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Abstract. In this paper, we propose a statistical based method using a topology
prior model, integrating both intensity and shape information, to segment
abdominal aortic aneurysm (AAA) from computed tomography angiography
(CTA) scans. The method was tested on a total of 48 slices taken from 6
different patients and has shown competitive performance compared with the
best reported results in the literature. Our method has achieved a mean Dice
coefficient of 0.9303±0.0499, and mean Hausdorff distance of 3.5703±3.1941 mm.
This method overcomes the major problem faced by currently existing solutions
of similar Hounsfield values of neighboring tissues to that of the AAA throm-
bus. This is a promising medical tool which can be used to analyze the AAA in
order to generate an accurate rupture risk indicator.
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1 Introduction

Abdominal Aortic Aneurysm (AAA) is a balloon like dilation in abdominal aorta
which may lead to patient death if untreated. The expansion is defined as an aneurysm
if its maximum diameter reaches 3 cm, and usually requires medical intervention when
the maximum diameter reaches 5.5 cm [1–3]. Currently, there are two techniques used
for aneurysm repair, open aneurysm repair (OR) and Endovascular Aneurysm Repair
(EVAR). In the former, the aneurysm is replaced with a graft, and in the later, a stent
graft is inserted inside the aneurysm lumen to avoid the invasive open surgery [4].

Lumen, thrombus, calcification and vessel wall are the components of the aneur-
ysm, as illustrated in Fig. 1. Currently, clinicians’ rupture risk assessment is mainly
based on the maximum measured diameter of the aneurysm. However, some studies
have indicated that AAA maximum diameter doesn’t always lead to accurate prediction
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of rupture risk [5, 6]. Several contributions from biomechanics have suggested that
peak wall stress can predict rupture risk [7–10]. It is also important for surgery plan-
ning and accurate patient-specific stent graft fabrication. Segmentation of the aneurysm
and extraction of the lumen and the thrombus are required tasks for the aforementioned
purposes. Manual segmentation of the aneurysm is a time consuming task for the
clinicians. Considering the high number of patients diagnosed with AAA on daily basis
worldwide, there is a need to develop automated methods to segment the aneurysm.

In response to this need, numerous contributions from the medical imaging com-
munity have been proposed providing fully and semi-automated solutions for the AAA
segmentation problem. These efforts have mostly concentrated on the lumen and
thrombus segmentation, and have relied on deformable models, graph cut, fuzzy c-means
clustering, or a combination of other methods to perform the AAA segmentation.

While the problem of lumen segmentation is relatively easy due to the contrast agent
injected into the patient which makes the lumen distinguishable from other structures,
the segmentation of the thrombus is more challenging since Hounsfield values which
represent it are very similar to other neighboring structures which results in weak edges.
Further, other organs with strong features, e.g. spinal cord, and presence of calcification
may obstruct the segmentation of the thrombus. In addition, the aneurysm doesn’t have a
specific shape or geometry to aid in the segmentation of the thrombus.

Most of the proposed solutions for aneurysm segmentation are based on deformable
models [11–21]. However, this class of solutions has three major weaknesses.
Deformable models are more computationally demanding than other methods, the outer
edge of the aneurysm is of weak gradient which results in over- or under-segmentation
of the aneurysm, and these models can easily get drawn to other structures of high
gradient. Therefore, extra stopping criteria, and/or approximate shape constraints are
added to the models to improve the results. In addition, some user interaction, other

Fig. 1. The four main components of an AAA. The region labeled with 1 is the lumen, while the
darker region labeled with 2 is the thrombus. The bright spots around the aneurysm labeled as
region 3 are the calcified regions. Label 4 represents the vessel wall.
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commercial software, or preprocessing step(s) may be needed to remove these struc-
tures before the segmentation process starts.

Graph cut based methods also over-segments the aneurysm and includes other
structures in addition to it [22–25]. Shape constraint or further analysis is needed to
exclude irrelevant regions.

Fuzzy c-means based solutions [26, 27] generate a binary image of all organs in a
CT scan, and the result obtained is highly dependent on threshold and other tuned
parameters values used. It is also observed that fuzzy c-means cannot distinguish
between the thrombus and neighboring tissues of similar Hounsfield values.

Some other contributions utilized low level image processing operations such as
thresholding and morphological operation [28], region growing [29, 30], isoperimetric
segmentation [31], histogram derived information [32], active learning and random
forest classifier [33, 34]. These methods are dependent on user interaction, threshold
and parameters tuned, and aneurysm shape fitting into a mathematical shape (e.g.
ellipse, circle, or radial function) into the thrombus.

In summary, it is clear that currently existing solutions has one or more of the
following three problems: (1) The method cannot fully/partially distinguish the
thrombus from other tissues, (2) The segmentation is hindered by other structures of
strong features, (3) Computationally demanding, (4) Extra user interaction is needed to
guide the segmentation process, or correct it afterwards.

Therefore, it is desirable to develop a robust solution which tackles the above
mentioned drawbacks. In this work, we employ a statistical topology prior model based
method which utilizes both intensity and shape information to segment thrombus and
lumen volumes from CT data. This method is used for the first time to solve the AAA
segmentation problem, and have managed to overcome the above mentioned limita-
tions to a great extent while maintaining high accuracy at the same time.

The remaining of the paper is organized as follows. Section 2 describes the
methodology used for aneurysm segmentation. Section 3 provides a detailed evaluation
and analysis of the results obtained. Section 4, concludes the paper.

2 Methodology

The proposed framework for segmenting the AAA thrombus and the lumen from
3D-CT data (depicted in Fig. 2) utilizes a label propagation, with topology preserva-
tion, scheme using both a patient specific shape model and 1st order adaptive intensity
model to overcome the problem of intensity homogeneity between thrombus and its
adjacent structures. Details of each model component are as follow.

2.1 Patient Specific Shape Model

Accurate segmentation of the Abdominal Aortic Aneurysm (AAA) wall is very difficult
since the intensities/grey levels of the AAA wall are very close to the intensities of
other abdominal tissues. Thus, inclusion of information on the shape or topology of
AAA wall will provide a guiding feature during the segmentation process and

Segmentation of Abdominal Aortic Aneurysm 221



potentially enhance the segmentation accuracy. The primary challenge in creating a
prior shape model of the AAA wall is the high intra-patient variability, especially due
to pathology. To overcome this challenge, in this manuscript, we are introducing
adaptive shape-specific model that is based on manual delineation of the inner and
outer boarders of AAA. Subsequently, the appearance and the topology of manually
segmented AAA wall will be used to guide the segmentation of the adjacent slice. Each
slice segmentation will drive its adjacent one which can be viewed as an adaptive label
propagation process (see Fig. 3).

Fig. 2. Block diagram of the AAA segmentation.

Fig. 3. Step-by-step illustration of the guiding shape model.
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2.2 1st Order Adaptive Intensity Model

Unlike traditional shape models that depends only on the mapped voxel location to
calculate the probabilistic map, our 1st order adaptive intensity model ensures that only
the visually similar voxels will contribute in the probability map calculations for the
slice to be segmented to provide an accurate segmentation results.

The complete framework proceeds as follows: Starting from the last slice, the
lumen and the thrombus of the last slice are manually segmented by the operator, which
results in two binary masks which are subtracted to produce the binary mask repre-
senting the thrombotic region in the last slice (see Fig. 4). (2) Then moving backward,
each slice i is segmented referring to the previously segmented slice (i + 1). This
procedure is performed as follows: at each voxel in the slice i an N1 � N2 window w is
generated around its counterpart in slice (i + 1), then voxels in that window whose
Hounsfield values fall within a predefined tolerance ±s are select. If no voxels are
found, window size is increased until such voxel(s) are found, or maximum window
size is reached. (4) Then the probability of each voxel to be part of the thrombus is
calculated as the occurrence of positively labeled voxels from the total voxels in slice
i + 1 which are within the window whose Hounsfield values are close to the voxel in
slice i. Therefore, if we have k similar voxels within the window, of which m are
labeled as 1, then the probability of this voxel in slice i to belong to the thrombus is
simply pTH(x) = m/k. If (pTH(x) > pBG(x)) then this voxel x belongs to the thrombus,
and background otherwise. (5) 2D median filter

For example, in a 3 � 3 window, if k voxels in slice n are similar to voxel x (in
slice n−1) Hounsfield value (within the given tolerance), and m out of these k voxels
are labeled as 1, then pTH(x) = m/k. The related algorithm of the above procedure can
be described in more details as follows:

Fig. 4. Slice n and its binary mask resulting from the manual segmentation.
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Algorithm 1:- Topology based segmentation
1. Manually label the outer boundaries of the lumen and the thrombus in      

slice n.
2. Derive a masks related to the thrombotic region labeled as 1 for thrombotic 

voxel and 0 for background.
3. For each slice i, i=n-1to1

I. For each voxel x in slice i
a) Construct a window w around the counterpart of voxel x

in slice i+1
b) Find voxels within with Hounsfield values that fall within 

a predefined tolerance ±τ in w
c) If no voxels are found to satisfy (e), increase size of w

until correspondences are found or the maximum size 
allowed for w is reached 

d) Calculate the probability p(x) of each voxel belonging to 
the thrombus based on the occurrences of white voxels 
from the total corresponding voxels which satisfy (e) in 
slice i+1.

e) If (pTH(x) > pBG(x)),    x is part of the thrombus, background 
otherwise.

                 End For
       End For 
4. Apply 3D smoothing using 3D median filter on the reconstructed 3D volume

Filter is then applied for each slice independently to improve the 2D segmentation
result. (6) The whole volume is finally reconstructed, and 3D-median filter is applied to
the volume improve segmentation consistency and surface smoothness. The final result
is a binary volume which labels the thrombus across the slices.

3 Method Evaluation

This method has been tested on CT datasets collected from six patients, the region of
interest to be segmented appears in eight slices each, who diagnosed with AAA which
was provided by Limerick University. The in-plane voxel spacing ranges from
0.7031 � 0.7031 to 0.8984 � 0.8984, while the slice thickness ranges from 1.25 mm
to 5 mm. Final results obtained are visualized in Fig. 4. To evaluate the accuracy of our
method, we have used the Dice similarity coefficient (DC) and Hausdorff distance, that
characterize the spatial overlap and surface-to-surface distances, in addition to other
commonly used metrics, for comparison purpose, as illustrated in Table 1. An expert
radiologist manually labeled the thrombus and the lumen of the aneurysm to acquire
the ground truth data to be utilized to evaluate the accuracy of our proposed method.
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Figure 5 shows a 2D axial projection for sample results obtained by our proposed
method, from different subjects, where the ground truth edges are plotted in red along
our segmentation in addition to false positive and false negative (in green, yellow, and
pink respectively). It is clear from the sample results in Fig. 5 that our proposed method
accurately segment the thrombus from its neighbors with little false positive segmen-
tation as a result of high homogeneity of neighboring tissues. This proposed method
managed to achieve results which are comparable to best results reported in the liter-
ature. The mean dice coefficient obtained was 0.9303±0.0499, and mean thrombus
Hausdorff distance was 3.5703±3.1941. Our results are summarized in Table 1. To
provide a comparison with the best results from the literature, we used all the accuracy

Table 1. Evaluation of the proposed thrombus segmentation method tested on the six patients.

Metric Mean±Std

Dice coefficient 0.9303±0.0499

Sensitivity 0.9138±0.0621

Specificity 0.9989±0.0005

Positive predictive value 0.9483±0.0438

Volume overlap % 87.35±8.180

Hausdorff distance (mm) 3.5703±3.1941

Mean absolute surface distance (mm) 0.2578±0.2274

Mean absolute volume difference % 5.3665±2.3786

Mean symmetric absolute surface distance 0.4752602±0.4119

Fig. 5. Example thrombus segmentation result taken from different patients with color-coded
ground truth edges, false positive errors, and false negative errors (red, yellow, and pink,
respectively). (Color figure online)
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metrics used by all the compared work, illustrating total number of slices and/or
patients used for testing, are provided in Table 2. The most important parameters which
affect the segmentation result are the tolerance s, which controls the voxels that will
contribute in the current voxel probability calculation, and the maximum window size,
which determines the search space for these voxels.

The test set used in [11, 12] is very limited. Although the testing was performed on
a large dataset in [22], it requires several manual initializations and user guidance
throughout the segmentation process, which explains the high performance obtained. It
can be observed that our results surpasses the best results reported in the literature for
some metrics, and produce comparable results for others, except for the volume overlap
metric where our method is approximately 7.65% less than the highest reported value.

4 Conclusion

In conclusion, this paper has suggested a new statistical-based method for Abdominal
Aortic Aneurysm segmentation from 3D-CT which utilizes topology (both intensity
and shape) information to perform the segmentation. Results obtained are competitive
to the best results reported in literature. This makes it a promising robust medical tool
to perform aneurysm segmentation to reduce the burden on radiologists. In future, we
will perform testing on a larger data set, and aim to detect the calcification which exits
within the aneurysm to complete the final objective of building a biomechanical model
which works as a rupture risk indicator.

Acknowledgements. This research was funded with a generous grant from Al-Jalila Founda-
tion, Grant no. AJF201551. Ethics approval from University of Limerick, Ireland was acquired
for the used data set in this research.

Table 2. Best literature reported thrombus segmentation results

Reference Metric Value Slices/patients

12 Dice coefficient 0.8508 to 0.9316 7/-
11 Sensitivity 0.9354 5/-
11 Specificity 0.9837 5/-
35a Volume overlap % 95 ± 3.30 125/17
23 Outer wall Hausdorff distance (mm) 3.09 ± 1.81 24/-
22 Mean unsigned error for thrombotic

surface (mm)
1.9 ± 0.72 1300/9

25 Mean absolute volume difference % 8.0 ± 7.00 -/8
25 Average symmetric surface distance 1.46 ± 0.40 mm -/8

In this reference, the metric is referred as Volume overlap but, in our opinion, it seems rather as
Dice coefficient.
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