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Abstract. In this paper, a novel, multi-task fully convolutional net-
work (FCN) architecture is proposed for automatic segmentation of brain
tumour. The proposed network builds on the hierarchical relationship
between tumour substructures with branch and leaf losses imposed and
optimised simultaneously. The network takes multimodal MR images
along with their symmetric-difference images as input and extracts multi-
level contextual information, firstly by the branch losses which are then
fed to the leaf loss in a combination stage. The model was evaluated
on BRATS13 and BRATS15 datasets and results show that the pro-
posed multi-task FCN outperforms single-task FCN on all sub-tasks.
The method is among the most accurate available and its computational
cost is relatively low at test time.
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1 Introduction

Accurate localization of brain tumours in 3D MR images is clinically impor-
tant for planning treatment, guiding surgery and monitoring the rehabilitation
progress of patients. Unreliable segmentation risks potentially irreversible impact
from surgery (e.g., difficulty in speaking fluently). Since manually segment-
ing brain tumour, particularly in 3D images, is a tedious and time-consuming
process, computer-aided, automatic and reliable segmentation is desirable and
would save clinicians’ valuable time.

Among brain tumours, gliomas appear most frequently in adult patients [1]
and can be graded as high grade (HG) or low grade (LG) according to aggres-
siveness. Due to the diversity of size, shape, location and appearance of gliomas,
multimodal MRI is often used to enhance the ability to differentiate tumour and
tumour substructures. Figure 1(a) shows a representative HG gliomas tumour
and its sub-regions whose boundaries have been delineated by experts.

The automatic segmentation of glioma and its substructures is often formu-
lated as a patch-level or voxel-level classification problem in which each (either
2D or 3D) patch or voxel in the 3D MR is classified as one type of substructure
and the collection of all patches’ or voxels’ classifications generates the final,
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(a)Multimodal brain tumour images (b) Hierarchical labelling tree

Fig. 1. (a) An HG tumour in multimodal MRI. Flair, T1, T1c, T2 modalities (above)
and expert delineation (below) showing: edema (green), necrosis (red), non-enhancing
(blue), enhancing (yellow). (b) Hierarchical labelling tree of tumour tissues with
corresponding branch loss and leaf loss. Note that the labels at the leaves (green blocks)
are mutually exclusive whereas labels at the branches (brown blocks) are not. (Color
figure online)

complete segmentation. While hand-crafted features and conditional random
field (CRF) incorporating class-label smoothness terms have been adopted for
the voxel-level classification [1,2], deep convolutional neural networks (CNNs),
which have achieved substantial performance breakthroughs in several natural
and medical image analysis benchmarks by automatically learning high-level dis-
criminative feature representations, are not suprissingly achieving state-of-the-
art results when applied to MRI brain tumour segmentation [3–5]. Specifically,
Pereira et al. [3] trained a traditional 2D CNN as a patch-level classifier, and
Havaei et al. [4] trained a 2D CNN to classify larger patches in a cascaded struc-
ture in order to capture both small and large-scale contextual information. Very
recently, Kamnitsas et al. [5] trained a 3D CNN directly on 3D instead of 2D
patches and considered global contextual features via an extra down-sampling
path. Note that all these methods are patch-level classification.

Fully convolutional networks (FCNs) lack the fully connected layers often
used for the last few layers in CNNs. FCNs have achieved promising results
for natural image segmentation [9,10] as well as medical image segmentation
[11–13]. In FCNs, up-sampling (de-)convolutional layers can be added on top
of the traditional down-sampling convolutional layers in order to gain the same
spatial size at the network output as at the input. Compared to CNNs applied
to a sliding window on the input, FCNs can be applied to the whole input with-
out using a sliding window and generate the classification result for each voxel
(or pixel). Therefore, FCNs as voxel-level classifiers are more computationally
efficient than traditional CNNs as patch-level classifiers.



Multi-task FCN for Brain Tumour Segmentation 241

In this paper, we propose a tree-structured, multi-task FCN model for brain
tumour segmentation. The main contributions of our work are: (1) formulation
and application of a tree-structured, multi-task FCN to multimodal brain tumour
segmentation that implicitly encodes the hierarchical relationship of tumour sub-
structures; (2) experiments providing evidence that the tree-structured, multi-
task FCN can improve segmentation performance in all sub-tasks compared
to single-task FCN on both BRATS13 and BRATS15 datasets; the proposed
method is ranked top on the BRATS 2013 testing set and is more efficient than
the closest competing methods.

2 Methodology

2.1 Hierarchical Labeling Tree

A tumour typically contains four sub-structures as shown in Fig. 1(a): edema
(green), necrosis (red), non-enhancing (blue) and enhancing (yellow). We observe
a hierarchical label relationship of tumour sub-regions, shown as a tree in
Fig. 1(b). Specifically, the tree starts from a brain partitioned into non-tumour
and tumour. The complete tumour normally consists of edema and tumour
core. The tumour core can be further divided into necrosis, non-enhancing and
enhancing parts. Finally, the leaves of the tree represent the five classes (includ-
ing background) that are mutually exclusive (Fig. 1(b)). Encoding such a hier-
archical relationship into an FCN framework can benefit tumour segmentation.
For example, an enhancing part is always labeled as tumour core. We describe
an FCN in a multi-task framework designed to implicitly encode the hierarchical
relationship. In the following, we first describe a single-task FCN structure, upon
which the proposed multi-task FCN is built.

2.2 Single-Task FCN

Our single-task FCN is a variant of FCN [9,12]. It includes a down-sampling
path and three up-sampling paths, as shown in Fig. 2. The down-sampling path
contains three convolutional blocks separated by max pooling (see yellow arrows
in Fig. 2). Each block includes 2–3 convolutional layers similar to the VGG-16
network [6]. This down-sampling path extracts multi-scale features from low-
level texture to higher-level context features. The three up-sampling paths are
connected to the down-sampling path at different stages, i.e., at the last con-
volutional layer of each convolutional block in the downsampling path. Such a
structure ensures that up-sampled feature maps are from different scales. The
final feature maps in each of the three up-sampling paths (purple rectangles
in Fig. 2) have the same spatial size as the input to the FCN and are concate-
nated before being fed to the final classification layer. ReLU activation functions
and batch normalization are used after each convolutional layer. Note that the
single-task FCN only considers separating the five classes at the leaf level in the
hierarchical tree (i.e., a typical multi-class classification task). The efficacy of
this single-task FCN was evaluated in [7].
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Fig. 2. Single-task FCN. Images and symmetry maps are concatenated as the input to
the net [7]. Colored rectangles represent feature maps with numbers nearby being the
number of feature maps. Best viewed in color. (Color figure online)

2.3 Multi-task FCN

The single-task FCN predicts the class label for each voxel. Although it can pro-
duce good probability maps its architecture ignores any hierarchical relationship
shown in Fig. 1(b)). We design a multi-task FCN to implicitly encode such a
relationship of tumour tissues labels. Specifically, there are two types of loss in
our framework: branch loss and leaf loss (see Fig. 1(b)). The ground truth labels
for branch loss (the brown blocks) are hierarchical, e.g., complete tumour con-
tains core while core contains enhancing parts. On the other hand, the ground
truth labels for leaf loss (the green blocks) are mutually exclusive. Note that the
enhancing parts are involved in both branch loss and leaf loss. When designing
a structure to match such a relationship, we also consider that the information
flow runs from root to leaves. This implies that the branch loss will be applied
earlier whilst leaf loss is the final layer.

The structure of the proposed multi-task FCN is illustrated in Fig. 3. We
formulate the segmentation task within a multi-task learning framework, rather
than treating it as a single voxel-wise classification problem. Three single-task
FCNs with shared down-sampling path and three different up-sampling branches
(the blue arrows in Fig. 3) are applied for three separate tasks: complete tumour,
tumour core and enhancing tumour classification. Then, the outputs (i.e., prob-
ability maps) from the three branches are concatenated and fed to a block of two
convolutional layers followed by the final softmax classification layer (‘combina-
tion stage’ in Fig. 3). The ‘combination stage’ task is a 5-class classification task
whereas the others are binary classification tasks. Cross-entropy loss is used for
each task. Therefore, the total loss in our proposed multi-task FCN is the sum
of branch loss and leaf loss:
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Fig. 3. The structure of multi-task FCN. The three up-sampling branches in the three
FCNs are represented by blue arrows. Note that the upsampling paths are connected
to the down-sampling path at different stage as described in Sect. 2.2 and Fig. 2. (Color
figure online)
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where {t, c, e, l} are the tasks of complete tumour, tumour core, enhancing
core and the leaf output by the final combination stage, respectively, and
w = {wt, wc, we, wl} is the set of weight parameters in the multi-task FCN.
Lm refers to the loss function of each task. xn,i is the i-th voxel in the n-th
image used for training, and Pm refers to the predicted probability of the voxel
xn,i belonging to class lm.

In the proposed multi-task FCN, 2D slices from 3D MR volumes in axial
view are used as part of the input to the network. In addition, since adding brain
symmetry information has proved helpful for FCN based tumour segmentation
[7], ‘symmetric intensity difference’ maps are combined with the original slices
as input, resulting in 8 input channels to the network (see Figs. 2 and 3).

3 Evaluation

Our model was evaluated on BRATS13 and BRATS15 datasets. Each patient’s
data in the two datasets includes 4 modalities (T1, T1-contrast or T1c, T2, and
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Fig. 4. Validation results of three models on BRATS13. From left to right: Complete,
Core and Enhancing tumour task. The vertical axis is Dice while horizontal axis is the
number of epochs.

Flair) which were skull-stripped and co-registered. BRATS13 contains 20 high-
grade training data with known ground-truth segmentation maps and 10 high-
grade testing data with ground-truth segmentation kept only by the BRATS13
organizer. (We do not use the 10 low-grade data; here we focus on high-grade
tumour segmentation). For BRATS15, we used 220 released, annotated high-
grade patients’ images in the original training set for both training and testing.
For each MR image, voxel intensities were normalised to have zero mean and
unit standard deviation.

Quantitative evaluation was performed on three sub-tasks: (1) the complete
tumour (including all four tumour sub-structures); (2) the tumour core (includ-
ing all tumour sub-structures except “edema”); (3) the enhancing tumour region
(including only the “enhancing tumour” sub-structure). For each sub-task, Dice,
Sensitivity and Positive Predictive Value (PPV) were computed. Our network
model was implemented in Keras with Theano as backend. The network was
trained using the Adam optimizer with learning rate 0.001. The down-sampling
path was initialized with VGG-16 weights [6] while up-sampling paths were ini-
tialized randomly using He’s method [14].

3.1 Results on BRATS13 Dataset

A 5-fold cross validation was performed on the 20 high-grade training data in
BRATS13. The training folds were augmented by scaling, rotating, and left-
right flipping, resulting a dataset which was three times larger than the original
one. Besides the proposed multi-task model, a variant of the proposed multi-
task model was also evaluated by replacing the loss function of the core task
with that of the edema task whose purpose is to segment edema. The motiva-
tion of evaluating such a variant model is from the fact that tumour core is a
super-structure containing enhancing, non-enhancing and necrotic parts. These
sub-structures are different in texture and appearance, e.g., in T1c (see Fig. 1)
enhancing sub-structure shows hyper-intensity signal whereas necrosis has low-
intensity signal. This causes large variability of core across patients which could
be difficult for the network to model. In comparison, the texture and appearance
of edema are relatively consistent across patients (e.g., hyper-intensity signal in
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Flair). As a result, three models were evaluated on both validation set and test
set: (1) single-task FCN (Fig. 2), denoted ‘FCN’ in the following; (2) the multi-
task FCN with core task, denoted ‘mFCN core’; (3) the multi-task FCN with
edema task, denoted ‘mFCN edema’.

With the validation set, Fig. 4 shows Dice values at every 5 epochs for each of
the three models and for each of the three tasks. It can be observed that although
at the starting points (e.g., the fifth epoch), mFCN core and mFCN edema have
lower performance due to the extra parameters in the network, the highest Dice
values achieved by mFCN core and mFCN edema are clearly higher than the
highest Dice value achieved by the FCN in all the three tasks. Also, mFCN core
and mFCN edema outperform the FCN in all three tasks at most training epochs,
especially for mFCN core. mFCN edema gives competitive segmentation results
in complete and enhancing tasks while it is slightly worse on the core task
compared to mFCN core, which indicates replacing core task by edema task
might be unnecessary in this dataset. This could be partially due to the powerful
capability of FCN to handle large appearance variability. However, mFCN edema
still outperforms FCN on all tasks, evidencing the efficacy of the tree-structured,
multi-task FCN framework. The validation performances of both mFCN core
and mFCN edema models were saturated or even decreased around 30 epochs.
Therefore, models trained at 30 epochs were used for benchmarking on test data.

Further evaluation was performed on the 10 high-grade testing data (see
Table 1). Here, all the 20 high-grade training data were used to train the mod-
els. The returned evaluation from the official organizer showed that both mFCN
models are ranked higher than the FCN (Table 1). Due to the small size of
the testing set, we observe marginal improvements in most tasks in terms of
Dice while Sensitivity and PPV changed inversely (e.g., Sensitivity of mFCN
increased over the FCN while PPV decreased a bit). Thus, we conducted a fur-
ther evaluation by calculating F-scores which is the harmonic mean of Sensitivity
and PPV for each model (see Table 3); mFCN outperformed FCN in all segmen-
tation tasks and mFCN core was the best on the core task. This conclusion is
consistent with the results on the validation set.

Table 1 also shows that our proposed models are among the best of the
state-of-the-art results on the BRATS13 testing set. Specifically, our models
outperformed the best performers (Tustison et al. [2], Meier and Reza) from the
BRATS13 challenge [1] as well as a semi-automatic method [8]. For CNN meth-
ods, our results are competitive with Pereira’s et al. [3] and better than Havaei’s
et al. [4] while being roughly twice as fast in terms of average computational
time (3 min compared to the 8 min reported by Pereira et al. [3]) due to the
fast inference property of FCN. A direct comparison with 3D CNN [5] is not
applicable as they did not report results on this dataset.

3.2 Results on BRATS15 Dataset

Here we randomly split 220 high-grade data in BRATS15 training set into three
subsets at a ratio of 6:2:2, resulting in 132 training data, 44 validation data
and 44 test data. No data augmentation was performed on this dataset. The
performance curves are shown in Fig. 5.
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Table 1. Comparison with the state-of-the-art on the testing set (ranked by VSD
evaluation system [1])

Dice Positive Predictive Value Sensitivity
Method

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Pereira [3] 88 83 77 88 87 74 89 83 81

mFCN core 88 83 75 86 85 70 91 85 83

mFCN edema 88 82 76 85 82 72 92 85 82

FCN 87 82 75 85 87 72 89 79 80

Kwon [9] 88 83 72 92 90 74 84 78 72

Havaei [4] 88 79 73 89 79 68 87 79 80

Tustison [2] 87 78 74 85 74 69 89 88 83

Meier [1] 82 73 69 76 78 71 92 72 73

Reza [1] 83 72 72 82 81 70 86 69 76

Fig. 5. Validation results of three models on BRATS15. From left to right: Complete,
Core and Enhancing tumour task.

For the Complete task, both mFCN models outperform the baseline FCN.
However, the mFCN core model becomes overfitted more easily on the other two
tasks. This may be due to the more powerful ability of the mFCN core model to
learn the larger appearance variability of the Core region in the training data,
such that some of the largely varied Core region in the testing data may contain
some new appearance or texture features which will not be well predicted by the
over-trained mFCN core model. For Enhancing task, mFCN edema performs
better than FCN core and FCN, and its performance peaks at epoch 25.

On the 44 testing data, we trained the model for 25 epochs with the combi-
nation of training and validation set. The results of FCN and mFCN edema are
shown in Table 2. We found mFCN core achieved the best results in all tasks in
terms of Dice and Sensitivity as well as F1 score (see Table 3). This is consis-
tent with the BRATS13 test result while contrary to the BRATS15 validation
result where mFCN edema seems to perform best. We might attribute this to
several possible causes such as the relatively noisy ground truth in BRATS15,
random initialization, unrepresentative epoch samplings or heterogeneity of data.
Overall, from Table 3, we can conclude that both mFCN models appear to be
better than the baseline FCN while mFCN core is perhaps slightly better than
mFCN edema on this dataset.
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Table 2. Performance on the BRATS15 44 testing set

Method Dice Positive Predictive Value Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

FCN 88.1 70.9 72.5 92.2 82.7 79.7 86.0 67.5 70.5

mFCN edema 88.5 71.0 73.1 91.2 82.4 78.7 87.5 67.9 71.4

mFCN core 88.5 72.6 73.2 91.1 81.3 78.2 87.5 70.1 72.2

Table 3. F-score on the BRATS13 and BRATS15 testing set

Method BRATS13 BRATS15

Complete Core Enhancing Complete Core Enhancing

FCN 87.0 82.8 75.8 89.0 74.3 74.8

mFCN edema 88.4 83.5 76.7 89.3 74.5 74.9

mFCN core 88.4 85.0 75.9 89.3 75.3 75.1

4 Conclusion

In this paper, we introduced a tree-structured, multi-task FCN for brain tumour
segmentation. Our approach formulates and jointly learns the Complete, Core
and Enhancing tumour segmentation tasks in a multi-task framework that
implicitly encodes the hierarchical relationship of tumour subregions. This multi-
task FCN achieved state-of-the-art results and improved segmentation in all sub-
tasks on BRATS13 and BRATS15 datasets compared to the single-task FCN.
Our method is among the top ranked methods and has relatively low computa-
tional cost. We would point out that the proposed multi-task network only takes
the relationship between branch and leaf, and is one possible implementation
of the tree in Fig. 1(b). However, the idea of imposing a loss at branch level is
generic. Future work could include designing a structure to encode the hierarchy
between branches.
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