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Abstract. This paper presents a method for breast density classifica-
tion using local quinary patterns (LQP) in mammograms. LQP operators
are used to capture the texture characteristics of the fibroglandular disk
region (FGDroi) instead of the whole breast region as the majority of
current studies have done. To maximise the local information, a mul-
tiresolution approach is employed followed by dimensionality reduction
by selecting dominant patterns only. Subsequently, the Support Vector
Machine classifier is used to perform the classification and a stratified
ten-fold cross-validation scheme is employed to evaluate the performance
of the method. The proposed method produced competitive results up to
85.6% accuracy which is comparable with the state-of-the-art in the lit-
erature. Our contributions are two fold: firstly, we show the role of the
fibroglandular disk area in representing the whole breast region as an
important region for more accurate density classification and secondly we
show that the LQP operators can extract discriminative features com-
parable with the other popular techniques such as local binary patterns,
textons and local ternary patterns (LTP).

1 Introduction

In 2014 there were more than 55,000 malignant breast cancer cases diagnosed in
the United Kingdom (UK) with more than 11,000 mortality [1]. In the United
States (US), an estimate of more than 246,000 malignant breast cancer were
expected to be diagnosed in 2016 with approximately 16% women expected
to die [2]. Many studies have indicated that breast density is a strong risk
factor for developing breast cancer [3–5,7–13] because dense tissues are very
similar in appearance to breast cancer this making it more difficult to detect
in mammograms. Therefore, women with dense breasts can be six times more
likely to develop breast cancer, which means an accurate breast density esti-
mation is an important step during the screening procedure. Although most

c© Springer International Publishing AG 2017
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experienced radiologists can do this task, manual classification is impractical,
tiring, time consuming and often suffers from results variability among radiol-
ogists. Computer Aided Diagnosis (CAD) systems can reduce these problems
providing robust, reliable, fast and consistent diagnosis results. Based on the
Breast Imaging Reporting and Data System (BI-RADS), there are four major
categories used for classifying breast density: (a) predominantly fat, (b) fat with
some fibroglandular tissue, (c) heterogeneously dense and (d) extremely dense.
These representations are illustrated in Fig. 1.

Fig. 1. Mammograms with different breast densities

One of the earliest approaches to breast density assessment was a study by
Boyd et al. using interactive thresholding known as Cumulus, where regions
with dense tissue were segmented by manually tuning the greylevel threshold
value. The most popular approaches are based on the first and second-order
(e.g. Grey Level Co-occurrence Matrix) statistical features as used by Oliver
et al. [3], Bovis and Singh [4], Muštra et al. [6] and Parthaláin et al. [7]. Texture
descriptors such as local binary patterns (LBP) were employed in the study of
Chen et al. [8] and Bosch et al. [9] and textons were used by Chen et al. [8],
Bosch et al. [9] and Petroudi et al. [13]. Other texture descriptors also have
been evaluated such as fractal-based [5,11], topography-based [10], morphology-
based [3] and transform-based features (e.g. Fourier, Discrete Wavelet and Scale-
invariant feature) [4,9].

Many breast density classification methods in mammograms have been pro-
posed in the literature but only very small number of studies have achieved
accuracies above 80%. The methods of Oliver et al. [3] and Parthaláin et al. [7]
extract a set of features from dense and fatty tissue regions segmented using a
fuzzy c-means clustering technique followed by feature selection before feeding
them into the classifier. Oliver et al. [3] achieved 86% accuracy and Parthaláin
et al. [7] who used a sophisticated feature selection framework achieved 91.4%
accuracy. Bovis and Singh [4] achieved 71.4% accuracy based on a combined
classifier paradigm in conjunction with a combination of features extracted using
the Fourier and Discrete Wavelet transforms, and first and second-order statis-
tical features. Chen et al. [8] made a comparative study on the performance
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of local binary patterns (LBP), local greylevel appearance (LGA), textons and
basic image features (BIF) and reported accuracies of 59%, 72%, 75% and 70%,
respectively. Later, they proposed a method by modelling the distribution of
the dense region in topographic representations and reported a slightly higher
accuracy of 76%. Petroudi et al. [13] implemented the textons approach based
on the Maximum Response 8 (MR8) filter bank. The χ2 distribution was used
to compare each of the resulting histograms from the training set to all the
learned histogram models from the training set and reported 75.5% accuracy.
He et al. [12] achieved an accuracy of 70% using the relative proportions of the
four Tabár’s building blocks. Muštra et al. [6] captured the characteristics of the
breast region using multi-resolution of first and second-order statistical features
and reported 79.3% accuracy.

Based on the results reported in the literature, the majority of the proposed
methods achieved below 80% which indicate that breast density classification is
a difficult task due to the complexity of tissue appearance in the mammograms
such as a wide variation and obscure texture patterns within the breast region.
In this paper, texture features were extracted from the FGDroi only (see Fig. 4
later) to obtain more descriptive information instead of from the whole breast
region. The motivation behind this approach is that because in most cases the
non FGDroi contains mostly fatty tissues regardless its BI-RADS class and most
dense tissues are located and start to develop within the FGDroi. Therefore,
extracting features from the whole breast region means extracting overlapping
texture information which makes the extracted features less discriminant in cor-
responding to the BIRADS classes. The reminder of the paper is organised as
follows: We present the technical aspects of our proposed method in Sect. 2 and
discuss experimental results in Sect. 3 which covers the quantitative evaluation
and comparisons, Sect. 4 presents conclusions and future work.

2 Methodology

Figure 2 shows an overview of the proposed methodology.

Fig. 2. An overview of the proposed breast density methodology

Firstly, we segment the breast area and estimate the FGDroi from this breast
region. Subsequently, we use a simple median filter using a 3 × 3 window size
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for noise reduction and employ the multiresolution LQP operators to capture
the micro-structure information within the FGDroi. Finally, we train the SVM
classifier to build a predictive model and use it to test each unseen case.

2.1 Pre-processing

To segment the breast and pectoral muscle region, we used the method in [18]
which is based on Active Contours without edges for the breast boundary estima-
tion and contour growing with edge information for the pectoral muscle boundary
estimation. The left most image in Fig. 4 shows the estimated FGDroi area. To
extract FGDroi, we find Bw which is the longest perpendicular distance between
the y-axis and the breast boundary (magenta line). The width and the height of
the square area of the FGDroi (amber line Fig. 4) can be computed as Bw ×Bw

with the center located at the intersection point between Bh and Bw lines. Bh

is the height of the breast which is the longest perpendicular distance between
the x-axis and the breast boundary. Bh is then relocated to the middle of Bw

to get the intersection point. The size of the FGDroi varies depending on the
width of the breast.

2.2 Feature Extraction

The Local Binary Pattern (LBP) operators were first proposed by Ojala et
al. [14] to encode pixel-wise information. Tan and Triggs [16] modified it by intro-
ducing LTP operators which thresholds the neighbouring pixels using a three-
value encoding system based on a threshold constant set the user. Later, Nanni
et al. [15] introduced a five-value encoding system called LQP. The LBP, LTP
and LQP are similar in terms of architecture as each are defined using a circle
centered on each pixel and a number of neighbours but the main difference is
that the LBP, LTP and LQP threshold the neighbouring pixels into two (1 and
0), three (−1, 0 and 1) and five (2, 1, 0, −1 and −2) values, respectively. This
means the difference between the grey level value of the center pixel (gc) and a
neighbour’s grey level (gp) can assume five values. The value of LQP code of the
pixel (i, j) is given by:

LQP pattern
(P,R) (i, j) =

(P−1)∑

p=0

spattern(gp)2p (1)

s(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2, x ≥ gc + τ2

1, gc + τ1 ≤ x < gc + τ2

0, gc − τ1 ≤ x < gc + τ1

−1, gc − τ2 ≤ x < gc − τ1

−2, otherwise

(2)

where R is the circle radius, P is the number of pixels in the neighbourhood,
gc is the grey level value of the center pixel, gp is the grey level value of the
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pth neighbour, and pattern ∈ {1, 2, 3, 4}. Once the LQP code is generated, it
is split into four binary patterns by considering its positive, zero and negative
components, as illustrated in Fig. 3 using the following conditions

s1(x) =

{
1, if s(x) = 2
0, otherwise

(3)

s2(x) =

{
1, if s(x) = 1
0, otherwise

(4)

s3(x) =

{
1, if s(x) = −1
0, otherwise

(5)

s4(x) =

{
1, if s(x) = −2
0, otherwise

(6)

In this section, feature extraction is the process of computing the frequencies
of all binary patterns and present the occurrences in a histogram which repre-
sents the number of appearances of edges, corners, spots, lines, etc. within the
FGDroi. This means, the size of histogram is depending on the value of P . To
enrich texture information, we extract feature histograms at different resolutions
which can be achieved by concatenating histograms using different values of R
and P . In this paper resolution means the use of different radii of circle (e.g.
different window sizes). Figure 3 shows an example of converting neighbouring
pixels to a LQP code and binary code, resulting to four binary patterns.

Fig. 3. An illustration of computing the LQP code using P = 8 and R = 1, resulting
to four binary patterns.

Figure 4 shows an example of the feature extraction process using multireso-
lution LQP operators. Note that each resolution produces four binary patterns
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Fig. 4. An overview of the feature extraction using multiresolution LQP operators.
Black dots in multiresolution LQP operators means neighbours with less value than
the central pixel (red dot). (Color figure online)

(see Fig. 3) resulting to four histograms. Subsequently these four histograms are
concatenated into a single histogram which represents the feature occurrences
of a single resolution. The illustration in Fig. 4 uses three resolutions producing
three histograms and finally concatenated to be a single histogram as the final
representation of the feature occurrences in the multiresolution approach.

Fig. 5. Four images of binary patterns generated from the LQP code image.

Figure 5 shows four images of binary patterns generated based on the condi-
tions in Eqs. (2), (3), (4) and (5). The LQP code image is generated using the
condition in Eq. (6). All histograms from binary patterns are concatenated to
produce a single histogram. Similar to LBP and LTP approaches, the LQP app-
roach achieves rotation invariant by rotating the orientation (θ) of the circle’s
neighbourhood in a clockwise direction as shown in Fig. 6.
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Fig. 6. An illustration of neighbourhood rotation in a clockwise direction. The black
and white dots are determined based on one of the conditions in (2), (3), (4), (5)
derived from (6).

2.3 Dominant Patterns

Selecting dominant patterns is an important process for dimensionality reduc-
tion purposes due to the large number of features (e.g. concatenation of several
histograms). According to Guo et al. [19] a dominant patterns set of an image
is the minimum set of pattern types which can cover n(0 < n < 100) of all
patterns of an image. In other words, dominant patterns are patterns that fre-
quently occurred (or have high occurrence) in training images. Therefore, to
find the dominant patterns we apply the following procedure. Let I1, I2...Ij be
images in the training set. Firstly, we compute the multiresolution histogram
feature (HLQP

Ij
) for each training image. Secondly, we perform a bin-wise sum-

mation for all the histograms to find the pattern’s distribution from the training
set. Subsequently, the resulting histogram (HLQP ) is sorted in descending order
and the patterns corresponding to the first D bins are selected. Where D can be
calculated using the following equation:

D = arg min
N

∑N−1
i=1 HLQP (i)

∑2P

i=1 HLQP (i)
> 0.01 × n (7)

where N is the total number of patterns and n is the threshold value set by the
user. For example n = 97 means removing patterns which have less than 3%
occurrence in HLQP . This means only the most frequently occurring patterns
will be retained for training and testing.

2.4 Classification

Once the feature extraction was completed, the Support Vector Machine (SVM)
was employed as our classification approach using a polynomial kernel. The
GridSearch technique was used to explore the best two parameters (complexity
(C) and exponent (e)) by testing all possible values of C and e (C = 1, 2, 3...10
and e = 1, 2, 3...5 with 1.0 interval) and selecting the best combination based
on the highest accuracy in the training phase. The SVM classifier was trained
and in the testing phase, each unseen FGDroi from the testing set is classified
as BIRADS I, II, III or IV.
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3 Experimental Results

To test the performance of the method, we used the Mammographic Image
Analysis Society (MIAS) database [17] which consists of 322 mammograms of
161 women. Each image contains BIRADS information (e.g. BIRADS class I,
II, III or IV) provided by an expert radiologist. A stratified ten runs 10-fold
cross validation scheme was employed, where the patients are randomly split
into 90% for training and 10% for testing and repeated 100 times. The metric
accuracy (Acc) is used to measure the performance of the method which rep-
resents the total number of correctly classified images compared to the total
number of images. We evaluate the method using three different parameters
combinations (LQP(R,P )): (a) Small multiresolution (LQP small

((1,8)+(2,12)+(3,16)))
(b) Medium multiresolution (LQPmedium

((5,10)+(7,14)+(9,18))) and (c) Large multiresolu-

tion (LQP large
((11,16)+(13,20)+(15,24))). For the threshold values we have investigated

several combinations of τ∈{1,2} and found τ1 = 5 and τ2 = 12 produced the best
accuracy for all experiments. However, for the sake of comparison we will report
the performance of the method using [τ1 = 4, τ2 = 9], [τ1 = 3, τ2 = 13] and
[τ1 = 5, τ2 = 15]. We will also show the effect on performance when varying n
from 90 to 99.9 with 0.1 interval.

We present the quantitative results of the proposed method in Fig. 7
using small, medium and large multiresolution approaches which show that
LQPmedium outperformed LQP small and LQP large regardless of the number
of dominant patterns selected with the best accuracy of 84.91% (n = 99.2) fol-
lowed by the small multiresolution approach of 81.81% (n = 98.9).

Fig. 7. Quantitative results using different multiresolutions LQP((1,8)+(2,12)+(3,16)),
LQP((5,10)+(7,14)+(9,18)) and LQP((11,16)+(13,20)+(15,24)).

Figure 8, shows quantitative results of LQP((5,10)+(7,14)+(9,18)) using the fol-
lowing thresholds ([τ1, τ2]): [5, 12], [4, 9], [3, 13] and [5, 15] (note that these para-
meters are determined empirically). It can be observed that threshold values of
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Fig. 8. Quantitative results using different values of τ1 and τ2.

[τ1 = 5, τ2 = 12] produced the best accuracy of 84.91% with n = 99.2 followed by
[τ1 = 5, τ2 = 15] with n = 96.8. The other threshold values still produced good
results in comparison to most of the proposed methods in the literature. For per-
formance comparison when extracting features from the whole breast (wb), as
majority of the current studies have done, compared to extracting features from
FGDroi only we conducted two experiments both using LQP((5,10)+(7,14)+(9,18))

with [τ1 = 5, τ2 = 12]. Results can be seen in Fig. 9 which suggests that textures
from the fibroglandular disk region are sufficient to differentiate breast density.
In fact, it produced classification results of between 5–8% better depending on
the value of n. Extracting features from the whole breast produced up to 77.88%
accuracy with n = 97.2 which is 7% less than when feature extracted from the
FGDroi only.

Fig. 9. Quantitative results of LQP((5,10)+(7,14)+(9,18)) based on features extracted from
the whole breast versus fibroglandular disk region.
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To investigate the effect on the performance at different orientations (θ),
we conducted eight experiments by varying θ clockwise rotation with the fol-
lowing values: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦. The multiresolu-
tion approach for LQP((5,10)+(7,14)+(9,18)) was applied with [τ1 = 5, τ2 = 12].
Figure 10 shows experimental results on eight different orientations chosen in
this study which revealed that LQP((5,10)+(7,14)+(9,18)) with θ = 270◦ produced
the best accuracy of 85.6% which indicates density patterns are more visible at
this orientation followed by θ = 180◦ with accuracy 85%. Overall results sug-
gest that multiresolution LQP can produce consistent results (>83%) regardless
ofthe parameter θ with 97 ≤ n ≤ 99.5.

Fig. 10. Quantitative results using different orientation values.

For quantitative comparison with the other methods in the literature we
selected those studies that have used the MIAS database [17], four-class classi-
fication, and using the same evaluation technique (10-fold cross validation) as
in this study to minimise bias. The proposed method achieved up to 85.60%
accuracy which is better than the methods proposed by Muštra et al. [6]
(79.3%), Chen et al. [8,10] (59%, 70%, 72%, 75% and 76%), Bovis and Singh [4]
(71.4%), and He et al. [12] (70%). However, the methods of Parthaláin et al.
[7] and Oliver et al. [3] achieved 91.4% and 86%, respectively. In comparison to
the other popular local statistical features such as LBP and textons, Chen et
al. [8] reported the best accuracy achieved by these methods as 59% and 75%,
respectively using the same evaluation approach and dataset. Recently, Rampun
et al. [20] obtained over 82% accuracy using LTP operators, whereas the pro-
posed method achieved up to 85.6%. In this study features were extracted only
from one orientation (e.g. 270◦) resulting in a smaller number of features whereas
the method in [20] extracted features from eight different orientations and con-
catenated them, resulting in a large number of features. Furthermore, this study
conducted feature selection by taking of account dominant patterns only which
reduced the number of features significantly compared to the study in [20].
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4 Conclusion

In conclusion, we have presented and developed a breast density classification
method using multireslution LQP operators applied only within the fibroglan-
dular disk area which is the most prominent region of the breast instead of the
whole breast region as suggested in current studies [3–5,7–13]. The multiresolu-
tion LQP features are robust in comparison to the other methods such as LBP,
texton based approaches and LTP due to the five encoding system which gen-
erates more texture patterns. Moreover the multiresolution approach provides
complementary information from different parameters which cannot be captured
in a single resolution. The proposed method produced competitive results com-
pared to some of the best accuracies reported in the litearture. For future work,
we plan to develop a method that can automatically estimate τ1 and τ2 as well as
combining multiresolution LQP features with features from the texton approach.
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6. Muštra, M., Grgić, M., Delać, K.: A Novel breast tissue density classifica-
tion methodology. Breast density classification using multiple feature selection.
Automatika 53(4), 362–372 (2012)
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