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Juan M. Górriz2, Javier Ramı́rez2, and for the Alzheimer’s Disease

Neuroimaging Initiative

1 Communications Engineering Department, University of Málaga,
29004 Málaga, Spain
aortiz@ic.uma.es

2 Department of Signal Theory, Communications and Networking,
University of Granada, 18060 Granada, Spain

Abstract. Automatic knowledge extraction from medical images con-
stitutes a key point in the construction of computer aided diagnosis tools
(CAD). This takes a special relevance in the case of neurodegenerative
diseases such as the Alzheimer’s disease (AD), where an early diagnosis
makes the treatments easier and more effective. Moreover, the study of
the evolution of the illness results crucial to differentiate the neurodegen-
erative process associated to the disease from the natural degeneration
due to the ageing process. In this paper we present a method to construct
longitudinal models from subjects using a series of MRI images. Specifi-
cally, the method presented here aims to model Gray matter (GM) varia-
tion at different brain areas of a subject across subsequent examinations,
being possible to relate those regions which degenerate jointly. Hence, it
allows determining variation patterns that differentiate controls from AD
patients. Additionally, White matter (WM) density is also incorporated
to the longitudinal model to complement the information provided by
GM. The results obtained demonstrated the effectiveness of the method
in the extraction of these patterns, that can be used to classify between
Controls (CN) and AD subjects with 94% of accuracy, outperforming
other previous methods.

1 Introduction

Alzheimer’s Diasese (AD) is the most common cause of dementia among older
people. Nowadays, 44 million people worldwide and it is expected AD affects
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60 million people worldwide over the next 50 years. AD progressively causes the
loss of nerve cells, whose symptoms usually start with mild memory problems,
turning into severe brain damage in several years. The early diagnosis of AD
results crucial, since there is no cure and currently developed drugs can only
help to temporarily slow down the progression of the disease [3]. This way, the
use of current functional or structural image systems have provided a way to
explore new insights of the disease and to improve the diagnosis accuracy. In
fact, many previous works used functional images such as Single Emission Com-
puterized Tomography (SPECT) [8,14,22] or Positron Emission Tomography
(PET) [1,23] to reveal functional differences between controls and AD patients
and then to evaluate the loss of brain functions as the disease progress. On the
other hand, since AD also causes structural changes in the brain, these can be
figured out by means of Magnetic Resonance Image (MRI) analysis [5,6,16,17].
These works use GM or WM images on whole brain volume to classify con-
trols and AD patients [5,6] or to compute Regions of Interest (ROI), searching
for common patterns in Controls (CN) and AD subjects. On the other hand,
the construction of neurodegeneration models to study the progression of the
disease plays an important role for a better understanding of the neurodegen-
eration process. The main goal of this work, unlike previous works, is to model
the degeneration process in different brain areas for individual subjects from a
series of MRI images, rather than searching for static patterns in CN subjects or
AD patients. This is addressed by modelling the regional grey matter density by
means of the Sparse Inverse Covariance (SIC) and building a per-subject model
that shows the relationship between areas in which the GM density covaries.
This has important implications from the functional point of view, as positive
covariance in GM evidences the existence of a fiber tract connection between
these two areas [4,21]. These models, as explained later, can be further used to
extract patterns that can be used to discriminate between CN and AD. Although
most part of the information regarding the neurodegeneration process associated
to AD is included in GM patterns, we also included WM density covariation to
the model, as it provides complementary information that leverages the clas-
sification accuracy. On the other hand, we opted to use a deep-learning (DL)
classifier instead of statistical classifiers such as SVM, since DL has demon-
strated its effectiveness in extracting relevant information from noisy patterns
[18]. In particular, we use a stacked denoising autoencoder to train a deep neural
network which is fine-tuned by backpropagation.

The rest of the paper is organized as follows. Section 2 describes the database
used in this work. Section 3 introduces the methods used in this work, including
image preprocessing, density computation and the methods used for longitudi-
nal modelling (and feature extraction) and classification in Subsects. 3.1, 3.2,
3.3, and 3.4, respectively. Section 4 shows details on the conducted experiments
and the results obtained using longitudinal MRI data from the ADNI database.
Finally, the main conclusions are drawn in Sect. 5.
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2 Database

The database used in this work contains longitudinal MRI image data from
138 subjects, comprising 68 Controls (CN), and 70 AD patients from the ADNI
database [2], comprising one evaluation each 6 months per subject in a period of
three years. Thus, 6 evaluations are usually available for each subject, although in
a few subjects, only 4 or 5 images were available in the database. This repository,
which was created to study AD and provide a means for its early diagnosis,
collects a vast amount of MRI and PET images as well as blood biomarkers and
cerebrospinal fluid analyses. In this work, however, only MRI data have been
used. Patients’ demographics are shown in Table 1.

Table 1. Patient demographics. Mini-Mental State Examination Scores (MMSE) are
indicated for diagnosis reference

Evaluation Sex (M/F) Mean age ± std
(1st visit)

Mean MMSE ± std
(1st visit)

NC 61/61 75.74 ± 5.12 29.22 ± 0.02

AD 47/49 75.19 ± 7.49 23.14 ± 1.94

3 Methods

3.1 Image Preprocessing

MRI images from the ADNI database have been spatially normalized accord-
ing to the Voxel-based morphometry (VBM) T1 template and segmented into
White Matter (WM) and Grey Matter (GM) tissues using the VBM toolbox for
Statistical Parametric Mapping (SPM) software [7,24]. This ensures each image
voxel corresponds to the same anatomical position. After image registration, all
the images from the ADNI database were resized to 121 × 145 × 121 voxels
with voxel-sizes of 1.5 mm (sagittal) × 1.5 mm (coronal) × 1.5 mm (axial). MRIs
are further segmented to obtain information about GM and WM tissue distri-
butions, which can be used to differentiate AD from CN patients [13,16,17].
This process is guided by means of tissue probability maps of grey matter, white
matter or cerebro-spinal fluid. A nonlinear deformation field is estimated that
best overlays the tissue probability maps on the individual images. The tissue
probability maps provided by the International Consortium for Brain Mapping
(ICBM) are derived from 452 T1-weighted scans, which were aligned with an
atlas space, corrected for scan inhomogeneities, and classified into grey matter,
white matter and cerebro-spinal fluid. Segmentation through SPM/VBM pro-
vides values in the range [0, 1] which denote the membership probability to a
specific tissue.
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3.2 Density Computation

Features used in this work are based on brain volumes at specific regions delin-
eated by the Automatic Anatomical Labelling atlas (AAL). Although this brain
atlas delimitates 116 regions, we just used 42 of them which are considered the
most closely related to AD [11,19,25], discarding cerebellum and vermis regions.
The volume corresponding to the i-region can be computed using the following
expression,

Voli =
#voxelsi > thr

1000
∗ voxel size (1)

where thr denotes the probability threshold that indicates whether a voxel
belongs to a specific tissue and voxel size is indicated in mm3. Similarly, tis-
sue density for each region can be computed as follows,

Di =
#voxelsi > thr

V oli
(2)

Since SPM segmentation provides the membership probability values to a
specific tissue for each voxel, the threshold thr, in Eqs. 1 and 2, indicates how
the partial volume effect is taken into account. Thus, the lower the thr the less the
relative importance of one tissue over the other, and for thr=1 no partial volume
effect is taken into account. In this work, we selected thr ≥ 0.3, meaning that
voxels with a value ≥ 0.3 in the GM probability map are considered belonging
to GM.

3.3 Sparse Inverse Covariance Estimation (SICE)

The characterization of the tissue covariation between brain areas is usually
addressed by correlation analysis. Correlation between two variables is, how-
ever, a necessary but not sufficient condition for a causal relationship. In other
words, a correlation between two variables captures pairwise information but
does not guarantee that the occurrence of one variable causes the other, as the
correlation could be originated by third-party effects. Partial correlation can be
used then to effectively characterize the interaction of two brain areas varying
together while factoring out the influence of the rest of the regions [20]. When
applied to AD, this mathematical tool can be used to identify patterns associated
to cerebral neurodegeneration by identifying conditional independence between
regions given the rest as constant. Partial correlations, in turn, coincide with
the off-diagonal entries of the inverse covariance matrix, also known as preci-
sion matrix. Partial correlations are thus usually computed using the Maximum
Likelihood Estimation (MLE) of the inverse covariance matrix. MLE, however,
is not recommended when the sample size is not considerably higher than the
number of variables; e.g. the number of patients is not higher than the num-
ber of regions of interest. In those cases, and taking into account the inherent
sparseness of the brain network [27], sparse computation can be employed [9].
Sparse Inverse Covariance Estimation (SICE), also known as known as Gaussian
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graphical model or graphical LASSO (Least Absolute Shrinkage and Selection
Operator), uses a regularization parameter that controls the number of zero
entries. Next, we explain this with more detail.

Let x1,x2, ...,xn ∼ N (μμμ,Σ) denote p-dimension vectors, corresponding to
n samples measured at p selected ROIs, which follow a multivariate Gaussian
distribution where μμμ ∈ R

p is the mean and Σ ∈ R
p×p is the covariance, then the

empirical covariance is:

S =
1
n

n∑

i=1

(xi − μ)(xi − μ)T . (3)

Let also Θ = Σ−1 be the inverse covariance (or precision) matrix, the maximum
log likelihood estimation (or MLE) of Θ under a multivariate Gaussian model
can be obtained as follows:

Θ̂ = argmax
Θ�0

(log(det Θ) − tr(SΘ)), (4)

where tr(SΘ) is the trace of (SΘ). If S is not singular, by deriving with regards
to Θ and setting it to zero, we would get, as expected, that the estimate of the
inverse covariance is Θ̂ = S−1. However, because p > n the empirical estimate
of S becomes singular and a regularization must be applied so that a shrunken
estimate of Θ can be obtained through a maximization of the penalized log
likelihood function. In particular, an estimate of the inverse covariance matrix
Θ̂̂Θ̂Θ of the brain regions is computed by solving the following optimization problem
using the algorithm proposed in [12]:

Θ̂̂Θ̂Θ = argmax
Θ�0

(log(det Θ) − tr(SΘ) − λ||Θ||1), (5)

where || · ||1 denotes the “entrywise” l1-norm regularization [11], which corre-
sponds to the sum of absolute values of all the entries in a matrix, and λ > 0
is the pre-selected regularization parameter. The larger the value of λ the more
sparse are the estimates for Θ provided by SICE. Conversely, when λ is small
the constraint has little effect and SICE becomes the conventional MLE.

SICE reports conditional independence between two variables (given the
other variables in the multivariate Gaussian distribution) and therefore, once
it is computed, neurodegenerative patterns can be developed. Two brain regions
are connected if and only if they are not conditionally independent.

3.4 Deep Learning-Based Classifier

Deep learning (DL) classifiers have demonstrated their effectiveness under noisy
patterns. Moreover, they discover the underlying structure of the data and model
it, allowing the computation of representative and/or discriminative features
from the original patterns [10,18]. Thus, we used a deep-learning based classifier
to learn patterns from the covariance values computed using the SICE method
described above. Specifically, we used a stacked denoising autoencoder (SDA) to
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train a deep neural network in a stepwise manner. Stacked autoencoders compute
representative features in their most inner layer while trying to reconstruct the
original sample. Note also that, as this is the layer with fewer neurons, it usually
becomes the bottleneck in the neural structure. Subsequently, these most inner
layer from each autoencoders are used as hidden layers of a deep neural network.
Positive saturating linear transfer functions are used at the encoder part and
Linear transfer function at the decoder part of the autoencoders. The learning
rate for the scaled conjugate gradient descent training algorithm was selected to
0.005. These learning parameters make the network to converge in less than 500
iterations. Additionally, the training phase is stopped when no improvements in
the loss function are obtained during 100 iterations to avoid overfitting.

At the top most, a single unit softmax layer is included to implement the
classifier. This method provides the unsupervised pre-training stage of the deep
neural structure, which is further fine-tuned by backpropagation using not the
samples (as in the autoencoder phase) but the labels and a learning rate of
0.001. This way, the first stage using autoencoders is focused in minimizing
the representation error provided by the features computed in the hidden layer,
while the second stage tries to minimize the classification error. Figure 1 shows
the neural structure used in this work, where the first stage consists of three
autoencoders (with 1000, 500 and 30 neurons in the hidden layer) and the deep
neural network contains 5 layers (1 visible layer, 3 hidden layers and 1 softmax
layer).

Fig. 1. Deep learning architecture used for classification. Unsupervised pre-training is
addressed by three autoencoders using 1000, 500 and 30 neurons, respectively in the
hidden layer. The multilayer perceptron is composed of autoencoder hidden layers and
a softmax layer. Fine-tuning is performed by backpropagation.
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In order to improve the robustness of the classifier and its noise immunity,
inputs at the first autoencoder are corrupted by adding white gaussian noise [26]
with a certain power level to keep a specific Signal-to-Noise ratio (SNR). This
way, the autoencoder will be trained to reconstruct each input from noisy ver-
sions. In this work, we experimentally determined a SNR = 30 dB as it provides
the best results, which means that the input units at the first autoencoder are
corrupted with gaussian noise while keeping a SNR of 30 dB for each sample.

4 Experimental Results

For experimental results the deep learning architecture described in the previous
section was applied to GM and WM data in the database as shown in Fig. 2. GM
and WM voxels from 42 regions closely related to AD according to the literature
[11] were used to compute the regional GM and WM densities for all the available
examinations (visits) of each subject in the database. This results in a N × 42
matrix for each subject, where N is the number of available examinations. These
matrices are then used to compute the corresponding SICE; i.e. an estimate of
the corresponding inverse covariance between regions.

Fig. 2. Deep learning architecture applied to MRI-GM and MRI-WM data through
SICE. Regional features refer to regional densities computed according to Eq. 2 and as
indicated in [19]

Besides the discriminative information contained in SICE data (as we will see
later), these also allows us to carry out certain exploratory analysis by identifying
covarying regions. Figure 3 shows these data graphically for λ = 0.05, when thr =
0.3 is applied (see Subsect. 3.2). As shown in Subsect. 3.3, larger λ values provide
sparser SICE matrices (i.e. more zero entries) and only stronger relationships
between regions are kept. On the other hand, small λ values provide less sparse
SICE matrices, capturing weak between-regions relationships that can introduce
non-relevant information to the classifier. Hence, value λ = 0.05 was selected by
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experimentation as it is a good trade-off between sparsity and computational
burden, at the time it provided the best classification results. In the same way,
the probability threshold to determine whether a voxel is considered to belong
to GM or WM has also been determined by experimentation to obtain the best
classification results. Thus, these values of the parameters have been used for the
rest of this work. Finally, we also note that to feed the deep learning architecture
only the lower triangle elements are employed, since SICE matrix is symmetric
(diagonal elements are also discarded).
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Fig. 3. Representation of the mean SICE (λ = 0.05) for CN (a) and AD (b) subjects
thresholded by 0.3

4.1 Disease Patterns and Diagnostic Relevance of Brain Regions

Information regarding regions which covary without any third-party influence
can be extracted from the SICE model. This shows regions whose GM/WM den-
sities vary jointly during the examinations performed in the three-years period.
This way, variations due to the ageing process as well as variations due to
a possible neurodegenerative process are captured by the inverse covariance.
Hence, analysing statistically significant differences between CN and AD SICEs
by means of the Wilcoxon test, we found different between-region relationships.
In Fig. 4, we show these relationships using BrainNet Viewer [15] where edges
connect the 20 most significant covarying regions according to the rank pro-
vided by the Wilcoxon test. As shown in this figure, the parahipoccampal and
hippocampal regions are related to the rectus and frontal orbital regions, indi-
cating that the GM density in these regions varies jointly in AD.

4.2 Classification

Covariance values computed by SICE determine a per-subject, compact longi-
tudinal model. In fact, we used these values as features to train the deep neural
structure described above to classify subjects. The overall method here presented



Learning Longitudinal MRI Patterns by SICE and Deep Learning 421

Fig. 4. Axial and sagittal views of the surface model of the WM of a representative
brain, generated using brainviewer [15] with the 42 ROIs selected and their association
(indicated with a line between points). An edge indicates covariation between regions.
1= Left Precentral Gyrus; 4 = Right superior frontal gyrus (dorsolateral); 5= Left supe-
rior frontal gyrus (dorsolateral); 6= Right superior frontal gyrus (orbital); 7= Left
middle frontal gyris (lateral); 8= Right middle frontal gyris (lateral); 9 = Left middle
frontal gyrus (orbital), 10= Right middle frontal gyrus (orbital); 12= Right opercular
part of inferior frontal gyrus; 16= Right Orbital part of inferior frontal gyrus; 37= Left
Hippocampus; 38 = Right Hippocampus; 39 = Left parahippocampal gyrus; 40= Right
parahippocampal gyrus; 41 = Left amygdala; 42= Right amygdala
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Fig. 5. ROC curve for SICE features computed from GM and WM. Classification
performance using GM and WM features at the same time is also shown.

was assessed by k-fold cross-validation (specifically, k = 10), which ensures that
training and testing subsets do no share any sample and estimates the gener-
alization error. Hence, testing samples are never used during the training stage
and double-dipping is avoided.

The ROC curve in Fig. 5 summarizes the classification performance using
GM, WM and information from both tissues simultaneously. As expected, this



422 A. Ortiz et al.

figure shows that most part of information linked to AD is contained in GM,
while WM provides some extra knowledge not contained in GM that slightly
leverages the classification performance.

The proposed classification method provides an Area under ROC curves
(AUC) of 0.94 and 0.90 and for CN/AD classification using GM and WM, respec-
tively. The combination of GM and WM information improves the AUC up to
0.98.

Additionally, experiments using different classification approaches were carry
out. The results of these experiments, summarized in Table 2, show the superi-
ority of the deep learning approach based on Stacked Denoising Autoencoders.

Table 2. Results obtained for different classification approaches using the same descrip-
tors. Standard deviations obtained through k-fold (k = 10) cross-validation is indicated.

Method Accuracy Sensitivity Specificity AUC

Decision tree 0.90 ± 0.11 0.86 ± 0.10 0.97 ± 0.04 0.90

Linear SVM 0.90 ± 0.09 0.88 ± 0.09 0.93 ± 0.07 0.92

Linear LP-SVM 0.85 ± 0.09 0.84 ± 0.10 0.87 ± 0.12 0.85

DL-SDA 0.94± 0.07 0.90± 0.08 0.96± 0.07 0.98

5 Conclusions and Future Work

This paper proposes a method to compute longitudinal models from tissue den-
sities at different brain regions defined by the AAL atlas. In the conducted
experiments these densities were used as features to assess their capability to
distinguish between CN and AD subjects from longitudinal MRI data. Thus, the
exploratory analysis performed using the SICE model on density data obtains
discriminant regions corresponding to those found in medical literature, such
as the hippocampus in both hemispheres. In addition to these, relationships
between hippocampal areas and other regions such as the inferior temporal gyrus
have also been revealed. Finally, classification experiments (using k-fold cross-
validation) were performed using SICE features computed from GM and WM
density values, showing an accuracy of up to 94%, and AUC of up to 0.98.

As future work we plan to include other biomarkers jointly with GM and WM
densities in order to study possible interdependencies in CN and AD subjects.
The development of new methods to corrupt the inputs, specially for MRI data,
becomes also particularly relevant to improve the robustness of the DL classifiers.
Lastly, the proposed method can be extended to MCI subjects, which is an
interesting task that could reveal neurodegeneration patterns moving towards
the early diagnosis of AD.
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