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1 Introduction

The performance of a robot at a certain task depends on the robot’s body structure
and control. It has been shown that an appropriate body structure can greatly simplify
the control problem [10]. However, the initial design of a robot might not be the most
suitable for a task and a more beneficial structures exists.

To repeatedly adapt a robot’s shape to its task and optimize the robot’s perfor-
mance, two main challenges must be addressed. First, to adjust to a preferably large
range of tasks, the robot must be able to assume diverse body shapes, ideally of dif-
ferent size and resolution. This is demanding, as the real-world fabrication processes
and constraints must be considered, and not all parts of the design space can equally
well be explored. Second, to continuously optimize its own shape, the robot must be
able to evaluate its own performance and iteratively generate new designs based on
the task and previous performance.

Reconfigurable and self-reconfigurable modular robots address this issue by
possessing the ability to change their own body structure to better adapt to the
task requirements [16]. The ability to change their physical shape enables self-
reconfigurable robots to achieve tasks which might not be solvable with a fixed
morphology [14]. The field of modular self-reconfigurable robotics employs mecha-
tronic modules which can adapt the connectivity between themselves to change the
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overall structure [4, 6, 12]. Other solutions are provided by configurable systems
which can adjust predefined components of the system, such as the compound eye
robot by Lichtensteiger et al. [5]. A further approach is the synthesis of new struc-
tures from a suitable base material as demonstrated by Revzen et al. [11] using a
robot equipped with hardening foam or our previous work using hot melt adhesives
[1, 7].

It is shown in this paper, that by increasing the diversity of mechanical design
through improved reconfigurability, robots can generate and implement nontrivial
designs. The ability to explore intricate morphological designs also allows for the
generation of more complex behaviors. This was achieved within a limited number
of trial-and-error iterations, without the use of simulation tools. To implement such
a process, sufficient manipulation dexterity is necessary to physically instantiate the
diverse morphologies and the search method must be able to efficiently handle the
large dimensionality of the design problem.

In our implementation, flexible assembly is employed to generate diverse robot
morphologies, similar to the centralized generation of agents demonstrated by Weel
et al. in simulation [15]. An evolutionary algorithm is applied directly to the encoded
building process [3] of locomotion agents to vary their shapes and subsequently
optimize the locomotion speed of physical agents in amodel-free process. The results
were obtained throughout five experiments with 100 candidate robots each. These
experiments have previously been published in [2].

2 Processes and Outcome of the Experiments

The goal of this experiment is the morphological adaptation of physical robotic
agents to a locomotion task through an evolutionary process. To iteratively adapt
the locomotion agents, a “mother robot” can repeatedly assemble the agents from
elementary modules. The details of each agent’s building process is encoded in
its genotype. The population of candidate solutions can undergo evolution, which
subsequently optimizes the fitness at the locomotion task.

In this section, Materials and Methods are introduced first, before an overview of
the results is given. The experiments have previously been presented in [2], which
also contains a more detailed description of the setup and all parameters.

2.1 Materials and Methods

The robotic arm shown in Fig. 1 is able to rotate and bond the active and passive
elementary modules. These processes are parametrized, and each set of parameters
results in specific outcome of the building process, i.e. a specific morphology of the
locomotion agent. This morphology, together with its control parameters and the task
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Fig. 1 The experimental setup with robotic arm (“mother robot”) and prepared active and passive
modules

environment determine the agent’s performance, and thus its chances to be selected
for further generations.

2.1.1 Hardware and Control

The robotic arm (Universal Robots, UR5) used is equipped with a pneumatic parallel
gripper and a hot glue supplier. The gripper is used for the manipulation of the
available modules, and the hot glue (ALFA Klebstoffe AG, ALFA H 5500/30) is
used to bond the modules together.

The active modules are cubes with a side length of 6cm and the passive modules
are wooden cubes with 3cm side length. The active modules contain a servo motor
(Modelcraft, RS-3 JR) for actuation, a battery (Conrad ElectronicAG,Conrad energy
LiPo Akku 7.4V, 800mAh) and the electronics for control and wireless communi-
cation (Arduino, Pro Mini; Sparkfun, Bluetooth Mate Silver). One side of the cube
is connected to the motor flange, such that it can be oscillated. Active and passive
modules are supplied at predefined positions for the assembly of each agent.

For the rotation of active modules, a centering frame is mounted in the construc-
tion space to avoid that position errors sum up during repeated manipulations. The
assembly is performed on a slightly adhesive and soft ground (3mm foam rubber,
covered with masking tape sticky side up) to ensure good ground contact and some
error tolerance. In the testbed, three different ground surfaces are tested: plywood
covered with fabric, carpet and polyurethane foam.

The experiment is controlled from themain controller on a desktop PC usingMat-
lab. A TCP/IP connection is used for communication. The robot controller receives
the command sequence from the main controller and executes it step by step. For
the evaluation, the main controller sends the commands to the active modules using
a Bluetooth connection.
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Fig. 2 Translation of the encoding into the building process based on three operations. For the
preparation of a module, it is rotated. During assembly, the prepared module is bonded to the
previously built structure, which in the last operation can undergo rotation as a whole

2.1.2 Evolutionary Process

All candidate locomotion agents are physically assembled from the modules and
tested. To achieve a sufficiently large design space, the building process must be able
to handle diverse solutions. To maintain the buildability for many parameter values,
the fabrication process is structured into a fixed operation sequence. The parameter
values are stored in an agent’s genotype, which contains one gene per module, with
each gene holding the parameters for the addition of one module. In Fig. 2, the
encoded building process is illustrated. The three operations are the preparation of a
module, assembly and the rotation of the structure.

For its preparation, amodule is picked from the storage position and rotated around
the global y and z-axes. Afterwards, the prepared module can be connected from the
top to the previously built structure using the hot glue [13]. The assembled structure is
then rotated again around the y and z-axes. After the rotation is terminated, either the
next module is prepared and added, or the fabrication is concluded and the finished
agent placed in the testbed for its evaluation. In the case an active module is added, its
gene also defines the motor’s amplitude and phase shift during the evaluation period.

Each gene contains the following fields defining the parameters of the fabrication
process described above: Type of module, rotations during module preparation, rota-
tions of previously built structure, relative offset at placement about x and y-axes,
selection of attachment area in case of multiple options, a final rotation parame-
ter executed after the building process and in case of active modules the control
parameters amplitude and phase shift.

For the fitness evaluation of each agent, it is automatically placed in a prepared
testbed by the robotic manipulator once its construction is finished. There, themotors
are activated with the encoded control parameters for a fixed testing time. The behav-
ior of the agent during the testing phase is recorded by an overhead camera. From
the recorded footage, the position of the agent at the beginning and end of the test is
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extracted using computer vision techniques, and the distance travelled by the agent,
divided by the testing time serves as a fitness measure.

After the fitness is evaluated for all agents of one generation, the genotypes of
the next generation can be generated. An elite (usually the fittest three) advances
to the next generation without any change to their genotype, to preserve this infor-
mation. The other slots in the following generation are filled through mutation and
recombination of genotypes. It is randomly determined for each newgenotype,which
mechanism is applied. For the mutation, one parent is selected, for recombination
two parent genotypes are required. The selection in both cases is stochastic, with the
selection probability for each genotype of the preceding generation proportional to
its fitness.

Mutation can either add a new (randomly initialized gene), delete one gene from
the genome or randomly change a parameter in a gene. It is probabilistically deter-
mined how many and which kind of mutation is performed. For the recombination,
a one-point crossover scheme is applied. This combines the first n genes of the first
parent with the lastm genes of the second parent. Both integers n andm are randomly
selected.

The physical implementation of candidate solutions introduces a number of con-
straints, mostly related to the specific implementation of the setup. For example the
parallel gripper has a limited holding force, and the robotic arm’s range is bounded.
To minimize the time spent on candidate solutions which will violate one of these
constraints, or are otherwise prone to fail (e.g. do not contain a single motor), a
validation step is introduced. It checks each genotype for a number of elementary
conditions. If the genotype fails at least one condition, it is regenerated. Conditions
leading to the exclusion of a genotype are:

• Lack of stability during construction
• Servo-shafts colliding with other components
• Less than one or more than five elements
• Less than one or more than three active modules.

2.1.3 Experiment Details

Five experiments were performed, resulting in the instantiation and evaluation of
500 candidate solutions. Each experiment consisted of ten generationswith ten agents
each. Some parameters were varied between the experiments. The primary differ-
ences and parameters are indicated in this section. The complete specifications can be
found in [2]. Unless specified otherwise, all experiments were randomly initialized,
with genomes of one to three genes length.

Experiment 1a The first experiment was performed on the hard ground (ply-
wood), with four instead of two rotations in the preparation and
rotation operations. The final rotation of the agent was disabled
and in the validation step, only the size limits were active.
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Experiment 1b The agents were evaluated on the carpet. The motor amplitudes
were restricted to 10◦, 20◦ and 40◦.

Experiment 1c To examine puremorphological adaptation, themotor control val-
ues (amplitude and phase shift) were fixed during this experiment.
The agents were also evaluated on the carpet.

Experiment 1d Motor control was reactivated as an evolutionary parameter with
the restricted parameter set from experiment 1b. Agents were
evaluated on the polyurethane foam.

Experiment 2 To further increase the achievable morphological complexity,
multiple parameters were adapted in this experiment and some
manual interventions accepted. Successful agents from the pre-
vious experiments were selected for the initial population. In the
validation step, the stability condition and collision detectionwere
disabled. Consequently, a human operator had to assist to guaran-
tee stability, and colliding motors were manually disabled. Fur-
thermore, the more significant add and delete mutations were
preferred over simple parameter changes.

2.2 Results

Throughout the experiments a large variety of locomotion robots were built and
tested, which developed different successful locomotion strategies. A selection of
successful agents from different experiments is shown in Fig. 3.

The stochastic optimization based on the evolutionary algorithm described in
Sect. 2.1 optimizes the overall locomotion speed of the robotic agents. The increase
of the resulting fitnesses over ten generations is documented in Fig. 4, which shows
for each generation the mean of the best three agents in the population. Because
of the real-world implementation, the evaluation is not deterministic and although
elitism is applied, there is no guarantee that every generation reaches the previous
fitness. However, over generations the fitness increased in all five experiments.

All agents of experiment 1c are shown in Fig. 5. This experiment is particularly
interesting, as the motor control parameters were not subject to the evolutionary

Fig. 3 Four sample locomotion agents generated by real-world evolution. All shownmorphologies
were amongst the most successful robots in their experiment
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Fig. 4 Mean fitness of best
three agents per generation
of all five experiments. An
improvement of fitness over
ten generations can be found
in all five experiments
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optimization. Therefore, the fitness improvement was solely achieved through adap-
tations to the morphology of the locomotion agents. It also shows that despite the
validation step, for a few agents the building process failed, with negative error codes
indicating the reason (−13: glue connection failure, −14: collision during assembly,
−16: other).Over all five experiments, the fabrication success ratewas approximately
96%.

3 Design Diversity and Evolutionary Dynamics

Toadapt the locomotion agents to different environments and explore different behav-
iors, diverse designs have to be generated and implemented. The encoding of designs
and the fabrication process are closely coupled and largely define the design space.
After addressing the initialization of diverse designs, the evolutionary process iter-
ating on the designs must be set up such that it can maintain this diversity over
generations to further explore additional solutions in the design space.

3.1 Encoding of Morphological Variations

Although a flexible assembly process is employed for the instantiation of the locomo-
tion agents, the generation of morphological variation is not trivial. The fabrication
constraints restrict the admissible ranges for parameter values. Therefore, not all
regions of the design space are equally well reachable, which reduces the diversity.
Furthermore, the ranges for parameter values must be set a priori and cannot depend
on other values as this would conflict with mutation and crossover processes.
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Fig. 5 Generation map of experiment 1c. In this experiment, the motor control parameters were not
subject to the optimization, forcing the evolutionary process to improve the locomotion speed solely
bymorphological adaptation. The locomotion agents were evaluated on the carpet. The number with
each agent indicates its fitness (cm/s) and the colors indicate the generation method (green: elite,
red: mutation, blue: crossover). Negative fitnesses are the error codes for failed agents
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(a) (b) (c)

Fig. 6 Encoding generalization. Three different scenarios were considered for the attachment of
an object O to a structure S. In the general case a, two bodies of arbitrary shape are connected by
at least one contact point. For a physical realization b, a sufficiently large contact area is required.
Therefore, in this scenario, both bodies are assumed to be polyhedra. Given the assembly constraints
from the real-world experiment c, both bodies are from elementary cubic shapes. All illustrations
are 2D, but the approach readily applies to the general 3D case

The modules employed in the experiments are of cubic shape, which simplifies
the attachment process and thus the encoding of the genotypes, especially the defin-
ition of parameter ranges. The influence of shape and attachment constraints on the
generation of diverse morphologies is analyzed in the following sections.

3.1.1 The General Attachment Problem

The goal is to attach an object O with shape SO on a structure S with shape SS as
illustrated in Fig. 6. The rotation of the object is given by a rotation matrix RO, and
the rotation of the structure S is defined by the rotationmatrix RS. For the attachment,
at least one contact point between the shapes SS and SO must be present without any
overlap of the respective shapes. Therefore, there is a limited set of valid attachment
vectorsΓ (α, d), which is defined by the direction angle α and the distance d between
the structure and the object. Given an angle α, the distance d is determined by the
geometry of the problem:

d = f (SS, SO, RS, RO, α) . (1)

For this general attachment problem—assuming a point contact is sufficient to
connect the two bodies—all parameters but the distance d can be freely chosen.
Structure and object can have arbitrary shape and orientation, only the distance
depends on the other parameters to fulfill the geometrical constraints for attachment
as illustrated by the function f in (1).
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3.1.2 Attachment of Flat Surfaces

However, for the practical realization of attachment, point contacts are not sufficient.
For the connection with HMA, for example, both bodies must be in contact with a
large enough attachment area A ≥ Amin . To realize this, in the next step it is assumed
that both shapes SS and SO are polyhedra (the set of polyhedra here is denoted asΠ ).
For the two-dimensional illustrations in Fig. 6, polygons are used. For attachment,
one surface of each polyhedronmust be brought into contact,which requires a parallel
orientation of the surfaces. Given the shapes of both bodies SS, SO ∈ Π and the
orientation RS of the structure, only a limited set of orientations RO of the object is
admissible. The choice of the object orientation further constrains the set of valid
attachment vectors Γ , and also the angle α can no longer be freely chosen:

SS, SO ∈ Π (2)

RO ∈ g(SS, SO, RS) (3)

α ∈ h(SS, SO, RS, RO, Amin) (4)

d = f (SS, SO, RS, RO, α) . (5)

The functions g and h which define the admissible set of rotations RO and angles
α are not necessarily easy to determine, depending on the geometry of the problem.

3.1.3 Practical Attachment of Cubic Shapes

For the practical attachment based on the presented experiments a set of cubic shapes
Σ with side lengths s and 2s is considered. It is assumed the object is of such
shape (SO ∈ Σ). The structure’s shape is a combination of elementary cubes, i.e.
SS ∈ Σ̂ ⊃ Σ .

Based on the body shapes and fabrication processes, additional constraints are
introduced. Both bodies’ rotations are restricted to a multiple of ±90◦ around the
elementary axes. For the attachment, only the topmost surface of the structure is
considered, restricting the admissible values of the direction angle α:

SS ∈ Σ̂ ⊃ Σ (6)

SO ∈ Σ (7)

RS, RO ∈ Rx

(
kx

π

2

)
+ Ry

(
ky

π

2

)
+ Rz

(
kz

π

2

)
, k ∈ Z (8)

α ∈ h′(SS, SO, RS) (9)

d = f ′(SS, SO, RS, α) . (10)

This is simplifies the problem in many ways as compared to the previous problem
discussed in Sect. 3.1.2. The admissible values for the orientations are from a fixed
set (8) as compared to the complex function g in (3), which depends on the problem
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geometry and the structure orientation. Furthermore, given the cubic shape of the
object and the fact that only elementary rotations are considered, its overall shape
is predefined, and thus does not have to be considered in the calculation of the
attachment vector Γ (α, d) in Eqs. (9)–(10).

3.1.4 Real-World Fabrication Constraints

Apart from the shape and attachment mechanism, further system constraints have
to be considered for the physical implementation of automated assembly processes.
In the implementation presented in this paper, a validation step (Sect. 2.1.2) checks
each genotype for a range of conditions to ensure most constraints are met.

To evaluate the effect of four main constraints of the physical assembly system, a
simulation experiment was performed. 1.25 million genotypes were randomly gen-
erated with one to ten components. Their morphologies were built in simulation and
based on the simulation results, they were checked for all of the four constraints.
The constraints considered are the maximum agent weight, maximum agent dimen-
sions, stability of agents during fabrication (no toppling) and the connection of new
modules to the agent’s topmost surface only (for details please refer to [2]).

In Fig. 7, the diversity of shape factors for a given number of components that was
achieved by the simulated population is plotted. For the calculation of the diversity,
the all agents were categorized based on their shape factor (see [2] for definition).
The diversity is calculated as the effective number of types based on the population’s
Shannon index, an entropy measure [8]. The diversity measure takes into account the
number of classes present in a population, as well as their relative abundance. The
population was further categorized based on whether all four fabrication constraints
are fulfilled, all but the stability constraint are fulfilled or none are fulfilled. The
stability constraint is of particular interest, as it was relaxed in experiment 2.

Fig. 7 Shape diversity for
differently sized robots with
different building constraints
active. The diversities were
obtained based on
1.25 million randomly
generated genotypes and
their corresponding
morphologies calculated in
simulation. A diversity value
of 3.0 for example is
equivalent to the diversity of
a population with three
equally abundant shape
classes
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The results show, that for small agents, the constraints have only aminor influence,
as they are easily fulfilled. However, the constraints complicate the fabrication of
large agents, and restrict their diversity. Therefore, to scale this approach to more
complex scenarios, fabrication constraints must be carefully addressed.

3.2 Generating New Designs

After the evaluation of one generation in the real world is completed, the fitnesses of
all candidate solutions are known. In a next step, the evolutionary algorithm needs to
map the ten old genotypes of generation n − 1 to the ten new genotypes of genera-
tion n. The chosen process is a mixture of elitism, combined with random mutations
and crossover. For the selection of parent genotypes, the selection probabilities are
proportional to parent fitness.

In Fig. 8, the evolution of fitness in experiment 1c is shown, indicating the genera-
tionmechanism of new genotypes with color (green: elite, blue: crossover, red: muta-
tion) and the relationships through lines from one to another generation. Crossover
is based on two parent genotypes, the other mechanisms use a single parent. In the
case of elitism, the child genotype is an exact copy of the parent genotype. However,
because of the stochasticity in the real-world testing, also identical genotypes exhibit
some fitness variation.
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Fig. 8 Fitness evolution in experiment 1c on carpet. This figure shows the evolution of locomotion
fitness through the course of one experiment. The color indicates the way each agent was generated
(green: elite, blue: crossover, red: mutation). The graph shows the variance of identical genotypes
due to real-world interactions (elite) as well as the increased fitness variation in positive and negative
direction for new genotypes (mutation and crossover)
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Fig. 9 Parent versus child
fitness for all offsprings
evaluated in the five
experiments. The offsprings
which are part of the elite
mostly have comparable
fitnesses to their parents,
while mutated/crossed
offsprings exhibit larger
fitness variation. For
crossover, the average fitness
of parents is considered as
the parent fitness. The
marker color indicates the
way each agent was
generated (green: elite, blue:
crossover, red: mutation)
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Figure9, which shows the parent versus child fitnesses over all five experiments,
indicates that elitism (green triangles) results in child fitnesses comparable to the
parent fitness as expected. Both, mutation (red boxes) and crossover (blue circles),
produce a larger fitness variation. There is a chance that the child completely fails,
but on the other hand, 30 offsprings were at least 50% better than their parents.
While we are interested in the fitness optimization, there is no guarantee that the
random changes of the genotypes result in a preferable outcome. However, through
the combination with the selection strategy, the overall fitness increases through the
course of evolution.

4 Analysis of Behavioral Diversity

The behavior of a robot emerges through the interactions of the robot’s body and
control with the task environment [10].Most of the successful agents exhibit periodic
behaviors, but some fit robots also showed more complex behaviors. The complete
overview of the experiments shows that not only morphologies and behaviors are
fine-tuned to the task, but also new morphologies (see Fig. 5) and behaviors are
discovered by the evolutionary optimization.

For the fitness evaluation, only the start and end points of the robot trajectories
were considered, but from themovies recorded by the overhead camera, the complete
2D trajectories can be extracted. In Fig. 10, a selection of such trajectories is plotted.
The trajectories were selected from the top 10% of locomotion agents over all five
experiments.
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(a) (b) (c) (d)

Fig. 10 These trajectories were selected from the 10% of fittest locomotion agents over all five
experiments. The selected trajectories show that although most successful agents exhibit periodic
motion patterns, also less structured behavior can be successfully developed. All scale bars measure
60mm, i.e. one side length of an active module

Fig. 11 Correlation between
morphological complexity
(measured by the number of
constituent components) and
behavior complexity
(measured by the
approximate entropy
(ApEn)) based on the real
data from all five
experiments
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It is much harder to engineer complex, non-periodic behaviors than the steady
solutions. To better understand under which conditions such innovations are more
likely to develop, the behavioral complexity based on the agent’s trajectories is further
analyzed. To quantify the complexity of the agents’ behaviors, the “Approximate
Entropy” (ApEn) of their trajectories was calculated as described by Peng et al.
(p. 11 in [9]), with the only difference, that the trajectory segments compared are
normalized by their initial positions to account for the translations during the course
of the robot’s motion. The parameters used for the calculation of the ApEn arem = 2
and r = 5.

Assessing the influence of morphology onto behavior, a measure for morpholog-
ical complexity is required. Here, we approximate an agents’ morphological com-
plexity by its number of constituent modules. Putting the number of modules and
approximate entropy of all built locomotion agents into relation, it can be seen that
larger agents tend to exhibit more complex trajectories as plotted in Fig. 11.

As shown already by the simulation results plotted in Fig. 7, it is a challenging
task to develop diverse structures from many components, which at the same time
fulfill the building constraints. On the other hand, the real-world results show the



Robotic Invention: Challenges and Perspectives … 595

(a) (b) (c) (d) (e)

Fig. 12 Trajectories of an agentwith fixedmorphology andmotor control in different environments.
The tested grounds are: a plywood, b carpet, c soft foam, d fine sandpaper and e textile. The scale
bar in all plots is 60mm, i.e. the side length of an active module

benefits of larger structures to achieve complex behaviors. The fabrication process
therefore has to be carefully implemented to take these considerations into account.

Apart from morphology and control (the parameters under control of the evo-
lutionary algorithm), the testing environment has a large influence on an agent’s
behavior. In Fig. 12, the trajectories of one robotic agent with fixed control parame-
ters in five different environments are shown. From these trajectories it can be seen
that not only the performance varies, but also different behaviors emerge through the
complex system-environment interactions.

Since the evaluation of the robotic agents is based on real-world tests, the results
are not deterministic. The stochasticity can be introduced both in the fabrication and
the evaluation steps. During the genotype-phenotype mapping, i.e. the fabrication
of physical locomotion agents, small differences always occur, which influence the
robot’s morphology. The second source of uncertainty is the morphology-behavior
mapping, i.e. the real-world evaluation of agents. The initial conditions and local
details of the environment or internal parameters of the modules influence an agent’s
behavior in a stochastic way.

5 Conclusion

In this article, the design optimization of physical locomotion agents is presented. An
evolutionary algorithm was applied directly onto the encoded fabrication process,
which enabled the automatic implementation of candidate solutions in real-world
for their performance evaluation in the task environment. For the successful opti-
mization, a process is required which can generate diverse mechanical designs and
autonomously generate new design based on the solution performance.

Over five experiments, 500 candidate solutions were built with about 96% success
rate and subsequently tested. The evolutionary process led to a relevant increase of
locomotion fitness over ten generations in all five experiments. After the fabrication
the robot morphologies interact with the task environment. The emerging behavior
determines the performance at the given task. It was shown that although many
successful agents exhibit periodic motions, the automatic design can generate more
complex working behaviors.
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Analysis of these experiments emphasized the importance of the fabrication con-
straints for the physical implementation of the presented system. The fabrication
constraints directly influence the diversity of designs which can successfully be con-
structed, especially if larger structures are considered. On the other hand, to achieve
more complex and nontrivial behaviors, it is beneficial to fabricate larger structures—
an ability which is directly influenced by the fabrication constraints.
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