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Abstract. Detection of acute stroke signs in non-contrast CT images
is a challenging task. The intensity and texture variations in patholog-
ical regions are subtle and can be confounded by normal physiological
changes or by old lesions. In this paper we investigate the use of contex-
tual information for stroke sign detection. In particular, the appearance
of the contralateral anatomy and the atlas-encoded spatial location are
incorporated into a Convolutional Neural Network (CNN) architecture.
CNNs are trained separately for the detection of dense vessels and of
ischaemia. The network performance is evaluated on 170 datasets by
cross-validation. We find that atlas location is important for dense vessel
detection, but is less useful for ischaemia, whereas bilateral comparison
is crucial for detection of ischaemia.

1 Introduction

In acute ischaemic stroke the ultimate goal of treatment is tissue reperfusion
via recanalisation of an occluded vessel. This can be successfully achieved, with
subsequent improved clinical outcome, by reperfusion therapies or mechanical
thrombectomy. However, the offsetting of risks versus benefit in the selection
of patients for treatment options is currently suboptimal, and thus there is a
recognised need for imaging biomarkers [1]. Whilst the debate of a gold stan-
dard imaging profile and optimal modalities continues, the role of non-contrast
computed tomography (NCCT) in the emergency setting is undisputed. Beyond
its primary role of intracerebral haemorrhage detection, signs of early ischaemic
change can be identified. These subtle imaging features include the parenchy-
mal changes as well as the dense vessel sign, which represents causative vessel
occlusion. Objective, automated methods to detect and quantify these signs of
early ischaemic change hold value in a time critical clinical setting for treatment
triage, especially out-of-hours in the absence of a specialist.

Automatic detection of acute stroke signs in NCCT images is challenging.
Dense vessels and areas of ischaemia are difficult to detect due to the proximity
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M. Valdés Hernández and V. González-Castro (Eds.): MIUA 2017, CCIS 723, pp. 494–505, 2017.
DOI: 10.1007/978-3-319-60964-5 43



CNN for Stroke Sign Detection 495

Fig. 1. A-E show examples of various subtle stroke signs. F shows normal calcification
of arteries, which could be confused with dense vessel signs by a näıve classifier.

of bone in the former case, and to the subtlety of intensity and texture changes
in the latter case (see Fig. 1).

For the easier problem of haemorrhagic tissue detection in NCCT, common
solutions include histogram-based thresholding [2] or clustering [3], followed by
morphological operations. More sophisticated methods of stroke sign detection
use classifiers with handcrafted features [4]. Chawala et al. developed a sys-
tem for the classification of both ischaemic and haemorrhagic stroke signs [5].
Their system computes slicewise histograms for each hemisphere and classifica-
tion of the image slice is based on a comparison between the left and right side
histograms (see Sect. 5). This bilateral comparison is an example of where the
provision of contextual information might be helpful to a system for stroke sign
identification.

There have been CNN-based methods suggested for ischaemia lesion segmen-
tation in MR images [6,7] (see Sect. 5), nevertheless the architecture for CT may
require different design choices. CT brain images show less structural detail in
regions of soft tissue and take on a textured appearance, therefore there are
fewer higher-level concepts for a CNN to learn than for MR brain images.

To inform the network design, we observed an experienced neuroradiologist
during reading of the NCCT scan. They routinely compared the appearance and
Hounsfield Unit intensities of the left and right hemispheres when searching for
stroke signs and used their knowledge of brain anatomy to navigate straight to
the regions most commonly affected in stroke episodes. Therefore, we hypothesise
that incorporation of the bilateral comparison and atlas information into the
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CNN architecture might be helpful for the detection of the dense vessels and
ischaemia (see Fig. 2). These insights have been previously incorporated in a
CNN applied to a thrombus detection problem [8]. In this study we examine
the impact of each of the architectural choices on the detection performance of
different type of stroke signs, specifically we:

– Demonstrate a CNN-based solution applied to the detection of dense vessel
and ischaemic regions in non-contrast CT scans.

– Evaluate the impact of including contralateral features in a CNN architecture
for dense vessel and ischaemia detection.

– Evaluate the impact of including atlas location features in a CNN architecture
for dense vessel and ischaemia detection.

2 Proposed Solution: A CNN for Stroke Sign Detection

Bilateral Comparison: The exploitation of anatomical symmetry has previ-
ously been incorporated in unsupervised approaches to pathology detection.
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Fig. 2. (A) Schematic of the CNN, including filter sizes and number of layers. Pairs of
contralateral 3D image intensity patches are input to the network at training time. Atlas
coordinate inputs are fused at the merge point of the intensity channels. (B) Application
of the detector at test time. The whole folded block is input to the network, and
predictions are generated separately for each side.
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Researchers utilised within-organ symmetry for the detection of brain tumours
[9] and examined symmetry between a pair of organs for the detection of breast
tumours [10]. In these approaches, the pathology is found by searching for the
most dissimilar regions between the left and right sides of the organ [9], or by
identification of asymmetry between paired organs [10]. We incorporate right
and left hemisphere comparison in the CNN architecture by inputting image
patches extracted from both hemispheres to parallel CNN channels and allow
left/right comparison functionality to emerge as a part of supervised training.
To ensure extraction of corresponding patches from contralateral regions, we
first align the CT volume to the reference dataset, then we extract symmetrical
blocks of interest (Fig. 4) about the sagittal midline, and finally we fold the CT
block along the midline (Fig. 2A).

 @  5 x 1 x 1  @ 1 x 5 x 1  @ 1 x 1 x 5 
 1 @ 1 x 1 x 1  @  5 x 1 x 1  @ 1 x 5 x 1  @ 1 x 1 x 5 

abs(x), y, z 

abs(x) 

y 

z 

 1 @ 1 x 1 x 1  @  5 x 1 x 1  @ 1 x 5 x 1  @ 1 x 1 x 5 

 @  5 x 1 x 1  @ 1 x 5 x 1  @ 1 x 1 x 5 

 @  5 x 1 x 1  @ 1 x 5x 1  @ 1 x 1 x 5 

× 2 

× 3 

× 2 

 @  5 x 1 x 1  @ 1 x 5 x 1  @ 1 x 1 x 5 
 1 @ 1 x 1 x 1  @  5 x 1 x 1  @ 1 x 5 x 1  @ 1 x 1 x 5 

× 2 abs(x), y, z 

A 

B 

C 

Fig. 3. Adding atlas information at different network stages: (A) Adding the atlas
location by creating an additional 3 input channels (×3) alongside two intensity chan-
nels (×2). (B) Adding the atlas location midway, at the merge point of the bilateral
intensity channels. (C) Adding the atlas location to the pre-classification layer.

Anatomical Context: One way of discovering abnormalities in the image is to
compare the patient image with a normative atlas created from healthy examples
of anatomy. In this approach, the patient image is registered to the normative
atlas and the pathology is identified by the differences between the reference atlas
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and the examined image [11]. Anatomical atlases have also been used in super-
vised medical imaging applications as they provide useful anatomical context
information. Researchers have previously employed explicit anatomical context
mechanisms when training random forest classifiers [12]. We propose to supply
the CNN with this information by adding three channels encoding the x, y and
z atlas locations. Furthermore, we investigate the level at which this information
should be provided to the network (see Fig. 3).

3D Architecture: NCCT scans are three-dimensional (3D), therefore architec-
tures designed for 2D images cannot be directly applied. When moving to 3D
data, 3D convolutions [6,13] may be used in place of 2D convolutions. A 3D
CNN could potentially lead to better results than a 2D CNN applied slicewise
[13] since information within a 3D neighbourhood may be leveraged at a deep
level. In this paper we adopt a 3D CNN, but we apply spatial decomposition of
the kernels such that convolutions are applied one dimension at the time. This
allows us to reduce the risk of overfitting as the network has smaller number of
parameters.

3 Data Sets

We use data from the following studies: ATTEST [14], POSH and WYETH [15].
Ground truth was collected on the acute NCCT scans for 170 patients with
suspected acute ischaemic stroke within 6 hours of onset.

Capturing ground-truth for subtle stroke signs is only achievable by man-
ual segmentation, given the diversity of shape, size and location of these signs.
3D Slicer 4.5.0 was used for this task which generated a label map for each of
the acute NCCT datasets. Manual segmentations of ischaemia and dense vessels
were generated by a clinical researcher under the supervision of an experienced
neuroradiologist. Annotations were blind to additional scans (e.g. CT angiog-
raphy, CT perfusion, follow-up scans) and clinical information except for the
radiology report which included laterality of symptoms.

Thromboembolism is most frequently seen in the middle cerebral artery, thus
we currently focus our detection on dense vessels within the anterior circulation
and on ischaemic regions which lie downstream in the associated vascular terri-
tory (see Fig. 4).

4 Experiments

Data Preparation: Volumetric datasets are pre-aligned to a reference dataset,
designated as an atlas. The transformation between a given dataset and the ref-
erence atlas is discovered via landmarks, which are detected in the novel volume
by a random forest as proposed in [16]. The datasets are isotropically resampled
to 1 mm per voxel for dense vessels and 2 mm per voxel for ischaemia. Blocks
of interest are extracted symmetrically about the sagittal midline and folded.
Volume intensities are clamped in the range {−125, 225} HU for dense vessels
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Fig. 4. Left: anterior circulation block used in dense vessel detection experiments.
Right: subcortex block used in ischaemia detection experiments.

and {0, 80} HU for ischaemia to imitate the typical window levels chosen by a
radiologist when searching for these signs.

CNN Model: There are two data input channels for 3D patches selected symmet-
rically from the left and right hemispheres. Weights are shared between intensity
channels for ischaemia, but not for dense vessels. We also insert x, y and z atlas
coordinates into the architecture. Each full convolution operation comprises a
series of orthogonal one-dimensional convolutions, with kernels of 5 × 1 × 1,
1 × 5 × 1 and 1 × 1 × 5. NI = 32 kernels are used for the data channels and
NA = 4 kernels are used for the atlas channels. Channels are then merged and
another convolution operation is applied, with NM = 32 kernels in the case of
dense vessels and NM = 2 in the case of ischaemia. The number of kernels and
the filter size were chosen empirically. ReLU activation functions are used. The
output is fully convolutional allowing for the efficient prediction of all voxels of
the dataset in a single pass (see Fig. 2). The models were implemented in Python
using the Keras [17] library built on top of Theano [18].

CNN Training: We use 71 datasets for training, 48 for validation and 51 for
testing. To compensate for the large imbalance between abnormal voxels and
normal voxels, we adopt a biased patch selection process and use a weighting
factor w, which is defined as the ratio of normal to abnormal voxels in the training
set. The patches for training of ischemia are of size 18 × 18 × 18 voxels and for
dense vessels are 24×24×24 voxels. There is inevitably some uncertainty around
precise ground truth segmentation of stroke signs in NCCT, due to their diffuse
appearance, especially in case of ischaemia. Therefore we are not interested in
refining the segmentation boundary, but in the detection of the presence or
absence of a stroke sign. We mark the regions around the pathology as “do
not care”. We adjust the loss function to ignore the voxels with this label. For
implementation, we use labels of −1 and +1 for the normal and abnormal classes



500 A. Lisowska et al.

respectively and use the label 0 to represent the “do not care” voxels for which
loss is not computed. The border is created by a dilation operation and it is
1 mm thick for dense vessel and 6 mm for ischaemia. Training is performed at
the voxel level, meaning that each voxel in the patch is a training example.
Training is performed using the Adam optimiser [19] on normalised data samples,
to optimise the squared hinge loss function, with a learning rate of 0.001, a
momentum of 0.9 and L2 regularisation of 0.002. For training and testing of the
CNN classifier we used a Titan X GPU.

Post-processing: We train the dense vessel and ischaemia detectors at the voxel
level as this gives us a larger number of training samples. Nevertheless, we are
interested in determining whether the stroke sign is present or absent at the level
of the brain hemisphere. To arrive at the detection confidence score at half block
level we compute the mean of all voxel level predictions with a score above 0. This
threshold was necessarily as the majority of voxels are negative (normal tissue)
and had more influence over the mean than the confident positive detection of
smaller stroke signs.

Evaluation: We evaluate the performance of the ischaemia (Sect. 4.1) and dense
vessel (Sect. 4.2) detectors at the brain hemisphere level (half-patient) in terms of
the area under the curve for the Receiver Operating Characteristic (ROC AUC)
and the Precision-Recall (PR AUC) curve. It is suggested that PR curves should
be used when the positive class samples are rare compared to the negative class
samples [20], because precision is more sensitive to any change in the number
of false positives, while specificity is not due to the large number of negative
samples. To determine whether the inclusion of bilateral comparison or the atlas
are helpful in stroke sign detection we compare the detection performance of
four different CNN architectures.

4.1 Ischaemia Detection

Table 1 presents the detection results obtained for ischaemia detection. Incorpo-
ration of bilateral features in the CNN architecture improves detection perfor-
mance compared to a single intensity channel CNN, which is not trained with
pairs of contralateral patches, but follows standard single intensity patch train-
ing. Incorporation of atlas information is not helpful for the ischaemia detection
task as there is no significant different in performance between CNN architec-
tures with and without atlas coordinates provided to the network.

4.2 Dense Vessel Detection

Table 2 presents the dense vessel detection results. The addition of atlas coordi-
nates to the network has a large impact on the performance of the dense vessel
detector. It gives rise to larger improvements than inclusion of bilateral channels,
which has little impact on dense vessel detection. We incorporated atlas infor-
mation in the network at three different levels (see Fig. 3) to investigate if the
point at which this information is injected to the network affects the detection
results. The earliest incorporation of the atlas led to the best performance.
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Fig. 5. Examples of ischaemia detection (top) and dense vessel detection (bottom).
For each example, we display the volume slice with the highest number of abnormal
voxels. Nevertheless the predictions are computed for all voxels in the volume. Image
brightness corresponds to confidence level. For dense vessels we selected an example
with both true and false positive detections. The false positives are detected with lower
confidence, as indicated by the brightness. The hemisphere-level scores for the right
and left hemisphere are printed below each example.
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Table 1. Ischaemia detection results. Detection of the presence/absence of a sign was
performed at the hemisphere level. Each experiment was run 3 times with different
random seeds, and we report the mean and standard deviation

Model ROC AUC [std] PR AUC [std]

Bilateral CNN + atlas 0.915 [0.006] 0.783 [0.014]

Bilateral CNN 0.912 [0.007] 0.782 [0.006]

Single intensity channel CNN + atlas 0.738 [0.003] 0.483 [0.021]

Single intensity channel CNN 0.743 [0.012] 0.461 [0.022]

Table 2. Dense vessel detection results. Detection of the presence/absence of a sign
was performed at the hemisphere level. Each experiment was run 3 times with different
random seeds, and we report the mean and standard deviation.

Model ROC AUC [std] PR AUC [std]

Bilateral CNN + atlas (A) 0.964 [0.005] 0.898 [0.029]

Bilateral CNN + atlas (B) 0.950 [0.011] 0.817 [0.062]

Single intensity channel CNN + atlas (A) 0.936 [0.026] 0.790 [0.063]

Bilateral CNN + atlas (C) 0.927 [0.019] 0.718 [0.072]

Bilateral CNN 0.891 [0.011] 0.691 [0.036]

Single intensity channel CNN 0.876 [0.013] 0.514 [0.060]

5 Related Work and Discussion

In this paper we were inspired by the workflow of a radiologist, to investigate
the role of contextual information when interpreting NCCT scans to identify
acute stroke signs. Frequently in medical images, local and global spatial context
is informative. Pathology might have a characteristic distribution relative to
different anatomical structures and tissues. This is the case with dense vessel
signs which are expected to appear along the vasculature. Precise anatomical
location is less useful for ischaemic changes, which are diffuse in appearance and
more texture-like than dense vessels, therefore the type of context required to
detect those signs may differ.

Some researchers have tried the use of foveation [21] or the similar method
of non-uniform sampling [22] in order to capture anatomical contextual informa-
tion. Foveation refers to under-sampling of pixels closed to a window boundary,
whilst keeping the central pixels at the original sampling level. Ciresan et al. [21]
propose that this method is well suited to the training of networks whose task
is to classify the central pixel of the window, as the network is then forced to
ignore fine details at the periphery of the window, whilst still having access to
general context information. The challenge with this approach is that it assumes
classification of one voxel at a time using sliding window approach, which leads
to long detection times. Although these methods may offer efficient training, it
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is not obvious how to incorporate them in a fully convolutional network, and
application to stroke sign detection might not be feasible due to constraints on
detection time in the clinical setting.

In tackling ischaemia lesion detection in MR, a couple of authors have pur-
sued a dual-pathway approach, in which two pathways are devoted to local
and global context respectively, before combining at the pre-classification stage.
Kamnitsas et al. [6] achieves this through the use of patches at two different
image scales, whereas Dutil et al. [7] uses kernels of different sizes. As the path-
ways are disjoint the network can process them in parallel, which is convenient
for run time speed up. We adopted a similar architectural design, but designated
the two input pathways for bilateral inputs, rather than two scales.

We are not the first authors to notice that comparison of the appearance of
the left and right hemisphere might be helpful in ischaemia detection. Chawla et
al. proposed a two stage system for differentiation between chronic infarcts,
haemorrhagic and ischaemic stroke [5]. For each image slice, histograms of
intensity values are computed for each hemisphere and hemisphere similarity
is assessed using the correlation coefficient as a measure. In the first stage they
classify the datasets containing chronic infarcts or haemorrhage by histogram
thresholding. In the second stage they employ a wavelet decomposition of the
histograms for slices assigned to neither of the categories to further discriminate
between acute infarcts and normal slices. The authors report average recall of
90% for acute stoke categorisation at slice level [5]. By contrast, our system first
produces a prediction for all voxel in the block so we are able to highlight the
region suspected of ischaemia alongside the hemisphere detection score computed
at half patient level (see Fig. 5).

Since we have a strong prior belief about the spatial location of dense vessels,
we also injected explicit atlas location information. In this we follow [23] who, for
coronary calcium scoring in cardiac CT angiography, registered each image to an
atlas image and fed the resulting atlas coordinates {x, y, z} of each voxel as three
additional inputs to the network at the dense fully connected layer. We build
upon their work by showing that atlas coordinates may be effectively utilised
even if the fully connected layers are implemented as convolutions. Furthermore,
we investigated at which level to inject atlas information to the architecture
and we found that providing it at the input layer alongside the intensity inputs
led to best performance. This agrees with the finding of Havaei et al., who
investigated at which level the information from the output of an initial CNN
should be incorporated to a second CNN in a cascade of classifiers. They also
tried providing this additional information at three different levels and found that
concatenation of the prediction of the first classifier with intensity patches at the
input to the second classifier gave best brain tumour segmentation in MR [24].

6 Conclusion and Future Work

The design of the CNN classifier depends on the task at hand. We have inves-
tigated the type of contextual information required for two different types of
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stroke sign and suggested how this information might be incorporated in the
CNN architecture. We found that providing atlas information is helpful for dense
vessel detection, where the signs appear in typical locations. Furthermore, the
earlier this information is provided to the network, the sooner the detector is
able to focus in on the critical spatial region. Atlas coordinates are less useful
for detecting ischaemic regions since they vary in location and size. However,
the incorporation of contralateral features in our CNN design enables bilateral
comparison, and leads to more successful ischaemia detection.

In future work it would be interesting to compare the CNN-based solutions
designed for ischaemia lesion segmentation in MR, such as [6], with the proposed
CNN architecture for stoke sign detection in NCCT. This compares solutions
designed for similar tasks but for different imaging modalities and so would
enable evaluation of the extent to which the CNN architectures designs should
be modality specific.
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