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Abstract. This work focuses on the design and validation of a CBR
system for efficient face recognition under partial occlusion conditions.
The proposed CBR system is based on a classical distance-based classi-
fication method, modified to increase its robustness to partial occlusion.
This is achieved by using a novel dissimilarity function which discards
features coming from occluded facial regions. In addition, we explore
the integration of an efficient dimensionality reduction method into the
proposed framework to reduce computational cost. We present experi-
mental results showing that the proposed CBR system outperforms clas-
sical methods of similar computational requirements in the task of face
recognition under partial occlusion.

Keywords: Face recognition · Partial occlusion · Dimensionality reduc-
tion

1 Introduction

This work focuses on the design and implementation of a Case-Based Reasoning
(CBR) system for efficient face recognition, with a special focus on robust face
recognition under partial occlusion conditions1. Although the problem of face
recognition has been extensively addressed in the available literature, most state-
ot-the-art proposals impose a series of constraintsthat limit their applicability in
real world scenarios, where only a limited amount of computational power and
training information is available.

The CBR method proposed in this paper seeks to cover the full recognition
process (i.e., face detection, normalization, and identity prediction). In addi-
tion, we focused on methods which are able to work under the constraints of
low computational power and little training information. As opposed to other
occlusion-robust face recognition systems, the proposed CBR framework does
not make any assumption about the nature of occlusion that it will have to
face at test time. We also studied the possible integration of an efficient dimen-
sionality reduction method in the proposed framework to reduce computational

1 In the context of face recognition, partial occlusion refers to the situation where
some parts of the faces the system must identify are covered by some artefact.
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cost. The experimental results presented in this paper show that the proposed
method outperforms traditional face recognition methods in the task of partially
occluded face recognition.

The rest of this paper is structured as follows. Section 2 reviews some of
the most relevant works in the field of face recognition, with special attention to
approaches robust to face occlusion. The proposed CBR system and the different
preprocessing methods are described in detail in Sect. 3. Section 4 empirically
compares the proposed CBR system with some alternative classical methods,
with special emphasis on partial occlusion scenarios. Finally, Sect. 5 summarizes
the conclusions of this work and outlines some promising future research lines.

2 Related Work

In this section, we summarize some of the most relevant works on the topic
of face recognition under partial occlusion. Ekenel [5] hold the idea that most
of the accuracy loss registered by face recognition systems when dealing with
partially occluded images is due to alignment errors, rather than information
corruption by the occlusion. To address this problem, they proposed a method
which seeks to minimize the distance between each sample in the training set
and a new observation by evaluating a number of different alignment variations.
As a consequence, searching for the best alignment variation requires hundreds
of comparisons for each training sample. Although this method achieved notable
accuracy rates, the computational cost supposes a major drawback.

Other authors [12,16] divide facial images into a number of delimited regions.
After this, they seek to model those occlusion areas by using Principal Compo-
nent Analysis or a Self Organized Map. Nevertheless, most occlusion-robust face
recognition systems include a previous step to identification where they deter-
mine which parts of the images are affected by occlusion. Some studies used man-
ually annotated occluded/non-occluded facial image patches to explicitly train a
classifier [13]. However, this approach has the drawback of needing occluded face
images during the training stage. As a consequence, if the nature of occlusion
faced by the system in production is not the same as during the training stage,
the accuracy of the occlusion detector might be affected.

Using color-based segmentation methods to detect occluded facial regions
has also been proposed in the literature [7]. However, these methods are very
sensitive to lighting conditions and assume that the occlusion is not caused
by artefacts with human-skin color. More recently, several authors have tried
to apply the recent advances in the field of deep learning to the task of face
recognition. Nowadays, the state-of-the-art on one of the most widespread face
recognition datasets, namely the Labeled Faces in the Wild (LFW), is held by a
deep neural network trained by the scientists at Baidu [9]. The major drawbacks
of this approach are the computational costs and the need for a large training
dataset.

Finally, it is worth noting the CBR methodology has been applied in the
literature to acquire emotional context about the users of recommender systems,
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based on their facial expressions [10]. However, to the best of our knowledge the
CBR methodology has not yet been applied to the task of facial recognition
under partial occlusion.

3 Proposed Framework

In this section, we describe in detail both the proposed CBR framework and
the selected pre-processing steps needed for face recognition. At test time, when
the system is presented with an image that contains a human face in it, the
following processing stages are executed: (1) A region of interest is determined
for the human face in the image; (2) the detected face is aligned2; (3) the image is
pose-normalized, rotating and scaling the face to a standard size and orientation;
(4) the lighting conditions of the image are normalized; (5) a feature extraction
method is applied; and finally (6) the proposed retrieval and reuse stages are
executed to emit a prediction regarding the identity of the person in the original
image (Fig. 1).

Fig. 1. Architecture of the proposed CBR framework and preprocessing steps.

3.1 Preprocessing

This section describes the successive preprocessing stages executed before the
actual retrieval and reuse stages in the proposed CBR framework.

Face Detection. The face detection stage is in charge of finding a preliminary
Region of Interest (ROI) for the human face present in the input image. One of
the most widespread face detection methods is based on Histogram of Oriented
Gradients (HOG) descriptors. This descriptor counts the number of occurrences
of each gradient orientation in localized regions of the image. The face detector is
then build using a linear classifier with a sliding window over the HOG descriptor
of the image. For our experiments, we used the HOG face detector provided by
the Dlib C++ library [8].
2 In the context of face recognition, face alignment refers to the task of locating a

series of facial key-points in an image, such as eyes, nose, mouth corners, etc.
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Face Alignment. Face alignment consist of automatically predicting the loca-
tion of a series of facial key-points in the input image. Some of the most popular
methods are based on the idea of cascade regression, which provides a greater
accuracy and faster processing times than classical methods. In particular, our
framework leverages the face alignment algorithm proposed by V. Kazemi in
2014 [17]. Here, the author proposes using a cascade regression model where
each successive level refines the alignment coordinates proposed by the previous
level. In particular, the base regression models used by V. Kazemi consisted of
regression-tree ensembles. For the experiments with automatic face alignment in
this paper we used the pretrained model provided by Dlib C++ [8].

Pose Normalization. Once face detection and alignment have been performed,
the estimated position of facial key-points in the input image is available. A
pose-normalized image is then generated with these facial key-points as a basis
by rotating and cropping the image to display the aligned face in its center, in
a vertical pose. In addition, the resulting image is resized to a standard size.

Light Normalization. Light normalization algorithms seek to reduce the
amount of intra-class variance exhibited by images from face recognition tasks
with unconstrained lighting conditions. Histogram Equalization (HE) is arguably
the simplest option for light normalization. This method maps the histogram of
the original image H(i) to a more uniform distribution. To achieve this, the so
called cumulative distribution function H ′(i) is used:

H ′(i) =
i∑

j=0

H(j) (1)

Once H ′(i) has been computed, it is normalized to ensure that its maximum
value corresponds to the maximum valid pixel value in the desired image format.
Next, the following function is used to calculate pixel intensities in the resulting
image:

equalizada(x, y) = H ′(original(x, y)) (2)

Due to its simplicity, efficiency and good performance, HE was used to normalize
the lighting conditions in all experiments in this paper.

3.2 Feature Extraction: Local Binary Patterns

Using raw pixel values as features to directly train some classification algorithm
is not very practical. The main reason for this being that such representation of
images often contains undesired information such as noise or lighting variations.
In addition, the number of pixels in images is usually too big to train a classi-
fier efficiently. In this paper, we focus on a specific family of feature descriptors
known as Local Binary Patterns (LBP) [14]. As described in the following sec-
tions, the localized nature of this descriptor will allow us to maintain features
from occluded regions isolated from those extracted from visible parts of the
face.
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The LBP descriptor labels pixels in an image by considering value differences
with their neighbors. This label is treated afterwards as a binary number. The
use of a circular neighborhood and bilinear interpolation over non-integer pixel
coordinates enables the use of this descriptor for an arbitrary neighbor number
and neighborhood radio [15]. The notation LBPP,R is often used to refer to the
LBP descriptor with P neighbors and a radio of value R. It has been proved
that, using the LBP8,1 descriptor, almost 90% of extracted labels are uniform
(i.e., its binary representation contains two transitions at most) [15]. For this
reason, a variant of LBP was designed where non-uniform patterns are merged
together in a single label. This variant of the descriptor is known as uniform
LBP (LBPu

P,R).
Before training a classifier, the LBP representation is often refined by dividing

the image in a number of blocks (arranged in a grid structure) and counting the
number of concurrences of patterns in each block. After this, the corresponding
histograms of each block are concatenated to form the final descriptor. This
process in known as Local binary pattern histograms (LBPH).

3.3 Identification: Occlusion-Robust Retrieval and Reuse

The core proposal of this paper consists of a novel dissimilarity function which
dynamically inhibits the use of corrupted features while retrieving the most
relevant cases from the Case-Base. This section describes how this dissimilar-
ity function is computed and its usage in the context of the proposed CBR
framework.

Retrieval and Reuse. First, we introduce a method to detect partial occlusion
in LBPH blocks. Conveniently, our method requires no a priori knowledge about
the nature of occluded blocks. We define the minimum local distance for the his-
togram of an LBP block as the minimum squared Euclidean distance obtained
when comparing this histogram with the LBP histograms corresponding to the
same facial region in the descriptors stored in the Case-Base. Then, the only
assumption made by our method is that minimum local distances of occluded
blocks are usually larger than those of unoccluded blocks. To provide insight
into the veracity of this assumption, we calculated the distribution of minimum
local distances for occluded and unoccluded blocks in the ARFace database3;
the resulting distributions are shown in Fig. 2. Although some overlapping exists
among the two distributions, it might be possible to define a conservative thresh-
old to discard most occluded blocks. More details on how an appropriate value
for this threshold is determined can be found in Sect. 4.

Formally, the Case-Base of our framework is defined as a set of identity label
y and LBPH descriptor x pairs:

CB = {(y(i), x(i)), i = 1, 2, . . . , n} (3)

3 See Sect. 4 for details about the evaluation database.
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Fig. 2. Differential distribution of minimum local distances for occluded and unoc-
cluded blocks in the ARFace database.

When an unlabeled image I is presented to the system, it is first transformed
by the successive preprocessing steps defined in the previous section. Afterwards,
the LBPH descriptor x ∈ R

d of image I is generated and the retrieval stage
begins. Our proposed retrieval stage begins by computing the n × d/p local
distance matrix L, where p is the size of each histogram concatenated to form
the LBPH descriptors. Each entry Lij in this matrix corresponds to the local
distance between the j-th histogram in x and the j-th histogram in the i-th
descriptor in the Case-Base; formally:

Li,j = ||(xp(j−1)+1, · · · , xpj) − (x(i)
p(j−1)+1, · · · , x

(i)
pj )||2

for i = 1, 2, · · · , n and j = 1, 2, · · · , d/p
(4)

Based on this matrix and the desired threshold value for occlusion detection, the
retrieve stage computes an occlusion mask M ∈ {0, 1}d/p that determines which
of the histograms that conform descriptor x are considered as occluded:

Mj = Th(min(coljL))

Th(x) =

{
1 if x < threshold

0 if x > threshold

(5)

Using this occlusion mask, the retrieval stage of the proposed CBR framework
finds the k most similar cases to x in the Case-Base, according to the following
dissimilarity function:

d(x, x(i)) =
j=d/p∑

j=1

Mj · Li,j (6)
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Intuitively, this dissimilarity function corresponds to the squared Euclidean dis-
tance between the features in x and x(i) that do not come from occluded facial
zones (as predicted in the previous step). In other words, the proposed similarity
measure dynamically inhibits the use of corrupted features while retrieving the
most relevant cases from the Case-Base. Note that local distances computed in
Eq. 4 are reused by the dissimilarity function. This is possible due to the fact
that the squared Euclidean distance between two vectors is equal to the sum of
squared Euclidean distances between segments of those vectors:

||x − y||2 = ||z||2 = z21 + z22 + · · · + z2i + z2i+1 + · · · + z2j

= ||(z1, · · · , zi)||2 + ||(zi+1, · · · , zj)||2
= ||(x1 − y1, · · · , xi − yi)||2 + ||(xi+1 − yi+1, · · · , xj − yj)||2

(7)

Afterwards, the reuse stage analyses the retrieved cases and their labels to emit
a prediction regarding the identity associated to the new case. To this extent,
we use the weighted voting scheme proposed in [6]. First, the dissimilarities are
used to compute the weight vector:

wj =
1

d(x, x(j))
for j = 1, · · · , k (8)

As explained in [6], the weight vector can be used to estimate the probability
that sample x belongs to class c by:

P (y = c | x) =

∑k
j=1 wj · I(yj = c)

∑k
j=1 wj

(9)

where I(yj = c) returns a value of one if the j-th retrieved case belongs to class
c, and zero otherwise. Finally, the reuse module obtains the predicted class label
as follows:

y = arg max
c∈C

P (y = c | x) (10)

where C is the set of all possible class labels (identities).

Computational Complexity. The computational complexity of classical case-
retrieval methods (i.e., nearest neighbour search) mainly depends on the method
chosen to store the Case-Base. The simplest storage and search method, known
as Naive search, stores the cases of the Case-Base without any particular order
and performs a sequential search over the complete Case-Base in test time. As a
consequence, the computational complexities of training and test phases are O(1)
and O(nd + nk) respectively4, where n is the number of training cases, d their
dimension and k the desired number of nearest neighbours to be considered [18].

4 This complexity corresponds to the version of the algorithm which computes and
stores dissimilarities in a vector of dimension n. If distances are re-computed to find
each nearest neighbour, the complexity is O(knd).
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The hyperparameter k is usually considered as a constant. Hence, the complexity
of test stage simplifies to O(nd).

Regarding the proposed method, the training stage has a constant computa-
tional cost O(1) as no computation is performed. For test stage, the computa-
tions defined by Eqs. 4 and 5 can be done at the cost of time O(n(dp · p + d

p )),
which simplifies to O(nd) given that p > 1. Finding the most similar cases in
the Case-Base according to Eq. 6 takes O(n · d

p + kn) time; which can be sim-
plified to O(nd) by considering hyperparameters p and k as constants. Finally,
the remaining computations which correspond to the voting process have a com-
plexity of O(k). Therefore, the computational complexity of the complete test
stage is O(nd) + O(nd) + O(k), which simplifies to O(nd) given that n >> k.
Hence, we can conclude that the scalability of the proposed retrieval and reuse
stages is equivalent to that of classical nearest neighbour search methods.

Revise and Retain. The Revise and Retain stages enable the over-time learn-
ing capabilities of the CBR methodology. In the context of the proposed CBR
system, the revision should be carried out by a human expert who determines
whether an image has been assigned the correct identity. The proposed method
can be categorized as a lazy learning model, as the generalization beyond train-
ing data is delayed until a query is made to the system. As a consequence, the
proposed system does not involve training any classifier or model apart from
the storage of cases in the Case-Base (as opposed to other occlusion-robust face
recognition approaches [12,13,16]). For this reason, retaining revised cases only
involves storing their case representation into the Case-Base. In addition, this
mechanism can also be applied to provide the CBR system with knowledge of
previously unseen individuals, thus extending the number of possible identities
predicted by the system.

3.4 Multi-scale Local Binary Pattern Histograms

Several studies have found that higher recognition accuracy rates can achieved
by combining LBPH descriptors extracted form the same image at various scales
[2,3]. In spite of containing some redundant information, the high-dimensional
descriptors extracted in this manner are known to provide classification methods
with additional information which enables higher accuracy rates. Unfortunately,
the computational costs derived from using such a high-dimensional feature
descriptor suppose a serious problem. Apart from that, this image descriptor
is perfectly compatible with the proposed method. The only requirement is that
histograms corresponding to the same image region are placed next to each other
when forming the final descriptor. Then, selecting the correct value for p, the
corresponding histograms for a specific face region will be treated as a single
occlusion unit (i.e., a set of features which our method considers as occluded or
non-occluded as a whole).
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Local Dimensionality Reduction with Random Projection. This section
tries to address the problem of high-dimensionality of multi-scale LBPH descrip-
tors. In the literature, Chen et al. [3] proposed using an efficient dimensionality
reduction algorithm to reduce the size of multi-scale LBP descriptors. However,
this approach is not directly compatible with the method proposed in the pre-
vious section. The reason for this being that we need to keep features from
different occlusion units (i.e., facial regions) isolated form each other, so we can
later detect and inhibit features coming from occluded facial areas. Classical
dimensionality reduction methods such as Principal Component Analysis and
Linear Discriminant Analysis produce an output feature space were each com-
ponent is a linear combination of input features, thus being incompatible with
our occlusion detection method. To overcome this limitation, we propose per-
forming dimensionality reduction at a local level. To this extent, the histograms
extracted from a specific facial region (at various levels) are considered a sin-
gle occlusion unit. Then, the Random Projection [1] (RP) algorithm is applied
locally to each occlusion unit. As opposed to other dimensionality reduction
methods, RP generates the projection matrix from a random distribution. As a
consequence, the projection matrix is data-independent and cheap to build.

The main theoretical result behind RP is the Johnson-Lindenstrauss (JL)
lemma. This result guarantees that a set of points in a high dimensional space can
be projected to a Euclidean space of much lower dimension while approximately
preserving pairwise distances between points [4]. Formally, given 0 < ε < 1, a
matrix X with n samples from R

p, and k > 4 · ln(n)/(ε2/2 − ε3/3) a linear
function f : Rp → R

k exists such that:

(1 − ε)||u − v||2 ≤ ||f(u) − f(v)||2 ≤ (1 + ε)||u − v||2 ∀u, v ∈ X (11)

In particular, the map f : R
p → R

k can be performed by multiplying data
samples by a random projection matrix R drawn from a Gaussian Distribution:

f(x) =
1
k

x · R (12)

Fig. 3. Features are grouped together in the final descriptor according to the facial
region they come from.

As previously said, in order to apply RP in the context of the proposed
method, me must first ensure that histograms coming from the same face region
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are placed together in the final descriptor5 (see Fig. 3). Afterwards, we can apply
the RP method locally to each occlusion unit. Formally, let x ∈ R

d be a multi-
scale LBPH descriptor where each occlusion unit consists of p features, k a
natural number such that k < p, and R a p × k random matrix whose entries
have been drawn from N (0, 1). The reduced version of descriptor x is computed
as follows:

x′ = f((x1, · · · , xp)) || f((xp+1, · · · , x2p)) || · · · || f((xd−p+1, · · · , xd)) (13)

where || denotes vector concatenation. Note that, thanks to the JL-lemma, for a
sufficiently large k value the result of applying the proposed retrieval and reuse
stages over reduced descriptors is approximately the same as doing it over the
original high-dimensional descriptors. To prove this, it suffices to consider the
different computations carried out by the proposed retrieval and reuse stages.
First, the local distance matrix is computed according to Eq. 4. If we reduce
both the new case x and the descriptors x(i) in the Case-Base as described in
Eq. 13, and set hyperparameter p to the new size of occlusion units (i.e., p = k),
Eq. 4 can be rewritten as follows:

L′
i,j = ||(x′

k(j−1)+1, · · · , x′
kj) − (x′(i)

k(j−1)+1, · · · , x
′(i)
kj )||2

for i = 1, 2, · · · , n and j = 1, 2, · · · , d′/k
(14)

where x′ ∈ R
d′

. Then, applying the JL-lemma, for a sufficiently large k value we
can ensure that:

(1 − ε) Li,j ≤ L′
i,j ≤ (1 + ε) Li,j

for i = 1, 2, · · · , n and j = 1, 2, · · · , d′/k
(15)

In other words, the distortion induced in matrix L′ with respect to L is bounded.
The following steps of the proposed method are based on L′. Therefore, if the
difference between L′ and L is small enough, the proposed retrieval and reuse
stages will provide the same results when executed over the reduced descriptors.
Section 4 reports on several experiments where the descriptors were reduced with
this approach.

4 Experimental Results

This section reports on a series of experiments carried out to assess the perfor-
mance of the proposed CBR framework in the task of face recognition under
partial occlusion. We evaluated the proposed system over a database of facial
images with different types of occlusion and using different image descriptors.
In addition, we evaluate how much accuracy is lost by using an automated face
alignment method as compared to manual human annotations. In particular,
5 To ease this, we always select gird sizes such that occlusion units defined as cells in

the smallest grid contain an integer number of cells from the bigger grids.
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the evaluation dataset is the ARFace database [11]. This dataset contains about
4,000 color images corresponding to 126 individuals (70 men and 56 women). The
images display a frontal view of individuals’ faces with different facial expres-
sions, illumination conditions and partial occlusions. The dataset also includes
annotations with the exact bounding boxes of faces inside images.

We used the images in the ARFace dataset to create several subsets for our
experiments. In particular, we arranged a training set, a validation set, and
several test sets with different characteristics:

– Training set : one image per individual (neutral, uniform lighting, first ses-
sion).

– Validation set : almost one image per individual6 (neutral, uniform lighting,
second session).

– Lighting test set : almost four images per individual (neutral, illumination
left/right, first and second sessions).

– Glasses test set : almost two images per individual (sunglasses, uniform light-
ing, first and second session).

– Scarf test set : almost two images per individual (scarf, uniform lighting, first
and second session).

We evaluate the proposed method against other common classification meth-
ods used in the field of face recognition, namely Logistic Regression (LR), Sup-
port Vector Machine (SVM) and Naive Bayes (NB). In the case of the proposed
method, several hyperparameters need to be adjusted. Hyperparameter p deter-
mines the size of the occlusion unit, and is fully determined by the parametriza-
tion of the LBP descriptor. The remaining hyperparameter is the threshold for
occlusion detection. In an ideal scenario, a set of images with partial occlusion
would be available to adjust this value. However, one of the goals of this work
was to design a method which could operate without any information on the
nature of occlusion during training time. Fortunately, it is possible to find a
suitable threshold value with a validation set of images without occlusion, even
if such validation set contains less than one image per individual. This can be
achieved by following these steps:

1. The threshold is initialized to a sufficiently large value (for large threshold
values, the proposed method behaves exactly like wkNN. We can use this to
determine whether the threshold was initialized to a sufficiently large value).

2. The proposed CBR framework is trained over the Training set and evaluated
over the Validation set.

3. The threshold value is decreased. Steps 2 and 3 are repeated until a significant
loss in the accuracy is registered. This will indicate that some non-occluded
blocks in the validation set have been misclassified as occluded, so the thresh-
old value is set to the previous value.

The evaluation protocol for all our experiments has been the following: (1) the
classifier under evaluation is trained over the training set; (2) the validation set
6 Second session images are not available for all individuals in the dataset.
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is used to perform hyperparameter selection; (3) the classifier, parametrized as
determined in the previous step, is re-trained over the union of the training set
and the validation set; (4) the trained classifier is evaluated over the different
test datasets available.

Experimental Results with Automatic Face Alignment. Table 1 presents
the results obtained by using the automatic face detection and alignment meth-
ods explained in Sect. 3.1. For single scale descriptors, we used LBPu

8,2 his-
tograms over a 8 × 8 grid, thus obtaining a descriptor of 3, 776 dimensions. In
the case of multi-scale descriptors, we used LBPu

8,2 histograms over 12 × 12 and
6×6 grids. The resulting descriptor dimension was therefore 10, 620. Finally, for
our experiments with local RP, each 295-dimensional occlusion unit in the high-
dimensional multi-scale descriptor was reduced to 150 features. Therefore, the
complete descriptor ended up having a dimension of 5, 400 (i.e., approximately
half the original dimension).

Table 1. Experimental results with automatic face alignment.

Features Classifier Lighting Scarf Glasses

LBPu
8,2 wkNN [6] 81.4% 39.4% 30.0%

LBPu
8,2 Proposed CBR p = 59;

threshold = 27
96.2% 83.6% 50.2%

LBPu
8,2 SVM (poly kernel) 78.1% 36.9% 25.1%

LBPu
8,2 Logistic regression 84.8% 45.0% 23.4%

LBPu
8,2 Naive Bayes 82.5% 43.7% 20.1%

multi-scale LBPu
8,2 wkNN [6] 98.8% 73.3% 34.9%

Multi-scale LBPu
8,2 Proposed CBR p =

295; threshold = 17
99.2% 89.2% 50.6%

Multi-scale LBPu
8,2 SVM (poly kernel) 88.1% 59.6% 27.9%

Multi-scale LBPu
8,2 Logistic regression 96.2% 75.1% 28.3%

Multi-scale LBPu
8,2 Naive Bayes 86.29% 72.1% 37.03%

Multi-scale LBPu
8,2 + RP wkNN [6] 98.5% 66.5% 31.2%

Multi-scale LBPu
8,2 + local

RP (see Sect. 3.4)
Proposed CBR p =
150; threshold = 100

98.8% 90.5% 51.0%

Multi-scale LBPu
8,2 + RP SVM (poly kernel) 85.5% 55.3% 20.9%

Multi-scale LBPu
8,2 + RP Logistic regression 93.3% 69.0% 25.5%

Multi-scale LBPu
8,2 + RP Naive Bayes 84.0% 54.5% 27.1%

Experimental Results with Manual Face Alignment. Table 2 compiles the
results obtained by using the manual face annotations provided by the authors
of the ARface database. Again, for single scale descriptors we used LBPu

8,2 his-
tograms over a 8 × 8 grid, thus obtaining a descriptor of 3, 776 dimensions. In
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the case of multi-scale descriptors, we used LBPu
8,2 histograms with 12× 12 and

6 × 6 grid sizes. Hence, the resulting descriptor dimension was 10, 620. Finally,
for our experiments with local RP, each 295-dimensional occlusion unit in the
high-dimensional multi-scale descriptor was reduced to 150 features. Therefore,
the complete descriptor had a dimension of 5, 400.

Table 2. Experimental results with manual face alignment.

Features Classifier Lighting Scarf Glasses

LBPu
8,2 wkNN [6] 95.5% 76.5% 69.5%

LBPu
8,2 Proposed CBR p = 59;

threshold = 30
99.5% 91.5% 83.5%

LBPu
8,2 SVM (poly kernel) 96.5% 75.0% 61.0%

LBPu
8,2 Logistic regression 98.5% 81.0% 68.0%

LBPu
8,2 Naive Bayes 94.0% 76.5% 69.0%

Multi-scale LBPu
8,2 wkNN [6] 100% 92.0% 86.0%

Multi-scale LBPu
8,2 Proposed CBR p =

295; threshold = 111
99.5% 97.0% 92.0%

Multi-scale LBPu
8,2 SVM (poly kernel) 100.0% 92.0% 84.5%

Multi-scale LBPu
8,2 Logistic regression 100.0% 93.0% 89.5%

Multi-scale LBPu
8,2 Naive Bayes 95.5% 93.5% 89.0%

Multi-scale LBPu
8,2 + RP wkNN [6] 100% 92.0% 86.0%

Multi-scale LBPu
8,2 +

Local RP (see Sect. 3.4)
Proposed CBR p =
150; threshold = 111

99.5% 97.0% 92.0%

Multi-scale LBPu
8,2 + RP SVM (poly kernel) 100.0% 92.0% 84.5%

Multi-scale LBPu
8,2 + RP Logistic regression 100.0% 93.0% 89.5%

Multi-scale LBPu
8,2 + RP Naive Bayes 95.5% 93.5% 89.0%

5 Discussion and Future Work

This work proposed a novel CBR framework for occlusion-robust face detec-
tion. The retrieval and reuse stages of the system use a modified version of
the weighted k-Nearest Neighbour [6] algorithm to dynamically inhibit features
from occluded face regions. This is achieved by using a novel similarity function
which discards local distances imputable to occluded facial regions. As opposed
to recent deep learning-based methods, the proposed system can operate in
domains where only a small amount of training information is available, and
does not require any specialized computing hardware to run.

Our theoretical analysis showed that the scalability of the proposed method is
equivalent to that of classical Nearest Neighbour retrieval methods. In addition,
we proved that the Random Projection algorithm can be applied in a local
manner to reduce the dimension of multi-level LBPH descriptors, while ensuring
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that the proposed retrieval and reuse stages will perform approximately as well
as they do over the original high-dimensional descriptors.

Experimental results carried out over the ARFace database show that, in
most cases, the proposed method outperforms classic classification algorithms
when using LBPH features to identify facial images with partial occlusion. In
addition, the proposed framework exhibits a better performance under uncon-
trolled lighting conditions.

Our experimental results also suggest that much of the accuracy loss regis-
tered when working with occluded images is imputable to automatic-alignment
errors. In this regard, investigating how automatic face alignment methods can
be made more robust to partial facial occlusion emerges as very interesting future
research topic. In addition, we intend to evaluate the compatibility of the pro-
posed CBR framework with other local feature descriptors rather than LBPH
and other dimensionality reduction methods, and assess the effectiveness of our
method on other datasets.
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tions from facial expressions. In: Lamontagne, L., Plaza, E. (eds.) ICCBR
2014. LNCS, vol. 8765, pp. 245–259. Springer, Cham (2014). doi:10.1007/
978-3-319-11209-1 18

11. Martinez, A.M.: The AR face database. CVC Tech. Rep. 24 (1998)

http://dx.doi.org/10.1007/978-3-540-74549-5_85
http://arxiv.org/abs/1506.07310
http://dx.doi.org/10.1007/978-3-319-11209-1_18
http://dx.doi.org/10.1007/978-3-319-11209-1_18


184 D. López-Sánchez et al.

12. Mart́ınez, A.M.: Recognizing imprecisely localized, partially occluded, and expres-
sion variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach.
Intell. 24(6), 748–763 (2002)

13. Min, R., Hadid, A., Dugelay, J.-L.: Improving the recognition of faces occluded by
facial accessories. In: 2011 IEEE International Conference on Automatic Face &
Gesture Recognition and Workshops (FG 2011), pp. 442–447. IEEE (2011)
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15. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell. 24(7), 971–987 (2002)

16. Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Recognizing partially occluded, expres-
sion variant faces from single training image per person with SOM and soft k-NN
ensemble. IEEE Trans. Neural Netw. 16(4), 875–886 (2005)

17. Tzimiropoulos, G.: Project-out cascaded regression with an application to face
alignment. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3659–3667. IEEE (2015)

18. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. VLDB 98, 194–205
(1998)


	A CBR System for Efficient Face Recognition Under Partial Occlusion
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Preprocessing
	3.2 Feature Extraction: Local Binary Patterns
	3.3 Identification: Occlusion-Robust Retrieval and Reuse
	3.4 Multi-scale Local Binary Pattern Histograms

	4 Experimental Results
	5 Discussion and Future Work
	References


