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Preface

This volume contains tutorial papers prepared for the 13th Reasoning Web Summer
School (RW 2017), held during July 7-11, 2017, in London, United Kingdom.

The Reasoning Web series of annual summer schools was initiated in 2005 by the
European Network of Excellence REWERSE. Since 2005, the school has become the
prime educational event in the field of reasoning techniques on the Web, attracting both
young and established researchers. Previous editions of the school were held in Malta
(2005), Lisbon (2006), Dresden (2007 and 2010), Venice (2008), Bressanone-Brixen
(2009), Galway (2011), Vienna (2012), Mannheim (2013), Athens (2014), Berlin
(2015), and Aberdeen (2016). For each edition, a volume has been published con-
taining the school lecture notes, which are today considered fundamental bibliographic
references in the Semantic Web and Knowledge Representation areas.

Since 2011 the school has been co-located with the International Conference on
Web Reasoning and Rule Systems (RR), and in 2015 it was also co-located with the
International Web Rule Symposium (RuleML). Following this tradition, the 2017
edition of the school was held together with RuleML+RR, a conference that joined the
RuleML and RR event series. In addition, it was also co-located with DecisionCAMP
2017 and the 11th International Rule Challenge. RW 2017 was hosted by Birkbeck,
University of London, and was organized by University of Calabria and by Sapienza,
University of Rome.

In 2017, the theme of the school was “Semantic Interoperability on the Web,” which
encompasses subjects such as data integration, open data management, reasoning over
linked data, database to ontology mapping, query answering over ontologies, hybrid
reasoning with rules and ontologies, and ontology-based dynamic systems. The RW
2017 lectures were focused on these topics and also addressed foundational reasoning
techniques used in answer set programming and ontologies. This volume contains the
following tutorial papers, each accompanying a school lecture:

— “Challenges for Semantic Data Integration on the Web of Open Data”, in which
Axel Polleres (presenter), Sebastian Neumaier, Jirgen Umbrich, and Simon
Steyskal discuss main challenges related to the integration of open data over the
Web (data formats, license and usage issues, data quality problems, etc.);

— “Ontological Query Answering over Semantic Data,” in which Giorgos Stamou
(presenter) and Alexandros Chortaras study data access mediated by an ontology,
and present methods for data integration, query rewriting, and query answering
when ontologies are specified in both tractable and expressive Description Logics;

— “Ontology Querying: Datalog Strikes Back,” where Andrea Cali faces query
answering over Datalog+/—, a family of ontology languages allowing for Datalog
rules enriched with existential quantification in the head,;

— “Integrating Relational Databases with the Semantic Web,” in which Juan Sequeda
surveys methods and standards to realize RDF access to relational databases and
reviews how these standards can be used in practice for data integration;
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— “Datalog Revisited for Reasoning in Linked Data,” in which Marie-Christine
Rousset describes a unifying Datalog-based framework for RDF ontologies and
databases, and discusses modeling and reasoning over Linked Data within this
framework;

— “A Tutorial on Hybrid Answer Set Solving,” in which Torsten Schaub (presenter),
Roland Kaminski, and Philipp Wanko introduce Answer Set Programming and
show its usage in complex software environments and interaction with comple-
mentary forms of reasoning;

— “Answer Set Programming with External Source Access,” in which Thomas Eiter
(presenter), Tobias Kaminski, Christoph Redl, Peter Schiiller, and Antonius
Weinzierl continue the investigation on hybrid systems, and describe how ASP can
interact with external resources in the DLVHEX system;

— “Uncertainty Reasoning for the Semantic Web,” in which Thomas Lukasiewicz
provides an overview of formalisms for handling uncertainty and/or vagueness in
the Semantic Web;

— “Ontology-Based Data Access for Log Extraction in Process Mining,” in which
Marco Montali (presenter), Diego Calvanese, Tahir Emre Kalayci, and Ario San-
toso show how semantic technologies, and in particular ontology-based data access,
provide a viable solution for data preparation and log extraction for the task of
process mining.

>

The tutorial papers are either in-depth surveys or shorter papers containing refer-
ences to existing work. These papers have been written as accompanying material for
the students of the summer school, in order to deepen their understanding and to serve
as a reference for further detailed study.

We would like to thank everybody who contributed to the realization of this event.
First and foremost, the school lecturers and their co-authors. We also want to thank the
institutions of the school lecturers, which sponsored the school by covering the travel
costs of the speakers. Furthermore, we would like to thank the general chairs of the
RuleMLA+RR conference, Roman Kontchakov and Fariba Sadri, for their help in the
logistic organization of the event, the sponsorship chair, Nick Bassiliades, and the Web
chair, William Van Woensel, for taking care of the school website.

May 2017 Giovambattista Ianni
Domenico Lembo

Leopoldo Bertossi

Wolfgang Faber

Birte Glimm

Georg Gottlob

Steffen Staab
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Data Integration for Open Data on the Web

Sebastian Neumaier!, Axel Polleres ™) Simon Steyskal®,
and Jiirgen Umbrich!

! Vienna University of Economics and Business, Vienna, Austria
axel.polleres@wu.ac.at
2 Complexity Science Hub Vienna, Vienna, Austria

Abstract. In this lecture we will discuss and introduce challenges of
integrating openly available Web data and how to solve them. Firstly,
while we will address this topic from the viewpoint of Semantic Web
research, not all data is readily available as RDF or Linked Data, so
we will give an introduction to different data formats prevalent on the
Web, namely, standard formats for publishing and exchanging tabular,
tree-shaped, and graph data. Secondly, not all Open Data is really com-
pletely open, so we will discuss and address issues around licences, terms
of usage associated with Open Data, as well as documentation of data
provenance. Thirdly, we will discuss issues connected with (meta-)data
quality issues associated with Open Data on the Web and how Semantic
Web techniques and vocabularies can be used to describe and remedy
them. Fourth, we will address issues about searchability and integration
of Open Data and discuss in how far semantic search can help to over-
come these. We close with briefly summarizing further issues not covered
explicitly herein, such as multi-linguality, temporal aspects (archiving,
evolution, temporal querying), as well as how/whether OWL and RDFS
reasoning on top of integrated open data could be help.

1 Introduction

Over the last decade we have seen the World Wide Web being populated more
and more by “machines”. The world wide Web has evolved from its original
form as a network of linked Documents, readable by humans to more and more
a Web of data and APIs. That is, nowadays, even if we interact as humans
with Web pages, in most cases (i) the contents of Web pages are generated
from Databases in the backend, (ii) the Web content we see as humans contains
annotations readable by machines, and even (iii) the way we interact with Web
pages generates data (frighteningly, even often without the users being aware
of), collected and stored again in databases around the globe. It is therefore
valid to say that the Web of Data has become a reality and — to some extent —
even the vision of the Semantic Web. In fact, this vision of the Semantic Web has
itself evolved over the decades, starting with Berners-Lee et al.’s seminal article
in 2001 [13] that already envisioned the future Web as “federating particular
knowledge bases and databases to perform anticipated tasks for humans and
their agents”. Based on these ideas a lot of effort and research has been devoted

© Springer International Publishing AG 2017
G. Tanni et al. (Eds.): Reasoning Web 2017, LNCS 10370, pp. 1-28, 2017.
DOI: 10.1007/978-3-319-61033-7_1
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to the World Wide Web Consortium (W3C) Semantic Web activity,! which in
2013 has been subsumed by — i.e., renamed to — “Data Activity”.?

In many aspects, the Semantic Web has not necessarily evolved as expected,
and the biggest success stories so far do less depend on formal logics [37] than
we may have expected, but more on the availability of data. Another recent
article by Bernstein et al. [14] takes a backwards look on the community and
summarizes successes of the Semantic Web community such as the establish-
ment of lightweight annotation vocabularies like Schema.org on Web pages, or
praising the uptake of large companies such as Google, Yahoo!, Microsoft, and
Facebook who are developing large knowledge graphs, which however, so far
these companies mostly keep closed.

Thus, if Web researchers outside of these companies want to tap into the rich
sources of Data available now on the Web they need to develop their own data
workflows to find relevant and usable data. To their help, more and more Open
Data is being published on the Web, that is, data that is made freely available
by mostly public institutions (Open Government Data) both for transparency
reasons and with the goal to “fuel” a Data Economy, pushed both by the EU [29]
and the G8 [72].

The present lecture notes may be viewed as partially an experience report
as well as — hopefully — a guide through challenges arising when using (Open)
data from the Web. The authors have been involved over the past view years
in several projects and publications around the topic of Open Data integration,
monitoring, and processing. The main challenges we have come across in all these
projects are largely overlapping and therefore we decided to present them in the
present chapter:

1. Where to find Open Data? (Sect.2) Most Open Data nowadays can be
found on so called Open Data Portals, that is, data catalogs, typically allowing
APT access and hosting dataset descriptions and links to actual data resources.

2. “Low-level” data heterogeneity (Sect.3) As we will see, most of the struc-
tured data provided as Open Data is not readily available as RDF or Linked
Data — the preferred formats for semantic data access described in other chap-
ters of this volume. Different formats are much more prevalent, plus encoding
issues make it difficult to access those datasets.

3. Licenses and Provenance (Sect.4) Not all Open Data is really completely
open, since most data on the Web is attached to different licences, terms and
conditions, so we will discuss how and whether these licenses can be inter-
preted by machines, or, respectively how the provenance of different inte-
grated data sources can be tracked.

4. Quality issues (Sect.5) A major challenge for data — also often related to
its provenance — is quality; on the one hand the re-use of poor quality data is
obviously not advisable, but on the other hand different applications might
have different demands/definitions of quality.

! https://www.w3.org/2001/sw/, last accessed 30/03/2017.
2 https://www.w3.org/2013/data/, last accessed 30/03/2017.
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5. How to find data — Searchability? (Sect.6) Last, but not least, we will
look into current solutions for search in Open Data, which we pose as a
major open research challenge: whereas crawling and (keyword-based search)
of human readable websites work well, this is not yet the case for structured
data on the Web; we will discuss why and sketch some routes ahead.

Besides these main questions, we will conclude with summarizing issues and
open questions around integrating Open Data from the Web not covered explic-
itly herein in Sect. 7, such as multi-linguality, temporal aspects (archiving, evo-
lution, temporal querying), as well as how/whether OWL and RDFS reasoning
on top of integrated open data could be help.

2 Where to Find Web Data?

If we look for sources of openly available data that is widely discussed in the
literature, we mainly can identify three starting points, which are partially over-

lapping:

— User-created open data bases

— The Linked Open Data “Cloud”
— Webcrawls

— Open Data Portals

User-created open data bases, through efforts such as Wikipedia, are large
amounts of data and data-bases that have been co-created by user communities
distributed around the globe; the most important ones being listed as follows:

— DBpedia [44] is a community effort that has created one of the biggest and
most important cross-domain dataset in RDF [19] in the focal point of the so
called Linked Open Data (LOD) cloud [6]. At its core is a set of declarative
mappings extracting data from Wikipedia infoboxes and tables into RDF
and it is accessible as well as through dumps also through an open query
interface supporting the SPARQL [33] query language. DBpedia can therefore
be well called one of the cornerstones of Semantic Web and Linked Data
research being the subject and center of a large number of research papers
over the past few years. Reported numbers vary as DBpedia is modular and
steadily growing with Wikipedia, e.g. in 2015 DBpedia contained overall more
than 3B RDF Statements®, whereof the English DBpedia contributed 837 M
statements (RDF triples). Those 837 M RDF triples alone amount to 4.7 GB
when stored in the compressed RDF format HDT [30]*. However, as we will
see there are many, indeed far bigger other openly accessible data sources,
that yet remain to be integrated, which are rather in the focus of the present
chapter.

3 http://wiki.dbpedia.org/about /facts-figures, last accessed 30/03/2017.
* http://www.rdfhdt.org/datasets/, last accessed 30/03/2017.
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— Wikidata [74] a similar, but conceptually different effort has been started in
2012 to bring order into data items in Wikipedia, with the idea to — instead
of extracting data from semi-structured Wikipages — build a database for
data observations with fixed properties and datatypes, mainly with the idea
to avoid extraction errors and provide means to record provenance directly
with the data, with likewise 100s of millions of facts in the meantime: exact
numbers are hard to give, but [71] report some statistics of the status of
2015, when Freebase was included into Wikidata; we note that counting RDF
triples® is only partially useful, since the data representation of Wikidata is
not directly comparable with the one from DBpedia [35,36].

— OpenStreetmap as another example of an openly available data base that
has largely been created by users contains a vast amount of geographic fea-
tures to obtain an openly available and re-usable map; with currently 739.7GB
(uncompressed) data in OSM’s native XML format (and still 33GB com-
pressed).’

The Linked Open Data “Cloud” — already mentioned above — is a manually
curated collection of datasets that are published on the Web openly, adhering
to the so-called Linked Data principles, defined as follows [12] (cf. chapters of
previous editions of the Reasoning Web book series for good overview articles):

LDP1: use URIs as names for things;

LDP2: use HT'TP URIs so those names can be dereferenced;

LDP3: return useful — herein we assume RDF — information upon dereferencing
of those URIs; and

LDP4: include links using externally dereferenceable URIs.”

The latest iteration of the LOD Cloud [1] contains — with DBpedia in its center —
hundreds of datasets with equal or even larger sizes than DBpedia, documenting
a significant growth of Linked Data over the past years. Still, while often in the
Semantic Web literature the LOD cloud and the “Web of Data” are implicitly
equated, there is a lot of structured data available on the Web (a) either, while
using RDF, not being linked to other datasets, or (b) provided in other, popular
formats than RDF.

Running Web crawls is the only way to actually find and discover structured
Web Data, which is both resource intensive and challenging in terms of respect-
ing politeness rules when crawling. However, some Web crawls have been made
openly available, such as the Common Crawl corpus which contains “petabytes
of data collected over the last 7 years”®. Indeed the project has already been
used to collect and analyse the availability (and quality) of structured data on
the Web, e.g. in the Web Data Commons Project [50,51] (Table1).

5 Executing the SPARQL query SELECT (count(*) as ?C) WHERE {?S ?P 70 } on
https://query.wikidata.org/ gives 1.7B triples, last accessed 30/03/2017.

5 http://wiki.openstreetmap.org/wiki/Planet.osm, last accessed 30/03/2017.

" That is, within your published RDF graph, use HTTP URIs pointing to other deref-
erenceable documents, that possibly contain further RDF graphs.

8 http://commoncrawl.org/, last accessed 30/03/2017.
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Table 1. Top-10 portals, ordered by datasets.

5

Domain of portal URL | Origin Software | |D| |R|

data.gov UsS CKAN 192,738 | 170,524
www.data.gc.ca Canada CKAN | 147,364 | 428,141
transparenz.hamburg.de | Germany CKAN 69,147 | 101,874
data.noaa.gov UsS CKAN 57,934 | 148,343
geothermaldata.org US CKAN 56,388 | 59,804
data.gov.au Australia CKAN 42,116 | 77,900
data.gov.uk UK CKAN | 41,615 | 80,980
hubofdata.ru Russia CKAN 28,393 | 62,700
openresearchdata.ch Switzerland | CKAN 20,667 | 161,259
govdata.de Germany CKAN 19,334 | 55,860

Open Data portals are collections or catalogs that index metadata and link to
actual data resources which have become popular over the past few years through
various Open Government Data Initiatives, but also in the private sector. Apart
from all the other sources mentioned so far, most of the data published openly
is indexed in some kind of Open Data Portal. We therefore will discuss these
portals in the rest of this paper in more detail.

Open Data portals

Most of the current “open” data form part of a dataset that is published in
Open Data portals which are basically catalogues similar to digital libraries (cf.
Fig.1): in such catalogues, a dataset aggregates a group of data files (referred
to as resources or distributions) which are available for access or download
in one or more formats (e.g., CSV, PDF, Microsoft Excel, etc.). Addition-
ally, a dataset contains metadata (i.e., basic descriptive information in struc-
tured format) about these resources, e.g. authorship, provenance or licens-
ing information. Most of these portals rely on existing software frameworks,
such as CKANY or Socrata,'® that offer Ul, search, and API functionalities.
CKAN is the most prominent portal software
framework used for publishing Open Data and
is used by several governmental portals includ-
ing data.gov.uk and data.gov.

For example, the Humanitarian Data
Exchange!! (see Fig. 2) is a portal by the United
Nations. It aggregates and publishes data about
the context in which a humanitarian crisis is
occurring (e.g., damage assessments and geospa-

Catalog

d; —

Dataset

title
description

d2

Resource

dn r
format

url

Fig. 1. High-level structure of a
data catalog.

9 https://ckan.org/, last accessed 30/3/2017.
19 https://socrata.com/, last accessed 30/3/2017.
" https://data.humdata.org/, last accessed 27/3/2017.
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{
. Q = "name":"amounts -paid-by-refugees-...",
"title": "Amounts paid by refugees...",
"license": "Creative Commons Attribution",
"tags": [
Data ange "europe",
"mediterranean",
"refugee"
LEARN MORE :: 1,
bess "resources": [
{
FIND DATA " format " : n CSVH .
"name": "The Money Trail - South - Prices",
n "created": "2015-10-28T21:20:40.006453",
4.476 244 872 , "url": "https://docs.google.com/...",
1,
+

Fig. 2. Example dataset description from the humanitarian data exchange portal.

Table 2. The tabular content of the dataset in Fig. 2

Route Period Ref crossing | Total in EUR 2014
Central Med 2010-2015 | 285,700 3,643,000,000
East Borders |2010-2015 | 5,217 72,000,000

East Med Land | 2010-2015 | 108,089 1,751,000,000
East Med Sea |2010-2015 | 61,922 1,053,000,000
West African | 2010-2015 | 1,040 4,000,000

West Balkans | 2010-2015 | 74,347 1,589,000,000
West Med 20102015 | 29,487 251,000,000

tial data) and data about the people affected by the crisis. The datasets on this
portal are described using several metadata fields, and the metadata descrip-
tion can be retrieved in JSON format using the Web API of the data portal
(cf. Fig. 2).

The metadata description of these datasets provide download links for the
actual content. For instance, the particular dataset description in Fig.2 — a
dataset reporting the amounts paid by refugees to facilitate their movement
to Europe — holds a URL which refers to a table (a CSV file) containing the
corresponding data, displayed in Table 2.

3 Data Formats on the Web

When we discuss different available data on the Web, we already emphasized
that — despite being subject of a lot of research — RDF and Linked Data are not
necessary the prevalent formats for published data on the Web. An analysis of
the datasets systematically catalogued in Open Data portals will confirm this.
Likewise, we will have to discuss metadata formats on these portals.
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Data Formats on Open Data Portals. Table 3 shows the top used formats and the
number of unique resources together with their number of portals they appear,
adapted from [58], where we analysed and crawled metadata from 260 Open Data
Portals for cues to the data formats in which different datasets are provided. Note,
that these numbers are based on available metadata information of the datasets
and can be higher due to varying spellings, misspellings, and missing metadata.
Therefore, these numbers should be considered as a lower bound for the respective
formats. Bold highlighted values indicate that the format is considered as open
as per the Open Definition [12]:'? the open definition sets out several guidelines
of which data formats are to be considered “open”, according to which we have
analysed assessed openness by a list of compliant formats, cf. [58].

Table 3. Most frequent formats.

format | |resources||% | |portals|
HTML | 491,891 25 | 74
PDF 182,026 9.2 83
CSV 179,892 9.1|108
XLS(X) 120,703 6.1 89
XML 90,074 4.6 79
VAl 50,116 2.5 74

DO | W N =

11 | JSON | 28,923 1.5] 77
16 | RDF 10,445 0.5 28

A surprising observation is that ~10% of all the resources are published as
PDF files. This is remarkable, because strictly speaking PDF cannot be consid-
ered as an Open Data format: while PDFs may contain structured data (e.g. in
tables) there are no standard ways to extract such structured data from PDFs
- or general-purpose document formats in general. Therefore, PDFs cannot be
considered as machine-readable, nor as a suitable way for publishing Open Data.
As we also see, RDF does not appear among the top-15 formats for Open Data
publishing.'® This underlines the previously stated hypothesis that — especially
in the area of Open Government Data — openly available datasets on data portals
are mostly not published as RDF or Linked Data.

Also, JSON does not appear among the top ten formats in terms of numbers
of published data resources on Open Data portals. Still, we include those main
formats in our discussion below, as

'2 http:/ /opendefinition.org/ofd/, last accessed 30/03/2017.
3 The numbers for the RDF serializations JSON-LD (8 resources) and TTL (55) are
vanishingly small.
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— particularly JSON and RDF play a significant role in metadata descriptions,

— JSON is the prevalent format for many Web APIs,

— RDF, as we saw, is apart from the Linked Data cloud prevalent in Web pages
and crawls through its support as an annotation format by popular search
engines.

In the following we introduce some of these popular, well known, data formats
on the Web and categorize them by their structure, namely, graph-based, tree-
shaped, and tabular formats.

3.1 Graph-Based Formats

RDF, W3C recommendation since 2004 [41] and “refurbished” in 2014 [19,23],
was originally conceived as a metadata model language for describing resources
on the web. It evolved (also through deployment) to a universal model and
format to describe arbitrary relations between resources identified, typically, by
URISs, such that they can be read and understood by machines.

RDF itself consists of statements in the form of subject, predicate, object
triples. RDF triples can be displayed as graphs where the subjects and objects
are nodes and the predicates are directed edges. RDF uses vocabularies to define
the set of elements that can be used in an application. Vocabularies are similar
to schemas for RDF datasets and can also define the domain and range of pred-
icates. The graph in Fig. 3 represents the metadata description of the dataset in
Fig. 2 in the DCAT (Data Catalog) vocabulary [48].14

"CC BY-SA" :
<http://.../download/?format=csv> doat:Dataset
a

dct:license

<http://.../dataset/amounts-...>

dct:language dettitle

a  dctmediaType "Amounts paid by
dct:publisher m refugees to facilitators
" " to reach Europe"
text/csv /

dct:description

dcat:Distribution - v -
Estimates on the amount is based
A on the number of "detections"

foaf:name reported to FRONTEX

foaf:Organization

Fig. 3. RDF graph of DCAT metadata mapping of Fig. 2

|

dcat:downloadURL

at:distribution:

ol g
0l
<fc
3
Q

"The Migrants' Files"

4 DCAT is a vocabulary commonly used for describing general metadata about
datasets. See Sect.5.2 for mapping and homogenization of metadata descriptions
using standard vocabularies.
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There exist several formats to serialize RDF data. Most prominent is
RDF /XML, the XML serialization first introduced in the course of 1999 W3C
specification of the RDF data model, but there are also a more readable/concise
textual serialization formats such as the line-based N-Triples [21] and the “Terse
RDF Language” TURTLE [10] syntax. More recent, in 2014, W3C released the
first recommendation for JSON-LD [68]. JSON-LD is an extension for the JSON
format (see below) mostly allowing to specify namespaces for identifiers and
support of URIs (supporting Linked Data principles natively in JSON) which
allows the serialization of RDF as JSON, or vice versa, the transformation of
JSON as RDF: conventional JSON parser and databases can be used; users of
JSON-LD which are mainly interested in conventional JSON, are not required
to understand RDF and do not have to use the Linked Data additions.

3.2 Tree-Shaped Formats

The JSON file format [18] is a so-called semi-structured file format, i.e., where
documents are loosely structured without a fixed schema (as for example data
in relational databases) as attribute-value pairs where values can be primitive
(Strings, numbers, Booleans), arrays (sequences of values enclosed in square
brackets ‘[*,’]), or nested JSON objects (enclosed in curly braces ‘{*,’}’), thus —
essentially — providing a serialization format for tree-shaped, nested structures.
For an example for JSON we refer to Fig. 2.

Initially, the JSON format was mainly intended to transmit data between
servers and web applications, supported by web services and APIs. In the context
of Open Data we often find JSON as a format to describe metadata but also
to publish the actual data: also raw tabular data can easily be transformed into
semi-structured and tree-based formats like JSON'® and, therefore, is often used
as alternative representation to access the data. On the other hand, JSON is the
de facto standard for retrieving metadata from Open Data portals.

XML. For the sake of completeness, due to its long history, and also due to
its still striking prevalence as a data exchange format of choice, we shall also
mention some observations on XML. This prevalence is not really surprising
since many industry standards and tools export and deliver XML, which is then
used as the output for many legacy applications or still popular for many Web
APIs, e.g., in the area of geographical information systems (e.g. KML,' GML,”
WFS,'® etc.). Likewise, XML has a large number of associated standards around
it such as query, navigation, transformation and schema languages like XQuery,

!5 For instance, see Converter Tools on https://project-open-data.cio.gov/, last
accessed 24/03/2017.

16 https://developers.google.com/kml/documentation/, last accessed 24/03/2017.

Y7 http://www.opengeospatial.org/standards/gml, last accessed 24/03/2017.

'8 http://www.opengeospatial.org/standards/wfs, last accessed 24,/03/2017.

9 https://www.w3.org/TR/xquery-30/, last accessed 24/03/2017.
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XPath,?0 XSLT?', and XML Schema?? which are still actively developed, sup-
ported by semi-structured database systems, and other tools. XML by itself has
been subject to extensive research, for example in the fields of data exchange [4,
Part III] or query languages [8]. Particularly, in the context of the Semantic
Web, there have also been proposals to combine XQuery with SPARQL, cf. for
instance [15,26] and references therein. The issue of interoperability between
RDF and XML indeed is further discussed within the W3C in their recently
started “RDF and XML Interoperability Community Group”2? see also [16] for a
summary. So, whereas JSON has probably better support in terms of developer-
friendliness and recent uptake particularly through Web APIs, there is still a
strong community with well-established standards behind XML technologies.
For instance, schema languages or query languages for JSON exist as proposals,
but their formal underpinning is still under discussion, cf. e.g. [17,63]. Another
approach would be to adopt, reuse and extend XML technologies to work on
JSON itself, as for instance proposed in [26]. On an abstract level, there is not
much to argue about JSON and XML just being two syntactic variants for seri-
alizing arbitrary, tree-shaped data.

3.3 Tabular Data Formats

Last but not least, potentially driven also by the fact that the vast majority
of Open Data on the Web originates from relational databases or simply from
spreadsheets, a large part of the Web of Open Data consists of tabular data. This
is illustrated by the fact that two of the most prominent formats for publishing
Open Data in Table 3 cover tabular data: CSV and XLS. Note particularly that
both of these formats are present on more Open Data portals than for instance
XML.

While XLS (the export format of Microsoft Excel) is obviously a pro-
prietary open format, CSV (comma-separated values) is a simple, open for-
mat with a standard specification allowing to serialize arbitrary tables as text
(RFC4180) [67]. However, as we have shown in a recent analysis [54], compliance
with this standard across published CSVs is not consistent: in Open Data corpus
containing 200 K tabular resources with a total file size of 413 GB we found out
that out of the resources in Open Data portals labelled as a tabular only 50%
can be considered CSV files. In this work we also investigated different use of
delimiters, the availability of (multiple) header rows or cases where single CSV
files actually contain multiple tables as common problems.

Last, but not least, as opposed to tabular data in relational databases, which
typically adhere to a fixed schema and constraints, these constraints, datatype
information and other schema information is typically lost when being exported
and re-published as CSVs. This loss can be compensated partially by adding this

20 https://www.w3.org/TR/xpath-30/, last accessed 24/03/2017.
2 https:/ /www.w3.org/ TR /xslt-30/, last accessed 24/03/2017.

22 https://www.w3.org/XML/Schema, last accessed 24/03/2017.
2 https://www.w3.org/community /rax/, last accessed 24/03/2017.
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information as additional metadata to the published tables; one particular format
for such kind of metadata has been recently standardized by the W3C [65]. For
more details on the importance of metadata we refer also to Sect. 5 below.

3.4 Data Formats — Summary

Overall, while data formats are often only considered syntactic sugar, one should
not underestimate the issues about conversions, scripts parsing errors, stability
of tools, etc. where often significant amounts of work incurs. While any data can
be converted /represented in principle into a CSV, XML, or RDF serialization,
one should keep in mind that a canonical, “dumb” serialization in RDF by itself,
does not “add” any “semantics”.

For instance, a naive RDF conversion (in Turtle syntax) of the CSV in Table 2
could look as follows in Fig.4, but would obviously not make the data more
“machine-readable” or easier to process.

@prefix : <http://www.example.org/> .

:cl rdfs:label "Route".

:c2 rdfs:label "Period".

:c3 rdfs:label "Ref_crossing".

:c4 rdfs:label "Total in EUR 2014".

[:cl "Central Med"; :c2 "2010-2015", :c3 "285,700"; :c4 "3,643,000,000"].
[:c1 "East Borders"; :c2 "2010-2015"; :c3 "5,217"; :c4 "72,000,000" ].

[:c1l "East Med Land" ; :c2 "2010-2015"; :c3 "108,089" ; :c4 "1,751,000,000"].
[:cl "East Med Sea"; :c2 "2010-2015" ; :c3 "61,922"; :c4"1,053,000,000"].
[:cl "West African"; :c2 "2010-2015"; :c3 "1,040"; :c4 "4,000,000"].

[:c1 "West Balkans"; :c2 "2010-2015"; :c3 "74,347"; :c4 "1,589,000,000"].
[:cl "West Med"; :c2 "2010-2015"; :c3 "29,487"; :c4 "251,000,000"].

Fig. 4. Naive conversion of tabular data into RDF

We would leave coming up with a likewise naive (and probably useless) con-
version to XML or JSON to the reader: the real intelligence in mapping such
data lies in finding suitable ontologies to describe the properties representing
columns cl to ¢4, recognizing the datatypes of the column values, linking names
such as “East Med Sea” to actual entities occurring in other datasets, etc. Still,
typically, in data processing workflows more than 80% of the effort to data con-
version, pre-processing and cleansing tasks.

Within the Semantic Web, or to be more precise, within the closed scope of
Linked Data this problem and the steps involved have been discussed in depth
in the literature [7,60]. A partial instantiation of a platform which shall provide
a cleansed and integrated version of the Web of Linked Data is presented by the
LOD-Laundromat [11] project: here, the authors present a cleansed unified store
of Linked Data as an experimental platform for the whole Web of Linked Data,
mostly containing the all datasets of the current LOD cloud, are made available.
Querying this platform efficiently and investigating the properties of this subset
of the Web of Data is a subject of active ongoing research, despite only Linked
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RDF data has been considered: however, building such a platform for the scale
of arbitrary Open Data on the Web, or even only for the data accumulated in
Open Data portals would demand a solution at a much larger scale, handling
more tedious cleansing, data format conversion and schema integration problems.

4 Licensing and Provenance of Data

Publishing data on the Web is more than just making it publicly accessible.
When it comes to consuming publicly accessible data, it is crucial for data con-
sumers to be able to assess the trustworthiness of the data as well as being able
to use it on a secure legal basis and to know where the data is coming from,
or how it has been pre-processed. As such, if data is to be published on the
Web, appropriate metadata (e.g., describing the data’s provenance and licensing
information) should be published alongside with it, thus making published data
as self-descriptive as possible (cf. [34]).

4.1 Open Data Licensing in Practice

While metadata about terms and conditions under which a dataset can be re-
used are essential for its users, according to the Linked Open Data Cloud web
page, only less than 8% of the linked data datesets provide license information®?.

Within Open data portals, the situation seems slightly better overall: more
than 50% of the monitored datasets in the Open Data portals in the Portalwatch

project (see Sect.5 below) announce somehow in the metadata some kind of

Table 4. Top-10 licenses.

license_id |datasets|| % | |portals|
ca-ogl-lgo 239662 323| 1
notspecified 193043 26 |71
dl-de-by-2.0 55117 74 |7
CC-BY-4.0 49198 6.6 |84

us-pd 35288 48 | 1
OGL-UK-3.0 | 33164 4.5 |18
other-nc 27705 3.7 |21
CCo-1.0 9931 1.3 |36
dl-de-by-1.0 9608 1.3
Europ.Comm.? | 8604 1.2 | 2
others 80164 10.8

*http://open-data.europa.eu/kos/licence/EuropeanCommission,
last accessed 24/03/2017

24 http://lod-cloud.net /state/state_2014/#tocl0, last accessed 01/05/2017.
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license information [58]. The most prevalent license keys used in Open Data
portals [58] are listed in Table 4.

While most of the provided license definitions lack a machine-readable
description that would allow automated compatibility checks of different licenses
or alike, some are not even compliant with Open Definition conformant data
licenses (cf. Table5).

Table 5. Open definition conformant data licenses [40]

License

Creative Commons Zero (CCO)

Creative Commons Attribution 4.0 (CC-BY-4.0)

Creative Commons Attribution Share-Alike 4.0 (CC-BY-SA-4.0)

Open Data Commons Attribution License (ODC-BY)

Open Data Commons Public Domain Dedication and Licence (ODC-PDDL)
Open Data Commons Open Database License (ODC-ODbL)

In order to circumvent these shortcomings, different RDF vocabularies have
been introduced to formally describe licenses as well as provenance information
of datasets, two of which (ODRL and PROV) we will briefly introduce in the
next two subsections.

4.2 Making Licenses Machine-Readable

The Open Digital Rights Language (ODRL) [39] is a comprehensive policy
expression language (representable with a resp. RDF vocabulary) that has been
demonstrated to be suitable for expressing fine-grained access restrictions, access
policies, as well as licensing information for Linked Data as shown in [20,69].

An ODRL Policy is composed of a set of ODRL Rules and an ODRL Conflict
Resolution Strategy, which is used by the enforcement mechanism to ensure that
when conflicts among rules occur, a system either grants access, denies access or
generates an error in a non-ambiguous manner.

An ODRL Rule either permits or prohibits the execution of a certain action
on an asset (e.g. the data requested by the data consumer). The scope of such
rules can be further refined by explicitly specifying the party/parties that the
rule applies to (e.g. Alice is allowed to access some dataset), using constraints
(e.g. access is allowed until a certain date) or in case of permission rules by
defining duties (e.g. a payment of 10 euros is required).

Listing 1.1 demonstrates how ODRL can be used to represent the Cre-
ativeCommons license CC-BY 4.0.
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Listing 1.1. CC-BY 4.0 represented in ODRL

<http://purl.org/NET/rdflicense/cc-by4.0>
a odrl:Policy ;
rdfs:label"Creative Commons CC-BY";
rdfs:seelAlso
<http://creativecommons.org/licenses/by/4.0/legalcode> ;
dct:source <http://creativecommons.org/licenses/by/4.0/> ;
dct:hasVersion "4.0";
dct:language <http://www.lexvo.org/page/iso639-3/eng> ;
odrl:permission [
odrl:action cc:Distribution,
cc:Reproduction, cc:DerivativeWorks ;
odrl:duty [
odrl:action cc:Notice, cc:Attribution

]

Policy Conflict Resolution. A rule that permits or prohibits the execution of
an action on an asset could potentially affect related actions on that same asset.
Explicit relationships among actions in ODRL are defined using a subsumption
hierarchy, which states that an action «; is a broader term for action as and
thus might influence its permission/prohibition (cf. Fig.5). On the other hand
implicit dependencies indicate that the permission associated with an action ay
requires another action ais to be permitted also. Implicit dependencies can only
be identified by interpreting the natural language description of the respective
ODRL Actions (ct. Fig.6). As such, when it comes to the enforcement of access
policies defined in ODRL, there is a need for a reasoning engine which is capable
of catering for both explicit and implicit dependencies between actions.

broader broader

odrl:distribute odrl:reproduce

broader
odrl:display odrl:play

odrl:extract

Fig. 5. Example of explicit dependen- Fig. 6. Example of implicit dependen-
cies in ODRL. cies in ODRL.
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4.3 Tracking the Provenance of Data

In order to handle the unique challenges of diverse and unverified RDF data
spread over RDF datasets published at different URIs by different data publish-
ers across the Web, the inclusion of a notion of provenance is necessary. The W3C
PROV Working Group [49] was chartered to address these issues and developed
an RDF vocabulary to enable annotation of datasets with interchangeable prove-
nance information. On a high level PROV distinguishes between entities, agents,
and activities (see Fig. 7). A prov:Entity can be all kinds of things, digital or
not, which are created or modified. Activities are the processes which create or
modify entities. An prov:Agent is something or someone who is responsible for
a prov:Activity (and indirectly also for an entity).

wasDerivedFrom

wasAttributedTo

wasGeneratedBy

wasAssociatedWith
Activity

Fig. 7. The core concepts of PROV. Source: Taken from [49]

Listing 1.2 illustrates a PROV example (all other triples removed) of two
observations, where observation ex:obs123 was derived from another observa-
tion ex:obs789 via an activity ex:activity456 on the 1st of January 2017
at 01:01. This derivation was executed according to the rule ex:rule937 with
an agent ex:fred being responsible. This use of the PROV vocabulary mod-
els tracking of source observations, a timestamp, the conversion rule and the
responsible agent (which could be a person or software component). The PROV
vocabulary could thus be used to annotated whole datasets, or single obser-
vations (data points) within such dataset, or, respectively any derivations and
aggregations made from open data sources re-published elsewhere.

Listing 1.2. PROV example

ex:0bs123 a prov:Entity ;
prov:generatedAtTime "2017-01-01T01:01:01"""xsd:dateTime;
prov:wasGeneratedBy ex:activity456 ;
prov:wasDerivedFrom ex:obs789 .
ex:activity456 a prov:Activity;
prov:qualifiedAssociation [

a Association ;
prov:wasAssociatedWith ex:fred ;
prov:hadPlan ex:rule397 .
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5 Metadata Quality Issues and Vocabularies

The Open Data Portalwatch project [58] has originally been set up as a frame-
work for monitoring and quality assessment of (governmental) Open Data por-
tals, see http://data.wu.ac.at/portalwatch. It monitors data from portals using
the CKAN, Socrata, and OpenDataSoft software frameworks, as well as portals
providing their metadata in the DCAT RDF vocabulary.

Currently, as of the second week of 2017, the framework monitors 261 portals,
which describe in total about 854 k datasets with more than 2 million distribu-
tions, i.e., download URLSs (cf. Table6). As we monitor and crawl the metadata
of these portals in a weekly fashion, we can use the gathered insights in two
ways to enrich the crawled metadata of these portals: namely, (i) we publish
and serve the integrated and homogenized metadata descriptions in a weekly,
versioned manner, (ii) we enrich these metadata descriptions by assessed quality
measures along several dimensions. These dimensions and metrics are defined
on top of the DCAT vocabulary, which allows us to treat and assess the content
independent of the portal’s software and own metadata schema.

Table 6. Monitored portals and datasets in Portalwatch

Total CKAN Socrata | OpenDataSoft | DCAT
Portals | 261 149 99 11 2
Datasets | 854,013 | 767,364 | 81,268 | 3,340 2,041
URLs 2,057,924 | 1,964,971 | 104,298 | 12,398 6,092

The quality assessment is performed along the following dimensions: (i) The
ezistence dimension consists of metrics checking for important information, e.g., if
there is contact information in the metadata. (ii) The metrics of the conformance
dimension check if the available information adheres to a certain format, e.g., if
the contact information is a valid email address. (iii) The open data dimension’s
metrics test if the specified format and license information is suitable to classify a
dataset as open. The formalization of all quality metrics currently assessed on the
Portalwatch platform and implementation details can be found in [58].

5.1 Heterogeneous Metadata Descriptions

Different Open Data portals use different metadata keys to describe the datasets
they host, mostly dependent on the software framework under which the portal
runs: while the schema for metadata descriptions on Socrata and OpenDataSoft
portals are fixed and predefined (they use their own vocabulary and metadata
keys), CKAN provides a higher flexibility in terms of own, per portal, metadata
schema and vocabulary. Thus, overall, the metadata that can be gathered from
Open Data Portals show a high degree of heterogeneity.
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In order to provide the metadata in a standard vocabulary, there exists a
CKAN-to-DCAT extension for the CKAN software that defines mappings for
datasets and their resources to the corresponding DCAT classes dcat:Dataset
and dcat:Distribution and offers it via the CKAN API. However, in general
it cannot be assumed that this extension is deployed for all CKAN portals: we
were able to retrieve the DCAT descriptions of datasets for 93 of the 149 active
CKAN portals monitored by Portalwatch [59].

Also, the CKAN software allows portal providers to include additional meta-
data fields in the metadata schema. When retrieving the metadata descrip-
tion for a dataset via the CKAN API, these keys are included in the resulting
JSON. However, it is neither guaranteed that the CKAN-to-DCAT conversion
of the CKAN metadata contains these extra fields, nor that these extra fields, if
exported, are available in a standardized way.

We analysed the metadata of 749k datasets over all 149 CKAN portals and
extracted a total of 3746 distinct extra metadata fields [59]. Table7 lists the
most frequently used fields sorted by the number of portals they appear in;
most frequent spatial in 29 portals. Most of these cross-portal extra keys are
generated by widely used CKAN extensions. The keys in Table 7 are all generated
by the harvesting?® and spatial extension.2%

We manually selected mappings for the most frequent extra keys if they
are not already included in the mapping; the selected properties are listed in
the “DCAT key” column in Table7 and are included in the homogenized, re-
exposed, metadata descriptions, cf. Sect.5.2. In case of an ?-cell, we were not
able to choose an appropriate DCAT core property.

Table 7. Most frequent extra keys

Extra key Portals | Datasets | Mapping

spatial 29 315,652 | dct:spatial
harvest_object_id 29 514,489 |?
harvest_source_id 28 486,388 |7
harvest_source_title 28 486,287 |7

guid 21 276,144 | dct:identifier
contact-email 17 272,208 | dcat:contactPoint
spatial-reference-system | 16 263,012 |?

metadata-date 15 265,373 | dct:issued

25 http://extensions.ckan.org/extension/harvest/, last accessed 24,/03/2017.
26 http://docs.ckan.org/projects/ckanext-spatial /en/latest /, last accessed 24,/03/2017.
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5.2 Homogenizing Metadata Using DCAT and Other Metadata
Vocabularies

The W3C identified the issue of heterogeneous metadata schemas across the
data portals, and proposed an RDF vocabulary to solve this issue: The meta-
data standard DCAT [48] (Data Catalog Vocabulary) describes data catalogs
and corresponding datasets. It models the datasets and their distributions (pub-
lished data in different formats) and re-uses various existing vocabularies such
as Dublin Core terms [75], and the SKOS [52] vocabulary.

The recent DCAT application profile for data portals in Europe (DCAT-
AP)?" extends the DCAT core vocabulary and aims towards the integration of
datasets from different European data portals. In its current version (v1.1) it
extends the existing DCAT schema by a set of additional properties. DCAT-
AP allows to specify the version and the period of time of a dataset. Further,
it classifies certain predicates as “optional”, “recommended” or “mandatory”.
For instance, in DCAT-AP it is mandatory for a dcat:Distribution to hold a
dcat:accessURL.

An earlier approach, in 2011, is the VoID vocabulary [3] published by W3C
as an Interest Group Note. VoID — the Vocabulary for Interlinked Datasets —
is an RDF schema for describing metadata about linked datasets: it has been
developed specifically for data in RDF representation and is therefore comple-
mentary to the DCAT model and not fully suitable to model metadata on Open
Data portals (which usually host resources in various formats) in general.

In 2011 Fiirber and Hepp [32] proposed an ontology for data quality man-
agement that allows the formulation of data quality, cleansing rules, a classifica-
tion of data quality problems and the computation of data quality scores. The
classes and properties of this ontology include concrete data quality dimensions
(e.g., completeness and accuracy) and concrete data cleansing rules (such as
whitespace removal) and provides a total of about 50 classes and 50 properties.
The ontology allows a detailed modelling of data quality management systems,
and might be partially applicable and useful in our system and to our data.
However, in the Open Data Portalwatch we decided to follow the W3C Data on
the Web Best Practices and use the more lightweight Data Quality Vocabulary
for describing the quality assessment dimensions and steps.

More recently, in 2015 Assaf et al. [5] propose HDL, an harmonized dataset
model. HDL is mainly based on a set of frequent CKAN keys. On this basis,
the authors define mappings from other metadata schemas, including Socrata,
DCAT and Schema.org.

Metadata mapping by the Open Data Portalwatch framework. In order to offer
the harvested datasets in the Portalwatch project in a homogenized and stan-
dardised way, we implemented a system that re-exposes data extracted from
Open Data portal APIs such as CKAN [59]: the output formats include a subset

27 https://joinup.ec.curopa.cu/asset /dcat _application_profile/description, last accessed
24/03/2017.
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Fig. 8. The mapped DCAT dataset is further enriched by three additional datasets
(indicated by the bold edges): (i) each DCAT dataset is associated to a set of quality
measurements; (ii) there is additional provenance information available for the gener-
ated RDF graph; (iii) in case the corresponding distribution is a table we generated
CSV specific metadata such as the delimiter and the column headers.

prov:wasGeneratedBy

of W3C’s DCAT with extensions and Schema.org’s Dataset-oriented vocabu-
lary.?® We enrich the integrated metadata by the quality measurements of the
Portalwatch framework available as RDF data using the Data Quality Vocab-
ulary?® (DQV). To further describe tabular data in our dataset corpus we use
simple heuristics to generate additional metadata using the vocabulary defined
by the W3C CSV on the Web working group [65], which we likewise add to
our enriched metadata. We use the PROV ontology (cf. Sect. 4.3) to record and
annotate the provenance of our generated /published data (which is partially gen-
erated by using heuristics). The example graph in Fig. 8 displays the generated
data for the DCAT dataset, the quality measurements, the CSV metadata, and
the provenance information.

6 Searchability and Semantic Annotation

The popular Open Data portal software frameworks (e.g., CKAN, Socrata) offer
search interfaces and APIs. However, the APIs typically allow only search over
the metadata descriptions of the datasets, i.e., the title, descriptions and tags,
and therefore rely on complete and detailed meta-information. Nevertheless, if
an user wants to find data for a specific entity this search might be not success-
ful. For instance, a search for data about “Vienna” at the Humanitarian Data
Exchange portal gives no results, even though there are relevant datasets in the
portal such as “World — Population of Capital Cities”.

28 Google Research Blog entry, https://research.googleblog.com/2017/01/facilitating
-discovery-of-public.html, last accessed 27/01/2017.
2 https://www.w3.org/TR/vocab-dqv/, last accessed 24/03/2017.
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6.1 Open Data Search: State of the Art

Overall, to the best of our knowledge, there is not much substantial research
in the area of search and querying for Open Data. A straightforward approach
to offer search over the data is to index the documents as text files into typi-
cal keyword search systems. Keyword search is already addressed and partially
solved by full-text search indices, as they exist by search engines such as Google.
However, these systems do not exploit the underlying structure of the dataset.
For instance, a default full-text indexer considers a CSV table as a document
and the cells get indexed as (unstructured) tokens. A search query for tables
containing the terms “Vienna” and “Berlin” in the same column is not possible
using these existing search systems. In order to enable such a structured search
over the content of tables an alternative data model is required.

In a current table search prototype3? we enable these query use-cases while
utilizing existing state-of-the-art document-based search engines. We use the
search engine Elasticsearch®' and index the rows and columns of a table as
separated documents, i.e., we add a new document for each column and for each
row containing all values of the respective row/column. By doing so we store
each single cell twice in the search system. This particular data model enables
to define multi-keyword search over rows and columns. For instance, queries for
which the terms “Vienna” and “Berlin” appear within the same column.

Recently, the Open Data Network project3? addresses the searchability issue
by providing a search and query answering framework on top of Socrata por-
tals. The UI allows to start a search with a keyword and suggested matching
datasets or already registered questions. However, the system relies on the exist-
ing Socrata portal ecosystem with its relevant data API?3. This API allows to
programmatically access the uploaded data and apply filters on columns and
rows.

The core challenge for search & query over tabular data is to process and
build an index over a large corpus of heterogeneous tables. In 2016, we assessed
the table heterogeneity for over 200k Open Data CSV files [54]. We found that
a typical Open Data CSV file has less than 100 kB (the biggest with over 25 GB)
and consists of 14 columns and 379 rows. An interesting observation was that
~50% of the inspected header values were composed of camel case, suggesting
that the table was exported from a relation table. Regarding the data types,
roughly half of the columns consists of numerical data types. As such, Open
Data CSV tables have different numbers of columns and rows and column values
can belong to different data types. Some of the CSV files contain multiple tables
and the tables itself can be non well-formed, meaning that there exists multiple-
headers or the rows with aggregated values over the previous rows.

To the best of our knowledge, the research regarding querying over thousands
of heterogeneous tables is fairly sparse. One of the initial work towards search

30 http://data.wu.ac.at/csvengine, last accessed 24,/03/2017.

31 https:/ /www.elastic.co/products/elasticsearch, last accessed 24/03/2017.
32 https://www.opendatanetwork.com, last accessed 24/03/2017.

33 https://dev.socrata.com, last accessed 24/03/2017.
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and query over tables was the work by Das Sarma et al. in 2012 [25]. The authors
propose a system to find for a given input table a set of related Web tables. The
approach relies on the assumptions that tables have an “entity” column (e.g.
the player column in a table about tennis players) and introduces relatedness
metrics for tables (either for joining two tables or appending one table to the
other). the authors propose a set of high-level features for grouping tables to
handle the large amount of heterogeneous tables and to reduce the search space
for a given input table. Eventually, the system itself returns tables which either
can be joined with the input table (via the entity column) or can be append to
the input table (adding new rows).

The idea of finding related tables is also closely relate to the research of find-
ing inclusion dependencies (IND), that are relation such as columnA C columnB.
A core application for these dependencies is the discovery of foreign key relations
across tables, but they are also used in data integration [53] scenarios, query opti-
mization, and schema redesign [62]. The task of finding INDs gets harder with
the number of tables and columns and the scalable and efficient discovery of
inclusion dependencies across several tables is a well-known challenge in data-
base research [9,43,62]. The state of the art research combines probabilistic and
exact data structures to approximate the INDs in relational datasets. The algo-
rithm guarantees to correctly find all INDs and only adds false positives INDs
with a low probability [42].

Another promising direction is the work of Liu et al. in 2014 which investi-
gates the fundamental differences between relation data and JSON data man-
agement [46]. Consequently, the authors derive three architectural principles to
facilitate a schema-less development within traditional relation database man-
agement systems. The first principle is to store JSON as JSON in the RDBMS.
The second principle is to use the query language SQL as a Set-oriented Query
Language rather than a Structured Query Language. The third principle is to
use available partial schema-aware indexing methods but also schema agnostic
indexing. While this work focuses on JSON and XML, it would be interesting
to study and establish similar principles for tabular data and how this can be
applied and benefit for search and querying.

Enabling search and querying over Open Data could benefit from many
insights from the research around semantic search systems. The earlier semantic
search systems such as Watson [24], Swoogle [27] or FalconS [22] provided search
and simple querying over collections of RDF data. More advanced systems, such
as SWSE [38] or Sindice.com [61] focused on indexing RDF document at web-
scale. SWSE is a scalable entity lookup system operating over an integrated data,
while Sindice.com provided keyword search and entity lookups using an inverted
document index. Surprisingly, published research around semantic search slowed
down. However, the big search engine players on the market such as Google or
Bing utilise semantic search approaches to provide search over their internal
knowledge graph.
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6.2 Annotation, Labelling, and Integration of Tabular Data

Text-based search engines such as Elasticsearch, however, do not integrate any
semantic information of the data sources and therefore do not enable search
based on concepts, synonyms or related content. For instance, to enable a search
for the concept “population” over a set of resources (that do not contain the
string “population”), it is required that the tables (and their columns, respec-
tively) are labelled and annotated correctly.

There exists an extensive body of research in the Semantic Web community
in semantic annotation and linking of tabular data sources. The majority of
these approaches [2,28,45,55,66,70,73,76] assume well-formed relational tables
and try to derive semantic labels for attributes in these structured data sources
(such as columns in tables) which are used to (i) map the schema of the data
source to ontologies or existing semantic models or (ii) categorize the content of
a data source.

Given an existing knowledge base, these approaches try to discover concepts
and named entities in the table, as well as relations among them, and link them
to elements and properties in the knowledge base. This typically involves finding
potential candidates from the knowledge base that match particular table com-
ponents (e.g., column header, or cell content) and applying inference algorithms
to decide the best mappings.

However, in typical Open Data portals many data sources exist where such
textual descriptions (such as column headers or cell labels) are missing or cannot
be mapped straightforwardly to known concepts or properties using linguistic
approaches, particularly when tables contain many numerical columns for which
we cannot establish a semantic mapping in such manner. Indeed, a major part of
the datasets published in Open Data portals comprise tabular data containing
many numerical columns with missing or non human-readable headers (organi-
sational identifiers, sensor codes, internal abbreviations for attributes like “pop-
ulation count”, or geo-coding systems for areas instead of their names, e.g. for
districts, etc.) [47].

Table 8. Header mapping of CSVs in open data portals

Portal | Tables | cols | num.cols | w/o Header | Num. H | Mapped
AT 968 13 |8 154 6,482 1,323
EU 357 20 |4 223 1,233 349

In [57] we verified this observation by inspecting 1200 tables collected from
the European Open Data portal and the Austrian Government Open Data Por-
tal and attempted to map the header values using the BabelNet service (http://
babelnet.org): Table8 lists our findings; an interesting observation is that the
AT portal has an average number of 20 columns per table with an average of 8
numerical columns, while the EU portal has larger tables with an average of 4 out
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of 20 columns being numerical. Regarding the descriptiveness of possible column
headers, we observed that 28% of the tables have missing header rows. Eventu-
ally, we extracted headers from 7714 out of around 10 K numerical columns and
used the BabelNet service to retrieve possible mappings. We received only 1472
columns mappings to BabelNet concepts or instances, confirming our assump-
tion that many headers in Open Data CSV files cannot easily be semantically
mapped.

Therefore, we propose in [57] an approach to find and rank candidates of
semantic labels and context descriptions for a given bag of numerical values, i.e.,
the numerical data in a certain column. To this end, we apply a hierarchical clus-
tering over information taken from DBpedia to build a background knowledge
graph of possible “semantic contexts” for bags of numerical values, over which
we perform a nearest neighbour search to rank the most likely candidates. We
assign different labels/contexts with different confidence values and this way our
approach could potentially be combined with the previous introduced textual
labelling techniques for further label refinement.

7 Conclusions, Including Further Issues and Challenges

In this chapter we gave a rough overview over the still persisting challenge of
integrating and finding data on the Web. We focused on Open Data and provided
some starting points for finding large amounts of nowadays available structured
data, the processing of which still remains a major challenge: on the one hand,
because the introduction of Semantic Web Standards such as RDF and OWL
did not yet find adoption and there is still a large variety in terms of formats to
publish structured data on the Web. On the other hand, even the use of such
standard formats alone would not alleviate the issue of findability of said data.
Proper search and indexing techniques for structured data and its metadata
need to be devised. Moreover, metadata needs to be self-descriptive, that is, it
needs to not only describe what published datasets contain, but also how the
data was generated (provenance) or under which terms it can be used (licenses).
Overall, one could say that despite the increased availability of data on the
Web, (i) there are still a number of challenges to be solved before we can call it
a Semantic Web, and (ii) one often needs to be ready to manually pre-process
and align data before automated reasoning techniques can be applied. Projects
such as the Open Data Portalwatch, a monitoring framework for Open Data
portals worldwide, from which most of our insights presented in this paper were
derived, are just a starting point in the direction of making this Web of data
machine-processable: there is a number of aspects that we did not cover herein,
such as monitoring the evolution of datasets, archiving such evolving data, or
querying Web data over time, cf. [31] for some initial research on this topic.
Nor did we discuss attempts to reason over Web data “in the wild” using OWL
and RDFS, which we had investigated on the narrower scope of Linked Data
some years ago [64], but which will impose far more challenges when taking into
account the vast amounts of data not yet linked to the so called Linked Data
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cloud, but available through Open Data Portals. Lastly, another major issue we
did not discuss in depth is multi-linguality: data (content) as well as metadata
associated with Open Data is published in different languages with different
language descriptions and thereby a lot of “Open” information is only accessible
to speakers of the respective languages, leave aside impossible to integrate for
machines: still recent progress in machine translation or multi-lingual Linked
Data corpora like Babelnet [56] could contribute to solving this puzzle.

You will find further starting points in these directions in the present volume,
or also previous editions of the Reasoning Web summer school. We hope these
starting points serve as an inspiration for further research on making machines
understand openly available data on the Web and thus bringing us closer to the
original vision of the Semantic Web, an ongoing journey.
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1 Introduction

Modern information retrieval systems advance user experience on the basis of
concept-based rather than keyword-based query answering. In particular, effi-
cient user interfaces involve terminological descriptions of the domain of interest,
expressed in formal knowledge representation formalisms. Ontological represen-
tation and reasoning based on Description Logics (DLs) [7,9,10] play an impor-
tant role, providing expressive concept-level query languages with formal seman-
tics and reasoning support. On the other hand, most real-life applications use
huge amounts of data, consequently, efficient data storage and retrieval focuses
on methodologies that take advantage of the physical storage using simple rather
than sophisticated data models. Trying to combine the requirements for highly
expressive queries and efficient data storage, ontology-based query answering is
one of the widely used approaches, especially for web applications, involving data
from different sources, in different formats [25,27,29,31,32,34].

Here, we present methods for data integration, query rewriting and query
answering based on both tractable and expressive Description Logics. Specif-
ically, we focus on semantic data representation based on relational schemas
to ontology mappings, ontology-based query rewriting for tractable Description
Logics and approximate query answering techniques for expressive Description
Logics.

The rest of the paper is structured as follows. Section 2 presents some basics
of semantic data technologies. First, relational databases are introduced as a
paradigm of disk-oriented data storage that misses a vocabulary-based semantic
interpretation. Then, thing descriptions that are based on terminological asser-
tions (ABoxes) are presented as a simple way to store and access semantic data.
Finally, Sect.2 concludes with a short presentation of semantic databases that
are based on relational to terminology mappings, an important technology widely
used in practice, especially in cases where systems already use relational database
management systems. Section 3 provides the reader with a short introduction to
Description Logics and how Description Logic ontologies can be used to extend
the vocabulary of data descriptions, thus providing a formal terminological data
access framework. Moreover, automated ontology reasoning problems introduce
the reader to ontology-based data access that is the subject of Sect. 4. Starting
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from standard reasoning and instance retrieval problems, the main technologies
of semantic data access are presented, with emphasis to optimised query rewrit-
ing in tractable fragments of web ontology languages. Finally, Sect.5 briefly
describes the current technologies and standards that enable ontology based
data access methods, discussed in the previous sections, to be used in real web
applications, while Sect. 6 concludes the paper.

2 Semantic Data Representation

Data access in real life applications is usually based on storage oriented tech-
nologies that focus on the efficient retrieval of information from the disks, taking
advantage of the specific technological restrictions of the physical layer. Sophis-
ticated, analytical data modelling that represents the knowledge of the domain,
is usually avoided for the sake of efficiency. A typical example is the relational
database management model.

Definition 1. Let Ay be a value domain and Ax a name domain for subsets of
the values in Ay. The n-tuple D = (Fy,Fa, ..., Fn) is a data structure defined
on Ay; Fi € Ar (i € Ny, (we write Ny, for the set {1,2,...,n})) are the fields
of D; v = (v1, V2, ..., V), with v; € Ay (i € Ny,), is a record of D. A database
is a tuple B = (D,V), where D = {D1,Da,..., Dy} is a non-empty set of data
structures and V a set of their records. We say that D is the database schema
and V is the data.
An expression of the form

SELECT fields
FROM  structures
WHERE conditions

is an SQL query against the database B, where structures are elements of D
(some D;), fields are some fields of the structures (some F;;) and conditions are
conditions for the values of these fields. The answer to the SQL query is the set
that contains all the fields value vectors of V, that satisfy conditions. O

Definition 1 presents a simple form of relational databases and SQL queries,
covering the basic ideas. More sophisticated relational models and query lan-
guages have been introduced in the literature (see for example [2,3]).

Example 1. Table1l summarises the database schema of an example database
from the cinema domain. The schema consists of five data structures providing
information for directors, movies and awards. For example, the data structure
DIRECTORS, after a unique number for each record that is usually called pri-
mary key (here underlined), stores the name, place of birth and a short bio of a
director, while her possible movies and awards are stored in the data structures
DIRECTOR-OF and AWARDED-WITH, respectively.

Some data following this database schema is given in Table2. It contains
information about two directors and two movies; it is stored in different records of
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the database. For example, the movie ‘Manhattan Murder Mystery’ is described
(its title is stored in the field Title of the first record of the data structure
MOVIES). The movie is a ‘Comedy’ (see the value of the field Genre of MOVIES),
its duration is 104 min (field Duration), its director is ‘Woody Allen’ (we join the
information from the first record of DIRECTOR-OF and the field Name of the
first record of DIRECTORS).

With the following SQL query ¢, we may find all directors of comedies.

SELECT DIRECTORS.Name

FROM DIRECTORS, MOVIES, DIRECTORS-OF

WHERE DIRECTORS.DirID = DIRECTORS-OF.DirID
MOVIES.MovID = DIRECTORS-OF.MovID
MOVIES.Genre = “Comedy”

The query involves three structures of the database, as we can see in its FROM
clause, namely the DIRECTORS, the MOVIES and the DIRECTORS-OF. The
query answer returns only director names, from the field DIRECTORS.Name
(see the SELECT clause), however finding the correct answer set involves condi-
tion checking that needs information from the three structures (see the WHERE
clause). In particular, the first two conditions ensure that the movies of all direc-
tors will be checked against the third condition. Thus, the relevant set of tuples is
constructed with appropriate joins of DIRECTORS, MOVIES and DIRECTORS-
OF, and then only tuples that satisfy the condition “the movie is a comedy” are
selected. In this case, only M1 has M1.Genre = “Comedy”, thus only D1 is “direc-
tor of a comedy” and thus only D1 will be an answer of the query. Formally, we
write ans(q) = {(WoodyAllen)}. O

Collecting information from the data is not always a straight-forward process.
It presupposes a good understanding of the database schema and the value
domains, and involves conditions that are difficult to be expressed in the query
language. In some cases, a sophisticated information extraction procedure may
be needed to mine semantically rich information out of semi-structured or
unstructured data, stored in some of the fields of the database. For instance
(in Example 1) the field ShortBio of DIRECTORS may contain useful information
in an unstructured form.

The syntax of relational databases is suitable for efficient data storage, on the
other hand it does not provide rich semantic information. For example, the posi-
tion of a symbol in a statement (schema, record, field, value) is not informative

Table 1. Database schema for Example 1

DIRECTORS(DirlD, Name, PlaceOfBirth, ShortBio)
MOVIES(MovlID, Title, Year, Duration, Genre)
AWARDS(AwID, Type, Category)
AWARDED-WITH(DirID, AwlD, Year, Type)
DIRECTOR-OF(DirlD, MovID)
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Table 2. Example 1 database values

DIRECTORS

[DirlD[Name [PlaceOfBirth  [ShortBio |
D1 |Woody Allen New York, USA |ex/waBio.pdf
D2 |Theo Angelopoulos|Athens, Greece |ex/taCV.pdf
MOVIES

[MovID[Title [Year [Duration|Genres |
M1 Manhattan Murder Mystery|1993|104 Comedy
M2 Eternity and a day 1998|137 Drama
AWARDS

IAWID[Type [Category

Al |BAFTA Film Award |[Best Actress in a Supporting Role
A2 |Cannes Film Festival|Palme d’Or

AWARDED-WITH DIRECTOR-OF
[MovID[AwID|Year [Type | [DirlD[MovID]
M1 | Al |1995|Nomination| |D1 M1
M2 | A2 [1998]Win D2 [ M2

for the nature of the entity that the specific symbol stands for (individual, con-
cept, property, relationship, constant or datatype). An alternative of relational
modelling is the object-oriented one that focus on representing thing descrip-
tions in a clear syntactic form of statements classifying things to categories and
describing their properties and roles (for example manhattan is a feature film, a
comedy, has director “‘Woody Allen’ etc.). The first ingredient of this modelling
is the use of an extended set of names that is clearly distinguished into three
subsets, the individual, the concept and the role names. It constitutes the vocab-
ulary or the terminology of the data representation. The second ingredient is
the use of very simple syntax rules: statements classify individuals to concepts,
based on their properties or relations to other individuals. Then, data access is
based on queries that use the vocabulary to formally describe conditions and
bring ‘individuals that are members of a specific class’.

Definition 2. Let £ = (IN,CN,RN) be a vocabulary, i.e. mutually disjoint sets
of names for individuals, concepts and roles of the world, respectively. We call
individual equality assertion the statement a = b, individual inequality assertion
the statement a % b, concept assertion the statement A(a) and role assertion
the statement r(a,b), where a,b € IN, A € CN and r € RN. A set of (equality,
inequality, concept or role) assertions is called assertion box or simply ABox.
The set of names involved in the assertions of an ABox A is the signature of A,
written as Sig(A).
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Let VN be a set of variable names, taking values on IN. An atomic query
for the ABox A is an expression of the following forms (the symbol | is used to
summarise alternatives):

q=C(a) | r(a,b) (1)
q(z) =C(z) | r(z,a) | r(a,x) (2)
q(z,y) =r(z,y) (3)

where C € CN, r € RN a,b € IN, z,y € VN are concept, role, individual and
variable names, respectively. We refer to the individual names involved in the
query as constants. We refer to the set of the variables of a query q with var(q).
In case the query has no variable (form 1), it is called boolean.

A conjunctive query is an expression of the form:

q(:li) = {QI7~'~7Qn}a (4)

where q;, © € N, are atomic queries. q(x) is the head and {q1,...,qn} is the
body of the query. We say that x is the variable vector of q and its elements
are called answer variables. The set of answer variables is written as avar(q).
Answer variables should be also in the body (in at least one q;). The variables
appear in the body of q and not in its head are called free variables (fvar(q)
is the set of free variables). The free variables that appear at least twice are
called existential join variables (the set of existential join variables is written as
ejvar(q) ). A conjunctive query with no answer variables is called boolean.

Ezample 2. [example 1 cont.] Table 3 presents an ABox representing information
from the movies domain, also contained in the database example of the previous
section (see Table2). In particular, the set of assertions

A={aj,as,...,as}

describes individuals like manhattan, woodyAllen and their properties, for exam-
ple it is stated that manhattan is a Comedy (assertion o). The same information
can be extracted from the database (the first record of the structure Movies,
that has title manhattan, has the value Comedy in the field Genre). Additionally,
the Abox contains information for the individual interrelationships, for example
the assertion hasDirector(manhattan, woodyAllen) states that ‘Woody Allen is a
director of the movie ‘Manhattan Murder Mystery’. It is not difficult to see that
this information is also in the database, in a more complicated manner, specifi-
cally from the first record of the structure DIRECTOR-OF we find the keys and
then we get the names from the structures DIRECTORS and MOVIES. Suppose
now that we would like to find all directors of comedies (the same query as in
Example 1), from the information of ABox. The conjunctive query

q(x) = {Director(x), isDirector(z,y), Comedy(y)}, (5)

uses the ABox signature, in particular the concepts Director, Comedy and the role
isDirector. In this case, x is an answer variable and y a free variable, specifically an
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existential one. Intuitively, the answer that we would get is woodyAllen, knowing
the meaning of the vocabulary names. However, looking more carefully, this is not
the case, since it is not explicitly stated in the ABox that woodyAllen is a director
(although from assertion e we can conclude that since he has directed a movie,
he obviously is a director). In the next sections, we will see how this problem
can be handled by representing domain knowledge on the basis of terminological
axioms. O

Table 3. ABox of Example 2

a; | Comedy(manhattan)

a2 | hasDirector(manhattan, woodyAllen)

a | FeatureFilm(manhattan)

o | nominatedFor(manhattan, baftaBestActressSupporting)

as | hasAward(eternityAndAday, cannesPalmeDor)

ag | woodyAllen % theoAngelopoulos

The development of efficient disk-oriented storage and retrieval of ABoxes
has been an attractive area of research during the last years, especially in the
framework of the Semantic Web. As a result, several systems, known as triple
stores have been proposed in the literature, some of them really efficient. How-
ever, even state-of-the-art triple stores face difficulties when they try to scale to
big data. Moreover, in several applications, existing systems use relational data-
base management systems and it is difficult to swap to other technologies. Thus,
some applications call for vocabulary-based, semantic information access on the
one hand, with relational database storage on the other hand. This requirement
can be achieved with semantic databases, that need to connect the terms of
vocabularies with the information stored in the database.

Consider the first record of the structure MOVIES in Table2, that stores
the fact that the movie with ID M1 and title ‘Manhattan Murder Mystery’
is an instance of the concept Comedy (defined in the vocabulary). The same
information is given in the ABox of Table3 (assertion a;):

Comedy(manhattan). (6)

In order to represent the same information by simply connecting the individual
described in the database with the term Comedy, we need to first identify indi-
viduals that are described in the structure MOVIES and then filter only those
individuals that are instances of the class Comedy.

Definition 3. Let B be a database and F the set of fields of all structures of B.
An object identifier is a function id of any order n < |F| defined as:

id(vy, v, ...0,) = a, (7)
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where v, va,...,v, values form n fields of F and a € IN an individual name.
Similarly, a concept classifier is a function ccl of order m < |F| defined as:

ccl(vy, vg, ...vm) = C, (8)

where vy, va,...,Um form m fields of F and C € CN an individual name.
Finally, a role classifier is a function rcl of order k < |F| defined as:

rcl(vy, v, ...vk) =T, (9)
where v1, va,...,v; form k fields of F and r € RN an individual name.

Definition 4. Let B be a database and L a vocabulary, with IN, CN and RN the
set of names, concepts and roles, respectively. Let also p(x) be an SQL query
for B, id, ccl and rcl, individual, concept and role identifier, respectively, x a
nonempty variable vector on V, and q(y) an instance query. An expression of

the form:
(id,ccl,rel)
g

p(x) q(y) (10)
1$ a semantic mapping from the database B to the vocabulary L. A set of semantic
mappings, M, is a semantic mapping box or MBoz.

The triple S = (L, B, M) is a semantic database.

The intuitive meaning of the identifiers id, ccl and rcl is the following. They
are used to define fresh names for individuals, concept and roles respectively,
if they are not already in the vocabulary. For practical reasons, these names
should be intuitive for humans (i.e. informative enough for humans to refer to
the specific entity) and uniquely identify the entity. id, ccl and rcl are necessary
in practice, since database IDs are not always appropriate as entity identifiers.
Indeed, database IDs do not fulfil the first requirement (they are not informative
for humans) and moreover, the entities described in the knowledge base are not
always formally identified in the database schema (see for example the award
category).

Ezample 3. [example 2 cont.] Following Examplesl and 2, an identifier
dir(DIRECTORS.Name) can be defined as a function of order 1, that takes as
input the value of the field Name of the structure DIRECTORS (see Table 2) and
gives output object names, as:

dir(Woody Allen) = woodyAllen.

Moreover, the function mov can be defined similarly, as a function of order 1,
taking as input the title of a movie (or parts of it for simplicity reasons) to
define movie names, giving at the output for example manhattan as an movie
identifier for the movie ‘Manhattan Murder Mystery’. If the context suggest
for more information in the name to identify, the function mov could do so by
concatenating the title and the first release date:

mov(MOVIES.Title, MOVIES.Year)
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giving the output:
mov(Manhattan Murder Mystery, 1993) = manhattanMurderMystery1993.

Finally, we define the semantic mapping

m : SELECT DIRECTORS.Name
FROM DIRECTORS, MOVIES, DIRECTORS-OF

WHERE DIRECTORS.DirID = DIRECTORS-OF.DirlD

MOVIES.MovID = DIRECTORS-OF.MovID (11)
MOVIES.Genre = “Comedy”
— DirectorOfComedy(dir(z)),

that maps to the concept DirectorOfComedy. In this case, we can get the assertion
DirectorOfComedy(woodyAllen),
since Woody Allen is the only answer to the SQL query of the mapping (11). O

Definition4 presents a simple form of semantic mappings. More general
mapping frameworks, especially mapping relational databases to terminolo-
gies have been studied in the literature, especially in the framework of data
integration [4-6].

3 Ontological Data Descriptions

Information retrieval using vocabularies and semantic data forms a basis for
user friendly systems, however it does not meet all user requirements. Users
sometimes expect that the system will employ logical procedures during the
retrieval process in order to be more precise and effective. For example, users
expect that ‘directors’ should be answers to a query that asks for ‘creators’,
simply because ‘all directors are creators’. Formal knowledge representation can
be very helpful within this context, enriching the vocabularies with additional
terms (not directly mapped to the data, but connected with other entities that
are mapped), and expressing the restrictions of the domain that are helpful
during the data retrieval process. Ontologies expressed in Description Logics
play an important role here, as a rich terminological knowledge representation
framework, supported by efficient automated reasoning services [7—12].

Definition 5. LetIN, CN and RN be mutually disjoint sets of individual, concept
and role names, respectively.

A role r € RN is a named role expression or atomic role. Let r, s be atomic
roles. The expressions v, ros, recursively defined using the role constructors ~
(inverse role constructor) and o (role composition constructor), are role expres-
sions or complex roles or simply roles. Moreover, we use the symbol U for the
universal role.
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A concept C € CN is a named concept expression or atomic concept. Let
C, D be atomic concepts, v an atomic role, a an individual name and n a nat-
ural number. The expressions -C, C M D, C'U D, 3Ir.C, Vr.C, >nr.C, <nr.C,
{a}, recursively defined using the concept constructors — (negation), M (con-
junction), U (disjunction), 3 (existential), V (universal), > n (at-least number
restrictions), < n (at-most number restrictions), {} (nominal), are called con-
cept expressions or complex concepts or simply concepts. Moreover, T (named
Top) and L (named Bottom) are concepts. Finally, Self can be used in expres-
sions of the form Jr.Self.

An expression of the form C T D (C = D) is a concept subsumption axiom
(concept equivalence axiom). Similarly, an expression of the formr C s (r = s)
is a role subsumption axiom (role equivalence axiom).

A set of concept or role subsumption or equivalence axioms is a terminological
box or TBox or ontology. The individual, concept and role names used in the
azioms of a TBox T is the signature of 7, written as Sig(7).

The tuple K = (T,A), where T is a TBox and A an ABox, with
Sig(7),Sig(A) CINUCNURN is a knowledge base or simply knowledge, with
signature Sig(KC) = Sig(7) U Sig(A).

Ezample 4. The set of axioms 7 = {7y, 72, ..., 713}, where

71. Director C Creator,

To. Movie = Film,

73. Director M Movie C L,

74. Movie = ShortFilm U FeatureFilm,

75. FeatureFilm = Film M LongFilm,

76. FeatureFilm = Film M —ShortFilm,

77. Director = disDirector.Movie,

78. Movie C VhasDirector.Director,

T9. MultiAwardWinning => 3hasAward.MajorAward,
T19- 1 E VhasDirector.Director,

711. hasDirector C hasCreator,

T12. isDirector = hasDirector ™,

713. hasCollaboration C isDirector o hasActor,

is a TBox, with signature

Sig(7) = {Director, Creator, Movie, Film, ShortFilm, FeatureFilm,
LongFilm, MultiAwardWinning, MajorAward,
isDirector, hasDirector, hasAward, hasCreator,
hasCollaboration, hasActor, hasRunningTime}.

Axioms 7y, T3, Ts and 719 are concept inclusion axioms, 7o, T4—77 and 79 are
concept equivalence axioms, 711 and 73 are role inclusion axioms and 79 is a
role equivalence axiom. a

Ontologies and knowledge bases are practically useful because reasoning ser-
vices can extract logical entailments of their axioms, by applying simple semantic
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rules. For example, based on the TBox of Example 4 we can conclude using sim-
ple reasoning rules that if an individual a is director of an individual b that has
actor an individual c, then a is a director, b is a movie and a has a collaboration
with c. Consequences like the above, are based on formal semantics of axioms and
assertions.

Definition 6. Let K = (T, A) be a knowledge base, with signature Sig(KC) C
INUCNURN, where IN, CN, RN mutually disjoint sets of individual, concept and
role names, respectively. Interpretation of the knowledge, is a tuple J = <AI7 -Z>,
where AT a nonempty (possibly infinite) set of objects, called domain and T the
interpretation function, that maps elements of IKC to AT structures as follows:

— Individuals are interpreted as elements of AT, i.e. ifa € IN , then o € AZ.
~ Atomic concepts are interpreted as subsets of AL, i.e. if A€ CN, then AT C
AT,
— Atomic roles are interpreted as subsets of AT x AT, i.e. if r € RN, then
rT C AT x AT,
— Complex roles are interpreted as subsets of AT x AT ((x,y) € AT x AT)
recursively on their structure, as follows:
o For every x,y € AT it is (x,y) € UL,
o (z,y) € (r‘)I if and only if (y,x) € rZ.
o (2,y) € (ros)t if and only if there exists z € AT such that (z,z) € r¥
and (z,y) € st.
— Complex concepts are interpreted as subsets of AT, recursively on their struc-
ture, as follows:
o For everyx € AT itisx e TZ.
There does not exist x € AT such that v € 17,
z € (-C)" if and only if x ¢ CT.
x € (CHD)I if and only if x € CF and x € D*.
T € (CuD)I if and only if x € CT or x € DZ.
x € (EIT.C)I if and only if there exists y € AT, such that (z,y) € % and
y € CT.
S (VT.C)I if and only if for every y € AT with (x,y) € %, it isy € C7.
x € (>n r.C)I if and only if there exist at least n different elements
Y1y Yn of AT such that (z,y;) € rT and y; € CT, i € N,,.
x € (<n ’I".C)I if and only if there exist at most n different elements
Y1,y Yn of AT, such that (z,y;) € v and y; € C*, i € N,,.
z € (3r.Self)” if and only if (x,z) € rL.
o x c {a}? if and only if v = a”.

The interpretation I of the knowledge K, satisfies:

— a concept assertion C(a) of A if and only if a* € C7,
— a role assertion r(a,b) of A if and only if (aZ,b) € rZ,
~ an individual equality a =~ b of A if and only if a* = bZ,
~ a concept inequality a % b of A if and only if a* # b”.
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An interpretation I satisfies an ABox A if and only if it satisfies all of its
assertions. In this case, we say that T is a model of A.
An interpretation T of a knowledge K, satisfies:

— a concept subsumption aziom C T D if and only if C* C D7,
— a concept equivalence axiom C = D if and only if CT = DZ,
— a role subsumption axiom r C s if and only if r* C s%,

— a role equivalence aziom r = s if and only if r¥ = sT.

The interpretation I satisfies the TBox T if and only if it satisfies all of its
axioms. Then, we say that T is a model of 7. Additionally, T satisfies a concept
C of T, if and only if CT is nonemply.

Finally, the interpretation T satisfies the knowledge K (is a model of K ), if
and only if it is a model of both its Abox and Tbox. We say that K is satisfiable
if there exists a model of K.

Table 4. Complex concept and role semantics

Constructor Syntax | Semantics

Top T AT

Bottom 1 0

Negation -C AT\C*

Conjunction cnbD (¢ctnD?

Disjunction cubp |cfuD*

Existential Ir.C | {x | Jy such that r(z,y)}

For-all Vr.C | {z | Yy with r(z,y) it is C(y)}

At-least n >n.C |{z | Jy1,...,yn with y; # y;,7(x,y:),%,J € Np}
At-most n <nC [{z| Ay, Ynt1 with y; # y;,7(2,9:),4,J € Npp1}
Reflexivity Ir.Self |{z | it is r(z,z)}

Nominals {a} a*

Universal role u AT x AT

Inverse role r- {(z,y) | itis r(y,x)}

Role composition |r o s {(z,y) |3z such that r(z, z) and s(z,y)}

A great advantage of DLs is that the expressive power of concept and role
constructors can be used in a pay-as-you-go manner. The more expressive the
language that is used in the axioms, the more difficult the problem of automated
reasoning. Less expressive DLs are supported by very efficient reasoning services
and are used in applications that need fast response, while more expressive ones
are used in applications where sophisticated reasoning is needed. We say that
the former DLs are of low expressivity, while the latters are very expressive.
An example of a very expressive DL is SROZQ [16] underpinning the Web
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Table 5. Semantics of concept and role axioms

Axiom Syntax | Model condition
Concept assertion C(a) |at eC®

Role assertion r(a,b) |(a®,b) € rt
Individual equality axb |af =bF

Individual inequality |a #b |a # b
Concept subsumption |C T D |C* C DT
Concept equivalence |C =D |CT = D*
s |t C st

S ’I‘I:SI

Role subsumption r

[

Role equivalence r

Ontology Language (OWL 2) [56], that uses all the constructors shown in Table 4.
Examples of tractable DLs underpinning some tractable fragments of OWL 2,
are DL-Lite [25,26], ELHZ [27], and the DLP [17].

Automated reasoning for DLs has been studied by many researchers over
the past 20 years [9,13-15]. The work mainly focused to the development of
sophisticated algorithms and optimised systems for standard reasoning problems,
directly following the semantics. Finally, several systems have been implemented
for DL reasoning [18-21].

Definition 7. Let K = (A,7) be a knowledge base with signature Sig(KC) C
IN U CN U RN, where IN, CN, RN mutually disjoint sets of individual, concept
and role names, respectively. Let C € CN, « an assertion with Sig(«) C Sig(K)
and T an axiom with Sig(T) C Sig(K).

— Concept satisfiability The concept C is satisfiable in 7, if and only if C is
satisfied in some model of T .

— Logical entailment of axioms The aziom T is a logical entailment of 7 (we
write T | 1), if and only if T is satisfied in every model of T .

— ABox consistency The ABox A is consistent w.r.t. the TBox T, if and only
if there exists a model of T that is also a model of A.

- Logical entailment of assertions The assertion « is a logical entailment of IC
(we write K = «), if and only if « is satisfied in every model of K.

The above problems are not independent. An algorithm solving one of them
can be used to solve others, as suggested by the following proposition.

Proposition 1. Let K = (A, T) be a knowledge base, C, D two concepts and a
an individual of .

1. C is satisfiable in T, if and only if T &= CC L.

2. ItisT = C C D, if and only if the concept C M =D is non-satisfiable in T .

3. It is K = C(a), if and only if the ABox AU {—~C(a)} is inconsistent w.r.t.
7.
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4. T entails that C is satisfiable in T, if and only if the ABox {C(b)} is consis-
tent w.r.t. the TBox T, where b is a fresh individual name.

The reasoning problems mentioned above are useful in applications where
data retrieval is based on terminological description of the domain. Among them,
the problem of logical entailment of assertions is of great importance. Indeed,
it is not difficult to imagine a (naive) algorithm that, given a concept C' €
CN checks for every individual a € IN whether K = C(a) holds or not, thus
collecting all instances of C'. This is a simple way to solve a problem that is called
instance retrieval, which is actually semantic query answering for very simple
query languages (only atomic concepts or roles). In the next, we will see how
this problem can be efficiently solved, depending on the DL expressivity, as well
as how it can be extended to conjunctive query answering over DL terminologies.

4 Semantic Data Access

Consider a semantic database S = (L£,B, M), where L is a vocabulary with
IN, CN, RN the sets of individuals, concept and role names respectively, B a
database, and M a semantic mapping box. Assume also that we have a TBox
7 with sig(7) C INUCNURN and that we pose a conjunctive query of the form

Q(m) = {ql7 ---7qn}7

where ¢1, ..., ¢, are atomic queries for concepts and roles of CN and RN. Since
no explicit ABox is given, intuitively, to answer this query we need to find the
elements in B that satisfy the constrains of query ¢ and TBox 7, according to the
mappings defined in M. Thus, implicitly we assume that we have a knowledge
base K = (7, A) with an ABox A, implicitly encoded in S.

For answering such conjunctive queries in practice, two different strategies
have been suggested. The first approach, following the above intuition, tries to
solve the problem by converting the semantic database into a knowledge base, i.e.
by computing explicitly the missing A from S using a forward-chaining proce-
dure. In this case, the problem of answering a query over the semantic database
can be solved as an instance retrieval problem. The second approach tries to
solve the problem in a backward-chaining manner by converting the conjunctive
query to an SQL query, using the TBox and the mappings. In this case, the
data retrieval problem is solved as a database access problem of answering SQL
queries. Both approaches have advantages and disadvantages, have been studied
extensively in the literature and have been used in several systems.

The process of converting a semantic database into a knowledge base is rela-
tively simple. Intuitively it can be described as follows: Starting from the map-
pings, we execute all SQL queries contained in the mappings, and record each
answer in an ABox A, specifically generated for this purpose. This conversion
can be performed efficiently, and it can be proved that it does not affect the
soundness and completeness of the answering system.
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The second approach is based on converting the conjunctive query, that is
expressed in terms of the TBox, into an SQL query, expressed in terms of the
underlying database schema. In particular, using the mappings defined in M,
we check if each atomic query of the conjunctive query ¢ is the righthand side
of some element in M. If this is the case, then the respective SQL query is
transformed, so that its SELECT part returns the identifiers of the objects of the
variables of the database structure that correspond to query answer variables.
To complete the construction of the final SQL query from the individual SQL
queries specified in M, we join their FROM and WHERE clauses, and add in the
WHERE clause any necessary additional conditions for the joining, in the case
the same variable belongs to two different atomic queries. This approach does
not explicitly construct the ABox A.

In both approaches, we will not get the full, sound and complete, solution to
the semantic data retrieval problem, if we limit ourselves to retrieving simply the
instances of the atomic queries (in the first case) or to answering the SQL query
(in the second case). This is because, this process does not take into account the
information of the axioms in the TBox 7, which encode additional knowledge
both explicit and implicit. If we take into account also 7, a right answer to
the query should be compatible with a model of the implicit knowledge base
(7, A). However, unlike relational databases, a knowledge base may in general
have many models. So, we can consider as right answers to the query those
answers that depend only on the information contained in 7, i.e. those that
are obtained by evaluating the query over a database compatible with 7", but
independently of which is the actually chosen database [34]. This leads to the
following definition:

Definition 8. Let K = (7, A) be a knowledge base and q(x) a conjunctive query
for the particular knowledge base, where x (of size n) are the answer variables.
Let also T be an interpretation for knowledge base K. An answer ¢ to the
conjunctive query q in L is the set of the individual vectors a, of size n, for
which we have that T | q(a).

A wvector of individuals ¢ of size n is a certain answer to q for KC, if and
only if for each model T of K we have ¢ € q*. The set of certain answers to the
conjunctive query q is denoted by cert(q, K).

Based on the above definition, in order to solve the query answering problem,
we need to find the set of certain answers to g for (7, A), i.e., not only the answers
obtained from the ABox directly derivable from S, but also the answers that are
obtained though the assertions that are consequences of the ABox, using the
axioms in TBox. Finding all these assertions is a reasoning problem, which can
be solved in two ways:

The first method, called materialization, or saturation is query-independent
and is performed as a data preprocessing step. In particular, it uses the TBox
7T to extend the ABox A that has been derived directly from S, making thus
explicit all the implicit knowledge that can be derived from & and 7. In this
way, when answering the query, the TBox in not needed any more, since its
contribution has already been recorded by extending the ABox.
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The second approach, called query rewriting, follows a different strategy and
does not modify the database. Instead, it starts from the query and extends it
using the TBox, trying to encode in this extension all the implicit knowledge
related with the atomic queries that appear in the query. Then, the extended
query is executed against the database, without needing the TBox. Of particular
practical significance are the cases where the extended query can be expressed as
an SQL query, so that it can be directly executed over the underlying relational
database B.

4.1 Implicit Knowledge Materialization

In the materialization approach introduced above, the contribution of the TBox
to answering a query is determined through the expansion of the ABox, i.e.
through computing and recording all relevant assertions. For this process to be
effective, it should be guaranteed that all of the implicit knowledge are con-
verted to explicit knowledge. In this case, the TBox is not any more necessary
for finding the certain answers to a query, and the query answering process
can be performed by simply retrieving the relevant individuals from the ABox.
Materialisation is very effective in some Description Logics, but impossible to
be applied on others [22]. In general, materialization applies a set of rules that
encode the consequences of the TBox axioms. These rules, depending on the
axiom expressions, add assertions for the ABox individuals, and if necessary,
add also new individuals in the ABox.

Example 5. Consider a TBox 7 that contains only the axiom
71. Director C Creator,
that for the database B of Table2 M contains only the mapping

my: SELECT DIRECTORS.Name
FROM DIRECTORS
— Director(dir(x)),

where dir is the object identity function, and that we want to answer the query

q(z) = {Creator(x)}.

In order to answer ¢, we will first construct an ABox A that corresponds
to the materialization of B using M. This results in A = {a1,as}, where
o is Director(woodyAllen) and «s is Director(theoAngelopoulos). Next, we have
to extend A, using the axioms of 7. This results in adding to A the asser-
tions ag. Creator(woodyAllen) and ay4. Creator(theoAngelopoulos); these are the
results of applying 7, on «; and as. In this way, the certain answers for the
new knowledge base K = (7, A"), where A’ = {ay,...,a4}, are the following:
cert(q) = {(woodyAllen), (theoAngelopoulos)}.
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Next, assume that we add to 7 the axioms

To. Director C disDirector.Movie
73. Movie C JhasDirector.Director

and that we want to answer the same query ¢. In this case, when trying to
expand the initial A, we face the following problem: When we try to apply
the axiom 75 on woodyAllen, which according to «; is an instance of Director,
we have to add to the knowledge a new individual, say movl, which will be
an instance of Movie and will be connected to woodyAllen through the role
isDirector. Thus, the following assertions will be added: as. Movie(movl) and
ag. isDirector(woodyAllen, movl). Then we can apply the axiom 73 on movl,
and obtain the assertions ay. Director(dirl) and ag. hasDirector(movl, dirl), after
adding the new individual dirl, in a way similar to movl. After the addition of
the new assertions, we can apply axiom 75 on the new individual dirl. This leads
to the addition of a new individual mov2 for which we will then have to apply
again axiom 73 to add a new individual dir2, etc. Hence, the process will not
terminate.

As the above example shows, materialization cannot be applied to expressive
Description Logics because it does not always terminate. Problems arise also in
ontology languages with disjunction, which leads to alternative ABoxes, which
are difficult to handle. For these reasons, materialization can be applied more
successfully to Description Logics that do not allow representation of disjunctive
knowledge and in which no references to new individuals are needed. Languages
that do not allow representation of disjunctive knowledge have been studied
extensively within the first-order logic framework and are known as Horn Logic.
Accordingly, the Description Logics exhibiting similar properties are called Horn
Description Logics and play an important role in developing practical semantic
retrieval systems.

In such Description Logics, the inference procedure needed to perform the
materialization can be encoded in a set of inference rules: the initial ABox is
saturated by repeatedly applying the rules to the available data until no fresh
data are derived. Optimizations can be applied on this naive approach, so as
to avoid redundant derivations. The OWL 2 RL profile is a subset of OWL 2
designed specifically to allow reasoning using such a rule-based implementation.

A rule language that is commonly used to capture the consequences of TBox
axioms is datalog [2], which is particularly useful because it underlies deductive
databases.

Definition 9. [adapted from [2]] A datalog rule is an expression of the form
Ri(w) «— Ro(uz), ..., Rn(un),

wheren > 1, Ry,..., R, are relation names and uq, ..., u, are tuples of appro-
priate arities. Each wvariable occurring in uw; must occur in at least one of
Uy, ..., u,. A datalog program is a finite set of datalog rules.
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Using datalog, the TBox is converted into a datalog program that is executed
to generate the inferred assertions. There are several systems that perform rule-
based reasoning and materialization over OWL 2 RL knowledge bases using
datalog or other rule-based methodologies, such as Apache Jena, Oracle 11g,
GraphDB (formerly OWLIM) [24] and RDFox [23].

4.2 Query Rewriting

The query rewriting approach is based on the premise that the answers to a
conjunctive query are affected by the axioms of the TBox that are related in
some way with the query. Since the conjunctive query is a set of atomic queries,
it is obvious, as a starting point, that any axiom that involves a concept or a role
that is used in the conjunctive query is related with the query. Of course, other
axioms may also affect the answers to the query. Hence, if we could encode in
some way in the query itself, or to an expansion of it, the way that all relevant
axioms affect the answers to the query, then we could possibly ignore the TBox.

Ezample 6. Consider the TBox T = {11, 72,73, 74} where

71. Director C Creator,

T9. Movie C Film,

73. isDirector C isCreator,

74. MovieDirector C disDirector.Movie.

First, assume that we want to answer the query ¢;(x) = {Creator(x)}. Since
71 tells us that all Directors are Creators, the axiom is relevant to the query.
In order to ‘encode’ it into the query, we need to produce the additional query
¢1a(x) = {Director(z)}, by ‘replacing’ Creator with its subconcept Director, so as
to guarantee that we will retrieve also the individuals that have been declared to
be directors but not creators. So, we can consider as answers to the original query
¢1 the answers to both ¢; and ¢4, i.e. the answers to the query set Q = {q1, ¢14}-
Given @, we do not need to consider any more 7; when answering the query.
The encoding of 7 into ¢ gave rise to the set of conjunctive queries ), which is
called union of conjunctive queries.

Now, assume that we want to answer the query g¢o(x) = {isCreator(x,y),
Film(y)}. By applying the same idea, we see that now 75 and 73 are relevant
to the query and we can use them to extend the initial query, to produce the
queries goq(2) = {isDirector(x,y), Film(y)}, gap(x) = {isCreator(x,y), Movie(y)}
and go.(z) = {isDirector(z,y), Movie(y)}. Similarly to the first query, we con-
structed the new queries by ‘replacing’ the concepts and roles of the original
query with their subconcepts and roles; in this case, however, we have to take
also their combinations.

At this point, we note that 74, that tells us that a MovieDirector is a director
of movies, is now also relevant to the query, and we can use it in conjunction
with the query g2, to obtain the additional query goq(x) = {MovieDirector(z)}.
In this case we did not just ‘replace’ a concept or role of the original query with
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a subconcept or subrole, but we had to combine a concept and a role into a
new concept, using a TBox axiom. Thus, in this case the answers to g2 can be
obtained by answering the union of conjunctive queries {gz, g24, 426, G2¢, G2d }-

Building on the idea illustrated in the above example, the query rewriting
approach to query answering over semantic databases is to transform the query
q using the TBox 7 into a set of sentences R, which is called rewriting, such
that for any Abox A the answers to ¢ w.r.t. A and 7 coincide with the answers
to ¢ w.r.t. A and R discarding 7 [25,27]. More formally [30]:

Definition 10. Let q be a conjunctive query, and T a TBox. A rewriting R of
q w.r.t. T is a datalog program whose rules can be partitioned into two disjoint
sets Rp and Ry, such that Rp does not mention q, Ry is a union of conjunctive
quries with query predicate q, and where for each A consistent w.r.t. T and using
only predicates from T we have:

cert(q, 7 UA) = cert(Ry, Rp U A).

In Example6, the rewriting of ¢ was a union of conjunctive queries, and
Rp = 0. In this case the rewriting can be answered over a semantic database
(L,B, M) and a TBox 7, for a relational database B, directly by using the
mappings in M to transform the union of conjunctive queries into an SQL query
that can be executed directly over 5. As the above definition states, however, in
the general case the rewriting R is a datalog program. In this case, a scalable
deductive database system capable of executing the datalog part of the rewriting
is needed on top of database B.

Most of the current query rewriting systems use resolution-based calculi to
compute rewritings. In this approach, the TBox axioms are first transformed
into a set of Horn clauses, which, together with the query, are then saturated
using resolution to derive new clauses. (A Horn clause is a clause that has at
most one positive literal, and hence can be written as a logic rule with one head
atom).

Example 7. The axioms in the TBox of Example 6 can be transformed into the
following first-order clauses:

m1. Creator(z) < Director(x),

7. Film(z) < Movie(x),

m3. isCreator(x,y) < isDirector(z,y),

T4q. isDirector(zx, f(z)) < MovieDirector(z),
m4p. Movie(f(x)) < MovieDirector(z).

The conjunctive query ga(x) can be rewritten as the clause
gz2. q(x) < isCreator(x, y) A Film(y)

Resolving ¢, with 73 and me we get queries go, and g9, respectively, and by
resolving go, with mo we get go., which in clause form is

q2c- q(x) < isDirector(z,y) A Movie(y).
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Proceeding and resolving ¢o. with my, and w4, respectively, we get the clauses

g2c1- q(x) — MovieDirector(z) A Movie(f(z))
Ga2c2- q(x) — isDirector(z, f(x)) A MovieDirector(z)

Resolving either go.1 with 7y, or goc1 with m4,, we get g(x) < MovieDirector(z, y),
i.e. query g24-

The above example illustrates some of the key ideas in using resolution-based
calculi for computing query rewritings. First, in the clausification step, i.e. in the
conversion of the TBox to first-order clauses, the resulting clauses may either
contain function terms or be function-free. Because of this, during the resolution
process, intermediate clauses containing function terms may be derived, which
should not included in the rewriting; the final rewriting consists only of function-
free clauses. The number of such intermediate clauses that are produced and then
discarded, but are potentially necessary to derive other clauses of the output
rewriting, may be large and may even contain compositions of function terms.
An intermediate non function-free clause may even not contribute at all to the
derivation of new function-free clauses, as would be the case in the above example
for clause gg.1 if T4 Was not part of 7.

Second, the size of the rewriting may be large, since it is necessary to pre-
form all resolution steps in order to derive all clauses that contain all possible
combinations of the subconcepts and subroles that can take the place of the
atomic queries in the original query. In our particular example, with two atomic
queries in the original query and two subconcept/subrole axioms we obtained
four conjunctive queries in the rewriting. In general, the size of the resulting
rewriting may be exponentially larger than the size of the initial query and the
TBox.

Third, some of the intermediate clauses and output conjunctive queries may
be computed several times, through different resolution chains. In the above
example, go4 has been obtained twice after resolving go.; with 7y, and goeo with
T4q. This means that during the resolution process many redundant recompu-
tations may take place that do not contribute anything to the final rewriting.
This negatively affects the efficiency of the rewriting process.

Finally, the exhaustive application of the resolution rule may create long
derivations of clauses that are eventually subsumed by other clauses, and hence
do not need to be included in the output rewriting. E.g. if in the above example
the initial query was ¢(x) < Film(z) A Movie(x), the resolution process would
produce g(x) < Movie(x), which subsumes the initial query; a compact rewriting
should include the latter, but not the initial query.

The existence of a rewriting and whether it is possible to compute a rewriting
that is a pure union of conjunctive queries part depends on the expressivity of the
TBox. Computing rewritings has been studied for various ontology languages,
in particular for ontologies expressed in ELHZ, Horn-SHZ Q and in the DL-Lite
family of languages. The DL-Lite family of languages introduced in [25] is essen-
tially the maximal language fragment exhibiting the desirable computational
properties that allows the construction of rewritings that can be expressed as
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unions of conjunctive queries, and hence the direct delegation of query answering
to a relational database engine. In general, for the ELHZ and Horn-SHZ Q lan-
guages, rewritings containing a datalog part are produced, and hence a deductive
database system is needed on top of the underlying relational database.

The first algorithm for computing rewritings for the DL-Lite family was pro-
posed in [25] and implemented in the QuOnto system, which later evolved to
Presto [26] and Mastro [5]. The algorithm encodes the TBox axioms as a set of
custom rewriting rules, that are applied backwards on the query, and systemat-
ically replace concepts and roles in the query by concepts and roles that imply
them. QuOnto does not produce a compact rewriting; the size of the produced
rewriting can be very large and include many clauses subsumed by other clauses,
which do not contribute anything to the query answers. Presto avoids this prob-
lem and generates a non-recursive datalog program instead of a union of con-
junctive queries as a rewriting for DL-Lite ontologies. This essentially hides the
exponential size of the rewriting inside the datalog rules. Requiem [27] proposed
a resolution based approach, which rewrites the initial conjunctive query to a
union of conjunctive queries which is, generally, smaller in size than the rewrit-
ing produced by QuOnto because systematic subsumption checking is applied to
remove redundant clauses and produce a compact rewriting. Requiem supports
also ELHZ ontologies, for which it produces datalog rewritings. Rapid [29,30],
which we will discuss in detail later, carefully applies an optimized resolution-
based rewriting technique only in cases that lead to the generation of useful,
non-redundant conjunctive queries, avoiding in this way many query subsump-
tion tests. Of course, although the optimization techniques reduce the size of
the rewriting in many practical cases by avoiding redundancies, the size of the
rewriting remains worst case exponential in the size of the original query and the
Thox. Rapid supports also ELHZ TBoxes, for which it produces datalog rewrit-
ings. Several other practical rewriting system have been developed for DL-Lite,
including Quest [28], Nyaya [35], IQAROS [36], and Ontop [37]. Query rewrit-
ing techniques have also been developed for the more expressive Horn-SHZQ
language in the Clipper system [31].

4.3 The Rapid Query Rewriting System

Rapid is an optimized resolution-based query rewriting system, which tries to
avoid or to minimize the effects of the problems inherent in the general resolution
process outlined above. The general idea on which it is based is to constrain the
resolution process in such a way so as to avoid the production of clauses that
will later be discarded and not included in the final rewriting, either because
they are non-function-free or because they are subsumed by others. Avoiding
the production of such clauses early, helps to avoid redundant resolution steps
later in the process. Originally it was developed to support DL-Liter ontologies
[29], subsequently it has been extended to support ELHZ ontologies [30], and
currently it is being extended for Horn-SHZ Q ontologies.
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Rapid for DL-Liter. We will start the exposition of Rapid, discussing the
query rewriting algorithm for DL-Liteg, a DL-Lite family language. As in any
resolution-based query rewriting algorithm, the first part is the conversion of the
TBox axioms to first-order clauses. Table 6 shows the axioms that are allowed
in DL-Liteg and their corresponding first-order clause form, which we call DL-
Liter clauses. Note that for each occurrence of a concept of the form 3R.B in
the righthand side of a concept subsumption axiom, a distinct function symbol
is used in the respective clauses. Thus, the same function symbol can occur at
most twice in the clausified TBox.

Table 6. DL-Liter axioms and their translation to clauses

Axiom Clause

BLC A A(z) <« B(x)
JRC A A(z) «— R(z,y)
JRTC A | A(z) «— R(y,x)

(
(
AC3RB | Rl f(z) — Az)
B(f(x)) — A2)
AC 3R .B|R(f(x),z) — A(zx)
B(f(z)) — A=)
PCR R(z,y) — P(z,y)
PC R R(z,y) — P(y, x)

The core part of Rapid implements a controlled resolution-based derivation
process over the clausified TBox and a given conjunctive query. The crucial dif-
ference between Rapid and other resolution-based systems, such as Requiem,
is that Rapid implements the resolution step by using as main premise always
the initial conjunctive query or a query derived from it, and as side premise,
or premises, clauses of the original clausified TBox 7', and not clauses that are
resolvents of clauses of the clausified 7 (i.e. of the saturation of the clausified 7).
The obvious benefit is that the clausified TBox is much smaller than its satura-
tion. Moreover, Rapid performs in a controlled way resolution with the clauses
of the clausified TBox that contain function symbols, taking advantage of the
fact that the clausified TBox contains at most two clauses with the same func-
tion symbol. Finally, Rapid never produces, as resolvents, clauses than contain
function symbols.

Formally, Rapid for DL-Liteg employs the Z;;. resolution-based inference
system, given in the following definition (all definitions in this section are adapted
from [30]):

Definition 11. Let q be a conjunctive query. Zyte is the inference system that
consists of the following inference rules:
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- Unfolding:

q

/

qo

where

1. the side premise C is a DL-Liter clause,
2. ¢'o is function-free resolvent of ¢ and C, and
3. if x— f(y) € o, then © & ejvar(q).

— Shrinking:
q Ci[Cy]

y where
q'o

1. the side premises C1 and the optional Co are DL-Liter clauses,
2. ¢'o is a function-free resolvent of q, C1 and C3, and
3. there exists some x — f(y) € o such that x € ejvar(q).

The rewriting of a conjunctive query q w.r.t to a DL-Liter TBox T is the set of
all the (function-free) clauses derivable from q and the clausified T by Lyte.

The unfolding rule represents standard resolution inferences with a function-
free resolvent. Since this rule essentially ‘replaces’ an atomic query of ¢ with a
subconcept or a subrole, the resolvent has the same size with the main premise
of the query (unless the replacement already exists in the main premise). Hence
this rule ‘unfolds’ the main premise.

The shrinking rule represents a controlled resolution process involving clauses
with function symbols that eventually leads to a function-free resolvent. In par-
ticular, it represents a chain of inferences q, q1,...,qn,q’, where ¢ is a function-
free conjunctive query, g; contains a function symbol, and the subsequent infer-
ences eliminate all occurrences of the function symbol until the function-free
conjunctive query ¢’ is obtained. Because a function symbol f can occur in at
most two DL-Litegr clauses, these inferences can involve at most the two differ-
ent side premises that mention f (which according to Table 6 can only be of the
form R(z, f(x)) < B(x) and A(f(x)) < B(x)). Furthermore, since the resolvent
is function-free, the variable of the query ¢ that has been bound to the function
symbol is eventually eliminated, and since DL-Liter clauses do not introduce
new variables in their bodies, the resolvent has fewer variables than the main
premise. Hence this rule ‘shrinks’ the main premise.

Ziite produces a union of conjunctive queries since all queries in the rewriting
are clauses having the query predicate as head. It can be proved that Zj;. is
correct, in the sense that it terminates and that it computes indeed a rewriting
for obtaining the certain answers of gq.

Example 8. In Example 7, the resolution of ¢, and 73 to derive g, is an appli-
cation of the unfolding rule:

q(z) « isCreator(z,y) A Film(y) isCreator(z’,y’) « isDirector(z’,y’)
q(x) « isDirector(z,y) A Film(y)
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with 0 = {2’ — z,¥ — y}. Similarly we obtain ¢o from ¢» and m2. The
resolution of go, and 7o to derive go. is also an application of the unfolding rule:

q(z) < isDirector(z,y) A Film(y) Film(z") < Movie(z’)

q(x) < isDirector(z,y) A Movie(y)

with o = {2/ — y}.
Then, conjunctive query go4 can be derived from go. using the shrinking rule
and 74, and 74, as side premises:

isDirector(z’, f(2')) < MovieDirector(z’)
Movie(f(x')) < MovieDirector(z’)

q(x) < MovieDirector(x)

q(z) « isDirector(x, y) A Movie(y)

with o = {y — f(z),2’ — z}, and y is the variable that is eliminated from ga..

The application of the shrinking step on clause ¢, to derive directly goq4
corresponds to a double saving, since it does not only avoid the production of
the intermediate clauses go.1 and ¢oc2, but also produces ¢24 only once.

Although Z;;;. avoids many eventually unneeded resolution steps, it does not
always avoid the production of redundant queries, i.e. of queries that are sub-
sumed by others and do not need to be included in the final rewriting. Checking
queries for subsumption after all queries have been generated, in order to pro-
duce an as compact rewriting as possible, is very expensive and may lead to
poor rewriting times. Redundant queries can be produced by the unfolding rule
because different chains of applications of the unfolding rule on different atoms
of the main premise may produce the same clause. Moreover, an unfolding may
replace an atom of the main premise with an atom that already exists in the
main premise, hence reducing the size of the query. In such a case the resolvent
subsumes all queries of greater size that are supersets of the resolvent. Finally,
queries produced using the shrinking rule are likely to subsume queries produced
by the unfolding rule, since they ‘shrinked’ queries are shorter.

To efficiently address some of the above issues, the practical implementation
of Rapid does not explicitly construct the queries that should normally be pro-
duced using the unfolding rule. Instead, it computes a structure that holds all
the information that is needed to construct all queries derivable by the unfold-
ing rule from the same starting conjunctive query. After this structure has been
constructed, a redundant-free set of the queries unfoldings can automatically be
generated.

Definition 12. Let 7 be a DL-Lite TBox, q a conjunctive query, and A an atom
of q. Let g be the query having A as body and avar(ga) = var(A) Nejvar(q). The
unfolding set of A w.r.t. ¢ and T is the set that contains all atoms that are bodies
of the queries derivable from the clausified T and qa using only the unfolding
rule, including the atom A.

For a query ¢, the unfolding sets of its atoms fully represent the queries that
can be derived from ¢ by unfolding. Indeed, all such queries can be constructed
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by taking all possible combinations of atoms from the respective unfolding sets.
However, the unfolding sets allow the generation of the minimum number of
queries that represent all unfoldings of g, i.e. the generation only of the unfoldings
that are not subsumed by other unfoldings and hence are redundant. This can be
done by scanning the respective unfolding sets and cross checking for the presence
of identical atoms (up to variable renamings) in the unfolding sets corresponding
to different atoms of the query body, while producing the set of unfoldings. This
process essential performs subsumption checking in a much more efficient way
because it does not check for subsumption whole clauses, but carefully recasts
the problem to comparing individual atoms.

Clearly, depending on the particular TBox and query, this step can still result
in an exponential number of queries in the rewriting. As in other query rewrit-
ing systems, this exponential behaviour can be hidden by producing a datalog
rewriting instead of a union of conjunctive queries rewriting. Rapid provides also
this option; in this case the rules of the datalog program essentially encode the
non explicitly generated unfoldings.

Example 9. For query g2 of Example 7, Rapid calculates unfolding sets for atoms
isCreator(z,y) and Film(y), which are the sets {isCreator(z,y), isDirector(x,y)}
and {Film(y), Movie(y)}, respectively. These are then used to actually generate
the queries g2, g24, g2p and go.. Recall from Example6 that the rewriting of ¢
as a union of conjunctive queries is {q2, ¢24, 926, G2¢, G24}- If we choose not to
explicitly perform the unfoldings and produce a datalog program instead, the
rewriting would be {q2, 72, 73, 24}

Rapid for ELHZ. Moving from the DL-Lite family of languages to the ELHT
language, we loose the property that the rewriting can always be a union of
conjunctive queries. Table 7 shows the permissible axioms in ELHZ and their
clausifications, which we call ELHZ clauses.

Table 7. ELHZ axioms and their translation to clauses

Axiom Clause

BLC A A(z) «— B(x)
BNCLC A |A(z) < B(z) AC(x)
JRC A A(z) — R(z,y)

JR-CA A(z) « R(y,x)
AC3R.B | R(z, f(z)) «— A(z)

(z
(z
(
(z,
B(f(z)) — A=)
AC 3R .B| R(f(z),z) «— A(z)
B(f(z)) — A(z)
JRCLC A |A(z) — R(z,y) ANC(y)
JR-.CC A | A(z) «— R(y,z) A C(y)
PCR R(z,y) « P(z,y)
PC R~ R(z,y) — P(y, )
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The essential difference with respect to DL-Liteg is the permission of axioms
of the form 3R.C' C A, whose clausification takes the form A(z) < R(z,y)AC(y).
The distinguishing property of such clauses, which are called RA-clauses, is that
when used as side premises of an inference they can produce resolvents containing
more variables than the main premise. If there is a cyclicity in the axioms, this
can lead to termination problems. E.g. rewriting the query ¢(z) «— A(z) using
the clause A(x) <« R(z,y) A A(y), produces the queries ¢(x) «— R(z,y) A A(y),
q(z) «— R(z,y) N A(y) A R(y, z) A A(z), etc. Hence, to guarantee termination,
the calculus for ELHZ should not allow RA-clauses as side premises, but still
produce the clauses that are derivable by RA-clauses. It turns out that to achieve
this, the restriction not to perform resolution using clauses of the TBox as main
premises must be lifted.

Consider e.g. the clausified TBox ¢;. C(z) « S(z,y)AD(y), c2. S(f(x),z) <
B(z)and cs3. K(z) « S(y,x)AC(y), and the query ¢;. ¢(x) « K (x) (the example
is adapted from [30]). By resolving ¢; with ca we get ¢4. C(f(z)) «— B(z) AD(z),
by resolving ¢z with co we get ¢5. K(z) — B(x) AC(f(x)), by resolving c5 with
¢y we get cg. K(x) « B(x) A D(z), and finally by resolving ¢; with ¢ we get
q1a- ¢(z) < B(z) A D(z). The crucial clause here is ¢4 which is needed to derive
the rewriting, but can be produced only by performing resolution on clauses of
the TBox. To account for this, the Rapid calculus for ELHZ ontologies includes
a new inference rule, called function rule, which can produce clauses like ¢4 from
RA-clauses and clauses of the form of cy. It also extends the unfolding and
shrinking rules so as to allow also RA-clauses as main premises, in order to be
able to compute, e.g. clause ¢g from co, c3, and c4. Because the function rule
can produce clauses with function symbols in the head, there can now be more
than two clauses mentioning the same function symbol f. Hence, the extended
shrinking rule allows for arbitrary number of side premises.

Definition 13. Let T be either a conjunctive query or an RA-clause. With Zgp
we denote the inference system consisting of the following rules:

— Unfolding:
T

——— where
Yo

1. the side premise C is an ELHI, non RA-clause,
2. Yo is a function-free resolvent of T and C, and
3. if x— f(y) € o then x ¢ ejvar(T).

— n-Shrinking:
Y Ci[Ca ... Ch)

Tis where
1. the side premises C1,...,Cp, n > 1 are ELHTL, non RA-clauses,
2. Yo is a function-free resolvent of T and all Cy,...,C, forn > 1, and

3. some x — f(y) € o exists such that x € ejvar(T).
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— Function:

B(z) — R(z,y) N[Cy)] R(f(z),z) — Az)
B(f(x)) — Alz) A [Cl2)] or

B(z) — R(y,z) N [Cly)] Rz, f(z)) — Alz)
B(f(x)) « A(z) A [C(2)]

where [C(y)] denotes an optional conjunction of atoms, all with argument y.

The rewriting of a conjunctive query q w.r.t a ELHZL TBox T is defined as the
set of all function-free clauses derivable from q and the clausified T by Zgr.

The function rule is not expected to ‘fire’ often in practice since it models a
rather complex interaction between a clause containing R(x, f(x)) or R(f(z), z)
and an RA-clause containing the inverse R(y, x), or R(x,y), respectively. In prac-
tice, the application of the Zg » calculus on a conjunctive query ¢ and a TBox 7 can
be performed in two steps. The first saturates 7 using Z¢ - and only the RA-clauses
as main premises. Then, the second step collects all non RA-clauses from the clausi-
fied 7 and those produced in the previous step and uses them as side premises in
the unfolding and shrinking rules with main premises only query clauses.

Ezample 10. Consider the TBox 7 = {71, T2, T3, 74} where

71. Director C Creator,

75. Movie = Film,

73. isDirector C isCreator,

74. MovieDirector = JisDirector.Movie.

The difference w.r.t. the TBox of Example6 is that 75 and 74 have been
replaced by 74 and 74, respectively, where the subconcept relations have been
replaced by equivalence relations. These axioms can be transformed into the
following ELHZ clauses:

m1. Creator(z) < Director(z),

Tha- Film(z) «— Movie(x),

mhy. Movie(x) < Film(z),

ms3. isCreator(x,y) « isDirector(z,y),

.- 1sDirector(z, f(x)) < MovieDirector(z),

74y Movie(f(z)) < MovieDirector(z)

.- MovieDirector(z) < isDirector(z,y) A Movie(y).

Consider that we want to answer the query gz = {MovieDirector(x)}, which in
clause form is g3(x) < MovieDirector(z). To apply Z¢ ., we need to saturate first
the clausified TBox using only RA-clauses as main premises. The only RA-clause
is 7}, for which we can apply the unfolding rule with 7}, as side premise:

MovieDirector(x) « isDirector(x, y) A Movie(y) Movie(z') « Film(z’)
MovieDirector(z) « isDirector(z,y) A Film(y)
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with 0 = {2’ — y}. Let 75 be the resulting clause. The shrinking rule is
also applicable on 7, with 7}, and 7, but it produces a tautology which is
immediately discarded. No other resolution is possible using RA-clauses as main
premise, so we proceed by applying the rules using only query clauses as main
premise. Because no rule is applicable on ¢3(x) <« MovieDirector(x) with a non
RA-clause as side premise, the final rewriting is {gs, 7)., 75}, where the dat-
alog part is {7}, 75}. Note that if we did not perform explicitly the unfold-
ing, we could produce the equivalent rewriting {¢s, 7)., 75, }. Note also that,
since no structural circularity exists in the TBox axioms, the rewriting could
also be expanded into a union of conjunctive queries. In this case, the rewriting
would be {gs, q3a, g3p }, where g3, (x) = {isDirector(x,y), Movie(y)} and gsp(x) =
{isDirector(z, y), Film(y)}.

5 Semantic Data Representation in the Web

This section provides a brief overview of the current technologies that allow the use
of the techniques discussed in the previous sections in real applications, in partic-
ular the construction of functional knowledge bases (i.e. of ABoxes and TBoxes)
that possibly use data from an underlying relational database and support query
answering. These technologies have been developed as part of the Semantic Web
and are now standards of the W3C (World Wide Web Consortium).

5.1 RDF

In Semantic Web applications ABoxes are represented using RDF [50], which is
a general framework for making statements about resources. An RDF statement
always has the structure <subject><predicate><object>, where the subject and
the object represent the two resources being related and the predicate represents
the type of the relationship. RDF statements are called (RDF) triples.

To represent an ABox as a set of RDF statements we need statements for
expressing concept and role assertions of the form C(a) and r(a, b), respectively,
where C is a concept, r a role, and a, b individuals. In RDF each concept, role
or individual is a resource having a IRI. Thus, assuming some namespace ns, a
concept assertion C(a) is represented by the triple

ns:C rdf:type ns:a

where rdf:type is a special property defined by the RDF standard (which can also
be shorthanded as a), and the role assertion r(a,b) is represented by the triple

ns:a ns:r ns:b

An RDF dataset, i.e. a set of RDF statements, is an RDF graph. RDF graphs
are stored in triple stores, which are databases specifically build for storing and
retrieving RDF triples.
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For writing down RDF graphs there exist several serializations, such as N-
Triples, Turtle, and RDF /XML. In our continuing example, assuming a namespace
cine corresponding e.g. to <http://image.ece.ntua.gr/cinemaOntology/>, the
triples stating that Woody Allen is a director and has directed the movie Man-
hattan can be written in Tutle syntax as following:

Oprefix cine: <http://image.ece.ntua.gr/cinemaOntology/> .
Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

cine:woodyAllen
cine:isDirector cine:manhattan;
rdf:type cine:Director.

5.2 OWL 2

In Semantic Web applications, concepts, roles, individuals and axioms between
them can be modeled using the OWL 2 language [56]. OWL 2 provides structures
for expressing all constructors and axioms of Tables4 and 5. Because OWL 2 is
a very expressive ontology language (c.f. Sect.3) and the use of its full expres-
sivity in real applications poses computational problems, OWL 2 provides three
profiles, which reflect compromises between expressivity and desirable computa-
tional properties. These profiles are OWL 2 QL, OWL 2 EL, and OWL 2 RL.
OWL 2 QL is based on the DL-Lite family of languages [25] and hence can be
used for answering conjunctive queries by translating them to SQL queries using
query rewriting, as discussed in Sect. 4.2 and avoiding materialization. OWL 2
EL is based on the ELHZ language and OWL 2 RL on DLP [17]. As discussed in
Sect. 4.1, OWL 2 RL consequences can be modeled using rule-based techniques.

OWL 2 axioms can be written down as RDF triples and stored in a triple
store, along with other RDF triples corresponding to ABox assertions. In this
way, the triple store can represent a knowledge base of the form (7, A). However,
in order for to guarantee that a set of OWL 2 axioms constitutes a TBox under
the model theoretic-semantics of Sect.3, some additional syntactic conditions
must be imposed on the OWL 2 structures. These conditions are specified by
the OWL 2 Direct Semantics, and guarantee that the knowledge base is compat-
ible with the SROZQ language. OWL 2 ontologies that satisfy these syntactic
conditions are called OWL 2 DL ontologies.

There are several serializations of OWL 2, the more reader friendly of which is
the functional syntax. In this syntax, the TBox of Example 6 is written as follows:

Prefix(cine:=<http://image.ece.ntua.gr/cinemalntology/>)
Ontology(<http://image.ece.ntua.gr/cinemalntology/>
SubClass0f (cine:Director cine:Creator)
SubClassO0f (cine:Movie cine:Film)
SubObjectProperty0f (cine:isDirector cine:isCreator)
SubClassO0f (cine:MovieDirector
ObjectSomeValuesFrom(cine:isDirector cine:Movie) )


http://image.ece.ntua.gr/cinemaOntology/
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5.3 R2RML

R2RML [57] is a language for expressing mappings from relational databases
to RDF datasets. Every R2ZRML mapping is constructed for a specific database
schema and target vocabulary. The input to an R2RML mapping is a relational
database that conforms to the database schema. The output is an RDF dataset,
that uses roles and concepts from the target vocabulary. R2ZRML mappings are
expressed as RDF graphs and written down in Turtle syntax.

R2RML allows us to model the semantic mappings defined in Sect. 4: £ cor-
responds to the target vocabulary, B is the input relational database, and the
semantic mapping box M corresponds to the actual mappings defined in an
R2RML document. Note, however, that unlike Definition 4, R2RML mappings
cannot contain object identifier, and concept or role classifier functions, other
that the functions allowed by the SQL language supported by the underlying
database.

The mappings defined in an R2RML document is conceptual; An R2RML
implementation may either materialize the mappings, or access directly the
underlying database when answering queries. These two strategies correspond to
the options of explicitly converting the semantic database into an RDF dataset
representing the ABox, or of converting the queries to SQL queries without
explicitly constructing the ABox, that we have discussed in Sect. 4.

An R2RML mapping is defined as a set of mappings from logical tables to
sets of RDF triples. A logical table may be a database table, a view, or a valid
SQL query. Each individual mapping, which is called a triples map, is a rule
consisting of two main parts: (a) a subject map that generates the subject of
the RDF triples that will be generated from each logical table row, and (b)
one or more predicate-object maps that in turn consist of predicate and object
maps, which specify the predicates and the objects of the RDF triples that
will be generated for the respective subject. In the context of ABoxes, subjects,
predicates and objects should be IRIs, and the subject, predicate and object
maps should provide instructions on how to generate them. An example of a
mapping is the following:

1. Use the template http://image.ece.ntua.gr/cinemaOntology/{DirID} to gener-
ate the subject IRI from the DirlD column of the DIRECTOR-OF table.

2. Use the constant IRI cine:isDirector as predicate.

3. Use the template http://image.ece.ntua.gr/cinemaOntology/{MovID} to gen-
erate the object IRI from the MovID column.

Expressed in R2RML the above mapping is the following:

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix cine: <http://image.ece.ntua.gr/cinemalntology/>.

<#TriplesMapl>
rr:logicalTable [ rr:tableName "DIRECTOR-OF" ];
rr:subjectMap [
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rr:template "http://image.ece.ntua.gr/cinemaOntology/{DirID}";
rr:class cine:Director;

1;

rr:predicateObjectMap [
rr:predicate cine:isDirector;
rr:objectMap [
rr:template "http://image.ece.ntua.gr/cinemaOntology/{MovID}";
15

1.

The above R2RML document implements the mapping described above, and
in addition specifies that for each subject IRI a triple determining the subject
as being of type cine:Director should also be created. Another example is the
following R2RML mapping, which generates ABox assertions for the concept
DirectorOfComedy using an SQL query as logical table.

<#TriplesMap2>
rr:logicalTable [rr:sqlQuery
SELECT DIRECTOR-OF.DirID,
FROM MOVIES, DIRECTOR-OF
WHERE MOVIES.MovID = DIRECTOR-OF.MovID AND
MOVIES.Genre =’Comedy’;".
rr:subjectMap [
rr:template "http://image.ece.ntua.gr/cinemalOntology/{DirID}";
rr:class cine:DirectorOfComedy;

1.

5.4 SPARQL

The set of RDF triples that are stored in a triple store can be queried using
SPARQL [53]. A typical SPARQL query consists of two parts: a SELECT clause
that identifies the query answer variables, and a WHERE clause that provides the
basic graph pattern to be matched against the underlying RDF graph. The basic
graph pattern is a set of triple patterns. Triple patterns are like RDF triples but
the subject, the predicate or the object may be variables. Variables are names
preceded by a question mark. A simple SPARQL query is the following;:

PREFIX cine: <http://image.ece.ntua.gr/cinemaOntology/>
SELECT ?s 7o
WHERE { ?s cine:isDirector 7o }

which will return the subject and the object of all triples having isDirector as
predicate. It corresponds to the conjunctive query ¢(x,y) = {isDirector(z,y)}.
This query example consists of a single triple pattern with the variable ?s in the
subject position and the variable 7o in the object position.

To express conjunctive queries, a basic graph pattern consisting of more than
one triple patterns can be used. E.g. the query
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PREFIX cine: <http://image.ece.ntua.gr/cinemaOntology/>
PREFIX <rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>
SELECT 7s
WHERE { ?s cine:isDirector 7o .

?s rdf:type cine:Actor }

will return all directors of some film that are also actors and corresponds to the
conjunctive query g(x) = {isDirector(z, y), Actor(x)}.

SPARQL allows also disjunctive queries through the UNION keyword. E.g.
the query

PREFIX cine: <http://image.ece.ntua.gr/cinemaOntology/>
SELECT 7s
WHERE {{ ?s cine:isDirector 7o } UNION { ?s cine:isProducer 7o } }

will return everyone that has directed or produced a movie.

SPARQL includes many more facilities, such as negation, property paths,
assignment, aggregation, multiple graphs, federated querying, filtering, sorting
and limiting answers. Several of these facilities are used with more general triple
stores than ABoxes and more general queries than conjunctive queries we are
interested in this paper.

By default, a triple store answers a SPARQL query by matching the query
pattern with the RDF graph of the data it holds. If the triple store is a pure ABox
A, this is all that is needed. As we have discussed in detail in Sect. 4, however,
if the triple store is a knowledge base (7,.A), some answers to the query may
not be explicitly present in 4, but need to be inferred using the axioms in 7.
To allow for such inference processes to be performed by triples stores, SPARQL
provides the so-called entailment regimes [54]. For OWL 2 TBoxes (OWL 2 DL
ontologies), the OWL 2 Direct Semantics Entailment Regime is provided.

Due to the computational difficulties in reasoning under the full expressiv-
ity of OWL 2, several practical implementation of triple stores usually provide
some limited support of the full OWL 2 entailment, limiting themselves to sup-
porting an OWL 2 profile, usually the OWL 2 RL profile, in which, as we have
seen in Sect.4.1, inferences can be computed using materialization rule-based
techniques.

6 Conclusions

The paper discusses how ontological descriptions can be used as a basis for
semantic data access. Specifically, we saw how we can build efficient user inter-
faces that provide the user with the ability to express queries in terms of a rich
vocabulary relevant to the domain of interest, rather than queries employing the
technical terminology of the database schemas.

We started our paper (Sect. 2) by describing technologies used to store seman-
tic data, either by directly using the vocabulary, or by ‘semantifying’ the infor-
mation stored in the database, using the vocabulary terminology. Then, in Sect. 3
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we saw how the use of ontological knowledge representation languages (descrip-
tion logics), that are supported by automated reasoning, can advance the level of
semantic data description, enriching the vocabulary by adding new terms, or by
expressing formal restrictions and constraints of the domain of interest. In Sect. 4
we saw that the use of ontology reasoning, specifically the use of ontology-based
data access technologies, can support realistic scenarios of concept-based data
access systems for pragmatic applications, with a lot of advantages. Finally, in
Sect. 5 we described technologies and standards for the representation and use
of semantic data in the web.
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Abstract. In this tutorial we address the problem of ontology querying,
that is, the problem of answering queries against a theory constituted by
facts (the data) and inference rules (the ontology). A varied landscape of
ontology languages exists in the scientific literature, with several degrees
of complexity of query processing. We argue that Datalog®, a family of
languages derived from Datalog, is a powerful tool for ontology querying.
To illustrate the impact of this comeback of Datalog, we present the basic
paradigms behind the main Datalogi as well as some recent extensions.
We also present some efficient query processing techniques for some cases.

The Datalog language has seen a recent revival with the introduction of
Datalog® languages for ontology modelling and querying. While the core rules
of Datalog® languages are the well-known tuple-generating dependencies, several
novel languages have been proposed that enjoy good computational properties
regarding ontology querying. We argue that Datalog® is a powerful formalism
for knowledge representation and reasoning, suitable also for the Semantic Web.
We illustrate the main languages in the Datalog® family as well as several issues
arising in ontological query processing in this context.

Datalog. Datalog [1,16,17] is a declarative query language that has been used for
many years for expressive query answering on relational databases. The appli-
cations of Datalog include source code analysis [20], distributed systems and
Web data extraction [7,18]. A Datalog program consists of a set of Horn clauses
without function symbols. The predicates appearing in the program are par-
titioned into extensional database (EDB) predicates, whose values reside in an
input database, and intensional database (IDB) predicates, whose values are
computed via the program rules. EDB predicate symbols appear only in rule
bodies. The following program' computes the transitive closure, represented by
the IDB predicate ¢, of the binary relation e, represented by an EDB predicate.

e(X,Y) — e(X,Y),
e(X,Y), (Y, Z) — (X, Z).

! Notice that here we deviate from the classic Datalog notation head « body or
head : -body; instead, we use the notation body — head. Notice also that in Datalog
the head is composed of a single atom.
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Ontology Querying. Ontological information is information about relationships
between objects and classes in a certain domain. The most prominent formalism
for representing such information are so-called description logics (DLs) [5]. In
DLs, sets of objects are represented by concepts and binary relations between
concepts are called roles; in DL languages we can express, for instance, that
(1) every manager is an employee; this is expressed by the rule mgr C emp; (2)
every manager supervises an employee; this is expressed by the rule mgr C
Jsupervises.emp; (3) each employee is supervised by at most one manager,
expressed by the rule (funct supervises™ ) (the role supervises™, that is supervises
with the two arguments inverted, is functional). To express the above rules,
Datalog is not sufficient—we need the possibility of existential quantification
(e.g. there exists an employee supervised by a certain manager, but such an
employee is not known). This motivates the introduction of the Datalog® family
of languages [13], whose main rules are in fact the well-known tuple-generating
dependencies (TGDs). In Datalog™, the above rules can be easily expressed:

mgr(X) — emp(X)
mgr(X) — 3Y supervises(X,Y)
supervises(X,Y), supervises(Z,Y) — X = Z.

Notice that the last rule is not a TGD, but an equality-generating dependency
(EGD), which has as consequence the equality of two values. Given a Datalog™
program Y on a schema R, a database D for R and a query g on R, a tuple t
is and answer to ¢ under D U X' if t is an answer to ¢ in all models of D U X,
that is, in all instances that contain D and satisfy all rules in X

Datalog® Variants and Main Underlying Notions. Processing conjunctive queries
(select-project-join queries) under TGDs is undecidable [8], even when the
schema and the TGDs are fixed [11]. Languages in the Datalog® family adopt
syntactic restrictions on rules so as to achieve decidability of (conjunctive) query
answering and possibly tractability. Guardedness [3] is a property of first-order
logic theories that ensure decidability of the satisfiability problem. Inspired by
such notion, guarded Datalog® was introduced [11]; in guarded Datalog®, each
TGD-rule has a body-atom that contains all variables of the rule. Guarded
Datalog® and variants are studied in [11], and further extensions in [6]. Linear
Datalog® [12] is a more tractable variant of guarded Datalog® where each TGD-
rule has exactly one atom in the body and one in the head; interestingly, though
linear Datalog® TGD-rules are only slightly more expressive than the well known
class of inclusion dependencies, linear Datalog® is capable of expressing a wide
variety of relevant ontology languages. Sticky Datalog® [14], alongside with its
extensions, captures a wide class of non-guarded rules, while achieving low data
complexity (complexity where only the database is considered as input, while
all the rest is fixed) of query answering in some cases. Disjunction in Datalog™
is introduced in [9], where the complexity of the language called Datalog™" is
studied, together with the complexity of the variant linear Datalog™V. Nega-
tion in Datalog® poses several challenges; it has been studied under different
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semantics: stratified negation [4,12], well founded negation [2] and stable-model
negation [2,19].

Punctional Constraints. In several Datalog® languages, functional constraints in
the form of EGDs are considered, often in their elementary form of well-known
key constraints, as they are a fundamental modelling tool in ontologies. How-
ever, their introduction leads very easily to undecidability of query answering
(see e.g. [15]); hence, syntactic restrictions that preserve decidability are needed.
In the DL literature, such functional constraints have been studied under strong
syntactic limitations. In Datalog®, the main notion is that of non-conflicting
EGDs [12], which does not go much beyond the analogous notion studied under
more traditional database constraints [15]. Non-conflicting EGDs and TGDs
guarantee separability of EGDs and TGDs, a semantic notion that expresses the
fact that EGDs do not influence the logical inference performed through the
TGDs. A more general approach is adopted in [10], where two notions of separa-
bility (simple separability and deep separability) are studied, depending on how
EGDs participate in the logical inference—in the case of deep separability, an
immediate application of an EGD in the inference might seem to have influence,
but such application is then made irrelevant by an eventual application of some
TGD in the inference process. Along the lines of [10], we try to clarify the notion
of separability in the literature and to provide a more general syntactic criterion
for TGDs and EGDs, that guarantees separability.

Practical Algorithms for Expressive Ontologies. Ontology querying under some
expressive Datalog® languages has been studied from the point of view of
the computational complexity, often providing nondeterministic algorithms, but
much is to be done from the point of view of practical implementations; this is
especially important if we consider that the worst case rarely occurs in real-world
ontologies. A deterministic algorithm for conjunctive query answering under the
expressive class of weakly-sticky Datalog® is presented in [21]. We illustrate the
main ideas underlying this work, so as to identify the main issues in the problem
of efficient query answering in this case.
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Abstract. From the beginning it was understood that the success of
the Semantic Web hinges on integrating the vast amount of data stored
in Relational Databases. This manuscript reflects on the last 10 years of
our research results to integrate Relational Databases with the Semantic
Web. Since 2007, our research has led us to answer the following question:
How and to what extent can Relational Databases be Integrated with the
Semantic Web? The answer comes in two parts. We start by presenting
how to get from Relational Databases to the Semantic Web via mappings,
such as the W3C Direct Mapping and R2RML standards. Subsequently,
we present how the Semantic Web can access Relational Databases. We
finalize with how Relational Databases and Semantic Web technologies
are being used practice for data integration and discuss open challenges.

1 Introduction

The success of the Semantic Web hinges on integrating the vast amount of data
stored in Relational Databases. We have gone a long way in the past 10 years. As
of 2017, a successful repeated use case for Relational Databases and the Semantic
Web is to address data integration needs. Such systems are now being deployed
in industrial applications. So, how did we get here? The goal of this manuscript
is to reflect on the last 10 years of our research results to integrate Relational
Databases with the Semantic Web [64].

In 2007, we began investigating the relationship between Relational Data-
bases and the Semantic Web. Specifically, the research question was the follow-
ing: How and to what extent can Relational Databases be integrated with the
Semantic Web? The thesis is that much of the existing Relational Database
infrastructure can be reused to support the Semantic Web.

In the first part, we describe how to get from Relational Databases to the
Semantic Web via mappings. Starting with a 2007 workshop, titled “RDF Access
to Relational Databases”!, the W3C sponsored a series of activities to address
this issue. At that workshop, the acronym, RDB2RDF, Relational Database to
Resource Description Framework, was coined. In September 2012, these activi-
ties culminated in the ratification of two W3C standards, colloquially known as
Direct Mapping [7] and R2RML [25].

! http://www.w3.0org/2007/03/RAfRDB/.
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By design, both these standards avoid any content that speaks about imple-
mentation, directly or indirectly. The standards concern is syntactic transforma-
tion of the contents of rows in relational tables to RDF. The R2RML language
includes statements that specify which columns and tables are mapped to prop-
erties and classes of a domain ontology. Thus, the language empowers a developer
to examine the contents of a relational database and write a mapping specifica-
tion. Furthermore, we present an extended Direct Mapping which address some
shortcomings of the W3C Direct Mapping and study it with respect to two fun-
damental (information and query preservation) and two desired (monotonicity
and semantics preservation) properties.

In the second part, we describe the opposite direction, how the Semantic
Web can access Relational Databases. Once a mapping has been defined, let it
be a Direct Mapping or a user defined R2ZRML mappings, the goal is to evalu-
ate SPARQL queries against the Relational Database. These contributions are
embodied in our system called Ultrawrap. We identified two existing relational
query optimizations in commercial Relational Databases, detection of unsatis-
fiable conditions and self-join elimination which are used for SPARQL execu-
tion. Empirical analysis consistently yield that SPARQL query execution per-
formance on Ultrawrap is comparable to that of SQL queries written directly for
the relational representation of the data. Furthermore, we present a method for
Relational Databases to support inheritance and transitivity by compiling the
ontology as mappings, implementing the mappings as SQL views, using SQL
recursion and optimizing by materializing a subset of views. This approach was
implemented as an extension of Ultrawrap to support the Ontology-Based Data
Access paradigm. Empirical analysis reveals that Relational Databases are able
to effectively act as reasoners.

To understand the relationship between Relational Databases and the Seman-
tic Web, we adopt a methodology where we first start small. That is why we first
studied a simple mapping which is the Direct Mapping. Subsequently we studied
how to accomplish SPARQL to SQL rewriting under the direct mapping. After
the direct mapping relationship was understood, we continued our work with
customized mappings represented in R2ZRML and reasoning.

We highlight two on-going challenges when Relational Databases and Seman-
tic Web technologies are combined for data integration in the real world: ontology
and mapping engineering. We argue for the need of a pay-as-you-go methodology
to create mappings and ontologies. We close with a set of open problems.

2 Preliminaries

This sections presents the notation and definitions used throughout this manu-
script. We define the three standards comprising Semantic Web: RDF, the graph
data model; OWL, the ontology language; and SPARQL, the query language for
RDF. Subsequently, the expressivity of the OWL dialect used in this research is
presented. For more detailed preliminaries, we refer the reader to Chap. 2 of [64]
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2.1 Running Example

Throughout this manuscript, we use the data illustrated in Fig. 1 as a running
example. The precise corresponding SQL statements are:

CREATE TABLE order (
orderid INT PRIMARY KEY,
date DATE,
total FLOAT,
currency VARCHAR(50),
status INT

)

CREATE TABLE lineitem (
lineid INT PRIMARY KEY,
price FLOAT,
quantity INT,
product VARCHAR(50),
orderid INT,
FOREIGN KEY(orderid) REFERENCES ORDER(orderid)

orderid date total currency status
1234 2017-04-15 100 USD 1

lineid price quantity product orderid
6789 30 2 Foo 1234
6790 20 2 Bar 1234

Fig. 1. SQL used to create the running example

2.2 Relational Databases

A database is a collection of data. A Relational Database is a database founded
on the relational model. The relational model represents data in terms of tuples
(rows), grouped into relations (tables). Relational Algebra is used as a query
language for Relational Databases.

Because nulls appear in practice in RDBMS, it is important to present a
formal definition of Relational Databases with respect to null values. Assume,
a countably infinite domain D of constants and a reserved symbol NULL that is
not in D. A database schema R is a finite set of relation names, where for each
R € R, att(R) denotes the nonempty finite set of attribute names associated
with R. The arity of R, denoted as arity(R), is the number of elements of the
set att(R). An instance I of R assigns to each relation symbol R € R, a finite
set of tuples R! = {t1,...,t,}. Each tuple ¢; (1 < j < /) is a function that
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assigns to each attribute in att(R) a value from (D U {NULL}), denoted as t :
att(R) — (D U{NULL}). The value of an attribute A in a tuple ¢; is denoted by
t;.A. Moreover, R(t;) is a fact in I if t; € R!. The notation R(t;) € I is used in
this case. We also view instances as sets of facts.

Relational Algebra consists of operators which take one or two relations as
operands and produce one relation as a result. The basic operators of relational
algebra are: selection, projection, rename, join, union and difference. Selection
selects tuples from a relation satisfying a condition. Projection chooses subset of
the attributes of a relation. Rename allows to change the name of an attribute.
Join combines two relations into one on the basis of a condition. Union is the
relation containing all tuples from both relations. Difference is the relation con-
taining all tuples of the first relation that do not appear in the second relation.
Relational Algebra operators can be composed into relational algebraic expres-
sions. These relational algebraic expressions are then used to formulate queries
over a Relational Database.

Recall that Relational Databases containing null values are considered. For
full details on the syntax and semantics of Relational Algebra where null values
play a role, we refer the reader to Chap.2 of [64].

2.3 Semantic Web

The Semantic Web is an extension to the Web that enables intelligent access to
data on the Web. The technologies supporting the Semantic Web consist of a
set of standards: RDF as the graph data model, OWL as the ontology language,
and SPARQL as the query language.

RDF: RDF stands for Resource Description Framework, which is a framework
for representing information about resources in the Web. By resource, we mean
anything in the world including physical things, documents, abstract concepts,
etc?. RDF considers three types of values: resource identifiers (IRIs) to denote
resources, literals to denote values such as strings, and blank nodes to denote
the existence of unnamed resources which are existentially quantified variables
that can be used to make statements about unknown (but existent) resources.

Assume there are pairwise disjoint infinite sets I (IRIs), B (blank nodes) and
L (literals). A tuple (s,p,0) € IUB) xI x (IUBUL) is called an RDF triple,
where s is the subject, p is the predicate and o is the object. A finite set of
RDF triples is called an RDF graph. Assume that triple is a ternary predicate
that stores RDF graphs in the obvious way: every triple (a,b,c) € G is stored as
triple(a,b,c). Moreover, assume the existence of an infinite set V of variables
disjoint from the above sets, and assume that every element in V starts with
the symbol “?”.

2 The term “entity” can be considered synonymous to resource.
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Ezxample 1. Consider representing the statement “There is a person whose name
is Juan Sequeda” in RDF. This can be represented with two RDF triples. The
first RDF triple

triple(http://juansequeda.com#me, type, foaf :Person)

states that the resource identified by http://juansequeda.com#me is of type Per-
son. The type relationship is represented with rdf : type. Additionally, the concept
Person is identified by the IRI foaf :Person. Note that rdf: and foaf: are being
used instead of a full IRI. These are prefizes that replace a part of the IRF. The
second RDF triple

triple(http://juansequeda.com#me, foaf :name, "Juan Sequeda")

states that http://juansequeda.com#me has a name which is “Juan Sequeda”.
The concept of name is identified by the IRI foaf :name.

OWL: OWL stands for Web Ontology Language, which is the language to
represent ontologies on the Web. In order to define the notion of ontology, the
following set of reserved keywords are defined as O: {subClass, subProp, dom,
range, type, equivClass, equivProp, inverse, symProp, transProp}.

Assume that O C I. Two types of RDF triples are distinguished: ontological
and assertional. Ontological RDF triples define the ontology. Assertional RDF
triples define the facts. The formal definitions are the following:

Definition 1 (Ontological RDF Triple). Following the definition presented
by Weaver and Hendler [75], an RDF triple (a,b,c) is ontological if:

1. a € (IN0O), and
2. either b € (O~ {type}) and c € (INO), or b= type and c is either symProp
or transProp.

In other words, an ontological RDF triple will always have as a subject an
element in I but not in O. There are two types of ontological RDF triples. First,
the predicate is an element in O but not type and the object is an element in I
but not in O. Second, if the predicate is type, then the object is either symProp
or transProp.

Definition 2 (Assertional RDF Triple). An RDF triple (a,b,c) is asser-
tional if it is not ontological.

Definition 3 (Ontology). An ontology O is defined as a finite set of ontolog-
tcal RDF triples.

3 The prefix “rdf:” represents http://www.w3.org/1999/02/22-rdf-syntax-ns#,
hence the full IRI for rdf:type is http://www.w3.org/1999/02/22-rdf-syntax-ns#
type. Additionally, the prefix “foaf:” represents http://xmlns.com/foaf/0.1/, hence
the full IRI for foaf:Person is http://xmlns.com/foaf/0.1/Person.


http://juansequeda.com#me
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http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person

Integrating Relational Databases with the Semantic Web: A Reflection 73

The semantics of an ontology O is usually defined by representing it as a set
of description logic axioms, and then relying on the semantics of the logic [10]
(which, in turn, is derived from the semantics of first-order logic). It is more
convenient to directly define a set of first-order formulae, denoted as Yo, to
encode the ontology O. The semantics of each ontological triple of an ontology,
t € O, is defined as a first-order formula ¢; over the predicate triple. Defini-
tions 4-12 presents the first-order formula for ontological triples. Finally, the set
Yo of first-order formulae encoding the ontology O is define as {¢; | t € O}.

Definition 4 (Subclass). If a is a subclass of b and z is an instance of a, then
x is an instance of b. The first-order formula is:

¥ (a,subClass,b) — Vo (triple(x, type, (l) - triple(mv type, b))

Definition 5 (Subproperty). If a is a subproperty of b, then all pairs of
resources (x, y) which are related by a are also related by b. The first-order
formula is:

¥ (a,subProp,b) = VIVY (triple(z,a,y) — triple(z,b,y))

Definition 6 (Domain). If a has a domain b then any resource x that is
related to a is an instance of b. The first-order formula is:

P(a,dom,b) = VxVy (triple(x, a, y) - triple(x, type, b))

Definition 7 (Range). If a has a range b then any resource y that is related
to a is an instance of b. The first-order formula is:

©(a,range,p) = VZVY (triple(x,a,y) — triple(y,type,b))

Definition 8 (Equivalent Class). If a has an equivalent class of b and z is
an instance of a, then z is an instance of b. Conversely, if z is an instance of b,
then x is an instance of a. The first-order formula is:

P(a,equivclass,p) = VT (triple(z,type,a) < triple(z,type, b))

Definition 9 (Equivalent Property). If a has an equivalent property of b,
then all pairs of resources (x, y) which are related by a are also related by b.
Conversely, all pairs of resources (x, y) which are related by b are also related
by a. The first-order formula is:

¥ (a,equivProp,b) — VxVy (triple(x, a, y) A triple(x, b7 y))

Definition 10 (Inverse Property). If a has an inverse property of b, then
all pairs of resources (x, y) which are related by a are also related by b by the
pair (y, x). Conversely, all pairs of resources (y, x) which are related by b are
also related by a by the pair (x, y) The first-order formula is:

©(a,inverse,p) = VIVYy (triple(x,a,y) « triple(y,b,r))
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Definition 11 (Symmetric Property). If ¢ is a symmetric property, then
all pairs of resources (x, y) which are related by a are also related as the pair (y,
x). The first-order formula is:

#(a,type,symProp) — V:L’Vy (triple(xa a, y) - triple(y7 a, I))

Definition 12 (Transitive Property). If a is a transitive property, and for
all pairs of resources (x, y) and (y, z) which are related by a then the pair (x, z)
is also related by a. The first-order formula is:

©(a,type,transProp) = VIVYVz (triple(x,a,y) A triple(y,a, z) — triple(z,a, 2))

Given that the semantics of an ontology O has been defined as set of first
order logic formulae Yo and a RDF graph G using the predicate triple, then
Yo UG is consistent (and inconsistent) in the usual sense of First Order Logic.

Ezxample 2 The following ontology states that an Ezecutive and ITEmployee are
both Employees. Additionally that the property hasSuperior is a transitive rela-
tionship from an Employee to another Employee.

triple(:Executive, subClass, :Employee)
triple(:Programmer, subClass, : ITEmployee)
triple(:SysAdmin, subClass, : ITEmployee)
triple(: ITEmployee, subClass, :Employee)
triple(:hasSuperior, type, transProp)
triple(:hasSuperior, dom, :Employee)
triple(:hasSuperior, range, :Employee)

Ontology Profiles. The expressiveness of an ontology language can be specified
by profiles. The Semantic Web technology stack specifies four ontology profiles:
RDFS, OWL 2 EL, OWL 2 QL and OWL 2 RL [13,50].

RDF Schema (RDFS) extends RDF as a schema language for RDF and
a lightweight ontology language [13]. It includes constructs to declare classes,
hierarchies between classes and properties and relate the domain and range of
a property to a certain class. Ontological triples with subClass, subProp, dom,
range, type, equivClass, equivProp are in this profile. The following three
profiles, OWL 2 EL, QL and RL, extend the expressiveness of RDFS.

OWL 2 EL profile is used to represent ontologies that define very large num-
bers of classes and/or properties with transitivity. This language has been tai-
lored to model large life science ontologies, while still supporting efficient reason-
ing. OWL 2 EL is based on the EL++ Description Logic [9]. Ontological triples
with transProp are in this profile.

OWL 2 QL provides constructs to express conceptual models such as UML
class diagrams and ER diagrams. This language was designed so that data that
is stored in a standard relational database system can be queried through an
ontology via rewriting mechanisms. OWL 2 QL is based on the DL-Lite family
of description logics [16]. Ontological triples with inverse and symProp are in
this profile.
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OWL 2 RL provides constructs to represent rules in ontologies. This lan-
guage has been tailored for rule-based reasoning engines. OWL 2 RL is based on
Description Logic Programs (DLP) [35]. Ontological triples with inverse and
symProp are also in this profile.

The ontology expressivity considered in this work (as defined in Definitions 4—
12) is not specific to a single OWL profile. Thus, we propose a new ontology
profile, OWL-SQL, which expresses the types of ontologies considered in this
dissertation. Figure 2 denotes the expressivity of OWL-SQL with respect to the
OWL 2 EL, QL and RL profiles.

OWL 2 DL

EL QL RL

subClass X | X | X

subProp

domain

range

eqClass

7 OWL saL

X | X | X [ X [X

eqProp

inverseProp

OWL 2 RL

X | X | X [ X | X |X|X

symProp

® ® ®(®» O® ® » O
XX [X|X[X|x|[x]|x

transProp X

Fig. 2. OWL-SQL, proposed OWL profile

The expressivity of OWL-SQL is subsumed by early ontology profile propos-
als known as RDFS-Plus [4], OWL-LD [32] and RDFS 3.0 [39].

2.4 SPARQL

SPARQL is the standard query language for RDF [38,59]. SPARQL is a graph
pattern matching query language and has a syntax similar to SQL. A SPARQL
query contains a set of triple patterns called basic graph patterns. Triple patterns
are similar to RDF triples with the exception that the subject, predicate or
object can be variables (denoted by a leading question mark “?”). The answer
of a SPARQL query P over an RDF graph G is a finite set of mappings, where
a mapping y is a partial function from the set V of variables to (IUL U B)*.

4 Recall that V is an infinite set of variables disjoint from I, B and L and that every
element in V starts with the symbol “7?”. See Sect. 2.3.
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Ezxample 3. Consider the RDF triples in Examplel. The following SPARQL
query asks for all names of people.

SELECT ?7n

WHERE {
?s rdf:type foaf:Person.
?s foaf:name 7n.

3

The basic graph pattern consists of two triple patterns. Matching these triple
patterns with the RDF triples gives the answer "Juan Sequeda'.

The semantics of SPARQL is defined as a function [-]¢ that, given an RDF
graph G, takes a graph pattern expression and returns a set of mappings. The
reader is referred to [64] for more detail.

3 From Relational Databases to the Semantic Web:
Mappings

3.1 W3C Direct Mapping

The W3C Direct Mapping [7] is an automatic approach of translating a relational
database to RDF. The W3C Direct Mapping takes as input a relational database
(data and schema), and generates an RDF graph that is called the direct graph.
No additional user input is needed to map the relational data to RDF. The struc-
ture of the resulting RDF graph directly reflects the structure of the database.
The RDF vocabulary is automatically generated from the names of database
schema elements. Neither the structure nor the vocabulary can be changed. If
needed, the resulting RDF graph can be transformed further by the user using
other RDF to RDF mapping approaches such as SPARQL CONSTRUCT.

The W3C Direct Mapping consists of two parts. A specification to generate
identifiers for a table, column foreign key and rows and a specification using the
identifiers, in order to generate the direct graph.

Generating Identifiers. The W3C Direct Mapping generates an identifier for
rows, tables, columns and foreign keys. If a table has a primary key, then the
row identifier will be an IRI, otherwise a blank node. The identifiers for tables,
columns and foreign keys are IRIs. It is important to note that in this paper we
present relative IRIs which must be resolved by appending to a given base IRI.
Throughout this document, http://ex.com/rdb2rdf/ is the base IRI. All strings
are percent encoded in order to generate a safe IRI°.

If a table has a primary key, then the row identifier will be an IRI, obtained
by concatenating the base IRI, the percent-encoded form of the table name, the
‘#’ character and for each column in the primary key, in order:

5 For example, a space is replaced with %20 e.g., the percent encoding of “Hello World”
is “Hello%20World”.
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— the percent-encoded form of the column name,

— the ‘=’ character

the percent-encoded lexical form of the canonical RDF literal representation
of the column value

— if it is not the last column in the primary key, the ¢;’ character

For example the IRI for the row of the order table is <http://ex.com/
rdb2rdf/order#orderid=1234>. If a table does not have a primary key, then
the row identifier is a fresh blank node that is unique to each row

The IRI for a table is obtained by concatenating the base IRI with the
percent-encoded form of the table name. For example the table IRI of the order
table is <http://ex.com/rdb2rdf/order> The IRI for an attribute is obtained by
concatenating the base IRI with the percent-encoded form of the table name, the
‘#’ character and the percent-encoded form of the column name. For example,
the Literal Property IRI of the date attribute of the order table is <http://ex.
com/rdb2rdf/order#date> Finally the IRI for foreign key is obtained by con-
catenating the base IRI with the percent-encoded form of the table name, the
string ‘#ref-” and for each column in the foreign key, in order:

— the percent-encoded form of the column name,
— if it is not the last column in the foreign key, a ‘;’ character

For example, the reference Property IRI of the foreign key orderid of the
lineitem table is <http://ex.com/rdb2rdf/lineitem#ref-orderid>

Generating the Direct Graph. A Direct Graph is the RDF graph resulting
from directly mapping each of the rows of each table and view in a database
schema. Each row in a table generates a Row Graph. The row graph is an RDF
graph consisting of the following triples: (1) a row type triple, (2) a literal triple
for each column in a table where the column value is non-NULL and (3) a
reference triple for each foreign key in the table where none of the column values
is NULL. A row type triple is an RDF triple with the subject as the row node
for the row, the predicate as the RDF IRI rdf: type and the object as the table
IRI for the table name. A literal triple is an RDF triple with the subject as the
row node for the row, the predicate as the literal property IRI for the column
and the object as the natural RDF literal representation of the column value.
Finally, a reference triple is an RDF triple with the subject as the row node for
the row, the predicate as the reference property IRI for the columns and the
object as the row node for the referenced row.

Ezample 4 (W3C Direct Mapping of Running Example). RDF generated by the
W3C Direct Mapping of the running example, in Turtle syntax. Recall that the
IRIs in the example are relative IRIs which must be resolved by appending to
the base IRI http://ex.com/rdb2rdf/.

<order#orderid=1234> rdf:type <order> ;
<order#orderid>"1234" ;


http://ex.com/rdb2rdf/order#orderid=1234
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http://ex.com/rdb2rdf/
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<order#date> "2017-04-15";
<order#total> "100";
<order#currency> "USD";
<order#status> "1".
<lineitem#lineid=6789> rdf:type <lineitem>;
<lineitem#lineid> "6789";
<lineitem#price> "30";
<lineitem#quantity> "2";
<lineitem#product> "Foo";
<lineitem#orderid> "1234";
<lineitem#ref-orderid> <order#orderid=1234>.
<lineitem#1ineid=6790> rdf:type <lineitem>;
<lineitem#lineid> "6790";
<lineitem#price> "20";
<lineitem#quantity> "2";
<lineitem#product> "Bar";
<lineitem#orderid> "1234";
<lineitem#fref-orderid> <order#orderid=1234>.

The formal semantics of the W3C Direct Mapping has been defined in Dat-
alog. We refer the reader to the W3C Direct Mapping standard document for
details [7]. The left hand side of each rule is the RDF Triple output. The right
hand side of each rule consists of a sequence of predicates from the relational
database and built-in predicates.

3.2 DM: Direct Mapping as Ontology

The W3C Direct Mapping standard has two main shortcomings. First, the map-
ping is only from relational data to RDF data. The relational schema is not
taken in account. Second, the semantics of the W3C Direct Mapping is not
defined for NULL values as described in the specification: “The direct mapping
does not generate triples for NULL wvalues. Note that it is not known how to
relate the behavior of the obtained RDF graph with the standard SQL semantics
of the NULL values of the source RDB.” In this section, we first formally intro-
duce the notion of a direct mapping. Subsequently we introduce a new Direct
Mapping which addresses the aforementioned shortcomings.

A direct mapping is a default way to translate relational databases into RDF
(without any input from the user on how the relational data should be trans-
lated). The input of a direct mapping M is a relational schema R, a set X' of
PKs (Primary Keys) and FKs (Foreign Keys) over R and an instance I of R.
The output is an RDF graph with OWL vocabulary.

Assume @ is the set of all RDF graphs and RC is the set of all triples of the
form (R, X, I) such that R is a relational schema, X' is a set of PKs and FKs
over R and [ is an instance of R.

Definition 13 (Direct Mapping). A direct mapping M is a total function
from RC to G.
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We introduce the Direct Mapping as Ontology [65], denoted as DM, which
extends the W3C Direct Mapping [7] and combines with a direct mapping of
relational database schema to an OWL ontology [69,73]. Additionally, DM con-
siders the case when the input database has NULL values. DM is defined as a
set of Datalog predicate and rules®.

1. Five predicates that encode the input relational schema and instance to DM:
REL(r): Indicates that r is a relation name in R, ATTR(a,7): Indicates that
a is an attribute in the relation r in R, PK,(a,...,a,,r): Indicates that
rlay,...,a,] is a primary key in X', FK,,(a1,...,an,7,b1,...,by, s): Indicates
that rlai,...,an] Cpk s[b1,...,by,] is a foreign key in X, and VALUE(v, a, t,7)
which Indicates that v is the value of an attribute a in a tuple with identifier
t in a relation r (that belongs to R).

2. Three predicates that are used to store an ontology: CLASS(c) indicates that
c is a class; OP,,(p1,...,pn,d,r) indicates that p1,...,p, (n > 1) form an
object property with domain d and range r and DTP(p, d) indicates that p
is a data type property with domain d.

3. Twelve Datalog rules that generate a putative ontology from a relational
schema. The rules can be summarized as follows: a table is translated to an
OWTL Class unless the table represents a binary relationship, then it is trans-
lated to an OWL Object Property. Foreign Keys are translated to OWL Object
Properties while attributes are translated to OWL Datatype Properties.

4. Ten Datalog rules that generate the OWL ontology from the predicates that
are used to store an ontology which include rules to generate IRIs and express
the ontology as RDF triples.

5. Ten Datalog rules that generate RDF triples from a relational instance based
on the putative ontology.

We present example Datalog rules for the generation of classes and datatype
properties. We refer the reader to [65] for the detailed list of Datalog rules. A
class, defined by the predicate CLASS, is any relation that is not a binary relation.
A relation R is a binary relation, defined by the predicate BINREL, between two
relations S and T if (1) both S and T are different from R, (2) R has exactly
two attributes A and B, which form a primary key of R, (3) A is the attribute
of a foreign key in R that points to S, (4) B is the attribute of a foreign key
in R that points to T, (5) A is not the attribute of two distinct foreign keys in
R, (6) B is not the attribute of two distinct foreign keys in R, (7) A and B are
not the attributes of a composite foreign key in R, and (8) relation R does not
have incoming foreign keys. The formal definition of BINREL can be found in
[65]. Therefore, the predicate CLASS is defined by the following Datalog rules:

CLAssS(X) « REL(X), -IsBINREL(X)
IsBINREL(X) «— BINREL(X, 4, B, S,C,T, D)

For instance, we have that CLASS(order) holds in our example.

5 We refer the reader to [2] for the syntax and semantics of Datalog.
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Every attribute in a non-binary relation is mapped to a data type property,
defined by the predicate DTP, which is defined by the following Datalog rule:

DTP(A, R) «— ATTR(A, R), “ISBINREL(R)

For instance, we have that DTP(date, order) holds in our example.

We now briefly define the rules that translates a relational database schema
into an OWL vocabulary. We introduce a family of rules that produce IRIs for
classes and data type properties identified by the mapping (which are stored
in the predicates CLAss and DTP). Note that the IRIs generated can be
later on replaced or mapped to existing IRIs available in the Semantic Web.
Assume given a base IRI base for the relational database to be translated (for
example, “http://ex.com/rdb2rdf/”), and assume a family of built-in predicates
CONCAT,, (n > 2) is given, such that CONCAT, has n + 1 arguments and
CONCAT,(21,...,2Zn,y) holds if y is the concatenation of the strings x4, ...,
Zn. Then by following the approach proposed in [7], DM uses the following
Datalog rules to produce IRIs for classes and data type properties:

CrassIRI(R, X) «— CLASS(R), CONCAT;(base, R, X)
DTP_IRI(A, R, X) «— DTP(A, R), CONCAT,(base, R, "#", A, X)

For instance, http://ex.com/rdb2rdf/order is the IRI for the order relation
in our example, and http://ex.com/rdb2rdf/order#date is the IRI for attribute
date in the order relation.

The following Datalog rules are used to generate the RDF representation of
the OWL vocabulary. A rule is used to collect all the classes:

TRIPLE(U, "rdf : type", "owl:Class") «
Crass(R), CLAsSIRI(R,U)

The predicate TRIPLE is used to collect all the triples of the RDF graph
generated by the direct mapping DM. The following rule is used to collect all
the data type properties:

TRIPLE(U, "rdf : type", "owl:DatatypeProperty") «
DTP(A,R),DTP_IRI(A,R,U)

The following rule is used to collect the domains of the data type properties:

TRIPLE(U, "rdfs:domain", W) «
DTP(A, R), DTP_IRI(A, R,U), CLASSIRI(R, W)

Ezample 5 (Direct Mapping as Ontology of Running Example). OWL generated
by the Direct Mapping as Ontology of the running example, in Turtle syntax. The
RDF triples from the Direct Mapping as Ontology are the same as in Example 4.
Recall that the IRIs in the example are relative IRIs which must be resolved by
appending to the base IRI http://ex.com/rdb2rdf/.


http://ex.com/rdb2rdf/
http://ex.com/rdb2rdf/order
http://ex.com/rdb2rdf/order#date
http://ex.com/rdb2rdf/
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<order> rdf:type owl:Class.

<order#orderid> rdf:type owl:DatatypeProperty ;
rdfs:domain <order>.

<order#date> rdf:type owl:DatatypeProperty;
rdfs:domain <order>.

<order#total> rdf:type owl:DatatypeProperty;
rdfs:domain <order>.

<order#currency> rdf:type owl:DatatypeProperty;
rdfs:domain <order>.

<order#status> rdf:type owl:DatatypeProperty;
rdfs:domain <order>.

<lineitem> rdf:type owl:Class.

<lineitem#lineid> rdf:type owl:DatatypeProperty;
rdfs:domain <lineitem>.

<lineitem#price> rdf:type owl:DatatypeProperty;
rdfs:domain <lineitem>.

<lineitem#quantity> rdf:type owl:DatatypeProperty;
rdfs:domain <lineitem>.

<lineitem#product> rdf:type owl:DatatypeProperty;
rdfs:domain <lineitem>.

<lineitem#orderid> rdf:type owl:DatatypeProperty;
rdfs:domain <lineitem>.

<lineitem#ref-pid> rdf:type owl:0bjectProperty;
rdfs:domain <lineitem>;
rdfs:range <order>.

Direct Mapping Properties. We study two properties that are fundamental
to a direct mapping: information preservation and query preservation. Addition-
ally we study two desirable properties: monotonicity and semantics preservation.

A direct mapping is information preserving if it does not lose any information
about the relational instance being translated, that is, if there exists a way to
recover the original database instance from the RDF graph resulting from the
translation process. Formally, assuming that 7 is the set of all possible relational
instances, we have that:

Definition 14 (Information Preservation). A direct mapping M is infor-
mation preserving if there is a computable mapping N : G — I such that for
every relational schema R, set ) of PKs and FKs over R, and instance I of R
satisfying X: N(M(R, X, 1)) = 1.

Recall that a mapping A : G — T is computable if there exists an algorithm
that, given G € G, computes N(G).

Theorem 1. The direct mapping DM is information preserving.

The proof of this theorem is straightforward, and it involves providing a com-
putable mapping N : G — Z that satisfies the condition in Definition 14, that
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is, a computable mapping A that can reconstruct the initial relational instance
from the generated RDF graph.

A direct mapping is query preserving if every query over a relational database
can be translated into an equivalent query over the RDF graph resulting from
the mapping. That is, query preservation ensures that every relational query can
be evaluated using the mapped RDF data.

I define query preservation, we focus on relational queries @ that can be
expressed in relational algebra [2] and RDF queries @Q* that can be expressed in
SPARQL [55,59]. Given the mismatch in the formats of these query languages
(null can appear as a result of a relational query while null does not in a SPARQL
query), we introduce a function ¢r that converts tuples returned by relational
algebra queries into mappings returned by SPARQL. Formally, given a relational
schema R, a relation name R € R, an instance I of R and a tuple t € R, define
tr(t) as the mapping p such that: (1) the domain of p is {?A | A € att(R) and
t.A #NULL}, and (2) pu(?A) =t.A for every A in the domain of p.

Definition 15 (Query Preservation). A direct mapping M is query preserv-
ing if for every relational schema R, set X of PKs and FKs over R and relational
algebra query Q over R, there exists a SPARQL query Q* such that for every

instance I of R satisfying X: tr([Q]1) = [Q* Tmm,=.1)-

We show that the way DM maps relational data into RDF allows one to
answer a query over a relational instance by translating it into an equivalent
query over the generated RDF graph.

Theorem 2. The direct mapping DM is query preserving.

Angles and Gutierrez proved that SPARQL has the same expressive power
as relational algebra [5]. Thus, one may be tempted to think that this result
could be used to prove this theorem. However, the version of relational algebra
considered in Angles and Gutierrez does not include the value NULL and hence
does not apply to DM. The proof is by induction on the structure of a relational
query . The proof is also constructive and yields a bottom-up algorithm for
translating @ into an equivalent SPARQL query.

Before defining monotonicity, consider the following: given two database
instances I; and I over a relational schema R, instance I is said to be contained
in instance I, denoted by I; C I, if for every R € R, it holds that R* C R'2.
A direct mapping M is considered monotone if for any such pair of instances,
the result of mapping I> contains the result of mapping I;. In other words, if
we insert new data to the database, then the elements of the mapping that are
already computed are unaltered.

Definition 16 (Monotonicity). A direct mapping M is monotone if for every
relational schema R, set X of PKs and FKs over R, and instances I, I of R
such that Il Q 12,' M(R, Z,Il) Q M(R, Z, IQ)

Theorem 3. The direct mapping DM is monotone.
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It is straightforward to see that DM is monotone, because all the negative
atoms in the Datalog rules defining DM refer to the schema, the PKs and the FKs
of the database, and these elements are kept fixed when checking monotonicity.

A direct mapping is semantics preserving if the satisfaction of a set of PKs
and FKs by a relational database is encoded in the translation process. More
precisely, given a relational schema R, a set X of PKs and FKs over R and
an instance I of R, a semantics preserving mapping should generate from I a
consistent RDF graph if I = X, and it should generate an inconsistent RDF
graph otherwise.

Definition 17 (Semantics Preservation). A direct mapping M is semantics
preserving if for every relation schema R, set X of PKs and FKs over R and
instance I of R: I = X iff M(R, X, I) is consistent under OWL semantics.

Unfortunately, the situation is completely different for the case of semantics
preservation, as the following example shows that the direct mapping DM does
not satisfy this property.

Ezample 6. Assume that a relational schema contains a relation with name
STUDENT and attributes SID, NAME, and assume that the attribute SID is the pri-
mary key. Moreover, assume that this relation has two tuples, t1 and ty such that
t1.8ID = 1, t1.NAME = John and t5.SID = 1, t5.NAME = Peter. It is clear that the
primary key is violated, therefore the database is inconsistent. However, it is not
difficult to see that after applying DM, the resulting RDF graph is consistent. O

In fact, the result in Example6 can be generalized as it is possible to show
that the direct mapping DM always generates a consistent RDF graph, hence,
it cannot be semantics preserving’.

Proposition 1. The direct mapping DM is not semantics preserving.

Consider a new direct mapping DM, that extends DM as follows. A Dat-
alog rule is used to determine if the value of a primary key attribute is repeated,
and a family of Datalog rules are used to determine if there is a value NULL in
a column corresponding to a primary key. If some of these violations are found,
then an artificial triple is generated that would produce an inconsistency.

If we apply DM, to the database of Example 6, it is straightforward to
see that starting from an inconsistent relational database, one obtains an RDF
graph that is also inconsistent. In fact, we have that:

Proposition 2. The direct mapping DM,y is information preserving, query
preserving, monotone, and semantics preserving if one considers only PKs. That
is, for every relational schema R, set X' of (only) PKs over R and instance I
of R: I E X iff DMy(R, X, 1) is consistent under OWL semantics.

7 In practice an RDBMS will not allow a violation of an integrity constraint. However,
it may be the case that an RDBMS is not being used and a user may have a dump of
data (e.g. in CSV format) and may indicate that a particular column is the primary
key when in reality the column violates the constraint.
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Information preservation, query preservation and monotonicity of DM, are
corollaries of the fact that these properties hold for DM, and of the fact that
the Datalog rules introduced to handle primary keys are monotone.

The following theorem shows that the desirable condition of being monotone
is, unfortunately, an obstacle to obtain a semantics preserving direct mapping.

Theorem 4. No monotone direct mapping is semantics preserving.

It is important to understand the reasons why we have not been able to create
a semantics preserving direct mapping. The issue is with two characteristics of
OWL: (1) it adopts the Open World Assumption (OWA), where a statement
cannot be inferred to be false on the basis of failing to prove it, and (2) it does
not adopt the Unique Name Assumption (UNA), where two different names can
identify the same thing. On the other hand, a relational database adopts the
Closed World Assumption (CWA), where a statement is inferred to be false if
it is not known to be true. In other words, what causes an inconsistency in a
relational database, can cause an inference of new knowledge in OWL.

In order to preserve the semantics of the relational database, we need to
ensure that whatever causes an inconsistency in a relational database, is going
to cause an inconsistency in OWL. Following this idea, we now present a non-
monotone direct mapping, DM 4 i, which extends DM, by introducing rules
for verifying beforehand if there is a violation of a foreign key constraint. If such
a violation exists, then an artificial RDF triple is created which will generate an
inconsistency with respect to the OWL semantics.

It should be noticed that DM g is non-monotone because if new data in
the database is added which now satisfies the FK constraint, then the artificial
RDF triple needs to be retracted.

Theorem 5. The direct mapping DMypiip. is information preserving, query
preserving and semantics preserving.

Information preservation and query preservation of DM, are corollaries of
the fact that these properties hold for DM and DM,.

A direct mapping that satisfies the four properties can be obtained by con-
sidering an alternative semantics of OWL that expresses integrity constraints.
Because OWL is based on Description Logic, we would need a version of DL that
supports integrity constraints, which is not a new idea [17,28,29,34,49,51,72].
Thus, it is possible to extend DM, to create an information preserving, query
preserving and monotone direct mapping that is also semantics preserving, but
it is based on a non-standard version of OWL.

3.3 W3C R2RML: RDB to RDF Mapping Language

R2RML [25] is a language for expressing customized mappings from relational
databases to RDF expressed in a graph structure and domain ontology of the
user’s choice. The R2RML language is also defined as an RDFS schema®. An

8 http://www.w3.org/ns/r2rml.
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R2RML mapping is itself represented as an RDF graph. Turtle is the recom-
mended RDF syntax for writing R2RML mappings. The following is an example
of an R2RML mapping for the database in Fig. 1. Note that the mapping devel-
oper decides which tables and attributes of the database should be exposed as
RDF. The Direct Mapping automatically maps all of the tables and attributes
of the database.

SELECT lineid, price*quantity totalsrp
FROM lineitem order

[oviara [rwrisann

ex:partOfOrder

[ strin/é ] [ date ] [ string ] [ float ]

lineid | price | quantity | product | orderid |

lineitem

Fig. 3. Example mapping

Ezample 7 (An R2RML Mapping). Figure3 represents a mapping from our
running example database to an ontology. In this example we will present an
R2RML mapping that represents the depiction of Fig. 3.

The target ontology is defined as follows:

@prefix ex: <http://ex.com/schema/>.

ex:0rder rdf:type owl:Class.

ex:totalOrderPrice rdf:type owl:DatatypeProperty ;
rdfs:domain ex:0rder;
rdfs:range xsd:float.

ex:orderCurrency rdf:type owl:DatatypeProperty;
rdfs:domain ex:0rder;
rdfs:range xsd:string.

ex:0rderDate rdf:type owl:DatatypeProperty;
rdfs:domain ex:0rder;
rdfs:range xsd:date.
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ex:0rderLine rdf:type owl:Class.

ex:price rdf:type owl:DatatypeProperty;
rdfs:domain ex:0rderLine;
rdfs:range xsd:float.

ex:quantity rdf:type owl:DatatypeProperty;
rdfs:domain ex:0rderLine;
rdfs:range xsd:int.

exproduct rdf:type owl:DatatypeProperty;
rdfs:domain ex:0rderLine;
rdfs:range xsd:string.

ex#totalSRP rdf:type owl:DatatypeProperty;
rdfs:domain ex:0rderLine;
rdfs:range xsd:float.

ex:part0fOrder rdf:type owl:0bjectProperty;
rdfs:domain ex:0rderLine;
rdfs:range ex:0rder.

The example R2RML Mapping is as follows. In TriplesMap1, all the tuples
of the lineitem table are mapped to instances of ex:OrderLine class. The column
price, quantity and product of the lineitem table are mapped to the data type
properties ex:price ex:quantity and ex:product respectively. The column orderid
of the lineitem table which is a foreign key that references orderid of the Order
table is mapped to object property ex:partOfOrder. Similarly, in TriplesMap3,
all the tuples of the order table are mapped to instances of ex:Order class. The
column date, total and currency of the order table are mapped to the data
type properties ex:orderDate, ex:totalOrderPrice and ex:orderCurrency respec-
tively. Finally, in TriplesMap2 we have a SQL query that returns a calcula-
tion (price*quantity) associated to each lineid. This calculation (the renamed
attribute totalsrp) is mapped to the data type property ex:totalSRP.

@prefix rr: <http://www.w3.org/ns/r2rml#>.
O@prefix ex: <http://ex.com/schema/>.

<#TriplesMapl>

rr:logicalTable [ rr:tableName "lineitem" ];

rr:subjectMap [
rr:template "http://ex.com/data/orderline/{lineid}";
rr:class ex:0rderLine;

15

rr:predicateObjectMap [
rr:predicateMap [ rr:constant ex:price ];
rr:objectMap [ rr:column "price" ];

15

rr:predicateObjectMap [
rr:predicateMap [ rr:constant ex:quantity ];
rr:objectMap [ rr:column "quantity" J;
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1;
rr:predicateObjectMap [
rr:predicateMap [ rr:constant ex:product ];
rr:objectMap [ rr:column "product" ];
1
rr:predicateObjectMap [
rr:predicate [ rr:constant ex:part0fOrder ];
rr:objectMap [
rr:parentTriplesMap <#TriplesMap3>;
rr:joinCondition [
rr:child "orderid";
rr:parent "orderid";
1;
1;

<#TriplesMap2>
rr:logicalTable [ rr:sqlQuery
SELECT lineid, price*quantity totalsrp FROM lineitem
e
rr:subjectMap [
rr:template "http://ex.com/data/orderline/{lineid}";

1;

rr:predicateObjectMap [
rr:predicateMap [ rr:constant ex:totalSRP ];
rr:objectMap [ rr:column "totalsrp" ];

<#TriplesMap3>

rr:logicalTable [ rr:tableName "order" ];

rr:subjectMap [
rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:0rder;

1;

rr:predicateObjectMap [
rr:predicateMap [ rr:constant ex:orderDate ];
rr:objectMap [ rr:column "date" ];

1;

rr:predicateObjectMap [
rr:predicateMap [ rr:constant ex:totalOrderPrice ];
rr:objectMap [ rr:column "total" ];

15

rr:predicateObjectMap [
rr:predicateMap [ rr:constant ex:orderCurrency ];
rr:objectMap [ rr:column "currency" J;

87
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1;

The following is the resulting RDF after the mapping has been applied on the
example database:

<http://ex.com/data/order/1234> rdf:type ex:0rder;
ex:orderDate "2017-04-15";
ex:totalOrderPrice "100";
ex:orderCurrency "USD".

<http://ex.com/data/orderline/6789> rdf:type ex:0rderLine;
ex:price "30";
ex:quantity "2";
ex:totalSRP "60";
ex:product "Foo";
ex:part0fOrder <http://ex.com/data/order/1234>.

<http://ex.com/data/orderline/6790> rdf:type ex:0rderLine
ex:price "20";
ex:quantity "2";
ex:totalSRP "40";
ex:product "Bar";
ex:part0fOrder <http://ex.com/data/order/1234>.

An R2RML processor may include an R2RML default mapping generator.
This is a facility that introspects the schema of the input database and generates
an R2RML mapping intended for further customization by a user. This default
mapping could be the W3C Direct Mapping or the Direct Mapping as Ontology
DM.

The R2RML language features can be divided in two parts: features generat-
ing RDF terms (IRI, Blank Nodes or Literals) and features for generating RDF
triples.

Generating RDF Terms. An RDF term is either an IRI, a Blank node, or
a Literal. A term map generates an RDF term for the subjects, predicates and
objects of the RDF triples from either a constant, a template or a column value.
A constant-valued term map ignores the row and always generates the same
RDF term. A column-valued term map generates an RDF term from the value
of a column. A template-valued term map generates an RDF term from a string
template, which is a format string that can be used to build strings from multiple
components, including the values of a column. Template-valued term maps are
commonly used to specify how an IRI should be generated.

The R2RML language allows a user to explicitly state the type of RDF term
that needs to be generated (IRI, Blank node or Literal). If the RDF term is
for a subject, then the term type must be either an IRI or Blank Node. If the
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RDF term is for a predicate, then the term type must be an IRI. If the RDF
term is for a subject, then the term type can be either an IRI, Blank node or
Literal. Additionally, a developer may assert that an RDF term has an assigned
language tag or datatype.

Generating RDF Triples. RDF triples are derived from a logical table. A
logical table can be either a base table or view in the relational schema, or
an R2RML view. An R2RML view is a logical table whose contents are the
result of executing a SQL SELECT query against the input database. In an
RDB2RDF mapping, it may be required to transform, compute or filter data
before generating RDF triples. This can be achieved by defining a SQL view and
referring to it as a base view. However, it may be the case that this is not possible
due to lack of sufficient database privileges to create views. R2ZRML views achieve
the same effect without requiring any changes to the input database.

A triples map is the heart of an R2RML mapping. It specifies a rule for
translating each row of a logical table to zero or more RDF triples. Example 7
contains two triple maps identified by <#TriplesMap1> and <#TriplesMap2>.
The RDF triples generated from one row in the logical table all share the same
subject. A triples map is represented by a resource that references the following
other resources:

— It must have exactly one logical table. Its value is a logical table that specifies
a SQL query result to be mapped to triples. In Example 7, both Triple Map’s 1
and 3 have a table name as a logical table, lineitem and order, respectively.
TripleMap2 has a logical table which is a SQL Query.

— It must have exactly one subject map that specifies how to generate a subject
for each row of the logical table.

— It may have zero or more predicate-object maps, which specify pairs of pred-
icate maps and object maps that, together with the subject generated by the
subject map, may form one or more RDF triples for each row.

Recall that there are three types of term maps that generate RDF terms:
constant-valued, column-valued and template-valued. Given that a subject, pred-
icate and object of an RDF triple must be RDF terms, this means that a subject,
predicate and object can be any of the three possible term maps, called subject
map, predicate map and object map, respectively. A predicateObject map groups
predicate-object map pairs.

A subject map is a term map that specifies the subject of the RDF
triple. The primary key of a table is usually the basis for creating an IRI.
Therefore, it is normally the case that a subject map is a template-valued
term map with an IRI template using the value of a column which is usu-
ally the primary key. Consider the triple map <#TriplesMapl> in Exam-
ple 7. The subject map is a template-valued term map where the template is
http://ex.com/data/order/{orderid}. This means that the subject IRI for
each row is formed using values of the orderid attribute. Optionally, a subject
map may have one or more class IRIs. For each RDF term generated by the
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subject map, RDF triples with predicate rdf:type and the class IRI as object
will be generated. In this example, the class IRI is ex:0rder.

A predicate-object map is a function that creates one or more predicate-
object pairs for each row of a logical table. It is used in conjunction with a
subject map to generate RDF triples in a triples map. A predicate-object map
is represented by a resource that references the following other resources: One or
more predicate maps and one or more object maps or referencing object maps. In
<#TriplesMapl>, there are four predicate-object maps while <#TriplesMap2>
only has one.

A predicate map is a term map. It is common that the predicate of an RDF
triple is a constant. Therefore, a predicate map is usually a constant-valued term
map. For example, the first predicate-object map of <#TriplesMap1> has a pred-
icate map which is a constant-valued term map. The predicate IRI will always be
the constant is ex:price. An object map is also a term map. Several use cases
may arise where the object could be either a constant-valued, template-valued
or column-valued term map. The first predicate-object map of <#TriplesMapl>
has an object map which is a column-valued term map. Therefore, the object
will be a literal coming from the value of the price attribute.

A referencing object map allows using the subjects of another triples map as
the objects generated by a predicate-object map. Since both triples maps may
be based on different logical tables, this may require a join between the logical
tables. A referencing object map is represented by a resource that has exactly
one parent triples maps. Additionally, it may have one or more join conditions.
Join conditions are represented by a resource that has exactly one value for
each of the following: (1) a child, whose value is known as the join condition’s
child column and must be a column name that exists in the logical table of the
triples map that contains the referencing object map (2) a parent, whose value
is known as the join condition’s parent column and must be a column name that
exists in the logical table of the referencing object map’s parent triples map.
The last predicate-object map of <#TriplesMap1l> has a referencing object map.
The parent triples map is <#TriplesMap3>. A join condition is created between
the child attribute orderid, which is an column name in the logical table of
<#TriplesMapl> and the parent attribute orderid, which is a column name in
the logical table of <#TriplesMap3>

3.4 Relational Databases to RDF Mappings

Even though there has been attempts to formalize R2RML [62], to the best of
our knowledge, there is no formal public definition of R2ZRML. Nevertheless, we
believe it is important to formalize a notion of a customized mapping from Rela-
tion Databases to RDF, which we denote as an RDB2RDF mapping. This alter-
native approach follows the widely used formalization in the data exchange [6]
and data integration areas [46], and which is based on the use of first-order logic
and its semantics to define mappings.
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Given a relational schema R such that triple ¢ R, a class RDB2RDF-rule
p over R is a first-order formula of the form:

VsVpVoVzT a(s,T) Ap = type Ao = c — triple(s,p,o0), (1)

where a(s, Z) is a domain-independent first-order formula over R and ¢ € D.
Moreover, a predicate RDB2RDF-rule p over R is a first-order formula of the
form:

VsVpVYoVz B(s,0,Z) Ap=c — triple(s,p,o), (2)

where ((s,0,T) is a domain-independent first-order formula over R and ¢ € D.
Finally, an RDB2RDF-rule over R is either a class or a predicate RDB2RDF-
rule over R. In what follows, we omit the universal quantifiers VsVpVoVZz from
RDB2RDF rules, and we implicitly assume that these variables are universally
quantify.

Ezxample 8. Consider the relational database from our running example (see
Ezxamplel). Then the following RDB2RDF rule maps all the instances of the
order table as instances of the Order class: order(s, 1,2, 23,%4,%5) A p =
type A o = Order — triple(s,p,o0).

The RDB2RDF mapping in Example 8 can be represented as follows in
R2RML:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" 1];
rr:subjectMap [
rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:0rder;

1;

Additionally, it could also be represented as follows:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" 1];
rr:subjectMap [
rr:template "http://ex.com/data/order/{orderid}";
1;
rr:predicateObjectMap [
rr:predicate rdf:type ;
rr:object ex:0rder ;

1;

Let R be a relational schema. An RDB2RDF mapping M over R is a finite
set of RDB2RDF rules over R. Given an RDB2RDF mapping M and an instance
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I over R, the result of applying M over I, denoted by [M]y, is an instance over
the schema {triple} that is defined as the result of the following process. For
every RDB2RDF rule of the form (1) and value ¢; € D, if there exists a tuple
of values d from D such that I |= a(ci,d),” then triple(cy,type, c) is included
as a fact of [M];, and likewise for every RDB2RDF rule of the form (2). Notice
that this definition coincides with the notion of canonical universal solution in
the context of data exchange [6]. Besides, notice that [M]; represents an RDF
graph and, thus, mapping M can be considered as a mapping from relational
databases into RDF graphs.

Ezxample 9. Consider the relational database from our running example, and let
M be an RDB2RDF mapping consisting of the rule in Examplel and the fol-
lowing rule:

order(s,x1, 0,3, 24,25) A p = orderDate — triple(s,p,o) (3)

If I is the instance from our running example, then [M]; consists of the following
facts:

triple(1234,type,Order), triple(1234, orderDate, 2017 — 04 — 15).

The RDB2RDF mapping in Example 9 can be represented as follows in
R2RML:

<#TriplesMap>
rr:logicalTable [ rr:tableName "order" ];
rr:subjectMap [
rr:template "http://ex.com/data/order/{orderid}";
rr:class ex:0rder;
15
rr:predicateObjectMap [
rr:predicate ex:orderDate ;
rr:objectMap [ rr:column "date" ];

1;

4 From the Semantic Web to Relational Databases:
Data Access

The Semantic Web’s promise of web-wide data integration requires the inclusion
of legacy Relational Databases. In the previous section, we discussed how to go
from a Relational Database to the Semantic Web through means of mappings.
In this section, we present the other direction: how the Semantic Web can access
a Relational Database.

9 Given that a(s,Z) is domain-independent, there exists a finite number of tuples
(c1,d) such that I = afci,d).
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In RDF data management there are efforts that concern Triplestores and
those that concern legacy Relational Databases. Triplestores are database man-
agement systems whose data model is RDF, and support at least SPARQL
execution against the stored contents. Native triplestores are those that are
implemented from scratch [14,53,76]. RDBMS-backed Triplestores are built by
adding an application layer to an existing relational database management sys-
tem. Within that literature there is a discourse concerning the best database
schema, SPARQL to SQL query translations, indexing methods and even storage
managers, (i.e. column stores vs. row stores) [1,21,30,77]. NoSQL Triplestores
are also being investigated as possible RDF storage managers [24,31,41,44]. In
all three triplestore cases (native, RDBMS-backed and NoSQL), RDF is the
primary data model.

The research herein is concerned with the mapping of legacy relational data
with the Semantic Web. Within that, the research concerns wrapper systems
that present a logical RDF representation of relational data that is physically
stored in an RDBMS such that no copy of the relational data is made. It follows
that some or all of a SPARQL query evaluation is executed by the SQL engine.
An alternative approach is the one in which the relational data is extracted
from the relational database, transformed to RDF, and loaded (ETL) into a
Triplestore.

Since both RDBMS-backed Triplestores and RDB2RDF Wrapper systems
involve relational databases and translation from SPARQL to SQL, there is
a potential for confusion. The difference is that RDBMS-backed Triplestores
translate SPARQL queries to SQL queries that are executed on database schemas
that model and store RDF. RDB2RDF Wrapper systems translate SPARQL
queries to SQL queries that are executed on legacy database schemas that model
and store relational data.

An RDB2RDF ETL approach is recommended when the data in the legacy
relational database is stale, or updated infrequently. In an ETL system, at best,
updates occur on a regular cycle. Thus semantic web applications querying stale
data just prior to an update is a risk. In the common case of legacy relational
databases which are continually updated, an ETL approach is not feasible. A
solution to this problem is the use of a RDB2RDF wrapper systems which com-
piles SPARQL to SQL.

4.1 SPARAQL to SQL Rewriting with Direct Mapping

In mid to late 2000s, RDB2RDF wrapper systems such as D2RQ, Virtuoso
RDF Views and Squirrel RDF, predicated on preprocessing and/or optimiz-
ing the SQL query before sending it to the SQL optimizer. Open-source code
and forums!'® provide evidence of their architecture. For example, we observed
that for some SPARQL queries, D2RQ generates multiple SQL queries and nec-
essarily executed a join among those results outside of the database. In 2011, we
postulated that by carefully constructing SQL views to represent a RDB2RDF

10 https://github.com/d2rq/d2rq/issues/94 As of April 2017, this issue is still open.
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mapping, then the existing algorithmic machinery in SQL optimizers were suf-
ficient to effectively execute SPARQL queries on native relational data [67].
Thereby, legacy relational database systems may be made upwardly compatible
with the Semantic Web, while simultaneously minimizing the complexity of the
wrapping system.

In 2008, Angles and Gutierrez showed that SPARQL is equivalent in expres-
sive power to relational algebra [5]. Thus, one might have expected that the valid-
ity of this research’s postulate at that time, to be a foregone conclusion. However,
in 2009, two independent studies that evaluated three RDB2RDF wrapper sys-
tems, D2RQ, Virtuoso RDF Views and Squirrel RDF, came to the opposite
conclusion: existing SPARQL to SQL translation systems do not compete with
traditional relational databases [11,33].

The March 2009 Berlin SPARQL Benchmark on the 100 million triple dataset
reported that SPARQL queries on the evaluated RDB2RDF systems were up to
1000 times slower that the native SQL queries. Bizer and Schultz [11], creators
of the Berlin SPARQL Benchmark, concluded that: “Setting the results of the
RDF stores and the SPARQL-to-SQL rewriters in relation to the performance
of classical RDBMS unveiled an unedifying picture. Comparing the overall per-
formance (100 M triple, single client, all queries) of the fastest rewriter with the
fastest relational database shows an overhead for query rewriting of 106%. This
s an indicator that there is still room for improving the rewriting algorithms”.

Gray et al. [33] tested D2RQ and SquirrelRDF on a scientific database. This
study concluded that “... current rdb2rdf systems are not capable of providing
the query execution performance required to implement a scientific data inte-
gration system based on the rdf model. [...] it is likely that with more work on
query translation, suitable mechanisms for translating queries could be developed.
These mechanisms should focus on exploiting the underlying database system’s
capabilities to optimize queries and process large quantities of structured data,
e.g. pushing the selection conditions to the underlying database system”.

A motivation for this research, at that time, was to resolve the apparent
contradiction among the aforementioned papers. Toward that end we researched
and engineered the Ultrawrap system [67].

Ultrawrap Architecture. The first version of Ultrawrap was compliant with
the W3C Direct Mapping standard. The goal was to understand if existing com-
mercial relational databases already subsume the algorithms and optimizations
needed to support effective SPARQL execution on existing relationally stored
data under the simplest mapping possible. This initial version of Ultrawrap was
organized as a set of four compilers with the understanding that the SQL opti-
mizer formed one of the compilers.

1. The generation of the Direct Mapping with the translation of a SQL schema,
including constraints, to an OWL ontology: the putative ontology (PO).

2. The creation of an intensional triple table in the database by augmenting the
relational schema with one or more SQL Views: the Tripleview.
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3. Translation of SPARQL queries to equivalent SQL queries operating on the
Tripleview.

4. The native SQL query optimizer, which becomes responsible for rewriting
triple based queries and effecting their execution on extensional relational
data.

These four components can be seen as four different language compilers. As
an ensemble, the first three provide for the logical mapping of schema, data
and queries between the relational and Semantic Web languages. The fourth
component, the SQL optimizer, is responsible for the evaluation of the data
mappings and concomitant optimization of the query.

To define the mapping of the relational data to RDF, the system first identi-
fies an ontological representation of the relational schema, which is done by the
Direct Mapping and the generation of the putative ontology. The putative ontol-
ogy is the input to a second compilation step that creates a logical definition
of the relational data as RDF and embeds it in a view definition. In a off-line
process, Ultrawrap defines a SQL view whose query component is a specifica-
tion of a mapping from the relational data to an RDF triple representation, the
Tripleview. Per the Direct Mapping, concatenating the table name with the pri-
mary key value or table name with attribute name creates unique identifiers for
subject, predicate and objects. Subsequently, unique identifiers can be appended
to a base URIL. The SQL Tripleview is comprised of a union of SELECT-FROM-
WHERE (SFW) statements. The WHERE clause filters attributes with null
values (IS NOT NULL), given that null values are not expressible in RDF.

Due to its simplicity, our starting point is the triple table approach. Even
though, studies have shown that storing RDF with the triple table approach in
a relational database is easily improved upon [1,48], this issue is not relevant to
Ultrawrap because the relational data is not being materialized in a triple table;
instead the relational data is virtually represented as a triple table through
unmaterialized views.

Even though our goal is to define a virtual triple table, we still have to antic-
ipate the physical characteristics of the database and the capacity of the SQL
optimizer to produce optimal physical plans. Toward that end, the Tripleview
has the following characteristics.

The Tripleview is of the form: <subject, primary key of subject, predicate,
object, primary key of object>. Separating the primary key in the Tripleview
allows the query optimizer to exploit them because the joins are done on these
values. If the object is a data value, then a NULL is used as the primary key of
the object. The subject and object are still kept as the concatenation of the table
name with the primary key value because this is used to generate the final URI,
which uniquely identifies each tuple in the database. It is possible to augment
the number of attributes in the Tripleview to include each separate key value.

Instead of having a single Tripleview to represent the entire mapping, it is
beneficial to create a separate Tripleview for each datatype. For varchar, this
includes each length declared in the schema. For example, datatypes with var-
char(50) and varchar(200) are considered different. Using multiple Tripleviews
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requires less bookkeeping than one might anticipate. Each attribute is mapped to
its corresponding Tripleview and stored in a hashtable. Then, given an attribute,
the corresponding Tripleview can be retrieved.

For example, the Tripleviews for the direct mapping of our running example
is the following:

CREATE VIEW Tripleview_type(s,s_id,p,0,0_id) AS

SELECT "order"+orderid as s, orderid as s_id, "type" as p,
"order" as o, null as o_id

FROM order

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"type" as p,
"lineitem" as o, null as o_id

FROM lineitem

CREATE VIEW Tripleview_int(s,s_id,p,0,0_id) AS
SELECT "order"+orderid as s, orderid as s_id, "orderid" as p,
orderid as o, null as o_id

FROM order WHERE orderid IS NOT NULL

UNION ALL

SELECT "order"+orderid as s, orderid as s_id, "status" as p,
status as o, null as o_id

FROM order WHERE status IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"price" as p,
price as o, null as o_id

FROM lineitem WHERE price IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"quantity" as p,
quantity as o, null as o_id

FROM lineitem WHERE quantity IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"orderid" as p,
orderid as o, null as o_id

FROM lineitem WHERE orderid IS NOT NULL

CREATE VIEW Tripleview_varchar50(s,s_id,p,0,0_id) AS

SELECT "order"+orderid as s, orderid as s_id, "currency" as p,
currency as o, null as o_id

FROM order WHERE currency IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"product" as p,
product as o, null as o_id

FROM lineitem WHERE product IS NOT NULL

CREATE VIEW Tripleview_float(s,s_id,p,0,0_id) AS

SELECT "order"+orderid as s, orderid as s_id, "total" as p,
total as o, null as o_id

FROM order WHERE total IS NOT NULL

UNION ALL
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SELECT "lineitem"+lineid as s, lineid as s_id,"price" as p,
price as o, null as o_id
FROM lineitem WHERE price IS NOT NULL

CREATE VIEW Tripleview_object(s,s_id,p,0,0_id) AS
SELECT "lineitem"+lineid as s, lineid as s_id,

"lineitem#ref-orderid" as p, "order"+orderid as o, orderid as o_id
FROM lineitem WHERE orderid IS NOT NULL

Ultrawrap’s runtime phase encompasses the translation of SPARQL queries
to SQL queries on the Tripleviews and the maximal use of the SQL infrastruc-
ture to do the SPARQL query rewriting and execution. At runtime, a compiler
translates an incoming SPARQL query to a SQL query in terms of the Triple-
view. The translation of the SPARQL query to a SQL query on the Tripleviews
follows a classic compiler structure: a parser converts the SPARQL query string
to an Abstract Syntax Tree (AST). The AST is translated into an SPARQL
algebra expression tree. The SQL translation is accomplished by traversing the
expression tree and replacing each SPARQL operator. Each internal node of the
expression tree represents a SPARQL binary algebra operator while the leaves
represent a Basic Graph Patterns (BGP), which is a set of triple patterns. A
SPARQL BGP is a set of triple patterns where each one maps to a Tripleview.
A SPARQL Join maps to a SQL Inner Join, a SPARQL Union maps to the SQL
Union, a SPARQL Optional maps to SQL Left-Outer Join. Consequently, the
RDBMS must use both the logical mapping represented in the Tripleview and
optimize the resulting translated SQL query, forming the final compiler.

Ezxample 10. The following SPARQL query returns all the quantity and products
in a line item.

SELECT ?quantity ?product

WHERE {

?7x <lineitem#quantity> 7quantity.
?x <lineitem#product> ?product.

}
The Ultrawrap SQL query is the following:

SELECT tl.0 AS quantity, t2.o0 AS product

FROM Tripleview_varchar50 tl1, Tripleview_int t2
WHERE t1.p = "quantity"AND t2.p ="product"

AND tl.s = t2.s AND tl.s_id = t2.s_id

Two Important Optimizations. Upon succeeding in ultrawrapping different
RDBMSs and reviewing query plans, two relational optimizations emerged as
important for effective execution of SPARQL queries: (1) detection of unsat-
isfiable conditions and (2) self-join elimination. Perhaps, not by coincidence,
these two optimizations are among semantic query optimization (SQO) meth-
ods introduced in the 1980’s [18,20,70]. In SQO, the objective is to leverage
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the semantics, represented in integrity constraints, for query optimization. The
basic idea is to use integrity constraints to rewrite a query into a semantically
equivalent one. These techniques were initially designed for deductive databases
and then integrated in commercial relational databases [20].

The idea behind the detection of unsatisfiable conditions optimization
is to determine that a query result is empty by determining, without executing
the query. This happens, for example, when a pair of predicate constants are
inconsistent [18]. The application of the following transformations eliminates
columns from the plan that are not needed to evaluate the SPARQL query.

Elimination by contradiction: Consider a query SELECT * FROM R WHERE A=x
AND A=y such that x != y. Then the result of that query is empty. For exam-
ple, it is clear that the query SELECT * FROM order WHERE orderid = 1 AND
orderid = 2 will never return results.

Unnecessary union sub-tree pruning: Given a query that includes the UNION
operator and where it has been determined that an argument of the UNION is
empty; then the corresponding argument can be eliminated. For example: UNION
ALL ({}, S, T) = UNION ALL (S, T) and UNION ALL ({}, T) =T

In Ultrawrap’s Tripleview, the constant value in the predicate position acts
as the integrity constraint. Consider the following Tripleview:

CREATE VIEW Tripleview_varchar50(s,s_id,p,0,0_id) AS

SELECT "order'"+orderid as s, orderid as s_id, "currency" as p,
currency as o, null as o_id FROM order

WHERE currency IS NOT NULL

UNION ALL

SELECT "lineitem"+lineid as s, lineid as s_id,"product" as p,
product as o, null as o_id FROM lineitem

WHERE product IS NOT NULL

Now consider the following query “return all product labels”:
SELECT o FROM Tripleview_varchar50 WHERE p = "product"

The first SFW statement from Tripleview_varchar50 defines p="currency".
The query contains p ="product". Both predicates cannot be satisfied simul-
taneously. Given the contradiction, the first SFW statement of Triple-
view_varcharb0 can be replaced with the empty set. Since the Tripleview’s defi-
nition includes all possible columns, any specific SPARQL query will only need
a subset of the statements defined in the view. Application of elimination by
contradiction enables removing, the unnecessary UNION ALL conditions. Thus
the combination of the two transformations reduces the Tripleview to precisely
the subset of referenced columns.

Ezxample 11. Consider the Ultrawrap SQL query in Example 10, after applying
the detection of unsatisfiable condition optimization, the new Ultrawrap SQL
query would logically be the following
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SELECT t1.0 AS quantity, t2.o AS product
FROM
(SELECT"lineitem"+lineid as s, lineid as s_id,"quantity"as p,
quantity as o, null as o_id FROM lineitem WHERE quantity IS NOT NULL) ti,
(SELECT"lineitem"+lineid as s, lineid as s_id,"product"as p,
product as o, null as o_id FROM lineitem WHERE product IS NOT NULL) t2
WHERE t1.p ="quantity"AND t2.p ="product"
AND t1.s = t2.s AND tl.s_id = t2.s_id

Join elimination is one of the several SQO techniques, where integrity con-
straints are used to eliminate a literal clause in the query. This implies that a
join could also be eliminated if the table that is being dropped does not con-
tribute any attributes in the results [18]. The type of join elimination that is
desired is the self-join elimination, where a join occurs between the same
tables. Two different cases are observed: self-join elimination of projection and
self-join elimination of selections.

Self-join elimination of projection: This occurs when attributes from the same
table are projected individually and then joined together. For example, the fol-
lowing unoptimized query projects the attributes total and currency from the
table order where orderid = 1, however each attribute projection is done sepa-
rately and then joined:

SELECT pl.total, p2.currency
FROM order pl, order p2
WHERE pl.orderid = 1 AND pl.orderid = p2.orderid

Given a self-join elimination optimization, the previous query may be rewrit-
ten as:

SELECT total, currency FROM order WHERE orderid = 1

Self-join elimination of selection: This occurs when a selection on attributes from
the same table are done individually and then joined together. For example, the
following unoptimized query selects on price > 100 and quantity > 10 separately
and then joined:

SELECT pl.lineid
FROM lineitem pl, lineitem p2
WHERE pl.price > 100 AND p2.quantity > 10 AND pl.lineid = p2.lineid

Given a self-join elimination optimization, the previous query may be rewrit-
ten as:

SELECT lineid FROM lineitem WHERE price > 100 AND quantity > 10

Ezxample 12. Consider the logical Ultrawrap SQL query in Example11. After
the self join elimination optimization has been applied, the new Ultrawrap SQL
query would logically be the following

SELECT tl.quantity, tl.product
FROM lineitem t1
WHERE tl1.quantity IS NOT NULL and t1.product IS NOT NULL
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Evaluation. Ultrawrap was evaluated using the three leading RDBMS systems
and two benchmark suites, Microsoft SQL Server, IBM DB2 and Oracle RDBMS,
and the Berlin and Barton SPARQL benchmarks. The SPARQL benchmarks
were chosen as a consequence of the fact that they derived their RDF content
from a relational source. Both benchmark provide both SPARQL queries and
SQL queries, where each query was derived independently from an English lan-
guage specification. Since wrappers produce SQL from SPARQL we refer to the
benchmark’s SQL queries as benchmark-provided SQL queries.

By using benchmarks containing independently created SPARQL and SQL
queries, and considering the effort and maturity embodied in the leading
RDBMS’s SQL optimizers, we suppose that the respective benchmark-provided
SQL query execution time forms a worthy baseline, and the specific query plans
to yield insight into methods for creating wrappers.

By starting with a simple wrapper system and evaluating it with sophisti-
cated SQL query optimizers we are able to identify existing, well understood
optimization methods that enable wrappers. We determined that DB2 imple-
ments both optimizations. SQL Server implements the detection of unsatisfiable
conditions optimization but does not implement the self-join elimination opti-
mization. Oracle does not implement the detection of unsatisfiable conditions
optimization. It does implement the self-join elimination optimization, but only
if the detection of unsatisfiable conditions optimization is applied separately.
MySQL does not implement any of these optimizations.

The following points deserve elaboration:

— Self-join elimination: The number of self-joins and their elimination is not, by
itself, an indicator of poor performance. The impact of the self-join elimina-
tion optimization is a function of the selectivity and the number of properties
in the SPARQL query that are co-located in a single table. The value of
optimization is less as selectivity increases.

— Join predicate push-down: The experiments with Oracle revealed that push-
ing join predicates [3] can be as effective as the detection of unsatisfiable
conditions optimization.

— Join ordering: Join order is a major factor for poor query execution time,
both on Ultrawrap and benchmark-provided SQL queries.

— Left-outer joins: We found that no commercial optimizer eliminates self left-
outer joins and OPTIONALs appear in many of the queries where sub-optimal
join orders are determined. We speculate that these types of queries are not
common in a relational setting, hence the lack of support in commercial sys-
tems.

— Counting NULLs: Each SFW statement of the Tripleview filters null values.
Such a filter could produce an overhead, however we speculate that the opti-
mizer has statistics of null values and avoids the overhead.

The results of the Ultrawrap system provided a foundation for identifying
minimal requirements for effective SPARQL to SQL wrapper systems. Since
then, other research groups have continued this work and developed systems
such as Morph [58] and Ontop [61].
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4.2 Ontology-Based Data Access

In the previous section, we presented the initial Ultrawrap system, who focus
is on supporting a Direct Mapping. In this section, we present how Ultrawrap
has been extended for Ontology-Based Data Access, denoted as UltrawrapOBPA,
and thus supports customized mappings in R2RML [66].

Given a source relational database, a target OWL ontology and a map-
ping from the relational database to the ontology, Ontology-Based Data Access
(OBDA) concerns answering queries over the target ontology using these three
components. Commonly, researchers have taken two approaches to developing
OBDA systems: materialization-based approach (forward chaining) or rewriting-
based approach (backward chaining). In the materialization approach, the input
relational database D, target ontology O and mapping M (from D to O) are used
to derive new facts that are stored in a database D,, which is considered to be the
materialization of the data in D given M and O. Then the answer to a SPARQL
query @ over the target ontology over D, M and O is computed by directly posing
Q over D, [6]. In the rewriting approach, three steps are executed. First, a new
query @, is generated from the query @ and the ontology O, which is considered
to be the rewriting of @ w.r.t. to O. The majority of the OBDA literature focuses
on this step [54]. Second, the mapping M is used to compile @, to a SQL query
Qsq1 over D [56,57]. Finally, Qsq is evaluated on the database D, which gives us
the answer to the initial query Q. Therefore, the answer to a query @ over O, D,
and M is computed by directly posing ()54 over D.

We develop an OBDA system, Ultrawrap®®PA, which combines material-
ization and query rewriting. Ultrawrap®BPA is an extension of our previous
Ultrawrap system which supports customized mappings in R2RML. In the same
spirit of our Ultrawrap work, the objective is to effect optimizations by pushing
processing into the Relational Databases Management Systems (RDBMS) and
closer to the stored data, hence making maximal use of existing SQL infrastruc-
ture. We distinguish two phases: a compile and runtime phase. In the compile
phase, we are given as input a relational database D, an ontology O and a
mapping M from D to O. The mapping M is given in R2RML. The first step
of this phase is to embed in M the ontological entailments of O, which gives
rise to a new mapping M*, that is called the saturation of M w.r.t. O. The
mapping M* is implemented using SQL views. In order to improve query per-
formance, an important issue is to decide which views should be materialized.
This is the last step of the compilation phase. We then study when a view should
be materialized in order to improve query performance. In the runtime phase,
the input is a query @ over the target ontology O, which is written in the RDF
query language SPARQL, and the problem is to answer this query by rewriting
it into some SQL queries over the views. A key observation at this point is that
some existing SQL optimizers are able to perform rewritings in order to execute
queries against materialized views.

To the best of our knowledge, in 2014, we presented the first OBDA sys-
tem which supported ontologies with transitivity by using SQL recursion. The
ontology profile considered in this work is our proposed OWL-SQL. More
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specifically, our contributions are the following. (1) We present an efficient
algorithm to generate saturated mappings. (2) We provide a proof that every
SPARQL query over a target ontology can be rewritten into a SQL query in our
context, where mappings play a fundamental role. It is important to mention
that such a result is a minimal requirement for a query-rewriting OBDA system
relying on relational database technology. (3) We present a cost model that help
us to determine which views to materialize to attain the fastest execution time.
And (4) we present an empirical evaluation using (i) Oracle, (ii) two benchmarks
including an extension of the Berlin SPARQL Benchmark, and (iii) six differ-
ent scenarios. This evaluation includes a comparison against a state-of-the-art
OBDA system, and its results validate the cost model and demonstrate favorable
execution times for Ultrawrap©BPA,

Related work. This research builds upon the work of Rodriguez-Muro et al.
implemented in Ontop [61] and our previous work on Ultrawrap [67]. Rodriguez-
Muro et al. uses the tree-witness rewriting algorithm and introduced the idea of
compiling ontological entailments as mappings, which they named 7-Mappings.
There are three key differences between Rodriguez-Muro et al. and our work in
this paper: (1) we have extended the work of Rodriguez-Muro et al. to support
more than hierarchy of classes and properties, including transitivity; (2) we intro-
duce an efficient algorithm that generates saturated mappings while Rodriguez-
Muro et al. has not presented an algorithm before; and (3) we represent the
mappings as SQL views and study when the views should be materialized. Ultra-
wrap is a system that encodes a fix mapping, the direct mapping [7,65], of the
database as RDF. These mappings are implemented using unmaterialized SQL
views. The approach presented extends Ultrawrap in three important aspects:
(1) supports a customized mapping language; (2) supports reasoning through
saturated mappings; and (3) considers materializing views for query optimiza-
tion. Another related work is the combined approach [47], which materializes
entailments as data, without considering mappings, and uses a limited form of
query rewriting. The main objective of this approach is to deal with the case of
infinite materialization, which cannot occur for the type of ontologies considered
in this paper.

Saturation of RDB2RDF Mappings. Being able to modify an RDB2RDF
mapping to embed a given ontology is a fundamental step in our approach. This
process is formalized by means of the notion of saturated mapping.

Definition 18 (Saturated Mapping). Let M and M* be RDB2RDF map-
pings over a relational schema R and O an ontology. Then M* is a saturation of
M w.r.t. O if for every instance I over R and assertional RDF-triple (a,b,c):

[M]rUZXo [ triple(a,b,c) 4ff triple(a,b,c) € [M*];.

We study the problem of computing a saturated mapping from a given
mapping and ontology. In particular, we focus on the case of ontologies not
mentioning any triple of the form (a,type,transProp), which we denote by
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non-transitive ontologies. In the next section, we extend these results to the case
of arbitrary ontologies.

In our system, the saturation step is performed by exhaustively applying the
inference rules in Table 1, which allow us to infer new RDB2RDF rules from
the existing ones and the input ontology. More precisely, given an inference rule
t: Z L from Table 1, where ¢ is a triple and p;, po are RDB2RDF rules, and given
an RDB2RDF mapping M and an ontology O, we need to do the following to
apply t: Z; over M and O. First, we have to replace the letters A and B in ¢
with actual URIs, say a € I and b € I, respectively.!! Second, we need to check
whether the triple obtained from ¢ by replacing A by a and B by b belongs to O,
and whether the RDB2RDF rule obtained from p; by replacing A by a belongs
to M. If both conditions hold, then the inference rule can be applied, and the
result is an RDB2RDF mapping M’ consisting of the rules in M and the rule
obtained from p, by replacing A by a and B by b.

Table 1. Inference rules to compute saturated mappings.

a(s,Z) Ap =type Ao =A — triple(s,p,o0)

(A, subClass,B) :

a(s,T) Ap=type Ao =B — triple(s,p,o0)

$,0,T) Ap=A — triple(s,p,o0)
$,0,T) Ap =B — triple(s,p,o)

(A, subProp, B) :

(
(
B(
B(

B(s,0,%) AN\p=A — triple(s,p,o0)
B(s,y,T) Ap=type Ao =B — triple(s,p,o)

(A,dom,B) :

B(s,0,%) AN\p=A — triple(s,p,o0)
By, s,T) Ap=type Ao =B — triple(s,p,o)

(A, range,B) :

(A,equivClass,B) _ «a(s,Z) Ap =type Ao = A — triple(s,p,o)

or (B,equivClass,A) " o

$,Z) Ap =type Ao =B — triple(s,p,0)

Ap=A— triple(s,p,o)
Ap =B — triple(s,p,o0

w

(A, equivProp,B)
or (B, equivProp,A)

w

Ap=A— triple
Ap=B — triple

)

(A, inverse,B) 5,p,0)
or (B, inverse,A) 5,p,0)
)

)

“0

Ap=A— triple(s,p,0

(4, type, symProp) :

A/_\A/_\A/_\ A/_\ ,—\
)

z) (
z) (
z) (
z) (
z) (
z) (

Ap=A— triple(s,p,0

Ezample 13. Consider the RDB2RDF rule order(s,x1,xa,x3, 4, 1)Ap = typeA
0 = ShippedOrder — triple(s,p,0)., and assume that we are given an ontology
O containing the triple (ShippedOrder, subClass, SuccessfulOrder). Then by
applying the first inference rule in Table 1, we infer the following RDB2RDF rule:
order(s,x1,T2,2s,T4,1) Ap = type Ao = SuccessfulOrder — triple(s,p,0).

' 1f t = (4, type, symProp), then we only need to replace A by a.
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Given an RDB2RDF mapping M and an ontology O, we denote by
SAT(M, O) the RDB2RDF mapping obtained from M and O by successively
applying the inference rules in Table 1 until the mapping does not change. The
following theorem shows that SAT(M, Q) is a saturation of M w.r.t. O, which
justifies its use in our system.

Theorem 6. For every RDB2RDF mapping M and ontology O in RDFS, it
holds that SAT(M, O) is a saturation of M w.r.t. O.

Theorem 6 is a corollary of the fact that the first six rules in Table 1 encode
the rules to infer assertional triples from an inference system for RDFS given
in [52].

A natural question at this point is whether SAT(M, O) can be computed effi-
ciently. In our setting, the approach based on exhaustively applying the inference
rules in Table 1 can be easily transformed into a polynomial time algorithm for
this problem. However, if this transformation is done in a naive way, then the
resulting algorithm is not really efficient. In [66], we present an efficient algo-
rithm to compute SAT(M, O) that is linear in the size of the input RDB2RDF
mapping M and ontology O, which are denoted by || M|| and ||O||, respectively.

Theorem 7. There exists an algorithm that, given an RDB2RDF mapping M
and a non-transitive ontology O, computes SAT(M, O) in time O(|M]| - ||O])).

The main ingredients of the algorithm mentioned in Theorem 7 can be found
in [66].

Dealing with Transitive Predicates. We show here how the approach pre-
sented in the previous section can be extended with recursive predicates. This
functionality is of particular interest as the current work on OBDA under OWL
2 QL does not consider transitivity, mainly because the query language in which
the query over the ontology has to be rewritten is SQL without recursion [15].

From now on, given a first-order formula ¢(z,y), we use TCy(z,y) to denote
the transitive closure of ¢(x,y). This formula can be written in many different
formalisms. For example, if ¢(x,y) is a conjunction of relational atoms, then
Tc,(z,y) can be written as follows in Datalog:

o(z,y) — Tep(z,y), o(x,2), TCy(2,y) — TCu(z,y).

In our system, TC,(z,y) is written as an SQL query with recursion. Then to
deal with an ontology O containing transitive predicates, the set of inference
rules in Table 1 is extended with the following inference rule:

{/61'(8, o, ‘il) /\p =A— triple(S,pv O)}']f:l
TC[Vf;‘;l 3gfclﬂi}(s, 0) Ap=A — triple(s,p,o)

(A, type, transProp) :

This rule tell us that given a transitive predicate A, we can take any number &
of RDB2RDF rules f;(s,0,Z;) Ap = A — triple(s,p,o0) for this predicate, and
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we can generate a new RDB2RDF rule for A by putting together the conditions
Bi(s,0,%;) in a formula v(s,0) = \/, 3%;5;(s, 0, T;), and then using the transitive
closure T, (s, 0) of v in an RDB2RDF rule T'C,(s,0) Ap = A — triple(s,p,o).
In order for this approach to work, notice that we need to extend the syntax of
RDB2RDF rules (1) and (2), so that formulae @ and 3 in them can be arbitrary
formulae in a more expressive formalism such as (recursive) Datalog.

Implementing RDB2RDF Mappings as Views. Inspired by our previous
work on Ultrawrap [67], every RDB2RDF rule is implemented as a triple-query,
that is, as a SQL query which outputs triples. For example, the RDB2RDF rules:

order(s,x1,xa, T3, T4,1) Ap=type A o = SuccessfulOrder — triple(s,p,o0)
order(s,x1,xs, T3, T4,2) A p = type A o = SuccessfulOrder — triple(s,p,o0)
give rise to the following triple-queries:

SELECT orderid as S, “type” as P, “SuccessfulOrder” as 0 FROM order WHERE status = “1”
SELECT orderid as S, “type” as P, “SuccessfulOrder” as 0 FROM order WHERE status = “2”

In practice, the triple-queries may include additional projections in order to
support indexes, URI templates, datatypes and languages. However, for readabil-
ity, we will consider here this simple version of these queries. Then to implement
an RDB2RDF mapping, all the class (resp. predicate) RDB2RDF-rules for the
same class (resp. predicate) are grouped together to generate a triple-view, that
is, a SQL view comprised of the union of the triple-queries for this class (resp.
predicate). For instance, in our previous example the following is the triple-view
for the class SuccessfulOrder:

CREATE VIEW SuccessfulOrderView AS

SELECT orderid as S, “type” as P, “SuccessfulOrder” as 0 FROM order WHERE status = “1”
UNION ALL

SELECT orderid as S, “type” as P, “SuccessfulOrder” as 0 FROM order WHERE status = “2”

SPARQL to SQL Rewriting with RDB2RDF Mappings. The runtime
phase executes SPARQL queries on the RDBMS. We reuse Ultrawrap’s approach
of translating SPARQL queries to SQL queries in terms of the views defined for
every class and property, which are denoted as triple-views. Thus, we make
maximal use of existing query optimization tools in commercial RDBMS, such
as Oracle, to do the SPARQL query execution and rewriting.

Continuing with the example in Sect.4.2, consider now a SPARQL
query which asks for all the Successful Orders: SELECT ?x WHERE {7x
type SuccessfulOrder}. It is clear that this query needs to be rewritten to
ask for the orders with status 1 and 2. The SuccessfulOrderView triple-view in
Sect. 4.2 implements the mappings to the SuccessfulOrder class which consists
of two triple-queries, one each for status = 1 and status = 2. Therefore, it is
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sufficient to generate a SQL query in terms of the SuccessfulOrderView. Given
that a triple-view models a table with three columns, a SPARQL query is syn-
tactically translated to a SQL query in terms of the triple-view. The resulting
SQL query is SELECT t1.s AS x FROM SuccessfulOrderView t1.

A natural question at this point is whether every SPARQL query has an
equivalent SQL query in our context, where RDB2RDF mappings play a funda-
mental role. In what follows we give a positive answer to this question.

Theorem 8. Given an RDB2RDF mapping M, every SPARQL query is SQL-
rewritable under M.

The proof that the previous condition holds is by induction on the structure of
a SPARQL query P and, thus, it gives us a (naive) bottom-up algorithm for trans-
lating P into an equivalent SQL query @ (given the mapping M). More precisely,
in the base case we are given a triple pattern t = {s p o}, where each one of its
component is either a URI or a literal or a variable. This triple pattern is first trans-
lated into a SPARQL query P, where each position in ¢ storing a URI or a literal
is replaced by a fresh variable, a filter condition is added to ensure that these fresh
variables are assigned the corresponding URIs or literals, and a SELECT clause
is added to ensure that the output variables of ¢t and P; are the same. For exam-
ple, if t = {?x type SuccessfulOrder}, then P; is the following SPARQL query:
SELECT ?x WHERE {7x 7y 7z} FILTER (?y = type && 7z = SuccessfulOrder).
Then a SQL-rewriting of P, under M is computed just by replacing a triple pat-
tern of the form {?s ?p 7o} by a union of all the triple-queries representing the
RDB2RDF rules in M, and also replacing the SPARQL filter condition in P; by a
filter condition in SQL.

In the inductive step, we assume that the theorem holds for two SPARQL
queries P; and Ps.

The proof then continues by presenting rewritings for the SPARQL queries
constructed by combining P; and P, through the operators SELECT, AND (or
‘.7 operator), OPTIONAL, FILTER and UNION, which is done by using existing
approaches to translate SPARQL to SQL [5,19].

Cost Model for View Materialization. A common approach for query
optimization is to use materialized views [36]. Given that we are implement-
ing RDB2RDF mappings as views, it is a natural to pursue this option. There
are three implementation alternatives: (1) Materialize all the views: This app-
roach gives the best query response time. However, it consumes the most space.
(2) Materialize nothing: In this approach, every query needs to go to the raw
data. However, no extra space is needed. (3) Materialize a subset of the views:
Try to find a trade-off between the best query response time and the amount of
space required. Note that in the previous Ultrawrap work, only unmaterialized
views were considered.

In this section, we present a cost model for these three alternatives. First we
must introduce some terminology. We consider ontologies consisting of hierarchy
of classes which form a tree with a unique root, where a root class of an ontology
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is a class that has no superclasses. Then a leaf class of an ontology is a class that
has no subclasses, and the depth of a class is the number of subclass relationships
from the class to the root class (notice that there is a unique path from a class
to the root class). Moreover, the depth of an ontology is the maximum depth of
all classes present in the ontology.

First, we consider the cost of answering a query @ is equal to the number of
rows present in the relation used to construct Q. For example, if a relation R has
100 rows, then the cost of the query SELECT * FROM R is 100. Second, assume we
have a single relation R and that mappings are from a query on the relation R
with a selection on an attribute A, to a class in the ontology. For example, con-
sider the relation R is order, the attribute A is status and the mapping is to the
class SuccessfulOrder. Finally, we consider a query workload of queries asking
for the instances of a class in the ontology, i.e. SELECT ?x WHERE {?x type C},
which can be translated into the triple-view implementing the mapping to the
class C.

Our cost model is the following: If all the views implementing mappings are
materialized, the query cost is n x Nr x S(A, R) where n is the number of leaf
classes underneath the class that is being queried for, Ng is the number of tuples
of the relation R in the mapping, and S(A, R) is the selectivity of the attribute A
of the relation R in the mapping. The space cost is Ng+ (Ng x d) where d is the
depth of the ontology. The reason for this cost is because the number of rows in a
materialized view depends on the selectivity of the attribute and the number of
leaf classes. Additionally, the sum of all the rows of each triple-view representing
the mapping to classes in a particular depth d of an ontology, is equivalent at
most to the number of rows of the relation. If no views are materialized, then
the query cost is n X Nr, assuming there are no indices. The space cost is simply
Npg. The reason for this cost is because to answer a query, the entire relation
needs to be accessed n times because there are no indices'2.

The question now is: How can we achieve the query cost of materializing
all the views while keeping space to a minimum? Our hypothesis is the follow-
ing: If a RDBMS rewrites queries in terms of materialized views, then by only
materializing the views representing mappings to the leaf classes, the query cost
would be n x Ng x S(A, R), the same as if we materialized all the views, and the
space cost would only be 2 x Ng. The rationale is the following: A triple-view
representing a mapping to a class, can be rewritten into the union of triple-
views representing the mapping to the child classes. Subsequently, a triple-view
representing the mapping to any class in the ontology can be rewritten into a
union of triple-views representing the mappings to leaf classes of an ontology.
Finally, given a set of triple-views representing mappings from a relation to each
leaf class of an ontology, the sum of all the rows in the set of triple-views is
equivalent to the number of rows in the relation.

12 Tn the evaluation, we also consider the case when indices are present.
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Given the extensive research of answering queries using views [37] and the
fact that Oracle implements query rewriting on materialized views!'3, we strongly
suspect that our hypothesis will hold. The evaluation provides empirical results
supporting our hypothesis.

Evaluation. The evaluation requires benchmarks consisting of a relational
database schema and data, ontologies, mappings from the database to ontolo-
gies and a query workload. Thus, we created a synthetic benchmark, the Tezas
Benchmark, inspired by the Wisconsin Benchmark [27] and extended the Berlin
SPARQL Benchmark (BSBM) Explore Use Case [11]. More details about the
benchmarks can be found at http://obda-benchmark.org.

The objective of our experiments is to observe the behavior of a commercial
relational database, namely Oracle, and its capabilities of supporting subclass
and transitivity reasoning under our proposed approach. The evaluation consid-
ered six scenarios: (all-mat) all the views are materialized; (union-leaves) only
views representing mappings to the leaf classes are materialized, implemented
with UNION; (or-leaves) same as in the previous scenario but with the views
implemented with OR instead of UNION, (union-index) none of the views,
implemented with UNION, are materialized, instead an index on the respective
attributes have been added, (or-index) same as in the previous scenario but
with the views implemented with OR; and (ontop) we compare against Ontop,
a state of the art OBDA system [61].

An initial assessment suggests the following four expected observations: (1)
The fastest execution time is all-mat; (2) our hypothesis should hold, meaning
that the execution time of union-leaves should be comparable, if not equal, to the
execution time of all-mat; (3) given that the Ontop system generates SQL queries
with OR instead of UNION [61], the execution time of ontop and or-indez should
be comparable if not equal; (4) with transitivity, the fastest execution time is
when the views are materialized.

The experimental results suggest the following. The expected observations
(1), (2), (3) and (4) hold. The fastest execution time corresponds to all-mat.
The execution time of union-leaves is comparable, if not equal, to the execu-
tion time of all-mat, because Oracle was able to rewrite queries in terms of the
materialized views. The number of rows examined is equivalent to the number
of rows in the views where everything was materialized. This result provides
evidence supporting our hypothesis and validates our cost model. Finally the
execution time of ontop and or-index are comparable. It is clear that material-
izing the view outperforms the non-materialized view for the following reasons:
when the view is materialized, the size of the view is known beforehand and the
optimizer is able to do a range scan with the index. However, when the view is
not materialized, the size is not known therefore the optimizer does a full scan
of the table.

13 http://docs.oracle.com/cd/B28359_01 /server.111/b28313/qrbasic.htm.
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5 Relational Databases and Semantic Web in Practice

A successfully repeated use case for using Semantic Web technologies with Rela-
tional Databases is for data integration. In this approach, an ontology serves as
a uniform conceptual federating model, which is accessible to both IT developers
and business users. We highlight two challenges: ontology and mapping engineer-
ing. We postulate the need of a pay-as-you-go methodology that address these
challenges and enables agility.

5.1 A Real World Example

Consider the following real-world example. Executives of a large e-commerce
company need to know, “How many orders were placed in a given month and
the corresponding net sales’. Depending on whom they ask they get three differ-
ent answers. The IT department managing the web site records an order when
a customer has checked out. The fulfillment department records an order when
it has shipped. Yet the accounting department records an order when the funds
charged against the credit card are actually transferred to the company’s bank
account, regardless of the shipping status. Unaware of the source of the problem
the executives are vexed by inconsistencies across established business intelli-
gence (BI) reports.

This is precisely where the use of ontologies to intermediate IT development
and business users is valuable. Ontologies serve as a uniform conceptual federated
model describing the domain of interest. The long standing relationship between
Semantic Web technologies and Relational Databases, specifically the Ontology
Based Database Access (OBDA) paradigm and its extension as Ontology Based
Data Integration is maturing, and yielding successful applications.

Even though OBDA has been widely researched theoretically, there is still
need to understand how to effectively implement OBDA systems in practice.

5.2 Where Do Ontologies and Mappings Come From?

The common definition of OBDA states that given a source relational database, a
target ontology and a mapping from the relational database to the ontology, the
goal is to answer queries over the target ontology using these three components.
From a practical point of view, this begs the question: where does the target
ontology and the mappings come from?

Ontology Challenges. Ontology engineering is a challenge by itself. In order
to create the target ontology, users can follow traditional ontology engineering
methodologies [23,74], using competency questions [8,60], test driven develop-
ment [43], ontology design patterns [40], etc. Additionally, per standard prac-
tices, it is recommended to reuse and extend existing ontologies in domains
of interest such as Good Relations for e-commerce™®, FIBO for finance'®, Gist

' http://www.heppnetz.de/projects/goodrelations/.
5 http://www.edmcouncil.org/financialbusiness.
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for general business concepts'®, Schema.org!”, etc. In OBDA, the challenge
increases because the source database schemas can be considered as additional
inputs to the ontology engineering process. Common enterprise application’s
database schema commonly consist of thousands of tables and tens of thousands
of attributes. A common approach is to bootstrap ontologies derived from the
source database schemas, known as putative ontologies [65,69]. The putative
ontologies can gradually be transformed into target ontologies, using existing
ontology engineering methodologies.

Mapping Challenges. Once the target ontology has been created, the source
databases can be mapped. The W3C Direct Mapping standard can be used
to bootstrap mappings [7]. The declarative nature of W3C R2RML mapping
language [25] enables users to state which elements from the source database
are connected to the target ontology, instead of writing procedural code. Given
that source database schemas are very large, the OBDA mapping challenge is
suggestive of an ontology matching problem: the putative ontology of the source
database and the target ontology. In addition to 1-1 correspondences between
classes and properties, mappings can be complex involving calculations and rules
that are part of business logic. For example, the notion of net sales of an order
is defined as gross sales minus taxes, discounts given, etc. The discount can
be different depending on the type of user. Therefore, a business user needs
to provide these definitions before hand. That is why it is hard to automate
this process. Another challenge is to create tools that can create and manage
mappings [68].

Addressing these challenges is crucial for the success of a data integration
project using the OBDA paradigm. However, recall that data integration is
a means to an end. The engineering of a target ontology and mappings are
the means. Answering business questions are the ends. We observe that target
ontologies and mappings are developed in a holistic approach. Given how OWL
ontologies are flexible and R2RML mappings are declarative, these elements
could enable the incremental development of a target ontology and database
mappings. Thus, we argue for a pay-as-you-go methodology for OBDA.

A Pay-as-you-go Methodology for OBDA. We present a methodology to
create the target ontology and mappings for an OBDA system, driven by a
prioritized list of business questions. The data answering the business questions
serve as content of the Business Intelligence (BI) reports that business users
require. The objective is to create a target ontology and mappings, that enable
to answer a list of business questions, in an incremental manner. After a minimal
set of business questions have been successfully modeled, mapped, answered
and made into dashboards, then the set of business questions can be extended.
The new questions, in turn, may extend the target ontology and new mappings

16 https://semanticarts.com/gist/.
7 http://schema.org)/.
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incrementally added. With this methodology, the target ontology and mappings
are developed in an iterative pay-as-you-go approach. Thus, providing an agile
methodology to integrate data using the OBDA paradigm because the focus is
to provide early and continuous delivery of answers to the business users.

We identify three actors involved throughout the process:

— Business User: a subject matter expert who has knowledge of the business
and can identify the list of prioritized business questions.

— IT Developer: a person who has knowledge of databases and knows how the
data is interconnected.

— Knowledge Engineer: a person who serves as a communication bridge between
Business Users and IT Developers and has expertise in modeling data using
ontologies.

Our methodology is divided in two phases: knowledge capture and imple-
mentation. Figure4 summarizes the methodology.

Business
Question

Validation

Vocabulary Ontology Mapping

Knowledge Capture Implementation

Fig. 4. The pay-as-you-go methodology for OBDA

Knowledge Capture: Discover-Vocabulary-Ontology. The goal of the
knowledge capture phase is twofold. The first goal is to extract key concepts
and relationships from the set of prioritized business questions. The knowledge
engineer works with business users to understand the meaning of extracted con-
cepts and relationships in order to eliminate ambiguity. The second goal is to
identify which source database(s) contains data relating to the extracted con-
cepts and relationships. The knowledge engineer takes what has been extracted
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with the business users and works with IT developers to identify which tables
and attributes are required. This knowledge capture phase is divided in three
steps:

— Discovery: Discover the concepts and relationships from the input set of pri-
oritized business questions and identify how the concepts and relationships
are connected to the database(s).

— Vocabulary: Identify the business terminology such as preferred labels, alter-
native labels and natural language definitions for the concepts and relation-
ships.

— Ontology: Formalize the ontology in OWL such that it covers the business
questions.

Continuing with our initial example; the knowledge engineer works with busi-
ness users to understand the meaning of the word “Order”. Furthermore, working
with IT developers, the knowledge engineer may learn that the Order Manage-
ment System is the authoritative source for all orders. Within that database,
the data relating to orders may be vertically partitioned across a several tables
totaling hundreds of attributes. Finally, the attributes required for the calcula-
tion of the net sales of an order prove to be only a handful of the hundreds of
attributes. The next step is to implement the mappings.

Implementation: Mapping-Query-Validation. The goal of the implemen-
tation phase is to enable answering the business questions by connecting the
ontology with the data. That is the knowledge engineer takes what was learned
from the previous steps and implements the mapping in R2RML. The business
questions are implemented as SPARQL queries using the business terminology
defined in the target ontology. The R2RML mapping is the input to an OBDA
system which will enable the execution of the SPARQL queries. A final step
is to validate the results of the queries with business users. To summarize, the
implementation phase is divided in three steps:

— Mapping: Implement the mapping in R2RML, given the output of the Dis-
cover and Ontology steps. The mapping is then used to setup the OBDA
system.

— Query: Business questions are implemented as SPARQL queries using the
terminology of the target ontology. The answers to the business questions are
the SPARQL results.

— Validation: Confirm that the SPARQL queries return the correct answers.

Continuing with our running example; the result from the knowledge cap-
ture phase revealed that the business users considered an order, “an order”, if it
had shipped or the accounts receivable had been received. The knowledge engi-
neer (the R2RML writer) in conversation with the IT developer identified that
requirement as all tuples in the MASTERORDER table where order status is
equal to 2 or 3. Therefore, an R2RML mapping consists of the following SQL

query:
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SELECT * FROM MASTERORDER WHERE orderstatus IN (2,3)

The definition of net sales of an order is a math formula that uses attributes
from the order and ordertax table. This can be represented in the following SQL

query:

SELECT o.orderid, o.ordertotal - ot.finaltax -
CASE WHEN o.currencyid in (‘USD’, ¢CAD’) THEN o.shippingcost
ELSE o.shippingcost - ot.shippingtax END AS netsales
FROM order o, ordertax ot
WHERE o.orderid = ordertax.orderid

At this point, we can go back to the knowledge capture step for two reasons. If
the validation was successful, then we can start another iteration of the approach
by soliciting a new set of business questions. On the other hand, if the validation
was unsuccessful because the queries did not return the expected results, we
can revisit the mappings for that specific fragment. Fixing the problem is now
in a compartmentalized section of the ontology and corresponding mappings.
Progress is made in an incremental and isolated effort. In worst case the original
business logic needs to be revisited and we can go back to the discovery step.

Using this pay-as-you-go methodology for applications across multiple indus-
tries is yielding agile results. Development cycles of 1-2 weeks yield new dash-
boards. All stakeholders are concentrated on a specific task, an agreed upon
set of business questions. As development issues arise conversations between the
knowledge engineers, business users and IT developers are focused on specific,
manageably scoped concepts. The knowledge capture and implementation steps
can be accomplished independently. Furthermore, by starting small, the target
ontology and mappings are created monotonically. This means that new con-
cepts, relationships and mappings are added without disturbing the work that
already has been done. In the case when change to past work is required, it is
accomplished without much disruption. The declarative aspect of R2RML map-
pings, enables focus on what needs to be connected between the source and
target instead of writing procedural code and scripts which can be complex to
maintain.? Finally, success of each iteration is well defined: answer the business
questions.

6 Conclusion

The answer to the question: How and to what extent can Relational Databases
be integrated with the Semantic Web? comes in three parts:

— Relational Databases can be directly mapped to RDF and OWL:
Relational Databases can be automatically mapped to the Semantic Web. An
OWL ontology can be generated from the relational schema and the relational
data can be represented as an RDF graph. This mapping does not loose infor-
mation, preserves queries, is monotone and is positive semantics preserving.
Additionally, it is not possible to have a monotone and full semantics pre-
serving direct mapping.
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— Relational Databases can evaluate and optimize SPARQL queries:
Relational Databases are able to efficiently evaluate SPARQL queries. By
implementing the direct mapping using SQL views, relational optimizer
exploit two important semantic query optimizations: detection of unsatis-
fiable conditions and self join elimination.

— Relational Databases can act as reasoners: Given a Relational Data-
base, an OWL ontology with inheritance and transitivity, and a mapping
between the two, Relational Databases are able to act reasoner. This is pos-
sible by implementing the mappings as SQL views and including SQL recur-
sion, materializing a subset of the views based on a cost model, and exploiting
existing optimizations such as query rewriting using materialized views.

The results of our research is embodied in a system called Ultrawrap.

6.1 Open Problems

The relationship between Relational Databases and the Semantic Web is via
mappings. Semantic Web technology provides the following features. OWL
Ontologies enable reasoning (reasoning). SPARQL queries with variables in the
predicate position reveal metadata. This is useful because it enables exploration
of the data in case the schema is not known beforehand. Additionally, queries
of this form are intrinsic to faceted search (variable predicate). Given the
graph model of RDF, the latest version of SPARQL, SPARQL 1.1, increased the
expressivity and now provides constructs to navigate the graph (graph traver-
sal). Another virtue of dealing with graphs is that insertion of data is reduced to
adding an edge with a node to the graph. There are no physical requirements to
conform to a schema (dynamic schema). Finally, data can be easily integrated
by simply adding edges between nodes of different graphs (data integration).

A goal of our research has been to understand up to what extent can Rela-
tional Databases be integrated with the Semantic Web. The extent of our
research has focused on mappings and reasoning. A remaining question is: can
that extent be expanded? And up to where? We call this the Tipping Point
problem.

Assume the starting point are legacy relational databases and we want to
take advantage of these five features of the Semantic Web (reasoning, variable
predicate, graph traversal, dynamic schema, data integration). How much can
be subsumed by Relational Database technology before the balance is tipped
over and we end up using native Semantic Web technology? What is the tipping
point (or points)?

— Mappings: The engineering of mappings is still open grounds for research.
What mappings patterns can be defined and reused in order to solve a
commonly occurring problem [63]? Given that R2RML mappings are rep-
resented in RDF, these can be stored in a triplestore, queried and reasoned
upon. This opens up potential such as mapping analysis, automatically gen-
erating mappings, reusing existing mappings during the engineering of new
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mappings, consistency checking of mappings in conjunction with the ontol-
ogy, adding provenance information to the mappings to support data lin-
eage [22,26,42,45,71]. Additionally, there is a need for tools to support users
to create mappings [12,68].

— Reasoning: Our research proposed to represent ontological entailments as
mappings and implement them as views. Subsequently, a subset of these views
are materialized. Open questions remain. What is the state of the art of other
RDBMS’s optimizers in order to support this approach? How does this app-
roach respond to complex query workloads? The model assumed a read-only
database, therefore, what is the cost of maintaining views when the under-
lying data is updated? Evidence is provided that Relational Databases can
act as reasoners for RDFS and Transitivity. Can the expressivity be increased
while maintaining efficient computation by the RDBMS optimizer? What is
the trade-off between reasoning over relational databases with mappings and
using native RDF databases which supports reasoning?

— Variable Predicate: For queries with variables in the predicate position,
the mapping stipulates that the variable may be bound to the name of any
column in the database. These queries are a syntactic construct of higher
order logic. Ultrawrap translates these queries into a SQL query consisting of
a union for each attribute in the database. This query ends up reading the
entire database and suffers a performance penalty. What optimizations can
be implemented in order to overcome this issue? What hints can be provided
in a query?

— Graph Traversal: Regular Path Queries and SPARQL 1.1 property path
queries enable pattern-based reachability queries. These types of queries
enable the traversal and navigation of the graph. A natural question is how
much of SQL recursion can be used to implement these types of queries?

— Dynamic Schema: Relational Databases have a fixed schema. Insertion of
data needs to adhere to the schema. A schema needs to be altered in case
new data is inserted which does not adhere to the schema. Can a Relational
Database become hybrid graph/relational database? What effect does the
sparsity of data have? What is the best storage manager (column vs row
store)?

— Data Integration: When it comes to integrate disparate databases, one app-
roach is to extract the relational data, transform it physically to RDF and
then load it into a RDF database (ETL). Another approach is to federate
queries. In other words, legacy data continues to reside in the relational data-
bases and queries are sent to each source (Federation). Which approach is
practical? Depending on what? Can hybrid system be efficient?

An overarching theme is the need to create systematic and real-world bench-
marks in order to evaluate different solutions for these features.

These open questions provide a roadmap to further expand the extent that
Relational Databases can be integrated with the Semantic Web.
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Abstract. Linked Data provides access to huge, continuously growing
amounts of open data and ontologies in RDF format that describe enti-
ties, links and properties on those entities. Equipping Linked Data with
inference paves the way to make the Semantic Web a reality. In this sur-
vey, we describe a unifying framework for RDF ontologies and databases
that we call deductive RDF triplestores. It consists in equipping RDF
triplestores with Datalog inference rules. This rule language allows to
capture in a uniform manner OWL constraints that are useful in prac-
tice, such as property transitivity or symmetry, but also domain-specific
rules with practical relevance for users in many domains of interest. The
expressivity and the genericity of this framework is illustrated for model-
ing Linked Data applications and for developing inference algorithms. In
particular, we show how it allows to model the problem of data linkage
in Linked Data as a reasoning problem on possibly decentralized data.
We also explain how it makes possible to efficiently extract expressive
modules from Semantic Web ontologies and databases with formal guar-
antees, whilst effectively controlling their succinctness. Experiments con-
ducted on real-world datasets have demonstrated the feasibility of this
approach and its usefulness in practice for data integration and informa-
tion extraction.

1 Introduction

Thanks to the RDF data model, the Semantic Web has become a reality with
the rapid development of Linked Data. Linked Data provides access to huge,
continuously growing amounts of open data in RDF format that describe prop-
erties and links on entities referenced by so-called Uniform Resource Identifiers

(URIS).

This work has been partially supported by the ANR projects Pagoda (12-JS02-007-
01) and Qualinca (12-CORD-012), the joint NSFC-ANR Lindicle project (12-IS01-
0002), and LabEx PERSYVAL-Lab (11-LABX-0025-01).

© Springer International Publishing AG 2017

G. Tanni et al. (Eds.): Reasoning Web 2017, LNCS 10370, pp. 121-166, 2017.
DOI: 10.1007/978-3-319-61033-7_5



122 M.-C. Rousset et al.

RDFS and OWL languages [5] allow to express a lot of useful logical con-
straints on top of RDF datasets, and existing Semantic Web tools implement
inference algorithms to exploit them. In particular, the Jena environment!
includes a rule-based reasoner that implements the RETE algorithm [21]. When
the inference mode is launched, the saturated dataset is computed, which is the
set of RDF facts that can be logically inferred from the input RDF dataset and
a given set of rules. The saturation process is guaranteed to terminate if the
rules are safe, i.e., if the variables appearing in the conclusion of each rule also
appear in its condition part.

Safe rules (also called Datalog rules) on top of RDF facts capture in a uniform
way most of the OWL constraints useful in practice, as well as mappings across
different datasets, and also domain knowledge provided by experts, while guaran-
teeing a polynomial data complexity of reasoning and query answering [2].

In the setting of a unifying framework that we have called deductive RDF
triplestores, we have followed a rule-based approach to address several problems
raised by exploiting semantic web knowledge bases. For this, we have extended
and adapted forward-chaining and backward-chaining algorithms initially devel-
oped for Datalog deductive databases.

This survey is structured as follows. In Sect. 2, we first recall the ingredients
of Linked Data and we define what we call a deductive RDF dataset to capture
several ontological constraints expressing data semantics. In Sect. 3, we survey
the rule-based data linkage approach that we have developed in the context of
Linked Data based on reasoning for inferring differentFrom and sameAs facts.
In Sect.4, we summarize our approach for extracting bounded-level modules
from RDF knowledge bases. Finally, in Sect. 5, we illustrate our methodology
for rule-based integration of heterogeneous data and ontologies through several
applications related to Medicine. Finally, we conclude in Sect. 6.

2 Datalog Rules on Top of RDF Datasets

We first recall the ingredients of Linked Data and then we define what we call
a deductive RDF dataset to capture several ontological constraints expressing
data semantics.

2.1 RDF Datasets in Linked Data

An RDF dataset in Linked Data is defined by a URL w and a set I’ of RDF facts
that are accessible as URL through a query endpoint. We will denote by ds(u)
the set F' of RDF facts that can be queried at the URL u.

An RDF fact is a triple ¢ = (s, p, 0) where the subject s is either a URI or a
blank node, the predicate p is a URI, and the object o may be either a URI, a
blank node or a literal. We will denote the vocabulary used in ds(u) by voc(u),

i.e., the names of predicates used to declare triples in the dataset accessible at
the URL w.

! https://jena.apache.org/documentation /inference, .
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2.2 Queries over RDF Datasets in Linked Data

Queries over Linked Data are SPARQL conjunctive queries entered through a
given query endpoint accessible at a given URL. In this paper, we use a simplified
notation for SPARQL queries, and, without loss of generality, we consider that
all variables are distinguished.

A query g(u) asked to an RDF dataset identified by (and accessible at) the
URL wu is a conjunction of triple patterns denoted by TP (v1),...,TPy(vg)
where each triple pattern TP;(v;) is a triple (s¥,p",0") in which the subject
sV, the predicate p¥, or the object 0¥ can be variables: v; is the set of variables
appearing in the triple pattern. Variables are denoted by strings starting by ‘7’
TP;(v;) is a ground triple pattern if its set of variables v; is empty (denoted by
TP;()). A ground triple pattern corresponds to a RDF fact. A boolean query
is a conjunction of ground triple patterns.

The evaluation of a query q(u) : TPy (vy),...,TPx(vg) over the dataset ds(u)
consists in finding substitutions 6 assigning the variables in UiE[l.. k) Vi to con-
stants (i.e., identifiers or literals) such that T'P;(0.v1),...,TPy(8.v;) are RDF
facts in the dataset.

The corresponding answer is equally defined as the tuple of constants
assigned by 6 to the variables or as the set of corresponding RDF facts
TPi(0.v1),...,TP;(0.u) that will be denoted by 6.¢(u). In the remainder of
the paper, we will adopt the latter definition. The answer set of the query ¢(u)
against the dataset ds(u) = F is thus defined as:

Answer(q(u), F) = U {0.q(u)}

{616.q(w)CF}

For a boolean query g(u), either the answer set is not empty and we will
say that the query is evaluated to true, or it is empty and we will say that it
evaluated to false.

For a query ¢(u) to have a chance to get an answer when evaluated over the
dataset ds(u), it must be compatible with the vocabulary used in this dataset,
i.e., (a) the predicates appearing in the triple patterns of ¢(u) must belong to
the set voc(u) of predicates known to occur in ds(u), (b) the URIs appearing as
constants in the triple patterns of g(u) must have u as prefix.

In accordance with SPARQL queries allowing different FROM operators,
a conjunctive query can in fact specify several entry points wui,...,u, of
datasets over which the query has to be evaluated. We will denote such a query
q(u1,...,u,). The above definitions of answers and compatibility can be gener-
alized appropriately by replacing the dataset ds(u) by the union (J ds(u;)
of the specified datasets.

i€[l..n]

2.3 Deductive RDF Datasets

In order to capture in a uniform way semantic constraints that can be declared on
top of a given RDF dataset, but also possibly mappings between local predicates
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and external predicates within the vocabulary of other datasets, and domain
knowledge provided by domain experts, we consider that RDF datasets can
be enriched with Datalog rules. The Datalog rules that we consider are of the
form: Cond,, — Conc,, in which the condition Cond, is a conjunction of triple
patterns (i.e., a conjunctive query) and the conclusion Cone, is a triple pattern.
We consider safe rules, i.e., rules such that all the variables in the conclusion
are also in the condition. Datalog rules on top of RDFS facts capture most of
the OWL constraints used in practice, while guaranteeing a polynomial data
complexity for reasoning and query answering.

A deductive RDF dataset dds(u) accessible at the URL wu is thus a local
knowledge base (F, R) made of a set of RDF facts F' and a set R of rules. The
application of rules allows to infer new facts that are logically entailed from
F UR. A rule r can be applied to F' if there exists a substitution 6 such that
0.Cond, C F and the result of the rule application is F'U{6.Conc, }. These new
facts can in turn trigger rules and infer additional facts. This is formalized in
the following definition of the standard semantics of a knowledge base FFU R
composed of a finite set of facts F' and a finite set of rules R, based on the least
fixed point of immediate consequence operator Tg.

Definition 1 (Datalog semantics)

— (F,R) by f iff there exists a rule TPy (v1)A.. . AT Py (vg) — TP(v) is in R and
there exists a mapping 0 from its variables to constants such that f = 60.TP(v)
and 0.TP;(v;) € F for every i € [1..k].

- (F,R) b f iff there exists i such that f € Tr(F;) where Fo = F, and for every
i >0, Fip = Tr(Fy) = F; U{f|F;, R ¥y £}

For a finite set of facts F' and a finite set of safe rules R, there exists a
unique least fixed point F,, (denoted by SAT(F, R)) such that for every k > n
F, = Tr(Fp,), i.e., there exists a step in the iterative application of the immediate
consequence operator for which no new fact is inferred. Several forward-chaining
algorithms exist to compute SAT(F, R), in particular the semi-naive bottom-up
evaluation in Datalog [2], and the RETE algorithm [21] that is implemented in
many rule-based reasoners, including in Semantic Web tools such as Jena (see
Footnote 1).

Query Evaluation over a Deductive Dataset

The evaluation of a query g(u) : TPi(vi),...,TPy(vx) over a deduc-
tive dataset dds(u) consists in finding substitutions @ such that the facts
TP (6.v1),...,TP;(0.v) can be inferred from the deductive dataset, or equiv-
alently belong to the result SAT(F, R) of the facts that can be inferred from F'
and R:

Answer(q(u), (F, R)) = Answer(q(u), SAT(F, R))

Thus, a boolean query ¢(u) is evaluated to true if and only if ¢(u) € SAT(F, R),
i.e., if and only if (F,R) + ¢(u), where I is the standard notation for logical
inference.
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Within the vocabulary of a deductive dataset, we distinguish the extensional
predicates (EDB predicates for short) that appear in the triplets of the dataset
F, from the intentional predicates (IDB predicates) that appear in conclusion of
some rules in R. Like in deductive databases, and without loss of generality (i.e.,
by possibly renaming predicates and adding rules), we suppose that these two
sets are disjoint. We will denote ODB predicates the external predicates (i.e.,
defined in a different namespace than the considered deductive dataset) that
possibly appear in the dataset or in the rules. These predicates are the core of
Linked Data in which a good practice is to re-use existing reference vocabularies.
We suppose (again, without loss of generality) that the set of ODB predicates is
disjoint from the set of IDB predicates (but not necessarily from the set of EDB
predicates).

3 Rule-Based Data Linkage

Data linkage consists in deciding whether two URIs refer to the same real-world
entity. This is a crucial task in Linked Data. In particular, it is very impor-
tant to correctly decide whether two URIs refer to the same real-world entity
for developing innovative applications on top of Linked Data, that exploit the
cross-referencing of data [20,26]. This task is often referred to as data interlink-
ing, and is also known as record linkage and entity resolution, and it has been
widely studied for the case of relational data [16]. As regards to Linked Data,
data linkage is especially challenging since (1) tools need to scale well with large
amounts of data, (2) data is frequently described using heterogeneous vocab-
ularies (ontologies), and (3) tools need to deal with data which is inherently
incomplete, and very often noisy.

In the context of Linked Data and RDF data, different approaches to data
linkage have been proposed. Most of them are based on numerical methods
that use linkage rules to compare property values of resources, using similarity
measures to handle noisy data. They conclude weighted sameAs links, from
which the links with higher weights are expected (but never guaranteed) to be
correct [34,48]. These approaches suffer from two weaknesses. First, rules cannot
be chained, as they are thought to be applied only once; and second, weights
are combined in a non-formal manner, since there is no formal semantics that
captures the combination of weights.

In contrast, like a few other works [31,40], we promote a rule-based approach
equipped with full reasoning.

First, we have investigated a logical approach that exploits uniqueness con-
straints (such as inverse functional properties and keys) and other schema con-
straints, domain knowledge and alignments between different vocabularies which
can be modelled as logical rules. This enables to infer all certain sameAs and
differentFrom facts that are logically entailed from a given set of domain con-
straints and input facts. Our main contribution is a novel algorithm, called
Import-by-Query, that enables the scalable deployment of such an approach in
the decentralized setting of Linked Data. The main challenge is to identify the
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data, possibly distributed over several datasets, useful for inferring owl:sameAs
and owl:differentFrom facts of interest. Compared to the approach reported in
[31], relying on a global import obtained by a breadth-first crawl of the Linked
Data cloud, we perform a selective import while guaranteeing completeness for
the inference of the targeted owl:sameAs and owl:differentFrom facts. For doing
so, the Import-by-Query algorithm that we have designed alternates steps of
sub-query rewriting and of tailored querying of the Linked Data cloud to import
data as specific as possible to infer owl:sameAs and owl:differentFrom facts. It
is an extension of the well-known query-subquery algorithm for answering Dat-
alog queries over deductive databases. Experiments conducted on a real-world
dataset have demonstrated the feasibility of this approach and its usefulness in
practice for data linkage and disambiguation.

We summarize this logical approach in Sect. 3.1.

Logical approaches applying only certain rules over clean and complete data
guarantee to provide sound results, i.e., a 100% precision. However, the recall
may be low because in Linked Data, data is inherently incomplete and possibly
noisy. Input facts may be missing to trigger rules, either because some values
for properties involved in rules conditions are absent for some URIs, or because
some of these values are noisy with some misspelling that prevents some con-
ditions to be satisfied. In addition, rules may be missing to infer sameAs facts
with certainty, although some strong evidence could be obtained from the com-
bination of soft constraints. In order to handle this, we have modeled the general
data linkage problem as a reasoning problem with uncertainty. We have intro-
duced a probabilistic framework for modelling and reasoning over uncertain RDF
facts and rules that is based on the semantics of probabilistic Datalog, and we
have designed an algorithm, ProbFR, based on this framework. This approach
is summarized in Sect. 3.2

3.1 Logical Approach for Data Linkage [4]

Illustrative Scenario

We describe here a simplified scenario inspired by the task of disambiguation
of named entities in a large real-world RDF documentary catalog produced by
the French National Audiovisual Institute (INA), and that we have used in our
experiments.

Figure1 shows an extract of the INA vocabulary and a sample of RDF
triples from the INA dataset.? Any person entity is an instance of the class
ina:PhysicalPerson, which has two subclasses: ina:Person and ina:VideoPerson.
The class ina:Person is used for representing French personalities while
ina:VideoPerson is used for identifying person entities that play a role in a video.
INA experts want to disambiguate individuals within ina:Person, and link these
individuals to the ones of ina:VideoPerson.

2 We have slightly modified the INA vocabulary (e.g. translating French terms into
English terms) for the sake of readability.
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Three homonymous persons are described in Fig.1, all named “Jacques
Martin”: ina:perl, ina:per2 and ina:per3. It is unknown if these entities rep-
resent the same or different persons, but some additional information is given:
ina:perl is known to be the presenter of a program recorded in the video ina:vid1l
whose title is “Le Petit Rapporteur”, whereas ina:per2 and ina:per3 have dates
of birth “1933-06-22” and “1921-09-25”, respectively.

ina:PhysicalPerson m

rdfs:subClassOf rdfs:subClassOf

ina:VideoPerson

ina:presenter ina:birthDate ina:name

¥
rdfs:Literal
ina:title
¥

(ina:vid1, rdf:type, ina:Video)
M (ina:vidl, ina:title, “Le Petit Rapporteur”)
(ina:perl, rdf:type, ina: VideoPerson)
(ina:perl, ina:name, “Jacques Martin”)
(ina:perl, ina:presenter, ina:vid1)
(ina:per2, rdf:type, ina:Person)
(
(
(
(
(

ina:per2, ina:name, “Jacques Martin”)
ina:per2, ina:birthdate, “1933-06-22”)
ina:per3, rdf:type, ina:Person)
ina:per3, ina:name, “Jacques Martin”)
ina:per3, ina:birthdate, “1921-09-25")

Fig. 1. An extract of INA vocabulary and RDF facts.

Our approach to disambiguating the person entities ina:perl, ina:per2 and
ina:per3 consists in exploiting domain knowledge and constraints, as well as
general properties of owl:sameAs and owl:different From, all this knowledge being
expressed in a uniform way by rules. Table 1 shows rules which, for the purpose of
this simplified scenario, we can assume they have been validated by INA experts.
R1-R3 are domain-specific rules. R1 expresses that ina:birthdate is functional.
This rule can be used to infer that ina:per2 and ina:per3 are different because
they have different dates of birth. R2 expresses that ina:name and ina:birthdate
form a key (within the INA dataset), and R3 the fact that two persons who
have the same name and presented programs recorded in videos with the same
title must be the same. R2 and R3 indeed could be useful for deciding if ina:perl
refers to the same person as ina:per2 or ina:per3, but some information is missing:
the date of birth of ina:perl is not known, or whether ina:per2 or ina:per3 are
presenters and of which programs.

The above missing information can be completed thanks to external data
coming from DBpedia. In Fig. 2, we show DBpedia facts describing the DBpe-
dia person entity db:perl, and an extract of the DBpedia vocabulary. Rules R4
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Table 1. Rules in the INA illustrative scenario.

R1: (71, ina:birthdate, 7b1), (72, ina:birthdate, 7b2), (7b1, notEqualTo, 7b62) — (?x1, owl:differentFrom, ?x2)
R2: (?z1, ina:name, ?n), (722, ina:name, ?n), (?7x2, ina:birthdate, 7b), (721, ina:birthdate, 7b)
— (?x1, owl:sameAs, 7x2)
R3: (71, ina:name, ?n), (722, ina:name, ?n), (?x1, ina:presenter, ?v1), (722, ina:presenter, ?v2), (?v1, ina:title, 7t),
(?7v2, inattitle, 7t) — (7?1, owl:sameAs, 722)
R4 : (?z1, ina:name, ?n), (?7z2, foaf:name, ?7n), (71, ina:presenter, 7v), (?v, ina:title, ?t), (?x2, db:presenter, 7t)
— (?z1, owl:sameAs, 7x2)
R5: (71, ina:name, ?n), (722, foaf:name, ?n), (71, ina:birthdate, 7b), (722, foaf:birthdate, ?b)
— (?x1, owl:sameAs, 7x2)
R6 : (71, owl:sameAs, 7x2), (?x2, owl:sameAs, 723) — (?x1, owl:sameAs, 7x3)
R7: (?z1, owl:sameAs, 722), (722, owldifferentFrom, 7z3) — (7?1, owl:differentFrom, 7x3)
R8: (?z1,ina:name, ?nl), (?x2, foaf:name, ?n2), (?n1, built-in:name-similar, ?n2), (721, ina:birthdate, 7b),
(?x2, foaf:birthdate, 7b) — (?x1, owl:sameAs, 7x2)

&
DBpedia

foaf:name db:presenter foaf:birthdate

rdfs:Literal rdfs:Literal rdfs:Literal

(db:perl, rdf:type, db:Person)

(db:perl, foaf:name, “Jacques Martin”)
(

(

db:perl, db:presenter, “Le Petit Rapporteur”)
db:perl, foaf:birthdate, “1933-06-22")

Fig. 2. An extract of DBpedia vocabulary and RDF facts.

and R5 in Table 1 translate mappings from the INA and DBpedia vocabularies.
Specifically, these mappings state that ina:name and ina:birthdate are equiva-
lent to foaf:name and foaf:birthdate, respectively, and that the composition of
ina:presenter and ina:title is equivalent to db:presenter. Let us assume that rules
R4 and R5 have been validated by INA experts too. With these rules it can be
inferred that db:perl is the same as ina:perl because they have the same name
and they have presented a program with the same title; and that db:perl is the
same as ina:per2 since they have the same name and birthdate. Therefore, by
transitivity of same-as (rule R6 in Table1), it can be inferred that ina:perl is
the same as ina:per2, and, since ina:per2 is different from ina:per3 then (due to
R7) ina:perl is different from ina:per3 too.

To avoid downloading the complete DBpedia, and, more generally, the
whole Linked Open Data (something that is not practical), our import-by-
query approach generates, for each targeted owl:sameAs fact, a sequence of
external sub-queries as specific as possible to obtain just the missing facts.
The external sub-queries generated by our algorithm for the particular query
(ina:perl, owl:sameAs, ina:per2) in our example are shown in Fig. 3.

Problem Statement

Given a deductive dataset dds(u) = (F, R), and a boolean query ¢(u) the
local evaluation of which gives an empty answer set (i.e., (F,R) I/ q(u)), we
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Boolean owl:sameAs Query 1* External Query

{ina:perl owl:sameAs ina:per2 : | SELECT ?x FROM <http://dbpedia.fr> WHERE{
: | ?x foaf:name “Jacques Martin”.
?x foaf:birthdate “1933-06-22"}
]

1

<db:per1,foaf:name,”Jacques Martin"> -
<db:per1,foaf:birthdate,' 1933-06-22">

d

Import-by-Query 2 External Query o§3)’

ASK FROM <http://dbpedia.fr> WHERE{ M

db:per1 db:presenter “Le_Petit_Rapporteur”}

1

Fig. 3. The resultant external sub-queries submitted to DBpedia and their returned
answers.

true

aim to construct a set of external queries ¢i(uy),...,qr(ug) for which we can
guarantee that the subsets of external facts resulting from their evaluation over
the (possibly huge) external datasets are sufficient to answer the initial query.
More formally:

(FU U Answer(q;(u;),ds(u;)), R) F q(u)
i€(1..k]

iff (FU J ds(ui),R) - q(u)
i€[1..k]

The more specific the external queries are, the less external facts have to
be added and stored to the local dataset and therefore the more interesting a
proposed approach is to solve this problem.

The Iterative Import-by-Query Algorithm

We now describe the algorithm that we have designed and implemented for
solving the problem stated above.

Given an input boolean same-as query ¢, a deductive dataset (F, R), and a set
« of query entry points to external datasets, Import-by-Query iteratively alter-
nates steps of sub-query rewriting based on backward chaining and of external
query evaluation.

FEach sub-query rewriting step is realized by an adaptation of the Query-
Subquery algorithm [2,47] that is a set-oriented memoing backward chaining
method [29] used in deductive databases for evaluating Datalog programs. This
results in the Query-Ezternal-Subquery (QESQ for short) algorithm. For space
limitation, here we just explain its main principles, compared to Query-Subquery,
when applied to a list SG of subgoals. QESQ handles the subgoals built on EDB
or IDB predicates exactly like Query-Subquery, i.e., iteratively removes subgoals
built on EDB predicates if they can be matched with local facts, propagates
the corresponding substitutions to the remaining subgoals, replaces a subgoal
g built on an IDB predicate by the list of partially instantiated conditions of
a rule whose conclusion can be matched to g. As for the subgoals on ODB
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predicates, they are handled by QESQ before the subgoals on IDB predicates,
and once all the subgoals built on EDB predicates have been removed, and after
the corresponding substitutions are applied to the remaining subgoals in the
list. These ODB subgoals are conjuncted to obtain an external query g, the
compatibility of which must be checked w.r.t. @ to be considered further. QESQ
then treats the remaining list SG; 4 of subgoals on IDB predicates just as Query-
External-Subquery, i.e., triggers the recursive call QESQ(SGiqgp)- It will return
as output either true or false (if it has enough local information to infer a result
to the input boolean query), or a set of external queries that, if compatible with
the vocabulary of the given external datasets, are then conjuncted with ey to
constitute the output returned by QESQ(SG). As a result QESQ ({q}) succeeds
in handling locally the goal ¢ using F' and R just like Query-Subquery and then
the process is stopped and the result returned by Import-by-Query is true or
false accordingly, or it produces a set {q1(@1),...,qr(tx)} of external queries
the evaluation of which is likely to bring missing facts to F' for proving the goal
q using R. If this set is empty, the process is stopped and the result returned by
Import-by-Query is false.

Each evaluation step simply consists in choosing one of the external query
qi(u;) produced by the sub-query rewriting step and to submit it to Linked
Data through the specified query entry points. The result is either an empty set
(negative result) or a set of external facts (positive result) that can be added to
the current local dataset. In both cases, the result is memorized in an associated
answer table for the sub-query ¢;(@;) that will be thus marked as an already
processed subgoal for which the (positive or negative) result is known and can
be directly exploited later on. If the result is positive, a new iteration of Import-
by-Query is started on the same input except for the set of facts F' that is
enriched with the facts obtained as the result of the evaluation of the external
query ¢;(@;). If the result is negative, another external query g;(@;) in the set
produced by the current call to QESQ is evaluated. If the evaluation of all the
external queries in the set returns ‘false’, then the process is stopped and the
result returned by Import-by-Query on ¢ is false.

The termination of the Import-by-Query algorithm relies on the termina-
tion of QESQ, which is guaranteed by the same memoing technique as Query-
Subquery (i.e., by handling goal and answer tables for each ODB and IDB predi-
cate). The soundness and completeness of the Import-by-Query algorithm results
from the soundness and completeness of Query-Subquery [47] and from the obser-
vation that the result produced by Query-Subquery, if applied to the same input
in which the ODB predicates are just considered as additional EDB predicates,
would be the same as the one produced by Import-by-Query. The reason is
that the only difference of Import-by-Query is to replace successive matching of
atomic goals against the facts by matching all at once the atomic goals compos-
ing the external queries produced by QESQ. This does not impact the global
boolean result of the sequence of goal matching.
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Combining Forward and Backward Chaining

Like any backward chaining method, Import-by-Query (and its main component
QESQ) re-starts from scratch for each new goal it tries to solve, even if the facts
and the rules remain unchanged. The intermediate subgoals generated and han-
dled by QESQ can be simplified if the input rules are replaced by their (partial)
instantiations obtained by the propagation of the facts into (the conditions of)
the rules.

Fact propagation is a forward chaining method used in inference engines
such as RETE [21] for rule-based systems. It avoids redundant evaluation of
same conditions appearing in several rules by memorizing, for each fact f, which
condition it satisfies in which rule (possibly already partially instantiated by
facts previously propagated), and the corresponding variable substitution that
is then applied to all the remaining conditions of the rules.

In our setting, we perform fact propagation as a pre-processing step of the
Import-by-Query algorithm, by computing at the same time the set SAT(F, R)
of facts that can be inferred locally, and the set PI(F, R) of partial instantiations
of the rules in R. This forward reasoning step can be summarized as follows,
where SAT(F, R) is initialized as F' and PI(F, R) is initialized as R:

— for each f in SAT(F,R)
for each rule Cond, — Conc, in PI(F, R) having a condition ¢ that can
be matched with f, i.e., there exists 6 such that .c = f
* IF ¢ is the only condition in Cond, THEN add 0.Conc, to SAT(F, R)
* ELSE add to PI(F, R) the rule obtained from §.Cond, — 6.Conc, by
removing the condition 6.c (that is satisfied by the fact f).
— Remove from PI(F, R) those rules whose condition contains EDB predicates
that are not ODB predicates (and thus cannot be satisfied by local facts).
— RETURN (SAT(F,R),PI(F,R))

Each partially instantiated rule r; returned in PI(F, R) is issued from an
input rule r in which some conditions have been matched to facts fi, ..., f
that have been inferred before (and added to SAT(F, R)), and thus allows us
to infer the same conclusion as the input rule r on any set of facts including f7,
vy Jk- The result SAT(F, R)U PI(F, R) is then logically equivalent to the input
deductive dataset F'U R for inferring facts on IDB predicates from the union of
F and a set OF of external facts (with ODB predicates), i.e. for every fact f an
external set of facts OF:

(FUOF,R) & f iff (SAT(F,R) UOF, PI(F,R)) F f

Therefore, it can be equivalently used for proving goals by checking whether
they belong to SAT(F, R), or for rewriting goals by applying QESQ to the
PI(F,R) (instead of the original R).

Experiments

We have conducted experiments on a real deductive dataset composed of 35
rules and about 6 million RDF facts from INA dataset. Most of the 35 rules
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capture local knowledge in the domain (functional properties and keys declared
as schema constraints, and rules provided by INA experts), mappings between
INA and DBpedia vocabularies, and general properties of owl:sameAs and
owl:differentFrom. Some of the rules of our experiments involve a built-in pred-
icate (called built-in:name-similar) to allow slight differences when comparing
literal values corresponding to person names (e.g. R8 in Table1). This predi-
cate depends on a built-in function which checks if the similarity of the two
name strings is above a given threshold. In all our experiments we used edit
distance and 0.99 as a threshold. Other built-in predicates involved in the rules
are not-equal, less-or-equal, sum, etc. It is worth noting that the 35 rules can be
extended or modified without the need of changing the algorithmic machinery
of our approach.

Ezxperimental Goals and Set-Up. The goal of our experiments was threefold: (1)
to show that external information available in Linked Open Data is useful to
infer owl:sameAs and owl:differentFrom facts within INA referenced persons,
and, thus, to disambiguate local homonyms; (2) to assess the gain in reduced
imported facts of our Import-by-Query approach compared to approaches based
on forward reasoning only; and (3) to evaluate the runtime of our Import-by-
Query algorithm and the possible amortized gain if fact propagation is performed
beforehand.

The external datasets from Linked Open Data with which the INA vocabu-
lary shares terms are DBpedia.org and DBpedia.fr. The baseline for evaluating
our two first goals is a set of 0.5 million external facts obtained by downloading
from DBpedia.org and DBpedia.fr (using their SPARQL endpoints) all the facts
about entities having the same name as one of the homonyms in the INA dataset.
We applied a preprocessing step on the original INA dataset to keep only the
facts on predicates appearing in the rules conditions. The resulting dataset con-
tains almost 1.15 million of RDF facts and will be the INA dataset referred to
henceforth.

Our algorithms have been implemented in SWI-Prolog. All the evaluations
were done on a machine with an Intel i7 Quad-core processor and 6 GB of memory.

Experimental Results. For evaluating our first goal, we applied (using our forward
reasoner) the set of 35 rules to (a) the INA dataset only and (b) the union of the
INA dataset with the baseline external facts, and then we compared the num-
ber of owl:sameAs and owl:differentFrom facts on INA homonyms we obtained.
The rules applied to the INA dataset only allowed to infer 2 owl:sameAs facts
and 108 owl:differentFrom facts, compared to the 4,884 owl:sameAs and 9,764
owl:differentFrom facts inferred when the external facts were added to the
process. This clearly demonstrates the benefit of using external information from
Linked Open Data for local disambiguation. These resulting 14,648 facts are
guaranteed to be correct under the assumption that both rules and data are cor-
rect. However, since this is not ensured for DBpedia data, we asked INA experts
to evaluate a random sample of 500 of such facts, and all of them were assessed
to be true.
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The rule expressing sameAs transitivity is crucial for inferring all the
owl:sameAs facts that cannot be inferred locally. More generally, full reasoning is
very important to discover owl:sameAs and owl:differentFrom facts. In order to
show this, we applied Silk to the same two datasets (the INA dataset only, and
the union of the INA dataset with the baseline external facts). For doing so, we
first had to translate our rules into the Silk specification language. It is not pos-
sible, however, to translate into Silk our rules concluding on owl:differentFrom
atoms. Thus, we focused on the rules leading to owl:sameAs inference. Among
the 4,884 owl:sameAs facts discovered by our full forward reasoner, Silk (which
does not perform full reasoning) only discovered 88, i.e. less than 2% of the total.
This shows that inference is important for data linkage.

For evaluating our second experimental goal, we took as reference boolean
queries the above sample of 500 owl:sameAs and owl:differentFrom facts, and
we applied our Import-by-Query algorithm to each of these boolean queries.
The number of external facts imported by our algorithm for all boolean queries
was 6,417, which makes, on average, 13 imported facts per boolean query. In
contrast, the total number of baseline external facts needed to conclude the
boolean queries with the forward reasoner was much higher (~500,000). This
shows that our Import-by-Query algorithm reduces drastically the number of
imported facts needed for disambiguating local data.

Concerning the runtime evaluation, the import-by-query algorithm requires
3 iterations on average — it successively outputs and evaluates 3 external sub-
queries (each of them being produced by calling QESQ) — before termination.
It takes on average 186s per boolean query when applied to the initial set of
rules and the local dataset. This drops to 7s when it is applied to the partially
instantiated rules obtained by fact propagation beforehand, which means a gain
in time of 179s (~96%). With respect to the fact propagation, we propagated
all facts involving properties of class ina:Person. This took 191s but it is done
only once for all queries, and its cost is amortized very fast, as shown by the
above numbers.

Discussion

We have proposed a novel approach for data linkage based on reasoning and
adapted to the decentralized nature of the Linked Data cloud. This approach
builds on the formal and algorithmic background of answering Datalog queries
over deductive databases, that we have extended to handle external rewriting
when local answers cannot be obtained. In contrast with existing rule-based
approaches for data linkage [31,40] based on forward reasoning to infer same-
as facts, Import-by-Query is a backward chaining algorithm that imports on
demand only external facts useful to infer target same-as facts handled as
boolean queries. Our experiments have shown that this approach is feasible and
reduces the number of facts needed to be imported. Compared to the depth-first
approach sketched in [1] for distributed Query-Subquery, our QESQ algorithm
generates external rewriting in a breadth-first way.
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Performing fact propagation beforehand in order to apply Import-by-Query
to a set of more specific rules than the original ones is an optimization close to
the ones proposed in QueryPIE [46] for efficient backward reasoning on very large
deductive datasets. One important difference, though, is that in the QueryPIE
setting, the problem of handling recursive rules can be fully delegated to for-
ward reasoning because all the facts are given and the recursive rules concern
a well identified subset of them (so called terminological facts). Another major
difference is that Import-by-Query performs query rewriting if no local answer
is obtained from the input deductive dataset.

The Import-by-Query approach in [25] is limited to ABox satisfiability queries
used as oracles in Tableau-based reasoning. Compared to the many recent works
on ontology-based data access initiated by [14], in which query rewriting is done
independently of the data, we have designed a hybrid approach that alternates
(external) query rewriting and (local) query answering. We plan to look into
this hybrid approach further, in particular to deal with ontological constraints
expressible in Datalog™ [13].

The interest of our rule-based approach is that it is generic and declarative:
new rules can be added without changing the algorithmic machinery. At the
moment the rules that we consider are certain. As a result, the same-as facts
that they allow to infer are guaranteed to be correct (under the assumption that
the input data does not contain erroneous facts). This is crucial to get automat-
ically same-as facts that are certain, in particular when the goal of discovering
same-as links is data fusion, i.e. replacement of two URIs by a single one in all
relevant facts. Another added-value to get certain same-as and different-from
facts is to find noisy data thanks to contradictions. However, in many cases,
domain knowledge is not 100% sure such as pseudo-keys [11] and probabilistic
mappings [45]. Data itself may be uncertain due to trust and reputation judge-
ments towards data sources [9]. Handling uncertain domain knowledge should
enable to discover more same-as facts that may be true even if inferred with
some uncertainty. This is addressed in the next section.

3.2 Reasoning over Uncertain RDF Facts and Rules [3]

We have designed a probabilistic framework to model and reason on uncer-
tain RDF facts and rules, based on the semantics of probabilistic Datalog [23].
Probabilistic Datalog extends (deterministic) Datalog [2] by associating each
ground fact and each instantiated rule with a basic probabilistic event that the
corresponding fact or rule is true. Each derived fact is then inferred with its
provenance in the form of an event expression made of a boolean combination of
the basic events of the ground facts and rules involved in its derivation. It can
be put in disjunctive normal form, in which a conjunction of events represents a
derivation branch, and disjunctions represent the different derivation branches.
Some simplifications can be performed before the computation of the resulting
probabilities: a conjunction containing disjoint events can be suppressed; basic
events known to be certain can be removed from the conjunctions where they are
involved thus leading to conjunctions with only uncertain events. An extreme
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case is when a conjunction is made of certain events only, which represent a
way to derive a fact with certainty. In this case the whole event expression can
be simplified to T which denotes certain events. The logical semantics of the
(simplified) event expression is then the basis for computing the probability of
the corresponding derived fact in function of the probabilities assigned to the
events identifying the input facts and rules participating to its derivation. In
the general case, computing the probability of the disjunction of conjunctions of
events requires to know the probabilities of all the combinations of events in the
expression. In practice, in particular in applications dealing with large amounts
of data, only the probabilities of single events will be known. We will then make
the same default assumptions of independence or disjointness of single events, as
usually done in most Information Retrieval models [22]. To fit with such assump-
tions, we have to impose some constraints on the rules, that will be explained
below.

Probabilistic RDF facts extends the standard data model of Linked Data
used to state properties on entities referenced by so-called Uniform Resource
Identifiers (URIs). Properties are themselves identified by URIs. So-called data
properties relate entities with literals (e.g., numbers, strings or dates), while
object properties relate two entities.

A probabilistic RDF fact is an RDF triple ¢ = (s,p,0) (in which the
subject s is a URI, the predicate p is a URI, and the object o may be either a
URI or a literal) associated with an event key e denoting the probabilistic event
that ¢ is true. A probabilistic RDF rule is a safe rule with variables, associated
with an event key denoting the probability that any of its instantiations is true.

Each probabilistic RDF fact and rule are assigned a distinct event key, except
the certain facts and rules that are assigned the special event key T denoting
events that are certain. For a probabilistic fact f (respectively rule r), we will
denote e(f) (respectively e(r)) the probabilistic event e associated with the fact
f (respectively the rule r).

In the rules, we also allow conditions B(Z,a) where B is a built-in pred-
icate (i.e., a function call), Z a vector of variables appearing in the triple
conditions of the same rule, and @ may be a non empty set of values of
parameters for calling B. The following rule is an example of a rule with a
built-in predicate:Similar(?s1, ?sq, levenshtein,0.2): ro : (?z hasName ?s1) A
(?y hasName ?s2)A Similar(?sy, ?sq, levenshtein, 0.2) — (?z sameName ?y)
For each pair of strings (s1, s2) for which the two triple conditions are satisfied
by facts (i1 hasName s1) and (i3 hasName s3), Similar(s1, sa, levenshtein, 0.2)
applies the normalized Levenshstein distance levenshtein(sy,s2) on the two
strings s; and so, and if this distance is less than 0.2 returns the corresponding
probablistic fact Similar(sy, se, levenshtein, 0.2) with 1 — levenshtein(sy, s2)
as probability.

The semantics of inferred probabilistic facts is defined by extending the defi-
nition of SAT(F, R) (see Definition 1) with their provenance defined as boolean
combinations of all the events associated with the input facts and rules involved
in their inference.
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Definition 2 (Provenance-based semantics of probabilistic inferred
facts). For every fact f in SAT(F, R), its provenance (denoted Provg r(f))
1s defined as follows:

—if feF : Provgr(f) =e(f)

= else: Provr p(f) =V .oerip €(1) AN Niep. .y Prove,r(0.TPi(v;))
where R(f) is the set of instantiated rules (r,0) having f as conclusion (i.e.,
rules r of the form TPy (v1)A...ANTPy(vg) — TP(v) for which 6 is a mapping
such that 0.TP(v) = f and 0.TPwv;) € SAT(F, R) for every i € [1.k]).

For every fact f in SAT(F, R), its probability (denoted P(f)) is defined as the
probability of its provenance: P(f) = P(Provg r(f))

Illustrative Example

Let us consider the following probabilistic RDF facts and rules (for which we
omit to display the event keys) composed of 5 input facts and of 4 rules expressing
different ways to infer sameAs facts between individuals (to have the same name,
to have the same name and the same birthdate, to be married to the same
individual, or by transitivity of the sameAs relation):

f1: (i1 sameNameis)

f2: (i1 sameBirthDate is)

f3: (i1 marriedToi3)

fa: (igmarriedToi3)

f5: (ia sameNameiy)

r1: (T sameName 7y) — (Tx sameAs 7y)

ro: (Tx sameName ?y), (?x sameBirthDate Ty) — (7x sameAs y)
r3: (?2zmarriedTo?z), (Ty marriedTo?z) — (Tx sameAs 7y)

rq: (Tx sameAs?z), (72 sameAs Ty) — (Tx sameAs 7y)

Three derived facts are obtained with their provenance:

Provg p((i1 sameAsis))

(e(re) Ne(fr)) V (e(r2) Ae(fi) Ne(f2)) V (e(rs) Ae(fs) Ae(fs))
( )) = (e(r1) Ae(fs))

( )

e(ra) A Provg p((i1 sameAsiz)) A Provg p((iz sameAsiy)

Provg, p((ia sameAs iy

Provg p((i1 sameAsia

The first one captures that the fact (i; sameAsiz) can be inferred as a result of 3
different derivation branches (one using the rule r; and the input fact f;, another
one using the rule ro and the input facts f; and fs, and the third one using the
rule r3 and the input facts f3 and f4). The second one captures that (io sameAsiy)
results from a single derivation branch, using the rule r; and the fact f5. The last
one illustrates how the provenances can be built iteratively during the saturation
process: the last derivation step leading to the inference of (i; sameAsiy) involves
the rule r4 and two facts inferred at a previous iteration (namely, (i1 sameAs iz)
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and (iz sameAsiy4)) for which the event expressions computed beforehand as their
provenance can be combined with the event key of 4.

These event expressions can be simplified by exploiting facts and rules that
are certain. For instance, if we know that the two facts fo and f3 are certain as
well as the rule ry4, we can suppress e(f2), e(f3) and e(r4) in the conjuncts of the
above expressions because they are all equal to the event T always true. We now
obtain for Provg p((i1 sameAsiz)): (e(r1)Ae(f1))V(e(rz)Ae(f1))V(e(rs)Ae(f1))

When many facts and several rules are certain, such simplifications lead to
a drastic reduction of the size of event expressions, which is important for the
feasibility and the scalability of the approach in practice.

This example illustrates how the construction and the simplification of the
provenance can be incorporated into the saturation process and thus how a given
forward-reasoning algorithm can be easily extended to compute the provenance
during the inference of the corresponding facts.

The ProbFR Algorithm

Algorithm 1 describes the ProbFR algorithm that we have implemented and used
in our experiments.

Algorithm 1. The ProbFR algorithm
Input: A set F of input (probabilistic) facts and a set R of (proba-
bilistic) rules
Output: The set Fsq¢ of inferred (probabilistic) facts with for each
inferred fact f its event expression z(f)
(1) for each f € F: z(f) «— e(f)
( ) Foqp — F
(3) A—F
(4) repeat
(5) A0
(6) foreach rule r: c¢1 A ... A cp — c for which there exists
a substitution 0 and facts fi,..., fs € Fsqt (among which
atleast one of them belongs to A) such that f; = 6.¢; for
every i € [1..k]:
let f=0.c:
if f & Foat
add f to A
z(f) < Nu(e(r) A /\ie[l..k] z(f:))
else z(f) «— z(f)V
No(e(r) A Asepsng 2(55)
Fsat HFsatUAl
A — Al
until A, =0
return Fsq:

D o — T
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It starts with the set of initial facts and rules and repeats inference steps
until saturation. Each inference step (Line (4) to (15)) triggers all the rules
whose conditions can be matched with known facts (i.e., input facts or facts
inferred at previous steps). At each iteration, the set A contains the facts that
have been inferred at the previous iteration. The constraint (expressed in Line
(6)) that rules are only triggered if atleast one of their conditions can be matched
with facts in A guarantees that instantiated rules are not triggered twice during
the inference process. The algorithm stops as soon as no new fact has been
inferred during a given iteration (i.e., A; remains empty over this iteration). The
algorithm returns the set F,,; of inferred facts, and computes for each of them
an event expression z(f) (Lines (10) and (11)). The function A, denotes the
transformation of a conjunction into its disjunctive normal form. It consists in
applying iteratively the distributivity of the conjunction connector (A) over the
disjunction connector (V), and in simplifying when possible the (intermediate)
results as follows: (1) remove the duplicate events and the certain events T from
each conjunction of events, (2) if a conjunction within a disjunction becomes
empty (i.e., if all its events are certain), replace the whole disjunction by T.
Each event expression z(f) is thus either T or of the form Conj; V ... V Conyjj
where each C'onj; is a conjunction of event keys tracing the uncertain input facts
and rules involved into one of the [ branches of uncertain derivation of f.

The termination of the ProbFR algorithm is guaranteed by the fact that the
rules are safe. The only facts that can be inferred from safe rules and a set I’ of
ground atoms are instantiations of conclusion atoms by constants appearing in
F. Their number is finite. More precisely, since the input facts and conclusion
atoms are built on are binary predicates, the number of constants appearing in
the input facts is less than 2 x |F| (at most two distinct constants per input
fact), and the number of inferred facts is then less than 4 x |R| x |F|? (atmost
as many predicates in conclusion as rules, and for each of them, atmost as many
instantiations as pairs of constants).

The following theorem states the soundness and completeness of the
algorithm.

Theorem 1. Let Fyo be the result returned by ProbF R(F, R):

Fuut = SAT(F, R).

For each f € Fsat, let x(f) be the event expression x(f) computed
by ProbFR(F,R):

z(f) = Provp r(f)

For the first point, we prove by induction on 7 that each iteration ¢ > 1 of the
algorithm computes the set of facts F; = Tr(F;—1) (as defined in Definition 1),
and thus SAT(F, R) at the last iteration where the least fixed point reached.
For the second point, for a derived fact f, we prove, by induction on the number
n of iterations of ProbF R after which no new instantiation of rules can infer f,
that z(f) is a disjunctive normal form of Provg r(f), and therefore is logically
equivalent to it.
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As a result of Definition 2 and Theorem 1, it worths to emphasize that the
probabilities values of inferred facts is independent of the order in which the
rules are triggered to derive them.

Data Complexity Analysis

We are interested in estimating how the worst-case time complexity of the algo-
rithm depends on the size |F| of the input data, which is the most critical
parameter in the setting of Linked Data. The number of iterations of ProbFR
is atmost |Fyqq|, which is less than 4 x |R| x |F|? as shown just above. At each
iteration, in the worst case, the condition part of each rule must be evaluated
against the facts, and the event expressions for the provenance of the inferred
facts must be computed. Let ¢ the maximum number of conditions per rule. The
evaluation of each condition part of each rule can be performed in polynomial
time (in fact, in at most |R| X |Fs.¢| elementary steps).

For the computation of the event expressions, the most costly opera-
tion is the transformation A, into disjunctive normal form of conjunctions
e(r) A Niepr.gy @(fi)- The number k of conjunctions is less than the bound ¢
of conditions per rule, and each z(f;) is a disjunction of at most ! conjunctions
of event keys, where [ is the maximum number of uncertain derivation branches
for inferred facts. This parameter [ is bounded by b? where d is the maximal
depth of reasoning to infer a fact from F' and R, and b is the maximal branch-
ing factor of ground(F, R) (which denotes the set of rules triggered during the
execution of ProbF R(F, R)). Therefore, each call of M\, performs at most b%*¢
distributivity operations on conjunctions of at most |F'| 4+ |R| event keys. Since
the maximal depth of reasoning is the number of iterations of ProbF R(F, R), d
can be equal to | Fis,¢|. Then, the data complexity of the provenance computation
may be exponential in the worst-case. This meets known results on query evalua-
tion in probabilistic databases [43]. Different solutions are possible to circumvent
this worst-case complexity, like restricting the form of rules/queries like in [17]
or imposing some constraints on the input facts (such as a bounded treewidth in
[6]). In practice, in particular if most of the input facts are certain, the size of the
event expressions remains small. If all the input facts are certain, the only event
keys that can be involved in the event expressions are the ones attached to the
uncertain rules. The complexity of the algorithm can be controlled by imposing
a practical bound in the number ! of conjunctions produced in Line (11). This
solution is justified in our setting since the computed probabilities are used to
keep only the most probable inferred facts, i.e., the facts that are inferred with
a probability greater than a given high threshold. For our experiments, we have
limited this number [ to be 8.

Effective Computation of Probabilities of Inferred Facts from Their
Provenance

For each inferred fact, given its provenance as an event expression in disjunctive
normal form, the following formula is the basic theoretical tool to compute its
probability:

P(Av B)=P(A)+ P(B)— P(AAB). (1)
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The recursive application of the above formula for computing the probability
of a disjunction of [ conjunctions of events £ V ...V E; leads to alternate the
subtractions and additions of the probabilities of all the possible conjunctions
E;, N... N\ Ej,. This raises two major issues: first, their number is exponential
in [; second the exact values of all these probabilities is usually not available.

An usual way to circumvent the latter is to make the assumption of inde-
pendence between events, as it is done in probabilistic databases [43] or in most
Information Retrieval models [22]. In our case however, two rules such that the
condition part of one rule is contained in the condition part of the second (like
the rules 1 and 7o of the example) are obviously not independent. For such
rules, we enforce pairwise disjointness by imposing that the more general rule
applies only if the more specific rules do not apply. In this way, we are sure
that the corresp