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1 Introduction

Uncertainty is ubiquitous, since sensing is never perfect, actuators have errors, and a
robot’s operating environment is often unknown. Due to this imperfect information
and errors, the exact robot state is never perfectly known. Therefore, instead of
finding an optimal solution in the state space, many methods represent uncertainty
about the robot state as a probability distribution, and plan in the set of distributions
over states, called the belief space [12, 24, 25, 31]. The computational complexity
of planning in the belief space is much higher than in the state space because the size
of the belief space is doubly exponential in the number of state space dimensions.
Nevertheless, recent advances have shown that motion planning in belief space is
becoming practical for many medium size problems [1, 6, 9, 32].

Background: Interestingly, progress in belief-space planning has been achieved
through similar tools to those used in the deterministic case. In particular, this progress
was achieved by sampling a small set of representative beliefs and planning with
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respect to only this small set of sampled beliefs. In fact, many methods (e.g., [3,
18, 25]) in belief-space planning are extensions of sampling-based ones for the
deterministic case, such asPRM,RRT,PRM∗, andRRG [4, 7]. Thesemethods typically
restrict beliefs to be represented by Gaussian parameters or consider the maximum
likelihood estimate of the state.

Recentwork,which has shown that one can achieve asymptotic optimalitywithout
a steering function in the deterministic case [15, 20], has the potential to allow an
even more straightforward way to extend sampling-based planners to belief-space
planning. The similarity between deterministic planning without a steering function
and belief-space planning indicate that properties critical for deterministic motion
planning are likely to be critical for belief-space motion planning as well.

Similar to sampling-based methods for the deterministic case, many equivalent
approaches for belief-space planning rely on distances between beliefs to partially
guide their sampling and pruning operations [8, 12, 29].Many distance functions can
be potentially used and they can have significantly different effects in belief-space
planning. Nevertheless, the effectiveness of the different distance functions has not
been studied in the related literature on belief-space planning.

This paper focuses on understanding the suitability of commonly used distance
functions in belief-space motion planning. Commonly used functions, such as L1
and Kullback–Leibler divergence KL, in general ignore the underlying distance in
the state space. As a result, two beliefs whose supports do not overlap, but lie near
each other in the state space, will have the same distance as two beliefs whose sup-
ports lie very far away. Figure1 illustrates this issue. If the supports of the beliefs
are unbounded, the above problems are less severe, though they still exist. While the
Wasserstein or Earth Mover’s Distance (EMD) alleviates the aforementioned issue,
it has been rarely used in the related literature [11, 14]. This paper presents a com-
parative study of the effect of these metrics in two classes of belief space planning,
i.e., Non-ObservableMarkovDecision Processes (NOMDPs) and PartiallyObservable
Markov Decision Processes (POMDPs).

NOMDP Evaluation: NOMDP is the simplest class of belief-space planning, a
planning under uncertainty challenge where no observation is available. Despite its
simplicity, NOMDP has often been applied as an intermediate solution to complex
planning under uncertainty problems [10]. The simplicity of this class of problems
allow us to compare themetric on various complexmotion planning problems, which
are still unsolvable when the challenge is partially observable. To solve NOMDPs, this

Fig. 1 Illustration of the problem with L1 and KL. Suppose the state space X is the 1-dim. Natural
numbers and the distance dX(x, x ′) = |x − x ′|. Then, the L1 distance DL1(b1, b2) = DL1(b1, b3),
the KL distance DKL (b1, b2) = DKL (b1, b3), and the EMD distance DW (b1, b2) < DW (b1, b3)
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paper leverages recent results in deterministic motion planning that show asymptot-
ically optimal solutions [7] can be computed by sampling-based methods that do
not require steering functions [15, 20]. These methods are extended to solve NOMDP
problems. Such extensions are simpler compared to extending methods that require
a steering function, because computing a good steering function in the belief space
is non-trivial. Simulation results indicate that as the NOMDP problem becomes more
complex, the differences in the effectiveness of different distance functions become
quite prominent. In fact, in state spaceswithmore than 4 dimensions, just by replacing
L1 orKL distancewithEMD, the speed of solving the problems improves substantially
and the problems transition from virtually unsolvable to solvable.

POMDP Evaluation: The second class of problems in our comparative study
is the Partially Observable Markov Decision Processes (POMDP). To solve POMDP
problems, Monte Carlo Value Iteration (MCVI) [2] is used here, which is an offline
POMDP-solver designed for problems with continuous state spaces. In this paper,
we only apply the various metrics to a 2D navigation problem when evaluating the
performance in the POMDP framework, due to the limitation of existing POMDP
solvers in solving problems with large action spaces. Although this limitation means
we cannot yet show the full potential of EMD in POMDP, the preliminary result
reveals that EMD could significantly reduce the number of belief-space samples that
sampling-based POMDP-solvers need to reach a certain solution quality.

Overall Contributions: The results of this comparative study indicate that EMD
is more suitable than L1 and KL, and could significantly improve the performance
of belief space planning, even though its computation can be computationally more
expensive. Steps towards the efficient computation of the EMD are also described
here. Furthermore, this paper shows that EMD carries the Lipschitz continuity of the
cost function in the state space to Lipschitz continuity of expected cost in the belief
space. This is useful because this property is used in the convergence analysis of
several asymptotically optimal motion planning methods without a steering function
[15, 20], including methods for belief-space planning [12, 13].

2 Problem Setup for Comparative Study

A POMDP is a mathematically principled framework for planning under uncertainty
in discrete-time. Formally, a POMDP is defined as a tuple 〈S, A, O, T, Z , R, b0, γ 〉,
where S is the set of states, A is the set of actions, and O is the set of observations.
The notation T represents motion uncertainty and is defined as a conditional prob-
ability function T (s, a, s ′) = P(s ′|s, a), where s, s ′ ∈ S and a ∈ A. The notation Z
represents sensing uncertainty and is defined as a conditional probability function
Z(s ′, a, o) = P(o|s ′, a), where s ′ ∈ S, a ∈ A, and o ∈ O . At each step, a POMDP
agent is in a state s ∈ S, takes an action a ∈ A, moves from s to an end state s ′ ∈ S,
perceives an observation o ∈ O , and receives a reward R(s, a) for taking action a
from state s. However, a POMDP agent never knows this exact state, and instead rea-
sons with respect to distributions over states, called beliefs. At each step, the agent’s
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belief estimate is updated based on the action it just performed and the observation
perceived. The agent’s goal is to choose a suitable sequence of actions that will max-
imize its expected total reward, when the agent starts from the initial belief b0. When
the sequence of actions has infinite length, a discount factor γ ∈ (0, 1) is specified,
so that the total reward is finite and the problem is well defined.

The solution to aPOMDP problem is amapping frombeliefs to the best actions, and
is called an optimal policy.Apolicyπ induces a value functionVπ (b), which specifies
the expected total reward of executing policy π from belief b, and is computed as
Vπ (b) = E[∑∞

t=0 γ t R(st , at )|b, π ]. An optimal policy is the policy π∗ whose value
function Vπ∗(b) is the highest among all possible policies for any belief b.

A NOMDP is a class of POMDPs where observations are not available, i.e.,
Z(s, a, na) = 1 for any s ∈ S and a ∈ A. As a consequence, the solution of an
NOMDP is a nominal path, which maps time steps to the best actions.

The problem setups for both NOMDPs and POMDPs are geared towards motion
planningproblems, finding a strategy tomove fromone state to another.BothNOMDPs
and POMDPs use the same representation for state and action spaces, and for motion
uncertainty. The state space is a continuous metric space, denoted by X, that is
diffeomorphic to R

n , where n is the dimensionality of X. The action space is the
same as the control space, denoted as U, and typically has lower or equal dimension
than X. The motion uncertainty comes from actuation error, and is represented as a
stochastic dynamical system of the form:

x(t + Δt) = x(t) +
∫ t+Δt

t
f (x(t), ũ(t))dt, (1)

where x(t) ∈ X, ũ(t) ∈ U and Δt is a discrete time step. The control ũ(t) is the one
executed by the system, which does not always correspond to the input control u(t)
due to actuation error, i.e., there is an error vector w based on which:

ũ(t) = u(t) + w. (2)

The vector w is additive noise sampled from a probability distribution, which can be
any type of distribution.

Given that NOMDPs do not have observations, NOMDPs and POMDPs differ in
the objective function. NOMDPs use an objective function that is commonly used
in motion planning. In this paper, the defined NOMDP challenge involves finding a
sequence of control inputs that minimizes the cost, while ensuring that the collision
probability is lower than a given threshold and the probability of reaching the goal
is higher than a given threshold. More precisely, suppose p = (u1, u2, . . . , um) is
the sequence of input controls for the system. Each control input in the sequence is
applied for a unit time step, subsequently starting from the initial belief b0. This appli-
cation will induce a trajectory π

p
b = (b0, b1, b2, . . . , bm) that arises when applying

Eq.1 to the states in the support set of belief b0 and following the sequence p, given
the noise model w. The duration of a trajectory π is denoted as Tπ . If the trajectory π

is induced by pwith controls form time steps, then Tπ = m · Δt . A belief state along
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a trajectory π at time t is denoted as π(t). The cost of the trajectory π
p
b0
induced by p

is c(π p
b0

) = ∑m
i=1

∫
x∈X cost (x, ui ) · bi−1(x)dx . The goal of the NOMDP solver is to

find a control sequence p that generates a trajectory π
p
b0
for which the probability of

being in the goal region at time Tπ is above the threshold: P(π(Tπ ) ∈ XG)) > Pgoal ,
the probability for being in the free space is above the threshold: P f ree(π) > Pvalid ,
and which minimizes the cost c(π).

The objective function of POMDPs uses the commonly applied definition (Sect. 2).
The reward function, R(s, a) for any pair of state s and action a, is a summation
of collision cost and reward for being in the goal. The reason for this difference
in objective function is that solving a POMDP with probability constraints is still a
relatively open problem.

3 Distance Functions for Belief-Space Planning

Computing the optimal POMDP policy is computationally intractable [19]. In the past
several years, however, methods which can compute a good approximation to the
optimal policy fast have been proposed. Most of them rely on sampling, and depend
on distance functions. They can be classified into several distinct approaches.

Point-based techniques [12, 23, 27, 28] use sampling to construct a small but
representative set of beliefs, and find an approximately optimal policy by iteratively
computing Bellman backups [23] on the sampled beliefs. The key is the sampling
strategy, and some of the successful methods use distance functions to guide sam-
pling. For example, PBVI [23] only keeps a newly sampled belief whenever the L1
distance between the new and existing belief is larger than a certain threshold, while
GCS [13] uses EMD, and an alternative [8] uses KL divergence to perform similar
rejection sampling. A fast offline point-based solver [12] also uses L1 distance for
pruning. Point-based methods can handle any type of distributions but they have
difficulties in solving problems in large continuous action spaces.

This work evaluates four distance functions for belief-space planning. Two of
them, Kullback–Leibler (KL) and L1 divergence, are commonly used in belief-space
planning. In general, these two functions do not consider the underlying state-space
distance when computing distances between beliefs. This characteristic limits the
effectiveness of these two distance functions to guide sampling and pruning in the
belief space. To alleviate these problems, two alternatives are proposed here,Wasser-
stein (also known as Earth Mover’s Distance (EMD)) and Hausdorff distance. Both
of these functions compute distances based on an underlying state space distance.
They have not been widely used in belief-space planning, but they are widely used
in computer vision and optimal transport, which means efficient implementations
for these distance computations abound. For the following, the beliefs are defined as
distributions over a common state space, denoted as X.
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A. Wasserstein Distance/EMD: Intuitively, Wasserstein distance or EMD computes
the distance between two distributions as the amount of work to move the probability
mass of one distribution to another. More formally, EMD is defined as:

DW (b, b′) = inf
f

{∫

x∈X

∫

x ′∈X
dX(x, x ′) f (x, x ′)∂x∂x ′

∣
∣
∣
∣

b =
∫

x ′
f (x, x ′)dx ′ , b′(x ′) =

∫

x
f (x, x ′)dx

}

, (3)

where dX is the distance in the state space X and f is a joint density function.
EMD carries the Lipschitz continuity of a cost function in the state space to

Lipschitz continuity of expected cost in the belief space. Formally, let dX be
the distance function on a separable state space X and cost (x, u) be the cost of
applying control u ∈ U at state x ∈ X for the duration of one unit time. Let beliefs
b and b′ be distributions over X and let the cost function w.r.t. a belief b be
cost (b, u) = ∫

x∈X cost (x, u)b(x)dx .

Theorem For any control input u ∈ U, if the cost function satisfies Lipschitz continu-
ity in the state space, i.e., |cost (x, u) − cost (x ′, u)| ≤ C · dX(x, x ′) for any x ∈ X,
then the cost function in the belief space with the EMD metric is also Lipschitz
continuous: |cost (b, u) − cost (b′, u)| ≤ C · DW (b, b′).

Proof The proof is based on the well-known Kantorovich duality of the Wasserstein
distance [5]. The Kantorovich distance is defined as

DK (b, b′) = sup
g∈Lip1

(∫

x∈X
g(x)b(x) dx −

∫

x∈X
g(x)b(x) dx

)

,

where Lip1 is the set of all 1-Lipschitz functions over X. Now, by definition:

∣
∣cost (b, u) − cost (b′, u)

∣
∣ =

∣
∣
∣
∣

∫

x∈X
cost (x, u)b(x) dx −

∫

x∈X
cost (x, u)b′(x) dx

∣
∣
∣
∣ .

(4)
To satisfy the 1-Lipschitz requirement of the Kantorovich distance, we can use
the scaled distance function in the state space X, i.e., d ′

X
= C · dX. It is known

that if we use d ′
X

as the state space distance, then the belief space distance
D′

W = C · DW = C · DK . The last equality is due to the duality of the Kantorovich
and Wasserstein distance. This means that by using the state space metric d ′

X
,

Eq. (4) can be bounded as:
∣
∣cost (b, u) − cost (b′, u)

∣
∣ ≤ C · DK (b, b′), and hence∣

∣cost (b, u) − cost (b′, u)
∣
∣ ≤ C · DW (b, b′). 	


From the literature [11], it is known that the value function inPOMDPs is Lipschitz
continuous when the metric in the belief space is EMD. The above theorem uses a
similar proving strategy similar to the prior work [11] but generalizes the result to
any cost function that is Lipschitz continuous in the state space.
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B. Hausdorff Distance: Hausdorff distance is a popular metric in computer vision.
This function computes distance between two sets based on a max-min operation.
In terms of distances between beliefs, it is possible to define it with respect to the
beliefs’ support set. Slightly abusing the notation of the arguments, this function can
be defined in the belief space as:

DH (b, b′) = max{dH (b, b′), dH (b′, b)}

where dH (b, b′) = max
x∈support (b)

{

min
x ′∈support (b′)

{
dX(x, x ′)

}
}

,

and support (b) = {x ∈ X | b(x) > 0}, while dX(x, x ′) is the state space distance.
Hausdorff is simpler to compute than EMD. Nevertheless, since Hausdorff mea-

sures distances between sets, rather than distributions, it ignores the probability val-
ues. This means that if two distributions have exactly the same support, even though
the probabilities are significantly different, the two distributions will be considered
to lie at the same point in the belief space. This problem is exactly the opposite of
the problems faced by L1 and KL-divergence, as described below.

C. KL-Divergence: A commonly used distance function in belief-space planning
is the Kullback–Leibler (KL) divergence. It measures the difference in information
content between two distributions. More formally, KL divergence is defined as:

DKL(b, b
′) =

∫

x∈X
b(x)

(
ln b(x) − ln b′(x)

)
dx . (5)

In the general case, KL-divergence does not consider the underlying state space
distance. But, for certain distributions, it does so to some extent. For instance, when
applied to Gaussian beliefs, KL-divergence is partially based on the Euclidean dis-
tance of the mean. More completely, the KL-divergence between two multivariate
Gaussian beliefs, denoted as b1 = N (μ1,Σ1) and b2 = N (μ2,Σ2), is

DKL(b1, b2) = 1

2

(
(μ2 − μ1)

T Σ−1
1 (μ2 − μ1) + tr

(
Σ−1

2 Σ1
) + ln

|Σ2|
|Σ1| − K

)

,

(6)
where K is the dimension of the underlying state space.

When applied to general beliefs with continuous state space, one usually starts
by discretizing the state space X into uniform grid cells, and then computes the KL-
divergence using Eq. (5) as if the beliefs are discrete distributions. This computation
means that state-space distance is only considered up to the resolution of the grid
cells, which is very limited.

Note that KL divergence is not symmetric and hence is not a true metric. One
can symmetrize KL simply by adding the reverse distance or by computing distance

to the mean of the two distributions (i.e.,
DKL (b, b+b′

2 )+DKL (b′, b+b′
2 )

2 ). The later strategy
is called Jensen-Shannon divergence. In the accompanying comparative study, two
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implementations are used: (i) the Jensen-Shannon and (ii) an approximation of the
beliefs using Gaussian distributions per Eq. (6).

D. L1Distance: Another commonly used distance function in belief-space planning,
and also the simplest to compute, is L1, which is defined as:

DL1(b, b
′) =

∫

x∈X
|b(x) − b′(x)| dx .

Most belief-space planners use L1 distance for discrete distributions, that is X is
discrete and L1 is computed as a summation over X rather than an integration.

When the state space is continuous and L1 distance is used, then the state space
is discretized at a suitable resolution and the L1 distance computation is applied as
if the beliefs are distributions over the discretized state space. This discretization
means that L1 distance, similar to KL divergence, considers the underlying state-
space distance only up to the resolution of the state space discretization, which is
often very limited.

4 Algorithms for Comparative Study

To determine which distance function is most suitable for belief space planning given
its complexity, we employ a sampling-based framework.

A. Non-Observable Markov Decision Processes (NOMDPs): The framework fol-
lows tree sampling-based planners. It is based on a BestNear variant of RRT [17,
30] but is adapted to belief space planning. It has been formally shown - at least for
the deterministic case - that this method can improve path quality over time even
when there is no access to a steering function [15, 16]. Convergence to optimality
requires Lipschitz continuity in the state and control spaces.

Algorithm 1: SPARSE_BELIEF_TREE(B, U, b0, N , Tmax , δn, δs)

G = {V → {b0}, E → 0};1
for N iterations do2

bselected ← SelectNode (B,V ,δn);3
bnew ← Random_Prop (bselect , U, Tmax );4
if IsNodeLocallyBest (bnew, S, δs) then5

V ← V ∪ {bnew};6

E ← E ∪ {bselect → bnew};7
Prune_Dominated_Nodes(bnew, V, E, δs );8

An outline of the algorithmic framework is shown in Algorithm 1. As input, the
planner receives the belief space B, control space U, initial belief b0 and number
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of iterations N . In addition, Algorithm 1 receives a maximum propagation duration
Tmax and two radius parameters δn and δs , which are explained below. The selection
process (Line 3) is summarized in Algorithm 2. A random δ-belief distribution brand
is first sampled in the belief space B and the set of belief distributions Bnear within a
distance threshold δn is computed. If no belief is found within this threshold, then the
closest distribution is returned, similar to the basic RRT approach. If there are beliefs
in the set DB, then the one with the best cost, e.g., trajectory duration, is returned.

Algorithm 2: SelectNode(B, V, δn)

brand ← Sample_Belief(B);1
Bnear ←Near(V, brand , δn);2
If Bnear = ∅ return Nearest(V, brand );3
Else return argminb∈Bnearcost(b);4

Line 4 of Algorithm 1 is the propagation primitive used to add new belief states to
the tree. The subroutine is detailed in Algorithm 3. First, a time duration is uniformly
sampled up to amaximum time Tmax . The sampled timemust be a constantmultiple of
the minimum Δt in order to satisfy the requirement for piece-wise constant control
inputs, which are sampled after the time duration. Given these control inputs, the
belief distribution can be updated through the transition model.

Algorithm 3: Random_Prop(bprop, U, Tmax )

t ← Sample(0, Tmax ); ϒ ← Sample(U, t);1

return bnew ← ∫ t
0 T(b(t), ϒ(t))bprop dt ;2

To perform pruning, the set of nodes V in the tree data structure G(V, E) of
algorithm Algorithm 1 are split into two subsets Vactive and Vinactive. Nodes in Vactive

have the best cost from the start in a neighborhood of radius δs around them. These
nodes are considered for propagation by the algorithm. Nodes that are dominated by
others in terms of path cost in their local neighborhood, are:

• Pruned if they are leaves or have no children in Vactive.
• Or added to the set Vinactive if they do have children in Vactive. Nodes in Vinactive

are not selected for propagation.

Algorithm 4 details a simple operation to determine how to prune existing nodes in
the tree. It is called only if the new belief distribution bnew has the best cost in its
local δs neighborhood. Then, the set of existing nodes that are dominated in terms
of path cost are set to be inactive. If these nodes are also leaves of the tree, they are
removed from the tree. This process can continue up the tree if the parents were also
inactive. It helps to reduce the size of the stored tree and promotes the selection of
nodes with good path quality.



692 Z. Littlefield et al.

Algorithm 4: Pruning(bnew,G, δs)
Bdominated ← FindDominated(G, bnew, δs);1
for b ∈ Bdominated do2

b.set_inactive();3
while IsLeaf (b) and b is inactive do4

xparent ←Parent(b);5

E ← E \ {bparent → b};6
V ← V \ {b};7
b ← bparent ;8

It is apparent that throughout the operation of this sampling-based framework for
belief space planning, there is heavy use of distance calls and a significant dependence
on the choice of the distance function.

B. Partially Observable Markov Decision Processes (POMDPs): The framework
follows a point-based approach, similar to Monte Carlo Value Iteration (MCVI)[2],
an extension of SARSOP [12]. The later is considered the fastest offline and general
POMDP solver for problemswith continuous state space. TheMCVImethod is slightly
modified to use the distance function for pruning sampled beliefs. Algorithm 5 details
the algorithm employed for POMDPs, which incorporates SARSOP as its sampling
strategy (Line 6). The function Nearest (b) in Line 7 and 8 returns the belief in the
treeT that is nearest to belief b. The only modification made to MCVI is the addition
of the condition in Line 7, which rejects a newly sampled belief whenever its nearest
neighbor in T is within a given threshold.

Algorithm 5: ModifiedMCVI(b0)

Initialize belief tree T by setting b0 as the root of T ;1
Initialize policy graph 	 with an empty graph ;2

Initialize the upper bound V of the value function to be ∞ ;3
Initialize the lower bound V of the value function to be -∞ ;4

while |V (b0) − V (b0)| > ε do5
Sample new belief b ;6
if distance(b, Nearest (b)) < δth then7

b ← Nearest (b) ;8

else9
Add b to T ;10

MCVI Backup(	, b) ;11

V = UpdateUpperBound(b) ;12
V = UpdateLowerBound(b) ;13

C. Algorithmic Details to Improve Speed: The implementation of the distance
functions was optimized to reduce computation time. KL and L1 distances were
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implemented through the use of binning. The full state space grid is not required,
only the nonzero entry bins. This allows dealing with high-dimensional problems,
saves space, and reduces computation time. The Hausdorff and EMD functions do not
require binning but become much more efficient using bins. The bin width is chosen
so that several individual bins can be contained within the pruning radius δs when
solving NOMDPs. This discretization introduces an approximation error.

To further speed up the EMD computation, an approximation is employed to occa-
sionally replace the expensive call to the standard method. The motivation stems
from the fact that if two distributions are too far apart, their EMD distance is close
to the distance between their centroids. So, if two distributions overlap according to
their diameters and their discretization, then the standard call to theEMD computation
is performed. Otherwise, the distance between the two centroids is used, which is a
fast operation.

In the following experiments KL-Gaussian represents the approximation of a set
of particles as a Gaussian distribution and performs distances using the closed form
expression from Eq.6. This distance function does not use binning as the Gaussian
parametrization provides an efficient representation.

5 Experimental Evaluation

5.1 Non-observable Markov Decision Processes (NOMDPs)

All distances are evaluated in the scenarios shown in Fig. 2. All scenarios produce
non-Gaussian belief distributions due to the nonlinear dynamics. The objective is to
reach a goal region in state-space with at least 90% probability. Valid trajectories
have a collision probability of less than 20%.

2D Rigid Body. This introductory example is a 2D rigid body moving among two
narrow corridors. Due to errors in actuation and requirement for collision avoidance,
the robot can only move through the lower corridor. The state space is 2D (x, y) and
the control space is also 2D (v, θ), where v ∈ [0, 10] and θ ∈ [−π, π ]. The dynamics

Fig. 2 The considered scenarios, which are better viewed in color. The 2D rigid body (left) must
move from the left to the right side. The car (left middle) must drive through one of 3 corridors.
The fixed-wing airplane (middle right), must move to the opposite corner while avoiding cylinders.
The manipulator (right) must push the round object into the storage location at the top right
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follow this model:
ẋ = ṽ cos(θ̃), ẏ = ṽ sin(θ̃),

where ṽ = v + N (0, 1) and θ̃ = θ + N (0, 0.3). Numerical integration is per-
formed using Euler integration.

2nd -order Car. A four-wheeled vehicle with dynamics needs to reach a goal region,
while ensuring low collision probability. The state space is 5D (x, y, θ, v, ω), the
control space is 2D (a, ω̇) ∈ ([−1, 1], [−2, 0.2]), actuation error is (N (0, 0.05),
N (0, 0.002)), and the dynamics are:

ẋ = v cos(θ) cos(ω), ẏ = v sin(θ) cos(ω),

θ̇ = v sin(ω), v̇ = ã.

Numerical integration is performed using Runge-Kutta order four (RK4). The envi-
ronment is more complex than before since there are multiple feasible paths through
each of the 3 corridors.

Fixed-wing airplane. An airplane flying among multiple cylinders. The state
space is 9D (x, y, z, v, α, β, θ, ω, τ), the control space is 3D (τdes ∈ [4, 8], αdes ∈
[−1.4, 1.4], βdes ∈ [−1, 1]) and the dynamics are (from [21]):

ẋ = v cos(ω) cos(θ), ẏ = v cos(ω) sin(θ)), ż = v sin(ω),

v̇ = τ ∗ cos(β) − Cdkv
2 − g sin(ω), ω̇ = cos(α)(

τ sin(β)

v
+ Clkv) − g

cos(ω)

v
,

θ̇ = v
sin(α)

cos(ω)
(
τ sin(β)

v
+ Clkv), τ̇ = τ̃des − τ α̇ = α̃des − α, β̇ = β̃des − β,

where τ̃des = τdes + N (0, 0.03), α̃des = τdes + N (0, 0.01), and β̃des = βdes +
N (0, 0.01). Numerical integration is performed using RK4. This problem has a
state space that is generally larger than most planners in belief space can handle
computationally. Leveraging sampling-based techniques with proper distance func-
tions makes planning for the airplane model possible.

Non-prehensile manipulator. The task is to push an object to the goal. The state
space is 5D (xman, yman, xobj , yobj , θmanip) and the control space is 2D (v, θ), where
v ∈ [0, 10] and θ ∈ [−π, π ]. The dynamics are:

ẋman = ṽ cos(θ̃), ẏman = ṽ sin(θ̃),

where ṽ = v + U (−1, 1) and θ̃ = θ + U (−0.3, 0.3). Numerical integration is per-
formed using RK4. The object cannot be moved unless the manipulator moves in the
direction of the object and pushes it, which implies that there is contact between the
manipulator and the object. Once pushed, the object moves as if it is attached to the
manipulator. Notice that the noise model used in this setup is a uniform distribution,
meaning that the resulting belief distributions are clearly non-Gaussian.
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Fig. 3 Results for the 2D rigid body - better viewed in color

Fig. 4 Results for the car. L1 and KL failed to produce solutions within the time constraint

Fig. 5 Results for the airplane. L1 and KL failed to produce solutions within the time constraint

Experimental Setup and Results: Each combination of distance function and algo-
rithm is evaluated in each of the four scenarios described in the previous subsection.
The key criterion is the success rate for finding solutions in the allotted time. The
distance thresholds in the algorithms for each metric are selected so that a similar
number of nodes is kept among all alternatives. This allows for a fair comparison on
the effect of a metric to the quality of sample placement. The experiments were exe-
cuted on Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz machines. Each experiment
is repeated 30 times with different random seeds. The results are averaged over these
runs and are presented in Figs. 3, 4, 5 and 6.

In most scenarios, belief metrics that do consider the underlying state-space dis-
tance, such as EMD, Hausdorff, and KL-Gaussian, perform significantly better than
those that do not. KL and L1 metrics consider the state space distance up to the
resolution of the state space discretization (as described in Sect. 4). Such considera-
tion is sufficient when the state space is small (as in Fig. 3). As the size of the state
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Fig. 6 Manipulation results. L1 and KL failed to produce solutions within the time constraint

space increases, this is no longer sufficient. These results corroborated the hypothesis
regarding the importance of taking into account the underlying state space distance
in computing distance between beliefs.

EMD performs substantially better than the alternatives since it considers both
state space distance and the distributions. The Hausdorff distance performs better
than L1 and KL because it still considers the underlying state-space distance. But
Hausdorff does not consider the distribution, and therefore is outperformed by EMD.
KL-Gaussian performs better than L1 and KL because it considers the mean and
variance of the corresponding Gaussian and in this way considers the underlying
state space distance. Nevertheless, the usefulness of this distance function depends
on how well a Gaussian distribution approximates the actual distribution.

The path costs achieved by the different metrics for successful runs are compa-
rable. Therefore, the success rate is the key criterion for evaluating the effect of the
different metrics to the performance of belief-space planners.

Fig. 7 The normalized costs over time for EMD show the benefit of providing improving solutions.
Each trial’s initial solution is normalized to 1. The cost over time is shown with one st. dev
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Results on Cost Reduction Over Time: Figure7 normalizes to one the first solution
generated for each individual run of the algorithm using EMD. Then, all subsequent
improvements to the path cost are plotted relative to the initial cost. The figure
averages all runs, all of which show improvement over time. The improvement is
most prominent for the manipulator experiments. This comparison is performed only
for EMD as it provides the best performance. Path cost can also improve over time
using Hausdorff and KL-Gaussian but there are fewer data points to extract useful
conclusions given the reduced success ratio of these metrics.

5.2 Partially Observable Markov Decision Processes
(POMDPs)

The different distance functions are tested on a 2D navigation problem (Fig. 8a).
The robot is a point robot, and may start from any position marked by the blue
region. Its task is to reach the goal region (the large circular region on the right)
as fast as possible while avoiding collision with obstacles (the grey polygons) as
much as possible. The robot’s motion is discretized into 5 actions, which is moving
a unit distance in the direction of N, NE, E, SE, and S. Its motion has error, which
is represented as a bounded uniform distribution. The robot can only localize itself
up to a certain accuracy inside the small circular regions on the left of the obstacles.
The problem is modeled as a POMDP with continuous state space, but with discrete
action and observation spaces. The reward function of the POMDPmodel is a sum of
the goal reward, collision penalty, and moving cost.

Experimental Setup: The original and modified MCVI method (Algorithm 5) is
evaluated separately for the L1, KL, and EMDmetrics. To set the required parameters,
such as distance threshold, short preliminary runs with various parameters were
executed. The best parameters for each method were retained. Each method was then
executed with the appropriate parameters to generate 15 different sets of policies.
To generate each set of policies, the method is ran until the difference between the
upper and lower bound of the initial belief is less than a given threshold, so that at
the end of the runs, the quality of the policies generated by the different methods are
similar. Throughout each run, the method outputs the intermediate policies at every

ResultsScenario

Fig. 8 Comparative study on a POMDP problem
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time interval and at every time the policy graph reaches a certain size. Each policy is
then evaluated through 1, 000 simulation runs. The expected total discounted reward
of a method is computed as the average total discounted reward over all simulation
runs of all the policies generated by the same method within the same interval.

Results: The results are presented in Fig. 8b–c. They indicate that EMD significantly
improves placement of sampled beliefs. Nevertheless, the benefit of using EMD
degrades over time. The reason is that a naive implementation of distance computa-
tion is used, checking the distance between a new sampled belief and all beliefs that
are already in the belief tree. As time increases, the size of the belief tree increases,
and so is the time taken for this computation. This step affects the EMD computation
much more than other metrics because each EMD evaluation is more expensive. Nev-
ertheless, there has been a lot of work on speeding up EMD computation [22, 26],
which can help to alleviate this problem.

It would be interesting to see how the POMDP evaluation with EMD performs on
problems with similar scale as the NOMDP scenarios. Nevertheless, existing POMDP
solvers cannot solve problems with action spaces and planning horizon as large and
as long as the examples used in the case of NOMDPs (i.e., beyond the 2D rigid body
scenario). Nevertheless, as shown in the case of theNOMDP results, the benefit ofEMD
becomesmore visible as the problem becomesmore complex. This is likely to be true
for POMDPs as well. The cost of reward computation in the POMDP test case is neg-
ligible. In more complex motion planning problems, the reward computation often
includes expensive collision checks. In such problems, the ability to solve problems
with smaller number of sampled beliefs, which reduces the number of backup oper-
ations (and hence reward computations), would be more beneficial. Therefore, the
expectation is that EMD would show additional benefits when the POMDP problems
represent more complex planning problems.

6 Discussion and Conclusion

This work demonstrates that using the Wasserstein distance in belief space plan-
ning provides significant improvements over commonly used alternatives, such as
Kullback–Leibler divergence andL1 distance. This is especially apparent when plan-
ning for higher-dimensional systems. By considering an appropriate metric in belief
space, it is possible to gain benefits from recent advances in sampling-based planning,
which allow the computation of trajectories of increasing path quality.

With the rise of new methods for belief space planning, it is time to take a step
back to understand critical components that make belief space planners performwell.
This paper is a preliminary attempt to provide such an insight.
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