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Abstract. A major challenge in brain tumor treatment planning and quantita-
tive evaluation is determination of the tumor extent. The noninvasive magnetic
resonance imaging (MRI) technique has emerged as a front-line diagnostic tool
for brain tumors without ionizing radiation. Manual segmentation of brain tumor
extent from 3D MRI volumes is a very time-consuming task and the perfor-
mance is highly relied on operator’s experience. In this context, a reliable fully
automatic segmentation method for the brain tumor segmentation is necessary
for an efficient measurement of the tumor extent. In this study, we propose a
fully automatic method for brain tumor segmentation, which is developed using
U-Net based deep convolutional networks. Our method was evaluated on
Multimodal Brain Tumor Image Segmentation (BRATS 2015) datasets, which
contain 220 high-grade brain tumor and 54 low-grade tumor cases. Cross-
validation has shown that our method can obtain promising segmentation
efficiently.

1 Introduction

Primary malignant brain tumors are among the most dreadful types of cancer, not only
because of the dismal prognosis, but also due to the direct consequences on decreased
cognitive function and poor quality of life. The most frequent primary brain tumors in
adults are primary central nervous system lymphomas and gliomas, which the latter
account for almost 80% of malignant cases [1]. The term glioma encompasses many
subtypes of the primary brain tumor, which range from slower-growing ‘low-grade’
tumors to heterogeneous, highly infiltrative malignant tumors. Despite significant
advances in imaging, radiotherapy, chemotherapy and surgical procedure, certain cases
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of malignant brain tumors, e.g., high-grade glioblastoma and metastasis, are still
considered untreatable with a 2.5-year cumulative relative survival rate of 8% and 2%
at 10 years [2]. Moreover, there are variable prognosis results for patients with low-
grade gliomas (LGG) with an overall 10-year survival rate about 57% [3].

Previous studies have demonstrated that the magnetic resonance imaging (MRI)
characteristics of newly identified brain tumors can be used to indicate the likely diag-
nosis and treatment strategy [4–6]. In addition, multimodal MRI protocols are normally
used to evaluate brain tumor cellularity, vascularity, and blood-brain barrier (BBB) in-
tegrity. This is because different image contrasts produced by multimodal MRI protocols
can provide crucial complementary information. Typical brain tumor MRI protocols,
which are used routinely, include T1-weighted, T2-weighted (including Fluid-Attenuated
Inversion Recovery, i.e., FLAIR), and gadolinium enhanced T1-weighted imaging
sequences. These structuralMRI images yield a valuable diagnosis in the majority of
cases [7].

Image segmentation is a critical step for the MRI images to be used in brain tumor
studies: (1) the segmented brain tumor extent can eliminate confounding structures
from other brain tissues and therefore provide a more accurate classification for the sub-
types of brain tumors and inform the subsequent diagnosis; (2) the accurate delineation
is crucial in radiotherapy or surgical planning, from which not only brain tumor extend
has been outlined and surrounding healthy tissues has been excluded carefully in order
to avoid injury to the sites of language, motor, and sensory function during the therapy;
and (3) segmentation of longitudinal MRI scans can efficiently monitor brain tumor
recurrence, growth or shrinkage. In current clinical practice, the segmentation is still
relied on manual delineation by human operators. The manual segmentation is a very
labor-intensive task, which normally involves slice-by-slice procedures, and the results
are greatly dependent on operators’ experience and their subjective decision making.
Moreover, reproducible results are difficult to achieve even by the same operator. For a
multimodal, multi-institutional and longitudinal clinical trial, a fully automatic,
objective and reproducible segmentation method is highly in demand.

Despite recent developing in semi-automatic and fully automatic algorithms for
brain tumor segmentation, there are still several opening challenges for this task mainly
due to the high variation of brain tumors in size, shape, regularity, location and their
heterogeneous appearance (e.g., contrast uptake, image uniformity and texture) [6, 8].
Other potential issues that may complicate the brain tumor segmentation include:
(1) the BBB normally remains intact in LGG cases and the tumor regions are usually
not contrast enhanced; therefore, the boundaries of LGG can be invisible or blurry
despite FLAIR sequence may provide differentiation between normal brain and brain
tumor or edema to delineate the full extent of the lesion; (2) in contrast, for high-grade
gliomas (HGG) cases, the contrast agent, e.g., gadolinium, leaks across the disrupted
BBB and enters extracellular space of the brain tumor causing hyper-intensity on T1-
weighted images. Therefore, the necrosis and active tumor regions can be easily
delineated. However, HGG usually exhibit unclear and irregular boundaries that might
also involve discontinuities due to aggressive tumor infiltration. This can cause
problems and result in poor tumor segmentation; (3) varies tumor sub-regions and
tumor types can only be visible by considering multimodal MRI data. However, the
co-registration across multiple MRI sequences can be difficult especially when these
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sequences are acquired in different spatial resolutions; and (4) typical clinical MRI
images are normally acquired with higher in-plane resolution and much lower inter-
slice resolution in order to balance between adequate image slices to cover the whole
tumor volume with good quality cross-sectional views and the restricted scanning time.
This can cause inadequate signal to noise ratio and asymmetrical partial volume effects
may also affect the final segmentation accuracy.

Previous studies on brain tumor segmentation can be roughly categorized into
unsupervised learning based [9–12] and supervised learning based [13–18] methods.
A more detailed topical review on various brain tumor segmentation methods can be
found elsewhere, e.g., in [6]. In addition, a dedicated annual workshop and challenge,
namely Multimodal Brain Tumor Image Segmentation (BRATS), is held to benchmark
different algorithms that developed for the brain tumor segmentation [19]. Here we
only reviewed some most recent and closely relevant studies for this topic.

Unsupervised learning based clustering has been successfully used for brain tumor
segmentation by grouping data based on certain similarity criteria. Hsieh et al. [20]
combined fuzzy clustering with region-growing for brain tumor cases scanned by T1-
weighted and T2-weighted sequences and achieved a segmentation accuracy of 73%. In
[9], a multi-stage fuzzy c-means framework was proposed to segment brain tumors
scanned by multimodal MRI and obtained promising results, but the proposed
framework was tested on a very limited number of datasets. Recently, a study [11] has
been carried out to evaluate different clustering algorithms for glioblastoma segmen-
tation, and results showed that Gaussian hidden Markov random field outperformed
k-means, fuzzy k-means and Gaussian mixture model for this task. However, the best
performing algorithm described in this study still only achieved 77% accuracy.

On the other hand, supervised learning based methods require training
data-and-label pairs to learn a classification model, based on which new instances can
be classified and then segmented. Wu et al. [13] employed superpixel features in a
conditional random fields framework to segment brain tumors, but the results varied
significantly among different patient cases and especially underperformed in LGG
images. A study was proposed in which extremely randomized forest was used for
classifying both appearance and context based features and 83% Dice score was
achieved [14]. More recently, Soltaninejad et al. [16] combined extremely randomized
trees classification with superpixel based over-segmentation for a single FLAIR
sequence based MRI scan that obtained 88% overall Dice score of the complete tumor
segmentation for both LGG and HGG tumor cases. Nevertheless, the tuning of
superpixel size and compactness could be tricky and influence the final delineation.

Recently, supervised deep convolutional neural networks (CNN) have attracted lots
of interests. Compared to conventional supervised machine learning methods, these
deep learning based methods are not dependent on hand-crafted features, but auto-
matically learn a hierarchy of increasingly complex features directly from data [21].
Currently, using BRATS datasets and their benchmarking system, deep learning based
methods have been ranked on top of the contest [21–23]. This can be attributed to the
fact that deep CNN is constructed by stacking several convolutional layers, which
involve convolving a signal or an image with kernels to form a hierarchy of features
that are more robust and adaptive for the discriminative models. Despite recent
advances in these deep learning based methods, there are still several challenges:
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(1) essentially tumor segmentation is an abnormal detection problem, it is more
challenging than other pattern recognition based tasks; (2) while most methods pro-
vided satisfied segmentation for HGG cases, in general the performance of the LGG
segmentation is still poor; (3) compared to complete tumor segmentation, the delin-
eation of core tumor regions and enhanced infiltrative regions is still underperformed;
(4) a more computing-efficient and memory-efficient development is still in demand
because existing CNN based methods require considerable amount of computing
resources.

In this study, we developed a novel 2D fully convoluted segmentation network that
is based on the U-Net architecture [24]. In order to boost the segmentation accuracy, a
comprehensive data augmentation technique has been used in this work. In addition,
we applied a ‘Soft’ Dice based loss function introduced in [25]. The Soft Dice based
loss function has a unique advantage that is adaptive to unbalanced samples, which is
very important for brain tumor segmentation because some sub-tumoral regions may
only count for a small portion of the whole tumoral volume. The proposed method has
been validated using datasets acquired for both LGG and HGG patients. Compared
with manual delineated ground truth, our fully automatic method has obtained
promising results. Also compared to other state-of-the-art methods, we have achieved
comparable results for delineating the complete tumor regions, and superior segmen-
tation for the core tumor regions.

2 Method

2.1 Brain MRI Data Acquisitions and Patients

The proposed method was tested and evaluated on the BRATS 2015 datasets [19],
which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) patient
scans. Multimodal MRI data is available for every patient in the BRATS 2015 datasets
and four MRI scanning sequences were performed for each patient using T1-weighted
(T1), T1-weighted imaging with gadolinium enhancing contrast (T1c), T2-weighted
(T2) and FLAIR. For each patient, the T1, T2 and FLAIR images were co-registered
into the T1c data, which had the finest spatial resolution, and then resampled and
interpolated into 1 � 1�1 mm3 with an image size of 240 � 240 � 155. We have
applied data normalization for each sequence of the multimodal MRI by subtracting the
mean of each sequence and dividing by its standard deviation.

In addition, manual segmentations with four intra-tumoral classes (labels) are
available for each case: necrosis (1), edema (2), non-enhancing (3), and enhancing
tumor (4). The manual segmentations have been used as the ground truth in both
segmentation model training and final segmentation performance evaluation. In pre-
vious studies, multimodal data were stacked like the multichannel RGB images [21–
23]. In this study, we used FLAIR images to segment the complete tumor regions and
tumor regions except edema that has been proved to be effective [16]. Additionally,
T1c data were used to delineate the enhancing tumor. In so doing, our framework is not
only more efficient, but also requires less clinical inputs because frequently multimodal
MRI data are not available due to patient symptoms and limited acquisition time.
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2.2 Data Augmentation

The purpose of data augmentation is to improve the network performance by inten-
tionally producing more training data from the original one.In this study, we applied a
set of data augmentation methods summarized in Table 1. Simple transformation such
as flipping, rotation, shift and zoom can result in displacement fields to images but will
not create training samples with very different shapes. Shear operation can slightly
distort the global shape of tumor in the horizontal direction, but is still not powerful to
gain sufficient variable training data, as tumors have no definite shape. To cope with
this problem, we further applied elastic distortion [26] that can generate more training
data with arbitrary but reasonable shapes.

2.3 U-Net Based Deep Convolutional Networks

Biomedical images usually contain detailed patterns of the imaged object (e.g., brain
tumor), and the edge of the object is variable. To cope with the segmentation for the
objects with detailed patterns, Long et al. [27] proposed to use the skip-architecture that
combined the high-level representation from deep decoding layers with the appearance
representation from shallow encoding layers to produce detailed segmentation. This
method has demonstrated promising results on natural images [27] and is also appli-
cable to biomedical images [28]. Ronneberger et al. [24] introduced the U-Net, which
employed the skip-architecture, to solve the cell tracking problem.

Our network architecture, which is based on the U-Net, consists of a down-sampling
(encoding) path and an up-sampling (decoding) path as shown in Fig. 1. The
down-sampling path has 5 convolutional blocks. Every block has two convolutional
layers with a filter size of 3 � 3, stride of 1 in both directions and rectifier activation,
which increase the number of feature maps from 1 to 1024. For the down-sampling, max
pooling with stride 2 � 2 is applied to the end of every blocks except the last block, so
the size of feature maps decrease from 240 � 240 to 15 � 15. In the up-sampling path,
every block starts with a deconvolutional layer with filter size of 3 � 3 and stride of
2 � 2, which doubles the size of feature maps in both directions but decreases the
number of feature maps by two, so the size of feature maps increases from 15 � 15 to
240 � 240. In every up-sampling block, two convolutional layers reduce the number of

Table 1. Summary of the applied data augmentation methods (c controls the brightness of the
outputs; a and r control the degree of the elastic distortion).

Methods Range

Flip horizontally 50% probability
Flip vertically 50% probability
Rotation ±20o

Shift 10% on both horizontal and vertical direction
Shear 20% on horizontal direction
Zoom ±10%
Brightness c = 0.8–1.2
Elastic distortion a = 720, r = 24,

510 H. Dong et al.



feature maps of concatenation of deconvolutional feature maps and the feature maps
from encoding path. Different from the original U-Net architecture [24], we use zero
padding to keep the output dimension for all the convolutional layers of both
down-sampling and up-sampling path. Finally, a 1 � 1 convolutional layer is used to
reduce the number of feature maps to two that refect the foreground and background
segmentation respectively. No fully connected layer is invoked in the network. Other
parameters of the network are tabulated in Table 2.

2.4 Training and Optimization

During the training process, the Soft Dice metric described in [25] was used as the cost
function of the network rather than the cross-entropy based or the quadratic cost
function. Soft Dice can be considered as a differentiable form of the original Dice
Similarity Coefficient (DSC) [25].

Training deep neural networks requires stochastic gradient-based optimization to
minimize the cost function with respect to its parameters. We adopted the adaptive
moment estimator (Adam) [29] to estimate the parameters. In general, Adam utilizes

Fig. 1. Our developed U-Net architecture.

Table 2. Parameters setting for the developed U-Net.

Parameters Value

Number of convolutional blocks [4–6]
Number of deconvolutional blocks [4–6]
Regularization L1, L2, dropout

Automatic Brain Tumor Detection and Segmentation 511



the first and second moments of gradients for updating and correcting moving average
of the current gradients. The parameters of our Adam optimizer were set as: learning
rate = 0.0001 and the maximum number of epochs = 100. All weights were initialized
by normal distribution with mean of 0 and standard deviationof 0.01, and all biases
were initialized as 0.

2.5 Experiments and Performance Evaluation

The evaluation has been done using a five-fold cross-validation method for the HGG
and LGG data, respectively. For each patient, we have validated on three sub-tumoral
regions as described by

a. The complete tumor region (including all four intra-tumoral classes, labels 1, 2 3,
and 4).

b. The core tumor region (as above but excluded “edema” regions, labels 1, 3, and 4).
c. The enhancing tumor region (only label 4).

For each tumoral region, the segmentations have been evaluated using the DSC,
and the Sensitivity was also calculated. The DSC provides the overlap measurement
between the manual delineated brain tumoral regions and the segmentation results of
our fully automatic method that is

DSC ¼ 2TP
FPþ 2TPþ FN

; ð1Þ

in which TP, FP and FN denote the true positive, false positive and false negative
measurements, respectively.

In addition, Sensitivity is used to evaluate the number of TP and FN that is

Sensitivity ¼ TP
TPþ FN

: ð2Þ

We reported the mean DSC results of the five-fold cross-validation and also
showed boxplots of the corresponding sensitivities. In this study, the HGG and LGG
cases are trained and cross-validated separately.

3 Results and Discussion

In this study, we proposed and developed U-Net based fully convolutional networks for
solving the brain tumor segmentation problem. Essentially, tumor detection and seg-
mentation belongs to the task of semantic segmentation. Compared to previous deep
learning based studies on this topic, we employed a comprehensive data augmentation
scheme that not only contains rigid or affine based deformation, but also includes
brightness and elastic distortion based transformation, and this has then been coupled
with the U-Net that incorporates the skip-architecture.
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Table 3 tabulates the DSC results of our cross-validated segmentation results for the
HGG and LGG cases, respectively. In our current study, we only compared with three
different deep learning based studies that published recently. All these three studies
currently ranked on the top of the BRATS challenge. To the best of our knowledge, most
published full papers were still focused on the BRATS 2013 datasets, which contains
much less patient cases than the BRATS 2015 datasets. For example, in [21, 22] the
model building has been done on the BRATS2013 training datasets and then tested on the
BRATS 2015 challenge datasets. Compared to the results on the BRATS 2015 challenge
datasets [21, 22], the cross validation demonstrated that our method obtained superior
results for the complete and core tumor segmentations. By using our method, the
enhancing tumor segmentation for the LGG cases by using the T1c images only is not
successful. This may be attributed to three reasons: (1) the BBB remains intact in most of
these LGG cases and the tumor regions are rarely contrast enhanced; (2) the LGG cohort
contains only 54 cases and the training datasets might be insufficient and (3) in these LGG
cases, the borders between enhanced tumor and non-enhanced regions are more diffused
and less visible that causes problems for both manual delineated ground truth and our
fully automated segmentation model. Nevertheless, our method achieved 0.81 DSC for
the enhancing tumor segmentation in the HGG cohort. Compared to Kamnitsas et al.’s
work on the BRATS 2015 datasets [23], our method obtained comparable complete
tumor segmentation results while achieving higher DSC for the core tumor delineation.
Figure 2 displays the boxplots of the calculated Sensitivities and Fig. 3 shows some
exemplar qualitative overlaid segmentation results compared to the ground truth.

Table 3. Quantitative results of our proposed fully automatic brain tumor segmentation method
compared to the results from other recently published deep learning based methods. Here we
tabulated the Dice Similarity Coefficient (DSC) for HGG, LGG and combined cases,
respectively. Grey background highlighted the experiments on the BRATS 2015 datasets. Bold
numbers highlighted the results of the best performing algorithm.

DSC
Method Data Grade Complete Core Enhancing

Proposed Cross-validation on
BRATS 2015 training
datasets

HGG 0.88 0.87 0.81
LGG 0.84 0.85 0.00
Combined 0.86 0.86 0.65

Pereira16 BRATS 2013
leaderboard

HGG 0.88 0.76 0.73
LGG 0.65 0.53 0.00
Combined 0.84 0.72 0.62

BRATS 2013 challenge HGG 0.88 0.83 0.77
BRATS 2015 challenge Combined 0.79 0.65 0.75

Havaei16 BRATS 2013 training Combined 0.88 0.79 0.73
BRATS 2013 challenge Combined 0.88 0.79 0.73
BRATS 2013
leaderboard

Combined 0.84 0.71 0.57

BRATS 2015 challenge Combined 0.79 0.58 0.69
Kamnitsas17 BRATS 2015 training Combined 0.90 0.76 0.73

BRATS 2015 challenge Combined 0.85 0.67 0.63
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Our network has been implemented using the TensorFlow and the TensorLayer
libraries. For the HGG cohort, each cross validation training session requires
approximately 18 h to finish on an NVIDIA Titan X (Pascal) graphics processing unit
(GPU) with 12G memory, while the LGG cohort takes about ¼ of the training timeof
the HGG cohort. There is a trade-off in choosing between 2D and 3D models. Due to
the memory limits of the GPU, a 2D U-Net model can process a full slice in one go
while a 3D convolution system can only process a small patch cover a small portion of
the 3D volume. Therefore, in this study we used a 2D based network.

For the prediction once we fixed the model, the computation time is approximately
2 to 3 s per case regardless a HGG or a LGG study. Compared to our computational
time, previous studies were less computational efficient: *30 s [23], 25 s to 3 min
[22], and about 8 min [21] to predict one tumor study.

There are still some limitations of the current work. First, our segmentation method
has been evaluated using a cross-validation scheme, which can provide an unbiased
predictor, but running our model on a separate and independent testing dataset may
produce a more objective evaluation. Secondly, there are several parameters need to be
carefully tuned in our network. Currently all the parameters were determined via
empirical study. In particular, for the regularization, we did not find a significant
performance improvement after applying L1, L2 or dropout to the network. This may

Fig. 2. Boxplots of the sensitivity; (a) for the HGG cases and (b) for the LGG cases.

Fig. 3. Segmentations results for the exemplar HGG and LGG cases compared with manual
delineated ground truth; (a) segmented complete tumor (red) of a HGG case overlaid on the
FLAIR image; (b) segmented enhancing tumor (cyan) of a HGG case overlaid on the T1c image;
(c) segmented complete tumor (red) of a LGG case overlaid on the FLAIR image; (a) segmented
core tumor (green) of a LGG case overlaid on the FLAIR image. (Color figure online)
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be attributed to the fact that an effective image distortion has been applied during our
model training, and it is difficult to overfit a network with large amount of training data.
Moreover, our current framework is less successful in segmenting enhancing tumor
regions of the LGG cohort. By stacking all the multimodal MRI channels and per-
forming joint training with HGG datasets may solve the problem. Despite these limi-
tations, the developed model has still demonstrated promising segmentation results
with efficiency. We can certainly envisage its application and effectiveness on an
independent testing dataset. In addition, validating our method on multi-institutional
and longitudinal datasets, especially for clinical datasets with anisotropic resolutions,
will be one of the future directions.

4 Conclusion

In this paper, we presented a fully automatic brain tumor detection and segmentation
method using the U-Net based deep convolution networks. Based on the experiments
on a well-established benchmarking (BRATS 2015) datasets, which contain both HGG
and LGG patients, we have demonstrated that our method can provide both efficient
and robust segmentation compared to the manual delineated ground truth. In addition,
compared to other state-of-the-art methods, our U-Net based deep convolution net-
works can also achieve comparable results for the complete tumor regions, and superior
results for the core tumor regions. In our current study, the validation has been carried
out using a five-fold cross-validation scheme; however, we can envisage a straight-
forward application on an independent testing datasets and further applications for
multi-institutional and longitudinal datasets. The proposed method makes it possible to
generate a patient-specific brain tumor segmentation model without manual interfer-
ence, and this potentially enables objective lesion assessment for clinical tasks such as
diagnosis, treatment planning and patient monitoring.

References

1. Schwartzbaum, J.A., Fisher, J.L., Aldape, K.D., Wrensch, M.: Epidemiology and molecular
pathology of glioma. Nat. Clin. Pract. Neurol. 2, 494–503 (2006)

2. Smoll, N.R., Schaller, K., Gautschi, O.P.: Long-term survival of patients with glioblastoma
multiforme (GBM). J. Clin. Neurosci. 20, 670–675 (2013)

3. Ramakrishna, R., Hebb, A., Barber, J., Rostomily, R., Silbergeld, D.: Outcomes in
reoperated low-grade gliomas. Neurosurgery 77, 175–184 (2015)

4. Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor
target volume determination for radiation treatment planning through automated MRI
segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59, 300–312 (2004)

5. Yamahara, T., Numa, Y., Oishi, T., Kawaguchi, T., Seno, T., Asai, A., Kawamoto, K.:
Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison
of autopsy brain and neuroimaging. Brain Tumor Pathol. 27, 81–87 (2010)

6. Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.: A survey of MRI-based medical image analysis
for brain tumor studies. Phys. Med. Biol. 58, R97–R129 (2013)

Automatic Brain Tumor Detection and Segmentation 515



7. Jones, T.L., Byrnes, T.J., Yang, G., Howe, F.A., Bell, B.A., Barrick, T.R.: Brain tumor
classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro.
Oncol. 17, 466–476 (2014)

8. Soltaninejad, M., Yang, G., Lambrou, T., Allinson, N., Jones, T.L., Barrick, T.R., Howe, F.
A., Ye, X.: Automated brain tumour detection and segmentation using superpixel-based
extremely randomized trees in FLAIR MRI. Int. J. Comput. Assist. Radiol. Surg. 12(2), 183–
203 (2016)

9. Szilágyi, L., Lefkovits, L., Benyó, B.: Automatic brain tumor segmentation in multispectral
MRI volumes using a fuzzy c-means cascade algorithm. In: 2015 12th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 285–291 (2015)

10. Mei, P.A., de Carvalho Carneiro, C., Fraser, S.J., Min, L.L., Reis, F.: Analysis of neoplastic
lesions in magnetic resonance imaging using self-organizing maps. J. Neurol. Sci. 359, 78–
83 (2015)

11. Juan-Albarracín, J., Fuster-Garcia, E., Manjón, J.V., Robles, M., Aparici, F., Martí-Bonmatí,
L., García-Gómez, J.M.: Automated glioblastoma segmentation based on a multiparametric
structured unsupervised classification. PLoS ONE 10, e0125143 (2015)

12. Dhanasekaran, R.: Fuzzy clustering and deformable model for tumor segmentation on MRI
brain image: a combined approach. Procedia Eng. 30, 327–333 (2012)

13. Wu, W., Chen, A.Y.C., Zhao, L., Corso, J.J.: Brain tumor detection and segmentation in a
CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level
features. Int. J. Comput. Assist. Radiol. Surg. 9(2), 241–253 (2013)

14. Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M.L.D., Silva, C.A.: Brain tumour
segmentation based on extremely randomized forest with high-level features. In: 2015 37th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 3037–3040 (2015)

15. Gotz, M., Weber, C., Blocher, J., Stieltjes, B., Meinzer, H., Maier-Hein, K.: Extremely
randomized trees based brain tumor segmentation. In: Proceeding of BRATS
Challenge-MICCAI (2014)

16. Soltaninejad, M., Yang, G., Lambrou, T., Allinson, N., Jones, T.L., Barrick, T.R., Howe, F.
A., Ye, X.: Automated brain tumour detection and segmentation using superpixel-based
extremely randomized trees in FLAIR MRI. Int. J. Comput. Assist. Radiol. Surg. 12(2), 183–
203 (2016)

17. Jafari, M., Kasaei, S.: Automatic brain tissue detection in MRI images using seeded region
growing segmentation and neural network classification. Aust. J. Basic Appl. Sci. 5, 1066–
1079 (2011)

18. Subbanna, N., Precup, D., Arbel, T.: Iterative multilevel MRF leveraging context and voxel
information for brain tumour segmentation in MRI. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 400–405 (2014)

19. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y.,
Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.-A., Arbel, T., Avants, B.
B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T.,
Delingette, H., Demiralp, Ç., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia,
E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M.,
Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv,
T.R., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.-C., Shotton, J., Silva, C.A.,
Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G.,
Vasseur, F.,Wintermark,M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa,M., Reyes,M.,
Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS).
IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

516 H. Dong et al.



20. Hsieh, T.M., Liu, Y.-M., Liao, C.-C., Xiao, F., Chiang, I.-J., Wong, J.-M.: Automatic
segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering
and region growing. BMC Med. Inform. Decis. Mak. 11, 54 (2011)

21. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional
neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)

22. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C.,
Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med.
Image Anal. 35, 18–31 (2016)

23. Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K.,
Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for
accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015.
LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

25. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation. arXiv, pp. 1–11 (2016)

26. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks
applied to visual document analysis. In: Proceedings of Seventh International Conference on
Document Analysis and Recognition, pp. 958–963. IEEE Computer Society (2003)

27. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmen-
tation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3431–3440. IEEE (2015)

28. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip
connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA
-2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). doi:10.1007/978-3-319-
46976-8_19

29. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization (2014)

Automatic Brain Tumor Detection and Segmentation 517

http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-46976-8_19
http://dx.doi.org/10.1007/978-3-319-46976-8_19

	Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
	Abstract
	1 Introduction
	2 Method
	2.1 Brain MRI Data Acquisitions and Patients
	2.2 Data Augmentation
	2.3 U-Net Based Deep Convolutional Networks
	2.4 Training and Optimization
	2.5 Experiments and Performance Evaluation

	3 Results and Discussion
	4 Conclusion
	References




