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Abstract In the past, companies produced large amounts of products through mass
production lines. Advantages of such an approach are reduced production costs
and time-to-market. While it is (still) appropriate for some goods like food or
household items, customer preferences evolve to customised products. In a more
and more competitive environment, product customisation is taken to the extreme
by companies in order to gain market share. Companies provide customisation tools,
more commonly called product configurators, to assist their staff and customers in
deciding upon the characteristics of the product to be delivered.

Our experience reveals that some existing configurators are implemented in an
ad-hoc fashion. This is especially cumbersome when numerous and non-trivial
constraints have to be dealt with. For instance, we have observed in two industrial
cases that relationships between configuration options are hard-coded and mixed
with GUI code. As constraints are scattered in the source code, severe maintenance
issues occur.

In this chapter, we present a pragmatic and model-driven way to generate
configuration GUIs. We rely on feature models to represent and reason about the
configuration options and their complex relationships. Once feature models have
been elaborated, there is still a need to produce a GUI, including the integration
with underlying reasoning mechanisms to control and update the GUI elements.
We present a model-view-presenter architecture to design configurators, which
separates concerns between a feature model (configuration option modelling), its
associated solver (automated reasoning support) and the presentation of the GUI. To
fill the gap between feature models and configuration GUIs, the various constructs
of the feature model formalism are rendered as GUI elements through model trans-
formations. Those transformations can be parametrised through beautification and
view languages to derive specific configuration GUIs. We illustrate our approach on
an IPv6 addressing plan configurator.
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1.1 Introduction

In the past, companies produced large amounts of products through mass production
lines. Advantages of such an approach are reduced production costs and time-to-
market. While it is (still) appropriate for some goods like food or household items,
customer preferences evolve to customised products. Even car production which
was a major example of mass production has moved to the customisation category.
Henry Ford played a pioneering role in the mass production of cars. Fordism aimed
to achieve higher productivity by standardizing the output, breaking the work into
small well specified tasks, and using conveyor assembly lines. However, Ford’s
quote “Any customer can have a car painted any colour that he wants so long as
it is black” already illustrates the limitations of mass production, back in 1923.

In a more and more competitive environment, product customisation is taken
to the extreme by companies in order to gain market share. Companies provide
customisation tools, more commonly called product configurators, to assist their
staff and customers in deciding upon the characteristics of the product to be
delivered. This trend is further strengthened by the ever-growing presence of such
configurators on the Internet.

The key idea behind configurators is to provide end-users with an easy-to-use
Graphical User Interface (GUI) where they can select the desired options and
customise their product. The result of the configuration is then used by the
manufacturer in order to produce the final product with the required options.
Generally, the user is guided by the GUI in her process. That guidance manifests
itself in different ways. First, configuration can be broken down into steps. Typically,
a step represents a set of logically linked configuration options. That set depends on
different parameters such as user requirements, application domain, etc. Constraint
verification is another guidance mechanism. Selecting an option might, for example,
require the inclusion or exclusion of another one. Many more constraints examples
are available around us. Configurators should preclude inconsistent activation or
deactivation of configuration options to avoid frustration on the user side and
technically unrealistic products on the manufacturer side. Furthermore, constraints
are of different natures. Some are of technical nature while others originate from
business rules. Both may change over time.

Our experience reveals that some of those existing configurators are implemented
in an ad-hoc fashion. This is especially cumbersome when numerous and non-
trivial constraints have to be dealt with. For instance, we have observed in two
industrial cases [46] that relationships between configuration options are hard-coded
and mixed with GUI code. In other words, the configuration logic is not separated
from the rest of the application code. As constraints are scattered in the source code,
severe maintenance issues occur. For example, engineers are likely to introduce
errors when updating or adding new constraints between options in the configurator.
Moreover, as recognized by our industrial partners developing such configurators,
the correctness and the efficiency of the reasoning operations are not guaranteed.
More reliable and maintainable solutions are thus needed, especially for safety-
critical systems.
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We propose a pragmatic and model-driven way to generate configuration
GUIs [18]. We rely on Feature Models (FMs) to represent and reason about the
configuration options and their complex relationships. FMs have been extensively
studied in academia during the last two decades, primarily in the software product
line community [52]. FMs are now equipped with formal semantics [80], automated
reasoning operations and benchmarks [4, 12], tools [7, 14, 54] and languages [8, 24].
In essence, an FM aims at defining legal combinations of features authorised or
supported by a system. In our case, configuration options are modelled as features
and each configuration (specification of a product) authorised by the configurator
corresponds to a valid combination of features in an FM. A strength of FMs is that
state-of-the-art reasoning techniques, based on solvers (e.g., SAT, SMT, CSP), can
be reused to implement decision verification, propagation, and auto-completion in
a rigorous and efficient way [8, 12, 49]. Therefore, FMs are a very good candidate
to pilot the configuration process during which customers decide which features are
included in a product.

Once FMs have been elaborated, there is still need to produce a GUI, including
the integration of underlying reasoning mechanisms to control and update the
GUI elements. On the one hand, some FM-based configuration GUIs rely on
solvers [7, 14, 54]. But such GUIs do not consider presentation concerns and
their generation process is rigid, avoiding the derivation of customised GUIs [43].
Furthermore, existing graphical representations of FMs (e.g., FODA-like notation or
tree-views) are not adapted to user-friendly configuration [69]. On the other hand,
model-based approaches for generating GUIs simply produce the visual aspects
of a GUI [15, 16, 26, 42]. This is not sufficient for configurators since constraint
verification is paramount for their usability and performance.

Our approach is to combine the best of both worlds, i.e., correct configurations
together with user-friendly generated GUIs. We present a model-view-presenter
(MVP) architecture to design configurators, which separates concerns between an
FM (configuration option modelling), its associated solver (automated reasoning
support) and the presentation of the GUI. To fill the gap between FMs and
configuration GUIs, the different constructs of the FM formalism are rendered
as GUI elements through model transformations. The transformations are based
on a meta-model for TVL [20, 24], a textual language for feature modelling.
Transformations can be parametrised through beautification and view languages to
derive specific configuration GUIs.

The rest of the chapter is organized as follows. First, in Sect. 1.2, we give some
background information about feature models and GUIs. The existing work linking
feature models and GUIs is also addressed. In Sect. 1.3, an overview of our approach
is proposed. Then, in Sect. 1.4, we present the implementation of the approach.
It includes three different languages as well as a Web configurator generator. All
the concepts are illustrated with throughout an IPv6 addressing plan configuration
example. Finally, before concluding, we present the lessons learned in Sect. 1.5 and
discuss some perspectives to our work in Sect. 1.6.
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This book chapter is essentially based on a PhD thesis presented by the first
author in September 2014 at the University of Namur (Belgium). For more detailed
information about the approach, the interested reader may refer to [18].

1.2 Background

Here, we introduce the background required to understand the contents of this
chapter as well as existing approaches that we compare to ours. Feature models
being the starting point endeavour, we introduce them in Sect. 1.2.1. Then, in
Sect. 1.2.2, we introduce UI-related concepts and generation.

1.2.1 Feature Modelling

Software Product Line Engineering (SPLE) is an increasingly popular software
engineering paradigm which advocates systematic reuse across the software lifecy-
cle. Central to the SPLE paradigm is the modelling and management of variability,
i.e., “the commonalities and differences in the applications in terms of requirements,
architecture, components, and test artefacts” [70]. Variability is typically expressed
in terms of features, i.e., first-class abstractions that shape the reasoning of the
engineers and other stakeholders [25].

Feature models were introduced as part of the FODA (Feature Oriented Domain
Analysis) method 25 years ago [52]. They were introduced as graphical notations
whose purpose is to document variability. Since their introduction, FMs have
been extended and formalised in various ways [30, 80] and tool support has been
progressively developed [74]. The majority of these extensions are variants of
FODA’s original tree-based graphical notation.

Graphical FM notations based on FODA [52] are by far the most widely
used. Most of the subsequent proposals such as FeatuRSEB [44], FORM [53] or
Generative Programming [29] are only slightly different from the original graphical
syntax (e.g., by adding boxes around feature names).

A number of textual FM languages were also proposed in the literature.
Table 1.1 compares them against the following criteria: (i) human readability, i.e.,
whether the language is meant to be read and written by humans; (ii) support
for attributes; (iii) decomposition (group) cardinalities; (iv) basic constraints, i.e.,
requires, excludes and other Boolean constraints on the presence of features;
(v) complex constraints, i.e., Boolean constraints involving values of attributes;
(vi) mechanisms for structuring and organising the information contained in an FM
(other than the FM hierarchy); (vii) formal and tool-independent semantics, and
(vii) tool support.

We should note that all these languages are remotely related to constraint pro-
gramming, and several implementations use constraint solvers internally. Moreover,



1 Engineering Configuration Graphical User Interfaces from Variability Models 5

Table 1.1 Existing textual variability modelling languages
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FDL [32] � � �
FMP [7] � � � � �
GUIDSL [8] � � �
FAMA [13] � � � � �
pure::variants [14] � � � � �
SXFM [60] � � �
VSL [78] � � � � �
KConfig1 � � � � �

as pointed out by Batory [8], FMs can be seen as simplified grammars where
products correspond to sentences. Similarly, FMs with attributes can be seen as a
form of attribute grammar, albeit without the distinction of synthesised or inherited
attribute [9, 55]. What distinguishes FMs from constraint programming and attribute
grammars is their domain-specific nature and independence from any of these
technologies.

1.2.2 User Interface Modelling and Generation

This section is decomposed into two sub-sections. In the first one, we give a
short description of major user interface description languages which could be
used as target languages for our generation approach. In the second, existing work
combining variability models (more exactly FMs) and GUIs is presented.

1.2.2.1 User Interface Description Languages

In the Human-Computer Interaction (HCI) research domain, automation of UI
development is an important topic. A whole spectrum of approaches ranging from
purely manual design to completely automated approaches have been proposed.
Manual design is of no interest to us as we seek to automate the generation of
interfaces. On the other hand, fully automated approaches generate moderately
usable GUIs, except for domain specific applications [64].

Most approaches propose a partially automated process which uses extra infor-
mation about the UI stored in models. They are all grouped under the Model-based
User Interface Development (MBUID) denomination, generally supported by an
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MBUID environment (MBUIDE). It can be defined as “a suite of software tools
that support designing and developing UIs by creating interface models” [42].
Each MBUIDE defines its own set of models to describe the interface. The different
MBUIDEs and the associated models have been surveyed by Gomaa et al. [42] and
the W3C [87]. Here, we give a summary of User Interface Description Languages
(UIDLs) used in MBUID. XML-based UIDLs have also been surveyed by several
authors [41, 81]. Such languages can be used to represent the generated GUIs at a
more “abstract” level. They are grouped in four categories.

The first category groups all languages based on the Cameleon Reference
Framework (CRF) [22]. There, the UI development is decomposed into four
abstraction levels: Task and Concepts (T&C), Abstract User Interface (AUI),
Concrete User Interface (CUI) and Final User Interface (FUI), the last being the
most concrete one. T&C is computing independent, AUI is modality independent
and CUI is platform independent. This framework is globally well accepted by the
UI community as shown by the numerous MBUID approaches which, directly or
indirectly, rely on it to define their models and development processes. Among
them, we can mention the Software Engineering for Embedded Systems using a
Component-Oriented Approach [33, 73], Model-based lAnguage foR Interactive
Applications XML (MARIA XML) [65], or USer Interface eXtensible Markup
Language (UsiXML) [58]. Among all those approaches/languages, the last one is
probably the most mature while most others seem abandoned.

The User Interface Markup Language (UIML) [6, 45] and its derivative, the
Dialog and Interface Specification Language (DISL) [62] make part of the second
category. UIML has been defined by the OASIS consortium2 which seeks to develop
standards for e-business and Web services. The language must be combined with
other techniques such as user task modelling or transformation algorithms in order
to be able to generate a full-fledged UI. In UIML, look-and-feel, interaction and
connexion of the UI with application logic can be defined.

The third category contains Web-application languages. Initially, XForms [86]
was defined for HTML-XHTML documents by the W3C. Its purpose is to separate
presentation from data in Web forms in order to improve re-use. Now, XForms
can be used with any markup language. XForms is not an UIDL per se but allows
to define GUIs at an abstract level. Second, XICL [82] is meant to develop user
interface components for browsers. Lastly, the eXstensible user-Interface Markup
Language (XIML) [72] represents interaction data for Web pages and applications
at abstract and concrete levels.

Finally, we can also mention the following languages which do not fit into any
of the above categories. The Generalized Interface Markup Language (GIML) is
an UIDL used in the Generalized Interface Tool Kit (GITK) project [56]. The Mul-
tiple Device Markup Language (MDML) supports four target environments [51]:
desktop, mobile, Web and voice. Similarly, the Simple Unified Natural Markup
Language (SunML) [66] supports several target environments such as PCs, PDAs

2See https://www.oasis-open.org/

https://www.oasis-open.org/
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UsiXML [58] � � � �
UIML [6, 45] � �
XForms [86] � � � �
GIML [56] � �
MDML [51] � � �
SunML [66] � � �
TADEUS-XML [63] � �

or voice. The Adaptable & Mergeable User INterface (AMUSINg) IDE provides
tool support to edit SunML models and generate Swing software [66]. Finally,
in TADEUS-XML [63], a UI description is made of two parts: a presentation
component and a model component (or abstract interaction model).

None of the approaches proposed with these languages addresses the specific
issues that arise when generating configurators like the integration of underlying
reasoning mechanisms for controlling and propagating user choices in the GUI.
Modelling techniques have been developed to support adaptations of interfaces at
runtime [15, 16]. In the same way, configurators should be adapted to reflect the user
interactions (i.e., selections/deselections). In our context, the kind of modifications
applied to the configurator interfaces are typically lightweight (e.g., some values
are greyed) and can be predicted. Moreover, we can take advantage of planned
variability to make use of efficient solvers to manage the configuration process.

Our user interface description languages comparison is summarized in Table 1.2.

1.2.2.2 Feature Models and GUIs

In most variability-related tools, FMs are represented and configured using tree-
views. We can, for example, mention pure::variants [14], FeatureIDE [54] or
Feature Modeling Plug-in [7]. Those tools have a graphical interface in which
users can select/deselect features in a directory-tree like interface where constraints
are automatically propagated. Several visualization techniques have been proposed
to represent FMs [69], but they are not dedicated to end users which are more
accustomed to standard interfaces such as widgets, screens, etc. Generating such
user-friendly and intuitive interfaces is the main goal of our work. An exception
is the AHEAD tool suite of Grechanik et al. [43]. Simple Java configuration
interfaces including check boxes, radio buttons, etc. are generated using beautifying
annotations supported by the GUIDSL syntax used in the tool suite.
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Pleuss et al. combine SPLs and the concepts from the MBUID domain to
integrate automated product derivation and individual UI design [68]. An AUI is
defined in the domain engineering phase and the product-specific AUI is calculated
during the application engineering. The final UI is derived using semi-automatic
approaches from MBUID. Some elements like the links between UI elements and
application can be fully automatically generated while others like the visual appear-
ance are also generated automatically, but can be influenced by the user. While we
share similar views regarding MBUID, our overall goals differ. Pleuss et al. aim at
generating the UI of products derived from the feature model while our interest is
on generating the interface of a configurator allowing end users to derive product
according to their needs. We are therefore not concerned with product derivation
but rather with the link between feature model configuration and UIs.

Schlee and Vanderdonckt [79] also combined FMs with GUI generation. Relying
on the generative programming paradigm, the authors represent the UI options with
an FM which will be used to generate the corresponding interface. Their work
illustrates a few transformations between FM and GUI constructs which can be seen
as patterns. Yet, they do not consider sequencing aspects which we believe to be a
critical concern for complex UIs. Gabillon et al. extended that work by supporting
multi-platform UIs built from FMs representing UI options [39]. However, they do
not tackle UIs which allow the configuration of an FM.

Quinton et al. proposed a model-driven framework called AppliDE that bridges
the gap between an application FM and its mobile version [75]. Their main purpose
is to reduce the time-to-market between the design of the application and its
availability on multiple platforms. Based on the meta-model of the configured
product and the one representing the capabilities of smartphones, they can deduce
which device is able to run the application. Similarly to us, they use model
transformations to finally generate GUIs. However, their approach does not focus
on configurators and is limited to mobile phone software.

Botterweck et al. developed a feature configuration tool called S2T2 Configu-
rator [17]. It includes a visual interactive representation of the FM and a formal
reasoning engine that calculates consequences of the user’s actions and provides
formal explanation. This feedback mechanism is of importance to end users. Yet,
S2T2 also presents a tree-like view on the configuration that we believe is not suited
to all kinds of end users.

1.3 The MVP Configurator Pattern

Several architectural models have been introduced to structure modules such as the
GUI in an interactive application. Among them, the model-view-controller (MVC)
has wide acceptance in the development of GUIs. One reason is that it is one of the
first serious attempts to structure UIs, dating back to the late 1970s. In December
1979 at the Xerox Palo Alto Research Laboratory (PARC), Trygve Reenskaug first
described the MVC pattern [77].
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Fig. 1.1 Model-view-
controller architecture

View Controller

Model

User

Sees Uses

ManipulatesUpdates

In this paradigm, Models represent knowledge. They could be a single object
or a structure of objects. Views are (visual) representations of their corresponding
model. They basically highlight some attributes and suppress others, acting as a
“presentation filter”. Finally, Controllers act as the link between a user and the
system. The idea behind this pattern is to make a clear distinction between domain
objects which model real world elements, and GUI elements depicted on the screen.

The MVC architecture defined by Reenskaug is depicted in Fig. 1.1. There, the
Model manages the data and behaviour of the application domain. It responds to
requests about its current state (usually from the View) or requests instructions
to change its state (usually from the Controller). The View simply manages
the layout of the information contained in the Model. This might require to query
the state of the Model. Finally, the Controller interprets inputs from the user
(keyboard, mouse, etc.) and informs the Model/View.

In [21], Burbeck presents two variants of the MVC pattern where the role of
the model varies: active or passive. In the passive version, the model is exclusively
modified by the controller (i.e., it cannot be modified by any other source). As soon
as the controller detects a user action, it modifies the model and informs the view
that the model has changed and should be refreshed (Notifies dotted line in
Fig. 1.1). In this scenario, the model is unaware of the existence of the view and the
controller. In the active version, the state of the model can be changed by an external
component. Since only the model can detect that it has been changed, it needs to
notify the view that it must be refreshed. The observer pattern [40] is generally used
to keep the model independent from the other components. Views subscribe to be
informed of the changes in the model.
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Fig. 1.2 Model-view-presenter architecture

We rely on an MVC variant – model-view-presenter (MVP) [71] – to propose a
generic architecture for configuration interfaces. It separates the responsibilities for
the visual display and the event-handling behaviour into two different components
named View and Presenter, respectively. The View detects changes in the GUI and
forwards the corresponding events to the Presenter. That component contains the
logic to handle those events. Centralizing the behaviour inside a single component
makes it easier to test, and its code can be shared between different views that
have the same behaviour. As for the MVC architectural pattern, MVP comes in
two versions: passive view and supervising controller. They are depicted in Fig. 1.2.
In the passive version, interactions between the View and the Model are handled
exclusively by the Presenter. In the other one, the View can directly interact
with the Model for simple events, more complex ones still being handled by the
Presenter. In Fig. 1.2, dashed lines correspond to interactions specific to the
supervising controller version.

The key idea of our approach is to separate variability reasoning at the FM level,
event handling and the actual representation of the GUI. Thus, our architecture is
inspired by the passive view version of the MVP pattern and is decomposed into
three tiers (see Fig. 1.3).

Here, we focus on the MVP-related models (shown in green in Fig. 1.3) while the
supporting components (in blue) are considered as third-party software. The roles
involved in our adaptation of the pattern are as follows:

• Model: The model is an FM. The feature model is used to effectively engineer a
configuration GUI. It is connected to a reasoning engine which is responsible of
interactive configuration and is exposed through a generic API.

• View: The view contains a description of the GUI to be displayed to the user.
This description is generated from the FM using transformation rules. Ideally,
rather than generating the interface in its implementation language, a GUI model
should be generated for it. This has two advantages; (i) GUI models are more
concise and thus easier to generate and (ii) we can target several platforms from
the same GUI model.
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Fig. 1.3 An MVP architecture for configurators

• Presenter: The presenter is the central point of our architecture. It listens to user
actions, updates the FM and interacts with the reasoning engine to determine the
list of changes to be propagated to the GUI. Once this list is populated, it updates
the GUI model by adding, removing, hiding, making visible or updating elements
affected by the changes.

From a dynamic perspective, interaction between components works according
to the numbered arrows. The preliminary step is to translate the FM in a format
compatible with the SAT/SMT solver. This translation is made once and allows
efficient reasoning by exploiting this robust technology. Once an instance of the
FM is encoded within the solver, the configurator can be used interactively. For
example, ticking a check box in the GUI will trigger an event through the view
model and will be propagated to the presenter ( 1 User action). Depending on
the nature of this action, the presenter will generate an update request ( 2 Update
FM) for the configuration API. This API will in turn update the FM instance (e.g.,
by setting a Boolean variable corresponding to the feature associated with the check
box to true via 3 Forward update). The solver will compute the new list of
features to be (de)selected as a result ( 4 Changes). This result will be transferred
to the presenter ( 5 Notify) that will make decisions regarding changes in the
GUI. The GUI is then updated ( 6 Update GUI) accordingly.

Our architecture does not use the supervising presenter version of the original
MVP pattern in the sense that there is no direct link between the FM and the
view model. The main reason is that interactive configuration can induce complex
GUI updates for which a specific behaviour has to be provided. Since most of this
behaviour can be made generic, presenters can be reused amongst different GUIs.
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1.4 From Feature Models to MVP Configurators

1.4.1 Illustration

In this section, we illustrate the different languages and components of our approach
by modelling a configurator for computer network topologies and IPv6 addressing
plans. Preparing an IPv6 addressing plan is an important task for network managers
who need to deploy IPv6 in their organizations.

One of the core networking aspects found in addressing plans is the practice of
dividing a computer network into multiple networks called subnets. The computers
that belong to the same subnet have their IP addresses prefixed by a common
bit-group and the exchange of traffic between different subnets is supported by
routers. The purpose of an addressing plan is to logically divide the network into
subnets based on the structure of the organization so that the IPv6 addresses can be
effectively managed in groups. This split can greatly simplify the management of
networks, especially within large organizations.

Throughout the remainder of this section, we present the different models
supporting the generation of GUIs for a configurator that can assist practitioners
in their preparation of an addressing plan. We also introduce the required computer
network concepts for understanding this domain-specific configuration task.

1.4.2 Variability Modelling

1.4.2.1 General Principles and Language

As previously mentioned, FMs are the base models of our approach. However,
while they are the de-facto standard for representing the variability in the scientific
community, our industry partners, discussions at the 2010 variability modelling
(VaMoS) workshop [11] as well as literature reviews [23, 48] suggest that in
the industrial world, in contrast, FMs appear to be used rarely. In [46], some
of the authors of this chapter identified their shortcomings. To overcome those
shortcomings, these authors also designed TVL (Textual Variability Language), a
text-based FM language. The idea of using text to represent variability in SPLE
is not new [9, 32] but seems to be recently gaining popularity [3, 28]. In terms of
expressiveness, TVL subsumes most existing dialects. The main goal of designing
TVL was to provide engineers with a human-readable language with a rich syntax
to make modelling easy and models natural. Further goals for TVL were to be
lightweight (in contrast to the verbosity of XML for instance) and to be scalable
by offering mechanisms for structuring the FM in various ways.

Basically, the TVL language has a C-like syntax: it uses braces to delimit blocks,
C-style comments and semicolons to delimit statements. The rationale for this
syntax choice is that nearly all computing professionals have come across a C-like
syntax and are thus familiar with this style. Furthermore, many text editors have
built-in facilities to handle this type of syntax.
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In TVL , the root keyword is used for the root feature and each decomposition is
introduced by the group keyword, which is followed by the decomposition type.
The and, or, and xor decomposition types were renamed to allOf, someOf and
oneOf in TVL. These names are inspired by [32] and make the language more
accessible to people not familiar with the Boolean interpretation of decomposition.
The decomposition type can also be given by a cardinality. Cardinalities can use
constants, natural numbers, or the asterisk character (which denotes the number of
children in the group). The decomposition type is followed by a comma-separated
list of features, enclosed in braces. If a feature is optional, its name is preceded by
the opt keyword. Each feature of the list can declare its own children. If each feature
lists its children this way, the tree structure of the FM will be reproduced in TVL
with nested braces and indentation. This can become a scalability problem for deep
models, something we experienced in industrial cases. To this end, TVL allows one
to declare a feature in the decomposition of its parent by just providing a name. A
declared feature can then be extended later on in the code. Besides the group block,
a feature can contain constraint and attribute declarations, all enclosed by a pair
of braces. If there is only a group block, braces can be omitted. This reduces the
number of braces in a pure decomposition hierarchy. To model a Directed Acyclic
Graph (DAG) structure (as in FORM [53]), a feature name can be preceded by the
shared keyword, meaning that it is just a reference to a feature already declared
elsewhere.

Attributes can be defined inside the body of a feature. They are declared like
variables in C, in order to be intuitive for engineers. The attribute types supported
by TVL are integer (int), real (real), Boolean (bool), and enumeration (enum) whose
values set is specified with the in keyword. TVL further provides syntactic sugar to
define the domain and the value of an attribute. If the value of an attribute depends
on whether its parent feature is selected or not, the ifIn: and ifOut: keywords can be
used. Furthermore, to concisely specify cases in which the value of an attribute is an
aggregate of another attribute that is declared for each child, an aggregation function
can be used in combination with the children and selectedChildren keywords
(followed by an ID denoting the attribute).

In TVL, constraints are Boolean expressions inside the body of a feature. There
is also syntactic sugar for guarded constraints. Constraints can be guarded using
the same ifIn: and ifOut: guards as for attributes.The ifIn: guard means that
the constraint only applies if the parent feature is selected. To facilitate specifying
constraints and attribute values, TVL comes with a rich expression syntax. The
syntax is meant to be as complete as possible in terms of operators, to encourage
writing of intuitive constraints. For instance, to restrict the allowed values of an
enum, the set-style in operator can be used. For enum e in {a, b, c, d,
..}, the constraint e in {b, c} serves as syntactic sugar for e != a && e
!= d && .., which is much less readable.

TVL offers two mechanisms that can help engineers structure large models. The
first is the include statement, which takes as parameter a file path. As expected,
an include statement will include the contents of the referenced file at this point.
Includes are in fact preprocessing directives and do not have any meaning beyond
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the fact that they are replaced by the referenced file. Modellers can thus structure
the FM according to their preferences. The second structuring mechanism, hinted at
before, is that features can be defined in one place and be extended later in the code.
Basically, a feature block may be repeated to add constraints and attributes to the
feature. These mechanisms allow modellers to organise the FM according to their
preferences and can be used to implement separation of concerns [83]. This way the
engineer can specify the structure of the FM upfront, without detailing the features.
Feature attributes and constraints can be specified in the second part of the file, or in
other files using the include statement. The only restriction is that the hierarchy of
a feature can only be defined at one place (i.e., the group keyword can only be used
once for each feature).

More detailed information about TVL can be found in [20, 24].

TVL 2

Hereabove, we introduced TVL as we initially defined it [20, 24]. In the meantime,
the language has been extended by other researchers in our laboratory. The purpose
of those extensions is to support all constructs found in industrial cases. Basically,
three main constructs were added, string attributes, feature cardinalities and feature
references.

A string attribute is defined using the string keyword. Similarly to other attribute
types, an ID is then given to the attribute. The naming convention is the same,
the attribute ID has to start with a lower case letter. For example, “string
myString” is a valid attribute declaration. It is also possible to define string
constants in TVL2.

In the original TVL syntax, each feature can be configured (at most) once.
Like most existing languages, ours lacks a construct that allows to duplicate a
sub-tree of the FM to configure a product. TVL2 now supports so-called feature
cardinalities. Their semantics is defined elsewhere [61] and will not be addressed
here. Syntactically, feature cardinalities are represented in a similar way to group
cardinalities, with bounds between brackets. The cardinality directly follows the
name of a feature. If it is not defined, the [1..1] cardinality is assumed. Furthermore,
the root feature cannot have a cardinality, i.e., it still has to be unique. Bounds can
be either an integer value or a constant, or the asterisk character. Here, the asterisk
character means that the number of feature instances is unlimited.

A feature reference is an attribute which value identifies an instance of a multi-
feature. It is declared by using the keyword shared and the type of the targeted
multi-feature. For example, “shared F myFeatureRef” represents a feature
reference which name is myFeatureRef and which type is F. If we assume that
the cardinality of F is [0..2], then the value of myFeatureRef can be either F-0
or F-1 which represent the two potential instances of F.



1 Engineering Configuration Graphical User Interfaces from Variability Models 15

1.4.2.2 Addressing Plan Example

We present a TVL model for the configuration of subnets and the allocation of
IPv6 addresses. The model is visible in Listing 1.1. There, constraints have been
removed in order to keep the code as compact as possible. The root feature is
decomposed into four sub-features. The feature named Subnet (lines 18–23)
contains information related to a subnet such as its name or its IPv6 prefix. It also
contains two feature references that target the sibling features UseType (lines 24–
27) and Location (lines 28–31). These two features represent the groups that
are defined within an addressing plan and that determine how IPv6 address blocks
will be distributed in the organization. For example, in the case of a university
campus, the groups could be defined by a set of use types such as student, staff
or professors which refer to the different types of users on the network, and by a set
of locations such as computer sciences or economics which refer to the different
faculty buildings on the campus. By identifying each subnet by a pair of use-
type and location, the addressing plan guarantees that the IPv6 addresses will be
consistently distributed. For example, it can ensure that all students in economics
will be assigned an IP address from the same subnet. Below the root feature,
there are six attributes (lines 6–15). The attribute networkPrefix represents the
IPv6 prefix of the network. The attribute strategy indicates whether subnets are
primarily identified by use types or by locations. useTypes indicates the total
number of use types for the addressing plan and futureUseTypes represents the
number of new use types that could emerge in the future. Likewise, locations
indicates the total number of locations and futureLocations indicates the
number of potential future locations. The feature Host (lines 32–56) contains
information related to hosts on the network. The attribute subnet represents the
subnet which the host belongs to. The feature Interface (lines 36–48) represents
the communication interfaces through which the host sends packets to other hosts
on the network. The feature ConnectedInterface (lines 44–46) represents
the interfaces that belong to neighbour hosts and which the host can directly send
packets to. Finally, the feature RoutingTableEntry (lines 49–54) represents
lines in the routing table of the host. The attribute destination represents
the addresse(s) that must be eventually reached by the sent packets. The attribute
sendingInterface represents the local interface from which the host sends
packets, while the attribute nextHop represents the neighbor interface which the
host must forward the packets to.

Listing 1.1 TVL model (excl. constraints) for the IPv6 addressing plan configurator,

1 enum G r o u p i n g S t r a t e g y in { L o c a t i o n F i r s t , U s e T y p e F i r s t } ;
2
3 roo t A d d r e s s P l a n {
4
5 / / Address s p a c e
6 s t r i n g n e t w o r k P r e f i x ;
7 G r o u p i n g S t r a t e g y s t r a t e g y ;
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8
9 / / Use t y p e s

10 i n t useTypes ;
11 i n t f u t u r e U s e T y p e s ;
12
13 / / L o c a t i o n s
14 i n t l o c a t i o n s ;
15 i n t f u t u r e L o c a t i o n s ;
16
17 group someof {
18 Subne t [ 0 . . * ] {
19 shared UseType useType ;
20 shared L o c a t i o n l o c a t i o n ;
21 s t r i n g subnetName ;
22 s t r i n g s u b n e t P r e f i x ;
23 } ,
24 UseType [ 0 . . * ] {
25 s t r i n g useTypeName ;
26 s t r i n g u s e T y p e P r e f i x ;
27 } ,
28 L o c a t i o n [ 0 . . * ] {
29 s t r i n g l oca t ionName ;
30 s t r i n g l o c a t i o n P r e f i x ;
31 } ,
32 Host [ 0 . . * ] {
33 s t r i n g hostName ;
34 s t r i n g l o o p b a c k ;
35 group someof {
36 I n t e r f a c e [ 0 . . * ] {
37 s t r i n g i n d e x ;
38 s t r i n g macAddress ;
39 r e a l d e l a y ;
40 shared Subne t s u b n e t ;
41 s t r i n g i p A d d r e s s ;
42
43 group a l l o f {
44 C o n n e c t e d I n t e r f a c e [ 0 . . * ] {
45 shared I n t e r f a c e c o n n e c t e d I n t e r f a c e ;
46 }
47 }
48 } ,
49 R o u t i n g T a b l e E n t r y [ 0 . . * ] {
50 s t r i n g d e s t i n a t i o n ;
51 i n t m e t r i c ;
52 shared I n t e r f a c e s e n d i n g I n t e r f a c e ;
53 shared I n t e r f a c e nextHop ;
54 }
55 }
56 }
57 }
58 }
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1.4.2.3 Widget Selection

When thinking about GUI generation, the first task that comes to mind is to translate
the different FM constructs into graphical widgets. In other words, the question
is: How should the different TVL constructs be rendered in a configurator? For
this purpose, we have analysed some existing software configurators [2]. More
specifically, 111 Web-based configurators were investigated since they represent a
significant share of existing GUIs today. The (less formal) analysis of configuration
GUIs implemented in other technologies has confirmed most findings. “How are
configuration options visually represented and what are their semantics?” is the
research question which helped us to identify the types of widgets, their frequency
of use, and their semantics (i.e., the corresponding FM constructs). In decreasing
order, the most popular widgets in Web-configurators are: combo box item, image,
radio button, check button and text box. Some of them are also combined with
images, namely check button, radio button and combo box item. In that case, option
selection is performed either choosing the image or using the widget. Other less
frequent widgets are slider, label, file picker, date picker, colour picker, etc.

The most significant outcome of this empirical study is that the range of graphical
widgets is not very large. Actually, according to our analysis, only five of them seem
sufficient to represent most variability constructs. We could thus confine ourselves
to those widgets, but this would too drastically limit our approach which aims to
be generic. It is therefore necessary to propose a more flexible mapping in order
to meet user requirements. Nevertheless, we should also impose some restrictions
to ensure the generation of “coherent” GUIs. By coherent, we mean that a widget
representing a given variability construct should reflect its semantics. For example,
check boxes should be avoided to represent xor-decompositions to avoid confusion.
Note that this could be mitigated by adding a label warning the user that the choices
are mutually exclusive.

We thus proposed a mapping between FM constructs and GUI widgets. Cus-
tomization of the interface is made possible by offering several widgets for most
variability constructs. All those mappings are summarized in Table 1.3. It is divided
into three main categories: Groups, Attribute types, and Features &
Attributes. The second column represents the different constructs of each
category. The name of the different widgets associated to each construct are
displayed in the third column and illustrated in the HTML format in the last one.

1.4.3 View Definition

1.4.3.1 General Principles and Language

Previously, we presented mappings between FM constructs and GUI widgets. That
might be adequate for simple FMs but the limits of such a simple transformation are
rapidly reached. First, it does not take the different concerns that might be included
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Table 1.3 Graphical widgets mappings

Category Construct Widget HTML example

Groups and Check button

(optional features) List box

Radio box True False
or List box

Check box

xor List box

Radio box

cardinality Check box

Attribute integer Text box

types Slider 5

real Text box

Slider 4.9

Boolean Check button

List box

Radio box True False

enumeration List box

Radio box

Features & feature/attribute Label Feature label

Attributes Image

in an FM [83] into account. The groups of logically linked constructs vary from
person to person and should be taken into account while generating configuration
GUIs. Furthermore, the structure of the generated GUI will be strongly related to the
FM hierarchy. Indeed, during the generation process, the FM will, in most cases, be
traversed using a depth-first approach in order to generate a feature together with
its contents, thus resulting in “nested” and “staired” GUIs. Nested since the widgets
corresponding to the contents (attributes or group) of a feature will be displayed
inside (or under) the widget corresponding to the feature itself. Staired as the width
of the generated GUI will depend on the depth of the FM assuming that an horizontal
offset between a feature and its contents exists in the GUI. This offset will be used
in most cases in order to depict the relationship between a feature and its contents.
The deeper the FM, the wider the generated GUI. While those staired GUIs may be
valuable in some cases, they quickly become cumbersome.

To break out of the FM hierarchy, we propose to use views on them. Views are “a
simplified version of an FM that has been tailored for a specific stakeholder, role,
task, or, to generalize, a particular combination of these elements, which we call
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a concern. Views facilitate configuration in that they only focus on those parts of
the FM that are relevant for a given concern. Using multiple views is thus a way to
achieve separation of concerns in FMs” [50].

One of the benefits of views is that they allow to break the hierarchy defined in the
FM. However, in some cases this hierarchy is still valuable in the configuration GUI.
Consequently, the view definition language should allow to split the FM hierarchy
while providing mechanisms to keep the tree structure inherent to such models, at
least for sub-parts of it. In the following, some desirable characteristics of such a
language are pointed out:

• Full sub-tree – It should be possible to select a sub-tree of the FM. This selection
would preserve the structure of the original model. A sub-tree is composed of its
root (which can be the FM root or any other feature) and optionally a list of
features to exclude (incl. their sub-features and attributes) from the selection, a
so-called stop list. The full FM is a specific case where the root of the sub-tree is
the FM root and the feature stop list is empty.

• Partial sub-tree – Similarly, it should be possible to select elements in a given
sub-tree. This sub-tree would also be defined by a root feature and optionally a
stop list. Then, it would be possible to include or exclude some elements like
a feature and its contents, an attribute, all groups, all attributes, etc. Here, the
structure of the FM is not preserved since the purpose is to select some elements
inside a sub-part of it.

• Feature – It should be possible to select a feature and its contents. Mechanisms
to select only parts of feature’s contents should also be provided.

• Attribute – Selection of an attribute, and its sub-attributes for structured ones,
should also be possible.

We propose TVDL (Textual View Definition Language), a text-based view
definition language which presents those characteristics for TVL. However, it could
easily be applied to any other variability modelling language. As for TVL, the goal
of TVDL is to supply engineers with a human-readable and lightweight language.

In TVDL , a view model has to import a TVL FM and is composed of a collection
of Views. Basically, a view is given a name and has contents. Its name is a character
string starting either with an upper-case or lower-case character. This name must be
unique and can thus be used as ID for the view. The contents are then enclosed in
braces. Similarly to TVL feature extensions, there is no separator (e.g., semicolon)
between the different TVDL views.

We implemented the four different types of views introduced above in TVDL .
Additionally, we propose grouping views which are composed of a set of sub-views
previously declared. The name of grouping views is preceded by the dollar sign.
Each view is composed of one or several view expressions which can be combined
using the && symbol. And each view expression references either a TVL feature or
attribute.

The first view expression type, full sub-tree, is defined using the asterisk
character. A so-called stop list can be defined to determine the branches of the FM
which are not covered by the view expression. The branch is thus pruned before the
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stop list element, i.e., it is not included. A stop list is composed of stop elements
which are a TVL feature name or its (fully) qualified name preceded by the slash
character. A stop list is composed of at least one stop element.

In the partial sub-tree expression, the sub-tree is used as search space. Its purpose
is to select attributes only, to exclude some features or attributes, to exclude all
attributes or groups, etc. contained in a given sub-tree. In this kind of view, the
hierarchy is not preserved since one can exclude some elements, so breaking
the hierarchy and creating confusion about the semantics of the partial FM. The
difference with full sub-tree views is the filter added to the partial sub-tree selection.
Three different sub-tree filters exist. They all start with the pipe character. The
first one is lists. A list can either be an inclusion or an exclusion (preceded by
the exclamation mark) one. The coverage of an inclusion list is the union of
elements covered by each of the list elements. Conversely, the coverage of a sub-
tree expression refined by an exclusion list is the difference between the set of
elements covered by the sub-tree expression and the set of elements covered by
the list elements. List elements can be, regardless of the list type, IDs of TVL
features or attributes, attributes or groups keywords. Those elements can be mixed
inside the same list and TVL IDs must refer to constructs covered by the sub-tree
expression. If a feature ID is included in an exclusion list, this feature as well as all
its contents (attributes and group) will be excluded from the view. Conversely, in an
inclusion list, the feature and its contents only will be included in the view coverage.
Attribute IDs included in an exclusion (resp. inclusion) list will be excluded (resp.
included) in the view coverage, as well as sub-attributes for structured attributes. The
groups keyword in an exclusion (resp. inclusion) list will exclude (resp. include)
all groups from the view coverage. The same principle applies to the attributes
keyword. Attributes are the second kind of refinement for sub-tree expressions.
The attributes keyword is used for this purpose. It means that the view covers all
attributes contained in the sub-tree expression. It is also possible to further refine
the view with a refinement list which can either be an inclusion or exclusion one
but, in this case can contain only IDs of TVL attributes covered by the sub-tree
expression. This refinement list is also preceded by the pipe character. Finally, it
is also possible to select all feature groups contained in a sub-tree of an FM with
the groups keyword. In this case, the view coverage is a set of feature groups. It is
possible to refine this groups expression with an inclusion/exclusion list (preceded
by the pipe character). But, in this case, the list contains TVL feature IDs only. We
chose to allow features since it is the only way to identify feature groups in TVL. If
a feature is covered by an inclusion (resp. exclusion) list, its group will (resp. will
not) be covered by the groups expression.

In TVDL, it is also possible to select a single feature in a view. Similarly to
partial sub-trees, refinements exist for those feature selections. The only difference
is that the group keyword has to be used instead of groups in the case of partial
sub-trees given that each feature contains (maximum) one group in TVL. Finally,
refinement lists can also be defined on features. As for partial sub-trees, it can either
be an inclusion or exclusion list. This list can contain the TVL ID of the feature’s
attributes, and/or the group or attributes keywords. For inclusion lists, the view will
cover the feature itself plus the elements mentioned in the list.
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The last kind of expression, namely attributes, is the simplest one. Indeed, we
have chosen to disallow their refinement. The only way to refine attributes would
be to select only some sub-attributes of a TVL structure attribute. But, given our
experience in variability modelling, it makes no sense to split such attributes.
Indeed, if they had to be split, they would have been represented as a feature with
attributes.

1.4.3.2 Addressing Plan Example

The TVDL model for the addressing plan configurator is given in Listing 1.2. At
line 1, the TVL model previously introduced is imported before defining the four
different views. The first one, MainTab (line 3) contains the global properties of the
addressing plan that is currently configured. The second view, SubnetTab (line 5),
displays information related to subnets and groups in the organization (i.e. use
types and locations). The third view, InterfaceTab (line 7), shows information
related to the communication interfaces of the hosts that are on the network. Finally,
the fourth view RoutingTableTab (line 9) shows the routing table entries of
the interfaces. Stop lists are used for defining MainTab, InterfaceTab and
RoutingTableTab.

Listing 1.2 TVDL model for the addressing plan example

1 import " a d d r e s s i n g _ p l a n _ d e m o . t v l "
2
3 MainTab { A d d r e s s P l a n : * / Subne t / UseType / L o c a t i o n / Host }
4
5 SubnetTab { Subne t && UseType && L o c a t i o n }
6
7 I n t e r f a c e T a b { Host : * / R o u t i n g T a b l e E n t r y }
8
9 Rou t ingTab leTab { Host : * / I n t e r f a c e }

1.4.4 Widget Selection

As for FM constructs, we propose a mapping between views and GUI widgets. Each
view can be depicted either as a Tab or as a Window. Tabs could be nested in other
Tabs or Windows, but not conversely.
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1.4.5 Beautification

1.4.5.1 General Principles and Language

In the previous sections, our focus was on the direct translation of FM constructs
into GUI elements. Even if this translation is technically feasible, the result would be
rough as it is relies only on information contained in FMs which is rather technical.
For example, using feature and attribute names as label for the input fields might
not be expressive enough to understand their meaning.

A first solution would be to extend existing languages. Missing information
would be directly added in TVL and TVDL. At the first glance, this solution seems
to be the best one in the context of configuration GUI generation. All information
would be located in the same place. While this might help to design configuration
GUIs, variability and view models would be cluttered with GUI-related information.
This information is completely irrelevant in other contexts and might disturb
variability modellers. We want to keep TVL and TVDL languages independent of
the GUI generation process in order to preserve the separation of concerns [83]. For
all those reasons, we chose to propose a new language dedicated to GUI-specific
information.

This language plays the same role as CSS (Cascading Style Sheets) [85] for
HTML pages, i.e., it contains beautification information. For this reason, we called
our language FCSS, standing for Featured Cascading Style Sheets. As in usual
CSS, properties include layout information but also feature-specific visualisation
strategies. Other properties are related to the rendering of TVL attributes and groups,
and TVDL views. The availability of certain options may also depend on the target
language.

An FCSS Beautification Model refers to a TVL model and optionally
to a TVDL one. Then, it is composed of four different kinds of parts, namely
Global Properties, View Properties, Feature Properties and
Attribute Properties.

Global properties definition sections start with the dot character and are, like
the three other categories, delimited by curly braces. Several global sections can
exist. However each global property can only be defined once in the whole model,
i.e., it can neither be defined several times in the same global part nor in different
global parts.

A property has a name, and a value separated by a colon. It is closed by a
semicolon. Fourteen global properties exist, five are related to feature groups, four
to features, another four to attributes, and a single one for views.

Global Properties

A global group property exists for each kind of TVL decomposition. For and-
decompositions, it is named andGroup and can take a single value, namely textbox,
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at the moment. Setting this property might thus be useless. Our intent is to extend
the language in the light of experience with Web configurators, requests from
customers, etc. It can be seen as a variation point whose variants still have to be
defined. orGroup is a second global group property which can take either listbox
or checkbox as value. xorGroup is the third property and its available values are
listbox and radiogroup. The last kind of groups, card-decompositions, is represented
by the cardGroup property and can, at the moment, take a single value, namely
checkbox. Finally, the Boolean groupContainer property is used to determine
whether groups and their sub-features have to be visually grouped together in the
rendered configuration GUI. This is typically done with a bordered box.

The first property dedicated to features is simply called feature and determines
how they are rendered in the GUI. Available values are text and image. Those values
speak for themselves. The optFeature property determines how optional features
have to be rendered. Three values exist, checkbox, listbox, and radiogroup. With a
check box, the optional feature is selected if (and only if) it is checked. The list-
box contains two values, true and false. Similarly the radio group contains two
radio buttons labelled with the same Boolean values. Note that, optional features are
generally used with and-decompositions. That may help explain why the andGroup
property has a single value. unavailableContent is the third feature property. It can
take three values, hidden, greyed, or none. This value determines the strategy to
apply with the contents of a feature when the latter is not selected. It can either
not be visible to the user (hidden), or visible but not editable (greyed), or visible
and editable (none). With this last option, the user can select any option at any
time. Given the structure of an FM, setting the value of a construct (attribute or
feature) will automatically select all its ancestors in the configuration GUI. Finally,
a selectFeature property exists and can take the same values as optFeature, namely
checkbox, listbox, or radioGroup. In TVDL, we allow to not cover a group if all
its sub-features are covered. As a consequence, the group is not rendered in the
configuration GUI. Given that all its sub-features are depicted, we propose to use a
selection widget in front of all of them, similarly to optional features. In this way,
the user is still able to select group’s sub-features and the group cardinality will
be verified by the solver (the presenter in our architecture). The group is scattered
all over the configuration GUI but it is still possible to select its sub-features while
sticking to its cardinality.

The four attribute properties correspond to the four attribute types available in
TVL. Their purpose is to determine the graphical widget of the corresponding type.
The intAttribute and realAttribute properties represent integer and real attributes.
They have the same set of values, namely textbox (a box containing the value)
or slider. The rendering of Boolean attributes is influenced by the boolAttribute
property. It can take three values, namely checkbox, listbox, or radioGroup. Note
that this set of values is the same as optional features given the Boolean type of both
constructs. The last attribute type available in TVL is enumeration. Its corresponding
global property is named enumAttribute and can take listbox or radiogroup as
values.
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Finally, it is also possible to influence the rendering of views defined in the TVDL
model with the view property. As introduced in previous section, available values are
tab and window. The tab value means that all views will be represented by tabs in
the same window. With the other value, window, each view will be rendered in its
own window. In the latter case, navigation links between windows should be made
available in each window.

Properties defined inside this global part can be seen as “default” values which
can be overridden by other ones defined at a lower (i.e., more specific) level. As
a case in point, properties defined at the view level have priority over global ones.
Conversely, if a global property is not refined for a given construct, it will be used
as default behaviour to generate the corresponding widget in the configuration GUI.

View Properties

View-specific definition sections start with the dollar sign followed by the TVDL
ID of the corresponding view. The different properties can then be defined inside
the block delimited by curly braces. As for global properties, view-specific ones
end with a semicolon.We can classify view-specific properties into two categories:
those which apply to the view itself and those which apply to elements covered by
the view.

We propose four properties which directly relate to the view referenced in the
view-specific definition section (i.e., the TVDL view ID directly following the
dollar sign). Using the Boolean generate property, one can define whether or not
a view has to be rendered in the configuration GUI. This might, for example, be
useful if the user has defined a view which is relevant in some contexts (technical,
commercial, etc.) but should not be displayed in the GUI. It means that the TVDL
model can contain views which are irrelevant for GUI generation. We also propose
to define labels and help texts for views. Those properties are named label and
help, respectively. They both take a double quoted string as value. The label
property makes it possible to not use the view ID which might be too technical
for the end-user. The help text might help the user understand the meaning or the
purpose of a view. It is designer’s responsibility to choose the right words to help
configuration GUI users in their task. Finally, we propose the unavailable property
which determines what to do with the view contents when the view is not available.
Values for this property are hidden, greyed and none, and their meaning is the same
as for the unavailableContent global property.

The other category of view-specific properties is similar to the global properties.
Indeed, properties falling in this category will influence the rendering of constructs
covered by the view. For this reason, the proposed properties are exactly the same
as global ones presented earlier. The 14 properties will not be recalled here for the
sake of conciseness. However, we would like to draw the attention to one of them,
view. As a reminder, this property allows to define the widget corresponding to
views. Setting this property will have an influence on the views contained in the view
corresponding to the view-specific definition section, not on that view itself. The
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view property thus only makes sense for grouping views. In our opinion, all views
declared at the same level should be depicted by the same widget. This explains why
we did not propose a widget property in the first category. However, if needed, this
property could be easily added.

Feature Properties

The goal of this third category is to set properties for a given feature. Contrarily
to the two previous categories, this one covers a single element which is a TVL
feature. A feature-specific definition section starts with the ID of a feature in the
referenced TVL model. It is the single category which has no starting symbol (like
the dot character for global parts, or the dollar sign for views). Its contents are then
delimited by curly braces. Seven different feature-specific properties are available.

Among the seven feature-specific properties, three are shared with view-specific
ones, namely label, help, and unavailable. Available values and semantics are
similar. For this reason, they will not be detailed here.

Four properties that are really specific to TVL features are given. widget is the
first one and allows to set the widget for the feature in the rendered configuration
GUI. It is the feature-specific counter-part of the feature global and view-specific
properties. The same two values are available at the moment, text and images.
Similarly, the opt feature-specific property has the same role as optFeature discussed
earlier. As a reminder, available values are checkbox, listbox, and radiogroup. The
role of this property is to determine the widget depicting the optionality of the
feature in the GUI. This property only makes sense for optional features. The select
property is equivalent to featureSelect and takes the same three values, checkbox,
listbox, and radiogroup. Its role is to set the selection widget for features whose
group is not covered by TVDL views. It should thus only be defined for features
falling in this category.

The last feature-specific property, group, is a little more complex and has a
different syntax. It can contain other properties. In this sense, a parallel can be
drawn with TVL struct attributes. Its contents, replacing its value, are delimited
by curly braces. There, six properties can be defined. Three of them are the
common ones, label, help, and unavailable. Our experience with existing Web
configurators and discussions with industrial partners showed that, in some cases, it
should also be possible to define this information for groups. The widget property
defines the widget for the group. Available values are textbox, listbox, checkbox,
and radiogroup. They will depend on the decomposition type, textbox only for
and-decompositions, listbox and checkbox for or-decompositions, listbox and radio-
group for xor-decompositions, and checkbox for card-decompositions. The Boolean
container property has the same role as the groupContainer global property, that is
determine whether the group and its sub-features have to be graphically enclosed
together, for example using a box. Finally, the default property defines which
group’s sub-feature will be selected in the configuration GUI. Available values will
be the group’s sub-features. Ideally, default values should be defined in another
language which is out of the scope of this thesis. For this reason, it is temporarily
included in FCSS.
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Attribute Properties

The last category of properties, attribute-specific ones, is the simplest one. This is
due to the nature of attributes which are the simplest TVL constructs. An attribute-
specific definition section starts with the # symbol directly followed by the TVL ID
of an attribute. The properties are then declared inside a block delimited, like other
categories, by curly braces.

The label, help, and unavailable properties are the same as the ones previously
discussed. A single property really specific to TVL attributes exists. It is called
widget and can take textbox, listbox, checkbox, radiogroup, and slider as value. As
for group widgets, values will depend on the attribute type. textbox and slider for int
and real TVL attributes, checkbox, radiogroup, and listbox for bool attributes, and
listbox and radiogroup for enumerations.

1.4.5.2 Addressing Plan Example

In our addressing plan example, the FCSSmodel contains only labels for views (e.g.
line 6), features (e.g. line 46) and attributes (e.g. line 49). Due to space constraints,
only the beginning of the FCSS model is visible in Listing 1.3. All other entries are
similar to those depicted in the code excerpt.

Listing 1.3 FCSS model for the addressing plan example

1 import " a d d r e s s i n g _ p l a n _ d e m o . t v l "
2 import " a d d r e s s i n g _ p l a n _ d e m o . t v d l "
3
4 / / Views
5
6 $MainTab {
7 l a b e l : " main " ;
8 }
9

10 $SubnetTab {
11 l a b e l : " S u b n e t s and Groups " ;
12 }
13
14 $ I n t e r f a c e T a b {
15 l a b e l : " I n t e r f a c e s " ;
16 }
17
18 $Rou t ingTab leTab {
19 l a b e l : " Rou t ing T a b l e s " ;
20 }
21
22 / / F e a t u r e s and a t t r i b u t e s
23
24 A d d r e s s P l a n {
25 l a b e l : " Address p l a n p r o p e r t i e s " ;
26 }
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27 # A d d r e s s P l a n . n e t w o r k P r e f i x {
28 l a b e l : " Numero c l i e n t " ;
29 }
30 # A d d r e s s P l a n . s t r a t e g y {
31 l a b e l : " S t r a t e g y " ;
32 }
33 # A d d r e s s P l a n . useTypes {
34 l a b e l : " Number o f use t y p e s " ;
35 }
36 # A d d r e s s P l a n . f u t u r e U s e T p e s {
37 l a b e l : " Number o f f u t u r e use t y p e s f o r e x p a n s i o n " ;
38 }
39 # A d d r e s s P l a n . l o c a t i o n s {
40 l a b e l : " Number o f l o c a t i o n s " ;
41 }
42 # A d d r e s s P l a n . f u t u r e L o c a t i o n s {
43 l a b e l : " Number o f f u t u r e l o c a t i o n s f o r e x p a n s i o n " ;
44 }
45
46 Subne t {
47 l a b e l : " Subne t " ;
48 }
49 # Subne t . useType {
50 l a b e l : " Use t y p e " ;
51 }
52 # Subne t . l o c a t i o n {
53 l a b e l : " L o c a t i o n " ;
54 }
55 # Subne t . subnetName {
56 l a b e l : "Name " ;
57 }
58 # Subne t . s u b n e t P r e f i x {
59 l a b e l : " P r e f i x " ;
60 }

1.4.6 Putting It All Together

1.4.6.1 General Principle

After having made the role of each model of our approach explicit, we explain
here how they fit together. Our vision is based on the decoupling of the FM and
the configuration GUI by combining separation of concerns [83] and generative
techniques [79]. The base process is sketched in Fig. 1.4 and relies on the notion
of AUI [22]. According to the W3C [89], an AUI is “an expression of a UI
in terms of interaction units without making any reference to implementation
neither in terms of interaction modalities nor in terms of technological space (e.g.,
computing platform, programming or markup language)”. In other words, an AUI
is a language- and target platform-independent description of the UI, which allows
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Fig. 1.4 Interface generation process

considering mappings from the feature model in a unique and reusable manner. This
AUI can be directly generated from the FM with the possibility to use Views to tweak
configuration interface decomposition. The layout of the elements composing the
UI can be guided by a Property sheet containing beautification information. Once
created, the AUI can then be transformed into a CUI. Depending on the required
sophistication level of the interface, different combinations of views and property
sheets can be envisioned.

Based on the FM (TVL) and the associated Property sheet (FCSS), an AUI can
be defined for the configurator. AUI languages describe UIs in terms of Abstract
Interaction Objects (AIOs). Those AIOs present the advantage of being independent
of any platform and any modality of interaction (graphical, vocal, virtual reality and
so on). In this way, we keep our approach as generic as possible. This AUI will
finally be translated into a CUI which is the implementation of the UI in a given
language for a specific platform. Views can also intervene in this generation process
(using TVDL). Once they have been defined, views-related beautifying information
similar to FM-related one can be defined in the Property sheet. It is meant to beautify
the UI with views-related information like their display name, help text, colours and
styles.

1.4.6.2 Addressing Plan Example

Our original intent was to generate configuration GUIs encoded in a given UIDL.
They could then be transformed into multiple target implementations (e.g., HTML,
GWT, etc.). As mentioned in Sect. 1.2.2, UIDL support is still immature or
proprietary. As a reminder, we can mention that existing UIDLs either do not fit
our requirements or tool support for transforming models into final GUIs are not
available to us. This last point is really important to evaluate the quality of the
generated configurators. Indeed, it is easier to show a final GUI than a model
describing it to an end-user.
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Fig. 1.5 Generation process with Acceleo

Fig. 1.6 Address plan tab of the HTML configurator for IPv6 addressing plans

We thus had to skip the UIDL model in our MDE transformation chain to prefer
a direct generation approach. For the target interface technology, we chose the
HTML5 language [88], the latest version of the HTML standard. As previously
mentioned, a lot of configuration interfaces are Web-based, as illustrated by
Cyledge’s configurators database [27]. By choosing HTML, we thus cover a lot of
configurators. For other target languages, we depend on the availability of UIDLs,
especially UsiXML which is in the standardization process [84]. In addition to the
HTML target language for the static part of configuration GUIs, the presenter is
developed in JavaScript, its natural complement.

No detail will be provided about the generator which is based on a model-to-
text approach. Interested reader can refer to [18]. Basically, our implementation of
model transformations takes the three models (TVL, TVDL, and FCSS) as input (see
Fig. 1.5) and generates an HTML document.

The HTML page generated by our Acceleo tool is depicted in Figs. 1.6, 1.7, 1.8,
and 1.9. Each figure represents the same HTML file with a different tab selected.
The content of each page is automatically rendered by our generator.



30 Q. Boucher et al.

Fig. 1.7 Subnets and groups tab of the HTML configurator for IPv6 addressing plans

The first view (see Fig. 1.6) presents the user with the general properties of the
addressing plan. It allows her to specify the number of locations and use types that
are present in the organization, as well as the number of locations and use types that
may potentially arise in the future. It also allows the use to select which strategy
should be applied for the identification of the subnets that form the network.

The second view (see Fig. 1.7) allows the user to configure subnets and groups.
She can instantiate use types, locations and associate them to subnets. The view
offers to specify the IP prefixes that will identify the subnets and their hosts. In the
example shown in Fig. 1.7, which follows the creation of an addressing plan for a
university campus, all students from the faculty of economics will be grouped in the
subnet identified by the prefix 2000:de4:abe7:0001::/64.

The third view (see Fig. 1.8) enables the configuration of hosts and their
interfaces. This is the view where the user can manage information related to
hosts on the network and where she can associate hosts to their subnets. The panel
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Fig. 1.8 Interfaces tab of the HTML configurator for IPv6 addressing plans

labelled “Connected interface” allows the user to configure the direct connections
between interfaces that belong to distinct hosts. Figure 1.8 also offers an example
of three nested features rendered into the panel labelled Host, Interface and
Connected interface.

Finally, the fourth view (see Fig. 1.9) addresses the configuration of routing
tables. In our example, the panel labelled Routing table entry shows a line
in the routing table that indicates how packets directed to hosts identified by the
prefix 2000:de4:abe7:2::/56 should be routed.
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Fig. 1.9 Routing table tab of the HTML configurator for IPv6 addressing plans

1.5 Lessons Learned

We applied our approach on several research (such as the IPv6 addressing plan) as
well as industrial cases.3 Globally, our interlocutors were pleased with the generated
HTML interfaces even if none of them used the full power of the FCSS model.
We could thus conclude that the default behaviour of our generator matches the
expectations of our first partners. The ease and speed with which interfaces could
be generated allowed us to easily interact with people without variability modelling
background. The different models changed a lot over time and all required changes
were supported by the proposed languages. Some even challenged us and were not
able to find weak points for TVDL.

However, our partners missed three things in the generated configuration Web
page. First, they would like an additional “summary” tab. Finalisation being case-
specific, we decided to not handle it in our generator. Instead, it should be developed
based on user requirements. A possible implementation would be a Web service
which, for a given configuration, returns the expected summary.

3Unfortunately, these cases could not be reported here for confidentiality reasons.
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A much finer-grained handling of feature instances was also required by one
of our interlocutors. In the interfaces currently generated, the number of clones is
handled by a number input. Decreasing (resp. increasing) the number of feature
instances will delete (resp. add) the HTML code corresponding to those instances,
starting from the last. It is thus not possible to delete a given instance. This
functionality can easily be added to our generator. Ideally, a button to create a new
instance should also be added after the current last one.

One of our partners required to be able to define features having several parents.
Theoretically, this request is supported by TVL through the shared feature construct.
Those constructs are also supported by our Acceleo generator. However, we did
not use them given that the current version of the solver does not support such
features. This specific case study allowed us to get accurate requirements for shared
constructs. The generator should be modified accordingly.

We now report our findings about the approach, including the solver, the TVL,
TVDL and FCSS languages, the presenter or the generated configurator based on
our collaborations.

Completeness of TVL. In the biggest TVL model we had to produce so far, we
count four duplicable features. The same comment applies to string attributes added
in TVL 2 and used ten times in the same case study, that is 17,9% of the attributes.
Generally speaking, TVL offered the required expressiveness. Shared features also
proved relevant, even if they are currently not supported by the underlying solver.

Completeness of TVDL. The view definition language has been assessed. It turned
out that it supports all views required by our partners with one exception. To deal
with this weakness, an abstract feature was added right under the root feature. In the
future, TVDL should be extended in order to avoid such collateral effects on other
models.

Completeness of FCSS. We did not use a lot of FCSS properties and focused
mainly on labels. On the one hand, it does not allow us to thoroughly evaluate the
language. On the other hand, it implies that the default behaviour corresponds to
actual user needs. There is room for improvement. First, it should be possible to
define the position of a label, before or after the TVL construct with which it is
associated. Second, several FCSS properties should be made available for more fine
grained TVL constructs. For example, it is not possible to define a label for the values
of an enum attribute. The same comment applies to sub-attributes of structures. For
such attributes, it is even not possible to change the widget, which is somewhat
restricting. Defining the step for number attributes, the break point between radio
groups and list boxes, etc. worth exploring according to our interlocutors. Finally,
colours could also be defined for elements to be rendered in the GUI. An interesting
feature would be to generate the same interface in several languages with different
FCSS models. For this purpose, we could use the include mechanism of TVL in
FCSS.

Communication with the solver. The JavaScript presenter fulfils its role of
interface between the HTML page and the solver perfectly and behaves as expected.
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Behind the scene, this component is probably the most complex one and should be
simplified. At the moment, it handles some behaviours which should be on solver
side. Migrating them would make the JavaScript much simpler and respect the
separation of concerns. For example, the presenter currently handles transactions.
Changing the value of a select box representing a xor-decomposition is an example
of such a transaction. It can be decomposed into two tasks: (1) unassign the
previously selected value and (2) assign the new one to true. After the first step, the
solver randomly selects an option to comply with the group cardinality and returns
it to the presenter. That value is ignored by the presenter as it knows that, in the
second step, another value will be sent to the solver. In the future, the solver should
handle requests containing multiple changes. The solver might be in an invalid state
while the transaction is processed. At the end of it, the solver should be in a valid
state. Otherwise, it means that the transaction is an invalid one.

Role of generated GUIs. In our different use cases, the generated interfaces
provided valuable input to initiate discussion. Working only at TVL level seemed
abstract for most of our interlocutors. HTML interfaces generated in less than one
minute made the process more interactive. TVDL views were even tailored according
to the audience. Indeed, high level managers do not have the same concerns as
technicians. As expected, none of our interlocutors envisions to reuse the generated
configuration GUI as-is in their final products. There are several reasons for this,
including the graphical charter, legacy tools, etc. These reasons motivated us to
focus on the correctness of the interface (with respect to configuration) and its
structure (tabs, views) and to not aim for 100% automation neither possible nor
desirable.

Propagation strategies. In the current solution, there are two possible outcomes to
user changes. Either it is not valid and the previous state is reset, or it is acceptable
and propagations are automatically applied in the GUI. While, in the first case, the
implemented behaviour seems the single viable one, several strategies should be
made available for valid changes. At the moment, the user is not informed of the
consequences of her choices which are automatically propagated in the interface.
Providing an explanation mechanism could minimize user’s lack of comprehension
concerning a propagated value. Such information requires modifications at the
solver level. Alternatively, the set of propagations could be displayed to the user
before applying them in the configuration GUI. If she confirms her choice, the
configuration is updated according to the values in the set. Otherwise, the previous
GUI state is reset, i.e., like for invalid changes. The two behaviours can co-exist.

Source of propagations. Initially, the presenter was able to handle values prop-
agated by the solver in a specific way. In the prototype version, they were greyed
out in order to prevent user changes. But this approach was rather restrictive with
respect to the results sent back by the solver. For example, if a feature is selected,
the propagation set contains its parent which will be greyed out in the configuration
GUI. While this behaviour respects the semantics of FMs, it is not adapted to GUIs.
In such a case, the user would have to deselect all sub-features to unblock the parent
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one. Instead, it should be possible to set the parent to false with the unassignment of
child features as side effect. We identify three categories of propagation sources:
cross-tree, hierarchy, and siblings constraints. The first category should trigger
the disabling mechanism (e.g., grey out). The second one has been illustrated
by the example earlier in this paragraph. Finally, siblings constraints should be
handled differently by the presenter depending on the widget representing the
group. For example, xor-decompositions rendered as a list box or a radio group are
automatically handled by the widget, contrarily to those depicted by a set of check
boxes. In the future, the solver should return three propagation sets, differently
handled by the presenter.

Display strategies. A top-down strategy is applied in our generator. By this, we
mean that the contents of a feature are displayed in the configuration GUI as soon
as it is selected. The Web page is thus populated as the user makes choices. However,
some configurators might require a different display strategy. Theoretically, our
approach can support other strategies with mechanisms such as the unavailable
property in the FCSS model. We will require other case studies to evaluate the
alternative behaviours.

1.6 Perspectives

1.6.1 Multiple Targets

We envision two solutions to target multiple output languages. The critical point
is to have an UIDL suited to our configuration needs. The first solution consists in
selecting a relevant subset of an UIDL like UsiXML to meet our requirements while
still taking advantage of existing code generators. The second approach is to define
our own UIDL dedicated to configuration GUIs. In that case, UI concepts would be
strongly connected to FM concepts.

1.6.2 Ordering Views

In the GUI generation approach, the different views are rendered in the GUI in the
same order as in the TVDL model. These views are all accessible to the user at
any time. Such a behaviour is not suited to all situations. In the future, generated
configurators should support explicit view ordering and activation/deactivation.

To describe those behaviours, feature configuration workflows [47] or multi-step
SPL configuration [91] could be used. There, the workflow defines the configuration
process and each view on the FM is assigned to a task in the workflow. A
view is configured when the corresponding workflow task is executed. A feature
configuration workflow is thus a combination of views on the FM, workflow and
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the mapping between them. Up to now, feature configuration workflows focused
on distributed configuration among several stakeholders but one might easily adapt
them to other purposes like the dynamic behaviour of a GUI in our case.

After having defined views, the workflow representing the dynamic aspect of the
GUI thus has to be modelled and its tasks attached to the different views to create
a so-called FCW. FCW-related beautification information can also be stored in the
FCSS along with information related to the FM and views.

1.6.3 Re-engineering

In our previous empirical study of 111 Web configurators, we were able to identify
several common bad practices among online configurators, such as incomplete
reasoning over configuration constraints, counter-intuitive representation of options
or the loss of all the user’s decisions when navigating backwards. The study reveals
that developing an online configurator like any other typical Web application (i.e.
without specific, adapted, and rigourous engineering methods) can lead to issues in
reliability, runtime efficiency, and maintainability. These issues could be addressed
though the migration from a legacy ad-hoc configurator to a better model-driven
engineered configurator.

In this chapter, we focus on the creation of new configurators through the
elaboration of feature models and the generation of configuration GUIs. We believe
that our approach can also be useful in the context of re-engineering existing
configurators. The re-engineering process consists of two steps.

1. The configuration models of the existing configurator are recovered by applying
reverse-engineering techniques.

2. A new configurator is created from the recovered models.

The approach described in this chapter can be used to implement the second
step of this re-engineering process as it can support the engineering of configuration
GUIs from recovered feature models. As for the first step, Abassi et al. [1] propose
a supervised semi-automatic process for reverse-engineering TVL code from web-
based configurators. The user starts with the definition of variability data extraction
patterns (vde patterns) which specify the variability information to be extracted from
a given Web page written in an HTML-like language. A Web Wrapper is then used
to extract the variability data from a given page, based on a given a set of vde
patterns, and save it into an XML format. Some manual user configurations are
also simulated in order to extract dynamic content such as configuration constraints.
The information extracted through steps 2 and 3 can be edited and transformed into
a feature model. Typically, several FMs are extracted from one Web configurator,
e.g., one FM for each configuration step. These FMs are merged by FAMILIAR, a
tool-supported language to merge multiple FMs into a single one [5].

Figure 1.10 presents the full re-engineering process, the contribution of this
chapter being represented on the right side by the forward-engineering steps. The
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Fig. 1.10 Re-engineering process for configurators

interested reader can refer to [19] for more detailed discussion of the re-engineering
process.

1.6.4 Product Selection

The configuration model of a configurator is a concise representation of the technical
and functional properties of all variants for a product line. Typically, the configurator
is the system through which the particular requirements of the current user are
collected, and which exploits the configuration model to derive the product with
the properties meeting these requirements. This means that the system gradually
refines the features and attributes that will be included in the single final product at
each user interaction.

For some product lines, while the configuration process still consists in collecting
requirements from the user and verifying their consistency, the resulting config-
uration is used to compute a set of candidate products which all meet the user’s
expectations. This can be the case when a customer needs to select a candidate
product from a catalogue, but is first asked to complete a configuration task in
order to define the environment in which it will be deployed. In this scenario,
the purpose of this first configuration task is to filter out the invalid products, that
is those which do not hold the properties that would make them suitable for the
configured environment. For such product lines, the process of choosing the final
product can thus be divided into two phases. Firstly, a configuration phase that
determines the valid products. Secondly, a selection phase through which the user
selects one final product among all valid products. Figure 1.11 illustrates the two
phases for a catalogue of servers.

In the previous sections, we propose a generative approach for supporting
configuration tasks. An interesting research direction would be the extension of our
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Fig. 1.11 The configuration phase and the selection phase for a catalogue of servers

work to the engineering of selection phases in order to help users rank competing
valid products and evaluate trade-offs. In the remainder of this section, we discuss
product comparators and knowledge-based recommender systems, two types of
systems which could benefit from a model-driven development approach.

1.6.4.1 Product Comparators

Product comparators aim at assisting customers during the evaluation of product
assortments. These systems help their users to visualize the similarities and differ-
ences between competing products within product comparison matrices (PCM). A
PCM offers a tabular representation of the characteristics of competing products that
helps customers to rapidly compare them and evaluate trade-offs between them.

While the structure of PCMs may appear simple, they can contain heterogeneous
data and be frequently updated as new products and features emerge. For these
reasons, practitioners can benefit from a model-driven approach for maintaining
PCMs.

The interested reader can refer to Bécan et al. [10]. The authors propose a meta-
model for PCMs and discuss model-based techniques as well as automated tools for
developing PCMs.

1.6.4.2 Knowledge-Based Recommender Systems

Like product comparators, a recommender system aims at helping customers to nav-
igate competing product ranges. Knowledge-based recommender systems (KBRS)
are a particular type of recommender systems that share common characteristics
with configurators. Indeed, they also collect requirements from their users and
exploit knowledge about the products to provide purchase recommendations (see
Felfernig et al. [36] for a more detailed coverage of KBRS). Similarly to config-
urators and their configuration models, KBRS operate a knowledge base which
synthesizes the knowledge about the product properties and their relationships with
customer requirements.

Oftentimes the development of KBRS gives rise to a domain knowledge acqui-
sition bottleneck, a challenge also encountered by developers of configurators. This
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problem refers to the need for practitioners to encode knowledge about the products
into the formalism used within the knowledge base of the system. This acquisition
phase is critical as the resulting knowledge base will determine the behaviour of
the system. The term bottleneck refers to the fact that this phase often proves
to be both time-consuming and error-prone. It thus requires particular effort and
cautiousness from practitioners when searching product documentation or engaging
with domain experts in order to ensure the completeness, accuracy and consistency
of the knowledge base.

This challenge has lead to previous research effort. Felfernig et al. [35] discuss
an environment for engineering KBRS and their user interfaces. The motivation
for a model-driven approach is to accelerate the acquisition of domain knowledge
through fast prototyping, and to reduce maintenance costs.

1.6.5 Recommendations

Web configurators often have to cope with domain knowledge related to complex
products (i.e., products with numerous features, attributes, as wells as business and
technical constraints to satisfy). Due to this complexity, users can be exposed to
an overwhelming number of configuration steps to resolve, to the extent that the
benefits of the co-creation process risks to be offset. This has serious managerial
implications as tedious co-creation processes can make vendors undesirable for
customers [67]. Franke and Schreier [38] show that the enjoyment and perceived
effort of the co-design process have a direct impact on the willingness to pay for
customized products. Configuration complexity can also make customers miss the
product that best meets their expectations as they shift towards simplifying decision
heuristics [31].

For these reasons, it is important to assist users of Web configurators during their
configuration tasks. Previous works have addressed the development of recommen-
dation techniques to help users resolve configuration steps, that is recommendations
for feature selections and attribute values. Researchers have proposed the use of
defaults values which denote predefined recommendations that are applied based
on the current user preferences [34, 59]. Other approaches consist in analyzing
past configurations to infer recommendations [34, 90]. Felfernig et al. [37] analyze
the current partial configuration of the user and use a similarity-based approach to
recommend the complete configurations that are the closest to the already specified
user requirements.

In this chapter we discussed languages to model variability and build GUI
elements. It would be interesting to investigate language extensions or additions to
support practitioners during the elicitation of configuration recommendations and
the generation of corresponding GUI elements through a model-based approach.
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1.6.6 Evalution of Configuration Interfaces

In addition, to the generation of configuration interfaces, another concern is their
evaluation. As noted by Leclercq et al. [57] there is limited knowledge on what
are the general guidelines and principles guiding the design of configuration
interfaces. Indeed, most the of the works criticise existing interfaces or practices
(e.g., [2, 76]), focus on specific configuration interfaces (Web) or business-to-
consumer (B2C) applications. As our case-study suggests, not all configuration
interfaces are dedicated to a general audience, and the specific needs and skills of
intended users have to be taken into account when designing interfaces for them.
We are therefore in search for grounded theories and guidelines that could assist the
design of such interfaces and in the long term incorporate these principles in our
generative approaches.

1.7 Conclusion

The explosion of e-commerce applications and the need for customized products
tailoring user needs make the development of configurators a concern in a variety
of domains. Configurator engineering is a difficult activity: configurators both need
to be consistent while handling user’s decisions and their graphical user interfaces
should meet usability and aesthetics requirements of consumers. This difficulty is
often amplified in ad-hoc configurators in which the variability model, graphical
user interface concerns and reasoning engine are all implicit and/or entangled. The
software product line community has developed conceptual models and concrete
tools to perform configuration through (simple) feature models. However, the
engineering of configuration graphical interfaces has been much less addressed.

In this chapter, we present a model-based perspective. We rely on (advanced)
feature models to formally specify configuration options and automate reasoning.
We developed a model-based solution to generate graphical user interfaces from
feature models while relying on SAT/SMT solvers to perform reasoning to react
to user selections/deselections. We propose a model-view-presenter architecture to
separate variability, reasoning and presentation. In our approach, the model is a
feature model and its solver, and the view is a graphical user interface. The presenter
will depend on the target graphical user interface technology. Its main role is to
enable communication between the model and the view.

As existing feature modelling languages are not providing the expressiveness
required to cover our needs, we developed a new language: it is a textual language
named TVL and supports constructs such as feature attributes or group cardinal-
ities which are not supported by most existing variability modelling languages.
Furthermore, the language provides two mechanisms for structuring large models:
an include statement to split the model into several files and the possibility to define
a feature in one place and extend it later in the code. These mechanisms allow
modellers to organise the feature model according to their preferences and can be
used to implement separation of concerns.
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In order to split the hierarchy of feature models, we propose a view definition
language called TVDL. It is inspired by the XPath language previously used by
Hubaux et al. in the context of feature configuration workflows. The advantage of
TVDL is that is not XML-based and allows to select any (combination of) TVL
model construct(s). Four kinds of views are supported: grouping, sub-tree, feature
and attribute. Grouping views are syntactic sugar to group the three other kinds of
views. Sub-tree views allow to select TVL constructs in a sub-tree of a TVL model,
feature views allow to select a feature and its contents (or a part of them), and
attribute views cover TVL attributes (and their sub-attributes for structured ones).

As TVL and TVDL models do not focus on styling information, we propose
FCSS. FCSS is a beautification language which contains information related to the
graphical user interface such as labels or help texts, for example. The language
has been named after CSS which plays a similar role for HTML Web pages. FCSS
models can be decomposed into three levels. The highest one, called global, defines
properties which should be applied to all constructs of imported TVL and TVDL
models. They can be seen as default values. The second level defines the default
properties for all constructs contained in a view. Finally, the last level allows to
define properties for a specific feature or attribute.

Configuration interfaces are generated through model transformations, of which
TVL, TVDL and FCSS models are the inputs. Our initial intent was to use a user
interface description language as target, more specifically an abstract user interface
model. In that case, model-to-model transformations would have been used. How-
ever, we did not find such a language meeting all our criteria. Consequently, our
prototype generator produces HTML code through model-to-text transformations.
The workload to move from a model-to-text to a model-to-model transformation
should not be too high given that the most intricate part can be massively reused.

The languages and the generator were evaluated together on several cases. Our
approach and the generator were used iteratively to demonstrate and evaluate the
capabilities of the tool to (re)design and (re)generate a configurator on-the-fly.
This could be done at such speed that the tools can be used during workshops in
order to dynamically adapt the configurator based on the participants’ input. Our
experiences demonstrated the utility of the approach and allowed to identify various
improvement opportunities.
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