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Preface

This volume contains tutorial papers prepared for the 13th Reasoning Web Summer
School (RW 2017), held during July 7–11, 2017, in London, United Kingdom.

The Reasoning Web series of annual summer schools was initiated in 2005 by the
European Network of Excellence REWERSE. Since 2005, the school has become the
prime educational event in the field of reasoning techniques on the Web, attracting both
young and established researchers. Previous editions of the school were held in Malta
(2005), Lisbon (2006), Dresden (2007 and 2010), Venice (2008), Bressanone-Brixen
(2009), Galway (2011), Vienna (2012), Mannheim (2013), Athens (2014), Berlin
(2015), and Aberdeen (2016). For each edition, a volume has been published con-
taining the school lecture notes, which are today considered fundamental bibliographic
references in the Semantic Web and Knowledge Representation areas.

Since 2011 the school has been co-located with the International Conference on
Web Reasoning and Rule Systems (RR), and in 2015 it was also co-located with the
International Web Rule Symposium (RuleML). Following this tradition, the 2017
edition of the school was held together with RuleML+RR, a conference that joined the
RuleML and RR event series. In addition, it was also co-located with DecisionCAMP
2017 and the 11th International Rule Challenge. RW 2017 was hosted by Birkbeck,
University of London, and was organized by University of Calabria and by Sapienza,
University of Rome.

In 2017, the theme of the school was “Semantic Interoperability on the Web,” which
encompasses subjects such as data integration, open data management, reasoning over
linked data, database to ontology mapping, query answering over ontologies, hybrid
reasoning with rules and ontologies, and ontology-based dynamic systems. The RW
2017 lectures were focused on these topics and also addressed foundational reasoning
techniques used in answer set programming and ontologies. This volume contains the
following tutorial papers, each accompanying a school lecture:

– “Challenges for Semantic Data Integration on the Web of Open Data”, in which
Axel Polleres (presenter), Sebastian Neumaier, Jürgen Umbrich, and Simon
Steyskal discuss main challenges related to the integration of open data over the
Web (data formats, license and usage issues, data quality problems, etc.);

– “Ontological Query Answering over Semantic Data,” in which Giorgos Stamou
(presenter) and Alexandros Chortaras study data access mediated by an ontology,
and present methods for data integration, query rewriting, and query answering
when ontologies are specified in both tractable and expressive Description Logics;

– “Ontology Querying: Datalog Strikes Back,” where Andrea Calì faces query
answering over Datalog+/−, a family of ontology languages allowing for Datalog
rules enriched with existential quantification in the head;

– “Integrating Relational Databases with the Semantic Web,” in which Juan Sequeda
surveys methods and standards to realize RDF access to relational databases and
reviews how these standards can be used in practice for data integration;



– “Datalog Revisited for Reasoning in Linked Data,” in which Marie-Christine
Rousset describes a unifying Datalog-based framework for RDF ontologies and
databases, and discusses modeling and reasoning over Linked Data within this
framework;

– “A Tutorial on Hybrid Answer Set Solving,” in which Torsten Schaub (presenter),
Roland Kaminski, and Philipp Wanko introduce Answer Set Programming and
show its usage in complex software environments and interaction with comple-
mentary forms of reasoning;

– “Answer Set Programming with External Source Access,” in which Thomas Eiter
(presenter), Tobias Kaminski, Christoph Redl, Peter Schüller, and Antonius
Weinzierl continue the investigation on hybrid systems, and describe how ASP can
interact with external resources in the DLVHEX system;

– “Uncertainty Reasoning for the Semantic Web,” in which Thomas Lukasiewicz
provides an overview of formalisms for handling uncertainty and/or vagueness in
the Semantic Web;

– “Ontology-Based Data Access for Log Extraction in Process Mining,” in which
Marco Montali (presenter), Diego Calvanese, Tahir Emre Kalayci, and Ario San-
toso show how semantic technologies, and in particular ontology-based data access,
provide a viable solution for data preparation and log extraction for the task of
process mining.

The tutorial papers are either in-depth surveys or shorter papers containing refer-
ences to existing work. These papers have been written as accompanying material for
the students of the summer school, in order to deepen their understanding and to serve
as a reference for further detailed study.

We would like to thank everybody who contributed to the realization of this event.
First and foremost, the school lecturers and their co-authors. We also want to thank the
institutions of the school lecturers, which sponsored the school by covering the travel
costs of the speakers. Furthermore, we would like to thank the general chairs of the
RuleML+RR conference, Roman Kontchakov and Fariba Sadri, for their help in the
logistic organization of the event, the sponsorship chair, Nick Bassiliades, and the Web
chair, William Van Woensel, for taking care of the school website.

May 2017 Giovambattista Ianni
Domenico Lembo
Leopoldo Bertossi
Wolfgang Faber

Birte Glimm
Georg Gottlob
Steffen Staab
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Data Integration for Open Data on the Web

Sebastian Neumaier1, Axel Polleres1,2(B), Simon Steyskal1,
and Jürgen Umbrich1

1 Vienna University of Economics and Business, Vienna, Austria
axel.polleres@wu.ac.at

2 Complexity Science Hub Vienna, Vienna, Austria

Abstract. In this lecture we will discuss and introduce challenges of
integrating openly available Web data and how to solve them. Firstly,
while we will address this topic from the viewpoint of Semantic Web
research, not all data is readily available as RDF or Linked Data, so
we will give an introduction to different data formats prevalent on the
Web, namely, standard formats for publishing and exchanging tabular,
tree-shaped, and graph data. Secondly, not all Open Data is really com-
pletely open, so we will discuss and address issues around licences, terms
of usage associated with Open Data, as well as documentation of data
provenance. Thirdly, we will discuss issues connected with (meta-)data
quality issues associated with Open Data on the Web and how Semantic
Web techniques and vocabularies can be used to describe and remedy
them. Fourth, we will address issues about searchability and integration
of Open Data and discuss in how far semantic search can help to over-
come these. We close with briefly summarizing further issues not covered
explicitly herein, such as multi-linguality, temporal aspects (archiving,
evolution, temporal querying), as well as how/whether OWL and RDFS
reasoning on top of integrated open data could be help.

1 Introduction

Over the last decade we have seen the World Wide Web being populated more
and more by “machines”. The world wide Web has evolved from its original
form as a network of linked Documents, readable by humans to more and more
a Web of data and APIs. That is, nowadays, even if we interact as humans
with Web pages, in most cases (i) the contents of Web pages are generated
from Databases in the backend, (ii) the Web content we see as humans contains
annotations readable by machines, and even (iii) the way we interact with Web
pages generates data (frighteningly, even often without the users being aware
of), collected and stored again in databases around the globe. It is therefore
valid to say that the Web of Data has become a reality and – to some extent –
even the vision of the Semantic Web. In fact, this vision of the Semantic Web has
itself evolved over the decades, starting with Berners-Lee et al.’s seminal article
in 2001 [13] that already envisioned the future Web as “federating particular
knowledge bases and databases to perform anticipated tasks for humans and
their agents”. Based on these ideas a lot of effort and research has been devoted
c© Springer International Publishing AG 2017
G. Ianni et al. (Eds.): Reasoning Web 2017, LNCS 10370, pp. 1–28, 2017.
DOI: 10.1007/978-3-319-61033-7 1



2 S. Neumaier et al.

to the World Wide Web Consortium (W3C) Semantic Web activity,1 which in
2013 has been subsumed by – i.e., renamed to – “Data Activity”.2

In many aspects, the Semantic Web has not necessarily evolved as expected,
and the biggest success stories so far do less depend on formal logics [37] than
we may have expected, but more on the availability of data. Another recent
article by Bernstein et al. [14] takes a backwards look on the community and
summarizes successes of the Semantic Web community such as the establish-
ment of lightweight annotation vocabularies like Schema.org on Web pages, or
praising the uptake of large companies such as Google, Yahoo!, Microsoft, and
Facebook who are developing large knowledge graphs, which however, so far
these companies mostly keep closed.

Thus, if Web researchers outside of these companies want to tap into the rich
sources of Data available now on the Web they need to develop their own data
workflows to find relevant and usable data. To their help, more and more Open
Data is being published on the Web, that is, data that is made freely available
by mostly public institutions (Open Government Data) both for transparency
reasons and with the goal to “fuel” a Data Economy, pushed both by the EU [29]
and the G8 [72].

The present lecture notes may be viewed as partially an experience report
as well as – hopefully – a guide through challenges arising when using (Open)
data from the Web. The authors have been involved over the past view years
in several projects and publications around the topic of Open Data integration,
monitoring, and processing. The main challenges we have come across in all these
projects are largely overlapping and therefore we decided to present them in the
present chapter:

1. Where to find Open Data? (Sect. 2) Most Open Data nowadays can be
found on so called Open Data Portals, that is, data catalogs, typically allowing
API access and hosting dataset descriptions and links to actual data resources.

2. “Low-level” data heterogeneity (Sect. 3) As we will see, most of the struc-
tured data provided as Open Data is not readily available as RDF or Linked
Data – the preferred formats for semantic data access described in other chap-
ters of this volume. Different formats are much more prevalent, plus encoding
issues make it difficult to access those datasets.

3. Licenses and Provenance (Sect. 4) Not all Open Data is really completely
open, since most data on the Web is attached to different licences, terms and
conditions, so we will discuss how and whether these licenses can be inter-
preted by machines, or, respectively how the provenance of different inte-
grated data sources can be tracked.

4. Quality issues (Sect. 5) A major challenge for data – also often related to
its provenance – is quality; on the one hand the re-use of poor quality data is
obviously not advisable, but on the other hand different applications might
have different demands/definitions of quality.

1 https://www.w3.org/2001/sw/, last accessed 30/03/2017.
2 https://www.w3.org/2013/data/, last accessed 30/03/2017.

https://www.w3.org/2001/sw/
https://www.w3.org/2013/data/


Data Integration for Open Data on the Web 3

5. How to find data – Searchability? (Sect. 6) Last, but not least, we will
look into current solutions for search in Open Data, which we pose as a
major open research challenge: whereas crawling and (keyword-based search)
of human readable websites work well, this is not yet the case for structured
data on the Web; we will discuss why and sketch some routes ahead.

Besides these main questions, we will conclude with summarizing issues and
open questions around integrating Open Data from the Web not covered explic-
itly herein in Sect. 7, such as multi-linguality, temporal aspects (archiving, evo-
lution, temporal querying), as well as how/whether OWL and RDFS reasoning
on top of integrated open data could be help.

2 Where to Find Web Data?

If we look for sources of openly available data that is widely discussed in the
literature, we mainly can identify three starting points, which are partially over-
lapping:

– User-created open data bases
– The Linked Open Data “Cloud”
– Webcrawls
– Open Data Portals

User-created open data bases, through efforts such as Wikipedia, are large
amounts of data and data-bases that have been co-created by user communities
distributed around the globe; the most important ones being listed as follows:

– DBpedia [44] is a community effort that has created one of the biggest and
most important cross-domain dataset in RDF [19] in the focal point of the so
called Linked Open Data (LOD) cloud [6]. At its core is a set of declarative
mappings extracting data from Wikipedia infoboxes and tables into RDF
and it is accessible as well as through dumps also through an open query
interface supporting the SPARQL [33] query language. DBpedia can therefore
be well called one of the cornerstones of Semantic Web and Linked Data
research being the subject and center of a large number of research papers
over the past few years. Reported numbers vary as DBpedia is modular and
steadily growing with Wikipedia, e.g. in 2015 DBpedia contained overall more
than 3B RDF Statements3, whereof the English DBpedia contributed 837 M
statements (RDF triples). Those 837 M RDF triples alone amount to 4.7 GB
when stored in the compressed RDF format HDT [30]4. However, as we will
see there are many, indeed far bigger other openly accessible data sources,
that yet remain to be integrated, which are rather in the focus of the present
chapter.

3 http://wiki.dbpedia.org/about/facts-figures, last accessed 30/03/2017.
4 http://www.rdfhdt.org/datasets/, last accessed 30/03/2017.

http://wiki.dbpedia.org/about/facts-figures
http://www.rdfhdt.org/datasets/


4 S. Neumaier et al.

– Wikidata [74] a similar, but conceptually different effort has been started in
2012 to bring order into data items in Wikipedia, with the idea to – instead
of extracting data from semi-structured Wikipages – build a database for
data observations with fixed properties and datatypes, mainly with the idea
to avoid extraction errors and provide means to record provenance directly
with the data, with likewise 100s of millions of facts in the meantime: exact
numbers are hard to give, but [71] report some statistics of the status of
2015, when Freebase was included into Wikidata; we note that counting RDF
triples5 is only partially useful, since the data representation of Wikidata is
not directly comparable with the one from DBpedia [35,36].

– OpenStreetmap as another example of an openly available data base that
has largely been created by users contains a vast amount of geographic fea-
tures to obtain an openly available and re-usable map; with currently 739.7GB
(uncompressed) data in OSM’s native XML format (and still 33GB com-
pressed).6

The Linked Open Data “Cloud” – already mentioned above – is a manually
curated collection of datasets that are published on the Web openly, adhering
to the so-called Linked Data principles, defined as follows [12] (cf. chapters of
previous editions of the Reasoning Web book series for good overview articles):

LDP1: use URIs as names for things;
LDP2: use HTTP URIs so those names can be dereferenced;
LDP3: return useful – herein we assume RDF – information upon dereferencing
of those URIs; and
LDP4: include links using externally dereferenceable URIs.7

The latest iteration of the LOD Cloud [1] contains – with DBpedia in its center –
hundreds of datasets with equal or even larger sizes than DBpedia, documenting
a significant growth of Linked Data over the past years. Still, while often in the
Semantic Web literature the LOD cloud and the “Web of Data” are implicitly
equated, there is a lot of structured data available on the Web (a) either, while
using RDF, not being linked to other datasets, or (b) provided in other, popular
formats than RDF.

Running Web crawls is the only way to actually find and discover structured
Web Data, which is both resource intensive and challenging in terms of respect-
ing politeness rules when crawling. However, some Web crawls have been made
openly available, such as the Common Crawl corpus which contains “petabytes
of data collected over the last 7 years”8. Indeed the project has already been
used to collect and analyse the availability (and quality) of structured data on
the Web, e.g. in the Web Data Commons Project [50,51] (Table 1).
5 Executing the SPARQL query SELECT (count(*) as ?C) WHERE {?S ?P ?O } on

https://query.wikidata.org/ gives 1.7B triples, last accessed 30/03/2017.
6 http://wiki.openstreetmap.org/wiki/Planet.osm, last accessed 30/03/2017.
7 That is, within your published RDF graph, use HTTP URIs pointing to other deref-

erenceable documents, that possibly contain further RDF graphs.
8 http://commoncrawl.org/, last accessed 30/03/2017.

https://query.wikidata.org/
http://wiki.openstreetmap.org/wiki/Planet.osm
http://commoncrawl.org/


Data Integration for Open Data on the Web 5

Table 1. Top-10 portals, ordered by datasets.

Domain of portal URL Origin Software |D| |R|
data.gov US CKAN 192,738 170,524

www.data.gc.ca Canada CKAN 147,364 428,141

transparenz.hamburg.de Germany CKAN 69,147 101,874

data.noaa.gov US CKAN 57,934 148,343

geothermaldata.org US CKAN 56,388 59,804

data.gov.au Australia CKAN 42,116 77,900

data.gov.uk UK CKAN 41,615 80,980

hubofdata.ru Russia CKAN 28,393 62,700

openresearchdata.ch Switzerland CKAN 20,667 161,259

govdata.de Germany CKAN 19,334 55,860

Open Data portals are collections or catalogs that index metadata and link to
actual data resources which have become popular over the past few years through
various Open Government Data Initiatives, but also in the private sector. Apart
from all the other sources mentioned so far, most of the data published openly
is indexed in some kind of Open Data Portal. We therefore will discuss these
portals in the rest of this paper in more detail.

Open Data portals
Most of the current “open” data form part of a dataset that is published in
Open Data portals which are basically catalogues similar to digital libraries (cf.
Fig. 1): in such catalogues, a dataset aggregates a group of data files (referred
to as resources or distributions) which are available for access or download
in one or more formats (e.g., CSV, PDF, Microsoft Excel, etc.). Addition-
ally, a dataset contains metadata (i.e., basic descriptive information in struc-
tured format) about these resources, e.g. authorship, provenance or licens-
ing information. Most of these portals rely on existing software frameworks,
such as CKAN9 or Socrata,10 that offer UI, search, and API functionalities.

Fig. 1. High-level structure of a
data catalog.

CKAN is the most prominent portal software
framework used for publishing Open Data and
is used by several governmental portals includ-
ing data.gov.uk and data.gov.

For example, the Humanitarian Data
Exchange11 (see Fig. 2) is a portal by the United
Nations. It aggregates and publishes data about
the context in which a humanitarian crisis is
occurring (e.g., damage assessments and geospa-

9 https://ckan.org/, last accessed 30/3/2017.
10 https://socrata.com/, last accessed 30/3/2017.
11 https://data.humdata.org/, last accessed 27/3/2017.

http://data.gov
www.data.gc.ca
http://transparenz.hamburg.de
http://data.noaa.gov
http://geothermaldata.org
http://data.gov.au
http://data.gov.uk
http://hubofdata.ru
http://openresearchdata.ch
http://govdata.de
http://www.data.gov.uk
http://www.data.gov
https://ckan.org/
https://socrata.com/
https://data.humdata.org/


6 S. Neumaier et al.

{
"name":"amounts -paid -by-refugees -...",
"title": "Amounts paid by refugees...",
"license": "Creative Commons Attribution",
"tags": [

"europe",
"mediterranean",
"refugee"

],
"resources": [

{
"format": "CSV",
"name": "The Money Trail - South - Prices",
"created": "2015 -10 -28T21:20:40.006453",
"url": "https :// docs.google.com/...",

}
],
...

}

Fig. 2. Example dataset description from the humanitarian data exchange portal.

Table 2. The tabular content of the dataset in Fig. 2

Route Period Ref crossing Total in EUR 2014

Central Med 2010–2015 285,700 3,643,000,000

East Borders 2010–2015 5,217 72,000,000

East Med Land 2010–2015 108,089 1,751,000,000

East Med Sea 2010–2015 61,922 1,053,000,000

West African 2010–2015 1,040 4,000,000

West Balkans 2010–2015 74,347 1,589,000,000

West Med 2010–2015 29,487 251,000,000

tial data) and data about the people affected by the crisis. The datasets on this
portal are described using several metadata fields, and the metadata descrip-
tion can be retrieved in JSON format using the Web API of the data portal
(cf. Fig. 2).

The metadata description of these datasets provide download links for the
actual content. For instance, the particular dataset description in Fig. 2 – a
dataset reporting the amounts paid by refugees to facilitate their movement
to Europe – holds a URL which refers to a table (a CSV file) containing the
corresponding data, displayed in Table 2.

3 Data Formats on the Web

When we discuss different available data on the Web, we already emphasized
that – despite being subject of a lot of research – RDF and Linked Data are not
necessary the prevalent formats for published data on the Web. An analysis of
the datasets systematically catalogued in Open Data portals will confirm this.
Likewise, we will have to discuss metadata formats on these portals.
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Data Formats on Open Data Portals. Table 3 shows the top used formats and the
number of unique resources together with their number of portals they appear,
adapted from [58], where we analysed and crawled metadata from 260 Open Data
Portals for cues to the data formats in which different datasets are provided. Note,
that these numbers are based on available metadata information of the datasets
and can be higher due to varying spellings, misspellings, and missing metadata.
Therefore, these numbers should be considered as a lower bound for the respective
formats. Bold highlighted values indicate that the format is considered as open
as per the Open Definition [12]:12 the open definition sets out several guidelines
of which data formats are to be considered “open”, according to which we have
analysed assessed openness by a list of compliant formats, cf. [58].

Table 3. Most frequent formats.

format |resources| % |portals|
1 HTML 491,891 25 74

2 PDF 182,026 9.2 83

3 CSV 179,892 9.1 108

4 XLS(X) 120,703 6.1 89

5 XML 90,074 4.6 79

6 ZIP 50,116 2.5 74

. . .

11 JSON 28,923 1.5 77

16 RDF 10,445 0.5 28

A surprising observation is that ∼10% of all the resources are published as
PDF files. This is remarkable, because strictly speaking PDF cannot be consid-
ered as an Open Data format: while PDFs may contain structured data (e.g. in
tables) there are no standard ways to extract such structured data from PDFs
- or general-purpose document formats in general. Therefore, PDFs cannot be
considered as machine-readable, nor as a suitable way for publishing Open Data.
As we also see, RDF does not appear among the top-15 formats for Open Data
publishing.13 This underlines the previously stated hypothesis that – especially
in the area of Open Government Data – openly available datasets on data portals
are mostly not published as RDF or Linked Data.

Also, JSON does not appear among the top ten formats in terms of numbers
of published data resources on Open Data portals. Still, we include those main
formats in our discussion below, as

12 http://opendefinition.org/ofd/, last accessed 30/03/2017.
13 The numbers for the RDF serializations JSON-LD (8 resources) and TTL (55) are

vanishingly small.

http://opendefinition.org/ofd/
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– particularly JSON and RDF play a significant role in metadata descriptions,
– JSON is the prevalent format for many Web APIs,
– RDF, as we saw, is apart from the Linked Data cloud prevalent in Web pages

and crawls through its support as an annotation format by popular search
engines.

In the following we introduce some of these popular, well known, data formats
on the Web and categorize them by their structure, namely, graph-based, tree-
shaped, and tabular formats.

3.1 Graph-Based Formats

RDF, W3C recommendation since 2004 [41] and “refurbished” in 2014 [19,23],
was originally conceived as a metadata model language for describing resources
on the web. It evolved (also through deployment) to a universal model and
format to describe arbitrary relations between resources identified, typically, by
URIs, such that they can be read and understood by machines.

RDF itself consists of statements in the form of subject, predicate, object
triples. RDF triples can be displayed as graphs where the subjects and objects
are nodes and the predicates are directed edges. RDF uses vocabularies to define
the set of elements that can be used in an application. Vocabularies are similar
to schemas for RDF datasets and can also define the domain and range of pred-
icates. The graph in Fig. 3 represents the metadata description of the dataset in
Fig. 2 in the DCAT (Data Catalog) vocabulary [48].14

Fig. 3. RDF graph of DCAT metadata mapping of Fig. 2

14 DCAT is a vocabulary commonly used for describing general metadata about
datasets. See Sect. 5.2 for mapping and homogenization of metadata descriptions
using standard vocabularies.
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There exist several formats to serialize RDF data. Most prominent is
RDF/XML, the XML serialization first introduced in the course of 1999 W3C
specification of the RDF data model, but there are also a more readable/concise
textual serialization formats such as the line-based N-Triples [21] and the “Terse
RDF Language” TURTLE [10] syntax. More recent, in 2014, W3C released the
first recommendation for JSON-LD [68]. JSON-LD is an extension for the JSON
format (see below) mostly allowing to specify namespaces for identifiers and
support of URIs (supporting Linked Data principles natively in JSON) which
allows the serialization of RDF as JSON, or vice versa, the transformation of
JSON as RDF: conventional JSON parser and databases can be used; users of
JSON-LD which are mainly interested in conventional JSON, are not required
to understand RDF and do not have to use the Linked Data additions.

3.2 Tree-Shaped Formats

The JSON file format [18] is a so-called semi-structured file format, i.e., where
documents are loosely structured without a fixed schema (as for example data
in relational databases) as attribute–value pairs where values can be primitive
(Strings, numbers, Booleans), arrays (sequences of values enclosed in square
brackets ‘[‘,’]’), or nested JSON objects (enclosed in curly braces ‘{‘,’}’), thus –
essentially – providing a serialization format for tree-shaped, nested structures.
For an example for JSON we refer to Fig. 2.

Initially, the JSON format was mainly intended to transmit data between
servers and web applications, supported by web services and APIs. In the context
of Open Data we often find JSON as a format to describe metadata but also
to publish the actual data: also raw tabular data can easily be transformed into
semi-structured and tree-based formats like JSON15 and, therefore, is often used
as alternative representation to access the data. On the other hand, JSON is the
de facto standard for retrieving metadata from Open Data portals.

XML. For the sake of completeness, due to its long history, and also due to
its still striking prevalence as a data exchange format of choice, we shall also
mention some observations on XML. This prevalence is not really surprising
since many industry standards and tools export and deliver XML, which is then
used as the output for many legacy applications or still popular for many Web
APIs, e.g., in the area of geographical information systems (e.g. KML,16 GML,17

WFS,18 etc.). Likewise, XML has a large number of associated standards around
it such as query, navigation, transformation and schema languages like XQuery,19

15 For instance, see Converter Tools on https://project-open-data.cio.gov/, last
accessed 24/03/2017.

16 https://developers.google.com/kml/documentation/, last accessed 24/03/2017.
17 http://www.opengeospatial.org/standards/gml, last accessed 24/03/2017.
18 http://www.opengeospatial.org/standards/wfs, last accessed 24/03/2017.
19 https://www.w3.org/TR/xquery-30/, last accessed 24/03/2017.

https://project-open-data.cio.gov/
https://developers.google.com/kml/documentation/
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/wfs
https://www.w3.org/TR/xquery-30/
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XPath,20 XSLT21, and XML Schema22 which are still actively developed, sup-
ported by semi-structured database systems, and other tools. XML by itself has
been subject to extensive research, for example in the fields of data exchange [4,
Part III] or query languages [8]. Particularly, in the context of the Semantic
Web, there have also been proposals to combine XQuery with SPARQL, cf. for
instance [15,26] and references therein. The issue of interoperability between
RDF and XML indeed is further discussed within the W3C in their recently
started “RDF and XML Interoperability Community Group”23 see also [16] for a
summary. So, whereas JSON has probably better support in terms of developer-
friendliness and recent uptake particularly through Web APIs, there is still a
strong community with well-established standards behind XML technologies.
For instance, schema languages or query languages for JSON exist as proposals,
but their formal underpinning is still under discussion, cf. e.g. [17,63]. Another
approach would be to adopt, reuse and extend XML technologies to work on
JSON itself, as for instance proposed in [26]. On an abstract level, there is not
much to argue about JSON and XML just being two syntactic variants for seri-
alizing arbitrary, tree-shaped data.

3.3 Tabular Data Formats

Last but not least, potentially driven also by the fact that the vast majority
of Open Data on the Web originates from relational databases or simply from
spreadsheets, a large part of the Web of Open Data consists of tabular data. This
is illustrated by the fact that two of the most prominent formats for publishing
Open Data in Table 3 cover tabular data: CSV and XLS. Note particularly that
both of these formats are present on more Open Data portals than for instance
XML.

While XLS (the export format of Microsoft Excel) is obviously a pro-
prietary open format, CSV (comma-separated values) is a simple, open for-
mat with a standard specification allowing to serialize arbitrary tables as text
(RFC4180) [67]. However, as we have shown in a recent analysis [54], compliance
with this standard across published CSVs is not consistent: in Open Data corpus
containing 200 K tabular resources with a total file size of 413 GB we found out
that out of the resources in Open Data portals labelled as a tabular only 50%
can be considered CSV files. In this work we also investigated different use of
delimiters, the availability of (multiple) header rows or cases where single CSV
files actually contain multiple tables as common problems.

Last, but not least, as opposed to tabular data in relational databases, which
typically adhere to a fixed schema and constraints, these constraints, datatype
information and other schema information is typically lost when being exported
and re-published as CSVs. This loss can be compensated partially by adding this

20 https://www.w3.org/TR/xpath-30/, last accessed 24/03/2017.
21 https://www.w3.org/TR/xslt-30/, last accessed 24/03/2017.
22 https://www.w3.org/XML/Schema, last accessed 24/03/2017.
23 https://www.w3.org/community/rax/, last accessed 24/03/2017.

https://www.w3.org/TR/xpath-30/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/XML/Schema
https://www.w3.org/community/rax/
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information as additional metadata to the published tables; one particular format
for such kind of metadata has been recently standardized by the W3C [65]. For
more details on the importance of metadata we refer also to Sect. 5 below.

3.4 Data Formats – Summary

Overall, while data formats are often only considered syntactic sugar, one should
not underestimate the issues about conversions, scripts parsing errors, stability
of tools, etc. where often significant amounts of work incurs. While any data can
be converted/represented in principle into a CSV, XML, or RDF serialization,
one should keep in mind that a canonical, “dumb” serialization in RDF by itself,
does not “add” any “semantics”.

For instance, a naive RDF conversion (in Turtle syntax) of the CSV in Table 2
could look as follows in Fig. 4, but would obviously not make the data more
“machine-readable” or easier to process.

@prefix : <http://www.example.org/> .

:c1 rdfs:label "Route".
:c2 rdfs:label "Period".
:c3 rdfs:label "Ref_crossing".
:c4 rdfs:label "Total in EUR 2014".

[:c1 "Central Med"; :c2 "2010-2015", :c3 "285,700"; :c4 "3,643,000,000"].
[:c1 "East Borders"; :c2 "2010-2015"; :c3 "5,217"; :c4 "72,000,000" ].
[:c1 "East Med Land" ; :c2 "2010-2015"; :c3 "108,089" ; :c4 "1,751,000,000"].
[:c1 "East Med Sea"; :c2 "2010-2015" ; :c3 "61,922"; :c4"1,053,000,000"].
[:c1 "West African"; :c2 "2010-2015"; :c3 "1,040"; :c4 "4,000,000"].
[:c1 "West Balkans"; :c2 "2010-2015"; :c3 "74,347"; :c4 "1,589,000,000"].
[:c1 "West Med"; :c2 "2010-2015"; :c3 "29,487"; :c4 "251,000,000"].

Fig. 4. Naive conversion of tabular data into RDF

We would leave coming up with a likewise naive (and probably useless) con-
version to XML or JSON to the reader: the real intelligence in mapping such
data lies in finding suitable ontologies to describe the properties representing
columns c1 to c4, recognizing the datatypes of the column values, linking names
such as “East Med Sea” to actual entities occurring in other datasets, etc. Still,
typically, in data processing workflows more than 80% of the effort to data con-
version, pre-processing and cleansing tasks.

Within the Semantic Web, or to be more precise, within the closed scope of
Linked Data this problem and the steps involved have been discussed in depth
in the literature [7,60]. A partial instantiation of a platform which shall provide
a cleansed and integrated version of the Web of Linked Data is presented by the
LOD-Laundromat [11] project: here, the authors present a cleansed unified store
of Linked Data as an experimental platform for the whole Web of Linked Data,
mostly containing the all datasets of the current LOD cloud, are made available.
Querying this platform efficiently and investigating the properties of this subset
of the Web of Data is a subject of active ongoing research, despite only Linked
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RDF data has been considered: however, building such a platform for the scale
of arbitrary Open Data on the Web, or even only for the data accumulated in
Open Data portals would demand a solution at a much larger scale, handling
more tedious cleansing, data format conversion and schema integration problems.

4 Licensing and Provenance of Data

Publishing data on the Web is more than just making it publicly accessible.
When it comes to consuming publicly accessible data, it is crucial for data con-
sumers to be able to assess the trustworthiness of the data as well as being able
to use it on a secure legal basis and to know where the data is coming from,
or how it has been pre-processed. As such, if data is to be published on the
Web, appropriate metadata (e.g., describing the data’s provenance and licensing
information) should be published alongside with it, thus making published data
as self-descriptive as possible (cf. [34]).

4.1 Open Data Licensing in Practice

While metadata about terms and conditions under which a dataset can be re-
used are essential for its users, according to the Linked Open Data Cloud web
page, only less than 8% of the linked data datesets provide license information24.

Within Open data portals, the situation seems slightly better overall: more
than 50% of the monitored datasets in the Open Data portals in the Portalwatch
project (see Sect. 5 below) announce somehow in the metadata some kind of

Table 4. Top-10 licenses.

license id |datasets| % |portals|
ca-ogl-lgo 239662 32.3 1

notspecified 193043 26 71

dl-de-by-2.0 55117 7.4 7

CC-BY-4.0 49198 6.6 84

us-pd 35288 4.8 1

OGL-UK-3.0 33164 4.5 18

other-nc 27705 3.7 21

CC0-1.0 9931 1.3 36

dl-de-by-1.0 9608 1.3 6

Europ.Comm.a 8604 1.2 2

others 80164 10.8
ahttp://open-data.europa.eu/kos/licence/EuropeanCommission,
last accessed 24/03/2017

24 http://lod-cloud.net/state/state 2014/#toc10, last accessed 01/05/2017.

http://open-data.europa.eu/kos/licence/EuropeanCommission
http://lod-cloud.net/state/state_2014/#toc10
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license information [58]. The most prevalent license keys used in Open Data
portals [58] are listed in Table 4.

While most of the provided license definitions lack a machine-readable
description that would allow automated compatibility checks of different licenses
or alike, some are not even compliant with Open Definition conformant data
licenses (cf. Table 5).

Table 5. Open definition conformant data licenses [40]

License

Creative Commons Zero (CC0)

Creative Commons Attribution 4.0 (CC-BY-4.0)

Creative Commons Attribution Share-Alike 4.0 (CC-BY-SA-4.0)

Open Data Commons Attribution License (ODC-BY)

Open Data Commons Public Domain Dedication and Licence (ODC-PDDL)

Open Data Commons Open Database License (ODC-ODbL)

In order to circumvent these shortcomings, different RDF vocabularies have
been introduced to formally describe licenses as well as provenance information
of datasets, two of which (ODRL and PROV) we will briefly introduce in the
next two subsections.

4.2 Making Licenses Machine-Readable

The Open Digital Rights Language (ODRL) [39] is a comprehensive policy
expression language (representable with a resp. RDF vocabulary) that has been
demonstrated to be suitable for expressing fine-grained access restrictions, access
policies, as well as licensing information for Linked Data as shown in [20,69].

An ODRL Policy is composed of a set of ODRL Rules and an ODRL Conflict
Resolution Strategy, which is used by the enforcement mechanism to ensure that
when conflicts among rules occur, a system either grants access, denies access or
generates an error in a non-ambiguous manner.

An ODRL Rule either permits or prohibits the execution of a certain action
on an asset (e.g. the data requested by the data consumer). The scope of such
rules can be further refined by explicitly specifying the party/parties that the
rule applies to (e.g. Alice is allowed to access some dataset), using constraints
(e.g. access is allowed until a certain date) or in case of permission rules by
defining duties (e.g. a payment of 10 euros is required).

Listing 1.1 demonstrates how ODRL can be used to represent the Cre-
ativeCommons license CC-BY 4.0.
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Listing 1.1. CC-BY 4.0 represented in ODRL

<http://purl.org/NET/rdflicense/cc-by4.0>
a odrl:Policy ;
rdfs:label"Creative Commons CC-BY";
rdfs:seeAlso

<http://creativecommons.org/licenses/by/4.0/legalcode> ;
dct:source <http://creativecommons.org/licenses/by/4.0/> ;
dct:hasVersion "4.0";
dct:language <http://www.lexvo.org/page/iso639-3/eng> ;
odrl:permission [

odrl:action cc:Distribution,
cc:Reproduction, cc:DerivativeWorks ;

odrl:duty [
odrl:action cc:Notice, cc:Attribution

]
] .

Policy Conflict Resolution. A rule that permits or prohibits the execution of
an action on an asset could potentially affect related actions on that same asset.
Explicit relationships among actions in ODRL are defined using a subsumption
hierarchy, which states that an action α1 is a broader term for action α2 and
thus might influence its permission/prohibition (cf. Fig. 5). On the other hand
implicit dependencies indicate that the permission associated with an action α1

requires another action α2 to be permitted also. Implicit dependencies can only
be identified by interpreting the natural language description of the respective
ODRL Actions (cf. Fig. 6). As such, when it comes to the enforcement of access
policies defined in ODRL, there is a need for a reasoning engine which is capable
of catering for both explicit and implicit dependencies between actions.

odrl:useodrl:distribute odrl:reproduce

odrl:presentodrl:display odrl:play

odrl:print

narrower narrower

narrower

narrower narrower

narrower

broader broader

broader

broader broader

broader

Fig. 5. Example of explicit dependen-
cies in ODRL.

odrl:aggregate

odrl:extract odrl:read

odrl:use

requires requires

requires

Fig. 6. Example of implicit dependen-
cies in ODRL.
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4.3 Tracking the Provenance of Data

In order to handle the unique challenges of diverse and unverified RDF data
spread over RDF datasets published at different URIs by different data publish-
ers across the Web, the inclusion of a notion of provenance is necessary. The W3C
PROV Working Group [49] was chartered to address these issues and developed
an RDF vocabulary to enable annotation of datasets with interchangeable prove-
nance information. On a high level PROV distinguishes between entities, agents,
and activities (see Fig. 7). A prov:Entity can be all kinds of things, digital or
not, which are created or modified. Activities are the processes which create or
modify entities. An prov:Agent is something or someone who is responsible for
a prov:Activity (and indirectly also for an entity).

Fig. 7. The core concepts of PROV. Source: Taken from [49]

Listing 1.2 illustrates a PROV example (all other triples removed) of two
observations, where observation ex:obs123 was derived from another observa-
tion ex:obs789 via an activity ex:activity456 on the 1st of January 2017
at 01:01. This derivation was executed according to the rule ex:rule937 with
an agent ex:fred being responsible. This use of the PROV vocabulary mod-
els tracking of source observations, a timestamp, the conversion rule and the
responsible agent (which could be a person or software component). The PROV
vocabulary could thus be used to annotated whole datasets, or single obser-
vations (data points) within such dataset, or, respectively any derivations and
aggregations made from open data sources re-published elsewhere.

Listing 1.2. PROV example

ex:obs123 a prov:Entity ;
prov:generatedAtTime "2017-01-01T01:01:01"^^xsd:dateTime;
prov:wasGeneratedBy ex:activity456 ;
prov:wasDerivedFrom ex:obs789 .

ex:activity456 a prov:Activity;
prov:qualifiedAssociation [

a Association ;
prov:wasAssociatedWith ex:fred ;
prov:hadPlan ex:rule397 .

] .
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5 Metadata Quality Issues and Vocabularies

The Open Data Portalwatch project [58] has originally been set up as a frame-
work for monitoring and quality assessment of (governmental) Open Data por-
tals, see http://data.wu.ac.at/portalwatch. It monitors data from portals using
the CKAN, Socrata, and OpenDataSoft software frameworks, as well as portals
providing their metadata in the DCAT RDF vocabulary.

Currently, as of the second week of 2017, the framework monitors 261 portals,
which describe in total about 854 k datasets with more than 2 million distribu-
tions, i.e., download URLs (cf. Table 6). As we monitor and crawl the metadata
of these portals in a weekly fashion, we can use the gathered insights in two
ways to enrich the crawled metadata of these portals: namely, (i) we publish
and serve the integrated and homogenized metadata descriptions in a weekly,
versioned manner, (ii) we enrich these metadata descriptions by assessed quality
measures along several dimensions. These dimensions and metrics are defined
on top of the DCAT vocabulary, which allows us to treat and assess the content
independent of the portal’s software and own metadata schema.

Table 6. Monitored portals and datasets in Portalwatch

Total CKAN Socrata OpenDataSoft DCAT

Portals 261 149 99 11 2

Datasets 854,013 767,364 81,268 3,340 2,041

URLs 2,057,924 1,964,971 104,298 12,398 6,092

The quality assessment is performed along the following dimensions: (i) The
existence dimension consists of metrics checking for important information, e.g., if
there is contact information in the metadata. (ii) The metrics of the conformance
dimension check if the available information adheres to a certain format, e.g., if
the contact information is a valid email address. (iii) The open data dimension’s
metrics test if the specified format and license information is suitable to classify a
dataset as open. The formalization of all quality metrics currently assessed on the
Portalwatch platform and implementation details can be found in [58].

5.1 Heterogeneous Metadata Descriptions

Different Open Data portals use different metadata keys to describe the datasets
they host, mostly dependent on the software framework under which the portal
runs: while the schema for metadata descriptions on Socrata and OpenDataSoft
portals are fixed and predefined (they use their own vocabulary and metadata
keys), CKAN provides a higher flexibility in terms of own, per portal, metadata
schema and vocabulary. Thus, overall, the metadata that can be gathered from
Open Data Portals show a high degree of heterogeneity.

http://data.wu.ac.at/portalwatch
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In order to provide the metadata in a standard vocabulary, there exists a
CKAN-to-DCAT extension for the CKAN software that defines mappings for
datasets and their resources to the corresponding DCAT classes dcat:Dataset
and dcat:Distribution and offers it via the CKAN API. However, in general
it cannot be assumed that this extension is deployed for all CKAN portals: we
were able to retrieve the DCAT descriptions of datasets for 93 of the 149 active
CKAN portals monitored by Portalwatch [59].

Also, the CKAN software allows portal providers to include additional meta-
data fields in the metadata schema. When retrieving the metadata descrip-
tion for a dataset via the CKAN API, these keys are included in the resulting
JSON. However, it is neither guaranteed that the CKAN-to-DCAT conversion
of the CKAN metadata contains these extra fields, nor that these extra fields, if
exported, are available in a standardized way.

We analysed the metadata of 749 k datasets over all 149 CKAN portals and
extracted a total of 3746 distinct extra metadata fields [59]. Table 7 lists the
most frequently used fields sorted by the number of portals they appear in;
most frequent spatial in 29 portals. Most of these cross-portal extra keys are
generated by widely used CKAN extensions. The keys in Table 7 are all generated
by the harvesting25 and spatial extension.26

We manually selected mappings for the most frequent extra keys if they
are not already included in the mapping; the selected properties are listed in
the “DCAT key” column in Table 7 and are included in the homogenized, re-
exposed, metadata descriptions, cf. Sect. 5.2. In case of an ?-cell, we were not
able to choose an appropriate DCAT core property.

Table 7. Most frequent extra keys

Extra key Portals Datasets Mapping

spatial 29 315,652 dct:spatial

harvest object id 29 514,489 ?

harvest source id 28 486,388 ?

harvest source title 28 486,287 ?

guid 21 276,144 dct:identifier

contact-email 17 272,208 dcat:contactPoint

spatial-reference-system 16 263,012 ?

metadata-date 15 265,373 dct:issued

25 http://extensions.ckan.org/extension/harvest/, last accessed 24/03/2017.
26 http://docs.ckan.org/projects/ckanext-spatial/en/latest/, last accessed 24/03/2017.

http://extensions.ckan.org/extension/harvest/
http://docs.ckan.org/projects/ckanext-spatial/en/latest/
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5.2 Homogenizing Metadata Using DCAT and Other Metadata
Vocabularies

The W3C identified the issue of heterogeneous metadata schemas across the
data portals, and proposed an RDF vocabulary to solve this issue: The meta-
data standard DCAT [48] (Data Catalog Vocabulary) describes data catalogs
and corresponding datasets. It models the datasets and their distributions (pub-
lished data in different formats) and re-uses various existing vocabularies such
as Dublin Core terms [75], and the SKOS [52] vocabulary.

The recent DCAT application profile for data portals in Europe (DCAT-
AP)27 extends the DCAT core vocabulary and aims towards the integration of
datasets from different European data portals. In its current version (v1.1) it
extends the existing DCAT schema by a set of additional properties. DCAT-
AP allows to specify the version and the period of time of a dataset. Further,
it classifies certain predicates as “optional”, “recommended” or “mandatory”.
For instance, in DCAT-AP it is mandatory for a dcat:Distribution to hold a
dcat:accessURL.

An earlier approach, in 2011, is the VoID vocabulary [3] published by W3C
as an Interest Group Note. VoID – the Vocabulary for Interlinked Datasets –
is an RDF schema for describing metadata about linked datasets: it has been
developed specifically for data in RDF representation and is therefore comple-
mentary to the DCAT model and not fully suitable to model metadata on Open
Data portals (which usually host resources in various formats) in general.

In 2011 Fürber and Hepp [32] proposed an ontology for data quality man-
agement that allows the formulation of data quality, cleansing rules, a classifica-
tion of data quality problems and the computation of data quality scores. The
classes and properties of this ontology include concrete data quality dimensions
(e.g., completeness and accuracy) and concrete data cleansing rules (such as
whitespace removal) and provides a total of about 50 classes and 50 properties.
The ontology allows a detailed modelling of data quality management systems,
and might be partially applicable and useful in our system and to our data.
However, in the Open Data Portalwatch we decided to follow the W3C Data on
the Web Best Practices and use the more lightweight Data Quality Vocabulary
for describing the quality assessment dimensions and steps.

More recently, in 2015 Assaf et al. [5] propose HDL, an harmonized dataset
model. HDL is mainly based on a set of frequent CKAN keys. On this basis,
the authors define mappings from other metadata schemas, including Socrata,
DCAT and Schema.org.

Metadata mapping by the Open Data Portalwatch framework. In order to offer
the harvested datasets in the Portalwatch project in a homogenized and stan-
dardised way, we implemented a system that re-exposes data extracted from
Open Data portal APIs such as CKAN [59]: the output formats include a subset

27 https://joinup.ec.europa.eu/asset/dcat application profile/description, last accessed
24/03/2017.

https://joinup.ec.europa.eu/asset/dcat_application_profile/description
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Fig. 8. The mapped DCAT dataset is further enriched by three additional datasets
(indicated by the bold edges): (i) each DCAT dataset is associated to a set of quality
measurements; (ii) there is additional provenance information available for the gener-
ated RDF graph; (iii) in case the corresponding distribution is a table we generated
CSV specific metadata such as the delimiter and the column headers.

of W3C’s DCAT with extensions and Schema.org’s Dataset-oriented vocabu-
lary.28 We enrich the integrated metadata by the quality measurements of the
Portalwatch framework available as RDF data using the Data Quality Vocab-
ulary29 (DQV). To further describe tabular data in our dataset corpus we use
simple heuristics to generate additional metadata using the vocabulary defined
by the W3C CSV on the Web working group [65], which we likewise add to
our enriched metadata. We use the PROV ontology (cf. Sect. 4.3) to record and
annotate the provenance of our generated/published data (which is partially gen-
erated by using heuristics). The example graph in Fig. 8 displays the generated
data for the DCAT dataset, the quality measurements, the CSV metadata, and
the provenance information.

6 Searchability and Semantic Annotation

The popular Open Data portal software frameworks (e.g., CKAN, Socrata) offer
search interfaces and APIs. However, the APIs typically allow only search over
the metadata descriptions of the datasets, i.e., the title, descriptions and tags,
and therefore rely on complete and detailed meta-information. Nevertheless, if
an user wants to find data for a specific entity this search might be not success-
ful. For instance, a search for data about “Vienna” at the Humanitarian Data
Exchange portal gives no results, even though there are relevant datasets in the
portal such as “World – Population of Capital Cities”.

28 Google Research Blog entry, https://research.googleblog.com/2017/01/facilitating
-discovery-of-public.html, last accessed 27/01/2017.

29 https://www.w3.org/TR/vocab-dqv/, last accessed 24/03/2017.

https://research.googleblog.com/2017/01/facilitating-discovery-of-public.html
https://research.googleblog.com/2017/01/facilitating-discovery-of-public.html
https://www.w3.org/TR/vocab-dqv/
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6.1 Open Data Search: State of the Art

Overall, to the best of our knowledge, there is not much substantial research
in the area of search and querying for Open Data. A straightforward approach
to offer search over the data is to index the documents as text files into typi-
cal keyword search systems. Keyword search is already addressed and partially
solved by full-text search indices, as they exist by search engines such as Google.
However, these systems do not exploit the underlying structure of the dataset.
For instance, a default full-text indexer considers a CSV table as a document
and the cells get indexed as (unstructured) tokens. A search query for tables
containing the terms “Vienna” and “Berlin” in the same column is not possible
using these existing search systems. In order to enable such a structured search
over the content of tables an alternative data model is required.

In a current table search prototype30 we enable these query use-cases while
utilizing existing state-of-the-art document-based search engines. We use the
search engine Elasticsearch31 and index the rows and columns of a table as
separated documents, i.e., we add a new document for each column and for each
row containing all values of the respective row/column. By doing so we store
each single cell twice in the search system. This particular data model enables
to define multi-keyword search over rows and columns. For instance, queries for
which the terms “Vienna” and “Berlin” appear within the same column.

Recently, the Open Data Network project32 addresses the searchability issue
by providing a search and query answering framework on top of Socrata por-
tals. The UI allows to start a search with a keyword and suggested matching
datasets or already registered questions. However, the system relies on the exist-
ing Socrata portal ecosystem with its relevant data API33. This API allows to
programmatically access the uploaded data and apply filters on columns and
rows.

The core challenge for search & query over tabular data is to process and
build an index over a large corpus of heterogeneous tables. In 2016, we assessed
the table heterogeneity for over 200 k Open Data CSV files [54]. We found that
a typical Open Data CSV file has less than 100 kB (the biggest with over 25 GB)
and consists of 14 columns and 379 rows. An interesting observation was that
∼50% of the inspected header values were composed of camel case, suggesting
that the table was exported from a relation table. Regarding the data types,
roughly half of the columns consists of numerical data types. As such, Open
Data CSV tables have different numbers of columns and rows and column values
can belong to different data types. Some of the CSV files contain multiple tables
and the tables itself can be non well-formed, meaning that there exists multiple-
headers or the rows with aggregated values over the previous rows.

To the best of our knowledge, the research regarding querying over thousands
of heterogeneous tables is fairly sparse. One of the initial work towards search
30 http://data.wu.ac.at/csvengine, last accessed 24/03/2017.
31 https://www.elastic.co/products/elasticsearch, last accessed 24/03/2017.
32 https://www.opendatanetwork.com, last accessed 24/03/2017.
33 https://dev.socrata.com, last accessed 24/03/2017.
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and query over tables was the work by Das Sarma et al. in 2012 [25]. The authors
propose a system to find for a given input table a set of related Web tables. The
approach relies on the assumptions that tables have an “entity” column (e.g.
the player column in a table about tennis players) and introduces relatedness
metrics for tables (either for joining two tables or appending one table to the
other). the authors propose a set of high-level features for grouping tables to
handle the large amount of heterogeneous tables and to reduce the search space
for a given input table. Eventually, the system itself returns tables which either
can be joined with the input table (via the entity column) or can be append to
the input table (adding new rows).

The idea of finding related tables is also closely relate to the research of find-
ing inclusion dependencies (IND), that are relation such as columnA ⊆ columnB.
A core application for these dependencies is the discovery of foreign key relations
across tables, but they are also used in data integration [53] scenarios, query opti-
mization, and schema redesign [62]. The task of finding INDs gets harder with
the number of tables and columns and the scalable and efficient discovery of
inclusion dependencies across several tables is a well-known challenge in data-
base research [9,43,62]. The state of the art research combines probabilistic and
exact data structures to approximate the INDs in relational datasets. The algo-
rithm guarantees to correctly find all INDs and only adds false positives INDs
with a low probability [42].

Another promising direction is the work of Liu et al. in 2014 which investi-
gates the fundamental differences between relation data and JSON data man-
agement [46]. Consequently, the authors derive three architectural principles to
facilitate a schema-less development within traditional relation database man-
agement systems. The first principle is to store JSON as JSON in the RDBMS.
The second principle is to use the query language SQL as a Set-oriented Query
Language rather than a Structured Query Language. The third principle is to
use available partial schema-aware indexing methods but also schema agnostic
indexing. While this work focuses on JSON and XML, it would be interesting
to study and establish similar principles for tabular data and how this can be
applied and benefit for search and querying.

Enabling search and querying over Open Data could benefit from many
insights from the research around semantic search systems. The earlier semantic
search systems such as Watson [24], Swoogle [27] or FalconS [22] provided search
and simple querying over collections of RDF data. More advanced systems, such
as SWSE [38] or Sindice.com [61] focused on indexing RDF document at web-
scale. SWSE is a scalable entity lookup system operating over an integrated data,
while Sindice.com provided keyword search and entity lookups using an inverted
document index. Surprisingly, published research around semantic search slowed
down. However, the big search engine players on the market such as Google or
Bing utilise semantic search approaches to provide search over their internal
knowledge graph.
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6.2 Annotation, Labelling, and Integration of Tabular Data

Text-based search engines such as Elasticsearch, however, do not integrate any
semantic information of the data sources and therefore do not enable search
based on concepts, synonyms or related content. For instance, to enable a search
for the concept “population” over a set of resources (that do not contain the
string “population”), it is required that the tables (and their columns, respec-
tively) are labelled and annotated correctly.

There exists an extensive body of research in the Semantic Web community
in semantic annotation and linking of tabular data sources. The majority of
these approaches [2,28,45,55,66,70,73,76] assume well-formed relational tables
and try to derive semantic labels for attributes in these structured data sources
(such as columns in tables) which are used to (i) map the schema of the data
source to ontologies or existing semantic models or (ii) categorize the content of
a data source.

Given an existing knowledge base, these approaches try to discover concepts
and named entities in the table, as well as relations among them, and link them
to elements and properties in the knowledge base. This typically involves finding
potential candidates from the knowledge base that match particular table com-
ponents (e.g., column header, or cell content) and applying inference algorithms
to decide the best mappings.

However, in typical Open Data portals many data sources exist where such
textual descriptions (such as column headers or cell labels) are missing or cannot
be mapped straightforwardly to known concepts or properties using linguistic
approaches, particularly when tables contain many numerical columns for which
we cannot establish a semantic mapping in such manner. Indeed, a major part of
the datasets published in Open Data portals comprise tabular data containing
many numerical columns with missing or non human-readable headers (organi-
sational identifiers, sensor codes, internal abbreviations for attributes like “pop-
ulation count”, or geo-coding systems for areas instead of their names, e.g. for
districts, etc.) [47].

Table 8. Header mapping of CSVs in open data portals

Portal Tables cols num.cols w/o Header Num. H Mapped

AT 968 13 8 154 6,482 1,323

EU 357 20 4 223 1,233 349

In [57] we verified this observation by inspecting 1200 tables collected from
the European Open Data portal and the Austrian Government Open Data Por-
tal and attempted to map the header values using the BabelNet service (http://
babelnet.org): Table 8 lists our findings; an interesting observation is that the
AT portal has an average number of 20 columns per table with an average of 8
numerical columns, while the EU portal has larger tables with an average of 4 out

http://babelnet.org
http://babelnet.org
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of 20 columns being numerical. Regarding the descriptiveness of possible column
headers, we observed that 28% of the tables have missing header rows. Eventu-
ally, we extracted headers from 7714 out of around 10 K numerical columns and
used the BabelNet service to retrieve possible mappings. We received only 1472
columns mappings to BabelNet concepts or instances, confirming our assump-
tion that many headers in Open Data CSV files cannot easily be semantically
mapped.

Therefore, we propose in [57] an approach to find and rank candidates of
semantic labels and context descriptions for a given bag of numerical values, i.e.,
the numerical data in a certain column. To this end, we apply a hierarchical clus-
tering over information taken from DBpedia to build a background knowledge
graph of possible “semantic contexts” for bags of numerical values, over which
we perform a nearest neighbour search to rank the most likely candidates. We
assign different labels/contexts with different confidence values and this way our
approach could potentially be combined with the previous introduced textual
labelling techniques for further label refinement.

7 Conclusions, Including Further Issues and Challenges

In this chapter we gave a rough overview over the still persisting challenge of
integrating and finding data on the Web. We focused on Open Data and provided
some starting points for finding large amounts of nowadays available structured
data, the processing of which still remains a major challenge: on the one hand,
because the introduction of Semantic Web Standards such as RDF and OWL
did not yet find adoption and there is still a large variety in terms of formats to
publish structured data on the Web. On the other hand, even the use of such
standard formats alone would not alleviate the issue of findability of said data.
Proper search and indexing techniques for structured data and its metadata
need to be devised. Moreover, metadata needs to be self-descriptive, that is, it
needs to not only describe what published datasets contain, but also how the
data was generated (provenance) or under which terms it can be used (licenses).
Overall, one could say that despite the increased availability of data on the
Web, (i) there are still a number of challenges to be solved before we can call it
a Semantic Web, and (ii) one often needs to be ready to manually pre-process
and align data before automated reasoning techniques can be applied. Projects
such as the Open Data Portalwatch, a monitoring framework for Open Data
portals worldwide, from which most of our insights presented in this paper were
derived, are just a starting point in the direction of making this Web of data
machine-processable: there is a number of aspects that we did not cover herein,
such as monitoring the evolution of datasets, archiving such evolving data, or
querying Web data over time, cf. [31] for some initial research on this topic.
Nor did we discuss attempts to reason over Web data “in the wild” using OWL
and RDFS, which we had investigated on the narrower scope of Linked Data
some years ago [64], but which will impose far more challenges when taking into
account the vast amounts of data not yet linked to the so called Linked Data
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cloud, but available through Open Data Portals. Lastly, another major issue we
did not discuss in depth is multi-linguality: data (content) as well as metadata
associated with Open Data is published in different languages with different
language descriptions and thereby a lot of “Open” information is only accessible
to speakers of the respective languages, leave aside impossible to integrate for
machines: still recent progress in machine translation or multi-lingual Linked
Data corpora like Babelnet [56] could contribute to solving this puzzle.

You will find further starting points in these directions in the present volume,
or also previous editions of the Reasoning Web summer school. We hope these
starting points serve as an inspiration for further research on making machines
understand openly available data on the Web and thus bringing us closer to the
original vision of the Semantic Web, an ongoing journey.
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1 Introduction

Modern information retrieval systems advance user experience on the basis of
concept-based rather than keyword-based query answering. In particular, effi-
cient user interfaces involve terminological descriptions of the domain of interest,
expressed in formal knowledge representation formalisms. Ontological represen-
tation and reasoning based on Description Logics (DLs) [7,9,10] play an impor-
tant role, providing expressive concept-level query languages with formal seman-
tics and reasoning support. On the other hand, most real-life applications use
huge amounts of data, consequently, efficient data storage and retrieval focuses
on methodologies that take advantage of the physical storage using simple rather
than sophisticated data models. Trying to combine the requirements for highly
expressive queries and efficient data storage, ontology-based query answering is
one of the widely used approaches, especially for web applications, involving data
from different sources, in different formats [25,27,29,31,32,34].

Here, we present methods for data integration, query rewriting and query
answering based on both tractable and expressive Description Logics. Specif-
ically, we focus on semantic data representation based on relational schemas
to ontology mappings, ontology-based query rewriting for tractable Description
Logics and approximate query answering techniques for expressive Description
Logics.

The rest of the paper is structured as follows. Section 2 presents some basics
of semantic data technologies. First, relational databases are introduced as a
paradigm of disk-oriented data storage that misses a vocabulary-based semantic
interpretation. Then, thing descriptions that are based on terminological asser-
tions (ABoxes) are presented as a simple way to store and access semantic data.
Finally, Sect. 2 concludes with a short presentation of semantic databases that
are based on relational to terminology mappings, an important technology widely
used in practice, especially in cases where systems already use relational database
management systems. Section 3 provides the reader with a short introduction to
Description Logics and how Description Logic ontologies can be used to extend
the vocabulary of data descriptions, thus providing a formal terminological data
access framework. Moreover, automated ontology reasoning problems introduce
the reader to ontology-based data access that is the subject of Sect. 4. Starting
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from standard reasoning and instance retrieval problems, the main technologies
of semantic data access are presented, with emphasis to optimised query rewrit-
ing in tractable fragments of web ontology languages. Finally, Sect. 5 briefly
describes the current technologies and standards that enable ontology based
data access methods, discussed in the previous sections, to be used in real web
applications, while Sect. 6 concludes the paper.

2 Semantic Data Representation

Data access in real life applications is usually based on storage oriented tech-
nologies that focus on the efficient retrieval of information from the disks, taking
advantage of the specific technological restrictions of the physical layer. Sophis-
ticated, analytical data modelling that represents the knowledge of the domain,
is usually avoided for the sake of efficiency. A typical example is the relational
database management model.

Definition 1. Let ΔV be a value domain and ΔF a name domain for subsets of
the values in ΔV . The n-tuple D = 〈F1,F2, ...,Fn〉 is a data structure defined
on ΔV ; Fi ∈ ΔF (i ∈ Nn (we write Nn for the set {1, 2, ..., n})) are the fields
of D; v = 〈v1, v2, ..., vn〉, with vi ∈ ΔV (i ∈ Nn), is a record of D. A database
is a tuple B = 〈D,V〉, where D = {D1,D2, ...,Dm} is a non-empty set of data
structures and V a set of their records. We say that D is the database schema
and V is the data.

An expression of the form

SELECT fields
FROM structures
WHERE conditions

is an SQL query against the database B, where structures are elements of D
(some Di), fields are some fields of the structures (some Fij) and conditions are
conditions for the values of these fields. The answer to the SQL query is the set
that contains all the fields value vectors of V, that satisfy conditions. ��

Definition 1 presents a simple form of relational databases and SQL queries,
covering the basic ideas. More sophisticated relational models and query lan-
guages have been introduced in the literature (see for example [2,3]).

Example 1. Table 1 summarises the database schema of an example database
from the cinema domain. The schema consists of five data structures providing
information for directors, movies and awards. For example, the data structure
DIRECTORS, after a unique number for each record that is usually called pri-
mary key (here underlined), stores the name, place of birth and a short bio of a
director, while her possible movies and awards are stored in the data structures
DIRECTOR-OF and AWARDED-WITH, respectively.

Some data following this database schema is given in Table 2. It contains
information about two directors and two movies; it is stored in different records of
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the database. For example, the movie ‘Manhattan Murder Mystery’ is described
(its title is stored in the field Title of the first record of the data structure
MOVIES). The movie is a ‘Comedy’ (see the value of the field Genre of MOVIES),
its duration is 104 min (field Duration), its director is ‘Woody Allen’ (we join the
information from the first record of DIRECTOR-OF and the field Name of the
first record of DIRECTORS).

With the following SQL query q, we may find all directors of comedies.

SELECT DIRECTORS.Name
FROM DIRECTORS,MOVIES,DIRECTORS-OF
WHERE DIRECTORS.DirID = DIRECTORS-OF.DirID

MOVIES.MovID = DIRECTORS-OF.MovID
MOVIES.Genre = “Comedy”

The query involves three structures of the database, as we can see in its FROM
clause, namely the DIRECTORS, the MOVIES and the DIRECTORS-OF. The
query answer returns only director names, from the field DIRECTORS.Name
(see the SELECT clause), however finding the correct answer set involves condi-
tion checking that needs information from the three structures (see the WHERE
clause). In particular, the first two conditions ensure that the movies of all direc-
tors will be checked against the third condition. Thus, the relevant set of tuples is
constructed with appropriate joins of DIRECTORS, MOVIES and DIRECTORS-
OF, and then only tuples that satisfy the condition “the movie is a comedy” are
selected. In this case, only M1 has M1.Genre= “Comedy”, thus only D1 is “direc-
tor of a comedy” and thus only D1 will be an answer of the query. Formally, we
write ans(q) = {〈WoodyAllen〉}. ��

Collecting information from the data is not always a straight-forward process.
It presupposes a good understanding of the database schema and the value
domains, and involves conditions that are difficult to be expressed in the query
language. In some cases, a sophisticated information extraction procedure may
be needed to mine semantically rich information out of semi-structured or
unstructured data, stored in some of the fields of the database. For instance
(in Example 1) the field ShortBio of DIRECTORS may contain useful information
in an unstructured form.

The syntax of relational databases is suitable for efficient data storage, on the
other hand it does not provide rich semantic information. For example, the posi-
tion of a symbol in a statement (schema, record, field, value) is not informative

Table 1. Database schema for Example 1

DIRECTORS(DirID,Name,PlaceOfBirth, ShortBio)

MOVIES(MovID,Title,Year,Duration,Genre)

AWARDS(AwID,Type,Category)

AWARDED-WITH(DirID,AwID,Year,Type)

DIRECTOR-OF(DirID,MovID)
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Table 2. Example 1 database values

DIRECTORS
DirID Name PlaceOfBirth ShortBio

D1 Woody Allen New York, USA ex/waBio.pdf

D2 Theo Angelopoulos Athens, Greece ex/taCV.pdf

MOVIES
MovID Title Year Duration Genres

M1 Manhattan Murder Mystery 1993 104 Comedy

M2 Eternity and a day 1998 137 Drama

AWARDS
AwID Type Category

A1 BAFTA Film Award Best Actress in a Supporting Role

A2 Cannes Film Festival Palme d’Or

AWARDED-WITH
MovID AwID Year Type

M1 A1 1995 Nomination

M2 A2 1998 Win

DIRECTOR-OF
DirID MovID

D1 M1

D2 M2

for the nature of the entity that the specific symbol stands for (individual, con-
cept, property, relationship, constant or datatype). An alternative of relational
modelling is the object-oriented one that focus on representing thing descrip-
tions in a clear syntactic form of statements classifying things to categories and
describing their properties and roles (for example manhattan is a feature film, a
comedy, has director ‘Woody Allen’ etc.). The first ingredient of this modelling
is the use of an extended set of names that is clearly distinguished into three
subsets, the individual, the concept and the role names. It constitutes the vocab-
ulary or the terminology of the data representation. The second ingredient is
the use of very simple syntax rules: statements classify individuals to concepts,
based on their properties or relations to other individuals. Then, data access is
based on queries that use the vocabulary to formally describe conditions and
bring ‘individuals that are members of a specific class’.

Definition 2. Let L = 〈IN,CN,RN〉 be a vocabulary, i.e. mutually disjoint sets
of names for individuals, concepts and roles of the world, respectively. We call
individual equality assertion the statement a ≈ b, individual inequality assertion
the statement a �≈ b, concept assertion the statement A(a) and role assertion
the statement r(a, b), where a, b ∈ IN, A ∈ CN and r ∈ RN. A set of (equality,
inequality, concept or role) assertions is called assertion box or simply ABox.
The set of names involved in the assertions of an ABox A is the signature of A,
written as Sig(A).
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Let VN be a set of variable names, taking values on IN. An atomic query
for the ABox A is an expression of the following forms (the symbol | is used to
summarise alternatives):

q = C(a) | r(a, b) (1)

q(x) = C(x) | r(x, a) | r(a, x) (2)

q(x, y) = r(x, y) (3)

where C ∈ CN, r ∈ RN a, b ∈ IN, x, y ∈ VN are concept, role, individual and
variable names, respectively. We refer to the individual names involved in the
query as constants. We refer to the set of the variables of a query q with var(q).
In case the query has no variable (form 1), it is called boolean.

A conjunctive query is an expression of the form:

q(x) = {q1, ..., qn}, (4)

where qi, i ∈ Nn are atomic queries. q(x) is the head and {q1, ..., qn} is the
body of the query. We say that x is the variable vector of q and its elements
are called answer variables. The set of answer variables is written as avar(q).
Answer variables should be also in the body (in at least one qi). The variables
appear in the body of q and not in its head are called free variables (fvar(q)
is the set of free variables). The free variables that appear at least twice are
called existential join variables (the set of existential join variables is written as
ejvar(q)). A conjunctive query with no answer variables is called boolean.

Example 2. [example 1 cont.] Table 3 presents an ABox representing information
from the movies domain, also contained in the database example of the previous
section (see Table 2). In particular, the set of assertions

A = {α1, α2, ..., α8}

describes individuals like manhattan, woodyAllen and their properties, for exam-
ple it is stated that manhattan is a Comedy (assertion α1). The same information
can be extracted from the database (the first record of the structure Movies,
that has title manhattan, has the value Comedy in the field Genre). Additionally,
the Abox contains information for the individual interrelationships, for example
the assertion hasDirector(manhattan, woodyAllen) states that ‘Woody Allen is a
director of the movie ‘Manhattan Murder Mystery’. It is not difficult to see that
this information is also in the database, in a more complicated manner, specifi-
cally from the first record of the structure DIRECTOR-OF we find the keys and
then we get the names from the structures DIRECTORS and MOVIES. Suppose
now that we would like to find all directors of comedies (the same query as in
Example 1), from the information of ABox. The conjunctive query

q(x) = {Director(x), isDirector(x, y),Comedy(y)}, (5)

uses the ABox signature, in particular the concepts Director, Comedy and the role
isDirector. In this case, x is an answer variable and y a free variable, specifically an
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existential one. Intuitively, the answer that we would get is woodyAllen, knowing
the meaning of the vocabulary names. However, looking more carefully, this is not
the case, since it is not explicitly stated in the ABox that woodyAllen is a director
(although from assertion α2 we can conclude that since he has directed a movie,
he obviously is a director). In the next sections, we will see how this problem
can be handled by representing domain knowledge on the basis of terminological
axioms. ��

Table 3. ABox of Example 2

α1 Comedy(manhattan)

α2 hasDirector(manhattan,woodyAllen)

α3 FeatureFilm(manhattan)

α4 nominatedFor(manhattan, baftaBestActressSupporting)

α5 hasAward(eternityAndAday, cannesPalmeDor)

α6 woodyAllen �≈ theoAngelopoulos

The development of efficient disk-oriented storage and retrieval of ABoxes
has been an attractive area of research during the last years, especially in the
framework of the Semantic Web. As a result, several systems, known as triple
stores have been proposed in the literature, some of them really efficient. How-
ever, even state-of-the-art triple stores face difficulties when they try to scale to
big data. Moreover, in several applications, existing systems use relational data-
base management systems and it is difficult to swap to other technologies. Thus,
some applications call for vocabulary-based, semantic information access on the
one hand, with relational database storage on the other hand. This requirement
can be achieved with semantic databases, that need to connect the terms of
vocabularies with the information stored in the database.

Consider the first record of the structure MOVIES in Table 2, that stores
the fact that the movie with ID M1 and title ‘Manhattan Murder Mystery’
is an instance of the concept Comedy (defined in the vocabulary). The same
information is given in the ABox of Table 3 (assertion α1):

Comedy(manhattan). (6)

In order to represent the same information by simply connecting the individual
described in the database with the term Comedy, we need to first identify indi-
viduals that are described in the structure MOVIES and then filter only those
individuals that are instances of the class Comedy.

Definition 3. Let B be a database and F the set of fields of all structures of B.
An object identifier is a function id of any order n ≤ |F| defined as:

id(v1, v2, ...vn) = a, (7)
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where v1, v2,...,vn values form n fields of F and a ∈ IN an individual name.
Similarly, a concept classifier is a function ccl of order m ≤ |F| defined as:

ccl(v1, v2, ...vm) = C, (8)

where v1, v2,...,vm form m fields of F and C ∈ CN an individual name.
Finally, a role classifier is a function rcl of order k ≤ |F| defined as:

rcl(v1, v2, ...vk) = r, (9)

where v1, v2,...,vk form k fields of F and r ∈ RN an individual name.

Definition 4. Let B be a database and L a vocabulary, with IN, CN and RN the
set of names, concepts and roles, respectively. Let also p(x) be an SQL query
for B, id, ccl and rcl, individual, concept and role identifier, respectively, x a
nonempty variable vector on V, and q(y) an instance query. An expression of
the form:

p(x)
(id,ccl,rcl)� q(y) (10)

is a semantic mapping from the database B to the vocabulary L. A set of semantic
mappings, M, is a semantic mapping box or MBox.

The triple S = 〈L,B,M〉 is a semantic database.

The intuitive meaning of the identifiers id, ccl and rcl is the following. They
are used to define fresh names for individuals, concept and roles respectively,
if they are not already in the vocabulary. For practical reasons, these names
should be intuitive for humans (i.e. informative enough for humans to refer to
the specific entity) and uniquely identify the entity. id, ccl and rcl are necessary
in practice, since database IDs are not always appropriate as entity identifiers.
Indeed, database IDs do not fulfil the first requirement (they are not informative
for humans) and moreover, the entities described in the knowledge base are not
always formally identified in the database schema (see for example the award
category).

Example 3. [example 2 cont.] Following Examples 1 and 2, an identifier
dir(DIRECTORS.Name) can be defined as a function of order 1, that takes as
input the value of the field Name of the structure DIRECTORS (see Table 2) and
gives output object names, as:

dir(Woody Allen) = woodyAllen.

Moreover, the function mov can be defined similarly, as a function of order 1,
taking as input the title of a movie (or parts of it for simplicity reasons) to
define movie names, giving at the output for example manhattan as an movie
identifier for the movie ‘Manhattan Murder Mystery’. If the context suggest
for more information in the name to identify, the function mov could do so by
concatenating the title and the first release date:

mov(MOVIES.Title,MOVIES.Year)
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giving the output:

mov(Manhattan Murder Mystery, 1993) = manhattanMurderMystery1993.

Finally, we define the semantic mapping

m : SELECT DIRECTORS.Name
FROM DIRECTORS,MOVIES,DIRECTORS-OF
WHERE DIRECTORS.DirID = DIRECTORS-OF.DirID

MOVIES.MovID = DIRECTORS-OF.MovID
MOVIES.Genre = “Comedy”


→ DirectorOfComedy(dir(x)),

(11)

that maps to the concept DirectorOfComedy. In this case, we can get the assertion

DirectorOfComedy(woodyAllen),

since Woody Allen is the only answer to the SQL query of the mapping (11). ��

Definition 4 presents a simple form of semantic mappings. More general
mapping frameworks, especially mapping relational databases to terminolo-
gies have been studied in the literature, especially in the framework of data
integration [4–6].

3 Ontological Data Descriptions

Information retrieval using vocabularies and semantic data forms a basis for
user friendly systems, however it does not meet all user requirements. Users
sometimes expect that the system will employ logical procedures during the
retrieval process in order to be more precise and effective. For example, users
expect that ‘directors’ should be answers to a query that asks for ‘creators’,
simply because ‘all directors are creators’. Formal knowledge representation can
be very helpful within this context, enriching the vocabularies with additional
terms (not directly mapped to the data, but connected with other entities that
are mapped), and expressing the restrictions of the domain that are helpful
during the data retrieval process. Ontologies expressed in Description Logics
play an important role here, as a rich terminological knowledge representation
framework, supported by efficient automated reasoning services [7–12].

Definition 5. Let IN, CN and RN be mutually disjoint sets of individual, concept
and role names, respectively.

A role r ∈ RN is a named role expression or atomic role. Let r, s be atomic
roles. The expressions r−, r ◦s, recursively defined using the role constructors −

(inverse role constructor) and ◦ (role composition constructor), are role expres-
sions or complex roles or simply roles. Moreover, we use the symbol U for the
universal role.
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A concept C ∈ CN is a named concept expression or atomic concept. Let
C, D be atomic concepts, r an atomic role, a an individual name and n a nat-
ural number. The expressions ¬C, C � D, C � D, ∃r.C, ∀r.C, ≥nr.C, ≤nr.C,
{a}, recursively defined using the concept constructors ¬ (negation), � (con-
junction), � (disjunction), ∃ (existential), ∀ (universal), ≥ n (at-least number
restrictions), ≤ n (at-most number restrictions), {} (nominal), are called con-
cept expressions or complex concepts or simply concepts. Moreover, � (named
Top) and ⊥ (named Bottom) are concepts. Finally, Self can be used in expres-
sions of the form ∃r.Self.

An expression of the form C � D (C ≡ D) is a concept subsumption axiom
( concept equivalence axiom). Similarly, an expression of the form r � s (r ≡ s)
is a role subsumption axiom (role equivalence axiom).

A set of concept or role subsumption or equivalence axioms is a terminological
box or TBox or ontology. The individual, concept and role names used in the
axioms of a TBox T is the signature of T , written as Sig(T ).

The tuple K = 〈T ,A〉, where T is a TBox and A an ABox, with
Sig(T ),Sig(A) ⊆ IN ∪ CN ∪ RN is a knowledge base or simply knowledge, with
signature Sig(K) = Sig(T ) ∪ Sig(A).

Example 4. The set of axioms T = {τ1, τ2, ..., τ13}, where

τ1. Director � Creator,
τ2. Movie ≡ Film,
τ3. Director � Movie � ⊥,
τ4. Movie ≡ ShortFilm � FeatureFilm,
τ5. FeatureFilm ≡ Film � LongFilm,
τ6. FeatureFilm ≡ Film � ¬ShortFilm,
τ7. Director ≡ ∃isDirector.Movie,
τ8. Movie � ∀hasDirector.Director,
τ9. MultiAwardWinning ≡≥ 3hasAward.MajorAward,
τ10. � � ∀hasDirector.Director,
τ11. hasDirector � hasCreator,
τ12. isDirector ≡ hasDirector−,
τ13. hasCollaboration � isDirector ◦ hasActor,

is a TBox, with signature

Sig(T ) = {Director,Creator,Movie,Film,ShortFilm,FeatureFilm,
LongFilm,MultiAwardWinning,MajorAward,
isDirector, hasDirector, hasAward, hasCreator,
hasCollaboration, hasActor, hasRunningTime}.

Axioms τ1, τ3, τ8 and τ10 are concept inclusion axioms, τ2, τ4–τ7 and τ9 are
concept equivalence axioms, τ11 and τ13 are role inclusion axioms and τ12 is a
role equivalence axiom. ��

Ontologies and knowledge bases are practically useful because reasoning ser-
vices can extract logical entailments of their axioms, by applying simple semantic
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rules. For example, based on the TBox of Example 4 we can conclude using sim-
ple reasoning rules that if an individual a is director of an individual b that has
actor an individual c, then a is a director, b is a movie and a has a collaboration
with c. Consequences like the above, are based on formal semantics of axioms and
assertions.

Definition 6. Let K = 〈T ,A〉 be a knowledge base, with signature Sig(K) ⊆
IN∪CN∪RN, where IN, CN, RN mutually disjoint sets of individual, concept and
role names, respectively. Interpretation of the knowledge, is a tuple J =

〈
ΔI , ·I

〉
,

where ΔI a nonempty (possibly infinite) set of objects, called domain and I the
interpretation function, that maps elements of K to ΔI structures as follows:

– Individuals are interpreted as elements of ΔI , i.e. if a ∈ IN , then aI ∈ ΔI .
– Atomic concepts are interpreted as subsets of ΔI , i.e. if A ∈ CN, then AI ⊆

ΔI .
– Atomic roles are interpreted as subsets of ΔI × ΔI , i.e. if r ∈ RN, then

rI ⊆ ΔI × ΔI .
– Complex roles are interpreted as subsets of ΔI × ΔI ( (x, y) ∈ ΔI × ΔI)

recursively on their structure, as follows:
• For every x, y ∈ ΔI it is (x, y) ∈ UI .
• (x, y) ∈ (r−)I if and only if (y, x) ∈ rI .
• (x, y) ∈ (r ◦ s)I if and only if there exists z ∈ ΔI such that (x, z) ∈ rI

and (z, y) ∈ sI .
– Complex concepts are interpreted as subsets of ΔI , recursively on their struc-

ture, as follows:
• For every x ∈ ΔI it is x ∈ �I .
• There does not exist x ∈ ΔI such that x ∈ ⊥I .
• x ∈ (¬C)I if and only if x /∈ CI .
• x ∈ (C � D)I if and only if x ∈ CI and x ∈ DI .
• x ∈ (C � D)I if and only if x ∈ CI or x ∈ DI .
• x ∈ (∃r.C)I if and only if there exists y ∈ ΔI , such that (x, y) ∈ rI and

y ∈ CI .
• x ∈ (∀r.C)I if and only if for every y ∈ ΔI with (x, y) ∈ rI , it is y ∈ CI .
• x ∈ (≥ n r.C)I if and only if there exist at least n different elements

y1, ..., yn of ΔI such that (x, yi) ∈ rI and yi ∈ CI , i ∈ Nn.
• x ∈ (≤ n r.C)I if and only if there exist at most n different elements

y1, ..., yn of ΔI , such that (x, yi) ∈ rI and yi ∈ CI , i ∈ Nn.
• x ∈ (∃r.Self)I if and only if (x, x) ∈ rI .
• x ∈ {a}I if and only if x = aI .

The interpretation I of the knowledge K, satisfies:

– a concept assertion C(a) of A if and only if aI ∈ CI ,
– a role assertion r(a, b) of A if and only if (aI , bI) ∈ rI ,
– an individual equality a ≈ b of A if and only if aI = bI ,
– a concept inequality a �≈ b of A if and only if aI �= bI .
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An interpretation I satisfies an ABox A if and only if it satisfies all of its
assertions. In this case, we say that I is a model of A.

An interpretation I of a knowledge K, satisfies:

– a concept subsumption axiom C � D if and only if CI ⊆ DI ,
– a concept equivalence axiom C ≡ D if and only if CI = DI ,
– a role subsumption axiom r � s if and only if rI ⊆ sI ,
– a role equivalence axiom r ≡ s if and only if rI = sI .

The interpretation I satisfies the TBox T if and only if it satisfies all of its
axioms. Then, we say that I is a model of T . Additionally, I satisfies a concept
C of T , if and only if CI is nonemply.

Finally, the interpretation I satisfies the knowledge K (is a model of K ), if
and only if it is a model of both its Abox and Tbox. We say that K is satisfiable
if there exists a model of K.

Table 4. Complex concept and role semantics

Constructor Syntax Semantics

Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI\CI

Conjunction C � D CI ∩ DI

Disjunction C 	 D CI ∪ DI

Existential ∃r.C {x | ∃y such that r(x, y)}
For-all ∀r.C {x | ∀y with r(x, y) it is C(y)}
At-least n ≥ n.C {x | ∃y1, ..., yn with yi �= yj , r(x, yi), i, j ∈ Nn}
At-most n ≤ n.C {x | � ∃y1, ..., yn+1 with yi �= yj , r(x, yi), i, j ∈ Nn+1}
Reflexivity ∃r.Self {x | it is r(x, x)}
Nominals {a} aI

Universal role U ΔI × ΔI

Inverse role r− {(x, y) | it is r(y, x)}
Role composition r ◦ s {(x, y) |∃z such that r(x, z) and s(z, y)}

A great advantage of DLs is that the expressive power of concept and role
constructors can be used in a pay-as-you-go manner. The more expressive the
language that is used in the axioms, the more difficult the problem of automated
reasoning. Less expressive DLs are supported by very efficient reasoning services
and are used in applications that need fast response, while more expressive ones
are used in applications where sophisticated reasoning is needed. We say that
the former DLs are of low expressivity, while the latters are very expressive.
An example of a very expressive DL is SROIQ [16] underpinning the Web
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Table 5. Semantics of concept and role axioms

Axiom Syntax Model condition

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Individual equality a ≈ b aI = bI

Individual inequality a �≈ b aI �= bI

Concept subsumption C � D CI ⊆ DI

Concept equivalence C ≡ D CI = DI

Role subsumption r � s rI ⊆ sI

Role equivalence r ≡ s rI = sI

Ontology Language (OWL 2) [56], that uses all the constructors shown in Table 4.
Examples of tractable DLs underpinning some tractable fragments of OWL 2,
are DL-Lite [25,26], ELHI [27], and the DLP [17].

Automated reasoning for DLs has been studied by many researchers over
the past 20 years [9,13–15]. The work mainly focused to the development of
sophisticated algorithms and optimised systems for standard reasoning problems,
directly following the semantics. Finally, several systems have been implemented
for DL reasoning [18–21].

Definition 7. Let K = 〈A, T 〉 be a knowledge base with signature Sig(K) ⊆
IN ∪ CN ∪ RN, where IN, CN, RN mutually disjoint sets of individual, concept
and role names, respectively. Let C ∈ CN, α an assertion with Sig(α) ⊆ Sig(K)
and τ an axiom with Sig(τ) ⊆ Sig(K).

– Concept satisfiability The concept C is satisfiable in T , if and only if C is
satisfied in some model of T .

– Logical entailment of axioms The axiom τ is a logical entailment of T (we
write T |= τ), if and only if τ is satisfied in every model of T .

– ABox consistency The ABox A is consistent w.r.t. the TBox T , if and only
if there exists a model of T that is also a model of A.

– Logical entailment of assertions The assertion α is a logical entailment of K
(we write K |= α), if and only if α is satisfied in every model of K.

The above problems are not independent. An algorithm solving one of them
can be used to solve others, as suggested by the following proposition.

Proposition 1. Let K = 〈A, T 〉 be a knowledge base, C, D two concepts and a
an individual of K.

1. C is satisfiable in T , if and only if T |= C � ⊥.
2. It is T |= C � D, if and only if the concept C � ¬D is non-satisfiable in T .
3. It is K |= C(a), if and only if the ABox A ∪ {¬C(a)} is inconsistent w.r.t.

T .
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4. T entails that C is satisfiable in T , if and only if the ABox {C(b)} is consis-
tent w.r.t. the TBox T , where b is a fresh individual name.

The reasoning problems mentioned above are useful in applications where
data retrieval is based on terminological description of the domain. Among them,
the problem of logical entailment of assertions is of great importance. Indeed,
it is not difficult to imagine a (naive) algorithm that, given a concept C ∈
CN checks for every individual a ∈ IN whether K |= C(a) holds or not, thus
collecting all instances of C. This is a simple way to solve a problem that is called
instance retrieval, which is actually semantic query answering for very simple
query languages (only atomic concepts or roles). In the next, we will see how
this problem can be efficiently solved, depending on the DL expressivity, as well
as how it can be extended to conjunctive query answering over DL terminologies.

4 Semantic Data Access

Consider a semantic database S = 〈L,B,M〉, where L is a vocabulary with
IN, CN, RN the sets of individuals, concept and role names respectively, B a
database, and M a semantic mapping box. Assume also that we have a TBox
T with sig(T ) ⊆ IN∪CN∪RN and that we pose a conjunctive query of the form

q(x ) = {q1, ..., qn},

where q1, ..., qn are atomic queries for concepts and roles of CN and RN. Since
no explicit ABox is given, intuitively, to answer this query we need to find the
elements in B that satisfy the constrains of query q and TBox T , according to the
mappings defined in M. Thus, implicitly we assume that we have a knowledge
base K = 〈T ,A〉 with an ABox A, implicitly encoded in S.

For answering such conjunctive queries in practice, two different strategies
have been suggested. The first approach, following the above intuition, tries to
solve the problem by converting the semantic database into a knowledge base, i.e.
by computing explicitly the missing A from S using a forward-chaining proce-
dure. In this case, the problem of answering a query over the semantic database
can be solved as an instance retrieval problem. The second approach tries to
solve the problem in a backward-chaining manner by converting the conjunctive
query to an SQL query, using the TBox and the mappings. In this case, the
data retrieval problem is solved as a database access problem of answering SQL
queries. Both approaches have advantages and disadvantages, have been studied
extensively in the literature and have been used in several systems.

The process of converting a semantic database into a knowledge base is rela-
tively simple. Intuitively it can be described as follows: Starting from the map-
pings, we execute all SQL queries contained in the mappings, and record each
answer in an ABox A, specifically generated for this purpose. This conversion
can be performed efficiently, and it can be proved that it does not affect the
soundness and completeness of the answering system.
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The second approach is based on converting the conjunctive query, that is
expressed in terms of the TBox, into an SQL query, expressed in terms of the
underlying database schema. In particular, using the mappings defined in M,
we check if each atomic query of the conjunctive query q is the righthand side
of some element in M. If this is the case, then the respective SQL query is
transformed, so that its SELECT part returns the identifiers of the objects of the
variables of the database structure that correspond to query answer variables.
To complete the construction of the final SQL query from the individual SQL
queries specified in M, we join their FROM and WHERE clauses, and add in the
WHERE clause any necessary additional conditions for the joining, in the case
the same variable belongs to two different atomic queries. This approach does
not explicitly construct the ABox A.

In both approaches, we will not get the full, sound and complete, solution to
the semantic data retrieval problem, if we limit ourselves to retrieving simply the
instances of the atomic queries (in the first case) or to answering the SQL query
(in the second case). This is because, this process does not take into account the
information of the axioms in the TBox T , which encode additional knowledge
both explicit and implicit. If we take into account also T , a right answer to
the query should be compatible with a model of the implicit knowledge base
〈T ,A〉. However, unlike relational databases, a knowledge base may in general
have many models. So, we can consider as right answers to the query those
answers that depend only on the information contained in T , i.e. those that
are obtained by evaluating the query over a database compatible with T , but
independently of which is the actually chosen database [34]. This leads to the
following definition:

Definition 8. Let K = 〈T ,A〉 be a knowledge base and q(x) a conjunctive query
for the particular knowledge base, where x (of size n) are the answer variables.
Let also I be an interpretation for knowledge base K. An answer qI to the
conjunctive query q in I is the set of the individual vectors a, of size n, for
which we have that I |= q(a).

A vector of individuals c of size n is a certain answer to q for K, if and
only if for each model I of K we have c ∈ qI . The set of certain answers to the
conjunctive query q is denoted by cert(q,K).

Based on the above definition, in order to solve the query answering problem,
we need to find the set of certain answers to q for 〈T ,A〉, i.e., not only the answers
obtained from the ABox directly derivable from S, but also the answers that are
obtained though the assertions that are consequences of the ABox, using the
axioms in TBox. Finding all these assertions is a reasoning problem, which can
be solved in two ways:

The first method, called materialization, or saturation is query-independent
and is performed as a data preprocessing step. In particular, it uses the TBox
T to extend the ABox A that has been derived directly from S, making thus
explicit all the implicit knowledge that can be derived from S and T . In this
way, when answering the query, the TBox in not needed any more, since its
contribution has already been recorded by extending the ABox.
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The second approach, called query rewriting, follows a different strategy and
does not modify the database. Instead, it starts from the query and extends it
using the TBox, trying to encode in this extension all the implicit knowledge
related with the atomic queries that appear in the query. Then, the extended
query is executed against the database, without needing the TBox. Of particular
practical significance are the cases where the extended query can be expressed as
an SQL query, so that it can be directly executed over the underlying relational
database B.

4.1 Implicit Knowledge Materialization

In the materialization approach introduced above, the contribution of the TBox
to answering a query is determined through the expansion of the ABox, i.e.
through computing and recording all relevant assertions. For this process to be
effective, it should be guaranteed that all of the implicit knowledge are con-
verted to explicit knowledge. In this case, the TBox is not any more necessary
for finding the certain answers to a query, and the query answering process
can be performed by simply retrieving the relevant individuals from the ABox.
Materialisation is very effective in some Description Logics, but impossible to
be applied on others [22]. In general, materialization applies a set of rules that
encode the consequences of the TBox axioms. These rules, depending on the
axiom expressions, add assertions for the ABox individuals, and if necessary,
add also new individuals in the ABox.

Example 5. Consider a TBox T that contains only the axiom

τ1. Director � Creator,

that for the database B of Table 2 M contains only the mapping

m1: SELECT DIRECTORS.Name
FROM DIRECTORS

→ Director(dir(x)),

where dir is the object identity function, and that we want to answer the query

q(x) = {Creator(x)}.

In order to answer q, we will first construct an ABox A that corresponds
to the materialization of B using M. This results in A = {α1, α2}, where
α1 is Director(woodyAllen) and α2 is Director(theoAngelopoulos). Next, we have
to extend A, using the axioms of T . This results in adding to A the asser-
tions α3. Creator(woodyAllen) and α4. Creator(theoAngelopoulos); these are the
results of applying τ1 on α1 and α2. In this way, the certain answers for the
new knowledge base K = 〈T ,A′〉, where A′ = {α1, ..., α4}, are the following:
cert(q) = {〈woodyAllen〉, 〈theoAngelopoulos〉}.
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Next, assume that we add to T the axioms

τ2. Director � ∃isDirector.Movie
τ3. Movie � ∃hasDirector.Director

and that we want to answer the same query q. In this case, when trying to
expand the initial A, we face the following problem: When we try to apply
the axiom τ2 on woodyAllen, which according to α1 is an instance of Director,
we have to add to the knowledge a new individual, say mov1, which will be
an instance of Movie and will be connected to woodyAllen through the role
isDirector. Thus, the following assertions will be added: α5. Movie(mov1) and
α6. isDirector(woodyAllen,mov1). Then we can apply the axiom τ3 on mov1,
and obtain the assertions α7. Director(dir1) and α8. hasDirector(mov1, dir1), after
adding the new individual dir1, in a way similar to mov1. After the addition of
the new assertions, we can apply axiom τ2 on the new individual dir1. This leads
to the addition of a new individual mov2 for which we will then have to apply
again axiom τ3 to add a new individual dir2, etc. Hence, the process will not
terminate.

As the above example shows, materialization cannot be applied to expressive
Description Logics because it does not always terminate. Problems arise also in
ontology languages with disjunction, which leads to alternative ABoxes, which
are difficult to handle. For these reasons, materialization can be applied more
successfully to Description Logics that do not allow representation of disjunctive
knowledge and in which no references to new individuals are needed. Languages
that do not allow representation of disjunctive knowledge have been studied
extensively within the first-order logic framework and are known as Horn Logic.
Accordingly, the Description Logics exhibiting similar properties are called Horn
Description Logics and play an important role in developing practical semantic
retrieval systems.

In such Description Logics, the inference procedure needed to perform the
materialization can be encoded in a set of inference rules: the initial ABox is
saturated by repeatedly applying the rules to the available data until no fresh
data are derived. Optimizations can be applied on this naive approach, so as
to avoid redundant derivations. The OWL 2 RL profile is a subset of OWL 2
designed specifically to allow reasoning using such a rule-based implementation.

A rule language that is commonly used to capture the consequences of TBox
axioms is datalog [2], which is particularly useful because it underlies deductive
databases.

Definition 9. [adapted from [2]] A datalog rule is an expression of the form

R1(u1) ← R2(u2), . . . , Rn(un),

where n ≥ 1, R1, . . . , Rn are relation names and u1, . . . ,un are tuples of appro-
priate arities. Each variable occurring in u1 must occur in at least one of
u2, . . . ,un. A datalog program is a finite set of datalog rules.
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Using datalog, the TBox is converted into a datalog program that is executed
to generate the inferred assertions. There are several systems that perform rule-
based reasoning and materialization over OWL 2 RL knowledge bases using
datalog or other rule-based methodologies, such as Apache Jena, Oracle 11g,
GraphDB (formerly OWLIM) [24] and RDFox [23].

4.2 Query Rewriting

The query rewriting approach is based on the premise that the answers to a
conjunctive query are affected by the axioms of the TBox that are related in
some way with the query. Since the conjunctive query is a set of atomic queries,
it is obvious, as a starting point, that any axiom that involves a concept or a role
that is used in the conjunctive query is related with the query. Of course, other
axioms may also affect the answers to the query. Hence, if we could encode in
some way in the query itself, or to an expansion of it, the way that all relevant
axioms affect the answers to the query, then we could possibly ignore the TBox.

Example 6. Consider the TBox T = {τ1, τ2, τ3, τ4} where

τ1. Director � Creator,
τ2. Movie � Film,
τ3. isDirector � isCreator,
τ4. MovieDirector � ∃isDirector.Movie.

First, assume that we want to answer the query q1(x) = {Creator(x)}. Since
τ1 tells us that all Directors are Creators, the axiom is relevant to the query.
In order to ‘encode’ it into the query, we need to produce the additional query
q1a(x) = {Director(x)}, by ‘replacing’ Creator with its subconcept Director, so as
to guarantee that we will retrieve also the individuals that have been declared to
be directors but not creators. So, we can consider as answers to the original query
q1 the answers to both q1 and q1a, i.e. the answers to the query set Q = {q1, q1a}.
Given Q, we do not need to consider any more τ1 when answering the query.
The encoding of τ into q1 gave rise to the set of conjunctive queries Q, which is
called union of conjunctive queries.

Now, assume that we want to answer the query q2(x) = {isCreator(x, y),
Film(y)}. By applying the same idea, we see that now τ2 and τ3 are relevant
to the query and we can use them to extend the initial query, to produce the
queries q2a(x) = {isDirector(x, y),Film(y)}, q2b(x) = {isCreator(x, y),Movie(y)}
and q2c(x) = {isDirector(x, y),Movie(y)}. Similarly to the first query, we con-
structed the new queries by ‘replacing’ the concepts and roles of the original
query with their subconcepts and roles; in this case, however, we have to take
also their combinations.

At this point, we note that τ4, that tells us that a MovieDirector is a director
of movies, is now also relevant to the query, and we can use it in conjunction
with the query q2c to obtain the additional query q2d(x) = {MovieDirector(x)}.
In this case we did not just ‘replace’ a concept or role of the original query with
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a subconcept or subrole, but we had to combine a concept and a role into a
new concept, using a TBox axiom. Thus, in this case the answers to q2 can be
obtained by answering the union of conjunctive queries {q2, q2a, q2b, q2c, q2d}.

Building on the idea illustrated in the above example, the query rewriting
approach to query answering over semantic databases is to transform the query
q using the TBox T into a set of sentences R, which is called rewriting, such
that for any Abox A the answers to q w.r.t. A and T coincide with the answers
to q w.r.t. A and R discarding T [25,27]. More formally [30]:

Definition 10. Let q be a conjunctive query, and T a TBox. A rewriting R of
q w.r.t. T is a datalog program whose rules can be partitioned into two disjoint
sets RD and Rq, such that RD does not mention q, Rq is a union of conjunctive
quries with query predicate q, and where for each A consistent w.r.t. T and using
only predicates from T we have:

cert(q, T ∪ A) = cert(Rq,RD ∪ A).

In Example 6, the rewriting of q was a union of conjunctive queries, and
RD = ∅. In this case the rewriting can be answered over a semantic database
〈L,B,M〉 and a TBox T , for a relational database B, directly by using the
mappings in M to transform the union of conjunctive queries into an SQL query
that can be executed directly over B. As the above definition states, however, in
the general case the rewriting R is a datalog program. In this case, a scalable
deductive database system capable of executing the datalog part of the rewriting
is needed on top of database B.

Most of the current query rewriting systems use resolution-based calculi to
compute rewritings. In this approach, the TBox axioms are first transformed
into a set of Horn clauses, which, together with the query, are then saturated
using resolution to derive new clauses. (A Horn clause is a clause that has at
most one positive literal, and hence can be written as a logic rule with one head
atom).

Example 7. The axioms in the TBox of Example 6 can be transformed into the
following first-order clauses:

π1. Creator(x) ← Director(x),
π2. Film(x) ← Movie(x),
π3. isCreator(x, y) ← isDirector(x, y),
π4a. isDirector(x, f(x)) ← MovieDirector(x),
π4b. Movie(f(x)) ← MovieDirector(x).

The conjunctive query q2(x) can be rewritten as the clause

q2. q(x) ← isCreator(x, y) ∧ Film(y)

Resolving q2 with π3 and π2 we get queries q2a and q2b, respectively, and by
resolving q2a with π2 we get q2c, which in clause form is

q2c. q(x) ← isDirector(x, y) ∧ Movie(y).
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Proceeding and resolving q2c with π4a and π4b, respectively, we get the clauses

q2c1. q(x) ← MovieDirector(x) ∧ Movie(f(x))
q2c2. q(x) ← isDirector(x, f(x)) ∧ MovieDirector(x)

Resolving either q2c1 with π4b or q2c1 with π4a, we get q(x) ← MovieDirector(x, y),
i.e. query q2d.

The above example illustrates some of the key ideas in using resolution-based
calculi for computing query rewritings. First, in the clausification step, i.e. in the
conversion of the TBox to first-order clauses, the resulting clauses may either
contain function terms or be function-free. Because of this, during the resolution
process, intermediate clauses containing function terms may be derived, which
should not included in the rewriting; the final rewriting consists only of function-
free clauses. The number of such intermediate clauses that are produced and then
discarded, but are potentially necessary to derive other clauses of the output
rewriting, may be large and may even contain compositions of function terms.
An intermediate non function-free clause may even not contribute at all to the
derivation of new function-free clauses, as would be the case in the above example
for clause q2c1 if π4b was not part of T .

Second, the size of the rewriting may be large, since it is necessary to pre-
form all resolution steps in order to derive all clauses that contain all possible
combinations of the subconcepts and subroles that can take the place of the
atomic queries in the original query. In our particular example, with two atomic
queries in the original query and two subconcept/subrole axioms we obtained
four conjunctive queries in the rewriting. In general, the size of the resulting
rewriting may be exponentially larger than the size of the initial query and the
TBox.

Third, some of the intermediate clauses and output conjunctive queries may
be computed several times, through different resolution chains. In the above
example, q2d has been obtained twice after resolving q2c1 with π4b and q2c2 with
π4a. This means that during the resolution process many redundant recompu-
tations may take place that do not contribute anything to the final rewriting.
This negatively affects the efficiency of the rewriting process.

Finally, the exhaustive application of the resolution rule may create long
derivations of clauses that are eventually subsumed by other clauses, and hence
do not need to be included in the output rewriting. E.g. if in the above example
the initial query was q(x) ← Film(x) ∧ Movie(x), the resolution process would
produce q(x) ← Movie(x), which subsumes the initial query; a compact rewriting
should include the latter, but not the initial query.

The existence of a rewriting and whether it is possible to compute a rewriting
that is a pure union of conjunctive queries part depends on the expressivity of the
TBox. Computing rewritings has been studied for various ontology languages,
in particular for ontologies expressed in ELHI, Horn-SHIQ and in the DL-Lite
family of languages. The DL-Lite family of languages introduced in [25] is essen-
tially the maximal language fragment exhibiting the desirable computational
properties that allows the construction of rewritings that can be expressed as
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unions of conjunctive queries, and hence the direct delegation of query answering
to a relational database engine. In general, for the ELHI and Horn-SHIQ lan-
guages, rewritings containing a datalog part are produced, and hence a deductive
database system is needed on top of the underlying relational database.

The first algorithm for computing rewritings for the DL-Lite family was pro-
posed in [25] and implemented in the QuOnto system, which later evolved to
Presto [26] and Mastro [5]. The algorithm encodes the TBox axioms as a set of
custom rewriting rules, that are applied backwards on the query, and systemat-
ically replace concepts and roles in the query by concepts and roles that imply
them. QuOnto does not produce a compact rewriting; the size of the produced
rewriting can be very large and include many clauses subsumed by other clauses,
which do not contribute anything to the query answers. Presto avoids this prob-
lem and generates a non-recursive datalog program instead of a union of con-
junctive queries as a rewriting for DL-Lite ontologies. This essentially hides the
exponential size of the rewriting inside the datalog rules. Requiem [27] proposed
a resolution based approach, which rewrites the initial conjunctive query to a
union of conjunctive queries which is, generally, smaller in size than the rewrit-
ing produced by QuOnto because systematic subsumption checking is applied to
remove redundant clauses and produce a compact rewriting. Requiem supports
also ELHI ontologies, for which it produces datalog rewritings. Rapid [29,30],
which we will discuss in detail later, carefully applies an optimized resolution-
based rewriting technique only in cases that lead to the generation of useful,
non-redundant conjunctive queries, avoiding in this way many query subsump-
tion tests. Of course, although the optimization techniques reduce the size of
the rewriting in many practical cases by avoiding redundancies, the size of the
rewriting remains worst case exponential in the size of the original query and the
Tbox. Rapid supports also ELHI TBoxes, for which it produces datalog rewrit-
ings. Several other practical rewriting system have been developed for DL-Lite,
including Quest [28], Nyaya [35], IQAROS [36], and Ontop [37]. Query rewrit-
ing techniques have also been developed for the more expressive Horn-SHIQ
language in the Clipper system [31].

4.3 The Rapid Query Rewriting System

Rapid is an optimized resolution-based query rewriting system, which tries to
avoid or to minimize the effects of the problems inherent in the general resolution
process outlined above. The general idea on which it is based is to constrain the
resolution process in such a way so as to avoid the production of clauses that
will later be discarded and not included in the final rewriting, either because
they are non-function-free or because they are subsumed by others. Avoiding
the production of such clauses early, helps to avoid redundant resolution steps
later in the process. Originally it was developed to support DL-LiteR ontologies
[29], subsequently it has been extended to support ELHI ontologies [30], and
currently it is being extended for Horn-SHIQ ontologies.
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Rapid for DL-LiteR. We will start the exposition of Rapid, discussing the
query rewriting algorithm for DL-LiteR, a DL-Lite family language. As in any
resolution-based query rewriting algorithm, the first part is the conversion of the
TBox axioms to first-order clauses. Table 6 shows the axioms that are allowed
in DL-LiteR and their corresponding first-order clause form, which we call DL-
LiteR clauses. Note that for each occurrence of a concept of the form ∃R.B in
the righthand side of a concept subsumption axiom, a distinct function symbol
is used in the respective clauses. Thus, the same function symbol can occur at
most twice in the clausified TBox.

Table 6. DL-LiteR axioms and their translation to clauses

Axiom Clause

B � A A(x) ← B(x)

∃R � A A(x) ← R(x, y)

∃R− � A A(x) ← R(y, x)

A � ∃R.B R(x, f(x)) ← A(x)

B(f(x)) ← A(x)

A � ∃R−.B R(f(x), x) ← A(x)

B(f(x)) ← A(x)

P � R R(x, y) ← P (x, y)

P � R− R(x, y) ← P (y, x)

The core part of Rapid implements a controlled resolution-based derivation
process over the clausified TBox and a given conjunctive query. The crucial dif-
ference between Rapid and other resolution-based systems, such as Requiem,
is that Rapid implements the resolution step by using as main premise always
the initial conjunctive query or a query derived from it, and as side premise,
or premises, clauses of the original clausified TBox T , and not clauses that are
resolvents of clauses of the clausified T (i.e. of the saturation of the clausified T ).
The obvious benefit is that the clausified TBox is much smaller than its satura-
tion. Moreover, Rapid performs in a controlled way resolution with the clauses
of the clausified TBox that contain function symbols, taking advantage of the
fact that the clausified TBox contains at most two clauses with the same func-
tion symbol. Finally, Rapid never produces, as resolvents, clauses than contain
function symbols.

Formally, Rapid for DL-LiteR employs the Ilite resolution-based inference
system, given in the following definition (all definitions in this section are adapted
from [30]):

Definition 11. Let q be a conjunctive query. Ilite is the inference system that
consists of the following inference rules:
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– Unfolding:

q C
q′σ

where

1. the side premise C is a DL-LiteR clause,
2. q′σ is function-free resolvent of q and C, and
3. if x 
→ f(y) ∈ σ, then x �∈ ejvar(q).

– Shrinking:

q C1 [C2]
q′σ

where

1. the side premises C1 and the optional C2 are DL-LiteR clauses,
2. q′σ is a function-free resolvent of q, C1 and C2, and
3. there exists some x 
→ f(y) ∈ σ such that x ∈ ejvar(q).

The rewriting of a conjunctive query q w.r.t to a DL-LiteR TBox T is the set of
all the (function-free) clauses derivable from q and the clausified T by Ilite.

The unfolding rule represents standard resolution inferences with a function-
free resolvent. Since this rule essentially ‘replaces’ an atomic query of q with a
subconcept or a subrole, the resolvent has the same size with the main premise
of the query (unless the replacement already exists in the main premise). Hence
this rule ‘unfolds’ the main premise.

The shrinking rule represents a controlled resolution process involving clauses
with function symbols that eventually leads to a function-free resolvent. In par-
ticular, it represents a chain of inferences q, q1, . . . , qn, q′, where q is a function-
free conjunctive query, q1 contains a function symbol, and the subsequent infer-
ences eliminate all occurrences of the function symbol until the function-free
conjunctive query q′ is obtained. Because a function symbol f can occur in at
most two DL-LiteR clauses, these inferences can involve at most the two differ-
ent side premises that mention f (which according to Table 6 can only be of the
form R(x, f(x)) ← B(x) and A(f(x)) ← B(x)). Furthermore, since the resolvent
is function-free, the variable of the query q that has been bound to the function
symbol is eventually eliminated, and since DL-LiteR clauses do not introduce
new variables in their bodies, the resolvent has fewer variables than the main
premise. Hence this rule ‘shrinks’ the main premise.

Ilite produces a union of conjunctive queries since all queries in the rewriting
are clauses having the query predicate as head. It can be proved that Ilite is
correct, in the sense that it terminates and that it computes indeed a rewriting
for obtaining the certain answers of q.

Example 8. In Example 7, the resolution of q2 and π3 to derive q2a is an appli-
cation of the unfolding rule:

q(x) ← isCreator(x, y) ∧ Film(y) isCreator(x′, y′) ← isDirector(x′, y′)
q(x) ← isDirector(x, y) ∧ Film(y)
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with σ = {x′ 
→ x, y′ 
→ y}. Similarly we obtain q2b from q2 and π2. The
resolution of q2a and π2 to derive q2c is also an application of the unfolding rule:

q(x) ← isDirector(x, y) ∧ Film(y) Film(x′) ← Movie(x′)
q(x) ← isDirector(x, y) ∧ Movie(y)

with σ = {x′ 
→ y}.
Then, conjunctive query q2d can be derived from q2c using the shrinking rule

and π4a and π4b as side premises:

q(x) ← isDirector(x, y) ∧ Movie(y)
isDirector(x′, f(x′)) ← MovieDirector(x′)

Movie(f(x′)) ← MovieDirector(x′)
q(x) ← MovieDirector(x)

with σ = {y 
→ f(x), x′ 
→ x}, and y is the variable that is eliminated from q2c.
The application of the shrinking step on clause q2c to derive directly q2d

corresponds to a double saving, since it does not only avoid the production of
the intermediate clauses q2c1 and q2c2, but also produces q2d only once.

Although Ilite avoids many eventually unneeded resolution steps, it does not
always avoid the production of redundant queries, i.e. of queries that are sub-
sumed by others and do not need to be included in the final rewriting. Checking
queries for subsumption after all queries have been generated, in order to pro-
duce an as compact rewriting as possible, is very expensive and may lead to
poor rewriting times. Redundant queries can be produced by the unfolding rule
because different chains of applications of the unfolding rule on different atoms
of the main premise may produce the same clause. Moreover, an unfolding may
replace an atom of the main premise with an atom that already exists in the
main premise, hence reducing the size of the query. In such a case the resolvent
subsumes all queries of greater size that are supersets of the resolvent. Finally,
queries produced using the shrinking rule are likely to subsume queries produced
by the unfolding rule, since they ‘shrinked’ queries are shorter.

To efficiently address some of the above issues, the practical implementation
of Rapid does not explicitly construct the queries that should normally be pro-
duced using the unfolding rule. Instead, it computes a structure that holds all
the information that is needed to construct all queries derivable by the unfold-
ing rule from the same starting conjunctive query. After this structure has been
constructed, a redundant-free set of the queries unfoldings can automatically be
generated.

Definition 12. Let T be a DL-Lite TBox, q a conjunctive query, and A an atom
of q. Let qA be the query having A as body and avar(qA) = var(A)∩ ejvar(q). The
unfolding set of A w.r.t. q and T is the set that contains all atoms that are bodies
of the queries derivable from the clausified T and qA using only the unfolding
rule, including the atom A.

For a query q, the unfolding sets of its atoms fully represent the queries that
can be derived from q by unfolding. Indeed, all such queries can be constructed
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by taking all possible combinations of atoms from the respective unfolding sets.
However, the unfolding sets allow the generation of the minimum number of
queries that represent all unfoldings of q, i.e. the generation only of the unfoldings
that are not subsumed by other unfoldings and hence are redundant. This can be
done by scanning the respective unfolding sets and cross checking for the presence
of identical atoms (up to variable renamings) in the unfolding sets corresponding
to different atoms of the query body, while producing the set of unfoldings. This
process essential performs subsumption checking in a much more efficient way
because it does not check for subsumption whole clauses, but carefully recasts
the problem to comparing individual atoms.

Clearly, depending on the particular TBox and query, this step can still result
in an exponential number of queries in the rewriting. As in other query rewrit-
ing systems, this exponential behaviour can be hidden by producing a datalog
rewriting instead of a union of conjunctive queries rewriting. Rapid provides also
this option; in this case the rules of the datalog program essentially encode the
non explicitly generated unfoldings.

Example 9. For query q2 of Example 7, Rapid calculates unfolding sets for atoms
isCreator(x, y) and Film(y), which are the sets {isCreator(x, y), isDirector(x, y)}
and {Film(y),Movie(y)}, respectively. These are then used to actually generate
the queries q2, q2a, q2b and q2c. Recall from Example 6 that the rewriting of q2
as a union of conjunctive queries is {q2, q2a, q2b, q2c, q2d}. If we choose not to
explicitly perform the unfoldings and produce a datalog program instead, the
rewriting would be {q2, π2, π3, q2d}.

Rapid for ELHI. Moving from the DL-Lite family of languages to the ELHI
language, we loose the property that the rewriting can always be a union of
conjunctive queries. Table 7 shows the permissible axioms in ELHI and their
clausifications, which we call ELHI clauses.

Table 7. ELHI axioms and their translation to clauses

Axiom Clause

B � A A(x) ← B(x)

B � C � A A(x) ← B(x) ∧ C(x)

∃R � A A(x) ← R(x, y)

∃R− � A A(x) ← R(y, x)

A � ∃R.B R(x, f(x)) ← A(x)

B(f(x)) ← A(x)

A � ∃R−.B R(f(x), x) ← A(x)

B(f(x)) ← A(x)

∃R.C � A A(x) ← R(x, y) ∧ C(y)

∃R−.C � A A(x) ← R(y, x) ∧ C(y)

P � R R(x, y) ← P (x, y)

P � R− R(x, y) ← P (y, x)
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The essential difference with respect to DL-LiteR is the permission of axioms
of the form ∃R.C � A, whose clausification takes the form A(x) ← R(x, y)∧C(y).
The distinguishing property of such clauses, which are called RA-clauses, is that
when used as side premises of an inference they can produce resolvents containing
more variables than the main premise. If there is a cyclicity in the axioms, this
can lead to termination problems. E.g. rewriting the query q(x) ← A(x) using
the clause A(x) ← R(x, y) ∧ A(y), produces the queries q(x) ← R(x, y) ∧ A(y),
q(x) ← R(x, y) ∧ A(y) ∧ R(y, z) ∧ A(z), etc. Hence, to guarantee termination,
the calculus for ELHI should not allow RA-clauses as side premises, but still
produce the clauses that are derivable by RA-clauses. It turns out that to achieve
this, the restriction not to perform resolution using clauses of the TBox as main
premises must be lifted.

Consider e.g. the clausified TBox c1. C(x) ← S(x, y)∧D(y), c2. S(f(x), x) ←
B(x) and c3. K(x) ← S(y, x)∧C(y), and the query q1. q(x) ← K(x) (the example
is adapted from [30]). By resolving c1 with c2 we get c4. C(f(x)) ← B(x)∧D(x),
by resolving c3 with c2 we get c5. K(x) ← B(x) ∧ C(f(x)), by resolving c5 with
c4 we get c6. K(x) ← B(x) ∧ D(x), and finally by resolving q1 with c6 we get
q1a. q(x) ← B(x) ∧ D(x). The crucial clause here is c4 which is needed to derive
the rewriting, but can be produced only by performing resolution on clauses of
the TBox. To account for this, the Rapid calculus for ELHI ontologies includes
a new inference rule, called function rule, which can produce clauses like c4 from
RA-clauses and clauses of the form of c2. It also extends the unfolding and
shrinking rules so as to allow also RA-clauses as main premises, in order to be
able to compute, e.g. clause c6 from c2, c3, and c4. Because the function rule
can produce clauses with function symbols in the head, there can now be more
than two clauses mentioning the same function symbol f . Hence, the extended
shrinking rule allows for arbitrary number of side premises.

Definition 13. Let Υ be either a conjunctive query or an RA-clause. With IEL
we denote the inference system consisting of the following rules:

– Unfolding:

Υ C
Υ ′σ

where

1. the side premise C is an ELHI, non RA-clause,
2. Υ ′σ is a function-free resolvent of Υ and C, and
3. if x 
→ f(y) ∈ σ then x /∈ ejvar(Υ ).

– n-Shrinking:

Υ C1 [C2 . . . Cn]
Υ ′σ

where

1. the side premises C1, . . . , Cn, n ≥ 1 are ELHI, non RA-clauses,
2. Υ ′σ is a function-free resolvent of Υ and all C1, . . . , Cn for n ≥ 1, and
3. some x 
→ f(y) ∈ σ exists such that x ∈ ejvar(Υ ).
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– Function:

B(x) ← R(x, y) ∧ [C(y)] R(f(x), x) ← A(x)
B(f(x)) ← A(x) ∧ [C(x)] or

B(x) ← R(y, x) ∧ [C(y)] R(x, f(x)) ← A(x)
B(f(x)) ← A(x) ∧ [C(x)]

where [C(y)] denotes an optional conjunction of atoms, all with argument y.

The rewriting of a conjunctive query q w.r.t a ELHI TBox T is defined as the
set of all function-free clauses derivable from q and the clausified T by IEL.

The function rule is not expected to ‘fire’ often in practice since it models a
rather complex interaction between a clause containing R(x, f(x)) or R(f(x), x)
and an RA-clause containing the inverse R(y, x), or R(x, y), respectively. In prac-
tice, the application of the IEL calculus on a conjunctive query q and a TBox T can
be performed in two steps. The first saturates T using IEL and only the RA-clauses
asmain premises. Then, the second step collects all nonRA-clauses from the clausi-
fied T and those produced in the previous step and uses them as side premises in
the unfolding and shrinking rules with main premises only query clauses.

Example 10. Consider the TBox T = {τ1, τ2, τ3, τ4} where

τ1. Director � Creator,
τ ′
2. Movie ≡ Film,

τ3. isDirector � isCreator,
τ ′
4. MovieDirector ≡ ∃isDirector.Movie.

The difference w.r.t. the TBox of Example 6 is that τ2 and τ4 have been
replaced by τ ′

2 and τ ′
4, respectively, where the subconcept relations have been

replaced by equivalence relations. These axioms can be transformed into the
following ELHI clauses:

π1. Creator(x) ← Director(x),
π′
2a. Film(x) ← Movie(x),

π′
2b. Movie(x) ← Film(x),

π3. isCreator(x, y) ← isDirector(x, y),
π′
4a. isDirector(x, f(x)) ← MovieDirector(x),

π′
4b. Movie(f(x)) ← MovieDirector(x)

π′
4c. MovieDirector(x) ← isDirector(x, y) ∧ Movie(y).

Consider that we want to answer the query q3 = {MovieDirector(x)}, which in
clause form is q3(x) ← MovieDirector(x). To apply IEL, we need to saturate first
the clausified TBox using only RA-clauses as main premises. The only RA-clause
is π′

4c, for which we can apply the unfolding rule with π′
2b as side premise:

MovieDirector(x) ← isDirector(x, y) ∧ Movie(y) Movie(x′) ← Film(x′)
MovieDirector(x) ← isDirector(x, y) ∧ Film(y)
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with σ = {x′ 
→ y}. Let π5 be the resulting clause. The shrinking rule is
also applicable on π′

4c with π′
4a and π′

4b, but it produces a tautology which is
immediately discarded. No other resolution is possible using RA-clauses as main
premise, so we proceed by applying the rules using only query clauses as main
premise. Because no rule is applicable on q3(x) ← MovieDirector(x) with a non
RA-clause as side premise, the final rewriting is {q3, π

′
4c, π5}, where the dat-

alog part is {π′
4c, π5}. Note that if we did not perform explicitly the unfold-

ing, we could produce the equivalent rewriting {q3, π
′
4c, π

′
2a}. Note also that,

since no structural circularity exists in the TBox axioms, the rewriting could
also be expanded into a union of conjunctive queries. In this case, the rewriting
would be {q3, q3a, q3b}, where q3a(x) = {isDirector(x, y),Movie(y)} and q3b(x) =
{isDirector(x, y),Film(y)}.

5 Semantic Data Representation in the Web

This section provides a brief overview of the current technologies that allow the use
of the techniques discussed in the previous sections in real applications, in partic-
ular the construction of functional knowledge bases (i.e. of ABoxes and TBoxes)
that possibly use data from an underlying relational database and support query
answering. These technologies have been developed as part of the Semantic Web
and are now standards of the W3C (World Wide Web Consortium).

5.1 RDF

In Semantic Web applications ABoxes are represented using RDF [50], which is
a general framework for making statements about resources. An RDF statement
always has the structure <subject><predicate><object>, where the subject and
the object represent the two resources being related and the predicate represents
the type of the relationship. RDF statements are called (RDF) triples.

To represent an ABox as a set of RDF statements we need statements for
expressing concept and role assertions of the form C(a) and r(a, b), respectively,
where C is a concept, r a role, and a, b individuals. In RDF each concept, role
or individual is a resource having a IRI. Thus, assuming some namespace ns, a
concept assertion C(a) is represented by the triple

ns:C rdf:type ns:a

where rdf:type is a special property defined by the RDF standard (which can also
be shorthanded as a), and the role assertion r(a, b) is represented by the triple

ns:a ns:r ns:b

An RDF dataset, i.e. a set of RDF statements, is an RDF graph. RDF graphs
are stored in triple stores, which are databases specifically build for storing and
retrieving RDF triples.
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For writing down RDF graphs there exist several serializations, such as N-
Triples, Turtle, and RDF/XML. In our continuing example, assuming a namespace
cine corresponding e.g. to <http://image.ece.ntua.gr/cinemaOntology/>, the
triples stating that Woody Allen is a director and has directed the movie Man-
hattan can be written in Tutle syntax as following:

@prefix cine: <http://image.ece.ntua.gr/cinemaOntology/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

cine:woodyAllen
cine:isDirector cine:manhattan;
rdf:type cine:Director.

5.2 OWL 2

In Semantic Web applications, concepts, roles, individuals and axioms between
them can be modeled using the OWL 2 language [56]. OWL 2 provides structures
for expressing all constructors and axioms of Tables 4 and 5. Because OWL 2 is
a very expressive ontology language (c.f. Sect. 3) and the use of its full expres-
sivity in real applications poses computational problems, OWL 2 provides three
profiles, which reflect compromises between expressivity and desirable computa-
tional properties. These profiles are OWL 2 QL, OWL 2 EL, and OWL 2 RL.
OWL 2 QL is based on the DL-Lite family of languages [25] and hence can be
used for answering conjunctive queries by translating them to SQL queries using
query rewriting, as discussed in Sect. 4.2 and avoiding materialization. OWL 2
EL is based on the ELHI language and OWL 2 RL on DLP [17]. As discussed in
Sect. 4.1, OWL 2 RL consequences can be modeled using rule-based techniques.

OWL 2 axioms can be written down as RDF triples and stored in a triple
store, along with other RDF triples corresponding to ABox assertions. In this
way, the triple store can represent a knowledge base of the form 〈T ,A〉. However,
in order for to guarantee that a set of OWL 2 axioms constitutes a TBox under
the model theoretic-semantics of Sect. 3, some additional syntactic conditions
must be imposed on the OWL 2 structures. These conditions are specified by
the OWL 2 Direct Semantics, and guarantee that the knowledge base is compat-
ible with the SROIQ language. OWL 2 ontologies that satisfy these syntactic
conditions are called OWL 2 DL ontologies.

There are several serializations of OWL 2, the more reader friendly of which is
the functional syntax. In this syntax, the TBox of Example 6 is written as follows:

Prefix(cine:=<http://image.ece.ntua.gr/cinemaOntology/>)
Ontology(<http://image.ece.ntua.gr/cinemaOntology/>

SubClassOf(cine:Director cine:Creator)
SubClassOf(cine:Movie cine:Film)
SubObjectPropertyOf(cine:isDirector cine:isCreator)
SubClassOf(cine:MovieDirector

ObjectSomeValuesFrom(cine:isDirector cine:Movie) )
)

http://image.ece.ntua.gr/cinemaOntology/
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5.3 R2RML

R2RML [57] is a language for expressing mappings from relational databases
to RDF datasets. Every R2RML mapping is constructed for a specific database
schema and target vocabulary. The input to an R2RML mapping is a relational
database that conforms to the database schema. The output is an RDF dataset,
that uses roles and concepts from the target vocabulary. R2RML mappings are
expressed as RDF graphs and written down in Turtle syntax.

R2RML allows us to model the semantic mappings defined in Sect. 4: L cor-
responds to the target vocabulary, B is the input relational database, and the
semantic mapping box M corresponds to the actual mappings defined in an
R2RML document. Note, however, that unlike Definition 4, R2RML mappings
cannot contain object identifier, and concept or role classifier functions, other
that the functions allowed by the SQL language supported by the underlying
database.

The mappings defined in an R2RML document is conceptual; An R2RML
implementation may either materialize the mappings, or access directly the
underlying database when answering queries. These two strategies correspond to
the options of explicitly converting the semantic database into an RDF dataset
representing the ABox, or of converting the queries to SQL queries without
explicitly constructing the ABox, that we have discussed in Sect. 4.

An R2RML mapping is defined as a set of mappings from logical tables to
sets of RDF triples. A logical table may be a database table, a view, or a valid
SQL query. Each individual mapping, which is called a triples map, is a rule
consisting of two main parts: (a) a subject map that generates the subject of
the RDF triples that will be generated from each logical table row, and (b)
one or more predicate-object maps that in turn consist of predicate and object
maps, which specify the predicates and the objects of the RDF triples that
will be generated for the respective subject. In the context of ABoxes, subjects,
predicates and objects should be IRIs, and the subject, predicate and object
maps should provide instructions on how to generate them. An example of a
mapping is the following:

1. Use the template http://image.ece.ntua.gr/cinemaOntology/{DirID} to gener-
ate the subject IRI from the DirID column of the DIRECTOR-OF table.

2. Use the constant IRI cine:isDirector as predicate.
3. Use the template http://image.ece.ntua.gr/cinemaOntology/{MovID} to gen-

erate the object IRI from the MovID column.

Expressed in R2RML the above mapping is the following:

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix cine: <http://image.ece.ntua.gr/cinemaOntology/>.

<#TriplesMap1>
rr:logicalTable [ rr:tableName "DIRECTOR-OF" ];
rr:subjectMap [
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rr:template "http://image.ece.ntua.gr/cinemaOntology/{DirID}";
rr:class cine:Director;

];
rr:predicateObjectMap [

rr:predicate cine:isDirector;
rr:objectMap [
rr:template "http://image.ece.ntua.gr/cinemaOntology/{MovID}";
];

].

The above R2RML document implements the mapping described above, and
in addition specifies that for each subject IRI a triple determining the subject
as being of type cine:Director should also be created. Another example is the
following R2RML mapping, which generates ABox assertions for the concept
DirectorOfComedy using an SQL query as logical table.

<#TriplesMap2>
rr:logicalTable [rr:sqlQuery "

SELECT DIRECTOR-OF.DirID,
FROM MOVIES, DIRECTOR-OF
WHERE MOVIES.MovID = DIRECTOR-OF.MovID AND

MOVIES.Genre =’Comedy’;".
rr:subjectMap [

rr:template "http://image.ece.ntua.gr/cinemaOntology/{DirID}";
rr:class cine:DirectorOfComedy;

].

5.4 SPARQL

The set of RDF triples that are stored in a triple store can be queried using
SPARQL [53]. A typical SPARQL query consists of two parts: a SELECT clause
that identifies the query answer variables, and a WHERE clause that provides the
basic graph pattern to be matched against the underlying RDF graph. The basic
graph pattern is a set of triple patterns. Triple patterns are like RDF triples but
the subject, the predicate or the object may be variables. Variables are names
preceded by a question mark. A simple SPARQL query is the following:

PREFIX cine: <http://image.ece.ntua.gr/cinemaOntology/>
SELECT ?s ?o
WHERE { ?s cine:isDirector ?o }

which will return the subject and the object of all triples having isDirector as
predicate. It corresponds to the conjunctive query q(x, y) = {isDirector(x, y)}.
This query example consists of a single triple pattern with the variable ?s in the
subject position and the variable ?o in the object position.

To express conjunctive queries, a basic graph pattern consisting of more than
one triple patterns can be used. E.g. the query
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PREFIX cine: <http://image.ece.ntua.gr/cinemaOntology/>
PREFIX <rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?s
WHERE { ?s cine:isDirector ?o .

?s rdf:type cine:Actor }

will return all directors of some film that are also actors and corresponds to the
conjunctive query q(x) = {isDirector(x, y),Actor(x)}.

SPARQL allows also disjunctive queries through the UNION keyword. E.g.
the query

PREFIX cine: <http://image.ece.ntua.gr/cinemaOntology/>
SELECT ?s
WHERE {{ ?s cine:isDirector ?o } UNION { ?s cine:isProducer ?o } }

will return everyone that has directed or produced a movie.
SPARQL includes many more facilities, such as negation, property paths,

assignment, aggregation, multiple graphs, federated querying, filtering, sorting
and limiting answers. Several of these facilities are used with more general triple
stores than ABoxes and more general queries than conjunctive queries we are
interested in this paper.

By default, a triple store answers a SPARQL query by matching the query
pattern with the RDF graph of the data it holds. If the triple store is a pure ABox
A, this is all that is needed. As we have discussed in detail in Sect. 4, however,
if the triple store is a knowledge base 〈T ,A〉, some answers to the query may
not be explicitly present in A, but need to be inferred using the axioms in T .
To allow for such inference processes to be performed by triples stores, SPARQL
provides the so-called entailment regimes [54]. For OWL 2 TBoxes (OWL 2 DL
ontologies), the OWL 2 Direct Semantics Entailment Regime is provided.

Due to the computational difficulties in reasoning under the full expressiv-
ity of OWL 2, several practical implementation of triple stores usually provide
some limited support of the full OWL 2 entailment, limiting themselves to sup-
porting an OWL 2 profile, usually the OWL 2 RL profile, in which, as we have
seen in Sect. 4.1, inferences can be computed using materialization rule-based
techniques.

6 Conclusions

The paper discusses how ontological descriptions can be used as a basis for
semantic data access. Specifically, we saw how we can build efficient user inter-
faces that provide the user with the ability to express queries in terms of a rich
vocabulary relevant to the domain of interest, rather than queries employing the
technical terminology of the database schemas.

We started our paper (Sect. 2) by describing technologies used to store seman-
tic data, either by directly using the vocabulary, or by ‘semantifying’ the infor-
mation stored in the database, using the vocabulary terminology. Then, in Sect. 3
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we saw how the use of ontological knowledge representation languages (descrip-
tion logics), that are supported by automated reasoning, can advance the level of
semantic data description, enriching the vocabulary by adding new terms, or by
expressing formal restrictions and constraints of the domain of interest. In Sect. 4
we saw that the use of ontology reasoning, specifically the use of ontology-based
data access technologies, can support realistic scenarios of concept-based data
access systems for pragmatic applications, with a lot of advantages. Finally, in
Sect. 5 we described technologies and standards for the representation and use
of semantic data in the web.
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Abstract. In this tutorial we address the problem of ontology querying,
that is, the problem of answering queries against a theory constituted by
facts (the data) and inference rules (the ontology). A varied landscape of
ontology languages exists in the scientific literature, with several degrees
of complexity of query processing. We argue that Datalog±, a family of
languages derived from Datalog, is a powerful tool for ontology querying.
To illustrate the impact of this comeback of Datalog, we present the basic
paradigms behind the main Datalog± as well as some recent extensions.
We also present some efficient query processing techniques for some cases.

The Datalog language has seen a recent revival with the introduction of
Datalog± languages for ontology modelling and querying. While the core rules
of Datalog± languages are the well-known tuple-generating dependencies, several
novel languages have been proposed that enjoy good computational properties
regarding ontology querying. We argue that Datalog± is a powerful formalism
for knowledge representation and reasoning, suitable also for the Semantic Web.
We illustrate the main languages in the Datalog± family as well as several issues
arising in ontological query processing in this context.

Datalog. Datalog [1,16,17] is a declarative query language that has been used for
many years for expressive query answering on relational databases. The appli-
cations of Datalog include source code analysis [20], distributed systems and
Web data extraction [7,18]. A Datalog program consists of a set of Horn clauses
without function symbols. The predicates appearing in the program are par-
titioned into extensional database (EDB) predicates, whose values reside in an
input database, and intensional database (IDB) predicates, whose values are
computed via the program rules. EDB predicate symbols appear only in rule
bodies. The following program1 computes the transitive closure, represented by
the IDB predicate c, of the binary relation e, represented by an EDB predicate.

e(X,Y ) → c(X,Y ),
e(X,Y ), c(Y,Z) → c(X,Z).

1 Notice that here we deviate from the classic Datalog notation head ← body or
head:-body ; instead, we use the notation body → head . Notice also that in Datalog
the head is composed of a single atom.

c© Springer International Publishing AG 2017
G. Ianni et al. (Eds.): Reasoning Web 2017, LNCS 10370, pp. 64–67, 2017.
DOI: 10.1007/978-3-319-61033-7 3
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Ontology Querying. Ontological information is information about relationships
between objects and classes in a certain domain. The most prominent formalism
for representing such information are so-called description logics (DLs) [5]. In
DLs, sets of objects are represented by concepts and binary relations between
concepts are called roles; in DL languages we can express, for instance, that
(1) every manager is an employee; this is expressed by the rule mgr � emp; (2)
every manager supervises an employee; this is expressed by the rule mgr �
∃ supervises.emp; (3) each employee is supervised by at most one manager,
expressed by the rule (funct supervises−) (the role supervises−, that is supervises
with the two arguments inverted, is functional). To express the above rules,
Datalog is not sufficient—we need the possibility of existential quantification
(e.g. there exists an employee supervised by a certain manager, but such an
employee is not known). This motivates the introduction of the Datalog± family
of languages [13], whose main rules are in fact the well-known tuple-generating
dependencies (TGDs). In Datalog±, the above rules can be easily expressed:

mgr(X) → emp(X)
mgr(X) → ∃Y supervises(X,Y )

supervises(X,Y ), supervises(Z, Y ) → X = Z.

Notice that the last rule is not a TGD, but an equality-generating dependency
(EGD), which has as consequence the equality of two values. Given a Datalog±

program Σ on a schema R, a database D for R and a query q on R, a tuple t
is and answer to q under D ∪ Σ if t is an answer to q in all models of D ∪ Σ,
that is, in all instances that contain D and satisfy all rules in Σ.

Datalog± Variants and Main Underlying Notions. Processing conjunctive queries
(select-project-join queries) under TGDs is undecidable [8], even when the
schema and the TGDs are fixed [11]. Languages in the Datalog± family adopt
syntactic restrictions on rules so as to achieve decidability of (conjunctive) query
answering and possibly tractability. Guardedness [3] is a property of first-order
logic theories that ensure decidability of the satisfiability problem. Inspired by
such notion, guarded Datalog± was introduced [11]; in guarded Datalog±, each
TGD-rule has a body-atom that contains all variables of the rule. Guarded
Datalog± and variants are studied in [11], and further extensions in [6]. Linear
Datalog± [12] is a more tractable variant of guarded Datalog± where each TGD-
rule has exactly one atom in the body and one in the head; interestingly, though
linear Datalog± TGD-rules are only slightly more expressive than the well known
class of inclusion dependencies, linear Datalog± is capable of expressing a wide
variety of relevant ontology languages. Sticky Datalog± [14], alongside with its
extensions, captures a wide class of non-guarded rules, while achieving low data
complexity (complexity where only the database is considered as input, while
all the rest is fixed) of query answering in some cases. Disjunction in Datalog±

is introduced in [9], where the complexity of the language called Datalog∃,∨ is
studied, together with the complexity of the variant linear Datalog∃,∨. Nega-
tion in Datalog± poses several challenges; it has been studied under different
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semantics: stratified negation [4,12], well founded negation [2] and stable-model
negation [2,19].

Functional Constraints. In several Datalog± languages, functional constraints in
the form of EGDs are considered, often in their elementary form of well-known
key constraints, as they are a fundamental modelling tool in ontologies. How-
ever, their introduction leads very easily to undecidability of query answering
(see e.g. [15]); hence, syntactic restrictions that preserve decidability are needed.
In the DL literature, such functional constraints have been studied under strong
syntactic limitations. In Datalog±, the main notion is that of non-conflicting
EGDs [12], which does not go much beyond the analogous notion studied under
more traditional database constraints [15]. Non-conflicting EGDs and TGDs
guarantee separability of EGDs and TGDs, a semantic notion that expresses the
fact that EGDs do not influence the logical inference performed through the
TGDs. A more general approach is adopted in [10], where two notions of separa-
bility (simple separability and deep separability) are studied, depending on how
EGDs participate in the logical inference—in the case of deep separability, an
immediate application of an EGD in the inference might seem to have influence,
but such application is then made irrelevant by an eventual application of some
TGD in the inference process. Along the lines of [10], we try to clarify the notion
of separability in the literature and to provide a more general syntactic criterion
for TGDs and EGDs, that guarantees separability.

Practical Algorithms for Expressive Ontologies. Ontology querying under some
expressive Datalog± languages has been studied from the point of view of
the computational complexity, often providing nondeterministic algorithms, but
much is to be done from the point of view of practical implementations; this is
especially important if we consider that the worst case rarely occurs in real-world
ontologies. A deterministic algorithm for conjunctive query answering under the
expressive class of weakly-sticky Datalog± is presented in [21]. We illustrate the
main ideas underlying this work, so as to identify the main issues in the problem
of efficient query answering in this case.
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Abstract. From the beginning it was understood that the success of
the Semantic Web hinges on integrating the vast amount of data stored
in Relational Databases. This manuscript reflects on the last 10 years of
our research results to integrate Relational Databases with the Semantic
Web. Since 2007, our research has led us to answer the following question:
How and to what extent can Relational Databases be Integrated with the
Semantic Web? The answer comes in two parts. We start by presenting
how to get from Relational Databases to the Semantic Web via mappings,
such as the W3C Direct Mapping and R2RML standards. Subsequently,
we present how the Semantic Web can access Relational Databases. We
finalize with how Relational Databases and Semantic Web technologies
are being used practice for data integration and discuss open challenges.

1 Introduction

The success of the Semantic Web hinges on integrating the vast amount of data
stored in Relational Databases. We have gone a long way in the past 10 years. As
of 2017, a successful repeated use case for Relational Databases and the Semantic
Web is to address data integration needs. Such systems are now being deployed
in industrial applications. So, how did we get here? The goal of this manuscript
is to reflect on the last 10 years of our research results to integrate Relational
Databases with the Semantic Web [64].

In 2007, we began investigating the relationship between Relational Data-
bases and the Semantic Web. Specifically, the research question was the follow-
ing: How and to what extent can Relational Databases be integrated with the
Semantic Web? The thesis is that much of the existing Relational Database
infrastructure can be reused to support the Semantic Web.

In the first part, we describe how to get from Relational Databases to the
Semantic Web via mappings. Starting with a 2007 workshop, titled “RDF Access
to Relational Databases”1, the W3C sponsored a series of activities to address
this issue. At that workshop, the acronym, RDB2RDF, Relational Database to
Resource Description Framework, was coined. In September 2012, these activi-
ties culminated in the ratification of two W3C standards, colloquially known as
Direct Mapping [7] and R2RML [25].

1 http://www.w3.org/2007/03/RdfRDB/.
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By design, both these standards avoid any content that speaks about imple-
mentation, directly or indirectly. The standards concern is syntactic transforma-
tion of the contents of rows in relational tables to RDF. The R2RML language
includes statements that specify which columns and tables are mapped to prop-
erties and classes of a domain ontology. Thus, the language empowers a developer
to examine the contents of a relational database and write a mapping specifica-
tion. Furthermore, we present an extended Direct Mapping which address some
shortcomings of the W3C Direct Mapping and study it with respect to two fun-
damental (information and query preservation) and two desired (monotonicity
and semantics preservation) properties.

In the second part, we describe the opposite direction, how the Semantic
Web can access Relational Databases. Once a mapping has been defined, let it
be a Direct Mapping or a user defined R2RML mappings, the goal is to evalu-
ate SPARQL queries against the Relational Database. These contributions are
embodied in our system called Ultrawrap. We identified two existing relational
query optimizations in commercial Relational Databases, detection of unsatis-
fiable conditions and self-join elimination which are used for SPARQL execu-
tion. Empirical analysis consistently yield that SPARQL query execution per-
formance on Ultrawrap is comparable to that of SQL queries written directly for
the relational representation of the data. Furthermore, we present a method for
Relational Databases to support inheritance and transitivity by compiling the
ontology as mappings, implementing the mappings as SQL views, using SQL
recursion and optimizing by materializing a subset of views. This approach was
implemented as an extension of Ultrawrap to support the Ontology-Based Data
Access paradigm. Empirical analysis reveals that Relational Databases are able
to effectively act as reasoners.

To understand the relationship between Relational Databases and the Seman-
tic Web, we adopt a methodology where we first start small. That is why we first
studied a simple mapping which is the Direct Mapping. Subsequently we studied
how to accomplish SPARQL to SQL rewriting under the direct mapping. After
the direct mapping relationship was understood, we continued our work with
customized mappings represented in R2RML and reasoning.

We highlight two on-going challenges when Relational Databases and Seman-
tic Web technologies are combined for data integration in the real world: ontology
and mapping engineering. We argue for the need of a pay-as-you-go methodology
to create mappings and ontologies. We close with a set of open problems.

2 Preliminaries

This sections presents the notation and definitions used throughout this manu-
script. We define the three standards comprising Semantic Web: RDF, the graph
data model; OWL, the ontology language; and SPARQL, the query language for
RDF. Subsequently, the expressivity of the OWL dialect used in this research is
presented. For more detailed preliminaries, we refer the reader to Chap. 2 of [64]
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2.1 Running Example

Throughout this manuscript, we use the data illustrated in Fig. 1 as a running
example. The precise corresponding SQL statements are:

CREATE TABLE order (

orderid INT PRIMARY KEY,

date DATE,

total FLOAT,

currency VARCHAR(50),

status INT

)

CREATE TABLE lineitem (

lineid INT PRIMARY KEY,

price FLOAT,

quantity INT,

product VARCHAR(50),

orderid INT,

FOREIGN KEY(orderid) REFERENCES ORDER(orderid)

)

orderid date total currency status

1234 2017-04-15 100 USD 1

lineid price quantity product orderid

6789 30 2 Foo 1234
6790 20 2 Bar 1234

Fig. 1. SQL used to create the running example

2.2 Relational Databases

A database is a collection of data. A Relational Database is a database founded
on the relational model. The relational model represents data in terms of tuples
(rows), grouped into relations (tables). Relational Algebra is used as a query
language for Relational Databases.

Because nulls appear in practice in RDBMS, it is important to present a
formal definition of Relational Databases with respect to null values. Assume,
a countably infinite domain D of constants and a reserved symbol NULL that is
not in D. A database schema R is a finite set of relation names, where for each
R ∈ R, att(R) denotes the nonempty finite set of attribute names associated
with R. The arity of R, denoted as arity(R), is the number of elements of the
set att(R). An instance I of R assigns to each relation symbol R ∈ R, a finite
set of tuples RI = {t1, . . . , t�}. Each tuple tj (1 ≤ j ≤ �) is a function that
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assigns to each attribute in att(R) a value from (D ∪ {NULL}), denoted as t :
att(R) → (D ∪ {NULL}). The value of an attribute A in a tuple tj is denoted by
tj .A. Moreover, R(tj) is a fact in I if tj ∈ RI . The notation R(tj) ∈ I is used in
this case. We also view instances as sets of facts.

Relational Algebra consists of operators which take one or two relations as
operands and produce one relation as a result. The basic operators of relational
algebra are: selection, projection, rename, join, union and difference. Selection
selects tuples from a relation satisfying a condition. Projection chooses subset of
the attributes of a relation. Rename allows to change the name of an attribute.
Join combines two relations into one on the basis of a condition. Union is the
relation containing all tuples from both relations. Difference is the relation con-
taining all tuples of the first relation that do not appear in the second relation.
Relational Algebra operators can be composed into relational algebraic expres-
sions. These relational algebraic expressions are then used to formulate queries
over a Relational Database.

Recall that Relational Databases containing null values are considered. For
full details on the syntax and semantics of Relational Algebra where null values
play a role, we refer the reader to Chap. 2 of [64].

2.3 Semantic Web

The Semantic Web is an extension to the Web that enables intelligent access to
data on the Web. The technologies supporting the Semantic Web consist of a
set of standards: RDF as the graph data model, OWL as the ontology language,
and SPARQL as the query language.

RDF: RDF stands for Resource Description Framework, which is a framework
for representing information about resources in the Web. By resource, we mean
anything in the world including physical things, documents, abstract concepts,
etc2. RDF considers three types of values: resource identifiers (IRIs) to denote
resources, literals to denote values such as strings, and blank nodes to denote
the existence of unnamed resources which are existentially quantified variables
that can be used to make statements about unknown (but existent) resources.

Assume there are pairwise disjoint infinite sets I (IRIs), B (blank nodes) and
L (literals). A tuple (s, p, o) ∈ (I ∪B) × I× (I ∪B ∪L) is called an RDF triple,
where s is the subject, p is the predicate and o is the object. A finite set of
RDF triples is called an RDF graph. Assume that triple is a ternary predicate
that stores RDF graphs in the obvious way: every triple (a, b, c) ∈ G is stored as
triple(a, b, c). Moreover, assume the existence of an infinite set V of variables
disjoint from the above sets, and assume that every element in V starts with
the symbol “?”.

2 The term “entity” can be considered synonymous to resource.
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Example 1. Consider representing the statement “There is a person whose name
is Juan Sequeda” in RDF. This can be represented with two RDF triples. The
first RDF triple

triple(http://juansequeda.com#me, type, foaf:Person)

states that the resource identified by http://juansequeda.com#me is of type Per-
son. The type relationship is represented with rdf:type. Additionally, the concept
Person is identified by the IRI foaf:Person. Note that rdf: and foaf: are being
used instead of a full IRI. These are prefixes that replace a part of the IRI3. The
second RDF triple

triple(http://juansequeda.com#me, foaf:name, "Juan Sequeda")

states that http://juansequeda.com#me has a name which is “Juan Sequeda”.
The concept of name is identified by the IRI foaf:name.

OWL: OWL stands for Web Ontology Language, which is the language to
represent ontologies on the Web. In order to define the notion of ontology, the
following set of reserved keywords are defined as O: {subClass, subProp, dom,
range, type, equivClass, equivProp, inverse, symProp, transProp}.

Assume that O ⊆ I. Two types of RDF triples are distinguished: ontological
and assertional. Ontological RDF triples define the ontology. Assertional RDF
triples define the facts. The formal definitions are the following:

Definition 1 (Ontological RDF Triple). Following the definition presented
by Weaver and Hendler [75], an RDF triple (a, b, c) is ontological if:

1. a ∈ (I � O), and
2. either b ∈ (O�{type}) and c ∈ (I�O), or b = type and c is either symProp

or transProp.

In other words, an ontological RDF triple will always have as a subject an
element in I but not in O. There are two types of ontological RDF triples. First,
the predicate is an element in O but not type and the object is an element in I
but not in O. Second, if the predicate is type, then the object is either symProp
or transProp.

Definition 2 (Assertional RDF Triple). An RDF triple (a, b, c) is asser-
tional if it is not ontological.

Definition 3 (Ontology). An ontology O is defined as a finite set of ontolog-
ical RDF triples.

3 The prefix “rdf:” represents http://www.w3.org/1999/02/22-rdf-syntax-ns#,
hence the full IRI for rdf:type is http://www.w3.org/1999/02/22-rdf-syntax-ns#
type. Additionally, the prefix “foaf:” represents http://xmlns.com/foaf/0.1/, hence
the full IRI for foaf:Person is http://xmlns.com/foaf/0.1/Person.

http://juansequeda.com#me
http://juansequeda.com#me
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person
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The semantics of an ontology O is usually defined by representing it as a set
of description logic axioms, and then relying on the semantics of the logic [10]
(which, in turn, is derived from the semantics of first-order logic). It is more
convenient to directly define a set of first-order formulae, denoted as ΣO, to
encode the ontology O. The semantics of each ontological triple of an ontology,
t ∈ O, is defined as a first-order formula ϕt over the predicate triple. Defini-
tions 4–12 presents the first-order formula for ontological triples. Finally, the set
ΣO of first-order formulae encoding the ontology O is define as {ϕt | t ∈ O}.

Definition 4 (Subclass). If a is a subclass of b and x is an instance of a, then
x is an instance of b. The first-order formula is:

ϕ(a,subClass,b) = ∀x (triple(x, type, a) → triple(x, type, b))

Definition 5 (Subproperty). If a is a subproperty of b, then all pairs of
resources (x, y) which are related by a are also related by b. The first-order
formula is:

ϕ(a,subProp,b) = ∀x∀y (triple(x, a, y) → triple(x, b, y))

Definition 6 (Domain). If a has a domain b then any resource x that is
related to a is an instance of b. The first-order formula is:

ϕ(a,dom,b) = ∀x∀y (triple(x, a, y) → triple(x, type, b))

Definition 7 (Range). If a has a range b then any resource y that is related
to a is an instance of b. The first-order formula is:

ϕ(a,range,b) = ∀x∀y (triple(x, a, y) → triple(y, type, b))

Definition 8 (Equivalent Class). If a has an equivalent class of b and x is
an instance of a, then x is an instance of b. Conversely, if x is an instance of b,
then x is an instance of a. The first-order formula is:

ϕ(a,equivClass,b) = ∀x (triple(x, type, a) ↔ triple(x, type, b))

Definition 9 (Equivalent Property). If a has an equivalent property of b,
then all pairs of resources (x, y) which are related by a are also related by b.
Conversely, all pairs of resources (x, y) which are related by b are also related
by a. The first-order formula is:

ϕ(a,equivProp,b) = ∀x∀y (triple(x, a, y) ↔ triple(x, b, y))

Definition 10 (Inverse Property). If a has an inverse property of b, then
all pairs of resources (x, y) which are related by a are also related by b by the
pair (y, x). Conversely, all pairs of resources (y, x) which are related by b are
also related by a by the pair (x, y) The first-order formula is:

ϕ(a,inverse,b) = ∀x∀y (triple(x, a, y) ↔ triple(y, b, x))
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Definition 11 (Symmetric Property). If a is a symmetric property, then
all pairs of resources (x, y) which are related by a are also related as the pair (y,
x). The first-order formula is:

ϕ(a,type,symProp) = ∀x∀y (triple(x, a, y) → triple(y, a, x))

Definition 12 (Transitive Property). If a is a transitive property, and for
all pairs of resources (x, y) and (y, z) which are related by a then the pair (x, z)
is also related by a. The first-order formula is:

ϕ(a,type,transProp) = ∀x∀y∀z (triple(x, a, y) ∧ triple(y, a, z) → triple(x, a, z))

Given that the semantics of an ontology O has been defined as set of first
order logic formulae ΣO and a RDF graph G using the predicate triple, then
ΣO ∪ G is consistent (and inconsistent) in the usual sense of First Order Logic.

Example 2 The following ontology states that an Executive and ITEmployee are
both Employees. Additionally that the property hasSuperior is a transitive rela-
tionship from an Employee to another Employee.

triple(:Executive, subClass, :Employee)
triple(:Programmer, subClass, :ITEmployee)
triple(:SysAdmin, subClass, :ITEmployee)
triple(:ITEmployee, subClass, :Employee)
triple(:hasSuperior, type, transProp)
triple(:hasSuperior, dom, :Employee)
triple(:hasSuperior, range, :Employee)

Ontology Profiles. The expressiveness of an ontology language can be specified
by profiles. The Semantic Web technology stack specifies four ontology profiles:
RDFS, OWL 2 EL, OWL 2 QL and OWL 2 RL [13,50].

RDF Schema (RDFS) extends RDF as a schema language for RDF and
a lightweight ontology language [13]. It includes constructs to declare classes,
hierarchies between classes and properties and relate the domain and range of
a property to a certain class. Ontological triples with subClass, subProp, dom,
range, type, equivClass, equivProp are in this profile. The following three
profiles, OWL 2 EL, QL and RL, extend the expressiveness of RDFS.

OWL 2 EL profile is used to represent ontologies that define very large num-
bers of classes and/or properties with transitivity. This language has been tai-
lored to model large life science ontologies, while still supporting efficient reason-
ing. OWL 2 EL is based on the EL++ Description Logic [9]. Ontological triples
with transProp are in this profile.

OWL 2 QL provides constructs to express conceptual models such as UML
class diagrams and ER diagrams. This language was designed so that data that
is stored in a standard relational database system can be queried through an
ontology via rewriting mechanisms. OWL 2 QL is based on the DL-Lite family
of description logics [16]. Ontological triples with inverse and symProp are in
this profile.
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OWL 2 RL provides constructs to represent rules in ontologies. This lan-
guage has been tailored for rule-based reasoning engines. OWL 2 RL is based on
Description Logic Programs (DLP) [35]. Ontological triples with inverse and
symProp are also in this profile.

The ontology expressivity considered in this work (as defined in Definitions 4–
12) is not specific to a single OWL profile. Thus, we propose a new ontology
profile, OWL-SQL, which expresses the types of ontologies considered in this
dissertation. Figure 2 denotes the expressivity of OWL-SQL with respect to the
OWL 2 EL, QL and RL profiles.

Fig. 2. OWL-SQL, proposed OWL profile

The expressivity of OWL-SQL is subsumed by early ontology profile propos-
als known as RDFS-Plus [4], OWL-LD [32] and RDFS 3.0 [39].

2.4 SPARQL

SPARQL is the standard query language for RDF [38,59]. SPARQL is a graph
pattern matching query language and has a syntax similar to SQL. A SPARQL
query contains a set of triple patterns called basic graph patterns. Triple patterns
are similar to RDF triples with the exception that the subject, predicate or
object can be variables (denoted by a leading question mark “?”). The answer
of a SPARQL query P over an RDF graph G is a finite set of mappings, where
a mapping μ is a partial function from the set V of variables to (I ∪ L ∪ B)4.
4 Recall that V is an infinite set of variables disjoint from I, B and L and that every

element in V starts with the symbol “?”. See Sect. 2.3.
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Example 3. Consider the RDF triples in Example 1. The following SPARQL
query asks for all names of people.

SELECT ?n
WHERE {

?s rdf:type foaf:Person.
?s foaf:name ?n.

}

The basic graph pattern consists of two triple patterns. Matching these triple
patterns with the RDF triples gives the answer "Juan Sequeda".

The semantics of SPARQL is defined as a function [[ · ]]G that, given an RDF
graph G, takes a graph pattern expression and returns a set of mappings. The
reader is referred to [64] for more detail.

3 From Relational Databases to the Semantic Web:
Mappings

3.1 W3C Direct Mapping

The W3C Direct Mapping [7] is an automatic approach of translating a relational
database to RDF. The W3C Direct Mapping takes as input a relational database
(data and schema), and generates an RDF graph that is called the direct graph.
No additional user input is needed to map the relational data to RDF. The struc-
ture of the resulting RDF graph directly reflects the structure of the database.
The RDF vocabulary is automatically generated from the names of database
schema elements. Neither the structure nor the vocabulary can be changed. If
needed, the resulting RDF graph can be transformed further by the user using
other RDF to RDF mapping approaches such as SPARQL CONSTRUCT.

The W3C Direct Mapping consists of two parts. A specification to generate
identifiers for a table, column foreign key and rows and a specification using the
identifiers, in order to generate the direct graph.

Generating Identifiers. The W3C Direct Mapping generates an identifier for
rows, tables, columns and foreign keys. If a table has a primary key, then the
row identifier will be an IRI, otherwise a blank node. The identifiers for tables,
columns and foreign keys are IRIs. It is important to note that in this paper we
present relative IRIs which must be resolved by appending to a given base IRI.
Throughout this document, http://ex.com/rdb2rdf/ is the base IRI. All strings
are percent encoded in order to generate a safe IRI5.

If a table has a primary key, then the row identifier will be an IRI, obtained
by concatenating the base IRI, the percent-encoded form of the table name, the
‘#’ character and for each column in the primary key, in order:
5 For example, a space is replaced with %20 e.g., the percent encoding of “Hello World”

is “Hello%20World”.

http://ex.com/rdb2rdf/
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– the percent-encoded form of the column name,
– the ‘=’ character
– the percent-encoded lexical form of the canonical RDF literal representation

of the column value
– if it is not the last column in the primary key, the ‘;’ character

For example the IRI for the row of the order table is <http://ex.com/
rdb2rdf/order#orderid=1234>. If a table does not have a primary key, then
the row identifier is a fresh blank node that is unique to each row

The IRI for a table is obtained by concatenating the base IRI with the
percent-encoded form of the table name. For example the table IRI of the order
table is <http://ex.com/rdb2rdf/order> The IRI for an attribute is obtained by
concatenating the base IRI with the percent-encoded form of the table name, the
‘#’ character and the percent-encoded form of the column name. For example,
the Literal Property IRI of the date attribute of the order table is <http://ex.
com/rdb2rdf/order#date> Finally the IRI for foreign key is obtained by con-
catenating the base IRI with the percent-encoded form of the table name, the
string ‘#ref-’ and for each column in the foreign key, in order:

– the percent-encoded form of the column name,
– if it is not the last column in the foreign key, a ‘;’ character

For example, the reference Property IRI of the foreign key orderid of the
lineitem table is <http://ex.com/rdb2rdf/lineitem#ref-orderid>

Generating the Direct Graph. A Direct Graph is the RDF graph resulting
from directly mapping each of the rows of each table and view in a database
schema. Each row in a table generates a Row Graph. The row graph is an RDF
graph consisting of the following triples: (1) a row type triple, (2) a literal triple
for each column in a table where the column value is non-NULL and (3) a
reference triple for each foreign key in the table where none of the column values
is NULL. A row type triple is an RDF triple with the subject as the row node
for the row, the predicate as the RDF IRI rdf:type and the object as the table
IRI for the table name. A literal triple is an RDF triple with the subject as the
row node for the row, the predicate as the literal property IRI for the column
and the object as the natural RDF literal representation of the column value.
Finally, a reference triple is an RDF triple with the subject as the row node for
the row, the predicate as the reference property IRI for the columns and the
object as the row node for the referenced row.

Example 4 (W3C Direct Mapping of Running Example). RDF generated by the
W3C Direct Mapping of the running example, in Turtle syntax. Recall that the
IRIs in the example are relative IRIs which must be resolved by appending to
the base IRI http://ex.com/rdb2rdf/.

<order#orderid=1234> rdf:type <order> ;
<order#orderid>"1234" ;

http://ex.com/rdb2rdf/order#orderid=1234
http://ex.com/rdb2rdf/order#orderid=1234
http://ex.com/rdb2rdf/order
http://ex.com/rdb2rdf/order#date
http://ex.com/rdb2rdf/order#date
http://ex.com/rdb2rdf/lineitem#ref-orderid
http://ex.com/rdb2rdf/
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<order#date> "2017-04-15";
<order#total> "100";
<order#currency> "USD";
<order#status> "1".

<lineitem#lineid=6789> rdf:type <lineitem>;
<lineitem#lineid> "6789";
<lineitem#price> "30";
<lineitem#quantity> "2";
<lineitem#product> "Foo";
<lineitem#orderid> "1234";
<lineitem#ref-orderid> <order#orderid=1234>.

<lineitem#lineid=6790> rdf:type <lineitem>;
<lineitem#lineid> "6790";
<lineitem#price> "20";
<lineitem#quantity> "2";
<lineitem#product> "Bar";
<lineitem#orderid> "1234";
<lineitem#ref-orderid> <order#orderid=1234>.

The formal semantics of the W3C Direct Mapping has been defined in Dat-
alog. We refer the reader to the W3C Direct Mapping standard document for
details [7]. The left hand side of each rule is the RDF Triple output. The right
hand side of each rule consists of a sequence of predicates from the relational
database and built-in predicates.

3.2 DM: Direct Mapping as Ontology

The W3C Direct Mapping standard has two main shortcomings. First, the map-
ping is only from relational data to RDF data. The relational schema is not
taken in account. Second, the semantics of the W3C Direct Mapping is not
defined for NULL values as described in the specification: “The direct mapping
does not generate triples for NULL values. Note that it is not known how to
relate the behavior of the obtained RDF graph with the standard SQL semantics
of the NULL values of the source RDB.” In this section, we first formally intro-
duce the notion of a direct mapping. Subsequently we introduce a new Direct
Mapping which addresses the aforementioned shortcomings.

A direct mapping is a default way to translate relational databases into RDF
(without any input from the user on how the relational data should be trans-
lated). The input of a direct mapping M is a relational schema R, a set Σ of
PKs (Primary Keys) and FKs (Foreign Keys) over R and an instance I of R.
The output is an RDF graph with OWL vocabulary.

Assume G is the set of all RDF graphs and RC is the set of all triples of the
form (R, Σ, I) such that R is a relational schema, Σ is a set of PKs and FKs
over R and I is an instance of R.

Definition 13 (Direct Mapping). A direct mapping M is a total function
from RC to G.
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We introduce the Direct Mapping as Ontology [65], denoted as DM, which
extends the W3C Direct Mapping [7] and combines with a direct mapping of
relational database schema to an OWL ontology [69,73]. Additionally, DM con-
siders the case when the input database has NULL values. DM is defined as a
set of Datalog predicate and rules6.

1. Five predicates that encode the input relational schema and instance to DM:
Rel(r): Indicates that r is a relation name in R, Attr(a, r): Indicates that
a is an attribute in the relation r in R, PKn(a1, . . . , an, r): Indicates that
r[a1, . . . , an] is a primary key in Σ, FKn(a1, . . . , an, r, b1, . . . , bn, s): Indicates
that r[a1, . . . , an] ⊆FK s[b1, . . . , bn] is a foreign key in Σ, and Value(v, a, t, r)
which Indicates that v is the value of an attribute a in a tuple with identifier
t in a relation r (that belongs to R).

2. Three predicates that are used to store an ontology: Class(c) indicates that
c is a class; OPn(p1, . . . , pn, d, r) indicates that p1, . . . , pn (n ≥ 1) form an
object property with domain d and range r and DTP(p, d) indicates that p
is a data type property with domain d.

3. Twelve Datalog rules that generate a putative ontology from a relational
schema. The rules can be summarized as follows: a table is translated to an
OWL Class unless the table represents a binary relationship, then it is trans-
lated to an OWL Object Property. Foreign Keys are translated to OWL Object
Properties while attributes are translated to OWL Datatype Properties.

4. Ten Datalog rules that generate the OWL ontology from the predicates that
are used to store an ontology which include rules to generate IRIs and express
the ontology as RDF triples.

5. Ten Datalog rules that generate RDF triples from a relational instance based
on the putative ontology.

We present example Datalog rules for the generation of classes and datatype
properties. We refer the reader to [65] for the detailed list of Datalog rules. A
class, defined by the predicate Class, is any relation that is not a binary relation.
A relation R is a binary relation, defined by the predicate BinRel, between two
relations S and T if (1) both S and T are different from R, (2) R has exactly
two attributes A and B, which form a primary key of R, (3) A is the attribute
of a foreign key in R that points to S, (4) B is the attribute of a foreign key
in R that points to T , (5) A is not the attribute of two distinct foreign keys in
R, (6) B is not the attribute of two distinct foreign keys in R, (7) A and B are
not the attributes of a composite foreign key in R, and (8) relation R does not
have incoming foreign keys. The formal definition of BinRel can be found in
[65]. Therefore, the predicate Class is defined by the following Datalog rules:

Class(X) ← Rel(X),¬IsBinRel(X)
IsBinRel(X) ← BinRel(X,A,B, S,C, T,D)

For instance, we have that Class(order) holds in our example.

6 We refer the reader to [2] for the syntax and semantics of Datalog.
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Every attribute in a non-binary relation is mapped to a data type property,
defined by the predicate DTP, which is defined by the following Datalog rule:

DTP(A,R) ← Attr(A,R),¬IsBinRel(R)

For instance, we have that DTP(date, order) holds in our example.
We now briefly define the rules that translates a relational database schema

into an OWL vocabulary. We introduce a family of rules that produce IRIs for
classes and data type properties identified by the mapping (which are stored
in the predicates Class and DTP). Note that the IRIs generated can be
later on replaced or mapped to existing IRIs available in the Semantic Web.
Assume given a base IRI base for the relational database to be translated (for
example, “http://ex.com/rdb2rdf/”), and assume a family of built-in predicates
Concatn (n ≥ 2) is given, such that Concatn has n + 1 arguments and
Concatn(x1, . . . , xn, y) holds if y is the concatenation of the strings x1, . . .,
xn. Then by following the approach proposed in [7], DM uses the following
Datalog rules to produce IRIs for classes and data type properties:

ClassIRI(R,X) ← Class(R),Concat2(base, R,X)
DTP IRI(A,R,X) ← DTP(A,R),Concat4(base, R, "#", A,X)

For instance, http://ex.com/rdb2rdf/order is the IRI for the order relation
in our example, and http://ex.com/rdb2rdf/order#date is the IRI for attribute
date in the order relation.

The following Datalog rules are used to generate the RDF representation of
the OWL vocabulary. A rule is used to collect all the classes:

Triple(U, "rdf:type", "owl:Class") ←
Class(R),ClassIRI(R,U)

The predicate Triple is used to collect all the triples of the RDF graph
generated by the direct mapping DM. The following rule is used to collect all
the data type properties:

Triple(U, "rdf:type", "owl:DatatypeProperty") ←
DTP(A,R),DTP IRI(A,R,U)

The following rule is used to collect the domains of the data type properties:

Triple(U, "rdfs:domain",W ) ←
DTP(A,R),DTP IRI(A,R,U),ClassIRI(R,W )

Example 5 (Direct Mapping as Ontology of Running Example). OWL generated
by the Direct Mapping as Ontology of the running example, in Turtle syntax. The
RDF triples from the Direct Mapping as Ontology are the same as in Example 4.
Recall that the IRIs in the example are relative IRIs which must be resolved by
appending to the base IRI http://ex.com/rdb2rdf/.

http://ex.com/rdb2rdf/
http://ex.com/rdb2rdf/order
http://ex.com/rdb2rdf/order#date
http://ex.com/rdb2rdf/
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<order> rdf:type owl:Class.
<order#orderid> rdf:type owl:DatatypeProperty ;

rdfs:domain <order>.
<order#date> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<order#total> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<order#currency> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<order#status> rdf:type owl:DatatypeProperty;

rdfs:domain <order>.
<lineitem> rdf:type owl:Class.
<lineitem#lineid> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#price> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#quantity> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#product> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#orderid> rdf:type owl:DatatypeProperty;

rdfs:domain <lineitem>.
<lineitem#ref-pid> rdf:type owl:ObjectProperty;

rdfs:domain <lineitem>;
rdfs:range <order>.

Direct Mapping Properties. We study two properties that are fundamental
to a direct mapping: information preservation and query preservation. Addition-
ally we study two desirable properties: monotonicity and semantics preservation.

A direct mapping is information preserving if it does not lose any information
about the relational instance being translated, that is, if there exists a way to
recover the original database instance from the RDF graph resulting from the
translation process. Formally, assuming that I is the set of all possible relational
instances, we have that:

Definition 14 (Information Preservation). A direct mapping M is infor-
mation preserving if there is a computable mapping N : G → I such that for
every relational schema R, set Σ of PKs and FKs over R, and instance I of R
satisfying Σ: N (M(R, Σ, I)) = I.

Recall that a mapping N : G → I is computable if there exists an algorithm
that, given G ∈ G, computes N (G).

Theorem 1. The direct mapping DM is information preserving.

The proof of this theorem is straightforward, and it involves providing a com-
putable mapping N : G → I that satisfies the condition in Definition 14, that
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is, a computable mapping N that can reconstruct the initial relational instance
from the generated RDF graph.

A direct mapping is query preserving if every query over a relational database
can be translated into an equivalent query over the RDF graph resulting from
the mapping. That is, query preservation ensures that every relational query can
be evaluated using the mapped RDF data.

I define query preservation, we focus on relational queries Q that can be
expressed in relational algebra [2] and RDF queries Q� that can be expressed in
SPARQL [55,59]. Given the mismatch in the formats of these query languages
(null can appear as a result of a relational query while null does not in a SPARQL
query), we introduce a function tr that converts tuples returned by relational
algebra queries into mappings returned by SPARQL. Formally, given a relational
schema R, a relation name R ∈ R, an instance I of R and a tuple t ∈ RI , define
tr(t) as the mapping μ such that: (1) the domain of μ is {?A | A ∈ att(R) and
t.A �= NULL}, and (2) μ(?A) = t.A for every A in the domain of μ.

Definition 15 (Query Preservation). A direct mapping M is query preserv-
ing if for every relational schema R, set Σ of PKs and FKs over R and relational
algebra query Q over R, there exists a SPARQL query Q� such that for every
instance I of R satisfying Σ: tr([[Q]]I) = [[Q�]]M(R,Σ,I).

We show that the way DM maps relational data into RDF allows one to
answer a query over a relational instance by translating it into an equivalent
query over the generated RDF graph.

Theorem 2. The direct mapping DM is query preserving.

Angles and Gutierrez proved that SPARQL has the same expressive power
as relational algebra [5]. Thus, one may be tempted to think that this result
could be used to prove this theorem. However, the version of relational algebra
considered in Angles and Gutierrez does not include the value NULL and hence
does not apply to DM. The proof is by induction on the structure of a relational
query Q. The proof is also constructive and yields a bottom-up algorithm for
translating Q into an equivalent SPARQL query.

Before defining monotonicity, consider the following: given two database
instances I1 and I2 over a relational schema R, instance I1 is said to be contained
in instance I2, denoted by I1 ⊆ I2, if for every R ∈ R, it holds that RI1 ⊆ RI2 .
A direct mapping M is considered monotone if for any such pair of instances,
the result of mapping I2 contains the result of mapping I1. In other words, if
we insert new data to the database, then the elements of the mapping that are
already computed are unaltered.

Definition 16 (Monotonicity). A direct mapping M is monotone if for every
relational schema R, set Σ of PKs and FKs over R, and instances I1, I2 of R
such that I1 ⊆ I2: M(R, Σ, I1) ⊆ M(R, Σ, I2).

Theorem 3. The direct mapping DM is monotone.
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It is straightforward to see that DM is monotone, because all the negative
atoms in the Datalog rules defining DM refer to the schema, the PKs and the FKs
of the database, and these elements are kept fixed when checking monotonicity.

A direct mapping is semantics preserving if the satisfaction of a set of PKs
and FKs by a relational database is encoded in the translation process. More
precisely, given a relational schema R, a set Σ of PKs and FKs over R and
an instance I of R, a semantics preserving mapping should generate from I a
consistent RDF graph if I |= Σ, and it should generate an inconsistent RDF
graph otherwise.

Definition 17 (Semantics Preservation). A direct mapping M is semantics
preserving if for every relation schema R, set Σ of PKs and FKs over R and
instance I of R: I |= Σ iff M(R, Σ, I) is consistent under OWL semantics.

Unfortunately, the situation is completely different for the case of semantics
preservation, as the following example shows that the direct mapping DM does
not satisfy this property.

Example 6. Assume that a relational schema contains a relation with name
STUDENT and attributes SID, NAME, and assume that the attribute SID is the pri-
mary key. Moreover, assume that this relation has two tuples, t1 and t2 such that
t1.SID = 1, t1.NAME = John and t2.SID = 1, t2.NAME = Peter. It is clear that the
primary key is violated, therefore the database is inconsistent. However, it is not
difficult to see that after applying DM, the resulting RDF graph is consistent. �

In fact, the result in Example 6 can be generalized as it is possible to show
that the direct mapping DM always generates a consistent RDF graph, hence,
it cannot be semantics preserving7.

Proposition 1. The direct mapping DM is not semantics preserving.

Consider a new direct mapping DMpk that extends DM as follows. A Dat-
alog rule is used to determine if the value of a primary key attribute is repeated,
and a family of Datalog rules are used to determine if there is a value NULL in
a column corresponding to a primary key. If some of these violations are found,
then an artificial triple is generated that would produce an inconsistency.

If we apply DMpk to the database of Example 6, it is straightforward to
see that starting from an inconsistent relational database, one obtains an RDF
graph that is also inconsistent. In fact, we have that:

Proposition 2. The direct mapping DMpk is information preserving, query
preserving, monotone, and semantics preserving if one considers only PKs. That
is, for every relational schema R, set Σ of (only) PKs over R and instance I
of R: I |= Σ iff DMpk (R, Σ, I) is consistent under OWL semantics.

7 In practice an RDBMS will not allow a violation of an integrity constraint. However,
it may be the case that an RDBMS is not being used and a user may have a dump of
data (e.g. in CSV format) and may indicate that a particular column is the primary
key when in reality the column violates the constraint.



84 J.F. Sequeda

Information preservation, query preservation and monotonicity of DMpk are
corollaries of the fact that these properties hold for DM, and of the fact that
the Datalog rules introduced to handle primary keys are monotone.

The following theorem shows that the desirable condition of being monotone
is, unfortunately, an obstacle to obtain a semantics preserving direct mapping.

Theorem 4. No monotone direct mapping is semantics preserving.

It is important to understand the reasons why we have not been able to create
a semantics preserving direct mapping. The issue is with two characteristics of
OWL: (1) it adopts the Open World Assumption (OWA), where a statement
cannot be inferred to be false on the basis of failing to prove it, and (2) it does
not adopt the Unique Name Assumption (UNA), where two different names can
identify the same thing. On the other hand, a relational database adopts the
Closed World Assumption (CWA), where a statement is inferred to be false if
it is not known to be true. In other words, what causes an inconsistency in a
relational database, can cause an inference of new knowledge in OWL.

In order to preserve the semantics of the relational database, we need to
ensure that whatever causes an inconsistency in a relational database, is going
to cause an inconsistency in OWL. Following this idea, we now present a non-
monotone direct mapping, DMpk+fk , which extends DMpk by introducing rules
for verifying beforehand if there is a violation of a foreign key constraint. If such
a violation exists, then an artificial RDF triple is created which will generate an
inconsistency with respect to the OWL semantics.

It should be noticed that DMpk+fk is non-monotone because if new data in
the database is added which now satisfies the FK constraint, then the artificial
RDF triple needs to be retracted.

Theorem 5. The direct mapping DMpk+fk is information preserving, query
preserving and semantics preserving.

Information preservation and query preservation of DMpk+fk are corollaries of
the fact that these properties hold for DM and DMpk .

A direct mapping that satisfies the four properties can be obtained by con-
sidering an alternative semantics of OWL that expresses integrity constraints.
Because OWL is based on Description Logic, we would need a version of DL that
supports integrity constraints, which is not a new idea [17,28,29,34,49,51,72].
Thus, it is possible to extend DMpk to create an information preserving, query
preserving and monotone direct mapping that is also semantics preserving, but
it is based on a non-standard version of OWL.

3.3 W3C R2RML: RDB to RDF Mapping Language

R2RML [25] is a language for expressing customized mappings from relational
databases to RDF expressed in a graph structure and domain ontology of the
user’s choice. The R2RML language is also defined as an RDFS schema8. An
8 http://www.w3.org/ns/r2rml.

http://www.w3.org/ns/r2rml
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R2RML mapping is itself represented as an RDF graph. Turtle is the recom-
mended RDF syntax for writing R2RML mappings. The following is an example
of an R2RML mapping for the database in Fig. 1. Note that the mapping devel-
oper decides which tables and attributes of the database should be exposed as
RDF. The Direct Mapping automatically maps all of the tables and attributes
of the database.

Fig. 3. Example mapping

Example 7 (An R2RML Mapping). Figure 3 represents a mapping from our
running example database to an ontology. In this example we will present an
R2RML mapping that represents the depiction of Fig. 3.

The target ontology is defined as follows:

@prefix ex: <http://ex.com/schema/>.
ex:Order rdf:type owl:Class.
ex:totalOrderPrice rdf:type owl:DatatypeProperty ;

rdfs:domain ex:Order;
rdfs:range xsd:float.

ex:orderCurrency rdf:type owl:DatatypeProperty;
rdfs:domain ex:Order;
rdfs:range xsd:string.

ex:OrderDate rdf:type owl:DatatypeProperty;
rdfs:domain ex:Order;
rdfs:range xsd:date.
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ex:OrderLine rdf:type owl:Class.
ex:price rdf:type owl:DatatypeProperty;

rdfs:domain ex:OrderLine;
rdfs:range xsd:float.

ex:quantity rdf:type owl:DatatypeProperty;
rdfs:domain ex:OrderLine;
rdfs:range xsd:int.

exproduct rdf:type owl:DatatypeProperty;
rdfs:domain ex:OrderLine;
rdfs:range xsd:string.

ex#totalSRP rdf:type owl:DatatypeProperty;
rdfs:domain ex:OrderLine;
rdfs:range xsd:float.

ex:partOfOrder rdf:type owl:ObjectProperty;
rdfs:domain ex:OrderLine;
rdfs:range ex:Order.

The example R2RML Mapping is as follows. In TriplesMap1, all the tuples
of the lineitem table are mapped to instances of ex:OrderLine class. The column
price, quantity and product of the lineitem table are mapped to the data type
properties ex:price ex:quantity and ex:product respectively. The column orderid
of the lineitem table which is a foreign key that references orderid of the Order
table is mapped to object property ex:partOfOrder. Similarly, in TriplesMap3,
all the tuples of the order table are mapped to instances of ex:Order class. The
column date, total and currency of the order table are mapped to the data
type properties ex:orderDate, ex:totalOrderPrice and ex:orderCurrency respec-
tively. Finally, in TriplesMap2 we have a SQL query that returns a calcula-
tion (price*quantity) associated to each lineid. This calculation (the renamed
attribute totalsrp) is mapped to the data type property ex:totalSRP.

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://ex.com/schema/>.

<#TriplesMap1>
rr:logicalTable [ rr:tableName "lineitem" ];
rr:subjectMap [

rr:template "http://ex.com/data/orderline/{lineid}";
rr:class ex:OrderLine;

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:price ];
rr:objectMap [ rr:column "price" ];

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:quantity ];
rr:objectMap [ rr:column "quantity" ];
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];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:product ];
rr:objectMap [ rr:column "product" ];

];
rr:predicateObjectMap [

rr:predicate [ rr:constant ex:partOfOrder ];
rr:objectMap [

rr:parentTriplesMap <#TriplesMap3>;
rr:joinCondition [

rr:child "orderid";
rr:parent "orderid";

];
];

].

<#TriplesMap2>
rr:logicalTable [ rr:sqlQuery """

SELECT lineid, price*quantity totalsrp FROM lineitem
""" ];

rr:subjectMap [
rr:template "http://ex.com/data/orderline/{lineid}";

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:totalSRP ];
rr:objectMap [ rr:column "totalsrp" ];

].

<#TriplesMap3>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:Order;

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:orderDate ];
rr:objectMap [ rr:column "date" ];

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:totalOrderPrice ];
rr:objectMap [ rr:column "total" ];

];
rr:predicateObjectMap [

rr:predicateMap [ rr:constant ex:orderCurrency ];
rr:objectMap [ rr:column "currency" ];
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];
.

The following is the resulting RDF after the mapping has been applied on the
example database:

<http://ex.com/data/order/1234> rdf:type ex:Order;
ex:orderDate "2017-04-15";
ex:totalOrderPrice "100";
ex:orderCurrency "USD".

<http://ex.com/data/orderline/6789> rdf:type ex:OrderLine;
ex:price "30";
ex:quantity "2";
ex:totalSRP "60";
ex:product "Foo";
ex:partOfOrder <http://ex.com/data/order/1234>.

<http://ex.com/data/orderline/6790> rdf:type ex:OrderLine
ex:price "20";
ex:quantity "2";
ex:totalSRP "40";
ex:product "Bar";
ex:partOfOrder <http://ex.com/data/order/1234>.

An R2RML processor may include an R2RML default mapping generator.
This is a facility that introspects the schema of the input database and generates
an R2RML mapping intended for further customization by a user. This default
mapping could be the W3C Direct Mapping or the Direct Mapping as Ontology
DM.

The R2RML language features can be divided in two parts: features generat-
ing RDF terms (IRI, Blank Nodes or Literals) and features for generating RDF
triples.

Generating RDF Terms. An RDF term is either an IRI, a Blank node, or
a Literal. A term map generates an RDF term for the subjects, predicates and
objects of the RDF triples from either a constant, a template or a column value.
A constant-valued term map ignores the row and always generates the same
RDF term. A column-valued term map generates an RDF term from the value
of a column. A template-valued term map generates an RDF term from a string
template, which is a format string that can be used to build strings from multiple
components, including the values of a column. Template-valued term maps are
commonly used to specify how an IRI should be generated.

The R2RML language allows a user to explicitly state the type of RDF term
that needs to be generated (IRI, Blank node or Literal). If the RDF term is
for a subject, then the term type must be either an IRI or Blank Node. If the
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RDF term is for a predicate, then the term type must be an IRI. If the RDF
term is for a subject, then the term type can be either an IRI, Blank node or
Literal. Additionally, a developer may assert that an RDF term has an assigned
language tag or datatype.

Generating RDF Triples. RDF triples are derived from a logical table. A
logical table can be either a base table or view in the relational schema, or
an R2RML view. An R2RML view is a logical table whose contents are the
result of executing a SQL SELECT query against the input database. In an
RDB2RDF mapping, it may be required to transform, compute or filter data
before generating RDF triples. This can be achieved by defining a SQL view and
referring to it as a base view. However, it may be the case that this is not possible
due to lack of sufficient database privileges to create views. R2RML views achieve
the same effect without requiring any changes to the input database.

A triples map is the heart of an R2RML mapping. It specifies a rule for
translating each row of a logical table to zero or more RDF triples. Example 7
contains two triple maps identified by <#TriplesMap1> and <#TriplesMap2>.
The RDF triples generated from one row in the logical table all share the same
subject. A triples map is represented by a resource that references the following
other resources:

– It must have exactly one logical table. Its value is a logical table that specifies
a SQL query result to be mapped to triples. In Example 7, both Triple Map’s 1
and 3 have a table name as a logical table, lineitem and order, respectively.
TripleMap2 has a logical table which is a SQL Query.

– It must have exactly one subject map that specifies how to generate a subject
for each row of the logical table.

– It may have zero or more predicate-object maps, which specify pairs of pred-
icate maps and object maps that, together with the subject generated by the
subject map, may form one or more RDF triples for each row.

Recall that there are three types of term maps that generate RDF terms:
constant-valued, column-valued and template-valued. Given that a subject, pred-
icate and object of an RDF triple must be RDF terms, this means that a subject,
predicate and object can be any of the three possible term maps, called subject
map, predicate map and object map, respectively. A predicateObject map groups
predicate-object map pairs.

A subject map is a term map that specifies the subject of the RDF
triple. The primary key of a table is usually the basis for creating an IRI.
Therefore, it is normally the case that a subject map is a template-valued
term map with an IRI template using the value of a column which is usu-
ally the primary key. Consider the triple map <#TriplesMap1> in Exam-
ple 7. The subject map is a template-valued term map where the template is
http://ex.com/data/order/{orderid}. This means that the subject IRI for
each row is formed using values of the orderid attribute. Optionally, a subject
map may have one or more class IRIs. For each RDF term generated by the
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subject map, RDF triples with predicate rdf:type and the class IRI as object
will be generated. In this example, the class IRI is ex:Order.

A predicate-object map is a function that creates one or more predicate-
object pairs for each row of a logical table. It is used in conjunction with a
subject map to generate RDF triples in a triples map. A predicate-object map
is represented by a resource that references the following other resources: One or
more predicate maps and one or more object maps or referencing object maps. In
<#TriplesMap1>, there are four predicate-object maps while <#TriplesMap2>
only has one.

A predicate map is a term map. It is common that the predicate of an RDF
triple is a constant. Therefore, a predicate map is usually a constant-valued term
map. For example, the first predicate-object map of <#TriplesMap1> has a pred-
icate map which is a constant-valued term map. The predicate IRI will always be
the constant is ex:price. An object map is also a term map. Several use cases
may arise where the object could be either a constant-valued, template-valued
or column-valued term map. The first predicate-object map of <#TriplesMap1>
has an object map which is a column-valued term map. Therefore, the object
will be a literal coming from the value of the price attribute.

A referencing object map allows using the subjects of another triples map as
the objects generated by a predicate-object map. Since both triples maps may
be based on different logical tables, this may require a join between the logical
tables. A referencing object map is represented by a resource that has exactly
one parent triples maps. Additionally, it may have one or more join conditions.
Join conditions are represented by a resource that has exactly one value for
each of the following: (1) a child, whose value is known as the join condition’s
child column and must be a column name that exists in the logical table of the
triples map that contains the referencing object map (2) a parent, whose value
is known as the join condition’s parent column and must be a column name that
exists in the logical table of the referencing object map’s parent triples map.
The last predicate-object map of <#TriplesMap1> has a referencing object map.
The parent triples map is <#TriplesMap3>. A join condition is created between
the child attribute orderid, which is an column name in the logical table of
<#TriplesMap1> and the parent attribute orderid, which is a column name in
the logical table of <#TriplesMap3>

3.4 Relational Databases to RDF Mappings

Even though there has been attempts to formalize R2RML [62], to the best of
our knowledge, there is no formal public definition of R2RML. Nevertheless, we
believe it is important to formalize a notion of a customized mapping from Rela-
tion Databases to RDF, which we denote as an RDB2RDF mapping. This alter-
native approach follows the widely used formalization in the data exchange [6]
and data integration areas [46], and which is based on the use of first-order logic
and its semantics to define mappings.
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Given a relational schema R such that triple �∈ R, a class RDB2RDF-rule
ρ over R is a first-order formula of the form:

∀s∀p∀o∀x̄ α(s, x̄) ∧ p = type ∧ o = c → triple(s, p, o), (1)

where α(s, x̄) is a domain-independent first-order formula over R and c ∈ D.
Moreover, a predicate RDB2RDF-rule ρ over R is a first-order formula of the

form:

∀s∀p∀o∀x̄ β(s, o, x̄) ∧ p = c → triple(s, p, o), (2)

where β(s, o, x̄) is a domain-independent first-order formula over R and c ∈ D.
Finally, an RDB2RDF-rule over R is either a class or a predicate RDB2RDF-
rule over R. In what follows, we omit the universal quantifiers ∀s∀p∀o∀x̄ from
RDB2RDF rules, and we implicitly assume that these variables are universally
quantify.

Example 8. Consider the relational database from our running example (see
Example 1). Then the following RDB2RDF rule maps all the instances of the
order table as instances of the Order class: order(s, x1, x2, x3, x4, x5) ∧ p =
type ∧ o = Order → triple(s, p, o).

The RDB2RDF mapping in Example 8 can be represented as follows in
R2RML:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:Order;

];
.

Additionally, it could also be represented as follows:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
];
rr:predicateObjectMap [

rr:predicate rdf:type ;
rr:object ex:Order ;

];
.

Let R be a relational schema. An RDB2RDF mapping M over R is a finite
set of RDB2RDF rules over R. Given an RDB2RDF mapping M and an instance
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I over R, the result of applying M over I, denoted by [[M]]I , is an instance over
the schema {triple} that is defined as the result of the following process. For
every RDB2RDF rule of the form (1) and value c1 ∈ D, if there exists a tuple
of values d̄ from D such that I |= α(c1, d̄),9 then triple(c1, type, c) is included
as a fact of [[M]]I , and likewise for every RDB2RDF rule of the form (2). Notice
that this definition coincides with the notion of canonical universal solution in
the context of data exchange [6]. Besides, notice that [[M]]I represents an RDF
graph and, thus, mapping M can be considered as a mapping from relational
databases into RDF graphs.

Example 9. Consider the relational database from our running example, and let
M be an RDB2RDF mapping consisting of the rule in Example 1 and the fol-
lowing rule:

order(s, x1, o, x3, x4, x5) ∧ p = orderDate → triple(s, p, o) (3)

If I is the instance from our running example, then [[M]]I consists of the following
facts:

triple(1234, type, Order), triple(1234, orderDate, 2017 − 04 − 15).

The RDB2RDF mapping in Example 9 can be represented as follows in
R2RML:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [

rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:Order;

];
rr:predicateObjectMap [

rr:predicate ex:orderDate ;
rr:objectMap [ rr:column "date" ];

];
.

4 From the Semantic Web to Relational Databases:
Data Access

The Semantic Web’s promise of web-wide data integration requires the inclusion
of legacy Relational Databases. In the previous section, we discussed how to go
from a Relational Database to the Semantic Web through means of mappings.
In this section, we present the other direction: how the Semantic Web can access
a Relational Database.
9 Given that α(s, x̄) is domain-independent, there exists a finite number of tuples

(c1, d̄) such that I |= α(c1, d̄).
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In RDF data management there are efforts that concern Triplestores and
those that concern legacy Relational Databases. Triplestores are database man-
agement systems whose data model is RDF, and support at least SPARQL
execution against the stored contents. Native triplestores are those that are
implemented from scratch [14,53,76]. RDBMS-backed Triplestores are built by
adding an application layer to an existing relational database management sys-
tem. Within that literature there is a discourse concerning the best database
schema, SPARQL to SQL query translations, indexing methods and even storage
managers, (i.e. column stores vs. row stores) [1,21,30,77]. NoSQL Triplestores
are also being investigated as possible RDF storage managers [24,31,41,44]. In
all three triplestore cases (native, RDBMS-backed and NoSQL), RDF is the
primary data model.

The research herein is concerned with the mapping of legacy relational data
with the Semantic Web. Within that, the research concerns wrapper systems
that present a logical RDF representation of relational data that is physically
stored in an RDBMS such that no copy of the relational data is made. It follows
that some or all of a SPARQL query evaluation is executed by the SQL engine.
An alternative approach is the one in which the relational data is extracted
from the relational database, transformed to RDF, and loaded (ETL) into a
Triplestore.

Since both RDBMS-backed Triplestores and RDB2RDF Wrapper systems
involve relational databases and translation from SPARQL to SQL, there is
a potential for confusion. The difference is that RDBMS-backed Triplestores
translate SPARQL queries to SQL queries that are executed on database schemas
that model and store RDF. RDB2RDF Wrapper systems translate SPARQL
queries to SQL queries that are executed on legacy database schemas that model
and store relational data.

An RDB2RDF ETL approach is recommended when the data in the legacy
relational database is stale, or updated infrequently. In an ETL system, at best,
updates occur on a regular cycle. Thus semantic web applications querying stale
data just prior to an update is a risk. In the common case of legacy relational
databases which are continually updated, an ETL approach is not feasible. A
solution to this problem is the use of a RDB2RDF wrapper systems which com-
piles SPARQL to SQL.

4.1 SPARQL to SQL Rewriting with Direct Mapping

In mid to late 2000s, RDB2RDF wrapper systems such as D2RQ, Virtuoso
RDF Views and Squirrel RDF, predicated on preprocessing and/or optimiz-
ing the SQL query before sending it to the SQL optimizer. Open-source code
and forums10 provide evidence of their architecture. For example, we observed
that for some SPARQL queries, D2RQ generates multiple SQL queries and nec-
essarily executed a join among those results outside of the database. In 2011, we
postulated that by carefully constructing SQL views to represent a RDB2RDF

10 https://github.com/d2rq/d2rq/issues/94 As of April 2017, this issue is still open.

https://github.com/d2rq/d2rq/issues/94
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mapping, then the existing algorithmic machinery in SQL optimizers were suf-
ficient to effectively execute SPARQL queries on native relational data [67].
Thereby, legacy relational database systems may be made upwardly compatible
with the Semantic Web, while simultaneously minimizing the complexity of the
wrapping system.

In 2008, Angles and Gutierrez showed that SPARQL is equivalent in expres-
sive power to relational algebra [5]. Thus, one might have expected that the valid-
ity of this research’s postulate at that time, to be a foregone conclusion. However,
in 2009, two independent studies that evaluated three RDB2RDF wrapper sys-
tems, D2RQ, Virtuoso RDF Views and Squirrel RDF, came to the opposite
conclusion: existing SPARQL to SQL translation systems do not compete with
traditional relational databases [11,33].

The March 2009 Berlin SPARQL Benchmark on the 100 million triple dataset
reported that SPARQL queries on the evaluated RDB2RDF systems were up to
1000 times slower that the native SQL queries. Bizer and Schultz [11], creators
of the Berlin SPARQL Benchmark, concluded that: “Setting the results of the
RDF stores and the SPARQL-to-SQL rewriters in relation to the performance
of classical RDBMS unveiled an unedifying picture. Comparing the overall per-
formance (100M triple, single client, all queries) of the fastest rewriter with the
fastest relational database shows an overhead for query rewriting of 106%. This
is an indicator that there is still room for improving the rewriting algorithms”.

Gray et al. [33] tested D2RQ and SquirrelRDF on a scientific database. This
study concluded that “... current rdb2rdf systems are not capable of providing
the query execution performance required to implement a scientific data inte-
gration system based on the rdf model. [...] it is likely that with more work on
query translation, suitable mechanisms for translating queries could be developed.
These mechanisms should focus on exploiting the underlying database system’s
capabilities to optimize queries and process large quantities of structured data,
e.g. pushing the selection conditions to the underlying database system”.

A motivation for this research, at that time, was to resolve the apparent
contradiction among the aforementioned papers. Toward that end we researched
and engineered the Ultrawrap system [67].

Ultrawrap Architecture. The first version of Ultrawrap was compliant with
the W3C Direct Mapping standard. The goal was to understand if existing com-
mercial relational databases already subsume the algorithms and optimizations
needed to support effective SPARQL execution on existing relationally stored
data under the simplest mapping possible. This initial version of Ultrawrap was
organized as a set of four compilers with the understanding that the SQL opti-
mizer formed one of the compilers.

1. The generation of the Direct Mapping with the translation of a SQL schema,
including constraints, to an OWL ontology: the putative ontology (PO).

2. The creation of an intensional triple table in the database by augmenting the
relational schema with one or more SQL Views: the Tripleview.
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3. Translation of SPARQL queries to equivalent SQL queries operating on the
Tripleview.

4. The native SQL query optimizer, which becomes responsible for rewriting
triple based queries and effecting their execution on extensional relational
data.

These four components can be seen as four different language compilers. As
an ensemble, the first three provide for the logical mapping of schema, data
and queries between the relational and Semantic Web languages. The fourth
component, the SQL optimizer, is responsible for the evaluation of the data
mappings and concomitant optimization of the query.

To define the mapping of the relational data to RDF, the system first identi-
fies an ontological representation of the relational schema, which is done by the
Direct Mapping and the generation of the putative ontology. The putative ontol-
ogy is the input to a second compilation step that creates a logical definition
of the relational data as RDF and embeds it in a view definition. In a off-line
process, Ultrawrap defines a SQL view whose query component is a specifica-
tion of a mapping from the relational data to an RDF triple representation, the
Tripleview. Per the Direct Mapping, concatenating the table name with the pri-
mary key value or table name with attribute name creates unique identifiers for
subject, predicate and objects. Subsequently, unique identifiers can be appended
to a base URI. The SQL Tripleview is comprised of a union of SELECT-FROM-
WHERE (SFW) statements. The WHERE clause filters attributes with null
values (IS NOT NULL), given that null values are not expressible in RDF.

Due to its simplicity, our starting point is the triple table approach. Even
though, studies have shown that storing RDF with the triple table approach in
a relational database is easily improved upon [1,48], this issue is not relevant to
Ultrawrap because the relational data is not being materialized in a triple table;
instead the relational data is virtually represented as a triple table through
unmaterialized views.

Even though our goal is to define a virtual triple table, we still have to antic-
ipate the physical characteristics of the database and the capacity of the SQL
optimizer to produce optimal physical plans. Toward that end, the Tripleview
has the following characteristics.

The Tripleview is of the form: <subject, primary key of subject, predicate,
object, primary key of object>. Separating the primary key in the Tripleview
allows the query optimizer to exploit them because the joins are done on these
values. If the object is a data value, then a NULL is used as the primary key of
the object. The subject and object are still kept as the concatenation of the table
name with the primary key value because this is used to generate the final URI,
which uniquely identifies each tuple in the database. It is possible to augment
the number of attributes in the Tripleview to include each separate key value.

Instead of having a single Tripleview to represent the entire mapping, it is
beneficial to create a separate Tripleview for each datatype. For varchar, this
includes each length declared in the schema. For example, datatypes with var-
char(50) and varchar(200) are considered different. Using multiple Tripleviews
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requires less bookkeeping than one might anticipate. Each attribute is mapped to
its corresponding Tripleview and stored in a hashtable. Then, given an attribute,
the corresponding Tripleview can be retrieved.

For example, the Tripleviews for the direct mapping of our running example
is the following:

CREATE VIEW Tripleview_type(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "type" as p,

"order" as o, null as o_id

FROM order

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"type" as p,

"lineitem" as o, null as o_id

FROM lineitem

CREATE VIEW Tripleview_int(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "orderid" as p,

orderid as o, null as o_id

FROM order WHERE orderid IS NOT NULL

UNION ALL

SELECT "order"+orderid as s, orderid as s_id, "status" as p,

status as o, null as o_id

FROM order WHERE status IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"price" as p,

price as o, null as o_id

FROM lineitem WHERE price IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"quantity" as p,

quantity as o, null as o_id

FROM lineitem WHERE quantity IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"orderid" as p,

orderid as o, null as o_id

FROM lineitem WHERE orderid IS NOT NULL

CREATE VIEW Tripleview_varchar50(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "currency" as p,

currency as o, null as o_id

FROM order WHERE currency IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"product" as p,

product as o, null as o_id

FROM lineitem WHERE product IS NOT NULL

CREATE VIEW Tripleview_float(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "total" as p,

total as o, null as o_id

FROM order WHERE total IS NOT NULL

UNION ALL
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SELECT "lineitem"+lineid as s, lineid as s_id,"price" as p,

price as o, null as o_id

FROM lineitem WHERE price IS NOT NULL

CREATE VIEW Tripleview_object(s,s_id,p,o,o_id) AS

SELECT "lineitem"+lineid as s, lineid as s_id,

"lineitem#ref-orderid" as p, "order"+orderid as o, orderid as o_id

FROM lineitem WHERE orderid IS NOT NULL

Ultrawrap’s runtime phase encompasses the translation of SPARQL queries
to SQL queries on the Tripleviews and the maximal use of the SQL infrastruc-
ture to do the SPARQL query rewriting and execution. At runtime, a compiler
translates an incoming SPARQL query to a SQL query in terms of the Triple-
view. The translation of the SPARQL query to a SQL query on the Tripleviews
follows a classic compiler structure: a parser converts the SPARQL query string
to an Abstract Syntax Tree (AST). The AST is translated into an SPARQL
algebra expression tree. The SQL translation is accomplished by traversing the
expression tree and replacing each SPARQL operator. Each internal node of the
expression tree represents a SPARQL binary algebra operator while the leaves
represent a Basic Graph Patterns (BGP), which is a set of triple patterns. A
SPARQL BGP is a set of triple patterns where each one maps to a Tripleview.
A SPARQL Join maps to a SQL Inner Join, a SPARQL Union maps to the SQL
Union, a SPARQL Optional maps to SQL Left-Outer Join. Consequently, the
RDBMS must use both the logical mapping represented in the Tripleview and
optimize the resulting translated SQL query, forming the final compiler.

Example 10. The following SPARQL query returns all the quantity and products
in a line item.

SELECT ?quantity ?product
WHERE {
?x <lineitem#quantity> ?quantity.
?x <lineitem#product> ?product.

}

The Ultrawrap SQL query is the following:

SELECT t1.o AS quantity, t2.o AS product
FROM Tripleview_varchar50 t1, Tripleview_int t2
WHERE t1.p = "quantity"AND t2.p ="product"
AND t1.s = t2.s AND t1.s_id = t2.s_id

Two Important Optimizations. Upon succeeding in ultrawrapping different
RDBMSs and reviewing query plans, two relational optimizations emerged as
important for effective execution of SPARQL queries: (1) detection of unsat-
isfiable conditions and (2) self-join elimination. Perhaps, not by coincidence,
these two optimizations are among semantic query optimization (SQO) meth-
ods introduced in the 1980’s [18,20,70]. In SQO, the objective is to leverage
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the semantics, represented in integrity constraints, for query optimization. The
basic idea is to use integrity constraints to rewrite a query into a semantically
equivalent one. These techniques were initially designed for deductive databases
and then integrated in commercial relational databases [20].

The idea behind the detection of unsatisfiable conditions optimization
is to determine that a query result is empty by determining, without executing
the query. This happens, for example, when a pair of predicate constants are
inconsistent [18]. The application of the following transformations eliminates
columns from the plan that are not needed to evaluate the SPARQL query.

Elimination by contradiction: Consider a query SELECT * FROM R WHERE A=x
AND A=y such that x != y. Then the result of that query is empty. For exam-
ple, it is clear that the query SELECT * FROM order WHERE orderid = 1 AND
orderid = 2 will never return results.

Unnecessary union sub-tree pruning: Given a query that includes the UNION
operator and where it has been determined that an argument of the UNION is
empty; then the corresponding argument can be eliminated. For example: UNION
ALL ({}, S, T) = UNION ALL (S, T) and UNION ALL ({}, T) = T

In Ultrawrap’s Tripleview, the constant value in the predicate position acts
as the integrity constraint. Consider the following Tripleview:

CREATE VIEW Tripleview_varchar50(s,s_id,p,o,o_id) AS

SELECT "order"+orderid as s, orderid as s_id, "currency" as p,

currency as o, null as o_id FROM order

WHERE currency IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"product" as p,

product as o, null as o_id FROM lineitem

WHERE product IS NOT NULL

Now consider the following query “return all product labels”:

SELECT o FROM Tripleview_varchar50 WHERE p = "product"

The first SFW statement from Tripleview varchar50 defines p="currency".
The query contains p ="product". Both predicates cannot be satisfied simul-
taneously. Given the contradiction, the first SFW statement of Triple-
view varchar50 can be replaced with the empty set. Since the Tripleview’s defi-
nition includes all possible columns, any specific SPARQL query will only need
a subset of the statements defined in the view. Application of elimination by
contradiction enables removing, the unnecessary UNION ALL conditions. Thus
the combination of the two transformations reduces the Tripleview to precisely
the subset of referenced columns.

Example 11. Consider the Ultrawrap SQL query in Example 10, after applying
the detection of unsatisfiable condition optimization, the new Ultrawrap SQL
query would logically be the following
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SELECT t1.o AS quantity, t2.o AS product
FROM

(SELECT"lineitem"+lineid as s, lineid as s_id,"quantity"as p,
quantity as o, null as o_id FROM lineitem WHERE quantity IS NOT NULL) t1,

(SELECT"lineitem"+lineid as s, lineid as s_id,"product"as p,
product as o, null as o_id FROM lineitem WHERE product IS NOT NULL) t2

WHERE t1.p ="quantity"AND t2.p ="product"
AND t1.s = t2.s AND t1.s_id = t2.s_id

Join elimination is one of the several SQO techniques, where integrity con-
straints are used to eliminate a literal clause in the query. This implies that a
join could also be eliminated if the table that is being dropped does not con-
tribute any attributes in the results [18]. The type of join elimination that is
desired is the self-join elimination, where a join occurs between the same
tables. Two different cases are observed: self-join elimination of projection and
self-join elimination of selections.

Self-join elimination of projection: This occurs when attributes from the same
table are projected individually and then joined together. For example, the fol-
lowing unoptimized query projects the attributes total and currency from the
table order where orderid = 1, however each attribute projection is done sepa-
rately and then joined:

SELECT p1.total, p2.currency
FROM order p1, order p2
WHERE p1.orderid = 1 AND p1.orderid = p2.orderid

Given a self-join elimination optimization, the previous query may be rewrit-
ten as:

SELECT total, currency FROM order WHERE orderid = 1

Self-join elimination of selection: This occurs when a selection on attributes from
the same table are done individually and then joined together. For example, the
following unoptimized query selects on price > 100 and quantity > 10 separately
and then joined:

SELECT p1.lineid

FROM lineitem p1, lineitem p2

WHERE p1.price > 100 AND p2.quantity > 10 AND p1.lineid = p2.lineid

Given a self-join elimination optimization, the previous query may be rewrit-
ten as:

SELECT lineid FROM lineitem WHERE price > 100 AND quantity > 10

Example 12. Consider the logical Ultrawrap SQL query in Example 11. After
the self join elimination optimization has been applied, the new Ultrawrap SQL
query would logically be the following

SELECT t1.quantity, t1.product
FROM lineitem t1
WHERE t1.quantity IS NOT NULL and t1.product IS NOT NULL
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Evaluation. Ultrawrap was evaluated using the three leading RDBMS systems
and two benchmark suites, Microsoft SQL Server, IBM DB2 and Oracle RDBMS,
and the Berlin and Barton SPARQL benchmarks. The SPARQL benchmarks
were chosen as a consequence of the fact that they derived their RDF content
from a relational source. Both benchmark provide both SPARQL queries and
SQL queries, where each query was derived independently from an English lan-
guage specification. Since wrappers produce SQL from SPARQL we refer to the
benchmark’s SQL queries as benchmark-provided SQL queries.

By using benchmarks containing independently created SPARQL and SQL
queries, and considering the effort and maturity embodied in the leading
RDBMS’s SQL optimizers, we suppose that the respective benchmark-provided
SQL query execution time forms a worthy baseline, and the specific query plans
to yield insight into methods for creating wrappers.

By starting with a simple wrapper system and evaluating it with sophisti-
cated SQL query optimizers we are able to identify existing, well understood
optimization methods that enable wrappers. We determined that DB2 imple-
ments both optimizations. SQL Server implements the detection of unsatisfiable
conditions optimization but does not implement the self-join elimination opti-
mization. Oracle does not implement the detection of unsatisfiable conditions
optimization. It does implement the self-join elimination optimization, but only
if the detection of unsatisfiable conditions optimization is applied separately.
MySQL does not implement any of these optimizations.

The following points deserve elaboration:

– Self-join elimination: The number of self-joins and their elimination is not, by
itself, an indicator of poor performance. The impact of the self-join elimina-
tion optimization is a function of the selectivity and the number of properties
in the SPARQL query that are co-located in a single table. The value of
optimization is less as selectivity increases.

– Join predicate push-down: The experiments with Oracle revealed that push-
ing join predicates [3] can be as effective as the detection of unsatisfiable
conditions optimization.

– Join ordering: Join order is a major factor for poor query execution time,
both on Ultrawrap and benchmark-provided SQL queries.

– Left-outer joins: We found that no commercial optimizer eliminates self left-
outer joins and OPTIONALs appear in many of the queries where sub-optimal
join orders are determined. We speculate that these types of queries are not
common in a relational setting, hence the lack of support in commercial sys-
tems.

– Counting NULLs: Each SFW statement of the Tripleview filters null values.
Such a filter could produce an overhead, however we speculate that the opti-
mizer has statistics of null values and avoids the overhead.

The results of the Ultrawrap system provided a foundation for identifying
minimal requirements for effective SPARQL to SQL wrapper systems. Since
then, other research groups have continued this work and developed systems
such as Morph [58] and Ontop [61].
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4.2 Ontology-Based Data Access

In the previous section, we presented the initial Ultrawrap system, who focus
is on supporting a Direct Mapping. In this section, we present how Ultrawrap
has been extended for Ontology-Based Data Access, denoted as UltrawrapOBDA,
and thus supports customized mappings in R2RML [66].

Given a source relational database, a target OWL ontology and a map-
ping from the relational database to the ontology, Ontology-Based Data Access
(OBDA) concerns answering queries over the target ontology using these three
components. Commonly, researchers have taken two approaches to developing
OBDA systems: materialization-based approach (forward chaining) or rewriting-
based approach (backward chaining). In the materialization approach, the input
relational database D, target ontology O and mapping M (from D to O) are used
to derive new facts that are stored in a database Do, which is considered to be the
materialization of the data in D given M and O. Then the answer to a SPARQL
query Q over the target ontology over D, M and O is computed by directly posing
Q over Do [6]. In the rewriting approach, three steps are executed. First, a new
query Qo is generated from the query Q and the ontology O, which is considered
to be the rewriting of Q w.r.t. to O. The majority of the OBDA literature focuses
on this step [54]. Second, the mapping M is used to compile Qo to a SQL query
Qsql over D [56,57]. Finally, Qsql is evaluated on the database D, which gives us
the answer to the initial query Q. Therefore, the answer to a query Q over O, D,
and M is computed by directly posing Qsql over D.

We develop an OBDA system, UltrawrapOBDA, which combines material-
ization and query rewriting. UltrawrapOBDA is an extension of our previous
Ultrawrap system which supports customized mappings in R2RML. In the same
spirit of our Ultrawrap work, the objective is to effect optimizations by pushing
processing into the Relational Databases Management Systems (RDBMS) and
closer to the stored data, hence making maximal use of existing SQL infrastruc-
ture. We distinguish two phases: a compile and runtime phase. In the compile
phase, we are given as input a relational database D, an ontology O and a
mapping M from D to O. The mapping M is given in R2RML. The first step
of this phase is to embed in M the ontological entailments of O, which gives
rise to a new mapping M�, that is called the saturation of M w.r.t. O. The
mapping M� is implemented using SQL views. In order to improve query per-
formance, an important issue is to decide which views should be materialized.
This is the last step of the compilation phase. We then study when a view should
be materialized in order to improve query performance. In the runtime phase,
the input is a query Q over the target ontology O, which is written in the RDF
query language SPARQL, and the problem is to answer this query by rewriting
it into some SQL queries over the views. A key observation at this point is that
some existing SQL optimizers are able to perform rewritings in order to execute
queries against materialized views.

To the best of our knowledge, in 2014, we presented the first OBDA sys-
tem which supported ontologies with transitivity by using SQL recursion. The
ontology profile considered in this work is our proposed OWL-SQL. More
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specifically, our contributions are the following. (1) We present an efficient
algorithm to generate saturated mappings. (2) We provide a proof that every
SPARQL query over a target ontology can be rewritten into a SQL query in our
context, where mappings play a fundamental role. It is important to mention
that such a result is a minimal requirement for a query-rewriting OBDA system
relying on relational database technology. (3) We present a cost model that help
us to determine which views to materialize to attain the fastest execution time.
And (4) we present an empirical evaluation using (i) Oracle, (ii) two benchmarks
including an extension of the Berlin SPARQL Benchmark, and (iii) six differ-
ent scenarios. This evaluation includes a comparison against a state-of-the-art
OBDA system, and its results validate the cost model and demonstrate favorable
execution times for UltrawrapOBDA.

Related work. This research builds upon the work of Rodriguez-Muro et al.
implemented in Ontop [61] and our previous work on Ultrawrap [67]. Rodriguez-
Muro et al. uses the tree-witness rewriting algorithm and introduced the idea of
compiling ontological entailments as mappings, which they named T -Mappings.
There are three key differences between Rodriguez-Muro et al. and our work in
this paper: (1) we have extended the work of Rodriguez-Muro et al. to support
more than hierarchy of classes and properties, including transitivity; (2) we intro-
duce an efficient algorithm that generates saturated mappings while Rodriguez-
Muro et al. has not presented an algorithm before; and (3) we represent the
mappings as SQL views and study when the views should be materialized. Ultra-
wrap is a system that encodes a fix mapping, the direct mapping [7,65], of the
database as RDF. These mappings are implemented using unmaterialized SQL
views. The approach presented extends Ultrawrap in three important aspects:
(1) supports a customized mapping language; (2) supports reasoning through
saturated mappings; and (3) considers materializing views for query optimiza-
tion. Another related work is the combined approach [47], which materializes
entailments as data, without considering mappings, and uses a limited form of
query rewriting. The main objective of this approach is to deal with the case of
infinite materialization, which cannot occur for the type of ontologies considered
in this paper.

Saturation of RDB2RDF Mappings. Being able to modify an RDB2RDF
mapping to embed a given ontology is a fundamental step in our approach. This
process is formalized by means of the notion of saturated mapping.

Definition 18 (Saturated Mapping). Let M and M� be RDB2RDF map-
pings over a relational schema R and O an ontology. Then M� is a saturation of
M w.r.t. O if for every instance I over R and assertional RDF-triple (a, b, c):

[[M]]I ∪ ΣO |= triple(a, b, c) iff triple(a, b, c) ∈ [[M�]]I .

We study the problem of computing a saturated mapping from a given
mapping and ontology. In particular, we focus on the case of ontologies not
mentioning any triple of the form (a, type, transProp), which we denote by
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non-transitive ontologies. In the next section, we extend these results to the case
of arbitrary ontologies.

In our system, the saturation step is performed by exhaustively applying the
inference rules in Table 1, which allow us to infer new RDB2RDF rules from
the existing ones and the input ontology. More precisely, given an inference rule
t:ρ1

ρ2
from Table 1, where t is a triple and ρ1, ρ2 are RDB2RDF rules, and given

an RDB2RDF mapping M and an ontology O, we need to do the following to
apply t:ρ1

ρ2
over M and O. First, we have to replace the letters A and B in t

with actual URIs, say a ∈ I and b ∈ I, respectively.11 Second, we need to check
whether the triple obtained from t by replacing A by a and B by b belongs to O,
and whether the RDB2RDF rule obtained from ρ1 by replacing A by a belongs
to M. If both conditions hold, then the inference rule can be applied, and the
result is an RDB2RDF mapping M′ consisting of the rules in M and the rule
obtained from ρ2 by replacing A by a and B by b.

Table 1. Inference rules to compute saturated mappings.

Example 13. Consider the RDB2RDF rule order(s, x1, x2, x3, x4, 1)∧p = type∧
o = ShippedOrder → triple(s, p, o)., and assume that we are given an ontology
O containing the triple (ShippedOrder, subClass, SuccessfulOrder). Then by
applying the first inference rule in Table 1, we infer the following RDB2RDF rule:
order(s, x1, x2, x3, x4, 1)∧ p = type∧ o = SuccessfulOrder → triple(s, p, o).
11 If t = (A, type, symProp), then we only need to replace A by a.
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Given an RDB2RDF mapping M and an ontology O, we denote by
Sat(M,O) the RDB2RDF mapping obtained from M and O by successively
applying the inference rules in Table 1 until the mapping does not change. The
following theorem shows that Sat(M,O) is a saturation of M w.r.t. O, which
justifies its use in our system.

Theorem 6. For every RDB2RDF mapping M and ontology O in RDFS, it
holds that Sat(M,O) is a saturation of M w.r.t. O.

Theorem 6 is a corollary of the fact that the first six rules in Table 1 encode
the rules to infer assertional triples from an inference system for RDFS given
in [52].

A natural question at this point is whether Sat(M,O) can be computed effi-
ciently. In our setting, the approach based on exhaustively applying the inference
rules in Table 1 can be easily transformed into a polynomial time algorithm for
this problem. However, if this transformation is done in a näıve way, then the
resulting algorithm is not really efficient. In [66], we present an efficient algo-
rithm to compute Sat(M,O) that is linear in the size of the input RDB2RDF
mapping M and ontology O, which are denoted by ‖M‖ and ‖O‖, respectively.

Theorem 7. There exists an algorithm that, given an RDB2RDF mapping M
and a non-transitive ontology O, computes Sat(M,O) in time O(‖M‖ · ‖O‖).

The main ingredients of the algorithm mentioned in Theorem7 can be found
in [66].

Dealing with Transitive Predicates. We show here how the approach pre-
sented in the previous section can be extended with recursive predicates. This
functionality is of particular interest as the current work on OBDA under OWL
2 QL does not consider transitivity, mainly because the query language in which
the query over the ontology has to be rewritten is SQL without recursion [15].

From now on, given a first-order formula ϕ(x, y), we use Tcϕ(x, y) to denote
the transitive closure of ϕ(x, y). This formula can be written in many different
formalisms. For example, if ϕ(x, y) is a conjunction of relational atoms, then
Tcϕ(x, y) can be written as follows in Datalog:

ϕ(x, y) → Tcϕ(x, y), ϕ(x, z),Tcϕ(z, y) → Tcϕ(x, y).

In our system, Tcϕ(x, y) is written as an SQL query with recursion. Then to
deal with an ontology O containing transitive predicates, the set of inference
rules in Table 1 is extended with the following inference rule:

(A, type, transProp) :
{βi(s, o, x̄i) ∧ p = A → triple(s, p, o)}k

i=1

Tc[
∨k

i=1 ∃x̄iβi]
(s, o) ∧ p = A → triple(s, p, o)

.

This rule tell us that given a transitive predicate A, we can take any number k
of RDB2RDF rules βi(s, o, x̄i) ∧ p = A → triple(s, p, o) for this predicate, and
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we can generate a new RDB2RDF rule for A by putting together the conditions
βi(s, o, x̄i) in a formula γ(s, o) =

∨
i ∃x̄iβi(s, o, x̄i), and then using the transitive

closure Tcγ(s, o) of γ in an RDB2RDF rule Tcγ(s, o)∧p = A → triple(s, p, o).
In order for this approach to work, notice that we need to extend the syntax of
RDB2RDF rules (1) and (2), so that formulae α and β in them can be arbitrary
formulae in a more expressive formalism such as (recursive) Datalog.

Implementing RDB2RDF Mappings as Views. Inspired by our previous
work on Ultrawrap [67], every RDB2RDF rule is implemented as a triple-query,
that is, as a SQL query which outputs triples. For example, the RDB2RDF rules:

order(s, x1, x2, x3, x4, 1) ∧ p = type ∧ o = SuccessfulOrder → triple(s, p, o)
order(s, x1, x2, x3, x4, 2) ∧ p = type ∧ o = SuccessfulOrder → triple(s, p, o)

give rise to the following triple-queries:

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “1”

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “2”

In practice, the triple-queries may include additional projections in order to
support indexes, URI templates, datatypes and languages. However, for readabil-
ity, we will consider here this simple version of these queries. Then to implement
an RDB2RDF mapping, all the class (resp. predicate) RDB2RDF-rules for the
same class (resp. predicate) are grouped together to generate a triple-view, that
is, a SQL view comprised of the union of the triple-queries for this class (resp.
predicate). For instance, in our previous example the following is the triple-view
for the class SuccessfulOrder:

CREATE VIEW SuccessfulOrderView AS

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “1”

UNION ALL

SELECT orderid as S, “type” as P, “SuccessfulOrder” as O FROM order WHERE status = “2”

SPARQL to SQL Rewriting with RDB2RDF Mappings. The runtime
phase executes SPARQL queries on the RDBMS. We reuse Ultrawrap’s approach
of translating SPARQL queries to SQL queries in terms of the views defined for
every class and property, which are denoted as triple-views. Thus, we make
maximal use of existing query optimization tools in commercial RDBMS, such
as Oracle, to do the SPARQL query execution and rewriting.

Continuing with the example in Sect. 4.2, consider now a SPARQL
query which asks for all the Successful Orders: SELECT ?x WHERE {?x
type SuccessfulOrder}. It is clear that this query needs to be rewritten to
ask for the orders with status 1 and 2. The SuccessfulOrderView triple-view in
Sect. 4.2 implements the mappings to the SuccessfulOrder class which consists
of two triple-queries, one each for status = 1 and status = 2. Therefore, it is
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sufficient to generate a SQL query in terms of the SuccessfulOrderView. Given
that a triple-view models a table with three columns, a SPARQL query is syn-
tactically translated to a SQL query in terms of the triple-view. The resulting
SQL query is SELECT t1.s AS x FROM SuccessfulOrderView t1.

A natural question at this point is whether every SPARQL query has an
equivalent SQL query in our context, where RDB2RDF mappings play a funda-
mental role. In what follows we give a positive answer to this question.

Theorem 8. Given an RDB2RDF mapping M, every SPARQL query is SQL-
rewritable under M.

The proof that the previous condition holds is by induction on the structure of
a SPARQL query P and, thus, it gives us a (näıve) bottom-up algorithm for trans-
lating P into an equivalent SQL query Q (given the mapping M). More precisely,
in the base case we are given a triple pattern t = {s p o}, where each one of its
component is either a URI or a literal or a variable. This triple pattern is first trans-
lated into a SPARQL query Pt, where each position in t storing a URI or a literal
is replaced by a fresh variable, a filter condition is added to ensure that these fresh
variables are assigned the corresponding URIs or literals, and a SELECT clause
is added to ensure that the output variables of t and Pt are the same. For exam-
ple, if t = {?x type SuccessfulOrder}, then Pt is the following SPARQL query:
SELECT ?x WHERE {?x ?y ?z} FILTER (?y = type && ?z = SuccessfulOrder).
Then a SQL-rewriting of Pt under M is computed just by replacing a triple pat-
tern of the form {?s ?p ?o} by a union of all the triple-queries representing the
RDB2RDF rules in M, and also replacing the SPARQL filter condition in Pt by a
filter condition in SQL.

In the inductive step, we assume that the theorem holds for two SPARQL
queries P1 and P2.

The proof then continues by presenting rewritings for the SPARQL queries
constructed by combining P1 and P2 through the operators SELECT, AND (or
‘.’ operator), OPTIONAL, FILTER and UNION, which is done by using existing
approaches to translate SPARQL to SQL [5,19].

Cost Model for View Materialization. A common approach for query
optimization is to use materialized views [36]. Given that we are implement-
ing RDB2RDF mappings as views, it is a natural to pursue this option. There
are three implementation alternatives: (1) Materialize all the views: This app-
roach gives the best query response time. However, it consumes the most space.
(2) Materialize nothing: In this approach, every query needs to go to the raw
data. However, no extra space is needed. (3) Materialize a subset of the views:
Try to find a trade-off between the best query response time and the amount of
space required. Note that in the previous Ultrawrap work, only unmaterialized
views were considered.

In this section, we present a cost model for these three alternatives. First we
must introduce some terminology. We consider ontologies consisting of hierarchy
of classes which form a tree with a unique root, where a root class of an ontology
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is a class that has no superclasses. Then a leaf class of an ontology is a class that
has no subclasses, and the depth of a class is the number of subclass relationships
from the class to the root class (notice that there is a unique path from a class
to the root class). Moreover, the depth of an ontology is the maximum depth of
all classes present in the ontology.

First, we consider the cost of answering a query Q is equal to the number of
rows present in the relation used to construct Q. For example, if a relation R has
100 rows, then the cost of the query SELECT ∗ FROM R is 100. Second, assume we
have a single relation R and that mappings are from a query on the relation R
with a selection on an attribute A, to a class in the ontology. For example, con-
sider the relation R is order, the attribute A is status and the mapping is to the
class SuccessfulOrder. Finally, we consider a query workload of queries asking
for the instances of a class in the ontology, i.e. SELECT ?x WHERE {?x type C},
which can be translated into the triple-view implementing the mapping to the
class C.

Our cost model is the following: If all the views implementing mappings are
materialized, the query cost is n × NR × S(A,R) where n is the number of leaf
classes underneath the class that is being queried for, NR is the number of tuples
of the relation R in the mapping, and S(A,R) is the selectivity of the attribute A
of the relation R in the mapping. The space cost is NR +(NR ×d) where d is the
depth of the ontology. The reason for this cost is because the number of rows in a
materialized view depends on the selectivity of the attribute and the number of
leaf classes. Additionally, the sum of all the rows of each triple-view representing
the mapping to classes in a particular depth d of an ontology, is equivalent at
most to the number of rows of the relation. If no views are materialized, then
the query cost is n×NR, assuming there are no indices. The space cost is simply
NR. The reason for this cost is because to answer a query, the entire relation
needs to be accessed n times because there are no indices12.

The question now is: How can we achieve the query cost of materializing
all the views while keeping space to a minimum? Our hypothesis is the follow-
ing: If a RDBMS rewrites queries in terms of materialized views, then by only
materializing the views representing mappings to the leaf classes, the query cost
would be n×NR ×S(A,R), the same as if we materialized all the views, and the
space cost would only be 2 × NR. The rationale is the following: A triple-view
representing a mapping to a class, can be rewritten into the union of triple-
views representing the mapping to the child classes. Subsequently, a triple-view
representing the mapping to any class in the ontology can be rewritten into a
union of triple-views representing the mappings to leaf classes of an ontology.
Finally, given a set of triple-views representing mappings from a relation to each
leaf class of an ontology, the sum of all the rows in the set of triple-views is
equivalent to the number of rows in the relation.

12 In the evaluation, we also consider the case when indices are present.
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Given the extensive research of answering queries using views [37] and the
fact that Oracle implements query rewriting on materialized views13, we strongly
suspect that our hypothesis will hold. The evaluation provides empirical results
supporting our hypothesis.

Evaluation. The evaluation requires benchmarks consisting of a relational
database schema and data, ontologies, mappings from the database to ontolo-
gies and a query workload. Thus, we created a synthetic benchmark, the Texas
Benchmark, inspired by the Wisconsin Benchmark [27] and extended the Berlin
SPARQL Benchmark (BSBM) Explore Use Case [11]. More details about the
benchmarks can be found at http://obda-benchmark.org.

The objective of our experiments is to observe the behavior of a commercial
relational database, namely Oracle, and its capabilities of supporting subclass
and transitivity reasoning under our proposed approach. The evaluation consid-
ered six scenarios: (all-mat) all the views are materialized; (union-leaves) only
views representing mappings to the leaf classes are materialized, implemented
with UNION; (or-leaves) same as in the previous scenario but with the views
implemented with OR instead of UNION, (union-index) none of the views,
implemented with UNION, are materialized, instead an index on the respective
attributes have been added, (or-index) same as in the previous scenario but
with the views implemented with OR; and (ontop) we compare against Ontop,
a state of the art OBDA system [61].

An initial assessment suggests the following four expected observations: (1)
The fastest execution time is all-mat; (2) our hypothesis should hold, meaning
that the execution time of union-leaves should be comparable, if not equal, to the
execution time of all-mat; (3) given that the Ontop system generates SQL queries
with OR instead of UNION [61], the execution time of ontop and or-index should
be comparable if not equal; (4) with transitivity, the fastest execution time is
when the views are materialized.

The experimental results suggest the following. The expected observations
(1), (2), (3) and (4) hold. The fastest execution time corresponds to all-mat.
The execution time of union-leaves is comparable, if not equal, to the execu-
tion time of all-mat, because Oracle was able to rewrite queries in terms of the
materialized views. The number of rows examined is equivalent to the number
of rows in the views where everything was materialized. This result provides
evidence supporting our hypothesis and validates our cost model. Finally the
execution time of ontop and or-index are comparable. It is clear that material-
izing the view outperforms the non-materialized view for the following reasons:
when the view is materialized, the size of the view is known beforehand and the
optimizer is able to do a range scan with the index. However, when the view is
not materialized, the size is not known therefore the optimizer does a full scan
of the table.

13 http://docs.oracle.com/cd/B28359 01/server.111/b28313/qrbasic.htm.

http://obda-benchmark.org
http://docs.oracle.com/cd/B28359_01/server.111/b28313/qrbasic.htm
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5 Relational Databases and Semantic Web in Practice

A successfully repeated use case for using Semantic Web technologies with Rela-
tional Databases is for data integration. In this approach, an ontology serves as
a uniform conceptual federating model, which is accessible to both IT developers
and business users. We highlight two challenges: ontology and mapping engineer-
ing. We postulate the need of a pay-as-you-go methodology that address these
challenges and enables agility.

5.1 A Real World Example

Consider the following real-world example. Executives of a large e-commerce
company need to know, “How many orders were placed in a given month and
the corresponding net sales”. Depending on whom they ask they get three differ-
ent answers. The IT department managing the web site records an order when
a customer has checked out. The fulfillment department records an order when
it has shipped. Yet the accounting department records an order when the funds
charged against the credit card are actually transferred to the company’s bank
account, regardless of the shipping status. Unaware of the source of the problem
the executives are vexed by inconsistencies across established business intelli-
gence (BI) reports.

This is precisely where the use of ontologies to intermediate IT development
and business users is valuable. Ontologies serve as a uniform conceptual federated
model describing the domain of interest. The long standing relationship between
Semantic Web technologies and Relational Databases, specifically the Ontology
Based Database Access (OBDA) paradigm and its extension as Ontology Based
Data Integration is maturing, and yielding successful applications.

Even though OBDA has been widely researched theoretically, there is still
need to understand how to effectively implement OBDA systems in practice.

5.2 Where Do Ontologies and Mappings Come From?

The common definition of OBDA states that given a source relational database, a
target ontology and a mapping from the relational database to the ontology, the
goal is to answer queries over the target ontology using these three components.
From a practical point of view, this begs the question: where does the target
ontology and the mappings come from?

Ontology Challenges. Ontology engineering is a challenge by itself. In order
to create the target ontology, users can follow traditional ontology engineering
methodologies [23,74], using competency questions [8,60], test driven develop-
ment [43], ontology design patterns [40], etc. Additionally, per standard prac-
tices, it is recommended to reuse and extend existing ontologies in domains
of interest such as Good Relations for e-commerce14, FIBO for finance15, Gist
14 http://www.heppnetz.de/projects/goodrelations/.
15 http://www.edmcouncil.org/financialbusiness.

http://www.heppnetz.de/projects/goodrelations/
http://www.edmcouncil.org/financialbusiness
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for general business concepts16, Schema.org17, etc. In OBDA, the challenge
increases because the source database schemas can be considered as additional
inputs to the ontology engineering process. Common enterprise application’s
database schema commonly consist of thousands of tables and tens of thousands
of attributes. A common approach is to bootstrap ontologies derived from the
source database schemas, known as putative ontologies [65,69]. The putative
ontologies can gradually be transformed into target ontologies, using existing
ontology engineering methodologies.

Mapping Challenges. Once the target ontology has been created, the source
databases can be mapped. The W3C Direct Mapping standard can be used
to bootstrap mappings [7]. The declarative nature of W3C R2RML mapping
language [25] enables users to state which elements from the source database
are connected to the target ontology, instead of writing procedural code. Given
that source database schemas are very large, the OBDA mapping challenge is
suggestive of an ontology matching problem: the putative ontology of the source
database and the target ontology. In addition to 1–1 correspondences between
classes and properties, mappings can be complex involving calculations and rules
that are part of business logic. For example, the notion of net sales of an order
is defined as gross sales minus taxes, discounts given, etc. The discount can
be different depending on the type of user. Therefore, a business user needs
to provide these definitions before hand. That is why it is hard to automate
this process. Another challenge is to create tools that can create and manage
mappings [68].

Addressing these challenges is crucial for the success of a data integration
project using the OBDA paradigm. However, recall that data integration is
a means to an end. The engineering of a target ontology and mappings are
the means. Answering business questions are the ends. We observe that target
ontologies and mappings are developed in a holistic approach. Given how OWL
ontologies are flexible and R2RML mappings are declarative, these elements
could enable the incremental development of a target ontology and database
mappings. Thus, we argue for a pay-as-you-go methodology for OBDA.

A Pay-as-you-go Methodology for OBDA. We present a methodology to
create the target ontology and mappings for an OBDA system, driven by a
prioritized list of business questions. The data answering the business questions
serve as content of the Business Intelligence (BI) reports that business users
require. The objective is to create a target ontology and mappings, that enable
to answer a list of business questions, in an incremental manner. After a minimal
set of business questions have been successfully modeled, mapped, answered
and made into dashboards, then the set of business questions can be extended.
The new questions, in turn, may extend the target ontology and new mappings

16 https://semanticarts.com/gist/.
17 http://schema.org/.

https://semanticarts.com/gist/
http://schema.org/
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incrementally added. With this methodology, the target ontology and mappings
are developed in an iterative pay-as-you-go approach. Thus, providing an agile
methodology to integrate data using the OBDA paradigm because the focus is
to provide early and continuous delivery of answers to the business users.

We identify three actors involved throughout the process:

– Business User: a subject matter expert who has knowledge of the business
and can identify the list of prioritized business questions.

– IT Developer: a person who has knowledge of databases and knows how the
data is interconnected.

– Knowledge Engineer: a person who serves as a communication bridge between
Business Users and IT Developers and has expertise in modeling data using
ontologies.

Our methodology is divided in two phases: knowledge capture and imple-
mentation. Figure 4 summarizes the methodology.

Fig. 4. The pay-as-you-go methodology for OBDA

Knowledge Capture: Discover-Vocabulary-Ontology. The goal of the
knowledge capture phase is twofold. The first goal is to extract key concepts
and relationships from the set of prioritized business questions. The knowledge
engineer works with business users to understand the meaning of extracted con-
cepts and relationships in order to eliminate ambiguity. The second goal is to
identify which source database(s) contains data relating to the extracted con-
cepts and relationships. The knowledge engineer takes what has been extracted
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with the business users and works with IT developers to identify which tables
and attributes are required. This knowledge capture phase is divided in three
steps:

– Discovery: Discover the concepts and relationships from the input set of pri-
oritized business questions and identify how the concepts and relationships
are connected to the database(s).

– Vocabulary: Identify the business terminology such as preferred labels, alter-
native labels and natural language definitions for the concepts and relation-
ships.

– Ontology: Formalize the ontology in OWL such that it covers the business
questions.

Continuing with our initial example; the knowledge engineer works with busi-
ness users to understand the meaning of the word “Order”. Furthermore, working
with IT developers, the knowledge engineer may learn that the Order Manage-
ment System is the authoritative source for all orders. Within that database,
the data relating to orders may be vertically partitioned across a several tables
totaling hundreds of attributes. Finally, the attributes required for the calcula-
tion of the net sales of an order prove to be only a handful of the hundreds of
attributes. The next step is to implement the mappings.

Implementation: Mapping-Query-Validation. The goal of the implemen-
tation phase is to enable answering the business questions by connecting the
ontology with the data. That is the knowledge engineer takes what was learned
from the previous steps and implements the mapping in R2RML. The business
questions are implemented as SPARQL queries using the business terminology
defined in the target ontology. The R2RML mapping is the input to an OBDA
system which will enable the execution of the SPARQL queries. A final step
is to validate the results of the queries with business users. To summarize, the
implementation phase is divided in three steps:

– Mapping: Implement the mapping in R2RML, given the output of the Dis-
cover and Ontology steps. The mapping is then used to setup the OBDA
system.

– Query: Business questions are implemented as SPARQL queries using the
terminology of the target ontology. The answers to the business questions are
the SPARQL results.

– Validation: Confirm that the SPARQL queries return the correct answers.

Continuing with our running example; the result from the knowledge cap-
ture phase revealed that the business users considered an order, “an order”, if it
had shipped or the accounts receivable had been received. The knowledge engi-
neer (the R2RML writer) in conversation with the IT developer identified that
requirement as all tuples in the MASTERORDER table where order status is
equal to 2 or 3. Therefore, an R2RML mapping consists of the following SQL
query:
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SELECT * FROM MASTERORDER WHERE orderstatus IN (2,3)

The definition of net sales of an order is a math formula that uses attributes
from the order and ordertax table. This can be represented in the following SQL
query:

SELECT o.orderid, o.ordertotal - ot.finaltax -
CASE WHEN o.currencyid in (‘USD’, ‘CAD’) THEN o.shippingcost

ELSE o.shippingcost - ot.shippingtax END AS netsales
FROM order o, ordertax ot
WHERE o.orderid = ordertax.orderid

At this point, we can go back to the knowledge capture step for two reasons. If
the validation was successful, then we can start another iteration of the approach
by soliciting a new set of business questions. On the other hand, if the validation
was unsuccessful because the queries did not return the expected results, we
can revisit the mappings for that specific fragment. Fixing the problem is now
in a compartmentalized section of the ontology and corresponding mappings.
Progress is made in an incremental and isolated effort. In worst case the original
business logic needs to be revisited and we can go back to the discovery step.

Using this pay-as-you-go methodology for applications across multiple indus-
tries is yielding agile results. Development cycles of 1–2 weeks yield new dash-
boards. All stakeholders are concentrated on a specific task, an agreed upon
set of business questions. As development issues arise conversations between the
knowledge engineers, business users and IT developers are focused on specific,
manageably scoped concepts. The knowledge capture and implementation steps
can be accomplished independently. Furthermore, by starting small, the target
ontology and mappings are created monotonically. This means that new con-
cepts, relationships and mappings are added without disturbing the work that
already has been done. In the case when change to past work is required, it is
accomplished without much disruption. The declarative aspect of R2RML map-
pings, enables focus on what needs to be connected between the source and
target instead of writing procedural code and scripts which can be complex to
maintain.? Finally, success of each iteration is well defined: answer the business
questions.

6 Conclusion

The answer to the question: How and to what extent can Relational Databases
be integrated with the Semantic Web? comes in three parts:

– Relational Databases can be directly mapped to RDF and OWL:
Relational Databases can be automatically mapped to the Semantic Web. An
OWL ontology can be generated from the relational schema and the relational
data can be represented as an RDF graph. This mapping does not loose infor-
mation, preserves queries, is monotone and is positive semantics preserving.
Additionally, it is not possible to have a monotone and full semantics pre-
serving direct mapping.
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– Relational Databases can evaluate and optimize SPARQL queries:
Relational Databases are able to efficiently evaluate SPARQL queries. By
implementing the direct mapping using SQL views, relational optimizer
exploit two important semantic query optimizations: detection of unsatis-
fiable conditions and self join elimination.

– Relational Databases can act as reasoners: Given a Relational Data-
base, an OWL ontology with inheritance and transitivity, and a mapping
between the two, Relational Databases are able to act reasoner. This is pos-
sible by implementing the mappings as SQL views and including SQL recur-
sion, materializing a subset of the views based on a cost model, and exploiting
existing optimizations such as query rewriting using materialized views.

The results of our research is embodied in a system called Ultrawrap.

6.1 Open Problems

The relationship between Relational Databases and the Semantic Web is via
mappings. Semantic Web technology provides the following features. OWL
Ontologies enable reasoning (reasoning). SPARQL queries with variables in the
predicate position reveal metadata. This is useful because it enables exploration
of the data in case the schema is not known beforehand. Additionally, queries
of this form are intrinsic to faceted search (variable predicate). Given the
graph model of RDF, the latest version of SPARQL, SPARQL 1.1, increased the
expressivity and now provides constructs to navigate the graph (graph traver-
sal). Another virtue of dealing with graphs is that insertion of data is reduced to
adding an edge with a node to the graph. There are no physical requirements to
conform to a schema (dynamic schema). Finally, data can be easily integrated
by simply adding edges between nodes of different graphs (data integration).

A goal of our research has been to understand up to what extent can Rela-
tional Databases be integrated with the Semantic Web. The extent of our
research has focused on mappings and reasoning. A remaining question is: can
that extent be expanded? And up to where? We call this the Tipping Point
problem.

Assume the starting point are legacy relational databases and we want to
take advantage of these five features of the Semantic Web (reasoning, variable
predicate, graph traversal, dynamic schema, data integration). How much can
be subsumed by Relational Database technology before the balance is tipped
over and we end up using native Semantic Web technology? What is the tipping
point (or points)?

– Mappings: The engineering of mappings is still open grounds for research.
What mappings patterns can be defined and reused in order to solve a
commonly occurring problem [63]? Given that R2RML mappings are rep-
resented in RDF, these can be stored in a triplestore, queried and reasoned
upon. This opens up potential such as mapping analysis, automatically gen-
erating mappings, reusing existing mappings during the engineering of new
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mappings, consistency checking of mappings in conjunction with the ontol-
ogy, adding provenance information to the mappings to support data lin-
eage [22,26,42,45,71]. Additionally, there is a need for tools to support users
to create mappings [12,68].

– Reasoning: Our research proposed to represent ontological entailments as
mappings and implement them as views. Subsequently, a subset of these views
are materialized. Open questions remain. What is the state of the art of other
RDBMS’s optimizers in order to support this approach? How does this app-
roach respond to complex query workloads? The model assumed a read-only
database, therefore, what is the cost of maintaining views when the under-
lying data is updated? Evidence is provided that Relational Databases can
act as reasoners for RDFS and Transitivity. Can the expressivity be increased
while maintaining efficient computation by the RDBMS optimizer? What is
the trade-off between reasoning over relational databases with mappings and
using native RDF databases which supports reasoning?

– Variable Predicate: For queries with variables in the predicate position,
the mapping stipulates that the variable may be bound to the name of any
column in the database. These queries are a syntactic construct of higher
order logic. Ultrawrap translates these queries into a SQL query consisting of
a union for each attribute in the database. This query ends up reading the
entire database and suffers a performance penalty. What optimizations can
be implemented in order to overcome this issue? What hints can be provided
in a query?

– Graph Traversal: Regular Path Queries and SPARQL 1.1 property path
queries enable pattern-based reachability queries. These types of queries
enable the traversal and navigation of the graph. A natural question is how
much of SQL recursion can be used to implement these types of queries?

– Dynamic Schema: Relational Databases have a fixed schema. Insertion of
data needs to adhere to the schema. A schema needs to be altered in case
new data is inserted which does not adhere to the schema. Can a Relational
Database become hybrid graph/relational database? What effect does the
sparsity of data have? What is the best storage manager (column vs row
store)?

– Data Integration: When it comes to integrate disparate databases, one app-
roach is to extract the relational data, transform it physically to RDF and
then load it into a RDF database (ETL). Another approach is to federate
queries. In other words, legacy data continues to reside in the relational data-
bases and queries are sent to each source (Federation). Which approach is
practical? Depending on what? Can hybrid system be efficient?

An overarching theme is the need to create systematic and real-world bench-
marks in order to evaluate different solutions for these features.

These open questions provide a roadmap to further expand the extent that
Relational Databases can be integrated with the Semantic Web.
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Abstract. Linked Data provides access to huge, continuously growing
amounts of open data and ontologies in RDF format that describe enti-
ties, links and properties on those entities. Equipping Linked Data with
inference paves the way to make the Semantic Web a reality. In this sur-
vey, we describe a unifying framework for RDF ontologies and databases
that we call deductive RDF triplestores. It consists in equipping RDF
triplestores with Datalog inference rules. This rule language allows to
capture in a uniform manner OWL constraints that are useful in prac-
tice, such as property transitivity or symmetry, but also domain-specific
rules with practical relevance for users in many domains of interest. The
expressivity and the genericity of this framework is illustrated for model-
ing Linked Data applications and for developing inference algorithms. In
particular, we show how it allows to model the problem of data linkage
in Linked Data as a reasoning problem on possibly decentralized data.
We also explain how it makes possible to efficiently extract expressive
modules from Semantic Web ontologies and databases with formal guar-
antees, whilst effectively controlling their succinctness. Experiments con-
ducted on real-world datasets have demonstrated the feasibility of this
approach and its usefulness in practice for data integration and informa-
tion extraction.

1 Introduction

Thanks to the RDF data model, the Semantic Web has become a reality with
the rapid development of Linked Data. Linked Data provides access to huge,
continuously growing amounts of open data in RDF format that describe prop-
erties and links on entities referenced by so-called Uniform Resource Identifiers
(URIs).
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RDFS and OWL languages [5] allow to express a lot of useful logical con-
straints on top of RDF datasets, and existing Semantic Web tools implement
inference algorithms to exploit them. In particular, the Jena environment1

includes a rule-based reasoner that implements the RETE algorithm [21]. When
the inference mode is launched, the saturated dataset is computed, which is the
set of RDF facts that can be logically inferred from the input RDF dataset and
a given set of rules. The saturation process is guaranteed to terminate if the
rules are safe, i.e., if the variables appearing in the conclusion of each rule also
appear in its condition part.

Safe rules (also called Datalog rules) on top of RDF facts capture in a uniform
way most of the OWL constraints useful in practice, as well as mappings across
different datasets, and also domain knowledge provided by experts, while guaran-
teeing a polynomial data complexity of reasoning and query answering [2].

In the setting of a unifying framework that we have called deductive RDF
triplestores, we have followed a rule-based approach to address several problems
raised by exploiting semantic web knowledge bases. For this, we have extended
and adapted forward-chaining and backward-chaining algorithms initially devel-
oped for Datalog deductive databases.

This survey is structured as follows. In Sect. 2, we first recall the ingredients
of Linked Data and we define what we call a deductive RDF dataset to capture
several ontological constraints expressing data semantics. In Sect. 3, we survey
the rule-based data linkage approach that we have developed in the context of
Linked Data based on reasoning for inferring differentFrom and sameAs facts.
In Sect. 4, we summarize our approach for extracting bounded-level modules
from RDF knowledge bases. Finally, in Sect. 5, we illustrate our methodology
for rule-based integration of heterogeneous data and ontologies through several
applications related to Medicine. Finally, we conclude in Sect. 6.

2 Datalog Rules on Top of RDF Datasets

We first recall the ingredients of Linked Data and then we define what we call
a deductive RDF dataset to capture several ontological constraints expressing
data semantics.

2.1 RDF Datasets in Linked Data

An RDF dataset in Linked Data is defined by a URL u and a set F of RDF facts
that are accessible as URL through a query endpoint. We will denote by ds(u)
the set F of RDF facts that can be queried at the URL u.

An RDF fact is a triple t = (s, p, o) where the subject s is either a URI or a
blank node, the predicate p is a URI, and the object o may be either a URI, a
blank node or a literal. We will denote the vocabulary used in ds(u) by voc(u),
i.e., the names of predicates used to declare triples in the dataset accessible at
the URL u.
1 https://jena.apache.org/documentation/inference/.

https://jena.apache.org/documentation/inference/
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2.2 Queries over RDF Datasets in Linked Data

Queries over Linked Data are SPARQL conjunctive queries entered through a
given query endpoint accessible at a given URL. In this paper, we use a simplified
notation for SPARQL queries, and, without loss of generality, we consider that
all variables are distinguished.

A query q(u) asked to an RDF dataset identified by (and accessible at) the
URL u is a conjunction of triple patterns denoted by TP1(v1), . . . , TPk(vk)
where each triple pattern TPi(vi) is a triple (sv, pv, ov) in which the subject
sv, the predicate pv, or the object ov can be variables: vi is the set of variables
appearing in the triple pattern. Variables are denoted by strings starting by ‘?’.
TPi(vi) is a ground triple pattern if its set of variables vi is empty (denoted by
TPi()). A ground triple pattern corresponds to a RDF fact. A boolean query
is a conjunction of ground triple patterns.

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over the dataset ds(u)
consists in finding substitutions θ assigning the variables in

⋃
i∈[1..k] vi to con-

stants (i.e., identifiers or literals) such that TP1(θ.v1), . . . , TPk(θ.vk) are RDF
facts in the dataset.

The corresponding answer is equally defined as the tuple of constants
assigned by θ to the variables or as the set of corresponding RDF facts
TP1(θ.v1), . . . , TPk(θ.vk) that will be denoted by θ.q(u). In the remainder of
the paper, we will adopt the latter definition. The answer set of the query q(u)
against the dataset ds(u) = F is thus defined as:

Answer(q(u), F ) =
⋃

{θ|θ.q(u)⊆F}
{θ.q(u)}

For a boolean query q(u), either the answer set is not empty and we will
say that the query is evaluated to true, or it is empty and we will say that it
evaluated to false.

For a query q(u) to have a chance to get an answer when evaluated over the
dataset ds(u), it must be compatible with the vocabulary used in this dataset,
i.e., (a) the predicates appearing in the triple patterns of q(u) must belong to
the set voc(u) of predicates known to occur in ds(u), (b) the URIs appearing as
constants in the triple patterns of q(u) must have u as prefix.

In accordance with SPARQL queries allowing different FROM operators,
a conjunctive query can in fact specify several entry points u1, . . . , un of
datasets over which the query has to be evaluated. We will denote such a query
q(u1, . . . , un). The above definitions of answers and compatibility can be gener-
alized appropriately by replacing the dataset ds(u) by the union

⋃
i∈[1..n] ds(ui)

of the specified datasets.

2.3 Deductive RDF Datasets

In order to capture in a uniform way semantic constraints that can be declared on
top of a given RDF dataset, but also possibly mappings between local predicates
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and external predicates within the vocabulary of other datasets, and domain
knowledge provided by domain experts, we consider that RDF datasets can
be enriched with Datalog rules. The Datalog rules that we consider are of the
form: Condr → Concr, in which the condition Condr is a conjunction of triple
patterns (i.e., a conjunctive query) and the conclusion Concr is a triple pattern.
We consider safe rules, i.e., rules such that all the variables in the conclusion
are also in the condition. Datalog rules on top of RDFS facts capture most of
the OWL constraints used in practice, while guaranteeing a polynomial data
complexity for reasoning and query answering.

A deductive RDF dataset dds(u) accessible at the URL u is thus a local
knowledge base (F,R) made of a set of RDF facts F and a set R of rules. The
application of rules allows to infer new facts that are logically entailed from
F ∪ R. A rule r can be applied to F if there exists a substitution θ such that
θ.Condr ⊆ F and the result of the rule application is F ∪{θ.Concr}. These new
facts can in turn trigger rules and infer additional facts. This is formalized in
the following definition of the standard semantics of a knowledge base F ∪ R
composed of a finite set of facts F and a finite set of rules R, based on the least
fixed point of immediate consequence operator TR.

Definition 1 (Datalog semantics)

– (F,R) �1 f iff there exists a rule TP1(v1)∧. . .∧TPk(vk) → TP (v) is in R and
there exists a mapping θ from its variables to constants such that f = θ.TP (v)
and θ.TPi(vi) ∈ F for every i ∈ [1..k].

– (F,R) � f iff there exists i such that f ∈ TR(Fi) where F0 = F , and for every
i ≥ 0, Fi+1 = TR(Fi) = Fi ∪ {f |Fi, R �1 f}.

For a finite set of facts F and a finite set of safe rules R, there exists a
unique least fixed point Fn (denoted by SAT (F,R)) such that for every k ≥ n
Fk = TR(Fn), i.e., there exists a step in the iterative application of the immediate
consequence operator for which no new fact is inferred. Several forward-chaining
algorithms exist to compute SAT (F,R), in particular the semi-naive bottom-up
evaluation in Datalog [2], and the RETE algorithm [21] that is implemented in
many rule-based reasoners, including in Semantic Web tools such as Jena (see
Footnote 1).

Query Evaluation over a Deductive Dataset

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over a deduc-
tive dataset dds(u) consists in finding substitutions θ such that the facts
TP1(θ.v1), . . . , TPk(θ.vk) can be inferred from the deductive dataset, or equiv-
alently belong to the result SAT (F,R) of the facts that can be inferred from F
and R:

Answer(q(u), (F,R)) = Answer(q(u), SAT (F,R))

Thus, a boolean query q(u) is evaluated to true if and only if q(u) ∈ SAT (F,R),
i.e., if and only if (F,R) � q(u), where � is the standard notation for logical
inference.
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Within the vocabulary of a deductive dataset, we distinguish the extensional
predicates (EDB predicates for short) that appear in the triplets of the dataset
F , from the intentional predicates (IDB predicates) that appear in conclusion of
some rules in R. Like in deductive databases, and without loss of generality (i.e.,
by possibly renaming predicates and adding rules), we suppose that these two
sets are disjoint. We will denote ODB predicates the external predicates (i.e.,
defined in a different namespace than the considered deductive dataset) that
possibly appear in the dataset or in the rules. These predicates are the core of
Linked Data in which a good practice is to re-use existing reference vocabularies.
We suppose (again, without loss of generality) that the set of ODB predicates is
disjoint from the set of IDB predicates (but not necessarily from the set of EDB
predicates).

3 Rule-Based Data Linkage

Data linkage consists in deciding whether two URIs refer to the same real-world
entity. This is a crucial task in Linked Data. In particular, it is very impor-
tant to correctly decide whether two URIs refer to the same real-world entity
for developing innovative applications on top of Linked Data, that exploit the
cross-referencing of data [20,26]. This task is often referred to as data interlink-
ing, and is also known as record linkage and entity resolution, and it has been
widely studied for the case of relational data [16]. As regards to Linked Data,
data linkage is especially challenging since (1) tools need to scale well with large
amounts of data, (2) data is frequently described using heterogeneous vocab-
ularies (ontologies), and (3) tools need to deal with data which is inherently
incomplete, and very often noisy.

In the context of Linked Data and RDF data, different approaches to data
linkage have been proposed. Most of them are based on numerical methods
that use linkage rules to compare property values of resources, using similarity
measures to handle noisy data. They conclude weighted sameAs links, from
which the links with higher weights are expected (but never guaranteed) to be
correct [34,48]. These approaches suffer from two weaknesses. First, rules cannot
be chained, as they are thought to be applied only once; and second, weights
are combined in a non-formal manner, since there is no formal semantics that
captures the combination of weights.

In contrast, like a few other works [31,40], we promote a rule-based approach
equipped with full reasoning.

First, we have investigated a logical approach that exploits uniqueness con-
straints (such as inverse functional properties and keys) and other schema con-
straints, domain knowledge and alignments between different vocabularies which
can be modelled as logical rules. This enables to infer all certain sameAs and
differentFrom facts that are logically entailed from a given set of domain con-
straints and input facts. Our main contribution is a novel algorithm, called
Import-by-Query, that enables the scalable deployment of such an approach in
the decentralized setting of Linked Data. The main challenge is to identify the
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data, possibly distributed over several datasets, useful for inferring owl:sameAs
and owl:differentFrom facts of interest. Compared to the approach reported in
[31], relying on a global import obtained by a breadth-first crawl of the Linked
Data cloud, we perform a selective import while guaranteeing completeness for
the inference of the targeted owl:sameAs and owl:differentFrom facts. For doing
so, the Import-by-Query algorithm that we have designed alternates steps of
sub-query rewriting and of tailored querying of the Linked Data cloud to import
data as specific as possible to infer owl:sameAs and owl:differentFrom facts. It
is an extension of the well-known query-subquery algorithm for answering Dat-
alog queries over deductive databases. Experiments conducted on a real-world
dataset have demonstrated the feasibility of this approach and its usefulness in
practice for data linkage and disambiguation.

We summarize this logical approach in Sect. 3.1.
Logical approaches applying only certain rules over clean and complete data

guarantee to provide sound results, i.e., a 100% precision. However, the recall
may be low because in Linked Data, data is inherently incomplete and possibly
noisy. Input facts may be missing to trigger rules, either because some values
for properties involved in rules conditions are absent for some URIs, or because
some of these values are noisy with some misspelling that prevents some con-
ditions to be satisfied. In addition, rules may be missing to infer sameAs facts
with certainty, although some strong evidence could be obtained from the com-
bination of soft constraints. In order to handle this, we have modeled the general
data linkage problem as a reasoning problem with uncertainty. We have intro-
duced a probabilistic framework for modelling and reasoning over uncertain RDF
facts and rules that is based on the semantics of probabilistic Datalog, and we
have designed an algorithm, ProbFR, based on this framework. This approach
is summarized in Sect. 3.2

3.1 Logical Approach for Data Linkage [4]

Illustrative Scenario

We describe here a simplified scenario inspired by the task of disambiguation
of named entities in a large real-world RDF documentary catalog produced by
the French National Audiovisual Institute (INA), and that we have used in our
experiments.

Figure 1 shows an extract of the INA vocabulary and a sample of RDF
triples from the INA dataset.2 Any person entity is an instance of the class
ina:PhysicalPerson, which has two subclasses: ina:Person and ina:VideoPerson.
The class ina:Person is used for representing French personalities while
ina:VideoPerson is used for identifying person entities that play a role in a video.
INA experts want to disambiguate individuals within ina:Person, and link these
individuals to the ones of ina:VideoPerson.

2 We have slightly modified the INA vocabulary (e.g. translating French terms into
English terms) for the sake of readability.



Datalog Revisited for Reasoning in Linked Data 127

Three homonymous persons are described in Fig. 1, all named “Jacques
Martin”: ina:per1, ina:per2 and ina:per3. It is unknown if these entities rep-
resent the same or different persons, but some additional information is given:
ina:per1 is known to be the presenter of a program recorded in the video ina:vid1
whose title is “Le Petit Rapporteur”, whereas ina:per2 and ina:per3 have dates
of birth “1933-06-22” and “1921-09-25”, respectively.

Fig. 1. An extract of INA vocabulary and RDF facts.

Our approach to disambiguating the person entities ina:per1, ina:per2 and
ina:per3 consists in exploiting domain knowledge and constraints, as well as
general properties of owl:sameAs and owl:different From, all this knowledge being
expressed in a uniform way by rules. Table 1 shows rules which, for the purpose of
this simplified scenario, we can assume they have been validated by INA experts.
R1-R3 are domain-specific rules. R1 expresses that ina:birthdate is functional.
This rule can be used to infer that ina:per2 and ina:per3 are different because
they have different dates of birth. R2 expresses that ina:name and ina:birthdate
form a key (within the INA dataset), and R3 the fact that two persons who
have the same name and presented programs recorded in videos with the same
title must be the same. R2 and R3 indeed could be useful for deciding if ina:per1
refers to the same person as ina:per2 or ina:per3, but some information is missing:
the date of birth of ina:per1 is not known, or whether ina:per2 or ina:per3 are
presenters and of which programs.

The above missing information can be completed thanks to external data
coming from DBpedia. In Fig. 2, we show DBpedia facts describing the DBpe-
dia person entity db:per1, and an extract of the DBpedia vocabulary. Rules R4
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Table 1. Rules in the INA illustrative scenario.

R1 : (?x1, ina:birthdate, ?b1), (?x2, ina:birthdate, ?b2), (?b1, notEqualTo, ?b2) → (?x1, owl:differentFrom, ?x2)
R2 : (?x1, ina:name, ?n), (?x2, ina:name, ?n), (?x2, ina:birthdate, ?b), (?x1, ina:birthdate, ?b)

→ (?x1, owl:sameAs, ?x2)
R3 : (?x1, ina:name, ?n), (?x2, ina:name, ?n), (?x1, ina:presenter, ?v1), (?x2, ina:presenter, ?v2), (?v1, ina:title, ?t),

(?v2, ina:title, ?t) → (?x1, owl:sameAs, ?x2)
R4 : (?x1, ina:name, ?n), (?x2, foaf:name, ?n), (?x1, ina:presenter, ?v), (?v, ina:title, ?t), (?x2, db:presenter, ?t)

→ (?x1, owl:sameAs, ?x2)
R5 : (?x1, ina:name, ?n), (?x2, foaf:name, ?n), (?x1, ina:birthdate, ?b), (?x2, foaf:birthdate, ?b)

→ (?x1, owl:sameAs, ?x2)
R6 : (?x1, owl:sameAs, ?x2), (?x2, owl:sameAs, ?x3) → (?x1, owl:sameAs, ?x3)
R7 : (?x1, owl:sameAs, ?x2), (?x2, owl:differentFrom, ?x3) → (?x1, owl:differentFrom, ?x3)
R8 : (?x1, ina:name, ?n1), (?x2, foaf:name, ?n2), (?n1, built-in:name-similar, ?n2), (?x1, ina:birthdate, ?b),

(?x2, foaf:birthdate, ?b) → (?x1, owl:sameAs, ?x2)

Fig. 2. An extract of DBpedia vocabulary and RDF facts.

and R5 in Table 1 translate mappings from the INA and DBpedia vocabularies.
Specifically, these mappings state that ina:name and ina:birthdate are equiva-
lent to foaf:name and foaf:birthdate, respectively, and that the composition of
ina:presenter and ina:title is equivalent to db:presenter. Let us assume that rules
R4 and R5 have been validated by INA experts too. With these rules it can be
inferred that db:per1 is the same as ina:per1 because they have the same name
and they have presented a program with the same title; and that db:per1 is the
same as ina:per2 since they have the same name and birthdate. Therefore, by
transitivity of same-as (rule R6 in Table 1), it can be inferred that ina:per1 is
the same as ina:per2, and, since ina:per2 is different from ina:per3 then (due to
R7) ina:per1 is different from ina:per3 too.

To avoid downloading the complete DBpedia, and, more generally, the
whole Linked Open Data (something that is not practical), our import-by-
query approach generates, for each targeted owl:sameAs fact, a sequence of
external sub-queries as specific as possible to obtain just the missing facts.
The external sub-queries generated by our algorithm for the particular query
(ina:per1, owl:sameAs, ina:per2) in our example are shown in Fig. 3.

Problem Statement

Given a deductive dataset dds(u) = (F,R), and a boolean query q(u) the
local evaluation of which gives an empty answer set (i.e., (F,R) 	� q(u)), we
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Fig. 3. The resultant external sub-queries submitted to DBpedia and their returned
answers.

aim to construct a set of external queries q1(u1), . . . , qk(uk) for which we can
guarantee that the subsets of external facts resulting from their evaluation over
the (possibly huge) external datasets are sufficient to answer the initial query.
More formally:

(F ∪
⋃

i∈[1..k]

Answer(qi(ui), ds(ui)), R) � q(u)

iff (F ∪
⋃

i∈[1..k]

ds(ui), R) � q(u)

The more specific the external queries are, the less external facts have to
be added and stored to the local dataset and therefore the more interesting a
proposed approach is to solve this problem.

The Iterative Import-by-Query Algorithm

We now describe the algorithm that we have designed and implemented for
solving the problem stated above.

Given an input boolean same-as query q, a deductive dataset (F,R), and a set
ū of query entry points to external datasets, Import-by-Query iteratively alter-
nates steps of sub-query rewriting based on backward chaining and of external
query evaluation.

Each sub-query rewriting step is realized by an adaptation of the Query-
Subquery algorithm [2,47] that is a set-oriented memoing backward chaining
method [29] used in deductive databases for evaluating Datalog programs. This
results in the Query-External-Subquery (QESQ for short) algorithm. For space
limitation, here we just explain its main principles, compared to Query-Subquery,
when applied to a list SG of subgoals. QESQ handles the subgoals built on EDB
or IDB predicates exactly like Query-Subquery, i.e., iteratively removes subgoals
built on EDB predicates if they can be matched with local facts, propagates
the corresponding substitutions to the remaining subgoals, replaces a subgoal
g built on an IDB predicate by the list of partially instantiated conditions of
a rule whose conclusion can be matched to g. As for the subgoals on ODB
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predicates, they are handled by QESQ before the subgoals on IDB predicates,
and once all the subgoals built on EDB predicates have been removed, and after
the corresponding substitutions are applied to the remaining subgoals in the
list. These ODB subgoals are conjuncted to obtain an external query qext, the
compatibility of which must be checked w.r.t. ū to be considered further. QESQ
then treats the remaining list SGidb of subgoals on IDB predicates just as Query-
External-Subquery, i.e., triggers the recursive call QESQ(SGidb). It will return
as output either true or false (if it has enough local information to infer a result
to the input boolean query), or a set of external queries that, if compatible with
the vocabulary of the given external datasets, are then conjuncted with qext to
constitute the output returned by QESQ(SG). As a result QESQ ({q}) succeeds
in handling locally the goal q using F and R just like Query-Subquery and then
the process is stopped and the result returned by Import-by-Query is true or
false accordingly, or it produces a set {q1(ū1), . . . , qk(ūk)} of external queries
the evaluation of which is likely to bring missing facts to F for proving the goal
q using R. If this set is empty, the process is stopped and the result returned by
Import-by-Query is false.

Each evaluation step simply consists in choosing one of the external query
qi(ūi) produced by the sub-query rewriting step and to submit it to Linked
Data through the specified query entry points. The result is either an empty set
(negative result) or a set of external facts (positive result) that can be added to
the current local dataset. In both cases, the result is memorized in an associated
answer table for the sub-query qi(ūi) that will be thus marked as an already
processed subgoal for which the (positive or negative) result is known and can
be directly exploited later on. If the result is positive, a new iteration of Import-
by-Query is started on the same input except for the set of facts F that is
enriched with the facts obtained as the result of the evaluation of the external
query qi(ūi). If the result is negative, another external query qj(ūj) in the set
produced by the current call to QESQ is evaluated. If the evaluation of all the
external queries in the set returns ‘false’, then the process is stopped and the
result returned by Import-by-Query on q is false.

The termination of the Import-by-Query algorithm relies on the termina-
tion of QESQ, which is guaranteed by the same memoing technique as Query-
Subquery (i.e., by handling goal and answer tables for each ODB and IDB predi-
cate). The soundness and completeness of the Import-by-Query algorithm results
from the soundness and completeness of Query-Subquery [47] and from the obser-
vation that the result produced by Query-Subquery, if applied to the same input
in which the ODB predicates are just considered as additional EDB predicates,
would be the same as the one produced by Import-by-Query. The reason is
that the only difference of Import-by-Query is to replace successive matching of
atomic goals against the facts by matching all at once the atomic goals compos-
ing the external queries produced by QESQ. This does not impact the global
boolean result of the sequence of goal matching.
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Combining Forward and Backward Chaining

Like any backward chaining method, Import-by-Query (and its main component
QESQ) re-starts from scratch for each new goal it tries to solve, even if the facts
and the rules remain unchanged. The intermediate subgoals generated and han-
dled by QESQ can be simplified if the input rules are replaced by their (partial)
instantiations obtained by the propagation of the facts into (the conditions of)
the rules.

Fact propagation is a forward chaining method used in inference engines
such as RETE [21] for rule-based systems. It avoids redundant evaluation of
same conditions appearing in several rules by memorizing, for each fact f , which
condition it satisfies in which rule (possibly already partially instantiated by
facts previously propagated), and the corresponding variable substitution that
is then applied to all the remaining conditions of the rules.

In our setting, we perform fact propagation as a pre-processing step of the
Import-by-Query algorithm, by computing at the same time the set SAT (F,R)
of facts that can be inferred locally, and the set PI(F,R) of partial instantiations
of the rules in R. This forward reasoning step can be summarized as follows,
where SAT (F,R) is initialized as F and PI(F,R) is initialized as R:

– for each f in SAT (F,R)
for each rule Condr → Concr in PI(F,R) having a condition c that can
be matched with f , i.e., there exists θ such that θ.c = f

* IF c is the only condition in Condr THEN add θ.Concr to SAT (F,R)
* ELSE add to PI(F,R) the rule obtained from θ.Condr → θ.Concr by

removing the condition θ.c (that is satisfied by the fact f).
– Remove from PI(F,R) those rules whose condition contains EDB predicates

that are not ODB predicates (and thus cannot be satisfied by local facts).
– RETURN (SAT (F,R), P I(F,R))

Each partially instantiated rule ri returned in PI(F,R) is issued from an
input rule r in which some conditions have been matched to facts f1, ..., fk

that have been inferred before (and added to SAT (F,R)), and thus allows us
to infer the same conclusion as the input rule r on any set of facts including f1,
..., fk. The result SAT (F,R)∪PI(F,R) is then logically equivalent to the input
deductive dataset F ∪ R for inferring facts on IDB predicates from the union of
F and a set OF of external facts (with ODB predicates), i.e. for every fact f an
external set of facts OF :

(F ∪ OF,R) � f iff (SAT (F,R) ∪ OF,PI(F,R)) � f

Therefore, it can be equivalently used for proving goals by checking whether
they belong to SAT (F,R), or for rewriting goals by applying QESQ to the
PI(F,R) (instead of the original R).

Experiments

We have conducted experiments on a real deductive dataset composed of 35
rules and about 6 million RDF facts from INA dataset. Most of the 35 rules
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capture local knowledge in the domain (functional properties and keys declared
as schema constraints, and rules provided by INA experts), mappings between
INA and DBpedia vocabularies, and general properties of owl:sameAs and
owl:differentFrom. Some of the rules of our experiments involve a built-in pred-
icate (called built-in:name-similar) to allow slight differences when comparing
literal values corresponding to person names (e.g. R8 in Table 1). This predi-
cate depends on a built-in function which checks if the similarity of the two
name strings is above a given threshold. In all our experiments we used edit
distance and 0.99 as a threshold. Other built-in predicates involved in the rules
are not-equal, less-or-equal, sum, etc. It is worth noting that the 35 rules can be
extended or modified without the need of changing the algorithmic machinery
of our approach.

Experimental Goals and Set-Up. The goal of our experiments was threefold: (1)
to show that external information available in Linked Open Data is useful to
infer owl:sameAs and owl:differentFrom facts within INA referenced persons,
and, thus, to disambiguate local homonyms; (2) to assess the gain in reduced
imported facts of our Import-by-Query approach compared to approaches based
on forward reasoning only; and (3) to evaluate the runtime of our Import-by-
Query algorithm and the possible amortized gain if fact propagation is performed
beforehand.

The external datasets from Linked Open Data with which the INA vocabu-
lary shares terms are DBpedia.org and DBpedia.fr. The baseline for evaluating
our two first goals is a set of 0.5 million external facts obtained by downloading
from DBpedia.org and DBpedia.fr (using their SPARQL endpoints) all the facts
about entities having the same name as one of the homonyms in the INA dataset.
We applied a preprocessing step on the original INA dataset to keep only the
facts on predicates appearing in the rules conditions. The resulting dataset con-
tains almost 1.15 million of RDF facts and will be the INA dataset referred to
henceforth.

Our algorithms have been implemented in SWI-Prolog. All the evaluations
were done on a machine with an Intel i7 Quad-core processor and 6 GB of memory.

Experimental Results. For evaluating our first goal, we applied (using our forward
reasoner) the set of 35 rules to (a) the INA dataset only and (b) the union of the
INA dataset with the baseline external facts, and then we compared the num-
ber of owl:sameAs and owl:differentFrom facts on INA homonyms we obtained.
The rules applied to the INA dataset only allowed to infer 2 owl:sameAs facts
and 108 owl:differentFrom facts, compared to the 4,884 owl:sameAs and 9,764
owl:differentFrom facts inferred when the external facts were added to the
process. This clearly demonstrates the benefit of using external information from
Linked Open Data for local disambiguation. These resulting 14,648 facts are
guaranteed to be correct under the assumption that both rules and data are cor-
rect. However, since this is not ensured for DBpedia data, we asked INA experts
to evaluate a random sample of 500 of such facts, and all of them were assessed
to be true.
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The rule expressing sameAs transitivity is crucial for inferring all the
owl:sameAs facts that cannot be inferred locally. More generally, full reasoning is
very important to discover owl:sameAs and owl:differentFrom facts. In order to
show this, we applied Silk to the same two datasets (the INA dataset only, and
the union of the INA dataset with the baseline external facts). For doing so, we
first had to translate our rules into the Silk specification language. It is not pos-
sible, however, to translate into Silk our rules concluding on owl:differentFrom
atoms. Thus, we focused on the rules leading to owl:sameAs inference. Among
the 4,884 owl:sameAs facts discovered by our full forward reasoner, Silk (which
does not perform full reasoning) only discovered 88, i.e. less than 2% of the total.
This shows that inference is important for data linkage.

For evaluating our second experimental goal, we took as reference boolean
queries the above sample of 500 owl:sameAs and owl:differentFrom facts, and
we applied our Import-by-Query algorithm to each of these boolean queries.
The number of external facts imported by our algorithm for all boolean queries
was 6,417, which makes, on average, 13 imported facts per boolean query. In
contrast, the total number of baseline external facts needed to conclude the
boolean queries with the forward reasoner was much higher (∼500,000). This
shows that our Import-by-Query algorithm reduces drastically the number of
imported facts needed for disambiguating local data.

Concerning the runtime evaluation, the import-by-query algorithm requires
3 iterations on average — it successively outputs and evaluates 3 external sub-
queries (each of them being produced by calling QESQ) — before termination.
It takes on average 186 s per boolean query when applied to the initial set of
rules and the local dataset. This drops to 7 s when it is applied to the partially
instantiated rules obtained by fact propagation beforehand, which means a gain
in time of 179 s (∼96%). With respect to the fact propagation, we propagated
all facts involving properties of class ina:Person. This took 191 s but it is done
only once for all queries, and its cost is amortized very fast, as shown by the
above numbers.

Discussion

We have proposed a novel approach for data linkage based on reasoning and
adapted to the decentralized nature of the Linked Data cloud. This approach
builds on the formal and algorithmic background of answering Datalog queries
over deductive databases, that we have extended to handle external rewriting
when local answers cannot be obtained. In contrast with existing rule-based
approaches for data linkage [31,40] based on forward reasoning to infer same-
as facts, Import-by-Query is a backward chaining algorithm that imports on
demand only external facts useful to infer target same-as facts handled as
boolean queries. Our experiments have shown that this approach is feasible and
reduces the number of facts needed to be imported. Compared to the depth-first
approach sketched in [1] for distributed Query-Subquery, our QESQ algorithm
generates external rewriting in a breadth-first way.
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Performing fact propagation beforehand in order to apply Import-by-Query
to a set of more specific rules than the original ones is an optimization close to
the ones proposed in QueryPIE [46] for efficient backward reasoning on very large
deductive datasets. One important difference, though, is that in the QueryPIE
setting, the problem of handling recursive rules can be fully delegated to for-
ward reasoning because all the facts are given and the recursive rules concern
a well identified subset of them (so called terminological facts). Another major
difference is that Import-by-Query performs query rewriting if no local answer
is obtained from the input deductive dataset.

The Import-by-Query approach in [25] is limited to ABox satisfiability queries
used as oracles in Tableau-based reasoning. Compared to the many recent works
on ontology-based data access initiated by [14], in which query rewriting is done
independently of the data, we have designed a hybrid approach that alternates
(external) query rewriting and (local) query answering. We plan to look into
this hybrid approach further, in particular to deal with ontological constraints
expressible in Datalog+− [13].

The interest of our rule-based approach is that it is generic and declarative:
new rules can be added without changing the algorithmic machinery. At the
moment the rules that we consider are certain. As a result, the same-as facts
that they allow to infer are guaranteed to be correct (under the assumption that
the input data does not contain erroneous facts). This is crucial to get automat-
ically same-as facts that are certain, in particular when the goal of discovering
same-as links is data fusion, i.e. replacement of two URIs by a single one in all
relevant facts. Another added-value to get certain same-as and different-from
facts is to find noisy data thanks to contradictions. However, in many cases,
domain knowledge is not 100% sure such as pseudo-keys [11] and probabilistic
mappings [45]. Data itself may be uncertain due to trust and reputation judge-
ments towards data sources [9]. Handling uncertain domain knowledge should
enable to discover more same-as facts that may be true even if inferred with
some uncertainty. This is addressed in the next section.

3.2 Reasoning over Uncertain RDF Facts and Rules [3]

We have designed a probabilistic framework to model and reason on uncer-
tain RDF facts and rules, based on the semantics of probabilistic Datalog [23].
Probabilistic Datalog extends (deterministic) Datalog [2] by associating each
ground fact and each instantiated rule with a basic probabilistic event that the
corresponding fact or rule is true. Each derived fact is then inferred with its
provenance in the form of an event expression made of a boolean combination of
the basic events of the ground facts and rules involved in its derivation. It can
be put in disjunctive normal form, in which a conjunction of events represents a
derivation branch, and disjunctions represent the different derivation branches.
Some simplifications can be performed before the computation of the resulting
probabilities: a conjunction containing disjoint events can be suppressed; basic
events known to be certain can be removed from the conjunctions where they are
involved thus leading to conjunctions with only uncertain events. An extreme
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case is when a conjunction is made of certain events only, which represent a
way to derive a fact with certainty. In this case the whole event expression can
be simplified to � which denotes certain events. The logical semantics of the
(simplified) event expression is then the basis for computing the probability of
the corresponding derived fact in function of the probabilities assigned to the
events identifying the input facts and rules participating to its derivation. In
the general case, computing the probability of the disjunction of conjunctions of
events requires to know the probabilities of all the combinations of events in the
expression. In practice, in particular in applications dealing with large amounts
of data, only the probabilities of single events will be known. We will then make
the same default assumptions of independence or disjointness of single events, as
usually done in most Information Retrieval models [22]. To fit with such assump-
tions, we have to impose some constraints on the rules, that will be explained
below.

Probabilistic RDF facts extends the standard data model of Linked Data
used to state properties on entities referenced by so-called Uniform Resource
Identifiers (URIs). Properties are themselves identified by URIs. So-called data
properties relate entities with literals (e.g., numbers, strings or dates), while
object properties relate two entities.

A probabilistic RDF fact is an RDF triple t = (s, p, o) (in which the
subject s is a URI, the predicate p is a URI, and the object o may be either a
URI or a literal) associated with an event key e denoting the probabilistic event
that t is true. A probabilistic RDF rule is a safe rule with variables, associated
with an event key denoting the probability that any of its instantiations is true.

Each probabilistic RDF fact and rule are assigned a distinct event key, except
the certain facts and rules that are assigned the special event key � denoting
events that are certain. For a probabilistic fact f (respectively rule r), we will
denote e(f) (respectively e(r)) the probabilistic event e associated with the fact
f (respectively the rule r).

In the rules, we also allow conditions B(x̄, ā) where B is a built-in pred-
icate (i.e., a function call), x̄ a vector of variables appearing in the triple
conditions of the same rule, and ā may be a non empty set of values of
parameters for calling B. The following rule is an example of a rule with a
built-in predicate:Similar(?s1, ?s2, levenshtein, 0.2): r0 : (?xhasName ?s1) ∧
(?y hasName ?s2)∧ Similar(?s1, ?s2, levenshtein, 0.2) → (?x sameName ?y)
For each pair of strings (s1, s2) for which the two triple conditions are satisfied
by facts (i1 hasName s1) and (i2 hasName s2), Similar(s1, s2, levenshtein, 0.2)
applies the normalized Levenshstein distance levenshtein(s1, s2) on the two
strings s1 and s2, and if this distance is less than 0.2 returns the corresponding
probablistic fact Similar(s1, s2, levenshtein, 0.2) with 1 − levenshtein(s1, s2)
as probability.

The semantics of inferred probabilistic facts is defined by extending the defi-
nition of SAT (F,R) (see Definition 1) with their provenance defined as boolean
combinations of all the events associated with the input facts and rules involved
in their inference.
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Definition 2 (Provenance-based semantics of probabilistic inferred
facts). For every fact f in SAT (F,R), its provenance (denoted ProvR,F (f))
is defined as follows:

– if f ∈ F : ProvR,F (f) = e(f)
– else: ProvR,F (f) =

∨
(r,θ)∈R(f) e(r) ∧ ∧

i∈[1..k] ProvR,F (θ.TPi(vi))
where R(f) is the set of instantiated rules (r, θ) having f as conclusion (i.e.,
rules r of the form TP1(v1)∧ . . .∧TPk(vk) → TP (v) for which θ is a mapping
such that θ.TP (v) = f and θ.TP(vi) ∈ SAT (F,R) for every i ∈ [1..k]).

For every fact f in SAT (F,R), its probability (denoted P (f)) is defined as the
probability of its provenance: P (f) = P (ProvR,F (f))

Illustrative Example

Let us consider the following probabilistic RDF facts and rules (for which we
omit to display the event keys) composed of 5 input facts and of 4 rules expressing
different ways to infer sameAs facts between individuals (to have the same name,
to have the same name and the same birthdate, to be married to the same
individual, or by transitivity of the sameAs relation):

f1: (i1 sameName i2)
f2: (i1 sameBirthDate i2)
f3: (i1 marriedTo i3)
f4: (i2 marriedTo i3)
f5: (i2 sameName i4)
r1: (?x sameName ?y) → (?x sameAs ?y)
r2: (?x sameName ?y), (?x sameBirthDate ?y) → (?x sameAs ?y)
r3: (?xmarriedTo ?z), (?y marriedTo ?z) → (?x sameAs ?y)
r4: (?x sameAs ?z), (?z sameAs ?y) → (?x sameAs ?y)

Three derived facts are obtained with their provenance:

ProvR,F ((i1 sameAs i2)) =
(e(r1) ∧ e(f1)) ∨ (e(r2) ∧ e(f1) ∧ e(f2)) ∨ (e(r3) ∧ e(f3) ∧ e(f4))

ProvR,F ((i2 sameAs i4)) = (e(r1) ∧ e(f5))
ProvR,F ((i1 sameAs i4)) =

e(r4) ∧ ProvR,F ((i1 sameAs i2)) ∧ ProvR,F ((i2 sameAs i4)

The first one captures that the fact (i1 sameAs i2) can be inferred as a result of 3
different derivation branches (one using the rule r1 and the input fact f1, another
one using the rule r2 and the input facts f1 and f2, and the third one using the
rule r3 and the input facts f3 and f4). The second one captures that (i2 sameAs i4)
results from a single derivation branch, using the rule r1 and the fact f5. The last
one illustrates how the provenances can be built iteratively during the saturation
process: the last derivation step leading to the inference of (i1 sameAs i4) involves
the rule r4 and two facts inferred at a previous iteration (namely, (i1 sameAs i2)
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and (i2 sameAs i4)) for which the event expressions computed beforehand as their
provenance can be combined with the event key of r4.

These event expressions can be simplified by exploiting facts and rules that
are certain. For instance, if we know that the two facts f2 and f3 are certain as
well as the rule r4, we can suppress e(f2), e(f3) and e(r4) in the conjuncts of the
above expressions because they are all equal to the event � always true. We now
obtain for ProvR,F ((i1 sameAs i2)): (e(r1)∧e(f1))∨(e(r2)∧e(f1))∨(e(r3)∧e(f4))

When many facts and several rules are certain, such simplifications lead to
a drastic reduction of the size of event expressions, which is important for the
feasibility and the scalability of the approach in practice.

This example illustrates how the construction and the simplification of the
provenance can be incorporated into the saturation process and thus how a given
forward-reasoning algorithm can be easily extended to compute the provenance
during the inference of the corresponding facts.

The ProbFR Algorithm

Algorithm 1 describes the ProbFR algorithm that we have implemented and used
in our experiments.

Algorithm 1. The ProbFR algorithm
Input: A set F of input (probabilistic) facts and a set R of (proba-
bilistic) rules
Output: The set Fsat of inferred (probabilistic) facts with for each
inferred fact f its event expression x(f)
(1) for each f ∈ F : x(f) ← e(f)
(2) Fsat ← F
(3) Δ ← F
(4) repeat
(5) Δ1 ← ∅
(6) foreach rule r: c1 ∧ . . . ∧ ck → c for which there exists

a substitution θ and facts f1, . . . , fk ∈ Fsat (among which
atleast one of them belongs to Δ) such that fi = θ.ci for
every i ∈ [1..k]:

(7) let f = θ.c:
(8) if f �∈ Fsat

(9) add f to Δ1

(10) x(f) ← N∨(e(r) ∧∧i∈[1..k] x(fi))

(11) else x(f) ← x(f)∨
(12) N∨(e(r) ∧∧i∈[1..k] x(fi))

(13) Fsat ← Fsat ∪ Δ1

(14) Δ ← Δ1

(15) until Δ1 = ∅
(16) return Fsat
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It starts with the set of initial facts and rules and repeats inference steps
until saturation. Each inference step (Line (4) to (15)) triggers all the rules
whose conditions can be matched with known facts (i.e., input facts or facts
inferred at previous steps). At each iteration, the set Δ contains the facts that
have been inferred at the previous iteration. The constraint (expressed in Line
(6)) that rules are only triggered if atleast one of their conditions can be matched
with facts in Δ guarantees that instantiated rules are not triggered twice during
the inference process. The algorithm stops as soon as no new fact has been
inferred during a given iteration (i.e., Δ1 remains empty over this iteration). The
algorithm returns the set Fsat of inferred facts, and computes for each of them
an event expression x(f) (Lines (10) and (11)). The function N∨ denotes the
transformation of a conjunction into its disjunctive normal form. It consists in
applying iteratively the distributivity of the conjunction connector (∧) over the
disjunction connector (∨), and in simplifying when possible the (intermediate)
results as follows: (1) remove the duplicate events and the certain events � from
each conjunction of events, (2) if a conjunction within a disjunction becomes
empty (i.e., if all its events are certain), replace the whole disjunction by �.
Each event expression x(f) is thus either � or of the form Conj1 ∨ ... ∨ Conjl

where each Conji is a conjunction of event keys tracing the uncertain input facts
and rules involved into one of the l branches of uncertain derivation of f .

The termination of the ProbFR algorithm is guaranteed by the fact that the
rules are safe. The only facts that can be inferred from safe rules and a set F of
ground atoms are instantiations of conclusion atoms by constants appearing in
F . Their number is finite. More precisely, since the input facts and conclusion
atoms are built on are binary predicates, the number of constants appearing in
the input facts is less than 2 × |F | (at most two distinct constants per input
fact), and the number of inferred facts is then less than 4 × |R| × |F |2 (atmost
as many predicates in conclusion as rules, and for each of them, atmost as many
instantiations as pairs of constants).

The following theorem states the soundness and completeness of the
algorithm.

Theorem 1. Let Fsat be the result returned by ProbFR(F,R):
Fsat = SAT (F,R).
For each f ∈ Fsat, let x(f) be the event expression x(f) computed

by ProbFR(F,R):
x(f) ≡ ProvF,R(f)

For the first point, we prove by induction on i that each iteration i ≥ 1 of the
algorithm computes the set of facts Fi = TR(Fi−1) (as defined in Definition 1),
and thus SAT (F,R) at the last iteration where the least fixed point reached.
For the second point, for a derived fact f , we prove, by induction on the number
n of iterations of ProbFR after which no new instantiation of rules can infer f ,
that x(f) is a disjunctive normal form of ProvF,R(f), and therefore is logically
equivalent to it.



Datalog Revisited for Reasoning in Linked Data 139

As a result of Definition 2 and Theorem 1, it worths to emphasize that the
probabilities values of inferred facts is independent of the order in which the
rules are triggered to derive them.

Data Complexity Analysis

We are interested in estimating how the worst-case time complexity of the algo-
rithm depends on the size |F | of the input data, which is the most critical
parameter in the setting of Linked Data. The number of iterations of ProbFR
is atmost |Fsat|, which is less than 4 × |R| × |F |2 as shown just above. At each
iteration, in the worst case, the condition part of each rule must be evaluated
against the facts, and the event expressions for the provenance of the inferred
facts must be computed. Let c the maximum number of conditions per rule. The
evaluation of each condition part of each rule can be performed in polynomial
time (in fact, in at most |R| × |Fsat|c elementary steps).

For the computation of the event expressions, the most costly opera-
tion is the transformation N∨ into disjunctive normal form of conjunctions
e(r) ∧ ∧

i∈[1..k] x(fi). The number k of conjunctions is less than the bound c

of conditions per rule, and each x(fi) is a disjunction of at most l conjunctions
of event keys, where l is the maximum number of uncertain derivation branches
for inferred facts. This parameter l is bounded by bd where d is the maximal
depth of reasoning to infer a fact from F and R, and b is the maximal branch-
ing factor of ground(F,R) (which denotes the set of rules triggered during the
execution of ProbFR(F,R)). Therefore, each call of N∨ performs at most bd×c

distributivity operations on conjunctions of at most |F | + |R| event keys. Since
the maximal depth of reasoning is the number of iterations of ProbFR(F,R), d
can be equal to |Fsat|. Then, the data complexity of the provenance computation
may be exponential in the worst-case. This meets known results on query evalua-
tion in probabilistic databases [43]. Different solutions are possible to circumvent
this worst-case complexity, like restricting the form of rules/queries like in [17]
or imposing some constraints on the input facts (such as a bounded treewidth in
[6]). In practice, in particular if most of the input facts are certain, the size of the
event expressions remains small. If all the input facts are certain, the only event
keys that can be involved in the event expressions are the ones attached to the
uncertain rules. The complexity of the algorithm can be controlled by imposing
a practical bound in the number l of conjunctions produced in Line (11). This
solution is justified in our setting since the computed probabilities are used to
keep only the most probable inferred facts, i.e., the facts that are inferred with
a probability greater than a given high threshold. For our experiments, we have
limited this number l to be 8.

Effective Computation of Probabilities of Inferred Facts from Their
Provenance

For each inferred fact, given its provenance as an event expression in disjunctive
normal form, the following formula is the basic theoretical tool to compute its
probability:

P (A ∨ B) = P (A) + P (B) − P (A ∧ B). (1)
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The recursive application of the above formula for computing the probability
of a disjunction of l conjunctions of events E1 ∨ . . . ∨ El leads to alternate the
subtractions and additions of the probabilities of all the possible conjunctions
Ej1 ∧ . . . ∧ Eji . This raises two major issues: first, their number is exponential
in l; second the exact values of all these probabilities is usually not available.

An usual way to circumvent the latter is to make the assumption of inde-
pendence between events, as it is done in probabilistic databases [43] or in most
Information Retrieval models [22]. In our case however, two rules such that the
condition part of one rule is contained in the condition part of the second (like
the rules r1 and r2 of the example) are obviously not independent. For such
rules, we enforce pairwise disjointness by imposing that the more general rule
applies only if the more specific rules do not apply. In this way, we are sure
that the corresponding dependent events do not appear in any event expression
computed during the saturation process. To be consistent with the probabilistic
setting, we also impose that the probability assigned to the event corresponding
to the more specific rule (r2 in our example) is higher than the one assigned to
the event of more general rule (r1 in our example).

For each pair r, r′ with same conclusion (up to variables names), let us denote
r � r′ if Condr is contained into Condr′ . Checking whether r � r′ can be done
by using any conjunctive query containment algorithm [15] with a complexity
independent of the data.
To summarize, we make the assumptions of:

– pairwise disjointness between events associated with pairs of rules r, r′ such
that r � r′

– independence of the events that are not disjoint.
For the effective computation of the probability of an inferred fact f ,

– first, the provenance expressions x(f) = E1∨. . .∨El computed by the ProbFR
algorithm are simplified by removing each conjunction of events Ei in which
an event e(r) appears if there is a conjunction of events Ej (j 	= i) such that
e(r′) appears in Ej and r � r′.

– second, the probability of f is computed by iteratively applying the formula
(1) on the resulting event expression.

In our example, the rules r2 and r1 are such that r1 � r2. We can thus remove
the conjuncts containing e(r1) and we obtain for x((i1 sameAs i2)):

(e(r2) ∧ e(f1)) ∨ (e(r3) ∧ e(f4)).

Now, considering the remaining events as independent, we can compute the
effective probability P ((i1 sameAs i2)) as follows:

P ((i1 sameAs i2)) =
(P (e(r2)) × P (e(f1))) + (P (e(r3)) × P (e(f4)))
− (P (e(r2)) × P (e(f1)) × P (e(r3)) × P (e(f4)))
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Note that the above simplification can be incorporated into the ProbFR
algorithm at each update of event expression (Line (11)) and that determin-
ing the possible pairs of rules r, r′such that r � r′ can be done in advance before
launching ProbFR as it is independent of the set of facts F .

This simplification has an impact on the practical complexity of the effec-
tive computation of the probabilities, even if, in theory and in the worst-case, it
remains exponential in the number l of conjunctions within provenance expres-
sions. As we have explained it before, this number l can be bounded in practice.

The assumption of disjointness between events associated with rules r, r′ such
that r � r′ is important for the feasability of the approach but it also fits well
with the open-world assumption that holds in Linked Data. In fact, it captures
a restricted form of negation since, under this disjointness assumption, the event
e(r) models worlds where the condition of r is satisfied and the additional con-
ditions of r′ are not satisfied.

Setting Up of the Input Probabilities

The above approach for probabilistic inference is agnostic with respect to the way
the input probabilities are obtained, either given by experts, returned by built-in
predicates or tools, or learned by supervised methods. This said, it is important
to note that training sets (required by supervised machine learning techniques)
that would be big enough to scale to the setting of Linked Data do not exist and
are almost impossible to build manually. On the other hand, it is quite easy for
domain experts to decide whether a given rule is uncertain, but setting up its
probability is tricky. The two-steps computation of a provenance-based approach
as ours has the big advantage to possibly re-compute the numerical values of
probabilities for the inferred facts from the provenance expressions computed
once for all. This enables to start with a rough setting of rules probabilities
chosen from a small set of values just for distinguishing rules on a simple scale
of uncertainty (for instance set at 0.9 the rules a priori considered as almost
always certain, 0.8 the rules judged as highly probable but less than the previous
ones, and so on), and to adjust these values a posteriori based on a feedback
on a sample of results. The provenance of wrong sameAs links inferred with a
high probability provides explicitly the rules involved in the different reasoning
branches leading to their derivation. It is a useful information for a domain expert
to choose the rules to penalize by decreasing their numerical probabilities.

3.3 Rule-Based Data Linkage with Uncertainty

When used for data interlinking, rules typically translate varied knowledge that
combines schema constraints, alignments between different ontologies and gen-
eral properties on OWL relations such as owl:sameAs. This knowledge may be
certain, but, very often, it has some degree of uncertainty. It is the case when
a correspondence in an ontology alignment is attached a confidence value lower
than 1, or when domain experts provide knowledge they are not 100% sure
about, or the case of pseudo-keys that are automatically computed by pseudo-key
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Table 2. Certain rules for interlinking person entities in DBpedia and MusicBrainz.

ID Conditions Conclusion

musicalArtist ( ?w dbo:musicalArtist ?x ) ( ?w dbo:artist ?x )

enrich dboBand1 ( ?x rdf:type schema:MusicGroup ) ( ?x rdf:type dbo:Band )

sameAsVIAF ( ?x dbp:viaf ?id ), ( ?y mb:ViafID ?id ) ( ?x :sameAsPerson ?y )

sameAsIsPerson1 ( ?x :sameAsPerson ?y ), ( ?z mb:is person ?y ) ( ?x :sameAsPerson ?z )

similarNamesPerson ( ?x rdf:type dbo:Person ), ( ?x rdfs:label ?l ),

MBsolrsimilar(?l,0.8,?z, ‘persons mb’)

( ?x :solrPSimilarName ?z )

Table 3. Uncertain rules for interlinking person entities in DBpedia and MusicBrainz.

ID Conditions Conclusion Weight

sameAsBirthDate ( ?x :solrPSimilarName ?l ), ( ?y

skos:myLabel ?l ), ( ?x dbo:birthDate

?date ), ( ?y mb:beginDateC ?date )

( ?x :sameAsPerson ?y ) w1

sameAsPersonArtistWr ( ?w1 dbo:artist ?x ), ( ?w1

:solrWrSimilarName ?lw ), ( ?y

mb:writer ?w2 ), ( ?w2 skos:myLabel

?lw ), ( ?x :solrPSimilarName ?lp ), (

?y skos:myLabel ?lp )

( ?x :sameAsPerson ?y ) w2

sameAsMemberOfBand ( ?x :solrPSimilarName ?l ), ( ?y

skos:myLabel ?l ), ( ?y

mb:member of band ?gr2 ), ( ?gr2

skos:myLabel ?lg ), ( ?gr1

dbp:members ?x ), ( ?gr1

:solrGrSimilarName ?lg )

( ?x :sameAsPerson ?y ) w3

discovery tools [11,44]. This uncertain knowledge can be translated by means of
probabilistic rules.

Tables 2 and 3 show rules translating, respectively, certain and uncer-
tain knowledge for the task of interlinking person entities in DBpedia and
MusicBrainz datasets. These rules are actually part of the rules that we used
in our experiments (reported in Sect. 3.4). Rule musicalArtist in Table 2, for
example, is a certain rule that translates the DBpedia knowledge that the
class dbo:musicalArtist is subsumed by dbo:Artist. Rule enrich dboBand1 trans-
lates a certain correspondence in an alignment between Schema.org vocabulary
and DBpedia ontology stating that the class schema:Person is subsumed by
dbo:Person. The rule sameAsVIAF is a certain rule that translates the assertion
that the VIAF id is a key for persons and, therefore, allows to infer sameAs links
between person entities from DBpedia and MusicBrainz. Notice that this rule
actually involves the two equivalent properties dbp:viaf and mb:ViafID of DBpe-
dia and MusicBrainz vocabularies. This means that the condition (?x dbp:viaf
?id) in the rule will be instantiated by a DBpedia entity, and (?y mb:ViafID ?id)
by a MusicBrainz entity. This kind of “key across different datasets” is called a
link key in the literature [10]. Note also that, instead of using owl:sameAs, we
use our own customized sameAs predicates (:sameAsPerson) which allowed us
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to easily identify the type of the inferred sameAs links in our experiments. Rule
sameAsIsPerson1 is a certain rule that translates transitivity of sameAs.

Rule similarNamesPerson deserves special attention because it contains a
built-in predicate (namely MBsolrsimilar) that encapsulates the call to a full-
text search tool (namely Solr3) to extract strings from MusicBrainz similar to
labels of person entities in DBpedia. More precisely, for each string instanti-
ation s of the variable ?l, obtained by mapping with DBpedia facts the two
first conditions (?x rdf:type dbo:Person) and (?x rdfs:label ?l) of the rule,
MBsolrsimilar(s, 0.8, ?z, ‘person mb’) is a procedure call returning as many
probabilistic facts MBsolrsimilar(s, 0.8, s′, ‘person mb’) as labels s′ of person
entities in MusicBrainz detected by Solr as similar to s with a similarity greater
than 0.8. The probability attached to each probabilistic fact MBsolrsimilar(s,
0.8, s′, ‘person mb’) is the calculated string similarity. Thus similarNamesPer-
son is a certain rule that will infer uncertain facts of the form (?x :solrPSimilar-
Name ?z) due to condition MBsolrsimilar(?l,0.8,?z, ‘persons mb’), which will be
instantiated with built-in uncertain facts. Built-in predicates such as MBsolrsim-
ilar enable to embed standard similarity functions into our rule-based approach
to overcome the problem of misspelling errors in names of persons, groups and
songs that may occur in DBpedia and MusicBrainz datasets.

Table 3 shows three additional rules allowing to infer sameAs links between
person entities from DBpedia and MusicBrainz datasets, but, in contrast with
the sameAsVIAF rule explained above, they are not 100% certain. Rule sameAs-
BirthDate, for example, says that if two persons have similar names and the
same birthdate then they are likely to be the same person. This rule must be
considered uncertain for two reasons. First, it relaxes the strict condition of
having exactly the same name by the soft constraint of having similar names
as it is specified by (?x :solrPSimilarName ?l). Second, strictly speaking the
properties “name” and “birthdate” do not constitute a key, even if it is likely
that two named entities representing persons that are well-known enough to
be described in datasets like DBpedia and MusicBrainz will refer to the same
person if they share the same name and birthdate. In fact, sameAsBirthDate
translate a soft link key, as it combines the equivalent properties dbo:birthDate
and mb:beginDateC that are used in DBpedia and MusicBrainz vocabularies
to relate a person with her date of birth. The rules sameAsPersonArtistWr and
sameAsMemberOfBand are uncertain too. The first one says that, if two persons
have similar names and they are artists of songs with similar names, they are
the same person, and the second rule says that if two persons have similar names
and are members of musical bands with similar names, they are the same person.
Again, this may not be always true, but in most cases. The weights in Table 3
correspond to the probabilistic events associated with each of these uncertain
rules.

An important point to emphasize is that the (certain or uncertain) rules
allowed in our rule-based modeling express pieces of knowledge that can be
assembled and combined through several reasoning steps. For instance, the

3 http://lucene.apache.org/solr/.

http://lucene.apache.org/solr/
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condition (?w1 dbo:artist ?x) of the sameAsPersonArtistWr rule may be trig-
gered by facts inferred by the musicalArtist rule. The chaining between rules is
not known in advance and is determined by the input datasets which they apply
to. In addition, due to recursive rules (such as sameAsIsPerson rule), even if the
termination of the saturation process is guaranteed, the number of reasoning
steps cannot be known in advance and also depends on the input datasets. It is
worthwhile to note that recursive rules add an expressive power that is required
for data linkage in particular to express sameAs transitivity.

The translation into rules can be semi-automatic, for instance for translating
into certain rules schema constraints that have been declared in OWL such as the
functionality or transitivity of some relations, or for translating into (certain or
uncertain) rules alignments discovered by ontology mapping tools [19]. A certain
number of uncertain rules useful for data interlinking must however be provided
by domain experts to express fine-grained knowledge that may be specific to the
datasets concerned by the linkage task. While it is quite easy for domain experts
to decide whether a given rule is uncertain, setting up its probability is tricky.
The two-steps computation has the big advantage to possibly re-compute the
numerical values of probabilities for the inferred facts, starting from the event
expressions built once for all in the first step that is a symbolic computation
independent of the numerical values of rules probabilities. This enables to start
with a rough setting of rules probabilities chosen from a small set of values just
for distinguishing rules on a simple scale of uncertainty (for instance set at 0.9 the
rules a priori considered as almost always certain, 0.8 the rules judged as highly
probable but less than the previous ones, and so on), and to adjust these values
a posteriori based on a feedback on a sample of results. The event expressions
of wrong sameAs links inferred with a high probability provide explicitly the
rules involved in the different reasoning branches leading to their derivation. It
is a useful information for a domain expert to choose the rules to penalize by
decreasing their numerical probabilities.

In our experiments, such an incremental adjustment for the probabilities
of the three uncertain rules of Table 3 resulted into: w1 = 0.9, w2 = 0.4 and
w3 = 0.6.

It is worth emphasizing that rules with quite low probabilities (such as 0.4
for the sameAsPersonArtistWr rule) can yet significantly contribute to the final
probability of a fact inferred by different reasoning branches.

3.4 Experimental Evaluation

We have conducted experiments to evaluate the performance of our method on
real datasets. Our main goal was to measure the effectiveness of our method to
discover links at large scale, and to assess the expected gain in terms of recall
and the loss in precision when using uncertain rules instead of certain rules only.
We also wanted to show how the probabilistic weights attached to the links
allow to filter out incorrect links. Finally, we aimed at comparing our tool to a
state-of-the-art interlinking tool, namely Silk [48].
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Experimental Setting. We used three datasets in our experiments: DBpedia,
INA and MusicBrainz. The objective was to find sameAs links between named
entities of person, musical band, song and album included in the datasets. Our
choice of these datasets was based upon the fact that these are all large datasets
(tens of millions of triples), and of a very different nature: DBpedia was built from
Wikipedia infoboxes, INA from catalog records mainly containing plain text, and
MusicBrainz from more structured data coming from a relational database.

The DBpedia version we used was DBpedia 2015-04,4 the latest version at
the time the experiments were conducted. From all available (sub) datasets, we
only used the ones including RDF triples with properties appearing in the rules
that we used in the experiments (below we give more details about the rules),
which make together one single dataset of around 73 million RDF triples. The
INA dataset contains around 33 million RDF triples, while the MusicBrainz
dataset around 112 million RDF triples. The INA dataset was built from all
the records (plain text) in a catalog of French TV musical programs using an
specialised RDF extractor. Some RDF facts in the INA dataset have numerical
weights between 0 and 1 since their accuracy could not be 100% assessed during
the extraction process. The MusicBrainz dataset was built from the original
postgreSQL table dumps available at the MusicBrainz web site using an RDF
converter. This version is richer than the one of the LinkedBrainz project.5

Table 4 shows the number of person, musical band, song and album entities
in each of the considered datasets, where Person, e.g. symbolises the class union
of all the classes that represent persons in each dataset. No bands or albums are
declared in INA, written NA (not applicable) in Table 4.

Table 4. Number of person, musical band, song and album entities in DBpedia,
MusicBrainz and INA.

Class DBpedia MusicBrainz INA

Person 1, 445, 773 385, 662 186,704

Band 75, 661 197, 744 NA

Song 52, 565 448, 835 67,943

Album 123, 374 1, 230, 731 NA

We have designed two sets of rules that we used as inputs for our algo-
rithm to interlink DBpedia and MusicBrainz first and then MusicBrainz and
INA. We came up with 86 rules for interlinking DBpedia and MusicBrainz, from
which 50 of them are certain and 36 are uncertain, and 147 rules for interlinking
MusicBrainz and INA, 97 of them certain and 50 uncertain. By a way of exam-
ple, Tables 2 and 3 of Sect. 3.3 include some of the certain and uncertain rules
that we used for interlinking DBpedia and MusicBrainz.

4 http://wiki.dbpedia.org/Downloads2015-04.
5 http://linkedbrainz.org/.

http://wiki.dbpedia.org/Downloads2015-04
http://linkedbrainz.org/
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ProbFR has been implemented on top of Jena RETE and uses SWI-Prolog
v6 to compute the disjunctive normal forms for the event expressions during
RETE inference. Prolog is also used to implement the second step of ProbFR,
i.e. to compute effective probabilities given event expressions. In order to avoid
potential combinatorial explosion, the current parameter of ProbFR is tuned
to a maximum of 8 derivation branches for each event expression. All ProbFR
experiments were run on a Bi-processor intel Xeon 32 × 2.1 GHz, 256 GB of
RAM, with Linux CentOS 6 as operating system.

Experimental Results. We ran our algorithm to interlink DBpedia and
MusicBrainz first, and then MusicBrainz and INA, using in each case the cor-
responding rules. Our algorithm discovered 144,467 sameAs links between enti-
ties of DBpedia and MusicBrainz and 28,910 sameAs links between entities of
MusicBrainz and INA. Additionally, our algorithm found 132,166 sameAs links
internal to the INA dataset.

In order to evaluate the quality of the found links, and since no gold standard
was available, we estimated precision, recall and F-measure by sampling and
manual checking. In order to compute precision, for each of the classes considered
we took a sample of 50 links from the links found by our algorithm (i.e. 200
links in total for DBpedia and MusicBrainz, and 100 links for MusicBrainz and
INA), and we manually checked whether these links were correct. For computing
recall, we randomly selected 50 instances of each of the classes, and we found
links manually. Then, we calculated recall based on this make-do gold standard.
F-measure was based on the estimations of precision and recall.

In order to assess the gain of using uncertain rules, we also ran our algorithm
only with certain rules, and then we compared the results obtained using only
certain rules with the ones obtained using all rules (both certain and uncertain
rules). This concerned the experiments between DBpedia and MusicBrainz only,
as no other certain rule than sameAs transitivity was used for MusicBrainz and
INA.

Table 5. Precision (P), recall (R) and F-measure (F) for the task of interlinking
DBpedia and MusicBrainz datasets, and MusicBrainz and INA datasets, using certain
rules only, and certain and uncertain rules together.

DBpedia and MusicBrainz MusicBrainz and INA

Only certain rules All rules Only certain rules All rules

P R F P R F P R F P R F

Person 1.00 0.08 0.15 1.00 0.80 0.89 NA NA NA 1.00 0.34 0.51

Band 1.00 0.12 0.21 0.94 0.84 0.89 NA NA NA NA NA NA

Song NA NA NA 0.96 0.74 0.84 NA NA NA 1.00 0.40 0.57

Album NA NA NA 1.00 0.53 0.69 NA NA NA NA NA NA
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Table 5 shows all the results. Let us focus on the results concerning DBpedia
and MusicBrainz. As expected, when certain rules were used only, precision
was 100%. This only concerns Person and Band classes because the initial set
of rules did not include any certain rule concluding links for Song and Album
(written NA in Table 5). However, recall was very low: 0.08 for Person and 0.12
for Band. When both certain and uncertain rules were used, a 100% precision was
achieved for Person and Album classes only, since for Band and Song, precision
was 0.94 and 0.96, respectively. However, recall increased significantly for Person
and Band: 0.80 and 0.84. This shows the gain of using uncertain rules for data
linkage. Now, when looking at the samples of Band and Song classes, we realised
that all wrong links had a probability value lower than 0.9 and 0.6, respectively.
This means that, when limited to those links having a probability value higher
or equal to 0.9 and 0.6, the estimated precision for the classes Band and Song
was 100% (Table 6). The estimated recall was 0.80 and 0.54. This shows the gain
of using weights for interlinking.

Table 6. Gain of using weights for interlinking DBpedia and MusicBrainz.

P R F

Band�0.90 1.00 0.80 0.89

Song�0.60 1.00 0.54 0.72

Table 7 shows the number of links that are discovered when n sameAs rules6

are implied in the derivation. For instance, 28,614 links are discovered using two
sameAs rules, and among these links 27,692 are new links, i.e. they were not
discovered using only one rule. With tools like Silk and LIMES, using the same
set of rules, we can expect to find around 115,609 links only.

Table 7. Number of links discovered when n rules are implied in the derivation. Results
given for interlinking DBpedia and MusicBrainz.

# rules # links # new links

1 115, 609 115, 609

2 28, 614 27, 692

3 1, 790 1, 152

4 59 14

6 We only consider rules that conclude to sameAs statements because other rules can
be handled with preprocessing by tools like Silk or LIMES.
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Comparison with Silk. Since Silk cannot handle rule chaining, we divided
the rules used by ProbFR into sameAs rules (i.e. rules with sameAs in the
conclusion), and intermediate rules that are used to trigger antecedents of other
rules (including the sameAs rules). We manually translated these intermediate
rules into SPARQL Update queries and these updates were performed before the
Silk execution. Some sameAs rules could not be translated into Silk because they
are recursive (sameAs appears in their antecedent and conclusion). To be able
to compare methods on the same basis, we employed the levenshtein normalised
distance with a threshold of 0.2, which corresponds to the similarity parameter
set up to 0.8 in Solr. The aggregation of different comparisons within a rule was
performed using maximum distance to be compliant with the conjunction used
in rules. We executed Silk for interlinking DBpedia and MusicBrainz. Silk found
101,778 sameAs links, from which 100,544 were common to the ones found by
ProbFR. ProbFR found 43,923 links that were not discovered by Silk and Silk
found 1,234 links not discovered by ProbFR. In theory all the links discovered by
Silk should have been discovered by ProbFR and Silk should have found up to
115,609 links. These differences can be explained by the way levenshtein distance
are implemented in each tools and by a normalisation of URL that is performed
by ProbFR and not available in Silk. As a conclusion, ProbFR outperformed Silk
because of rule chaining (more links are discovered). Dealing with uncertainty
allows to enhance precision without losing much recall.

In terms of time performance, Silk took more than 53 h (with 16 threads,
blocking activated, on a Bi-processor Intel Xeon, 24 × 1.9 GHz) while ProbFR
achieved the task in 18 h (on a Bi-processor Intel Xeon, 32 × 2.1 GHz). Even if the
difference could be partially explained by the difference in hardware, the main
reason comes from implementation design. Silk mainly relies on disk indexing
and uses few RAM (around 1–2 GB) while ProbFR runs into main memory and
uses around 250 GB of RAM for this experiment.

3.5 Discussion

Dedupalog [7] is a Datalog-like language that has been specially designed for
handling constraints useful for record linkage. It handles both hard and soft
rules that define respectively valid clusterings and their costs. The associated
algorithm computes a valid clustering with a minimal cost. Whereas the general
problem is NP-complete, they provide a practical algorithm that scales to the
ACM database that contains 436,000 records. Even if the algorithmic techniques
are very different from ours, the scalability is obtained by similar restrictions on
the rule language. However, the goal is to compute a valid clustering and not to
compute probabilities of inferred facts.

Probabilistic logical frameworks such as Markov logic [41] and Probabilistic
Soft Logic (PSL) [12] have been used for entity resolution. Markov Logic allows
for full probabilistic reasoning. The weights attached to formulas are learned
either from data or from probabilities arbitrarily given. This learning phase is
made under closed-world assumption. Once a Markov Logic Network is learned,
the weighted satisfiability of any candidate link has to be computed. This is not
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scalable in practice. Then, candidate pairs are filtered using a cheap similar-
ity such as TF.IDF: non matching pairs are added as false atoms. Experiments
have been conducted on Cora dataset (1295 instances) and a sample of Bib-
serv (10, 000 instances). PSL allows probabilistic inference based on similarities
functions. As Markov Logic, formulas’ weights are learned making closed world
assumption. Furthermore, it allows to assign weights to facts using the similar-
ity of sets of property values (which assumes that sets are fully known). Like
Datalog, it is restricted to conjunctive rules. Experiments have been performed
on the task of Wikipedia article classification and ontology matching.

Contrary to aforementioned approaches, in ProbFR, probability computa-
tion and inference are separated. All rules are iteratively applied to compute
the saturation and the provenances of every deduced facts. Probabilities are
then computed from the provenances. This allows to change the probabilities
assigned to rules and reevaluated quickly the probabilities of inferred facts with-
out recomputing the saturation. Another difference is that probabilities attached
to formulas can be given or learned from data. No further learning is required.

Decoupling the symbolic computation of provenances from the numerical
computation of probabilities makes probabilistic reasoning more modular and
more transparent for users. This provides explanations on probabilistic inference
for end-users, and useful traces for experts to set up the input probabilistic
weights.

Currently, the threshold for filtering the probabilistic sameAs facts that will
be retained as being true must be set up and adjusted manually. As future work,
we plan to design a method to set up this threshold automatically by, besides
inferring sameAs facts, inferring differentFrom facts too, and then exploiting
the sameAs and differentFrom facts (and their probabilities) that are inferred
for the same pairs of entities. We also plan to design a backward-reasoning
algorithm able to deal with probabilistic rules, that could be combined with
the ProbFR probabilistic forward-reasoner for importing on demand useful data
from external sources.

4 Extraction of Modules from RDF Knowledge Bases [39]

The Semantic Web consolidated a legacy of ontologies and databases today seen
as reference systems for building new Semantic Web applications. To illustrate,
consider a medical application for anatomy, whose goal is to showcase the struc-
ture of the human body, the most common pathologies and diseases, and the
scientists that contributed to their study. A structural description of human
anatomy can be drawn from FMA7 or My Corporis Fabrica (MyCF).8 A tax-
onomy of clinical terms about diseases can be extracted from SNOMED,9 while
biographical informations about scientists implied in studies can be taken from
DBPedia.10 These reference system contain knowledge that can be reused to
7 fma.biostr.washington.edu.
8 www.mycorporisfabrica.org.
9 www.ihtsdo.org/snomed-ct.

10 www.dbpedia.org.

http://fma.biostr.washington.edu
www.mycorporisfabrica.org
www.ihtsdo.org/snomed-ct
www.dbpedia.org
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minimize the introduction of errors in the application. However, it is inconvenient
to integrate in the application the whole datasets, as they contain complemen-
tary data and ontology axioms that are logically redundant. It is thus preferable
to extract lightweight fragments of these reference systems - the modules - that
are relevant for the application, and then to build on top of them.

While extracting modules from ontologies has been largely investigated for
Description Logics (DL) [24,32], module extraction from RDF triplestores has
received little attention. Yet, more and more huge RDF datasets are flourishing
in the Linked Data and some of them, like DBPedia or YAGO [42], are increas-
ingly reused in other more specialized datasets. RDF is a graph data model based
on triples accepted as the W3C standard for Semantic Web data, with a simple
ontology language, RDF Schema (RDFS). The W3C proposed OWL for writing
expressive ontologies based on DL constructors. Whereas OWL is often seen as
an extension of RDFS, this is not exactly the case. Both RDFS and the RDF
query language (SPARQL) feature the possibility of accessing at the same time
the ontology data and schema, by making variables ranging over classes or prop-
erties. This domain meta-modeling goes beyond the first-order setting typically
considered in DL [18]. As a consequence, DL modularization frameworks are
not applicable to popular RDF datasets like DBpedia or YAGO. Also, the clear
separation between the ABox and the TBox made in DL to define the seman-
tics of modules is not appropriate for RDF where facts and schema statements
can be combined within a single RDF triplestore to accommodate heterogeneous
knowledge from the Web. Another limit of the current approaches is that the
existing semantics do not allow to limit the size of the extracted modules. As
discussed in [24], the risk in practice is to output large portions of the initial
ontologies, thus jeopardizing the gains of modularization.

The RDF knowledge bases that we consider are deductive RDF datasets as
defined in Sect. 2.3: an RDF knowledge base is a pair 〈D,R〉 where D is an RDF
dataset and R is a finite set of (possibly recursive) rules.

Figure 4 presents an RDF dataset, together with its graph version. The exam-
ple is inspired by the MyCF ontology [36], which classifies digital representation
of human body parts, acquired by IRMs or tomographies, according to anatom-
ical knowledge. For instance, the type edge connecting irm42 with knee, corre-
sponds to the triplestore atom (irm42, type, knee), which is the standard RDF
syntax for class membership.

A path p(u0,un) = (u0, v1, u1), (u1, v2, u2), . . . , (un−1, vn, un) is a sequence of
atoms where each ui, vi are terms. The length of a path is the number of its
atoms, here |p(u0,un)| = n.

We denote a rule by r and a set of rules by R. To illustrate, the rules for
class subsumption
r1 : (x , type, y), (y , subClassOf, z ) → (x , type, z )
r2 : (x , subClassOf, y), (y , subClassOf, z ) → (x , subClassOf, z )
on D1 entail that irm42 has type anatomical structure, and that a subclass of this
last one is tendon gastr. muscle.
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Fig. 4. Triplestore D1

Datalog supports recursion by design. A rule r is said to be recursive if its
conclusion unifies with one of its premises. In this work, we consider sets of rules
where recursion is limited to recursive rules, like

r1 : (x , hasPart, y) → (y , partOf, x )
r2 : (x , insertOn, y), (y , partOf, z ) → (x , insertOn, z )
r3 : (x , partOf, y), (y , partOf, z ) → (x , partOf, z )

and, we exclude the presence of indirect recursion, in all cases where this involves
non-recursive rules, like

r4 : (x , contains, y) → (x , partOf, y)
r5 : (x , partOf, y), (y , partOf, z ) → (z , contains, x )

This mild restriction on recursion is of practical relevance, as it is enjoyed by
the most relevant RDFS rules, like the mutually recursive ones for domain and
range.
rdom : (x , domain, z ), (y , x , y ′) → (y , type, z )
rran : (x , range, z ′), (y , x , y ′) → (y ′, type, z ′)

Following Definition 1, the saturated RDF dataset obtained from D and the
set of rules R, is defined as Sat(D,R) = {t ∈ D′ |D,R � D′}.

We write D,R � p(u0,un) for the entailment of a path that holds if all path
atoms are in Sat(D,R).

Rule entailment, also referred as the immediate consequence operator for
rules defines, by means of semantic conditions, when a Datalog rule r is entailed
by a set R.

Definition 3 (Rule Entailment). A rule r is entailed by a set R, denoted by
R � r, if for all triplestore D it holds that Sat(D, r) ⊆ Sat(D,R). A set R′ is
entailed from R, denoted by R � R′ when R � r for all r ∈ R′.
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Finally, knowledge base entailment, denoted by 〈D,R〉 � 〈D′, R′〉, holds when
D,R � D′ and R � R′.

4.1 Bounded-Level Modules

We propose a novel semantics for bounded-level modules allowing to effectively
control their size. We employ a notion of level of detail for modules in such a
deductive setting. For example, a signature (subClassOf, partOf)3[eye] limits the
module-data extracted from a triplestore, by allowing to retrieve a description
of all subclasses and subparts of the eye up to three levels.

A module is declared by means of a signature Σ of the form Σ =
(p1, . . . , pn)k[a] where the constants p1, . . . , pn represent the properties of interest
of the module, the constant a represents an object of interest of the module, and
k is a positive integer denoting the level of detail of the module. An example of
module signature is (partOf)3[eye]. Intuitively, a module M induced by a signa-
ture Σ on a reference system 〈D,R〉 is a deductive triplestore M = 〈DM , RM 〉
which is logically entailed by 〈D,R〉 and conforming to Σ, in the sense that
all data and rule atoms employ the properties p1, . . . , pn only. Furthermore, to
control the module size, the facts in M are restricted to the paths rooted at the
object of interest a, of length bounded by k.

We say that an atom conforms to Σ, denoted by (v1, u, v2)
◦
◦ Σ, if u is a

property of Σ or u ∈ Vars. A set of atoms Δ conforms to Σ if all of its atoms
do. Then, 〈D,R〉 conforms to Σ if so do D and R.

In Fig. 5(c) it holds that D3
◦
◦ (partOf, subClassOf)2[knee]. However, it does

not hold that D3
◦
◦ (subClassOf)1[knee].

Fig. 5. Triplestore examples

Restricting the module paths is a way to effectively control the module size.
Nevertheless, for the completeness of the module data, it is essential to guarantee
that the module entails all of such bounded paths entailed by 〈D,R〉. In a
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deductive setting, adding new paths in the graph, defining properly DM becomes
challenging.

First, we observe that to avoid incomplete modules, the paths of DM have
to be drawn from Sat(D,R). To see this, consider D2 in Fig. 5(a) and a rule
inferring pairs of organs (y , z ) physically connected by a tendon
r2 : (x , insertOn, y), (x , insertOn, z ), (x , subClassOf, tendon)⇒(y , tendonConnected, z )
A user interested in the organs directly and indirectly connected to
the femur of this triplestore can declare the module signature Σ2 =
(tendonConnected)2[femur]. By restricting the module data DM to the paths
in D2 of length bounded by 2 that are rooted at femur and that use the property
tendonConnected only, we get:

DM = {(femur, tendonConnected, gastroc.Muscle)}.
This dataset has however to be considered incomplete. As shown in Fig. 5(b),
the rule r2 entails on D2 also the fact

(gastroc.Muscle, tendonConnected, knee).
This forms a path of length two together with the original triple

(femur, tendonConnected, gastroc.Muscle),
that should be included in DM . The example illustrates clearly that DM depends
from the rules in R.

However, taking into account all paths in Sat(D,R) is not desirable for
defining modules of bounded size. In some cases, the triples entailed by recur-
sive rules may produce new edges in the data graph that behave like shortcuts
between resources, thereby wasting the module parametricity. Consider D3 in
Fig. 5(c) and the recursive rule r3 defining the transitivity of partOf
r3 : (x , partOf, y), (y , partOf, z ) → (x , partOf, z )
The saturated triplestore Sat(D3, r3) is depicted in Fig. 5(d).

It contains (patella, partOf, knee) but also
(patella, partOf, leg)
and (patella, partOf, inferiorBody).
More generally, it contains all triples of the form tb = (patella, partOf, b)

entailed by the transitivity of partOf. This means that if we take into account
the recursive rule r3 for defining the module paths, then all triples tb are likely
to be part of the module induced by signature (partOf)1[knee]. This undermines
the module parametricity because it retrieves all resources connected with knee
regardless of the level of detail k.

Our solution to both keep into account implicit triples and make parametric-
ity effective, is to define the module data as a subgraph of a partially-saturated
triplestore obtained by applying non-recursive rules only, while fully delegating
the recursive rules to the module rules. This leads to the following novel defini-
tion of module.

Definition 4 (Module). Let 〈D,R〉 be a deductive triplestore and Σ =
(p1, . . . , pn)k[a] a signature. Then, M = 〈DM , RM 〉 is a module for Σ on 〈D,R〉 if

1. 〈DM , RM 〉 ◦
◦ Σ

2. 〈D,R〉 � 〈DM , RM 〉
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3. if p(a,b)
◦
◦ Σ and |p(a,b)| ≤ k then

(a) D,RNonRec � p(a,b) implies DM , RM � p(a,b)
(b) DM , R � p(a,b) implies DM , RM � p(a,b)

Point 1 and 2 of the definition state the well-formedness and the logical
entailment of the modules, respectively. Point 3 is the crux of the definition.
Property 3(a) says that every path rooted at a of k-bounded length and con-
forming to Σ, that is entailed by the non-recursive rules of the reference system
RNonRec, must also be inferable by M . Property 3(b) enforces that the module
rules RM infer the same paths conforming to Σ as the whole set of rules R,
but only when applied to the module data DM . In contrast with the spirit of
previous approaches (e.g., [24]), our definition does not enforce that every fact
in the signature entailed by the reference triplestore also belongs to the module.
Relaxing the module conditions in this way allows to control the module size,
and cope with recursive rules.

To illustrate the definition, consider the triplestore D4 of Fig. 6(a) equipped
with the rules below.
r4 : (x , hasFunction, y) → (x , participatesTo, y)
r′
4 : (x , participatesTo, y), (y , subClassOf, z ) → (x , participatesTo, z )

Fig. 6(b) depicts Sat(D4, {r4, r
′
4}). Consider now:

Σ4 = (participatesTo, subClassOf)2[knee].
A module M4 for Σ4 contains all paths rooted at knee of length at most 2,

employing participatesTo and subClassOf only. Note that if the recursive rule
r′
4 is considered, then the triple t1 = (knee, participatesTo, bodyPosture) is

included in the module dataset, which is not desirable. In contrast, t2 =
(knee, participatesTo, kneePosture) is expected to be in a module for the signature
Σ4. A structure satisfying Definition 4 is M4 = 〈DM4 , RM4〉 with DM4 depicted in
Fig. 6(c) and RM4 = {r′

4}. Note that t2 is not explicitly in the module dataset DM4

but can be inferred by r′
4 as shown in Fig. 6(d).

Fig. 6. Triplestore and module examples
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Next, we present two algorithms for extracting module data and rules com-
pliant with this novel semantics.

4.2 Extracting Module Data

The extraction of the module dataset can be done by leveraging on the evaluation
of Datalog queries and implemented on top of existing engines. Given a module
signature Σ = (p1, . . . , pn)k[a], the Datalog program ΠΣ below computes all
paths rooted at a, of length bounded by k, and built on the properties of interest
of Σ. It does so, in the extension of the relation m, starting from a triplestore
modeled with a single relation t.

ΠΣ=

⎧
⎨

⎩

t(a, pi, x ) → m1(a, pi, x )
mj(x1, y1, x ) , t(x , pi, y)→ mj+1(x , pi, y)

mj(x , y , z ) → m(x , y , z )

An instance of the rules is included for each i = 1..n and j = 1..k. ΠΣ is a
non-recursive set of rules of size O(nk) that can always be evaluated in at most
k steps. Then, to infer all paths of bounded length entailed by non-recursive
rules of a reference system, the set ΠΣ is evaluated together with RNonRec. As
a result, the union ΠΣ ∪ RNonRec gives a non-recursive set of rules that can
be evaluated in LOGSPACE data-complexity. The completeness of module data
extraction follows from the completeness of Datalog query evaluation. Below, we
write Qm(D,ΠΣ∪RNonRec) for the answer set of the evaluation of the Datalog
program ΠΣ∪RNonRec defining the relation m, on top of the dataset D. This
constitutes the module data DM .

Theorem 2 (ModuleDataExtraction). For all path p(a,b)
◦
◦ Σ with |p(a,b)| ≤ k

we have D,RNonRec � p(a,b) if and only if p(a,b) ∈ Qm(D,ΠΣ∪RNonRec).

4.3 Extracting Module Rules

We now present an algorithm for module rule extraction that, together with the
dataset extracted in the previous section, yields a module compliant with our
semantics.

By Definition 4, a module is constituted of rules entailed by that of the ref-
erence system, and built on the properties of interest only. As the properties
of interest of a module may restrict those employed by a reference system, the
module rules cannot be just a subset of the original ones. Rule extraction is thus
performed by an unfolding algorithm, that proceeds by replacing the premises of
a rule with that of another one, until obtaining a set conforming to the signature.
To illustrate, consider Σ = (p, q)k[a] and the rules below.
r1 : (x , q, y), (y , partOf, x ) → (x , q, y)
r2 : (x , p, y) → (x , partOf, y)

Although the rule r1 does not conform to Σ, it can be unfolded with r2 so
as to obtain a module rule. As the atom (y , partOf, x ) in the body of r1 unifies
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with the conclusion of r2, it can be replaced by (y , p, x ), so as to get the rule
r̄ = (x , q, y), (y , p, x ) → (x , q, y). Rule r̄ is called an unfolding of r1 with r2.

In the above example, one unfolding step is enough to have a rule r̄ that
is conform to the module signature and that, by construction, is entailed by
{r1, r2}. It is easy to see that this can be generalized, and that rules belonging to
unfoldings of a set of rules R are entailed by R. However, in presence of recursive
rules the set of unfoldings of a rule may be infinite, as illustrated below.

Example 2. Consider Σ = (p, q)3[a1] and R with
r1 : (x , partOf, y) → (x , q, y)
r2 : (x , partOf, y), (y , partOf, z ) → (x , partOf, z )
r3 : (x , p, y) → (x , partOf, y)

Here, r1 can be unfolded with r2 and r3, thus obtaining
r̄ : (x1, p, x2), (x2, p, x3) → (x1, q, x3)
However, there exist infinitely many unfoldings of rule r2 with itself that yield
expressions of the form (x1, p, x2), (x2, p, x3), (x3, p, x4) → (x1, q, x4) that use any
finite sequence of variables x1, . . . , xn. This set of unfoldings cannot be strictly
speaking a set of triplestore or module rules, because it is infinite.

Algorithm 2. MRE(NToUnfold, RToApply, Σ)
(1) for all r1 ∈ NToUnfold

(2) if r1
◦
◦ Σ then:

(3) RM ← r1
(4) remove r1 from RToApply

(5) else:
(6) for all r2 ∈ RToApply s.t. r1 �= r2
(7) for all r ∈ RuleUnfolding(r1, r2)
(8) if r

◦
◦ Σ then: RM ← r

(9) RM ← MRE({r}, RToApply\{r, r2}, Σ)
(10) return RM

To avoid ending up with infinite sets of module rules, we devised an unfolding
algorithm based on a breadth-first strategy. Algorithm MRE (Algorithm2) per-
forms Module Rules Extraction. It takes as input a set of rules to be unfolded
NToUnfold, a set of rules to be used for the unfolding RToApply, and a signa-
ture Σ. Given a deductive triplestore 〈D,R〉 the first call to the algorithm
is MRE(NToUnfold, R,Σ). The set NToUnfold ⊆ R is constituted of all rules
r ∈ R that conclude on a property of interest, that is head(r) ◦

◦ Σ. Any rule
belonging to NToUnfold (whose premises use properties that are not in Σ) is
unfolded in a breadth-first fashion until no rule in RToApply can be applied. All
rules in R are considered for unfolding (RToApply = R). Procedure RuleUnfold-
ing(r1, r2) progressively unfolds each subset of atoms in the body of r1 that
unify with the conclusion of r2. For example, the three breadth-first unfoldings
of r1 : (x , p, y), (x , p, z ) → (x , p, y) with r2 : (x , partOf, y) → (x , p, y) are
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r̄3 : (x , p, y), (x , partOf, z ) → (x , p, y)
r̄4 : (x , partOf, y), (x , p, z ) → (x , p, y)
r̄5 : (x , partOf, y), (x , partOf, z ) → (x , p, y)

Note that a rule is never unfolded with itself by the algorithm (thus avoiding
a depth-first fashion). The fact that r2 used for the unfolding is discarded from
RToApply (line 10) ensures the termination of the extraction procedure, even in
the presence of recursive rules.

Theorem 3 (Rule Extraction Algorithm). Let R be a set of rules and Σ a
module signature. Algorithm MRE always terminates in O(2|R|×|r|) and produces
a set of rules RM conforming to Σ such that for all r

◦
◦ Σ it holds

RM � r implies R � r (Soundness)

Furthermore, when RRec ◦
◦ Σ we also have

R � r implies RM � r (Completeness)

Algorithm MRE is sound, in the sense that it computes a set of rules entailed
by R. Furthermore, for the case where all recursive rules in R conform to Σ, the
algorithm is also complete, in the sense that it produces a set of rules RM

that entails all rules R can entail on the properties of Σ. As a consequence,
any dataset DM (computed as for Theorem 2) paired with RM constitutes a
module meeting Definition 4, and in particular the point 3(b). If this condition
does not hold, module extraction may be incomplete. To see this, consider again
〈D,R〉 of Example 2 with D = {(a1, p, a2), (a2, p, a3), (a3, p, a4)}. Recall that
Σ = (p, q)3[a1], and then notice that the recursive rule r2 	 ◦

◦ Σ. Here, module
data extraction yields DM = D. Observe now that the atom (a1, q, a4) belongs
to Sat(DM , R). As MRE outputs the set RM = {(x , p, y), (y , p, z ) → (x , q, z )},
the triple (a1, q, a4) does not belong to Sat(DM , RM ), while it should. Hence,
〈DM , RM 〉 does not satisfy Definition 4.

Surprisingly enough, this case of incompleteness is independent of algo-
rithm MRE. In fact, when R includes recursive rules that do not conform
to Σ, it does not exist an algorithm that outputs a finite set of rules RM

such that R � r implies RM � r, for all r
◦
◦ Σ. As Example 2 illus-

trates, the extracted RM must mimic an infinite set of rules of the form
(x1, p, x2), (x2, p, x3). . .(xn−1, p, xn)→(x1, q, xn). One may think of capturing this
infinite set by adding a recursive rule rp : (x , p, y), (y , p, z ) → (x , p, z ) together
with r̄ : (x1, p, x2), (x2, p, x3) → (x1, q, x3). However, adding this recursive rule
makes infer triples using p that are not entailed by the reference system, thereby
violating point 2 of Definition 4. We can also ask whether this infinite set of
rules can be reduced to a finite set that directly depends on k. Unfortunately,
the answer is negative. Furthermore, it is unpractical for real systems to consider
a specific module data DM and bound by O(|DM |) the number of self-unfolding
of a recursive rule during extraction, as this can output an unmanageable set
of rules, that are (still) not robust to updates. Therefore, understanding when
algorithm MRE is complete is key for module extraction.
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This kind of unfolding issues have also been recognized and studied by earlier
works on the optimization of recursive Datalog [28].

Finally, note that Theorem3 is actually stronger than what required by Defi-
nition 4, because (i) it is based on semantic conditions and therefore it holds for
any rule r entailed by R (unfoldings are just a particular case) and (ii) it is inde-
pendent from the module data, and thus suitable for other module semantics.

A characterization of the whole module extraction task follows as a corollary
of Theorems 2 and 3.

4.4 Experiments

We implemented bounded-level module extraction on top of Jena 2.11.2 TDB,
and compared it against two related approaches to show its benefits in terms of
flexibility and succinctness of the extracted modules. We considered the following
three Semantic Web datasets.

MyCF 0.5M triples 11 domain-specific rules

GO 1M triples 15 domain-specific rules

Yago2∗ 14M triples 6 RDFS rules

Yago2∗ is the union of Yago2Taxonomy, Yago2Types and Yago2Facts datasets.
We sampled classes and properties from these ontologies, and combined them to
obtain a set of signatures used to run module extraction. We considered 2500
MyCF ontology classes combined with 20 subsets of its properties, of size 1–4. For
the GO ontology (www.geneontology.org), we sampled 350 classes and 12 prop-
erty sets (size 1–4). Since Yago knowledge is more diverse than a domain-specific
ontology, to avoid empty modules we first selected three groups of properties that
are frequently used together, and then subset them (size 2, 4, 6). We tested 100
Yago resources for each group. Finally, we made k ranging over {1, 2, 3, 5, 10}.

Closest Competitor Approaches. Relevant methods to our work are Traver-
sal Views [35] and Locality-based modules [24]. Traversal Views (TV) compute
a bounded-level view of an RDF database, in the same spirit as our approach.
This method does not support inference rules, and it does not give any guar-
antee about extracted modules. In practice, in the presence of rules, a traversal
view may miss relevant triples. Locality-Based (LB) module extraction com-
putes a conservative extension of an ontology by checking logical conditions on
its schema. In contrast with our method, it cannot modularize untyped RDF
data and, because it enforces strong logical guarantees on a module, it cannot
control a priori its size.

www.geneontology.org
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Results of Module Data Extraction. Figures 7 and 8 report on the size
of bounded-level modules, compared with those of TV and LB. The graphs
show the average number of triples, for modules grouped by the same number
of properties and k value, in logarithmic scale. In Fig. 9 we report the test on
Yago2 with our approach, since LB does not support this RDF dataset.

Fig. 7. Size of extracted modules from MyCF

Fig. 8. Size of extracted modules from GO

As expected, the succinctness of bounded-level modules depends on k. The
transitivity of the properties declared in the signature also has an impact. This
is evident with Yago2 in Fig. 9. Group 2 has properties inherently transitive
(isLocatedIn, isConnectedWith) dominating for example (created, owns) in group
1 and (hasGender, isAffiliatedTo) in group 3. Hence, bounded-level modules can
be very helpful to control the data succinctness with transitive properties.

Being TV unaware of rules, it may miss relevant data when implicit triples
are not considered. We tested this claim, over the non-saturated MyCF ontology.
Indeed, 42% (15072/35740) of the (non-empty) modules extracted by TV were
missing relevant triples wrt our approach, as some subproperty rules were not
evaluated. To overcome this limitation, we tested TV over the saturated MyCF.
For concision, in Fig. 7 we report only the minimal level of detail (k = 1). This
already outlines a lower bound for the module size. As we can see, k = 1 already
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Fig. 9. Size of extracted modules from Yago2

produces fairly larger modules than our approach. This is because of the MyCF
rules for transitivity and property-chains. Increasing k gives modules of size in
the order of the saturated triplestore. The same discussion holds for GO in Fig. 8.
LB extraction for top-locality modules has been tested thanks to the available
prototype11. For MyCF and GO, it outputs almost the whole ontology (Figs. 7
and 8). This is due to ontology axioms that cannot be ignored for the logical
completeness of the method.

5 Rule-Based Integration of Heterogeneous Data
and Models [36,37]

Computer modeling and simulation of the human body is becoming a critical and
central tool in medicine but also in many other disciplines, including engineer-
ing, education, entertainment. Multiple models have been developed, for appli-
cations ranging from medical simulation to video games, through biomechanics,
ergonomics, robotics and CAD, to name only a few. However, currently available
anatomical models are either limited to very specific areas or too simplistic for
most of the applications.

For anatomy, the reference domain ontology is the Foundational Model of
Anatomy (FMA [38]) which is a comprehensive description of the structural
organization of the body. Its main component is a taxonomy with more then
83000 classes of anatomical structures from the macromolecular to the macro-
scopic levels. The FMA symbolically represents the structural organization of the
human body. One important limitation of the state-of-the-art available ontologies
is the lack of explicit relation between anatomical structures and their functions.
Yet, human body modeling relies on morphological components on the one hand
and functional and process descriptions on the other hand. The need for a for-
mal description of anatomical functions has been outlined in [30], with some
guidelines for getting a separate ontology of anatomical functions based on an
11 www.cs.ox.ac.uk/isg/tools/ModuleExtractor/.

www.cs.ox.ac.uk/isg/tools/ModuleExtractor/
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ontological analysis of functions in general formal ontologies such as GFO [27] or
Dolce [33]. Complex 3D graphic models are present in more and more application
software but they are not explicitly related to the (anatomical) entities that they
represent making difficult the interactive management of these complex objects.

Our approach for supporting efficient navigation and selection of objects in
3D scenes of human body anatomy is to make explicit the anatomic and func-
tional semantics of 3D objects composing a complex 3D scene through a symbolic
and formal representation that can be queried on demand. It has been imple-
mented in My Corporis Fabrica (MyCF), which realizes a rule-based integration
of three types of models of anatomy: structural, functional model and 3D mod-
els. The added-value of such a declarative approach for interactive simulation
and visualization as well as for teaching applications is to provide new visualiza-
tion/selection capabilities to manage and browse 3D anatomical entities based
on the querying capabilities incorporated in MyCF.

The core of MyCF is a comprehensive anatomical ontology, the novelty of
which is to make explicit the links between anatomical entities, human body
functions, and 3D graphic models of patient-specific body parts. It is equipped
with inference-based query answering capabilities that are particularly interest-
ing for different purposes such as:

– automatic verification of the anatomical validity of 3D models. Indeed, it is
important to select the correct set of anatomical entities that participates to a
simulation, e.g. a simulation of movements where the correct bones, muscles,
ligaments, . . . , are required to set up all the 3D and mechanical simulation
parameters. These requirements are very close to the selection requirements
described in the ‘Background’ section. They can be regarded as equivalent to
a selection operator;

– automatic selection and display of anatomical entities within a 3D scene.
Anatomical entities can vary largely in size, can be very close to each other
or even hidden by other anatomical entities. The use of geometric means to
select useful sets of entities is not suited whereas inference-based queries using
human body functions can provide much more suited means. Such selection
capabilities are particular relevant for diagnosis for instance;

– training students on anatomical entities participating to a certain body func-
tion. Here again, this purpose is close to that of selection functions where the
connection between function and anatomical entities provides new means to
browse and highlight features of anatomical structures accessible in 3D.

The current version of the ontology contains almost 74000 classes and rela-
tions as well as 11 rules stored in a deductive RDF triple store using a Sesame
server, and that can be queried with a remote-access facility via a web server12.
The ontology can be easily updated, just by entering or deleting triples and/or
by modifying the set of rules, without having to change the reasoning algorithmic
machinery used for answering queries. It is the strength of a declarative approach

12 http://mycorporisfabrica.org/mycf/.

http://mycorporisfabrica.org/mycf/
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that allows a fine-grained domain-specific modeling and the exploitation of the
result by a generic (domain-independent) reasoning algorithm.

MyCF features three distinct taxonomies linked by relations and rules:

– Anatomical entities, such as knee, shoulder, and hand, denote parts of the
human body, and give a formal description of canonical anatomy;

– Functional entities, such as gait, breath, and stability, denote the functions of
the human body, and are the fundamental knowledge to explain the role of
each anatomical entity;

– Finally, 3D scenes with entities such as 3D-object, 3D-scene define the content
required to get 3D views of patient-specific anatomical entities described by
3D graphical models related to anatomical entities.

Figure 10 shows an extract of this integrated ontology, in which the green
classes refer to the 3D models, the pink classes to the structural model and blue
classes to the functional entities.

Fig. 10. The general structure of MyCF integrated ontology (extract) (Color figure
online)

The inference rules of MyCF express complex connections between rela-
tions, within or across the three taxonomies. For instance, the follow-
ing rules express connections that hold in anatomy between the relations
rdfs:subClassOf and mcf:InsertOn, but also between rdfs:subClassOf and
mcf:IsInvolvedIn, rdfs:subClassOf and mcf:participatesTo, mcf:participatesTo
and mcf:IsInvolvedIn, mcf:PartOf and mcf:InsertOn respectively. The first rule
says that if a given class representing an anatomical entity ?a (e.g., Sartorius) is
a subclass of an anatomical entity ?c (e.g., Muscle) that is known to be inserted
on an anatomical entity ?b (e.g., Bone), then ?a is inserted on ?b (Sartorius
inserts on a Bone).

( ?a rdfs:subClassOf ?c ), ( ?c mcf:InsertOn ?b ) → ( ?a mcf:InsertOn ?b )
( ?a mcf:IsInvolvedIn ?c ), ( ?c rdfs:subClassOf ?b ) → ( ?a mcf:IsInvolvedIn ?b )

( ?a mcf:participatesTo ?c ), ( ?c rdfs:subClassOf ?b ) → ( ?a mcf:participatesTo ?b )

( ?a mcf:participatesTo ?c ), ( ?c mcf:IsInvolvedIn ?b ) → ( ?a mcf:participatesTo ?b )

( ?a mcf:InsertOn ?c ), ( ?c mcf:PartOf ?b ) → ( ?a mcf:InsertOn ?b )
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The following rule crosses the anatomy domain and the 3D domain and expresses
that the conventional color for visualizing bones in anatomy is yellow:

( ?x rdf:type 3D-object ), ( ?x mcf:Describes ?y ), ( ?y rdfs:subClassOf Bone )
→ ( ?x mcf:hasColour yellow )

Fig. 11. Illustration of ontology-based querying and visualization using MyCF (Color
figure online)

Figure 11 illustrates a complete example from query to 3D visualization. Data
are presented as a graph with corresponding RDF triples on the bottom. The
query is explained in English and translated in SPARQL. The answers are used
to select and highlight corresponding 3D models in the 3D scene.

We have extended this rule-based approach for 3D spatio-temporal modeling
of human embryo development in [37]. It results in a unified description of both
the knowledge of the organs evolution and their 3D representations enabling to
visualize dynamically the embryo evolution.

In an ongoing work, following a similar methodology for ontology-based inte-
gration of data extracted from several heterogeneous sources, we are developing
OntoSIDES to offer personalized and interactive services for student progress
monitoring on top of the national e-learning and evaluation platform of French
medical schools.

6 Conclusion

We have shown that Datalog rules on top of RDF triples provides a good trade-
off between expressivity and scalability for reasoning in the setting of Linked
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Data. It would be worthwhile to investigate the usefulness in practice and the
scalability of the Datalog extension proposed in [8] allowing for value invention
and stratified negation.
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Abstract. Answer Set Programming (ASP) has become an established
paradigm for Knowledge Representation and Reasoning, in particular,
when it comes to solving knowledge-intense combinatorial (optimization)
problems. ASP’s unique pairing of a simple yet rich modeling language
with highly performant solving technology has led to an increasing inter-
est in ASP in academia as well as industry. To further boost this devel-
opment and make ASP fit for real world applications it is indispensable
to equip it with means for an easy integration into software environments
and for adding complementary forms of reasoning.

In this tutorial, we describe how both issues are addressed in the
ASP system clingo. At first, we outline features of clingo’s application
programming interface (API) that are essential for multi-shot ASP solv-
ing, a technique for dealing with continuously changing logic programs.
This is illustrated by realizing two exemplary reasoning modes, namely
branch-and-bound-based optimization and incremental ASP solving. We
then switch to the design of the API for integrating complementary forms
of reasoning and detail this in an extensive case study dealing with the
integration of difference constraints. We show how the syntax of these
constraints is added to the modeling language and seamlessly merged
into the grounding process. We then develop in detail a corresponding
theory propagator for difference constraints and present how it is inte-
grated into clingo’s solving process.

1 Introduction

Answer Set Programming (ASP [4]) has established itself among the popular
paradigms for Knowledge Representation and Reasoning (KRR), in particular,
when it comes to solving knowledge-intense combinatorial (optimization) prob-
lems. ASP’s unique combination of a simple yet rich modeling language with
highly performant solving technology has led to an increasing interest in ASP
in academia as well as industry. Another primary asset of ASP is its versatil-
ity, arguably elicited by its roots in KRR. On the one hand, ASP’s first-order
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modeling language offers, for instance, cardinality and weight constraints as well
as means to express multi-objective optimization functions. This allows ASP
to readily express problems in neighboring fields such as Satisfiability Testing
(SAT [7]) and Pseudo-Boolean Solving (PB [37]), as well as Maximum Satis-
fiability Testing (MaxSAT [28]) and even more general constraint satisfaction
problems possibly involving optimization. On the other hand, these constructs
must be supported by the corresponding solvers, leading to dedicated treatments
of cardinality and weight constraints along with sophisticated optimization algo-
rithms. Moreover, mere satisfiability testing is often insufficient for addressing
KRR problems. That is why ASP solvers offer additional reasoning modes involv-
ing enumerating, intersecting, or unioning solutions, as well as combinations
thereof, e.g., intersecting all optimal solutions.

In a sense, the discussed versatility of modern ASP can be regarded as the
result of hybridizing the original approach [24] in several ways. So far, however,
most hybridization was accomplished within the solvers and is thus inaccessible
to the user. For instance, the dedicated treatment of aggregates like cardinality
and weight constraints is fully opaque. The same applies to the control of suc-
cessive solver calls happening during optimization. Although a highly optimized
implementation of such prominent concepts makes perfect sense, the increas-
ing range and resulting diversification of applications of ASP calls for easy and
generic means to enrich ASP with dedicated forms of reasoning. This involves the
extension of ASP’s solving capacities with means for handling constraints for-
eign to ASP as well as means for customizing solving processes to define complex
forms of reasoning. The former extension is usually called theory reasoning (or
theory solving) and the resulting conglomerate of ASP extensions is subsumed
under the umbrella term ASP modulo theories. The other extension addresses
the customization of ASP solving processes by multi-shot ASP solving, providing
operative solving processes that deal with continuously changing logic programs.

Let us motivate both techniques by means of two exemplary ASP extensions,
aggregate constraints and optimization. With this end in view, keep in mind that
ASP is a model, ground, and solve paradigm. Hence such extensions are rarely
limited to a single component but often spread throughout the whole workflow.
This begins with the addition of new language constructs to the input language,
requiring in turn amendments to the grounder as well as syntactic means for
passing the ground constructs to a downstream system. In case they are to be
dealt with by an ASP solver, it must be enabled to treat the specific input
and incorporate corresponding solving capacities. Finally, each such extension is
theory-specific and requires different means at all ends.

So first of all, consider what is needed to extend an ASP system like clingo
with a new type of aggregate constraint? The first step consists in defining
the syntax of the aggregate type. Afterwards, the ASP grounder has to be
extended to be able to parse and instantiate the corresponding constructs. Then,
there are two options, either the ground aggregates are translated into existing
ASP language constructs (and we are done),1 or they are passed along to a

1 Alternatively, this could also be done before instantiation.
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downstream ASP solver. The first alternative is also referred to as eager, the
latter as lazy theory solving. The next step in the lazy approach is to define an
intermediate format (or data structure) to pass instances of the aggregate con-
straints from the grounder to the solver, not to forget respective extensions to
the back- and front-ends of the two ASP components. Now, that the solver can
internalize the new constructs, it must be equipped with corresponding process-
ing capacities. They are usually referred to as theory propagators and inserted
into the solver’s infrastructure for propagation. When solving, the idea is to leave
the Boolean solving machinery intact by associating with each theory constraint
an auxiliary Boolean variable. During propagation, the truth values of the auxil-
iary variables are passed to the corresponding theory propagators that then try
to satisfy or falsify the respective theory constraints, respectively. Finally, when
an overall solution is found, the theory propagators are in charge of outputting
their part (if applicable). One can imagine that each such extension involves a
quite intricate engineering effort since it requires working with the ASP system’s
low level API. clingo allows us to overcome this problem by providing easy and
generic means for adding theory solving capacities. On the one side, it offers
theory grammars for expressing theory languages whose expressions are seam-
lessly integrated in its grounding process. On the other side, a simple interface
consisting of four methods offers an easy integration of theory propagators into
the solver, either in C, C++, Lua, or Python.

Let us now turn to (branch-and-bound-based) optimization and see what
infrastructure is needed to extend a basic ASP solver. In fact, for the setup,
we face a similar situation as above and all steps from syntax definition to
internalization are analogous for capturing objective functions. The first step in
optimization is to find an initial solution. If none exists, we are done. Otherwise
the system enters a simple loop. The objective value of the previous solution
is determined and a constraint is added to the problem specification requiring
that a solution must have a strictly better objective value than the one just
obtained. Then, the solver is launched again to compute a better solution. If none
is found, the last solution is optimal. Otherwise, the system re-enters the loop
in order to find an even better solution. This solving process faces a succession
of solver invocations dealing with slightly changing problem specifications. The
direct way to implement this is to use a script that repeatedly calls an ASP
solver after each problem expansion. However, such an approach bears great
redundancies due to repeated grounding and solving efforts from scratch. Unlike
this, clingo offers evolving grounding and solving processes. Such processes lead
to operative ASP systems that possess an internal state that can be manipulated
by certain operations. Such operations allow for adding, grounding, and solving
logic programs as well as setting truth values of (external) atoms. The latter does
not only provide a simple means for incorporating external input but also for
enabling or disabling parts of the current logic program. These functionalities
allow for dealing with changing logic programs in a seamless way. As above,
corresponding application programming interfaces (APIs) are available in C,
C++, Lua, or Python.
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The remainder of this tutorial is structured as follows. Section 2 provides some
formal underpinnings for the following sections without any claim to complete-
ness. Rather we refer the reader to the literature for comprehensive introductions
to ASP and its computing machinery, among others [4,14,19,23,30]. As a result,
this tutorial is not self-contained and rather aims at a hands-on introduction
to using clingo’s API for multi-shot and theory solving. Both approaches are
described in Sects. 3 and 4 by drawing on material from [20,21] and [18], respec-
tively. Section 5 is dedicated to a case-study detailing how clingo can be extended
with difference constraints over integers, or more precisely Quantifier-free Integer
Difference Logic (QF-IDL).

2 Answer Set Programming

As usual, a logic program consists of rules of the form
a1;...;am :- am+1,...,an,not an+1,...,not ao

where each ai is an atom of form p(t1, . . .,tk) and all ti are terms, composed
of function symbols and variables. Atoms a1 to am are often called head atoms,
while am+1 to an and not an+1 to not ao are also referred to as positive
and negative body literals, respectively. An expression is said to be ground, if it
contains no variables. As usual, not denotes (default) negation. A rule is called
a fact if m = o = 1, normal if m = 1, and an integrity constraint if m = 0.
Semantically, a logic program induces a set of stable models, being distinguished
models of the program determined by the stable models semantics; see [25] for
details.

To ease the use of ASP in practice, several extensions have been developed.
First of all, rules with variables are viewed as shorthands for the set of their
ground instances. Further language constructs include conditional literals and
cardinality constraints [38]. The former are of the form a:b1, . . .,bm, the latter
can be written as2 s{d1; . . .;dn}t, where a and bi are possibly default-negated
(regular) literals and each dj is a conditional literal; s and t provide optional
lower and upper bounds on the number of satisfied literals in the cardinality
constraint. We refer to b1, . . .,bm as a condition. The practical value of both
constructs becomes apparent when used with variables. For instance, a condi-
tional literal like a(X):b(X) in a rule’s antecedent expands to the conjunction
of all instances of a(X) for which the corresponding instance of b(X) holds. Sim-
ilarly, 2{a(X):b(X)}4 is true whenever at least two and at most four instances
of a(X) (subject to b(X)) are true. Finally, objective functions minimizing the
sum of a set of weighted tuples (wi, ti) subject to condition ci are expressed as
#minimize{w1@l1,t1:c1; . . .;wn@ln,tn:cn} Lexicographically ordered objec-
tive functions are (optionally) distinguished via levels indicated by li. An omitted
level defaults to 0.

As an example, consider the rule in Line 9 of Listing 1.1:

2 More elaborate forms of aggregates can be obtained by explicitly using function (eg.
#count) and relation symbols (eg. <=).



A Tutorial on Hybrid Answer Set Solving with Clingo 171

1 { move(D,P,T) : disk(D), peg(P) } 1 :- ngoal(T-1), T<=n.

This rule has a single head atom consisting of a cardinality constraint; it
comprises all instances of move(D,P,T) where T is fixed by the two body
literals and D and P vary over all instantiations of predicates disk and peg,
respectively. Given 3 pegs and 4 disks as in Listing 1.2, this results in 12 instances
of move(D,P,T) for each valid replacement of T, among which exactly one must
be chosen according to the above rule.

Full details on the input language of clingo along with various examples can
be found in [16].

3 Multi-shot ASP Solving

Let us begin with an informal overview of the central features and language
constructs of clingo’s multi-shot solving capacities. We illustrate them in the
two following sections by implementing two exemplary reasoning modes, namely
branch-and-bound-based optimization and incremental ASP solving. The mate-
rial in Sects. 3.1 and 3.3 is borrowed from [20,21], respectively, where more
detailed accounts can be found.

3.1 A Gentle Introduction

A key feature, distinguishing clingo from its predecessors, is the possibility to
structure (non-ground) input rules into subprograms. To this end, a program can
be partitioned into several subprograms by means of the directive #program; it
comes with a name and an optional list of parameters. Once given in the input,
the directive gathers all rules up to the next such directive (or the end of file)
within a subprogram identified by the supplied name and parameter list. As an
example, two subprograms base and acid(k) can be specified as follows:

1 a(1).
2 #program acid(k).
3 b(k).
4 c(X,k) :- a(X).
5 #program base.
6 a(2).

Note that base is a dedicated subprogram (with an empty parameter list):
in addition to the rules in its scope, it gathers all rules not preceded by
any #program directive. Hence, in the above example, the base subprogram
includes the facts a(1) and a(2), although, only the latter is in the actual
scope of the directive in line 5. Without further control instructions (see below),
clingo grounds and solves the base subprogram only, essentially, yielding the
standard behavior of ASP systems. The processing of other subprograms such
as acid(k) is subject to scripting control.
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For customized control over grounding and solving, a main routine (taking
a control object representing the state of clingo as argument) can be supplied.
For illustration, let us consider two Python main routines:3

7 #script(python)
8 def main(prg):
9 prg.ground([("base",[])])

10 prg.solve()
11 #end.

While the above control program matches the default behavior of clingo, the
one below ignores all rules in the base program but rather contains a ground
instruction for acid(k) in line 8, where the parameter k is to be instantiated
with the term 42.

7 #script(python)
8 def main(prg):
9 prg.ground([("acid",[42])])

10 prg.solve()
11 #end.

Accordingly, the schematic fact b(k) is turned into b(42), no ground rule is
obtained from ‘c(X,k) :- a(X)’ due to lacking instances of a(X), and the
solve command in line 10 yields a stable model consisting of b(42) only. Note
that ground instructions apply to the subprograms given as arguments, while
solve triggers reasoning w.r.t. all accumulated ground rules.

In order to accomplish more elaborate reasoning processes, like those of
iclingo [17] and oclingo [15] or other customized ones, it is indispensable to
activate or deactivate ground rules on demand. For instance, former initial or
goal state conditions need to be relaxed or completely replaced when modifying
a planning problem, e.g., by extending its horizon.4 While the two mentioned
predecessors of clingo relied on the #volatile directive to provide a rigid
mechanism for the expiration of transient rules, clingo captures the respective
functionalities and customizations thereof in terms of the #external direc-
tive. This directive goes back to lparse [39] and was also supported by clingo’s
predecessors to exempt (input) atoms from simplifications (and fixing them to
false). As detailed in the following, the #external directive of clingo provides
a generalization that, in particular, allows for a flexible handling of yet undefined
atoms.

For continuously assembling ground rules evolving at different stages of a rea-
soning process, #external directives declare atoms that may still be defined
by rules added later on. In terms of module theory [35], such atoms corre-
spond to inputs, which (unlike undefined output atoms) must not be simplified.

3 The ground routine takes a list of pairs as argument. Each such pair consists of a
subprogram name (e.g. base or acid) and a list of actual parameters (e.g. [] or
[42]).

4 The planning horizon is the maximum number of steps a planner takes into account
when searching for a plan.
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For declaring input atoms, clingo supports schematic #external directives
that are instantiated along with the rules of their respective subprograms. To
this end, a directive like

#external p(X,Y) : q(X,Z), r(Z,Y).

is treated similar to a rule ‘p(X,Y) :- q(X,Z), r(Z,Y)’ during grounding.
However, the head atoms of the resulting ground instances are merely collected
as inputs, whereas the ground rules as such are discarded.

Once grounded, the truth value of external atoms can be changed via the
clingo API (until the atoms become defined by corresponding rules). By default,
the initial truth value of external atoms is set to false. Then, for example, with
clingo’s Python API, assign external(self,p(a,b),True)5 can be used
to set the truth value of the external atom p(a,b) to true. Among others, this
can be used to activate and deactivate rules in logic programs. For instance, the
integrity constraint ‘:- q(a,c), r(c,b), p(a,b)’ is ineffective whenever
p(a,b) is false.

A full specification of clingo’s Python API can be found at https://potassco.
org/clingo/python-api/current/clingo.html.

3.2 Branch-and-Bound-Based Optimization

We illustrate clingo’s multi-shot solving machinery in this as well as the next
section via a simple Towers of Hanoi puzzle. The complete source code of
this example is available at https://github.com/potassco/clingo/tree/master/
examples/clingo/opt. Our example consists of three pegs and four disks of dif-
ferent size; it is shown in Fig. 1. The goal is to move all disks from the left peg
to the right one. Only the topmost disk of a peg can be moved at a time. Fur-
thermore, a disk cannot be moved to a peg already containing a disk of smaller
size. Although there is an efficient algorithm to solve our simple puzzle, we do
not exploit it and below merely specify conditions for sequences of moves being
solutions. More generally, the Towers of Hanoi puzzle is a typical planning prob-
lem, in which the aim is to find a plan, that is, a sequence of actions, that leads
from an initial state to a state satisfying a goal.

To illustrate how multi-shot solving can be used for realizing branch-and-
bound-based optimization, we consider the problem of finding the shortest plan
solving our puzzle within a given horizon. To this end, we adapt the Towers
of Hanoi encoding from [19] in Listing 1.1. Here, the length of the horizon is
given by parameter n. The problem instance in Listing 1.2 together with line 2
in Listing 1.1 gives the initial configuration of disks in Fig. 1. Similarly, the
goal is checked in lines 5–6 of Listing 1.1 (by drawing on the problem instance
in Listing 1.2). Because the overall objective is to solve the problem in the
minimum number of steps within a given bound, it is successively tested in line 5.
Once the goal is established, it persists in the following steps. This allows us to
5 In order to construct atoms, symbolic terms, or function terms, respectively, the
clingo API function Function has to be used. Hence, the expression p(a,b) actu-
ally stands for Function("p", [Function("a"), Function("b")]).

https://potassco.org/clingo/python-api/current/clingo.html
https://potassco.org/clingo/python-api/current/clingo.html
https://github.com/potassco/clingo/tree/master/examples/clingo/opt
https://github.com/potassco/clingo/tree/master/examples/clingo/opt
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Fig. 1. Towers of Hanoi: initial and goal situation

read off whether the goal was reached at the planning horizon (in line 6). The
state transition function along with state constraints are described in lines 9–19.
Since the encoding of the Towers of Hanoi problem is fairly standard, we refer
the interested reader to [19] and devote ourselves in the sequel to implementing
branch-and-bound-based minimization. In view of this, note that line 9 ensures
that moves are only permitted if the goal is not yet achieved in the previous
state. This ensures that the following states do not change anymore and allows
for expressing the optimization function in line 23 as: minimize the number of
states where the goal is not reached.

Listing 1.3 contains a logic program for bounding the next solution and the
actual optimization algorithm. The logic program expects a bound b as para-
meter and adds an integrity constraint in line 3 ensuring that the next stable
model yields a better bound than the given one. The minimization algorithm
starts by grounding the base program in line 10 before it enters the loop in
lines 11–26. This loop implements the branch-and-bound-based search for the
minimum by searching for stable models while updating the bound until the
problem is unsatisfiable. Note the use of the with clause in line 13 that is used
to acquire and release a solve handle. With it, the nested loop in lines 14–21
iterates over the found stable models. If there is a stable model, lines 15–20
iterate over the atoms of the stable model while summing up the current bound
by extracting the weight of atoms over predicates minimize/n with n > 0.6

We check that the first argument of the atom is an integer and ignore atoms
where this is not the case; just as is the case of the #sum aggregate in line 3.
The loop over the stable models is exited in line 21. Note that this bypasses
the else clause in line 22 and the algorithm continues in line 25 with printing
the bound and adding an integrity constraint in line 26 making sure that the
next stable model is strictly better than the current one. Furthermore, note that
grounding happens after the with clause because it must not interfere with an
active search for stable models. Finally, if the program becomes unsatisfiable,
the branch and bound loop in lines 11–26 is exhausted. Hence, control continues
in the else clause in lines 22–24 printing that the previously found stable model
(if any) is the optimal solution and exiting the outermost while loop in line 24
terminating the algorithm.

6 In our case, n = 2 would be sufficient.
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1 % initial situation
2 on(D,P,0) :- init_on(D,P).

4 % check goal situation
5 ngoal(T) :- on(D,P,T), not goal_on(D,P).
6 :- ngoal(n).

8 % state transition and state constraints
9 1 { move(D,P,T) : disk(D), peg(P) } 1 :- ngoal(T-1), T<=n.

11 move(D,T) :- move(D,P,T).
12 on(D,P,T) :- move(D,P,T).
13 on(D,P,T) :- on(D,P,T-1), not move(D,T), T<=n.
14 blocked(D-1,P,T) :- on(D,P,T-1).
15 blocked(D-1,P,T) :- blocked(D,P,T), disk(D).

17 :- move(D,P,T), blocked(D-1,P,T).
18 :- move(D,T), on(D,P,T-1), blocked(D,P,T).
19 :- disk(D), not 1 { on(D,P,T) } 1, T=1..n.

21 #show move/3.

23 _minimize(1,T) :- ngoal(T).

Listing 1.1. Bounded towers of hanoi encoding (tohB.lp)

1 peg(a;b;c).
2 disk(1..4).
3 init_on(1..4,a).
4 goal_on(1..4,c).

Listing 1.2. Towers of hanoi instance (tohI.lp)

When running the augmented logic program in Listings 1.1, 1.2, and 1.3 with
a horizon of 17, the solver finds plans of length 17, 16, and 15 and shows that no
plan of length 14 exists. This is reflected by clingo’s output indicating 4 solver
calls and 3 found stable models:

$ clingo tohB.lp tohI.lp opt.lp -c n=17
clingo version 5.2.0
Reading from tohB.lp ...
Solving...
[...]
Solving...
Answer: 1
move(3,c,2) move(4,b,1) move(4,c,3) move(2,b,4) \
move(4,a,5) move(3,b,6) move(4,b,7) move(1,c,8) \
move(4,c,9) move(3,a,10) move(4,a,11) move(2,c,12) \
move(4,b,13) move(3,c,14) move(4,c,15)
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1 #program bound(b).

3 :- #sum { V,I: _minimize(V,I) } >= b.

5 #script (python)

7 import clingo

9 def main(prg):
10 prg.ground([("base", [])])
11 while True:
12 bound = 0
13 with prg.solve(yield_=True) as h:
14 for m in h:
15 for atom in m.symbols(atoms=True):
16 if (atom.name == "_minimize"
17 and len(atom.arguments) > 0
18 and atom.arguments[0].type
19 is clingo.SymbolType.Number):
20 bound += atom.arguments[0].number
21 break

22 else:
23 print "Optimum found"
24 break

25 print "Found new bound: {}".format(bound)
26 prg.ground([("bound", [bound])])

28 #end.

Listing 1.3. Branch and bound optimization (opt.lp)

Found new bound: 15
Solving...
Optimum found
UNSATISFIABLE

Models : 3
Calls : 4
Time : 0.048s (Solving: 0.01s [...])
CPU Time : 0.040s

Last but not least, note that the implemented above functionality is equiva-
lent to using clingo’s inbuilt optimization mode by replacing line 23 in Listing 1.1
with

23 #minimize { 1,T : ngoal(T) }.
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3.3 Incremental ASP Solving

As mentioned, clingo fully supersedes its special-purpose predecessor iclingo aim-
ing at incremental ASP solving. To illustrate this, we give below in Listing 1.5
a Python implementation of iclingo’s control loop, corresponding to the one
shipped with clingo.7,8 Roughly speaking, iclingo offers a step-oriented, incre-
mental approach to ASP that avoids redundancies by gradually processing the
extensions to a problem rather than repeatedly re-processing the entire extended
problem (as in iterative deepening search). To this end, a program is partitioned
into a base part, describing static knowledge independent of the step parame-
ter t, a cumulative part, capturing knowledge accumulating with increasing t,
and a volatile part specific for each value of t. In clingo, all three parts are
captured by #program declarations along with #external atoms for handling
volatile rules. More precisely, the implementation in Listing 1.5 relies upon sub-
programs named base, step, and check along with external atoms of form
query(t).9

We illustrate this approach by adapting the Towers of Hanoi encoding from
Listing 1.1 in Sect. 3.2 to an incremental version in Listing 1.4. To this end, we
arrange the original encoding in program parts base, check(t), and step(t),
use t instead of T as time parameter, and simplify checking the goal. Checking
the goal is easier here because the iterative deepening approach guarantees a
shortest plan and, hence, does not require additional minimization.

At first, we observe that the problem instance in Listing 1.2 as well as line 2
in Listing 1.4 constitute static knowledge and thus belong to the base program.
More interestingly, the query is expressed in line 5 of Listing 1.4. Its volatility
is realized by making it subject to the truth assignment to the external atom
query(t). For convenience, this atom is predefined in line 33 in Listing 1.5
as part of the check program (cf. line 32). Hence, subprogram check consists
of a user- and predefined part. Finally, the transition function along with state
constraints are described in the subprogram step in lines 8–19.

The idea is now to control the successive grounding and solving of the pro-
gram parts in Listings 1.2 and 1.4 by the Python script in Listing 1.5. Lines 5–11
fix the values of the constants imin, imax, and istop. In fact, the setting in
line 9 and 11 relieves us from adding ‘-c imin=0 -c istop="SAT"’ when
calling clingo. All three constants mimic command line options in iclingo. imin
and imax prescribe a least and largest number of iterations, respectively; istop
gives a termination criterion. The initial values of variables step and ret are
set in line 13. The value of step is used to instantiate the parametrized subpro-
grams and ret comprises the solving result. Together, the previous five variables
control the loop in lines 14–29.

7 Alternatively, this can be invoked by #include<incmode>
8 The Python as well as a Lua implementation can be found in examples/
clingo/iclingo in the clingo distribution.

9 These names have no general, predefined meaning; their meaning emerges from their
usage in the associated script (see below).
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3 #program base.
4 on(D,P,0) :- init_on(D,P).

6 #program check(t).
7 :- goal_on(D,P), not on(D,P,t), query(t).

10 #program step(t).
11 1 { move(D,P,t) : disk(D), peg(P) } 1.

13 move(D,t) :- move(D,P,t).
14 on(D,P,t) :- move(D,P,t).
15 on(D,P,t) :- on(D,P,t-1), not move(D,t).
16 blocked(D-1,P,t) :- on(D,P,t-1).
17 blocked(D-1,P,t) :- blocked(D,P,t), disk(D).

19 :- move(D,P,t), blocked(D-1,P,t).
20 :- move(D,t), on(D,P,t-1), blocked(D,P,t).
21 :- disk(D), not 1 { on(D,P,t) } 1.

23 #show move/3.

Listing 1.4. Towers of Hanoi incremental encoding (tohE.lp)

The subprograms grounded at each iteration are accumulated in the list
parts. Each of its entries is a pair consisting of a subprogram name along
with its list of actual parameters. In the very first iteration, the subprograms
base and check(0) are grounded. Note that this involves the declaration of
the external atom query(0) and the assignment of its default value false. The
latter is changed in line 28 to true in order to activate the actual query. The
solve call in line 29 then amounts to checking whether the goal situation is
already satisfied in the initial state. As well, the value of step is incremented
to 1.

As long as the termination condition remains unfulfilled, each following iter-
ation takes the respective value of variable step to replace the parameter in
subprograms step and check during grounding. In addition, the current exter-
nal atom query(t) is set to true, while the previous one is permanently set
to false. This disables the corresponding instance of the integrity constraint in
line 5 of Listing 1.4 before it is replaced in the next iteration. In this way, the
query condition only applies to the current horizon.

An interesting feature is given in line 24. As its name suggests, this function
cleans up domains used during grounding. That is, whenever the truth value
of an atom is ultimately determined by the solver, it is communicated to the
grounder where it can be used for simplifications.

The result of each call to solve is printed by clingo. In our example, the
solver is called 16 times before a plan of length 15 is found:
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1 #script (python)

3 from clingo import Function

5 def get(val, default):
6 return val if val != None else default

8 def main(prg):
9 imin = get(prg.get_const("imin"), 1)

10 imax = prg.get_const("imax")
11 istop = get(prg.get_const("istop"), "SAT")

13 step, ret = 0, None
14 while ((imax is None or step < imax) and
15 (step == 0 or step < imin or (
16 (istop == "SAT" and not ret.satisfiable) or
17 (istop == "UNSAT" and not ret.unsatisfiable) or
18 (istop == "UNKNOWN" and not ret.unknown)))):
19 parts = []
20 parts.append(("check", [step]))
21 if step > 0:
22 prg.release_external(Function("query", [step-1]))
23 parts.append(("step", [step]))
24 prg.cleanup()
25 else:
26 parts.append(("base", []))
27 prg.ground(parts)
28 prg.assign_external(Function("query", [step]), True)
29 ret, step = prg.solve(), step+1
30 #end.

32 #program check(t).
33 #external query(t).

Listing 1.5. Python script implementing iclingo functionality in clingo (inc.lp)

$ clingo tohE.lp tohI.lp inc.lp 0
clingo version 5.2.0
Reading from tohE.lp ...
Solving...
[...]
Solving...
Answer: 1
move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) \
move(4,a,5) move(3,b,6) move(4,b,7) move(1,c,8) \
move(4,c,9) move(3,a,10) move(4,a,11) move(2,c,12) \
move(4,b,13) move(3,c,14) move(4,c,15)
SATISFIABLE

Models : 1
Calls : 16
Time : 0.020s (Solving: 0.00s [...])
CPU Time : 0.020s
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4 Theory-Enhanced ASP Solving

This section provides the fundamental concepts for extending clingo with theory-
specific reasoning. We begin by showing how its input language can be cus-
tomized with theory-specific constructs. We then sketch clingo’s algorithmic
approach to ASP solving with theory propagation in order to put the follow-
ing description of clingo’s theory reasoning interface on firm grounds. The below
material is an abridged version of [18].

4.1 Input Language

This section introduces the theory-related features of clingo’s input language.
All of them are situated in the underlying grounder gringo and can thus also
be used independently of clingo. We start with a detailed description of gringo’s
generic means for defining theories and complement this in Appendix A with an
overview of the corresponding intermediate language.

Our generic approach to theory specification rests upon two languages: the
one defining theory languages and the theory language itself. Both borrow ele-
ments from the underlying ASP language, foremost an aggregate-like syntax for
formulating variable length expressions. To illustrate this, consider Listing 1.6,
where a logic program is extended by constructs for handling difference and linear
constraints. While the former are binary constraints of the form10 x1−x2 ≤ k, the
latter have a variable size and are of form a1x1+ · · ·+anxn◦k, where xi are inte-
ger variables, ai and k are integers, and ◦ ∈ {≤,≥, <,>,=} for 1 ≤ i ≤ n. Note
that solving difference constraints is polynomial, while solving linear equations
(over integers) is NP-complete. The theory language for expressing both types
of constraints is defined in lines 1–15 and preceded by the directive #theory.
The elements of the resulting theory language are preceded by & and used as
regular atoms in the logic program in lines 17–27.

To be more precise, a theory definition has the form
#theory T {D1;. . .;Dn}.

where T is the theory name and each Di is a definition for a theory term or a
theory atom for 1 ≤ i ≤ n. The language induced by a theory definition is the
set of all theory atoms constructible from its theory atom definitions.

A theory atom definition has form
&p/k : t,o or &p/k : t,{�1,. . .,�m},t′,o

where p is a predicate name and k its arity, t, t′ are names of the-
ory term definitions, each �i is a theory operator for m ≥ 1, and o ∈
{head,body,any,directive} determines where theory atoms may occur in a
rule. Examples of theory atom definitions are given in lines 11–14 of Listing 1.6.
The language of a theory atom definition as above contains all theory atoms of
form

10 For simplicity, we consider normalized difference constraints rather than general ones
of form x1 − x2 ◦ k.
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1 #theory lc {

3 constant { - : 0, unary };
4 diff_term { - : 0, binary, left };
5 linear_term { + : 2, unary; - : 2, unary;
6 * : 1, binary, left;
7 + : 0, binary, left; - : 0, binary, left };
8 domain_term { .. : 1, binary, left };
9 show_term { / : 1, binary, left };

11 &dom/0 : domain_term, {=}, linear_term, any;
12 &sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;
13 &diff/0 : diff_term, {<=}, constant, any;
14 &show/0 : show_term, directive
15 }.

17 #const n=2. #const m=1000.

19 task(1..n).
20 duration(T,200*T) :- task(T).

22 &dom { 1..m } = start(T) :- task(T).
23 &dom { 1..m } = end(T) :- task(T).
24 &diff { end(T)-start(T) } <= D :- duration(T,D).
25 &sum { end(T) : task(T); -start(T) : task(T) } <= m.

27 &show { start/1; end/1 }.

Listing 1.6. Logic program enhanced with difference and linear constraints (lc.lp)

&a {C1:L1;. . .;Cn:Ln} or &a {C1:L1;. . .;Cn:Ln} � c

where a is an atom over predicate p of arity k, each Ci is a tuple of theory
terms in the language for t, c is a theory term in the language for t′, � is a
theory operator among {�1, . . . , �m}, and each Li is a regular condition (i.e., a
tuple of regular literals) for 1 ≤ i ≤ n. Whether the last part ‘ � c’ is included
depends on the form of a theory atom definition. Further, observe that theory
atoms with occurrence type any can be used both in the head and body of
a rule; with occurrence types head and body, their usage can be restricted
to rule heads and bodies only. Occurrence type directive is similar to type
head but additionally requires that the rule body must be completely evaluated
during grounding. Five occurrences of theory atoms can be found in lines 22–27
of Listing 1.6.

A theory term definition has form
t {D1;. . .;Dn}

where t is a name for the defined terms and each Di is a theory operator definition
for 1 ≤ i ≤ n. A respective definition specifies the language of all theory terms
that can be constructed via its operators. Examples of theory term definitions are
given in lines 3–9 of Listing 1.6. Each resulting theory term is one of the following:
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– a constant term: c
– a variable term: v
– a binary theory term: t1 � t2
– a unary theory term: � t1

– a function theory term: f(t1, . . . , tk)
– a tuple theory term: (t1, . . . , tl, )
– a set theory term: {t1, . . . , tl}
– a list theory term: [t1, . . . , tl]

where each ti is a theory term, � is a theory operator defined by some Di, c
and f are symbolic constants, v is a first-order variable, k ≥ 1, and l ≥ 0. (The
trailing comma in tuple theory terms is optional if l �= 1.) Parentheses can be
used to specify operator precedence.

A theory operator definition has form
� : p,unary or � : p,binary,a

where � is a unary or binary theory operator with precedence p ≥ 0 (determin-
ing implicit parentheses). Binary theory operators are additionally characterized
by an associativity a ∈ {right,left}. As an example, consider lines 5–6 of
Listing 1.6, where the left associative binary operators + and * are defined
with precedence 2 and 1. Hence, parentheses in terms like ‘(X+(2*Y))+Z’ can
be omitted. In total, lines 3–9 of Listing 1.6 include nine theory operator defini-
tions. Specific theory operators can be assembled (written consecutively without
spaces) from the symbols ‘!’, ‘<’, ‘=’, ‘>’, ‘+’, ‘-’, ‘*’, ‘/’, ‘\’, ‘?’, ‘&’, ‘|’, ‘.’,
‘:’, ‘;’, ‘˜’, and ‘ˆ’. For instance, in line 8 of Listing 1.6, the operator ‘..’ is
defined as the concatenation of two periods. The tokens ‘.’, ‘:’, ‘;’, and ‘:-’
must be combined with other symbols due to their dedicated usage. Instead, one
may write ‘..’, ‘::’, ‘;;’, ‘::-’, etc.

While theory terms are formed similar to regular ones, theory atoms rely
upon an aggregate-like construction for forming variable-length theory expres-
sions. In this way, standard grounding techniques can be used for gathering the-
ory terms. (However, the actual atom &a within a theory atom comprises regular
terms only.) The treatment of theory terms still differs from their regular counter-
parts in that the grounder skips simplifications like, e.g., arithmetic evaluation.
This can be nicely seen on the different results in Listing 1.7 of grounding terms
formed with the regular and theory-specific variants of operator ‘..’. Observe
that the fact task(1..n) in line 19 of Listing 1.6 results in n ground facts,
viz. task(1) and task(2) because of n=2. Unlike this, the theory expression
1..m stays structurally intact and is only transformed into 1..1000 in view
of m=1000. That is, the grounder does not evaluate the theory term 1..1000
and leaves its interpretation to a downstream theory solver. A similar situation
is encountered when comparing the treatment of the regular term ‘200*T’ in
line 20 of Listing 1.6 to the theory term ‘end(T)-start(T)’ in line 24. While
each instance of ‘200*T’ is evaluated during grounding, instances of the theory
term ‘end(T)-start(T)’ are left intact in lines 11 and 12 of Listing 1.7. In
fact, if ‘200*T’ had been a theory term as well, it would have resulted in the
unevaluated instances ‘200*1’ and ‘200*2’.

4.2 Semantic Underpinnings

Given the hands-on nature of this tutorial, we only give an informal idea of the
semantic principles underlying theory solving in ASP.
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1 task(1).
2 task(2).
3 duration(1,200).
4 duration(2,400).

6 &dom { 1..1000 } = start(1).
7 &dom { 1..1000 } = start(2).
8 &dom {1..1000 } = end(1).
9 &dom { 1..1000 } = end(2).

11 &diff { end(1)-start(1) } <= 200.
12 &diff { end(2)-start(2) } <= 400.

14 &sum { end(1); end(2); -start(1); -start(2) } <= 1000.

16 &show { start/1; end/1 }.

Listing 1.7. Human-readable result of grounding Listing 1.6 via ‘gringo –text
lc.lp’

As mentioned in Sect. 2, a logic program induces a set of stable models. To
extend this concept to logic programs with theory expressions, we follow the
approach of lazy theory solving [5]. We abstract from the specific semantics of
a theory by considering the theory atoms representing the underlying theory
constraints. The idea is that a regular stable model of a program over regular
and theory atoms is only valid with respect to a theory, if the constraints induced
by the truth assignment to the theory atoms are satisfiable in the theory.

In the above example, this amounts to finding a numeric assignment to all
theory variables satisfying all difference and linear constraints associated with
theory atoms. The ground program in 1.7 has a single stable model consist-
ing of all regular and theory atoms in lines 1–16. Here, we easily find assign-
ments satisfying the induced constraints, e.g. start(1) �→ 1, end(1) �→ 2,
start(2) �→ 2, and end(1) �→ 3.

In fact, there are alternative semantic options for capturing theory atoms,
as detailed in [18]. First of all, we may distinguish whether imposed constraints
are only determined outside or additionally inside a logic program. This leads
to the distinction between defined and external theory atoms.11 While external
theory atoms must only be satisfied by the respective theory, defined ones must
additionally be derivable through rules in the program. The second distinction
concerns the interplay of ASP with theories. More precisely, it is about the log-
ical correspondence between theory atoms and theory constraints. This leads us
to the distinction between strict and non-strict theory atoms. The strict corre-
spondence requires a constraint to be satisfied iff the associated theory atom is
true. A weaker since only implicative condition is imposed in the non-strict case.
Here, a constraint must hold only if the associated theory atom is true. In other

11 This distinction is analogous to that between head and input atoms, defined via
rules or #external directives [20], respectively.
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words, only non-strict theory atoms assigned true impose requirements, while
constraints associated with falsified non-strict theory atoms are free to hold or
not. However, by contraposition, a violated constraint leads to a false non-strict
theory atom.

4.3 Algorithmic Aspects

The algorithmic approach to ASP solving modulo theories of clingo, or more
precisely that of its underlying ASP solver clasp, follows the lazy approach to
solving in Satisfiability Modulo Theories (SMT [5]). We give below an abstract
overview that serves as light algorithmic underpinning for the description of
clingo’s implementation given in the next section.

As detailed in [22], a ground program P induces completion and loop nogoods,
called ΔP or ΛP , respectively, that can be used for computing stable models
of P . Nogoods represent invalid partial assignments and can be thought of as
negative Boolean constraints. We represent (partial) assignments as consistent
sets of literals. An assignment is total if it contains either the positive or negative
literal of each atom. We say that a nogood is violated by an assignment if the
former is contained in the latter; a nogood is unit if all but one of its literals are
in the assignment. Each total assignment not violating any nogood in ΔP ∪ ΛP

yields a regular stable model of P , and such an assignment is called a solution
(for ΔP ∪ ΛP ). To accommodate theories, we identify a theory T with a set ΔT

of theory nogoods,12 and extend the concept of a solution in the straightforward
way.

The nogoods in ΔP ∪ΛP ∪ΔT provide the logical fundament for the Conflict-
Driven Constraint Learning (CDCL) procedure (cf. [22,32]) outlined in Fig. 2.
While the completion nogoods in ΔP are usually made explicit and subject to
unit propagation,13 the loop nogoods in ΛP as well as theory nogoods in ΔT are
typically handled by dedicated propagators and particular members are selec-
tively recorded.

While a dedicated propagator for loop nogoods is built-in in systems like
clingo, those for theories are provided via the interface Propagator in Fig. 3.
To utilize custom propagators, the algorithm in Fig. 2 includes an initialization
step in line (I). In addition to the “registration” of a propagator for a theory as
an extension of the basic CDCL procedure, common tasks performed in this step
include setting up internal data structures and so-called watches for (a subset
of) the theory atoms, so that the propagator will be invoked (only) when some
watched literal gets assigned.

As usual, the main CDCL loop starts with unit propagation on completion
and loop nogoods, the latter handled by the respective built-in propagator, as
well as any nogoods already recorded. If this results in a non-total assignment
without conflict, theory propagators for which some of their watched literals

12 See [18] for different ways of associating theories with nogoods.
13 Unit propagation extends an assignment with literals complementary to the ones

missing in unit nogoods.



A Tutorial on Hybrid Answer Set Solving with Clingo 185

Fig. 2. Basic algorithm for Conflict-Driven Constraint Learning (CDCL) modulo
theories

have been assigned are invoked in line (P). A propagator for a theory T can
then inspect the current assignment, update its data structures accordingly,
and most importantly, perform theory propagation determining theory nogoods
δ ∈ ΔT to record. Usually, any such nogood δ is unit in order to trigger a conflict
or unit propagation, although this is not a necessary condition. The interplay
of unit and theory propagation continues until a conflict or total assignment
arises, or no (further) watched literals of theory propagators get assigned by
unit propagation. In the latter case, some non-deterministic decision is made to
extend the partial assignment at hand and then to proceed with unit and theory
propagation.

If no conflict arises and an assignment is total, in line (C), theory propagators
are called, one by one, for a final check. The idea is that, e.g., a “lazy” propagator
for a theory T that does not exhaustively test violations of its theory nogoods
by partial assignments can make sure that the assignment is indeed a solution
for ΔT , or record some violated nogood(s) from ΔT otherwise. Even in case
theory propagation on partial assignments is exhaustive and a final check is not
needed to detect conflicts, the information that search led to a total assignment
can be useful in practice, e.g., to store values for integer variables like start(1),
start(2), end(1), and end(2) in Listing 1.7 that witness the existence of a
solution for T .

Finally, in case of a conflict, i.e., some completion or recorded nogood is vio-
lated by the current assignment, provided that some non-deterministic decision
is involved in the conflict, a new conflict constraint is recorded and utilized to
guide backjumping in line (U), as usual with CDCL. In a similar fashion as the
assignment of watched literals serves as trigger for theory propagation, theory
propagators are informed when they become unassigned upon backjumping. This
allows the propagators to undo earlier operations, e.g., internal data structures
can be reset to return to a state taken prior to the assignment of watches.
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In summary, the basic CDCL procedure is extended in four places to account
for custom propagators: initialization, propagation of (partial) assignments, final
check of total assignments, and undo steps upon backjumping.

4.4 Propagator Interface

We now turn to the implementation of theory propagation in clingo 5 and detail
the structure of its interface depicted in Fig. 3. The interface Propagator has
to be implemented by each custom propagator. After registering such a prop-
agator with clingo, its functions are called during initialization and search as
indicated in Fig. 2. Function Propagator.init14 is called once before solving
(line (I) in Fig. 2) to allow for initializing data structures used during theory
propagation. It is invoked with a PropagateInit object providing access to
symbolic (SymbolicAtom) as well as theory (TheoryAtom) atoms. Both kinds
of atoms are associated with program literals,15 which are in turn associated with
solver literals.16 Program as well as solver literals are identified by non-zero inte-
gers, where positive and negative numbers represent positive or negative literals,
respectively. In order to get notified about assignment changes, a propagator can
set up watches on solver literals during initialization.

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...

Fig. 3. Class diagram of clingo’s (theory) propagator interface

During search, function propagate is called with a PropagateControl
object and a (non-empty) list of watched literals that got assigned in the recent
14 For brevity, we below drop the qualification Propagator and use its function names

unqualified.
15 Program literals are also used in the aspif format (see Appendix A).
16 Note that clasp’s preprocessor might associate a positive or even negative solver

literal with multiple atoms.
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round of unit propagation (line (P) in Fig. 2). The PropagateControl object
can be used to inspect the current assignment, record nogoods, and trigger unit
propagation. Furthermore, to support multi-threaded solving, its thread id
property identifies the currently active thread, each of which can be viewed as
an independent instance of the CDCL algorithm in Fig. 2.17 Function undo is
the counterpart of propagate and called whenever the solver retracts assign-
ments to watched literals (line (U) in Fig. 2). In addition to the list of watched
literals that have been retracted (in chronological order), it receives the identifier
and the assignment of the active thread. Finally, function check is similar to
propagate, yet invoked without a list of changes. Instead, it is (only) called on
total assignments (line (C) in Fig. 2), independently of watches. Overriding the
empty default implementations of propagator methods is optional. For brevity,
we below focus on implementations of the methods in Python, while C, C++,
or Lua could be used as well.

5 A Case-Study on ASP Modulo Difference Logic

In this section, we develop a propagator to extend ASP with quantifier free
integer difference logic (IDL). The complete source code of this propagator is
available in the github repository at https://github.com/potassco/clingo/tree/
master/examples/clingo/dl.

In addition to the rules introduced in Sect. 2, we now also support rules of
form

&diff{u-v} <= d :- a1,...,an,not an+1,...,not ao

where u and v are (regular) terms, d is an integer constant, each ai is an atom,
and 0 ≤ n ≤ o. For simplicity, we restrict the occurrence of theory atoms to
rule heads.18 Hence, stable models may now also include theory atoms of form
‘&diff{u − v} <= d’. More precisely, for a stable model X, let CX be the
set of difference constraints such as u − v ≤ d associated with theory atoms
‘&diff{u−v} <= d’ in X and VX be the set of all (integer) variables occurring in
the difference constraints in CX . In our case, a stable model X is then IDL-stable,
if there is a mapping from VX to the set of integers satisfying all constraints in
CX .

To allow for writing difference constraints in rule heads, we define theory dl
in lines 1–5 in Listing 1.8, a subset of the theory lc presented in Listing 1.6 in
Sect. 4.1. The following lines 16–20 implement a customized main function. The
difference to clingo’s regular main function is that a propagator for difference
constraints is registered at the beginning; grounding and solving then follow as
usual. Note that the solve function in line 20 takes a model callback as argument.

17 Depending on the configuration of clasp, threads can communicate with each other.
For example, some of the recorded nogoods can be shared. This is transparent from
the perspective of theory propagators.

18 More general settings are discussed in [26] and made available at https://potassco.
org/clingo.

https://github.com/potassco/clingo/tree/master/examples/clingo/dl
https://github.com/potassco/clingo/tree/master/examples/clingo/dl
https://potassco.org/clingo
https://potassco.org/clingo
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1 #theory dl {
2 constant { - : 1, unary };
3 diff_term { - : 1, binary, left };
4 &diff/0 : diff_term, {<=}, constant, head
5 }.

7 #script (python)

9 import clingo, dl

11 def print_assignment(p, m):
12 a = p.get_assignment(m.thread_id)
13 print"Valid assignment for constraints found:"
14 print "".join(["{}={}".format(n, v) for n, v in a])

16 def main(prg):
17 p = dl.Propagator()
18 prg.register_propagator(p)
19 prg.ground([("base", [])])
20 prg.solve(on_model = lambda m: print_assignment(p, m))

22 #end.

Listing 1.8. Theory language and main loop for difference constraints (dl.lp)

Whenever an IDL-stable model X is found, this callback prints the mapping
satisfying the corresponding difference constraints CX . The model X (excluding
theory atoms) is printed as part of clingo’s default output.

Our exemplary propagator implements the algorithm presented in [10]. The
idea is that deciding whether a set of difference constraints is satisfiable can
be mapped to a graph problem. Given a set of difference constraints, let (V,E)
be the weighted directed graph where V is the set of variables occurring in the
constraints, and E the set of edges (u, v, d) for each constraint u − v ≤ d. The
set of difference constraints is satisfiable if the corresponding graph does not
contain a negative cycle. The Graph class whose interface is given in Fig. 4 is

dl

Graph

+ add edge(level, edge)
+ backtrack(level)
+ get assignment()

Fig. 4. Class diagram for the graph class
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in charge of cycle detection. We refrain from giving the code of the Graph class
and rather concentrate on describing its interface:

– Function add edge adds an edge of form (u,v,d) to the graph. If after
adding the edge to the graph there is a negative cycle, the function returns the
cycle in form of a list of edges; otherwise, it returns None. Furthermore, each
edge added to the graph is associated with a decision level19. This additional
information is used to backtrack to a previous state of the graph, whenever
the solver has to backtrack to recover from a conflict.

– Function backtrack takes a decision level as argument. It removes all edges
added on that level from the graph. For this to work, decision levels have
to be backtracked in chronological order. Note that the CDCL algorithm in
Fig. 2 calling our propagator also backtracks decision levels in chronological
order.

– As a side effect, the Graph class internally maintains an assignment of inte-
gers to nodes. This assignment can be turned into an assignment to the vari-
ables such that the difference constraints corresponding to the edges of the
graph are satisfied. Function get assignment returns this assignment in
form of a list of pairs of variables and integers.

We give our exemplary propagator for difference constraints in Listing 1.9. It
implements the Propagator interface (except for check) in Fig. 3 in lines 105–
133, while featuring aspects like incremental propagation and backtracking, solv-
ing with multiple threads, and multi-shot solving. Whenever the set of edges
associated with the current partial assignment of a solver induces a negative
cycle and, hence, the corresponding difference constraints are unsatisfiable, it
adds a nogood forbidding the negative cycle. To this end, it maintains data
structures for, given newly added edges, detecting whether there is a conflict.
More precisely, the propagator has three data members:

1. The self. l2e dictionary in line 101 maps solver literals for difference
constraint theory atoms to their corresponding edges20,

2. the self. e2l dictionary in line 102 maps edges back to solver literals,21

3. and the self. state list in line 103 stores for each solver thread its current
graph with the edges assigned so far.

Function init in lines 105–119 sets up watches as well as the dictionaries
in self. l2e and self. e2l. To this end, it traverses the theory atoms
over diff/0 in lines 106–119. Note that the loop simply ignores all other theory

19 The assignment maintains the decision level; it is incremented for each decision made
and decremented for each decision undone while backjumping; initially, the decision
level is zero.

20 A solver literal might be associated with multiple edges (see Footnote 16).
21 In one solving step, the clingo API guarantees that a (grounded) theory atom is

associated with exactly one solver literal. Theory grounded in later solving steps can
be associated with fresh solver literals though.
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99 class Propagator:
100 def __init__(self):
101 self.__l2e = {} # {literal: [(node, node, weight)]}
102 self.__e2l = {} # {(node, node, weight): [literal]}
103 self.__states = [] # [Graph]

105 def init(self, init):
106 for atom in init.theory_atoms:
107 term = atom.term
108 if term.name == "diff" and len(term.arguments) == 0:
109 if len(atom.guard[1].arguments) > 0:
110 weight = -atom.guard[1].arguments[0].number
111 else:
112 weight = atom.guard[1].number
113 u = str(atom.elements[0].terms[0].arguments[0])
114 v = str(atom.elements[0].terms[0].arguments[1])
115 edge = (u, v, weight)
116 lit = init.solver_literal(atom.literal)
117 self.__l2e.setdefault(lit, []).append(edge)
118 self.__e2l.setdefault(edge, []).append(lit)
119 init.add_watch(lit)

121 def propagate(self, control, changes):
122 state = self.__state(control.thread_id)
123 level = control.assignment.decision_level
124 for lit in changes:
125 for edge in self.__l2e[lit]:
126 cycle = state.add_edge(level, edge)
127 if cycle is not None:
128 c = [self.__literal(control, e) for e in cycle]
129 control.add_nogood(c) and control.propagate()
130 return

132 def undo(self, thread_id, assign, changes):
133 self.__state(thread_id).backtrack(assign.decision_level)

135 def get_assignment(self, thread_id):
136 return self.__state(thread_id).get_assignment()

138 def __state(self, thread_id):
139 while len(self.__states) <= thread_id:
140 self.__states.append(Graph())
141 return self.__states[thread_id]

143 def __literal(self, control, edge):
144 for lit in self.__e2l[edge]:
145 if control.assignment.is_true(lit):
146 return lit

Listing 1.9. Propagator for difference constraints (dl.py)
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atoms making it possible to also add propagators for other theories. In lines 109–
115 we extract the edge from the theory atom.22 Each such atom is associated
with a solver literal, obtained in line 116. The mappings between solver literals
and corresponding edges are then stored in the self. l2e and self. e2l
dictionaries in lines 117 and 118.23 In the last line of the loop, a watch is added
for each solver literal at hand, so that the solver calls propagate whenever the
edge has to be added to the graph.

Function propagate, given in lines 121–130, accesses control.thread id
in line 122 to obtain the graph associated with the active thread. The loops in
lines 124–130 then iterate over the list of changes and associated edges. In line 126
each such edge is added to the graph. If adding the edge produced a negative cycle, a
nogood is added in line 129. Because an edge can be associated with multiple solver
literals, we use function literal literal retrieving the first solver literal asso-
ciatedwith an edge that is true, to construct the nogood forbidding the cycle.Given
that the solver has to resolve the conflict and backjump, the call to add nogood
always yields false, so that propagation is stopped without processing the remain-
ing changes any further.24

Given that each edge added to the graph in line 126 is associated with the
current decision level, the implementation of function undo is quite simple. It
calls function backtrack on the solver’s graph to remove all edges added on
the current decision level.

task duration on machine

a

b

c

Fig. 5. Flow shop: instance with three tasks and two machines

To see our propagator in action, we consider the flow shop problem, dealing
with a set of tasks T that have to be consecutively executed on m machines.
Each task has to be processed on each machine from 1 to m. Different parts of
one task are completed on each machine resulting in the completion of the task
after execution on all machines is finished. Before a task can be processed on
machine i, it has to be finished on machine i− 1. The duration of different tasks

22 Here we assume that the user supplied a valid theory atom. A propagator for pro-
duction should check validity and provide proper error messages.

23 Python’s setdefault function is used to update the mappings. Depending on
whether the given key already appears in the dictionary, the function either retrieves
the associated value or inserts and returns the second argument.

24 The optional arguments tag and lock of add nogood can be used to control the
scope and lifetime of recorded nogoods. Furthermore, if a propagator adds nogoods
that are not necessarily violated, function control.propagate can be invoked to
trigger unit propagation.
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Fig. 6. Flow shop: solutions for all possible permutations with the total execution
length in the top right corner and optimal solutions with a blue background (Color
figure online)

on the same machine may vary. A task can only be executed on one machine at
a time and a machine must not be occupied by more than one task at a time.
An (optimal) solution to the problem is a permutation of tasks so that all tasks
are finished as early as possible.

Figure 5 depicts a possible instance for the flow shop problem. The three
tasks a, b, and c have to be scheduled on two machines. The colored boxes
indicate how long a task has to run on a machine. Lighter shades of the same
color are for the first and darker ones for the second machine. For example, task
a needs to be processed for 3 time units on the first and 4 time units on the
second machine.

1 machine(1). machine(2).
2 task(a). duration(a,1,3). duration(a,2,4).
3 task(b). duration(b,1,1). duration(b,2,6).
4 task(c). duration(c,1,5). duration(c,2,5).

Listing 1.10. Flow shop instance (fsI.lp)

Next we encode this problem using difference constraints. We give in List-
ing 1.10a straightforward encoding of the instance in Fig. 5. Listing 1.11 depicts
the encoding of the flow shop problem. Following the generate, define, and test
methodology of ASP, we first generate in lines 1–14 all possible permutations of
tasks, where atoms of form permutation(T,U) encode that task T has to be
executed before task U . Then, in the following lines 16–21, we use difference con-
straints to calculate the duration of the generated permutation. The difference
constraint in line 20 guarantees that the tasks are executed in the right order.
For example, (a,1) − (a,2) ≤ −d ensures that task a can only be executed
on machine 2 if it has finished on machine 1. Hence, variable (a,2) has to be
assigned so that it is greater or equal to (a,2) − d where d is the duration of
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1 % select a cycle
2 1 { cycle(T,U) : task(U), U != T } 1 :- task(T).
3 1 { cycle(T,U) : task(T), U != T } 1 :- task(U).

5 % make sure the cycle is connected
6 reach(M) :- M = #min { T : task(T) }.
7 reach(U) :- reach(T), cycle(T,U).
8 :- task(T), not reach(T).

10 % select a start point
11 1 { start(T) : task(T) } 1.

13 % obtain an order
14 permutation(T,U) :- cycle(T,U), not start(U).

16 % place tasks sequentially on machines
17 seq((T,M),(T,M+1),D) :- task(T), duration(T,M,D), machine(M+1).
18 seq((T1,M),(T2,M),D) :- permutation(T1,T2), duration(T1,M,D).

20 &diff { T1-T2 } <= -D :- seq(T1,T2,D).
21 &diff { 0-(T,M) } <= 0 :- duration(T,M,D).

24 #show permutation/2.

Listing 1.11. Encoding of flow shop using difference constraints (fsE.lp)

task a on machine 1. Similarly, (a,1) − (b,1) ≤ −d makes sure that task b
can only be executed on machine 1 if task a has finished on machine 1. While
the first constraint is a fact (see line 17), the latter is subject to the generated
permutation of tasks (see line 18). The difference constraint in line 21 ensures
that all time points at which a task is started are greater than zero. Note that
this constraint is in principle redundant but since sets of difference constraints
always have infinitely many solutions it is good practice to encode relative to a
starting point. Furthermore, note that 0 is actually a variable. In fact, the Graph
class takes care of subtracting the value of variable 0 from all other variables
when returning an assignment to get easier interpretable solutions.

Running encoding and instance with the dl propagator results in the follow-
ing 6 solutions corresponding to the solutions in Fig. 6.25 One for each possible
permutation of tasks:

$ clingo dl.lp fsE.lp fsI.lp 0
clingo version 5.2.0
Reading from dl.lp ...
Solving...
Answer: 1
permutation(b,a) permutation(c,b)
Valid assignment for constraints found:
(b,2)=10 (a,2)=16 (c,1)=0 (a,1)=6 (c,2)=5 (b,1)=5

25 Note that in each solution all tasks are executed as early as possible. This is no
coincidence and actually guaranteed by the algorithm implemented in the Graph
class.
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Answer: 2
permutation(c,b) permutation(a,c)
Valid assignment for constraints found:
(b,2)=13 (a,2)=3 (c,1)=3 (a,1)=0 (c,2)=8 (b,1)=8
Answer: 3
permutation(b,a) permutation(a,c)
Valid assignment for constraints found:
(b,2)=1 (a,2)=7 (c,1)=4 (a,1)=1 (c,2)=11 (b,1)=0

Answer: 4
permutation(c,a) permutation(a,b)
Valid assignment for constraints found:
(b,2)=14 (a,2)=10 (c,1)=0 (a,1)=5 (c,2)=5 (b,1)=8
Answer: 5
permutation(b,c) permutation(c,a)
Valid assignment for constraints found:
(b,2)=1 (a,2)=12 (c,1)=1 (a,1)=6 (c,2)=7 (b,1)=0
Answer: 6
permutation(b,c) permutation(a,b)
Valid assignment for constraints found:
(b,2)=7 (a,2)=3 (c,1)=4 (a,1)=0 (c,2)=13 (b,1)=3
SATISFIABLE

Models : 6
Calls : 1
Time : 0.032s (Solving: 0.00s [...])
CPU Time : 0.020s

Finally, to find optimal solutions, we combine the algorithms in Listings 1.3
and 1.8 to minimize the total execution time of the tasks. The adapted algorithm
is given in Listing 1.12. As with algorithm in 1.8, a propagator is registered
before solving. And the control flow is similar to the branch-and-bound-based
optimization algorithm in Listing 1.3 except that we now minimize the variable
bound; or better the difference between variable 0 and bound by adding the
difference constraint 0−bound ≤ b to the program in line 9 where b is the best
known execution time of the tasks as obtained from the assignment in line 23
minus 1. To bound maximum execution time of the task, we have to add one
more line to the encoding in Listing 1.11:

22 &diff { (T,M)-bound } <= -D :- duration(T,M,D).

This makes sure that each task ends within the given bound. Running encoding
and instance with the dl propagator results in the optimum bound 16 where the
obtained solution corresponds to the left of the two optimal solutions indicated
by a light blue background in Fig. 6:

$ clingo dlO.lp fsE.lp fsI.lp 0
clingo version 5.2.0
Reading from
dlO.lp ...
Solving...
[...]
Solving...
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1 #theory dl {
2 constant {- : 1, unary};
3 diff_term {- : 1, binary, left};
4 &diff/0 : diff_term, {<=}, constant, any
5 }.

7 #program bound(b).

9 &diff { bound-0 } <= b.

11 #script (python)

13 import clingo, dl

15 def main(prg):
16 p = dl.Propagator()
17 prg.register_propagator(p)
18 prg.ground([("base", [])])
19 while True:
20 bound = 0
21 with prg.solve(yield_=True) as h:
22 for m in h:
23 a = p.get_assignment(m.thread_id)
24 for n, v in a:
25 if n == "bound":
26 bound = v
27 break
28 print "Valid assignment for constraints found:"
29 print "".join(["{}={}".format(n, v) for n, v in a])
30 break
31 else:
32 print "Optimum found"
33 break
34 print "Found new bound: {}".format(bound)
35 prg.ground([("bound", [bound-1])])
36 #end.

Listing 1.12. Main loop for difference constraints with optimization (dlO.lp)

Answer: 1
permutation(b,a) permutation(a,c)
Valid assignment for constraints
found: (b,2)=1 (a,2)=7 bound=16 (c,1)=4 (a,1)=1 (c,2)=11 (b,1)=0
Found new bound: 16
Solving...
Optimum found
UNSATISFIABLE

Models : 4
Calls : 5
Time : 0.017s (Solving: 0.00s [...])
CPU Time : 0.010s
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6 Discussion

We described two essential techniques, viz. multi-shot and theory solving, for
enhancing ASP solving by different forms of hybridization. While multi-shot
solving allows for fine-grained control of ASP reasoning processes, theory solv-
ing allows for refining basic ASP solving by incorporating foreign types of con-
straints. Since ASP follows a model, ground, and solve methodology both tech-
niques pervade the whole work-flow of ASP, starting with extensions to the input
language, over means for incremental and theory-enhanced grounding, to stateful
and theory-enhanced solving. Multi-shot solving even adds a fourth dimension
to control ASP reasoning processes.

Our focus on clingo should not conceal other approaches to hybrid ASP
solving. Foremost, dlvhex [36] builds upon clingo’s infrastructure to provide a
higher level of hybridization via higher-order logic programs. As well, clingcon [3]
and lc2casp [8] rely on clingo for extending ASP with linear constraints over
integers. Similar yet customized approaches include adsolver [33], inca [13], and
ezcsp [1]. Another category of ASP systems, such us ezsmt [29], dingo [27], and
aspmt [6] translate ASP with constraints to SAT Modulo Theories (SMT [34])
and use appropriate back-ends. Similarly, mingo [31] translates to Mixed Integer
Linear Programming (MILP) and aspartame [2] back to ASP using the order
encoding [11,40].

Theory propagators have recently also been added to the ASP solver
wasp [12]; these can be made accessible via the theory language of Sect. 4.1
along with the intermediate format described in Appendix A.

A Intermediate Language

To accommodate the richer input language, a more general grounder-solver inter-
face is needed. Although this could be left internal to clingo 5, it is good practice
to explicate such interfaces via an intermediate language. This also allows for
using alternative downstream solvers or transformations.

Unlike the block-oriented smodels format, the aspif 26 format is line-based.
Notably, it abolishes the need of using symbol tables in smodels’ format27 for
passing along meta-expressions and rather allows gringo5 to output information
as soon as it is grounded. An aspif file starts with a header, beginning with the
keyword asp along with version information and optional tags:

asp vm vn vr t1 . . . tk

where vm, vn, vr are non-negative integers representing the version in terms of
major, minor, and revision numbers, and each ti is a tag for k ≥ 0. Currently,
the only tag is incremental, meant to set up the underlying solver for multi-
shot solving. An example header is given in line 1 of Listings 1.13a and 1.14. The

26 ASP Intermediate Format.
27 http://www.tcs.hut.fi/Software/smodels.

http://www.tcs.hut.fi/Software/smodels
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rest of the file is comprised of one or more logic programs. Each logic program is
a sequence of lines of aspif statements followed by a 0, one statement or 0 per
line, respectively. Positive and negative integers are used to represent positive
or negative literals, respectively. Hence, 0 is not a valid literal.

Let us now briefly describe the format of aspif statements and illustrate them
with a simple logic program in Listing 1.13 as well as the result of grounding a
subset of Listing 1.6 in Listing 1.14.

1 {a}.
2 b :- a.
3 c :- not a.

(a) Logic program

1asp 1 0 0
21 1 1 1 0 0
31 0 1 2 0 1 1
41 0 1 3 0 1 -1
54 1 a 1 1
64 1 b 1 2
74 1 c 1 3
80

(b) aspif representation label

Listing 1.13. Representing a simple logic program in aspif format

Rule statements have form
1 H B

in which head H has form
h m a1 . . . am

where h ∈ {0,1} determines whether the head is a disjunction or choice, m ≥ 0
is the number of head elements, and each ai is a positive literal.

Body B has one of two forms:

– Normal bodies have form
0 n l1 . . . ln

where n ≥ 0 is the length of the rule body, and each li is a literal.
– Weight bodies have form

1 l n l1 w1 . . . ln wn

where l is a positive integer to denote the lower bound, n ≥ 0 is the number
of literals in the rule body, and each li and wi are a literal and a positive
integer.
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All types of ASP rules are included in the above rule format. Heads are dis-
junctions or choices, including the special case of singular disjunctions for rep-
resenting normal rules. As in the smodels format, aggregates are restricted to
a singular body, just that in aspif cardinality constraints are taken as special
weight constraints. Otherwise, a body is simply a conjunction of literals.

The three rules in Listing 1.13a are represented by the statements in lines 2–
4 of Listing 1.13b. For instance, the four occurrences of 1 in line 2 capture a
rule with a choice in the head, having one element, identified by 1. The two
remaining zeros capture a normal body with no element. For another example,
lines 2–7 of Listing 1.14 represent the four facts in lines 1 and 2 of Listing 1.7
along with the ones (comprising theory atoms) in line 6 of Listing 1.7.

Minimize statements have form

2 p n l1 w1 . . . ln wn

where p is an integer priority, n ≥ 0 is the number of weighted literals, each li is
a literal, and each wi is an integer weight. Each of the above expressions gathers
weighted literals sharing the same priority p from all #minimize directives
and weak constraints in a logic program. As before, maximize statements are
translated into minimize statements.

Projection statements result from #project directives and have form

3 n a1 . . . an

where n ≥ 0 is the number of atoms, and each ai is a positive literal.
Output statements result from #show directives and have form

4 m s n l1 . . . ln

where n ≥ 0 is the length of the condition, each li is a literal, and m ≥ 0 is an
integer indicating the length in bytes of string s (where s excludes byte ‘\0’ and
newline). The output statements in lines 5–7 of Listing 1.13b print the symbolic
representation of atom a, b, or c, whenever the corresponding atom is true. For
instance, the string ‘a’ is printed if atom ‘1’ holds. Unlike this, the statements
in lines 8–11 of Listing 1.14 unconditionally print the symbolic representation of
the atoms stemming from the four facts in lines 1 and 2 of Listing 1.7.

External statements result from #external directives and have form

5 a v

where a is a positive literal, and v ∈ {0, 1, 2, 3} indicates free, true, false, and
release.

Assumption statements have form

6 n l1 . . . ln
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where n ≥ 0 is the number of literals, and each li is a literal. Assumptions
instruct a solver to compute stable models such that l1, . . . , ln hold. They are
only valid for a single solver call.

Heuristic statements result from #heuristic directives and have form

7 m a k p n l1 . . . ln

where m ∈ {0, . . . , 5} stands for the (m+1)th heuristic modifier among level,
sign, factor, init, true, and false, a is a positive literal, k is an integer, p
is a non-negative integer priority, n ≥ 0 is the number of literals in the condition,
and the literals li are the condition under which the heuristic modification should
be applied.

Edge statements result from #edge directives and have form

8 u v n l1 . . . ln

where u and v are integers representing an edge from node u to node v, n ≥ 0
is the length of the condition, and the literals li are the condition for the edge
to be present.

Let us now turn to the theory-specific part of aspif. Once a theory expres-
sion is grounded, gringo 5 outputs a serial representation of its syntax tree. To
illustrate this, we give in Listing 1.14 the (sorted) result of grounding all lines
of Listing 1.6 related to difference constraints, viz. lines 2/3, 11, 15/16, and 19,
as well as lines 1 and 13.

Theory terms are represented using the following statements:

9 0 u w (1)
9 1 u n s (2)
9 2 u t n u1 . . . un (3)

where n ≥ 0 is a length, index u is a non-negative integer, integer w repre-
sents a numeric term, string s of length n represents a symbolic term (including
functions) or an operator, integer t is either -1, -2, or -3 for tuple terms in
parentheses, braces, or brackets, respectively, or an index of a symbolic term or
operator, and each ui is an integer for a theory term. Statements (1), (2), and
(3) capture numeric terms, symbolic terms, as well as compound terms (tuples,
sets, lists, and terms over theory operators).

Fifteen theory terms are given in lines 12–26 of Listing 1.14. Each of them is
identified by a unique index in the third spot of each statement. While lines 12–20
stand for primitive entities of type (1) or (2), the ones beginning with represent
compound terms. For instance, line 21 and 22 represent end(1) or start(1),
respectively, and line 23 corresponds to end(1)-start(1).
1 asp 1 0 0
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2 1 0 1 1 0 0
3 1 0 1 2 0 0
4 1 0 1 3 0 0
5 1 0 1 4 0 0
6 10 1 5 0 0
7 1 0 1 6 0 0
8 4 7 task(1) 0
9 4 7 task(2) 0

10 4 15 duration(1,200) 0
11 4 15 duration(2,400) 0
12 9 0 1 200
13 9 0 3 400
14 9 0 6 1
15 9 0 11 2
16 9 1 0 4 diff
17 9 1 2 2 <=
18 9 1 4 1 -
19 9 1 5 3 end
20 9 1 8 5 start
21 9 2 7 5 1 6
22 9 2 9 8 1 6
23 9 2 10 4 2 7 9
24 9 2 12 5 1 11
25 9 2 13 8 1 11 9
26 2 14 4 2 12 13
27 9 4 0 1 10 0
28 9 4 1 1 14 0
29 9 6 5 0 1 0 2 1
30 9 6 6 0 1 1 2 3
31 0

Listing 1.14. aspif format

Theory atoms are represented using the following

9 4 v n u1 . . . un m l1 . . . lm (4)
9 5 a p n v1 . . . vn (5)
9 6 a p n v1 . . . vn g u1 (6)

where n ≥ 0 and m ≥ 0 are lengths, index v is a non-negative integer, a is a
positive literal or 0 for directives, each ui is an integer for a theory term, each li
is an integer for a literal, integer p refers to a symbolic term, each vi is an integer
for a theory atom element, and integer g refers to a theory operator. Statement
(4) captures elements of theory atoms and directives, and statements (5) and
(6) refer to the latter.

For instance, line 27 captures the (single) theory element in
‘{ end(1)-start(1) }’, and line 29 represents the theory atom ‘&diff {
end(1)-start(1) } <=200’.
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Comments have form
10 s

where s is a string not containing a newline.
The aspif format constitutes the default output of gringo 5. With clasp 3.2,

ground logic programs can be read in both smodels and aspif format.
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Abstract. Access to external information is an important need for
Answer Set Programming (ASP), which is a booming declarative problem
solving approach these days. External access not only includes data in dif-
ferent formats, but more general also the results of computations, and pos-
sibly in a two-way information exchange. Providing such access is a major
challenge, and in particular if it should be supported at a generic level,
both regarding the semantics and efficient computation. In this article,
we consider problem solving with ASP under external information access
using the dlvhex system. The latter facilitates this access through spe-
cial external atoms, which are two-way API style interfaces between the
rules of the program and an external source. The dlvhex system has a
flexible plugin architecture that allows one to use multiple predefined and
user-defined external atoms which can be implemented, e.g., in Python or
C++. We consider how to solve problems using the ASP paradigm, and
specifically discuss how to use external atoms in this context, illustrated
by examples. As a showcase, we demonstrate the development of a HEX
program for a concrete real-world problem using Semantic Web technolo-
gies, and discuss specifics of the implementation process.

1 Introduction

The rise of the World Wide Web and a growing trend towards computation
in distributed systems has increased the need for accessing external informa-
tion sources in logic programs. More and more also multiple sources must be
accessed, which moreover may be of different kind and provide their informa-
tion in heterogeneous formats. There is a broad range from light-weight data
access (e.g., based on XML, RDF, or relational data repositories) to knowledge-
intensive access (e.g., OWL resp. description logic knowledge bases), and from
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access to information sources that merely provide data (as, e.g., in dictionaries
or thesauri), to sources providing computation services that are instantaneously
executed (as, e.g., route planning to get from A to B) or may return a result at
a later stage of a computation.

The variety of source access with its dynamic aspects poses a challenge for
proper modelling and efficient evaluation in the context of declarative program-
ming, where desired computation results are semantically described rather than
obtained after running through a prescribed sequence of computation commands.
This is in particular true for Answer Set Programming (ASP) [73,77,84], which
is a declarative problem solving approach in which a problem is described by
the rules of a nonmonotonic logic program such that the answer sets [59] (i.e.,
specific models) of the program correspond to the solutions of the problem. After
computing the answer sets using an ASP solver, the solutions can be extracted
from them. Due to the availability of increasingly efficient and expressive such
solvers (e.g., smodels [96], dlv [70], ASSAT [75], Gringo plus Clasp [56,57]),
and WASP [1], the ASP approach has been successfully used for applications in
different areas and disciplines, cf. [14,48]. However, these solvers provide no or
only limited support for external information access.1

The need for external information access in ASP has been recognized early
on and led to theoretical formalisms such as logic programs with generalized
quantifiers [38], and later to dlv-ex programs [18] and the more expressive HEX

programs [42]. The latter pick up notions in [18,38] and provide a bidirectional
interface between a nonmonotonic logic program and other sources, via desig-
nated external atoms. These atoms abstractly define external predicates whose
valuation is determined by external computation. For example, a rule

pointsTo(X,Y ) ← &hasHyperlink[X](Y ), url(X)

may informally determine pairs (X,Y ) of URLs, where X actually links Y on the
Web. Here, &hasHyperlink is an external predicate that is associated with an
external source; X is the input for the latter and Y is a result returned, which is
determined in whatever (computable) way. Notably, the input of external atoms
can also comprise predicate names, not only constants; e.g.,

pointsTo(X,Y ) ← &hasAdmissbleHyperlink[X, black list](Y ), url(X)

would be a variant of the previous rule, where black list is a predicate that
contains URLs which should be excluded from retrieval.

The abstract concept of an external atom has been realized in the open-source
software dlvhex2 as an API, which provides a suite of external atoms and, by
means of a plugin mechanism, allows the user to tailor external atoms for her
needs using Python or C++. This makes the system very powerful; depending
on the external evaluation cost, HEX programs offer a range of problem solving
capacity, from Σp

2 for polynomial-time external atoms in the ground case to

1 For more information, see the related work section.
2 www.kr.tuwien.ac.at/research/systems/dlvhex.

www.kr.tuwien.ac.at/research/systems/dlvhex
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Turing-completeness in general. Moreover, external atoms may return values
that do not occur in the program itself (this is known as value invention), which
by recursion may in principle lead to an infinite domain; this is in analogy to the
infinite universes of existential rules or description logic ontologies, which result
from skolemization.

The generic nature of external atoms, which are blackboxes in general, com-
bined with possible predicate input and/or value invention poses a big challenge
for the development of an efficient solver for HEX programs. In the last years, a
number of advanced methods and techniques have been researched which have led
to significant improvements [29–31,34,35]. Furthermore, an open software archi-
tecture that supports a flexible plugin mechanism and is easy to use also for non-
experts poses a further challenge, which has been addressed in parallel [90].

In this paper, we present in a tutorial style fashion the HEX formalism as
well as the dlvhex system, which constitutes the state-of-the-art solver for HEX

programs. At this, we take a user-centric view, where we omit many technical
details. Particular attention is payed to the use of HEX programs and dlvhex
for interoperability on the Semantic Web – and indeed the original development
of HEX programs was driven by this issue, as a generalization of a concrete
combination of rules and ontologies, a topic that emerged as necessary in the
Semantic Web Layer cake proposed by Tim Berners-Lee and has led to a stream
of works and a plethora of different approaches [26,83]. While HEX programs
support problem solving at different levels of abstraction, we focus here on the
basic end-user level where external atoms can be utilized in different ways in
order to enrich the problem solving capacity of ASP.

More specifically, the presentation is structured along the following sections:

– In the next section, we give an introduction to the syntax and semantics of
answer set programs and HEX programs. The part on ordinary answer set
programs is kept deliberately short and compact, as a number of texts exist
that provide an ample introduction to the subject, e.g. [5,13,14,39]; see also
Sect. 7 for further pointers. Furthermore, we do not consider the full repertoire
of language constructs that is available in ASP, but concentrate on a core part
that is sufficient from a conceptual perspective.

– In Sect. 3 then, we turn to the issue of using HEX programs. We provide a
basic methodology to this end, which enhances the methodology of ordinary
ASP programs with the use of external atoms; different such uses, for informa-
tion outsourcing and computation outsourcing, respectively, will be discussed
following [47], as well as typical kinds of external sources. Furthermore, we
will go over example encodings of two quite diverse HEX application scenar-
ios, viz. RDF graph exploration in the Semantic Web and the AngryHEX
agent for playing Angry Birds, which has been suggested as a low-cost AI
challenge for developing programs that outperform human capabilities.3

– In Sect. 4, based on [90] we introduce the dlvhex system, which is an elabo-
rated software platform for designing and evaluating HEX programs. We will

3 https://aibirds.org/.

https://aibirds.org/
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present the system architecture, the Python programming interface for devel-
oping external atom implementations, and specific annotations of external
source properties that are important for deciding whether a finite portion of
the instantiated rules is sufficient for evaluation and moreover, for evaluation
efficiency.

– In Sect. 5 we go over a full-fledged case study in the area of semantic route
planning, that is route planning under further semantic constraints. The
application program will be developed stepwise, where in each step addi-
tional aspects are addressed; code examples show the implementation of sim-
ple external sources, and access to an ontology in a lightweight Description
Logic through an external atom is illustrated.

– In the subsequent Sect. 6, we provide an overview of further HEX applica-
tions and HEX extensions. Furthermore, we discuss related work, where in
particular we compare dlvhex to the Clingo system4 [56,57], its closest
relative.

– We conclude the paper in Sect. 7 with a brief summary and outlook; pointers
to further material and resources can be found in the appendix.

2 ASP and HEX Programs

In this section, we formally introduce the syntax and semantics of HEX programs;
for more details and background, see e.g. [29,42,43,94].

2.1 ASP

In this section we briefly introduce ASP and its underlying concepts. For a more
detailed introduction see [39].

From Procedural Programming to Logic Programming. In computer science, all
students are taught programming in procedural programming languages like
Java, C/C++, Python, and many others. The basic building blocks of proce-
dural programming differ a lot from logic programming and providing a full
introduction is beyond the scope of this article. The following paragraphs, how-
ever, may help bridging the gap. A procedural programming language is about
the contents of the machines memory, i.e., bits organized in basic data types of
bytes, integers, characters, arrays, and potentially structures as well as objects.
Procedural programs modify data using instructions that are executed one after
another, i.e., instructions like addition, subtraction for basic bit manipulation; if,
else, and switch for conditional checks; various loops for repeating instructions,
and functions or methods to organize sequences of instructions.

In contrast to that, logic programming is about a statement being either
true or false. A statement itself may be structured or not: a statement can be

4 A tutorial covering hybrid answer set solving with the Clingo system can also be
found in this volume [67].
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unstructured like jaguar is an animal or structured like is bigger than(45 , 42 ).
A logic program expresses whether a statement is true or false by rules, basically
just if-then expressions. In principle, a logic program can only influence whether
a statement is true or false, it cannot otherwise modify statements. Data in
logic programs is represented by structured statements, called atoms. An atom
is composed of a predicate name (e.g., is bigger than) and a sequence of terms,
e.g., (42 , 45 ). Terms can be simple constants, or again be structured using func-
tion symbols. For readability, however, we will ignore function symbols in the
most of what follows. Terms and atoms originate from formal logic, specifically
from first-order logic, the most prominent logic formalism that is widely used in
mathematics.

An alternative view on atoms is based on relational data bases (e.g. SQL):
every predicate can be considered the name of a table while its terms are the
values of attributes in the table. In that view, a true atom at(t1, . . . , tn) is a
tuple (t1, . . . , tn) that is in the table at while a false atom is simply not in the
table. Hence, logic programming may be seen as a (powerful) form of database
querying. Formally, statements are expressions in a relational language or first-
order language.

Syntax. Statements of the form relation name(t1, . . . , tn) where each ti is a con-
stant or a variable, are formalized as relational languages. A relational language
is the set of all statements that can be expressed over a relational signature.

Definition 1 (Relational signature). A relational signature is a tuple S =
(C,P,X ) of pair-wise disjoint sets of constants, predicate symbols, and vari-
ables, respectively. We assume that predicate symbols p ∈ P come with an asso-
ciated arity n ∈ N, denoted by p/n ∈ P.

Intuitively, a constant denotes something the logic program speaks about,
i.e., it denotes an entity like the number 43 or tomatoes. Predicate symbols are
used to denote relations, e.g., the ≤ relation or is edible. Variables may denote
any element out of a set of possible candidates. Variables may occur in any place
where a constant may occur.

Usually constants in C are denoted with first letter in lower case while vari-
ables in X are denoted with first letter in upper case.

Definition 2 (Terms, Atoms). Given a relational signature S = (C,P,X ), an
element of C ∪ X is called a term. Furthermore, if p/n ∈ P is a n-ary predicate
symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is an atom. The set of all
atoms is denoted by AS.

If the signature S is clear from the context, one also writes simply A for AS .
Given the is edible relation and the constant tomatoes, one can form the

atom is edible(tomatoes) to denote that tomatoes are edible. Atoms may con-
tain variables as, e.g., in is edible(X). An atom that contains no variables is
called ground. Hence, is edible(tomatoes) is ground while is edible(X) is not. We
likewise say a term is ground, if it contains no variable; that is, if it is from C.
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Note that is edible(43) also forms an atom, which intuitively is a false state-
ment while is edible(tomatoes) intuitively is a true statement. On the other hand,
however, a rotten tomato should not be considered edible and we may even think
of a fantasy story where a mythical creature is eating numbers. Statements there-
fore may be true or false depending on their interpretation.

Formally, an interpretation for logic formulas (an ASP program is a set of a
certain kind of formulas) interprets all constants of the logic formula with entities
or individuals, which are called the universe of discourse. For classical logic, the
universe may be any set, e.g. the set of natural numbers, and an interpretation
is then free to interpret the constant tomatoes with the number 51.5 Since this
kind of freedom is not always intuitive and not needed, logic programs consider
interpretations where the universe is from the set of symbols of the relational
signature and each symbol is interpreted by itself, i.e., tomatoes is interpreted
as tomatoes and 43 is interpreted as 43.

Definition 3 (Herbrand Universe, Herbrand Base, Interpretation).
Given a relational signature S = (C,P,X ), the Herbrand universe HU is the
set of all ground terms wrt. S and the Herbrand base HB is the set of all ground
atoms wrt. S. An (Herbrand) interpretation is any set I ⊆ HB. Here a ∈ I is
read as a is true under I, and false otherwise.

In the following, we will assume the relational signature to be given implicitly
by the program at hand. Readers knowledgeable in formal logic may observe that
the given notion of an interpretation is very simplified compared to the usual
notion, yet an interpretation in our terms can be easily extended to a first-order
logic interpretation I on the universe HU .

Observe that Herbrand interpretations cannot interpret two different con-
stants by the same entity, they implicitly assume that different constants denote
different entities. They follow the so-called unique-name-assumption (UNA).

Logic Programs. Logic programs are comprised of rules. A rule expresses that
if something holds, other things have to hold, i.e., a rule is simply an if-then
expression. The if-part may contain several conditions, some possibly containing
negation, which all have to hold while the then-part may also contain several
conditions of which at least one has to hold whenever the if-part holds.

Definition 4 (Rule). A (disjunctive) rule r is of the form

A1 ∨ . . . ∨ Am ← L1 . . . , Ln, m, n ≥ 0 (1)

where A1, . . . , Am are atoms and L1, . . . , Ln are literals, i.e., an atom or a
negated atom, written as not b, where b is an atom. A rule is ground, if all
atoms occurring in it are ground.

5 As the elements of C need to be interpreted they are thus called constant symbols in
classical logic.
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The intuition of a rule is that: if L1 to Ln all hold, then one of A1 to Am must
also hold. Given an interpretation I, an atom a holds if a ∈ I while a negated
atom nota holds if a /∈ I. The atoms occurring left of the ← are called the head
atoms while the literals occurring right of it are the body atoms. Formally, for
a rule r of the form (1), the head is the set head(r) = {A1, . . . , Am} while the
body is the set body(r) = {L1, . . . , Ln}. Rules then can be read as “if the whole
body holds, some element of the head must hold”.

A rule r with empty body, i.e., body(r) = ∅, is called a fact and a rule with
empty head, i.e., head(r) = ∅, is called a constraint.

Example 1. Consider the following three rules:

day ∨ night .
← sunshine, raining .

sunshine ← day ,not raining .

The first rule is a fact which expresses that it is day or night. The second rule is
a constraint and expresses that it cannot be the case that both the sun shines
and it is raining. The third rule is neither a fact nor a constraint, and it expresses
that whenever it is day and not raining, then the sun shines. Observe that all
rules are ground.

The not in rule bodies is called default negation in ASP since atomic pieces of
information that are not known to be true are presumed to be false by default.
In this way, ASP implements reasoning under the Closed World Assumption
(CWA), where complete knowledge about atomic facts is assumed. For instance,
in Example 1, the atom raining is not stated as a fact and cannot be derived by
any of those rules, therefore raining is false by default. Subsequently, the body
of the last rule is satisfied if day is true.

Rules that contain variables have to be safe, i.e., all variables that occur
in the rule must also occur in some positive literal of the rule. Effectively, this
allows an implementation to ensure that the relevant range of variables is finite
whenever the set of constants C is finite.

Example 2. Consider the following rules:

r1 : p(X) ← q(X,Y ), at ,not r(X).
r2 : p(X) ← not t(Z).

Rule r1 is safe because every variable (X and Y ) occurring in it occurs in its
positive body, specifically, in q(X,Y ). Rule r2 on the other hand is not safe for
two reasons: X occurs not in its positive body and neither does Z. Intuitively,
it is not clear which value for X should be chosen once the body of r2 is true.
Letting p(X) hold for all possible values of X, i.e., for the whole universe HU ,
seems far too much. Likewise, for Z in the negative body. If one lets it range
over HU , it expresses that the rule fires unless for every u ∈ HU it holds that
t(u) is true. Intuitively, it thus makes sense to exclude rules that are not safe.
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From a computational perspective, not-safe rules are also hard to deal with
since the universe may be infinite and hence it is impossible to treat each atom
individually within finite time.

In the following we consider only safe rules.

Example 3. The following rule expresses that whenever some X is reachable
from Y and Y is reachable from Z, then Z is reachable from X.

reachable(X,Z) ← reachable(X,Y ), reachable(Y,Z).

This rule is not ground as it contains the variables X, Y , and Z. They are
variables, because their initial letters are in upper case. Variables occurring in a
rule can be seen as implicitly universally quantified, i.e., the if-then statement
expressed by the rule has to hold for all X, Y , and Z. Note that the rule is safe,
because all variables X, Y , and Z occur in the positive body.

Logic programs are simply sets of rules, formally:

Definition 5 (Logic Program). A logic program is a finite set of rules.

A program P is ground, if all rules r ∈ P are ground.

Example 4. The following is a logic program consisting of three rules:

reachable(X,Y ) ← connection(X,Y ).
reachable(X,Z) ← reachable(X,Y ), reachable(Y,Z).

not reachable(X,Y ) ← location(X), location(Y ),not reachable(X,Y ).

The program can be used to compute all pairs of locations (e.g. in a city) which
are not reachable from each other by taking connections in the public transport
system alone. For this, facts such as connection(a, b) and location(a) need to be
added, representing a concrete problem instance, i.e., a public transport network
in a city.

The first rule states that one location is reachable from another one if it is
possible to take a direct connection. The second rule computes the transitive
closure of the connection relation as described in Example 3. In the third rule,
default negation is used to obtain all pairs of locations that are not in the
transitive closure. Note that for this rule to be safe, the variables X and Y must
be bound by the positive atoms location(X) and location(Y ). Otherwise, not
all variables would occur in a positive body atom. Further note that variables
having the same name but occurring in different rules are treated like distinct
variables.

Semantics. In order to define the semantics of rules and programs, we first
need to define when an interpretation satisfies a rule; this in turn depends on
the satisfaction of its components. Based on this, answer sets of a program can
be defined as special interpretations that satisfy all rules in a program. We first
consider the ground case, which can then be naturally lifted to programs with
variables.
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Satisfaction for Ground Programs. For ground rules, satisfaction for rules is as
in classical logic.

Definition 6 (Satisfaction, Model). An interpretation I satisfies

– a ground atom a, denoted I |= a, if a ∈ I,
– a negated ground atom not a, denoted I |= not a if I 
|= a,
– a conjunction L1, . . . , Ln of ground literals, denoted I |= L, . . . , Ln, if for

each i ∈ {1, . . . , n} it holds that I |= Li,
– a disjunction A1 ∨ . . . ∨ Am of ground atoms, denoted I |= A1 ∨ . . . ∨ Am, if

there exists k ∈ {1, . . . , m} with I |= Ak, and
– a ground rule r, denoted I |= r, if I |= body(r) implies that I |= head(r),

i.e., if all literals in the body hold at least one atom in the head is true.

An interpretation I is a model of a ground program P , if I |= r for each rule
r ∈ P . A model I is minimal if there is no other model I ′ ⊂ I.

Given a rule r and an interpretation I, if the body of r holds under I, i.e., if
I |= body(r), then the rule r is said to fire under I.

The correct semantics of ground rules containing negation was heavily dis-
cussed in the past and multiple approaches have been introduced. For programs
without negation, however, there was early consensus that the minimal models
are most fitting. It best captures the intuition that a rule’s head should only
hold, if the body of the rule holds.

Example 5. Consider the following program:

P =
{

b. a ← b. c ← d.
}

The interpretation I = {a, b, c} is a model of P , i.e., I |= P , because I satisfies
each rule of P . Note that I |= c ← d, which may not seem intuitive, because
the head of the rule is true although its body is not true. The notion of a model
is therefore not sufficient to capture the intuitive meaning of this program. The
(unique) minimal model I ′ = {a, b} also satisfies all rules of P and for this
program, it is close to our intuitive understanding of a rule, namely that its
head atom is only there if the body is satisfied. Note that a ← b fires under I ′

while c ← d does not fire under I ′.

Example 6. Consider the program P = {a ∨ b}. Clearly, this program has three
models, viz. I1 = {a}, I2 = {b} and I3 = {a, b}, of which intuitively I1 and I2
are preferable to I3 because that model contains an unnecessary atom; however,
by the perfect symmetry between a and b in the program, it is not justified to
prefer I1 over I2 or vice versa. If we add the rule b ← a, for the resulting program

P ′ = {a ∨ b. b ← a.}
I1 is no longer a model; in this case, {b} is the only intended model.
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Answer Sets. ASP adopts a multiple models approach, i.e., a given program P
can have multiple models that are considered to be correct and these models can
be disjoint from each other; this may even be the case if the program does not
contain disjunctive rules. Intuitively, an answer set is a model of the program
that can be (re-)constructed by rule application. Once a rule is applicable and
fires, it has to stay applicable throughout the whole construction and also in the
final model.

Example 7. Consider a program with negation as follows:

P =
{

a ← not b. b ← not a.
}

This program has two minimal models, I = {a} and I ′ = {b}. Under I the
first rule fires while the second does not, while under I ′ it is the other way
round. Answer-set semantics now declares both models to be correct, because
each captures the intuitive meaning of the rules: in I the atom a is true and b
is false, so the first rule does fire, deriving a and the second rule does not fire,
hence not deriving b. Intuitively, I can be reconstructed from P by letting the
first rule fire to obtain a, ensuring that it will fire later on fixes b to be false,
hence the second rule is not applicable and I is successfully reconstructed. Thus
I is an answer set. Considering I ′, the same holds vice versa, i.e., both I and I ′

capture the meaning of the rules in P .

In order to define answer sets formally, the notion of a reduct is important.
Intuitively, the reduct with respect to an interpretation I and a program P is
obtained by removing all rules from P which cannot fire under I.

Definition 7 (FLP-Reduct). Given a program P and an interpretation I, the
FLP-reduct P I of P wrt. I is obtained as follows: delete from P all rules r with
I 
|= r, i.e., P I = {r ∈ P | I |= r}.

Answer sets of a program P are then defined as follows:

Definition 8 (Answer-Set). An interpretation I is an answer set of P if I is
a minimal model of P I .

Intuitively, an answer set is such an interpretation which is (re-)constructable
under the rules that fire in the interpretation. Due to this, answer sets are also
called stable models.

Example 8. Consider the following program P containing a fact and two rules
using default negation:

restaurant(osteria).
indoor(osteria) ← restaurant(osteria),not outdoor(osteria).
outdoor(osteria) ← restaurant(osteria),not indoor(osteria).
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Intuitively, the program states that osteria is a restaurant , and that it is either
an outdoor or an indoor restaurant. Now, we consider all interpretations that
satisfy the rules in P , and start with:

I1 = {restaurant(osteria), indoor(osteria)}.

Since I1 does not satisfy the last rule, the corresponding FLP-reduct P I1 is the
following:

restaurant(osteria).
indoor(osteria) ← restaurant(osteria),not outdoor(osteria).

As the atom outdoor(osteria) is not contained in I1, the body of the remaining
rule is satisfied under I1, and indoor(osteria) needs to be true in every model
of P I1 . Hence, we can verify that I1 is a minimal model of P I1 , such that I1
qualifies as an answer set of P . Analogously, we derive that

I2 = {restaurant(osteria), outdoor(osteria)}

is an answer set as well. Because restaurant(osteria) must be true in any model
of P due to the fact in the program, there is only one remaining interpretation
to consider, which is:

I3 = {restaurant(osteria), indoor(osteria), outdoor(osteria)}.

The FLP-reduct P I3 only contains the fact restaurant(osteria). as none of the
two rule bodies in P are satisfied by I3. Because both indoor(osteria) and
outdoor(osteria) could be removed from I3 while the interpretation would still
satisfy P I3 , I3 is not a minimal model of the FLP-reduct, and thus, not an
answer set of P .

Example 9. Next, we consider the following program P , which, in addition to
default negation in rule bodies, also employs disjunction in the head of a rule:

restaurant(osteria).
indoor(osteria) ∨ outdoor(osteria) ← restaurant(osteria).
eat(osteria) ← indoor(osteria), raining .

eat(osteria) ← outdoor(osteria),not raining .

Accordingly, P encodes that osteria is an indoor or an outdoor restaurant (now,
by using a disjunctive head), and that we eat there if it is an indoor restaurant
and it is raining , or if it is an an outdoor restaurant and it is not raining . Again,
we check for different interpretations if they are answer sets by constructing the
respective FLP-reducts. First, consider the interpretation

I1 = {restaurant(osteria), indoor(osteria)}.
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In the FLP-reduct P I1 , the last two rules are both removed since osteria is not
an outdoor restaurant and I1 does not contain the atom raining , resulting in the
reduct:

restaurant(osteria).
indoor(osteria) ∨ outdoor(osteria) ← restaurant(osteria).

It is easy to see that I1 is indeed an answer set because it is not a model of
P I1 anymore if one of the two atoms is removed from the interpretation. When
checking the interpretation

I2 = {restaurant(osteria), outdoor(osteria), eat(osteria)}

we obtain a reduct P I2 that still contains the last rule as osteria is now assumed
to be an outdoor restaurant :

restaurant(osteria).
indoor(osteria) ∨ outdoor(osteria) ← restaurant(osteria).
eat(osteria) ← outdoor(osteria),not raining .

By checking minimality we find that I2 is another answer set for P . Finally,
consider the following interpretation, which also contains the atom raining :

I3 = {restaurant(osteria), indoor(osteria), raining}.

The corresponding FLP-reduct P I3 is identical to P I1 , but now assumes that
it is raining , which is not supported by any rule or fact, such that I3 does not
represent an answer set. In fact, there are no further answer sets for P . Note that
any interpretation containing both indoor(osteria) and outdoor(osteria) cannot
be a minimal model of the respective reduct because the head of the first rule is
already satisfied when only one of them is true.

Historically, there are several slightly different notions of a reduct (e.g. the
seminal GL-reduct [58,59], which removes negative literals from rules), but for
ASP programs as introduced above, they are equivalent. In fact, there are many
quite diverse definitions of answer set, cf. [74], which indicates some intrinsic
interest of this notion.

Answer Sets of Nonground Programs. The semantics for ground programs can be
extended to programs with variables by transforming the latter into an equivalent
ground program. This is achieved by substituting each occurring variable with
all possible constants. For this, let a substitution σ : X ∪ C → C be a mapping
from terms to constants such that σ is the identity function on constants, i.e.,
σ(c) = c for any c ∈ C. Given an atom a = p(t1, . . . , tn) the ground atom
obtain from applying σ to a, denoted by aσ is p(t1σ, . . . , tnσ). Given a rule r of
the form (1), the ground rule obtained from applying σ to r, denoted by rσ is
A1σ ∨ . . . ∨ Amσ ← L1σ . . . , Lnσ.
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Definition 9 (Grounding). The grounding of a rule r, denoted by grnd(r)
is the set of all possible substitutions applied to r, i.e., grnd(r) = {rσ |
σ is a substitution}. The grounding of a program P is the grounding of each rule,
i.e., grnd(P ) =

⋃
r∈P grnd(r).

The answer-sets of a non-ground program P are then simply the answer-sets
of grnd(P ).

Example 10. Reconsider two of the non-ground rules from Example 4 forming
the following program P :

reachable(X,Y ) ← connection(X,Y ).
reachable(X,Z) ← reachable(X,Y ), reachable(Y,Z).

Since P does not contain any constants, we obtain grnd(P ) = ∅. Intuitively,
this makes sense because there are no locations for which reachability could be
derived. Hence, the only answer set of P is the empty set. We introduce constants
into the encoding by extending P in the following way:

P ′ = P ∪ {
connection(a, b). connection(b, c).

}

We obtain the grounding of P ′ by replacing all variables by constants in all
possible ways and aggregating the resulting ground rules. The ground program
grnd(P ′) is represented by the following rules:

reachable(a, b) ← connection(a, b).
reachable(b, a) ← connection(b, a).
reachable(b, c) ← connection(b, c).

reachable(c, b) ← connection(c, b).
reachable(c, a) ← connection(c, a).
reachable(a, c) ← connection(a, c).

reachable(a, b) ← reachable(a, b), reachable(a, b).
reachable(b, a) ← reachable(b, a), reachable(b, a).
reachable(b, c) ← reachable(b, c), reachable(b, c).
reachable(c, b) ← reachable(c, b), reachable(c, b).
reachable(c, a) ← reachable(c, a), reachable(c, a).
reachable(a, c) ← reachable(a, c), reachable(a, c).

The resulting program grnd(P ′) has the single answer set {connection(a, b),
connection(b, a), reachable(a, b), reachable(b, c), reachable(a, c)}, because infor-
mally speaking, b can be reached from a, and c from b, with a single connection,
and c can be reached from a via b.

Note that the grounding contains many rules that do not fire w.r.t. the men-
tioned answer set. However, the essential point is that the set of ground rules
which is needed for deriving the correct answer set is over-approximated by the
grounding step, such that grnd(P ′) has the same answer set(s) as P ′.

Properties of Answer Sets. All answer sets satisfy certain properties, of
which we present some in the following. First, it holds that each answer set is a
minimal model.
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Proposition 1. Given a program P and an answer set A of P , then A |= P
and there exists no answer set A′ 
= A of P with A′ ⊆ A.

From minimality follows that answer sets are incomparable wrt. ⊆. Formally:

Corollary 1. Given two different answer sets A,A′ of a program P , then A 
⊆
A′ and A′ 
⊆ A both hold.

Given a program P , an interpretation I, and an atom a occurring in P , then
a is said to be supported in I, if there is a ground rule r ∈ grnd(P ) such that
I |= body(r) and a ∈ head(r). Intuitively, an atom is supported in I, if its
presence is supported by the rules that fire in I, i.e., a is contained in the head
of a firing rule. A model I is supported, if each atom a ∈ I is supported in I.

Proposition 2. Let A be an answer set of a program P , then A is a supported
model.

In Example 7, we have already illustrated that atoms which are not supported
should not be derived because there is no necessity for them to appear in a
model. However, not all supported models are also answer sets. In fact, answer
sets adhere to a stronger property called foundedness, which intuitively excludes
positive cycles supporting itself.

Example 11. Consider the program

P =
{

a ← b. b ← a.
}
,

where there is a cyclic dependency involving the atoms a and b. This program
has two models, namely I = {a, b} and I ′ = ∅. According to our previous
observation, only I ′ should be the intended model as it represents a subset of I,
i.e. it is the minimal model. Intuitively, this makes sense because, even though
both atoms are supported by a positive rule body under I now, this support is
cyclic and hence, not founded by a positive rule body depending on neither a
nor b. In other words, we have no reason independent from a and b to believe
either of them.

Example 12. Although every answer set is a minimal supported model, the con-
verse does not hold. Consider the following program:

P = { a ← a. a ← not a. }
The interpretation I1 = ∅ satisfies the body of the second rule, but not its head,
therefore I1 is not a model of P , i.e., I 
|= P . The interpretation I2 = {a} on
the other hand satisfies the heads of both rules, therefore I2 |= P . Furthermore,
each atom in I2 is supported by some rule, namely the first one. Thus, I2 is a
supported model and since I1 is not a model, I2 is the minimal supported model
of P .

Considering answer sets now, we observe that I1 is not an answer set because
it is not an model of P . The reduct wrt. I2 is P I2 = {a ← a.} and the minimal
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model of this program is I ′ = ∅. Therefore I2 is not a minimal model of P I2 and
hence I2 is not an answer set of P . In fact, P has no answer sets. Intuitively, the
first rule of P is only deriving a from the presence of a while the second rule is
contradictory in itself and can only be satisfied if a is true. Together P requires
a to hold but gives only a self-cyclic reason for a to hold, which is not enough.
Therefore it makes sense for P to have no answer sets.

In conclusion, the notion of answer set is different from the notion of minimal
supported model and answer sets have to satisfy more conditions than minimal
supported models even. In some sense, answer sets are minimal derivable models,
specifically excluding positive self-support.

The computational complexity of finding answer sets that contain no dis-
junction in any rule heads is NP, i.e., under common assumptions, there is
no feasible algorithm to construct answer sets. The best known algorithms for
constructing answer sets have an exponential run time in the worst case.

Proposition 3 (Computational Complexity: Non-disjunctive Pro-
grams [78]). Given a ground program P without disjunction, deciding whether
P has an answer set is NP-complete.

If the input program contains disjunction, the complexity rises even further.
Formally, the complexity is at the second level of the polynomial hierarchy. This
means that an algorithm to construct answer sets of a disjunctive logic program
following an NP-style guess and check approach would need to solve subproblems
that are by themselves NP-complete.

Proposition 4 (Computational Complexity: Disjunctive Programs
[28]). Let P be a ground program including disjunction, then deciding whether P
has an answer set is ΣP

2 -complete in the worst case.

Luckily, despite these results, ASP solving works quite well in practice; this is
because the worst case is often not encountered in practical problems. For further
background and results on the complexity of logic programs, we refer to [23].

Further ASP Constructs. The rules presented so far already allow to express
many problems, but some conditions are cumbersome to express using rules
only. Therefore ASP allows more constructs, mainly for more convenience. One
of those constructs are aggregates in rule bodies to count or sum over some
values. Briefly, an aggregate atom starts with # followed by the name of the
aggregate function, e.g., count , sum, min, max , avg , a collection of aggregate
elements {t1, . . . , tm : l1, . . . , ln} followed by a relation symbol, e.g., ≤, <, or=
and a term. The aggregate elements t1, . . . , tm : l1, . . . , ln are comprised of terms
t1, . . . , tm and literals l1, . . . , ln.

Example 13. Assume one wants to count the number of stations in a train net-
work where each station is given by the predicate station(Name). This is possible
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using rules alone but very inconvenient. An aggregate allows counting directly
as follows:

num stations(C) ← #count{X : station(X)} = C.

Intuitively, the aggregate #count{X : station(X)} = C counts all X which are
station names and assigns the number of such to the variable C.

In order to find optimal answer sets, weak constraints may be used. Intu-
itively, a weak constraint is like an ordinary constraint but an answer set may
violate the weak constraint incurring a penalty of some specified cost. In the
presence of weak constraints, answer sets with lowest cost are considered opti-
mal. A weak constraint is of the form

�Body . [C@L, t1, . . . , tn] (2)

where additional cost C at level L is added to the answer sets if Body is satisfied,
and t1, . . . , tn are terms. Cost C can be incurred on different priority levels L:
cost on higher levels is minimized before cost on lower levels is minimized. The
terms t1, . . . , tn serve to count multiple times those same cost, e.g., 3@0, that
appear in different rules.

Example 14. Consider some route planner where the duration of a trip should
be minimized with highest priority and the number of stops should be minimal,
but is less important than the duration.

�trip duration(T ).[T@2]
�trip stop(X).[1@1,X]

For a duration T of a trip, the first rule incurs cost T at level 2. The second
rule incurs a cost of 1 at level 1, and in order to count the cost of every stop,
the term X is used in [1@1,X]. For illustration, assume that the above weak
constraints are part of a larger program with three answer sets,

A1 = {trip duration(5), trip stop(a)},

A2 = {trip duration(3), trip stop(a), trip stop(c), trip stop(d)}, and
A3 = {trip duration(3), trip stop(e), trip stop(d)}.

Then the cost of A1 are 5@2 and 1@1, the cost of A2 are 3@2 and 3@1 while
the cost of A3 are 3@2 and 2@1. Higher levels have higher minimization priority,
so A1 is less optimal than A2 and A3. Both A2 and A3 have the same cost on
level 2, so the lower level 1 is used for comparison and here the answer set A3

has smaller cost. Therefore A3 is the optimal answer set given the above weak
constraints.

Example 15. To illustrate the usage of the terms in weak constraints consider
the following programs:

P1 = {a. �a.[3@0, t] �a.[4@0, t]}
P2 = {a. �a.[3@0, t] �a.[3@0, t]}
P3 = {a. �a.[3@0, t] �a.[3@0, o]}
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P1 has one answer set A = {a} with cost 7@0. P2 has the same answer set A
with cost 3@0 although both weak constraints are violated. P3 has the answer
set A with cost 6@0, because the different terms lead to 3@0 being present twice,
once with t and once with o as term.

For interoperability of different ASP implementations, the ASP language has
been standardized in the ASP-Core-2 input language format [19] which allows
several more constructs like choice rules (e.g. a rule 2 ≤ {a, b, c} ≤ 2 ← d.
which expresses that whenever d holds exactly two of a, b, and c have to hold),
conditional literals, and queries.

2.2 Important Classes of Logic Programs

Often one can formulate a specific problem without making use of all constructs
available in logic programming and it turns out that restricted programs are
often easier and faster to evaluate.

Recall that the computational complexity of programs with disjunction is
significantly higher than the complexity of programs without it. In some cases,
however, the disjunction can be removed by shifting it from the head into the
body using negation. Consider a rule a∨ b ← c,notd. and observe that this rule
has the same answer sets as the two rules

a ← c,not d,not b.

b ← c,not d,not a.

where the disjunction has been shifted into the rule bodies. The intuition behind
this shifting is that whenever the original rule fires, one of a or b becomes true,
but not both. The latter two rules express this directly making use of negation
to avoid that both become true at the same time. Of course, this is only correct,
if no other rule has a and b in the head, because otherwise both might be true.
Shifting can be done if the program is head-cycle free (cf. [7,70] for a formal
definition).

Furthermore, a program P is called normal, if each rule r ∈ P is normal,
that is |head(r)| ≤ 1; thus P is normal if it contains no disjunction at all. The
semantics of normal programs is easier to evaluate (cf. Proposition 3) and the
minimal models of such programs can be operationally computed. The immediate
consequences operator TP : HB → HB for a normal program P is an operator on
interpretations such that TP (I) → I ′ where I ′ = {head(r) | r ∈ P, I |= body(r)}.
Intuitively, the operator takes an interpretation and returns the heads of all rules
that fire in the given interpretation. Answer sets of a normal logic program P can
be characterized as the least fixpoint of the operator applied to the corresponding
reduct, formally: I is an answer set if I = lfp(TP I (∅)). The least fixpoint is
obtained simply by applying the operator recursively until its result no longer
changes.

Example 16. Consider the program

P = { a ← not b. b ← not a. c ← a. }
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and note that it is a normal program. Consider the interpretation I = {a, c}
which yields the reduct P I = { a ← not b. c ← a. }. Applying the immediate
consequences operator yields

I ′ = TP I (∅) = {a}; I ′′ = TP I (I ′) = {a, b}; I ′′ = TP I (I ′′) = {a, b}
thus I ′′ = I is the least fixpoint, i.e., lfp(TP I ) = I and consequently I is an
answer set of P .

Another important class of logic programs is the class of Horn programs. A
logic program is Horn, if it is normal and each rule of the form (1) contains
in its body only positive literals, i.e., the body is a conjunction of atoms. The
complexity of Horn programs is in P and thus Horn programs are far easier to
evaluate than normal programs. In fact, every Horn program that has a model
has a unique minimal model and this model is its (single) answer set.

2.3 HEX Program Syntax

HEX extends ASP by external atoms, that are special atoms to access external
information sources. As such, external atoms may only occur in the body of a
rule, since the external source can only be queried for information. To distinguish
external atoms from ordinary atoms, the names of external atoms start with the
& symbol. The set of external predicate names is denoted by G, which is disjoint
from the set of terms and variables. A relational signature for a HEX program
therefore is a quadruple S = (C,P,X ,G).

External atoms may receive as input ordinary terms as well as the extensions
of predicates. To specify that an external atom shall receive as input the whole
extension of a predicate, the predicate name, i.e., an element from P, is provided
as input.

Definition 10 (External Atom). An external atom over a relational signa-
ture S = (C,P,X ,G) is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm) (3)

where Y1, . . . , Yn is a list (called input list) of terms and predicate names from
C ∪ X ∪ P and X1, . . . , Xm is a list of terms from C ∪ X (called output list),
and &g ∈ G is an external predicate name. We assume that &g has fixed lengths
in(&g)= n and out(&g)= m for input and output lists, respectively.

In the ground case, the input terms Y1, . . . , Yn intuitively consist of individual
constants (e.g. tomatoes) and predicate names (e.g. edge). An external atom
provides a way for deciding the truth value of an output tuple depending on the
input tuple and a given interpretation.

Example 17. Consider an external atom &concat[X,Y ](Z) that takes two input
constants and returns an output constant representing the string obtained from
concatenating the string representations of the two input constants. This external
atom depends only on constants from the program with which the external atom
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is instantiated during grounding. For instance, in the following rule the external
atom is called with a first name and a last name, and the full name is retrieved.

fullname(Z) ← &concat[X,Y ](Z),firstname(X), lastname(Y ).

When grounding the HEX program containing the previous rule as well as the
two facts firstname(bob) and lastname(dylan), we obtain a rule that contains the
ground instance &concat[bob, dylan](bobdylan) of &concat[X,Y ](Z). The atom
&concat[bob, dylan](bobdylan) evaluates to true, and fullname(bobdylan) can be
derived.

Often terms alone do not suffice as input to an external atom. This is the
case whenever the output of an external atom (respectively the truth value of a
ground external atom), depends on the extension of one or more predicates in a
given HEX program.

Example 18. For instance, suppose we want to retrieve reachability information
w.r.t. the transport network from Example 4 via an external atom instead of
computing it by means of program rules, e.g. in order to apply a dedicated
algorithm.

The external atom &reachable[connection, a](X) may be devised for com-
puting the nodes which are reachable from node a in a graph represented by
atoms of form connection(u, v). In this case, the external atom has a predicate
name as well as a constant term as input parameters.

Intuitively, given an interpretation I, &reachable[connection, a](X) will be
true for all ground substitutions X → b such that b is a node in the graph whose
set of edges is {(u, v) | connection(u, v)∈ I}, and there is a path from a to b in
that graph.

An external atom of the form (3) for which it holds that n = 0 is an atom
that only imports external information, while an external atom with m = 0
imports no information but can be either true or false. Hence, the latter behaves
like a Boolean predicate and may be used as an external checker, e.g., to run a
specific checking algorithm.

Example 19. Consider an external atom &importConnections[](X,Y ) which
returns all connections of some public transport network. Here, we have that
n = 0 and thus, the evaluation of the external atom does not depend on infor-
mation derived from the HEX program in which it is used. However, a rule of
the form

connection(X,Y ) ← &importConnections[](X,Y ), location(X), location(Y ).

could be used to, e.g., import all connections between locations from a given set
into the program from Example 4.

Alternatively, consider the atom &distanceLessThan[connection,X, Y,N ](),
which does not have any output parameters, i.e. m = 0. Suppose it constitutes a
Boolean predicate that evaluates to true if and only if location X has distance less
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than N from location Y in the transport network represented by the extension
of the predicate connection. Then, it could be used in a HEX program in a
constraint such as

← not &distanceLessThan[connection,X, Y, 5](), location(X), location(Y ).

to ensure that no two locations have distance greater or equal 5 from each other
in the network induced by the predicate connection.

A HEX-literal is either an ordinary literal, an external atom, or a default-
negated external atom. Rules in HEX then are exactly like ordinary rules in ASP
except that the literals in the body may contain external atoms.

Definition 11 (HEX rule). A HEX rule r is of the form

A1 ∨ . . . ∨ Am ← L1 . . . , Ln. (4)

where all Ai are atoms, and all Lj are either literals or HEX-literals, for 1 ≤ i ≤
m, 1 ≤ j ≤ n, m,n ≥ 0.

In the following, we call HEX-rules just rules.

Example 20. Consider an external atom to query a web-based weather report
which receives as input a set of pairs of dates and locations one is interested and
reports the set of all weather conditions that occur at some of the locations on
the specified date as output. Such an external atom might be

&weatherreport[dateLocationPredicate](WeatherConditions).

Let goto be a predicate containing pairs of days and cities to be visited. Then,
the following constraint excludes extensions of the predicate goto where bad
weather occurs in some city on the day of visit:

← &weatherreport[goto](W ), badweather(W ).

Definition 12 (HEX program). A HEX program is a set P of (HEX) rules.

A rule is ordinary if no external atom occurs in it, and a program is ordinary
if all its rules are ordinary. The notions of constraint and fact carry over from
ordinary rules. In practice, we shall be interested in finite programs only, while
theoretically, programs may be infinite.

Example 21 (continued). Consider the following program Πgoto to decide on
what day to go to which city for planning a city trip, but exclude trips where
the (external) weather report indicates that bad weather occurs during the trip.

badweather(rain). badweather(snow).
goto(1 , paris) ∨ goto(1 , london).
goto(2 , paris) ∨ goto(2 , london).
← &weatherreport[goto](W ), badweather(W ).
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The facts in the first row state that snow and rain are bad weather, the rules
in the second and third line choose a destination for the first and second day,
respectively, which can be Paris or London (and possibly the same city for both
days), and the constraint excludes extensions of the predicate goto such that
bad weather is expected on the chosen trip.

2.4 HEX Program Semantics

The semantics of HEX programs generalizes the answer-set semantics of ordinary
programs. The notion of a Herbrand base HB for HEX is analogous to ordinary
ASP, i.e., HB is the set containing all ground ordinary atoms and all ground
external atoms. The grounding of a rule r, grnd(r), is defined accordingly, and the
grounding of P is given by grnd(P )=

⋃
r∈P grnd(r). Unless specified otherwise,

the relational signature S = (C,P,X ,G) is implicitly given by P , but different
from the ‘usual’ ASP setting, the set C of constants used for grounding a program
is only partially given by the program itself; in HEX, external computations may
introduce new constants that are relevant for semantics of the program.

The notion of interpretation for ordinary logic programs naturally extends
to HEX programs, where the valuation of external predicates depends only on
(i) the valuation of the ordinary predicates and (ii) some external semantics.
Formally, we define interpretations of HEX programs as follows.

Definition 13 (HEX interpretation). An interpretation relative to a HEX

program P is any subset I ⊆HB that contains no external atoms.

Satisfaction of ordinary atoms with respect to an interpretation I is then as
usual; for external atoms, we use the notion of an oracle function.

Definition 14 (Oracle Function). Every external predicate name &g ∈ G,
has an associated decidable (n+m+1)-ary Boolean function f&g, called oracle
function, which maps each tuple (I, �y, �x) to either T or F, where I ⊆HB is
an interpretation, �y = y1, . . . , yn, n = in(&g), �x = x1, . . . , xm, m = out(&g),
xi ∈ C, yj ∈C ∪ P, and m,n ≥ 0.

In the following we make the restriction that for any oracle function f&g,
interpretation I and input vector �y, there are only finitely many vectors �x such
that f&g(I, �y, �x) = T.

This definition of external atom semantics is very general; indeed an external
atom may depend on every part of the interpretation. For practical reasons,
external atom semantics is usually restricted so that it depends only on the
extension of those predicates in I that are given in the input list.

Example 22 (continued). Suppose that the weather report for paris is sun on day
1 and day 2 of the trip, and for london the forecast indicates rain for both days.
The oracle function f&weatherreport(I, goto,W ) corresponding to this information
evaluates to T if and only if:
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{goto(1 , london), goto(2 , london)} ⊆ I and W = rain,

{goto(1 , london), goto(2 , paris)} ⊆ I and W = sun or W = rain,

{goto(1 , paris), goto(2 , london)} ⊆ I and W = sun or W = rain, or
{goto(1 , paris), goto(2 , paris)} ⊆ I and W = sun.

In all other cases, f&weatherreport(I, goto,W ) evaluates to F.

Definition 15 (Satisfaction of External Atom). An interpretation I ⊆ HB
is a model of a ground external atom a = &g [�y](�x), denoted I |= a, if
f&g(I, �y, �x) = T.

The notion of satisfaction for ordinary atoms, literals, rules, and programs
carries over directly from disjunctive logic programs.

Given a HEX program P , the FLP-reduct P I of P with respect to I ⊆ HB
is the same as for ordinary programs, i.e., P I is the set of all r ∈ grnd(P ) such
that I |= body(r).

Definition 16 (Answer Set of a HEX Program). An interpretation I ⊆ HB
is an answer set of a HEX program P if, I is a minimal model of P I . We denote
by AS(P ) the set of all answer sets of P .

Observe that if P has no external atoms, then the answer sets according
to the above definition are exactly the answer sets for ordinary ASP programs.
In other words, HEX programs are a conservative extension of disjunctive [59]
(resp., normal [58]) logic programs under the answer set semantics.

Example 23 (continued). Suppose that the weather report for paris is sun
on day 1 and day 2 of the trip, and for london the forecast indicates rain
for both days, i.e., f&weatherreport(I, goto,W ) from Example 22 is employed.
In this case, I |= &weatherreport[goto](sun) holds if I |= goto(1 , paris) or if
I |= goto(2 , paris). Moreover, it holds that I |= &weatherreport[goto](rain) if
I |= goto(1 , london) or if I |= goto(2 , london), and Πgoto has one answer set:

{
goto(1 , paris), goto(2 , paris), badweather(snow), badweather(rain)

}

If weather reports of both cities are sunny for the two days, i.e., if another
oracle function is employed, we obtain three further answer sets where London
is visited on the first, the second, or on both days, respectively. Finally if the
weather report for both cities is snow for days 1 and 2, there is no answer set.

3 Methodology

We next present basic methodology for using HEX to solve declarative problems.
At this, applying the methodology presented in this section not only helps in for-
mulating a HEX encoding for a problem at hand, but also has a potential impact on
the efficiency of the solving process. In practice, when computing the answer sets
of a HEX program, the evaluation of external sources for determining the truth
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values of external atoms is interleaved with ordinary answer set search. In this
way, it is ensured that all answer sets computed for a given HEX program com-
ply with the formal semantics based on oracle functions (which abstract external
sources). More details on the evaluation of HEX programs can be found in Sect. 4.

In Sect. 3.1 we provide methodology specifically for using external atoms and
distinguish typical kinds of external sources. They can be classified as

1. outsourcing of computation,
2. outsourcing of information, or
3. combination thereof.

A primary use case of HEX is the direct usage as a formalism for modeling user
applications. Section 3.2 describes several application scenarios with examples.

In each of these scenarios, all types of external sources can be used.

Basic Methodology. HEX is an extension of ASP, therefore all modeling tech-
niques from ASP may also be used in HEX programs. One of the most important
examples is the guess and check paradigm, where default negation or disjunctive
rules are used to generate a superset of the intended solutions (guessing part),
and constraints are used to eliminate spurious candidates (checking part). For
instance, if we assume that facts over predicates node and edge define a graph,
then the well-known graph 3-colorability problem can be solved by guessing all
possible colorings of the nodes of a graph using the disjunctive rule

g : color(red ,X) ∨ color(green,X) ∨ color(blue,X) ← node(X), (5)

and eliminating all colorings which assign the same color to adjacent nodes using
the constraint

c : ← color(C,X), color(C, Y ), edge(X,Y ). (6)

However, unlike in ASP, HEX programs allow for using external atoms in addi-
tion. They can occur both in the guessing and in the checking part. In the former
case, they may be used to import individuals over which guessing is performed.
For instance, one may replace the atom node(X) in the body of rule (5) by
&node[](X) to import the nodes of the graph. In the latter case, external atoms
can be used in the body of constraints to check given conditions. For instance,
rule c may be replaced by

c′ : ← not &check [color , edge](), (7)

where &check [color , edge]() is true if color is a valid 3-coloring wrt. edge and false
otherwise. Here, the external atom &check [color , edge]() implements a Boolean
check, such that no output terms are required. This type of usage is common
when external atoms are utilized for external checks.

The saturation technique [37] is an advanced modeling technique for solving
problems up to ΣP

2 -completeness, by exploiting the subset-minimality of answer
sets for checking whether a property holds for all guesses in a search space [39].
A typical example is the check if a graph is not 3-colorable, i.e., all possible
colorings are invalid. Also here, the checking part may employ external atoms.

For more details about ASP modeling techniques we refer to [39,53].
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3.1 Methodology for Using External Atoms

In general, one can roughly distinguish between two main usages of exter-
nal sources that we call computation outsourcing and information outsourcing,
respectively, and combinations thereof. We stress that this distinction concerns
the usage in applications, as both usages are based on the same language con-
structs. For each of them we will describe some typical use cases that serve as
usage patterns for external atoms when writing HEX programs.

Computation Outsourcing means to send the definition of a subproblem to
an external source and retrieve its result. The input to the external source uses
predicate extensions and constants to define the problem at hand and the output
terms are used to retrieve the result, which can in simple cases also be a Boolean
decision.

On-demand constraints are of the form ← &forbidden[p1, . . . , pn](). They elimi-
nate certain extensions of predicates p1, . . . , pn and are a special case of compu-
tation outsourcing, see also the 3-colorability example above. The external evalu-
ation of such a constraint can return reasons for conflicts to the reasoner in order
to restrict the search space and avoid reconstruction of the same conflict [30].
This technique avoids explicitly grounding a set of ordinary ASP constraints
representing the forbidden combinations and by this, reduces the size of the
ground program. On-demand constraints have been used for efficient planning
in robotics where external atoms verify the feasibility of a 3D motion [49,63].

Computations that Cannot (Easily) be Expressed by Rules. Outsourcing compu-
tations also allows for including algorithms which cannot (easily or efficiently)
be expressed by rules. As a concrete example, an artificial intelligence agent for
the skills and tactics game AngryBirds needs to perform physics simulations [21].
This requires floating point computations which cannot be done by rules in a
practical way (this would either come at the costs of very limited precision or
a blow-up of the grounding). Therefore, the physics simulations are integrated
with game playing rules as external atoms in a HEX program.

Complexity Lifting. This is another kind of computation outsourcing that allows
for realizing computations with a complexity higher than the complexity of ordi-
nary ASP programs. The external atom serves then as an ‘oracle’ for deciding
subprograms. While for the purpose of complexity analysis of the formalism, it
is often assumed that external atoms can be evaluated in polynomial time6 [50],
as long as external sources are decidable, there is no practical reason for limit-
ing their complexity. External sources can also be other ASP or HEX programs,
which allows for encoding other formalisms of higher complexity in HEX pro-
grams, e.g., abstract argumentation frameworks [27].

Information Outsourcing refers, in contrast to computational outsourcing, to
external sources which import information, while reasoning itself is done in the
logic program.
6 Under this assumption, deciding the existence of an answer set of a propositional

HEX program is ΣP
2 -complete.
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A typical example can be found in Web resources which provide information
for import, e.g., RDF triple stores [68] or geographic data [82]. More advanced
use cases are multi-context systems, which are systems of knowledge-bases (con-
texts) that are abstracted to acceptable belief sets (roughly speaking, sets of
atoms) and interlinked by bridge rules that range across knowledge bases [12] (see
also Sect. 6.1); access to individual contexts has been provided through external
atoms [9]. Also sensor data, as often used when planning and executing actions
in an environment, is a form of information outsourcing (cf. ACTHEX [6]).

Combinations. It is also possible to outsource computation and information at
the same time. A typical example are logic programs with access to Description
Logic knowledge bases (DL KB), called DL-programs [41]. A DL KB not only
stores information, but also provides reasoning services. This allows for inter-
leaving reasoning within the DL KB and the logic program with information
that flows across the external atom API in both directions.

3.2 Concrete Application Scenarios

The HEX language can be directly used for modeling a problem at hand and
computing its solutions. Note that the problem instance formally consists both
of the HEX program and the external sources, but external sources may be reused
for different applications if suitable.

The typical procedure when modeling an end user application starts with
identifying and realizing the required external sources, followed by writing a
HEX program which makes use of these external sources. The two steps may be
repeated in order to refine the encoding, i.e., while writing the HEX program, the
need for further or modified external sources may arise. In some cases, external
atoms of other applications can be reused. Some existing plugins are generic
and useful for different applications, e.g., string manipulation functions and an
interface to RDF triple stores.

We next give concrete application scenarios including HEX example code.

Semantic Web Applications. In the context of the Semantic Web, HEX was
applied to connect SPARQL and RDF querying with logic programming rules
[87]. Moreover, HEX was used for archaeological research in order to combine geo-
graphical and cultural knowledge from various ontologies [82], and for adapting
user interfaces targeted at elderly and disabled people by combining ontologies
about user profiles with rules about potential user interface styles [100].

The following example uses the FOAF (Friend-of-a-friend) RDF schema to
return all pairs of nicknames that know each other, as stored in a FOAF RDF
datasource such as can be obtained from www.livejournal.com.

www.livejournal.com
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explore(“http://〈Nick〉.livejournal.com/data/foaf”). (8)
triple(S ,P ,O) ← &rdf [What ](S, P,O), explore(What). (9)
knows(Nick1 ,Nick2 ) ← triple(Id1 ,“http://xmlns.com/foaf/0.1/knows”, Id2 ),

triple(Id1 ,“http://xmlns.com/foaf/0.1/nick”,Nick1 ), Nick1 <Nick2 ,

triple(Id2 ,“http://xmlns.com/foaf/0.1/nick”,Nick2 ). (10)
knows(A,C ) ← knows(A,B), knows(B ,C ). (11)

We start with a fact (8) that represents FOAF-URLs of users that we want to
explore, where we substitute the nickname for 〈Nick〉. Rule (9) uses the external
atom &rdf to retrieve all RDF-triples from the URL instantiated as input argu-
ment What , i.e., all URLs that we specified in predicate explore. The external
atom &rdf is true for all RDF-triples found in the resource, therefore they are
represented in the predicate triple. Rule (10) uses the FOAF relations ‘knows’
and ‘nick’ to build all pairs of nicknames of people that know each other, and
define the predicate knows as result. Finally, we obtain the transitive closure of
knows using rule (11). As a result, we represent all pairs of nicknames who know
each other directly or indirectly.

In the above example, the set of URLs to retrieve was given explicitly in the
predicate explore.

In the following example, a FOAF RDF-graph is explored implicitly by fol-
lowing URLs retrieved via RDF.

explore to(What , 3 ) ← explore(What). (12)
triple at(S ,P ,O ,D) ← &rdf [Uri ](S, P,O), explore to(Uri ,D), D > 1 . (13)
explore to(U ,D2 ) ←D2 =D1 − 1 ,

triple at(Id ,“http://www.w3.org/2000/01/rdf-schema#seeAlso”,U ,D1 ),
triple at(Id ,“http://xmlns.com/foaf/0.1/nick”,Nick ,D1 ). (14)

found(Nick) ← triple at(S ,“http://xmlns.com/foaf/0.1/nick”,Nick ,D). (15)

To avoid excessive exploration, we limit following URLs in RDF up to a fixed
depth. Resources of interest are again assumed to be given as facts of the pred-
icate explore. Rule (12) defines explore to for these resources of interest with
a fixed exploration depth of 3. In (13) we retrieve RDF triples for resources
where the exploration depth is above zero and represent triples together with
their exploration depth. To follow links, in (14) we define explore to also for all
RDF links that are associated with nicknames in the RDF graph. This indirec-
tion decreases exploration depth by one. Finally (15) defines predicate found to
represent all nicknames found during exploration, independent from the depth.

The RDF examples are available in the repository of the dlvhex manual.7

7 https://github.com/hexhex/manual/RW2017/rdf/.

https://github.com/hexhex/manual/RW2017/rdf/
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AngryHEX. The annual AIBirds Competition8 is a competition for AI agents
based on the popular Angry Birds9 game, which is about using a slingshot to
shoot birds of different types at pigs placed on a scene in order to destroy them.
The pigs are usually protected by obstacles of different types. The game uses
a realistic physics simulation, including gravity and statics. In the competition,
agents are given the positions and dimensions of the objects in the scene and
need to return the angle and velocity for shooting the next bird.

The AngryHEX agent [20] is implemented on top of HEX programs. The
basic strategy is to maximize the estimated damage to obstacles and pigs for
all possible targets. Plain ASP is ill-suited for this application as the computa-
tion involves physics simulation and floating point numbers. Therefore, a HEX

program was used to realize the basic strategy including the optimal selection
of the target, while low-level numeric computations have been outsourced. The
agent participated in the competition since 2012 and ranked second in 2015.

shootable(O ,Type,Tr) ←&shootable[O ,Tr ,V ,Sx ,Sy ,Sw ,Sh,B , bb](O),

birdType(B), velocity(V ), objectType(O ,Type),

slingshot(Sx ,Sy ,Sw ,Sh), trajectory(Tr). (16)

tgt(O ,Tr) ∨ntgt(O ,Tr) ← shootable(O ,Type,Tr). (17)

← target(X , ), target(Y , ),X =Y . (18)

← target( ,T1 ), target( ,T2 ), T1 =T2 . (19)

target ex ← target( , ). (20)

←not target ex . (21)

directDmg(O ,P ,E) ← target(O ,Tr), objectType(O ,T ), birdType(Bird),

dmgProbability(Bird ,T ,P),

energyLoss(Bird ,T ,E). (22)

exDirectDmg(O) ← directDmg(O , , ). (23)

nexDirectDmg(O) ←not exDirectDmg(O), objectType(O , ). (24)

goodObject(O) ← objectType(O , pig). (25)

goodObject(O) ← objectType(O , tnt). (26)

nexDirectDmg(O), goodObject(O). [1@4, O, nexDirectDmg] (27)

nexDirectDmg(O). [1@1, O, nexDirectDmg] (28)

Fig. 1. AngryHex tactics layer (simplified)

A very simplified example of the tactics layer of AngryHex, which is eval-
uated for each shot, is shown in Fig. 1 Intuitively, (16) uses external atom
&shootable to determine which objects O in the scene can be hit by shoot-
ing with trajectory Tr, velocity V , and bird type B, given that the sling-
shot (which ejects the bird) is located at coordinates Sx, Sy and has width
8 https://aibirds.org.
9 https://www.angrybirds.com.

https://aibirds.org
https://www.angrybirds.com
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Sw and height Sh, and given that bb represents bounding boxes of all objects
in the scene. The vision module of the AngryHex client represents the scene
in facts of form birdType(Type), objectType(O ,Type), slingshot(Sx ,Sy ,Sw ,Sh),
and bb(O, Type,X, Y,Width,Height,Angle) where O is a unique object ID.
Moreover, possible velocities (a set of integers) and trajectories (either low or
high) are present as facts. External atom &shootable extracts the extension of
the bb argument, builds a 2D representation of the world in the Box2D library,10

and simulates the shot specified in arguments O, . . . , B. If the shot hits the
object, the atom is true for that object.

Rule (17) guesses whether a shootable object shall be the target of the next
shot, and (18)–(21) ensure that a single target is chosen. Rule (22) represents
direct damage to objects that are hit by the shot, using background knowledge
about damage probability and energy loss (disadvantage) of the bird type with
respect to the object type. Presence and absence of direct damage is represented
in (23)–(24).

Objects that are of type pig or tnt (explosive blocks) are defined as ‘good’
objects to hit in (25)–(26), and weak constraint (27) incurs a cost of 1 with
priority level 4 for each good object that does not obtain direct damage. Moreover
weak constraint (28) incurs a cost of 1 for each object that does not obtain direct
damage, however with a lower priority (1) than for good objects.

Recall from (2) that weak constraints are of form �Body . [C@L, . . .] and
add cost C at level L to answer sets that satisfy Body . Answer sets with lowest
cost are considered optimal and minimizing cost on higher levels has priority.

The full encoding of AngryHex uses several more external atoms, for example
&next[O, Tr, Sx, Sy, Sw, Sh, bb](Idx,O′) is true for a set of pairs 〈Idx,O′〉 that
represent the sequence of objects that a bird shot at object O with parameters
Tr, . . . , Sh would pass through: O′ is the Idx’th object hit in the trajectory.
Another external atom is &firstbelow[O, bb](O′), which yields true for pairs of
objects O, O′ such that O would hit O′ before hitting any other object when
falling down. These and further external atoms are used to select the target
and trajectory that will inflict the most useful direct and indirect damage to all
objects of the scene. The AngryHex project is publicly available.11

Route Planning. While many commercial and free route planning applications
exist (Google Maps is currently perhaps the most popular), the supported query
types are usually limited. In contrast, an implementation in HEX programs allows
for an easy addition of side constraints and thus tailoring to very specific settings.
As a concrete use-case, [32] considered tours with multiple stops (e.g. at shops, a
pharmacy, kindergarden, etc.) using an external source that supports only point-
to-point queries. Side constraints may include restrictions on the order of stops,
the tour length, or opening hours at the stops.

Related to route planning is a trip planning scenario. When planning a hol-
iday trip with multiple stops, the order of the stops is often irrelevant, but one
10 http://box2d.org/.
11 https://github.com/DeMaCS-UNICAL/Angry-HEX.

http://box2d.org/
https://github.com/DeMaCS-UNICAL/Angry-HEX
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wants to spend a certain number of days at each location. However, due to shifts
of the dates, the overall price often differs significantly with different sequences.
In addition to the sequence of the locations, also other considerations affect the
price. E.g. instead of a multi-stop flight through all locations, one may book a
return flight to one of them plus local flights from there to the others; sometimes
special offers for two-way-tickets make this more attractive. A logic program can
automatically generate flight plans according to the constraints and enquire their
ticket prices by an external atom that internally uses an online flight booking
service. An additional weak constraint can select the cheapest.

Our case study in Sect. 5 provides details for route planning with HEX.

Description Logic Programs. Description logics (DLs) provide a logical for-
malism for ontologies that are well-suited for the Semantic Web [64] or in medical
applications [65]. Ontologies represent classes of objects, referred to as concepts,
and the relations between objects, called roles. Concepts and roles correspond
to unary and binary predicates in first-order logic, respectively. A description
logic knowledge base consists of a Tbox (the terminology) that defines concepts
and roles and represents relations between them, and an Abox (assertions), that
contains specific information on membership of individuals in concepts resp. of
pairs of individuals in roles.

Example 24. Suppose PhDStudent , Student and Professor are concepts and
isAssistantOf is a role. The Tbox may contain the concept inclusion axiom
PhDStudent � Student , which states that the class of PhD students is a sub-
class of all students. The Abox contains concept membership assertions like
Professor(smith) and PhDStudent(johnson), representing that smith is a pro-
fessor and johnson a PhD student. An assertion isAssistantOf (johnson, smith)
states that johnson is an assistant of professor smith. ��

Typical reasoning tasks over description logic knowledge bases include con-
cept and role retrieval, i.e., listing all individuals or pairs of individuals which
are members of a given concept or role, respectively. In the example above one
may ask for all members of Student and expects as answer johnson as he is a
PhDStudent and thus, by the terminological knowledge, also a Student .

Combining ontologies and answer set programming is especially valuable as
existing domain knowledge can be accessed from logic programs. To this end,
DL-programs have been developed by [40,41] which have been implemented on
top of HEX programs with dedicated external atoms; where the external source
features external atoms for concept and role queries. Prior to query evalua-
tion, concepts and/or roles are enriched by the contents designated unary resp.
binray predicates that occur in the ASP program. This allows for advanced rea-
soning tasks such as terminological default reasoning or closed world reasoning
on description logic knowledge bases [24].

As description logics are monotonic, default reasoning can only be realized
by the (cyclic) interaction of rules and the DL knowledge base. To this end,
appropriate encodings and an implementation were developed [24]. DL-programs
have, e.g., been applied in complaint management for e-government [101].
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Our case study in Sect. 5 contains a code example and a walkthrough for
integrating DL reasoning with logic programming using the HEX formalism.

4 The dlvhex System

In this section we present the dlvhex system12 for evaluating HEX programs.
The system is implemented in C++ and available as open-source software for
all major platforms (Linux, OS X, Windows). Pre-compiled binaries are also
provided. External sources are implemented using a plugin interface, which is
currently available for C++ and Python.

At the beginning of the dlvhex project, the system focused on applica-
tions for the Semantic Web. Early versions of the system were based on dlv13

and extended it with higher-order and external atoms. Higher-order atoms
allow for using variables in place of a predicate symbol, such as in the rule
C(X) ← subClassOf (D,C),D(X) to model a general subclass relation; while
they are still supported, they were less emphasized in later versions as they can
be compiled away. External atoms were introduced for accessing arbitrary exter-
nal sources and are a generalization of DL-atoms, which allow only for interfacing
a description logic reasoner.

The first evaluation algorithms used dlv as a blackbox backend for single-
shot evaluation of ordinary ASP programs. In a nutshell, the traditional HEX-
algorithm translates the HEX-program into an ordinary ASP program which
guesses the values of external atoms (disregarding the actual semantics), evalu-
ates this ASP program using the backend, and performs for each answer set a
post-check to ensure that the guesses were correct and that minimality wrt. the
FLP-reduct is given. As this approach did not scale to real applications, the
evaluation algorithms were improved over time, which required a tighter inte-
gration with the backend (such as separate access to the grounding and the
solving component of the backend, a callback interface, etc.). In context of these
improvements, the default backend was replaced by Gringo and Clasp from
the Potassco suite14; the original system name dlvhex was kept and should now
be read as Datalog with disjunctions, higher-order and external atoms. However,
our interface allows for the integration of further solver backends. For instance,
in order to make the system self-contained and for testing purposes, we further
provide as another alternative an internal grounder and solver, which do not rely
on any third-party components. Also dlv is still supported as an alternative to
Gringo and Clasp (used with the traditional algorithms).

We will first discuss the basic evaluation approach and the system archi-
tecture, before we switch to the user perspective and point out system features
which distinguish dlvhex from ordinary ASP solvers and also from previous ver-
sions. However, since this paper focuses on the usage of HEX-programs rather
than evaluation algorithms, we refer to [89] for details.
12 http://www.kr.tuwien.ac.at/research/systems/dlvhex.
13 http://www.dlvsystem.com.
14 https://potassco.org.

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.dlvsystem.com
https://potassco.org
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4.1 Evaluation Approach and System Architecture

In practice, external sources are evaluated wrt. truth assignments computed
by the employed ASP solver. Hereby, the information that can be gained from
external evaluations depends on the semantic properties of external sources and
the extent of the solver assignment at the point of evaluation. Because a solver
only assigns truth values to a subset of the Herbrand base during model search,
we explicitly represent truth valuations of ground atoms by means of assignments
A. An assignment A is a consistent set of literals of form Ta or Fa, where a is
an atom which is said to be true in A if Ta ∈ A, false if Fa ∈ A, and undefined
otherwise. We say that A is complete over a program P if for all atoms a in
grnd(P ) either Ta ∈ A or Fa ∈ A holds. The interpretation I corresponding to
a complete assignment A is I = {a | Ta ∈ A}.

Traditionally, ground HEX programs have been evaluated by replacing each
external atom &e[�p](�c) by an ordinary atom e&e[�p](�c) and introducing a rule
e&e[�p](�c)∨ne&e[�p](�c) ← to guess its truth value; the resulting program is evaluated
by an ordinary ASP solver (such as Gringo and Clasp) to produce model
candidates. Since the ordinary ASP solver is not aware of the actual semantics
of external atoms, each candidate A is subsequently checked by testing (i) if
the external atom guesses are correct, i.e., if A |= e&e[�p](�c) iff A |= &e[�p](�c)
for all external atoms &e[�p](�c), and (ii) if assignment A is a subset-minimal
model of fΠA. If both conditions are satisfied, an answer set has been found.
However, this approach did not scale well because there are exponentially many
independent guesses in the number of external atoms in the ground program.

To overcome the problem, novel evaluation algorithms based on conflict-
driven techniques have been introduced [30]. As in ordinary ASP solving, the
input program is translated to a set of nogoods, i.e., a set of literals which must
not be true at the same time. Given this representation, techniques from SAT
solving are applied to find an assignment which satisfies all nogoods [57]. Notably,
as the encoding as a set of nogoods is of exponential size due to loop nogoods
which avoid cyclic justifications of atoms, those parts are generated only on-
the-fly. Moreover, additional nogoods are learned from conflict situations, i.e.,
violated nogoods which cause the solver to backtrack; this is called conflict-driven
nogood learning.

The extension of this algorithm towards the integration of external sources
into the learning component works as follows. Whenever an external atom
&e[�p](�c) is evaluated under an assignment A in the checking part (i), the actual
truth value under the assignment becomes evident. Then, regardless of whether
the guessed value was correct or not, one can add a nogood which represents
that e&e[�p](�c) must be true under A if A |= &e[�p](�c) or that e&e[�p](�c) must be
false under A if A 
|= &e[�p](�c). If the guess was incorrect, the newly learned
nogood will trigger backtracking, if the guess was correct, the learned nogood
will prevent future wrong guesses.
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Example 25. Suppose &diff [p, q](X) computes the set difference between the
extensions of predicates p and q and that it is evaluated under A =
{Tp(a),Tp(b),Fq(a),Tq(b)} with Herbrand universe C = {a, b}. Then one can
add the nogood {Tp(a),Tp(b),Fq(a),Tq(b),Fe&diff [p,q](a)} in order to learn
that A |= e&diff [p,q](a), i.e., whenever p(a), p(b), q(b) are true and q(a) is false,
then &diff [p, q](a) must not be false. Conversely, one can learn that A 
|=
&diff [p, q](b) by adding nogood {Tp(a),Tp(b),Fq(a),Tq(b),Te&diff [p,q](b)}.

Experimental results show a significant, up to exponential speedup [35]. This
is explained by the exclusion of up to exponentially many guesses by the learned
nogoods.

The system architecture is shown in Fig. 2. The arcs model both control and
data flow within the system. The evaluation of a HEX program works as follows.
First, the input program is read from the file system or from standard input
and passed to an evaluation framework 1©, which may partition the input pro-
gram depending on the chosen evaluation heuristics. This results in a number
of acyclically interconnected evaluation units, which can be evaluated indepen-
dently and interplay only by their input and output interpretations. While this
interplay of the units is managed by the evaluation framework, the individual
units are handled by model generators of different kinds depending on the dif-
ferent program classes. Each instance of a model generator takes care of a single
evaluation unit, receives input interpretations from the framework (which are
either output by predecessor units or come from the input facts for leaf units),
and sends output interpretations back to the framework 2©, which manages the
integration of these interpretations to final answer sets.

Internally, the model generators make use of a grounder and a solver for
ordinary ASP programs. The architecture of our system is flexible and sup-
ports multiple concrete backends which can be plugged in. Currently it sup-
ports Gringo and Clasp, dlv, and an (unoptimized) internal grounder and
solver, which serve mainly as a fallback option and for testing purposes. The
reasoner backends Gringo and Clasp are statically linked to our system, thus
no interprocess communication is necessary. The model generator within the
dlvhex core sends a non-ground program to the HEX-grounder, and receives
a ground program 3©. The HEX-grounder in turn uses an (intelligent) ordi-
nary ASP grounder (e.g. Gringo, dlv’s grounder, etc.) as submodule 4© and
accesses external sources to handle value invention, i.e., values returned by exter-
nal sources that do not occur in the input program 5©. The ground-program is
then sent to the solver and answer sets of the ground program (i.e. candidate
compatible sets) are returned 6©. Note that the grounder and the solver are
separated and communicate only through the model generator, which is in con-
trast to previous implementations of dlvhex where the external grounder and
solver were used as a single unit (i.e., the non-ground program was sent and the
answer sets were retrieved). Separating the two units became necessary because
the dlvhex core needs access to the ground-program in order to obtain impor-
tant structural information (e.g. cyclicity) for optimization purposes.
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Fig. 2. Architecture of dlvhex

The solver backend makes callbacks to the post propagator in the dlvhex
core once a model has been found or after deterministic propagation has been
finished. During the callback, a complete or partial model is sent from the solver
backend to the post propagator, and learned nogoods are sent back to the exter-
nal solver 7©. In case of Clasp as backend, we exploit its SMT interface, which
was previously used for the special case of constraint answer set solving. The post
propagator performs checks to eliminate spurious answer set candidates, which
requires calls to the plugins, which implement the external sources. The input
list is sent to the external source and the truth values and possibly user-defined
learnt nogoods are returned to the post propagator 9©. Moreover, the post prop-
agator also sends the (complete or partial) model to the unfounded set checker
(UFS checker). UFS checking is one possible realization of minimality checking
wrt. the reduct. While foundedness (cf. Sect. 2) means that each true atom is
supported by some rule, this additional step is necessary to exclude self-justified
atoms due to cyclic dependencies. While the ordinary ASP solver already per-
forms such a check, it does not know the semantics of external sources and thus
cannot detect all unfounded sets, which makes an additional check necessary.
For this, the UFS checker employs a SAT solver 11©, which can either be Clasp
or the internal solver. More precisely, a specific SAT instance depending on the
current answer set candidate and the semantics of the external atoms wrt. this
candidate is constructed, such that the models of this instance correspond to
unfounded sets. In order to consider the semantics of external atoms during
UFS detection for constructing the SAT instance, it needs to call the external
sources 10©. The UFS checker possibly returns nogoods learned from unfounded
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sets to the post propagator 8©. The post propagator sends all learned nogoods
back to the ASP solver. This makes sure that eventually only valid answer sets
arrive at the model generator 6©.

Finally, after the evaluation framework has built the final answer sets from
the output interpretations of the individual evaluation units, they are output to
the user 12©.

For more details we refer to [89].

4.2 Using the dlvhex System

The system is provided as a command-line tool called dlvhex2 which expects as
only mandatory parameter the filename of the HEX program to evaluate (or --
to read from standard input). Plugins are loaded from a global plugin directory
where they need to be installed before. Thus, the simplest possible call is of form
dlvhex2 prog.hex where prog.hex refers to a program.

However, the system provides numerous command-line options to customize
the reasoning process. They include technical options such as the possibility
to load plugins from custom locations (e.g. --plugindir=$HOME/myplugin),
options for customizing the output such as to project answer sets to certain
predicates (e.g. --filter=p) or restrictions of the maximum number of answer
sets to compute (e.g. -n=7), and options for tuning the reasoning algorithms; the
latter may be used to select heuristics and reasoning techniques based on the
problem to be solved. For an exhaustive overview of the usage of the system and
its command-line options, we refer to its manual [46]. The system also provides
online help, which can be retrieved by calling dlvhex2 -h.

In the following we focus on recently added features which distinguish the
dlvhex system from other similar systems and from earlier versions.

While previous releases were mainly prototypes for empirically evaluating
algorithms and research results, recent releases also aim at practical applica-
bility of the system for implementing real applications. To this end, important
system features have been added to improve the overall user’s convenience by
simplifying its usage, to speed up the evaluation, and in order to reduce syntactic
restrictions. The enhancements can be organized in two main groups: (i) usabil-
ity and system features, including a novel convenient programming inter-
face for providers of external sources and the integration of support for popular
ASP extensions and interoperability, and (ii) enhancements based on exploiting
external source properties towards scalability boosts and increased language
flexibility based on liberal safety, which is a safety criterion that is less restrictive
than previous notions of safety. We describe these features in the following.

4.3 Usability and System Features

In this section we present recent work on the system side to improve the user’s
convenience. We start with general remarks on the dlvhex software and its
dissemination. dlvhex was previously only available in source format (released
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under GNU LGPL) and only for Linux platforms. This deployment method
turned out to be inconvenient for ASP programmers who want to use the sys-
tem as is without custom modifications, We thus now provide pre-built binaries
for all major platforms (Linux-based, OS X and Windows) in addition. We fur-
ther created an online demo of the system under http://www.kr.tuwien.ac.at/
research/systems/dlvhex/demo.php which allows for evaluating HEX programs
directly in the browser (the user may specify both the logic program and custom
Python-implemented external atoms in two input fields). The demo comes with
a small set of examples to demonstrate the main features of the KR formalism.
We further provide a manual to support new users of the system [46].

Next, the following two subsections give an overview of the new Python
programming interface and interoperability of the system.

Python Programming Interface. With earlier versions of the system, users
who wanted to integrate custom external sources had to write plugins in C++.
While this was natural as the reasoner itself is implemented in C++, it was
cumbersome and introduced development overhead even for experienced devel-
opers. This is because multiple configuration, source and header files need to
be created even when realizing only a small and simple plugin. Also the compi-
lation and linking overhead during development and debugging was considered
inconvenient.

As a user-friendly alternative, dlvhex 2.5.0 introduces a plugin API for
Python-implemented external sources. A plugin consists of a single file (unless
the user explicitly wants to use multiple files), which imports a dedicated
dlvhex package and specifies a single method for each external atom. Thanks
to higher-level features of Python and modern packages, this usually results in
much shorter and simpler code than with C++-implemented plugins. A central
register method exports the available external atoms and (optionally) their
properties to dlvhex.

Example 26. The following snippet implements &diff [p, q](X) for computing the
values X which are in the extension of p but not in that of q.

1 import dlvhex
2

3 def d i f f (p , q ) :
4 for x in dlvhex . getTrueInputAtoms ( ) : # for a l l true input atoms
5 i f x . tup l e ( ) [ 0 ] == p : # is i t of form p(c )?
6 i f dlvhex . i s F a l s e ( dlvhex . storeAtom (# is q ( c ) f a l s e ?
7 (q , x . tup l e ( ) [ 1 ] ) ) ) :
8 dlvhex . output ( ( x . tup l e ( ) [ 1 ] , ) ) ; # then c i s in the output
9

10 def r e g i s t e r ( ) :
11 dlvhex . addAtom( ” d i f f ” , ( dlvhex .PREDICATE, dlvhex .PREDICATE) ,
12 1 , prop )

The following example illustrates the usage of an external atom in a HEX

program, for which the corresponding Python plugin is created subsequently.

http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
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Example 27. Consider the program

Π =

{
r1 : start(s).
r2 : scc(X) ← start(X). r3 : scc(Y ) ← scc(X),&edge[X](Y ).

}

where r1 selects a node s from an externally defined (finite) graph, and r2 and
r3 recursively compute the strongly connected component of s. To this end, the
external atom &edge[X](Y ) is used, which is true if Y is directly reachable from
X (and false otherwise).

The implementation of &edge[X](Y ) may look as follows:

1 def edge (x ) :
2 graph =( (1 , 2 ) , ( 1 , 3 ) , ( 2 , 3 ) ) # s imp l i f i e d example implementation
3 for edge in graph : # search for outgoing edges
4 i f edge [0]==x . intValue ( ) : # of node x
5 dlvhex . output ( ( edge [ 1 ] , ) ) # output edge ta rge t

On the command-line, the call

dlvhex2 --python-plugin=plugin.py prog.hex

loads the external atoms defined in plugin.py and then evaluates HEX program
prog.hex.

In the system, the Python programming interface is realized as a wrapper of
the generic C++ interface as shown in Fig. 3, where arcs model both control and
data flow. That is, the Python interface uses only the C++ interface but does
not communicate with the core reasoning components otherwise. This turns the
Python interface in fact into a special C++ plugin. The performance gap between
C++ and Python plugins is normally negligible (the update of the Python data
structures is in the worst case linear in the number of input atoms), unless the
plugin is itself computationally expensive. Wrappers for other languages such as
Java or C# can be added similarly and can also be implemented externally, i.e.,
they do not necessarily need to be part of the dlvhex solver.

For a complete API description we refer to the system website.

Reasoning
Component

C++ Program-
ming Interface

C++ Plugins

Python Program-
ming Interface

Python Plugins

dlvhex

Fig. 3. Architecture of the python programming interface
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ASP-Core-2 Standard, Extensions and Interoperability. In the course
of the organization of the fourth ASP competition, the input language of ASP
systems was standardized in the ASP-Core-2 input language format [19].15 The
dlvhex system in its current version supports all features defined in the stan-
dard, including function symbols, choice rules, conditional literals, aggregates,
and weak constraints. The supported language is therefore a strict superset of
the standard.

The system further supports input and output in CSV format to improve
interoperability with other systems such as Unix commands or spreadsheet appli-
cations. That is, facts may be read from the lines of a CSV file, where the different
values are mapped to the arguments of a predicate. After the computation, the
extension of a specified predicate may be written in CSV format to allow a seam-
less further processing by other applications. For instance, consider salary.csv:

joe,smith,2000
sue,johnson,2200

It can be read as facts emp(1, joe, smith, 2000) and emp(2, sue, johnson, 2200)
(where the first element is the original line number if relevant) using the dlvhex
command-line option --csvinput=emp,salary.csv. Conversely, results can be
output in CSV format.

4.4 Exploiting External Source Properties

External sources were seen as black boxes in earlier versions of dlvhex. It was
assumed that the system does not have any information about them, except
that there is an oracle function which decides satisfaction of an external atom
under a complete assignment. As a consequence, the room for optimizations in
the algorithms was limited because the value of an external atom under one
assignment did not allow for drawing any conclusions about its behavior under
other assignments.

However, in many practical applications the provider of an external source
and/or the HEX programmer have additional knowledge about the behavior of
the source, for instance, that the source is monotonic, functional, has a limited
domain, returns only elements which are smaller than the input (according to
some ordering), etc. Knowing such properties allows for implementing more spe-
cialized algorithms which are tailored to the particular external sources used in a
program. We therefore identified a set of properties that external sources might
have, and allow the user to specify the ones which are fulfilled by a concrete
external source. Note that specifications by the user are assumed to be correct
and cannot be further checked by the system, either due to high computational
costs or undecidability of some properties.

Example 28. Suppose &tail [X](Y ) is true whenever Y is the string which results
from string X if the first character is dropped. Then the output is always smaller
than the input wrt. string length.
15 https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf.

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
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The system exploits these properties automatically, mainly for two purposes:
in the learning algorithms for scalability enhancements and in the grounding
component for more flexibility of the language due to reduced syntactic limita-
tions. In addition, there are several other system components which exploit the
properties to further speed up the evaluation, such as skipping various checks if
their result is definite due to known behavior of external sources, partitioning a
reasoning task into smaller independent tasks, avoiding unnecessary evaluations
of external atoms, and drawing deterministic conclusions rather than guessing.

However, as this section presents the system from a user’s perspective, we
focus on which properties can be specified, how the user can do that, and give
a rough idea of how the system makes use of this information, but we refrain
from discussing the involved algorithms in detail. This is in line with the goal
of these properties: the user can benefit from the advantages when specifying
them, but without the need to care about how the system is going to exploit this
information. Instead, the user can generally expect that the more information
is available to the system, the more efficient evaluation will be; if the added
information does not yield a speedup, it does at least no harm.16 Some of the
properties, such as monotonicity, do even lead to a drop of complexity from ΣP

2

to NP for answer set existence checking over ground disjunction-free programs,
provided that external sources are polynomial [51].

Furthermore, properties also serve as assertions: if the reasoner observes a
behavior of external sources which contradicts the declared properties, appropri-
ate error messages are printed. However, a systematic check of asserted properties
is not performed because of high computational costs or even undecidability of
some properties.

Specifying Properties. The specification of properties is supported in two
ways. The first option is to declare them as part of the external source imple-
mentation via the external source interface. The second option is to specify them
as part of the HEX program using so-called property tags.

Specification via the External Source Interface. Properties are mostly specified
via the (C++ or Python) programming interface for external sources. To this
end, the procedural code which implements external atoms calls specific setter
methods provided by the programming interface to inform the system that the
source has certain properties.

Example 29. The implementation of &md5 [X](Y ) which computes for a string
X its MD5 hash value Y might call prop.setFunctionality(true) to let
dlvhex know that for each X there is exactly one Y . This allows the system, for
instance, to conclude that &md5 [x](y2) is false without evaluating the external
source, if it has already found a value y1 
= y2 such that &md5 [x](y1) is true.
16 The only property related to potential performance decrease is provision of a three-

valued semantics as additional calls of the external source are sometimes counter-
productive [44]. However, even then the property itself does not harm since it is only
exploited by certain (non-default) evaluation heuristics selected via command-line
options.
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If a property is declared in this way, the source is meant to always provide
a certain behavior, independent of its usage in a HEX program, like in case of
the computation of a hash value. Another example is &diff [p, q](X) from Exam-
ple 26, which computes all values X in the extension of p but not in that of q
wrt. assignment A (formally, these are all values x s.t. f&diff (A, p, q, x) = T).
This external atom is always monotone/antimonotone in the first/second para-
meter, which can be specified by calling prop.addMonotonicInputPredicate(0)
and prop.addAntimonotonicInputPredicate(1).

Example 30. Reconsider the external atom &diff [p, q](X) from Example 26. It
is monotonic in p and antimonotonic in q. We adopt the implementation of the
external source as follows in order to inform the reasoner about the properties,
which typically leads to efficiency improvements.

1 import dlvhex
2

3 def d i f f (p , q ) :
4 for x in dlvhex . getTrueInputAtoms ( ) : # for a l l true input atoms
5 i f x . tup l e ( ) [ 0 ] == p : # is i t of form p(c )?
6 i f dlvhex . i s F a l s e ( dlvhex . storeAtom (# is q ( c ) f a l s e ?
7 (q , x . tup l e ( ) [ 1 ] ) ) ) :
8 dlvhex . output ( ( x . tup l e ( ) [ 1 ] , ) ) ; # then c i s in the output
9

10 def r e g i s t e r ( ) :
11 prop = dlvhex . ExtSourcePropert i e s ( ) # inform dlvhex about
12 prop . addMonotonicInputPredicate (0 ) # monotonicity/antimon .
13 prop . addAntimonotonicInputPredicate (1 )# in f i r s t /second parameter
14 dlvhex . addAtom( ” d i f f ” , ( dlvhex .PREDICATE, dlvhex .PREDICATE) ,
15 1 , prop )

Specification via Property Tags. However, it might also be the case that only a
specific usage of an external source in a concrete program has a property. Then
the implementer of the external source cannot declare it yet; instead, only the
implementer of the HEX program has sufficient knowledge and can declare the
property as part of an external atom in the program.

Example 31. Suppose &greaterThan[p, 10]() checks if the sum of integer values
c s.t. p(c) is true is greater than 10. It is not monotone in general if negative
integers are allowed, but it is monotone if a program uses only positive integers.
While the provider of the external source cannot assert the property, the user of
the external source in a concrete program, who knows the context, can.

To this end, the HEX language and implementation were extended such that
external atoms can be followed by property tags of form 〈list of properties〉,
where the list of properties is comma-separated. Each property is a whitespace-
separated list of constants, consisting of a property type (first element in the
list), and a number of property parameters (remaining elements in the list),
whose number depends on the property type and may also have default val-
ues. For example, &diff [p, q](X)〈monotonic p, antimonotonic q〉 specifies two
properties which declare that the external atom is monotonic in p and anti-
monotonic in q wrt. their extension in the input assignment. Here, the first
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property monotonic p uses the property type monotonic and the property para-
meter p, while the second property antimonotonic q uses the property type
antimonotonic and the property parameter q. Another example is the external
atom &greaterThan[p, 10]()〈monotonic〉, which declares that the external source
is monotonic in all parameters (because it is monotonic in p and it is trivially
monotonic in constant input parameters because they are independent of the
input assignment); the property type is monotonic and no property parameters
are explicitly specified, which indicates by default that the source is monotonic
in all inputs. Properties declared by tags are understood to hold in addition to
those declared via the external source interface (stating conflicting properties is
not possible with the currently available ones).

Supported properties. The following list gives an overview about the currently
available properties and how to specify them if the property tag language is
used (but all of them can be specified both via the external source interface or
in property tags). Each property is explained with an example in order to show
the property type and the expected property parameters.

– Functionality: &add [X,Y ](Z)〈functional〉
The external atom adds integers X and Y and is true for their sum Z. The
source provides exactly one output value for a given input. There are no
property parameters.

– Monotonicity in a parameter &diff [p, q](X)〈monotonic p〉
The external atom computes the difference of the extensions of p and q. The
source is monotonic in predicate parameter p (i.e., if the extension of p increases,
the output does not shrink), as indicated by the property parameter.

– Global monotonicity: &union[p, q](X)〈monotonic〉
The source computes the set union of the extensions of p and q. It is monotonic
in all parameters (indicated by the default value of the missing property
parameter). Another example are queries over DL ontologies and RDF queries
as mentioned in Sect. 3.2.

– Antimonotonicity in a parameter: &diff [p, q](X)〈antimonotonic q〉
The source is antimonotonic in predicate parameter q (i.e., if the extension
of q shrinks, the output does not shrink).

– Global antimonotonicity: &complement [p](X)〈antimonotonic〉
The source computes the complement of the extension of p wrt. a fixed
domain. It is antimonotonic in all parameters.

– Linearity on atoms: &union[p, q](X)〈atomlevellinear〉
We have domain independence on the level of atoms, i.e., the source can be
separately evaluated for each input atom s.t. the final result is the union
of the results of all evaluations. For instance, the evaluation under assign-
ment A = {Tp(a),Tp(b),Tq(c)}, which yields {a, b, c}, can be split up into
three evaluations under A1 = {Tp(a)}, A2 = {Tp(b)} and A3 = {Tq(c)},
which yield {a}, {b} and {c}, respectively, and their union the result of the
evaluation under A. There are no property parameters.
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– Linearity on tuples: &diff [p, q](X)〈tuplelevellinear〉
We have domain independence on the level of tuples in the extensions of
predicate input parameters, i.e., the source can be separately evaluated for
each pair of atoms p(�c) and q(�c) for all vectors of terms �c s.t. the final result is
the union of the results of all evaluations. For instance, the evaluation under
A = {Tp(a),Tp(b),Fq(a),Tq(b)}, which yields {a}, can be split up into two
evaluations under A1 = {Tp(a),Fq(a)} and A2 = {Tp(b),Tq(b)}, which
yield {a} and ∅, respectively, and their union in the result of the evaluation
under A. However, it would not be correct to split A2 further up into A2.1 =
{Tp(b)} and A2.2 = {Tq(b)} as they would yield the results {b} and ∅, which
would put b into the final result, which differs from the evaluation under A.
There are no property parameters.

– Finite domain: &edges[graph.dot ](X,Y )〈finitedomain 0 ,finitedomain 1 〉
Imports the edges of a predefined graph. Both output values can have only
finitely many different values. To this end, we specify two properties with
type finitedomain with property parameters that identify the output terms
X and Y by index (0 and 1, respectively).
In the route planning application mentioned in Sect. 3.2, and shown in more
detail below, accesses to external maps fulfill this property since real-world
maps are always finite.

– Finite domain wrt. the input: &diff [p, q](X)〈relativefinitedomain 0 0 〉
Only constants which already appear in the 0-th input (indicated by the first
property parameter 0; points in this case to the predicate p) may occur as
first output term (indicated by the second property parameter 0). Informally,
the difference between sets represented by predicates p and q can only contain
elements which appear in the set represented by p.

– Finite fiber: &sqrt [X](Z)〈finitefiber〉
The source computes the square root of X. Each element in the output is
only produced by finitely many different inputs (in this case, in fact, only by
a single input value). There are no property parameters.

– Well-ordering wrt. string lengths: &tail [X](Z)〈wellorderingstrlen 0 0 〉
The source drops the first character of string X and returns the result in Z.
The 0-th output (indicated by the second property parameter 0) is no longer
than the longest string in the 0-th input (indicated by the first property
parameter 0).

– General well-ordering: &decrement [X](Z)〈wellordering 0 0 〉
The external atom decrements a given integer. There is an ordering of all
constants such that the 0-th output (second parameter) is no greater than
the 0-th input (first parameter) wrt. this ordering.

– Three-valued semantics: &g [ �X](�Y )〈providespartialanswer〉
The external source can be evaluated under partial assignments, i.e., it can
handle assignments which do not define all atoms, but may evaluate to unde-
fined (U) in this case (can be used with any external source if implemented).

Note that properties are only useful if they are exploited by at least one
solving technique or algorithm implemented in the reasoner. It is therefore not
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intended that typical users introduce custom properties, but only tag external
atoms with existing ones from the above list. However, for advanced users who
contribute to or customize the reasoner itself, the framework supports easy exten-
sion of the parser and data structures. Exploiting such a new property in the
algorithms might be more sophisticated depending on the particular property
and the envisaged goal.

Scalability Boost. Recall that the current evaluation algorithm for HEX-
programs employs a conflict-driven approach, which learns nogoods from exter-
nal sources to exclude incorrect guesses. This basic approach can be further
improved by keeping the learned nogoods small by exploiting external source
properties or external source evaluation under partial assignments.

Exploiting External Source Properties. In Example 25, atoms p(a) and q(a) in
the assignment are in fact irrelevant when deciding whether &diff [p, q](b) is true
because constants a and b are independent (similarly for p(b) and q(b) when
deciding &diff [p, q](a)). If this information is available to the system, it can be
exploited to shrink nogoods to the relevant part such that the search space is
pruned more effectively.

Oneway to gain the required information is tomake use of external source prop-
erties. In particular, the independence of a and b in the previous example can be
derived from the property ‘linearity on tuples’. Then we can reduce the nogood
{Tp(a),Tp(b),Fq(a),Tq(b),Fe&diff [p,q](a)} to {Tp(a),Fq(a),Fe&diff [p,q](a)}
and nogood {Tp(a),Tp(b),Fq(a),Tq(b),Te&diff [p,q](b)} to the smaller nogood
{Tp(b),Tq(b),Te&diff [p,q](b)}. If monotonicity in p is known in addition,
then nogood {Tp(b),Tq(b),Te&diff [p,q](b)} can be further simplified to
{Tq(b),Te&diff [p,q](b)} by dropping Tq(a) because &diff [p, q](b) will remain false
even if q(a) becomes false.

Exploiting Three-Valued Oracle Functions. Alternatively or in addition to exter-
nal source properties, also three-valued oracle functions can be exploited for
shrinking learned nogoods to the essential part [44]. If the truth value is already
known and will not change when the assignment becomes more complete, then
the set of yet unassigned atoms is irrelevant for the output of the external source.
This is exploited for nogood minimization as follows. Whenever a nogood is
learned, the system iteratively tries to remove one of the input atoms and evalu-
ate again in order to check if the truth value is still defined. If so, the according
atom is not necessary and can be removed from the nogood.

For instance, a proper three-valued oracle function in the previous example
allows for reducing the nogood {Tp(a),Tp(b),Fq(a),Tq(b),Te&diff [p,q](b)} from
above to {Tq(b),Te&diff [p,q](b)}, because whenever Tq(b) is in the assignment,
it is already definite that &diff [p, q](b) is false.

Discussion and Extensions. Whether to exploit external source properties, three-
valued oracle functions, or both, largely depends on the use case. Depending
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on the type of external source to be realized, the implementation of a three-
valued oracle function might be more challenging than that of a Boolean one
(implementing an algorithm which decides over partial assignments is in general
more difficult than if all information is known). However, it allows for exploit-
ing application-specific knowledge in an optimal way [44]. In contrast, tagging
external sources with properties from a list is easy and can still lead to good
efficiency.

Language Flexibility Based on Liberal Safety. As already discussed, exter-
nal atoms may introduce constants which do not appear in the program (value
invention). Obviously, this can in general lead to programs Π where no finite
subset of the full, possibly infinite grounding grnd(Π) of the program has the
same answer sets as Π. Since this inhibits grounding in general, it is crucial
to identify classes of programs for which the existence of such a finite ground-
ing is guaranteed; we call this property finite groundability. Traditionally, strong
safety was used, which basically forbids value invention by recursive external
atoms (i.e., external atoms whose input possibly depends on its own output
wrt. the predicate dependency graph, for a formal definition cf. [43]). If only
non-recursive external atoms introduce new values, termination is guaranteed.
However, it turns out that this is only a sufficient but not a necessary criterion,
i.e., strong safety is overly restrictive.

Example 32. The program Π from Example 27 is not strongly safe because
&edge[X](Y ) is recursive (output Y may be input to the same external atom by
another application of r3) but may introduce values for Y which do not appear
in Π. However, if one knows that the graph is finite, one can conclude that the
recursive addition of new values will end at some point.

In the example, the criterion may be circumvented by importing the full
domain a priori and adding domain predicates, i.e., adding node(Y ) to the
body of r3 and another rule node(X) ← &node[](X) to import all nodes. Then
&edge[X](Y ) does no longer invent values because all possible values for Y are
determined in a non-recursive fashion using &node[](X). However, this comes at
the price of importing the whole graph although only a small set of nodes might
be in the strongly connected component of s.

Therefore, new safety criteria have been introduced which allow for exploit-
ing both syntactic and semantic conditions to derive finite groundability, where
the latter are based on external source properties. For instance, if it is known
that the input to an external atom can have only finitely many different values,
then (due to the restrictions for oracle functions introduced in Sect. 2.4) also the
set of possible output values will be finite. Furthermore, if an external atom is
acyclic, then the set of relevant output values will also be finite. Such considera-
tions have been formalized by the notion of liberally safe HEX programs, which
are guaranteed to have a finite grounding that can be computed using a novel
algorithm [34]. Formally, the notion is based on attribute positions of external
atoms; however, since the technical details are more elaborated, we give only an
intuitive overview here.
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Example 33. Let &tail [X](Y ) drop the first character of string X and return it as
Y . Then Y is no longer than X and – even if used recursively – it is guaranteed
that it can generate only finitely many strings because there are only finitely
many strings with a length up to the one of X.

In addition to the declaration of predefined properties, the generic framework
is also extensible in such a way that custom knowledge about external sources
can be exploited. To this end, providers may implement additional safety criteria,
which are integrated into the safety check. The safety check itself is fast (at most
quadratic in the size of the non-ground program).

The system combines the available information, given by syntactic conditions,
specified semantic properties, and safety plugins in order to check safety of the
program. This does not only allow for writing programs with fewer syntactic
restrictions, but the implementation of some applications may become possible in
the first place. For instance, in route planning applications, importing the whole
map material a priori is practically impossible due to the large amount of data,
while a selective import using liberal safety makes the application possible [34],
as is the case for the route planning application described in the next section.

In case a program is not safe, the system prints hints such as the rule and
the variable for which finiteness during instantiation could not be proven. This
information is intended to guide the user when providing more information in
order to make the program safe, e.g., by adding properties which constrain the
values of this variable further. Alternatively, a command-line option allows to
disable the safety check altogether, in which case there is no guarantee that the
reasoner terminates.

5 Case Study

In this section, a case study is presented, where we describe the practical treat-
ment of a realistic problem by employing dlvhex, following the methodology
introduced in Sect. 3. This section also serves as a tutorial covering the basic
usage of dlvhex, as well as some advanced features. For this purpose, we develop
a HEX-encoding step by step, which is more elaborated than the example pro-
grams considered in the previous section, and discuss possible efficiency improve-
ments that can be achieved by exploiting facilities provided by the dlvhex-
system. More details on implementing HEX applications can be found in the
dlvhex user guide [46]. The code snippets presented in this section are frag-
ments of the complete implementation for this case study available at https://
github.com/hexhex/manual/tree/master/RW2017/.

The problem of our case study is from the route planning domain, which
has already been considered for HEX before, e.g. in [34,46,47,90]. Suppose one
wants to plan a trip through the city of Vienna, where a number of places
should be visited on the way. For planning the trip, we rely on data about
metro, tram and bus stations, which can be obtained from data.wien.gv.at. It
contains tuples of the form (l, l′, c, t), where l and l′ are locations in Vienna, for

https://github.com/hexhex/manual/tree/master/RW2017/
https://github.com/hexhex/manual/tree/master/RW2017/
http://data.wien.gv.at
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1 Museumsquartier Kar l sp l a t z 1 U2
2 F l o e t z e r s t e i gb ru e ck e Matschgasse 3 51A
3 WaehringerStrasseVolksoper Kutschkergasse 2 40
4 . . .

Fig. 4. vienna transport.graph

example ‘Karlsplatz’ or ‘Wien Mitte’, t is a means of transport that connects
both locations, e.g. ‘Bus 65A’ or ‘Metro U4’, and c is an integer representing the
associated costs, e.g. the amount of time required to travel from l to l′ by using
t. For our implementation, the data is contained in a file which is structured as
shown in Fig. 4.

For instance, line 1 states that ‘Karlsplatz’ can be reached from ‘Museum-
squartier’ taking ‘U2’ at cost 1.

5.1 Sequence Generation

Given a subset of all possible locations contained in the data set, the general goal
is to compute a sequence of locations that satisfies a number of criteria, which
we are going to introduce in several stages. We start developing our encoding
by generating all possible sequences in which a number of destinations could be
visited, by means of the HEX program shown in Fig. 5 (which will be extended in
the sequel of this section). This corresponds to the guessing part of the encoding
as described in the basic methodology in Sect. 3.

1 sequence ( I , L) v nsequence ( I , L) :− de s t i n a t i on (L) ,
2 #int ( I ) , #int (C) , C = #count{N : de s t i n a t i on (N)} , I < C.
3

4 :− sequence ( I1 , L) , sequence ( I2 , L) , I1 != I2 .
5 :− sequence ( I , L1 ) , sequence ( I , L2 ) , L1 != L2 .
6

7 inSequence (L) :− sequence ( I , L )} .
8 :− de s t i n a t i on (L) , not inSequence (L ) .
9

10 haveLocation ( I ) :− sequence ( I , L ) .
11 :− sequence ( I , L) , I1 < I , #int ( I1 ) , not haveLocation ( I1 ) .

Fig. 5. route planning.hex

The first rule generates a guess for each combination of locations that should
be visited and possible position in the resulting sequence. Here, the locations
that should be visited are assumed to be all locations contained in the extension
of the predicate destination, and C is the number of such locations obtained
by using the #count-aggregate. The constraints in lines 4 and 5 state that each
location should only appear once in the sequence, and that two locations cannot
be visited at the same time, respectively. The rules in lines 7 to 11 ensure that
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every destination appears in the sequence and that there are no gaps in the
sequence.

If we add two destinations via the facts destination("Stephansplatz")
and destination("Karlsplatz"), and execute the program by making the
command-line call:

$ dlvhex2 route planning.hex --filter=sequence --maxint=10
the dlvhex-system returns the following two answer sets:

{sequence(1,"Stephansplatz"),sequence(0,"Karlsplatz")}
{sequence(0,"Stephansplatz"),sequence(1,"Karlsplatz")}

By using the command line option --filter, we can limit the output to a
specific predicate, and --maxint sets an upper limit for the integers that occur in
the grounding of the program. The latter value needs to be chosen large enough
depending on the program. The returned answer sets correspond to all possible
sequences in which the given destinations can be visited.

5.2 Trip Planning

Next, we want to exploit the information we have in our data set about con-
nections between locations (via metro, tram or bus) in order to retrieve which
means of transport we can use regarding a particular visit sequence. In addition,
based on the associated costs for each trip via a certain means of transport, we
are interested in the fastest connections between destinations in the sequence.
For this reason, the next step in the development of our encoding consists in
creating an external source that computes the shortest path between two loca-
tions in Vienna, by employing a dedicated algorithm. The plugin should retrieve
the fastest connection together with the required costs and the traffic lines that
need to be taken. At this, the corresponding plugin method needs access to our
data set file.

Our goal is to implement an external source that can be interfaced by means
of an external atom of the following form:

&route[File,Location1,Location2](Station1,Station2,Costs,Line)

Given the name of a file containing the transport data (‘vienna transport.graph’
in our case) and two location names, the external source should yield all tuples
representing direct connections between stations that need to be visited in order
to travel from Location1 to Location2 with minimal costs, together with the
costs for each connection and the transport line used. Thus, the shortest path
from one location to another needs to be computed externally by the corre-
sponding plugin. This corresponds to computation outsourcing as described in
Sect. 3.

Here, we utilize the Python interface of dlvhex to implement the plugin,
which allows faster prototyping than the alternative C++ interface, on which
the Python interface is based. By outsourcing the computation of the optimal
connection between two locations, we can access an off-the-shelf implementation
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1 import dlvhex
2 import networkx as nx

. . .

6 def route ( graph , s ta r t , end ) :
7 G = nx . r e a d e d g e l i s t ( graph . value ( ) [ 1 : −1 ] , nodetype=str ,
8 data=[( ’ weight ’ , f loat ) , ( ’ l a b e l ’ , str ) ] ,
9 c r e a t e u s i n g=nx . MultiDiGraph ( ) )

10 shortes tPath = nx . sho r t e s t pa th (G, source=s t a r t . va lue ( ) [ 1 : −1 ] ,
11 t a r g e t=end . value ( ) [ 1 : −1 ] , weight=’ weight ’ )
12

13 for i in range (0 , len ( shortes tPath ) −1):
14 c o s t s = 10
15

16 for edge in G. edges ( data=True ) :
17 i f edge [ 0 ] == shortes tPath [ i ] and
18 edge [ 1 ] == shortes tPath [ i +1] and
19 edge [ 2 ] [ ’ weight ’ ] < c o s t s :
20 c o s t s = edge [ 2 ] [ ’ weight ’ ]
21 t ranspor t = edge [ 2 ] [ ’ l a b e l ’ ]
22

23 dlvhex . output ( ( ’ ” ’ + shortes tPath [ i ] + ’ ” ’ ,
24 ’ ” ’ + shortes tPath [ i +1] + ’ ” ’ ,
25 int ( c o s t s ) , ’ ” ’ + t ranspor t + ’ ” ’ ) )

. . .

56 def r e g i s t e r ( ) :
57 prop = dlvhex . ExtSourcePropert i e s ( )
58 prop . addFiniteOutputDomain (0)
59 prop . addFiniteOutputDomain (1)
60 prop . addFiniteOutputDomain (2)
61 prop . addFiniteOutputDomain (3)
62 dlvhex . addAtom(” route ” , ( dlvhex .CONSTANT, dlvhex .CONSTANT,
63 dlvhex .CONSTANT) , 4 , prop )

Fig. 6. route plugin.py

contained in a Python library for this task. The plugin implementation is realized
as shown in Fig. 6.

First, we need to import the Python library dlvhex, and the networkx pack-
age for performing graph computations. The implementation of the external
source mirrors the input-output structure of external atoms, in that a plugin
is constituted by a Python method with arguments corresponding to the input
parameters of the external atom; and output tuples of an external atom are
added via the interface method dlvhex.output(), representing the results of
the plugin method. In this respect, it is essential that the plugin method imple-
ments a stateless behavior where the same set of output tuples is returned for a
specific input each time the method is called, as the semantics of HEX and the
dlvhex-algorithm rely on this property.

Inside the plugin method starting at line 6, we first import the transport
network using the file name provided in the call of the external source. The
respective input constant can be retrieved by calling the method value() on the
first argument of the plugin method. As the transport network does not change
between calls of the external source, the graph could additionally be cached in
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the implementation, so that it would not need to be reloaded each time the source
is evaluated. However, we omit the caching here to keep the code listing succinct.
Afterwards, we compute and store the shortest path between the locations pro-
vided as input constants by means of the library function nx.shortest path,
in line 10. Finally, in lines 13 to 25, we build the output tuples representing
separate connections on the way from the start to the end location, together
with the traffic line taken in each step and the associated costs; and we return
them via the method dlvhex.output().

For dlvhex to be able to call the plugin method for evaluating the truth value
of an external atom, we need to register all plugins in a designated method called
register (line 56). This is done via the method dlvhex.addAtom in line 62,
which takes the method name corresponding to the external atom name, a tuple
defining the input parameter types, the output arity, and a properties-object as
arguments. For the external atom at hand, all input parameters are declared to
be constants. If the evaluation of an external atom depends on the extension of
some input predicate in the given interpretation, the type dlvhex.PREDICATE is
used instead (as will be demonstrated below). A properties-object is obtained via
the method dlvhex.ExtSourceProperties() and stored in the variable prop
in line 57. It can be used to declare the external source properties described in
Sect. 4. Here, we just define that each element of the output tuple can take only
finitely many different values since our transport network is finite.

Now, we can extend our encoding by further rules that utilize the external
atom named &route as shown in Fig. 7.

11 . . .
12

13 connect ion (L1 , L2 ,X,Y,C,T) :− sequence (N, L1 ) , sequence (Next , L2 ) ,
14 Next = N + 1 ,
15 &route [ ” v i enna t ranspo r t . graph ” ,L1 , L2 ] (X,Y,C,T) .
16

17 pathLength (L) :− L = #count{L1 , L2 ,X,Y : connect ion (L1 , L2 ,X,Y,C,T) } .
18

19 tripTmp (0 , X, L2 , X, Y, C, T) :− sequence (0 , X) ,
20 connect ion (X, L2 , X, Y, C, T) .
21 tripTmp (S , L1 , L2 , Y, Z , C2 , T2) :− tripTmp (P, L1 , L2 , X, Y, C, T) ,
22 connect ion (L1 , L2 , Y, Z , C2 , T2) , S = P + 1 , #int (S ) ,
23 pathLength (L) , S <= L .
24 tripTmp (S , Y, L3 , Y, Z , C2 , T2) :− tripTmp (P, L1 , Y, X, Y, C, T) ,
25 connect ion (Y, L3 , Y, Z , C2 , T2) , S = P + 1 , #int (S ) ,
26 pathLength (L) , S <= L .
27

28 t r i p (S , X, Y, C, T) :− tripTmp (S , L1 , L2 , X, Y, C, T) .

Fig. 7. route planning.hex - second part

We extend the file route planning.hex by a rule that retrieves all connec-
tions we have to take regarding a given visit sequence from the external source,
in line 13. Note that, besides the locations in the extension of the predicate
destination which we add to the program, the encoding does not contain any
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other locations. Thus, these need to be introduced by value invention by the
external atom, restricted to the relevant stations. Moreover, we want to obtain
the connections we are taking during the trip in sequential order. For this, we
reference the overall length of the computed trip via the predicate pathLength,
in line 17. In lines 19 to 26, we aggregate the connections between stations in
form of a new sequence containing the whole trip in tripTmp, where we take
connections between two destinations in line 21, and transitions between des-
tinations from the initial sequence in line 24. For this, we use the variables L1
and L2 to associate sub-paths with trips between destinations, which we project
away in line 28 to obtain the relevant trip information.

Now, assume we indicate a starting position by means of the fact sequence
(0,"Volkstheater"), and add the facts destination("Taubstummengasse"),
destination("Stephansplatz") and destination("Volkstheater") to the
encoding. If dlvhex is called by

$ dlvhex2 route planning.hex --python-plugin=route plugin.py
--maxint=10 --filter=trip

the following possible trips are returned:

{ trip(0,"Volkstheater","Museumsquartier",1,"U2"),
trip(1,"Museumsquartier","Karlsplatz",1,"U2"),
trip(2,"Karlsplatz","Taubstummengasse",1,"U1"),
trip(3,"Taubstummengasse","Karlsplatz",1,"U1"),
trip(4,"Karlsplatz","Stephansplatz",1,"U1")}

{ trip(0,"Volkstheater","Herrengasse",1,"U3"),
trip(1,"Herrengasse","Stephansplatz",1,"U3"),
trip(2,"Stephansplatz","Karlsplatz",1,"U1"),
trip(3,"Karlsplatz","Taubstummengasse",1,"U1")}

When calling dlvhex with a program containing an external atom for which
the corresponding plugin is implemented in a Python file, the path to the file
needs to be provided via the option --python-plugin.

Consequently, there are two different options we can choose from, where the
second trip is shorter. In order to only obtain the shortest trip, we could make
use of weak constraints as introduced in Sect. 2, by adding the following to our
encoding:: ∼ trip(S, X, Y, C, T). [C@1,S,X,Y,C,T]. As a consequence, by
minimizing overall costs, dlvhex only returns the answer set where the sum of
costs of trip-atoms in the answer set is minimal. Computing shortest trips is
related to the traveling salesperson problem.

5.3 Cyclic Dependencies

Next, suppose we want to refine our encoding further by also taking the require-
ment into account that if the whole trip is longer than a certain value, we want
to include a destination that has a restaurant for having lunch in our trip. For
this, we can introduce another external atom that checks whether we need a



Answer Set Programming with External Source Access 253

25 . . .
26

27 def needRestaurant ( t r ip , l im i t ) :
28 t r ipLength = 0
29

30 for x in dlvhex . getInputAtoms ( ) :
31 i f x . tuple ( ) [ 0 ] == t r i p and x . i sTrue ( ) :
32 t r ipLength += int ( x . tuple ( ) [ 4 ] . va lue ( ) )
33

34 i f t r ipLength > int ( l im i t . va lue ( ) ) :
35 dlvhex . output ( ( ) )

. . .

56 def r e g i s t e r ( ) :

. . .

65 prop = dlvhex . ExtSourcePropert i e s ( )
66 prop . addMonotonicInputPredicate (0 )
67 dlvhex . addAtom(”needRestaurant ” ,
68 ( dlvhex .PREDICATE, dlvhex .CONSTANT) , 0 , prop )

Fig. 8. route plugin.py - second part

restaurant, by making use of the fact that it is easy to combine several exter-
nal sources in a program with dlvhex. We create the Python implementation
for an external atom of the form &needRestaurant[trip,Limit](). It should
simply evaluate to true if the sum of the costs of the connections contained in
the true extension of trip (relative to the current solver assignment) exceeds
the constant value Limit. In contrast to &route, this external atom does not
provide any output values, which is often the case when external atoms are used
for checks or constraints in a HEX program. We extend our plugin file as shown
in Fig. 8.

In the plugin method, we iterate over all input atoms and filter those that
have the predicate name which has been passed to the external source, and
which are true in the current solver assignment, in lines 30 and 31. Then, we
add up all according costs by accessing the fourth argument of the respective
atom. Finally, we define that the external atom evaluates to true if the provided
limit is exceeded, by returning an empty output tuple, in line 35. If the output
method of a Boolean external atom is not called at all, dlvhex interprets this
as an evaluation to false.

Here, we can declare that the external atom behaves monotonically on the
first input parameter because once the costs associated to some trip exceed the
limit, the external atom cannot be false when further connections are added to
the trip. Defining such properties often has a large impact on the efficiency of the
solving process. For instance, if we call the plugin method for a trip containing
only one connection, the costs of which already exceed the limit, the truth value
of the external atom is implied for any other trip as soon as it contains that
connection, due to monotonicity of the external source. However, this cannot
be detected by dlvhex if the corresponding property declaration is missing.
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Also, in contrast to the first plugin, we now declare the external atom to have a
predicate input parameter, which causes dlvhex to pass the complete extension
of the predicate occurring in the ground HEX program (and, in the standard
configuration, to postpone the external evaluation until the truth values of all
its instances are decided during solving).

The additional external atom is used in the extension of our HEX-encoding
shown in Fig. 9 in order to decide whether a location having a restaurant needs
to be included in the trip.

27 . . .
28

29 needRestaurant v notNeedRestaurant .
30 needRestaurant :− &needRestaurant [ t r ip , 3 ] ( ) .
31 notNeedRestaurant :− not &needRestaurant [ t r ip , 3 ] ( ) .
32

33 chooseRestaurant (R,L) v nchooseRestaurant (R,L) :− needRestaurant ,
34 r e s t au rant (R,L ) .
35 :− needRestaurant , chooseRestaurant (R1 , L1 ) ,
36 chooseRestaurant (R2 , L2 ) , R1 != R2 .
37 chosen :− needRestaurant , chooseRestaurant (R,L ) .
38 :− needRestaurant , not chosen .
39

40 de s t i n a t i on (L) :− needRestaurant , chooseRestaurant (R,L ) .

Fig. 9. route planning.hex - third part

Here, we apply the external atom &needRestaurant to decide if we need a
restaurant or not, in lines 29 to 31. Then, we choose exactly one location that
has a restaurant from all locations that are declared to have a restaurant by the
predicate restaurant, in lines 33 to 38. Finally, we add the chosen restaurant
location to our destinations.

We test the extended HEX program with the same destinations and starting
location as before, and state that the location ‘Museumsquartier’ has a restau-
rant by adding the fact restaurant("Museumsquartier"). We use the following
command:

$ dlvhex2 route planning.hex --python-plugin=route plugin.py
--maxint=10 --filter=trip --aggregate-mode=ext

where the additional option --aggregate-mode=ext activates the internal aggre-
gates implementation of dlvhex. This is necessary whenever there is a cycle in
a HEX program that contains aggregates as well as external atoms. Overall, the
call yields six answer sets as both of the two trips from before have costs greater
than 3 and an additional restaurant location needs to be added to the respective
sequences. The shortest trip from before is not viable anymore since it does not
include a restaurant location, but a detour to ‘Museumsquartier’ can be inserted,
so that the following answer set is a solution regarding our new encoding:
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{trip(0,"Volkstheater","Herrengasse",1,"U3"),
trip(1,"Herrengasse","Stephansplatz",1,"U3"),
trip(2,"Stephansplatz","Karlsplatz",1,"U1"),
trip(3,"Karlsplatz","Museumsquartier",1,"U2"),
trip(4,"Museumsquartier","Karlsplatz",1,"U2"),
trip(5,"Karlsplatz","Taubstummengasse",1,"U1")}

Note that now the information retrieved from the external atom named
&route influences the input of the same atom since the extension of the predicate
destination, and in turn of the predicate sequence, depends on the costs for
the retrieved connections. Such loops over external atoms potentially make the
grounding of a HEX program infinite, even when only finitely many values are
introduced by each separate call of an external source. In general, this can be
avoided by imposing the strong safety condition [34], which, informally speaking,
forbids cyclic dependencies over external atoms that introduce new values.

However, the strong safety condition is overly restrictive, and we observe
that our encoding can be handled without problems by dlvhex, even though
value invention is employed. This is because the liberal safety condition is used
by dlvhex by default, which has been introduced in Sect. 4 and ensures that
programs that are not strongly safe still have a finite grounding. This is the case
for our program as the traffic network is finite. Using the command line option
--strongsafety would yield a warning. To make our program strongly safe, we
could add a domain predicate to the rule in line 12 of the encoding containing
all possible connections in the transport network. However, this is infeasible in
our case due to the large size of the network, of which only a small fraction is
relevant for planning the trip.

5.4 Partial Evaluation

During solving, dlvhex incrementally extends the set of truth assignments
for ground atoms such as trip(0,"Volkstheater","Herrengasse",1,"U3")
and destination("Museumsquartier"). The external source for the atom
&needRestaurant[trip,3]() is invoked as soon as all ground atoms with pred-
icate name trip have a truth value because the truth value of the external atom
could still change before the complete true/false extension of trip is known.

When calling the plugin method needRestaurant(trip,limit), dlvhex
provides information concerning all ground instances of atoms with predicate
name trip via the interface method getInputAtoms(), as demonstrated in
Fig. 8. Their respective truth values can be queried in Python by means of the
methods isTrue() and isFalse(). Based on the truth values of atoms in its
input extension, the plugin declares the corresponding output tuples. Accord-
ingly, all ground external atoms that instantiate one of these output tuples
need to evaluate to true under the given assignment, and the remaining ground
instances are assumed to be false. The according input-output relations obtained
from an external call are then added as nogoods to the solver, so that the correct
truth values for the respective ground external atoms are implied.



256 T. Eiter et al.

For instance, when the method needRestaurant(trip,limit) is called
under an assignment that assigns true to six ground atoms with predicate trip,
each associated with a cost of 1, and false to all other trip-atoms, a nogood
is generated that implies that &needRestaurant[trip,3]() is true whenever
the respective six atoms are true in an assignment. However, note that the
truth value of &needRestaurant[trip,3]() is already fixed as soon as just
four trip-atoms have been assigned the value true (assuming costs of 1 for each
connection), even though all other atoms might still be unassigned. On the other
side, if the plugin method in Fig. 8 would be called by dlvhex under an assign-
ment only containing three true trip-atoms (while all others are not assigned),
&needRestaurant[trip,3]() would be inferred to be false whenever the three
trip-atoms are true, which does not hold in general. Hence, external sources
cannot directly be called under partial assignments without taking care of the
latter issue.

For this reason, dlvhex enables partial evaluation of external atoms by pro-
viding the additional output method outputUnknown() for declaring that the
correctness of some output tuple cannot be determined without information
about further truth assignments. This corresponds to the three-valued oracle
functions from Sect. 4. We exploit this feature in a variant of the method from
Fig. 8, as shown in Fig. 10.

25 . . .
26

27 def needRestaurant ( t r ip , l im i t ) :
28 t r ipLength = 0
29 maxTripLength = 0
30

31 for x in dlvhex . getInputAtoms ( ) :
32 i f x . tuple ( ) [ 0 ] == t r i p and x . i sTrue ( ) :
33 t r ipLength += int ( x . tuple ( ) [ 4 ] . va lue ( ) )
34

35 for x in dlvhex . getInputAtoms ( ) :
36 i f x . tuple ( ) [ 0 ] == t r i p and not x . i s F a l s e ( ) :
37 maxTripLength += int ( x . tuple ( ) [ 4 ] . va lue ( ) )
38

39 i f t r ipLength > int ( l im i t . va lue ( ) ) :
40 dlvhex . output ( ( ) )
41 e l i f maxTripLength > int ( l im i t . va lue ( ) ) :
42 dlvhex . outputUnknown ( ( ) )

. . .

56 def r e g i s t e r ( ) :

. . .

65 prop = dlvhex . ExtSourcePropert i e s ( )
66 prop . addMonotonicInputPredicate (0 )
67 prop . se tProv idesPart ia lAnswer (True )
68 dlvhex . addAtom(”needRestaurant ” , ( dlvhex .PREDICATE,
69 dlvhex .CONSTANT) , 0 , prop )

Fig. 10. route plugin.py - partial evaluation
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An external source is only called under partial input assignments by dlvhex
if the property setProvidesPartialAnswer(True) is set. In this case, it is the
responsibility of the source developer to make sure that all outputs that may
potentially be derived when the assignment is extended are declared via the
method outputUnknown(). The additional implementation effort for allowing
partial evaluations often pays off, since partial external sources allow dlvhex
to evaluate external atoms earlier during search. This leads to an earlier detec-
tion of wrong guesses and smaller (thus, more general) input-output nogoods,
resulting in efficiency improvements. Moreover, external sources allowing par-
tial evaluations can also be used by dlvhex for minimizing nogoods to find the
“essential” part of an input assignment on which a given output depends, as
described in Sect. 4.

Regarding our needRestaurant-plugin, in addition to counting the costs of
trip-atoms that are true in the given assignment, we now also need to keep
track of the maximal costs that may result from extending the assignment. For
this purpose, in lines 35 to 37, we count the costs for all atoms that are true or
not assigned, i.e. those which are not known to be false. Furthermore we state
that the truth value of the external atom is not known if the limit has not been
exceeded, but may be exceeded during future evaluation steps, in line 42.

To enable partial evaluation when starting dlvhex, the command line option
--eaevalheuristics=always needs to be set, so that all external sources allow-
ing partial evaluations are queried whenever the solver assignment is extended.
If the option --eaevalheuristics=periodic is used, dlvhex waits ten itera-
tions before a source is evaluated again, mitigating potential runtime overheads
when the computation inside the external source requires more runtime. Nogood
minimization is activated with the option --ngminimization=always.

5.5 Interfacing a Description Logic Reasoner

While the two external sources discussed so far in this section are tailored
to our specific problem, existing plugins often accomplish more generic tasks.
For instance, Semantic Web technologies can be leveraged in HEX programs
by interfacing a Description Logic (DL) reasoner for taxonomical reasoning, as
introduced in Sect. 3. Moreover, it is often a useful strategy to implement new
plugins that are created for a specific purpose in a generic manner, so that they
can be easily reused in other HEX programs. In the last part of our case study,
we provide examples for both of these use cases.

Before, we simply declared one location as a restaurant location by adding
the corresponding fact to our encoding. Now suppose we have a DL ontology
available, containing information about restaurants in Vienna and their corre-
sponding locations, which we want to use for inferring suitable lunch locations.
To illustrate this, we use a small sample ontology formalized in RDF syntax in
the file ‘lunch.owl’. The definitions in our ontology file correspond to the axioms
and assertions shown in Fig. 11.

In the ontology, for instance the concepts BeerGarden and IndoorRestau-
rant are disjoint, every Restaurant is close to some Location, and bg1 is a
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BeerGarden Restaurant Location(Karlsplatz)

BeerGarden IndoorRestaurant Location(Museumsquartier)

IndoorRestaurant Restaurant Location(Praterstern)

IndoorRestaurant BeerGarden BeerGarden(bg1)

IndoorRestaurant WurstStand closeTo(bg1, P raterstern)

Restaurant closeTo.Location IndoorRestaurant(ir1)

WurstStand Restaurant closeTo(ir1,Museumsquartier)

WurstStand IndoorRestaurant WurstStand(ws1)

closeTo(ws1,Karlsplatz)

Fig. 11. DL-Lite axioms and assertions defined in lunch.owl

BeerGarden close to the Location Praterstern. For reasoning with ontologies
expressed in lightweight DLs [22], the DL-Lite plugin for dlvhex has been devel-
oped which is publicly available at https://github.com/hexhex/dlliteplugin. The
plugin can be installed and used off the shelf by an end-user of dlvhex, without
the need for understanding the details of its implementation or for additional
configurations. The plugin provides external sources for several external atoms
that can be used for role and concept queries, as well as consistency checking,
and uses a dedicated DL reasoner in the back-end.

For example, by adding the rule

restaurant(R,L) :- &rDL["lunch.owl",cp,cm,rp,rm,"closeTo"](R,L).

we can retrieve all restaurants with their close-by locations. The external atom
for retrieving the extensions of roles has the name &rDL, while &cDL is used for
concept queries. At this, the name of a file containing the ontology encoding and
a role name need to be provided as arguments to the external atom. The input
predicates cp, cm, rp, rm can be used to declare additions to the extensions
of concepts and roles as well as to their complements, which are performed
before the according query is executed. Consequently, a bidirectional information
exchange between the HEX program and the DL reasoner is possible, but we are
not exploiting this feature here.17

5.6 Accessing Remote Data

As a final refinement of our HEX-encoding, we consider a situation where we
need to dynamically integrate some remote data into the evaluation of a HEX

program. This represents another common use case for dlvhex, since remote
data that is subject to changes cannot be incorporated into an encoding during
construction time, even though no external reasoning is required in this case.

17 For more details, refer to the documentation of the DL-Lite plugin at http://www.
kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html.

https://github.com/hexhex/dlliteplugin
http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlliteplugin.html
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Hence, this usage of external sources constitutes a typical case of information
outsourcing.

Nowadays, many web services provide access to their data resources via APIs.
These often return data in the now ubiquitous JSON format, which expresses
data objects by means of (nested) key-value pairs. For example, weather data
can be retrieved from http://openweathermap.org/, and the following represents
part of the data which is returned as JSON string when a request for the current
weather in a given location is sent:

{"weather":[{"id":803,"main":"Clouds","description":"clouds",
"icon":"04d"}], ...}.

Our aim is to exploit this data in our program and to decide based on the
current weather if we should have lunch outside or inside. At the same time,
the external source we create for querying the JSON data should be generic, so
that it can be used for querying arbitrary JSON providers that are reachable via
an URL. Here, the external atom should enable accessing a specified data field
of a JSON object. For instance, in order to retrieve the string representing the
current weather inside the JSON object from above, we need to access the array
stored under the key ‘weather’, and retrieve the value for the key ‘main’ of the
object contained in this array. A corresponding plugin method can be realized
as shown in Fig. 12.

2 . . .
3 import u r l l i b as u l
4 import j son

. . .

44 def getJSON( ur l , f i e l d s ) :
45 j s o nu r l = ul . ur lopen ( u r l . va lue ( ) [ 1 : −1 ] )
46 data = json . l oads ( j s o nu r l . read ( ) )
47

48 for f i e l d in f i e l d s :
49 i f f i e l d . va lue ( ) [ 1 : − 1 ] . i s d i g i t ( ) :
50 data = data [ int ( f i e l d . va lue ( ) [ 1 : − 1 ] ) ]
51 else :
52 data = data [ f i e l d . va lue ( ) [ 1 : − 1 ] ]
53

54 dlvhex . output ( ( ’ ” ’ + str ( data ) + ’ ” ’ , ) )
55

56 def r e g i s t e r ( ) :

. . .

71 prop = dlvhex . ExtSourcePropert i e s ( )
72 prop . s e tFunct i ona l (True )
73 dlvhex . addAtom(”getJSON” , ( dlvhex .CONSTANT, dlvhex .TUPLE ) , 1 ,
74 prop )

Fig. 12. route plugin.py - third part

http://openweathermap.org/
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For retrieving data from a URL and parsing JSON strings, we import the
libraries urllib and json, respectively. The plugin method is provided with a
URL and information about the keys that need to be used to obtain the data
chunk that should be returned. At this, the input parameter fields is declared
to be of the type dlvhex.TUPLE, allowing an arbitrary number of input constants
to be provided. Here, these constants represent the sequence of keys that need to
be used to access the data field containing the respective value of interest. After
loading the JSON data from the provided URL in lines 45 and 46, we iterate
through the keys of the input tuple provided as second argument, following the
path to the target value, in lines 48 to 52. If an entry constitutes an array,
an integer needs to be used as key to access the respective entry, in line 50.
Otherwise, we can simply use the respective string as key. Once the complete
sequence has been processed, the target value is declared as output value of the
external source. Note that here we can declare functionality of the external atom
as only one value is returned for a given input.

Now, we can utilize the DL-Lite plugin and our new JSON plugin in com-
bination to choose a lunch location depending on the current weather. For this
purpose, we extend our HEX-encoding by the rules shown in Fig. 13.

39 . . .
40

41 weather (X) :− &getJSON [” http :// api . openweathermap . org /data /2 .5/
42 weather ?q=Vienna&apikey=APIKEY” ,” weather ” ,”0” ,”main ” ] (X) .
43

44 r e s t au rant (R,L) :− &rDL [” lunch . owl ” , cp , cm, rp , rm,” c loseTo ” ] (R,L) ,
45 &cDL[” lunch . owl ” , cp , cm, rp , rm,” IndoorRestaurant ” ] (R) ,
46 weather (”Rain ” ) .
47

48 r e s t au rant (R,L) :− &rDL [” lunch . owl ” , cp , cm, rp , rm,” c loseTo ” ] (R,L) ,
49 &cDL[” lunch . owl ” , cp , cm, rp , rm,”− IndoorRestaurant ” ] (R) ,
50 not weather (”Rain ” ) .

Fig. 13. route planning.hex - fourth part

In the first rule in line 41, we retrieve the current weather from the Open
Weather Map service. For this to work, the string APIKEY needs to be replaced
by a valid API key, which can be obtained from http://openweathermap.org/.
All of the constants we provide after the URL are contained in the tuple fields
when the external source is called. They denote that we first want to lookup
the array that is mapped to the key "weather". Then, we select the element
with index 0 in the retrieved array and obtain the value associated with the key
"main", which is a string describing the current weather. Finally, we retrieve all
indoor restaurants from the ontology if it is raining. Otherwise, we pose a query
for all restaurants that can be derived to be not an indoor restaurant, in line 48.
In our case, these are all restaurants that can be derived to be a beer garden or
a wurst stand, due to the disjointness axioms in Fig. 11.

http://openweathermap.org/
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5.7 Summary of the Case Study

We started by generating all permutations of a set of locations in Vienna, rep-
resenting different visit sequences, and ended up with an elaborate encoding
for planning trips through the city of Vienna, satisfying a number of heteroge-
neous constraints. The final encoding makes use of four different types of exter-
nal atoms, which are used for computation outsourcing (computing shortest
paths by means of a dedicated algorithm), information outsourcing (retrieving
remote data from an URL), combined information and computation outsourc-
ing (concept and role queries to an external ontology), and external checks. We
discussed the implementation of three plugin methods in detail, and we demon-
strated how the corresponding external atoms can be used in combination with
already available plugin implementations for dlvhex, such as the DL-Lite plu-
gin. For this usage, it is important to adhere to the conditions imposed by the
formal semantics of oracle functions, by ensuring a stateless behavior of external
sources, and by declaring all potential outputs under partial evaluations. The
result is a working HEX implementation, which is available at https://github.
com/hexhex/manual/tree/master/RW2017/ and can be executed by using the
dlvhex-system.

6 Further HEX Usage and Related Work

In Sects. 3 and 5, we have already considered concrete application scenarios where
external atoms are used in a problem encoding. The specific external atoms
considered were mostly tailored to the given problem and similar plugins can be
developed by a user on demand. However, there are also other types of usage
scenarios for HEX, where either new language features are implemented based
on the HEX formalism, or other formalisms are translated into HEX programs.
In this section, we give an overview over further applications falling into these
classes, and consider related work.

6.1 Further HEX Use Scenarios and HEX Extensions

Some advanced HEX applications call for additional language features, which
cannot be realized easily in pure HEX programs. However, often such extensions
can be realized by compiling them to pure HEX programs. HEX programs can
also be used as a backend for realizing formalisms that do not resemble HEX, by
using an appropriate translation.

HEX∃ Programs. As already mentioned earlier, an important feature of HEX

programs is that they are capable of value invention, i.e., that new constants
are introduced into a program. This can be used to realize existential quantifi-
cation in the head of rules in a formalism called HEX∃ [33]. The approach is
related to Datalog± [17], which also allows existential quantification in heads,
but HEX∃ offers domain-specific existential quantification such that the structure
of introduced values can be controlled via external atoms.

https://github.com/hexhex/manual/tree/master/RW2017/
https://github.com/hexhex/manual/tree/master/RW2017/
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For example the following rule, intuitively ‘every employee has an office’,

r1 : ∃X : office(Y,X) ← employee(Y ).

is not interpretable in standard ASP due to the existential quantification in the
head. The rule, which is also called an existential rule, can be rewritten into the
following HEX∃ rule:

r′
1 : office(Y,X) ← employee(Y ),&exists1,1[r1, Y ](X).

The external atom introduces novel constant terms into the program, based on
the rule identifier (here r1) and universally quantified variables in the rule body
(here Y ). Superscripts ‘1, 1’ on the external atom indicate that we need to invent
one value from values of one universally quantified variable.

HEX Programs with Function Symbols. Uninterpreted function symbols,
for example do(a, s) to represent the follow up of a situation s after executing an
action a, can be realized in HEX using external atoms. To this end, composition
and decomposition of function terms with external atoms are simulated as in [18].

As a simple example, the program

q(f(X)) ← p(X).
r(Y ) ← q(f(Y )).

would be rewritten into the HEX program

q(A) ← p(X),&comp1[f,X](A).
r(Y ) ← q(B),&decomp1[B](f, Y ).

where the external atom &comp1[f, x](a) is true for a constant a that represents
the function term f(x). Moreover, &decomp1[b](f, y) analyzes and decomposes
the term b: if b contains a representation of a function term of form f(y), then
the external atom is true for output term y. While being formally defined on
ground terms x, y, a, and b, the program contains variables X, Y , A, and B,
respectively.

This way function terms can be emulated via HEX programs, moreover we
obtain an increased control over issues like maximum nesting depth of terms in
the external atoms.

ACTHEX: HEX Programs with Action Atoms. ACTHEX [6,52] is an
extension of HEX: an ACTHEX-program is repeatedly executed in an environ-
ment, can obtain (sense) information from the environment using external atoms,
and can declaratively schedule actions to be executed in the environment using
action atoms in the head of rules. The environment is an abstraction of the
world outside the logic program. External atoms are generalized such that the
environment may influence their truth values.
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Example 34 (simplified from [52]). The following ACTHEX-program controls a
robot capable of executing a parameterized action #robot , where an external
&sensor predicate enables to access sensor data.

#robot [clean, kitchen]{c, 2} ← night
#robot [clean, bedroom]{c, 2} ← day
#robot [goto, charger ]{b, 1} ← &sensor[bat ](low)

night ∨ day ←
Informally, in the night the kitchen should be cleaned, and during daytime the
bedroom; if the battery is low, the robot needs to go to the charger. The option b
(brave) makes charging mandatory, while other actions with option c (cautious)
are only executed if they occur in every answer set. By the disjunctive fact, this
is not the case. Precedence 1 of the charging action makes the robot recharge (if
needed) before any cleaning. ��

Constraint HEX Programs. Constraint Answer Set Programming (CASP)
(see e.g. [71,81]) combines ASP with constraint programming [3]. A well-known
implementation is the clingcon system [86], which integrates Gringo, Clasp
and the constraint solver Gecode. Constraints can be encoded in plain ASP
using builtin predicates, but this quickly produces groundings of unmanageable
size; hence, a genuine support of constraints in ASP is reasonable, which can hide
instances of constraint variables in the constraint solver. Dedicated CASP do not
allow to integrate background theories other than constraints, which motivated
an integration of CASP with HEX programs to constraint HEX programs [93].
Constraint HEX programs are strictly more general than CASP programs, as
in addition to constraint atoms also external atoms can be used. Informally, a
constraint HEX program may contain besides ordinary and external atoms also
constraint atoms. The latter are comparisons of arithmetic expressions such as
x + y < 10, where x and y are constraint variables which range over a certain
domain. Different from ASP variables, constraint variables are global, i.e., each
occurrence in a program is bound to the same value; thus, the atoms x < 10
and x > 20 can never be jointly true, even if they occur in different rules. For
evaluating constraint HEX programs, constraint atoms are rewritten to auxiliary
atoms in rule heads and bodies, e.g., con(x,+, y,<, 10) for the above expression.
Additionally, a constraint

← not &check[con, sum]()

eliminates answer sets where the extension of predicate con contains an incon-
sistent set of conditions over the constraint variable theory.

HEX Programs with Nested Program Calls. Notably, dlvhex can be
used to ‘call’ HEX programs from other HEX programs (called host programs).
Specifically, one can process the collection of answer sets of a different program
and can for instance reason on top of it. To this end, dedicated external atoms for
evaluating subprograms and inspecting their answer sets are available [45,91].



264 T. Eiter et al.

When a subprogram call (corresponding to the evaluation of a special external
atom) is encountered in the host program, the external atom internally creates
another instance of dlvhex to evaluate the subprogram. The result is then
stored in an answer cache and gets a unique handle that can be later used to
reference the result and access its components (e.g., predicate names, literals,
arguments) via other external atoms. The subprogram can either be directly
embedded in the host program, or stored in a separate file. In the latter case,
code reuse is easy and libraries for solving re-occurring subproblems in ASP
applications, e.g., graph problems or combinatorial optimization problems, can
be built, where code updates are automatically reflected in the call program.

The MELD Belief Merging System deals with merging collections of belief
sets [88,91], which are roughly sets of classical ground literals. A merging strat-
egy is defined by tree-shaped merging plans, whose leaves are the collections of
belief sets to be merged, and whose inner nodes are merging operators (provided
by the user). The structure is akin to syntax trees of terms. The automatic
evaluation of tree-shaped merging plans is based on nested HEX programs; it
proceeds bottom-up, where every step requires inspection of the subresults, i.e.,
accessing the answer sets of subprograms. In fact, the need for such processing
has led to develop nested HEX program.

Interactive ASP. Interactive applications based on ASP can be realized with
the Answer Set Application Programming (ASAP) framework [95] where incom-
ing events (e.g., keyboard inputs) are processed by ASP and the application
state is managed using state variables (as in planning, where these are called
fluents). An ASAP program is rewritten to a HEX program where each evalua-
tion obtains fluent values and event information via HEX external atoms. This
is a hybrid HEX use scenario: an ASAP program is rewritten into a HEX pro-
gram, transforming fluent atoms into regular atoms and adding rules containing
external atoms. At the same time an ASAP program can use arbitrary external
atoms, e.g., for string processing. This use scenario combines computation out-
sourcing (string processing) with information outsourcing (events and fluents)
and moreover applies HEX for interfacing with the real world.

Multi-context Systems. Heterogeneous nonmonotonic multi-context systems
(MCSs) [12] are a formalism for interlinking multiple knowledge based systems
called contexts. This formalism is on an evolution line of multi-context systems
that goes back to seminal work of John McCarthy [80] and which has been further
developed by the Trento school [15,61,62]. The MCS formalism abstracts from
the knowledge representation language and models context semantics in terms
of accepted belief sets. The latter are abstractly modeled as naked sets whose
elements (i.e., the beliefs) need not bear logical structure. The contexts are
interlinked by so called bridge rules which add formulas to the knowledge base of
a context depending on the presence and/or absence of beliefs from the belief sets
of other contexts. The MCS formalism is suitable for modeling many Semantic
Web scenarios where distributed knowledge repositories interact, e.g., [10,11,79],



Answer Set Programming with External Source Access 265

and MCSs have been adapted for the Ambient Intelligence domain [8] and for
modularly combining nonmonotonic rules bases in the MWeb approach [2].

The semantics of an MCS is given in terms of equilibria, which are global
states that consist of acceptable belief sets for each context, such that all bridge
rules are satisfied. Equilibria computation has been realized in a tool based on
a HEX program [9], in which external atoms outsource contextual reasoning and
check whether a context accepts a certain belief set. This application hides HEX

within a tool that realizes MCS semantics and inconsistency analysis [36].

6.2 Related Work

Because there are many scenarios where it is more natural, and often more effi-
cient, to outsource some information or computation in the context of declarative
problem solving, a number of approaches have been developed for this purpose,
realizing different degrees of integration.

Motivated by the need for integration of data in commercial relational data-
bases, extensions of dlv have been developed that allow to access external data.
The dlvDB system [98,99] offers via an ODBC interface access to dispersed
relational databases, where both direct (remote) execution of possibly recursive
queries on databases and main memory execution (after loading the databases)
are supported. The ontodlv system [92], allows the user to retrieve information
from OWL ontologies, which can be utilized in a genuine ontology representation
language that extends ASP with features such as classes, inheritance, relations
and axioms.

dlv-ex programs [18] represent an early generic integration approach, which
enables bidirectional communication with an external source, and allows the
introduction of new terms by value invention into an answer set program. How-
ever, the interaction is more restricted than in the case of HEX since only terms
can be used as inputs to external sources and thus, e.g., nonmonotonic aggregates
cannot be expressed in this formalism.

The Clingo system also provides a mechanism for importing the extension of
user-defined predicates [55] similar to dlv-ex, but they are different from external
atoms in HEX in that their evaluation is not interleaved with the solving process.
For this, Gringo supports custom functions (implemented in the scripting lan-
guages Lua or Python) which are evaluated during the program grounding and
thus compiled away prior to the solving step. They are intended to be used as
customizable built-in atoms, but no cyclic dependencies are possible.

Recently, Clingo 5 has been released [54], which provides generic interfaces
for integrating theory solving into ASP. A main difference between ASP modulo
theories solving in Clingo 5 and the HEX-framework consists in the fact that
unfounded support over theory atoms is allowed by the semantics defined for
Clingo, which would violate the minimality criterion w.r.t. the FLP-reduct in
HEX. This can be illustrated by the following example.

Example 35 Consider the program Π = {p ← &id [p]()}, where &id [p]() is true
iff p is true. Then Π has the answer set A1 = ∅; but A2 = {p} is not an answer
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set because the support for p is not founded and thus, it is not a minimal model
of the FLP-reduct.

Consequently, a more sophisticated minimality check has to be applied in
dlvhex, lifting the computational complexity of the formalism.18

Moreover, even though the Clingo system moves into a similar direction
as dlvhex by facilitating the integration of external reasoners, the perspectives
taken by the two systems are different, and their roles can be viewed as somewhat
orthogonal.

While theory atoms are interrelated via an external theory in Clingo, where
the consistency of their truth assignments is usually checked during theory prop-
agation, the truth value of external atoms in HEX depends on the evaluation of
ordinary atoms representing their input. Thus, the focus of the HEX-approach
is more on input-output relations over external atoms, which are easy to under-
stand from a user’s perspective and can be used to call external sources in an
API-like fashion.

As a result, external atoms have a number of distinguishing features, which
are tailored to their specific role in the HEX-framework. For instance, exter-
nal source properties as described in Sect. 4 constitute a user-friendly high-level
interface for steering the external evaluation process, which has to be imple-
mented manually for each theory in Clingo’s propagation methods.

The input-output structure of external atoms facilitates the introduction
of constants by value invention relying on the liberal safety condition for HEX

programs, which is of special interest for applications in the area of the Semantic
Web. There is no comparable mechanism for value invention in Clingo 5 as new
values cannot be imported based on the respective answer set, and theory solving
is performed w.r.t. the pre-grounded program.

On the other side, Clingo 5 is well-suited for system development and pow-
erful solver building, by providing a comprehensive and rich infrastructure at
the low technical levels for integrating theory reasoning into Clingo, which is
accessible through an interface. This novel interface will be exploited in future
versions of dlvhex, which benefits a lot from the Clingo advances.

Besides Clingo, the WASP solver was recently extended with support for
general external Python propagators [25]. Furthermore there are extensions of
ASP towards the integration of specific external sources. Examples are constraint
ASP as an integration of ASP with constraint programming as realized e.g. in
clingcon [86] lc2casp [16], ezcsp [4], and EZSMT [97]. The latter is like mingo [76] an
SMT-based solver for constraint ASP; other formalisms that extend ASP with
SMT are dingo [66], which uses difference logic, and ASPMT [69]. For an overview
of systems that combine ASP with constraint solving and other theories, we refer
to [72].

Similar to SMT [85], where usually only specific theories are considered, the
mentioned approaches rely on a tailored integration of an external solver and
18 Deciding the existence of an answer set of a ground HEX program in the presence of

nonmonotonic external atoms that are decidable in polynomial time is Σp
2 -complete

already for Horn programs [35].
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hence, can easily leverage the propagation capabilities of the respective solver.
The aim of the HEX formalism differs in that its goal is to enable a broad range
of users to implement custom external sources and to harness efficient solving
techniques for HEX programs. Moreover, clingcon and approaches in SMT usually
only consider monotonic external theories, which facilitates the integration of
their evaluation into the respective solving algorithm. In contrast, HEX allows
for the integration of arbitrary external sources through a general interface and
their flexible combination; the other use cases correspond to special cases thereof.

7 Conclusion

Arriving at the end, we give a summary and discuss ongoing work. Pointers to
further resources regarding dlvhex and ASP can be found in the appendix.

Summary. The HEX formalism extends ASP with access to external sources
through an API-style interface, which has been implemented in the dlvhex-
system and has been fruitfully deployed to various applications. In this paper,
we introduced the formalism and focused on its application to practical problems
in KR and Semantic Web.

To this end, we first introduced HEX programs as a generalization of answer
set programs, which constitute logic programs interpreted under the stable model
semantics. In ASP, a problem can be solved by modeling it as an answer set pro-
gram using variables, grounding the program to obtain a variable-free program,
and using an answer set solver to compute (possibly multiple) answer sets of the
program. Then, each answer set corresponds to a solution of the initial problem.
By extending ASP with external atoms, HEX enables a bidirectional interaction
between an answer set program and external sources of computation.

For modeling problems utilizing external atoms, we first presented the general
methodology as a strict generalization of the common methodology for designing
an ASP encoding. In particular, the prominent guess and check paradigm can
be seamlessly combined with external sources, both in the guessing and in the
checking part. Also other ASP techniques, such as saturation, can be used with
external sources. We then discussed two typical types of external sources for
computation outsourcing and for information outsourcing, respectively, and for
combinations thereof. We further demonstrated the usage of external sources in
existing applications in the areas of the Semantic Web and planning.

Subsequently, we presented the dlvhex system, which implements a feature-
rich solver for HEX programs. There, we described the architecture of dlvhex
and its practical usage. In dlvhex, external sources that are used by the system
for the evaluation of external atoms can be implemented via a user-friendly inter-
face in C++ and Python. We also discussed how properties of external sources
can be exploited for solving and demonstrated the configuration of dlvhex for
use cases with specific properties, e.g. with the need for introducing new values.

Finally, we integrated insights from previous sections by showcasing the
development of a HEX encoding for a realistic application scenario, by following
the methodology for designing HEX programs and using different features of the
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dlvhex system. In addition, we reviewed related formalisms and applications
where HEX is used for implementing language extensions and backends for other
formalisms, in the last section.

Outlook. Current developments regarding the HEX formalism and dlvhex
comprise the design and implementation of new solving techniques for improv-
ing the efficiency of the formalism in general, as well as for specific classes of
programs. At the same time, the goal is to relieve the user from the burden to
configure the system manually for each type of problem, while still profiting from
performance gains. For instance, different static heuristics for partial evaluation
of external atoms and minimization of nogoods have been introduced [44], and
future work in this direction concerns the development of dynamic evaluation
heuristics that adjust the frequency of external evaluations based on the amount
of information gained from previous external calls.

Moreover, recently a lazy grounding solver has been integrated into the
dlvhex system, which exhibits promising results for classes of programs where
the grounding bottleneck of ASP is an issue. This issue is even more challenging
to tackle within the framework of HEX due to the need for grounding exter-
nal atoms, which are largely black boxes from the viewpoint of the solver. Lazy
grounding avoids an exponential blowup of the grounding by interleaving ground-
ing and solving, whereby rules are grounded on-the-fly depending on the satis-
faction of their bodies.

Furthermore, since HEX has already been applied to many different prob-
lems from the area of KR, another focus of ongoing work is on exploring new
application areas for HEX to combine approaches that are different in nature,
for solving concrete problems. For instance, external atoms could be utilized to
integrate probabilistic methods into ASP for tackling problems from the area of
Statistical Relational Learning [60], where complex relational as well as uncertain
information is required simultaneously.
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A Further Resources

The following list contains some further links to web resources regarding practical
aspects of ASP, HEX programs and the dlvhex system, and summarizes those
already given in the paper.

– All executable examples from this paper are available under:
⇒ https://github.com/hexhex/manual/tree/master/RW2017/

– Slides of a tutorial considering the topic “ASP for the Semantic Web” and
many executable ASP/HEX-examples related to Semantic Web applications
can be found at:
⇒ http://asptut.gibbi.com/

https://github.com/hexhex/manual/tree/master/RW2017/
http://asptut.gibbi.com/
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– A tutorial paper providing a gentle introduction to ASP and an overview
over programming techniques (also considering Semantic Web applications)
is available at:
⇒ http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf

– The main website of dlvhex contains all relevant information about the
system and existing plugins, and many further references to the relevant lit-
erature and related work:
⇒ http://www.kr.tuwien.ac.at/research/systems/dlvhex/

– An online demo of the dlvhex system can be found at:
⇒ http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

– The easiest way to use dlvhex is by downloading the pre-built binaries, which
are available for Linus, OS X and Windows under:
⇒ http://www.kr.tuwien.ac.at/research/systems/dlvhex/downloadb.html

– The source code of dlvhex and corresponding plugins is available on Github,
which is also the best place for filing bug reports:
⇒ https://github.com/hexhex/

– The website of the Potsdam Answer Set Solving Collection (Potassco) is the
main portal for Clingo and related systems and tools, and contains a lot of
additional information on them:
⇒ https://potassco.org/

– Material of the Potsdam ASP course can be found under:
⇒ https://potassco.org/teaching/

– The source code of Clingo, clingcon, and related systems is publicly available
at:
⇒ https://github.com/potassco/

– ASPIDE is an integrated development environment for ASP with a wide
range of features facilitating the implementation of answer set programs:
⇒ http://www.mat.unical.it/ricca/aspide

– Slides of a tutorial covering ASPIDE and the development of answer set
programs can be found at:
⇒ https://www.mat.unical.it/ricca/downloads/rr2013-tutorial.pdf

– A special issue of the AI Magazine has been dedicated to ASP, covering many
different perspectives on the topic:
⇒ http://aaai.org/ojs/index.php/aimagazine/issue/view/215/
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Abstract. The Semantic Web has attracted much attention, both from
academia and industry. An important role in research towards the
Semantic Web is played by formalisms and technologies for handling
uncertainty and/or vagueness. In this paper, I first provide some moti-
vating examples for handling uncertainty and/or vagueness in the Seman-
tic Web. I then give an overview of some own formalisms for handling
uncertainty and/or vagueness in the Semantic Web.

1 Introduction

The Semantic Web [1–4] aims at an extension of the current Web by stan-
dards and technologies that help machines to understand the information on
the Web so that they can support richer discovery, data integration, naviga-
tion, and automation of tasks. The main ideas behind it are to add a machine-
understandable “meaning” to Web pages, to use ontologies for a precise definition
of shared terms in Web resources, to use KR technology for automated reasoning
from Web resources, and to apply cooperative agent technology for processing
the information of the Web.

The Semantic Web is divided into several hierarchical layers (see Fig. 1),
which include in particular the Ontology, Rules, Logic, and Proof layers. In
detail, the Ontology layer, in the form of the OWL Web Ontology Language [5],
consists of three increasingly expressive sublanguages, namely, OWL Lite, OWL
DL, and OWL Full. OWL Lite and OWL DL are essentially very expressive
description logics (DLs) with an RDF syntax. As shown in [6], ontology entail-
ment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability
in the description logic SHIF(D) (resp., SHOIN (D)). The DL SROIQ [7] is
one of the most expressive DLs, which is underlying OWL 2 [8], a new version
of OWL. Reasoning in SROIQ is computationally expensive, and several more
tractable languages have been proposed in the Semantic Web community. Among
such languages, there are the DL-Lite family [9,10], EL++ [11], and DLP [12],
which are underlying the OWL 2 profiles QL, EL, and RL [13], respectively.
Beside and on top of the Ontology layer, there are sophisticated representation
and reasoning capabilities for the Rules, Logic, and Proof layers of the Semantic
Web.

A key requirement of the layered architecture of the Semantic Web is in
particular to integrate the Rules and the Ontology layer. Here, it is crucial to
allow for building rules on top of ontologies, i.e., for rule-based systems that use
c© Springer International Publishing AG 2017
G. Ianni et al. (Eds.): Reasoning Web 2017, LNCS 10370, pp. 276–291, 2017.
DOI: 10.1007/978-3-319-61033-7 8
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Fig. 1. Layered architecture of the Semantic Web.

vocabulary from ontological knowledge bases. Another type of combination is to
build ontologies on top of rules, where ontological definitions are supplemented
by rules or imported from rules. Both types of integration have been realized
in recent hybrid integrations of rules and ontologies, called description logic
programs (or dl-programs), which are of the form KB = (L,P ), where L is a
description logic knowledge base, and P is a finite set of rules involving either
queries to L in a loose integration (see, e.g., [14,15]) or concepts and roles from
L as unary resp. binary predicates in a tight integration (see, e.g., [16]).

However, classical ontology languages and description logics as well as for-
malisms integrating rules and ontologies are less suitable in all those domains
where the information to be represented comes along with (quantitative) uncer-
tainty and/or vagueness (or imprecision). For this reason, during the recent
years, handling uncertainty and vagueness has started to play an important
role in research towards the Semantic Web. A recent forum for approaches to
uncertainty reasoning in the Semantic Web is the annual International Work-
shop on Uncertainty Reasoning for the Semantic Web (URSW) at the Inter-
national Semantic Web Conference (ISWC). There has also been a W3C Incu-
bator Group on Uncertainty Reasoning for the World Wide Web. The research
focuses especially on probabilistic and fuzzy extensions of description logics,
ontology languages, and formalisms integrating rules and ontologies. Note that
probabilistic formalisms allow to encode ambiguous information, such as “John
is a student with the probability 0.7 and a teacher with the probability 0.3”
(roughly, John is either a teacher or a student, but more likely a student), while
fuzzy approaches allow to encode vague or imprecise information, such as “John
is tall with the degree of truth 0.7” (roughly, John is quite tall). Formalisms
for dealing with uncertainty and vagueness are especially applied in ontology
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mapping, data integration, information retrieval, and database querying. For
example, some of the most prominent technologies for dealing with uncertainty
are probably the ranking algorithms standing behind Web search engines. Other
important applications are belief fusion and opinion pooling, recommendation
systems, user preference modeling, trust and reputation modeling, and shop-
ping agents. Vagueness and imprecision also abound in multimedia information
processing and retrieval, and are an important aspect of natural language inter-
faces to the Web.

In this paper, I give an overview of some own recent extensions of descrip-
tion logics and description logic programs by probabilistic uncertainty and fuzzy
vagueness. The rest of this paper is organized as follows. Section 2 provides some
motivating examples. In Sect. 3, I describe an approach to probabilistic descrip-
tion logics for the Semantic Web. Sections 4 and 5 focus on approaches to proba-
bilistic and fuzzy description logic programs for the Semantic Web, respectively,
while Sect. 6 describes an approach to description logic programs for handling
both uncertainty and vagueness in a uniform framework for the Semantic Web.
For a more detailed overview of extensions of description logics for handling
uncertainty and vagueness in the Semantic Web, I also refer the reader to the
survey [17].

2 Motivating Examples

We now provide some examples for the use of probabilistic ontologies and of
probabilistic and vague extensions of formalisms integrating rules and ontologies.

In order to illustrate probabilistic ontologies, consider some medical knowl-
edge about patients. In such knowledge, we often encounter terminological prob-
abilistic and terminological default knowledge about classes of individuals, as
well as assertional probabilistic knowledge about individuals. It is often advan-
tageous to share such medical knowledge between hospitals and/or medical cen-
ters, for example, to follow up patients, to track medical history, for case studies
research, and to get information on rare diseases and/or rare cures to diseases.
The need for sharing medical knowledge is also at the core of the W3C Semantic
Web Health Care and Life Sciences Interest Group, who state that the “key to
the success of Life Science Research and Health Care is the implementation of
new informatics models that will unite many forms of biological and medical
information across all institutions” (see http://www.w3.org/2001/sw/hcls/).

Example 2.1 (Medical Example [18]). Consider patient records related to cardi-
ological illnesses. We distinguish between heart patients (who have any kind of
cardiological illness), pacemaker patients, male pacemaker patients, and female
pacemaker patients, who all are associated with illnesses, illness statuses, symp-
toms of illnesses, and health insurances. Furthermore, we have the patients Tom,
John, and Mary, where Tom is a heart patient, while John and Mary are male and
female pacemaker patients, respectively, and John has the symptoms arrhyth-
mia (abnormal heart beat), chest pain, and breathing difficulties, and the illness
status advanced.

http://www.w3.org/2001/sw/hcls/
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Then, terminological default knowledge is of the form “generally (or typi-
cally/in nearly all cases), heart patients suffer from high blood pressure” and
“generally, pacemaker patients do not suffer from high blood pressure”, while ter-
minological probabilistic knowledge has the form “generally, pacemaker patients
are male with a probability of at least 0.4” (i.e., “generally, a randomly cho-
sen pacemaker patient is male with a probability of at least 0.4”), “generally,
heart patients have a private insurance with a probability of at least 0.9”, and
“generally, pacemaker patients have the symptoms arrhythmia, chest pain, and
breathing difficulties with probabilities of at least 0.98, 0.9, and 0.6, respec-
tively”. Finally, assertional probabilistic knowledge is of the form “Tom is a
pacemaker patient with a probability of at least 0.8”, “Mary has the symptom
breathing difficulties with a probability of at least 0.6”, “Mary has the symptom
chest pain with a probability of at least 0.9”, and “Mary’s illness status is final
with a probability between 0.2 and 0.8”.

Uncertain medical knowledge may also be collected by a medical com-
pany from own databases and public sources (e.g., client data, web pages, web
inquiries, blogs, and mailing lists) and be used in an advertising campaign for a
new product.

Example 2.2 (Medical Example cont’d [18]). Suppose that a medical company
wants to carry out a targeted advertising campaign about a new pacemaker
product. The company may then first collect all potential addressees of such
a campaign (e.g., pharmacies, hospitals, doctors, and heart patients) by proba-
bilistic data integration from different data and web sources (e.g., own databases
with data of clients and their shopping histories; and web listings of pharmacies,
hospitals, and doctors along with their product portfolio resp. fields of exper-
tise). The result of this process is a collection of individuals with probabilistic
memberships to a collection of concepts in a medical ontology as the one above.
The terminological probabilistic and terminological default knowledge of this
ontology can then be used to derive probabilistic concept memberships that are
relevant for a potential addressee of the advertising campaign. For example, for
persons that are known to be heart patients with certain probabilities, we may
derive the probabilities with which they are also pacemaker patients.

The next example illustrates the use of probabilistic ontologies in information
retrieval for an increased recall (which has especially been explored in [19,20]).

Example 2.3 (Literature Search [18]). Suppose that we want to obtain a list
of research papers in the area of “logic programming”. Then, we should not
only collect those papers that are classified as “logic programming” papers, but
we should also search for papers in closely related areas, such as “rule-based
systems” or “deductive databases”, as well as in more general areas, such as
“knowledge representation and reasoning” or “artificial intelligence” (since a
paper may very well belong to the area of “logic programming”, but is classified
only with a closely related or a more general area). This expansion of the search
can be done automatically using a probabilistic ontology, which has the papers
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as individuals, the areas as concepts, and the explicit paper classifications as
concept memberships. The probabilistic degrees of overlap between the concepts
in such a probabilistic ontology then provide a means of deriving a probabilistic
membership to the concept “logic programming” and so a probabilistic estima-
tion for the relevance to our search query.

We finally describe a shopping agent example, where we encounter both
probabilistic uncertainty (in resource selection, ontology mapping/query trans-
formation, and data integration) and fuzzy vagueness (in query matching with
vague concepts).

Example 2.4 (Shopping Agent [44,45]). Suppose a person would like to buy “a
sports car that costs at most about 22 000e and that has a power of around
150 HP”.

In todays Web, the buyer has to manually (i) search for car selling sites, e.g.,
using Google, (ii) select the most promising sites (e.g., http://www.autos.com),
(iii) browse through them, query them to see the cars that they sell, and match
the cars with our requirements, (iv) select the offers in each web site that match
our requirements, and (v) eventually merge all the best offers from each site and
select the best ones.

It is obvious that the whole process is rather tedious and time consuming,
since, e.g., (i) the buyer has to visit many sites, (ii) the browsing in each site
is very time consuming, (iii) finding the right information in a site (which has
to match the requirements) is not simple, and (iv) the way of browsing and
querying may differ from site to site.

A shopping agent may now support us as follows, automatizing the whole
selection process once it receives the request/query q from the buyer:

– Probabilistic Resource Selection. The agent selects some sites/resources S that
it considers as promising for the buyer’s request. The agent has to select a
subset of some relevant resources, since it is not reasonable to assume that
it will access and query all the resources known to him. The relevance of a
resource S to a query is usually (automatically) estimated as the probability
Pr(q|S) (the probability that the information need represented by the query q
is satisfied by the searching resource S; see, e.g., [21,22]). It is not difficult to
see that such probabilities can be represented by probabilistic rules.

– Probabilistic Ontology Mapping/Query Reformulation. For the top-k selected
sites, the agent has to reformulate the buyer’s query using the
terminology/ontology of the specific car selling site. For this task, the agent
relies on so-called transformation rules, which say how to translate a con-
cept or property of the agent’s ontology into the ontology of the information
resource (which is called ontology mapping in the Semantic Web). To relate a
concept B of the buyer’s ontology to a concept S of the seller’s ontology, one
often automatically estimates the probability P (B|S) that an instance of S
is also an instance of B, which can then be represented as a probabilistic rule
[23,24].

http://www.autos.com
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– Vague Query Matching. Once the agent has translated the buyer’s request
for the specific site’s terminology, the agent submits the query. But the
buyer’s request often contains many so-called vague/fuzzy concepts such as
“the price is around 22 000e or less”, rather than strict conditions, and thus
a car may match the buyer’s condition to a degree. As a consequence, a
site/resource/web service may return a ranked list of cars, where the ranks
depend on the degrees to which the sold items match the buyer’s requests q.

– Probabilistic Data Integration. Eventually, the agent has to combine the
ranked lists by considering the involved matching (or truth) degrees (vague-
ness) and probability degrees (uncertainty) and show the top-n items to the
buyer.

3 Probabilistic Description Logics

In this section, we briefly describe the probabilistic description logic P-
SHOIN (D), which is a probabilistic generalization of the description logic
SHOIN (D) (behind OWL DL), directed towards sophisticated formalisms for
reasoning under probabilistic uncertainty in the Semantic Web [18]. Closely
related probabilistic generalizations of the DL-Lite family of tractable descrip-
tion logics (which lies between the Semantic Web languages RDFS and OWL
Lite) and the description logics SHIF(D) and SHOQ(D) (which stand behind
OWL Lite and DAML+OIL, respectively) have been introduced in [18,25]. A
closely related paper [26] combines DL-Lite with Bayesian networks.

Probabilistic description logics allow for representing probabilistic ontologies
and for reasoning about them. There is a plethora of applications with an urgent
need for handling probabilistic knowledge in ontologies, especially in areas like
medicine, biology, defense, and astronomy. Moreover, probabilistic ontologies
allow for quantifying the degrees of overlap between the ontological concepts
in the Semantic Web, reasoning about them, and using them in Semantic Web
applications and systems, such as information retrieval, personalization tasks,
and recommender systems. Furthermore, probabilistic ontologies can be used
to align the concepts of different ontologies (called ontology mapping) and for
handling inconsistencies in Semantic Web data.

The syntax of P-SHOIN (D) uses the notion of a conditional constraint from
[27] to express probabilistic knowledge in addition to the axioms of SHOIN (D).
Its semantics is based on the notion of lexicographic entailment in probabilistic
default reasoning [28,29], which is a probabilistic generalization of the sophis-
ticated notion of lexicographic entailment by Lehmann [30] in default reason-
ing from conditional knowledge bases. Due to this semantics, P-SHOIN (D)
allows for expressing both terminological probabilistic knowledge about con-
cepts and roles, and also assertional probabilistic knowledge about instances of
concepts and roles. It naturally interprets terminological and assertional prob-
abilistic knowledge as statistical knowledge about concepts and roles, and as
degrees of belief about instances of concepts and roles, respectively, and allows
for deriving both statistical knowledge and degrees of belief. As an important
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additional feature, it also allows for expressing default knowledge about concepts
(as a special case of terminological probabilistic knowledge), which is semanti-
cally interpreted as in Lehmann’s lexicographic default entailment [30].

Example 3.1. Suppose a classical description logic knowledge base T is used to
encode knowledge about cars and their properties (e.g., that sports cars and
roadsters are cars). A probabilistic knowledge base KB = (T, P, (Po)o∈IP ) in P-
SHOIN (D) then extends T by terminological default and terminological prob-
abilistic knowledge in P as well as by assertional probabilistic knowledge in Po
for certain objects o ∈ IP . For example, the terminological default knowledge
(1) “generally, cars do not have a red color” and (2) “generally, sports cars have
a red color”, and the terminological probabilistic knowledge (3) “cars have four
wheels with a probability of at least 0.9”, can be expressed by the following
conditional constraints in P :

(1) (¬∃HasColor.{red} |Car)[1, 1],
(2) (∃HasColor.{red} |SportsCar)[1, 1],
(3) (HasFourWheels |Car)[0.9, 1] .

Suppose we want to encode some probabilistic information about John’s car
(which we have not seen so far). Then, the set of probabilistic individuals IP
contains the individual John’s car, and the assertional probabilistic knowledge
(4) “John’s car is a sports car with a probability of at least 0.8” (we know that
John likes sports cars) can be expressed by the following conditional constraint
in PJohn′s car:

(4) (SportsCar | �)[0.8, 1] .

Then, the following are some (terminological default and terminological proba-
bilistic) tight lexicographic consequences of PT = (T, P ):

(¬∃HasColor.{red} |Car)[1, 1],
(∃HasColor.{red} |SportsCar)[1, 1],
(HasFourWheels |Car)[0.9, 1],
(¬∃HasColor.{red} |Roadster)[1, 1],
(HasFourWheels |SportsCar)[0.9, 1],
(HasFourWheels |Roadster)[0.9, 1] .

Hence, in addition to the sentences (1) to (3) directly encoded in P , we also
conclude “generally, roadsters do not have a red color”, “sports cars have four
wheels with a probability of at least 0.9”, and “roadsters have four wheels with
a probability of at least 0.9”. Observe here that the default property of not
having a red color and the probabilistic property of having four wheels with a
probability of at least 0.9 are inherited from cars down to roadsters. Roughly, the
tight lexicographic consequences of PT = (T, P ) are given by all those conditional
constraints that (a) are either in P , or (b) can be constructed by inheritance
along subconcept relationships from the ones in P and are not overridden by
more specific pieces of knowledge in P .
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The following conditional constraints for the probabilistic individual John’s
car are some (assertional probabilistic) tight lexicographic consequences of KB ,
which informally say that John’s car is a sports car, has a red color, and has
four wheels with probabilities of at least 0.8, 0.8, and 0.72, respectively:

(SportsCar | �)[0.8, 1],
(∃HasColor.{red} | �)[0.8, 1],
(HasFourWheels | �)[0.72, 1] .

4 Probabilistic Description Logic Programs

We now summarize the main ideas behind loosely and tightly coupled proba-
bilistic dl-programs, introduced in [31–34] and [35–39], respectively. For further
details on the syntax and semantics of these programs, their background, and
their semantic and computational properties, we refer to the above works.

Loosely coupled probabilistic dl-programs [31–33] are a combination of
loosely coupled dl-programs under the answer set and the well-founded semantics
with probabilistic uncertainty as in Bayesian networks. Roughly, they consist of
a loosely coupled dl-program (L,P ) under different “total choices” B (they are
the full joint instantiations of a set of random variables, and they serve as pair-
wise exclusive and exhaustive possible worlds), and a probability distribution
µ over the set of total choices B. One then obtains a probability distribution
over Herbrand models, since every total choice B along with the loosely cou-
pled dl-program produces a set of Herbrand models of which the probabilities
sum up to µ(B). As in the classical case, the answer set semantics of loosely
coupled probabilistic dl-programs is a refinement of the well-founded seman-
tics of loosely coupled probabilistic dl-programs. Consistency checking and tight
query processing (i.e., computing the entailed tight interval for the probability
of a conditional or unconditional event) in such probabilistic dl-programs under
the answer set semantics can be reduced to consistency checking and query
processing in loosely coupled dl-programs under the answer set semantics, while
tight query processing under the well-founded semantics can be done in an any-
time fashion by reduction to loosely coupled dl-programs under the well-founded
semantics. For suitably restricted description logic components, the latter can
be done in polynomial time in the data complexity. Query processing for strati-
fied loosely coupled probabilistic dl-programs can be reduced to computing the
canonical model of stratified loosely coupled dl-programs. Loosely coupled prob-
abilistic dl-programs can especially be used for (database-oriented) probabilistic
data integration in the Semantic Web, where probabilistic uncertainty is used
to handle inconsistencies between different data sources [34].

Example 4.1. A university database may use a loosely coupled dl-program (L,P )
to encode ontological and rule-based knowledge about students and exams. A
probabilistic dl-program KB = (L,P ′, C, µ) then additionally allows for encoding
probabilistic knowledge. For example, the following two probabilistic rules in P ′

along with a probability distribution on a set of random variables may express
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that if two master (resp., bachelor) students have given the same exam, then
there is a probability of 0.9 (resp., 0.7) that they are friends:

friends(X,Y ) ← given same exam(X,Y ),DL[master student(X)],
DL[master student(Y )], choicem ;

friends(X,Y ) ← given same exam(X,Y ),DL[bachelor student(X)],
DL[bachelor student(Y )], choiceb .

Here, we assume the set C = {Vm, Vb} of value sets Vm = {choicem,not choicem}
and Vb = {choiceb,not choiceb} of two random variables Xm resp. Xb

and the probability distribution µ on all their joint instantiations, given by
µ : choicem,not choicem, choiceb,not choiceb �→ 0.9, 0.1, 0.7, 0.3 under proba-
bilistic independence. For example, the joint instantiation choicem, choiceb is
associated with the probability 0.9× 0.7 = 0.63. Asking about the entailed tight
interval for the probability that john and bill are friends can then be expressed
by a probabilistic query ∃(friends(john, bill))[R,S], whose answer depends on
the available concrete knowledge about john and bill (namely, whether they
have given the same exams, and are both master or bachelor students).

Tightly coupled probabilistic dl-programs [35,36] are a tight combination of
disjunctive logic programs under the answer set semantics with description log-
ics and Bayesian probabilities. They are a logic-based representation formalism
that naturally fits into the landscape of Semantic Web languages. Tightly cou-
pled probabilistic dl-programs can especially be used for representing mappings
between ontologies [37,38], which are a common way of approaching the seman-
tic heterogeneity problem on the Semantic Web. Here, they allow in particular
for resolving inconsistencies and for merging mappings from different matchers
based on the level of confidence assigned to different rules (see below). Fur-
thermore, tightly coupled probabilistic description logic programs also provide
a natural integration of ontologies, action languages, and Bayesian probabilities
towards Web Services. Consistency checking and query processing in tightly cou-
pled probabilistic dl-programs can be reduced to consistency checking and cau-
tious/brave reasoning, respectively, in tightly coupled disjunctive dl-programs.
Under certain restrictions, these problems have a polynomial data complexity.

Example 4.2. The two correspondences between two ontologies O1 and O2 that
(i) an element of Collection in O1 is an element of Book in O2 with the proba-
bility 0.62, and (ii) an element of Proceedings in O1 is an element of Proceedings
in O2 with the probability 0.73 (found by the matching system hmatch) can be
expressed by the following two probabilistic rules:

O2 : Book(X) ← O1 : Collection(X) ∧ hmatch1;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ hmatch2.

Here, we assume the set C = {{hmatchi,not hmatchi} | i ∈ {1, 2}} of values of
two random variables and the probability distribution µ on all joint instantiations
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of these variables, given by µ : hmatch1,not hmatch1, hmatch2,not hmatch2 �→
0.62, 0.38, 0.73, 0.27 under probabilistic independence.

Similarly, two other correspondences between O1 and O2 (found by the
matching system falcon) are expressed by the following two probabilistic rules:

O2 : InCollection(X) ← O1 : Collection(X) ∧ falcon1;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ falcon2,

where we assume the set C′ = {{falconi,not falconi} | i∈ {1, 2}} of values of
two random variables and the probability distribution µ′ on all joint instantia-
tions of these variables, given by µ′ : falcon1,not falcon1, falcon2,not falcon2 �→
0.94, 0.06, 0.96, 0.04 under probabilistic independence.

Using the trust probabilities 0.55 and 0.45 for hmatch and falcon, respec-
tively, for resolving inconsistencies between rules, we can now define a merged
mapping set that consists of the following probabilistic rules:

O2 : Book(X) ← O1 : Collection(X) ∧ hmatch1 ∧ sel hmatch1;
O2 : InCollection(X) ← O1 : Collection(X) ∧ falcon1 ∧ sel falcon1;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ hmatch2;
O2 : Proceedings(X) ← O1 : Proceedings(X) ∧ falcon2.

Here, we assume the set C′′ of values of random variables and the proba-
bility distribution µ′′ on all joint instantiations of these variables, which are
obtained from C ∪ C′ and µ · µ′ (defined as (µ · µ′)(BB′)=µ(B) · µ′(B′), for
all joint instantiations B of C and B′ of C′), respectively, by adding the val-
ues {sel hmatch1, sel falcon1} of a new random variable, with the probabil-
ities sel hmatch1, sel falcon1 �→ 0.55, 0.45 under probabilistic independence,
for resolving the inconsistency between the first two rules.

A companion approach to probabilistic description logic programs [39] com-
bines probabilistic logic programs, probabilistic default theories, and the descrip-
tion logics behind OWL Lite and OWL DL. It is based on new notions of entail-
ment for reasoning with conditional constraints, which realize the principle of
inheritance with overriding for both classical and purely probabilistic knowl-
edge. They are obtained by generalizing previous formalisms for probabilistic
default reasoning with conditional constraints (similarly as for P-SHOIN (D)
in Sect. 3). In addition to dealing with probabilistic knowledge, these notions of
entailment thus also allow for handling default knowledge.

5 Fuzzy Description Logic Programs

We next briefly describe loosely and tightly coupled fuzzy dl-programs, which
have been introduced in [40,41] and [42,43], respectively, and extended by a top-k
retrieval technique in [46]. All these fuzzy dl-programs have natural special cases
where query processing can be done in polynomial time in the data complexity.
For further details on their syntax and semantics, background, and properties,
we refer to the above works.
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Towards dealing with vagueness and imprecision in the reasoning layers of the
Semantic Web, loosely coupled (normal) fuzzy dl-programs under the answer set
semantics [40,41] generalize normal dl-programs under the answer set semantics
by fuzzy vagueness and imprecision in both the description logic and the logic
program component. This is the first approach to fuzzy dl-programs that may
contain default negations in rule bodies. Query processing in such fuzzy dl-
programs can be done by reduction to normal dl-programs under the answer set
semantics. In the special cases of positive and stratified loosely coupled fuzzy
dl-programs, the answer set semantics coincides with a canonical least model
and an iterative least model semantics, respectively, and has a characterization
in terms of a fixpoint and an iterative fixpoint semantics, respectively.

Example 5.1. Consider the fuzzy description logic knowledge base L of a car
shopping Web site, which defines especially (i) the fuzzy concepts of sports
cars (SportsCar), “at most 22 000e” (LeqAbout22000 ), and “around 150 horse
power” (Around150HP), (ii) the attributes of the price and of the horse power
of a car (hasInvoice resp. hasHP), and (iii) the properties of some concrete cars
(such as a MazdaMX5Miata and a MitsubishiES ). Then, a loosely coupled fuzzy
dl-program KB = (L,P ) is given by the set of fuzzy dl-rules P , which contains
only the following fuzzy dl-rule encoding the request of a buyer (asking for a
sports car costing at most 22 000e and having around 150 horse power), where ⊗
may be the conjunction strategy of, e.g., Gödel Logic (i.e., x ⊗ y = min(x, y),
for all x, y ∈ [0, 1], is used to evaluate ∧ and ← on truth values):

query(x) ←⊗ DL[SportsCar ](x) ∧⊗ DL[∃hasInvoice.LeqAbout22000 ](x)∧⊗
DL[∃hasHP .Around150HP ](x) � 1 .

The above fuzzy dl-program KB = (L,P ) is positive (i.e., without default nega-
tion), and has a minimal model MKB , which defines the degree to which some
concrete cars in the description logic knowledge base L match the buyer’s
request, for example,

MKB(query(MazdaMX5Miata)) = 0.36, MKB(query(MitsubishiES)) = 0.32 .

That is, the car MazdaMX5Miata is ranked top with the degree 0.36, while the
car MitsubishiES is ranked second with the degree 0.32.

Tightly coupled fuzzy dl-programs under the answer set semantics [42,43]
are a tight integration of fuzzy disjunctive logic programs under the answer
set semantics with fuzzy description logics. They are also a generalization of
tightly coupled disjunctive dl-programs by fuzzy vagueness in both the descrip-
tion logic and the logic program component. This is the first approach to fuzzy
dl-programs that may contain disjunctions in rule heads. Query processing in
such programs can essentially be done by a reduction to tightly coupled disjunc-
tive dl-programs. A closely related work [46] explores the evaluation of ranked
top-k queries. It shows in particular how to compute the top-k answers in data-
complexity tractable tightly coupled fuzzy dl-programs.
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Example 5.2. A tightly coupled fuzzy dl-program KB = (L,P ) is given by a suit-
able fuzzy description logic knowledge base L and the set of fuzzy rules P , which
contains only the following fuzzy rule (where x ⊗ y = min(x, y)):

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower(x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) � 1 .

Informally, query collects all sports cars, and ranks them according to whether
they cost at most around 22 000e and have around 150 HP. Another fuzzy rule
involving also a negation in its body and a disjunction in its head is given as
follows (where �x= 1 − x and x ⊕ y = max(x, y)):

Small(x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y)∧⊗
not�GeqAbout15000 (y) � 0.7 .

This rule says that a car costing at most around 15 000e is either small or
old. Notice here that Small and Old may be two concepts in the fuzzy descrip-
tion logic knowledge base L. That is, the tightly coupled approach to fuzzy
dl-programs under the answer set semantics also allows for using the rules in P
to express relationships between the concepts and roles in L. This is not possi-
ble in the loosely coupled approach to fuzzy dl-programs under the answer set
semantics in [40,41], since the dl-queries there can only occur in rule bodies, but
not in rule heads.

6 Probabilistic Fuzzy Description Logic Programs

We finally describe (loosely coupled) probabilistic fuzzy dl-programs [44,45],
which combine fuzzy description logics, fuzzy logic programs (with stratified
default-negation), and probabilistic uncertainty in a uniform framework for the
Semantic Web. Intuitively, they allow for defining several rankings on ground
atoms using fuzzy vagueness, and then for merging these rankings using prob-
abilistic uncertainty (by associating with each ranking a probabilistic weight
and building the weighted sum of all rankings). Such programs also give rise to
important concepts dealing with both probabilistic uncertainty and fuzzy vague-
ness, such as the expected truth value of a crisp sentence and the probability of a
vague sentence. Probabilistic fuzzy dl-programs can be used to model a shopping
agent as described in Example 2.4.

Example 6.1. A (loosely coupled) probabilistic fuzzy dl-program is given by a
suitable fuzzy description logic knowledge base L and the following set of fuzzy
dl-rules P , modeling some query reformulation/retrieval steps using ontology
mapping rules:

query(x) ←⊗ SportyCar(x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower(x, y2) ∧⊗
DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) � 1 , (1)

SportyCar(x) ←⊗ DL[SportsCar ](x) ∧⊗ scpos � 0.9 , (2)
hasPrice(x, y) ←⊗ DL[hasInvoice](x, y) ∧⊗ hipos � 0.8 , (3)
hasPower(x, y) ←⊗ DL[hasHP ](x, y) ∧⊗ hhppos � 0.8 , (4)
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where we assume the set C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}} of
values of random variables and the probability distribution µ on all joint instan-
tiations of these variables, given by µ : scpos, scneg, hipos, hineg, hhppos, hhpneg �→
0.91, 0.09, 0.78, 0.22, 0.83, 0.17 under probabilistic independence. Here, rule (1) is
the buyer’s request, but in a “different” terminology than the one of the car selling
site. Rules (2)–(4) are so-called ontology alignment mapping rules. For example,
rule (2) states that the predicate “SportyCar” of the buyer’s terminology refers to
the concept “SportsCar” of the selected site with probability 0.91.

The following are some tight consequences of the above probabilistic fuzzy
dl-program (where for ground atoms q, we use (E[q])[L,U ] to denote that the
expected truth value of q lies in the interval [L,U ]):

(E[query(MazdaMX5Miata)])[0.21, 0.21], (E[query(MitsubishiES )])[0.19, 0.19] .

That is, the car MazdaMX5Miata is ranked first with the degree 0.21, while the
car MitsubishiES is ranked second with the degree 0.19.
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Abstract. Process mining is an emerging area that synergically com-
bines model-based and data-oriented analysis techniques to obtain useful
insights on how business processes are executed within an organization.
Through process mining, decision makers can discover process models
from data, compare expected and actual behaviors, and enrich models
with key information about their actual execution. To be applicable,
process mining techniques require the input data to be explicitly struc-
tured in the form of an event log, which lists when and by whom different
case objects (i.e., process instances) have been subject to the execution of
tasks. Unfortunately, in many real world set-ups, such event logs are not
explicitly given, but are instead implicitly represented in legacy informa-
tion systems. To apply process mining in this widespread setting, there
is a pressing need for techniques able to support various process stake-
holders in data preparation and log extraction from legacy information
systems. The purpose of this paper is to single out this challenging, open
issue, and didactically introduce how techniques from intelligent data
management, and in particular ontology-based data access, provide a
viable solution with a solid theoretical basis.

Keywords: Process mining · Ontology-based data access · Event log
extraction · Relational database management systems

1 Introduction

SMEs1 and large enterprises are increasingly adopting business process man-
agement to continuously optimise internal work, achieve its strategic business
objectives, and guarantee quality of service to their customers. Business process
management provides methods, techniques, and tools to comprehensively sup-
port managers and domain experts in the design, administration, configuration,
execution, monitoring, and analysis of operational business processes [1]. As
pointed out in [2], a business process consists of a set of activities that are
performed in coordination in an organisational and technical environment, and
that jointly realise a business goal. At execution time, the process is instantiated
multiple times, leading to different sequences of activity executions performed
by different resources, where each sequence refers to the evolution of a main,
1 Small and medium-sized enterprises.

c© Springer International Publishing AG 2017
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so-called case object. The instantiation of each activity on a case, in turn, gives
raise to multiple events, indicating the evolution of each activity instance from
its start to its completion or cancellation, according to a so-called activity trans-
actional lifecycle.

The notion of case depends on the nature of the process, and on the perspec-
tive taken to understand the process. For example, in an order-to-cash scenario,
the case typically corresponds to the order first issued by a customer, then manip-
ulated within the enterprise, paid by the customer, and finally shipped to her.
Different orders give raise to different process instances and corresponding exe-
cution traces. While using the order as a case object to understand the process
is the most natural choice in this scenario, alternative case objects may be useful
to understand the same process from different viewpoints. For example, suppose
that the enterprise managing orders relies on an external shipping company to
handle the order deliveries. Such a shipping company may prefer to consider its
couriers as cases, and consequently focus its attention to the flow of operations
performed by each courier, possibly involving multiple orders at once.

Classical BPM is purely model-driven: processes are elicited using human
ingenuity through interviews with the involved stakeholders, and then used in
a prescriptive manner to orchestrate the process execution, and to indicate to
such stakeholders how they are expected to behave. This has been increasingly
considered as the main limiting factor towards large-scale adoption of BPM. On
the one hand, people tend to consider processes not as a support, but as a form
of control over their behaviour. This is especially true in so-called knowledge-
intensive settings, where it is not possible to foresee all potential state of affairs in
advance, nor to enumerate all possible courses of execution, which have in fact to
be adaptively and incrementally devised at runtime by the involved stakeholders,
leveraging their own knowledge. On the other hand, there is an intrinsic mis-
match between processes as reflected in models, and process executions resulting
from the actual progression of cases in a real organisational setting. Even when
processes are executed in line with the elicited process models, considering exe-
cution data is crucial to understand how work is effectively carried out inside
the enterprise, and consequently obtain useful insights related to key perfor-
mance indicators (such as average completion time for cases), the detection of
bottlenecks and of working relationships among persons, and the identification
of frequent and infrequent behaviours, to name a few.

To resolve this mismatch between process models and process executions, the
emerging area of process mining [3,4] has become increasingly popular both in the
academia and the industry. Process mining is a collection of techniques that com-
bine, in a synergic way, model-based and data-oriented analysis to obtain useful
insights on how business processes are executed in a real organisational environ-
ment. Through process mining, decision makers can discover process models from
data, compare expected and actual behaviours, and enrich models with informa-
tion obtained from their execution. The process mining manifesto [3] provides a
thorough introduction to process mining. The book by van der Aalst [4] is the
main reference material for students, researchers and professionals interested in
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this field. In addition, a list of successful stories related to the application of process
mining to concrete case studies can be found at the web page of IEEE CIS Task
Force on Process Mining2.

The applicability of process mining depends on two crucial factors:

– the availability of high-quality event data, and of event logs containing correct
and complete event data about which cases have been executed, which events
occurred for each case, and when they did occur;

– the representation of such data in a format that is understandable by process
mining algorithms, such as the XML-based, IEEE standard eXtensible Event
Stream (XES) [5].

Event data structured in this form are only readily available if the enterprise
under analysis adopts a business process management system, providing direct
support for orchestrating the execution of cases according to a given process
model, and at the same time providing logging capabilities for cases, events, and
corresponding attributes. In this setting, the extraction of an event log for process
mining is quite direct. Unfortunately, in many real world settings, the enterprise
exploits functionalities offered by more general enterprise systems such as ERP3,
CRM4, SCM5, and other business suites. In addition, such systems are typically
configured for the specific needs of the company, and connected to domain-
specific and other legacy information systems. Within such complex systems,
event logs are not explicitly present, but have instead to be reconstructed by
extracting and integrating information present in all such different, possibly
heterogeneous data sources.

To apply process mining in this widespread setting, there is a pressing need
for techniques that are able to support data and process analysts in the data
preparation phase [3], and in particular in the extraction of event data from
legacy information systems. The purpose of this paper is to single out this chal-
lenging, open issue, and didactically introduce how techniques from intelligent
data management, and in particular ontology-based data access (OBDA) [6–8],
provide a viable solution with a solid theoretical basis. The resulting approach,
called onprom [9], comes with a methodology supporting data and process ana-
lysts in the conceptual identification of event data, answering questions like: (i)
Which are relevant concepts and relations? (ii) How do such concepts/relations
map to the underlying information system? (iii) Which concepts/relations relate
to the notion of case, event, and event attributes? The methodology is backed up
by a toolchain that, once the aforementioned questions are answered, automat-
ically extracts an event log conforming to the chosen perspective, and obtained
by inspecting the data where they are, thanks to the OBDA paradigm and tools.

2 http://tinyurl.com/ovedwx4.
3 Enterprise Resource Planning.
4 Customer Relationship Management.
5 Supply Chain Management.

http://tinyurl.com/ovedwx4
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2 Process Mining: A Gentle Introduction

In this section, we give broad introduction to process mining, starting with the
reference framework for process mining, the main process mining techniques, and
an excursus of some contemporary process mining tools. In the second part of
the section, we focus on the data preparation phase for process mining, recalling
the notion of event log and of the event log format expected by process mining
algorithms.

Fig. 1. The reference framework for process mining, and the three types of process
mining techniques: discovery, conformance, and enhancement [3]

2.1 The Process Mining Framework

The reference framework for process mining is depicted in Fig. 1. On the one
hand, process mining considers conceptual models describing processes, organi-
sational structures, and the corresponding relevant data. On the other hand, it
focuses on the real execution of processes, as reflected by the footprint of real-
ity logged and stored by the software systems in use within the enterprise. For
process mining to be applicable, such information has to be structured in the
form of explicit event logs. In fact, all process mining techniques assume that
it is possible to record the sequencing of relevant events occurred within the
enterprise, such that each event refers to an activity (i.e., a well-defined step in
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some process) and is related to a particular case [3]. Events may have additional
information stored in event logs. In fact, whenever possible, process mining tech-
niques use extra information such as the exact timestamp at which the event has
been recorded, the resource (i.e., person or device) that generated the event, the
event type in the context of the activity transactional lifecycle (e.g., whether the
activity has been started, cancelled, or completed), the timestamp of the event,
or data elements recorded with the event (e.g., the size of an order).

Example 1. As a running example, we consider a simplified conference sub-
mission system, which we call ConfSys. The main purpose of ConfSys is
to coordinate authors, reviewers, and conference chairs in the submission of
papers to conferences, the consequent review process, and the final decision
about paper acceptance or rejection. Figure 2 shows the process control flow
considering papers as case objects. Under this perspective, the management of
a single paper evolves through the following execution steps. First, the paper
is created by one of its authors, and submitted to a conference available in the
system. Once the paper is submitted, the review phase for that paper starts.
This phase of the process consists of a so-called multi-instance section, i.e., a
section of the process where the same set of activities is instantiated multiple
times on the same paper, and then executed in parallel. In the case of ConfSys,
this section is instantiated for each reviewer selected by the conference chair for
the paper, and consists of the following three activities: (i) a reviewer is assigned
to the paper; (ii) the reviewer produces the review; (iii) the reviewer submits
the review to ConfSys. The multi-instance section is considered completed only
when all its parallel instantiations are completed. Hence the process continues as
soon as all appointed reviewers have submitted their review. Based on the sub-
mitted reviews, the chair then decides if the paper has to be accepted or rejected.
In the former case, one of the authors is expected to upload the final (camera
ready) version of the paper, addressing the comments issued by reviewers.

create
paper

author

submit
paper

author

assign
reviewer

chair

review
paper

reviewer

submit
review

reviewer

take
decision

chair

accept?

accept
paper

chair

reject
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Y
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Fig. 2. The process for managing papers in a simplified conference submission system;
gray tasks are external to the conference information system and cannot be logged.
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It is important to notice, again, that the process model shown in Fig. 2 is
only one of the several representations of the process, reflecting the perspective
of papers as process cases. A completely different model would emerge from
the same process, when focusing on the evolution of reviews instead of that of
papers.

A fragment of a sample event log tracking the evolution of papers within
ConfSys is shown in Table 1. The logged activities corresponds to those activ-
ities in Fig. 2 that actually comprise interaction with the software system of
ConfSys, together with those activities that are autonomously executed by the
system itself. From the point of view of the software system, the former activities
are called human-interaction activities, and the latter are called system activi-
ties. These two types of activity contrast with purely human activities, which are
executed by humans in the concrete world without software support, and can
be indirectly logged only if accompanied by corresponding human-interaction
activities. An example of this can be seen in Fig. 2, where review paper is a
purely human activity carried out by a reviewer without the intervention of the
software system, and is in fact coupled with submit review, a human-interaction
activity executed by a reviewer to communicate to ConfSys the outcome of
review paper. As we can see from the table there are two different cases (i.e.,
papers), with various events, each involving different responsible actors. Both
cases regard papers that have been subject only to a single review, but in the
first case the paper is accepted, while in the second one it is rejected. �

How do process mining techniques exploit models and/or event logs to extract
useful insights, and what do they offer concretely? The three main types of

Table 1. An event log fragment tracking the evolution of two papers within ConfSys.
Every paper is a case, which in turn corresponds to a trace of events logging the
execution of (human-interaction and system) activities instantiated on that paper.

Case ID Event data

ID Timestamp Activity User . . .

1 35654423 30-12-2010:11.02 create paper Pete . . .

35654424 31-12-2010:10.06 submit paper Pete . . .

35654425 05-01-2011:15.12 assign review Mike . . .

35654426 06-01-2011:11.18 submit review Sara . . .

35654428 07-01-2011:14.24 accept paper Mike . . .

35654429 06-01-2011:11.18 upload CR Pete . . .

2 35654483 30-12-2010:11.32 create paper George . . .

35654485 30-12-2010:12.12 submit paper John . . .

35654487 30-12-2010:14.16 assign review Mike . . .

35654489 16-01-2011:10.30 submit review Ellen . . .

35654490 18-01-2011:12.05 reject paper Mike . . .
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process mining techniques are marked by the three, thick red arrows in the
bottom part of Fig. 1. We briefly discuss them next.

Discovery starts from an event log and automatically produces a process model
that explains the different behaviours observed in the log, without assuming any
prior knowledge on the process. The vast majority of process discovery algo-
rithms focus on the discovery of the process control-flow, towards generating a
model that indicates what are the allowed sequences of activities according to
the log. One of the first algorithms in this line is the α algorithm [10], which
produces a Petri net that compactly explains the sequences of activities present
in a given event log. Contemporary control-flow discovery algorithms are much
more sophisticated and richer in terms of the produced results, and differ from
each other along several dimensions, such as the concrete language they use for
the discovered model, the ability of enriching control-flow with additional ele-
ments (such as decision and data logic), and the ability of incorporating multiple
abstraction levels (i.e., to hide/show details about infrequent or outlier behav-
iours). In addition, their quality depends on how they trade between the four
crucial factors of:

1. fitness - to what extent the produced model correctly reconstructs the behav-
iours present in the log;

2. simplicity - how much is the produced model understandable to humans;
3. precision - how much is the produced model adherent to the behaviours con-

tained in the log;
4. generalisation - what is the extent of behaviours not contained in the log, but

supported by the model.

In addition to the control-flow perspective, many other aspects are addressed
by process discovery techniques (cf. Sect. 2.2). For example, a class of discovery
algorithms focuses on process resources, producing a social network that explains
the hand-over of work among the stakeholders involved in the process. This is
only possible if the input event log contains resource-related information (this
is, e.g., the case of the log shown in Table 1).

Conformance Checking compares an existing process model and an event log
for the same process, with the aim of understanding the presence and nature of
deviations. Conformance checking techniques take as input an event log and a
(possibly discovered) process model, and return indications related to the adher-
ence of the behaviours contained in the log to the prescriptions contained in the
model. Detected deviations provide on the one hand the basis to take coun-
termeasures on non-conforming behaviours, and on the other hand to act on
the considered model and suitable re-engineer it so as to incorporate also the
unaligned behaviours. In this light, conformance checking ranges from the detec-
tion and localisation of sources of non-conformance, to the estimation of their
severity, the computation of conformance metrics summarising them, and possi-
bly even their explanation and diagnosis.
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Enhancement improves an existing process model using information recorded
inside an event log for that process. The input of enhancement techniques is a
process model and an event log, and the output is a new process model that
incorporates and reflects new information extracted from the data. The first
important class of enhancement techniques is that of extension, where the input
process model is not altered in its structure, but is extended with additional
perspectives, using information present in the log. Examples of extension tech-
niques are those that incorporate frequency- and time-related information into
the process model, using the timestamps and the frequencies about activity exe-
cutions present in the log. The extended process model provides an immediate
feedback about which parts of the process are most exploited and which contain
outlier behaviours, as well as where bottlenecks are located. A second important
class of enhancement techniques is that of repair, where deviations detected by
checking the conformance of the input event log to the input process model are
resolved by suitably modifying the process model. For example, if two activities
are sequentially ordered in the given process model, but according to the log they
may appear in any order, then the process model may be evolved by relaxing
the sequence, and allowing for their concurrent execution.

Example 2. Figure 3 shows the result of a control-flow discovery algorithm,
applied to an event log from ConfSys whose structure obeys to what reported
in Table 1. Notably, the algorithm does not only discover the control-flow of a
process model explaining the behaviours contained in the log, but also extends
such a model with frequency information, colouring activities and setting the
width of sequence flow connectors depending on how frequent they are. �

Fig. 3. Result of a process discovery and enhancement technique on a ConfSys event
log. The algorithm is called Inductive Visual Miner [11], and runs as a plug-in of the
ProM process mining platform (cf. Sect. 2.3).

2.2 Application of Process Mining

Since process mining is a relatively new field, methodologies supporting data and
process analysts in the application of process mining techniques are still in their
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infancy [12]. In general, five main stages are foreseen for process mining projects.
The first phase concerns planning and justification of the project, formulating
which research questions shall be answered through process mining, and defining
the boundaries of the analysis. This includes the definition of which perspective
has to be taken for the analysis, including which notion(s) of case object to
consider.

The second phase substantiates the first one by handling the extraction of
the relevant event data from the software systems of he enterprise. As argued
in the introduction, this phase is in general extremely challenging, and for the
most part still based on manual, ad-hoc extraction procedures.

The third phase exploits control-flow process discovery techniques towards
the construction of a first, process model explaining the behaviours reflected in
the extracted data, and deriving which are the allowed orderings of activities.
The resulting model is usually represented using formal languages such as vari-
ants of Petri nets, or concrete control-flow modelling notations such as BPMN,
EPCs, or UML activity diagrams. The so-obtained model can be enhanced with
information present in the log.

The fourth phase consists in the incorporation of additional dimensions, so as
to obtain integrated models simultaneously accounting for multiple perspectives,
like the organisational perspective (i.e., the actors, roles, groups/departments
are involved in the process execution), the case perspective (i.e., relevant data
elements that are attached to cases), and the time perspective (i.e., execution
times, durations, latencies, and frequencies information about the execution of
activities and/or the execution of a certain route within the process). Even
though these different perspectives are non-exhaustive and partly overlapping,
they provide a quite comprehensive overview of the aspects that process mining
aims to analyse [4].

The fifth phase aims at exploiting the results obtained so far so as to produce
insightful indications, suggestions, recommendations, and predictions on running
and future cases, i.e., to provide operational decision support to decision makers
and to the people involved in the actual execution of the process under study.

2.3 Process Mining Tools

A plethora of process mining techniques and technologies have been developed
and successfully employed in several application domains6. We provide here a
non-exhaustive list of contemporary process mining solutions.

– ProM (Process Mining framework)7 is an Open Source framework for process
mining algorithms [13], based on JAVA. It provides a plug-in based, integra-
tion platform [14] that users and developers of process mining can exploit to
deploy and run their techniques. This pluggable architecture currently hosts
a huge amount of plug-ins covering all the different aspects of process mining,

6 http://tinyurl.com/ovedwx4.
7 http://www.processmining.org/prom/.

http://tinyurl.com/ovedwx4
http://www.processmining.org/prom/
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from data import to discovery, conformance checking, enhancement along dif-
ferent perspectives [4]. Hence, it enable users to apply the latest developments
in process mining research on their own data. Finally, RapidProM8 [15] is an
extension of RapidMiner based on ProM that supports users in pipelining
different ProM plug-ins based on the paradigm of scientific workflows.

– Celonis9 is a commercial, widely adopted process mining software that sup-
port various file formats and database management systems to load event
data. Its distinctive feature is the possibility of applying process mining
natively on top of enterprise systems like SAP. In addition, it exploits well-
assessed data warehousing (OLAP) techniques to store and process event
data [4].

– Disco10 is a commercial, stand-alone and lightweight process mining tool. It
supports various file formats as input, in particular providing native support
for importing CSV files, which can be annotated with case and event infor-
mation prior to the import. Disco has usability, fidelity, and performance as
design priorities, and makes process mining easy and fast [16].

– ARIS PPM 11 is a tool that can be used to automatically assess business
processes and their execution data in terms of speed, cost, quality and quan-
tity, at the same time identifying optimisation opportunities. It ranges from
analysis of historical data to process discovery, and notably provides dedicated
techniques for the analysis of the organisational structure and improving col-
laboration.

Beside the aforementioned solutions, worth mentioning are non-commercial tools
such as PMLAB12 and CoBeFra13, as well as commercial tools such as Enterprise
Discovery Suite14, Interstage Business Process Manager Analytics15, Minit16,
myInvenio17, Rialto18, Perceptive Process Mining19, QPR ProcessAnalyzer20,
and SNP Business Process Analysis21.

8 http://www.promtools.org/doku.php?id=rapidprom:home.
9 http://www.celonis.de.

10 https://fluxicon.com/disco/.
11 http://www.softwareag.com/nl/products/aris platform/aris controlling/aris process

performance/overview/default.asp.
12 https://www.cs.upc.edu/∼jcarmona/PMLAB/.
13 http://www.processmining.be/cobefra.
14 http://www.stereologic.com.
15 http://www.fujitsu.com/global/products/software/middleware/

application-infrastructure/interstage/solutions/bpmgt/bpm/.
16 http://www.minitlabs.com.
17 http://www.my-invenio.com.
18 http://www.exeura.eu.
19 http://www.lexmark.com/en us/products/software/workflow-and-case-

management/process-mining.html.
20 https://www.qpr.com/products/qpr-processanalyzer.
21 http://www.snp-bpa.com.

http://www.promtools.org/doku.php?id=rapidprom:home
http://www.celonis.de
https://fluxicon.com/disco/
http://www.softwareag.com/nl/products/aris_platform/aris_controlling/aris_process_performance/overview/default.asp
http://www.softwareag.com/nl/products/aris_platform/aris_controlling/aris_process_performance/overview/default.asp
https://www.cs.upc.edu/~jcarmona/PMLAB/
http://www.processmining.be/cobefra
http://www.stereologic.com
http://www.fujitsu.com/global/products/software/middleware/application-infrastructure/interstage/solutions/bpmgt/bpm/
http://www.fujitsu.com/global/products/software/middleware/application-infrastructure/interstage/solutions/bpmgt/bpm/
http://www.minitlabs.com
http://www.my-invenio.com
http://www.exeura.eu
http://www.lexmark.com/en_us/products/software/workflow-and-case-management/process-mining.html
http://www.lexmark.com/en_us/products/software/workflow-and-case-management/process-mining.html
https://www.qpr.com/products/qpr-processanalyzer
http://www.snp-bpa.com
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2.4 The XES Standard

As extensively argued before, the application of process mining techniques
requires the input data to be structured in a format where key notions like
case objects and events are explicitly represented, and where their correspond-
ing data are structured in a way that lends itself to be automatically processed.
This fundamental requirements led to the development of standard formats for
the representation and storage of event data for process mining. In recent years,
the XES (eXtensible Event Stream) format emerged as the main reference for-
mat for the storage, interchange, and analysis of event logs. XES appeared for
the first time in 2009 [17], as the successor of the MXML format [18]. It quickly
became the de-facto standard in this area, adopted by the IEEE Task Force on
Process Mining22, eventually becoming an official IEEE standard in 2016 [5].

XES is based on XML, and adopts an extensible paradigm that only fixes a
minimal structure for event data, allowing one to enrich it with domain-specific

Fig. 4. An example of XES event log

22 http://www.win.tue.nl/ieeetfpm/doku.php.

http://www.win.tue.nl/ieeetfpm/doku.php


OBDA for Log Extraction in Process Mining 303

attributes and features. More specifically, an XES event log document is an XML
document formed by the following core components: (i) log, (ii) trace, (iii) event,
(iv) attribute, (v) global attribute, (vi) classifier, and (vii) extension. We briefly
review each such components in the remainder of this section, referring the
interested reader to the official IEEE XES standard for further details. Figure 4
encodes in XES a portion of the event log from Table 1.

Log is the root component in XES. It aggregates information about the logged
evolution of multiple cases for a process. In the XML serialisation of XES, it
is encoded using the XML element <log>, which comes with two mandatory
attributes:

– xes.version, indicating which version of the standard is used;
– xes.features, declaring which features of the standard are employed (if

none, then it has an empty string as value).

Example 3. The following code

<log xes.version="2.0" xes.features="nested-attributes">
...

</log>

is an example of XES log declaration, which indicates that the version 2.0 of the
standard is used, relying on nested attributes. �

Trace corresponds to the execution log of a single case, in turn comprising a
sequence of events that occurred for that case. In our ConfSys running example,
a trace may consist of all logged events for a paper, a review, or a user, depending
on the adopted notion of case. In the XML representation of XES, a trace is
encoded using the XML element <trace>, and does not have any attribute. A
trace element is directly contained within the log root element, and consequently
each trace belongs to a log, whereas each log contains possibly many traces.

Event represents the occurrence of a relevant atomic execution step for a specific
case. Usually, this corresponds to the (completion of) execution of an activity
instance, or to the progression of an activity instance within its transactional
lifecycle, but this is not mandatorily prescribed by the standard.

In the XML serialisation of XES, this component is encoded using the XML
tag <event>, and does not have any attribute. An event element is contained
within the trace element corresponding to its target case, and consequently each
event belongs to a trace, whereas each trace contains in general many events.

Attributes represent relevant information items associated to a log, trace, or
event. Each attribute element is then child of one of such elements, which in
turn may contain in general many attributes. The concrete representation of
an attribute follows the typical key-value patterns, where the key describes the



304 D. Calvanese et al.

type of information slot, while the value is the information stored inside such a
slot. The value, in turn, may be primitive, a collection, or a complex structure
containing other attributes, consequently giving raise to elementary, composite,
and nested attributes.

An elementary attribute is an attribute that has an single value. The XES
standard supports several types of elementary attributes, namely: (i) string, (ii)
datetime, (iii) integer, (iv) real number, (v) boolean, and (vi) ID. In the XML
serialisation of XES, an elementary attribute is encoded using the XML tag
that corresponds to its type. For instance, the XML tag <string> encodes
an elementary attribute of type “string”. This XML element also mandatorily
comes with two XML attributes key and value, respectively capturing the name
of the key and the value carried by the attribute.

Example 4. The following XML element

<string key="concept:name" value="upload"/>

declares an attribute of type string in XES, indicating its key and value. �

A composite attribute is an attribute that may contain several values. In
XES 2.0 [19], there are two kinds of composite attributes, namely list and con-
tainer, respectively addressing ordered and unordered collections. However, in
the official IEEE XES standard [5], only lists are provided. Based on [5], the list
attribute is represented as an XML element <list>, with key as mandatory
attribute. The values belonging to the list are in turn represented as attributes
element enclosed within a <values> element, direct child of the <list> ele-
ment.

Example 5. The XML element

<list key="addresses">
<values>

<string key="mainAddress"
value="P.zza Universita 1"/>

<string key="deliveryAddress"
value="P.zza Domenicani 3"/>

</values>
</list>

represents a XES composite attribute containing two elementary attributes,
respectively representing the main and delivery address for an expedition. �

Global attributes are used to define a “template” for attributes to be attached
to each element of a certain kind within the given XES document. This makes
it possible to declare recurrent attributes that will be consistently attached to
each trace or event contained in the log. According to the official IEEE XES
Standard [5], global attributes are declared within the root, <log> element, as
elements called <global> coming with a scope XML attribute that defines
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the selected target element kind (trace, or event). Inside such an element, a
set of (global) attributes are defined using the standard structure, with the key
semantical difference that the value represents, in this context, the default value
taken by the attribute once it is attached to a target element.

Example 6. The following excerpt of an XES document

<log xes.version="2.0" xes.features="nested-attributes">
...
<global scope="trace">

<string key="concept:name" value="MyTrace"/>
</global>
<global scope="event">

<date key="time:timestamp"
value="1970-01-01T01:00:00.000+01:00"/>

<string key="lifecycle:transition"
value="complete"/>

<string key="concept:name" value="MyTask"/>
</global>
...

</log>

declares different global attributes. The first <global> element declares that
each trace contained in the log will come with a string attribute with key
concept:name having a value that, unless specified, will be the string MyTrace.
The second <global> element targets instead events, and declares that each
event element contained in the log will come with three attributes respectively
representing the event execution time, the type of event within the activity
transactional lifecycle, and the name of the corresponding activity (with their
respective default values). �

Classifiers are used to provide identification schemes for the elements in a
log, based on a combination of attributes associated to them. Similarly to the
case of global attributes, each classifier comes with a scope defining whether
the classifier is applied to traces or events, and with a combination of strings
that represent keys of global attributes attached to the same scope. An event
(resp., trace) classifier mentioning strings k1, . . . , kn, which are keys of global
attributes with scope “event” (resp., “trace”), states that the identity of events
(resp., traces) is defined by the values associated to such keys, i.e., that two
events (resp., traces) are identical if and only if they assign the same values to
the attributes characterised by those keys.

The declaration of a classifier is done in the XML serialisation of XES by
inserting a <classifier> element as child of <log>, providing an attribute
called scope whose value denotes whether the scope is that of event or trace,
and an attribute called keys whose value is a comma-separated set of strings
pointing to keys of global attributes defined over the same scope.
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Example 7. Consider the following excerpt of an XES document:

<log xes.version="2.0" xes.features="nested-attributes">
...
<classifier name="Event Name ID" scope="event"

keys="concept:name"/>
...

</log>

It indicates that the global attribute with key concept:name provides an iden-
tification scheme for events. �

Extensions capture pre-defined sets of global attributes with a clear semantics.
In fact, the XES standard allows the modeller to introduce arbitrary domain-
specific attributes, whose meaning may be ambiguous and difficult to interpret by
other humans or third-party algorithms. The notion of extension fixes this issue
by providing a mechanism to define a set of pre-defined attribute keys together
with a reference to documentation that describes their meaning. Specifically, each
extension must have a name, a prefix and a Uniform Resource Identifier (URI ).
The prefix is used to unambiguously contextualise the attribute keys and avoid
name clashes, whereas the URI to the definition of the extension. An XES event
log making use of a particular extension must declare it at the level of its <log>
element. Notably, the official IEEE XES standard comes with a set of common
extensions defining attributes to capture domain-independent important aspects
such as: 1. (name of the) activity to which an event refers; 2. timestamp infor-
mation about the actual time at which the event has been recorded; 3. resource
information describing the resource that generated the event; 4. information
about the type of event in terms of a corresponding transition within a standard
transactional lifecycle for activities, also described in the standard itself.
Example 8. The following excerpt of an XES event log

<log xes.version="2.0" xes.features="nested-attributes">
...
<extension name="Time"

prefix="time"
uri="http://www.xes-standard.org/
time.xesext"/>

...
<trace>

<event>
<date key="time:timestamp"

value="2017-03-26T10:45:36.000+01:00"/>
...

</event>
...

</trace>
...

</log>
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declares that the time extension is employed in the log, and that the definition for
such an extension may be found at the provided URI. The timestamp attribute,
defined in the time extension, is then used in the definition of an event, so as to
indicate when such an event has been recorded. �

2.5 The Data Preparation Phase

Thanks to the IEEE XES standard (cf. Sect. 2.4), the challenging phase of data
preparation for process mining (i.e., the second phase in the description provided
in Sect. 2.2) now has a clear target: it amounts to analyse the event data as
natively stored by an enterprise, and to consequently devise suitable mechanisms
to extract those data and encode them in the form of an XES log. This phase is
extremely delicate because insightful process mining results cannot be obtained
if the starting data miss important information or do not reflect the boundaries
and research questions and defined in during the first phase of any process mining
project. The complexity, and the availability of tool support, to extract event logs
from the native enterprise logs depends on several factors, related to the quality,
comprehensiveness, and structure of such data. The process mining manifesto
provides an intuitive set of criteria to assess the maturity of enterprise logs,
which in turn characterise the difficulty of extracting event logs. Specifically,
five maturity levels are introduced:

� enterprise logs are low-quality logs that are usually filled in manually, and
that include false positives and false negatives, i.e., contain events that do
not correspond to reality, while miss events that occurred.

�� enterprise logs are automatically recorded by generic software systems that
can be circumvented by their users, and that are consequently incomplete, at
the same time possibly containing improperly recorded events.

��� enterprise logs are trustworthy, but possibly incomplete logs automatically
recorded through reliable software systems but without following a systematic
approach.

���� enterprise logs are high-quality, trustworthy and complete logs, recorded
systematically by software systems where the key notions of cases and activ-
ities are represented explicitly;

����� enterprise logs are top-quality logs, where events are recorded in a
systematic, comprehensive, and reliable manner, and where all event data
have a shared, well-defined unambiguous semantics.

The literature abounds of techniques and tools to handle the extraction of
event logs from ���� and ����� enterprise logs, which are typically gen-
erated by BPM/workflow management systems. For example, academic efforts
such as ProMimport [20] and XESame [13] provides support in the extraction
of MXML/XES event logs from relational databases that contain explicit infor-
mation about cases, activities, events, and their timestamps. Commercial tools
like Disco, Celonis, and Minit, allows users to import CSV files, and guide them
in annotating the columns contained therein with such key notions.
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However, much less support is provided to users interested in the application
of process mining starting from ��� enterprise logs. Such logs are widespread
in reality, as they correspond to data stored by widely adopted enterprise systems
such as ERP, CRM, and SCM solutions, as well as data generated by trustworthy,
domain-specific legacy information systems. This is why the typical approach
followed in this case is to devise ad-hoc, Extract, Transform, and Load (ETL)
procedures. Such procedures need to be manually instrumented, assuming a fixed
perspective on the data, and covering the following three steps [4]:

1. extraction of data from the native enterprise systems, according to the chosen
perspective;

2. transformation of the extracted data, dealing with syntactical and semantical
issues, towards fitting the operational needs;

3. load of data into a target system (such as a data warehouse or a dedicated
relational database), from which a corresponding XES log can be extracted
directly.

This procedure is not only inherently difficult and error prone, but does not
lend itself to incrementally and iteratively analyse the enterprise data according
to different perspectives (e.g., different boundaries for the analysis, and/or mul-
tiple notions of case). In fact, every time the perspective and/or the scope of the
analysis changes, an entirely new ETL-like set up has to be instrumented [9].
After having introduced the paradigm of Ontology-Based Data Access in Sect. 3,
we show how in Sect. 4 how such a paradigm can be exploited to better support
data and process analysts in the extraction of event logs from ��� enterprise
data.

3 Ontology-Based Data Access

Ontologies are used to provide the conceptualization of a domain of interest,
and mechanisms for reasoning about it. The standard language for representing
ontologies is the Web Ontology Language (OWL 2), which has been standardized
(in its second edition) by the W3C [21]. The formal foundations for ontologies,
and in particular for OWL 2, are provided by Description Logics (DLs) [22],
which are logics specifically designed to represent structured knowledge and to
reason upon it.

In DLs, the domain to represent is structured into classes of objects of interest
that have properties in common, and these properties are explicitly represented
through relevant relationships that hold among the classes. Concepts denote
classes of objects, and roles denote (typically binary) relations between objects.
Both are constructed, starting from atomic concepts and roles, by making use of
various constructs, and the set of allowed constructs characterizes a specific DL.
The knowledge about the domain is then represented by means of a DL ontology,
where a separation is made between general structural knowledge and specific
extensional knowledge about individual objects. The structural knowledge is
provided in a so-called TBox (for “Terminological Box”), which consists of a set
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of universally quantified assertions that state general properties about concepts
and roles. The extensional knowledge is represented in an ABox (for “Assertional
Box”), consisting of assertions on individual objects that state the membership
of an individual in a concept, or the fact that two individuals are related by a
role.

The setting we are interested in here, however, is the one in which the exten-
sional information, i.e., the data, is not maintained as an ABox, but is stored in
an information system, represented as a relational data source23, and the TBox
of the ontology is used not only to capture relevant structural properties of the
domain, but also acts as a conceptual data schema that provides a high-level view
over the data in the information system. In other words, users formulate their
information requests in terms of the conceptual schema provided by the TBox
of the ontology, and use it to access the underlying data source. The connection
between the conceptual schema/TBox and the information system is provided
by a declarative mapping specification. Such specification is used to translate the
user requests, i.e., the queries the user poses over the conceptual schema, into
queries to the information system, which can then directly be answered by the
corresponding relational database engine. This setting is known as ontology-based
data access (OBDA) [6,7], and we are describing it more in detail below.

3.1 Lightweight Ontology Languages

An important aspect to note in the OBDA setting outlined above, is that the
data source is in general a full-fledged relational database, and therefore it might
be very large (especially when compared to the size of the TBox). On the other
hand, the user queries formulated over the TBox, have to be answered while
fully taking into account the domain semantics encoded in the TBox itself, i.e.,
in general under incomplete information. This means that query answering does
not correspond to query evaluation, but amounts to a form of logical inference,
which in general is inherently more complex than query evaluation [23]. More
specifically, the complexity of query evaluation strongly depends on the form
of the TBox (according to the usual tradeoff between expressive power and
efficiency of inference). Therefore we need to carefully choose the language in
which the TBox is expressed, so as to guarantee that query answering can be
done efficiently, in particular in data complexity, i.e., when the complexity is
measured with respect to the size of the data only [24]. Ideally, we would like
to fully take into account the constraints encoded in the TBox, and at the same
time delegate query evaluation over the data source to the relational DBMS in
which the data is stored, so as to leverage the more than 30 years of experience
gained with commercial relational technology.

We present now a so-called lightweight ontology language, specifically,
DL-LiteA of the DL-Lite family, which is a family of DLs that have been care-
fully designed so as to allow for efficient query answering over the TBox by
23 We consider here the case of an information system consisting of a single relational

data source. Multiple data sources can be wrapped by a federation tool and presented
as a single source.
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relying on standard SQL query evaluation done by a relational DBMS [6,25,26].
The logics of the DL-Lite family (and specifically, the DL-LiteR sub-language
of DL-LiteA) provide the basis for OWL 2 QL, one of the three standard pro-
files (i.e., sub-languages) of OWL 2 [21,27], which has been specifically designed
to capture the essential features of conceptual modeling formalisms (see also
Sect. 3.2). In line with what available in OWL 2 and OWL 2 QL, DL-LiteA dis-
tinguishes concepts, which denote sets of abstract objects, from value-domains,
which denote sets of (data) values, and roles, which denote binary relations
between objects, from features24, which denote binary relations between objects
and values. We now define formally syntax and semantics of expressions in our
logic.

Syntax. DL-LiteA expressions are built over an alphabet that comprises sym-
bols for atomic roles, atomic concepts, atomic features, value-domains, and con-
stants. As value-domains we consider the traditional data types, such as String,
Integer, etc., and also the data type ts to represent timestamps (considering that
timestamps play a crucial role in event logs). Intuitively, these types represent
sets of values such that their pairwise intersections are either empty or infinite.
In the following, we denote such value-domains by T1, . . . , Tn, and we consider
additionally the universal value-domain �d. Furthermore, we denote with Γ the
alphabet for constants, which we assume partitioned into two sets, namely, ΓO

(the set of constant symbols for objects), and ΓV (the set of constant symbols
for values). In turn, ΓV is partitioned into n sets ΓV1 , . . . , ΓVn

, where each ΓVi

is the set of constants for the values in the value-domain Ti.
The syntax of DL-LiteA expressions is defined as follows:

– Basic roles, denoted by R, are built according to the syntax

R −→ P | P−

where P denotes an atomic role, and P− an inverse role. In the following,
R− stands for P− when R = P , and for P when R = P−.

– Basic concepts, denoted by B, are built according to the syntax

B −→ A | ∃R | δ(F )

where A denotes an atomic concept, and F an (atomic) feature. The concept
∃R, called unqualified existential restriction, denotes the domain of role R,
i.e., the set of objects that R relates to some object. Similarly, δ(F ) denotes
the domain of feature F , i.e., the set of objects that F relates to some value.

In DL-LiteA, the TBox may contain assertions of three types:

24 In DL-LiteA, features are actually called attributes. Here we use the term “feature”
to avoid confusion with attributes of UML (see later).
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– An inclusion assertion has one the forms

R1 � R2, B1 � B2, F1 � F2, ρ(F ) � D,

denoting respectively, from left to right, inclusions between basic roles, basic
concepts, features, and value-domains. For the latter, ρ(F ) denotes the range
of feature F (i.e., the set of values to which F relates some object), and D a
value domain (i.e., either a Ti or �d.)
Intuitively, an inclusion assertion states that, in every model of T , each
instance of the left-hand side expression is also an instance of the right-hand
side expression. When convenient, we use E1 ≡ E2 as an abbreviation for the
pair of inclusion assertions E1 � E2 and E2 � E1.

– A disjointness assertion has one the forms

R1 � ¬R2, B1 � ¬B2, F1 � ¬F2.

– A functionality assertion has one of the forms

(funct R), (funct F ),

denoting functionality of a (direct or inverse) role and of a feature, respec-
tively. Intuitively, a functionality assertion states that the binary relation
represented by a role (resp., a feature) is a function.

Then, a DL-LiteA TBox, T , is a finite sets of intensional assertions of the forms
above, where in addition a limitation on the interaction between role/feature
inclusions and functionality assertions is imposed. Specifically, whenever a role
or feature U appears (possibly as U−) in the right-hand side of an inclusion
assertion in T , then neither (funct U) nor (funct U−) might appear in T .

Intuitively, the condition says that, in DL-LiteA TBoxes, roles and features
occurring in functionality assertions cannot be specialized.

A DL-LiteA ABox consists of a set of membership assertions, which are used
to state the instances of concepts, roles, and features. Such assertions have the
form

A(a), P (a1, a2), F (a, c),

where a, a1, a2 are constants in ΓO, and c is a constant in ΓV .
A DL-LiteA ontology O is a pair 〈T ,A〉, where T is a DL-LiteA TBox, and

A is a DL-LiteA ABox all of whose atomic concepts, roles, and features occur
in T .

Semantics. Following the standard approach in DLs, the semantics of DL-LiteA
is given in terms of (First-Order) interpretations. All such interpretations agree
on the semantics assigned to each value-domain Ti and to each constant in ΓV .
In particular, each value-domain Ti is interpreted as the set val(Ti) of values
of the corresponding data type, and each constant ci ∈ ΓV is interpreted as
one specific value, denoted val(ci), in val(Ti). Then, an interpretation is a pair
I = (ΔI , ·I), where
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AI ⊆ ΔI
O

(∃R)I = { o | ∃o . (o, o ) ∈ RI }
(δ(F ))I = { o | ∃v. (o, v) ∈ F I }
(ρ(F ))I = { v | ∃o. (o, v) ∈ F I }

I
d = ΔI

V

T I
i = val(Ti)

P I ⊆ ΔI
O × ΔI

O

(P −)I = { (o, o ) | (o , o) ∈ P I }
F I ⊆ ΔI

O × ΔI
V

Fig. 5. Semantics of DL-LiteA expressions

– ΔI is the interpretation domain, which is the disjoint union of two non-empty
sets: ΔI

O, called the domain of objects, and ΔI
V , called the domain of values.

In turn, ΔI
V is the union of val(T1), . . . , val(Tn).

– ·I is the interpretation function, which assigns an element of ΔI to each
constant in Γ , a subset of ΔI to each concept and value-domain, and a subset
of ΔI × ΔI to each role and feature, in such a way that the following holds:

• for each c ∈ ΓV , cI = val(c),
• for each d ∈ ΓO, dI ∈ ΔI

O,
• for each a1, a2 ∈ Γ , a1 
= a2 implies aI

1 
= aI
2 , and

• the conditions shown in Fig. 5 are satisfied.

Note that the above definition implies that different constants are interpreted dif-
ferently in the domain, i.e., DL-LiteA adopts the so-called unique name assump-
tion (UNA).

To specify the semantics of an ontology, we define when an interpretation I
satisfies and assertion α, denoted I |= α.

– I satisfies a role, concept, feature, or value-domain inclusion assertion E1 �
E2 if EI

1 ⊆ EI
2 .

– I satisfies a role, concept, or feature disjointness assertion E1 � ¬E2 if EI
1 ∩

EI
2 = ∅.

– I satisfies a role functionality assertion (funct R), if for each o1, o2, o3 ∈ ΔI
O

(o1, o2) ∈ RI and (o1, o3) ∈ RI implies o2 = o3.

– I satisfies a feature functionality assertion (funct F ), if for each o ∈ ΔI
O and

v1, v2 ∈ ΔI
V

(o, v1) ∈ F I and (o, v2) ∈ F I implies v1 = v2.

– I satisfies a membership assertion

A(a), if aI ∈ AI ;
P (a1, a2), if (aI

1 , aI
2 ) ∈ P I ;

F (a, c), if (aI , cI) ∈ F I .

An interpretation I is a model of a DL-LiteA ontology O (resp., TBox T ,
ABox A), or, equivalently, I satisfies O (resp., T , A), written I |= O (resp.,
I |= T , I |= A) if and only if I satisfies all assertions in O (resp., T , A). The
semantics of a DL-LiteA ontology O = 〈T ,A〉 is the set of all models of O. Also,
we say that a concept, association, or feature E is satisfiable with respect to an
ontology O (resp., TBox T ), if O (resp., T ) admits a model I such that EI 
= ∅.
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3.2 Conceptual Data Models and Relationship to Ontology
Languages

We remind the reader that our aim is to use ontologies specified in a lightweight
language as conceptual views of the relational data sources that maintain the
data from which to extract XES logs. Moreover, the information about how to
extract the log information should be provided as easily interpretable annota-
tions of the ontology elements. To simplify the annotation activity, we exploit
the well investigated correspondence between (lightweight) ontology languages
and conceptual data modeling formalisms [7,28,29], and we specify the TBox of
the ontology in terms of a UML class diagram. The Unified Modeling Language
(UML)25 is a standardized formalism for capturing at the conceptual level vari-
ous aspects of information systems, and the UML standard provides also a well
established graphical notation which we can leverage. Specifically, we make use
of UML class diagrams, which are equipped with a formal semantics, provided,
e.g., in terms of first-order logic [29], and we show how they can be encoded as
DL-LiteA ontologies. Since we use UML class diagrams as conceptual modeling
formalisms, we abstract away those features that are only relevant in a software
engineering context (such as operations associated to classes, or public, pro-
tected, and private qualifiers for attributes), and we also make some simplifying
assumptions. In particular, considering that roles in ontology languages denote
binary relations, we consider only associations of arity 2; also, we deal only with
those multiplicities of associations that convey meaningful semantic aspects in
modeling, namely functional and mandatory participation to associations.

Classes and Data Types. A class in a UML class diagram denotes a set of
objects with common features. The specification of a class contains its name
and its attributes, each denoted by a name (possibly followed by the multiplic-
ity, between square brackets) and with an associated type, which indicates the
domain of the attribute values.

A UML class is represented by a DL concept. This follows naturally from the
fact that both UML classes and DL concepts denote sets of objects. Similarly, a
UML data type is formalized in DL-LiteA by a value domain.

Attributes. A UML attribute a of type T for a class C associates to each
instance of C, zero, one, or more instances of a data type T . An optional multi-
plicity [i..j] for a specifies that a associates to each instance of C, at least i and
most j instances of T . When the multiplicity for an attribute is missing, [1..1] is
assumed, i.e., the attribute is considered mandatory and single-valued.

To formalize attributes, we have to think of an attribute a of type T for
a class C as a binary relation between instances of C and instances of T . We
capture such a binary relation by means of a DL-LiteA feature aC . To specify

25 See http://www.omg.org/spec/UML/2.5/ for the latest version of UML at the
moment of writing.

http://www.omg.org/spec/UML/2.5/
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the type of the UML attribute we use the DL-LiteA assertions

δ(aC) � C and ρ(aC) � T.

Such assertions specify precisely that, for each instance (c, v) of the feature aC ,
the object c is an instance of concept C, and the value v is an instance of the
value domain T . Note that the attribute name a is not necessarily unique in the
whole diagram, and hence two different classes, say C1 and C2 could both have
attribute a, possibly of different types. This situation is correctly captured by
our DL formalization, where the attribute is contextualized to each class with a
distinct feature, i.e., aC1 and aC2 .

To specify that the attribute is mandatory, i.e., has minimum multiplicity 1,
we add the assertion

C � δ(aC),

which specifies that each instance of C participates necessarily at least once to
the feature aC . To specify that the attribute is single-valued, i.e., has maximum
multiplicity 1, we add the assertion

(funct aC).

Finally, if the attribute is both mandatory and single-valued, i.e., has multiplicity
[1..1], we use both assertions together, i.e., we add

C � δ(aC) and (funct aC).

C1 C2
A

n ..nu m ..mu

Fig. 6. UML association without association class

Associations. An association in UML is a relation between the instances of
two (or more) classes. An association often has a related association class, which
describes properties of the association, such as attributes, operations, etc. A
binary association A between the instances of two classes C1 and C2 is graphically
rendered as in Fig. 6, where the multiplicity m�..mu specifies that each instance
of class C1 can participate at least m� times and at most mu times to association
A. The multiplicity n�..nu has an analogous meaning for class C2. We consider
here only the most commonly used forms of multiplicities, namely those where 0
and 1 are the only involved numbers: 0..∗ (unconstrained, also abbreviated as ∗),
0..1 (functional participation), 1..∗ (mandatory participation), and 1..1 (one-to-
one correspondence, also abbreviated as 1).

An association A between classes C1 and C2 is formalized in DL-LiteA by
means of a role A on which we enforce the assertions

∃A � C1 and ∃A− � C2.
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To express the multiplicity m�..mu on the participation of instances of C2 for
each given instance of C1, we use the assertions

C1 � ∃A, if m� = 1, and
(funct A), if mu = 1.

We can use similar assertions for the multiplicity n�..nu on the participation of
instances of C1 for each given instance of C2, i.e.,

C1 � ∃A−, if n� = 1, and
(funct A−), if nu = 1.

C1 C2

A

A1

n ..nu

A2

m ..mu

Fig. 7. UML association with association class

Next we focus on an association with a related association class, as shown in
Fig. 7, where the class A is the association class related to the association, and
A1 and A2, if present, are the role names of C1 and C2 respectively, i.e., they
specify the role that each class plays within the association A.

We formalize in DL-LiteA an association A with an association class, by using
reification: we represent the association by means of a DL concept A, and we
introduce two DL roles, A1, A2, one for each role of A, which intuitively connect
an object representing an instance of the association to the instances of C1 and
C2, respectively, that participate to the association26. Then, we enforce that
each instance of A participates exactly once both to A1 and to A2, by means of
the assertions

A � ∃A1, (funct A1), A � ∃A2, (funct A2).

To represent that the association A is between classes C1 and C2, we use the
assertions

∃A1 � A, ∃A−
1 � C1, ∃A2 � A, ∃A−

2 � C2.

We observe that the above formalization does not guarantee that in every
interpretation I of the DL-LiteA TBox encoding the UML class diagram, each
instance of AI represents a distinct tuple in CI

1 ×CI
2 . However, this is not really

26 If the roles of the association are not specified in the UML class diagram, we may
use arbitrary fresh DL role names, each of which is identified by the name of the
association and the component.
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needed for the encoding to preserve satisfiability and answers to queries; we refer
to [7,29] for more details. We also observe that the encoding we have proposed
for binary associations with association class can immediately be extended to
represent also associations of any arity (with or without association class): it
suffices to introduce one role Ai for each component i of the association, and
add the respective assertions for every component.

We can easily represent in DL-LiteA also multiplicities on an association
with association class, by imposing suitable assertions on the inverses of the DL
roles modeling the roles of the association. For example, to express that there
is a one-to-one participation of instances of C1 in the association (with related
association class) A, we assert

C1 � ∃A−
1 and (funct A−

1 ).

Generalizations. In UML, one can use generalization between a parent class
and a child class to specify that each instance of the child class is also an instance
of the parent class. Hence, the instances of the child class inherits the properties
of the parent class, but typically they satisfy additional properties that in general
do not hold for the parent class.

Generalization is naturally supported in DLs. If a UML class C2 generalizes
a class C1, we can express this by the DL-LiteA assertion

C1 � C2.

Inheritance between DL concepts works exactly as inheritance between UML
classes. This is an obvious consequence of the semantics of ‘�’, which is based
on subsetting. As a consequence, in the formalization, each attribute of C2 and
each association involving C2 is correctly inherited by C1. Observe that the
formalization in DL-LiteA also captures directly multiple inheritance between
classes.

C

C1 C2 Cn

{disjoint}

. . .

Fig. 8. A class hierarchy in UML

Moreover in UML, one can group several generalizations into a class hierar-
chy, as shown in Fig. 8. Such a hierarchy is captured in DL by a set of inclusion
assertions, one between each child class and the parent class, i.e.,

Ci � C, for each i ∈ {1, . . . , n}.
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Often, when defining generalizations between classes, we need to add addi-
tional assertions among the involved classes. For example, for the class hierar-
chy in Fig. 8, an assertion may express that C1, . . . , Cn are pairwise disjoint. In
DL-LiteA, such a relationship can be expressed by the assertions

Ci � ¬Cj , for each i, j ∈ {1, . . . , n} with i < j.

In UML we may also want to express that a generalization hierarchy is complete,
i.e., that the subclasses C1, . . . , Cn are a covering of the superclass C. In order
to represent such a situation in DLs, one would need to express disjunctive
information, which however is ruled out in DL-LiteA. Hence, completeness of
generalization hierarchies cannot be captured in DL-LiteA.

Similarly to generalization between classes, UML allows one to state subset
assertions between associations. A subset assertion between two associations A
and A′ can be modeled in DL-LiteA by means of the role inclusion assertion
A � A′, involving the two DL roles A and A′ representing the associations.
When the two associations A and A′ are represented by means of association
classes, we would need to use the concept inclusion assertion A � A′, together
with the role inclusion assertions between the DL roles corresponding to the
components of A and A′. However, since the roles representing the components
of reified associations are functional, they cannot appear in (the right-hand side
of) a role inclusion assertion. Therefore, in DL-LiteA, we are able to capture
subset assertions between association classes only when (the association class
for) the child association connects the same concepts as the parent association,
so that we can use the same DL roles to represent the components of the child
and parent associations.

Correctness of the Encoding. The encoding we have provided is faithful, in
the sense that it fully preserves in the DL-LiteA ontology the semantics of the
UML class diagram. Obviously, since, due to reification, the ontology alphabet
may contain additional symbols with respect to those used in the UML class
diagram, the two specifications cannot have the same logical models. However,
it is possible to show that the logical models of a UML class diagram and those
of the DL-LiteA ontology derived from it correspond to each other, and hence
that satisfiability of a class or association in the UML diagram corresponds to
satisfiability of the corresponding concept or role [7,29].

Example 9. We illustrate the encoding of UML class diagrams in DL-LiteA
on the UML class diagram shown in Fig. 9, which depicts (a simplified version
of) the information model of the ConfSys conference submission system used
for our running example. We assume that the components of associations are
given from left to right and from top to bottom. Papers are represented through
the Paper class, with attributes title and type, both of type string. The subclass
DecidedPaper of Paper represents those papers for which an acceptance decision
has already been taken, and such a decision is characterized by the decTime and
accepted attributes, and by the unique person who has notified the decision. The
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Paper

title : String
type : String

Person

pName : String
regTime: ts

Assignment

invTime: ts
Submission

uploadTime: ts

CRUpload Creation

DecidedPaper

decTime: ts
accepted: boolean

notifiedBy
Review

subTime: ts

leadsTo

Conference

cName: String
crTime: ts

submittedTo

chairs

*

*

*

1..*

*

1

1

0..1

* 1

1

*

Fig. 9. Data model of our ConfSys running example

type of decTime is ts, which is the data type we use to represent timestamps.
Persons, characterized through their name and the time they have been regis-
tered in the system, are related to papers via the Assignment and the Submission
associations, which are both represented through association classes with corre-
sponding timestamps. Among the submissions, we distinguish those that are a
Creation and those that are a CRUpload (i.e., a camera-ready upload). Instead,
each assignment possibly leadsTo a Review, which has its submission time as
timestamp. Finally, each paper is submitted to exactly one conference, which is
represented through the association submittedTo with the class Conference and
the corresponding multiplicity, and each conference has a unique person who
chairs it.

We represent such a UML class diagrams through the DL-LiteA ontology
depicted in Fig. 10. �

3.3 Queries over DL-LiteA Ontologies

We are interested in queries over DL-LiteA ontologies (and hence, over the UML
class diagrams corresponding to such ontologies), and specifically in unions of
conjunctive queries, which correspond to unions of select-project-join queries in
relational algebra or SQL.

A First-Order Logic (FOL) query q over a DL-LiteA ontology O (resp., TBox
T ) is a, possibly open, FOL formula whose predicate symbols are atomic con-
cepts, value-domains, roles, or features of O (resp., T ). The arity of q is the
number of free variables in the formula. A query of arity 0 is called a boolean
query. When we want to make the free variables of q explicit, we denote the
query as q(�x).

A conjunctive query (CQ) q(�x) over a DL-LiteA ontology is a FOL query of
the form

∃�y. conj (�x, �y),
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Fig. 10. Encoding in DL-LiteA of the UML class diagram shown in Fig. 9

where �y is a tuple of pairwise distinct variables not occurring among the free
variables �x, and where conj (�x, �y) is a conjunction of atoms (whose predicates are
as specified above for FOL queries), possibly involving constants. The variables
�x are also called distinguished and the (existentially quantified) variables �y are
called non-distinguished.
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A union of conjunctive queries (UCQ) is a FOL query that is the disjunction
of a set of CQs of the same arity, i.e., it is a FOL formula of the form:

∃�y1. conj 1(�x, �y1) ∨ · · · ∨ ∃�yn. conjn(�x, �yn).

When convenient, we also use the Datalog notation for (U)CQs, i.e.,

q(�x) ← conj ′
1(�x, �y1)

...
q(�x) ← conj ′

n(�x, �yn)

where each conj ′
i(�x, �yi) in a CQ is considered simply as a set of atoms. In this

case, we say that q(�x) is the head of the query, and that each conj ′
i(�x, �yi) is the

body of the corresponding CQ.

Semantics of Queries. Given an interpretation I = (ΔI , ·I), the answer qI

to a FOL query q = ϕ(�x) of arity n is the set of tuples �o ∈ (ΔI)n such that ϕ
evaluates to true in I under the assignment that assigns each object in �o to the
corresponding variable in �x [30]. Notice that the answer to a boolean query is
either the empty tuple, “()”, considered as true, or the empty set, considered as
false.

We remark that a relational database (over the atomic concepts, roles, and
features) corresponds to a finite interpretation. Hence the notion of answer to
a query introduced here is the standard notion of answer to a query evaluated
over a relational database.

The notion of answer to a query is not sufficient to capture the situation where
a query is posed over an ontology, since in general an ontology will have many
models, and we cannot single out a unique interpretation (or database) over
which to answer the query. Given a query, we are interested in those answers that
are obtained for all possible databases (including infinite ones) that are models
of the ontology. This corresponds to the fact that the ontology conveys only
incomplete information about the domain of interest, and we want to guarantee
that the answers to a query that we obtain are certain, independently of how we
complete this incomplete information. This leads us to the following definition
of certain answers to a query over an ontology.

Let O be a DL-LiteA ontology and q a UCQ over O. The certain answer to
q over O, denoted cert(q,O), consist of all tuples �c of constants appearing in O
such that �cI ∈ qI , for every model I of O.

Remarks on Notation. In the following, as a concrete syntax for specifying
CQs and UCQs, we use sparql, which is the standard query language defined
by the W3C to access RDF data27. In sparql notation, atoms over unary and
binary predicates are given in terms of RDF triples, and a conjunction of atoms

27 https://www.w3.org/TR/sparql11-overview/.

https://www.w3.org/TR/sparql11-overview/
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constitutes a so-called basic graph pattern. Specifically, a concept atom A(t),
where t is a variable or constant, is specified as the triple t rdf:type A,
which involves the pre-defined predicate rdf:type (intuitively standing for
“is instance of”). Instead, a binary atom U(t1, t2), where U is either a role or
a feature and t1, t2 are variables or constants, is specified as the triple t1 U t2.
Note that, in sparql notation, variables names have to start with ‘?’, and each
triple terminates with ‘.’.

We observe that in the example UML class diagram in Fig. 9 and in its
DL-LiteA encoding in Fig. 10, we have used abstract names for classes/concepts,
associations/roles, attributes/features, and data types, and we have represented
them using a slanted font. Later, when we describe how these elements are
implemented in our prototype system, we introduce also a concrete syntax, for
which we use a typewriter font. Data types in the abstract syntax are specified
using simple intuitive names, such as String, Integer, and ts (for time stamps),
while in the concrete syntax we refer to the standard data types of the ontology
languages of the OWL 2 family, such as xsd:string. We view identifiers written
in the abstract and in the concrete syntax as identifical, despite the difference in
the used fonts. In the concrete syntax, where appropriate, we also make use of
RDF namespaces, which are used as a prefix to identifier names for the purpose
of disambiguation. A namespace is separated from the identifier it applies to by
‘:’. It is common to precede an identifier just by ‘:’ to denote that the default
namespace applies to it, and we will also adopt this convention, even when we
do not explicitly introduce or name the default namespace.

3.4 Linking Ontologies to Data

We describe now how to provide the declarative mapping specification M, which
establishes the connection between the conceptual data schema (or TBox) T
and the underlying information system I. Such a mapping specification actually
serves two purposes:

1. It specifies how to extract data from the database D of I.
2. It specifies how to use the extracted data to (virtually) populate the elements

of T .

In populating the elements of T , also the so-called impedance mismatch prob-
lem is taken into account, i.e., the mismatch between the way in which data is
represented in D, and the way in which the corresponding information is rendered
through the conceptual data schema T . Indeed, the mapping specification keeps
data value constants separate from object identifiers (i.e., URIs), and constructs
identifiers as (logic) terms over data values. More precisely, object identifiers are
terms of the form t(d1, . . . , dn), called object terms, where t is a function symbol
of arity n > 0, and d1, . . . , dn are data values from the data source. Concretely,
such function symbols are realized through suitable templates containing place-
holders for the data values, which result in a valid URI when the placeholders
are substituted with actual values.
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Specifically, the mapping specification consists of a set of mapping assertions,
each of the form

Φ(�x) � G(�t(�y))

where

– Φ(�x), called the source part of the mapping assertion, is an SQL query28 over
the db schema R, with answer variables �x, and

– G(�t(�y)), called the target part of the mapping, is a conjunction of atoms whose
predicate symbols are atomic concepts, roles, and features of the conceptual
data schema T , and where �t(�y) represents the arguments of the predicates in
the atoms. Specifically, the variables �y are among the answer variables �x of the
query in the source part, and �t(�y) represents terms that are either variables
in �y, constants, or are obtained by applying URI templates to variables in �y
and constants.

We distinguish three different types of atoms that may appear in the target part
G(�t(�y)) of the mapping assertion, and we specify them as sparql triple patterns:

– concept atoms, which are unary atoms of the form t(�y′) rdf:type A, where
A is an atomic concept, t is a URI template with m placeholders, and �y′ is a
sequence of m variables among �y or constants;

– role atoms, which are binary atoms of the form t1(�y1) P t2(�y2), where P is
an atomic role, t1 is a URI template with m1 > 0 placeholders, and �y1 is a
sequence of m1 variables appearing in �y or constants; similarly for t2, m2,
and �y2;

– feature atoms, which are binary atoms of the form t(�y1) F v2, where F is
an atomic feature, t is a URI templage with m1 > 0 placeholders, �y1 is a
sequence of m1 variables appearing in �y or constants, and v2 is a variable
appearing in �y or a constant.

Intuitively, mapping assertions involving such atoms are used to map source rela-
tions (and the tuples they store), to concepts, roles, and features of the ontology
(and the objects and the values that constitute their instances), respectively.
Note that for a feature atom, the type of values retrieved from the source data-
base is not specified, and needs to be determined based on the data type of the
variable v2 in the source query Φ(�x).

Example 10. Consider the ConfSys running example, and an information sys-
tem whose db schema R consists of the eight relational tables shown in Fig. 11.
We give some examples of mapping assertions:

– The following mapping assertion explicitly populates the concept Creation.
The term :submission/{oid} in the target part represents a URI template
with one placeholder, {oid}, which gets replaced with the values for oid

28 The formal counterpart of such an SQL query is a first-order logic (FOL) query with
distinguished variables �x.
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ACCEPTANCE

ID uploadtime user paper

CONFERENCE

ID name organizer time

DECISION

ID decisiontime chair outcome

LOGIN

ID user CT

SUBMISSION

ID uploadtime user paper

PAPER

ID title CT user conf type status

REVIEW

ID RRid submissiontime

REVIEWREQUEST

ID invitationtime reviewer paper

Fig. 11. DB schema for the information system of the conference submission system.
Primary keys are underlined and foreign keys are shown in italic

retrieved through the source query. This mapping expresses that each value
in SUBMISSION identified by oid and such that its upload time equals the cor-
responding paper’s creation time, is mapped to an object :submission/oid,
which becomes an instance of concept Creation in T .

SELECT DISTINCT SUBMISSION.ID AS oid
FROM SUBMISSION, PAPER
WHERE SUBMISSION.PAPER = PAPER.ID

AND SUBMISSION.UPLOADTIME = PAPER.CT
� :submission/{oid} rdf:type :Creation .

– The following mapping assertion retrieves from the PAPER table instances of
the concept Paper, and instantiates also their features title and type with
values of type String.

SELECT ID, title, type
FROM PAPER
� :paper/{ID} rdf:type :Paper .

:paper/{ID} :title {title}ˆˆxsd:string .
:paper/{ID} :type {type}ˆˆxsd:string .

– The following mapping assertion retrieves from the SUBMISSION table
instances of the concept Submission, together with their upload time.

SELECT ID, uploadtime
FROM SUBMISSION
� :submission/{ID} rdf:type :Submission .

:submission/{ID} :uploadTime {uploadtime}ˆˆxsd:dateTime .

– Finally, the following mapping assertion retrieves instances of the first compo-
nent of the reified association Submission, which are pairs of URIs consisting
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of an instance of the concept Submission, representing the association class,
and of an instance of the concept Paper.

SELECT ID, paper
FROM SUBMISSION
� :submission/{ID} :Submission1 :paper/{paper} .

We omit the specification of the mapping assertions for the remaining elements
of the conceptual data schema. �

3.5 Processing of Conceptual Queries

When M is fully defined, it can be used for two purposes. On the one hand,
it explicitly documents how the structure of the company information system
has to be conceptually understood in terms of domain concepts and relations
specified in the conceptual data schema T , and thus constitutes an asset for
the company that itself might be worth an investment [31]. On the other hand,
S = 〈R, T ,M〉 constitutes what we call an OBDA schema, which completely
decouples end users from the details of the information system (cf. Fig. 15).
Adding to the OBDA schema a database D that conforms to the database schema
R, i.e., replacing R with an information system I, we obtain what we call an
OBDA model B = 〈I, T ,M〉. Whenever a user poses a conceptual query q (e.g.,
expressed in sparql) over T , an OBDA system exploits the OBDA model to
answer such query in terms of the data stored in the underlying database D. We
sketch now the technique for answering queries in such an OBDA setting [6,7].

We start with the following observation. Suppose we evaluate (over D) the
queries in the source part of the mapping assertions of M, and we materialize
accordingly the corresponding facts in the target part. This would lead to a set
of ground facts, denoted by AM,D, that can be considered as a DL-LiteA ABox.
It can be shown that query answering over B can be reduced to computing the
certain answers over the DL-LiteA ontology O = 〈T ,AM,D〉 constituted by the
TBox T and the ABox AM,D. However, the query answering algorithm resulting
from this approach would need to perform a materialization of AM,D, which in
general is polynomial in the size of the potentially very large database D, and
this might not be practically feasible. However, we can avoid any materializa-
tion of the ABox, and rather answer a query q over T by reformulating it into a
new query that can then be evaluated directly over the database D. The result-
ing query answering algorithm is in general much more efficient than the one
based on materialization, and is conceptually divided into three phases, namely
rewriting, unfolding, and evaluation, which we briefly describe below.

Rewriting. Given a UCQ q formulated over the conceptual data schema T
of an OBDA schema S = 〈R, T ,M〉, and a database D for R, the rewriting
step computes a new UCQ q1, still over T , in which the logical assertions of
T are compiled in. In computing the rewriting, only inclusion assertions of the
form E1 � E2 are taken into account, while disjointness assertions E1 � ¬E2
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and functionality assertions (funct Q) are not considered. Intuitively, the query
q is rewritten, according to the knowledge specified in T that is relevant for
answering q, into a query q1 such that cert(q, 〈T ,A〉) = qA

1 for every ABox A
for T , where qA

1 denotes the evaluation of q1 over A, carried out as if A was a
relational database (i.e., under complete knowledge). Hence, the rewriting allows
us to get rid of T .

Different query rewriting algorithms have been proposed in the literature,
since the first variants that have been presented in [6,25], to which we refer for
more details. We only notice that the rewriting procedure does not depend on the
source database D, runs in polynomial time in the size of T , and returns a query
q1 whose size is at most exponential in the size of q (which is also worst-case
optimal [32]).

Unfolding. Given the UCQ q1 over T computed by the rewriting step, the
unfolding step computes, by exploiting the mapping specification M and using
techniques based on partial evaluation of logic programs, an SQL query q2 that
can be directly evaluated over the db schema R. Such a query might return,
in addition to values retrieved from D, also URIs constructed according to the
URI templates in M. Specifically, the query q2 is constructed in such a way that
qD
2 = q

AM,D
1 . Hence, the unfolding allows us to get rid of M. Moreover, also the

unfolding procedure does not depend on D, runs in polynomial time in the size
of M, and returns a query whose size is at most exponential in the size of q1.

Evaluation. The evaluation step consists in simply delegating the evaluation
of the SQL query q2, produced by applying first the rewriting step and then
the unfolding step, to the RDBMS underlying the information system of the
OBDA model. This evaluation step returns qD

2 , which is simply the set of tuples
resulting from the evaluation of q2 over D.

Correctness and Complexity of Query Answering. The procedure for
processing queries formulated over the conceptual data schema of an OBDA
model described above correctly computes the certain answers to UCQs, and
it does so by reducing the problem to one of evaluating an SQL query over a
relational database. Indeed, we have that qD

2 = q
AM,D
1 = cert(q, 〈T ,AM,D〉),

and the latter expression corresponds to the answers of Q over B. This means
that the problem of computing certain answers to UCQs over an OBDA model
is First-Order (FO) rewritable.

We have (implicitly) assumed that, given the database D, the OBDA model
B is consistent, i.e., that the ontology 〈T ,AM,D〉 admits at least one model.
Notably, it can be shown that the machinery developed for query answering
can also be used for checking consistency of B. Therefore, checking consistency
can also be reduced to evaluating appropriate SQL queries over the underlying
relational database D [6,25].

Although the presented query answering technique is computationally worst-
case optimal, the increase in size of the queries produced by the rewriting and
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unfolding steps poses a significant practical challenge. Therefore, a lot of effort
has been spent recently in studying the problem of query answering in OBDA
and in devising optimization techniques and alternative query transformation
approaches that allow for efficient query processing. Discussing these aspects in
detail is beyond the scope of the present work, and we refer to the extensive lit-
erature on the topic, e.g., [8,33–35]. We remark, however, that many of the opti-
mized techniques for query answering in OBDA have been implemented, both
in freely available and in commercial systems. Notable examples are D2RQ29,
Mastro30, Ultrawrap31, Morph-RDB32, and ontop33.

For the implementation of the prototype tools for the preparation phase
of process mining based on OBDA that we are discussing in this paper, we
rely on the ontop system, which is a state-of-the-art OBDA system available
under the very liberal Apache 2 licence. ontop implements the query rewriting
and unfolding algorithms discussed above, together with an extensive set of
optimization techniques, which are aimed on the one hand at reducing the size
of the SQL queries generated by the system, and on the other hand at producing
queries that are efficiently executable by relational database engines. We refer
to [8] for an in depth discussion of ontop.

4 OBDA for Log Extraction: The onprom Approach

We are now in the position of illustrating how OBDA can be effectively applied to
the data preparation phase of process mining. The resulting framework, called
onprom, is based on the seminal results in [9,36]. We start by recalling the
methodological steps that are foreseen by onprom, and move then to the formal
model and the corresponding toolchain.

4.1 Methodology

The onprom methodology, sketched in Fig. 12, aims at the semi-automatic extrac-
tion of event logs from a legacy information system, reflecting different process-
related views on the same data, and consequently supporting analysts in the
application of process mining along multiple perspectives.

The methodology comprises four main phases. The first phase is about under-
standing the meaning of the data stored in the information system at hand. Con-
cretely, it consists of the definition of an OBDA model (cf. Sect. 3), on the one
hand providing a conceptual data schema to semantically describe the domain
of interest, and on the other hand linking such a data schema to the underly-
ing information system. While this is in general a labor-intensive, purely human

29 http://d2rq.org.
30 http://www.dis.uniroma1.it/∼mastro.
31 http://capsenta.com.
32 https://github.com/oeg-upm/morph-rdb.
33 http://ontop.inf.unibz.it.

http://d2rq.org
http://www.dis.uniroma1.it/~mastro
http://capsenta.com
https://github.com/oeg-upm/morph-rdb
http://ontop.inf.unibz.it
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Fig. 12. The onprom methodology and its four phases

activity, if the information system has a “high-level” structure that is under-
standable by domain experts, such an activity can be partially automatized
through bootstrapping techniques [37]. These techniques mirror the schema of
the information system into a corresponding conceptual data schema, at the
same time generating (identity) mappings to link the two specifications. The
result of bootstrapping can then be manually refined.

Once the first phase is completed, process analysts and the other involved
stakeholders do not need anymore to consider the structure of the legacy infor-
mation system, but directly focus on the conceptual data schema. Remember,
in fact, that the OBDA paradigm allows one to formulate queries over the con-
ceptual data schema, getting back answers expressed over such a schema but
computed over the underlying legacy data.

The goal of the second phase is then to decide which perspective on the data
has to be considered for the analysis, singling out, among all possible alternatives,
which entities and relationships define the desired notion of case object, and
which other conditions have to be defined so as to properly confine the analysis.
Recall that a case object represents the main object that is evolved by an instance
of the process of interest. E.g., by considering our ConfSys running example,
one may decide to focus on the flow of papers submitted to a given conference,
or instead tailor the analysis to the flow of operations performed by persons who
registered to the conference management system between 2012 and 2015.

4.2 Event Ontology

Since the final goal of data extraction is the generation of a XES event log, the
necessary basis for the application of the onprom methodology is to conceptually
clarify which key concepts and relations are part of the XES standard. To this
end, a (conceptual) event schema is introduced. We denote such an event schema
by E . We will see later how such a schema is used to support the semi-automated
extraction of an event log from legacy data.
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Figure 13 shows the core elements of the event schema:

– trace, accounting for the evolution of a case through events;
– event, capturing an atomic step of execution for a case;
– (simple) attributes, attaching relevant data to traces and events.

Each attribute comes with a key-value pair, and with the characterization of the
type taken by the value.

Attribute

attKey: String
attType: String
attValue: String

EventTrace

e-has-at-has-a

t-contains-e

0..*

0..*

0..*

0..*

*..0*..1

Fig. 13. Core event schema

We show now how such a simple schema can be suitably encoded in DL-LiteA.
To encode the core event schema of Fig. 13, the three concept names Trace,
Event, and Attribute are used. In addition, the role names e-has-a, t-has-a, and
t-contains-e are used to capture the binary relations among such concepts. To
restrict the usage of those role names, the following domain/range axioms are
imposed:

∃e-has-a � Event ∃e-has-a− � Attribute
∃t-has-a � Trace ∃t-has-a− � Attribute

∃t-contains-e � Trace ∃t-contains-e− � Event

Additionally, the following axiom captures that no dangling event may exist,
i.e., that each event is assigned to at least one trace:

Event � ∃t-contains-e−

The typing axioms of the three DL features of the Attribute concept are:

δ(attKey) � Attribute ρ(attKey) � String
δ(attType) � Attribute ρ(attType) � String
δ(attValue) � Attribute ρ(attValue) � String

Recall, in fact, that XES attribute values are always stored as strings, while
the type information indicates how such string may be parsed into more specific
data types.
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Fig. 14. A more comprehensive event schema, capturing all main abstractions of the
XES standard

Finally, by recalling that, in UML, the default multiplicity for an attribute of
a class is 1..1, the linkage between the Attribute concept and its three features
is captured by the following axioms:

Attribute � δ(attKey) (funct attKey)
Attribute � δ(attType) (funct attType)
Attribute � δ(attValue) (funct attValue)

Figure 14 shows a richer event schema that more comprehensively captures
the XES standard, including classifiers, global and composite attributes, as well
as extensions. However, in the remainder of the paper we will just employ the
concepts, relations, and features of the core event schema, making use of the
following recurrent attributes to capture key event data, which are encapsulated
by XES into specific extensions:

– timestamp attribute, keeping track of when the event occurred;
– activity attribute, indicating to which activity the event refers;
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– transition attribute, denoting the type of the event within the lifecycle of the
corresponding activity (e.g., whether the event refers to the start, termination,
or cancellation of an instance of that activity);

– resource attribute, indicating the name of the agent responsible for the event
occurrence.

4.3 The onprom Model

We describe now the onprom model, whose key elements and their respective
relations are depicted in Fig. 15.

We start from the assumption that the data of interest for the analysis is
maintained in a legacy information system I = 〈R,D〉, with schema R and set D
of facts about the domain of interest. In the typical case where the information
system is a relational database, R accounts for the schema of the tables and
their columns, and D is a set of data structured according to such tables. On
top of I, our methodology is centered on the usage of conceptual models in
two respects. First, they are used as documentation artifacts that explicitly
capture not only knowledge about the domain of interest, but also how legacy
information systems relate to that knowledge. This facilitates understanding and
interaction among human stakeholders. Second, conceptual models are used as

D
(database)

R
(db schema)

conforms to

M
(mapping specification)

T
(conceptual data schema)

L
(event-data annotations)

P (onprom model)

E
(conceptual event schema)

annotates

points to

ME
P

(log mapping specification)

I (information system)

B (OBDA model)

Fig. 15. Sketch of the onprom model. The dashed mapping specification is automati-
cally generated
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computational artifacts, that is, to automatize the extraction process as much
as possible.

The first phase of the methodology consists in the creation of two concep-
tual models. The first one is the conceptual data schema T , which accounts for
the structural knowledge of the domain of interest, i.e., relevant concepts and
relations, consequently providing a high-level view of I that is closer to domain
experts. More specifically, we employ UML class diagrams as a concrete language
for conceptual data modeling, and we provide their logic-based, formal encoding
in terms of the OWL 2 QL ontology language, as illustrated in Sect. 3.2. In the
following, depending on the context, we refer to T as a UML class diagram or
as the corresponding OWL 2 QL ontology.

The second conceptual model, the mapping specification M, is a distinctive
feature introduced by our approach, borrowed from the area of OBDA. As illus-
trated in Sect. 3.4, M, which explicitly links I to T , consists of a set of logical
assertions that map patterns of data over schema R to high-level facts over T .

Once the OBDA system is in place, onprom allows one to abstract away the
information system. In this way, the analyst responsible for the data extraction
can directly focus on T , using the concepts and relations contained therein so
as to concretely formulate which perspective has to be taken towards process
mining. More specifically, this amounts to enrich T with annotations L, each
creating an implicit link between T and the core portion of the event schema E
captured in Fig. 13. In this light, each annotation expresses one of the following
aspects:

– definition of a case, indicating which class provides the basis to identify case
objects, and which conditions have to be satisfied by instances of the selected
class so as to classify them as case objects;

– definition of an event, indicating which class provides the basis to identify
occurrences of such an event;

– definition of an event attribute, indicating which navigational route has to
be followed within the diagram so as to fetch the value for such an attribute
given an instance of the corresponding event.

We consider each type of annotation next.

Case Annotation specifies which class constitutes the main entry point for
the analysis, and which additional conditions have to be considered when iden-
tifying cases. Each object instantiating this so-called case class, and satisfying
the additional conditions, is a case object. Each case object, in turn, is used to
correlate the event of interest, grouping into a single trace all the events that
refer to the same case object.

Event Annotations pinpoint which events of interest characterise the evolu-
tion of the selected case objects, and to which classes of T they are attached.
Only classes that obey to the following two conditions are eligible to be tar-
get for an event annotation, i.e., to be marked as event classes. First, the class
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has to be navigationally connected to the case class. A navigational connection
consists of the concatenation of multiple links (i.e., associations or IS-A gener-
alisations), each time imposing that the target class of the current link becomes
the source of the next link. Second, the class has to be navigationally connected
to a timestamp attribute, through functional associations only.

The first condition is used to establish a relationship between case objects
and their related events. The second condition is used to unambiguously identify
the execution times associated to those events. It is important to notice that, for
both navigations, the concatenated associations may be optional. In this light,
only those objects falling under the scope of the annotation, and corresponding
to an actual timestamp and to at least one case object, are considered as events.
This is used to account for the fact that cases may be still running (i.e., with
events that did not occur yet, but that will occur in the future), and that different
cases may very well contain different events.

Attribute Annotations capture how to connect events to corresponding val-
ues for their characteristic attributes. Each annotation of this form comes with
a key that defines the type of targeted attribute, and the specification of a nav-
igational connection to fetch its corresponding value(s). Each event annotation
comes with three mandatory attribute annotations, respectively used to capture
the relationship between the event and its corresponding case(s), timestamp,
and activity. As pointed out before, the timestamp annotation needs to have a
functional navigation. This also applies to the activity annotation, with the only
difference that, instead of providing a functional navigation, the activity annota-
tion may also be filled with a constant string that independently fixes the name
of activity. Beside such three mandatory attributes, additional optional attribute
annotations may be provided, so as to cover the various standard extensions pro-
vided XES, including the link to a transition within the activity transactional
lifecycle, as well as resource information, in turn constituted by the resource
name and/or role.

Example 11. Consider again our ConfSys case study, and in particular the
data model shown in Fig. 9, under the assumption that the focus of process min-
ing is to analyse the flow of papers within ConfSys, from their creation and
submission to their final judgement. An informal account of the different anno-
tations reflecting this perspective on the data is given in Fig. 16. In particular,
the case annotation clearly depicts that each Paper is a case object. On top of
this choice for cases, four types of events are identified:

– Each instance of DecidedPaper may determine a Decision event occurring for
that paper instance at the given decision time (attribute decTime). Notice
that, in this case, the case class is directly reached from DecidedPaper through
its IS-A relationship.
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Paper

title : String
type : String

Person

pName : String
regTime: ts

Assignment

invTime: ts
Submission

uploadTime: ts

CRUpload Creation

DecidedPaper

decTime: ts
accepted: boolean

notifiedBy
Review

subTime: ts

leadsTo

Conference

cName: String
crTime: ts

submittedTo

chairs

Case
Event Submission
Timestamp: uploadTime
Case: Submission1

Event Review
Timestamp: subTime
Case: leadsTo− →Assignment1

Event Creation
Timestamp: uploadTime
Case: Submission→Submission1

Event Decision
Timestamp: decTime
Case: Paper

*

*

*

1..*

*

1

1

0..1

* 1

1

*

Fig. 16. Annotated data model of our ConfSys running example

– Each instance of Creation may determine a Creation event for the paper that
is reached by concatenating the IS-A relationship pointing to Submission,
together with the Submission association (class), navigating it towards Paper.
The event occurs at the upload time attached to the Submission parent class
(attribute uploadTime in Submission).

– Each instance of Submission may determine a Submission for the paper that
is obtained by simply navigating the association class Submission towards
Paper. Similar to the previous annotation, also events of this type occur at
the upload time (attribute uploadTime) for the submission.

– Finally, each instance of Review may determine a Review event for the paper
that is obtained by navigating backward the leadsTo association, in turn nav-
igating the Assignment association (class) towards Paper. The event comes
with the timestamp of submission for that review (attribute subTime). �

Example 12. A completely different set of annotations would be devised on
top of the ConfSys data model in Fig. 9, when considering a class different
than Paper to identify cases. For example, one may focus on the flow of opera-
tions performed by users of ConfSys, by declaring Person to be the case class.
Alternatively, one may consider the flow of review invitations and submissions,
by declaring Assignment to be the case class. All such different choices would
in turn result in different relevant events and corresponding event/attribute
annotations. �
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4.4 Formalising Event-Data Annotations

As we have seen, the different event-data annotations enrich the conceptual
data schema T by indicating which classes, associations, and attributes in T
contribute to the identification of cases, events, and event attributes. Towards
the automated processing of such annotations, and the consequent automated
extraction of an XES event log reflecting such annotations, the first step is to
formally represent the annotations using a machine-processable language. To
this end, we rely on conjunctive queries encoded as sparql SELECT queries.
Such queries are used to extract objects/values targeted by the annotations,
and thus change depending on the type of annotation (cf. Sect. 4.3). We review
each annotation type next.

Case Annotations are tackled by sparql SELECT queries with a single answer
variable, which matches with the intended case objects, i.e., instances of the case
class. Additional filters can be expressed in the WHERE clause to single out the
boundaries of the analysis (e.g., only papers submitted to a given conference, or
within a given timespan, may be considered when analysing ConfSys).

Example 13. The case annotation captured in Fig. 16 can be formalised using
the following query:

PREFIX : <http://www.example.com/>
SELECT DISTINCT ?case
WHERE {

?case rdf:type :Paper .
}

which retrieves all instances of the Paper class. �

Event Annotations are also tackled using sparql SELECT queries with a single
answer variable, this time matching with actual event identifiers, i.e., objects
denoting occurrences of events.

Example 14. Consider the event annotation for creation, as shown in Fig. 16.
The actual events for this annotation are retrieved using the following query:

PREFIX : <http://www.example.com/>
SELECT DISTINCT ?creationEvent
WHERE {

?creationEvent rdf:type :Creation .
}

which in fact returns all instances of the Creation class. �



OBDA for Log Extraction in Process Mining 335

Attribute Annotations are formalised using sparql SELECT queries with two
answer variables, establishing a relation between events and their correspond-
ing attribute values. In this light, for timestamp and activity attribute annota-
tions, the second answer variable will be substituted by corresponding values for
timestamps/activity names. For case attribute annotations, instead, the second
answer variable will be substituted by case objects, thus establishing a relation-
ship between events and the case(s) they belong to.

Example 15. Consider again the annotation for creation events, as shown
in Fig. 16. The relationship between creation events and their corresponding
timestamps is established by the following query:

PREFIX : <http://www.example.com/>
SELECT DISTINCT ?creationEvent ?creationTime
WHERE {

?creationEvent rdf:type :Creation .
?creationEvent :Submission1 ?Paper .
?creationEvent :uploadTime ?creationTime .

}

which indeed retrieves all instances of Creation, together with the corresponding
values taken by the uploadTime attribute. �

In the remainder of the paper, a sparql query q formalising an annotation l
is called the annotation query for l. Given a set L of annotations, we denote by
Lq the set of annotation queries formalising the different annotations in L.

4.5 Automated Processing of Annotations

Once the data-annotation step is concluded, the conceptual data schema T of
the input OBDA system 〈I, T ,M〉 is enriched with annotations L that implicitly
link such a system to the event schema E that conceptually accounts for the main
concepts and relations of the XES standard (cf. Sect. 4.2). We now show how
such event-data annotations can be automatically processed, so as to synthesise
a new OBDA system that directly maps the data in I to the event schema E
(cf. the dashed part of Fig. 15). This OBDA system, in turn, can be exploited
to query the data in I as they were structured as a XES event log, and also to
actually materialise such an event log.

Technically, onprom takes as input an onprom model P = 〈I, T ,M,L〉 and
the event schema E , and produces new OBDA system 〈I,ME

P , E〉, where the
annotations in L are automatically reformulated as OBDA mappings ME

P that
directly link I to E . Such mappings are synthesised using the three-step approach
described next.

In the first step, the sparql queries formalising the annotations in L are refor-
mulated into corresponding SQL queries posed directly over I. This is done by rely-
ing on standard query rewriting and unfolding, where each sparql query q ∈ Lq is
rewritten considering the contribution of the conceptual data schema T , and then
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unfolded using the mappings in M. The resulting query qsql can then be posed
directly over I so as to retrieve the data associated to the corresponding annota-
tion. In the following, we denote the set of all so-obtained SQL queries as Lsql.

Example 16. Consider the sparql query in Example 13, formalising the event
annotation that accounts for the creation of papers. A possible reformulation of
the rewriting and unfolding of such a query respectively using the conceptual
data schema in Fig. 9, and the mappings from Example 10, is the following SQL
query:

SELECT DISTINCT
CONCAT(’http://www.example.com/submission/
’,Submission."ID")
AS "creationEvent"
FROM Submission, Paper
WHERE Submission."Paper" = Paper."ID" AND

Submission."UploadTime" = Paper."CT" AND
Submission."ID" IS NOT NULL

This query is generated by the ontop OBDA system, which applies various opti-
misations so as to obtain a final SQL query that is not only correct, but also
possibly compact and fast to process by a standard DBMS. One such optimisa-
tions is the application of conjunctive query containment techniques to remove
parts of the query that are subsumed by others. �

The second step towards the synthesis of ME
P amounts to the creation of

the actual, direct mappings from I to E . Each mapping, in turn, is obtained by
considering one of the reformulated annotation queries in Lsql, and constructed
depending on the corresponding annotation type. In the obtained mapping, the
SQL query constitutes the source part of the mapping, while the annotation type
indicates which concepts/roles/features have to be considered to form its target
part.

More specifically, ME
P is obtained from Lsql as follows:

1. For each SQL query q(c) ∈ Lsql obtained from a case annotation, we insert
into ME

P the following OBDA mapping:

q(c)
� :trace/{c} rdf:type :Trace .

Intuitively, such a mapping populates the concept Trace in E with the case
objects that are created from the answers returned by query q(c).

2. For each SQL query q(e) ∈ Lsql that is obtained from an event annotation,
we insert into ME

P the following OBDA mapping:

q(e)
� :event/{e} rdf:type :Event .

Intuitively, such a mapping populates the concept Event in E with the event
objects that are created from the answers returned by query q(e).
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3. For each SQL query q(e,y) ∈ Lsql that is obtained from an attribute anno-
tation, we insert into ME

P a mapping that depends on the type of attribute:
(a) If q(e,y) is the query obtained from a case attribute annotation (i.e., e

is bound to events, and y to their corresponding cases), then the mapping
has the following form:

q(e,y)
� :trace/{y :t-contains-e :event/{e} .

Intuitively, such a mapping populates the the relation that links traces
and events in E (i.e., the role t-contains-e) with the answers returned by
query q(e,y).

(b) If q(e,y) is the query obtained from a timestamp attribute annotation
(i.e., e is bound to events, and y to their corresponding execution times),
then the mapping has the following form:

q(e,y)
� :event/{e} :e-has-a :att/eventTS/{e}/{y};

:att/eventTS/{e}/{y} :attType "date"ˆˆxsd:string;
:attKey "time:timestamp"ˆˆxsd:string;
:attVal "{y}"ˆˆxsd:string .

Intuitively, such a mapping populates the concept Attribute with the
objects representing timestamp attributes. at the same time, it also suit-
ably reconstruct the event-timestamp relationship at the level of E , using
the answers returned by query q(e,y).

(c) If q(e,n) is the query obtained from an activity attribute annotation (i.e.,
e is bound to events, and n to their corresponding activity names), then
the mapping has the following form:

q(e,n)
� :event/{e} :e-has-a :att/aName/{e}/{n};

:att/aName/{e}/{n} :attType "string"ˆˆxsd:string;
:attKey "concept:name"ˆˆxsd:string;
:attVal "{n}"ˆˆxsd:string .

It is worth noting that the presented approach can be straightforwardly gen-
eralised to cover additional types of annotations (e.g., dealing with the activity
transactional lifecycle, or the involved resources).

The third, final step consists in leveraging the synthesised OBDA system
〈I, E ,ME

P〉 so as to extract the event data of interest. The extraction can be
declaratively guided by formulating sparql queries over the vocabulary of E
and, if needed, serialising the obtained answers in the form of an XES event log.
We provide, in the following, a list of sparql queries serving this purpose.

The sparql query below retrieves events and their attributes, considering
only those events that do actually have a reference trace, timestamp, and activity
name:

PREFIX : <http://onprom.inf.unibz.it>
SELECT DISTINCT ?event ?att
WHERE {

?trace :t-contain-e ?event.
?event :e-has-a ?att.
?event :e-has-a ?timestamp. ?timestamp :attKey "time:timestamp"ˆˆxsd:string.
?event :e-has-a ?name. ?name :attKey "concept:name"ˆˆxsd:string.

}
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The WHERE clause is used to filter away dangling events (i.e., events for which
the corresponding case is not known), or events with missing timestamp or miss-
ing activity name.

The following query is instead meant to retrieve (elementary) attributes,
considering in particular their key, type, and value.

PREFIX : <http://www.example.org/>
SELECT DISTINCT ?att ?attType ?attKey ?attValue
WHERE {

?att rdf:type :Attribute;
:attType ?attType;
:attKey ?attKey;
:attVal ?attValue.

}

The following query handles the retrieval of empty and nonempty traces,
simultaneously obtaining, for nonempty traces, their constitutive events:

PREFIX : <http://www.example.org/>
SELECT DISTINCT ?trace ?event
WHERE {

?trace a :Trace .
OPTIONAL {

?trace :t-contain-e ?event .
?event :e-contain-a ?timestamp .

?timestamp :attKey "time:timestamp"ˆˆxsd:string .
?event :e-contain-a ?name .

?name :attKey "concept:name"ˆˆxsd:string .
}

}

4.6 The onprom Toolchain

onprom comes with a toolchain that supports the various phases of the method-
ology shown in Fig. 12, and in particular implements the automated processing
technique for annotations discussed in Sect. 4.5. The toolchain is open source and
can be downloaded from http://onprom.inf.unibz.it. The toolchain is available
as a stand-alone software, or as a set of plugins running inside the ProM process
mining framework. Specifically, the onprom toolchain consists of the following
components:

– a UML Editor to model the conceptual data schema (cf. Sect. 4.1);
– an Annotation Editor to enrich the conceptual data schema with event-data

annotations (cf. Sect. 4.3);
– a Log Extractor component that automatically processes the event-data anno-

tations, and extracts an XES event log from a given relational information
system (cf. Sect. 4.5).

http://onprom.inf.unibz.it


OBDA for Log Extraction in Process Mining 339

Notice that the definition of a suitable mapping specification to link a con-
ceptual data schema to an underlying information system is not natively covered
within onprom, and we assume that it is realised manually or by exploiting third-
party tools, such as the ontop mapping editor for Protégé34.

We now briefly describe each component, using ConfSys as running
example.

UML Editor. The UML editor provides two main functionalities: modelling of
a UML class diagram, and import/export from/to OWL 2 QL, leveraging the cor-
respondence described in Sect. 3.2. The editor makes some simplifying assump-
tions, in line with this correspondence with OWL 2 QL:

– we do not support completeness of UML generalisation hierarchies, since the
presence of such construct would fundamentally undermine the virtual OBDA
approach based on query reformulation [7];

Fig. 17. The onprom UML Editor, showing the conceptual data schema used in our
ConfSys running example
34 http://protege.stanford.edu/.

http://protege.stanford.edu/
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– in line with Semantic Web languages, we explicitly support binary associa-
tions only;

– multiplicities in associations (resp., features) are restricted to be either 0 or
1. Hence, we can express functionality and mandatory participation;

– we do not support IS-A between associations;
– we ignore all those features that are not directly related to conceptual mod-

elling, but instrumental to software design, such as stereotypes and methods.

A screenshot of the UML Editor showing the conceptual data schema of
ConfSys is shown in Fig. 17.

Annotation Editor. This editor supports data and process analysts in the
specification of event-data annotations on top of a UML class diagram developed
using the UML editor described above.

A screenshot of the Annotation Editor, showing annotations for our Conf-
Sys conceptual data schema, is shown Fig. 18. Specifically, the screenshot shows
that Paper has been annotated as case class, and that four events annotations

Fig. 18. The Annotation Editor showing annotations for the ConfSys use case
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(a) The Creation event

(b) The Decision event

(c) The Review event

(d) The Submission event

Fig. 19. The properties of event annotations defined for the ConfSys use case

are defined, implementing what is reported in Fig. 16 (together with additional
attribute definitions). The input forms for the configurations of such annotations
are depicted in Fig. 19.

To simplify the annotation task, the editor supports some advanced
operations:

– Properties and paths can be chosen using navigational selections over the
diagram via mouse-click operations.

– The editor takes into account multiplicities on associations and attributes;
when the user is selecting properties of the case and of events (in particular
the timestamp), the editor enables only navigation paths that are functional.

The annotations are automatically translated into corresponding sparql
queries by the editor.

Log Extraction Plug-in. The last component of the toolchain implements
the mapping synthesis technique described in Sect. 4.5 towards log extraction,
leveraging the state-of-the-art ontop framework to handle several important
tasks such as (i) management of OBDA mappings, (ii) rewriting and unfold-
ing of sparql queries, and (iii) query answering. In addition, the log extraction
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component exploits the OpenXES APIs35 for managing XES data structures and
the corresponding XML serialisation. Figure 20 shows the screenshot of the log
extractor plug-in in Prom 6.6. Essentially, the plug-in takes the following inputs:

1. A conceptual data schema T , generated via the UML Editor or represented
as an OWL 2 QL file;

2. An OBDA mapping specification, containing
– a mapping specification M linking T to an underlying relational R
– the connection information to access a database instance D of interest,

conforming to R.
3. Event-data annotations L, which can be created using the Annotation Editor.

Fig. 20. Screenshot of Log Extractor Plug-in in Prom 6.6.

As output, the plugin produces a XES event log obtained as the result of
the processing of the database instance D through the provided mappings and
annotations. The event log is offered as a standard ProM resource within the
ProM framework.

5 Conclusions

In this paper, we have presented the onprom framework, which leverages tech-
niques from intelligent data management to tackle the challenging phase of data
35 http://www.xes-standard.org.

http://www.xes-standard.org
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preparation for process mining, enabling the possibility to apply process min-
ing techniques on top of legacy information systems. Instead of forcing data and
process analysts to set up ad-hoc, manual extraction procedures, onprom provides
support to handle this problem at a higher level of abstraction. Specifically, users
focus on modelling the data of interest conceptually, on the one hand linking the
resulting conceptual schema to legacy data via declarative mappings, and on
the other hand equipping the schema with declarative annotations that indicate
where cases, events, and their attributes are “located” within such a schema.
onprom then automatises the extraction of event logs, manipulating and rea-
soning over mappings and annotations by exploiting well-established techniques
from knowledge representation and ontology-based data access.

We believe that the synergic integration of techniques coming from data and
process management is the key to enable decision makers, analysts and domain
experts in improving the way work is conducted within small, medium and large
enterprises. At the same time, it provides interesting, open research challenges for
computer scientists, covering both foundational and applied aspects. In particu-
lar, different interesting lines of research can be developed starting from onprom,
ranging from the optimisation of ontology-based data access in the specific con-
text of event log extraction, to the investigation of techniques and methodologies
for event modelling and recognition typically studied within formal ontology, to
the definition of alternative mechanisms for linking conceptual data schemas to
reference, event log models.
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