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Abstract. As a non-hazardous and non-invasive approach to medical diagnostic
imaging, ultrasound serves as an ideal candidate for tracking and monitoring
pregnancy development. One critical assessment during the first trimester of the
pregnancy is the size measurements of the Gestation Sac (GS) and the Yolk Sac
(YS) from ultrasound images. Such measurements tend to give a strong indica-
tion on the viability of the pregnancy. This paper proposes a novel multi-level
trainable segmentation method to achieve three objectives in the following order:
(1) segmenting and measuring the GS, (2) automatically identifying the stage of
pregnancy, and (3) segmenting and measuring the YS. The first level segmen-
tation employs a trainable segmentation technique based on the histogram of
oriented gradients to segment the GS and estimate its size. This is then followed
by an automatic identification of the pregnancy stage based on histogram analysis
of the content of the segmented GS. The second level segmentation is used after
that to detect the YS and extract its relevant size measurements. A trained neural
network classifier is employed to perform the segmentation at both levels. The
effectiveness of the proposed solution has been evaluated by comparing the
automatic size measurements of the GS and YS against the ones obtained
gynaecologist. Experimental results on 199 ultrasound images demonstrate the
effectiveness of the proposal in producing accurate measurements as well as
identifying the correct stage of pregnancy.

Keywords: Ultrasound image segmentation � Gestational sac � Yolk sac �
Trainable segmentation � Pregnancy stage identification

1 Introduction

Medical imaging has unparalleled value in clinical analysis and plays a critical role in
the development of effective medical interventions for the treatment of health condi-
tions [1]. Numerous imaging devices have been constructed for diagnostic purposes,
and each is characterized by the way in which it draws on different methods in the
composition of images. Diagnostic sonography, as an example, operates by transmit-
ting high-frequency sound waves and registering its reflection through a transducer [2].
Given its high-degree of safety and non-invasive nature, ultrasound scanning is rou-
tinely employed during pregnancy to monitor growth and health status of foetus.
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Statistical evidence reveals that a range of complications occur during pregnancy,
the most prevalent of which is miscarriage. Miscarriages are quite common. In the UK,
the figure reaches to nearly a quarter of a million each year [3, 4]. As reported in [3],
around 20% of all pregnancies are miscarried prior to 24 weeks, and the majority of
these occur in the first trimester (namely, within 12 weeks after conception). Gesta-
tional assessments conducted over the course of the first trimester tend to focus on the
confirmation of fundamental details regarding the pregnancy – namely, whether it has
taken place and additionally how many pregnancies there are – and other details
addressed include the location of the gestation sac (GS) and the embryo’s health status.
An assessment of the dimensions of the GS and the Yolk Sac (YS) provides infor-
mation regarding the probable gestational age of an early pregnancy, and such
assessments are also valuable in diagnosing the extent to which the pregnancy is viable.
In cases where the Mean Sac Diameter (MSD) of an empty GS greater than 25 mm is
observed,the pregnancy will most likely end up as a miscarriage [5]. The value of MSD
is generated from the 3 diameters of the GS in combination with the 3 diameters
measured in the sagittal and transverse planes [6]. The same process of scan is repeated
at the later stage when the yolk sac is starting to grow to further check the status of the
pregnancy. As detailed in [5], another indicator of miscarriage is a smaller GS than
anticipated based on the gestational age when compared to the last menstrual period.
All the descriptions above indicate the necessity of obtaining accurately measured GS
and YS sizes.

It is critical to acknowledge that the quality of diagnostic accuracy based on manual
measurements can be affected by inconsistency among the measurements obtained by
different gynaecologists and even the same gynaecologist, known as inter- and
intra-observer variabilities [7]. Therefore, the potential for positive impacts on the
result from the provision of automated tools for the enhancement of diagnostic accu-
racy is clear. Specifically, a computer-based framework to segment and classify
ultrasound images could effectively enhance decision-making in pregnancy diagnos-
tics. Additionally, one of the most beneficial prospects associated with the development
of this framework would be saving time and resources. Nevertheless, it must be
acknowledged developing an automated diagnostic mechanism based on ultrasound
images for miscarriage detection is not a straightforward task.

This paper outlines an automatic system for a trainable multi-level segmentation of
the GS and the YS based on neural network classifier followed by the measurement of
the MSD. After a first level segmentation of the GS, histogram analysis is used to
identify the pregnancy stages by establishing whether the GS is empty or not (i.e. it
contains the YS). A second level of segmentation is then applied to detect the YS based
on the Hough transform followed by producing the MSD. The experimental results
upon a dataset of 199 images confirm that the proposed framework on the one hand
yields the automatic measurements for the GS and the YS in terms of MSD very close
to the gynaecologist measurements without inter- and intra-observer variabilities, and
on the other hand achieves an accuracy of pregnancy stage identification around
97.48%.

The rest of the paper is organized as follows: Sect. 2 sets the scene by briefly
describing the medical background and the literature review. In Sect. 3 we introduce
our approach for identify the pregnancy stage and extract the GS and YS followed by
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MSD measurements. Then, Sect. 4 discusses the experiment result. Finally, Sect. 5
concludes the paper and outlines several possible extensions of our approach.

2 Background and Related Work

A regular pregnancy takes 40 weeks (±2 weeks). The first indicator of pregnancy is the
absence of the menstrual period. Pregnancy tests, which are conventionally conducted
using urine sample, capitalize on the presence or absence of Human Chorionic Gon-
adotropin (hCG) [8]. In situations where pregnancy tests of this kind yield positive
results, an initial scan is conducted to identify the GS’s age and, based on this, to
calculate the birth date. As being observable in Fig. 1, the structural anatomical ele-
ments of early pregnancy are as follows: (i)Amniotic sac is a bag of clear fluid inside the
uterus where the foetus starts to develop and grow [9]; (ii) GS is a structure that
surrounds an embryo, in the very early stages of pregnancy (see Fig. 1(b)); (iii) Yolk sac
is the ring-shaped structure identified within the gestational sac (see Fig. 1(c)) [9].
Heartbeat inside embryo will be seen along with the yolk sac. Failure to identify fatal
heartbeat is a sign of abnormal pregnancy which may lead to miscarriage later [9].
Figure 1(d) shows the embryo attached to the YS inside the GS.

The initial structural element that is observable inside the GS is the YS, and an
observation of this serves as a confirmation of an intrauterine pregnancy. At the point
where the MSD of the GS is 5–6 mm, the YS can be observed by employing
transvaginal ultrasound, and it must always be visualized in cases where the MSD of
the GS is 8 mm or higher [10].

Early miscarriages are defined as taking place prior to 12 weeks (namely, in the first
trimester of pregnancy), while late miscarriages arise in the period from 13–24 weeks.
Such phenomena emerge as a consequence of the discontinuation of embryonic
development and, in combination with this, the simultaneous discontinuation in the
regular development and growth of the GS.

When pregnancy tests yield positive results, it is conventionally the case that the
initial scan will be conducted once 12 weeks have elapsed since conception. Scans are

a dcb

Fig. 1. Examples shows the ultrasound images of a very beginning of pregnancy until
developing the embryo (a) The anatomical structures of the early pregnancy A: Gestational sac
(GS), B: Crown rump length (CRL) of embryo, C: Amniotic sac and D: Yolk sac (b) Gestational
Sac (c) YS within GS (d) embryo attached with YS within GS
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provided at an earlier date in certain circumstances: for example, where vaginal
bleeding is reported etc. [10]. The assessment of pregnancy within these first 12 weeks
is critical for practitioners because it facilitates the evaluation of the foetus (in terms of
development, growth, and health status) and the estimation of a birth date [11, 12].

As mentioned previously, the first measurable sign of an early pregnancy are the
geometric characteristics of the GS. The first feature calculated is the MSD. Different
studies consider that miscarriage should be declared based on different cut-off values
for MSD within the range of 13–25 mm [13, 14]. As displayed below, the most
up-to-date limits for miscarriage diagnosis are as follows (Miscarriage identification
cut-offs according to the NICE guideline):

• Mean gestational sac diameter (MSD) of � 25 mm with no obvious YS
• Mean sac diameter of (GS and YS) of � 25 and no embryo defined in YS

The segmentation of ultrasound images is crucial for the identification of regions of
interest (ROI), one of which, for example, is the GS. Nevertheless, the speckle noise
found in ultrasound images (speckles being the cause of the noisy and textured
backdrop which results from the reflection and scattering of sound waves inside target
tissue) is a chief contributor to the decrease in segmentation accuracy.

Several academic initiatives have directed their efforts towards the issue of ultra-
sound medical image analysis in the recent 10 years. In a particularly notable study, the
researchers outlined an automated system for the measurement of GS dimensions [15].
This system relied on a variety of methods to generate accurate figures for GS age and
birth date. Other prominent researchers formulated a new way in which to assess the
MSD of the GS using 2-dimensional ultrasound video [16]. The novel method relied on
the following series of elements: training, detecting, indexing, and measuring. The
chief contributions of these studies stem from their provision of novel frameworks by
which the detection of miscarriage can be facilitated in an automated manner; more-
over, the studies draw on novel indicators to reinforce diagnostic decision-making.
Nevertheless, despite the valuable nature of these studies, a fully-automated miscar-
riage indicator identification framework which employs ultrasound images is still
lacking; as previously alluded to, this is a product of the way in which noise com-
plicates the attempt to automatically segment ROIs, thereby meaning it must be con-
ducted manually or semi-automatically [3, 4]. Hence, the present author is alert to the
fact that this paper represents the first attempt to outline a fully-automatic system for
the identification of pregnancy stage and segmentation of GS with YS.

3 The Proposed Method

Figure 2 provides an overview of the system for the automatic identification of the
pregnancy stage as well as detecting and measuring the GS and the YS from a static
B-mode image. The framework consists of a sequence of steps starting from seg-
menting and measuring the GS, followed by automatically identifying the stage of
pregnancy, and finally segmenting and measuring the YS. Each step of the framework
will be explained in details in the following sub-sections.
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3.1 First Level Trainable GS Segmentation

The aim of the first level segmentation is to isolate the GS from the rest of the image.
The process starts by first selecting a certain number of images as training images.
From each training image, a number of samples, i.e. a small window of square regions
of a certain size (e.g. 3 � 3), are taken from the inside of the GS (Class 1) and outside
the GS (Class 2). For each window of either class, a set of HOG features (to be
described in later) are extracted. The labelled feature vectors collected from all samples
are then used to train a neural network classifier. Once training is complete, each image
from the testing set is used as an input for the segmentation algorithm. The algorithm
scans an image pixel by pixel. For each pixel, a small square region of the same
window size with the pixel as the centre is constructed, and the HOG feature of the
region is extracted and classified by the trained neural network as being inside the GS
or outside GS. If the region is inside a GS, the central pixel is also labelled as inside the
GS; otherwise outside the GS. Once all pixels of the image are labelled, the region of
the “inside pixels” is taken as the segmented GS.

The central problematic element associated with this stage of the process stems
from the fact that upon the application of the trainable segmentation, binary objects
remain which resemble the sac. Consequently, it is necessary for a fully automated
system to first detect these objects and consequently remove them. This process of
filtration takes place in accordance with the non-sac objects’ characteristics such as
circularity, area, and the greyscale mean [2].

The histogram of oriented gradients (HOG) is a feature descriptor that facilitates the
identification of objects in digital images. HOG was formulated for the quantification of
gradient orientation occurrences in localised image sections, and have been well
documented in [17, 18]. The process of HOG feature extraction involves taking a
window around the pixels called cells. The mask [−1,0, 1] is used to computing image
gradients. In our adaptation of this extraction method (see Fig. 3), for orientation
binning, we directly used the gradient at each image locations for the corresponding
orientations. The orientation cells are chosen in the range of 0–180o with 9 bins. For
better invariance to illumination, shadowing, etc., contrast-normalization of the local
histogram is applied.

First Level Trainable 
GS Segmentation

Second Level Trainable 
Segmentation (Yolk Detection)

Pregnancy stage 
identification

Estimating the YS Size

Stage1
(empty GS)

Stage2
(GS+YS)

Estimating the  GS 
Size

A
B C

Fig. 2. General framework for the automatic segmentation
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3.2 Estimating the GS Size

As explained earlier, each GS is viewed in two perpendicular planes. The GS usually
seems to be more elliptical at the early stages, therefore, our system aims to locate the
best-fitted ellipse for the segmented GS for each plane. The region props function in
Matlab is utilized to fit an ellipse to the GS. Four parameters can be returned by this
process. These are major axes, minor axes, Centroid and Orientation. The GS is pre-
sumably has an ellipsoidal shape in 3D, the three main dimensions of the ellipsoid has
generally been calculated by the minor and major dimension from the sagittal plane and
the major dimension from the transverse plane. The average of the three Dimension is
taken as the MSD.

3.3 Histogram Analysis to Identify the Pregnancy Stage

This stage aims to establish if the GS is empty or not i.e. whether it contains a YS
inside. To do this, first, the binary image resulted from the GS segmentation step is
used as a mask to locate the pixels inside the GS from the original image. Histogram
analysis is applied to those pixels to determine whether theYS is present within the GS
or not by following the process outlined in Fig. 4.

Consider that the grey-level histogram matches with a GS, f (x, y), constituted of
light objects (the YS’s border) superimposed on a dark backdrop (the GS). Further-
more, the configuration is organized such that the pixels of the object and backdrop
display grayscale levels are categorized into a pair of dominant modes. If this is the
case, the immediately discernible method by which the border of the YS can be
estimated from the GS involves the selection of a threshold (T) that facilitates the
separation of these modes. Consequently, a pixel (x, y) according to which f (x, y) > T
(based on bin frequency) can be designated as a YS border.

Under certain circumstances, when the frequency is high within GS, it does not
necessarily mean there is a YS: the frequency simply serves to denote small noise
objects. Consequently, for each bin with frequency greater than T, pixels of the
intensity represented by the bin are located in the GS image (see Fig. 4).
A post-processing check is conducted to see if the pixels form an object. If not, the GS
is considered as empty (stage1); otherwise, the GS contains YS (stage2).

Normalization 

Image Blocks
Histograms of 

Oriented 
Gradient 

Feature Vector

Fig. 3. HOG process
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3.4 Second Level Trainable Segmentation: Estimating the YS Border

Once the histogram analysis of the area inside the GS establishes the existence of the
YS, a second level trainable segmentation is employed at this stage to estimate the YS
border. The main challenge here is that in certain scenarios, the YS’s border is vague
and unclear, which means that techniques based on the pixel intensity thresholding
cannot work satisfactorily. The machine learning based approach has more promises in
such situations.

A pixel feature (in accordance with the pixel neighbourhood) is used to identify the
border pixels. The training phase is implemented by selecting window of size N � N
for each yolk boundary and non-boundary in image (see Fig. 5). The testing phase will
process only the pixels which are inside the GS sac using the mask from the GS
segmentation stage. The output of this stage is a binary GS include the GS with white
colour and the YS border with black colour.

GS

YS+GS

Histogram Threshold 

Histogram Threshold 

Post-processing

GS

YS+GS

Original image 
masking 

Thresholding the GS + 
object Convex Histogram indicators

Cheech the bins 
above the threshold 

Fig. 4. Histogram analysis to identify the pregnancy stages

Class 1 

Class 2 

Fig. 5. Select samples for the learning phase
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Once the second level trainable segmentation estimates the YS border. A convex
hull is employed to facilitate the delineation of the YS from the GS. The rationale for
this is of three folds: (i) it facilitates the maintenance of the entire GS and the
assessment of the MSD; (ii) it allows just the YS’s border to be retained for the Hough
transform stage; and (iii) reduces the frequency of objects in conjunction with the
likelihood of object circularity, thereby capturing the YS. All the objects inside the
convex will be as input to the circle Hough transform to detect the best circle next.

3.5 Locating YS and Measuring its Size

Based on the assumption that a circle exists in (x and y)space, the image coordinates,
and that the YS’s perimeter points have been acquired, a circle in the (a and b)
parameter space corresponds to every point on the circle’s perimeter. The (a and b)
space constitutes a circle accumulation of the input image for a specified radius (r) (see
Fig. 6). The critical piece of information when attempting to identify a circle is the
radius, and this is because it determines circle dimensions in the (a and b) space. In
cases where a circle constructed in the (a and b) space is not identical in size to the
initial circle’s radius, the former will not contact at a single location. Hence, a suitable
radius means that the constructed circles will contact at a single location, and this
constitutes the centre circle identified in the image coordinates. Assuming the YS has
acircle shape in 3D, the two principal axes of the circle can be estimated by the radius
(R1) of the circle from the sagittal plane and the radius (R2) of the circle from the
trans-verse plane. The ((2*R1 + R1)/3) will be taken as the MSD.

4 Experiments and Results

4.1 Dataset

The dataset consists of 199 ultrasound images, 184 of which are of an empty GS (157
PUV and 27 miscarriage). The remaining 15 are for GSs with YSs inside. The images
were acquired in 3 dataset batches, with the first constituted of 94 images; the second
constituted of 90; and the third constituted of 15 with GS and YS. The images are
obtained by the Early Pregnancy Unit, Imperial College Healthcare Trust, London. The
visualisation of the GS and YS for each image was conducted from a pair of viewpoints:

x

y

a

b

1 2

Fig. 6. (1) Circle located on parameter plane x,y, (2) transform in space a,b
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namely, the sagittal and transverse planes. The images were accompanied with
manually-obtained diameters (D1, D2, and D3) together with the resulting MSDs in
addition to diagnostic outcomes.

4.2 Experimental Protocol

A 2-layer backpropagation neural network has been used in each of the two seg-
mentation levels. In the first level, the network was trained with 100 sample regions
obtained from 8 training images. In the second level of segmentation, the network was
trained with 60 sample regions obtained from 3 images due to the limited number of
images in batch 3.

It is important to recognize that the features extracted and the quality of segmen-
tation are directly influenced by the block size, i.e. the size of the window around the
pixel. As shown in Fig. 7, when the block size is small, more pixels outside the real
region of interest are considered as “inside” pixels. This will results in the creation of
more irrelevant objects outside the real object of interest, increasing the level of dif-
ficulty for removing those objects later (Fig. 7(b)). As the block size increases, fewer
pixels outside the object of interest would be confused as “inside” pixels, and hence
fewer irrelevant objects are created (Fig. 7(c, d)). However, when the block size gets
too large, the possibility that a block contains pixels of both “inside” and “outside” also
increases, resulting imprecise classification of the pixel class (Fig. 7(d)). As such, to
ensure high-quality segmentation, the block size must be determined carefully. Based
on our observation, the block size of 5 � 5 seems optimal.

The effectiveness of the proposed method was evaluated by conducting examina-
tions at the following phases: (i) evaluate the pregnancy stage identification accuracy
based on the segmentation of GS; (ii) assess the segmentation precision by comparing
the automatic and manual measurement results of MSD.

ba c d

Fig. 7. Trainable segmentation result, (a) original image, (b) segmented image with window size
3*3, (c) segmented image with window size 5*5, (b) segmented image with window size 7*7.
The wait line represent the automatic segmentation and the red color represent the manual
segmentation. (Color figure online)
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4.3 Results

Pregnancy Stages Identification
We are interested in the effectiveness of histogram thresholding and the histogram
thresholding followed by post-processing in the proposed method as explained in
Sect. 3.3. Two experiments were conducted: one for using the thresholding alone, and
the other for using thresholding followed by post-processing. Figure 8 shows that an
overall average accuracy of 84.42% with stage1 identification (empty GS) of 83.69%
and stage2 identification (GS &YS) of 100% for can be achieved in the first set of the
experiment (Histogram threshold). By contrast, an overall accuracy of 97.48% with
stage1 identification of 97.28% and with stage2 identification of 100% was achieved in
the second experiment as (Histogram threshold with post-processing). The results
confirm that the second method approved that the threshold of the histogram is not
enough to estimate if there is a YS or not.

Segmentation Result (Manual vs. Automatic Measurements)
The manual calculation of the proportion of successful GS segmentations was con-
ducted with the human visual system (HVS). Regarding batches 1 and 2, it was noted
that 153/184 GS images were segmented which is 83.15%.
Additionally, out of the 15 images in the third batch, GS were segmented precisely,
which is 100%. Furthermore, the YS segmentation was successful for 14 out of the 15
images, i.e. 93.3%. To facilitate the provision of a suitable system assessment regarding
the subsequent phases, each image associated with unsuccessful segmentation of GS
was not included.

Automatic MSDmeasurements were considered in relation to manual measurements
to assess the degree to which the proposed system was effective. Figure 9 provides an
indication of the performance. Figure 9a illustrates the result of batch 1 and batch 2
(Empty GS). Figure 9b represents the result for batch three where the points inside the
red ellipse represent the measurement for YS and the other points represents the GS
measurements. In view of the approximately 45° regression line, it can be concluded that
the automatic measurements are very close to the manual measurements. It can also be
observed that there is no apparent systematic bias of the automatic measurements.

75
80
85
90
95

100

Histogram Threshold Histgram  Threshold with Post-
processing

Acuracy Empty GS Identification (Stage1) YS Identifiaction (Stage2)

Fig. 8. Pregnancy stage identification
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5 Conclusion

The purpose of this study was to outline and evaluate a new approach to automatic
identification the pregnancy stage and segmentation of the GS and YS from B-mode
static ultrasound images. This paper argued that the segmentation of such images is a
challenging task due to overlap between colour intensities of the GS and YS with
surrounding tissues.

The proposed automatic system overcome these difficulties by formulating a
multi-level framework: (1) first-level trainable GS segmentation to locate the GS sac;
(2) using histogram properties of the GS to identify the pregnancy stage; (3) second
level of trainable segmentation is used to segment and measure the YS. Finally, the
MSD for the YS and the GS were extracted. Experiments showed that the automatic
measurements were very close to the manuals ones extracted by domain experts which
confirms the viability of the proposal.

Our future work includes extending the test of our method on more images,
improving the efficiency of the proposed method, and investigate the effectiveness of
alternative image-based indicators such as those extracted from the border of the GS.
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