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Abstract. Despeckling of ultrasound images is essential for subsequent
computational analysis. In this paper, an edge aware geometric filter
(GF) is proposed for speckle reduction. The behaviour of conventional
GF is approximated using commonly used functions like unit step. These
approximations help in identifying the natural relationship between GF
and other existing spatially adaptive filters. Subsequently, the modifi-
cations in GF framework are proposed to take the advantage of edge
characteristics. The proposed filter requires almost no parameter tuning
and provides good quality outputs for synthetic as well as real ultrasound
images. It is compared with the state-of-the-art speckle reducing filters.
Improvements of 10.46% and 42% are noticed in mean square error and
figure of merit, respectively.
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1 Introduction

Ultrasound (US) images contain granular patterns generated from the con-
structive and destructive interferences of the backscattered US pulse echoes.
These patterns are collectively known as speckle [1,2,6,11,17]. Despeckling of
US images depends on subsequent applications. Some applications like tissue
characterization, require the speckle to be selectively removed only from the
regions of low clinical significance like blood [18]. However, this paper focuses
on enhancing the US images to make them suitable for applications involving
automatic computational analysis like segmentation. Therefore, the speckle is
removed from the entire image, irrespective of the underlying region.

Several speckle reducing filters are reported in literature for US image
enhancement [5,12]. Spatially adaptive filters, for example Lee filter [16] and
Kuan filter [15], are some of the well known traditional filters. More advanced
filters are based on anisotropic diffusion [3,19–21]. These filters prohibit filtering
across the edges to preserve object boundaries. Apart form these, wavelet trans-
form based filters [22] and non-local mean (NLM) filters [10] are also popular.
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In contrast to the local averaging filters [4], the NLM filters reduce speckle by
using a weighted average of non-local image regions. Although, all these filters
provide good outputs, their performance is highly sensitive to the tuning of sev-
eral implementation parameters. It increases the complexity and also leads to
catastrophic results in case of inefficient parameter tuning.

In this paper a despeckling filter is proposed which has its roots in the old
concepts of geometric filtering [7]. Geometric filter (GF) [7] is a well known
speckle reducing filter. Although it aggressively suppresses speckle to quickly
reach a stable output, the amount of speckle reduction is not as good as the more
advanced diffusion based filters [11]. The key difference is that the GF is unable
to use the edge characteristics of the image. In this paper the behaviour of GF is
approximated using the function commonly used for signal analysis, the unit step
and signum function. This helps us in identification of the natural relationship
between GF and spatially adaptive filters like Lee filter. Which in turn enables us
to take the advantage of the edge characteristics in GF framework. The proposed
edge aware GF requires almost no parameter tuning. It is compared with the
existing state-of-the-art filters and a competitive performance is observed.

The paper is organized as follows. Section 2 presents the approximation of
the behaviour of GF and its relationship with the spatially adaptive filters. The
section also contains details about the proposed filer. Section 3 includes experi-
mental results which are compared with the existing filters. Finally conclusions
are presented in Sect. 4.

2 Proposed Filter

This section provides details about the relationship between GF and other exist-
ing spatially adaptive filters. Later in the section the edge aware GF is pro-
posed which eliminates the limitations of the conventional GF to provide efficient
speckle reduction.

2.1 Geometric Filter (GF)

The GF considers lines of pixels in all four directions, East to West, North
to South, North-east to South-west and North-west to South-east [8,9]. These
lines which represent gray level profiles, are used to create binary images. The
complementary convex hull algorithm is applied on these binary images to make
the gray level profile smooth. Accordingly, each pixel in the image is filtered
in all four directions to increase the homogeneity among the neighbourhoods.
Filtering operation of GF can be easily described using certain rules. Let us
assume x ∈ R

2 represents a pixel and x1 and x2 are two neighbours of x lying
opposite to each other. Further, fx is the intensity value of pixel x in the image
f : Ω → R+, Ω ⊂ R

2. The intensity value is adjusted based on following rules:
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if fx1 ≥ fx + 2 then fx = fx + 1 (1a)
if fx1 > fx and fx ≤ fx2 then fx = fx + 1 (1b)
if fx2 > fx and fx ≤ fx1 then fx = fx + 1 (1c)
if fx2 ≥ fx + 2 then fx = fx + 1 (1d)
if fx1 ≤ fx − 2 then fx = fx − 1 (1e)
if fx1 < fx and fx ≥ fx2 then fx = fx − 1 (1f)
if fx2 < fx and fx ≥ fx1 then fx = fx − 1 (1g)
if fx2 ≤ fx − 2 then fx = fx − 1 (1h)

The filtered image is obtained by iterative application of GF. The time complex-
ity of GF is very low however the filter has some limitations. It works on the
assumption that the noise appears as peaks and valleys of the same width in all
regions. Considering the spatially correlated nature of speckle, this assumption
is a critical assumption which limits the performance of the filter. Further, the
GF fails to take the advantage of edge characteristics. Apart from inefficient
filtering, it sometimes also results in tempered object boundaries.

2.2 A Different Look to Geometric Filter (GF)

The rules governing the mechanism of GF can be converted into mathematical
expression using the standard unit step (u(.)) and signum (sgn(.)) functions.
u(.) can be used to express the rule (1a) as:

fx = fx + u (fx1 − fx − 2) (2)

Similar equation can be written for rule (1e) to obtain a combined expression
for both the rules, (1a) and (1e), as:

fx = fx + u (fx1 − fx − 2) − u (fx − fx1 − 2) (3)

As we know, sgn(k) = u(k) − u(−k), (3) can be rewritten as:

fx = fx + sgn (fx1 − fx) (4)

where the factor of 2 from the last two terms of (3) is ignored to get a concise
expression. Ignoring the factor would require to use stopping criteria like insignif-
icant intensity changes in successive iterations. Similar to (4), an expression for
the rules (1d) and (1h) can be written as:

fx = fx + sgn (fx2 − fx) (5)

Further the rules (1b) and (1f) can be approximated as:

fx = fx +
1
2

(sgn (fx1 − fx) + sgn (fx2 − fx)) (6)
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and similarly the rules (1c) and (1g). Combining these, all the rules can be
represented using a single expression as:

fx = fx + 2 × sgn (fx1 − fx) + 2 × sgn (fx2 − fx) (7)

Similar expressions can be obtained for all four directions comprising all the
eight neighbours, which would lead us to the following consolidated expression
of the filter:

f t+1
x = f t

x +
∑

x1∈χ

m × sgn
(
f t

x1
− f t

x

)
(8)

where χ represent the neighbours of x and m = 2 is a constant. The superscript
t denotes the time or iteration. Equation (8) is an approximated version of GF
which is used to establish its relationship with other filters.

2.3 Relationship Between GF and Lee Filter

Mathematical expression of the Lee filter is given as:

fx = μg + kx × (gx − μg) (9)

where g and f represent the noisy and filtered images, respectively. μg is the
local mean and k is a weight factor calculated using local and noise statistics.
Equation (9) can be rewritten as:

fx = gx + (1 − kx) (μg − gx) (10)

As we know, μg = 1
n(χ)

∑
x1∈χ gx1 , where n(χ) is the cardinality of neighbour-

hood. Thus, (10) can be rewritten as:

fx = gx +
(1 − kx)

n(χ)

∑

x1∈χ

(gx1 − gx) (11)

We can replace g with f t to reflect iterative filtering and also rewrite (11) as:

f t+1
x = f t

x +
(1 − kx)

n(χ)

∑

x1∈χ

|f t
x1

− f t
x|.sgn

(
f t

x1
− f t

x

)
(12)

where |.| gives the magnitude. If we convert m from (8) into a variable and
factorized it into two factors m1 and m2 as:

m1 =
(1 − kx)

n(χ)
; m2 = |f t

x1
− f t

x| (13)

we can see that (12) boils down to (8). This establishes the relationship between
GF and Lee filter. Also this shows that the behaviour of GF can be easily
adjusted with the careful selection of m1 and m2.
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2.4 Proposed Filter

Although GF has a notion of direction, it is unable to differentiate between an
edge pixel (a pixel lying on an edge) and other pixels. It gives equal weightage
to all the neighbouring pixels during filtering. However, for an edge pixel, the
neighbours lying in the direction of edge always have a natural dependency.
Therefore, these neighbours should have higher weightage during the intensity
adjustments. This is the key idea of the proposed filter which helps in increasing
the homogeneity along the direction of edges and in turn reducing the speckle.
The simplest way to implement the proposed idea is to define m2 as:

m2 = |π−−→xx1
(−→ρ ) | (14)

where −→ρ is a unit vector in the direction of the edge passing through the pixel
x. The π−−→xx1

(−→ρ ) gives scalar projection of −→ρ onto the unit vector −−→xx1. The
m2 ∈ [0, 1] attains the maximum value when the dependency of −−→xx1 on the edge
is maximum. −→ρ can be obtained using any edge indicator. In this work gradients
are used. Let us say i and j represent the co-ordinate axis of the image f , then
the gradient ∇f is given as:

∇f = (∂fi, ∂fj) (15)

where ∂fi and ∂fj are partial derivatives of f in the directions i and j, respec-
tively. The −→ρ can be defined using ∇f as:

−→ρ =
∇f

|∇f | (16)

where ∇f = (−∂fj , ∂fi) gives a vector parallel to the edge. Now, with the
definition of m2 in (14), we can take m1 = 1 without the loss of generality.
Accordingly the expression of the proposed filter is given as:

f t+1
x = f t

x +
∑

x1∈χ

∣∣∣∣π−−→xx1

(
∇f t

|∇f t|

)∣∣∣∣ × sgn
(
f t

x1
− f t

x

)
(17)

The proposed definition of m2 helps in filtering the image according to the edge
characteristics. However, our objective is not just to remove speckle but also to
enhance the object boundaries. Therefore, a simple modification in the definition
of m2 is done as: m2 = |π−−→xx1

(−→ρ ) | − 0.5. This negative offset of 0.5 helps in
increasing the difference between the pixels belonging to different regions and in
turn enhances the object boundaries.

3 Experimental Results and Discussion

The proposed filter is tested on synthetic and real US images. The filtering per-
formance is compared with Lee [16], GF [7], DPAD (detail preserving anisotropic
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diffusion) [3], OBNLM (optimized Bayesian non-local mean filter) [10] and SBF
(squeeze box filter) [23]. The structural similarity measure index (SSIM) [24],
figure of merit (FoM) [20] and commonly used mean square error (MSE) are used
as evaluation metrics. The mathematical expressions of the evaluation metrics
are as follows:

SSIM: it is a measure of structural similarity between the noisy and filtered
images:

SSIM =

(
2μfμf̂ + c1

)(
2σfσf̂ + c2

)

(
μ2

f + μ2
f̂

+ c1

)(
σ2

f + σ2
f̂

+ c2

) (18)

where f is the filtered image and f̂ is the noise free reference image. μf and
σ2

f are mean and variances of the image f . c1 and c2 are two small constants
added to provide stability. The value of SSIM varies between 0 and 1, where 1
represents identical images in terms of structural similarity.

FoM: it is also known as Pratt’s figure of merit and calculated as:

FoM =
1

max {N,Nideal}
N∑

i=1

1
1 + diα

(19)

where N and Nideal represent the number of edge pixels obtained from filtered
and reference images using the Canny edge detector. The di is the Euclidean
distance between an edge pixel obtained from filtered image and nearest edge
pixel from reference image, and α is a constant set as 1/9. The value of FoM
also varies between 0 and 1, where 1 represents the perfect edge preservation.

MSE: it is the measure of intensity differences between the filtered and reference
images.

MSE =
1

N × N

N×N∑

x=1

(
f̂x − fx

)2

(20)

where N × N represent the total number of pixels in the considered image. Low
values of MSE are desirable.

The implementation parameters of different filters require tuning to result in
the best values of the evaluation metrics. For parameter tuning, initially any one
parameter, like the number of iterations (itr), is fixed and rest of the parameters
for example step size (dt) for DPAD, smoothing parameter (h) for OBNLM
and localization parameter (σg) for SBF are varied over a very fine grid. The
parameters associated with image regions for example window size (W ), patch
size (α) and search area (M) are varied over an integer grid. Later, the previously
fixed parameter is varied to get the complete set of optimized parameters. In
contrast to the existing filters, the proposed filter requires only the tuning of itr,
which can also be eliminated by using any stopping criteria.
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(a) Synthetic phantom image (b) Noisy image

Fig. 1. Synthesized phantom and simulated noisy image.

(a) Lee filter (b) GF (c) DPAD

(d) OBNLM (e) SBF (h) Proposed filter

Fig. 2. Filtered outputs of phantom image obtained using (a)–(h) Lee, GF, DPAD,
OBNLM, SBF, and the proposed filter.

3.1 Experiment with Synthetic Phantom Image

Figure 1(a) shows the synthetic phantom image containing four cysts. The noisy
US image, simulated using Field-II simulator [13,14], is shown in Fig. 1(b). Para-
meters of the considered filters are optimized to result in the least value of MSE.
The optimized parameter values along with the MSE, FoM and SSIM values are
listed in Table 1. Since the noisy image is in log compressed domain, the syn-
thetic phantom image is also converted into log compressed domain and used as
the reference. The filtered outputs are shown in Fig. 2.
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Table 1. Optimized values of the parameters for phantom image and the observed
values of evaluation metrics

Filter Parameters MSE FoM SSIM

Noisy input - 3000 0.156 0.185

Lee W = 13 1451 0.169 0.344

GF itr = 5 1717 0.161 0.436

DPAD dt = 0.1, W = 2, itr = 706 956 0.333 0.770

OBNLM M = 13, α = 3, h = 1.5 1136 0.189 0.689

SBF σg = 0.01, W = 3, itr = 206 996 0.276 0.708

Proposed itr = 157 856 0.473 0.800

Over the uniform intensity regions the gradients are influenced by stochastic
behaviour of noise. The inconsistency in the gradients of neighbouring pixels
helps the proposed filter to increase homogeneity in every direction, resulting in
the reduction of noise. On the other hand, the pixels near the object boundaries
or the edge pixels have consistent gradient orientation, therefore, the homogene-
ity is increased only in the direction of the edge. As a result, the proposed filter
provides the best values of FoM and SSIM. Further, the least value of MSE
reflects its filtering ability. The proposed filter shows 42% improvement in FoM
and 10.46% improvement in MSE, as compared to the best result achieved by
existing filters. Among the existing filters, DPAD and SBF result in decent val-
ues of MSE and SSIM, however, the quality of their filtered outputs (Fig. 2)
is relatively poor. The object boundaries are highly distorted and irregular.
An important thing to note here is that the proposed filter shows considerable
improvement over the conventional GF.

3.2 Experimentation with Real Ultrasound Image

A real cardiac US image is acquired using GE Healthcare Vivid US system
with full consent of the subject. The evaluation metrics used in synthetic image
experiment require noiseless reference image. Therefore, a different metric known
as contrast to noise ratio (CNR) is used here. It is defined as:

Fig. 3. Cardiac US image with marked regions
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(a) DPAD (b) OBNLM

(c) SBF (d) Proposed filter

Fig. 4. Filtered images obtained using (a)–(d) DPAD, OBNLM, SBF, and the proposed
filter.

CNR =
|μC1 − μC2 |√

σ2
C1

+ σ2
C2

(21)

where μCr
and σ2

Cr
are the mean and variance of the class Cr representing

object or background. High value of CNR represents the high contrast. CNR
measurement requires two regions of similar sizes representing different classes,
tissue and background. Two such regions are identified in the image considered
for experiment, shown in Fig. 3. Region 1 represents blood chamber and region
2 contains septum wall. The filtered images are shown in Fig. 4. The optimized
parameter values are listed in Table 2 along with the measured CNR. Lee filter
and GF are not considered due to their poor performances in synthetic phantom
image experiment. SBF results in the best value of CNR, however the quality of
filtered output is poor. Surprisingly the OBNLM provides better image quality
despite having the lowest CNR value. On the other hand, the proposed filter gives
balanced output. It results in the second best value of CNR and also provides
good quality image.

The proposed filter is further tested on a real US liver images obtained from
a publically available database1. The liver images and the corresponding filtered
outputs obtained using the proposed filter are shown in Fig. 5. It is clear that
the noise is efficiently removed while preserving the important structural details.
1 http://www.ultrasoundcases.info/.

http://www.ultrasoundcases.info/
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Table 2. Optimized values of the implementation parameters for the real cardiac US
image shown in Fig. 3.

Filter Parameters CNR

Noisy input - 2.02

DPAD dt = 0.01, W = 6, It = 65 2.23

OBNLM M = 9, α = 7, h = 1.2 2.18

SBF σg = 0.01, W = 5, It = 59 2.33

Proposed itr = 49 2.27

Fig. 5. (a), (c) and (e) Real liver US images, (b), (d) and (f) corresponding filtered
outputs obtained using the proposed filter.
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4 Conclusions

In this paper an edge aware GF is proposed. The filter uses edge characteristics
inside the GF framework. It allows the filter to iteratively remove speckle while
preserving the structural details. The filter requires almost no parameter tuning
which is a big challenge faced by the existing filters. The filter provides best
results for MSE, FoM and SSIM and shows competitive performance in terms of
CNR. The obtained filtered images show that the proposed filter is appropriate
for US image enhancement.
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López, C., Aja-Fernández, S.: Anisotropic diffusion filter with memory based on
speckle statistics for ultrasound Images. IEEE Trans. Image Process. 24(1), 345–
358 (2015)

19. Vegas-Sanchez-Ferrero, G., Aja-Fernandez, S., Martin-Fernandez, M., Frangi, A.F.,
Palencia, C.: Probabilistic-driven oriented speckle reducing anisotropic diffu-
sion with application to cardiac ultrasonic images. In: Jiang, T., Navab, N.,
Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 518–
525. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15705-9 63

20. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image
Process. 11(11), 1260–1270 (2002)

21. Krissian, K., Westin, C.F., Kikinis, R., Vosburgh, K.G.: Oriented speckle reducing
anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)

22. Yue, Y., Croitoru, M.M., Bidani, A., Zwischenberger, J.B., Clark, J.W.: Nonlin-
ear multiscale wavelet diffusion for speckle suppression and edge enhancement in
ultrasound images. IEEE Trans. Med. Imaging 25(3), 297–311 (2006)

23. Tay, P.C., Garson, C.D., Acton, S.T., Hossack, J.A.: Ultrasound despeckling for
contrast enhancement. IEEE Trans. Image Process. 19(7), 1847–1860 (2010)

24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 1(4),
600–612 (2004)

http://dx.doi.org/10.1007/978-3-642-15705-9_63

	Edge Aware Geometric Filter for Ultrasound Image Enhancement
	1 Introduction
	2 Proposed Filter
	2.1 Geometric Filter (GF)
	2.2 A Different Look to Geometric Filter (GF)
	2.3 Relationship Between GF and Lee Filter
	2.4 Proposed Filter

	3 Experimental Results and Discussion
	3.1 Experiment with Synthetic Phantom Image
	3.2 Experimentation with Real Ultrasound Image

	4 Conclusions
	References




