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Abstract. In recent years, life-cell imaging techniques and their software
applications have become powerful tools to investigate complex biological
mechanisms such as calcium signalling. In this paper, we propose an automated
framework to detect areas inside cells that show changes in their calcium con-
centration i.e. the regions of interests or hotspots, based on videos taken after
loading living mouse cardiomyocytes with fluorescent calcium reporter dyes.
The proposed system allows an objective and efficient analysis through the
following four key stages: (1) Pre-processing to enhance video quality, (2) First
level segmentation to detect candidate hotspots based on adaptive thresholding
on the frame level, (3) Second-level segmentation to fuse and identify the best
hotspots from the entire video by proposing the concept of calcium fluorescence
hit-ratio, and (4) Extraction of the changes of calcium fluorescence over time per
hotspot. From the extracted signals, different measurements are calculated such
as maximum peak amplitude, area under the curve, peak frequency, and
inter-spike interval of calcium changes. The system was tested using calcium
imaging data collected from Heart muscle cells. The paper argues that the
automated proposal offers biologists a tool to speed up the processing time and
mitigate the consequences of inter-intra observer variability.

Keywords: Intracellular calcium signalling � Hotspots segmentation � Calcium
change quantification � Cell parameters � Fluorescence microscopy

1 Introduction

Changes in the intracellular calcium concentration are a very critical and universal
signalling mechanism used by cells [1, 2]. It is important for a myriad of processes. In
the case of humans, life starts with an increase in the calcium concentration upon
fertilisation of the egg [3]. Cell death [1, 4] is frequently caused by a prolonged increase
in the intracellular calcium concentration. But between fertilization and death, changes
in the calcium concentration regulate a plethora of processes in an organism, like
memory formation, heartbeat, blood pressure regulation, bones and teeth development,
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blood clotting, hormone functions, cell division, muscle contractions, and antigen
recognition in the immune system [1, 2]. Because a prolonged calcium increase is a
death signal, it is very important to keep the intracellular calcium concentration tightly
controlled in a narrow range, typically around 100 nM [1].

Further, a dysregulation of the normal calcium signalling processes may lead to
several diseases like cardiac arrhythmias [5], neuronal disorders like Alzheimer’s and
Parkinson’s diseases [5, 6], or immune dysfunctions [7].

Fluorescence imaging is a powerful and commonly used technique to study calcium
signalling in living cells. Cells or tissues are loaded with a calcium sensitive indicator
and changes in the intracellular calcium concentration can be recorded in real time by
capturing a video of the fluorescence images on a microscope [8]. One downside of the
technique is a labour-intensive and often subjective image analysis process. The pro-
posal described in this paper aims to automatically detect and quantify intracellular
calcium changes in these videos. In addition to automating the analysis by biologists,
our data analysis framework also provides a fast and reliable tool for fluorescent video
data analysis in cell phenotyping. The cells being monitored are assumed static. Issues
addressed here are processing time, replicability of the data analysis, photo bleaching
artefacts, and human-biased variations that are observed during the manual analysis of
intracellular calcium imaging experiments.

All in all, this paper presents a fully automatic system to objectively detect active
regions of interest(ROIs), which we refer to as hotspots, and to quantify their change in
calcium concentration over the time period when they are imaged and saved in a series
of fluorescent frames. The automated framework defines as hotspots any areas in cells
whose the calcium concentration fluctuates and goes through the four key stages: (i) A
pre-processing stage to enhance the contrast and increase the signal to noise ratio of the
input video frames using median filtering and adaptive histogram equalization; (ii) A
first level segmentation stage to detect candidate hotspots in cells based on changes in
the fluorescence intensity using adaptive thresholding and morphological operations;
(iii) A second level segmentation stage to fuse and identify the best hotspots from the
entire videos by introducing the concept of hit-ratio of calcium fluorescence; (iv) An
extraction and quantification stage of the calcium concentration over time for individual
hotspots to calculate maximum peak amplitude, area under the curve, peak frequency,
and inter-spike interval of calcium changes.

The rest of our paper is organized as follows: background and previous work are
presented in Sect. 2. Section 3 gives an overview of the proposed system, focusing on
key points. Section 4, presents and discusses the results of our approach. Finally, in
Sect. 5 possible future work are highlighted followed by concluding remarks.

2 Background and Relevant ExistingWork

Fluorescent calcium indicators were first developed in 1982 by Roger Tsien and col-
leagues [9]. Since then, indicators with different characteristicshave been developed:
colours, calcium binding affinities, or targeted to different intracellular organelles to
name a few [8, 10]. Our framework was developed using calcium imaging data from a
cardiomyocyte-like cell type, called pulmonary vein sleeve cells (PVCs), loaded with
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the calcium indicator Oregon Green BAPTA-AM [11]. Aberrant signalling processes in
PVCs are important for the development of atrial fibrillation, the most common cardiac
arrhythmia (heart rhythm disorder). In contrast to other cardiomyocytes, PVCs show a
high level of localized spontaneous increases in their intracellular calcium concentra-
tion. The high level of this spontaneous activity in PVCs is one important factor in the
development of atrial fibrillation. A better understanding of the processes underlying
the calcium signalling in PVCs might provide new mechanisms to treat or prevent atrial
fibrillation [11–14]. However, the spontaneous activity makes calcium imaging data
from these cells very time-consuming to analyse, which prompted the development of
the automated image analysis software presented here.

In a typical manual analysis of fluorescent video frames of a calcium imaging
experiment, the readout is a file/spreadsheet giving the change in fluorescence for each
hotspot over the length of the experiment. In order to compare the results from different
experiments, these values are normalized [8]. First, the background fluorescence is
subtracted from the initial readout. This is commonly done by setting one small
background region in video frames through an interactive toolbox in Image J. Then, the
background subtracted data need to be normalized to allow a comparison of the
magnitude of the changes between different experiments. For that, the minimum
fluorescence (Fmin) for each hotspot needs to be measured, and the fluorescence at any
given time (F) will be normalized to (FminÞ. The normalized (F=FminÞ is then used to
quantitate parameters like the maximum amplitude of the change in fluorescence, the
frequency of (calcium) increases or the area under the curve for the (calcium) tran-
sients, depending on which characteristic of the calcium changes is most informative
for the experiment. This manual procedure raises concerns about the optimal estimation
of the frame background value, because it does not use all of the cell-free area of a
frame as a background, which should be the more accurate value. There are also
concerns about the minimum fluorescence because in cells with spontaneous activity, it
is very hard to estimate the minimum fluorescence by avoiding outliners giving too low
an absolute minimum, or photo bleaching artefacts that may suggest fluorescence
values lower than they should be. For all those reasons, an automated solution was
needed to provide better estimations of background values and minimum fluorescence,
and to shorten the analysis time.

Existing work on automatic cellular phenotyping in fluorescencemicroscopy is rather
limited [15]. This ismainly due to the complexity of quantification and characterization of
calcium signals through sequences of 2D grayscale images that tend to be of a low quality
where cells boundaries are not clearly recognizable, and true signals are highly corrupted
by noise. Recent publications investigated various image processing techniques to
eliminate the noise effect in fluorescence microscopy images [16–18]. Some publications
presented different techniques for fluorescence image segmentation [19, 20], while others
conducted several cellular parameters analysis in fluorescence microscopy [21, 22].

One of the first automatic method to analyse calcium signalling through fluorescent
images was described in 1999 to detect and measure calcium sparks inside skeletal
muscle cells and cardiac myocytes through confocal line scan images based on double
thresholding [22]. Later on, the limitations of the pioneering method to deal with highly
noisy images led to the development of the two-phase greedy pursuit algorithm (TPGP)
for the detection of calcium sparks through confocal single images based on wavelet
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transforms for noise removal and background subtraction [21]. Thus, various versions of
‘home-built’ analysis software of calcium signallingwere available, but none comewith a
comprehensive manual, allowing them to be used by the wider calcium signalling
community. Further, knowing that fluorescence microscopic images are generally
affected by noise of type Gaussian, Poisson, or a mixture of both [15], state-of-art
de-noising techniques were proposed based on two main principles: variance stabiliza-
tion [16, 23] and patch-based techniques [18, 24]. In the former category, the general
approach consisted of converting Poisson noise into Gaussian noise, while in patch-based
techniques, researchers relied on the measurement of the similarity between small sub-
divisions of the images i.e. image patches to detect their random degradations prior to any
segmentation procedure.

Alongside those techniques, interesting segmentation methods were also made
available for vesicle segmentation in fluorescent stack images [19], tubule boundary
segmentation in rat kidneys videos [20], and mid-point based nuclei segmentation in
fluorescent images [25]. It is also the case for object-independent segmentation tech-
niques such as Fuzzy set logics [26] and hierarchical merge tree [27], presented as
alternative solutions to process fluorescence microscopy images. The Jayaprakas’s
ImageJ plugin [28], a less recent semi-automated method, allows both the manual
setting of ROIs and the automatic measurement of their changes of fluorescence
through an entire image stack. Data are output in graphics or exported into text or csv
files for further analysis. But the plugin does not allow automated ROI segmentation.

To sum up, the literature in the area of intracellular calcium analysis based on
fluorescence microscopic videos seems to be rich. However, this paper argues that the
existing work on fully automated frameworks that take input videos and produce final
measurements such as maximum peak amplitude, area under the curve, etc. of calcium
changes over time, is very limited, and not available for use by the wider community.

3 The Proposed Solution for Calcium Signalling Analysis

As stated earlier, the proposed framework is based on four main tasks: pre-process
individual video slides to increase their quality, identify regions with intracellular
calcium changes (hotspots) by first-level segmentation of the input video frames, and
detect calcium hotspots or best active ROIs by second-level segmentation. The final
task of the proposed routine is the extraction and measurement of calcium signals in the
detected hotspots. Figure 1 below highlights those stages.

Fig. 1. Flowchart diagram of the proposed framework
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3.1 Pre-processing by Median Filtering and Adaptive Histogram
Equalization

Fluorescent video frames tend to be low-contrasted and corrupted by Gaussian noise.
Therefore, we chose to perform median filtering over individual images to increase
their signal to noise ratio. Then, we performed adaptive histogram equalization to
enhance their contrast in such a way that changes of intracellular calcium concentration
become different from the background pixels. Figures 2a, b, and c below demonstrate
the effectiveness of the pre-processing in enhancing the quality of the fluorescent video
frames.

3.2 First Level Segmentation for Candidate Hotspots Detection

At this stage, we first aim to detect any changes in the intracellular calcium concentration
expressed in the pre-processed video frames as transiently bright areas due to an increase
in the fluorescence of the calcium indicator. By default any calcium change area is
hotspot. Inside each frame, hotspots are detected based on a certain threshold pixel value
T. To set the best T value, analysis of pixel intensity histograms of input frames suggested
us that the fluorescence intensities of the hotspots correspond to the bright pixels that fall
away from the mean of the frames. The ideal threshold T turned out to be equalling to
meanþ 2standarddeviation ðstdÞ of the pixel intensities of individual frames. As a result,
from a sequence of grayscale images input, the system generates a list of binary frames,
where white pixels belong to objects changing their fluorescence, and dark pixels refer to
background elements, that can be either inside or outside the cell. After that, morpho-
logical filters were applied on the binary output to transform the obtained connected
components into closed-boundary objects in the following order: closing, holes filling,
erosion, small objects removal, and image dilation with small structuring element of
disk-square shapes. Figure 3 below demonstrates the thresholding approach adopted to
detect intracellular calcium changes in individual fluorescent images.

Fig. 2. Image quality increased by pre-processing
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The first-level segmentation ends with assigning a set of geometrical properties
such as centroid coordinates, area or object size, bonding box parameters, pixel element
locations, and default hit-ratio value, etc. to each default hotspots representing intra-
cellular calcium changes. From the average size of all detected objects, the system
estimates a small significant interval where to look for potential active regions or
hotspots. The best interval of size was found out to be between 1

4 ;
3
4

� �
of the all objects

average size, where to look for candidate calcium hotspots.

3.3 Second Level Segmentation for Frames Fusion Based on Hotspots’
Hit-Ratio

The second level segmentation stage of our proposal for calcium signal analysis aims to
identify the intracellular regions that show the most frequent calcium changes. They
correspond to the candidate hotspots with highest hit-ratio parameters. The hit-ratio in
this context represents the number of times a given cellular region appears or fluoresces
in the entire video. For example, a hit-ratio of 50% means that a change in fluorescence
appears in the same place in 50% of the frames. To calculate the hit-ratio of a candidate
hotspot localised in a frame, the system counts the number of overlaps of this hotspot
with others identified in the remaining frames. Overlapping of two objects is first
assumed as an overlap of their bounding boxes (rectangle fitting), then confirmed by
the comparison of their pixel elements location, elements whose union make the
objects.

Once the hit-ratio computation is done, the system merges potential active regions
into a single frame in which hotspots do not overlap. The fusion of candidate hotspots
from individual frames is achieved based on two thresholds specified by the end user:
the minimum hit-ratio, and the minimum distance between hotspots (we chose >15%
and 10 pixels, respectively in this paper). At the end of the second level segmentation,
the list of all hotspots is finalised and the system is ready to move on to the final stage
of the framework which is to extract the measurements representing calcium changes
over time from each hotspot. Figure 4 below presents a screenshot of 41 hotspots
detected by the system through the fusion of 7352 default hotspots from 300 frames.

Fig. 3. Segmentation of calcium changes from fluorescent video frames
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For visual purpose, hotspots are coloured according to their hit-ratio, the hottest
ones corresponding to the most active regions, like highlighted in the figure.

3.4 Extraction and Measurement of Calcium Signal Inside Hotspots

This final procedure stands for the retrieval of meaningful information from original
input video frames. It is the most essential part of the automatic analysis of cellular
calcium signalling as it provides biologists with traces illustrating the intracellular
calcium changes and numbers to quantitate various parameters to perform statistical
analysis for the understanding of the physiological implications of the experiments.

Our proposed software automatically detects active regions inside cells and sets
hotspots by direct quantification of the fluorescence within a given area at a given time.
These direct fluorescence readouts of a given hotspot correspond to the average
intensity of the pixel points whose union makes the hotspot region in every original
grayscale frame (miÞ. From the initial readout of the fluorescence inside hotspotsan-
other measurement called the corrected fluorescence (FÞ is computed.F ¼ mi� bg,
where bg is the background fluorescence in all areas of the frame that do not contain
any cells such that bg ¼ image� imageCells. The background value represents the
average value of anything pixel that is neither part of a calcium-change event, nor a cell
tissue component. The optimum parameter to represent an image containing all cells
was found out to be imageCells[mean� std=2 of a frame’s pixel intensities. In the
same way, the system computes another calcium signal that is called normalized
change of fluorescence ðF=FminÞ, where Fmin corresponds to the minimum fluores-
cence value inside a hotspot after the background subtraction. Fmin ¼ imageCellsþ 1.
The ratio ðF=FminÞ is the ultimate normalized version of the initial fluorescence
readout of hotspots, as it allows effective comparison between different experiments.
From the ratio ðF=FminÞ signal, the system retrieves meaningful parameters about the
intracellular calcium changes. For the experiments performed, these are the maximum
amplitudes of peak in intracellular calcium changes of active regions, the area under the

Fig. 4. Best active regions labelled with hit-ratio after video fusion
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curve, the frequency of calcium transients, the inter-spike interval between two con-
secutive peaks of calcium concentration change, and the time of slope from peak to a
baseline that is customizable, as illustrated in Fig. 5.

4 Results and Discussions

Our proposal to automate the analysis of calcium imaging experiments based on
fluorescence video imaging enables the automatic segmentation and measurement of
intracellular calcium transients over time. Active hotspots can be filtered and monitored
from portions or from entire input video files. The processes are fully automatic and rely
on the video frames contents rather than users’ biological knowledge or experience.

In details, for example, Table 1 below shows that the overall processing time of our
proposal is proportional to the size of the input video file. Big files tend to take more
time but compare to the manual procedure, the system processing time is impressive.
Indeed, it takes approximately 1 day for biologists to complete the manual analysis of
1000 video frames, whereas our proposed pipeline does the job in less than 5 min.

Fig. 5. Some parameters extracted from calcium change of fluorescence

Table 1. Results from a PC running Matlab 2014 on windows 7 OS with 4 GB of RAM

Video
extension

Number of
frames

Number of
Ca2þ waves

Number of hotspots over
potential ones

Processing time
(in seconds)

.TIF 900 18,290 25/3,230 251

.MPG 1,194 17,195 20/2,355 303

.MOV 1,200 24,319 42/5,583 355

.MPG 1,499 19,158 15/4,381 390
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Although, further testing of our proposed system for hotspots detection in fluores-
cence microscopy videos is still required, we proved that the automatic segmentation of
intracellular calcium concentration in individual frames is about 80% accurate.

Here, the percentage of accuracy refers to the ratio between the sum of True
Positive and True Negative (TP + TN) pixels over the sum of all Positives and
Negatives pixels [29]. Indeed, when using hand-outlined images of intracellular cal-
cium changes as gold standard to isolate calcium changes, like shown in Fig. 6, we
were able to compare the automated segmented frames against the visual detection.
Table 2 below illustrates the pixel classification we implemented initially over a ran-
dom sample of 20 frames per fluorescent video files of calcium signalling experiments.
Category Positive corresponds to the successful identification of calcium changes by
our system, while True illustrates the reference from the ground truth.

All in one, the comparison between biologist empirical methodology and our
automatic approach establishes that our software can provide reliable results in shorter
periods of time. The detection of intracellular calcium through individual frames is fast
and accurate. The quantification of calcium concentration is easier and straightforward
after ROIS detection.

5 Conclusion and Future Work

In this paper, we describe an automatic solution providing multi-level segmentation for
the detection of changes in fluorescence in videos taken when using ion-sensitive
fluorescent indicator dyes such as calcium indicators. Our proposal allows a fast and

Fig. 6. Manual segmentation versus automated

Table 2. Automated segmentation performance through pixel classification

TP FP TN FN Accuracy

Frame 1 7386 892 388186 25906 0.94
Frame 2 33423 3693 327406 57848 0.85
… … … … … …

Frame 20 12649 1580 392998 15143 0.96
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reliable detection of the hotspots to analyse and extract the changes of fluorescence
over time. After the extraction of candidate hotspots from individual frames, we pro-
pose a new method based on the hit-ratio of fluorescence to identify the best active
regions showing changes in the intracellular calcium concentration.

We also propose a normalized quantification of those changes over time for each
hotspot. Further, the system enables the extraction of all major parameters researchers
are typically interested in when analysing calcium imaging experiments, including
some which are very time-consuming to perform manually. We have included the
options of manual deleting hotspots which might not fit the criteria that researchers
have identified. It is also possible to refine the hotspot detection by setting parameters
such as minimum size and hit-ratio of hotspots as well as a minimum distance between
them. The paper argues that obtaining the automatic measurements achieves a higher
processing time compared with experts’ manual ones. Higher accuracy of our proposed
method still needs to be proven by further testing. However the automation of the entire
procedure makes data analysis reproducible and easy comparable.

Despite those advantages, we acknowledge that our proposed system has got some
limitations. Using videos of tissues, we currently cannot identity individual cells.
Further, we currently cannot follow hotspots in case their position shift during
experiment course, which might happen. It is the case for cardiomyocytes calcium
signalling experiments where high contractions may lead cells to move slightly. In
addition to those drawbacks, the system is currently designed to analyse data only from
single-wavelength fluorescent indicators. Ideally the system should be extended for the
use of multi-wave length fluorescent dyes such as the ratio metric indicators like fura-2.
We also think the future system should also enable advanced comparison of cells’
calcium activity by providing more useful parameters output. Finally, the handling of
huge amount of data, and noisier raw images will have to be addressed.
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