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1 Introduction

Assistive and collaborative robots must have the ability to physically interact with
the human, safely and synergistically. However, pre-programming a robot for a large
number of tasks is not only tedious, but unrealistic, especially if tasks are added or
changed constantly. Moreover, conventional programming methods do not address
semi-autonomous robots—robots whose actions depend on the actions of a human
partner. Nevertheless, once deployed, for example in a domestic or small industrial
environment, a semi-autonomous robot must be easy to program, without requiring
the need of a dedicated expert. For this reason, this paper proposes the use of inter-
action learning, a data-driven approach based on the use of imitation learning [17]
for learning tasks that involve human-robot interaction.

Amongst the several challenges posed by interaction learning, this paper focuses
on two intrinsically related problems. First, the problem of estimating the phase of
the human movement, that is, the progress or the stage of the execution of the human
trajectory under an intermittent stream of position data. This is a problem of practical
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Fig. 1 Collaborative and assistive robots must address both action recognition and movement
coordination based on human observations. a A robot coworker must recognize the intention of the
human before deciding which action to take. b Observing the human movement through corrupted
(e.g. occluded, sparse, intermittent) position data, poses the problem of identifying the correct phase
of the movement

importance since the majority of motion capture systems available, such as marker
tracking and depth cameras, rely on planned spaces and well positioned cameras;
requirements that are incompatible with most of the already existing collaborative
environments of interest (e.g. in a hospital, at home) where occlusions are prone to
occur. Second, based on this assessment, we address the problem of recognizing the
human action and generating the corresponding movement of the robot assistant. As
illustrated in Fig. 1a, by observing the movement of the human, a semi-autonomous
robot must decide if it should hand over a plate, or hold a screwdriver. The human,
however, may execute movements at different unobserved speeds, and position mea-
surements may be corrupted by occlusions, which cause the problem of temporally
aligning sparse position observations with the interactionmodel. Figure1b illustrates
such a problem where the same sequence of three observed positions may fit two
models that are identically spatially, but have different phases of execution. Such an
ambiguity hinders the adaptation of the robot movement.

The contribution of this paper is a probabilistic framework for interaction learning
with movement primitives that allows a robot to react faster by estimating the phase
of the human, and to associate the outcome of the estimation to address different
tasks. As the algorithm relies on Probabilistic Movement Primitives [15] for human-
robot interaction, the method will also be referred to as Interaction ProMPs. An
Interaction ProMP provides a model that correlates the weights that parameterize
the trajectories of a human and a robot when executing a task in collaboration. The
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Interaction ProMP is conditioned on the observations of the human and the robot is
controlled based on a posterior distribution over robot trajectories.

This paper consolidates our recent efforts in different aspects of semi-autonomous
robots. It leverages on the representation of movements with ProMPs, our develop-
ments in the context of human-robot interaction [1, 13], and the ability to address
multiple tasks [7, 13]. While our previous interaction models were explicitly time-
dependent, here, we introduce a phase-dependent method. Section2 emphasizes the
most relevant works in phase and time representations and briefly addresses related
works in other aspects of the framework.1 Section3 describes the proposed method
with a brief background on ProMPs, followed by Interaction ProMPs, phase estima-
tion, and action recognition. Finally, Sect. 4 provides experiments and discussions
on the application of the method in an assembly scenario.

2 Related Work

Dynamical Movement Primitives [8], or simply DMPs, have been known to address
temporal variations with a phase variable. The phase variable is used to govern the
spread of a fixed number of basis functions that encode parameters of a forcing func-
tion. ProMPs use the concept of phases in the same manner, with the difference that
the basis functions are used to encode positions. This difference is fundamental for
Interaction Primitives since estimating the forcing function of the human is nontrivial
in practice, while positions can be often measured directly [13].

Recently, a modified form of DMPs where the rate of phase change is related to
the speed of movement has been presented [20]. The method uses Reinforcement
Learning and Iterative Learning Control to speed up the execution of a robot’s move-
ment without violating pre-defined constraints such as carrying a glass full of liquid
without spilling it. A similar form of iterative learning was used to learn the time
mapping between demonstrated trajectories and a reference trajectory [19]. With
their approach, a robot was able to perform a surgical task of knot-tie faster than the
human demonstrator.

Dynamic Time Warping (DTW) [16] has been used in robotics applications for
temporally aligning trajectories. For example, as part of an algorithm that esti-
mates the optimal, hidden trajectory provided by multiple expert demonstrations [4].
Although DTW has been shown suitable for off-line processing of data, its online
application can be hard to achieve in practice due to exhaustive systematic search. A
different approach is to explicitly encode the time of demonstrations such as in [3],
where the structure of the model intrinsically generates smooth temporal solutions.
The measurement or estimation of velocity, for example, by differentiation of a con-
sistent stream of positions, removes the ambiguity of Fig. 1b and allows for the real-
ization of online algorithms that cope with very fast dynamics [9, 10]. Suchmethods,

1The interested reader is referred to our previous works for additional and detailed literature review
in respect to their corresponding contributions.
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however, rely on a planned environment free from occlusions and fast tracking capa-
bilities; requirements difficult to achieve in environments where semi-autonomous
robots are expected to make their biggest impact, such as in small factories, hospi-
tals and home care facilities. A limitation of ProMPs in relation to representations
based on multiple reference frames such as the Dynamical Systems [3], and forcing
functions as in DMPs, is that ProMPs only operate within the demonstrated set of
demonstrations.

Several methods to learn time-independent models by imitation have been pro-
posed. For example, HiddenMarkovModels (HMM) and Gaussian Mixture Regres-
sion (GMR) have been used to learn and reproduce demonstrated gestures [2] where
each hidden state corresponds to a Gaussian over positions and velocities, locally
encoding variation and correlation. In [5], a method to reactively adapt trajectories
of a motion planner due to changes in the environment was proposed by measuring
the progress of a task with a dynamic phase variable. While this method is suited
for cases where the goal is known from a planned trajectory—the phase is estimated
from the distance to the goal—a semi-autonomous robot is not provided with such
information: the goal must be inferred from the observation of the humanmovement,
which in turn requires an estimate of the phase.

This paper shares similar challenges faced in [21] where the robot trajectory had
to be adapted according to the observation of the human partner during handovers.
In [21] the authors encoded the demonstrations in a tree-structured database as a
hierarchyof clusters,which then poses the problemof searchingmatching trajectories
given partial observations. The use of a probabilistic approach in the present work
allows us to address the search for a matching trajectory simply computing the
likelihoods of various models given the observed trajectories.

Several other works have addressed the action recognition problem. Graphical
models, in particular, have been widely used. In human-robot interaction, HMMs
have been used hierarchically to represent states and to trigger low-level primi-
tives [12]. HMMs were also applied to predict the positions of a coworker in an
assembly line for tool delivery [18] while in [11], Conditional Random Fields were
used to predict the possible actions of a human. The prediction of the movement of
human coworkers was addressed in [14] with a mixture model. The cited methods
address the generation of the corresponding robot movement as an independent step,
either by pre-programming suitable actions [11], or by using motion planners [14].
In contrast, Interaction ProMPs intrinsically correlate the action of the human with
the movement of the robot such that action recognition and movement generation
are provided by the same model.
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3 Probabilistic Movement Primitives for Human-Robot
Interaction

This section introduces ProMPs for a single degree-of-freedom (DoF) from which
the multi-DoF ProMP will follow naturally. In human-robot interaction, the use of
ProMPs consists on the use of the multi-DoF case where some of the DoFs are given
by a tracked human interacting with a semi-autonomous robot. This section finishes
by introducing phase estimation, which also provides means to recognize human
actions in multiple-task scenarios.

3.1 Probabilistic Movement Primitives on a Single
Degree-of-Freedom

For each time step t a position is represented by yt and a trajectory of T time
steps as a smooth sequence y1:T . A parameterization of y1:T in a lower dimensional
weight space can be achieved by linear regression on time-dependent Gaussian basis
functions ψt ,

yt = ψT
t w + εy, (1)

p( y1:T |w) =
T∏

1

N ( yt |ψT
t w,� y), (2)

where εy∼N (0,� y) is zero-mean i.i.d. Gaussian noise andw ∈ R
N is a weight vec-

tor that encodes the trajectory. The number of Gaussian bases N is often much lower
than the number of trajectory time steps. The number of basis is a design parameter
that must be matched with the desired amount of detail to be preserved during the
encoding of the trajectory. In the particular case of the experiments here reported,
trajectories have an average time of 3 s, sampled at 50Hz. The dimensionality is
decreased from 3 × 50 = 150 samples to a weight vector of length N = 20.

Assume M trajectories are obtained via demonstrations; their parameterization
leading to a set of weight vectors W = {w1, ... wi , ... wM} (the subscript i as in
wi will be used to indicate a particular demonstration when relevant, and will be
omitted otherwise). Define θ as a parameter to govern the distribution of W such
that w∼p(w;θ). From the training data we model p(w;θ) as a Gaussian with mean
μw ∈ R

N and covariance �w ∈ R
N×N , that is θ = {μw,�w}. This model allows us

to sample from the demonstrated distribution over positions with

p( yt ;θ) =
∫

p( yt |w)p(w;θ)dw = N ( yt |ψT
t μw,ψ

T
t �wψt + � y). (3)
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The Gaussian assumption is restrictive in two ways. First, the training data must be
time-aligned, for example by DTW; second, only one type of interaction pattern—or
collaborative task—can be encoded within a single Gaussian (mixture of models
were used to address the latter problem in an unsupervised fashion [7]).

3.2 Correlating Human and Robot Movements
with Interaction ProMPs

Interaction ProMPs model the correlation of multiple DoFs of multiple agents. Let
us define the state vector as a concatenation of the P number of observed DoFs of
the human, followed by the Q number of DoFs of the robot

yt = [ yH1,t , ... y
H
P,t , yR1,t , ... y

R
Q,t ]T ,

where the upper scripts (·)H and (·)R refer to the human and robot DoFs, respectively.
Similar to the single DoF case, all DoF’s trajectories are parameterized as weights
such that

p( yt |w̄) = N ( yt |HT
t w̄,� y), (4)

where HT
t = diag((ψT

t )1, . . . , (ψ
T
t )P , (ψ

T
t )P+1, . . . , (ψ

T
t )P+Q) has P + Q diago-

nal entries. Each collaborative demonstration now provides P + Q training trajec-
tories. The weight vector w̄i of the i-th demonstration is

w̄i = [ (wH
1 )

T , . . . , (wH
P )

T , (wR
1 )

T , . . . , (wR
Q)

T ]T , (5)

from which a normal distribution from a set of M demonstrations W̄ = {w̄1, ...w̄M}
with μw ∈ R

(P+Q)N and �w ∈ R
(P+Q)N×(P+Q)N can be computed.

The fundamental operation for semi-autonomy is to compute a posterior proba-
bility distribution of the weights (now encoding both human and robot) w̄∼N (μnew

w ,

�new
w ) conditioned on a sparse (e.g. due to motion capture occlusion) sequence of

observed positions of the human y∗ measured within the interval [t, t ′]. This opera-
tion can be computed with

μnew
w = μw + K ( y∗

t,t ′ − HT
t,t ′μw),

�new
w = �w − K (HT

t,t ′�w), (6)

where K = �wHT
t,t ′(�

∗
y + HT

t,t ′�wHt,t ′)
−1 and �∗

y is the measurement noise. The
upper-script (·)new is used for values after the update and the subscript (·)t,t ′ is used
to indicate the unvenly spaced interval between t and t ′. The observation matrixHT

t,t ′
is obtained by concatenating the bases at the corresponding observation steps, where
the Q unobserved states of the robot are represented by zero entries in the diagonal.
Thus, for a each time step t ,
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Fig. 2 The workflow of Interaction ProMP on a single task where the distribution of human-robot
parameterized trajectories is abstracted as a bivariate Gaussian. The conditioning step is shown
as the slicing of the distribution at the observation of the human position. In the real case, this
distribution is multivariate

HT
t =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ψT
t )1 . . . 0 0 . . . 0

0
. . . 0 0

. . . 0
0 . . . (ψT

t )P 0 . . . 0
0 . . . 0 0P+1 . . . 0

0
. . . 0 0

. . . 0
0 . . . 0 0 . . . 0P+Q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Trajectory distributions that predict human and robot movements are obtained by
integrating out the weights of the posterior distribution

p( y1:T ;θnew) =
∫

p( y1:T |w̄)p(w̄;θnew)dw̄. (8)

Figure2 summarizes the workflow of the Interaction ProMP. During the training
phase, imitation learning is used to learn the parameterθ. In the figure, the distribution
modelled by θ is abstracted as a bivariate Gaussian where each of the two dimensions
are given by the distribution over the weights of the human and robot trajectories.
During execution, the assistive trajectory of the robot is predicted by integrating out
the weights of the posterior distribution p(w̄;θnew). The operation of conditioning
is illustrated by the slicing of the prior, at the current observation of the position of
the human y∗

t .
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3.3 Estimating Phases and Actions of Multiple Tasks

Previous works [7, 13] have only addressed spatial variability, but not temporal
variability of demonstratedmovements. However, when demonstrating the same task
multiple times, a human demonstrator will inevitably execute movements at different
speeds, thus changing the phase at which events occur. Previously, this problem has
been alleviated by introducing an additional pre-processing step on the training data
for time-alignment based on a variant of DTW. Back to Fig. 1b, the aligned model is
shown as the distribution of trajectories indexed by the normalized time.

Time-alignment ensures that the weights of each demonstration can be regressed
using the same feature ψ1:T . As a consequence, during execution, the conditioning
(6) can only be used when the phase of the human demonstrator coincides with the
phase encoded by the time-aligned model, which is unrealistic in practice. In [7,
13] we avoided this problem by conditioning only at the last position of the human
movement, since for this particular case, the corresponding basis function is known
to be ψT . For any other time step t , the association between y∗

t and the basis ψt

is unknown when the human presents temporal variability and the velocity is either
unobserved or computation from derivatives impractical due to sparsity of position
measurements.

We propose incorporating the temporal variance as part of the model by learning a
distribution over phases from the multiple demonstrations. This enriched model not
only eliminates the need for time-alignment, but also opens the possibility for faster
robot behaviour as the conditioning (6) can be applied before the end of the human
movement. Initially, we replace the original time indexes of the basis functions with
a phase variable z(t). Define Tnom as a nominal trajectory duration (e.g. the average
final time of the demonstrations) from which the weights of all demonstrations are
regressed to obtain the parameters of the distribution θ = {μw,�w}; the Gaussian
bases are spread over the nominal duration ψ1:Tnom . Assuming that each of the i-th
demonstrations has a constant rate of change, define a temporal scaling factor

αi = Tnom/Ti . (9)

The single scaling factor αi means that observations (the three red circles in Fig. 1b)
are “stretched” or “compressed” at the same rate in the temporal direction. Although
simple, our experiments have shown that this assumption holds in practice for simple,
short stroke movements typical of handovers (see [6] for problems where multiple
phases are addressed). Thus, a trajectory of duration T can be computed relative to
the phase

p( y1:T |w) =
T∏

1

N ( y(zt )|[ψ(zt )]Tw,� y), zt = αt. (10)

Given the sparse partial sequence of human position observations, a posterior
probability distribution over phases is given as
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p(α| y∗
t,t ′ ,θ) ∝ p( y∗

t,t ′ |α,θ)p(α). (11)

For simplicity, we assume the prior p(α) as a univariate Gaussian distribution,
obtained from the M demonstrations, α∼N (μα,σ

2
α). For a specific α value the

likelihood is

p( y∗
t,t ′ |α,θ) =

∫
p( y∗

t,t ′ |w̄,α)p(w̄)dw̄

= N ( y∗
t :t ′ |[A(zt :t ′)]Tμw, [A(zt,t ′)]T�w[A(zt,t ′)] + �∗

y), (12)

where

[A(zt,t ′)]T =

⎡

⎢⎢⎢⎣

[ψ(zt,t ′)]T1 . . . 0

0
. . . 0

0 . . . [ψ(zt,t ′)]TP

⎤

⎥⎥⎥⎦ , (13)

is the matrix of basis functions of the observed positions of the human, which cor-
responds to the observed entries of the full matrix H in (7), however, now indexed
by the phase zt = αt . Given the observations y∗

t,t ′ , the likelihood of each sampled α
candidate is computed with (12), and the most probable scaling value

α∗ = arg max
α

p(α| y∗
t,t ′ ,θ) (14)

is selected. Intuitively, the effect of different phases is to stretch or compress the tem-
poral axis of the prior (unconditioned) distribution proportionally to α. The method
then compares which scaling value generates the model with the highest probabil-
ity given the observation y∗

t,t ′ . Once the most probable scaling value is found, its
associated observation matrix H(z1:T ) can be used in (6) to condition and predict
the trajectories of both human and robot. To efficiently estimate the phase during
execution, one approach is to sample a number of values of α from the prior p(α)
and precompute and store, for each of them, the associated matrix of basis functions
A(z1:T ) and H(z1:T ) beforehand.

In a multi-task scenario, we can now address the recognition of the task given the
positions y∗

t,t ′ . Assume a K number of collaborative tasks are encoded by indepen-
dently trained Interaction ProMPs represented by the parameter θk . For each task
k, the most probable α∗

k and likelihood must be stored. By noting that each task is
represented by its own parameter θk , the most probable task is given by re-using
the likelihoods of the set {α∗

k ,θk}, already computed in (14). The task recognition is
given by

k∗ = arg max
k

p(k| y∗
t,t ′), (15)

where p(k| y∗
t,t ′) ∝ p( y∗

t,t ′ |α∗
k ,θk)p(k) with p(k) being a prior probability distri-

bution of the task and p( y∗
t,t ′ |α∗

k ,θk) was previously obtained in (12). The two



262 G. Maeda et al.

optimizations in (14) and (15) lead to an algorithm that scales linearly in the number
of sampled α’s and in the number of tasks.

4 Experiments with a Semi-autonomous Robot

Collaborative assembly experiments were conducted using a 7-DoF lightweight arm
equipped with a 5-finger hand. In all experiments, the wrist of the human was tracked
by motion capture, providing XYZ Cartesian coordinates. The joint encoder trajec-
tories of the robot were recorded by kinesthetic teaching. For each demonstration,
the set of human-robot measurements were paired and stored with a sampling rate
of 50Hz.

4.1 A Multi-task Semi-autonomous Robot Coworker

As it was shown in Fig. 1a, we applied our method on a multi-task scenario where
the robot plays the role of a coworker that helps a human assembling a toolbox.
This scenario was previously proposed in [7] where the training data was time-
aligned. As a consequence, the conditioning could only be applied at the end of the
movement. Here, the robot can predict the collaborative trajectory before the human
finishes moving, leading to a faster robot response. Moreover, the effort spent in
pre-processing training data was considerably decreased as no time-alignment was
needed.

The assembly consists of three different collaborative interactions. In one of them,
the human extends his hand to receive a plate. The robot fetches a plate from a stand
and gives it to the human by bringing it close to his hand. In a second interaction, the
human fetches the screwdriver and the robot grasps and gives a screw to the human
as a pre-emptive collaborator would do. The third type of interaction consists of the
robot receiving a screwdriver such that the human coworker can have both hands free
(the same primitive representing this interaction is also used to give the screwdriver
back to the human). Each interaction of plate handover, screw handover and holding
the screwdriver was demonstrated 15, 20, and 13 times, respectively. The trajectories
obtained from the demonstrations are shown in Fig. 3 in the Cartesian space. Note,
however, that the interaction primitives were trained on the Cartesian coordinates of
the wrist with the joint coordinates of the robot.

Tomake adirect comparisonbetween the previousmethod and the presentmethod,
the same training data presented in [7] was used. The durations of each demonstra-
tion was, however, randomly modified as we noticed the original data did not present
sufficient variability of phases (in our initial tests the correct phase could be reason-
ably estimated with only 2–3 α samples). The randomization acts as a surrogate for
different demonstrators with different speeds of execution. The original time-aligned
demonstrations for one of the tasks can be seen in Fig. 4a as the several gray curves.
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Fig. 3 Demonstrations of the three different interactions and their respective trajectories
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Fig. 4 Prediction of the distribution over trajectories of the human and the robot for the task of
handing over a screw driver. a The previousmethodwith time-aligned data without phase estimation
and therefore conditioned only a the last observation of the human position. The phase estimation
method where five measurements randomly spaced are taken up to 25% of the total duration of the
human movement in (b) and 50% of the total duration of the human movement in (c)

Using leave-one-out cross-validation (LOOCV) the figure shows that the uncertainty
of the human position collapses at the end, when the measurement is made on the
test data. The posterior distribution, shown as the blue patch with ± two-standard
deviations, predicts the robot final joint positions with an average error of 2.1 ±
6.7 degrees. Figure4b, c shows the proposed method with phase-estimation where
the training data includes various phases. In Fig. 4b, the observation represents 25%
of the total trajectory length. The final positional error was of 6.8 ± 11.3 degrees.
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(a) (b)

Fig. 5 Leave-one-out cross-validation over the whole training dataset of plate handovers. The final
position errors (a) and the uncertainty (±2σ) (b) of the predictions are shown. The predictions are
made when 10, 25, 50, and 80% of the trajectory are observed and compared with the time-aligned
case

In (c), 50% of the trajectory was observed and the error decreased to 2.0 ± 5.7
degrees, roughly achieving the same accuracy as the time-aligned case shown in (a).
The error was computed by averaging the RMS final position error over the 7 joint
positions of the arm.

In Fig. 5a, each bar represents the final position error as the average over the 7
joints of the robot with LOOCV over the whole data set of demonstrations. The
figure shows the cases when 10, 25, 50, and 80% of the trajectory were observed.
For each observation, 25 samples of the phase parameter α were used. We compared
those results with the original method [7] when the prediction is made based on
the final measurement, indicated by the bar labelled “Time aligned”. When 80%
of the trajectory was observed, the prediction provided the same accuracy of the
time-aligned method.

From the same LOOCV test, the uncertainty at the final position (that is, the width
of the blue patch previously shown in Fig. 4 at the end of the trajectory), was also
quantified. These results are shown at the right plot Fig. 5b. Note that when 80% of
observations were provided, a trajectory with less uncertainty than the time-aligned
case can be predicted. This results from the fact that, with phase estimation, the
covariance matrix is updated multiple times while in the time-aligned case only one
single update is made at the end of the movement.

Interaction ProMPs also provide the ability for the robot to spatially coordinate
its movement according to the movement of the human. A practical application is
the handover of an object at different positions as shown in Fig. 6. In the left picture,
the robot first receives the screwdriver from the human. In the right picture, the
human extends his hand in a different location and the robot then delivers the tool
back. The trajectory of the robot was inferred by conditioning the Interaction ProMP
during the first second of the movement of the human.We have previously quantified
the accuracy of the prediction in our setup achieving positional errors of less than
3cm [13].
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Fig. 6 Handover and return of a screwdriver at different positions, obtained by conditioning the
Interaction ProMP on the positions of the wrist marker

With phase estimation, the robot reaction time for the handover of the screwdriver
shown in Fig. 6 decreased on average by 2s, a reduction of 25% of the task dura-
tion in relation to the original time-aligned case. Our preliminary evaluations on the
assembly scenario was carried out by sampling 25 values of α phases for each of
the three tasks, thus requiring 75 (25 samples × 3 tasks) calls to the computation of
the probabilities (11) while the human moves his arm. The whole process, including
the final prediction of the full trajectory with (8), observed during the first second
of the human movement took in average 0.20 s using Matlab code on a conventional
laptop (Core i7, 1.7GHz). To control the robot, only the mean of the posterior dis-
tribution over trajectories for each joint of the robot was used, and tracked by the
standard, compliant joint controller provided by the robot manufacturer.2 A video of
this experiment can be watched in http://youtu.be/4qDFv02xlNo.

4.2 Discussion of the Experiment and Limitations

In practice, there is an upper limit on the number of tasks and sampled α’s that
can be supported. This limit can be empirically evaluated as the total time required
to compute the probability of all sampled alphas, for all tasks, which must be less
than the duration of the human movement. Otherwise, it is faster to predict the robot
trajectories based on the final measurement of the human, as it was done in previous
works. This limit depends on the efficiency of the implementation and the duration
of the human movement.

Since the experiments aimed at exposing the adaptation of the robot movement
solely bymeans of the Interaction ProMPs, no direct feedback tracking of the marker
on the human wrist was made. The interaction primitive framework may potentially
benefit when used in combination with a feedback controller that tracks the markers

2Althoughnot used in this paper, theProMPframework alsoprovidesmeans to compute the feedback
controller and the interested reader is referred to [15].

http://youtu.be/4qDFv02xlNo
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directly. Note, however, that it is not possible to completely replace an interaction
primitive by a tracking controller. A feedback controller does not provide the flexi-
bility and richness of the trajectories that can be encoded in a primitive learned from
human demonstrations.

A system that allows for reliable estimation of velocity (or a constant stream of
position) can greatly simplify the estimation of the phase, and under the assumption
of a constant rate α, make the problem readily solvable. On the other hand, the
nondisruptive deployment of semi-autonomous robots in the field must cope with
occluded and sparse positionmeasurements, often provided by low-cost sensors such
asKinect cameras, which requires algorithms that are capable of estimating the phase
from such data. In the short termwe envision a self-contained setup that uses a Kinect
camera as a replacement of the optical marker tracking system that was used during
the experiments.

5 Conclusions

This paper presented a method suited for collaborative and assistive robots whose
movements must be coordinated with the trajectories of a human partner moving
at different speeds. This goal was achieved by augmenting the previous framework
of Interaction ProMPs with a prior model of the phases of the human movement,
obtained from demonstrated trajectories. The encoding of phases enriches the model
by allowing the alignment of the observations of the human in relation to the inter-
action model, under an intermittent positional stream of data. We experimentally
evaluated our method in an application where the robot acts as a coworker in a fac-
tory. Phase estimation allowed our robot to predict the trajectories of both interacting
agents before the human finishes the movement, resulting in a faster interaction. The
duration of a handover task could be decreased by 25% while using the same robot
commands (same speed of the robot movement).

A future application of the method is to use the estimated phase of the human to
adapt the velocity of the robot. A slowlymoving human suggests that the robot should
also move slowly, as an indication that a delicate task is being executed. Conversely,
if the human is moving fast, the robot should also move fast as its partner may want
to finish the task quickly.
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