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Abstract. The need to adhere to recommended physical activity guide-
lines for a variety of chronic disorders calls for high precision Human
Activity Recognition (HAR) systems. In the SelfBACK system, HAR is
used to monitor activity types and intensities to enable self-management
of low back pain (LBP). HAR is typically modelled as a classification
task where sensor data associated with activity labels are used to train
a classifier to predict future occurrences of those activities. An impor-
tant consideration in HAR is whether to use training data from a general
population (subject-independent), or personalised training data from the
target user (subject-dependent). Previous evaluations have shown that
using personalised data results in more accurate predictions. However,
from a practical perspective, collecting sufficient training data from the
end user may not be feasible. This has made using subject-independent
data by far the more common approach in commercial HAR systems.
In this paper, we introduce a novel approach which uses nearest neigh-
bour similarity to identify examples from a subject-independent training
set that are most similar to sample data obtained from the target user
and uses these examples to generate a personalised model for the user.
This nearest neighbour sampling approach enables us to avoid much
of the practical limitations associated with training a classifier exclu-
sively with user data, while still achieving the benefit of personalisation.
Evaluations show our approach to significantly out perform a general
subject-independent model by up to 5%.

1 Introduction

Human Activity Recognition (HAR) is the computational discovery of human
activity from sensor data and is increasingly being adopted in health, security,
entertainment and defense applications [9]. An example of the application of
HAR in healthcare is SelfBACK [2], a system designed to assist users with low
back pain (LBP) by monitoring their level of physical activity in order to provide
advice and guidance on how best to adhere to recommended physical activity
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guidelines. Guidelines for LBP recommend that patients should not be seden-
tary for long periods of time and should maintain moderate physical activity.
SelfBACK continuously reads sensor data from a wearable device worn on the
user’s wrist, and recognises user activities in real time. This allows SelfBACK
to compare the user’s activity profile to the recommended guidelines for physical
activity and produce feedback to inform the user on how well they are adher-
ing to these guidelines. Other information in the user’s activity profile include
the durations of activities and, for walking, the counts of steps taken, as well
as intensity e.g. slow, normal or fast. The categorisation of walking into slow,
normal and fast allows us to better match the activity intensity (i.e. low, mod-
erate or high) recommended in the guidelines. HAR is typically modelled as a
classification task where sensor data associated with activity labels are used to
train a classifier to predict future occurrences of those activities. This introduces
two important considerations, representation and personalisation.

Many different representation approaches have been proposed for HAR. In
this paper, we broadly classify these approaches into three: hand-crafted, trans-
formational and deep representations. Previous works have not provided a defin-
itive answer as to which feature extraction approach is best due to the often
mixed or contradictory results reported in different works [14]. This may be
attributed to the differences in the configurations (e.g. sensor types, sensor loca-
tions, types of activities etc.) used in different works. For this reason, we conduct
a comparative study of five different representation approaches from the three
representation classes in order to determine which representation works best for
our particular configuration (single wrist-mounted accelerometer) and our choice
of activity classes.

The second consideration for HAR is personalisation, where training exam-
ples can either be acquired from a general population (subject-independent), or
from the target user of the system (subject-dependent). Previous works have
shown using subject-dependent data to result in superior performance [3,8,
16]. The relatively poorer performance of subject-independent models can be
attributed to variations in activity patterns, gait or posture between different
individuals [11]. However, training a classifier exclusively with user provided
data is not practical in a real-world configuration as this places significant cog-
nitive burden on the user to provide sufficient amounts of training data required
to build a personalised model. In this paper, we introduce a nearest neighbour
sampling approach for subject-independent training example selection. In doing
so, we achieve personalisation by ensuring only those examples that best match a
user’s activity pattern influence the generation of the HAR model. Our approach
uses nearest neighbour to identify subject-independent examples that are most
similar to a small number of labelled examples provided by the user. In this way,
our approach avoids the practical limitations of subject-dependent training. Our
work draws inspiration from selective sampling in CBR where useful cases are
sampled from the set of available cases for building effective case-bases [7,17].

The rest of this paper is organised as follows: in Sect. 2, we discuss important
related work on personalised HAR and selective sampling of examples. Section 3
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discusses the different feature representation approaches considered in this work,
while our kNN sampling approach is described in Sect. 4. A description of our
dataset is presented in Sect. 5, evaluations are presented in Sect. 6 and conclu-
sions follow in Sect. 7.

2 Related Work

The common approach to classifier training in HAR is to use subject-independent
examples to create a general classification model. However, comparative evalua-
tion with personalised models, trained using subject-dependent examples, show
this to produce more accurate predictions [3,8,16]. In [16], a general model was
compared with a personalised model using a c4.5 decision tree classifier. The
general model produced an accuracy of 56.3% while the personalised model pro-
duced an accuracy of 94.6% using the same classification algorithm, which is an
increase of 39.3%. Similarly, [3,8] reported increases of 19.0% and 9.7% between
personalised and general models respectively. However, all rely on access to
subject-dependent training dataset. Such an approach has limited practical use
for real-world applications because of the burden it places on users to provide
sufficient training data.

Different types of semi-supervised learning approaches have been explored
for personalised HAR e.g. Self-learning, Co-learning and Active learning, which
bootstrap a general model with examples acquired from the user [11]. Both Self-
learning and Co-learning attempt to infer accurate activity labels for unlabelled
examples without querying the user. This way, both approaches manage to avoid
placing any labelling burden on the user. In contrast, Active learning selectively
chooses the most useful examples to present to the user for labelling. Hence,
while Active learning does not avoid user labelling, it attempts to reduce it to
a minimum using techniques such as uncertainty sampling which consistently
outperform random sampling [12]. Our work does not focus on uncertainty, but
instead uses similarity as the focus.

While semi-supervised learning approaches address the data acquisition bot-
tleneck of subject-dependent training, they do not address the presence of noisy
or inconsistent examples in the general model. It is our view that part of the
reason why general models do not perform very well is that some examples are
sufficiently distinct from the activity pattern of the current user that they con-
tribute more to noise in the training set. Therefore, an attempt at selecting only
the most useful examples from the training set for classifier training is likely to
improve classification performance.

In CBR, sampling methods have been employed for casebase maintenance.
Here the aim is to delete cases that fail to contribute to competence such that
edited case-bases consistently lead to retrieval gains [15]. Case selection heuristics
commonly exploit neighbourhood properties as a cue to identify areas of uncer-
tainty and in doing so, active sampling approaches are adopted to inform case
selection [4,17]. For our intended application, the criterion for example selection
is very well defined. We seek to select examples from the available training set
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that are similar to examples supplied by the user, in order to personalise our
classifier to the user’s activity pattern. Accordingly, we use a k Nearest Neigh-
bour sampling approach where the k most similar examples to the user’s data
are selected.

3 Feature Representation

Feature representation approaches for accelerometer data for the purpose of HAR
can be divided into three categories: handcrafted features, frequency transform
features and deep features.

3.1 Hand-Crafted Features

This is the most common representation approach for HAR and involves the com-
putation of a number of defined measures on either the raw accelerometer data
(time-domain) or the frequency transformation of the data (frequency domain)
obtained using Fast Fourier Transforms (FFTs). These measures are designed
to capture the characteristics of the signal e.g. average acceleration, variation in
acceleration, dominant frequency etc. that are useful for distinguishing different
classes of activities. For both time and frequency domain hand-crafted features,
the input is a vector of real values −→v = v1, v2, . . . , vn for each axis x, y and z.
A function θi (e.g. mean) is then applied to each vector −→v to compute a sin-
gle feature value fi. The final representation is a vector of length l comprised
of these computed features

−→
f = f1, f2, . . . , fl. The time-domain and frequency

domain features used in this work are presented in Table 1. Further information
on these features can be found in [5,20] respectively.

Table 1. Hand-crafted features for both time and frequency domains.

Time-domain features Frequency domain features

Mean Dominant frequency

Standard deviation Spectral centroid

Inter-quartile range Maximum

Lag-one-autocorrelation Mean

Percentiles (10, 25, 50, 75, 90) Median

Peak-to-peak amplitude Standard deviation

Power

Skewness

Kurtosis

Log-energy

Zero crossings

Root squared mean
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While hand-crafted features have worked well for HAR [9], a significant dis-
advantage is that they are domain specific. A different set of features need to
be defined for each different type of input data i.e. accelerometer, gyroscope,
time-domain or frequency domain values. Hence, some understanding of the
characteristics of the data is required. Also, it is not always clear which features
are likely to work best. Choice of features is usually made through empirical eval-
uation of different combinations of features or with the aid of feature selection
algorithms [19].

3.2 Frequency Transform Features

Frequency transform feature extraction involves applying a single function φ
on the vectors of raw accelerometer data to transform these into the frequency
domain where it is expected that distinctions between different activities are bet-
ter emphasised. Common transformations that have been applied include FFTs
and Discrete Cosine Transforms (DCTs) [6,13]. FFT is an efficient algorithm
optimised for computing the discrete Fourier transform of a digital input by
decomposing the input into its constituent sine waves. DCT is a similar algo-
rithm to FFT which decomposes an input into it’s constituent cosine waves. Also,
DCT returns an ordered sequence of coefficients such that the most significant
information is concentrated at the lower indices of the sequence. This means that
higher DCT coefficients can be discarded without losing information, making
DCT better for compression. The main difference between frequency transform
and frequency-domain hand-crafted features is that here, the coefficients of the
transformation are directly used for feature representation without further fea-
ture computations. An overview of transform feature representation is presented
in Fig. 1.

Fig. 1. Feature extraction and vector generation using frequency transforms.

A transformation function (DCT or FFT) φ is applied to the time-series
accelerometer vector −→v of each axis x′ = φ(x), y′ = φ(y) and z′ = φ(z), as well
as for the magnitude vector m = {mi1, . . . ,mil}. The output of φ is a vector of
coefficients which describe the sinusoidal wave forms that constitute the original
signal. The final feature representation is obtained by concatenating the absolute
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values of the first l coefficients of x′, y′, z′ and m′ to produce a single feature
vector of length 4× l. The value l = 48 is used in this work, which is determined
empirically.

3.3 Deep Features

Recently, deep learning approaches have been applied to the task of HAR due to
their ability to extract features in an unsupervised manner. Deep approaches are
able to stack multiple layers of operations to create a hierarchy of increasingly
more abstract features [10]. Early work using Restricted Boltzmann Machines
for HAR have only shown comparative performance to FFT and Principal Com-
ponent Analysis [13]. More recent applications have used more of Convolutional
Neural Networks (CNNs) due to their ability to model local dependencies that
may exist between adjacent data points in the accelerometer data [18]. CNNs are
a type of Deep Neural Network that have the ability for feature extraction by
stacking multiple convolutional operators [10]. An example of a CNN is shown
in Fig. 2.

Fig. 2. Illustration of CNN

The input into the CNN in Fig. 2 is a 3-dimensional matrix representation
with dimensions 1×28×3 representing the width, length and depth respectively.
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Tri-axial acceleromter data typically have a width of 1, a length l and a depth
of 3 representing the x, y and z axes. A convolution operation is then applied
by passing a convolution filter over the input which exploits local relationships
between adjacent data points. This operation is defined by two parameters, D
representing the number of convolution filters to apply and C, the dimensions
of each filter. For this example, D = 6 and C = 1 × 5. The output of the convo-
lution operation is a matrix with dimensions 1 × 24 × 6, these dimensions being
determined by the dimension of the input and the parameters of the convolution
operation applied. This output is then passed through a Pooling operation which
basically performs dimensionality reduction. The parameter P determines the
dimensions of the pooling operator which in this example is 1 × 2, which results
in a reduction of the width of its input by half. The output of the pooling layer
can be passed through additional Convolution and Pooling layers. The output of
the final Pooling layer is then flattened into a 1-dimensional representation and
then fed into a fully connected neural network. The entire network (including
convolution layers) is trained through back propagation over a number of gener-
ations until some convergence criteria is reached. Detailed description of CNNs
can be obtained in [10].

4 kNN Sampling

The main limitation of a general activity recognition model is that it fails to
account for the slight variations and nuances in movement patterns of indi-
viduals. However, we hypothesise that similarities do exist in activity patterns
between users. Hence, by identifying data that is most similar to the current
user’s movement pattern, we can build a more effective HAR model that is per-
sonalised to the current user.

In order to identify similar data to the current user’s activity pattern, we
need sample data from the user. In our current approach, we assume that the
user provides a small sample of annotated data for each type of activity. This
is similar to the calibration approach which is commonly employed in gesture
control devices and is also used by the Nike + iPod fitness device [11]. Our
selective sampling approach is illustrated in Fig. 3.

The user provides a sample of ni annotated examples for each class ci ∈ C.
These annotated examples are passed through feature extraction (e.g. DCT) to
obtain a set of labelled examples Li. The centroid of these examples (mi) is then
obtained as the average of all examples in Li using Eq. 1.

mi =

∑ni

j lij

ni
(1)

Where lij ∈ Li. The centroid mi is used along with kNN to obtain the k
most similar training examples Si from the set of training examples Ti that
belong to class ci. The selected examples Si are then combined with the user
labelled examples Li to form a new training set T ′

i which is used for training a
personalised classifier.
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Fig. 3. Nearest neighbour sampling approach.

5 Dataset

A group of 50 volunteer participants was used for data collection. The age range
of participants is 18–54 years and the gender distribution is 52% Female and
48% Male. Data collection concentrated on the activities provided in Table 2.

Table 2. Details of activities classes.

Activity Description

Lying Lying down relatively still on a plinth

Sitting Sitting still with hands on desk or thighs

Standing Standing relatively still

Walking slow Walking at slow pace

Walking normal Walking at normal pace

Walking fast Walking at fast pace

Up stairs Walking up 4–6 flights of stairs

Down stairs Walking down 4–6 a flights of stairs

Jogging Jogging on a treadmill at moderate speed
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The set of activities in Table 2 was chosen because it represents the range of
normal daily activities typically performed by most people. Three different walk-
ing speeds (slow, normal and fast) were included in order to have an accurate esti-
mate of the intensity of the activities performed by the user. Identifying intensity
of activity is important because guidelines for health and well-being include rec-
ommendations for encouraging both moderate and vigorous physical activity [1].

Data was collected using the Axivity Ax3 tri-axial accelerometer1 at a sam-
pling rate of 100 Hz. Accelerometers were mounted on the right-hand wrists of
the participants using specially designed wristbands provided by Axivity. Activ-
ities are roughly evenly distributed between classes as participants were asked to
do each activity for the same period of time (3 min). The exceptions are Up stairs
and Down stairs, where the amount of time needed to reach the top (or bottom)
of the stairs was just over 2 min on average. This data is publicly available on
Github2.

6 Evaluation

Evaluations are conducted using a leave-one-person out methodology where all
data for one user is held out for testing and the remaining users’ data are used
for training the model. A time window of 5 s is used for signal segmentation and
performance is reported using macro-averaged F1 score, a measure of accuracy
that considers both precision (the fraction of examples predicted as class ci that
correctly belong to ci) and recall (the fraction of examples truly belonging to
class ci that are predicted as ci) for each class.

Our evaluation is composed of two parts. Firstly, we compare the different
representations discussed in Sect. 3 using 2 classifiers: kNN and SVM. In the
second section, we use the best representation/classifier combination to compare
different selection approaches for generating personalised HAR models.

6.1 Feature Representations

In this section, we compare the feature representation appraoches presented in
Sect. 3 as follows:

– Time: Time domain features
– Freq: Frequency domain features
– FFT: Frequency transform features using FFT coefficients
– DCT: Frequency transform features using DCT coefficients.

Each representation is evaluated with both a kNN and SVM classifier. In
addition, we include a CNN classifier. The architecture of our CNN uses 3 convo-
lution layers with convolution filter numbers D, set to 40, 20 and 10 respectively.
Dimensions of each convolution filter C, are set to 1 × 10 × 3. Each convolution
1 http://axivity.com/product/ax3.
2 https://github.com/selfback/activity-recognition/tree/master/activity data.

http://axivity.com/product/ax3
https://github.com/selfback/activity-recognition/tree/master/activity_data
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layer is followed by a pooling layer with dimension P, set to 1×2. The output of
the convolution is fed into a fully connected network with 2 hidden layers with
900 and 300 units respectively and an output layer with soft-max regression.
Training of the CNN is performed for a maximum of 300 generations as longer
training generations did not improve performance. The inclusion of CNN allows
us to compare the performance of a state-of-the-art approach against conven-
tional HAR approaches.

Fig. 4. Evaluation of different representations and classifiers.

Note from Fig. 4 that the best result is achieved using DCT representation
with SVM classifier, while second best is FFT with SVM. In general, SVM
out performed kNN on all representation types. The poor performance of kNN
might be because the dataset does not provide clearly separable neighbourhoods.
Indeed it is intuitive to think many examples from similar classes e.g. sitting and
lying, as well as slow, normal and fast walking would be within close proxim-
ity in the feature space and might not be easily distinguishable using nearest
neighbour similarity. CNN came in third best in the comparison. This indicates
the potential of CNN for HAR, however, in our evaluation, it did not beat the
much simpler frequency transform approaches. Our results are consistent with
the findings of [14] where CNNs did not out perform conventional approaches.
Also, the high cost of retraining a CNN makes this approach impractical for
personalisation using our approach.

6.2 Selective Sampling

The seconds part of the evaluation uses the best representation/classifier combi-
nation, i.e. DCT+SVM to compare different sampling approaches for generating
a personalised HAR model. The sampling approaches included in the comparison
are as follows:

– All-Data: uses entire training set T without sampling;
– knnSamp: uses the kNN sampling approach presented in Sect. 4, but uses only

the selected training examples S for classifier training;
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– knnSamp+: uses the kNN sampling approach presented in Sect. 4 and uses
the combined set T ′ = S ∪ L for model generation; and

– Random: selects training examples at random for classifier training.

For any given user, 30% of test data is held-out to simulate user provided
annotated data for personalisation. The remaining 70% forms the test data.

Fig. 5. Results for personalised model generation strategies.

Figure 5 shows the results of the different sampling approaches where the
x-axis shows the percentage of training examples selected while the y-axis shows
the F1 score. The horizontal line shows the result for All-Data. Observe that both
knnSamp and knnSamp+ significantly outperform all other approaches when no
more than 50% of the training set is used, with the best result achieved using
only 30% of the training set. F1 score declines after 50% as more of the noise
from dissimilar examples in the training set are introduced into the model. The
high accuracy of knnSamp compared to the other approaches indicates that the
nearest neighbour selection strategy effectively selects useful similar examples for
activity recognition. The best improvements of both knnSamp and knnSamp+

compared to the other approaches are statistically significant at 99% using a
paired T-test. Unsurprisingly, no improvement is achieved through random selec-
tion of training examples. Note that adding the user data to the entire training
set without sampling produces only marginal improvement (+0.008 F1 Score).

6.3 Discussion

To further understand the performance gain of our personalisation approach,
we present the break down of the performance (precision, recall and F1 score)
by class for the best performing sampling method knnSamp+ (with 30% sam-
pling of training data) in Table 3. Here, we can see that personalisation had
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produced considerable improvement in the F1 scores of lying, sitting, walk slow,
walk normal and walk fast. From the confusion matrix in Fig. 6, we can observe
that without personalisation, about 50% (547) of lying examples are predicted as
sitting. However, personalisation produces better separation between lying and
sitting which is evidenced by the higher recall score of lying (0.91) and higher
precision of sitting (0.90) after personalisation.

Fig. 6. Confusion matrices for All-Data (left) and knnSamp+ (right).

Table 3. Precision, recall and F1 scores by class for All-Data and knnSamp+.

All-Data knnSamp+

Precision Recall F1 Score Precision Recall F1 Score

Lying 0.80 0.49 0.61 0.81 0.91 0.86

Sitting 0.62 0.92 0.74 0.90 0.87 0.89

Standing 0.91 0.82 0.86 0.92 0.85 0.89

Up stairs 0.63 0.57 0.60 0.68 0.57 0.62

Down stairs 0.79 0.70 0.74 0.75 0.67 0.71

Walk fast 0.63 0.66 0.65 0.70 0.72 0.71

Walk normal 0.53 0.51 0.52 0.68 0.60 0.64

Walk slow 0.69 0.72 0.70 0.80 0.74 0.77

Jogging 0.93 0.98 0.95 0.82 1.00 0.90

A similar pattern can also be observed with the three different walking speeds.
From Fig. 6, it can be observed that without personalisation, only about half (559
examples) of walking normal are predicted correctly, with most of the other
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half split between walking slow (201 examples) and walking fast (276 examples)
giving a low recall score of 0.51. In addition, 240 walking fast examples are miss-
classified as walking normal which results in a low precision score for walking
normal of 0.53. However, with personalisation, the number of walking normal
examples predicted correctly increases to 674 while the number of misclassified
walking fast examples reduces to 95 which improves the recall and precision
scores to 0.68 and 0.60 respectively.

In contrast, the activities down stairs and jogging suffer a slight decline in
F1 score, from 0.74 and 0.95 without personalisation to 0.71 and 0.90 with
personalisation respectively. With personalisation, more examples from other
classes are being misclassified as jogging. This requires further investigation to
identify the root cause. However, jogging still benefits from higher recall from
0.98 to 1.0 with personalisation.

7 Conclusion

In this paper, we have presented a novel nearest neighbour sampling approach
for personalised HAR that selects examples from a subject-independent training
set that are most similar to a small number of user provided examples. In this
way, much of the irrelevant examples in the general model are eliminated, the
model is personalised to the user, and accuracy is improved. Evaluation shows
our approach to outperform a general model by up to 5% of F1 score. Another
advantage of our approach is that it avoids the practical limitation of subject-
dependent training by reducing the data collection burden on the user.

Many different representation approaches have been proposed for HAR with-
out a definitive best approach, partly due to the differences in configurations (e.g.
sensor types, sensor locations etc.) and partly due to different mix of activity
classes. Therefore, it is important to determine which representation approach is
best suited for the configuration used in SelfBACK i.e., a single wrist-mounted
accelerometer, as well as the types of activities. Accordingly, another contri-
bution of this paper is a comparative study of five representation approaches
including state-of-the-art CNNs on our dataset. Results show a frequency trans-
form approach using DCT coefficients to outperform the rest.

A number of considerations have been identified for future work. Firstly, a
method that further reduces if not eliminates the need for user annotated data
will further improve the user experience of our system. Secondly, evaluations in
this paper have only been applied on short time durations that immediately fol-
low the user examples. Test data covering longer durations are needed in order
to evaluate the performance of the personalised model over longer periods of
time. If the accuracy of the model drops due to long term changes in context,
it would be interesting to be able to identify these context changes in order to
initiate further rounds of personalisation. Note that success in automatic acqui-
sition of labelled examples should significantly aid this process of continuous
personalisation with minimal impact on user experience.
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