBrainTrain LCC, Belgrade, Serbia
{pavle.mijovic,ivan,bogdan}@mbraintrain.com

2 IT Department, Faculty of Organizational Sciences,
University of Belgrade, Belgrade, Serbia
milos.milovanovic@mmklab.org

3 Department for Psychology, Faculty of Philosophy,
University of Belgrade, Belgrade, Serbia

vanja.kovic@f.bg.ac.rs
4 Department for Production Engineering, Faculty of Engineering,

University of Kragujevac, Kragujevac, Serbia
ivanm@kg.ac.rs

Abstract. In this study, we simulated a manual assembly operation, where
participants were exposed to two distinct ways of information presentation,
reflecting two task conditions (monotonous and more demanding task condi-
tion). We investigated how changes in mental workload (MWL) modulate the
P300 component of event-related potentials (ERPs), recorded from wireless
electroencephalography (EEG), reaction times (RTs) and quantity of task
unrelated movements (retrieved from Kinect). We found a decrease in P300
amplitude and an increase in the quantity of the task unrelated movements, both
indicating a decrease in attention level during a monotonous task (lower MWL).
During the more demanding task, where a slightly higher MWL was imposed,
these trends were not obvious. RTs did not show any dependency on the level of
workload applied. These results suggest that a wireless EEG, but also Kinect,
can be used to measure the influence of MWL variation on the cognitive state of
the workers.

Keywords: Wireless EEG � Kinect � Reaction times � Mental workload �
Attention

1 Introduction

Modern industry tends to automate industrial processes to a wide extent in order to
optimise mental workload imposed on the operators. However, the industry still con-
sists of many processes where automation does not apply. This is especially notable in
assembly tasks and processes where costs related to the process automation are
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generally not justifiable [1]. Manual assembly work is often repetitive and monotonous
and as such, it carries low mental workload (MWL). Importantly, mental underload can
be as dangerous as overload [2, 3] because the probability of error occurrence and
MWL exposure are mutually related, according to the U-shaped curve [4], i.e. extre-
mely high/low MWL increases the probability of error occurrence, while the optimal
MWL leads to the smallest probability of error occurrence. Therefore, there is an
increasing need to find the methodology for objective assessment of the influence of
MWL on human operators for both the automated and manual processes. Human
factors and ergonomics (HF/E) is the scientific discipline that investigates the inter-
action between system and human operators [5–7]. Classical ergonomics’ approach to
studying human cognitive state and the interaction between humans and operating
systems mainly utilises qualitative and subjective methods, such as questionnaires and
measurements of overt performance [8]. However, these methods are often unreliable
and unable to investigate the covert cognitive processes of workers during their
everyday routine in industrial environments [8]. For that reason, neuroergonomics
emerged as a novel path in ergonomics research [8, 9]. Neuroergonomics merges
knowledge from ergonomics and neuroscience, and it is defined as the science disci-
pline that studies the human brain in relation to work [10].

One of the most powerful neuroimaging methods in neuroergonomics research is
electroencephalography (EEG), since wireless EEG is capable of direct recording of
electrical brain activity in real world [11]. A commonly employed EEG method for
evaluating cognitive state is the extraction and investigation of event related potentials
(ERPs). ERPs are defined as voltage fluctuations in continuous EEG signal that are
associated in time with certain physical or mental occurrences [12]. ERP components
are usually defined in terms of polarity, and latency with respect to a discrete stimulus,
and have been found to reflect a number of distinct perceptual, cognitive and motor
processes. In that sense, the so-called P300 component is represented by the positive
deflection in terms of voltage, appearing around 300 ms after the stimulus presentation
[13]. The P300 component is often used to identify the depth of cognitive information
processing and is not influenced by the physical attributes of the stimuli [13]. For these
reasons, the P300 ERP component is assumed to reflect the attention level of the person
[14] and its amplitude is modulated by mental workload [15].

It is important to stress that the goal of neuroergonomics is not only to investigate
the brain’s functions, but also to put it in the context of human behavior in everyday
environments [9]. As such, it is important to investigate the neural basis of physical
performance, e.g. body movements and reaction times (RTs). Traditionally, RTs were
used to estimate the cognitive state of the person. The main reason behind the wide use
of RT measurements is that they are easy to measure and simple to interpret [16]. RT
represents a time interval from the indicated start of a work process or operation
(stimulation), until the moment of the action initiation. However, as it was pointed out
in [17], reaction-time experiments usually consist of a stimulus followed by the
response, without direct possibility to observe the mental processing that occurs in
between.

Physical performance measurements are ubiquitous in ergonomics studies, mainly
in the domain of physical ergonomics. These became even more prominent with rapid
development of the motion capture (MoCap) sensors that are nowadays affordable and
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unobtrusive. The majority of research related to operators’ motion is related to posture
estimation or action recognition [18], while significantly less studies are oriented
towards linking cognitive processes to motor actions. One study that investigated the
relationship between gestures and the cognitive state of the person showed that during
the task that carries less mental workload, the quantity of the task unrelated movement
increases [19]. This study investigated behavioral activity offline and indirectly, since
the participants were recorded with a video camera and manual analysis was subse-
quently performed with replaying the video [19]. Advances in computer vision tech-
nology (namely structured light technology) nowadays allows for automated analysis.
This enabled us to develop and use a simple behavioral model, based on movement
energy (ME; [20]). Ultimately, the combination of brain dynamics and behavioral
modalities can open a deeper understanding of the influence of the mental workload on
human mental states during complex work activities [21].

The aim of the present study is to investigate how changes in mental workload
during a simulated industrial manual assembly task are influencing the P300 ERP
component’s amplitude, but also the behavioral modalities of RTs and ME. We
investigated the influence of the task duration on these modalities, where the expectation
was that the ME and RTs should show an increasing trend, while the P300 component’s
amplitude should decrease as the task progresses. Additionally, we investigated whether
the changes in mental workload modulate the P300 component’s amplitude.

2 Methods

2.1 Participants

Ten subjects, aged between 19 and 21 years old. volunteered as participants in the
study. Participants were instructed not to drink any alcohol on the day before and the
day of their participation in the study, as well as not to drink coffee at least three hours
prior to their participation in the study. All participants had normal or
corrected-to-normal vision. They had agreed to participation and had signed the
informed consent, after reading the experiment summary. The study was approved by
the Ethical Committee of the University of Kragujevac.

2.2 Replicated Workplace

Reliable EEG recording still relies on wet electrodes, thus the on-site industrial EEG
recording still represents a big challenge, since it may cause discomfort to the workers
on the industrial floor. For that reason, we replicated a workplace (Fig. 1) in the
building of the Faculty of Engineering (University of Kragujevac) and we simulated the
production process of the rubber hoses, used in the hydraulic brake systems in auto-
motive industry. Once the replicated workplace was created, the participants in the
study were equipped with the wearable EEG. Participants’ movements were recorded
using Kinect sensor, which was placed in front and above the participants. Foot switch
was used with the aim of recording the RTs, as will be explained in Sect. 2.7. The
sensor placement is presented in Fig. 1.
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2.3 Sensors Used in the Study and Multimodal Synchronization

EEG data were recorded with the SMARTING (mBrainTrain, Serbia) wireless EEG
system. The small and lightweight EEG amplifier (85 � 51 � 12 mm, 60 g) was
tightly connected to a 24-channel electrode cap (Easycap, Germany). The communi-
cation between the SMARTING and the recording computer was established through a
Bluetooth connection. The electrode cap contained sintered Ag/AgCl electrodes that
were placed based on the international 10–20 System. The experimental procedure
imposed that the electrode impedances must be set below 5 kX, which was confirmed
by the device acquisition software.

To investigate the body movements, we used the Microsoft Kinect sensor. Kinect
has a sampling frequency of 30 frames per second (fps) and it is capable of representing
the human body with a stick figure, where the most prominent human body joints (e.g.
shoulder, elbow) are represented with the key-points. For this study, we used a 10
key-point seated model, since in the experimental setup. the replicated machine
occluded the lower part of the participants’ body.

To synchronize the data coming from different, above-mentioned, sensors, we used
the Lab Streaming Layer (LSL) framework (https://github.com/sccn/labstreaminglayer).
As explained in [21], LSL is a real-time data collection and distribution system that
allows multiple continuous data streams as well as discrete marker timestamps to be
acquired simultaneously by Lab Recorder, in an eXtensible Data Format (XDF). This
data collection method provides synchronous, precise recording of multi-channel,
multi-stream data that are heterogeneous in both type and sampling rate [21], and all of
the sensors mutually communicate over a local area network (LAN).

Fig. 1. Replicated workplace and the sensors placements
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For running the experimental tasks (explained in detail in Sect. 2.4) we used the
SNAP environment. SNAP allows relatively simple, script-level development of
complex, interactive experimental paradigms and it can retrieve the signals from var-
ious input devices. This feature was used to attach the foot switch through a USB port
to the recording computer, with the aim of recording the RTs. with the aim of
extraction of the behavioral modality of RTs.

The overall system architecture for synchronous recording of all described streams
is graphically depicted in Fig. 2.

2.4 Experimental Task

Simulated Assembly Task
In the production process, an operator carries out the crimping operation in order to join
a metal extension to a rubber hose. This single operation, carried out in a sitting
position, consists of eight simple steps (actions). The simulated operation consists of
eight major production steps that can be summarised as follows (Fig. 3): first, the
information to initiate the simulated assembly operation is presented to the participant,
in the form of visual stimulus (step 1), upon which he is instructed to instantly initiate
the operation by taking the metal part (step 2) and the rubber hose (step 3). Following
this, participants should place the metal part on the hose (step 4) and place both inside
the crimping machine (step 5). The participants then proceed by promptly pressing the
pedal, which initiates the improvised machine and replicates the real machines’
crimping sound (step 6). Upon completion of the simulated crimping process, the
participant removes the component and places it in the box with completed parts (step
7). Finally, the participant sits still and waits for subsequent stimulus (step 8).

Experimental Procedure
Experimental procedure was similar for all the experiments and it was described in
detail in [11]. The participants were subjected to the modified sustained attention to

Fig. 2. Overall system architecture
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response task (SART) and Arrows task, simultaneously with the simulated task. The
tasks were balanced across the participants and duration of each task was around one
and a half hours, upon which the participants had a 15 min break, before starting the
second task. Both tasks were presented on a 24” screen from a distance of approxi-
mately 100 cm. Upon presentation of the stimuli on the screen, the participants were
instructed to complete the previously explained assembly operation.

As explained in [11], the original SART paradigm consists of consecutively pre-
senting digits from ‘1’ to ‘9’ and participants are required to give the speeded response
on all stimuli, with the exception of digit ‘3’. The main difference between the original
SART and in modified SART paradigm is that the digits in Numbers are randomized,
with the condition that forbid the appearance of two consecutive digits ‘3’ (‘no-go’
stimulus) and in between two ‘no-go’ conditions at least two ‘go’ conditions must
appear. The participants in the study were instructed to initiate the assembly operation as
soon as the digit appeared on the screen, with whichever hand they felt more com-
fortable (they could freely choose, previously explained step 2 and 3, presented in
Fig. 3).

The Arrows task was presented and explained in [11]. The Arrow task is a choice
reaction “go/no-go” task, where the arrows pointing to the left and right appear on the
screen; the white arrows represent the ‘go’ (target) condition, whereas the red arrows
represent the “no-go” stimulus. Similarly to the SART task, the stimuli sequence in
Arrows was randomised with the condition that forbade two consecutive appearances of
the “no-go” stimuli. Contrary to SART, the participants were required to initiate the
action altering the hand according to the direction in which the white arrow on the screen
was pointing, i.e. in the Arrows task the participants should initiate the action with the
right hand (step 2) if the white arrow is pointing to the right, or with the left hand (step 3)
if pointing left. Regardless of the task, all the stimuli were presented for 1000 ms on a
black screen background. Each task consisted of 500 stimuli, where the probability of
the appearance of the ‘no-go’ stimuli was set to 10% (50 in total), while the ‘go’ stimuli
were presented 450 times.

Fig. 3. Graphical presentation of the step-by-step simulated crimping operation (Color figure
online)
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2.5 EEG Processing

EEG signal processing was performed offline using EEGLAB [20] and MATLAB
(Mathworks Inc., Natick, MA, USA). EEG data were first bandpass filtered in the 1–
35 Hz range, followed by re-referencing to the average of the TP9 and TP10 channels.
Further, an extended Infomax Independent Component Analysis (ICA) was used to
semi-automatically attenuate contributions from eye blinks [21]. After the data pre-
processing, ERP epochs were extracted from −200 to 800 ms with respect to times-
tamp values of “go” and “no-go” stimuli. Baseline values were corrected by subtracting
mean values for the period from −200 to 0 ms from the stimuli occurrence. The
identified electrode sites of interest for the ERP analysis in this study were Fz, Cz, CPz
and Pz, as the P300 component is most prominent over the central and parieto-central
scalp locations [14]. The P300 amplitude was calculated for both the “go” and “no-go”
conditions and for each experimental condition, using mean amplitude measure [12] in
the time window from 350 to 450 ms, with regard to the timestamps of the stimuli.

2.6 Movement Energy (ME) Calculation

During the simulated assembly operation, the upper-body movement of participants
was recorded with the Kinect. The Kinect was placed in a position above and in front of
participants (as shown in the Fig. 1). The motion data are acquired in a form of a stick
figure with the 10 key-points seated model that represent the joints of the upper body.

Automatic quantification of the task unrelated ME was based on the kinetic energy
of the key-points. The motion data were extracted and analyzed in the period between
the operators’ completion of each operation and the consecutive stimuli that was pre-
sented to the participants (Step 8, Fig. 3). In that period, the participants had no pre-
scribed activity and the expectation was that they would spend that time relatively still.
Further, the kinetic energy of movement was calculated for each simulated operation
and for each of the key-points in all-three axes (as explained in [20]). Finally, the ME
for each trial was calculated as the summation of kinetic energies in all three axes.

2.7 Reaction Times

The experimental design did not allow subjects to react to the button press on seeing the
visual ‘go’ stimulus, thus the reaction time (RT) could not be measured in the traditional
way (as the time elapsed between the stimulus presentation and the speeded response by
the participants). For that reason, RTs in our study were defined as the time elapsed
between the stimulus presentation (step 1) and the foot switch press (step 6 from Fig. 3).
This allows the calculation of RTs, as the difference between timestamps from simu-
lated operation initiation and the beginning of the machine simulated crimping process.

2.8 Statistical Analysis

Prior to statistical analysis, we averaged our data using a 15-point and one-step moving
average window, as explained in [22]. The statistical analysis was performed using
IBM SPSS software. We performed Spearman correlation in order to investigate the
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changes in behavioral and neural features as the time of the task progressed, i.e. the
general trend of P300 amplitude, RTs and ME.

Additionally, in order to investigate whether the mental workload modulates the
P300 amplitude, we performed a paired t-test between P300 amplitude in SART and
the Arrows task, on four electrode sites of interest (Fz, Cz, CPz, Pz). It is noteworthy
that we compared the values of P300 amplitudes only in the “go” condition.

3 Results

The Spearman correlation results are presented in Table 1. These results revealed the
general negative trend of RTs, regardless of the task and order of the task presentation.
Regarding other modalities, the ME data showed a positive trend, whereas the P300
amplitude showed a negative trend in most of the task conditions, with an exception in
the case of the arrows task presenting as the second task, i.e. when a more demanding
task was following the monotonous task.

The general trends of P300 amplitude at the Pz electrode location and ME are
graphically shown in Fig. 4. Regarding the P300 amplitude’s analysis, we found that
P300 component’s amplitude in the “go” conditions elicited higher P300 amplitude in
the Arrows task, compared to the SART task (p < .05). The t-test results for all four
electrode sites are provided in Table 2.

4 Discussion

In this study, we investigated the influence of mental workload on the cognitive state of
the workers during the manual assembly operations. We imposed two different levels of
mental workload on the workers during the simulated manual assembly operations and
observed its effect on the behavioral modalities of ME and RTs, as well as on the
modulation of the P300 component’s amplitude. P300 component’s amplitude and ME
showed comparable results. From Table 1 and Fig. 4, it can be seen that the P300
amplitude is decreasing during the task, reflecting that the attention of the participants is
showing negative trend, the amount of the task unrelated movement (ME) is increasing
in almost all experiment conditions (also shown in Fig. 4). These results are in line with
our hypothesis that the amount of task unrelated movement should increase during the
monotonous task [19], while the P300 amplitude is expected to decrease. The exception
from the general trend is the experimental condition in which the task that carries higher

Table 1. Spearman correlation results

Task/task order ME RTs Fz
P300

Cz
P300

CPz
P300

Pz
P300

SART first .512** −.309** −.501** −.538** −.567** −.595**

SART second .473** −.277** −.274** −.375** −.218** −.217**

Arrows/first .183** −.322** −.693** −.621** −.593** −.531**

Arrows/second −.265** −.194** .311** .385** .414** .546**
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MWL (Arrows) is performed upon completion of the more monotonous (SART) task.
The difference in MWL is the consequence of the choice action in the Arrows task that
does not exist in the SART task. Our results suggest that if the more monotonous task is
followed by the more demanding task, the amount of the task unrelated movements is
decreasing, while at the same time, there is a positive influence on the participant’s
attention level, as the P300 amplitude shows an increasing trend as the task progresses.
Additionally, the t-test revealed that the P300 amplitude elicited during the Arrows was
of higher magnitude than during the SART task. This can be expected, since in the
Arrows task the participants are exposed to slightly higher demands of the arriving
stimuli evaluation, as they are unaware of the arrow stimuli direction. On the contrary,
the digit stimuli from SART task carries significantly lower information, which can

Table 2. T-test results for P300 amplitude comparison between the task conditions
(Arrows/SART task) and for all electrode sites under study.

Electrode site Task N Mean STD STD error mean

Fz Arrows 40 4.45 5.23 0.70
SART 40 2.38 5.04 0.67

Cz Arrows 40 4.81 4.70 0.63
SART 40 2.57 4.85 0.65

Cpz Arrows 40 5.35 4.32 0.58
SART 40 2.76 3.99 0.53

Pz Arrows 40 6.36 4.17 0.56
SART 40 3.22 3.41 0.46

Fig. 4. graphical representation of general trends of P300 amplitude from Pz electrode site (red
color) and ME (black color). (Color figure online)
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cause the participants to stop evaluating the content of the stimuli after some time [11],
i.e. in SART task participants should just pay attention to whether it is a “go” or “nogo”
condition, while in the Arrows task they should also pay attention to which hand they
will initiate the operation. All these results confirm our hypothesis that the modulation of
mental workload also modulates the P300 amplitude, but also ME. On the other hand,
we found that the RT results did not depend on the level of the imposed mental
workload. Although we hypothesised that RTs will decrease over the time course of the
task, they showed a negative trend in all cases under study, i.e. the participants were
faster in executing the task as the experiment progressed. This may not be surprising,
since the participants in the study were students, without any prior working experience
in similar tasks. Therefore, the decrease of the RTs can be attributed to the effect of
rehearsing [23], as the students seemed to become increasingly familiar with the sim-
ulated assembly operation.

The results from this study suggest that the overt performance monitoring, as
observed through RTs, may not be reliable enough, since we did not observe any
difference in reaction times between different experiment conditions. Notably, this
finding is in line with one of the main premises of neuroergonomics [8]. Additionally,
this study suggests that a slight increase in mental workload in a manual assembly
operation, compared to an entirely repetitive and monotonous task, has a positive
influence on the cognitive state of the operators. Finally, findings from this study may
be also implemented in the job rotation strategy in factories. Job rotations in assembly
lines are often proposed as a method of reducing the monotony of the task, thus
keeping the workers more focused [24]. We propose that job rotations on assembly
tasks should be organised in such a way to avoid cases in which a more demanding task
is followed by a task that is more monotonous in nature. However, this observation
should be investigated thoughtfully in future studies.

5 Conclusion

This study demonstrated how neuroergonomics methods can be successfully applied in
investigating the influence of changes in mental workload to the cognitive state of the
workers. The monotonous task showed a decrease in P300 component’s amplitude and
an increase in ME, both indicating a decrease in the attention level of a worker, as the
task progresses. It is noteworthy that in the more demanding task, this result was not
consistent. Furthermore, we also showed that the P300 amplitude was more prominent
in the task that carried a slightly higher cognitive demand, in comparison to a highly
monotonous and repetitive task. All these results suggest that the wireless EEG, but
also Kinect, can be successfully utilised in the measuring of the influence of mental
workload modulation on the cognitive state of the workers.
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Abstract. The scope of the present work is to report an action research project
applied to the relationship of task and cognitive workload support on one of the
most important aspects of an airport: ground handling. At the beginning of the
project workload management was not in the scope of work but as the project
progressed and preliminary results and feedback were gained the researcher came
to realize that some form of workload management support was also achieved as a
by-product. The present paper is an attempt to account for what was achieved and
how. Safe and efficient ground handling during departure and arrival of an aircraft
requires coordinated responsibilities amongst qualified operators collaborating
together simultaneously in a time constrained environment. The context is one of
medium-high workload due to the number of activities covered in a short time,
such as: passenger, baggage and cargo handling, aircraft loading, the provision
and use of ground support equipment, etc. This paper presents the introduction of
a tool aimed at performance monitoring and task support and discusses how the
use of it can play a key role in the adequate management of workload by operators
in Ground Handling. The core elements of the tool under analysis are electronic
checklist and digitized shift handover, and it aims at highlighting how they have
impacted performance, reducing operational and human related issues.

Keywords: Performance management � Safety management � Cognitive
workload � Task support � Electronic checklist � Shift handover � Aviation

1 Introduction: Ground Operations and Human Workload

In aviation, ground operations is the aspect that deals with the airport handling pro-
cedures ensuring passengers and baggage are safely on board the aircraft prior to
departure [1]. Safe and efficient ground handling during departure and arrival of an
aircraft requires coordinated responsibilities amongst qualified persons at the same
time, which generates heavy workload due to the high number of activities covered in a
short time, such as: passenger, baggage and cargo handling, aircraft loading and
handling, baggage preparation for loading and weight and balance sheet, use of ground
support equipment, etc. [1].

The effects of task demands on human performance are increasingly under the
spotlight, as the move towards automation has shifted the nature of human work from
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working with the body to working more with the mind. Furthermore the increased
responsibilities transferred to complex technological tools along with more complex
procedures have imposed more demands on operators [2]. Instead of physical endur-
ance and strength, sustained attention and problem solving skills have become more
important [3]. This element is relevant for ground operations together with the observed
effect of how physically demanding work that is performed simultaneously with a
cognitive task can influence mental workload by weakening mental processing or
decreasing performance [4]. In this context the aim of this paper is to explore the
benefits of a web based application developed as a form of task support in ground
handling tasks. Specifically the initiative introduced in a regional airport the use of an
electronic checklist and shift handover as key element in fostering a safer and more
efficient work environment. The digitization of daily electronic checklist and support
systems for the shift handover which list the operations of the “turnaround” to be
performed for each aircraft, and other maintenance activities required for equipment
and/or infrastructure (e.g. runway inspections) was a platform able to provide the
opportunity to collect real time performance and reporting on day to day anomalies and
issues that was not available before. The tool has been used for two years and in this
study we collected feedback from front line personnel and management on what were
the perceived impacts the tool had on performance. At the beginning of the project
workload management was in fact not in the scope of work but as the project pro-
gressed and preliminary results and feedback was gained the researcher came to realize
that some form of workload management support was also achieved as a by-product.
The present paper is an attempt to account for what was achieved and how.

1.1 Cognitive Workload and Task Support

A comprehensive definition of cognitive workload is “an amount of mental resources
required to perform a specific task or sequence of tasks in a given environment” [5].
Excessive cognitive workload is generated when the satisfactory performance of a task
demands from the operator more resources than are available at any given time [6].
A task can become complex after simple manipulations, for example, increasing the
number of elements, changing the number of decisions required to complete an action,
or the display duration as these changes can influence attention, effectiveness, and the
time needed to complete a task [7]. The assignment of additional tasks to a worker has
been one of the workload manipulations most commonly done even when the individual
is already performing a complex task. The use of executive control processes becomes
essential to guarantee the successful performance of multiple concurrent tasks [8]. The
successful execution of several tasks simultaneously is more vulnerable as the workload
increases. The workload is shouldered by the cognitive capability known as ‘executive
functions’. Executive functions are necessary for goal-directed behavior, as they include
the ability to initiate and stop actions, to monitor and change behaviors, to plan future
actions when faced with new situations [8]. A task support in this sense can be one able
to sustain some of the executive functions such as working memory (that has to do with
the capacity to hold and manipulate information “on-line” in real time) and sequencing
(the ability to break down complex actions into manageable units and prioritize them).
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To do so a necessary cornerstone is a clear task description. Task analysis in this
sense is a necessary requirement to the design of task support. A proper acquisition of
relevant information about a task in a safety-critical environment is the foundation of
every sound human factor analysis. More and more studies have highlighted that this
critical first step of the analysis cannot be neglected as it needs to provide the design
stage with structured information about the tasks and contexts to be addressed, par-
ticularly when there are relevant time constraints during workload. This step of the
study was carried out using a tool previously developed to support data collection and
able to provide a structure for the interviews with the workers based on a simultaneous
graphical representation of the task. It was used as a common means of communication
between the technical personnel involved in the interviews & the human factors
practitioners involved in the action research. This was aimed at supporting a common
understanding of the tasks, their main objectives, challenges and criticalities whilst
performing the actual task description [9]. The task analysis lead to the development of
revised check lists for the key turnaround tasks and to the inclusion of shift handover
provisions for the other activities not covered by checklists and not related to flight
turnaround time. The checklists were used as a real time sign off for the tasks and
delivered task support as they reminded key steps in detail and gave the possibility to
report quickly any possible anomalies or issues in carrying out the tasks. Furthermore
the shift handover page was designed to give the possibility to allocate tasks outside
peak time, check status quickly and report once again issues as they arise. The
information is managed by back office and feedback can be provided through the same
dashboard where the shift handover occurs. We will discuss in the following paragraph
the rationale for these very simple choices and their current outcomes.

2 Electronic Checklist and Shift Handover: Their Role
for Task Support & Workload Management

The National Transportation Safety Board of United States recommends the use of
checklist to carry out highly proceduralised work such as for instance the proper
aircraft configuration for each phase of the flight. However, the improper use of these
items can be a contributing factor to incidents and accidents [10]. The paper checklists
that have been digitised were however already in use at the airport where the study
occurred and they were exposed to a number of design weaknesses [11]. The most
relevant issues included the inability to mark skipped items or the lack of a pointer for
each item, and the lack of support for switching between several checklists. All these
obstacles were mitigated with the use of an electronic checklist [11].

Electronic checklists offer several benefits to support a faster execution as they
supply an external memory support for pending or completed steps of a procedure as
well as serving as a reminder of omitted steps. At the same time, the electronic
checklist can “detect” and show the current status for every single procedure. This can
support status awareness for long tasks and help to ensure the completion and control
of many simultaneous tasks. The incorporation of a touch-operated function into the
electronic checklist also permit a faster information manipulation in switching from one
procedure to another without losing track of partially completed checklists or getting
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lost through many tasks. The electronic checklist system was designed specially to
reduce four types of common errors present in traditional paper checklists. Firstly, as a
help to avoid forgetting the tasks at hand, and avoid skipping tasks. Secondly, it is
inevitable to suffer from distractions or interruptions during a day’s work, an electronic
checklist can minimise the issue, supporting the resumption of work after any
interruption/distraction. Thirdly, share the information in real time, asking support to
someone if it is necessary and last but not least offer data analytics on daily perfor-
mance KPI, key issues and need for solutions, it also offer insight into how a solution
seems to work on the shop floor after implemented [11]. Just as the electronic
checklists play an important role to guarantee the proper performance of the tasks
connected with aircraft turnaround, in the same way electronic shift handovers are an
important factor for non-recurrent tasks, safety critical activities such as runway
inspections and coordination between operators at various level (passengers handling
operators and ramp operators with airport duty manager).

The importance of proper shift handovers is often discovered in accident analysis
where improper communications and assignment transfer occurred between shifts. In
2005 for instance Texas City submitted the final investigation report about the fatal
Isomerization Unit Explosion in its city; the report explicitly mention poor shift han-
dover as a key root cause of the accident [12]. Reliable communication is crucial for
safety critical tasks and a proper shift handover is highly relevant in this context [13].
This is why the Health and Safety Executive in the UK [13] has contributed a guidance
document HSG48 in which they provide information to improve shift handover. The
most relevant advice consists in specifying the information more carefully before it is
communicated, including aids such as semi structured log books that are a task support
of sort for the activity of communicating the right information about the non-recurrent
tasks handed over from one shift to the next. NASA demonstrated in a study how the
design weaknesses of the traditional checklist and the improper human interactions
associated with it can reduce the effectiveness of procedures, especially in complex socio
technical systems where the role of the human is key. The same study also points out that
merely improving the engineering design and the procedural sequence of the checklist
will not eliminate the problem [11]. A recent report from the Aviation Safety Reporting
System (ASRS) published in September 2015 highlights how the implementation of a
new working methodology supported with a proper checklist has allowed the orderly
execution and sequential collection of vital steps as well as facilitating the resolution of
abnormal situations. Nevertheless, ASRS still receives incident reports associated with
checklist errors, perhaps it’s worth taking another look at some of the factors affecting
proper checklist usage, including workers commitment and engagement [14].

3 The User Participation in Developing the Task
Support Tool

The design of a workspace and associated task is one of the key drivers to allow people
to carry out their role in an organization effectively and enjoy their work. Inspection
methods can be applied in Human Computer Interface design to assess usability of
interactive systems. However, they do not consider the state of the operator while
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executing a task, the surrounding environment and the task demands [15]. As a result,
all too frequently, heavy troubleshooting is still necessary in the real-world during the
ramp-up phase once the system has been build. Furthermore, the involvement and
commitment of staff is crucial to ensure ownership of any task support tool. Partici-
patory design is a process based upon involving front line staff in assessing the
workplace including activities and tools at an early stage to ensure feedback is
incorporated into user informed design choices. It provides a good platform to enhance
frontline staff’s awareness and involvement in activity management, by allowing them
to take control of the necessary knowledge and an understanding even of the risk
involved in their day to day activities [16].

The IT system developed as part of this study in the regional airport was delivered
in 2014. Its aim was to support performance management and change in the airport
considering the challenges faced in commercial aviation: the need to grow traffic,
increase effectiveness of existing staff as there was no budget to upscale resources to
match the required traffic increase. This situation can potentially lead to increased
workload and time pressure for operators during turnaround. The operators suggested
to adopt for their day to day a more organised approach to task assignment similar to
the one used in the past for short-term periods of significant traffic growth due to
special events (such as extra chartered flight during Mediterranean Olympic games in
the region). This led to the development of a new integrated platform where operators
at all levels could share all their required tasks, information and indicators in functional
processes to create the transport service [17]. The case study involved University
researchers and the staff of a small regional airport in Italy. The final result was an IT
tool called “Daily Journal” configured as a databased to support, monitor and analyse
day to day performance on the key activities in the airport. To start the process a
mock-up was built to single out all the data that needed to be migrated form the paper
format of the check lists used by Ramp and Operations for each flight into an electronic
format.

Furthermore the data collected was extended to incorporate the managing of small
deviations and anomalies. The previous paper forms were simple checklist that did not
collect any info regarding who performed a task, if the task had any issues, or if there
was the need to pass on any follow up or request for interventions from one shift to the
next. The checklist was restructured around the subtask performed for Ramp and
Handling operations identified during the process mapping exercise. Furthermore it is
now possible to record who is in each turn and who are the shift leaders, and any
possible anomaly that might occur during the operations and its associated criticality
level and follow up. Critical anomalies can be escalated into accident reporting at any
point.

Additionally, this tool also supports the management of the Safety Assessment of
existing and planned operations. This feeds into the reporting against key performance
indicators required by the Airport Council international for benchmarking purposes
[19]. The Daily Journal provides an integrated platform for performance monitoring,
reporting, task support, procedure documentation and proactive risk assessment.
Proactive risk assessment is required by ICAO guidance document on Safety man-
agement systems [18]. To guarantee a proper shift handover design, a mock-up was
built to single out all the data that needed to be migrated from the paper format of the
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checklists used by Ramp and Operations for each flight into an electronic format [17].
The checklist was structured around the subtask performed for Ramp and Handling
operations identified during the process mapping exercise. The system has been built as
a management system and it is configured as a Web Application. The application is
connected to the existing company’s databases and can show all required data using an
interface protected by password [17].

4 Daily Journal in Operation: How It Supports Ground
Handling Operators’ Workload Concretely

Before the Daily Journal implementation it was found that the airport activities were
perceived as constant firefighting, and the majority of the people interviewed pointed
out that there was no clear assignments of roles and responsibilities for each turn. 70%
of people interviewed proposed a use of shift planning around each flight which was
the method used for short-term periods of significant traffic growth due to special
events. Among the suggestions it was also proposed to allow automatic collection of
data for ground handling task performance for every turnaround (already manually
collected with the Trip File associated to each flight). Around 80% of people inter-
viewed said that there wasn’t a clear form of performance appraisal and they would
have liked to have one.

One of the main change management activities carried out was to mitigate these
issues providing an electronic checklist about what needs to be done by whom, so that
the process of turnaround in ground handling can be integrally monitored. Figure 1
shows a checklist for a flight that arrives, where for each operation the sign off requires
to select the name of the operator that executed it. There is the option to open a sub-task
located to the right, where it can insert the anomalies that can happen during the
execution of a step, and classify them by giving a kind of “severity” and insert them in

Fig. 1. Example of a checklist to monitor operations on incoming flights.
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the context of the impact on safety, quality, security or environment, etc. The prototype
can be used in at least three PC workstations, two in the Airport Duty Manager
(ADM) office, situated in front of the aircraft parking apron and one in the ramp station,
also located in front of the apron. The turnaround display is user friendly and easy to
handle which allows users to enter information in a short time and share it instantly.

Figure 2 shows the main screen of the Daily Journal, where all flights arriving and
departing daily should be loaded automatically. Several items have been grouped into a
single box called “Actions” for each flight. The first item corresponds to “checklists”
with all the operations and the operators involved in the flight. The second item allows
users to add cases of passengers with reduced mobility or those need of assistance. The
third element includes loading instructions and the last one is used to insert the
“anomalies”. The main screen also shows the activities derived from handovers (shift
handovers). The reporting around those activities is completed by the
airport-duty-managers. He/she may also report problems even when they have already
been investigated and resolved. Any abnormality reported remains in the system, even
if it has been resolved, and they are analyzed and discussed during scheduled during
management review meetings.

One of the main advantages of this tool is to give a real picture of routine operations
available in a shift versus their timeline. As this data can be used to show a precursor of
workload based on the task performed by the resource available in each shift by
cumulating the turnaround and routine tasks with the non-recurrent tasks performed
during each shift. It was also used to identify latent risks and potential anomalies in the
procedures, equipment, training and the human factor component, deviations which
otherwise would have never been highlighted as well as providing a lever on the
monitoring of key performance in the context of business management for long-term
strategies. This leads to improved efficiency and avoids substantial costs that may arise
from possible accident scenarios. It can also highlight if there are potential correlations

Fig. 2. Example of the main screen with the daily flights to manage and the activities derived
from the handovers (shift handovers).
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between certain type of issues and different workload levels. Figures 3 and 4 shows a
sample of the data analysis function for activities performed for each shifts, and the
amount of anomalies recorded for each shift.

As a byproduct the daily journal also supports better communication as before its
introduction some of the operational time was taken up coordinating and passing on
information through VHF radio, the workload requirement due to this has greatly
decreased. Below some comments received by employees/users of the Daily Journal:
“The shift handover has become a mirror for operations activities, even in retrospective
mode, with a greater control over the things that we do and that need to be done”. Or
“now we know better the potential consequences on the next shift if we perform certain
operations in a superficial (routine) way”. Or “It changed the way we think, we have a

Fig. 3. Example of the analysis for amount of ground handling activities recorded for each shifts
coming from different categories.

Fig. 4. Example of sample data for amount of anomalies recorded for each shift
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bigger awareness and responsibility on our operations”. Or “while performing a task,
whether the loading of cargo or push-back, now we think about the risks involved in
the various steps”.

For the managers and the operators on shift it is now possible to see over time
what was done by whom in each shift and monitor not just the normal activities but
also all the extra issues and anomalies that were handled and closed in each shift
which added to the actual task requirements.

Regarding competences, the people interviewed were happy with the training
provided by the organization and knowing that system would allow them to obtain
certifications required and enabled most workers to be flexible and cover many posi-
tions. What they pointed out as missing firstly is the monitoring of actual tasks covered
to make sure that there is a picture of the workload managed by each operator over time
and the skills that need to be retained through experience. This feature of the tool
effectively supports performance appraisal and feedback for the workers. The key
success factor in this process of change is the human factor connected to technological
development, without a proactive and constructive involvement by the majority of
internal staff resistance to change of a work methodology rooted and consolidated over
time would have probably compromised the tool uptake even if technically flawless.
There is a development path both technological and human to be undertaken to achieve
the improvement of performance and the desired innovation. Some details must be
included during this path, such as training, ongoing communication and “no blame
policy” towards staff involved in the reporting of errors or irregularities in the process.
These are key factors for a successful tool uptake together with process transparency
and the involvement of the entire staff.

5 Day to Day Task Support and the Long Lasting
Implications on Error Reduction and Safety

The tool needs to support the full cycle for performance management.
The functionalities developed are:

1. Checklist to be used for task support on critical operations available in the on line
repository of procedures directly derived from the Process mapping.

2. Digital signoff of the checklist and extra tasks connected to Shift handovers.
3. Review of procedures and processes performing participatory risk assessment (it

takes the shape of structured hazard identification exercise focused on each oper-
ation of the airport operations manual). This will lead to the initial shaping of a risk
registry for the main activities of the company to be further updated with risks
identified through reporting and periodic reviews.

4. Management of recommendations coming from reporting and updating of risk
registry through suggestions of the “Management Review and Safety Board”

5. Monitoring and data analytics capacity on workload managed for each shift over
time and recurrent issues (see Figs. 3 and 4)

The first two aspects of the tool provide the advantage of making more readily
available on the job the forms that can support the workload of the normal daily signed
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off procedures for all the operators on site. Only now the intention is to perform the
sign off closer to real time and support the assignment of the extra tasks as part of the
shift handovers notes that can be followed up to monitor task execution and workload
precursors (number of activities over time) for shift and operators.

This has dramatically reduced the amount of miscommunication and lack of clarity
in respect to who is supposed to do what during the turnaround. The tool contributed to
reduce human errors as some of the issues reported were around steps of the tasks that
were occasionally previously neglected.

The reduction of human error achieved is estimated to be in the range of 20% only
accounting for the human error that are now reported and corrected on the job while
they were previously not even noted (The 20% accounts for anomalies reported and
closed almost immediately, and/or near misses currently recorded).

As an example it is relevant to mention the near misses and anomalies reported
around the part of the pushback when the “NOSE GEAR LOCKPIN” is inserted. This
pin acts on the valve that inhibits pressure to the nose gear. Then the steering height
must be checked so as to avoid the tractor from impacting and damaging the landing
gear doors. Possible errors around this part of the task can be forgetting to insert the
Lock pin (often detected and corrected immediately before pushback, also thanks to the
special notes used in the checklist and on the pushback vehicle, or that during the push,
the towing tractor must be maneuvered so as to not exceed the maximum steer radius
and speeds; should the safety pin break there would be a loss of directional control.

Furthermore the system has been able to dramatically address the issue of under
reporting at the airport. After the first year of using it the airport has been able to increase
by a factor of 10 the amount of information reported to management about operational
issues [18]. The tool was introduced also to improve reporting levels and address some of
the causal factors identified by previous studies for underreporting [19–21]:

1. a definition of operational anomalies and near misses relevant to the issues normally
encountered on everyday tasks

2. a reporting framework that can avoid the extra paperwork
3. the provision of feedback on reported problems and operational issues.

The new reporting framework introduced in this change initiative linked the effect
of an online task support to support the management of workload for highly proce-
duralised tasks in the form of a check list with an embedded reporting function (that is
inherent to the signoff process already part of on-site operational requirements).

The advantage of using existing tools for near misses and in general event
reporting is that the use of ad hoc reporting forms fail to provide a real-time picture of
routine operations and possible peaks of task requirements due to anomalies and
disturbances to be managed in the process [22].

6 Interim Results and Future Work

The new task support tool and reporting framework introduced in this change initiative
has the advantage of being based on the forms that were already used as part of the
normal daily operations for all the operators on site. This advantage effectively helped

234 M.C. Leva and Y. Builes



the goal of providing a real-time support and a picture of routine operations aimed at
performance improvement and predictive risk management. As already stated the
checklists were used as a real time sign off for the tasks and delivered workload
management support as they reminded key steps in detail and gave the possibility to
report quickly any possible anomaly or issue in carrying out the tasks. Furthermore the
shift handover page was designed to give the possibility to allocate tasks outside peak
time, check status quickly and report once again issues as they arise. Therefore the new
tool presented the advantage of seamlessly integration in a pre-existing workflow.

The data collected through it have the potential to identify latent hazards in tasks,
equipment, and procedures that may otherwise go unnoticed, and will also provide a
better overview of everyday performance in the context of growing airport traffic
demand. In the first months after its introduction was already able to change the rate of
reporting from 40 accidents reports in 6 years to 209 anomalies collected with the trip
file plus 201 activities reported through the shift handover in 1 month. Key success
factors in this process have been:

1. Enthusiasm and proactive attitude of many ramp/operational agents; the desire for a
change of work methodology and a new way of supporting their daily activities and
the appraisal of their performance, different from the obsolete methods of evaluation.

2. Top management continuous support, proactive and positive attitude towards the
initiative. That also led the management to use the tool to allocate tasks on shift
handovers considering the workload already shouldered in each shift (related to the
amount of turnarounds to be handled).

3. The possibility of keeping records of data collected over time; an overall evaluation
of all processes of work and evidence of good performance and possible anomalies
leading to integrated data monitoring.

The support of training sessions on “human factor issues” were organized in
connection with the introduction of the new tool in the airport among which the
exchange of information for the turnaround process between ramp operators and check
in and gate operators. The feedback received was very positive and, it is perhaps
interesting to report comments made by some of the Ramp operators: “by working on
these check-lists and filling up the form with the tasks and the name of the agent who
carried out the activities, we have become more conscious on our role and we have
gone “back to the basics of our tasks”, or “It is something everyone sees, something
everyone deals with everyday but when you change your perspective and method of
working (e.g. with the Daily Journal) or perform a risk assessment by working as a
team with different departments, (as done during the Human Factor training sessions)
something begins to change as if you were suddenly awakened” (Fig. 5) .

The interim successes are a very important part of the initiative. As Kotter (1995)
noted “Real transformation takes time and a renewal effort risks losing momentum if
there are no short-term goals to meet. Without short-terms wins, too many people give
up or actively join the ranks of those people who have been resisting change” [23]. The
tool can have the long lasting implications to support the achievement of improvement
and leverage on the every-day performance within the context of the long term strategy
of growth pursued by the airport, were the human factors and the capacity to deal
effectively with required workload are key. However in the next stage of the project we
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now need to actually assess workload levels for primary tasks measures and see how
the tool can be used to monitor workload, human error and guide management in
assigning extra tasks during less busy times to avoid peaks of workload requirements.
For the subsequent stage of the project therefore formal methods to assess current
perceived workload for different shift conditions and different roles will be deployed
using the NASA TLX as a starting point [24] and moving progressively if needed
towards more advanced models [25, 26] also able to discriminate between different
types of activities (e.g. pushback or baggage handling are tasks associated with dif-
ferent cognitive workload demands). In choosing the appropriate methodology for the
next stage the criteria of validity (i.e. to determine whether the Workload measurement
instrument is actually what extent a method can explain objective performance mea-
sures, such as task execution time) and sensitivity (i.e. the capability of a method to
discriminate significant variations in workload and changes in resource demand or task
difficulty) [27]. The assessment will be focusing on primary task performance and it is
important to remember that given the ‘live’ context we can not impact negatively on
operators’ functioning as the main goal is to achieve an even better level of support for
human performance and an improved understanding of the key drivers behind it.
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Abstract. This paper describes the results of a study comparing motorcycle
manoeuvres on-road (in live traffic) and off-road (in designated test centres).
Workload was measured using NASA-RTLX with rider performance used as a
secondary measure, and the results are discussed in terms of the different
dimensions that were affected by the change in setting. The study found that
both faults and workload increased in the on-road condition, with the frustration,
performance and time pressure components of workload showing the largest
increases. The results may have implications for conducting testing in protected
environments, which might not fully reflect the workload associated with
on-road manoeuvring.
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1 Introduction

Motorcyclists are a particularly vulnerable group of road users with a higher risk of
mortality on roads than other groups [1–3]. This greater incidence of fatalities among
motorcycle riders has prompted previous research into the skills and workload asso-
ciated with the task. Rutter and Quine [4] reported that age is the dominant factor in the
high crash rate of motorcyclists; this coincides with the well-known statistic reported in
the young and novice driver literature showing that young drivers are at particular risk
[5]. (Inexperienced drivers of any age are also at a much greater risk of being in a
collision than their more experienced counterparts [5]). Horswill and Helman [3]
conclude that although behaviour plays a small role in the extra risk faced by motor-
cyclists, physical vulnerability plays a much greater part. Whatever the underlying
factors, the importance of proper licensing for motorcyclists, including proper testing of
their suitability for riding before being allowed access to the road system, is critical.
Di Stasi et al. [6] describe the motorcycle riding task as “a dynamic and complex
psychomotor activity demanding simultaneous processing of information on different
cognitive levels as well as a variety of physical activities in a constantly varying
setting” (pp. 362). Primary tasks involved in motorcycle riding include steering,
adjusting throttle and brakes, controlling speed, monitoring the environment for haz-
ards, negotiating lane changes, and navigating. All these tasks must be mastered and
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tested before motorcyclists can be granted a licence. At present in Great Britain (GB),
motorcycle tests of specific manoeuvres (captured in European Directive 2006/126/EC1,
and termed ‘module 1’ tests) are conducted in off-road test centres where manoeuvres
are examined in a reduced risk environment. The reasoning behind this is that riders
should not be tested on-road (the so-called ‘module 2’ or ‘riding’ test) until they have
demonstrated basic manoeuvring skills in a relatively safe environment. There are some
practical issues associated with this approach however; the main one is that some riders
who are learning may live a great distance from their closest test centre. This presents
both practical and safety challenges (as the inconvenience of having to get to a test
centre, and the extra exposure to risk presented if this journey is undertaken on an
L-plated motorcycle).

The study discussed in this paper sought to compare off-road manoeuvre testing of
new motorcycle riders with proposed on-road manoeuvre testing, as part of a wider
research project examining the feasibility of on-road module-1 motorcycle tests in GB
(in order to overcome such practical issues as noted above). The work was undertaken
as part of a project for the Department for Transport in GB, in 2013. Workload and
performance were measured for a set of manoeuvres in both settings as part of the
comparison. Workload was measured using the NASA Raw TaskLoad IndeX (RTLX)
[7, 8] while performance was evaluated by experienced test assessors using the
framework applied in official tests.

Workload can be defined as the human cost of completing a task [8] and mental
workload as the amount of cognitive capacity required to perform a given task [9]. In
this study, the NASA RTLX was used to provide workload scores [7]. This instrument
uses six scales, each scored between 1 and 21, with higher numbers representing higher
levels of workload. Overall workload is taken here as the average of individual ratings
of the six subscales – mental demand, physical demand, temporal demand, perfor-
mance, effort, and frustration. Brief descriptions of each subscale are provided in
Table 1, adapted from [8]. NASA-TLX has previously been used to measure workload
in driving research, for example Hancock et al. [10] have previously used NASA TLX
to compare workload during left and right turns for car drivers, in a piece of research
motivated by the high fatality rates among motorcycle riders. They found no significant
relationship between driving manoeuvre and perceived workload, although other
measures used in the same experiment found higher workload during turn sequences. In
another example, specific to motorcyclists, Filtness et al. [11] undertook a study to
compare novice and experienced motorcycle riders driving under the influence of three
levels of alcohol intake (sober (0% blood alcohol level (BAC), 0.02% BAC, 0.05%
BAC). They used a modified NASA-TLX to compare subjective workload between the
groups and between alcohol levels. They found a significant difference between the 0%
BAC group and both alcohol conditions for overall workload measuring using
NASA-TLX. The difference between novice and experienced riders in this case
approached significance. In terms of the individual dimensions, mental demand and
effort scored highest in both groups, followed by performance. They also found a

1 http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0126&from=EN.
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significant effect of sub-scale between urban and rural settings, and concluded that the
workload sub-scales were measuring distinct aspects of the motorcycle riding task.

The aim of this study was to compare workload and performance between on- and
off-road manoeuvres used in GB motorcycle licence tests.

2 Method

A repeated measures design was used to compare the two conditions (on- and off- road).
151 participants completed the trial, with 73 completing the off-road manoeuvres first
and 78 completing the on-road manoeuvres first. All participants were learner riders who
were judged by their instructors to be ready to take their motorcycle test. The trials were
held at 11 different sites across GB, with a maximum of 67 riders and a minimum of 2
riders at each site (the median was 8). Learners were paid £55 for their involvement.

2.1 Materials

NASA Raw Task Load Index (RTLX) [7] was used to measure subjective workload.
This is a multi-dimensional scale designed to obtain subjective estimates of workload
from people immediately after they have performed a task. It has been used in a variety
of domains, including the operation of automobiles [e.g. 12], since its original devel-
opment in the aviation context and has been shown to be a reliable and valid measure
of workload (for a review, see [8]).

2.2 Participants

In total, 151 learner riders took part in the trials. Participants had a mean age of 30
years and the majority (92%) were male. More than three-quarters (77%) were training

Table 1. NASA-TLX subscales [8]

Subscale Explanation

Mental
demand

How much mental and perceptual activity was required (e.g. thinking,
deciding, calculating, remembering, looking, searching, etc.)? Was the task
easy or demanding, simple or complex, exacting or forgiving?

Physical
demand

How much physical activity was required (e.g. pushing, pulling, turning,
controlling, activating, etc.)? Was the drive easy or demanding, slow or
brisk, slack or strenuous, restful or laborious?

Temporal
demand

How much time pressure did you feel due to the rate or pace at which the
mission occurred? Was the pace leisurely or rapid and frantic?

Performance How successful do you think you were in accomplishing the goals of the
task? How satisfied were you with your performance in accomplishing these
goals?

Effort How hard did you have to work (mentally and physically) to accomplish
your level of performance?

Frustration How discouraged, stressed, irritated, and annoyed versus gratified, relaxed,
contented, and complacent did you feel during the task?
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on motorcycles with larger engines with no restrictions on power outputs. The
remainder were using motorcycles with smaller engines and restricted power outputs of
up to 35 kW. Learners had received a mean of 13 h of motorcycle training overall.

2.3 Procedure

Participants were recruited for the study from approved motorcycle training providers
and were requested to be ‘test ready’. On arrival at a trial site, each participant was
given an opportunity to ask questions about the study and was invited to complete a
consent form, in line with the ethical approval for the study. They were then invited to
complete the on- and off-road manoeuvres. During the manoeuvres, experienced
Driving Standards Agency (DSA)2 examiners rated the performance of the participants,
and in particular noted any faults in the performance of the manoeuvres (using the same
faults form as used during formal tests). At the end of each set of manoeuvres, riders
answered a series of questions to rate the workload associated with the activities they
had just completed. After completing both sets of manoeuvres, riders answered a final
set of more general questions before finally being thanked and paid for their partici-
pation. Table 2 describes the manoeuvres undertaken in the study. Four of the five
manoeuvres were the same in both conditions. It was not possible to replicate the
original ‘on and off the stand’ manoeuvre in the on-road condition, so this was replaced
by a ‘pushed U-turn’ manoeuvre in the off-road condition. These tasks are not com-
parable, although they were part of the trial for reasons associated with the proposed
changes in the motorcycle test. Descriptions of the manoeuvres tested off-road can be
found online3. Brief descriptions of the manoeuvres tested on road as part of this study
are as follows:

• Pushed U-turn – pushing the bike from one side of the road to the other, in a U-turn
• Ridden U-turn – riding the bike from one side of the road to another, in a U-turn
• Slalom – riding the bike in a slalom through five cones spaced in a straight line

4.5 m apart, 2.1 m from the kerb

Table 2. Manoeuvres included in the study.

Off-road On-road

On and off the stand/manual handling Pushed U-turn
Ridden U-turn Ridden U-turn
Slalom Slalom
Emergency stop after curve Emergency stop after 85 m straight
Hazard avoidance after curve Hazard avoidance after 85 m straight

2 Since renamed to the Driver and Vehicle Standards Agency (DVSA) after merging with the previous
Vehicle and Operator Services Agency (VOSA).

3 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/316690/motorcycle-
manoeuvring-area-multi-purpose-test-centre.pdf.
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• Emergency stop after 85 m straight – riding for 85 m and achieving a speed of 28–
30 mph before performing an emergency stop

• Hazard avoidance – riding for 85 m and achieving a speed of 28–30 mph before
performing an avoidance manoeuvre in line with the dimensions shown in the link
above.

3 Results

The results are presented relating to the performance (fault) data (Sect. 3.1) and the
workload ratings (Sect. 3.2).

3.1 Fault Data

Figure 1 shows fault data broken down by fault type (minor, moderate, serious and
dangerous) for both the on-road and off-road conditions. Dangerous faults involve
immediate danger to the rider, the examiner, the public or property. Serious faults
present a serious risk to safety that could develop into a dangerous situation. A single
example of either of these two categories would result in a failed test at the time the
trial was undertaken. Moderate faults are not potentially dangerous but could become
serious if repeated (up to five of these were allowed per test, at the time during which
the trial was undertaken). Minor faults were defined here as errors that would not merit
a fault in a real test, but were captured here for more comprehensive data analysis based
on the judgement of the examiner.

It is clear from Fig. 1 that there were more faults recorded during the on-road
manoeuvres (227 in total) compared with the off-road condition (111 in total). In
particular, the ‘Serious Fault’ category showed a steep increase for the on-road con-
dition. A paired samples t-test showed that the mean number of faults on-road was

Fig. 1. Number of faults in each fault category
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significantly greater (p > .001) than for the off-road condition. The number of faults per
manoeuvre in both conditions are shown in Fig. 2. For all manoeuvres, there were
more faults recorded during the on-road test than during the comparable manoeuvres
off-road, with the exception of the on-road pushed U-turn. The mean number of faults
for each manoeuvre was compared across the two conditions using paired samples
t-tests. The results showed significant differences between the two conditions for the
ridden U-turn and hazard avoidance. The result for the pushed U-turn may be explained
by the difference in the on-road and off-road manoeuvres. The differences between the
manoeuvres were further explored through the NASA-RTLX workload data.

3.2 Workload Ratings

Figure 3 shows the mean overall workload reported for the on-road manoeuvres. Note
that the NASA-RTLX scale used was a 21-point scale.

Workload for the on-road manoeuvres tended to be approximately equal to, or
higher than the workload for the comparable off-road manoeuvres. Analysis (using an
ANOVA) of workload ratings showed that the condition (on- or off-road) had a sig-
nificant effect on the workload scores overall (p = .029). The interaction between
condition and manoeuvre type was also significant (p = .047) showing that workload
differences existed only for some manoeuvres. The difference was subject to further
analysis to identify which manoeuvres were responsible for this difference in workload.
Statistical comparison of the mean workload within each manoeuvre across the two
conditions was conducted using paired samples t-tests. The results showed that mean
overall workload was significantly greater for the on-road versions of the ridden U-turn,
emergency brake and hazard avoidance manoeuvres (p = .013, p = .013, and p = .016
respectively). This indicates that participants found these manoeuvres significantly
more difficult to complete in the on-road condition.

Fig. 2. Number of faults for each manoeuvre
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The mean ratings for each of the six components of the NASA-RTLX were also
compared. Figure 4 shows that the average workload rating for each dimension in both
the on- and off- road conditions.

Effort was the highest rated dimension for both conditions, followed by mental
demand and both these dimensions showed only small differences between the two
conditions. Physical demand is also relatively high and shows little difference between
the two conditions. However, frustration is lower for the off-road condition and shows a
sharp rise in the on-road condition. Temporal demand and performance are the two
lowest rated dimensions in both conditions, but both see a rise in the on-road condition.
Figure 5 shows the mean ratings for each of the six components of the NASA-RTLX
workload measure for the on- and off- road conditions for the ridden U-turn.

Fig. 3. Mean NASA-RTLX scores for each manoeuvre

Fig. 4. Average workload scores for both conditions across all manoeuvres

Workload Differences Between On-road and Off-road Manoeuvres 245



Overall, participants rated the workload for this manoeuvre as significantly greater
on-road, and the data here show this is driven by the temporal, performance and
frustration components of workload, which were all significantly greater on-road
(p = .028, p = .003, and p < .001 respectively). This means that participants:

• Experienced greater time pressure on-road, and felt more hurried and/or rushed
• May have had greater insight into performance on-road and may have been more

aware of their errors
• Experienced greater frustration on-road, including feelings of stress and insecurity.

Figure 6 shows the mean ratings for the six components of workload for the on-
and off- road versions of the emergency brake manoeuvre. Participants rated the overall

Fig. 5. Workload breakdown for ridden U-turn

Fig. 6. Workload breakdown for emergency brake
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workload for completing the emergency brake manoeuvre as significantly greater
on-road; the data here shows that this is due to the performance and frustration com-
ponents of workload being significantly greater for on-road riding (p = .036 and
p < .001 respectively). This indicates that participants:

• May have had greater insight into their performance on-road and may have been
more aware of their errors

• Experienced greater frustration on-road

Figure 7 shows the mean ratings for the seven components of workload for the on-
and off- road conditions of the hazard avoidance manoeuvre. Participants rated the
overall workload for the hazard avoidance as significantly greater on-road, and the data
here shows that this is because the performance and frustration components of work-
load were both significantly greater on-road (p = .008 and p < .001 respectively). The
means that participants:

• May have had greater insight into their performance on-road and may have been
more aware of their errors

• Experienced greater frustration on-road

4 Discussion

The aim of this study was to compare performance and workload between on-road and
off-road conditions for the manoeuvres used in GB motorcycle licence tests. With regard
to performance, the main finding of the study was that learner riders were more likely to
receive faults on the on-road versions of the ridden U-turn and hazard avoidance
manoeuvres, when compared with the off-road versions. In terms of workload, the
ratings from learners showed that all manoeuvres except the pushed U-turn and slalom
had significantly higher workload ratings in the on-road than the off-road condition.

Fig. 7. Workload breakdown for hazard avoidance
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From a performance and workload perspective, the on-road manoeuvres therefore
appear to be more difficult than the comparable off-road manoeuvres, with participants
experiencing a greater number of errors and higher perceived workload during the
on-road manoeuvres. Interestingly, mental demand and effort (i.e. the sub-scale) were
the highest or second highest rated dimension of workload for both the on- and off-
road conditions and these components did not vary significantly between the two
conditions. It can be theorised that these dimensions represent the intrinsic workload
associated with manoeuvring a motorcycle, and are independent of the environment or
any external factors influencing workload. The differences in workload for the three
manoeuvres with significantly greater overall workload were all due to frustration and
performance, with temporal demand also significantly higher during on- road riding in
one of the three manoeuvres. The road environment therefore appears to increase
workload through increasing frustration experienced by the participant. This frustration
gives the participant greater insight into their performance and, to a lesser extent,
increases their experience of time pressure. Changes to these aspects of workload may
partly explain the greater number of faults made. These dimensions may represent
external influences on workload that will vary under different conditions and situations.
Differentiation between intrinsic and extrinsic workload is not commonly found in the
human factors workload literature, (see the Task Capability Interface Model [13] for
more information on this), but intrinsic and extraneous load are differentiated in
Cognitive Load Theory [14] in the education domain. Here, intrinsic load is defined as
the load resulting from the nature of a learning task, while extraneous load is the load
created by the instructional design [15]. The results of this study suggest that a similar
differentiation may be relevant to broader workload measurement and is worthy of
further investigation.

The data collected in this study found clear differences between the conditions in
on- and off- road riding, highlighting the role of the environment in experienced
workload and driving performance. The environment did not appear to significantly
change the intrinsic workload (comprised primarily of mental demand and effort), but
did increase perceived frustration, performance and sometimes time pressure. These are
important elements of the real world task. The findings may be generalised to any
workload study using a protected or simulated environment, where it is likely that some
additional factors associated with workload are controlled and workload evaluations in
these settings are therefore likely to be an underestimate. Further research investigating
the differentiation between intrinsic and extrinsic workload may lead to the develop-
ment of tools capable of partially overcoming this limitation.

When considering making changes to motorcycle testing, attention must of course
be paid to the trade-off between how well the test prepares a candidate for riding, and
what is practical and safe for candidates (and others) as they progress through the licence
acquisition process. The barriers to having the Module 1 motorcycle test delivered
on-road go beyond the measures reported here. In particular, the extra risks that may be
present to examiners and other road users from on-road testing in live traffic need to be
considered. This point notwithstanding, this research highlights the importance of
on-road testing; even after competence in manoeuvres has been demonstrated in off-road
settings, only through gaining experience on-road can motorcyclists be prepared for real
road conditions.
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Abstract. Recent research has addressed the topic of workload in the rail
industry. Much of this has been concerned with developing measures for use by
signallers and there has been less research about the workload of passenger rail
staff. The present studies addressed this issue using single item measures of
workload, effort, fatigue and performance. Results from two diary studies with
conductors/guards and maintenance engineers showed that high workload was
associated with increased fatigue. Fatigue was associated with increased risk of
incidents and slower reaction time. In the third study, results from a large scale
survey showed both that high demands increased fatigue and demands were
associated with perceptions of reduced performance. Overall, these results
confirm the importance of workload for operational efficiency and show that the
use of single item measures makes further study in real-life settings acceptable.

Keywords: Workload � Job demands � Fatigue � Performance � Rail industry

1 Introduction

The aim of the research described in this paper was to investigate workload, fatigue and
performance/safety in a passenger train company in the UK. This was done using
subjective reports of workload and fatigue and relating these to subjective reports of job
characteristics and work outcomes. In addition, objective indicators of performance and
safety were also used in some of the studies. This research was intended as a pre-
liminary approach that will eventually be supported by studies involving objective
measurement of workload and more objective outcomes (e.g. physiological measures).
Although the studies were conducted using rail crew, the approach is transferable to
other contexts and industries. Three studies are presented to address the initial aims.
These studies are described separately as they involve different samples and differences
in methodology. Brief discussions are given after each study, followed by an overall
discussion of the programme of research. The next section reviews several approaches
to workload that have been adopted in the UK rail industry.

There has been an increase in the importance of human factors in the rail industry
[1]. In the case of workload this has led to the development of many measuring
instruments and the design of standard operating procedures that will aid assessment of
workload [2]. An initial aim has been to develop a function complexity index linking
number of inputs to perception of workload [3]. This issue has been widely studied in
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other contexts and requires an examination of the relationship between the demand for
resources imposed by the task and the ability of the individual to supply those resources
[4, 5]. The aim was to develop a set of quantitative criteria and a model to define
systems that provided appropriate workloads.

Workload is a multi-dimensional concept with consideration for time, mental tasks,
physical tasks and stressors [6]. It could be used to plan crew sizes, allocate functions
and assess effects of working practices on operator efficiency and health. Workload can
be measured independently (what is imposed by the system) or by rating the workload
of the individual. The term workload is used in different ways in the rail industry which
has led to it being considered in a functional context (see [7] for a review). An initial
starting point for earlier research was to review dimensions of workload and classify
them in terms of effort (e.g. resource capacity), demand (e.g. task difficulty) or effect
(e.g. performance). Workload tools used in previous studies with rail signallers were
also reviewed (e.g. [8, 9]). Many of these, developed in laboratories or designed for
military samples, were not suitable for real-time use or civilian populations. Interviews
were also carried out with rail staff; the consensus being that the level of mental effort
required to complete the work formed the major workload component. This confirms
that perception of load is central to an understanding of mental workload and that the
effort expended by the person to accommodate work demands is a critical dimension of
mental workload [10]. Kahneman [11] specified three questions which can be applied
to evaluation of demands, namely:

1. What makes an activity more or less demanding?
2. What factors control the level of capacity available?
3. What are the rules regarding allocation of resources?

Much of the literature assesses the effects of workload in terms of performance.
Strategies may be adopted which are effort-conserving and standards of performance
may be lowered to conserve effort. Effects of workload on wellbeing are often referred
to as stress or fatigue, and it may be these states that mediate the effects of workload on
performance. Tools have been developed to assess these dimensions of workload in rail
signalling (see [12]). These include an Integrated Workload Scale (IWS) and an
Operational Demand Checklist (ODEC). Other methods have been developed to assess
the workload of train drivers (e.g. Train Driver DRAWS - Defence Research Agency
Workload Scales; Acceptable Workload Evaluation; Train Driver Workload Probe;
Time Line Analysis – [13]).

One of the major problems with the UK rail industry’s approach to workload is that
it does not address human mental workload (see [14–16]). In addition, although a
number of measuring instruments have been developed for use in the rail industry,
there is little evidence that they are currently being used by UK train operating com-
panies. There are two main reasons for this; the first is that workload does not fit into
any clear occupational health and safety category. It might, for example, be put under
the heading of fatigue, but in this case it is often considered as secondary to factors like
working hours. Indeed, job demands are included in the calculation of the HSE Fatigue
and Risk Indices but they are usually set at a constant level for all staff. Workload could
be put in the ‘stress at work’ category, however this is usually considered a HR issue
rather than one of occupational health and safety, meaning that relationships with safety
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outcomes may not be examined. The other problem is that of having a very simple
measure that can be easily used in real-life settings. Recent research has shown that
single questions can often be as useful as longer scales [17–19]. This allows one to
measure a number of concepts which can lead to the testing of more sophisticated
models (e.g. the Demands-Resources-Individual Effects (DRIVE model – [20]). Both
the single item approach and the DRIVE model have largely been applied to stress and
wellbeing but can now be applied to workload and fatigue also. Indeed, the research
described in this article is one of the first studies to do this. Multi-methodologies have
been used to assess workload (or demands) in rail staff. The first study described here
was a diary study where conductors rated their workload and fatigue each day for a
week. The second study involved similar ratings from engineers at the start and end of
the first and last day of their working week. Objective measures of performance were
also taken at these times. Finally, the last study involved a survey of demands, fatigue
and reported performance efficiency across different sectors of a rail company. All the
studies described here were carried out with the approval of the ethics committee of the
School of Psychology, Cardiff University, and with the informed consent of the vol-
unteers. They were paid a small honorarium for participating.

2 A Diary Study of Workload and Fatigue of Conductors
and Guards

2.1 Methods

2.1.1 Participants
The sample consisted of 33 conductors and guards, 23 male (69.7%) and 8 female
participants (24.2%) (2 participants (6.1%) did not disclose their gender). The mean age
of the group was 44.9 years and the range was 27-66 years. The participants worked as
conductors and guards for a passenger rail company and were on day shifts with
varying start times.

2.1.2 The Diary
The diary consisted of 10 questions, five questions that were to be answered before
work and five questions to be addressed after work. These questions are shown in
Appendix 1. The diary was completed every day for a working week (4 days). The
questions answered before work covered sleep duration and quality, time taken to
travel to work, alertness before starting work and general health status. Those com-
pleted after work recorded workload, effort, fatigue, stress and breaks during the day.

2.1.3 HSE Fatigue and Risk Index Scores
In addition to the diary data, information was available on the HSE fatigue index and
risk index scores [21] for 22 of the participants. These 22 participants were repre-
sentative of the whole sample in that their diary data did not differ from those with no
Fatigue and Risk Index scores. The Fatigue and the Risk Index are the major outcomes
from the HSE fatigue and risk calculator tool. Both are calculated from three separate
components of the person’s working hours and the nature of their job, namely:
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• A cumulative component. This relates to the way in which individual duty periods or
shifts are put together to form a complete schedule. The cumulative component
associated with a particular shift depends on the pattern of work immediately
preceding that shift.

• A component associated with duty timing, i.e. the effect of start time, shift length
and the time of day throughout the shift.

• A job type/breaks component. This relates to the content of the shift, in terms of the
activity being undertaken and the provision of breaks during the shift.

These measures were included in the study to determine whether subjective reports
of workload and fatigue were associated with the scores from these mathematical
models of fatigue (the fatigue index) and risk of an incident (the risk index).

2.2 Results

Initial analyses examined whether ratings of workload changed over the working week
and whether workload on successive days was correlated. Workload increased over the
week (Day 1 workload mean = 5.97 s.d. = 2.79; Day 4 workload mean = 7.34 s.
d. = 7.34 t = -2.59 df = 32 p < 0.05). The correlations between ratings of workload,
effort and fatigue for individual days were significant (all p’s < 0.05) and the average
ratings were used for subsequent analyses. The correlations are shown in Table 1.

Workload ratings were significantly correlated with effort and fatigue ratings.
Fatigue ratings were significantly correlated with the risk index whereas workload was
not significantly correlated with it. The fatigue index was significantly correlated with
sleep duration but not the ratings of workload, effort or fatigue.

2.3 Discussion

These results show that single item measures of workload, effort and fatigue show the
usual pattern of correlations. Workload increased over the working week and the rating
of workload was associated with fatigue which in turn was associated with higher risk of
an incident as indicated by the HSE risk index. In contrast, the HSE fatigue index was
predicted by sleep duration rather than workload or by the subjective report of fatigue.

Table 1. Correlations between average ratings of workload, effort, fatigue, sleep duration and
HSE fatigue and risk index scores

Workload Effort Fatigue Sleep duration Fatigue index Risk index

Workload 1
Effort 0.66** 1
Fatigue 0.58** 0.38* 1
Sleep Duration −0.01 −0.07 0.12 1
Fatigue Index 0.08 0.32 0.00 −0.60** 1
Risk Index 0.27 0.33 0.60** 0.18 −0.03 1

**p < 0.01, *p < 0.05
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These results suggest that a very short audit of workload, effort and fatigue can
demonstrate the expected relationships between these variables. Furthermore, the rating
of fatigue was correlated with the risk of having an incident (as calculated by the HSE
Risk Indicator) which indicates the potential of using these short subjective reports in
combination with mathematical models of risk. It is now important to determine whether
these measures are of use for other jobs in the rail company. The next study aimed to
replicate these findings with volunteers doing a different job (maintenance engineers)
and working both night and day shifts. The HSE fatigue and risk calculations were not
available for this group and an objective measure of performance (a variable fore-period
simple reaction time task, often known as a psychomotor vigilance task [PVT]) was
submitted along with the recording of the subjective reports of workload, effort and
fatigue.

3 Study 2: Before and After Work Assessment of Rail
Engineers

This study used a technique (the After-Effect method) that has been used for examining
fatigue [22, 23] and workload [24]. It is very similar to the diary method from the
previous study but it only involved the first and last day of the working week.

3.1 Methods

Testing occurred immediately before starting work and immediately after finishing
work on each of those days. The diary questions were the same as those of the
conductor study. A simple reaction time task was also given at these times.

3.1.1 Participants
Thirty six volunteers (all maintenance engineers) took part in the study (all male; mean
age = 44.9 years, range 21–64 years).

3.1.2 Simple Reaction Time Task
In this task a box was displayed in the centre of the screen and at varying intervals (from
1-8 s) a target square appeared in the box. As soon as they detected the square partic-
ipants were required to press a response key using the forefinger of their dominant hand
only. Reaction times were measured to the nearest millisecond. This task lasted for
3 min. The measure of interest here was the mean reaction time (test-re-test reliability:
r = 0.65). The mean reaction time from the before work session was subtracted from the
after work mean reaction time to obtain an indication of the effects of the working day.

3.2 Results

Results from the first and last day of the working week were averaged. Table 2 shows
the correlations between variables. The results were almost identical to the conductors
study. Workload, effort and fatigue were correlated. Fatigue was significantly corre-
lated with the before-after difference in reaction time but workload and effort were not.
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3.3 Discussion

This study with rail maintenance engineers working a range of shifts has confirmed that
the single item measures of workload and effort are correlated with a single item
measure of fatigue. Fatigue is then correlated with performance impairment due to
working, as measured using the simple reaction time task before and after work.

These first two studies have been small scale and focused on specific time periods.
It is now important to determine whether similar results are obtained in a wider range of
different jobs and locations, and whether these effects occur generally. The next study
aimed to extend these findings using a survey methodology and a much larger sample
covering a wide variety of jobs in a rail company. The goal was to see which outcomes
are associated with job demands, and to try to replicate the results obtained in the diary
studies. A different measure of performance was used in this study, namely a single
question regarding performance efficiency.

4 Study 3: A Survey of Demands, Fatigue and Performance
in Rail Staff

A detailed account of this survey is given in another paper [25]. The main features of
the study are briefly summarised here. This, plus details of the actual questionnaire,
should provide enough methodological detail. The questionnaire used was based on the
Smith Wellbeing Questionnaire (SWELL, [19]). It was designed to provide a detailed
profile of the wellbeing of the organisation. It also allows consideration of specific
issues and the one of interest here was the association between job demands, fatigue
and performance.

4.1 Methods

4.1.1 Sample
1067 employees of a train company completed the questionnaire (Mean age: 44.25
years). This represented a response rate of approximately 50%. The main job types
were train drivers, conductors, engineers, station staff, administrators, managers and
catering stewards. Participants were entered into a prize draw.

4.1.2 Questionnaire
This is given in Appendix 2.

Table 2. Correlations between workload, effort, fatigue and RT difference

Workload Effort Fatigue RT difference

Workload 1
Effort 0.66** 1
Fatigue 0.65** 0.46* 1
RT differences 0.11 0.24 0.55** 1
**p < 0.01, *p < 0.05

256 A.P. Smith and H.N. Smith



4.2 Results

Job demands, the current measure of workload, were significantly correlated with
fatigue (r = 0.43 p < 0.001). Demands were also associated with reduced efficiency at
work (r = −0.11 p < 0.01). Fatigue was also associated with reduced performance
(r = −0.14 p < 0.01).

Demands were not the only predictors of fatigue; it was also predicted by lifestyle,
control/support at work, noise and shift work. A multiple regression put all of these
predictors of fatigue, along with fatigue itself, into an analysis to predict performance.
The results of this are shown in Table 3.

High job demands, an unhealthy lifestyle, shift work, and low control/support
(p < were all predictors of poor performance. Fatigue was no longer a significant
predictor of performance when these variables were included.

4.3 Discussion

The present results confirm that high workload is associated with greater fatigue. At a
univariate level, both workload and fatigue were associated with perceptions of reduced
performance efficiency. However, the survey showed that there were other predictors of
fatigue and impaired performance (unhealthy lifestyle; shift work; low control/support).
When these were included in the analyses the effects of fatigue on performance were no
longer significant. However, workload (job demands) remained a significant predictor
of performance in these multi-variate analyses.

The results obtained in the survey show a different pattern of results to those
obtained in the diary studies. There could be a number of different interpretations of
these discrepancies. The first could be that the measures of workload and fatigue used
in the survey were different from those used in the diary studies. However, job
demands were correlated with fatigue in the survey which is similar to the observed
relationship between workload and fatigue in the diary studies. What may be more
important are the different measures of safety/performance used in the three studies.
The first study used a mathematical calculation of the risk of being involved in an
incident. The second study used an objective measure of reaction as the indicator of
effects of the working day. The third study used a subjective assessment of perfor-
mance efficiency which may not be correlated with the objective indicators of per-
formance or safety.

Table 3. Regression predicting performance efficiency

Variable Unstandardised
coefficients
beta

Unstandardised
coefficients
std error

Standardised
coefficients
beta

t sig

Lifestyle 0.111 0.020 0.156 5.41 0.001
Noise 0.022 0.013 0.050 1.63 0.103
Shiftwork 0.289 0.091 0.096 3.20 0.001
Control/Support 0.227 0.019 0.346 11.79 0.000
Demands −0.047 0.020 −0.075 −2.38 0.017
Fatigue −0.019 0.020 −0.031 −0.95 0.344
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5 Overall Discussion

The research described in this article has confirmed that workload is an important factor
to consider in the operations of railways. Previous research on workload in the railways
has largely focused on signallers. The present research has shown that it is highly
relevant to the staff of passenger rail companies. The first two studies focused on safety
critical staff, namely conductors/guards and engineers. The results from this research
showed that workload increased fatigue, which in turn was associated with a greater
risk of incidents and slower reaction times. Workload itself did not appear to have a
direct influence on safety and performance outcomes. These findings are important for
policy and practice. One of the problems faced by railway companies is where to place
workload in terms of health and safety practice. The demonstrated strong link between
workload and fatigue indicates that workload should come under the agenda of
“fatigue”. The company involved in the present research have a fatigue policy, and are
also developing a scheme of fatigue awareness training. At the moment, fatigue is
conceptualised in terms of working hours, and the HSE fatigue index is used as a tool
to monitor and prevent fatigue. This suggests that future research should develop
appropriate methods for assessing the workload of rail staff. One approach would be to
develop the assessments of subjective workload used here. This needs to be supported
by objective measurement of workload. Fundamental research is required to compare
subjective and objective workload and also to distinguish between physical workload,
mental workload and emotional workload. Approaches to these issues have already
been developed in fatigue research. The link between workload and fatigue means that
templates are already in place to help gain a better understanding of the area and make
advances in policy and practice.

The last study used a survey methodology to collect data from a greater range of
occupations. High job demands were one of the predictors of fatigue, and both of these
were associated with perceptions of reduced performance.Multi-variate analyses showed
that high workload remained a significant predictor of performance whereas the effects of
fatigue could be accounted for by other factors. These discrepant results in the studies
could reflect differences in the jobs represented or in the measures of performance used.

Further analyses are required to determine whether the overall results obtained are
consistent when specific jobs are analysed. Again, a practical issue for the rail com-
panies is where the workload should be addressed. The first two studies described here
suggest that workload can affect levels of fatigue and as such should be treated as a
safety issue. The areas covered by the survey in the third study fall more within the remit
of the HR department. This is not to say that performance efficiency is not an issue,
rather that different underlying mechanisms may be involved due to both outcomes and
predictors being based on subjective perceptions. Validation of the results of the survey
using objective measures is an important next step. This could be achieved for both the
predictor variables (e.g. objective measurement of job demands) and the outcomes
(objective measurement of performance). The results of the survey justify these future
studies and suggest further fundamental research to inform practice and policy.

In conclusion, the results reported here show that workload influences the perfor-
mance of rail staff, either directly or through its association with fatigue. An important
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feature of the research has been the use of single item measures of workload, fatigue
and performance. These short measures were acceptable and could be administered in
real-life contexts.

Appendix 1. Diary Questions

Before work diary:
a. How many hours sleep did you get last night? 

b. How was the quality of your sleep?
Not at all good Very good
1 2   3 4 5 6 7 8 9 10

c. How long did it take you to travel to work? _________ minutes

d. How well are you feeling?
Not at all well Very well
1 2 3 4 5 6 7 8 9 10

e. How alert do you feel now?
Very tired Very alert
1 2 3 4 5 6 7 8 9 10

After work diary:
f. How was your workload today?
Very low Very high
1 2 3 4 5 6 7 8 9 10

g. How much effort did you have to put into your job today?
Very little A great deal
1 2 3 4 5 6 7 8 9 10

h. How fatigued do you feel now?
Not at all fatigued Very fatigued
1 2 3 4 5 6 7 8 9 10

i. How stressed do you feel now?
Not at all stressed Very stressed
1 2 3 4 5 6 7 8 9 10

j. What was the total length of your breaks today?  
___________  minutes
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Appendix 2: Questionnaire to Assess Wellbeing of Rail Staff
(SWELL, [19])

1. Age (years):
2. Gender:  M/F
3. Job description:
4. Health-related behaviours
A healthy lifestyle involves taking exercise, eating a balanced diet, not smoking, not 
drinking excessive amounts of alcohol, and not being overweight. To what extent do 
you have a healthy life style?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10
5. Personality

he glass as half full) or 

Very negative Very positive
1 2 3 4 5 6 7 8 9 10

Thinking about the last 6 months:

6. Life satisfaction
How satisfied are you with life in general?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10
7. Life stress
How much stress have you had in your life in general?
Very little A great deal
1 2 3 4 5 6 7 8 9 10
8. Happiness
Would you say you are generally happy?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10
9. Anxious/Depressed
Would you say that you generally feel anxious or depressed?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10

10. Musculo-skeletal problems
Do you suffer from musculo-skeletal disorders (e.g. arthritis; back pain; sciatica; 
repetitive strain injury)?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10
11. Noise and vibration
Are you exposed to noise or vibration at work?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10

260 A.P. Smith and H.N. Smith



14. Job demands
How demanding do you find your job (e.g. do you have constant pressure, have to 
work fast, have to put in great effort)?
Not at all demanding Very demanding
1 2 3 4 5 6 7 8 9 10
15. Job control and support
Do you feel you have control over your job and support from fellow workers?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10
16. Perceived stress at work
How much stress do you have at work?
Very little A great deal

1 2 3 4 5 6 7 8 9 10
17. Job satisfaction
Are you satisfied with your job?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10
18. Physical and mental fatigue
How physically or mentally tired do you get at work?
Not at all tired Very tired
1 2 3 4 5 6 7 8 9 10
19. Illness caused or made worse by work
Have you had an illness (either physical or mental) caused or made worse by work?
Yes/No
20. Presenteeism
Do
job as well as you would like to?
Yes/No
21. Efficiency at work
How efficiently do you carry out your work?
Not very efficiently Very 
efficiently
1 2 3 4 5 6 7 8 9 10
22. Work-life balance
Do you find your job interferes with your life outside work or your life outside of 
work interferes with your job?
Never Very often
1 2 3 4 5 6 7 8 9 10

12. Shift work/Night work
Do you work shifts or work at night?  Yes/No
13. Fumes
Are you exposed to fumes, dust or solvents at work?
Not at all Very much so
1 2 3 4 5 6 7 8 9 10
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