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Abstract. Accurate classification and localization of anatomical struc-
tures in images is a precursor for fully automatic image-based diagnosis
of placental abnormalities. For placental ultrasound images, typically
acquired in clinical screening and risk assessment clinics, these struc-
tures can have quite indistinct boundaries and low contrast, and image-
level interpretation is a challenging and time-consuming task even for
experienced clinicians. In this paper, we propose an automatic classifi-
cation model for anatomy recognition in placental ultrasound images.
We employ deep residual networks to effectively learn discriminative fea-
tures in an end-to-end fashion. Experimental results on a large placental
ultrasound image database (10,808 distinct 2D image patches from 60
placental ultrasound volumes) demonstrate that the proposed network
architecture design achieves a very high recognition accuracy (0.086 top-1
error rate) and provides good localization for complex anatomical struc-
tures around the placenta in a weakly supervised fashion. To our knowl-
edge this is the first successful demonstration of multi-structure detection
in placental ultrasound images.

1 Introduction

Ultrasonography is a low-cost, non-invasive and non-radiative technique used
worldwide for clinical assessment of the human placenta. Expertise is required
to both acquire placental ultrasound images and to perform clinical diagnosis
from them. These images are particularly challenging for automated biomedical
image analysis as the contrast between the textured areas of interest is often
low.

Abnormally invasive placentation (AIP) is a general term that covers con-
ditions where the human placenta adheres to the uterus in an invasive fashion.
Various diagnostic criteria based on placental ultrasound imaging have been
reported or suggested in the literature to characterise this condition [3]. The gen-
eral approach is to first detect and localise anatomical structures such as the pla-
centa itself, the utero-placental interface and the myometrium within grayscale
ultrasound images (B-Mode). Vascular examination using Doppler ultrasound
imaging can provide further evidence to support diagnosis (analysis of Doppler
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Fig. 1. (a) A placental ultrasound image taken from the sagittal plane. (b) Sam-
ples from four image categories cropped from sagittal planes, the bottom row shows
the reference segmentation mask of the follow anatomical structures: placenta (PL),
subcutaneous tissue (ST) and myometrium (MY). Please note that all segmentation
masks that appear in this paper are used solely for illustration purpose rather than
training models. (Color figure online)

is beyond the scope of the current paper). However, interpretation of the criteria
by sonographers is quite inclined to subjectivity [4]. Moreover, manual search
for visual evidence among sequences of 2D or 3D placental ultrasound data is
sometimes too time-consuming to be considered in clinical workflow.

The contributions in this paper are twofold. First, we propose a deep con-
volutional neural network (CNN) model for describing anatomical structures
present in a 2D placental ultrasound image. This image-level model achieves
accurate classification (0.086 top-1 error rate) of the four multi-anatomical struc-
ture combinations typically observed in a 2D placental image (as illustrated in
Fig. 1), namely (1) placenta only (PL); (2) placenta and myometrium (PL+MY);
(3) placenta and subcutaneous tissue (PL+ST); (4) placenta, myometrium and
subcutaneous tissue (PL+MY+ST). Second, we show that the proposed model
achieves good localization of anatomical structures (placenta, myometrium, sub-
cutaneous tissue) based on our multi-structure classification formulation. This is
achieved by incorporating a global average pooling (GAP) layer before the fully-
connected layer. Thus we demonstrate that image-level classification suffices for
localization of anatomical structures in a weakly supervised fashion without any
additional training.

2 Related Work

Weakly-Supervised Object Localization: CNN-based weakly-supervised
object localization has been a popular research topic in computer vision in recent
years and applications are starting to appear in the medical image analysis liter-
ature [10], though not to our knowledge for placental ultrasound image analysis.
It relies only on image-level labels, rather than annotations in a fully-supervised
setting (e.g. manually-annotated bounding box or dense pixel-level annotation),
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to learn from cluttered scenes with multiple objects. It is of great research inter-
est to develop weakly-supervised localization models that perform comparably
to its fully-supervised counterparts due to the fact that the former saves a con-
siderable amount of time in annotation and is less prone to subjectivity. Recent
work has further demonstrated that CNNs originally trained for image classifica-
tion can be used to localize objects via analysis of representative features across
layers [1,11,13,16]. For instance, Simonya et al. proposed a visualization tech-
nique by computing the gradient of the class score with respect to the input
image [13]. The resulting saliency map pinpoints the location of objects corre-
lated with the class label. Oquad et al. proposed a method to transfer mid-level
image representations and explicitly search for high-score regions [11]. Zhou et al.
recently proposed class activation mapping (CAM) to localize regions with dis-
criminative features in an end-to-end fashion [16]. In general, weakly-supervised
localization relies only on image-level classification, which is a desirable property
that makes object localization a preferable by-product of classification without
additional training.

3 Learning to Classify and Localize with Residual Units

Problem Formulation: Our approach is built on an observation that there
are four local anatomical scenarios, which clinicians observe in routine placenta
scans, namely PL, PL+MY, PL+ST, PL+MY+ST. Thus we have designed a
CNN to distinguish between these classes. Further, since the placenta (PL) is
shared in all classes it acts as a distractor for localization. To be discriminative,
the other three categories are forced to activate their unique regions, which can
then be visualized by CAM as is described later. First, however, we describe the
general CNN architecture we use.

Deep Residual Learning for Placental Ultrasound Images: Deep resid-
ual networks (Res-Net [7,8]) have shown impressive representative ability and
good convergence behaviours in recent large-scale natural image classification
tasks (e.g. ImageNet ILSVRC 2015 [12]), yielding state-of-the-art performance.
In a recent work [8], a simple and effective identity mapping structure was pro-
posed to enable smooth information propagation through the entire network. In
addition, large-scale data experiments reveal that the full pre-activation residual
unit, as shown in the top-left corner of Fig. 2, consistently outperforms the orig-
inal design by putting batch normalization [9] and rectified linear unit (ReLU)
before convolution. This network design modification has been found to acceler-
ate learning and improves global regularization. In general, a Res-Net typically
contains a number of basic residual units. Each unit performs the following com-
putation: xl+1 = xl + F(xl,Wl), where xl refers to the input feature to the l-th
residual unit and Wl is a set of weights and biases associated with the l-th resid-
ual unit. Here F denotes the residual function which is learnt with respect to
the input feature xl. Such a design allows a recursive derivation:

xL = xl +
L−1∑

i=l

F(xi,Wi)
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Fig. 2. Proposed deep residual network architecture with different sizes of residual
units, as listed in the table.

for any deeper unit L and any shallow unit l, which implies the smooth
information propagation through the network.

We adopted the pre-activation residual unit in [8] and designed a series of
multi-layer Res-Nets with various representative abilities. The table in Fig. 2
shows different network architectures. In general, the model contains four groups
of residual modules, each of which further consists of ni stacked residual units
for i = 1, 2, 3, 4. Here ni is an architecture hyper-parameter that controls the
entire depth D of the Res-Net, where D = 2(n1 +n2 +n3)+2 denotes the num-
ber of convolutional layer. We follow the principle adopted in recent recognition
and segmentation researches [2,7,14] to employ a small convolutional kernel of
size 3 × 3 for all the convolutional layers in Res-Nets. At the beginning of the
second, third and fourth residual modules, convolutional layers with stride 2
are used to downsample the feature map. Meanwhile, the convolution doubles
the feature channel size (also by two), yielding the change of channel sizes:
16 → 32 → 64 → 128. It is followed by a global average pooling (GAP) layer
and a fully-connected layer to generate the final prediction. To increase reg-
ularization, we use a dropout layer [15] with dropout probability of p = 0.3,
which demonstrates a good regularization performance across various architec-
tures according to experiments. The use of GAP is described in the following
subsection to boost discriminative localization. The Res-Nets are trained in an
end-to-end fashion by stochastic gradient descent with a momentum of 0.9. We
tested different combinations of hyper-parameter ni and report results in the
following section.

Global Average Pooling (GAP) for Localization: As shown in [16], the
use of GAP encourages the network to identify the extent of the object, rather
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Fig. 3. Proposed pipeline for placental ultrasound image detection and localization.
Given an unseen image patch, the network can predict its label, which indicates the
multi-anatomical structure combination within. By computing the class activation
maps for each category, the network can provide reasonable localization on the detected
anatomical structures.

than pinpointing the object on a specific location as global max pooling (GMP)
does [11]. It is intuitive that this global averaging operation should boost iden-
tification of a local discriminative region in order to reach a lower global loss,
while a global maximum operation only influences the maximal value of a fea-
ture map. We take advantage of GAP to generate CAM [16]. Each class has its
corresponding CAM which visualizes discriminative image regions used by the
network to identify this specific class. As displayed in the bottom of Fig. 3, the
CAM for class i is generated by computing a weighted sum of all feature maps
from the rectified activation of the last convolutional layer. Here the weights
refer to the corresponding weight vector Wi learnt in the fully-connected layer.
A simple up-sampling would suffice to map the CAM heat-map (28 × 28) back
to the input size (224 × 224).

For PL+MY, its CAM is expected to visualize the myometrium region (MY).
For the same reason, PL+ST CAM would illustrate the region of subcuta-
neous tissue (ST) and PL+MY+ST would ideally highlight the joint region of
myometrium and subcutaneous tissue. There are potentially many ways to for-
mulate this classification problem. The most intuitive way is probably to build
a multi-label learning model by training a group of one-verses-all binary classi-
fiers to identify these anatomical structures respectively. However, this type of
model suffers from over-fitting and generalization problems in our data exper-
iments. One possible explanation is that there are strong correlations among
these anatomical structures (e.g. myometrium is almost always co-localized with
placenta), thus it may not be appropriate to model them separately. Moreover,



Weakly Supervised Learning of Placental Ultrasound Images 103

Table 1. Statistics of placental ultrasound image dataset

Training Val Test Total

PL 2,764 711 835 4, 310

PL+MY 1,064 283 342 1, 689

PL+ST 1,834 422 590 2, 846

PL+MY+ST 1,256 312 395 1, 963

Total 6,918 1, 728 2, 162 10, 808

the multi-label learning does not contribute to the generation of CAM due to the
removal of softmax normalization. In this paper we formulate the problem with
the intention to both achieve high classification accuracy and boost weakly super-
vised localization. As shown in Fig. 4, experimental results confirm the validity
of our formulation. CAM demonstrates reasonable localization ability for the
corresponding anatomical structures. More details will be discussed in the fol-
lowing sections. In this section, we present the two major parts of the proposed
model for placental ultrasound image classification and anatomy localization.
An overview of our pipeline is given in Fig. 3. We exploit residual units, GAP
and CAM to classify ultrasound images and to localize corresponding anatomical
structures.

4 Experiments

To evaluate our proposed method, we conducted data experiments on a placental
ultrasound image dataset, which was collected as part of a large placenta clinical
study. Classification performance of different CNN models are presented. Results
of the weakly-supervised localization are also displayed. All the images used in
this work are obtained from the sagittal plane, annotated by H.Q. under the
guidance of S.C., who is a consultant obstetrician and subspecialist in maternal
and fetal medicine of John Radcliffe Hospital in Oxford. This method is imple-
mented in Torch 7 [6] on a 64-bit Ubuntu 15.04 machine with a NVIDIA graphics
card.

Dataset: All placental ultrasound data (N = 60) used in this experiment were
obtained as part of a large obstetrics research project [5]. Written informed
consent was obtained with local research ethics approval. Static, transabdominal
3D gray-scale ultrasound volumes of the placental bed were obtained according
to a predefined protocol with the participant in a semi-recumbent position and
a full bladder using a 3D curved array abdominal transducer on a GE Voluson
E8 machine. Each 3D volume was then sliced along the sagittal plane into 2D
placental ultrasound images, as shown in Fig. 1(a). We then randomly cropped
224 × 224 image patches from these sagittal planes and formed a training and
testing dataset by annotating the patches into the four categories described in
Sect. 3. In total, the dataset contains 10,808 placental image patches, which is
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Table 2. Classification performance of various architectures

Network
type

Mean error
(val., %)

Mean error
(test, %)

Class error (test, %)

PL PL+MY PL+ST PL+MY+ST

8 18.23 17.81 13.05 26.61 20.85 15.70

10-A 14.53 14.29 9.82 29.53 12.71 12.91

10-B 12.85 13.55 8.74 30.41 11.36 12.41

10-C 10.82 11.29 7.07 23.98 9.15 12.41

16 11.40 10.78 8.02 22.22 9.15 9.11

18 9.95 9.20 8.62 19.59 6.10 6.08

22 8.56 8.74 8.26 14.91 6.44 7.85

26 9.84 8.88 6.71 15.21 8.64 8.35

26-A 8.08 8.60 7.43 15.21 7.46 7.09

Fig. 4. Confusion matrices in the test stage for best three models.

then randomly divided into a training set (64%), a validation set (16%) and
a test set (20%), as shown in Table 1. Here the validation set is used to tune
CNN hyper-parameters such as the learning rate, weight decay and architecture
parameters {ni}.

Evaluation Metrics: We used top-1 error rate to evaluate the classification per-
formance of our proposed method. Experimental results are presented in Table 2.
For reference, we also list the top-1 error rate for the validation set and the clas-
sification error for individual image categories during the test. It is worth noting
that PL+MY presents the worst classification performance as expected. In pla-
cental ultrasound imaging, it is generally difficult to identify the myometrium for
various reasons. First, it may not exist at all due to certain placental abnormality
(such as AIP). Second, it appears but the texture or intensity is not sufficiently
discriminative to be identified. Third, ultrasound signal dropout may hinder
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a clear visualization. We also present confusion matrices in the test stage for our
best three models in Fig. 4. They all suffer from the same problem of identifying
PL+MY.

Architecture Hyper-Parameter: In Sect. 3, we introduced four architecture
hyper-parameters n1, n2, n3, n4, corresponding to the number of stacked resid-
ual units in each residual module. By altering these hyper-parameters, we can
investigate how network depth casts impact on the generalization ability of our
classification problem at different abstraction levels. As shown in Fig. 2, nine
architectures were evaluated. Here A,B,C denotes variants for models of the same
depth. Referring to classification performance in Table 2 we see that: (1) more
residual units should be put in deeper modules that have larger channel sizes,
as demonstrated by the better performance of 10-C and 26-A compared to their
counterparts of the same depth; (2) the identity mapping structure of Res-Net
indeed boosts the propagation of information, yielding better performance for
deeper networks without causing degradation problems described in [7].

Weakly-Supervised Localization: Here we show results of the weakly super-
vised localization of placental anatomical structures based on the learnt clas-
sification model (model 26-A). An input image was first classified into one of
the four categories. After this, we generated its CAM for the predicted category,
which highlights the discriminative regions of this image. Some results are shown
in Fig. 5 for each category, where we also provide softmax scores as well as seg-
mentation masks for illustration. For example in the first triple set, the input
image is correctly classified as PL with a score of 0.8673. CAM heat-map for PL
highlights the approximate position of the placenta, as verified by the reference
segmentation mask. We also present some counterexamples in the bottom of
Fig. 5, which are either mis-classified (the correct class is labelled in bold font),
mis-localized or both. Good weakly-supervised localization tends to be achieved
based on an accurate classification.

Discussions: In the CAM heat-maps of Fig. 5, we observe that the network
appears to use texture as well as boundary information as discriminative features.
For example, the PL CAM hot zone typically covers a partition of the placenta
as well as the placenta-background boundaries. Similarly, the PL+MY CAM hot
zone covers a part of the myometrium and the myometrium-placenta boundaries.
The PL+ST CAM hot zone contains the subcutaneous tissue as well as the tissue-
placenta interface. Finally, the PL+MY+ST CAM hot zone contains regions of
both myometrium and subcutaneous tissue, as well as their interface. This is
observed across the test set. Joint analysis of PL+MY+ST CAM and PL+MY
CAM will be carried out in the future, which may provide some insight to help
further refine weakly-supervised localization of the myometrium since they both
contain a partition of the anatomical structure.
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Fig. 5. Results of weakly supervised localization with reference segmentation mask
of the follow anatomical structures: placenta (PL), subcutaneous tissue (ST) and
myometrium (MY), all images are from the test set. (Color figure online)
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5 Conclusion

In this paper, we have formulated automatic placental ultrasound image struc-
ture detection and localization as a multi-structure classification problem. The
proposed model is based on deep residual networks. Experimental results show
good detection accuracy using our approach. Moreover, we demonstrate that rea-
sonable localization of placental anatomical structures can be achieved, without
explicit training to perform localization.
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