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Abstract. From the beginning it was understood that the success of
the Semantic Web hinges on integrating the vast amount of data stored
in Relational Databases. This manuscript reflects on the last 10 years of
our research results to integrate Relational Databases with the Semantic
Web. Since 2007, our research has led us to answer the following question:
How and to what extent can Relational Databases be Integrated with the
Semantic Web? The answer comes in two parts. We start by presenting
how to get from Relational Databases to the Semantic Web via mappings,
such as the W3C Direct Mapping and R2RML standards. Subsequently,
we present how the Semantic Web can access Relational Databases. We
finalize with how Relational Databases and Semantic Web technologies
are being used practice for data integration and discuss open challenges.

1 Introduction

The success of the Semantic Web hinges on integrating the vast amount of data
stored in Relational Databases. We have gone a long way in the past 10 years. As
of 2017, a successful repeated use case for Relational Databases and the Semantic
Web is to address data integration needs. Such systems are now being deployed
in industrial applications. So, how did we get here? The goal of this manuscript
is to reflect on the last 10 years of our research results to integrate Relational
Databases with the Semantic Web [64].

In 2007, we began investigating the relationship between Relational Data-
bases and the Semantic Web. Specifically, the research question was the follow-
ing: How and to what extent can Relational Databases be integrated with the
Semantic Web? The thesis is that much of the existing Relational Database
infrastructure can be reused to support the Semantic Web.

In the first part, we describe how to get from Relational Databases to the
Semantic Web via mappings. Starting with a 2007 workshop, titled “RDF Access
to Relational Databases”1, the W3C sponsored a series of activities to address
this issue. At that workshop, the acronym, RDB2RDF, Relational Database to
Resource Description Framework, was coined. In September 2012, these activi-
ties culminated in the ratification of two W3C standards, colloquially known as
Direct Mapping [7] and R2RML [25].

1 http://www.w3.org/2007/03/RdfRDB/.
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By design, both these standards avoid any content that speaks about imple-
mentation, directly or indirectly. The standards concern is syntactic transforma-
tion of the contents of rows in relational tables to RDF. The R2RML language
includes statements that specify which columns and tables are mapped to prop-
erties and classes of a domain ontology. Thus, the language empowers a developer
to examine the contents of a relational database and write a mapping specifica-
tion. Furthermore, we present an extended Direct Mapping which address some
shortcomings of the W3C Direct Mapping and study it with respect to two fun-
damental (information and query preservation) and two desired (monotonicity
and semantics preservation) properties.

In the second part, we describe the opposite direction, how the Semantic
Web can access Relational Databases. Once a mapping has been defined, let it
be a Direct Mapping or a user defined R2RML mappings, the goal is to evalu-
ate SPARQL queries against the Relational Database. These contributions are
embodied in our system called Ultrawrap. We identified two existing relational
query optimizations in commercial Relational Databases, detection of unsatis-
fiable conditions and self-join elimination which are used for SPARQL execu-
tion. Empirical analysis consistently yield that SPARQL query execution per-
formance on Ultrawrap is comparable to that of SQL queries written directly for
the relational representation of the data. Furthermore, we present a method for
Relational Databases to support inheritance and transitivity by compiling the
ontology as mappings, implementing the mappings as SQL views, using SQL
recursion and optimizing by materializing a subset of views. This approach was
implemented as an extension of Ultrawrap to support the Ontology-Based Data
Access paradigm. Empirical analysis reveals that Relational Databases are able
to effectively act as reasoners.

To understand the relationship between Relational Databases and the Seman-
tic Web, we adopt a methodology where we first start small. That is why we first
studied a simple mapping which is the Direct Mapping. Subsequently we studied
how to accomplish SPARQL to SQL rewriting under the direct mapping. After
the direct mapping relationship was understood, we continued our work with
customized mappings represented in R2RML and reasoning.

We highlight two on-going challenges when Relational Databases and Seman-
tic Web technologies are combined for data integration in the real world: ontology
and mapping engineering. We argue for the need of a pay-as-you-go methodology
to create mappings and ontologies. We close with a set of open problems.

2 Preliminaries

This sections presents the notation and definitions used throughout this manu-
script. We define the three standards comprising Semantic Web: RDF, the graph
data model; OWL, the ontology language; and SPARQL, the query language for
RDF. Subsequently, the expressivity of the OWL dialect used in this research is
presented. For more detailed preliminaries, we refer the reader to Chap. 2 of [64]
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2.1 Running Example

Throughout this manuscript, we use the data illustrated in Fig. 1 as a running
example. The precise corresponding SQL statements are:

CREATE TABLE order (

orderid INT PRIMARY KEY,

date DATE,

total FLOAT,

currency VARCHAR(50),

status INT

)

CREATE TABLE lineitem (

lineid INT PRIMARY KEY,

price FLOAT,

quantity INT,

product VARCHAR(50),

orderid INT,

FOREIGN KEY(orderid) REFERENCES ORDER(orderid)

)

orderid date total currency status

1234 2017-04-15 100 USD 1

lineid price quantity product orderid

6789 30 2 Foo 1234
6790 20 2 Bar 1234

Fig. 1. SQL used to create the running example

2.2 Relational Databases

A database is a collection of data. A Relational Database is a database founded
on the relational model. The relational model represents data in terms of tuples
(rows), grouped into relations (tables). Relational Algebra is used as a query
language for Relational Databases.

Because nulls appear in practice in RDBMS, it is important to present a
formal definition of Relational Databases with respect to null values. Assume,
a countably infinite domain D of constants and a reserved symbol NULL that is
not in D. A database schema R is a finite set of relation names, where for each
R ∈ R, att(R) denotes the nonempty finite set of attribute names associated
with R. The arity of R, denoted as arity(R), is the number of elements of the
set att(R). An instance I of R assigns to each relation symbol R ∈ R, a finite
set of tuples RI = {t1, . . . , t�}. Each tuple tj (1 ≤ j ≤ �) is a function that
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assigns to each attribute in att(R) a value from (D ∪ {NULL}), denoted as t :
att(R) → (D ∪ {NULL}). The value of an attribute A in a tuple tj is denoted by
tj .A. Moreover, R(tj) is a fact in I if tj ∈ RI . The notation R(tj) ∈ I is used in
this case. We also view instances as sets of facts.

Relational Algebra consists of operators which take one or two relations as
operands and produce one relation as a result. The basic operators of relational
algebra are: selection, projection, rename, join, union and difference. Selection
selects tuples from a relation satisfying a condition. Projection chooses subset of
the attributes of a relation. Rename allows to change the name of an attribute.
Join combines two relations into one on the basis of a condition. Union is the
relation containing all tuples from both relations. Difference is the relation con-
taining all tuples of the first relation that do not appear in the second relation.
Relational Algebra operators can be composed into relational algebraic expres-
sions. These relational algebraic expressions are then used to formulate queries
over a Relational Database.

Recall that Relational Databases containing null values are considered. For
full details on the syntax and semantics of Relational Algebra where null values
play a role, we refer the reader to Chap. 2 of [64].

2.3 Semantic Web

The Semantic Web is an extension to the Web that enables intelligent access to
data on the Web. The technologies supporting the Semantic Web consist of a
set of standards: RDF as the graph data model, OWL as the ontology language,
and SPARQL as the query language.

RDF: RDF stands for Resource Description Framework, which is a framework
for representing information about resources in the Web. By resource, we mean
anything in the world including physical things, documents, abstract concepts,
etc2. RDF considers three types of values: resource identifiers (IRIs) to denote
resources, literals to denote values such as strings, and blank nodes to denote
the existence of unnamed resources which are existentially quantified variables
that can be used to make statements about unknown (but existent) resources.

Assume there are pairwise disjoint infinite sets I (IRIs), B (blank nodes) and
L (literals). A tuple (s, p, o) ∈ (I ∪B) × I× (I ∪B ∪L) is called an RDF triple,
where s is the subject, p is the predicate and o is the object. A finite set of
RDF triples is called an RDF graph. Assume that triple is a ternary predicate
that stores RDF graphs in the obvious way: every triple (a, b, c) ∈ G is stored as
triple(a, b, c). Moreover, assume the existence of an infinite set V of variables
disjoint from the above sets, and assume that every element in V starts with
the symbol “?”.

2 The term “entity” can be considered synonymous to resource.
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Example 1. Consider representing the statement “There is a person whose name
is Juan Sequeda” in RDF. This can be represented with two RDF triples. The
first RDF triple

triple(http://juansequeda.com#me, type, foaf:Person)

states that the resource identified by http://juansequeda.com#me is of type Per-
son. The type relationship is represented with rdf:type. Additionally, the concept
Person is identified by the IRI foaf:Person. Note that rdf: and foaf: are being
used instead of a full IRI. These are prefixes that replace a part of the IRI3. The
second RDF triple

triple(http://juansequeda.com#me, foaf:name, "Juan Sequeda")

states that http://juansequeda.com#me has a name which is “Juan Sequeda”.
The concept of name is identified by the IRI foaf:name.

OWL: OWL stands for Web Ontology Language, which is the language to
represent ontologies on the Web. In order to define the notion of ontology, the
following set of reserved keywords are defined as O: {subClass, subProp, dom,
range, type, equivClass, equivProp, inverse, symProp, transProp}.

Assume that O ⊆ I. Two types of RDF triples are distinguished: ontological
and assertional. Ontological RDF triples define the ontology. Assertional RDF
triples define the facts. The formal definitions are the following:

Definition 1 (Ontological RDF Triple). Following the definition presented
by Weaver and Hendler [75], an RDF triple (a, b, c) is ontological if:

1. a ∈ (I � O), and
2. either b ∈ (O�{type}) and c ∈ (I�O), or b = type and c is either symProp

or transProp.

In other words, an ontological RDF triple will always have as a subject an
element in I but not in O. There are two types of ontological RDF triples. First,
the predicate is an element in O but not type and the object is an element in I
but not in O. Second, if the predicate is type, then the object is either symProp
or transProp.

Definition 2 (Assertional RDF Triple). An RDF triple (a, b, c) is asser-
tional if it is not ontological.

Definition 3 (Ontology). An ontology O is defined as a finite set of ontolog-
ical RDF triples.

3 The prefix “rdf:” represents http://www.w3.org/1999/02/22-rdf-syntax-ns#,
hence the full IRI for rdf:type is http://www.w3.org/1999/02/22-rdf-syntax-ns#
type. Additionally, the prefix “foaf:” represents http://xmlns.com/foaf/0.1/, hence
the full IRI for foaf:Person is http://xmlns.com/foaf/0.1/Person.

http://juansequeda.com#me
http://juansequeda.com#me
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
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The semantics of an ontology O is usually defined by representing it as a set
of description logic axioms, and then relying on the semantics of the logic [10]
(which, in turn, is derived from the semantics of first-order logic). It is more
convenient to directly define a set of first-order formulae, denoted as ΣO, to
encode the ontology O. The semantics of each ontological triple of an ontology,
t ∈ O, is defined as a first-order formula ϕt over the predicate triple. Defini-
tions 4–12 presents the first-order formula for ontological triples. Finally, the set
ΣO of first-order formulae encoding the ontology O is define as {ϕt | t ∈ O}.

Definition 4 (Subclass). If a is a subclass of b and x is an instance of a, then
x is an instance of b. The first-order formula is:

ϕ(a,subClass,b) = ∀x (triple(x, type, a) → triple(x, type, b))

Definition 5 (Subproperty). If a is a subproperty of b, then all pairs of
resources (x, y) which are related by a are also related by b. The first-order
formula is:

ϕ(a,subProp,b) = ∀x∀y (triple(x, a, y) → triple(x, b, y))

Definition 6 (Domain). If a has a domain b then any resource x that is
related to a is an instance of b. The first-order formula is:

ϕ(a,dom,b) = ∀x∀y (triple(x, a, y) → triple(x, type, b))

Definition 7 (Range). If a has a range b then any resource y that is related
to a is an instance of b. The first-order formula is:

ϕ(a,range,b) = ∀x∀y (triple(x, a, y) → triple(y, type, b))

Definition 8 (Equivalent Class). If a has an equivalent class of b and x is
an instance of a, then x is an instance of b. Conversely, if x is an instance of b,
then x is an instance of a. The first-order formula is:

ϕ(a,equivClass,b) = ∀x (triple(x, type, a) ↔ triple(x, type, b))

Definition 9 (Equivalent Property). If a has an equivalent property of b,
then all pairs of resources (x, y) which are related by a are also related by b.
Conversely, all pairs of resources (x, y) which are related by b are also related
by a. The first-order formula is:

ϕ(a,equivProp,b) = ∀x∀y (triple(x, a, y) ↔ triple(x, b, y))

Definition 10 (Inverse Property). If a has an inverse property of b, then
all pairs of resources (x, y) which are related by a are also related by b by the
pair (y, x). Conversely, all pairs of resources (y, x) which are related by b are
also related by a by the pair (x, y) The first-order formula is:

ϕ(a,inverse,b) = ∀x∀y (triple(x, a, y) ↔ triple(y, b, x))
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Definition 11 (Symmetric Property). If a is a symmetric property, then
all pairs of resources (x, y) which are related by a are also related as the pair (y,
x). The first-order formula is:

ϕ(a,type,symProp) = ∀x∀y (triple(x, a, y) → triple(y, a, x))

Definition 12 (Transitive Property). If a is a transitive property, and for
all pairs of resources (x, y) and (y, z) which are related by a then the pair (x, z)
is also related by a. The first-order formula is:

ϕ(a,type,transProp) = ∀x∀y∀z (triple(x, a, y) ∧ triple(y, a, z) → triple(x, a, z))

Given that the semantics of an ontology O has been defined as set of first
order logic formulae ΣO and a RDF graph G using the predicate triple, then
ΣO ∪ G is consistent (and inconsistent) in the usual sense of First Order Logic.

Example 2 The following ontology states that an Executive and ITEmployee are
both Employees. Additionally that the property hasSuperior is a transitive rela-
tionship from an Employee to another Employee.

triple(:Executive, subClass, :Employee)
triple(:Programmer, subClass, :ITEmployee)
triple(:SysAdmin, subClass, :ITEmployee)
triple(:ITEmployee, subClass, :Employee)
triple(:hasSuperior, type, transProp)
triple(:hasSuperior, dom, :Employee)
triple(:hasSuperior, range, :Employee)

Ontology Profiles. The expressiveness of an ontology language can be specified
by profiles. The Semantic Web technology stack specifies four ontology profiles:
RDFS, OWL 2 EL, OWL 2 QL and OWL 2 RL [13,50].

RDF Schema (RDFS) extends RDF as a schema language for RDF and
a lightweight ontology language [13]. It includes constructs to declare classes,
hierarchies between classes and properties and relate the domain and range of
a property to a certain class. Ontological triples with subClass, subProp, dom,
range, type, equivClass, equivProp are in this profile. The following three
profiles, OWL 2 EL, QL and RL, extend the expressiveness of RDFS.

OWL 2 EL profile is used to represent ontologies that define very large num-
bers of classes and/or properties with transitivity. This language has been tai-
lored to model large life science ontologies, while still supporting efficient reason-
ing. OWL 2 EL is based on the EL++ Description Logic [9]. Ontological triples
with transProp are in this profile.

OWL 2 QL provides constructs to express conceptual models such as UML
class diagrams and ER diagrams. This language was designed so that data that
is stored in a standard relational database system can be queried through an
ontology via rewriting mechanisms. OWL 2 QL is based on the DL-Lite family
of description logics [16]. Ontological triples with inverse and symProp are in
this profile.
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OWL 2 RL provides constructs to represent rules in ontologies. This lan-
guage has been tailored for rule-based reasoning engines. OWL 2 RL is based on
Description Logic Programs (DLP) [35]. Ontological triples with inverse and
symProp are also in this profile.

The ontology expressivity considered in this work (as defined in Definitions 4–
12) is not specific to a single OWL profile. Thus, we propose a new ontology
profile, OWL-SQL, which expresses the types of ontologies considered in this
dissertation. Figure 2 denotes the expressivity of OWL-SQL with respect to the
OWL 2 EL, QL and RL profiles.

Fig. 2. OWL-SQL, proposed OWL profile

The expressivity of OWL-SQL is subsumed by early ontology profile propos-
als known as RDFS-Plus [4], OWL-LD [32] and RDFS 3.0 [39].

2.4 SPARQL

SPARQL is the standard query language for RDF [38,59]. SPARQL is a graph
pattern matching query language and has a syntax similar to SQL. A SPARQL
query contains a set of triple patterns called basic graph patterns. Triple patterns
are similar to RDF triples with the exception that the subject, predicate or
object can be variables (denoted by a leading question mark “?”). The answer
of a SPARQL query P over an RDF graph G is a finite set of mappings, where
a mapping μ is a partial function from the set V of variables to (I ∪ L ∪ B)4.
4 Recall that V is an infinite set of variables disjoint from I, B and L and that every

element in V starts with the symbol “?”. See Sect. 2.3.
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Example 3. Consider the RDF triples in Example 1. The following SPARQL
query asks for all names of people.

SELECT ?n
WHERE {

?s rdf:type foaf:Person.
?s foaf:name ?n.

}

The basic graph pattern consists of two triple patterns. Matching these triple
patterns with the RDF triples gives the answer "Juan Sequeda".

The semantics of SPARQL is defined as a function [[ · ]]G that, given an RDF
graph G, takes a graph pattern expression and returns a set of mappings. The
reader is referred to [64] for more detail.

3 From Relational Databases to the Semantic Web:
Mappings

3.1 W3C Direct Mapping

The W3C Direct Mapping [7] is an automatic approach of translating a relational
database to RDF. The W3C Direct Mapping takes as input a relational database
(data and schema), and generates an RDF graph that is called the direct graph.
No additional user input is needed to map the relational data to RDF. The struc-
ture of the resulting RDF graph directly reflects the structure of the database.
The RDF vocabulary is automatically generated from the names of database
schema elements. Neither the structure nor the vocabulary can be changed. If
needed, the resulting RDF graph can be transformed further by the user using
other RDF to RDF mapping approaches such as SPARQL CONSTRUCT.

The W3C Direct Mapping consists of two parts. A specification to generate
identifiers for a table, column foreign key and rows and a specification using the
identifiers, in order to generate the direct graph.

Generating Identifiers. The W3C Direct Mapping generates an identifier for
rows, tables, columns and foreign keys. If a table has a primary key, then the
row identifier will be an IRI, otherwise a blank node. The identifiers for tables,
columns and foreign keys are IRIs. It is important to note that in this paper we
present relative IRIs which must be resolved by appending to a given base IRI.
Throughout this document, http://ex.com/rdb2rdf/ is the base IRI. All strings
are percent encoded in order to generate a safe IRI5.

If a table has a primary key, then the row identifier will be an IRI, obtained
by concatenating the base IRI, the percent-encoded form of the table name, the
‘#’ character and for each column in the primary key, in order:
5 For example, a space is replaced with %20 e.g., the percent encoding of “Hello World”

is “Hello%20World”.

http://ex.com/rdb2rdf/
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– the percent-encoded form of the column name,
– the ‘=’ character
– the percent-encoded lexical form of the canonical RDF literal representation

of the column value
– if it is not the last column in the primary key, the ‘;’ character

For example the IRI for the row of the order table is <http://ex.com/
rdb2rdf/order#orderid=1234>. If a table does not have a primary key, then
the row identifier is a fresh blank node that is unique to each row

The IRI for a table is obtained by concatenating the base IRI with the
percent-encoded form of the table name. For example the table IRI of the order
table is <http://ex.com/rdb2rdf/order> The IRI for an attribute is obtained by
concatenating the base IRI with the percent-encoded form of the table name, the
‘#’ character and the percent-encoded form of the column name. For example,
the Literal Property IRI of the date attribute of the order table is <http://ex.
com/rdb2rdf/order#date> Finally the IRI for foreign key is obtained by con-
catenating the base IRI with the percent-encoded form of the table name, the
string ‘#ref-’ and for each column in the foreign key, in order:

– the percent-encoded form of the column name,
– if it is not the last column in the foreign key, a ‘;’ character

For example, the reference Property IRI of the foreign key orderid of the
lineitem table is <http://ex.com/rdb2rdf/lineitem#ref-orderid>

Generating the Direct Graph. A Direct Graph is the RDF graph resulting
from directly mapping each of the rows of each table and view in a database
schema. Each row in a table generates a Row Graph. The row graph is an RDF
graph consisting of the following triples: (1) a row type triple, (2) a literal triple
for each column in a table where the column value is non-NULL and (3) a
reference triple for each foreign key in the table where none of the column values
is NULL. A row type triple is an RDF triple with the subject as the row node
for the row, the predicate as the RDF IRI rdf:type and the object as the table
IRI for the table name. A literal triple is an RDF triple with the subject as the
row node for the row, the predicate as the literal property IRI for the column
and the object as the natural RDF literal representation of the column value.
Finally, a reference triple is an RDF triple with the subject as the row node for
the row, the predicate as the reference property IRI for the columns and the
object as the row node for the referenced row.

Example 4 (W3C Direct Mapping of Running Example). RDF generated by the
W3C Direct Mapping of the running example, in Turtle syntax. Recall that the
IRIs in the example are relative IRIs which must be resolved by appending to
the base IRI http://ex.com/rdb2rdf/.

<order#orderid=1234> rdf:type <order> ;
<order#orderid>"1234" ;

http://ex.com/rdb2rdf/order#orderid=1234
http://ex.com/rdb2rdf/order#orderid=1234
http://ex.com/rdb2rdf/order
http://ex.com/rdb2rdf/order#date
http://ex.com/rdb2rdf/order#date
http://ex.com/rdb2rdf/lineitem#ref-orderid
http://ex.com/rdb2rdf/
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<order#date> "2017-04-15";
<order#total> "100";
<order#currency> "USD";
<order#status> "1".

<lineitem#lineid=6789> rdf:type <lineitem>;
<lineitem#lineid> "6789";
<lineitem#price> "30";
<lineitem#quantity> "2";
<lineitem#product> "Foo";
<lineitem#orderid> "1234";
<lineitem#ref-orderid> <order#orderid=1234>.

<lineitem#lineid=6790> rdf:type <lineitem>;
<lineitem#lineid> "6790";
<lineitem#price> "20";
<lineitem#quantity> "2";
<lineitem#product> "Bar";
<lineitem#orderid> "1234";
<lineitem#ref-orderid> <order#orderid=1234>.

The formal semantics of the W3C Direct Mapping has been defined in Dat-
alog. We refer the reader to the W3C Direct Mapping standard document for
details [7]. The left hand side of each rule is the RDF Triple output. The right
hand side of each rule consists of a sequence of predicates from the relational
database and built-in predicates.

3.2 DM: Direct Mapping as Ontology

The W3C Direct Mapping standard has two main shortcomings. First, the map-
ping is only from relational data to RDF data. The relational schema is not
taken in account. Second, the semantics of the W3C Direct Mapping is not
defined for NULL values as described in the specification: “The direct mapping
does not generate triples for NULL values. Note that it is not known how to
relate the behavior of the obtained RDF graph with the standard SQL semantics
of the NULL values of the source RDB.” In this section, we first formally intro-
duce the notion of a direct mapping. Subsequently we introduce a new Direct
Mapping which addresses the aforementioned shortcomings.

A direct mapping is a default way to translate relational databases into RDF
(without any input from the user on how the relational data should be trans-
lated). The input of a direct mapping M is a relational schema R, a set Σ of
PKs (Primary Keys) and FKs (Foreign Keys) over R and an instance I of R.
The output is an RDF graph with OWL vocabulary.

Assume G is the set of all RDF graphs and RC is the set of all triples of the
form (R, Σ, I) such that R is a relational schema, Σ is a set of PKs and FKs
over R and I is an instance of R.

Definition 13 (Direct Mapping). A direct mapping M is a total function
from RC to G.
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We introduce the Direct Mapping as Ontology [65], denoted as DM, which
extends the W3C Direct Mapping [7] and combines with a direct mapping of
relational database schema to an OWL ontology [69,73]. Additionally, DM con-
siders the case when the input database has NULL values. DM is defined as a
set of Datalog predicate and rules6.

1. Five predicates that encode the input relational schema and instance to DM:
Rel(r): Indicates that r is a relation name in R, Attr(a, r): Indicates that
a is an attribute in the relation r in R, PKn(a1, . . . , an, r): Indicates that
r[a1, . . . , an] is a primary key in Σ, FKn(a1, . . . , an, r, b1, . . . , bn, s): Indicates
that r[a1, . . . , an] ⊆FK s[b1, . . . , bn] is a foreign key in Σ, and Value(v, a, t, r)
which Indicates that v is the value of an attribute a in a tuple with identifier
t in a relation r (that belongs to R).

2. Three predicates that are used to store an ontology: Class(c) indicates that
c is a class; OPn(p1, . . . , pn, d, r) indicates that p1, . . . , pn (n ≥ 1) form an
object property with domain d and range r and DTP(p, d) indicates that p
is a data type property with domain d.

3. Twelve Datalog rules that generate a putative ontology from a relational
schema. The rules can be summarized as follows: a table is translated to an
OWL Class unless the table represents a binary relationship, then it is trans-
lated to an OWL Object Property. Foreign Keys are translated to OWL Object
Properties while attributes are translated to OWL Datatype Properties.

4. Ten Datalog rules that generate the OWL ontology from the predicates that
are used to store an ontology which include rules to generate IRIs and express
the ontology as RDF triples.

5. Ten Datalog rules that generate RDF triples from a relational instance based
on the putative ontology.

We present example Datalog rules for the generation of classes and datatype
properties. We refer the reader to [65] for the detailed list of Datalog rules. A
class, defined by the predicate Class, is any relation that is not a binary relation.
A relation R is a binary relation, defined by the predicate BinRel, between two
relations S and T if (1) both S and T are different from R, (2) R has exactly
two attributes A and B, which form a primary key of R, (3) A is the attribute
of a foreign key in R that points to S, (4) B is the attribute of a foreign key
in R that points to T , (5) A is not the attribute of two distinct foreign keys in
R, (6) B is not the attribute of two distinct foreign keys in R, (7) A and B are
not the attributes of a composite foreign key in R, and (8) relation R does not
have incoming foreign keys. The formal definition of BinRel can be found in
[65]. Therefore, the predicate Class is defined by the following Datalog rules:

Class(X) ← Rel(X),¬IsBinRel(X)
IsBinRel(X) ← BinRel(X,A,B, S,C, T,D)

For instance, we have that Class(order) holds in our example.

6 We refer the reader to [2] for the syntax and semantics of Datalog.
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Every attribute in a non-binary relation is mapped to a data type property,
defined by the predicate DTP, which is defined by the following Datalog rule:

DTP(A,R) ← Attr(A,R),¬IsBinRel(R)

For instance, we have that DTP(date, order) holds in our example.
We now briefly define the rules that translates a relational database schema

into an OWL vocabulary. We introduce a family of rules that produce IRIs for
classes and data type properties identified by the mapping (which are stored
in the predicates Class and DTP). Note that the IRIs generated can be
later on replaced or mapped to existing IRIs available in the Semantic Web.
Assume given a base IRI base for the relational database to be translated (for
example, “http://ex.com/rdb2rdf/”), and assume a family of built-in predicates
Concatn (n ≥ 2) is given, such that Concatn has n + 1 arguments and
Concatn(x1, . . . , xn, y) holds if y is the concatenation of the strings x1, . . .,
xn. Then by following the approach proposed in [7], DM uses the following
Datalog rules to produce IRIs for classes and data type properties:

ClassIRI(R,X) ← Class(R),Concat2(base, R,X)
DTP IRI(A,R,X) ← DTP(A,R),Concat4(base, R, "#", A,X)

For instance, http://ex.com/rdb2rdf/order is the IRI for the order relation
in our example, and http://ex.com/rdb2rdf/order#date is the IRI for attribute
date in the order relation.

The following Datalog rules are used to generate the RDF representation of
the OWL vocabulary. A rule is used to collect all the classes:

Triple(U, "rdf:type", "owl:Class") ←
Class(R),ClassIRI(R,U)

The predicate Triple is used to collect all the triples of the RDF graph
generated by the direct mapping DM. The following rule is used to collect all
the data type properties:

Triple(U, "rdf:type", "owl:DatatypeProperty") ←
DTP(A,R),DTP IRI(A,R,U)

The following rule is used to collect the domains of the data type properties:

Triple(U, "rdfs:domain",W ) ←
DTP(A,R),DTP IRI(A,R,U),ClassIRI(R,W )

Example 5 (Direct Mapping as Ontology of Running Example). OWL generated
by the Direct Mapping as Ontology of the running example, in Turtle syntax. The
RDF triples from the Direct Mapping as Ontology are the same as in Example 4.
Recall that the IRIs in the example are relative IRIs which must be resolved by
appending to the base IRI http://ex.com/rdb2rdf/.

http://ex.com/rdb2rdf/
http://ex.com/rdb2rdf/order
http://ex.com/rdb2rdf/order#date
http://ex.com/rdb2rdf/
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<order> rdf:type owl:Class.
<order#orderid> rdf:type owl:DatatypeProperty ;

rdfs:domain <order>.
<order#date> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<order#total> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<order#currency> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<order#status> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<lineitem> rdf:type owl:Class.
<lineitem#lineid> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#price> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#quantity> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#product> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#orderid> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#ref-pid> rdf:type owl:ObjectProperty;

rdfs:domain <lineitem>;
rdfs:range <order>.

Direct Mapping Properties. We study two properties that are fundamental
to a direct mapping: information preservation and query preservation. Addition-
ally we study two desirable properties: monotonicity and semantics preservation.

A direct mapping is information preserving if it does not lose any information
about the relational instance being translated, that is, if there exists a way to
recover the original database instance from the RDF graph resulting from the
translation process. Formally, assuming that I is the set of all possible relational
instances, we have that:

Definition 14 (Information Preservation). A direct mapping M is infor-
mation preserving if there is a computable mapping N : G → I such that for
every relational schema R, set Σ of PKs and FKs over R, and instance I of R
satisfying Σ: N (M(R, Σ, I)) = I.

Recall that a mapping N : G → I is computable if there exists an algorithm
that, given G ∈ G, computes N (G).

Theorem 1. The direct mapping DM is information preserving.

The proof of this theorem is straightforward, and it involves providing a com-
putable mapping N : G → I that satisfies the condition in Definition 14, that
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is, a computable mapping N that can reconstruct the initial relational instance
from the generated RDF graph.

A direct mapping is query preserving if every query over a relational database
can be translated into an equivalent query over the RDF graph resulting from
the mapping. That is, query preservation ensures that every relational query can
be evaluated using the mapped RDF data.

I define query preservation, we focus on relational queries Q that can be
expressed in relational algebra [2] and RDF queries Q� that can be expressed in
SPARQL [55,59]. Given the mismatch in the formats of these query languages
(null can appear as a result of a relational query while null does not in a SPARQL
query), we introduce a function tr that converts tuples returned by relational
algebra queries into mappings returned by SPARQL. Formally, given a relational
schema R, a relation name R ∈ R, an instance I of R and a tuple t ∈ RI , define
tr(t) as the mapping μ such that: (1) the domain of μ is {?A | A ∈ att(R) and
t.A �= NULL}, and (2) μ(?A) = t.A for every A in the domain of μ.

Definition 15 (Query Preservation). A direct mapping M is query preserv-
ing if for every relational schema R, set Σ of PKs and FKs over R and relational
algebra query Q over R, there exists a SPARQL query Q� such that for every
instance I of R satisfying Σ: tr([[Q]]I) = [[Q�]]M(R,Σ,I).

We show that the way DM maps relational data into RDF allows one to
answer a query over a relational instance by translating it into an equivalent
query over the generated RDF graph.

Theorem 2. The direct mapping DM is query preserving.

Angles and Gutierrez proved that SPARQL has the same expressive power
as relational algebra [5]. Thus, one may be tempted to think that this result
could be used to prove this theorem. However, the version of relational algebra
considered in Angles and Gutierrez does not include the value NULL and hence
does not apply to DM. The proof is by induction on the structure of a relational
query Q. The proof is also constructive and yields a bottom-up algorithm for
translating Q into an equivalent SPARQL query.

Before defining monotonicity, consider the following: given two database
instances I1 and I2 over a relational schema R, instance I1 is said to be contained
in instance I2, denoted by I1 ⊆ I2, if for every R ∈ R, it holds that RI1 ⊆ RI2 .
A direct mapping M is considered monotone if for any such pair of instances,
the result of mapping I2 contains the result of mapping I1. In other words, if
we insert new data to the database, then the elements of the mapping that are
already computed are unaltered.

Definition 16 (Monotonicity). A direct mapping M is monotone if for every
relational schema R, set Σ of PKs and FKs over R, and instances I1, I2 of R
such that I1 ⊆ I2: M(R, Σ, I1) ⊆ M(R, Σ, I2).

Theorem 3. The direct mapping DM is monotone.
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It is straightforward to see that DM is monotone, because all the negative
atoms in the Datalog rules defining DM refer to the schema, the PKs and the FKs
of the database, and these elements are kept fixed when checking monotonicity.

A direct mapping is semantics preserving if the satisfaction of a set of PKs
and FKs by a relational database is encoded in the translation process. More
precisely, given a relational schema R, a set Σ of PKs and FKs over R and
an instance I of R, a semantics preserving mapping should generate from I a
consistent RDF graph if I |= Σ, and it should generate an inconsistent RDF
graph otherwise.

Definition 17 (Semantics Preservation). A direct mapping M is semantics
preserving if for every relation schema R, set Σ of PKs and FKs over R and
instance I of R: I |= Σ iff M(R, Σ, I) is consistent under OWL semantics.

Unfortunately, the situation is completely different for the case of semantics
preservation, as the following example shows that the direct mapping DM does
not satisfy this property.

Example 6. Assume that a relational schema contains a relation with name
STUDENT and attributes SID, NAME, and assume that the attribute SID is the pri-
mary key. Moreover, assume that this relation has two tuples, t1 and t2 such that
t1.SID = 1, t1.NAME = John and t2.SID = 1, t2.NAME = Peter. It is clear that the
primary key is violated, therefore the database is inconsistent. However, it is not
difficult to see that after applying DM, the resulting RDF graph is consistent. �

In fact, the result in Example 6 can be generalized as it is possible to show
that the direct mapping DM always generates a consistent RDF graph, hence,
it cannot be semantics preserving7.

Proposition 1. The direct mapping DM is not semantics preserving.

Consider a new direct mapping DMpk that extends DM as follows. A Dat-
alog rule is used to determine if the value of a primary key attribute is repeated,
and a family of Datalog rules are used to determine if there is a value NULL in
a column corresponding to a primary key. If some of these violations are found,
then an artificial triple is generated that would produce an inconsistency.

If we apply DMpk to the database of Example 6, it is straightforward to
see that starting from an inconsistent relational database, one obtains an RDF
graph that is also inconsistent. In fact, we have that:

Proposition 2. The direct mapping DMpk is information preserving, query
preserving, monotone, and semantics preserving if one considers only PKs. That
is, for every relational schema R, set Σ of (only) PKs over R and instance I
of R: I |= Σ iff DMpk (R, Σ, I) is consistent under OWL semantics.

7 In practice an RDBMS will not allow a violation of an integrity constraint. However,
it may be the case that an RDBMS is not being used and a user may have a dump of
data (e.g. in CSV format) and may indicate that a particular column is the primary
key when in reality the column violates the constraint.
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Information preservation, query preservation and monotonicity of DMpk are
corollaries of the fact that these properties hold for DM, and of the fact that
the Datalog rules introduced to handle primary keys are monotone.

The following theorem shows that the desirable condition of being monotone
is, unfortunately, an obstacle to obtain a semantics preserving direct mapping.

Theorem 4. No monotone direct mapping is semantics preserving.

It is important to understand the reasons why we have not been able to create
a semantics preserving direct mapping. The issue is with two characteristics of
OWL: (1) it adopts the Open World Assumption (OWA), where a statement
cannot be inferred to be false on the basis of failing to prove it, and (2) it does
not adopt the Unique Name Assumption (UNA), where two different names can
identify the same thing. On the other hand, a relational database adopts the
Closed World Assumption (CWA), where a statement is inferred to be false if
it is not known to be true. In other words, what causes an inconsistency in a
relational database, can cause an inference of new knowledge in OWL.

In order to preserve the semantics of the relational database, we need to
ensure that whatever causes an inconsistency in a relational database, is going
to cause an inconsistency in OWL. Following this idea, we now present a non-
monotone direct mapping, DMpk+fk , which extends DMpk by introducing rules
for verifying beforehand if there is a violation of a foreign key constraint. If such
a violation exists, then an artificial RDF triple is created which will generate an
inconsistency with respect to the OWL semantics.

It should be noticed that DMpk+fk is non-monotone because if new data in
the database is added which now satisfies the FK constraint, then the artificial
RDF triple needs to be retracted.

Theorem 5. The direct mapping DMpk+fk is information preserving, query
preserving and semantics preserving.

Information preservation and query preservation of DMpk+fk are corollaries of
the fact that these properties hold for DM and DMpk .

A direct mapping that satisfies the four properties can be obtained by con-
sidering an alternative semantics of OWL that expresses integrity constraints.
Because OWL is based on Description Logic, we would need a version of DL that
supports integrity constraints, which is not a new idea [17,28,29,34,49,51,72].
Thus, it is possible to extend DMpk to create an information preserving, query
preserving and monotone direct mapping that is also semantics preserving, but
it is based on a non-standard version of OWL.

3.3 W3C R2RML: RDB to RDF Mapping Language

R2RML [25] is a language for expressing customized mappings from relational
databases to RDF expressed in a graph structure and domain ontology of the
user’s choice. The R2RML language is also defined as an RDFS schema8. An
8 http://www.w3.org/ns/r2rml.

http://www.w3.org/ns/r2rml
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R2RML mapping is itself represented as an RDF graph. Turtle is the recom-
mended RDF syntax for writing R2RML mappings. The following is an example
of an R2RML mapping for the database in Fig. 1. Note that the mapping devel-
oper decides which tables and attributes of the database should be exposed as
RDF. The Direct Mapping automatically maps all of the tables and attributes
of the database.

Fig. 3. Example mapping

Example 7 (An R2RML Mapping). Figure 3 represents a mapping from our
running example database to an ontology. In this example we will present an
R2RML mapping that represents the depiction of Fig. 3.

The target ontology is defined as follows:

@prefix ex: <http://ex.com/schema/>.
ex:Order rdf:type owl:Class.
ex:totalOrderPrice rdf:type owl:DatatypeProperty ;

rdfs:domain ex:Order;
rdfs:range xsd:float.

ex:orderCurrency rdf:type owl:DatatypeProperty;
rdfs:domain ex:Order;
rdfs:range xsd:string.

ex:OrderDate rdf:type owl:DatatypeProperty;
rdfs:domain ex:Order;
rdfs:range xsd:date.
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ex:OrderLine rdf:type owl:Class.
ex:price rdf:type owl:DatatypeProperty;

rdfs:domain ex:OrderLine;
rdfs:range xsd:float.

ex:quantity rdf:type owl:DatatypeProperty;
rdfs:domain ex:OrderLine;
rdfs:range xsd:int.

exproduct rdf:type owl:DatatypeProperty;
rdfs:domain ex:OrderLine;
rdfs:range xsd:string.

ex#totalSRP rdf:type owl:DatatypeProperty;
rdfs:domain ex:OrderLine;
rdfs:range xsd:float.

ex:partOfOrder rdf:type owl:ObjectProperty;
rdfs:domain ex:OrderLine;
rdfs:range ex:Order.

The example R2RML Mapping is as follows. In TriplesMap1, all the tuples
of the lineitem table are mapped to instances of ex:OrderLine class. The column
price, quantity and product of the lineitem table are mapped to the data type
properties ex:price ex:quantity and ex:product respectively. The column orderid
of the lineitem table which is a foreign key that references orderid of the Order
table is mapped to object property ex:partOfOrder. Similarly, in TriplesMap3,
all the tuples of the order table are mapped to instances of ex:Order class. The
column date, total and currency of the order table are mapped to the data
type properties ex:orderDate, ex:totalOrderPrice and ex:orderCurrency respec-
tively. Finally, in TriplesMap2 we have a SQL query that returns a calcula-
tion (price*quantity) associated to each lineid. This calculation (the renamed
attribute totalsrp) is mapped to the data type property ex:totalSRP.

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://ex.com/schema/>.

<#TriplesMap1>
rr:logicalTable [ rr:tableName "lineitem" ];
rr:subjectMap [

rr:template "http://ex.com/data/orderline/{lineid}";
rr:class ex:OrderLine;

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:price ];
rr:objectMap [ rr:column "price" ];

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:quantity ];
rr:objectMap [ rr:column "quantity" ];
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];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:product ];
rr:objectMap [ rr:column "product" ];

];
rr:predicateObjectMap [

rr:predicate [ rr:constant ex:partOfOrder ];
rr:objectMap [

rr:parentTriplesMap <#TriplesMap3>;
rr:joinCondition [

rr:child "orderid";
rr:parent "orderid";

];
];

].

<#TriplesMap2>
rr:logicalTable [ rr:sqlQuery """

SELECT lineid, price*quantity totalsrp FROM lineitem
""" ];

rr:subjectMap [
rr:template "http://ex.com/data/orderline/{lineid}";

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:totalSRP ];
rr:objectMap [ rr:column "totalsrp" ];

].

<#TriplesMap3>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:Order;

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:orderDate ];
rr:objectMap [ rr:column "date" ];

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:totalOrderPrice ];
rr:objectMap [ rr:column "total" ];

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:orderCurrency ];
rr:objectMap [ rr:column "currency" ];
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];
.

The following is the resulting RDF after the mapping has been applied on the
example database:

<http://ex.com/data/order/1234> rdf:type ex:Order;
ex:orderDate "2017-04-15";
ex:totalOrderPrice "100";
ex:orderCurrency "USD".

<http://ex.com/data/orderline/6789> rdf:type ex:OrderLine;
ex:price "30";
ex:quantity "2";
ex:totalSRP "60";
ex:product "Foo";
ex:partOfOrder <http://ex.com/data/order/1234>.

<http://ex.com/data/orderline/6790> rdf:type ex:OrderLine
ex:price "20";
ex:quantity "2";
ex:totalSRP "40";
ex:product "Bar";
ex:partOfOrder <http://ex.com/data/order/1234>.

An R2RML processor may include an R2RML default mapping generator.
This is a facility that introspects the schema of the input database and generates
an R2RML mapping intended for further customization by a user. This default
mapping could be the W3C Direct Mapping or the Direct Mapping as Ontology
DM.

The R2RML language features can be divided in two parts: features generat-
ing RDF terms (IRI, Blank Nodes or Literals) and features for generating RDF
triples.

Generating RDF Terms. An RDF term is either an IRI, a Blank node, or
a Literal. A term map generates an RDF term for the subjects, predicates and
objects of the RDF triples from either a constant, a template or a column value.
A constant-valued term map ignores the row and always generates the same
RDF term. A column-valued term map generates an RDF term from the value
of a column. A template-valued term map generates an RDF term from a string
template, which is a format string that can be used to build strings from multiple
components, including the values of a column. Template-valued term maps are
commonly used to specify how an IRI should be generated.

The R2RML language allows a user to explicitly state the type of RDF term
that needs to be generated (IRI, Blank node or Literal). If the RDF term is
for a subject, then the term type must be either an IRI or Blank Node. If the



Integrating Relational Databases with the Semantic Web: A Reflection 89

RDF term is for a predicate, then the term type must be an IRI. If the RDF
term is for a subject, then the term type can be either an IRI, Blank node or
Literal. Additionally, a developer may assert that an RDF term has an assigned
language tag or datatype.

Generating RDF Triples. RDF triples are derived from a logical table. A
logical table can be either a base table or view in the relational schema, or
an R2RML view. An R2RML view is a logical table whose contents are the
result of executing a SQL SELECT query against the input database. In an
RDB2RDF mapping, it may be required to transform, compute or filter data
before generating RDF triples. This can be achieved by defining a SQL view and
referring to it as a base view. However, it may be the case that this is not possible
due to lack of sufficient database privileges to create views. R2RML views achieve
the same effect without requiring any changes to the input database.

A triples map is the heart of an R2RML mapping. It specifies a rule for
translating each row of a logical table to zero or more RDF triples. Example 7
contains two triple maps identified by <#TriplesMap1> and <#TriplesMap2>.
The RDF triples generated from one row in the logical table all share the same
subject. A triples map is represented by a resource that references the following
other resources:

– It must have exactly one logical table. Its value is a logical table that specifies
a SQL query result to be mapped to triples. In Example 7, both Triple Map’s 1
and 3 have a table name as a logical table, lineitem and order, respectively.
TripleMap2 has a logical table which is a SQL Query.

– It must have exactly one subject map that specifies how to generate a subject
for each row of the logical table.

– It may have zero or more predicate-object maps, which specify pairs of pred-
icate maps and object maps that, together with the subject generated by the
subject map, may form one or more RDF triples for each row.

Recall that there are three types of term maps that generate RDF terms:
constant-valued, column-valued and template-valued. Given that a subject, pred-
icate and object of an RDF triple must be RDF terms, this means that a subject,
predicate and object can be any of the three possible term maps, called subject
map, predicate map and object map, respectively. A predicateObject map groups
predicate-object map pairs.

A subject map is a term map that specifies the subject of the RDF
triple. The primary key of a table is usually the basis for creating an IRI.
Therefore, it is normally the case that a subject map is a template-valued
term map with an IRI template using the value of a column which is usu-
ally the primary key. Consider the triple map <#TriplesMap1> in Exam-
ple 7. The subject map is a template-valued term map where the template is
http://ex.com/data/order/{orderid}. This means that the subject IRI for
each row is formed using values of the orderid attribute. Optionally, a subject
map may have one or more class IRIs. For each RDF term generated by the
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subject map, RDF triples with predicate rdf:type and the class IRI as object
will be generated. In this example, the class IRI is ex:Order.

A predicate-object map is a function that creates one or more predicate-
object pairs for each row of a logical table. It is used in conjunction with a
subject map to generate RDF triples in a triples map. A predicate-object map
is represented by a resource that references the following other resources: One or
more predicate maps and one or more object maps or referencing object maps. In
<#TriplesMap1>, there are four predicate-object maps while <#TriplesMap2>
only has one.

A predicate map is a term map. It is common that the predicate of an RDF
triple is a constant. Therefore, a predicate map is usually a constant-valued term
map. For example, the first predicate-object map of <#TriplesMap1> has a pred-
icate map which is a constant-valued term map. The predicate IRI will always be
the constant is ex:price. An object map is also a term map. Several use cases
may arise where the object could be either a constant-valued, template-valued
or column-valued term map. The first predicate-object map of <#TriplesMap1>
has an object map which is a column-valued term map. Therefore, the object
will be a literal coming from the value of the price attribute.

A referencing object map allows using the subjects of another triples map as
the objects generated by a predicate-object map. Since both triples maps may
be based on different logical tables, this may require a join between the logical
tables. A referencing object map is represented by a resource that has exactly
one parent triples maps. Additionally, it may have one or more join conditions.
Join conditions are represented by a resource that has exactly one value for
each of the following: (1) a child, whose value is known as the join condition’s
child column and must be a column name that exists in the logical table of the
triples map that contains the referencing object map (2) a parent, whose value
is known as the join condition’s parent column and must be a column name that
exists in the logical table of the referencing object map’s parent triples map.
The last predicate-object map of <#TriplesMap1> has a referencing object map.
The parent triples map is <#TriplesMap3>. A join condition is created between
the child attribute orderid, which is an column name in the logical table of
<#TriplesMap1> and the parent attribute orderid, which is a column name in
the logical table of <#TriplesMap3>

3.4 Relational Databases to RDF Mappings

Even though there has been attempts to formalize R2RML [62], to the best of
our knowledge, there is no formal public definition of R2RML. Nevertheless, we
believe it is important to formalize a notion of a customized mapping from Rela-
tion Databases to RDF, which we denote as an RDB2RDF mapping. This alter-
native approach follows the widely used formalization in the data exchange [6]
and data integration areas [46], and which is based on the use of first-order logic
and its semantics to define mappings.
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Given a relational schema R such that triple �∈ R, a class RDB2RDF-rule
ρ over R is a first-order formula of the form:

∀s∀p∀o∀x̄ α(s, x̄) ∧ p = type ∧ o = c → triple(s, p, o), (1)

where α(s, x̄) is a domain-independent first-order formula over R and c ∈ D.
Moreover, a predicate RDB2RDF-rule ρ over R is a first-order formula of the

form:

∀s∀p∀o∀x̄ β(s, o, x̄) ∧ p = c → triple(s, p, o), (2)

where β(s, o, x̄) is a domain-independent first-order formula over R and c ∈ D.
Finally, an RDB2RDF-rule over R is either a class or a predicate RDB2RDF-
rule over R. In what follows, we omit the universal quantifiers ∀s∀p∀o∀x̄ from
RDB2RDF rules, and we implicitly assume that these variables are universally
quantify.

Example 8. Consider the relational database from our running example (see
Example 1). Then the following RDB2RDF rule maps all the instances of the
order table as instances of the Order class: order(s, x1, x2, x3, x4, x5) ∧ p =
type ∧ o = Order → triple(s, p, o).

The RDB2RDF mapping in Example 8 can be represented as follows in
R2RML:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:Order;

];
.

Additionally, it could also be represented as follows:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
];
rr:predicateObjectMap [

rr:predicate rdf:type ;
rr:object ex:Order ;

];
.

Let R be a relational schema. An RDB2RDF mapping M over R is a finite
set of RDB2RDF rules over R. Given an RDB2RDF mapping M and an instance
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I over R, the result of applying M over I, denoted by [[M]]I , is an instance over
the schema {triple} that is defined as the result of the following process. For
every RDB2RDF rule of the form (1) and value c1 ∈ D, if there exists a tuple
of values d̄ from D such that I |= α(c1, d̄),9 then triple(c1, type, c) is included
as a fact of [[M]]I , and likewise for every RDB2RDF rule of the form (2). Notice
that this definition coincides with the notion of canonical universal solution in
the context of data exchange [6]. Besides, notice that [[M]]I represents an RDF
graph and, thus, mapping M can be considered as a mapping from relational
databases into RDF graphs.

Example 9. Consider the relational database from our running example, and let
M be an RDB2RDF mapping consisting of the rule in Example 1 and the fol-
lowing rule:

order(s, x1, o, x3, x4, x5) ∧ p = orderDate → triple(s, p, o) (3)

If I is the instance from our running example, then [[M]]I consists of the following
facts:

triple(1234, type, Order), triple(1234, orderDate, 2017 − 04 − 15).

The RDB2RDF mapping in Example 9 can be represented as follows in
R2RML:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:Order;

];
rr:predicateObjectMap [

rr:predicate ex:orderDate ;
rr:objectMap [ rr:column "date" ];

];
.

4 From the Semantic Web to Relational Databases:
Data Access

The Semantic Web’s promise of web-wide data integration requires the inclusion
of legacy Relational Databases. In the previous section, we discussed how to go
from a Relational Database to the Semantic Web through means of mappings.
In this section, we present the other direction: how the Semantic Web can access
a Relational Database.
9 Given that α(s, x̄) is domain-independent, there exists a finite number of tuples

(c1, d̄) such that I |= α(c1, d̄).
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In RDF data management there are efforts that concern Triplestores and
those that concern legacy Relational Databases. Triplestores are database man-
agement systems whose data model is RDF, and support at least SPARQL
execution against the stored contents. Native triplestores are those that are
implemented from scratch [14,53,76]. RDBMS-backed Triplestores are built by
adding an application layer to an existing relational database management sys-
tem. Within that literature there is a discourse concerning the best database
schema, SPARQL to SQL query translations, indexing methods and even storage
managers, (i.e. column stores vs. row stores) [1,21,30,77]. NoSQL Triplestores
are also being investigated as possible RDF storage managers [24,31,41,44]. In
all three triplestore cases (native, RDBMS-backed and NoSQL), RDF is the
primary data model.

The research herein is concerned with the mapping of legacy relational data
with the Semantic Web. Within that, the research concerns wrapper systems
that present a logical RDF representation of relational data that is physically
stored in an RDBMS such that no copy of the relational data is made. It follows
that some or all of a SPARQL query evaluation is executed by the SQL engine.
An alternative approach is the one in which the relational data is extracted
from the relational database, transformed to RDF, and loaded (ETL) into a
Triplestore.

Since both RDBMS-backed Triplestores and RDB2RDF Wrapper systems
involve relational databases and translation from SPARQL to SQL, there is
a potential for confusion. The difference is that RDBMS-backed Triplestores
translate SPARQL queries to SQL queries that are executed on database schemas
that model and store RDF. RDB2RDF Wrapper systems translate SPARQL
queries to SQL queries that are executed on legacy database schemas that model
and store relational data.

An RDB2RDF ETL approach is recommended when the data in the legacy
relational database is stale, or updated infrequently. In an ETL system, at best,
updates occur on a regular cycle. Thus semantic web applications querying stale
data just prior to an update is a risk. In the common case of legacy relational
databases which are continually updated, an ETL approach is not feasible. A
solution to this problem is the use of a RDB2RDF wrapper systems which com-
piles SPARQL to SQL.

4.1 SPARQL to SQL Rewriting with Direct Mapping

In mid to late 2000s, RDB2RDF wrapper systems such as D2RQ, Virtuoso
RDF Views and Squirrel RDF, predicated on preprocessing and/or optimiz-
ing the SQL query before sending it to the SQL optimizer. Open-source code
and forums10 provide evidence of their architecture. For example, we observed
that for some SPARQL queries, D2RQ generates multiple SQL queries and nec-
essarily executed a join among those results outside of the database. In 2011, we
postulated that by carefully constructing SQL views to represent a RDB2RDF

10 https://github.com/d2rq/d2rq/issues/94 As of April 2017, this issue is still open.

https://github.com/d2rq/d2rq/issues/94
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mapping, then the existing algorithmic machinery in SQL optimizers were suf-
ficient to effectively execute SPARQL queries on native relational data [67].
Thereby, legacy relational database systems may be made upwardly compatible
with the Semantic Web, while simultaneously minimizing the complexity of the
wrapping system.

In 2008, Angles and Gutierrez showed that SPARQL is equivalent in expres-
sive power to relational algebra [5]. Thus, one might have expected that the valid-
ity of this research’s postulate at that time, to be a foregone conclusion. However,
in 2009, two independent studies that evaluated three RDB2RDF wrapper sys-
tems, D2RQ, Virtuoso RDF Views and Squirrel RDF, came to the opposite
conclusion: existing SPARQL to SQL translation systems do not compete with
traditional relational databases [11,33].

The March 2009 Berlin SPARQL Benchmark on the 100 million triple dataset
reported that SPARQL queries on the evaluated RDB2RDF systems were up to
1000 times slower that the native SQL queries. Bizer and Schultz [11], creators
of the Berlin SPARQL Benchmark, concluded that: “Setting the results of the
RDF stores and the SPARQL-to-SQL rewriters in relation to the performance
of classical RDBMS unveiled an unedifying picture. Comparing the overall per-
formance (100M triple, single client, all queries) of the fastest rewriter with the
fastest relational database shows an overhead for query rewriting of 106%. This
is an indicator that there is still room for improving the rewriting algorithms”.

Gray et al. [33] tested D2RQ and SquirrelRDF on a scientific database. This
study concluded that “... current rdb2rdf systems are not capable of providing
the query execution performance required to implement a scientific data inte-
gration system based on the rdf model. [...] it is likely that with more work on
query translation, suitable mechanisms for translating queries could be developed.
These mechanisms should focus on exploiting the underlying database system’s
capabilities to optimize queries and process large quantities of structured data,
e.g. pushing the selection conditions to the underlying database system”.

A motivation for this research, at that time, was to resolve the apparent
contradiction among the aforementioned papers. Toward that end we researched
and engineered the Ultrawrap system [67].

Ultrawrap Architecture. The first version of Ultrawrap was compliant with
the W3C Direct Mapping standard. The goal was to understand if existing com-
mercial relational databases already subsume the algorithms and optimizations
needed to support effective SPARQL execution on existing relationally stored
data under the simplest mapping possible. This initial version of Ultrawrap was
organized as a set of four compilers with the understanding that the SQL opti-
mizer formed one of the compilers.

1. The generation of the Direct Mapping with the translation of a SQL schema,
including constraints, to an OWL ontology: the putative ontology (PO).

2. The creation of an intensional triple table in the database by augmenting the
relational schema with one or more SQL Views: the Tripleview.
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3. Translation of SPARQL queries to equivalent SQL queries operating on the
Tripleview.

4. The native SQL query optimizer, which becomes responsible for rewriting
triple based queries and effecting their execution on extensional relational
data.

These four components can be seen as four different language compilers. As
an ensemble, the first three provide for the logical mapping of schema, data
and queries between the relational and Semantic Web languages. The fourth
component, the SQL optimizer, is responsible for the evaluation of the data
mappings and concomitant optimization of the query.

To define the mapping of the relational data to RDF, the system first identi-
fies an ontological representation of the relational schema, which is done by the
Direct Mapping and the generation of the putative ontology. The putative ontol-
ogy is the input to a second compilation step that creates a logical definition
of the relational data as RDF and embeds it in a view definition. In a off-line
process, Ultrawrap defines a SQL view whose query component is a specifica-
tion of a mapping from the relational data to an RDF triple representation, the
Tripleview. Per the Direct Mapping, concatenating the table name with the pri-
mary key value or table name with attribute name creates unique identifiers for
subject, predicate and objects. Subsequently, unique identifiers can be appended
to a base URI. The SQL Tripleview is comprised of a union of SELECT-FROM-
WHERE (SFW) statements. The WHERE clause filters attributes with null
values (IS NOT NULL), given that null values are not expressible in RDF.

Due to its simplicity, our starting point is the triple table approach. Even
though, studies have shown that storing RDF with the triple table approach in
a relational database is easily improved upon [1,48], this issue is not relevant to
Ultrawrap because the relational data is not being materialized in a triple table;
instead the relational data is virtually represented as a triple table through
unmaterialized views.

Even though our goal is to define a virtual triple table, we still have to antic-
ipate the physical characteristics of the database and the capacity of the SQL
optimizer to produce optimal physical plans. Toward that end, the Tripleview
has the following characteristics.

The Tripleview is of the form: <subject, primary key of subject, predicate,
object, primary key of object>. Separating the primary key in the Tripleview
allows the query optimizer to exploit them because the joins are done on these
values. If the object is a data value, then a NULL is used as the primary key of
the object. The subject and object are still kept as the concatenation of the table
name with the primary key value because this is used to generate the final URI,
which uniquely identifies each tuple in the database. It is possible to augment
the number of attributes in the Tripleview to include each separate key value.

Instead of having a single Tripleview to represent the entire mapping, it is
beneficial to create a separate Tripleview for each datatype. For varchar, this
includes each length declared in the schema. For example, datatypes with var-
char(50) and varchar(200) are considered different. Using multiple Tripleviews
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requires less bookkeeping than one might anticipate. Each attribute is mapped to
its corresponding Tripleview and stored in a hashtable. Then, given an attribute,
the corresponding Tripleview can be retrieved.

For example, the Tripleviews for the direct mapping of our running example
is the following:

CREATE VIEW Tripleview_type(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "type" as p,

"order" as o, null as o_id

FROM order

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"type" as p,

"lineitem" as o, null as o_id

FROM lineitem

CREATE VIEW Tripleview_int(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "orderid" as p,

orderid as o, null as o_id

FROM order WHERE orderid IS NOT NULL

UNION ALL

SELECT "order"+orderid as s, orderid as s_id, "status" as p,

status as o, null as o_id

FROM order WHERE status IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"price" as p,

price as o, null as o_id

FROM lineitem WHERE price IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"quantity" as p,

quantity as o, null as o_id

FROM lineitem WHERE quantity IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"orderid" as p,

orderid as o, null as o_id

FROM lineitem WHERE orderid IS NOT NULL

CREATE VIEW Tripleview_varchar50(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "currency" as p,

currency as o, null as o_id

FROM order WHERE currency IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"product" as p,

product as o, null as o_id

FROM lineitem WHERE product IS NOT NULL

CREATE VIEW Tripleview_float(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "total" as p,

total as o, null as o_id

FROM order WHERE total IS NOT NULL

UNION ALL
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SELECT "lineitem"+lineid as s, lineid as s_id,"price" as p,

price as o, null as o_id

FROM lineitem WHERE price IS NOT NULL

CREATE VIEW Tripleview_object(s,s_id,p,o,o_id) AS

SELECT "lineitem"+lineid as s, lineid as s_id,

"lineitem#ref-orderid" as p, "order"+orderid as o, orderid as o_id

FROM lineitem WHERE orderid IS NOT NULL

Ultrawrap’s runtime phase encompasses the translation of SPARQL queries
to SQL queries on the Tripleviews and the maximal use of the SQL infrastruc-
ture to do the SPARQL query rewriting and execution. At runtime, a compiler
translates an incoming SPARQL query to a SQL query in terms of the Triple-
view. The translation of the SPARQL query to a SQL query on the Tripleviews
follows a classic compiler structure: a parser converts the SPARQL query string
to an Abstract Syntax Tree (AST). The AST is translated into an SPARQL
algebra expression tree. The SQL translation is accomplished by traversing the
expression tree and replacing each SPARQL operator. Each internal node of the
expression tree represents a SPARQL binary algebra operator while the leaves
represent a Basic Graph Patterns (BGP), which is a set of triple patterns. A
SPARQL BGP is a set of triple patterns where each one maps to a Tripleview.
A SPARQL Join maps to a SQL Inner Join, a SPARQL Union maps to the SQL
Union, a SPARQL Optional maps to SQL Left-Outer Join. Consequently, the
RDBMS must use both the logical mapping represented in the Tripleview and
optimize the resulting translated SQL query, forming the final compiler.

Example 10. The following SPARQL query returns all the quantity and products
in a line item.

SELECT ?quantity ?product
WHERE {
?x <lineitem#quantity> ?quantity.
?x <lineitem#product> ?product.

}

The Ultrawrap SQL query is the following:

SELECT t1.o AS quantity, t2.o AS product
FROM Tripleview_varchar50 t1, Tripleview_int t2
WHERE t1.p = "quantity"AND t2.p ="product"
AND t1.s = t2.s AND t1.s_id = t2.s_id

Two Important Optimizations. Upon succeeding in ultrawrapping different
RDBMSs and reviewing query plans, two relational optimizations emerged as
important for effective execution of SPARQL queries: (1) detection of unsat-
isfiable conditions and (2) self-join elimination. Perhaps, not by coincidence,
these two optimizations are among semantic query optimization (SQO) meth-
ods introduced in the 1980’s [18,20,70]. In SQO, the objective is to leverage
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the semantics, represented in integrity constraints, for query optimization. The
basic idea is to use integrity constraints to rewrite a query into a semantically
equivalent one. These techniques were initially designed for deductive databases
and then integrated in commercial relational databases [20].

The idea behind the detection of unsatisfiable conditions optimization
is to determine that a query result is empty by determining, without executing
the query. This happens, for example, when a pair of predicate constants are
inconsistent [18]. The application of the following transformations eliminates
columns from the plan that are not needed to evaluate the SPARQL query.

Elimination by contradiction: Consider a query SELECT * FROM R WHERE A=x
AND A=y such that x != y. Then the result of that query is empty. For exam-
ple, it is clear that the query SELECT * FROM order WHERE orderid = 1 AND
orderid = 2 will never return results.

Unnecessary union sub-tree pruning: Given a query that includes the UNION
operator and where it has been determined that an argument of the UNION is
empty; then the corresponding argument can be eliminated. For example: UNION
ALL ({}, S, T) = UNION ALL (S, T) and UNION ALL ({}, T) = T

In Ultrawrap’s Tripleview, the constant value in the predicate position acts
as the integrity constraint. Consider the following Tripleview:

CREATE VIEW Tripleview_varchar50(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "currency" as p,

currency as o, null as o_id FROM order

WHERE currency IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"product" as p,

product as o, null as o_id FROM lineitem

WHERE product IS NOT NULL

Now consider the following query “return all product labels”:

SELECT o FROM Tripleview_varchar50 WHERE p = "product"

The first SFW statement from Tripleview varchar50 defines p="currency".
The query contains p ="product". Both predicates cannot be satisfied simul-
taneously. Given the contradiction, the first SFW statement of Triple-
view varchar50 can be replaced with the empty set. Since the Tripleview’s defi-
nition includes all possible columns, any specific SPARQL query will only need
a subset of the statements defined in the view. Application of elimination by
contradiction enables removing, the unnecessary UNION ALL conditions. Thus
the combination of the two transformations reduces the Tripleview to precisely
the subset of referenced columns.

Example 11. Consider the Ultrawrap SQL query in Example 10, after applying
the detection of unsatisfiable condition optimization, the new Ultrawrap SQL
query would logically be the following
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SELECT t1.o AS quantity, t2.o AS product

FROM

(SELECT"lineitem"+lineid as s, lineid as s_id,"quantity"as p,

quantity as o, null as o_id FROM lineitem WHERE quantity IS NOT NULL) t1,

(SELECT"lineitem"+lineid as s, lineid as s_id,"product"as p,

product as o, null as o_id FROM lineitem WHERE product IS NOT NULL) t2

WHERE t1.p ="quantity"AND t2.p ="product"

AND t1.s = t2.s AND t1.s_id = t2.s_id

Join elimination is one of the several SQO techniques, where integrity con-
straints are used to eliminate a literal clause in the query. This implies that a
join could also be eliminated if the table that is being dropped does not con-
tribute any attributes in the results [18]. The type of join elimination that is
desired is the self-join elimination, where a join occurs between the same
tables. Two different cases are observed: self-join elimination of projection and
self-join elimination of selections.

Self-join elimination of projection: This occurs when attributes from the same
table are projected individually and then joined together. For example, the fol-
lowing unoptimized query projects the attributes total and currency from the
table order where orderid = 1, however each attribute projection is done sepa-
rately and then joined:

SELECT p1.total, p2.currency
FROM order p1, order p2
WHERE p1.orderid = 1 AND p1.orderid = p2.orderid

Given a self-join elimination optimization, the previous query may be rewrit-
ten as:

SELECT total, currency FROM order WHERE orderid = 1

Self-join elimination of selection: This occurs when a selection on attributes from
the same table are done individually and then joined together. For example, the
following unoptimized query selects on price > 100 and quantity > 10 separately
and then joined:

SELECT p1.lineid

FROM lineitem p1, lineitem p2

WHERE p1.price > 100 AND p2.quantity > 10 AND p1.lineid = p2.lineid

Given a self-join elimination optimization, the previous query may be rewrit-
ten as:

SELECT lineid FROM lineitem WHERE price > 100 AND quantity > 10

Example 12. Consider the logical Ultrawrap SQL query in Example 11. After
the self join elimination optimization has been applied, the new Ultrawrap SQL
query would logically be the following

SELECT t1.quantity, t1.product
FROM lineitem t1
WHERE t1.quantity IS NOT NULL and t1.product IS NOT NULL
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Evaluation. Ultrawrap was evaluated using the three leading RDBMS systems
and two benchmark suites, Microsoft SQL Server, IBM DB2 and Oracle RDBMS,
and the Berlin and Barton SPARQL benchmarks. The SPARQL benchmarks
were chosen as a consequence of the fact that they derived their RDF content
from a relational source. Both benchmark provide both SPARQL queries and
SQL queries, where each query was derived independently from an English lan-
guage specification. Since wrappers produce SQL from SPARQL we refer to the
benchmark’s SQL queries as benchmark-provided SQL queries.

By using benchmarks containing independently created SPARQL and SQL
queries, and considering the effort and maturity embodied in the leading
RDBMS’s SQL optimizers, we suppose that the respective benchmark-provided
SQL query execution time forms a worthy baseline, and the specific query plans
to yield insight into methods for creating wrappers.

By starting with a simple wrapper system and evaluating it with sophisti-
cated SQL query optimizers we are able to identify existing, well understood
optimization methods that enable wrappers. We determined that DB2 imple-
ments both optimizations. SQL Server implements the detection of unsatisfiable
conditions optimization but does not implement the self-join elimination opti-
mization. Oracle does not implement the detection of unsatisfiable conditions
optimization. It does implement the self-join elimination optimization, but only
if the detection of unsatisfiable conditions optimization is applied separately.
MySQL does not implement any of these optimizations.

The following points deserve elaboration:

– Self-join elimination: The number of self-joins and their elimination is not, by
itself, an indicator of poor performance. The impact of the self-join elimina-
tion optimization is a function of the selectivity and the number of properties
in the SPARQL query that are co-located in a single table. The value of
optimization is less as selectivity increases.

– Join predicate push-down: The experiments with Oracle revealed that push-
ing join predicates [3] can be as effective as the detection of unsatisfiable
conditions optimization.

– Join ordering: Join order is a major factor for poor query execution time,
both on Ultrawrap and benchmark-provided SQL queries.

– Left-outer joins: We found that no commercial optimizer eliminates self left-
outer joins and OPTIONALs appear in many of the queries where sub-optimal
join orders are determined. We speculate that these types of queries are not
common in a relational setting, hence the lack of support in commercial sys-
tems.

– Counting NULLs: Each SFW statement of the Tripleview filters null values.
Such a filter could produce an overhead, however we speculate that the opti-
mizer has statistics of null values and avoids the overhead.

The results of the Ultrawrap system provided a foundation for identifying
minimal requirements for effective SPARQL to SQL wrapper systems. Since
then, other research groups have continued this work and developed systems
such as Morph [58] and Ontop [61].
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4.2 Ontology-Based Data Access

In the previous section, we presented the initial Ultrawrap system, who focus
is on supporting a Direct Mapping. In this section, we present how Ultrawrap
has been extended for Ontology-Based Data Access, denoted as UltrawrapOBDA,
and thus supports customized mappings in R2RML [66].

Given a source relational database, a target OWL ontology and a map-
ping from the relational database to the ontology, Ontology-Based Data Access
(OBDA) concerns answering queries over the target ontology using these three
components. Commonly, researchers have taken two approaches to developing
OBDA systems: materialization-based approach (forward chaining) or rewriting-
based approach (backward chaining). In the materialization approach, the input
relational database D, target ontology O and mapping M (from D to O) are used
to derive new facts that are stored in a database Do, which is considered to be the
materialization of the data in D given M and O. Then the answer to a SPARQL
query Q over the target ontology over D, M and O is computed by directly posing
Q over Do [6]. In the rewriting approach, three steps are executed. First, a new
query Qo is generated from the query Q and the ontology O, which is considered
to be the rewriting of Q w.r.t. to O. The majority of the OBDA literature focuses
on this step [54]. Second, the mapping M is used to compile Qo to a SQL query
Qsql over D [56,57]. Finally, Qsql is evaluated on the database D, which gives us
the answer to the initial query Q. Therefore, the answer to a query Q over O, D,
and M is computed by directly posing Qsql over D.

We develop an OBDA system, UltrawrapOBDA, which combines material-
ization and query rewriting. UltrawrapOBDA is an extension of our previous
Ultrawrap system which supports customized mappings in R2RML. In the same
spirit of our Ultrawrap work, the objective is to effect optimizations by pushing
processing into the Relational Databases Management Systems (RDBMS) and
closer to the stored data, hence making maximal use of existing SQL infrastruc-
ture. We distinguish two phases: a compile and runtime phase. In the compile
phase, we are given as input a relational database D, an ontology O and a
mapping M from D to O. The mapping M is given in R2RML. The first step
of this phase is to embed in M the ontological entailments of O, which gives
rise to a new mapping M�, that is called the saturation of M w.r.t. O. The
mapping M� is implemented using SQL views. In order to improve query per-
formance, an important issue is to decide which views should be materialized.
This is the last step of the compilation phase. We then study when a view should
be materialized in order to improve query performance. In the runtime phase,
the input is a query Q over the target ontology O, which is written in the RDF
query language SPARQL, and the problem is to answer this query by rewriting
it into some SQL queries over the views. A key observation at this point is that
some existing SQL optimizers are able to perform rewritings in order to execute
queries against materialized views.

To the best of our knowledge, in 2014, we presented the first OBDA sys-
tem which supported ontologies with transitivity by using SQL recursion. The
ontology profile considered in this work is our proposed OWL-SQL. More
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specifically, our contributions are the following. (1) We present an efficient
algorithm to generate saturated mappings. (2) We provide a proof that every
SPARQL query over a target ontology can be rewritten into a SQL query in our
context, where mappings play a fundamental role. It is important to mention
that such a result is a minimal requirement for a query-rewriting OBDA system
relying on relational database technology. (3) We present a cost model that help
us to determine which views to materialize to attain the fastest execution time.
And (4) we present an empirical evaluation using (i) Oracle, (ii) two benchmarks
including an extension of the Berlin SPARQL Benchmark, and (iii) six differ-
ent scenarios. This evaluation includes a comparison against a state-of-the-art
OBDA system, and its results validate the cost model and demonstrate favorable
execution times for UltrawrapOBDA.

Related work. This research builds upon the work of Rodriguez-Muro et al.
implemented in Ontop [61] and our previous work on Ultrawrap [67]. Rodriguez-
Muro et al. uses the tree-witness rewriting algorithm and introduced the idea of
compiling ontological entailments as mappings, which they named T -Mappings.
There are three key differences between Rodriguez-Muro et al. and our work in
this paper: (1) we have extended the work of Rodriguez-Muro et al. to support
more than hierarchy of classes and properties, including transitivity; (2) we intro-
duce an efficient algorithm that generates saturated mappings while Rodriguez-
Muro et al. has not presented an algorithm before; and (3) we represent the
mappings as SQL views and study when the views should be materialized. Ultra-
wrap is a system that encodes a fix mapping, the direct mapping [7,65], of the
database as RDF. These mappings are implemented using unmaterialized SQL
views. The approach presented extends Ultrawrap in three important aspects:
(1) supports a customized mapping language; (2) supports reasoning through
saturated mappings; and (3) considers materializing views for query optimiza-
tion. Another related work is the combined approach [47], which materializes
entailments as data, without considering mappings, and uses a limited form of
query rewriting. The main objective of this approach is to deal with the case of
infinite materialization, which cannot occur for the type of ontologies considered
in this paper.

Saturation of RDB2RDF Mappings. Being able to modify an RDB2RDF
mapping to embed a given ontology is a fundamental step in our approach. This
process is formalized by means of the notion of saturated mapping.

Definition 18 (Saturated Mapping). Let M and M� be RDB2RDF map-
pings over a relational schema R and O an ontology. Then M� is a saturation of
M w.r.t. O if for every instance I over R and assertional RDF-triple (a, b, c):

[[M]]I ∪ ΣO |= triple(a, b, c) iff triple(a, b, c) ∈ [[M�]]I .

We study the problem of computing a saturated mapping from a given
mapping and ontology. In particular, we focus on the case of ontologies not
mentioning any triple of the form (a, type, transProp), which we denote by
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non-transitive ontologies. In the next section, we extend these results to the case
of arbitrary ontologies.

In our system, the saturation step is performed by exhaustively applying the
inference rules in Table 1, which allow us to infer new RDB2RDF rules from
the existing ones and the input ontology. More precisely, given an inference rule
t:ρ1

ρ2
from Table 1, where t is a triple and ρ1, ρ2 are RDB2RDF rules, and given

an RDB2RDF mapping M and an ontology O, we need to do the following to
apply t:ρ1

ρ2
over M and O. First, we have to replace the letters A and B in t

with actual URIs, say a ∈ I and b ∈ I, respectively.11 Second, we need to check
whether the triple obtained from t by replacing A by a and B by b belongs to O,
and whether the RDB2RDF rule obtained from ρ1 by replacing A by a belongs
to M. If both conditions hold, then the inference rule can be applied, and the
result is an RDB2RDF mapping M′ consisting of the rules in M and the rule
obtained from ρ2 by replacing A by a and B by b.

Table 1. Inference rules to compute saturated mappings.

Example 13. Consider the RDB2RDF rule order(s, x1, x2, x3, x4, 1)∧p = type∧
o = ShippedOrder → triple(s, p, o)., and assume that we are given an ontology
O containing the triple (ShippedOrder, subClass, SuccessfulOrder). Then by
applying the first inference rule in Table 1, we infer the following RDB2RDF rule:
order(s, x1, x2, x3, x4, 1)∧ p = type∧ o = SuccessfulOrder → triple(s, p, o).
11 If t = (A, type, symProp), then we only need to replace A by a.
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Given an RDB2RDF mapping M and an ontology O, we denote by
Sat(M,O) the RDB2RDF mapping obtained from M and O by successively
applying the inference rules in Table 1 until the mapping does not change. The
following theorem shows that Sat(M,O) is a saturation of M w.r.t. O, which
justifies its use in our system.

Theorem 6. For every RDB2RDF mapping M and ontology O in RDFS, it
holds that Sat(M,O) is a saturation of M w.r.t. O.

Theorem 6 is a corollary of the fact that the first six rules in Table 1 encode
the rules to infer assertional triples from an inference system for RDFS given
in [52].

A natural question at this point is whether Sat(M,O) can be computed effi-
ciently. In our setting, the approach based on exhaustively applying the inference
rules in Table 1 can be easily transformed into a polynomial time algorithm for
this problem. However, if this transformation is done in a näıve way, then the
resulting algorithm is not really efficient. In [66], we present an efficient algo-
rithm to compute Sat(M,O) that is linear in the size of the input RDB2RDF
mapping M and ontology O, which are denoted by ‖M‖ and ‖O‖, respectively.

Theorem 7. There exists an algorithm that, given an RDB2RDF mapping M
and a non-transitive ontology O, computes Sat(M,O) in time O(‖M‖ · ‖O‖).

The main ingredients of the algorithm mentioned in Theorem7 can be found
in [66].

Dealing with Transitive Predicates. We show here how the approach pre-
sented in the previous section can be extended with recursive predicates. This
functionality is of particular interest as the current work on OBDA under OWL
2 QL does not consider transitivity, mainly because the query language in which
the query over the ontology has to be rewritten is SQL without recursion [15].

From now on, given a first-order formula ϕ(x, y), we use Tcϕ(x, y) to denote
the transitive closure of ϕ(x, y). This formula can be written in many different
formalisms. For example, if ϕ(x, y) is a conjunction of relational atoms, then
Tcϕ(x, y) can be written as follows in Datalog:

ϕ(x, y) → Tcϕ(x, y), ϕ(x, z),Tcϕ(z, y) → Tcϕ(x, y).

In our system, Tcϕ(x, y) is written as an SQL query with recursion. Then to
deal with an ontology O containing transitive predicates, the set of inference
rules in Table 1 is extended with the following inference rule:

(A, type, transProp) :
{βi(s, o, x̄i) ∧ p = A → triple(s, p, o)}k

i=1

Tc[
∨k

i=1 ∃x̄iβi]
(s, o) ∧ p = A → triple(s, p, o)

.

This rule tell us that given a transitive predicate A, we can take any number k
of RDB2RDF rules βi(s, o, x̄i) ∧ p = A → triple(s, p, o) for this predicate, and
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we can generate a new RDB2RDF rule for A by putting together the conditions
βi(s, o, x̄i) in a formula γ(s, o) =

∨
i ∃x̄iβi(s, o, x̄i), and then using the transitive

closure Tcγ(s, o) of γ in an RDB2RDF rule Tcγ(s, o)∧p = A → triple(s, p, o).
In order for this approach to work, notice that we need to extend the syntax of
RDB2RDF rules (1) and (2), so that formulae α and β in them can be arbitrary
formulae in a more expressive formalism such as (recursive) Datalog.

Implementing RDB2RDF Mappings as Views. Inspired by our previous
work on Ultrawrap [67], every RDB2RDF rule is implemented as a triple-query,
that is, as a SQL query which outputs triples. For example, the RDB2RDF rules:

order(s, x1, x2, x3, x4, 1) ∧ p = type ∧ o = SuccessfulOrder → triple(s, p, o)
order(s, x1, x2, x3, x4, 2) ∧ p = type ∧ o = SuccessfulOrder → triple(s, p, o)

give rise to the following triple-queries:

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “1”

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “2”

In practice, the triple-queries may include additional projections in order to
support indexes, URI templates, datatypes and languages. However, for readabil-
ity, we will consider here this simple version of these queries. Then to implement
an RDB2RDF mapping, all the class (resp. predicate) RDB2RDF-rules for the
same class (resp. predicate) are grouped together to generate a triple-view, that
is, a SQL view comprised of the union of the triple-queries for this class (resp.
predicate). For instance, in our previous example the following is the triple-view
for the class SuccessfulOrder:

CREATE VIEW SuccessfulOrderView AS

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “1”

UNION ALL

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “2”

SPARQL to SQL Rewriting with RDB2RDF Mappings. The runtime
phase executes SPARQL queries on the RDBMS. We reuse Ultrawrap’s approach
of translating SPARQL queries to SQL queries in terms of the views defined for
every class and property, which are denoted as triple-views. Thus, we make
maximal use of existing query optimization tools in commercial RDBMS, such
as Oracle, to do the SPARQL query execution and rewriting.

Continuing with the example in Sect. 4.2, consider now a SPARQL
query which asks for all the Successful Orders: SELECT ?x WHERE {?x
type SuccessfulOrder}. It is clear that this query needs to be rewritten to
ask for the orders with status 1 and 2. The SuccessfulOrderView triple-view in
Sect. 4.2 implements the mappings to the SuccessfulOrder class which consists
of two triple-queries, one each for status = 1 and status = 2. Therefore, it is
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sufficient to generate a SQL query in terms of the SuccessfulOrderView. Given
that a triple-view models a table with three columns, a SPARQL query is syn-
tactically translated to a SQL query in terms of the triple-view. The resulting
SQL query is SELECT t1.s AS x FROM SuccessfulOrderView t1.

A natural question at this point is whether every SPARQL query has an
equivalent SQL query in our context, where RDB2RDF mappings play a funda-
mental role. In what follows we give a positive answer to this question.

Theorem 8. Given an RDB2RDF mapping M, every SPARQL query is SQL-
rewritable under M.

The proof that the previous condition holds is by induction on the structure of
a SPARQL query P and, thus, it gives us a (näıve) bottom-up algorithm for trans-
lating P into an equivalent SQL query Q (given the mapping M). More precisely,
in the base case we are given a triple pattern t = {s p o}, where each one of its
component is either a URI or a literal or a variable. This triple pattern is first trans-
lated into a SPARQL query Pt, where each position in t storing a URI or a literal
is replaced by a fresh variable, a filter condition is added to ensure that these fresh
variables are assigned the corresponding URIs or literals, and a SELECT clause
is added to ensure that the output variables of t and Pt are the same. For exam-
ple, if t = {?x type SuccessfulOrder}, then Pt is the following SPARQL query:
SELECT ?x WHERE {?x ?y ?z} FILTER (?y = type && ?z = SuccessfulOrder).
Then a SQL-rewriting of Pt under M is computed just by replacing a triple pat-
tern of the form {?s ?p ?o} by a union of all the triple-queries representing the
RDB2RDF rules in M, and also replacing the SPARQL filter condition in Pt by a
filter condition in SQL.

In the inductive step, we assume that the theorem holds for two SPARQL
queries P1 and P2.

The proof then continues by presenting rewritings for the SPARQL queries
constructed by combining P1 and P2 through the operators SELECT, AND (or
‘.’ operator), OPTIONAL, FILTER and UNION, which is done by using existing
approaches to translate SPARQL to SQL [5,19].

Cost Model for View Materialization. A common approach for query
optimization is to use materialized views [36]. Given that we are implement-
ing RDB2RDF mappings as views, it is a natural to pursue this option. There
are three implementation alternatives: (1) Materialize all the views: This app-
roach gives the best query response time. However, it consumes the most space.
(2) Materialize nothing: In this approach, every query needs to go to the raw
data. However, no extra space is needed. (3) Materialize a subset of the views:
Try to find a trade-off between the best query response time and the amount of
space required. Note that in the previous Ultrawrap work, only unmaterialized
views were considered.

In this section, we present a cost model for these three alternatives. First we
must introduce some terminology. We consider ontologies consisting of hierarchy
of classes which form a tree with a unique root, where a root class of an ontology
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is a class that has no superclasses. Then a leaf class of an ontology is a class that
has no subclasses, and the depth of a class is the number of subclass relationships
from the class to the root class (notice that there is a unique path from a class
to the root class). Moreover, the depth of an ontology is the maximum depth of
all classes present in the ontology.

First, we consider the cost of answering a query Q is equal to the number of
rows present in the relation used to construct Q. For example, if a relation R has
100 rows, then the cost of the query SELECT ∗ FROM R is 100. Second, assume we
have a single relation R and that mappings are from a query on the relation R
with a selection on an attribute A, to a class in the ontology. For example, con-
sider the relation R is order, the attribute A is status and the mapping is to the
class SuccessfulOrder. Finally, we consider a query workload of queries asking
for the instances of a class in the ontology, i.e. SELECT ?x WHERE {?x type C},
which can be translated into the triple-view implementing the mapping to the
class C.

Our cost model is the following: If all the views implementing mappings are
materialized, the query cost is n × NR × S(A,R) where n is the number of leaf
classes underneath the class that is being queried for, NR is the number of tuples
of the relation R in the mapping, and S(A,R) is the selectivity of the attribute A
of the relation R in the mapping. The space cost is NR +(NR ×d) where d is the
depth of the ontology. The reason for this cost is because the number of rows in a
materialized view depends on the selectivity of the attribute and the number of
leaf classes. Additionally, the sum of all the rows of each triple-view representing
the mapping to classes in a particular depth d of an ontology, is equivalent at
most to the number of rows of the relation. If no views are materialized, then
the query cost is n×NR, assuming there are no indices. The space cost is simply
NR. The reason for this cost is because to answer a query, the entire relation
needs to be accessed n times because there are no indices12.

The question now is: How can we achieve the query cost of materializing
all the views while keeping space to a minimum? Our hypothesis is the follow-
ing: If a RDBMS rewrites queries in terms of materialized views, then by only
materializing the views representing mappings to the leaf classes, the query cost
would be n×NR ×S(A,R), the same as if we materialized all the views, and the
space cost would only be 2 × NR. The rationale is the following: A triple-view
representing a mapping to a class, can be rewritten into the union of triple-
views representing the mapping to the child classes. Subsequently, a triple-view
representing the mapping to any class in the ontology can be rewritten into a
union of triple-views representing the mappings to leaf classes of an ontology.
Finally, given a set of triple-views representing mappings from a relation to each
leaf class of an ontology, the sum of all the rows in the set of triple-views is
equivalent to the number of rows in the relation.

12 In the evaluation, we also consider the case when indices are present.
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Given the extensive research of answering queries using views [37] and the
fact that Oracle implements query rewriting on materialized views13, we strongly
suspect that our hypothesis will hold. The evaluation provides empirical results
supporting our hypothesis.

Evaluation. The evaluation requires benchmarks consisting of a relational
database schema and data, ontologies, mappings from the database to ontolo-
gies and a query workload. Thus, we created a synthetic benchmark, the Texas
Benchmark, inspired by the Wisconsin Benchmark [27] and extended the Berlin
SPARQL Benchmark (BSBM) Explore Use Case [11]. More details about the
benchmarks can be found at http://obda-benchmark.org.

The objective of our experiments is to observe the behavior of a commercial
relational database, namely Oracle, and its capabilities of supporting subclass
and transitivity reasoning under our proposed approach. The evaluation consid-
ered six scenarios: (all-mat) all the views are materialized; (union-leaves) only
views representing mappings to the leaf classes are materialized, implemented
with UNION; (or-leaves) same as in the previous scenario but with the views
implemented with OR instead of UNION, (union-index) none of the views,
implemented with UNION, are materialized, instead an index on the respective
attributes have been added, (or-index) same as in the previous scenario but
with the views implemented with OR; and (ontop) we compare against Ontop,
a state of the art OBDA system [61].

An initial assessment suggests the following four expected observations: (1)
The fastest execution time is all-mat; (2) our hypothesis should hold, meaning
that the execution time of union-leaves should be comparable, if not equal, to the
execution time of all-mat; (3) given that the Ontop system generates SQL queries
with OR instead of UNION [61], the execution time of ontop and or-index should
be comparable if not equal; (4) with transitivity, the fastest execution time is
when the views are materialized.

The experimental results suggest the following. The expected observations
(1), (2), (3) and (4) hold. The fastest execution time corresponds to all-mat.
The execution time of union-leaves is comparable, if not equal, to the execu-
tion time of all-mat, because Oracle was able to rewrite queries in terms of the
materialized views. The number of rows examined is equivalent to the number
of rows in the views where everything was materialized. This result provides
evidence supporting our hypothesis and validates our cost model. Finally the
execution time of ontop and or-index are comparable. It is clear that material-
izing the view outperforms the non-materialized view for the following reasons:
when the view is materialized, the size of the view is known beforehand and the
optimizer is able to do a range scan with the index. However, when the view is
not materialized, the size is not known therefore the optimizer does a full scan
of the table.

13 http://docs.oracle.com/cd/B28359 01/server.111/b28313/qrbasic.htm.

http://obda-benchmark.org
http://docs.oracle.com/cd/B28359_01/server.111/b28313/qrbasic.htm
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5 Relational Databases and Semantic Web in Practice

A successfully repeated use case for using Semantic Web technologies with Rela-
tional Databases is for data integration. In this approach, an ontology serves as
a uniform conceptual federating model, which is accessible to both IT developers
and business users. We highlight two challenges: ontology and mapping engineer-
ing. We postulate the need of a pay-as-you-go methodology that address these
challenges and enables agility.

5.1 A Real World Example

Consider the following real-world example. Executives of a large e-commerce
company need to know, “How many orders were placed in a given month and
the corresponding net sales”. Depending on whom they ask they get three differ-
ent answers. The IT department managing the web site records an order when
a customer has checked out. The fulfillment department records an order when
it has shipped. Yet the accounting department records an order when the funds
charged against the credit card are actually transferred to the company’s bank
account, regardless of the shipping status. Unaware of the source of the problem
the executives are vexed by inconsistencies across established business intelli-
gence (BI) reports.

This is precisely where the use of ontologies to intermediate IT development
and business users is valuable. Ontologies serve as a uniform conceptual federated
model describing the domain of interest. The long standing relationship between
Semantic Web technologies and Relational Databases, specifically the Ontology
Based Database Access (OBDA) paradigm and its extension as Ontology Based
Data Integration is maturing, and yielding successful applications.

Even though OBDA has been widely researched theoretically, there is still
need to understand how to effectively implement OBDA systems in practice.

5.2 Where Do Ontologies and Mappings Come From?

The common definition of OBDA states that given a source relational database, a
target ontology and a mapping from the relational database to the ontology, the
goal is to answer queries over the target ontology using these three components.
From a practical point of view, this begs the question: where does the target
ontology and the mappings come from?

Ontology Challenges. Ontology engineering is a challenge by itself. In order
to create the target ontology, users can follow traditional ontology engineering
methodologies [23,74], using competency questions [8,60], test driven develop-
ment [43], ontology design patterns [40], etc. Additionally, per standard prac-
tices, it is recommended to reuse and extend existing ontologies in domains
of interest such as Good Relations for e-commerce14, FIBO for finance15, Gist
14 http://www.heppnetz.de/projects/goodrelations/.
15 http://www.edmcouncil.org/financialbusiness.

http://www.heppnetz.de/projects/goodrelations/
http://www.edmcouncil.org/financialbusiness
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for general business concepts16, Schema.org17, etc. In OBDA, the challenge
increases because the source database schemas can be considered as additional
inputs to the ontology engineering process. Common enterprise application’s
database schema commonly consist of thousands of tables and tens of thousands
of attributes. A common approach is to bootstrap ontologies derived from the
source database schemas, known as putative ontologies [65,69]. The putative
ontologies can gradually be transformed into target ontologies, using existing
ontology engineering methodologies.

Mapping Challenges. Once the target ontology has been created, the source
databases can be mapped. The W3C Direct Mapping standard can be used
to bootstrap mappings [7]. The declarative nature of W3C R2RML mapping
language [25] enables users to state which elements from the source database
are connected to the target ontology, instead of writing procedural code. Given
that source database schemas are very large, the OBDA mapping challenge is
suggestive of an ontology matching problem: the putative ontology of the source
database and the target ontology. In addition to 1–1 correspondences between
classes and properties, mappings can be complex involving calculations and rules
that are part of business logic. For example, the notion of net sales of an order
is defined as gross sales minus taxes, discounts given, etc. The discount can
be different depending on the type of user. Therefore, a business user needs
to provide these definitions before hand. That is why it is hard to automate
this process. Another challenge is to create tools that can create and manage
mappings [68].

Addressing these challenges is crucial for the success of a data integration
project using the OBDA paradigm. However, recall that data integration is
a means to an end. The engineering of a target ontology and mappings are
the means. Answering business questions are the ends. We observe that target
ontologies and mappings are developed in a holistic approach. Given how OWL
ontologies are flexible and R2RML mappings are declarative, these elements
could enable the incremental development of a target ontology and database
mappings. Thus, we argue for a pay-as-you-go methodology for OBDA.

A Pay-as-you-go Methodology for OBDA. We present a methodology to
create the target ontology and mappings for an OBDA system, driven by a
prioritized list of business questions. The data answering the business questions
serve as content of the Business Intelligence (BI) reports that business users
require. The objective is to create a target ontology and mappings, that enable
to answer a list of business questions, in an incremental manner. After a minimal
set of business questions have been successfully modeled, mapped, answered
and made into dashboards, then the set of business questions can be extended.
The new questions, in turn, may extend the target ontology and new mappings

16 https://semanticarts.com/gist/.
17 http://schema.org/.

https://semanticarts.com/gist/
http://schema.org/
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incrementally added. With this methodology, the target ontology and mappings
are developed in an iterative pay-as-you-go approach. Thus, providing an agile
methodology to integrate data using the OBDA paradigm because the focus is
to provide early and continuous delivery of answers to the business users.

We identify three actors involved throughout the process:

– Business User: a subject matter expert who has knowledge of the business
and can identify the list of prioritized business questions.

– IT Developer: a person who has knowledge of databases and knows how the
data is interconnected.

– Knowledge Engineer: a person who serves as a communication bridge between
Business Users and IT Developers and has expertise in modeling data using
ontologies.

Our methodology is divided in two phases: knowledge capture and imple-
mentation. Figure 4 summarizes the methodology.

Fig. 4. The pay-as-you-go methodology for OBDA

Knowledge Capture: Discover-Vocabulary-Ontology. The goal of the
knowledge capture phase is twofold. The first goal is to extract key concepts
and relationships from the set of prioritized business questions. The knowledge
engineer works with business users to understand the meaning of extracted con-
cepts and relationships in order to eliminate ambiguity. The second goal is to
identify which source database(s) contains data relating to the extracted con-
cepts and relationships. The knowledge engineer takes what has been extracted
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with the business users and works with IT developers to identify which tables
and attributes are required. This knowledge capture phase is divided in three
steps:

– Discovery: Discover the concepts and relationships from the input set of pri-
oritized business questions and identify how the concepts and relationships
are connected to the database(s).

– Vocabulary: Identify the business terminology such as preferred labels, alter-
native labels and natural language definitions for the concepts and relation-
ships.

– Ontology: Formalize the ontology in OWL such that it covers the business
questions.

Continuing with our initial example; the knowledge engineer works with busi-
ness users to understand the meaning of the word “Order”. Furthermore, working
with IT developers, the knowledge engineer may learn that the Order Manage-
ment System is the authoritative source for all orders. Within that database,
the data relating to orders may be vertically partitioned across a several tables
totaling hundreds of attributes. Finally, the attributes required for the calcula-
tion of the net sales of an order prove to be only a handful of the hundreds of
attributes. The next step is to implement the mappings.

Implementation: Mapping-Query-Validation. The goal of the implemen-
tation phase is to enable answering the business questions by connecting the
ontology with the data. That is the knowledge engineer takes what was learned
from the previous steps and implements the mapping in R2RML. The business
questions are implemented as SPARQL queries using the business terminology
defined in the target ontology. The R2RML mapping is the input to an OBDA
system which will enable the execution of the SPARQL queries. A final step
is to validate the results of the queries with business users. To summarize, the
implementation phase is divided in three steps:

– Mapping: Implement the mapping in R2RML, given the output of the Dis-
cover and Ontology steps. The mapping is then used to setup the OBDA
system.

– Query: Business questions are implemented as SPARQL queries using the
terminology of the target ontology. The answers to the business questions are
the SPARQL results.

– Validation: Confirm that the SPARQL queries return the correct answers.

Continuing with our running example; the result from the knowledge cap-
ture phase revealed that the business users considered an order, “an order”, if it
had shipped or the accounts receivable had been received. The knowledge engi-
neer (the R2RML writer) in conversation with the IT developer identified that
requirement as all tuples in the MASTERORDER table where order status is
equal to 2 or 3. Therefore, an R2RML mapping consists of the following SQL
query:
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SELECT * FROM MASTERORDER WHERE orderstatus IN (2,3)

The definition of net sales of an order is a math formula that uses attributes
from the order and ordertax table. This can be represented in the following SQL
query:

SELECT o.orderid, o.ordertotal - ot.finaltax -
CASE WHEN o.currencyid in (‘USD’, ‘CAD’) THEN o.shippingcost

ELSE o.shippingcost - ot.shippingtax END AS netsales
FROM order o, ordertax ot
WHERE o.orderid = ordertax.orderid

At this point, we can go back to the knowledge capture step for two reasons. If
the validation was successful, then we can start another iteration of the approach
by soliciting a new set of business questions. On the other hand, if the validation
was unsuccessful because the queries did not return the expected results, we
can revisit the mappings for that specific fragment. Fixing the problem is now
in a compartmentalized section of the ontology and corresponding mappings.
Progress is made in an incremental and isolated effort. In worst case the original
business logic needs to be revisited and we can go back to the discovery step.

Using this pay-as-you-go methodology for applications across multiple indus-
tries is yielding agile results. Development cycles of 1–2 weeks yield new dash-
boards. All stakeholders are concentrated on a specific task, an agreed upon
set of business questions. As development issues arise conversations between the
knowledge engineers, business users and IT developers are focused on specific,
manageably scoped concepts. The knowledge capture and implementation steps
can be accomplished independently. Furthermore, by starting small, the target
ontology and mappings are created monotonically. This means that new con-
cepts, relationships and mappings are added without disturbing the work that
already has been done. In the case when change to past work is required, it is
accomplished without much disruption. The declarative aspect of R2RML map-
pings, enables focus on what needs to be connected between the source and
target instead of writing procedural code and scripts which can be complex to
maintain.? Finally, success of each iteration is well defined: answer the business
questions.

6 Conclusion

The answer to the question: How and to what extent can Relational Databases
be integrated with the Semantic Web? comes in three parts:

– Relational Databases can be directly mapped to RDF and OWL:
Relational Databases can be automatically mapped to the Semantic Web. An
OWL ontology can be generated from the relational schema and the relational
data can be represented as an RDF graph. This mapping does not loose infor-
mation, preserves queries, is monotone and is positive semantics preserving.
Additionally, it is not possible to have a monotone and full semantics pre-
serving direct mapping.
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– Relational Databases can evaluate and optimize SPARQL queries:
Relational Databases are able to efficiently evaluate SPARQL queries. By
implementing the direct mapping using SQL views, relational optimizer
exploit two important semantic query optimizations: detection of unsatis-
fiable conditions and self join elimination.

– Relational Databases can act as reasoners: Given a Relational Data-
base, an OWL ontology with inheritance and transitivity, and a mapping
between the two, Relational Databases are able to act reasoner. This is pos-
sible by implementing the mappings as SQL views and including SQL recur-
sion, materializing a subset of the views based on a cost model, and exploiting
existing optimizations such as query rewriting using materialized views.

The results of our research is embodied in a system called Ultrawrap.

6.1 Open Problems

The relationship between Relational Databases and the Semantic Web is via
mappings. Semantic Web technology provides the following features. OWL
Ontologies enable reasoning (reasoning). SPARQL queries with variables in the
predicate position reveal metadata. This is useful because it enables exploration
of the data in case the schema is not known beforehand. Additionally, queries
of this form are intrinsic to faceted search (variable predicate). Given the
graph model of RDF, the latest version of SPARQL, SPARQL 1.1, increased the
expressivity and now provides constructs to navigate the graph (graph traver-
sal). Another virtue of dealing with graphs is that insertion of data is reduced to
adding an edge with a node to the graph. There are no physical requirements to
conform to a schema (dynamic schema). Finally, data can be easily integrated
by simply adding edges between nodes of different graphs (data integration).

A goal of our research has been to understand up to what extent can Rela-
tional Databases be integrated with the Semantic Web. The extent of our
research has focused on mappings and reasoning. A remaining question is: can
that extent be expanded? And up to where? We call this the Tipping Point
problem.

Assume the starting point are legacy relational databases and we want to
take advantage of these five features of the Semantic Web (reasoning, variable
predicate, graph traversal, dynamic schema, data integration). How much can
be subsumed by Relational Database technology before the balance is tipped
over and we end up using native Semantic Web technology? What is the tipping
point (or points)?

– Mappings: The engineering of mappings is still open grounds for research.
What mappings patterns can be defined and reused in order to solve a
commonly occurring problem [63]? Given that R2RML mappings are rep-
resented in RDF, these can be stored in a triplestore, queried and reasoned
upon. This opens up potential such as mapping analysis, automatically gen-
erating mappings, reusing existing mappings during the engineering of new
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mappings, consistency checking of mappings in conjunction with the ontol-
ogy, adding provenance information to the mappings to support data lin-
eage [22,26,42,45,71]. Additionally, there is a need for tools to support users
to create mappings [12,68].

– Reasoning: Our research proposed to represent ontological entailments as
mappings and implement them as views. Subsequently, a subset of these views
are materialized. Open questions remain. What is the state of the art of other
RDBMS’s optimizers in order to support this approach? How does this app-
roach respond to complex query workloads? The model assumed a read-only
database, therefore, what is the cost of maintaining views when the under-
lying data is updated? Evidence is provided that Relational Databases can
act as reasoners for RDFS and Transitivity. Can the expressivity be increased
while maintaining efficient computation by the RDBMS optimizer? What is
the trade-off between reasoning over relational databases with mappings and
using native RDF databases which supports reasoning?

– Variable Predicate: For queries with variables in the predicate position,
the mapping stipulates that the variable may be bound to the name of any
column in the database. These queries are a syntactic construct of higher
order logic. Ultrawrap translates these queries into a SQL query consisting of
a union for each attribute in the database. This query ends up reading the
entire database and suffers a performance penalty. What optimizations can
be implemented in order to overcome this issue? What hints can be provided
in a query?

– Graph Traversal: Regular Path Queries and SPARQL 1.1 property path
queries enable pattern-based reachability queries. These types of queries
enable the traversal and navigation of the graph. A natural question is how
much of SQL recursion can be used to implement these types of queries?

– Dynamic Schema: Relational Databases have a fixed schema. Insertion of
data needs to adhere to the schema. A schema needs to be altered in case
new data is inserted which does not adhere to the schema. Can a Relational
Database become hybrid graph/relational database? What effect does the
sparsity of data have? What is the best storage manager (column vs row
store)?

– Data Integration: When it comes to integrate disparate databases, one app-
roach is to extract the relational data, transform it physically to RDF and
then load it into a RDF database (ETL). Another approach is to federate
queries. In other words, legacy data continues to reside in the relational data-
bases and queries are sent to each source (Federation). Which approach is
practical? Depending on what? Can hybrid system be efficient?

An overarching theme is the need to create systematic and real-world bench-
marks in order to evaluate different solutions for these features.

These open questions provide a roadmap to further expand the extent that
Relational Databases can be integrated with the Semantic Web.
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