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Abstract. State-of-the-art CTA imaging equipment has increased clin-
ician’s ability to make non-invasive diagnoses of coronary heart disease;
however, an effective interpretation of the cardiac CTA becomes cumber-
some due to large amount of imaged data. Intensity based background
suppression is often used to enhance the coronary vasculature but setting
a fixed threshold to discriminate coronaries from fatty muscles could be
misleading due to non-homogeneous response of contrast medium in CTA
volumes. In this work, we propose a volume-specific model of the contrast
medium in the coronary segmentation process to improve the segmenta-
tion accuracy. The influence of the contrast medium in a CTA volume
was modelled by approximating the intensity histogram of the descending
aorta with Gaussian approximation. It should be noted that a significant
variation in Gaussian mean for 12 CTA volumes validates the need of
volume-wise exclusive intensity threshold for accurate coronary segmen-
tation. Moreover, the effectiveness of the adaptive intensity threshold is
illustrated with the help of qualitative and quantitative results.

Keywords: Computed tomography angiography · Contrast medium ·
Curve evolution · Coronary segmentation

1 Introduction

Coronary heart disease (CHD) has become a major cause of death worldwide.
According to recent statistics [13], CHD is responsible for approximately 73,000
deaths per year (an average of one death every seven minutes). Consequently,
clinicians are interested in early detection of CHD to effectively predict and con-
trol future cardiac events. The limitations of conventional cardiac-angiography
based diagnosis have driven intensive research for non-invasive diagnosis leading
to highly sophisticated imaging procedures. The clinical use of computed tomog-
raphy angiography (CTA) is a prominent example of non-invasive diagnosis, in
which blood filled vasculature can be easily discriminated from the background
based on high intensity. However, the high volume of imaging data demands
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automatic segmentation of coronary vasculature as manual diagnosis becomes
cumbersome and prone to inter-observer errors.

Apart from simple threshold and clustering techniques, the sophisticated
algorithms employ partial differential equations (PDEs) to detect object bound-
aries, i.e. an initial guess is evolved under constraints to detect the object bound-
aries. Commonly used formulations include the parametric snake model and the
level set representation. The parametric snake i.e. active contour model [9] leads
to a fast and computationally efficient segmentation but shows greater sensitivity
to the topological changes, whereas the level set representation [1,14] provides
inherent split and merge mechanisms to accurately detect complex structures at
the cost of processing time. It should be noted that for both formulations, the
evolution of the initially placed curve is regulated by an image based energy.
Methods reported in [1,9] approximate the image-based energy in terms of the
intensity gradient strength (edge-map), whereas techniques proposed in [2,19]
employs regional intensity statistics for the energy approximation. The region-
based methods show robust performance in general as the gradient strength often
leads to over segmentation for weak edges. However, the conventional region-
based methods fail to address the intensity inhomogeneity problem of medical
images due to the underlying piecewise constant assumption. Consequently, Li
et al. [11] and Lankton and Tannenbaum [10] proposed the use of localized sta-
tistics to regulate the curve growth in medical images for minimizing the impact
of the intensity inhomogeneity.

In context of blood vessel segmentation in CTA, Harnandez et al. [6], Mohr
et al. [12], Szymczak et al. [15], Wang and Liatsis [17] and Yang [18] reported
successful segmentations; however, the impact of the externally injected contrast
medium has been little employed in the coronary segmentation process. Isgum
et al. [8] proposed an automated system for the coronary calcification detection,
in which all the connected components of intensity value greater than 220 HU
were interpreted as potential calcified plaques. Similarly, Hong et al. [7] proposed
a fixed threshold of 350 HU for the segmentation of coronary calcified plaques
in the contrast enhanced CTA.

In this work, we derive the estimate intensity threshold by investigating the
impact of the contrast medium in the respective CTA volume to ensure the accu-
racy of segmentation. Followed with this introduction, we define the proposed
coronary segmentation model in Sect. 2. Subsequently, comparative results are
presented in Sect. 3, which is followed by the shortcomings and the conclusion.

2 Proposed Model

Based on the fact that externally injected contrast medium enhances the visual
brightness of blood filled coronaries in CTA, we propose to adaptively model the
contrast medium in the coronary segmentation process. The proposed method
is classified as semi-automatic since it requires manual seed points to initialize
the segmentation process. We start with the assumption that the coronary seg-
mentation can be improved by suppressing the non-coronary structures using
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intensity and shape constraints in a pre-processing step. However, the deriva-
tion of a generic intensity threshold across the dataset is challenging due to the
non-homogeneous diffusion of the contrast medium in different CTA volumes.
Consequently, the impact of the contrast agent is mathematically modelled in a
first step to derive the volume-specific intensity range in Hounsfield units (HU)
for respective CTA volumes. In the following step, we computed the voxel-wise
vesselness measure using 3D Hessian matrix of the CTA volume to suppress the
non-tubular voxels. In the final step, we applied the localized region based seg-
mentation to extract coronary the tree from the pre-processed CTA volume. For
the rest of the paper, let I denote a 3D CTA volume defined on the domain Ω
and x, y denotes two independent spatial variables in the domain Ω. In addition,
we employ a mask function M(x,y), which defines a neighbourhood of radius
RL centred at x. Accordingly, the mask function M(x,y) will be 1 when a point
y lies within a neighbourhood region of x, and 0 otherwise.

2.1 Contrast Medium Modelling

For enhanced visualization of the coronary vasculature, a contrast medium is
often injected intravenously before the cardiac CTA exam. Consequently, the
contrast affected blood appears brighter in the CTA volume which allows clin-
ician to distinguish the coronary vasculature from the background as shown
in Fig. 1a–b the diffusion of the contrast medium is non-homogeneous across
patients as it depends upon several factors including the type and amount of
contrast medium, the total scan time and the heart rate. This clinical fact leads
to the assumption that despite of similar visual appearance of the blood filled
coronaries, there exists a statistically significant difference in the blood intensity
values for different CTA volumes. Consequently, the intensity based suppres-
sion of the non-coronary structures requires volume specific threshold values for
optimal segmentation. Therefore, the use of a fixed threshold from the literature
[7,8] may result in erroneous segmentation. Based on the fact that the contrast
affected blood flows into coronaries from the descending aorta, we therefore seg-
mented the aorta in the first step to estimate the volume-specific HU intensity
range. For aorta segmentation, we started with the background suppression in
CTA using an intensity threshold of 100HU as shown in Fig. 1c. In the following
step, we applied a circular Hough Transform [4] based shape analysis to segment
the aorta from in the blood volume as shown in Fig. 1e. Iteratively, 2D seg-
mentation is performed through axial slices until the circular aorta changes the
shape which reflects the origin of coronary vasculature. Next, we computed the
intensity histogram of the segmented aorta and the contrast medium response
is modelled using Gaussian fitting. Figure 2a shows the Gaussian approximation
for four CTA volumes where a significant variation in the mean values emphasize
the need of an adaptive intensity threshold for accurate segmentation. It should
be noted that the Gaussian mean represents the intensity for blood-filled aorta;
however, the concentration of the contrast medium decreases as the blood flows
towards distal segments of coronary tree. Moreover, the vessel narrowing towards
the distal end points often result in the less diffusion and poor contrast. Thus,
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(a) (b) (c) (d) (e)

Fig. 1. Coronary appearance and aorta segmentation in axial slices. (a–b) Similar
appearance for coronary in two CTA volumes. (c–d) Background suppression mask
and the segmented aorta, (e) aorta shape change due to emerging coronary structure.

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

Voxel intensity in HU

F
re

qu
en

cy

Vol.10
Vol.3
Vol.11
Vol.7

(a)

1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

60

70

80

90

100

CTA volume number

D
ic

e 
si

m
ila

rit
y 

(%
)

Fixed Threshold
Adaptive Threshold

(b)

Fig. 2. Intensity approximation and mean accuracy for CTA volumes. (a) Shows the
intensity distribution histogram for four CTA volumes in which a significant mean
variation demonstrates the need of an adaptive intensity threshold. (b) Represents
comparative segmentation accuracy for two intensity thresholds.

to take into account the intensity drop towards distal segments, we estimate the
adaptive intensity range RI for respective CTA volume I as expressed in Eq. 1.

RI = {μI ± 3σI} (1)

where μI and σI represent the aorta based mean HU and standard deviation for
the respective CTA volume. For a quantitative comparison, the Gaussian distri-
bution parameters and the derived intensity range for 12 clinical CTA volumes
are presented in Table 1. It should be noted that the lower boundary of adaptive
intensity range is meant for suppressing the non-coronary voxels and the upper
boundary can be used to segment the calcified plaques (if any) in the arterial
tree.

2.2 Enhancement of Tubular Structures

In this step, we employ shape information to effectively suppress the non-
coronary voxels. Based on the fact that coronary vessels follow a tubular struc-
ture, we enhanced tubular voxels as proposed by Frangi et al. [5]. Accordingly,
we obtained the 3D Hessian matrix of the CTA volume I in a first step to investi-
gate the structural shape information. Next, we computed the eigenvalues from
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Table 1. Volume-specific intensity (HU-range) for 12 CTA volumes.

CTA Vol Mean HU Std Minimum HU Maximum HU

01 942 62 756 1128

02 495 42 369 621

03 436 45 301 571

04 485 38 371 599

05 542 60 362 722

06 630 50 480 780

07 663 53 504 822

08 463 62 277 650

09 517 53 358 676

10 543 55 378 708

11 335 45 200 470

12 425 53 296 554

the 3D Hessian matrix to identify the geometric patterns and the voxel-wise
vesselness is computed as follows:

Vo(x) =

{
0 if λ2 or λ3 > 0{

1 − exp
(
− R2

A

2α2

)
exp

(
−R2

B

2η2

)(
1 − exp

(
S2

−2ζ2

))}
otherwise

(2)

where RA = |λ2|
|λ3| discriminates plate-like structures from the cylindrical vessels,

RB = |λ1|√
|λ2λ3| differentiates blobs from other shapes and S serves as a penalty

for the noise suppression. Moreover, the tuning parameters α = 0.6, η = 0.5 and
ζ = 220 controls the overall vesselness measure. The response of the vesselness
filter for 2D axial slices of CTA volume is shown in Fig. 3b, whereas the vesselness
computed for the complete 3D CTA volume is presented in Fig. 3c. Figure 3b–c
reflect that the tubular structures have been assigned high vesselness in com-
parison with the background; however, an inherent limitation of the multi-scale
filter is misclassification of the edges, i.e. edges are often assigned comparatively
high vesselness as well. This drawback is evident in Fig. 3c where it becomes
extremely complex to identify the coronary vasculature. Consequently, the CTA

I(x) =

{
I(x) if Vo(x) > Tf and I(x) ∈ RI

0 otherwise
(3)

volume I is filtered using intensity and vesselness constraints of Eq. 3 with Tf

set equal to 10−3.
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(a) (b) (c) (d) (e)

Fig. 3. Pre-processing for optimal segmentation. (a) Shows a 2D axial slice, (b–c)
represent the 2D and 3D vesselness measure for CTA volume with prominent tubu-
lar structures and (d–e) show the intensity based background suppression using fixed
and adaptive intensity threshold respectively. It can be observed that fixed thresh-
old based segmentation (red) performs over segmentation due to leakage into nearby
non-coronary structures, whereas (blue) contour represents the adaptive threshold seg-
mentation. (Color figure online)

2.3 Coronary Tree Segmentation

Once the CTA volume is effectively filtered (as expressed in Eq. 3), the coronary
tree is segmented using a 2D level set evolution based on the Chan-Vese [2]
localized image energy. The segmentation process starts with the selection of
the coronary seed points. To ensure that both coronary structures (left and
right arteries) are segmented simultaneously, the coronary seed points are placed
on an axial slice at the mid of the caudal-cranial axis. Next, the seed points
are used to initialize a localized mask with a radius of 6 mm (i.e. maximum
possible coronary diameter on an axial slice [3]). Subsequently, the initial mask
evolves under the influence of image-based localized Chan-Vese energy to capture
the true boundary of the coronary. Because of the 2D nature of the level set
evolution, the evolved mask serves as an initialization to its adjacent axial slice
on the caudal-cranial axis to capture the complete coronary tree. To define the
mathematical model for level set coronary evolution, we start with the Chan-
Vese segmentation in which two regions (the object and the background) are
modelled with their mean intensity values as follows:

F (c1, c2, C) =
∫

in(C)

[I(x) − c1]2dx +
∫

out(C)

[I(x) − c2]2dx + γlength(C) (4)

where C is the evolving curve, and c1, c2 represents the mean intensity value
inside and outside the evolving curve respectively. For the level set formulation,
the evolving curve C is embedded into a higher space using a signed distance
function φ : such that C = {x|φ(x) = 0}. The internal and external regions
of the curve are defined using the Heaviside function (also termed as unit step
function) Hφ, which is 1 when φ(x) > 0 and 0 when φ(x) < 0. Moreover, the
evolving curve (zero level set) can be identified using derivative of Heaviside
function i.e. the Dirac delta function δ which is 1 when φ(x) = 0 and 0 far from
the interface. Accordingly, we formulate Eq. 4 using level set representation as
expressed in Eq. 5. The first term of Eq. 5 is image-based curve driving energy
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which minimizes the approximation error and the second term is the regular-
ization term added to ensure the curve smoothness. For additional details and
complete mathematical derivations, readers are referred to [2,10].

∂φ

∂t
(x) =δφ(x)

∫
Ωy

φ(y)M(x,y)
{
(I(y) − c1)2 − (I(y) − c2)2

}
dy

+ γδφ(x)div

{ ∇φ(x)
|∇φ(x)|

}
(5)

where γ is the weight assigned to regularization term and c1, c2 represents the
localized interior and exterior intensity mean values as expressed in 6. It should
be noted that localization mask based statistics are used in the segmentation
primarily due to the intensity inhomogeneity problem in medical data.

c1 =

∫
Ωy

M(x,y)I(y)Hφ(y)dy∫
Ωy

M(x,y)Hφ(y)dy
, c2 =

∫
Ωy

M(x,y)I(y)(1 − Hφ(y))dy∫
Ωy

M(x,y)(1 − Hφ(y))dy
(6)

2.4 Auto-correction Feature of the Mask

In general, the coronary tree comes out from the descending aorta and splits into
branches along the caudal-cranial axis; hence all the segments are well captured
in the level set based active contour evolution. However, due to the wide inter-
patient variability and 2D axial slice based data acquisition in CTA, some distal
branches emerge away from the main trajectory and become a part of the tree as
slices are navigated. To address this issue, one possible solution is the 3D level set
segmentation but it increases the computational load. In contrast, we introduced
an auto-correction feature in the mask to capture the emerging peripheries dur-
ing evolution. The proposed method reconstructs the mask in every iteration by
scanning the neighbourhood of the trajectory on 2D axial slice. All the individual
peripheries that satisfy the constraints (tubular shape and adaptive intensity)
are captured as shown in Fig. 4c–d. This self-adjustment feature offers improved
accuracy and the computational robustness, whereas the non-connected struc-
tures are automatically discarded using connected component analysis.

(a) (b) (c) (d)

Fig. 4. Auto correction of mask to capture nearby emerging peripheries for CTA
Volume (a–b), Emerging peripheries missed during evolution. (c–d), Emerging periph-
eries are captured for complete tree extraction.
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3 Results

To demonstrate the effectiveness of the adaptive intensity modelling, the coro-
nary segmentation was performed using two different intensity thresholds. The
comparative results reveal that the use of fixed threshold i.e. 350 HU [7] leads
to an erroneous coronary tree in terms of under/over segmentation, whereas the
proposed adaptive threshold ensures accurate segmentation by employing the
influence of contrast medium in the segmentation process. Moreover, the pro-
posed segmentation shows a greater corroboration with the manual annotations
in the cross sectional analysis as illustrated below.

3.1 CPR Based Analysis

Figure 5 shows the segmented right coronary artery (RCA) of CTA volume 1
using two different thresholds. Table 1 indicates that the strong concentration
of the contrast medium requires a higher intensity threshold (756 HU) to mini-
mize false positives. It can be observed from the figure that the volume-specific
threshold precisely tracks the main progression of the RCA Fig. 5b from aorta
to the distal segment with the minimal peripheries, whereas the use of a liter-
ature based [7] fixed threshold 350 HU results in numerous side branches for
the RCA Fig. 5a. The efficacy of the adaptive intensity threshold is illustrated
by constructing the curve planar reformatted (CPR) images along three differ-
ent axes. CPR visualization from three different views helps to evaluate if there
exist any intermediate peripheries for the segmented RCA. The centreline for the
right coronary artery is obtained in the first step using sub-voxel skeletonization
algorithm of [16]. In the subsequent step, we constructed the 2D CPR images
from CTA volume as shown in Fig. 5c–e. It should be noted that distinct views
along three different axes substantiate the fact that the right coronary artery
is well segmented from aorta to the distal points using the adaptive intensity
threshold. Moreover, it can be observed that the peripheries which appear to
be a part of the coronary structure in Fig. 5a, are not coronaries indeed but the
kissing vasculature in close proximity which were captured mistakenly by active
contour during the evolution.

Fig. 5. Visualization of segmented RCA in CTA volume1, (a) RCA obtained using
fixed intensity threshold of 350 HU, (b) RCA obtained using adaptive threshold. (c–e)
Represent CPR image along three axes to confirm the efficacy of adaptive threshold.
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3.2 Cross-Sectional Analysis

The efficacy of the adaptive intensity threshold is further illustrated by compar-
ing the two segmentations in 3D space. Figure 6a–b shows a zoomed version of
the segmented Left circumflex artery (LCX) branch of CTA volume 1 obtained
using two thresholds. It should be noted that the adaptive threshold (756 HU)
results in a smooth segmentation (see Fig. 6a), whereas the fixed threshold (350
HU) leads to over-segmentation in terms of disconnected expansion of the LCX.
This is based on the fact that the high concentration of the contrast medium mis-
leads the evolving curve to capture the nearby structures (see Fig. 6b). This over-
segmentation is further unfolded using the orthogonal planar analysis as shown
in Fig. 6c–d. The impact of the over-segmentation can be clearly observed by
viewing the boundary points as the fixed threshold based segmentation shows
incorrect expansion of the vessel in cross sectional planes in contrast to the
response of adaptive threshold based segmentation.

Fig. 6. Top. LCX branch of CTA volume 1. (a–b) LCX segmentation using adaptive
(756 HU) and fixed (350 HU) threshold values respectively. (c–d) Illustrates the effi-
cacy of adaptive threshold as planar boundary points show over-segmentation for fixed
threshold. (Bottom) RCA branch of CTA volume 11. (e–f) RCA segmentation using
adaptive (200 HU) and fixed (350 HU) threshold values respectively. (g–h) illustrates
the efficacy of adaptive threshold as planar boundary points show under segmentation
for fixed threshold. Red is the boundary for fixed threshold segmentation and green
represents the response of adaptive threshold. (Color figure online)

Likewise, Fig. 6e–h present the case where the use of the fixed intensity
threshold leads to an under-segmented tree because of low concentration of the
contrast medium in CTA. The less concentration of contrast medium results in
a lower intensity threshold in coronary segmentation, as Table 1 defines 200 HU
for CTA volume 11. Figure 6e shows that adaptive threshold leads to detailed



216 M.M. Jawaid et al.

coronary structure, whereas RCA obtained using a fixed intensity threshold of
350 HU shows under-segmentation as a significant portion towards distal RCA
is missed (see. Fig. 6f). This under-segmentation becomes more evident in the
planar analysis as the segmented lumen shrinks rapidly towards the distal seg-
ments. Figure 6g–h shows that the 350 HU based segmentation vanishes through
the distal section of RCA in contrast to the response of adaptive threshold based
segmentation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Fixed and adaptive threshold based segmentation with respect to manual anno-
tations. (Top) analysis for LCX of CTA volume 1 (bottom) analysis for RCA of CTA
volume 11. Fixed threshold reflects over segmentation for CTA volume 1 and under
segmentation for CTA volume 11. Red is the fixed threshold segmentation and green is
the adaptive threshold result. Blue and yellow represents manual annotations. (Color
figure online)

3.3 Validation Against Manual Annotations

The effectiveness of the volume-specific intensity threshold is also evaluated
with respect to the manual annotations of two independent observers. Two well
trained biomedical students were requested to perform the manual annotations
of coronary lumen independently in our centre using interactive coronary analy-
sis software. The lumen boundary obtained at the optimal coronary display
settings (L/W = 300/800) are recorded for qualitative and quantitative evalua-
tion of two segmentations. It can be observed from Fig. 7a–e) that the adaptive
threshold leads to a good agreement with manual observers by suppressing the
nearby vasculature, whereas the fixed threshold based segmentation captures
the adjacent non-coronary structures that results in increased false positives.
Likewise, Fig. 7f–j show the response of two segmentations for RCA of CTA
volume 11. It should be noted that the adaptive threshold leads to a true seg-
mentation by allowing expansion towards low intensity voxels, whereas the fixed
intensity threshold favours high intensity voxels resulting in under-segmentation.
To demonstrate the quantitative efficiency of the adaptive intensity threshold,
we computed the segment-wise accuracy with respect to the manual annotation
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using three metrics i.e. sensitivity, specificity and the Dice similarity coefficient.
It can be observed from Fig. 8a that the adaptive threshold in LCX segmen-
tation leads to a reasonable score for all the accuracy metrics, whereas high
false positives associated with the fixed threshold leads to low specificity and a
decreased Dice coefficient score (see Fig. 8b for the fixed threshold). Similarly,
the use of adaptive threshold results in a stable value for all three metrics in
RCA segmentation (Fig. 8c), whereas the fixed threshold leads to increased false
negatives causing a significant drop in the sensitivity and the corresponding
Dice similarity coefficient (Fig. 8d). Moreover, the mean Dice similarity for two
segmentation methods is presented in Fig. 2b which clearly demonstrates the effi-
cacy of adaptive threshold over fixed intensity threshold (specifically for volumes
with irregular concentration of dye i.e.volume 1, 6, 7, 8 and 11).
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Fig. 8. Segmentation accuracy for fixed and the adaptive threshold based segmentation.
(a–b) Results for LCX segment of CTA volume 1 where high false positives lead to low
specificity and decreased Dice score, (c–d) results for RCA segment of CTA volume 11
where high false negatives lead to low sensitivity and decreased Dice score.

4 Conclusion

We demonstrated that adaptive modelling of the contrast medium intensity can
considerably improve the accuracy of the coronary segmentation. In contrast,
the use of a fixed intensity threshold across the dataset may decrease precision
by capturing the nearby non-coronary segments or missing the distal parts of
coronary tree. After deriving the volume-specific intensity ranges, we employed
a bi-directional level set based Chan-Vese evolution to segment the coronary
tree from CTA volume. Promising results validating a significant improvement
in segmentation quality confirms the need of contrast medium modelling in seg-
mentation process. A limitation of the current method is its failure to detect
non-calcified plaques which exhibit an unexpected intensity drop across the lesion
regions of the coronary tree, which is being investigated in an ongoing study.
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