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Abstract. Segmentation of tissue components of atherosclerotic plaques
in MRI is promising for improving future treatment strategies of cardio-
vascular diseases. Several methods have been proposed before with vary-
ing results. This study aimed to perform a structured comparison of var-
ious classifiers, training set sizes, and MR image sequences to determine
the most promising strategy for methodology development. Five different
classifiers (linear discriminant classifier (LDC), quadratic discriminant
classifier (QDC), random forest (RF), and support vector classifiers with
both a linear (SVMlin) and radial basis function kernel (SVMrbf )) were
evaluated. We used carotid MRI data from 124 symptomatic patients,
scanned in 4 centres with 2 different MRI protocols (45 and 79 patients).
Firstly, learning curves of accuracy as a function of increasing training
data size showed stabilisation of performance after using ∼10–15 patients
for training. Best results were found for LDC, QDC and RF. Intraplaque
haemorrhage was most accurately classified in both protocols, and lowest
accuracy was found for the lipid-rich necrotic core. Secondly, for LDC
and RF it was shown that leaving out different MRI sequences usually
negatively affects results for one or more classes. However, leaving out
T2-weighted scans did not have a big impact. In conclusion, several classi-
fiers obtain generally good results for classification of plaque components
in MRI. Identification of intraplaque haemorrhage is the most promising,
and lipid-rich necrotic core remains the most difficult.
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1 Introduction

Cardiovascular diseases are the leading cause of death and disability worldwide
[1]. In ischaemic strokes and transient ischaemic attacks (TIA), atherosclerosis
plays an important causal role. One of the major hazards of an atherosclerotic
plaque is plaque rupture, which can result in a clinical event. One way to pre-
vent such events is by performing carotid endarterectomy in which a high-risk
plaque is removed surgically. Early diagnosis and risk stratification is therefore
important to accurately select patients for treatment.

Plaque composition is considered an important determinant of plaque rupture
[2]. However, due to the lack of techniques to derive high-risk plaque characteris-
tics accurately and reproducibly in daily clinical practice, treatment still mainly
relies on the degree of arterial narrowing [3]. The imaging modality that has
shown most promising results in imaging of plaque composition is magnetic res-
onance imaging (MRI) [4,5]. Previous research has shown that MRI can visualise
plaque characteristics such as a lipid-rich necrotic core and intraplaque haem-
orrhage [6,7], and that these MRI-derived parameters are predictive of clinical
events [8–10]. However, data analysis is complex and primarily done by visual
inspection and manual delineation.

Several studies have developed methods for automatic segmentation of plaque
components in MRI [11–16], but these still lack accuracy for use in clinical
practice. Moreover, due to differences between studies it remains unclear which
segmentation methodology is most promising, how much data is required to
develop stable and accurate methods, and which MRI protocol should be used for
best identification of the most important plaque components. The most common
approach has been to perform voxel classification trained on a ground truth
dataset with either manual contours or contours from histology, using a set of
imaging-derived features, including normalised intensity and Gaussian filters.
Classifiers that have been used are linear discriminant classifiers [13–16], non-
linear Bayesian classifiers [11,12], and support vector machines [14] with training
sets ranging from 12–22 patients. The MRI-protocols all included T1-weighted
and T2-weighted scans, and, in most cases proton-density (PD) weighted and
bright-blood time of flight (TOF) scans, and in a number of cases included
contrast-enhanced scans or a specific scan to identify intraplaque haemorrhage.

This study therefore aims to compare different classifiers and image sequences
for the classification of plaque components, to provide insights to develop
improved plaque characterisation methods. We evaluate these techniques on two
datasets with a slightly different MRI protocol.

2 Methods

2.1 Data

MRI Study. We used data acquired within the multi-centre Parisk study [17].
In this study patients with a recent (<3 months) ischaemic stroke or TIA and
a symptomatic 30–69% carotid artery stenosis as defined on ultrasound or CT,



158 A. van Engelen et al.

were prospectively recruited. MRI was performed in one of four centres within the
Netherlands: Academic Medical Center Amsterdam (centre 1), Erasmus Medical
Center, Rotterdam (centre 2), Maastricht University Medical Center (centre 3)
and University Medical Center Utrecht (centre 4).

Five MRI sequences were used for plaque characterisation. Patients in centres
1, 3 and 4 were scanned using the same MRI protocol on an Achieva or Ingenia
scanner (Philips Healthcare, Best, the Netherlands). We will refer to this protocol
as Protocol 1. Patients in centre 2 were scanned on a Discovery MR 750 system
(GE Healthcare, Milwaukee, MI, USA), (Protocol 2 ).

Both protocols contained a pre-contrast T1-weighted (T1w) and T2-weighted
(T2w) scan, a post-contrast T1w scan acquired 6 min after administration
of 0.1 mmol/kg body weight of a gadolinium-based contrast medium, and a
pre-contrast heavily T1-weighted scan that shows high signal intensity for
intraplaque haemorrhage (an 2D inversion-recovery turbo-field echo for Proto-
col 1, and a 3D spoiled gradient echo for Protocol 2). Protocol 1 contains a 2D
bright-blood TOF scan that aims to identify calcifications bordering the lumen.
In contrast, in Protocol 2 a 3D fast spoiled gradient echo scan that is specifically
aimed at showing all calcifications as hypointense with little or no difference in
appearance between other tissues and structures in the image, is used. Due to
those differences, in our experiments the data from centres 1, 3 and 4 was taken
together, and the data from centre 2 was considered separately. For details on
the acquisition parameters, and more details on patient recruitment, we refer to
Truijman et al. [17]. For this study we only used patients who completed the five
MRI scans above with diagnostic image quality, and whose data was available.
This resulted in 9 patients from centre 1, 45 patients from centre 2, 52 patients
from centre 3, and 18 patients from centre 4, so in total 79 for Protocol 1 and
45 for Protocol 2.

Manual Annotation. Manual annotation of the symptomatic arteries was per-
formed by a set of six observers, using dedicated software (VesselMASS, Depart-
ment of Radiology, Leiden University Medical Center, Leiden, The Netherlands).
Firstly, the lumen centreline was manually or semi-automatically identified.
Then, the other four MRI sequences were registered to the T1w precontrast scan
using a region of interest around the centreline [18] and manually adjusted. The
vessel wall was subsequently segmented either manually or semi-automatically
using a previously published technique [19] and manually adjusted. Plaque com-
ponents (lipid-rich necrotic core (LRNC), calcification (CA) and intraplaque
haemorrhage (IPH)) were fully manually annotated. The remainder of the vessel
wall was considered fibrous tissue. All observers received the same training, and
annotations were made based on previously published criteria [20–22]. LRNC
was defined as a region that shows no contrast-enhancement on the postcon-
trast T1w scan compared with the precontrast scan, and IPH as hyperintense
signal compared to the adjacent sternocleidomastoid muscle in the bulk of the
plaque on the IR-TFE or SPGR image, and is considered as part of the LRNC.
Calcification was identified as hypointense on at least two sequences, where for
Protocol 2 a hypointense signal on the FSPGR scan was the main criterium. For
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the first 19 patients recruited in centre 3, annotations were made using MRI-
Plaque View (VPDiagnostics Inc., Seattle, WA, USA) for a different study and
converted for use in VesselMass as described in van Engelen et al. [15].

2.2 Experiments

Classifiers. Five commonly used classifiers were evaluated:

– Linear Discriminant Classifier (LDC): This relatively simple classifier has
successfully been used for voxel classification in atherosclerotic plaques
[13–16]. It determines the optimum linear boundaries between classes assum-
ing the data is normally distributed with equal covariance matrices for each
class, using the class means, class priors, and covariance matrix [23].

– Quadratic Discriminant Classifier (QDC): This classifier is similar to LDC,
except that it does not assume equal covariance for all classes, and thereby
allows quadratic instead of linear class boundaries.

– Random Forest (RF): Random forests have more recently become popular in
medical imaging [24]. They are formed of a set of decision trees where subsets
of features are randomly selected at each node. The predictions of all trees
are combined for classification. This provides a data-driven way of feature
selection and allows for more flexible decision boundaries. The number of trees
was optimised in our experiments, with √(nr of features) features selected at
each node.

– Linear Support Vector Machine (SVMlin): Support Vector Machines max-
imise the width of the margin between classes. Therefore, the decision bound-
ary is determined by the samples on the boundary, rather than on the distri-
bution of all data like LDC and QDC. The parameter C that trades-off
between maximising the margin and minimising misclassification is optimised
in our experiments. Multiclass classification (also for SVMrbf ) was performed
by combining different 1-vs-1 classifiers.

– Support Vector Machine with radial basis function kernel (SVMrbf ): The
radial basis function kernel allows for non-linear decision boundaries. The
kernel radius, γ, and C are optimised in our experiments.

All experiments were performed in Matlab. LDC and QDC were implemented
using the PrTools toolbox [25], SVMlin and SVMrbf using libsvm [26], and RF
using a toolbox based on the implementation described in [27].

Data Preparation. Preprocessing and feature computation was carried out in
a similar fashion as in [15]. A bias field due to coil inhomogeneity was present in
the data from Protocol 2, which was corrected by N4 inhomogeneity correction
[28]. Intensity in all MRI sequences for both protocols was normalised by scaling
the 5th and 95th percentile in a region of 4 × 4 cm around the lumen centre
between 0 and 1000, on a per-volume basis scaling all slices with the same values.

Image features for classification were based on previous studies [11,13,15]:
(1) the normalised intensities for each MRI sequence, (2) the images blurred with
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a Gaussian filter (σ = 0.3 mm), (3) First order (gradient magnitude) and second
order (Laplacian) derivatives at the same scale, (4) the Euclidean distance to
the lumen and to the outer wall, and the product of those two distances.

Learning Curves. To compare the five different classifiers, learning curves
were made to determine the performance with increasing size of training data
for each classifier. The aim of this was firstly, to compare the accuracy between
different classifiers, and secondly, to establish the amount of required training
data and to compare the this between the classifiers.

The data of each protocol was randomly split in three groups. For Protocol 1
two groups of 30 patients were used for training and testing, and the remaining
19 were used to optimise classifier-specific parameters. For Protocol 2 two groups
of 20 patients were used for training and testing, and 5 patients for optimisation.
The distribution of all four classes was kept similar between the three groups
(overall, Protocol 1 had 86% F, 3% LRNC, 5% CA and 6% IPH. Protocol 2
had 82% F, 3% LRNC, 8% CA and 7% IPH.). The two non-optimisation groups
for each protocol served both as training and testing data in a two-fold cross-
validation. For parameter optimisation, classifiers were trained on the full set of
20 or 30 patients, and the average best accuracy on the optimisation data was
determined. For RF , the number of decision trees evaluated was 10, 25, 50, 100,
250, 500, 750 and 1000. For SVM, C and (for SVMrbf ) γ were evaluated for
0.001, 0.01, 0.1, 1, 10, 100 and 1000.

To create the learning curves, the size of the training set was increased
from 1 to 30 (Protocol 1) or 20 (Protocol 2). For training set sizes of
1, 2 and the maximum minus 1, all possibilities were evaluated (so 20 or
30 repeats). For all sizes in between 25 randomly selected combinations of
patients were used for training. Those were the same for every classifier.
For the maximum training set size only 1 combination, using all training
data, was possible. When training on the first fold, patients in the sec-
ond fold were used for testing and the other way around. Results are pre-
sented by averaging over all 60 (Protocol 1) or 40 (Protocol 2) datasets.
Overall voxelwise accuracy was determined. Moreover, sensitivity, intra-
class correlation coefficients of volumes, and Cohen’s kappa (presence/absence
in ground truth vs. the result) were determined for all four classes. Since fibrous
tissue was present and detected in all cases, its kappa is always 1 and not further
presented. Standard deviations were calculated over all repetitions.

MRI Sequences. To determine which sequences are most important in plaque
component classification, and to determine whether this is classifier-dependent,
classification using the full training sets was repeated after leaving all features
of single MRI sequences out. This was performed for two classifiers that were
deemed most successful based on the learning curves. Again, sensitivity, ICC
and Cohen’s kappa were determined and presented for LRNC, CA and IPH. The
voxelwise accuracy of classification without each sequence was statistically com-
pared with the full dataset using a Wilcoxon signed ranks test, a non-parametric
test for paired differences.
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3 Results

3.1 Learning Curves

Parameter optimisation for RF resulted in 250 trees used for Protocol 1, and 100
or 750 trees for Protocol 2 for the two training sets. For SVMlin, for Protocol
1 C was 0.01 for both training sets, and for Protocol 2 C was 0.1 and 0.01. For
SVMrbf , for Protocol 1, the parameters for the first training set were C = 1 and
γ = 0.01, and for the second set C = 10 and γ = 0.01. For Protocol 2 those were
C = 10 and γ = 0.001, and C = 1 and γ = 0.01.

The learning curves for all classifiers are shown in Figs. 1 (Protocol 1) and 2
(Protocol 2). It can be seen that the average overall voxelwise accuracy (bottom-
right in the figures) varies little between classifiers, except for a slightly lower
performance for QDC, and stabilises after using about ∼10 patients for train-
ing. The other curves stabilise after 10–15 datasets (Protocol 1) or 5–10 datasets
(Protocol 2), which may be related to all data being acquired in the same centre
for Protocol 2. Kappa, which only looks at presence or absence of tissue com-
ponents, stabilises the quickest. Only for the ICC for LRNC, the smallest class,
the plateau might not always be reached. LRNC is better identified in Protocol
1 than in Protocol 2, although the largest differences between classifiers is seen
here. LDC, QDC and, for Protocol 1, RF, perform best for LRNC. SVM shows
much lower performance, and particularly fails to identify CA in Protocol 1 com-
pared with the other classifiers. For both protocols best results are achieved for
IPH, with high ICC and kappa values and reasonable sensitivity. While voxelwise
sensitivity for calcification is low in both protocols, ICC is good, with reasonable
Kappa values.

3.2 MRI Sequences

LDC and RF were repeated after leaving out each MRI sequence individually.
Results are presented in Tables 1 (LDC) and 2 (RF). Leaving out one single
sequence has a minor effect on overall classification accuracy for both protocols
and classifiers, but more relevant effects on plaque components are seen. For
Protocol 1, results for LRNC decrease mostly when the postcontrast (LDC and
RF) or precontrast T1w scan (only for LDC) are left out. For Protocol 2, LRNC
classification is generally low, but leaving out the SPGR sequence has the biggest
effect. Calcification is for both classifiers mostly dependent on the FSPGR scan
(Protocol 2) or a combination of several sequences (Protocol 1), for which the
TOF scan may be the most important one. Classification of IPH is not strongly
affected by leaving out any single sequence, though leaving out the heavility
T1-weighted IR-TFE or SPGR has the biggest effect. For both classifiers and
protocols, no reduction in performance was seen after leaving out T2w scans.

4 Discussion and Conclusion

We have shown a comparison between five common classifiers on two differ-
ent MRI datasets. Generally, learning curves show stabilisation of results after
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Fig. 1. Learning curves for the data of Protocol 1. Cohen’s kappa is not shown for
fibrous tissue, since it is 1 in all cases. Instead the voxelwise accuracy is shown in the
bottom right figure. Note that the figures in the bottom row are scaled from 0.6 to 1
instead of 0 to 1. The error bars indicate the standard deviation for the average of all
patients over the number of repetitions.

including 10–20 patients for training. Good results can be obtained for IPH and
CA, however, accurate classification of LRNC was shown to be more difficult.
The largest differences between classifiers were also seen for LRNC, and, for
Protocol 1, CA. LDC, QDC and RF generally showed best performance, while
SVM had lower performance.

Lower performance for SVM could be related with more difficult optimisation
of the classifier parameters. SVM is likely to suffer more from the considerable
class imbalance that was present. Moreover, optimisation on accuracy tends to
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Fig. 2. Learning curves for the data of Protocol 2. Cohen’s kappa is not shown for
fibrous tissue, since it is 1 in all cases. Instead the voxelwise accuracy is shown in the
bottom right figure. Note that the figures in the bottom row are scaled from 0.6 to 1
instead of 0 to 1. The error bars indicate the standard deviation for the average of all
patients over the number of repetitions.

be biased towards correct classification of fibrous tissue, rather than the other,
smaller, classes. A more optimal way for feature selection may be to look at
average sensitivity over the four classes, or the F-score, which balances between
sensitivity and precision. Furthermore, more differences between the optimised
parameters for the two training sets were seen for Protocol 2. This could be due
to only five patients being used for optimisation. However, this was chosen to
have as much data as possible available to evaluate classification performance.

To improve results for small classes, future research can also investigate the
effect of using (more) balanced classes in training, however, measures should be
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Table 1. Classification results for varying image protocols for LDC. Acc. = accuracy,
TOF = time of flight, IR-TFE = inversion-recovery turbo field echo, (F)SPGR = (fast)
spoiled gradient echo. *Statistically different from using all features (p< 0.05)

Voxelwise
acc. (%)

Sensitivity ICC Kappa

LRNC CA IPH LRNC CA IPH LRNC CA IPH

Protocol 1

All 5 sequences 92 0.13 0.20 0.45 0.86 0.88 0.95 0.61 0.53 0.75

No postcontrast 91* 0.05 0.16 0.45 0.76 0.84 0.95 0.48 0.40 0.75

No T2w 92 0.12 0.19 0.44 0.86 0.87 0.95 0.61 0.50 0.75

No TOF 92* 0.13 0.12 0.45 0.86 0.79 0.95 0.61 0.30 0.75

No T1w 92* 0.08 0.20 0.45 0.77 0.88 0.95 0.55 0.42 0.75

No IR-TFE 91* 0.10 0.15 0.35 0.81 0.74 0.89 0.58 0.44 0.75

Protocol 2

All 5 sequences 88 0.05 0.28 0.50 0.41 0.78 0.83 0.38 0.49 0.85

No postcontrast 88 0.05 0.27 0.51 0.35 0.77 0.83 0.23 0.44 0.85

No T2w 88 0.06 0.26 0.51 0.32 0.77 0.83 0.25 0.49 0.90

No FSPGR 87* 0.04 0.12 0.51 0.40 0.77 0.83 0.30 0.16 0.90

No T1w 88 0.04 0.28 0.46 0.30 0.78 0.83 0.25 0.49 0.85

No SPGR 87* 0.03 0.28 0.36 0.25 0.78 0.79 0.17 0.44 0.80

taken to prevent overclassification of small classes in this case. Another reason
for suboptimal results for certain classes is that the classes may not be separable
with the evaluated features. We have used the ones that have commonly been
used for this application in more recent previous studies [13–16]. Other features,
such as Gaussian filters at more scales, or texture features, may be interesting
to study as well. Instead of evaluating the effect of leaving out individual fea-
tures, we have evaluated them on a per-MRI-sequence basis. This was chosen
because eliminating features on a per-MRI-sequence basis would be advanta-
geous in clinical practice, since it could reduce scan time. In presence of the four
other available sequences, leaving out the T2w scan had the smallest effect in
our study.

Much more classifiers than the ones evaluated here exist. We have chosen
to use the most commonly used ones. Currently, deep learning techniques, using
deep neural networks, have gained enormous popularity in image analysis. These
techniques need to be considered in future research. Furthermore, both MRI
protocols have been considered separately in this study, as previous research has
shown that considerable differences exist between them [15]. In future research
it could be interesting to see whether some classifiers are better at handling all
MRI data combined.
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Table 2. Classification results for varying image protocols for RF. Acc. = accuracy,
TOF = time of flight, IR-TFE = inversion-recovery turbo field echo, (F)SPGR = (fast)
spoiled gradient echo. *Statistically different from using all features (p< 0.05)

Voxelwise
acc. (%)

Sensitivity ICC Kappa

LRNC CA IPH LRNC CA IPH LRNC CA IPH

Protocol 1

All 5 sequences 92 0.08 0.20 0.63 0.48 0.87 0.97 0.58 0.50 0.96

No postcontrast 92* 0.02 0.17 0.62 0.25 0.81 0.97 0.61 0.63 0.96

No T2w 92 0.08 0.21 0.62 0.47 0.87 0.97 0.74 0.50 0.96

No TOF 92* 0.09 0.18 0.63 0.53 0.85 0.97 0.61 0.42 0.96

No T1w 92* 0.07 0.20 0.60 0.46 0.87 0.97 0.61 0.50 0.96

No IR-TFE 91* 0.07 0.18 0.33 0.41 0.77 0.78 0.51 0.50 0.79

Protocol 2

All 5 sequences 88 0.01 0.33 0.60 0.05 0.80 0.89 0.15 0.55 1.00

No postcontrast 88* 0.02 0.34 0.60 0.05 0.79 0.89 0.27 0.55 1.00

No T2w 88* 0.02 0.33 0.60 0.10 0.79 0.89 0.23 0.55 1.00

No FSPGR 87* 0.02 0.15 0.60 0.08 0.73 0.89 0.25 0.39 0.95

No T1w 88* 0.01 0.34 0.60 0.07 0.78 0.89 0.15 0.55 1.00

No SPGR 88* 0.00 0.35 0.36 0.06 0.84 0.83 0.05 0.63 0.95

The most accurate results were obtained for IPH, which also has been con-
sidered as one of the most promising imaging characteristics for use in clinical
practice due to its high predictive value for future events [9]. This study confirms
that also automated techniques can identify IPH well in MRI. Leaving out one
single sequence did not have a large effect for IPH. This is probably because two
T1-weighted sequences were available in both protocols, so when one if left out
the other still provides enough information.

In conclusion, for the evaluated classifiers training set sizes of 15–20 patients
are sufficiently large. A simple classifier such as LDC, but also QDC and RF,
yields good results. However, improvements can still be made. Especially clas-
sification of LRNC remains difficult. Classification of IPH is possible with high
accuracy and therefore most promising for implementation into clinical practice.
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